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Abstract

Phishing and malware attacks continue to plague the digital world;
wreaking havoc on individuals, businesses, and governments world-
wide. Attacks often target popular platforms, such as Twitter: a
microblogging social networking service with over 330 million active
monthly users, posting more than 500 million daily tweets.

This thesis explores how well-protected Twitter users are from phish-
ing and malware attacks. We take an empirical, data-driven approach
to investigate the effectiveness of Twitter’s cybercrime defence system
at time-of-tweet and time-of-click. We create Phishalytics: our measure-
ment infrastructure that collects and analyses large-scale data sets.
Our data feeds include Twitter’s Stream API, Bitly’s Clicks API, and 3
popular blacklists: Google Safe Browsing, PhishTank, and OpenPhish.
We improve internet measurement studies by addressing soundness
and limitations of existing work. Our studies include characterising
URL blacklists, investigating blacklist delays, and examining Twitter’s
URL shortener (t.co). We aim to better enable policymakers, techno-
logy designers, and researchers to strengthen online user security.

We provide empirical evidence highlighting the state, and scale, of
cybercrime on Twitter. Key findings show over 10,000 phishing and
malware URLs – publicly tweeted to more than 131 million Twitter
accounts – received over 1.6 million clicks from Twitter users. Twitter’s
time-of-click defence system blocks only 12% of blacklisted URLs and
web browsers miss up to 62% of non-blacklisted phishing websites.
We recommend Twitter users ensure their risk appetite aligns with
their cybercrime defence strategy. Furthermore, blacklists do not offer
absolute protection and cybercriminals can exploit uptake delays.

Our findings suggest more can be done to strengthen Twitter’s phishing
and malware defence system and improve user security. However,
measuring and evaluating effectiveness is complex and non-trivial.
We discuss the importance of soundness, the significance of measure-
ment study reproducibility, and the challenges of measuring an ever-
changing landscape.
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1
Introduction

OUTLINE

This chapter presents an overview of the thesis. We provide motivation for
our research and outline our aims, research questions, contributions, and
scope. We also summarise our overall approach to research and highlight
a number of ethical and professional considerations. Finally, we provide
context to our research, and then outline the structure of this thesis.

1.1 Motivation

Phishing and malware attacks continue to plague the digital world. From
credential theft – that brings misery to individuals – to large-scale, coordin-
ated attacks that wreak havoc on organisations and governments worldwide.
Cyber attacks reach their victims by propagating through various channels
and networks, such as: email, social media, and blogs.

With more than 500 million daily tweets from over 330 million active
users [281], Twitter is an attractive target for cybercriminals. Twitter
has come under increasing pressure to protect its users from cyberattacks.
In 2010, Twitter settled a case with the US Federal Trade Commission
(FTC) in which Twitter agreed to strengthen its security and carry out
an independently assessed bi-annual information security audit for 10
years [86, 87, 88]. Cyberattack techniques continually evolve to avoid
detection. Therefore, it is crucial to maintain effective cyber defence systems
to protect internet users against phishing and malware attacks. We do this
by improving our understanding of not only the phishing and malware
attacks themselves – but also the defence systems that keep us safe.

Measurement studies, and longitudinal studies, improve our under-
standing of how effective certain defence systems are by observing specific
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variables over periods of time. Results from such studies – including eval-
uations of effectiveness – contribute towards strengthening our defence
systems and inform policymakers, researchers, technology designers, and
other key actors. However, the effectiveness of studies’ contribution to
improving user security depends on the soundness (defined in Section 2.10)
of the measurements and conclusions.

This thesis explores how well-protected Twitter users are from phishing
and malware attacks. We take an empirical, data-driven approach to invest-
igate the effectiveness of Twitter’s phishing and malware defence system at
time-of-post and time-of-click. As part of our research we analyse popular
URL blacklists, examine the impact of delays on user security, and explore
what additional protection web browsers can provide.

After defining what we mean by effectiveness, including a framework for
measuring effectiveness (Section 2.16: Effectiveness), we identify limitations
of existing measurement studies (Section 3.10: Literature Review). Our re-
search contributes various techniques to address soundness and improve the
accuracy of numerous effectiveness measurement metrics, including: black-
list delays, attack exposure (views and clicks), and volume of blacklisted
URLs posted to Twitter.

Our contributions (Section 1.4: Contributions) also include the design
and implementation of Phishalytics (Chapter 4: Design & Implementation);
the measurement infrastructure on which we conduct our novel measure-
ment studies and address methodological limitations of existing literature.
We also improve our understanding of how the landscape we are measuring
has changed over time by repeating outdated measurement studies.

We begin our investigation with an examination of 3 popular phishing
and malware blacklists: Google Safe Browsing (GSB), PhishTank (PT) and
OpenPhish (OP) (Chapter 5: Blacklist Analysis Study). This examination
furthers our understanding of the 3 blacklists and provides context for our
later studies. We explore key areas such as the uptake, dropout, typical
lifetimes, and consider the overlap of URLs in these blacklists.

We then carry out a longitudinal measurement study (Chapter 6: Time-
of-Post Twitter Study) to investigate Twitter’s use of blacklists, delay times
of these blacklists, and potential implications on user safety; analysing how
many Twitter users view and click on phishing and malware attacks.

Following this, we want to understand what additional protection may
be available to Twitter users that have been exposed to phishing attacks
through the social network. We do this by investigating how effective web
browsers’ built-in phishing defence mechanisms are at protecting users
from attacks (Chapter 7: Web Browser Phishing Detection).

Finally, we perform a longitudinal study (Chapter 8: Time-of-Click Twitter
Study) to investigate how effective Twitter’s URL shortener (t.co) is at
protecting Twitter users from phishing and malware attacks at time-of-click
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– and compare this to Twitter’s use of blacklists and our previous study’s
results.

Internet measurement studies are easy to do poorly and difficult to do
well [222]. The soundness of measurements – and the resulting conclusions
– can be affected by various aspects such as methodology, infrastructure, and
ground truth. Therefore, it is important that measurement studies address
soundness, provide details of their methodology, and share the resulting
data. This also improves the reproducibility of studies (see definition in
Section 2.1.1: Reproducibility).

The internet measurement research community does not have a good
culture of reproducing results [246, 26, 245, 303] and there are limited pub-
lic repositories available [11, 10, 248]. Therefore, as part of our research
aims (Section 1.2: Aims), we strengthen our measurement studies’ con-
tribution to the internet measurement research community. We share our
methodology (Section 4.7: Methodology Overview), technical implementa-
tion details (Section 4.8: Infrastructure & Implementation), and resulting
dataset (Section 4.5.1: Ethically Responsible Data Sharing) with the internet
measurement community to improve reproducibility, address soundness,
and aid future research.

1.2 Aims

Our primary aim is to investigate the effectiveness of Twitter’s phishing
and malware defence system. We do this by examining Twitter’s use of
blacklists and URL shortening service, t.co. As part of our investigation we
explore the characteristics of specific blacklists, the impact of blacklist delay
times on user security, we examine to what extent Twitter might be relying
on web browsers’ built-in security, and we analyse the effectiveness of web
browsers’ security.

We also define a set of aims to address soundness and improve measure-
ment studies, thereby strengthening our measurement studies’ contribution
to the internet measurement research community. We aim to improve the
quality, quantity, and analysis of data available to the research community
for evaluating the effectiveness of Twitter’s phishing and malware defence
system. We present the details of our methodology and technical imple-
mentation to address soundness and improve our studies’ repeatability,
reproducibility, and replicability (defined in Section 2.1.1). We present our
results in a format that can be used and interpreted by our intended audi-
ence (policymakers, researchers, technology designers, etc). Finally, we aim
to contribute to the current understanding of how to collect and analyse in-
ternet measurements – specifically relating to phishing and malware attacks
on Twitter – and to give insight into how the internet behaves.

3
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1.3 Research Questions

Our core research questions are:

1. How effective is Twitter at protecting its users from phishing and
malware URL attacks?

2. How effective are blacklists at helping Twitter to protect its users
from phishing and malware attacks?

3. What do popular phishing and malware blacklists consist of? Uptake,
dropout, typical lifetimes, and overlap of URLs in these blacklists

4. What is the lifetime of a URL in a phishing/malware blacklist?

5. Are blacklists affected by delays – and, if so, what impact do blacklist
delays have on user security?

6. How effective is Twitter’s URL shortener, t.co, at protecting Twitter
users from phishing and malware attacks?

7. What is the comparison between Twitter’s use of blacklists and Twit-
ter’s URL blocking (via t.co) at protecting users from phishing and
malware attacks?

8. To explore the impact of phishing and malware attacks on Twitter:
how many Twitter users click on publicly tweeted phishing or malware
URLs that have been blacklisted?

1.4 Contributions

Our thesis makes contributions in 4 main areas:

1. Improve internet measurement studies by introducing new metrics
and methodology; addressing soundness and limitations of existing
work; strengthening current understanding of how to collect and
analyse internet measurements of cybercrime on Twitter.

2. Measurement infrastructure (full codebase), methodology, technical
implementation details, and resulting data set from our longitudinal
studies; aids reproducibility and internet measurement community.

3. Provide empirical evidence, from our studies, to determine how ef-
fective Twitter’s defence system is at protecting users from phishing
and malware attacks. Our measurement snapshots also contribute
towards future research by providing benchmarks for effectiveness.

4. Improve current understanding of phishing and malware ground truth
by characterising and analysing 3 popular blacklists: GSB, OP, and PT.

Table 1.1 summarises the contributions of the thesis.
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Section 2.16 Expand the definition of effectiveness – for measuring Twitter’s
cybercrime defence system – to include new and improved metrics;
addressing soundness and limitations of existing work.

Section 2.16.2 Define an effectiveness evaluation framework.

Chapter 4 Design and implement Phishalytics: novel measurement infrastruc-
ture to conduct longitudinal measurement studies.

Section 4.5.1 Measurement data (1.5TB); available to help future research.
Section 4.7 Methodology to improve current understanding of how to collect

and analyse internet measurements.
Section 4.8 Phishalytics technical implementation details and full code-

base [37] to aid reproducibility.

Chapter 5 Novel characterisation and analysis of 3 popular phishing blacklists;
including comprehensiveness and typical URL uptake, dropout,
lifetime, and overlap [38].

Chapter 6 Novel, fine-grained and in-depth study into the effectiveness of
blacklists at protecting Twitter users from phishing and malware
attacks; time-of-tweet defence study [40].

Chapter 6 Novel evidence to suggest Twitter may no longer be using the GSB
blacklist to protect users.

Section 6.5 Contemporary analysis of Twitter’s phishing and malware defence
system at time of tweet.

Section 6.5 Improve internet measurements by including URL redirection
chain(s); addressing soundness and methodological limitations of
existing literature.

Section 6.5.2 Improve internet measurements by introducing specialised black-
lists: GSB, PT, and OP; addressing soundness and methodological
limitations of existing literature.

Section 6.5.3 Improve measurement accuracy of tweeted URL blacklist delay
times; addressing soundness and methodological limitations of
existing work.

Section 6.5.4 Novel implementation of historical tweet context in methodology
to increase accuracy of time of first tweet.

Section 6.5.5 Improve measurement accuracy of blacklisted URL clicks by defin-
ing timeframe and referrer; addressing methodological limitations
of existing literature.

Chapter 7 Update and improve the accuracy of existing research into the ef-
fectiveness of web browser phishing detection; test suite comprising
multiple operating systems; categorisation of URL blacklist status
at time of test – to determine heuristic detection; web browser
warning effectiveness framework.

Chapter 8 Novel study into the effectiveness of Twitter’s phishing and malware
defence system at time-of-click; Twitter’s URL shortener (t.co) [39].

Table 1.1: Contributions of the thesis.
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1.5 Scope

Undertaking longitudinal measurement studies to analyse Twitter’s phishing
and malware defence system is a considerable aim. Therefore, the scope of
our research shall focuses on Twitter’s use of time-of-post (or time-of-tweet)
blacklisting and time-of-click filtering.

Our investigation will focus predominantly on phishing attacks; with
a subsidiary exploration of malware attacks. Throughout this thesis our
definition of the word “malicious” is: intending to cause damage or steal
private information from a computer system; including both phishing and
malware attacks.

We focus on 3 popular phishing and malware blacklists because these
blacklists are prevalent in current popular web browsers (Section 2.6).
Our studies are focused on the measurements of empirical data, such as
blacklist delay times, number of URLs appearing in blacklists, number of
users exposed to blacklisted URLs, etc.

We do not analyse the underlying code or deployment of specific phish-
ing or malware attacks, since this is beyond the research scope of our
thesis.

1.6 Approach

We take an empirical, data-driven approach to investigate cybercrime on
Twitter by collecting and analysing large-scale datasets from a number
of sources. From this real-world vantage point we explore cybercrime
on Twitter vicariously; without compromising the safety of our team or
Twitter’s users.

Our approach to carry out our investigation consists of various meas-
urement studies. Based on our research questions, we design a number of
experiments to gather and analyse the required data. We build an infra-
structure to collect and analyse this data. Through this infrastructure and
our methodology we use a data-driven approach to address our research
aims and questions.

1.7 Ethics

Ethics is defined as:

“A system of moral principles; the rules of conduct recognised in
respect to a particular class of human actions or a particular
group, culture, etc.; that branch of philosophy dealing with values
relating to human conduct, with respect to the rightness and
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wrongness of certain actions and to the goodness and badness of
the motives and ends of such actions.” 1

When conducting research, it is important to define a set of ethical stand-
ards and moral principles that shall be adhered to. This thesis shall adhere
to the Principles outlined by the Engineering and Physical Sciences Research
Council (EPSRC) [77]; Guidelines on Research Governance, Research Eth-
ics and Good Research Practice outlined by Royal Holloway, University of
London [242]; and the Code of Conduct outlined by the British Computing
Society (BCS) [48].

This thesis shall be open and honest about its methodology, experimental
set-ups, and data collection processes. Comprehensive and detailed write-
ups about these are found within this thesis, with specific details about
the methodological setup in Chapter 4: Design & Implementation. One
of the core aims of presenting these comprehensive write-ups is that our
experiments shall be verifiable, reproducible, and replicable.

When conducting research into cyber security it is important to un-
derstand and be aware of the relevant ethical considerations. This thesis
leverages access to a number of publicly available data sources in order
to collect and analyse data. This data is accessed in accordance with the
service providers’ terms and conditions. Some of this data has been cre-
ated by humans – such as tweets that have been publicly broadcast on the
social network Twitter – and provided to us by Twitter. Therefore care
has been taken to ensure that we process and analyse this data objectively,
with well-researched and planned methodology, and in accordance with
the professional considerations detailed in the next section. This thesis
continues to explores a number of ethical considerations in more detail in
Section 3.9.

1.8 Professional Considerations

A significant amount of research carried out for this thesis involves meas-
uring cybercrime on the social networking platform Twitter. To do this,
a number of large datasets are collected, stored, and processed, and a
measurement infrastructure is designed, tested, and built in order to carry
out measurement experiments. The subject of measuring cybercrime on
a public social network can be a controversial one, therefore this section
aims to address some of the main professional considerations of this project.
The BCS [47] outlines a Code of Conduct [48] that should be adhered to
when carrying out a project. The 4 core parts of the BCS Code of Conduct:
Professional Competence and Integrity; Duty to Relevant Authority; Duty to

1https://www.dictionary.com/browse/ethics
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the Profession; and Responsible Disclosure are applied specifically to our
thesis in this section. All work carried out for this thesis shall adhere to the
BCS Code of Conduct.

1.8.1 Public Interest

The measurement infrastructure created for this thesis may at times use
third party software or libraries. In such cases all relevant third parties shall
be referenced and credit given. With regard to Section 1(d) of the BCS
Code of Conduct: this project is aimed primarily at the computer science
and information security sectors. However, the outcomes of this project are
not exclusive to these sector and may benefit many other sectors that want
to increase their computer security awareness.

1.8.2 Professional Competence and Integrity

This thesis, and its research projects detailed herein, are being carried out
as part of a university post-graduate research degree for the qualification of
Doctor of Philosophy in Cyber Security. The author holds a BCS accredited
Bachelor of Science (BSc) first-class honours degree qualification in Com-
puter Science and has gained the relevant competencies and experience to
build a measurement infrastructure. Ongoing training has been provided by
the university throughout this project to continually improve the author’s
skills and competencies in key areas of cyber security research such as plan-
ning, conducting, presenting, ethics, standards, technical developments,
etc.

As part of this thesis, significant research has been carried out to explore
existing studies that relate to this topic along with an analysis of gaps in
this existing pool of knowledge. This existing pool of knowledge provides
a standard for some of the methodology and experimental setups carried
out in this thesis. With regard to Section 2(e) of the BCS Code of Conduct:
this thesis respects and values alternative viewpoints and, seeks, accepts
and offers honest criticisms of work. This thesis contributes to the research
community: comprehensively-tested and peer-reviewed novel methodology
and measurement frameworks to enhance existing knowledge and to further
the research field.

1.8.3 Duty to Relevant Authority

This thesis has been carried out with due care and diligence in accordance
with the requirements of Royal Holloway, University of London, all relevant
laws, and the terms and conditions set out by the various service providers
that provide data for this thesis. Advice has been sought and permission
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granted to carry out all work related to this thesis. All personal information
related to this thesis shall remain confidential and not be disclosed unless
required by law such as under the Regulation of Investigatory Powers Act
2000 [121].

1.8.4 Duty to the Profession

This project has been carried out to a high standard and in accordance to
the standards set out in the BCS Code of Conduct along with high standards
and professional cyber security research.

1.8.5 Responsible Disclosure

The measurement infrastructure that has been designed and built as part
of this thesis uses various software, including a number of libraries. Any
bugs or vulnerabilities discovered shall be reported to the relevant software
vendors – as part of responsible disclosure guidelines [252].

1.9 Context

This section provides context to our research area. We begin with an
overview of cybercrime, explore relevant legislation relating to phishing
and malware attacks, present conviction rates for prosecutions under the
Computer Misuse Act 1990 (CMA), and examine complexities of jurisdiction
and cybercrime attribution. We then explore the prevalence of phishing
and malware attacks by summarising data from numerous sources. Finally,
we examine web browser usage statistics to understand historical trends
and contemporary figures.

1.9.1 Cybercrime

Cybercrime is an umbrella term that includes many types of crimes which
either take place online or whereby technology plays a key role in the crime.
The National Cyber Security Strategy [120] defines 2 closely linked, but
distinct ranges of criminal activity within this umbrella term:

• Cyber-dependant crimes: crimes that can only be committed through
a computer

• cyber-enabled crimes: traditional crimes which can be increased in
scale or reach by the use of computers

Interpol [131] defines “pure cybercrime” as:
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“crimes against computers and information systems, where the
aim is to gain unauthorised access to a device or deny access to a
legitimate user”.

Many traditional forms of crime have evolved to leverage modern tech-
nologies and the internet in order to maximises criminals’ profits in the
shortest time. Many of these “cyber-enabled” crimes are not new (e.g. theft,
fraud, illegal gambling, sale of fake goods, etc) but have adapted to this
new, and constantly changing, digital environment.

The National Crime Agency (NCA) lists the 4 most common cyber
threats [202] as:

• Hacking: including of social media and email passwords

• Phishing: bogus communications asking for security information and
personal details

• Malicious software (i.e. malware): including ransomware through
which criminals hijack files and hold them to ransom

• Distributed denial of service (DDoS): attacks against websites; of-
ten accompanied by extortion

The main UK legislation relating to offences or attacks against computer
systems, such as hacking or denial of service, is the Computer Misuse Act
1990 (CMA) [118]. Sections 1 to 3 of the CMA includes 3 criminal offences,
each punishable by 12 months’ imprisonment or an unlimited fine:

1. Causing a computer to perform a function with intent to secure unau-
thorised access to computer material

2. Unauthorised access with intent to commit or facilitate commission
of further offence

3. Unauthorised acts with intent to impair the operation of a computer

Additionally, section 3(1) of the Investigatory Powers Act 2016 [121]
(IPA), which came into force on 27 June 2018, makes it an offence to
intentionally intercept a communication in the course of its transmission –
whether this be by public or private telecommunication system or a public
postal service.

Offences under sections 170 to 173 of the Data Protection Act 2018
(DPA) [119] may be committed alongside cyber-dependant crimes. This
may occur, for example, when phishing attacks share personal information
about their victims such as usernames and passwords which are obtained
as a result of the attack. Many phishing attacks may additionally fall under
the Fraud Act 2006 due the underlying dishonesty and deception of these
attacks. Phishing attacks may also commit offences under the Theft Act
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Figure 1.1: Computer Misuse Act 1990 Cautions and Charges, 2007-2018.
Graph data source: Ministry of Justice [185, 186].

1968, Theft Act 1978, Forgery and Counterfeiting Act 1981, and Proceeds
of Crime Act 2002 (POCA).

However, it is important to note that if an offender accesses data, reads
it, then uses the information for his/her own purposes, then this is not an
offence contrary to the Theft Act. Data (i.e. information obtained from
computer storage) does not fall within the definition of property in section
4 of the Theft Act 1968 and cannot be stolen (Oxford v Moss (1979) 68
Cr App R183 DC). However, such an act would likely constitute an offence
under section 1(1) of the CMA. Additionally, if the act were motivated by
the intent to commit or facilitate the commission of further offences, it
would constitute an offence contrary to section 2(1) of the CMA.

If a number of criminals are involved in a phishing attack then this
may fall under section 1 of the Criminal Law Act 1977, or common law
conspiracy to defraud. The act of setting up false social networking accounts
or aliases could also amount to criminal offences under the Fraud Act 2006
if there was a financial gain, as under section 8 possession or making or
supplying articles for use in frauds includes any program or data held in
electronic form [122].

A 2019 investigation by The Register [92] found that 90% of hacking
prosecutions in the UK in 2018 resulted in convictions and that 16% of
offenders were sent to prison. Data obtained from HM Courts and Tribunals
Service [185, 186] showed 441 total prosecutions under the CMA between
2007 and 2018, as shown in Figure 1.1. 79 people – 24% of the total
prosecuted in that period – were found not guilty at court or otherwise
had their cases halted. Of the guilty, 16 per cent were given immediate
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custodial sentences. That number increases to 45% if suspended sentences
are included. In 2018, 51 cautions were issued as well as 51 criminal court
cases. In those 51 prosecutions, 45 defendants were found guilty, a rate of
around 90%. The 2013 increase in prosecutions may relate to when Home
Secretary Theresa May withdrew her extradition order against hacker Gary
McKinnon [34]. This may have signalled a turning point when the UK
decided it would rather prosecute at home than extradite suspects. The
most common fines ranged from between £300 and £500 – with one fine
over £10,000. The most frequent prison sentence lengths ranged between 6
to 9 months and 18 to 24 months. Current UK sentencing laws automatically
halve prison sentences in favour of release on licence, with release from
prison usually being a bit earlier again than half the headline figure [57].

Jurisdiction of cybercrime difficult and complex due to the borderless
nature of cybercrime. For example, the act of a cybercrime may be carried
out from a country that does not recognise said act as a crime. However,
the recipient victims and/or consequences of such an act may be located
in a country that does recognise the act as a crime. Additionally, different
countries (e.g. UK/US) may have differing laws around cybercrime which
can result in prosecution challenges and extradition complications (such as
Gary McKinnon [137], Elliott Gunton [182], etc).

Cybercrime attribution is often a difficult and complex task. This is
partly due to the distinction between nation states and criminal groups
becoming increasingly blurred, and also because it can be relatively easy
for criminals to maintain true anonymity online by leveraging services such
as the dark web to cover their tracks. The FBI [80] explains that those
carrying out cyber attacks range from “computer geeks looking for bragging
rights, to businesses trying to gain an upper hand in the marketplace by
hacking competitor websites, from rings of criminals wanting to steal personal
information and sell it on black markets, to spies and terrorists looking to rob
our nation of vital information or launch cyber strikes”.

As we have seen, there are various laws which cover numerous cyber
crimes. We have also seen how a single phishing or malware attack may
breach a number of laws at the same time. Although there are many laws
in place to protect against cyber attacks, such as the CMA, some argue that
these laws are outdated and can do more harm to ethically motivated cyber
defenders, security researchers and journalists than actually preventing
criminals carrying out cyber attacks [218].

1.9.2 Phishing & Malware in Numbers

This section aims to provide an overview of the current state of phishing
and malware attacks in terms of number of recorded attacks. It can be
difficult to pinpoint the exact number of attacks at any given time, due
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to most attacks going unreported. However, a number of organisations
have a good vantage point to observe and quantify phishing and malware
attacks that occur in the wild. Therefore we include statistics from some of
these organisations in an attempt to build a picture of the current state of
phishing attacks.

Anti-Phishing Working Group

The Anti-Phishing Working Group [17] (APWG) is an international organisa-
tion dedicated to the prevention and reduction of phishing activity. APWG
produce a number of trend reports [18] each year to highlight the current
threat level of phishing activity.
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Figure 1.2: Number of unique phishing e-mail reports (campaigns) received
from consumers and number of unique phishing web sites detected between
2005 and 2019 inclusive. Graph data source: APWG [18].

Figure 1.2 shows the total number of unique phishing emails, along
with the total number of unique phishing websites, reported to APWG per
year between 2005 and 2019. We see that, in 2005, there were a total
of 173,063 unique phishing emails reported to APWG, which consisted of
40,947 unique phishing websites. In 2018 there were a total of 475,369
unique phishing emails, consisting of 791,766 unique phishing websites.

We also see a sharp increase in the number of phishing emails, rising
from 704,178 in 2014 to 1,413,978 in 2015. Although the number of
phishing emails reported by APWG has been decreasing since 2015, the
numbers still remain significantly higher than prior to 2015. We also see a
sharp rise in the number of unique phishing websites, from 393,160 in 2014
to 789,068 in 2015 and again to 1,397,553 in 2016. This number does fall
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back to 662,795 in 2017 but continues its upward trend to 785,920 in 2018
and 791,766 in 2019. The graph shows a general upwards trend, illustrating
that the number of phishing emails and websites has been increasing since
APWG started to monitor the attacks in 2005.
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Figure 1.3: Number of brands targeted by phishing campaigns between
2005 and 2019 inclusive. Graph data source: APWG [18].

APWG also provides statistics for the number of brands that are targeted
each year by phishing campaigns. Figure 1.3 shows the total number
of brands targeted by phishing campaigns per year, detected by APWG,
between 2005 and 2019. In 2005 there were 1,037 brands targeted. In
2019 there were 4,165 brands targeted. Again, we see an upwards trend
showing that the number of brands being targeted by phishing campaigns
continues to increase. The APWG Q4 2019 Trends Report [19] shows that
the most targeted industry sectors of phishing emails were SaaS/Webmail
(36%), Payment (27%), and Financial Institution (16%).

Figure 1.4 shows the percentage of phishing attacks hosted on HTTPS
websites between Q1 2016 and Q4 2020. We see that, in Q4 2020, 84% of
phishing sites were using SSL certificates (HTTPS) in an attempt to further
convince users that they are legitimate websites. Up from 58% in Q2 2019.

Overall, these statistics from APWG show that the number of phishing
attacks continues to grow. Therefore research into phishing attacks plays an
important role in understanding and reducing the impact of such threats.

Google Safe Browsing Transparency Report

Google Safe Browsing provides a Transparency Report [106] which presents
an overview of websites listed in the Google Safe Browsing blacklist (the
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Figure 1.4: Percentage of Phishing Attacks Hosted on HTTPS between Q1
2016 and Q4 2020. Graph data source: APWG [18].

Figure 1.5: Unsafe websites detected per week, 21st May 2006 to 16th

March 2021. Major ticks on the x-axis represent 1st January for that year.
Graph data source: Google Safe Browsing Transparency Report [106].

blacklist itself is discussed in further detail in Section 2.6.1: Google Safe
Browsing).

Figure 1.5 shows the total number of unsafe websites detected per week
from 21st May 2006 to 16th March 2021. Overall, we see a general upwards
trend in the number of phishing websites detected per week, with some
noticeable peaks of 52,924 to 53,732 in February to March 2016; 49,156 in

15



Chapter 1. Introduction

Figure 1.6: Number of sites deemed dangerous by Safe Browsing, 21st May
2006 to 16th March 2021. Major ticks on the x-axis represent 1st January
for that year. Graph data source: Google Safe Browsing Transparency
Report [106].

October 2016; and 50,905 in November 2017. Interestingly, the number of
malware sites has decreased from 48,641 in May 2016 to 2,806 in October
2019.

Figure 1.6 shows the number of sites deemed dangerous by Safe Brows-
ing from 21st May 2006 to 16th March 2021. Again, we see the number of
phishing websites continues to grow, hitting 1,592,706 in October 2019.
Whereas the number of malware websites has reduced, from a peak of
572,377 in March 2017 to 26,942 in October 2019.

It is not clear why there has been a fall in the number of malware
websites detected by GSB – Google do not provide an explanation for this
decrease. However, we do see in these graphs, as in the APWG graphs, that
the number of phishing attacks continues to increase over time.

Google does provide explanations for some visible changes to Safe
Browsing, such as in September 2012 when one of their “third-party phish-
ing feeds that provides Safe Browsing with data is temporarily removed
because of concerns with too many false positives”. Google also states
that “Phishing protection in Safe Browsing obtains some of its data from
third-party feeds. However, these feeds must meet stringent standards to
ensure very low false positive rates.” 2

Interestingly, Google states that, as of February 2021:
2https://support.google.com/transparencyreport/answer/7381518?

hl=en-GB&ref_topic=7381457
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“Data charts for Unsafe websites detected per week and How
we identify malware stopped being updated and were archived.” 3

Google’s Safe Browsing Transparency Report [106] archived its malware
section on the 8th April 2020, stating:

“Due to an evolving threat landscape and shift in malware beha-
viour, the data in these charts is no longer representative.” 4

The data shown in our Figures 1.5 and 1.6 was recorded on the 17th
March 2021 from the public GSB Transparency Report API endpoints [104]
and [103], respectively. Data from [104] stopped reporting phishing sites
from the 8th November 2020 (as seen in Figure 1.5). The API data endpoint
for unsafe websites detected per week [104] reported a peak of 188,831
phishing sites on 23rd February 2020 – 3 times the number of phishing
detections ever recorded by GSB in a single day. However, the figure was
subsequently altered by Google to the data seen in Figure 1.5.

AV-Test

AV-Test is an independent research institute for IT, based in Germany. They
provide information on malware statistics, such as can be seen in Figure
1.7. In contrast to GSB’s statistics, data provided by AV-Test shows that the
total number of malware threats continues to rise year-on-year and has not
decreased.

This section has explored data from number of different organisations
that provide statistics on the number of phishing and malware attacks. This
gives us a sense of how prevalent these attacks are and provides motivation
for research into such attacks.

1.9.3 Web Browser Usage Statistics

As previously mentioned, this thesis leverages Google Safe Browsing as a
source of ground truth for detecting phishing and malware websites. Part
of the motivation for using GSB is its prevalence in popular web browsers:
Chrome, Safari, Firefox, Opera, and Vivaldi. To this end, it is important to
understand the usage statistics and market share of web browsers. We use
two key metric providers as a source for these statistics: W3Counter and
Statcounter.

Figure 1.8 shows the market share of the most popular web browsers
between May 2007 and January 2020, provided by W3Counter. In May

3https://support.google.com/transparencyreport/answer/7381518
4https://transparencyreport.google.com/archive/safe-browsing/

malware
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Figure 1.7: Total Malware reported between 2011 and 2020. Graph data
source: AV-test [24].

Figure 1.8: Web Browser Usage Trends from May 2007 to February 2021.
Major ticks on the x-axis represent 1st January for that year. Graph data
source: W3Counter [287].

2007, Microsoft’s Internet Explorer (IE) was the most popular web browser
with market share of 67.6%, followed by Firefox at 25%, Safari at 2.4%, and
Opera at 1.8%. In January 2020, Google’s Chrome was the most popular
web browser with a market share of 58.2%, followed by Safari at 17.7%,
Microsoft’s Internet Explorer (Edge) at 7.1%, Firefox at 5.5%, and Opera at
2.6%.
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Figure 1.9: Desktop Browser Market Share Worldwide, January 2009 to
February 2021. Major ticks on the x-axis represent 1st January for that year.
Graph data source: Stat Counter [257].

Figure 1.9 shows the market share of the most popular web browsers
between January 2009 and January 2020 provided by Statcounter. In 2009,
Microsoft’s Internet Explorer was the most popular browser with a 65.41%
market share, followed by Mozilla’s Firefox at 27.03%, Opera at 2.92%,
Safari at 2.57%, and Chrome at 1.38%. In January 2020, Google’s Chrome
had become the most popular browser with 68.78% market share, followed
by Firefox at 9.87%, Safari at 8.64%, IE at 3.7%, and Opera a 2.49% market
share.

As we can see, the two data providers paint a similar picture: since
2013, Chrome has overtaken Internet Explorer to become the most popular
web browser, followed by Firefox, Safari, and Opera.

It is also interesting to understand how the operating systems that these
web browsers run on have changed over time. Figure 1.10 shows the most
popular operating systems between January 2009 and January 2020, as
measured by Statcounter. We see that in 2009, Windows was the most
popular operating system with a market share of 94.8%, followed by OS X
(Apple) at 3.66%. In January 2020, Android was the most popular operating
system with a market share of 39.67%, followed by Windows at 35.23%,
iOS at 14.5%, and OS X at 7.71%. This trend shows how, since 2009, mobile
operating systems (i.e. smart phones) have overtaken desktops to become
the most popular form of computers. The mobile versions of Chrome, Safari,
Firefox, Opera, and Vivaldi continue to use GSB for phishing and malware
protection.

As we have seen, web browsers that employ GSB to defend against cyber
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Figure 1.10: Operating System Market Share Worldwide, Jan 2009 to Jan
2020. Major ticks on the x-axis represent 1st January for that year. Graph
data source: Stat Counter [258].

attacks (Chrome, Safari, Firefox, and Opera) are some of the most popular
web browsers – used by people to browse the web. This makes GSB an
important and highly relevant blacklist to study, since any findings from
this research may impact these popular web browsers.

1.10 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 - Background: defines key concepts and topics, including: meas-
urement studies, phishing and malware attacks, blacklists, URL shorteners,
a brief introduction to Twitter, defence against phishing & malware attacks,
and APIs. We define effectiveness, our set of effectiveness evaluation metrics,
and present our effectiveness evaluation framework.

Chapter 3 - Related Literature: split into 2 parts:

1. Summarises existing literature: to understand relevant background
knowledge, explore various methodologies, justify our research meth-
odology, and provide context to our research findings.

2. Reviews existing studies: to identify and address methodological
limitations.
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Chapter 4 - Design & Implementation: covers the design and implement-
ation of our measurement system, called Phishalytics; including the ar-
chitecture, interface, and specific parts of our system. We describe the
experiments, methodology, and technical implementation of our measure-
ment studies.

Chapter 5 - Blacklist Analysis Study: presents our study of popular black-
lists: GSB, OP, and PT. This chapter is an edited version of our research
paper: BELL, S., AND KOMISARCZUK, P. An Analysis of Phishing Blacklists:
Google Safe Browsing, OpenPhish, and PhishTank. In Proceedings of the
Australasian Computer Science Week Multiconference (2020).

Chapter 6 - Time-of-Post Twitter Study: presents our study into blacklists
on Twitter and the impact of blacklist delays on user security. This chapter is
an edited version of our research paper: BELL, S., PATERSON, K., AND CAVAL-
LARO, L. Catch Me (On Time) If You Can: Understanding the Effectiveness
of Twitter URL Blacklists. arXiv preprint arXiv:1912.02520 (2019).

Chapter 7 - Web Browser Phishing Detection: presents our study on the
effectiveness of popular web browsers’ phishing detection technology. Our
aim is to assess whether Twitter can rely on the web browsers to protect
users from phishing attacks. This chapter is an edited version of our CDT
summer project entitled: Browsing for Phish: An Analysis of Web Browser
Phishing Detection Technology (2015).

Chapter 8 - Time-of-Click Twitter Study: presents our study on Twitter’s
URL shortener (t.co). This chapter is an edited version of our multi-award-
winning research paper: BELL, S., AND KOMISARCZUK, P. Measuring the
Effectiveness of Twitter’s URL Shortener (t.co) at Protecting Users from
Phishing and Malware Attacks. In Proceedings of the Australasian Computer
Science Week Multiconference (2020).

Chapter 9 - Discussion: discusses our results from Chapters 5 to 8 and
addresses key points raised in earlier chapters.

Chapter 10 - Conclusion: brings this thesis to a close; summarising our
main findings and discussions.
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2
Background

OUTLINE

This chapter defines key concepts and topics, including: measurement
studies, phishing and malware attacks, blacklists, URL shorteners, a brief
introduction to Twitter, defence against phishing & malware attacks, APIs.
Towards the end of this chapter we present our definition of effectiveness
and our effectiveness evaluation framework.

2.1 Measurement Studies

Measurement studies, and longitudinal studies, are types of research design
commonly used in the fields of social science, health care, and economics
that involve repeated observations of the same variables (e.g. people) over
a specified period of time. Measurement studies provide a crucial role in
establishing facts in a specified environment; a scientific way to determine
the current state of something. These facts can contribute towards evidence-
based decisions, advice, policies, technology designs, etc.

Internet measurement studies [221, 159, 65, 109, 51, 187] typically
focus on observing specific aspects of computer networks to improve our
understanding of the internet’s structure and behaviour. Aspects of the
internet that we might want to measure include: structure (e.g. topology,
routing, proxies, wireless, etc), traffic (e.g. transport, end-to-end perform-
ance, etc), users and applications (e.g. WWW, DNS, social networks, etc),
failures, and nefarious behaviour (e.g. pattern attacks, port scans, phishing,
malware, etc).

In this thesis we conduct numerous internet measurement studies that
focus on applications (specifically, the social network: Twitter), users, and
nefarious behaviour. We measure empirical data (tweets, blacklisted URLs,
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etc) to make observations about the state, and scale, of cybercrime on
Twitter. In later chapters we will define our data sources for capturing
empirical data, and our methodology for measuring the data and resulting
observations.

Let us consider an example: a highly contagious computer virus is
spreading across the internet; causing global havoc. The virus’s main
transmission vector is drive-by-download. You want to determine how
prevalent the malware is on websites.

A measurement study could be conducted whereby all public-facing
websites on the internet are checked for the specific malware strain. By
visiting all public-facing websites, and checking them for the malware strain,
we can start to understand how many websites are spreading the strain and
what impact this may have (such as: number of users infected, transmission
rate, ease of spread, etc).

In our example, the measurement study would define a methodology
to ensure its research approach is scientific and accurate. This methodo-
logy would define which websites are to be visited (how do we visit all
public-facing websites on the internet?) along with how we will check if
the malware is present on each website (e.g. signature match, honey-client
machine, etc). The results of said measurement study can contribute to-
wards our understanding of how prevalent the virus is and what the impact
may be.

Notice we say that the measurement study can contribute towards
our understanding of the virus – the study might not provide a full or
independent understanding of the virus. In reality, we probably cannot visit
every single public-facing website on the internet. This could be due to any
number of factors, such as websites availability during the measurement
study, timing of malware appearance on each website, etc. Therefore, with
these considerations in mind, we understand that the measurement study
should provide a reasonable snapshot to help us understand the prevalence
of the malware at the time the study was carried out.

It is important to assess the soundness (defined in Section 2.10) of
measurement studies and the resulting conclusions. Soundness can be
affected by various aspects such as methodology, infrastructure, and ground
truth of the study. Measurement study observations may not be absolute;
they might require context, understanding of background concepts and
literature, etc. Table 2.1 lists some important considerations of common
measurement study objectives.

In this thesis we conduct numerous measurement studies to assess the ef-
fectiveness of Twitter’s phishing and malware defence system. We improve
longitudinal studies by providing an effectiveness evaluation framework,
discussing soundness, and addressing methodological limitations of existing
work. As in our example, we will define the scope and purpose of our meas-
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2.1. Measurement Studies

Objective Consideration

Establish facts in a
specified environment.

Facts must be taken in context of the scope and
methodology of the study.

How sound are the measurements and the study’s
conclusion(s)?

Provide a snapshot of the
specified environment in
relation to research aims.

Characteristics of environment, and the implica-
tions thereof, must be understood (e.g. pace of
evolution).

Perspective is important; two measurement studies
of the same environment may produce different
results and draw different conclusions depending
on their metrics, observational position, aims, etc.

Contribute to decisions,
advice, and policies.

Any conclusions drawn must understand the res-
ults in context of existing literature, related topics,
general considerations of measurement studies, etc.
This typically gives rise to a discussional approach
to results and conclusions.

Evaluate soundness of measurements and conclu-
sions. Be aware of absolute claims, dichotomous
thinking, and measurement fallacies (e.g. quant-
itative fallacy: conclusion based solely on quant-
itative observations – or metrics – that ignores all
other observations, context, etc).

Table 2.1: Important considerations of common measurement study object-
ives.

urement studies (based on our research questions) and the methodology of
our studies.

The results of our measurement studies can help us to understand how
effective Twitter’s phishing and malware defence system is – and how well
protected Twitter users are from these attacks. The results of our studies are
targeted at all audiences and may be of particular interest to researchers,
policymakers, technology designers, etc.

It is important to define the aims of our measurement studies. For
this, we take inspiration from a well-respected, specialist conference in
our field: the Internet Measurement Conference (IMC). IMC is an annual
conference focusing on Internet measurement and analysis, sponsored by
ACM SIGCOMM and ACM SIGMETRICS in cooperation with USENIX. Papers
at IMC aim to “contribute to the current understanding of how to collect
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or analyse Internet measurements, or give insight into how the Internet
behaves”.

The core aims of our measurement studies are to:

• Contribute towards answering our research questions (defined in
Section 1.3)

• Improve the quantity of data available

• Improve the quality of data available

• Improve the analysis of said data

• Present our methodology details and technical implementation to
improve our studies’ repeatability, reproducibility, and replicability

• Present results in a format that can be used and interpreted by our
intended audience

• Contribute to the current understanding of how to collect and analyse
internet measurements, and give insight into how the Internet behaves

2.1.1 Reproducibility

An important consideration when conducting any measurement study is to
ensure that its results are reproducible [222, 246, 26, 245, 303]. This helps
the research community and ensures results are verifiable. ACM defines
the following 3 terms [3] relating to reproducing experimental results:

Repeatability

Same team, same experimental setup.

The measurement can be obtained with stated precision by the same team
using the same measurement procedure, the same measuring system, under
the same operating conditions, in the same location on multiple trials. For
computational experiments, this means that a researcher can reliably repeat
her own computation.

Reproducibility

Different team, same experimental setup.

The measurement can be obtained with stated precision by a different
team using the same measurement procedure, the same measuring system,
under the same operating conditions, in the same or a different location
on multiple trials. For computational experiments, this means that an
independent group can obtain the same result using the author’s own
artifacts.
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2.2. Deception

Replicability

Different team, different experimental setup.

The measurement can be obtained with stated precision by a different team,
a different measuring system, in a different location on multiple trials.
For computational experiments, this means that an independent group
can obtain the same result using artifacts which they develop completely
independently.

2.2 Deception

Deception is the act of attempting to convince a person (or persons) into
believing something that is not true. An attempt at deceptive behaviour
has been successful when the recipient (of the deceiver) believes a given lie
to be true. In the case of phishing, deception is used as a social engineering
technique to manipulate the victim into unknowingly sharing their sensitive
data with the attacker. Deception is typically seen in the offline world where
human-to-human interactions occur. It is also in these face-to-face scenarios
that deception detection techniques can be used [70].

In the digital world, techniques for deception detection such as facial
cues and body language are more challenging to deploy. However, this new
arena for deceptive behaviour brings with it a myriad of new detection tech-
niques which can be used to identify the authenticity of the deceiver (such
as IP addresses, cryptographic signatures and other auditing breadcrumbs).

2.3 Phishing

Phishing is a term used to describe the action of an attacker attempting to
steal sensitive information from her victim in the digital world using social
engineering techniques. This sensitive information can include usernames,
passwords, addresses and credit card details. In the case of phishing, the
attacker will masquerade as an official organisation – such as the victim’s
bank or online service providers such as Facebook, Google, Twitter, etc – in
order to trick the user into giving away their sensitive information.

The term “phishing” originates in the 1990s on America Online (AOL),
the number one provider of internet access at the time. A group of hackers,
called the warez community, created an all-in-one hacking tool, called
AOHell [66]. This tool contained many features such as: a credit card
number generator, email bomber, instant messaging bomber, fake account
generation, etc. The included algorithm to generate random credit card
numbers was often used to create fraudulent AOL accounts. In 1995 AOL
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stopped the random credit card generators, which caused the warez group
to move onto alternative methods.

The AOHell tool included a number of “phishing” tools that allowed
hackers to steal passwords and credit card details of AOL users through
automated social engineering techniques. Hackers would use the platform’s
instant messenger system to contact users whilst posing as AOL employees.
These messages would lure victims into verifying their accounts or confirm-
ing billing information. The tool would send messages, that appeared to
come from AOL staff, to AOL users with messages such as:

“Hi, this is AOL Customer Service. We’re running a security
check and need to verify your account. Please enter your user-
name and password to continue.”

Hackers would then use these compromised accounts to carry out spam-
ming and fraudulent activities. These compromised accounts could also be
used on the black market to exchange pirated software and other goods.
It is believed that the AOHell tool contained the first recorded mention of
the term “phishing” [239]. On January 2, 1996, a Usenet group dedicated
to AOL used the term “phishing” to describe what the warez group was
doing and to warn the AOL community about the attacks. AOL eventually
included the term “phishing” in its emails and messaging software to warn
users about these attacks [184].

The word “phishing” is a combination of the words “fishing” and “phreak-
ing”. Analogous to the sport of fishing, bait (in the form of emails, messages,
websites etc) were used to reel in fish (sensitive data) from the sea of in-
ternet users. Phreaking was a term coined by John Draper (also known as
Captain Crunch), a notorious telephone hacker from the 1970s, that was
used to describe the act of hacking into telephone systems – the original
form of hacking. Hackers that were fishing for user’s sensitive data would
often replace the letter “f” with “ph” to describe their actions as part of the
hacking community.

Many hackers would use AOL chat rooms to discuss pirated software and
trade stolen accounts. However, AOL quickly implemented an automated
system to remove accounts that were found to be using certain keywords
that could be linked to these activities. As a result, the hacking community
would use the characters “<><” as a substitute for any of these keywords.
Since the chat rooms consisted of large amounts of HTML, and the “<” and
“>” characters feature predominantly in HTML code, the automated filters
were unable to detect its use.

Since the days of AOL phishing, attackers have moved to other platforms
– such as email, SMS, and social media – to lure victims in where it is much
harder for the attackers to get caught. An example of a contemporary
phishing attack might be an email pretending to be from Facebook asking
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a user to verify their account. A URL contained within this email might
direct the user to a spoof Facebook login page, whereby the user inputs
their username and password.

With its humble roots in the warez and hacking community, by rebellious
teenagers stealing passwords for fun, phishing has evolved into one of the
most prevalent and costly computer security threats – affecting people,
corporations, and governments worldwide.

2.3.1 Types of Phishing

The main types of phishing include:

• Vishing: voice phishing, phone alls

• Smishing: SMS phishing

• Search Engine Phishing: fake websites targeting specific keywords

• Spear Phishing: typically involves more sophisticated social engineer-
ing techniques and more detailed information about the victim than a
regular phishing attack. An example of a spear phishing attack would
be one that targets the central executive officer (CEO) of a company.
The spear phishing attacker might know the CEO’s name, address,
bank provider and personal assistant’s (PA) name. The attack could
therefore masquerade as the CEOs PA in order to convince the CEO to
send an amount of money to the attackers bank account. This attack
may be more convincing to the victim, in terms of deception, because
more information can be used to convince the victim that the lie is
real.

• Whaling: similar to spear phishing, but even more targeted. Often
aimed at high-level executives such as CEOs, CFOs, and COOs

• Pharming: cache poisoning against DNS to change IP address associ-
ated with a website to redirect to phishing website

• Evil Twin: bogus wireless access point to create fake WiFi

• Email Spoofing & Brand Impersonation: emails pretending to be from
someone or an organisation

• Website / Brand Phishing URLs: websites which look legitimate, such
as a Facebook login page. URLs often hidden/disguised e.g. via URL
shortener, redirects, misspellings. Includes subdomain attack, pop-up
phishing (login box pops up)

• HTTPS phishing: with the advent of easy-to-deploy TLS certificates,
phishers will use HTTPS in an attempt to further deceive their victims
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2.3.2 Phishing Websites

The main form of phishing that is addressed in this thesis is phishing
websites. These are websites that are designed to look like an official organ-
isation (such as a bank, social media website, auction website etc). Victims
often arrive at these phishing websites via emails that use authoritative
language and time sensitive techniques (such as “your account has been
compromised, you must take action now to recover your data”). These
initial emails and messages play a key role at “warming up” the victim
and initiating the social engineering technique. These attacks are effective,
not only because of the use of authoritative language but also because the
websites themselves look convincing to users [72].

Phishing attacks on Twitter have been known to involve malicious users
promoting tweets to lure in their victims by promising verification status on
the app. Victims would then hand-over their Twitter username, password,
phone number, and credit card information to these criminals [45].

2.4 Malware

Malware stands for malicious software and is a term used to describe
any software that has nefarious intentions. These intentions can include
attempting to disrupt, damage, or gain authorised access to a computer
system, gathering sensitive information, etc. Malware is an umbrella term
often used to describe the following types of programs:

• Viruses: programs that replicate by inserting their code into other
programs, files or boot sectors of the hard drive often with the aim to
corrupt or modify the target system

• Worms: programs that spread by infecting other computers usually via
a computer network with the aim to harm the computer network often
by consuming bandwidth. Unlike viruses, worms do not generally
attach themselves to other programs or corrupt files on the target
system

• Trojans: programs disguised to look like useful applications but actu-
ally have malicious intent such as causing loss or theft of data and
possible system harm. Trojans are generally non-self-replicating. The
term is derived from the ancient Anatolia story of the wooden horse
used to trick the defenders of Troy

• Spyware: software that collects information that is often then sent or
sold to a third party

• Ransomware: software that prevents its user from using the computer
system by demanding some ransom be paid to the malware author.
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An example of ransomware is cryptoviral extortion which encrypts a
user’s hard drive, preventing access to the entire system unless the
ransom is paid

• Adware: software that displays adverts on the infected system without
the user’s consent. Not to be confused with advertising-supported
software whereby the terms of the software state that adverts will be
displayed and the user agrees to this

• Malvertising: using legitimate adverts or advertising networks to
covertly deliver malware to its victims. Clicking on an advert may
take its victim to a malicious website or install malware on their
computer. Malware may be embedded in the advert itself end execute
automatically without user interaction, know as “drive-by-downloads”

• Scareware: also known as rogueware, this software is designed to
look like a genuine virus with the aim of tricking the user into paying
for fake antivirus software to remove it

• Fileless malware: although not strictly a different category of malware,
these types of malware programs exploit and spread in memory or
through other “non-file” operating system objects such as scheduled
tasks, APIs, registry keys, etc

• Hybrids: most modern malware is a combination of the above types,
including parts of worms, trojans, viruses, etc. This include rootkits or
stealth programs which attempt to modify the underlying operating
system to gain root access, escalated privileges, take control, and hide
from antivirus and antimalware detection programs

• Bots & Botnets: a computer that has been infected with malware so it
can be controlled remotely by criminals. Once infected and controlled
remotely, a bot computer (also known as a zombie computer) can
be instructed by its commander to carry any number of nefarious
activities – this is know as command-and-control (C&C). Multiple bots
controlled by the same C&C are known as a botnet. These botnets are
often used in distributed denial of service attacks (DDoS) which can
wreak havoc on unsuspecting organisations’ websites. Bots are often
hybrids, starting out as trojans or worms during the initial infection
but then carry out further attacks, as instructed by C&C

Malware attacks on Twitter have included drive-by-download links
contained within tweets, cross-site scripting attacks [21], and Android
malware that is controlled by tweets [78].
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2.5 Sybil Attack

Named after Flora Rheta Schreiber’s 1973 book Sybil, about the treatment of
Sybil Dorsett (a.k.a. Shirley Ardell Mason) for dissociative identity disorder
(also known as multiple personality disorder), the sybil attack involves a
node in a peer-to-peer network operating under multiple identities at the
same time. The attacker can subvert the reputation system of a network
by creating a large number of false identities and leveraging them to gain
a disproportionately large influence within said network. A network’s
vulnerability to a Sybil attacks depends on how “cheaply” identities can be
created, how easily an entity can input to the network when said entity is
lacking a chain of trust linking them to a trusted entity, and if the network
treats all entities in the same way. Sybil attacks can occur on social networks
when an attacker (or group of attackers) control large numbers of fake
profiles in order to manipulate the platform [290].

2.6 Blacklists

A blacklist is defined as a set of elements to be blocked; an access control
list. An example of a blacklist would be an email client that blocks known
spam senders (e.g. spam@phishy.org). Any emails received from these
senders would be marked as spam and possibly moved to an appropriate
spam folder.

Phishing blacklists are a popular defence strategy that aim to protect
people from phishing attacks. These blacklists typically contain known
phishing URLs, providing an access control list which is used to prevent
users from visiting these dangerous websites. For these phishing blacklists
to be effective they need to be updated quickly and regularly to protect users
from emerging phishing attacks. URLs should be removed from a blacklist
when their website is no longer a threat – so as not to impact website visitors
once it is safe – but also added again if that same website becomes a threat
in the future. The number of URLs contained in a blacklist can contribute
to its effectiveness; a small set of niche blacklisted phishing URLs will not
provide a user with full protection compared to a large and comprehensive
blacklist with a wide net. It is also important to understand the inner-
workings of these blacklists as this can help determine how effective they
will be at protecting people against phishing attacks.

Our study focuses on 3 popular phishing blacklists: Google Safe Brows-
ing, PhishTank, and OpenPhish. These 3 blacklists are used by the web
browsers Chrome, Safari, Firefox, Opera, email provider Yahoo! Mail, anti-
virus providers McAfee, Kaspersky, Virus Total and Strong Arm, and online
reputation and internet safety service web browser plugin Web Of Trust.
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Other blacklist sources are available, however, this thesis focuses on
these 3 due to their use in popular web browsers and services. Another
popular blacklist, used by other research studies, is VirusTotal. Whilst we
did consider leveraging the VirusTotal blacklist in our studies, one of its
main limitations that made it infeasible for use in our studies is that it is
rate limited to 4 requests per minutes. This means we would not be able to
process the large volume of URLs that we can with the other 3 blacklists.

2.6.1 Google Safe Browsing (GSB)

Launched in 2007, Google Safe Browsing [102, 207] is a URL blacklist that
contains both malicious and phishing [298] URLs and is used by the web
browsers Google Chrome, Safari, Firefox, Opera, and Vivaldi to protect
users from dangerous websites. We focus on GSB in our study because of its
prominence in popular web browsers: already in 2012 GSB was protecting
600 million users from dangerous websites [294]. In 2015 GSB began using
the term “Social Engineering” to categorise phishing websites which also
encompass additional types of deceptive content. Google defines a social
engineering web attack as occurring when either: “the content pretends
to act, or looks and feels, like a trusted entity – like a bank or government”
or “the content tries to trick you into doing something you would only do
for a trusted entity – like sharing a password or calling tech support” [108].
During the week commencing 3rd September 2017 the total number of sites
deemed dangerous by GSB was 573,433 phishing and 500,245 malicious.
During that week GSB detected 24,756 new phishing sites and 6,312 new
malware sites.

GSB defines malware websites in its blacklist as being either comprom-
ised or attack. A compromised website is a legitimate website that has been
hijacked to either include, or direct users to, malicious content – such as
drive-by-downloads [232]. An attack site is a website that has intention-
ally been set up to host and distribute malware [106]. During the week
commencing 3rd September 2017, GSB identified 5,981 new compromised
websites and 335 new attack websites.

GSB provides two APIs for accessing its blacklist: Lookup and Update.
The Lookup API provides a remote service whereby URLs to be checked are
sent to Google’s servers and a response is returned for each URL stating if
the URL is in the blacklist. The Update API provides the user with a local
copy of the blacklist; this local copy is stored as a database of SHA-256
URL hash prefixes, the majority of the hash prefixes being 4 bytes. URLs
are encrypted in GSB to ensure privacy [93]. To perform a URL blacklist
lookup, the URL hash prefix is checked in the local database and, if there is
a prefix match, then the full URL hash is retrieved from Google’s servers to
determine if there is a match on the full hash.
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As we saw, in Section 1.9.2: Phishing & Malware in Numbers, Google Safe
Browsing provides a Transparency Report [106] to illustrate the volume of
malicious and phishing websites contained within its blacklist.

2.6.2 PhishTank (PT)

Launched in October 2006, PhishTank [226] provides a community based
phishing website reporting and verification system. Users of the website
can submit URLs of suspected phishing websites; the PhishTank community
then vote as to whether these URLs are phishing or not. PhishTank is used
by the web browser Opera, online reputation and internet safety service
web browser plugin Web Of Trust, email provider Yahoo! Mail, and antivirus
providers McAfee and Kaspersky[227]. The PhishTank blacklist of approved
phishing URLs can be downloaded as a JSON file.

2.6.3 OpenPhish (OP)

Launched in 2014, OpenPhish [215] is the result of a 3 year research project
on phishing detection that uses autonomous algorithms to detect zero day
phishing websites. Our study has access to the academic feed. OpenPhish is
used by the antivirus companies Virus Total and Strong Arm. The OpenPhish
blacklist can be downloaded as a JSON file.

2.7 Ground Truth

Ground truth is a term often used in statistics and machine learning that
means checking the results of a classifier for accuracy against real-world
data. In this thesis our ground truth comprises our set of 3 blacklists (GSB,
PT, and OP). That is, we only classify a URL as phishing or malware if
said URL resides in at least 1 of these 3 blacklists. This means that if a
genuine phishing or malware URL does not reside in 1 of the 3 blacklists
(i.e. that URL is a false negative), we will not classify said URL as phishing
or malware. In Section 9.11 we discuss the impact of ground truth on our
studies.

2.8 Benchmarking

Benchmarking involves comparing the performance metrics of one system
with another. In measurement studies, an existing study may provide a
benchmark for future studies. This comparison can can help determine
what has changed. For example: when evaluating the effectiveness of
a given system, an existing study may conclude that the system is, say,
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40% effective. A later study may determine that the same system is 60%
effective. In this example, benchmarking the 2 studies may suggest that
the system’s effectiveness has increased, from 40% to 60%. However,
when benchmarking, it is important to carefully examine the soundness,
methodology, and contexts of both studies – and ensure the entire set-up
is identical. Even small changes may cause unexpected changes to the
measurements which could affect the benchmarking.

2.9 Snapshot

Measurement studies create a snapshot of the measurement environment
at the time the study was conducted. Analogous to how a photograph
creates a snapshot of a particular moment in time (including details such as
people, buildings, etc), a measurement study’s snapshot contains details of
the environment; such as metrics, methodology, measurements, figures, etc.
Measurement study snapshots contribute in many ways to various areas,
such as future research, benchmarking, auditing, etc.

2.10 Soundness

Soundness is defined as:

“the quality of being based on valid reason or good judgement.”1

In deductive reasoning, an argument is sound if it is both valid and all of its
premises are true. For example, the following syllogism argument is valid,
but its premise is not true, therefore it is not not sound:

All birds can fly.
Penguins are birds.
Therefore, penguins can fly.

Whereas the following argument is both valid and sound:

No reptile has fur.
All snakes are reptiles.
Therefore, no snake has fur.

Paxson (2004) [222] defines soundness, in the context of internet measure-
ment studies, as:

1https://en.oxforddictionaries.com/definition/soundness
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“developing confidence that the results we derive from our meas-
urements are indeed well-justified claims. By this we mean that
we have a solid understanding of the strengths and limitations of
the measurement process on which we base our results; and, like-
wise, a solid understanding of the quality of the chain of analysis
supporting the results.”

2.11 Risk Appetite

ISO Guide 73:2009: Risk management – Vocabulary [133], defines risk
appetite as:

“[The] amount and type of risk that an organisation is willing to
pursue or retain.”

Risk appetite refers to how much risk an organisation is willing to accept in
pursuit of its objectives, before action should be taken to reduce the risk.
Different organisations will likely have different risk appetites, depending
on the structure and type of the organisation.

2.12 URL Shorteners

As the name suggests, URL shortening services provide a way to reduce
the length of URLs. This is often useful when character limits are enforced
on platforms such as Twitter or when wanting to share a short and more
memorable URL. For example, the long and unmemorable Pure Profile URL:

https://pure.royalholloway.ac.uk/portal/en/persons/
simon-bell(6786cfa5-1fc4-4744-8b2f-6a06dbd27ba8).html

Can be shortened, using the URL shortener Bitly, to the shorter and
more memorable URL:

https://bit.ly/simon-bell-pure-profile

Making the shortened URL ideal for sharing at conferences, networking
events, or sharing on social networks, such as Twitter. This shortened URL
simply forwards to the original URL. Some of the URL shortening services,
such such as Bitly, also provide analytical data to track how many clicks
the URL receives, demographics of visitors, etc. Some of the most popular
and well-known URL shortening services include: Bitly, TinyURL, Owly, etc.
Many organisations have their own URL shorteners such as Google’s Goo.gl,
Facebook’s fb.me, YouTube’s youtu.be, and Twitter’s t.co. There are also URL
shortening services that allow users to generate revenue from shortened
URLs, such as Adf.ly, by displaying adverts to visitors of the shortened URLs.
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2.13 Twitter

Twitter is a microblogging social network platform; allowing its users to
broadcast – or tweet – messages to other users of the platform. Twitter users
can follow, and be followed by, other Twitter users. By default, Twitter user
accounts are set to public; anyone can view a user’s tweets. Twitter users
can also chose to set their profiles to private, whereby their tweets can only
be seen by approved followers.

Since its creation in 2006, Twitter has gained over 974 million users with
330 million active users per month posting 500 million tweets per day [281,
22]. Among these Twitter users are many high profile celebrities, politicians,
heads of state and societal influencers whom attract large numbers of
followers [282]. Due to this large user base, Twitter makes an attractive
target for malicious users aiming to carry out phishing and malware attacks
to exploit people. One of the main ways these attacks are carried out is
by leading victims to a malicious site, by including one or more URLs in a
tweet, whereby the attack can occur.

Twitter has come under increasing pressure to protect its users against
these attacks, such as, in 2010 when the company settled a case with the US
Federal Trade Commission (FTC). Twitter agreed to “establish and maintain
a comprehensive security information security program” throughout the
platform, and to conduct an independently assessed bi-annual information
security audit for 10 yers [86, 87, 88]. Twitter also agreed that, for the next
20 years, it must not mislead customers about “the extent to which it protects
the security, privacy, and confidentiality of nonpublic consumer information,
including the measures it takes to prevent unauthorized access to nonpublic
information and honor the privacy choices made by consumers”.

2.14 Phishing & Malware Defence

All of today’s popular web browsers (see 1.9.3: Web Browser Usage Statistics)
come with built-in phishing and malware defence systems to protect users
against such attacks. Alongside blacklists to prevent users from visiting
known attack websites, web browsers also feature heuristic technologies to
detect dangerous websites – therefore potentially detecting un-blacklisted
threats. The effectiveness of web browsers’ ability to detect phishing web-
sites is explored further in Chapter 7: Web Browser Phishing Detection.

There are also additional plug-ins which can be downloaded and in-
stalled on web browsers for additional protection. Many anti-virus soft-
ware also includes anti-phishing technology which works independently
of internet browsers (although some will install web browser plug-ins
automatically). Finally, many popular email clients have built-in phishing
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and malware detection, such as: Google’s Gmail, Microsoft’s Hotmail and
Outlook, and Mozilla’s Thunderbird.

2.15 APIs

Application program interfaces (APIs) essentially allow different systems
to interact over a common interface. Therefore allowing two (or more)
applications to talk to each other. APIs provide a set of routines, protocols,
and tools for building software applications. This thesis uses APIs provided
by Google, Twitter, and Bitly. By leveraging these APIs, our infrastructure –
detailed in Chapter 4: Design & Implementation – is able to interact with
these services to access their data and services.

APIs provide an effective way for researchers to access data provided
by third party organisations. It is much easier to access data via an API
due to the use of the APIs routines, protocols, functions, etc. These can
directly interact with researchers’ software and hardware in order to carry
out accurate experiments.

2.16 Effectiveness

When investigating the effectiveness of Twitter’s phishing and malware
defence system, it is important to define what we mean by effectiveness.
We define effectiveness as: the degree to which Twitter successfully protects
its users from phishing and malware attacks. We measure effectiveness by
evaluating a predetermined set of metrics; assessed against a framework. First,
we shall explore existing literatures’ definitions of effectiveness to decide
which metrics constitute our effectiveness evaluation. We shall then expand
on these existing definitions to define our own set of metrics, along with
a framework for measuring effectiveness. We will use this definition and
framework to assess the effectiveness of Twitter’s phishing and malware
defence system in our measurement studies.

2.16.1 Definition

Table 2.2 highlights key metrics that existing measurement studies use
as effectiveness evaluators. We visit existing literature in more detail in
Chapter 3: Related Literature. Key metrics in existing studies include, Grier
et al.(2010) [110] use the effectiveness evaluation metrics: blacklist delays,
number of blacklisted URLs posted to Twitter, and user clicks. Peng et al.
(2019) [223] state that comprehensiveness is an important metric when
assessing blacklists, stating that: “even the best blacklists miss 30%”. Guo
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Study Metric(s) Scope of Study

Grier et al. (2010) [110] Blacklist delays, num-
ber of blacklisted URLs
posted to Twitter, and
user clicks

Twitter spam measure-
ment study

Oliver et al. (2014) [214] Number of malicious
tweets and clicks

Twitter malware meas-
urement study

Ludl et al. (2007) [169] Blacklist delay periods Blacklist analysis study

Sheng et al. (2009) [251] Blacklist delay periods Blacklist analysis study

Zhang et al. (2013) [310] Speciality and coverage Blacklist analysis study

Metcalf et al. (2015) [183] Speciality and coverage Blacklist analysis study

Peng et al. (2019) [223] Comprehensiveness Blacklist analysis study

Guo et al. (2019) [162] Volume, intersection,
exclusive contribution,
latency, coverage, and
accuracy

Blacklist analysis study

Table 2.2: Key effectiveness evaluation metrics of existing measurement
studies.

Metric Description

Volume Total number of indicators in a source

Intersection Number of indicators in one source that are not in another

Exclusive
contribution

Proportion of indicators in one feed but no others

Latency When an indicator appears in multiple feeds: time taken to
appear in additional feeds after appearing in the first

Coverage Proportion of intended indicators in a source

Accuracy Number of correct indicators in a source (i.e. precision)

Table 2.3: Guo et al. (2019) [162] effectiveness metrics.

et al. (2019) [162] define 6 metrics for assessing blacklist performance,
shown in Table 2.3.

We will now define our set of effectiveness evaluation metrics. Our
set consists of both existing (from previous studies) and new metrics. We
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update many of the existing metrics to address soundness and limitations of
existing work (which we explore in more details in Section 3.10: Literature
Review). To the best of our knowledge, no existing studies have applied the
same set of metrics to evaluate the effectiveness of Twitter’s phishing and
malware defence system. We believe this set of metrics, with the correct
methodology, will improve the accuracy of the resulting evaluation.

To the best of our knowledge, no existing studies have examined the
metrics “number of blacklisted phishing /malware URLs blocked by Twitter
at time of click” or “number of known and unknown blacklisted phishing /
malware URLs blocked by web browser”. Therefore, we introduce these
novel metrics to the set. In Section 3.10: Literature Review we highlight
limitations of existing studies – including methodological limitations when
measuring some of these metrics.

Our set of effectiveness evaluation metrics is:

• Number of blacklisted phishing / malware URLs posted to Twitter

• Number of blacklisted phishing / malware URLs blocked by Twitter
at time of click

• Detection delay time (from time of tweet to blacklist membership)

• URL duration in blacklist

• User exposure to attacks in terms of:

– Views of phishing/malware tweets
– Clicks to phishing/malware URLs

• Web browser detection rate for:

– Known (i.e. blacklisted) websites
– Unknown (i.e. non-blacklisted) websites

• Threat intelligence in terms of:

– Ground truth
– Speciality in attack
– Size of blacklist
– Comprehensiveness of cover
– Intersection of blacklists
– Frequency of update

• Comparison to existing measurement studies

Specific contributing factors will determine how the aforementioned
metrics influence the assessment of the effectiveness of Twitter’s phishing
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and malware defence system. For example, a high number of blacklisted
phishing / malware URLs posted to Twitter shows that Twitter’s phishing
/ malware defence system is not effective. We define these contributing
factors in a framework.

2.16.2 Effectiveness Evaluation Framework

We define a framework for measuring the effectiveness of Twitter’s phishing
and malware defence system. We begin this subsection with a description
of our framework, then present the framework itself towards the end of
this subsection. Our framework provides context, contributing factors,
and impact for the metrics we defined in the Section 2.16.1 (above). Our
framework consists of:

Category (of metric)
Organised into:

• Tweet URL volume

• Time / delay

• User exposure

• Web browser

• Threat intelligence

• Benchmarking

Metric
The “item” to be measured. For example: the number of blacklisted phish-
ing/malware URLs posted to Twitter, number of clicks, accuracy of ground
truth, etc.

Effectiveness Contributor
What outcome of the metric (defined above) contributes to effectiveness.
For example, consider the metric: “number of blacklisted phishing/mal-
ware URLs posted to Twitter”. The lower this number, the more effective
Twitter’s phishing and malware defence system is. Therefore its effectiveness
contributor is lower.

For the metric: “number of blacklisted phishing /malware URLs blocked
by Twitter at time of click”, a higher number is better (more effective).
Therefore its effectiveness contributor is higher.
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Effectiveness Impact
Some metrics will have a greater impact on the overall effectiveness. For
example, the metric: “delay from time of tweet to blacklist membership”,
with effectiveness contributor: lower. The effectiveness contributor (lower)
has a very high impact on the overall effectiveness – since it is directly
related to protecting Twitter users from phishing and malware attacks.

In contract, consider the metric: “intersection of blacklists”, with effect-
iveness contributor: lower. Whilst we saw that the intersection of blacklists
can plan a role in blacklist effectiveness, its impact is generally considered
low. This is because there are other factors that have a greater impact on
effectiveness, such as the size of the blacklist, its accuracy, etc.

The effectiveness impact can be assigned one of the following values:

• VH: very high

• H: high

• M: medium

• L: low

• VL: very low

Table 2.4, on the following page, presents our framework for measuring
the effectiveness of Twitter’s phishing and malware defence system.
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Category Metric
Effectiveness
contributor

Effectiveness
impact

Tweet URL
volume

Number of blacklisted phish-
ing / malware URLs posted to
Twitter

Lower VH

Number of blacklisted phish-
ing / malware URLs blocked
by Twitter at time of click

Higher H

Temporal

Delay between tweet and
blacklist membership

Lower VH

Duration in blacklist Duration in black-
list ≥ duration of
attack

VH

User
exposure

Number of potential user
views

Lower H

Number of clicks (measured
via Bitly)

Lower VH

Web
browser

Number of known blacklis-
ted phishing / malware URLs
blocked by web browser

Higher (relates to
blacklist update
frequency)

L

Number of unknown blacklis-
ted phishing / malware URLs
blocked by web browser

Higher M

Threat
intelligence

Accuracy of ground truth (e.g.
num false positives)

High accuracy VH

Speciality in attack (e.g dedic-
ated phishing blacklist)

High speciality VH

Size of blacklist (e.g. number
of URLs in blacklist)

Higher M

Comprehensiveness of cover Higher compre-
hensiveness

M

Intersection of blacklists Lower L

Frequency of blacklist updates Higher H

Benchmarking Compare results to existing
studies

Improvement on
previous studies

VL

Table 2.4: Effectiveness evaluation framework to measure Twitter’s phishing
and malware defence system.
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Web Browser Warning Effectiveness Framework

We also present a framework for measuring the effectiveness of web browser
warnings, shown in Table 2.5. We use this framework in Section 7.4.7. The
framework consists of 10 metrics which have been used in multiple, differ-
ent, existing studies [300, 76, 6, 82]. The Egelman et al. (2008) [76] study
features the concept of passive and active warnings. In their experiments,
passive warnings are defined as warning that appear on the screen but do
not obstruct the user’s activity. An active warning, on the other hand, would
interfere with the user’s browsing experience and force the user to take
note of the warning. The results from the 2008 study showed that 79%
of people chose to heed active warnings and not visit phishing websites
compared to just 13% of users that were presented with passive warnings.

Study Metric

Wu et al. (2006) [300]
Neutral information: display information to user
but no action taken

System Decision: take action on behalf of user

Egelman et al. (2008) [76]

Passive warnings: display information but no ac-
tion taken

Active warnings: require user action to continue

Akhawe et al. (2013) [6]
Click count: to bypass warning

Time spent on warning: before user aborts or
continues to website

Felt et al. (2015)[82]

Technical jargon: use simple, non-technical lan-
guage

Reading level: should be 6th grade reading level
– SMOG

Brevity: be as brief as possible

Specific risk description: describe the risks expli-
citly and unambiguously

Illustration: images can reduce time to compre-
hend information and can make warnings more
attention-grabbing and memorable

Risk level: warnings must stand out from the sur-
rounding environment; red warnings are more ef-
fective that black or green warnings

Table 2.5: Framework for measuring the effectiveness of web browser
warnings.
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CHAPTER SUMMARY

In this chapter we saw how measurement studies provide a crucial role
in establishing facts in a specified environment. We explored soundness
and how measurement study findings should be interpreted with context,
understanding of background concepts, and existing literature. When
correctly interpreted, measurement studies can contribute to researchers,
policymakers, technology designers, etc.

We explored phishing’s humble roots in the warez and hacking communities,
and the first recorded mention of the term “phishing” in the AOHell hacking
tool. We explored different types of phishing attacks; specifically website
phishing – which this thesis focuses on.

We introduced the 3 blacklists featured in our research: Google Safe Brows-
ing (GSB), PhishTank (PT), and OpenPhish (OP). We defined key concepts,
such as URL shorteners, and explored defence against phishing and malware
attacks.

Finally, we defined effectiveness as: the degree to which Twitter successfully
protects its users from phishing and malware attacks. We measure effect-
iveness by evaluating a predetermined set of metrics; assessed against a
framework. We concluded with our effectiveness evaluation framework.
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Related Literature

OUTLINE

This chapter is split into 2 parts:

1. Summarise existing literature (Sections 3.1 to 3.9): to understand
relevant background knowledge, explore various methodologies, jus-
tify our research methodology, and provide context to our research
findings.

2. Review existing studies (Section 3.10): to identify and address
methodological limitations. We present this at the end of the chapter
where we filter down to key related studies.

Existing studies provide motivation, inspiration and justification for our own
methodology and set-up. An important consideration when interpreting
results from measurement studies involves understanding relevant context.
Various aspects, such as phishers modus operandi, how malicious URLs
propagate on a social network, and potential detection techniques might
provide such context.

We begin this chapter by categorising related literature into topics to
explore various methodologies and provide potential context to our research.
Exploring existing literature also helps us to understand what the current
state of phishing and malware attacks is, how such attacks work, and if
people still fall victim to these attacks.

The following paragraphs provide an overview of the subsequent sec-
tions in this chapter:
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Section 3.1: Phishing & Malware Attacks
We begin this chapter with an overview of phishing and malware attacks.
We explore why the attacks work and how people fall victim to such attacks.
This provides context to our results by understanding how people may
reveal sensitive information as a result of such attacks.

Section 3.2: Data Feeds
We then look at the role of data feeds in research. We explore what data
sources are available, the accuracy and reliability of data, measurement
bias, and sampling techniques. These related studies help to justify the
use of certain data sources in our measurement studies and understand
potential issues around reliability and bias.

Section 3.3: Threat Intelligence & Blacklists
Building on from Section 3.2, we explore how threat intelligence and
blacklists can provide a source of ground truth for cyber threats. But we
must understand the limitations of these sources and how these limitations
impact the accuracy of ground truth. This selection of studies is particularly
relevant to the ground truth of our measurement studies and justification
of blacklists we use.

Section 3.4: Phishing & Malware Defence
Although outside the scope of our research, the studies in this section
provide important context to our research. We explore research into phish-
ing and malware defence to help understand the significance of our meas-
urement study results. For example: if we determine that twitter does not
defend its users from attacks, are other technologies available that can pro-
tect Twitter’s users? These studies are important because their “contents”
may be outside the metrics of our measurement – therefore potentially
impacting our results.

Section 3.5: Web Browser Phishing Detection
Studies in this section relate to our web browser phishing detection study
in Chapter 7. We focus on 2 key studies [311, 23] that examine the effect-
iveness of web browsers’ phishing defence. We highlight specific limitations
of these 2 studies in our Literature Review in Section 3.10.

Section 3.6: Heuristic Phishing Detection
Studies in this section also relate to our web browser phishing detection
study in Chapter 7. We look at studies that have explored how web browsers
might detect phishing websites without requiring blacklists.

Section 3.7: Warning Effectiveness
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Studies in this section also relate to our web browser phishing detection
study in Chapter 7. We look at studies that have explored the effectiveness
of web browser warnings. These studies, and their findings, contribute
towards our web browser warning effectiveness framework (Section 2.16.2)
that we design and then use to evaluate web browser warnings we observe
in our study.

Section 3.8: Measurement Studies
We now begin our exploration of existing measurement studies. This sec-
tion is split into subsections of related studies, categorised by topic. Each
topic relates to our thesis by providing motivation and inspiration for our
methodology and also context to our results:

• Section 3.8.1: URL Shorteners

• Section 3.8.2: Information Credibility

• Section 3.8.3: Networks

Section 3.8.4: Phishing & Malware
In this part of the measurement studies section we focus on existing phishing
and malware measurement studies. We split these studies into 2 categories:
studies that measure phishing and malware on the web in general and
those that specifically measure on Twitter. This categorisation helps to
differentiate between methodologies for general internet measurements,
and methodologies specifically applied to Twitter. We begin the section
with phishing and malware measurement studies on the web in general,
before focusing on Twitter.

Section 3.9: Ethics
The subject of measuring cybercrime on a public social network can be a
controversial one. Therefore, building on from our introduction to ethics
in Section 1.7, we now explore how existing studies approach ethics and
we review their discussions.

Section 3.10: Literature Review
Our final section in this chapter examines key existing studies; presenting
our literature review. This is where we highlight specific limitations of
existing studies’ methodologies and begin to address how such limitations
can be addressed.
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3.1 Phishing & Malware Attacks

This section explores existing research into phishing and malware attacks
at a high level. Exploring the human aspects and psychology behind why
phishing attacks work along with usability studies that investigate how
people interact with phishing attacks and also mitigation techniques.

Dhamija et al. (2006)

Dhamija et al. (2006) [72] investigated the human aspects of why phish-
ing attacks work; exploring which malicious strategies are successful at
deceiving users. By exploring 200 phishing attacks in the APWG [17]
archive (collected in 2005), the authors developed a set of hypotheses –
organised along 3 dimensions: lack of knowledge, visual deception, and
lack of attention – about why these attacks worked. The authors then
carried out a usability study in which 22 participants were shown 20 web
sites (7 legitimate; 9 representative phishing websites; 3 phishing websites
constructed using additional phishing techniques; and 1 website requiring
users to accept a self-signed SSL certificate) and asked to determine which
ones were fraudulent. The study observed that 23% of participants did not
look at browser-based cues such as the address bar, status bar, and general
security indicators, which lead to incorrect choices 40% of the time. In
their study, the most convincing phishing website was able to fool more
than 90% of participants.

Jagatic et al. (2007)

Jagatic et al. (2007) [136] examined the baseline success rate for phishing
attacks by carrying out a usability study on 1,731 participants. The authors
of the study “acquired” these participants by crawling online public profiles,
of students studying at the same university, in an attempt to quantify how
reliable social content would increase the success rate of a phishing attack.
It is important to note that the participants did not know they were part of
a research study.

Participants were split into 2 groups: social and control. Those in
the social group received a spoofed email that appeared to come from a
known friend, containing a link a phishing website. Those in the control
group received the same email but from an unknown sender. 921 of these
participants received phishing attacks and 810 had their email address
spoofed.

Of the 921 participants that received phishing attacks: 487 were in the
social group and 94 in the control group. 349 (72%) of the social group
and 15 (16%) of the control group fell for the attacks. The authors define
“falling for the attack” as: the recipient clicked the link in the phishing
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email and authenticated with their valid university credentials. The study
also explored the psychological emotions experienced by victims in their
usability study of phishing attacks.

Alsharnouby et al. (2015)

Alsharnouby et al. (2015) [13] explored “why phishing still works” and
defined a set of user strategies to reduce phishing attacks. Their study
determined that only 53% of users were able to successfully detect phishing
websites – despite participants being primed to detect phishing websites.
The study used eye tracking technology to measure where users focus their
attention and to determine how effective web browser security indicators
are. The study also concludes that a user’s technical proficiency does not
correlate with improved detection scores.

Stajano et al. (2009) & Ferreira et al. (2015)

Other existing studies have also explored the human aspects of phishing
attacks, including: Stajano et al. (2009) [256] investigated scam victims
to define 7 principles for systems security: distraction, social compliance,
herd, dishonesty, kindness, need and greed, and time. Ferreira et al. (2015)
explored the psychology behind why people fall for phishing attacks by
analysing the persuasion techniques used in social engineering and their
use in phishing

Current State of Malware Studies

Existing research, by Provos et al. 2007 [233], has also provided a contem-
porary state of malware on the web, along with its evolution – over a 12
month period, starting in March 2006. Their study analysed web-based
malware; characterising threats into 4 main categories: web server security,
user contributed content, advertising, and third-party widgets. Existing
studies have also surveyed the current state of malware, malware detec-
tion systems, and malware evasion techniques [152, 89, 175, 243, 125].
Research has also explored the impact of phishing attacks on healthcare
organisation system along with mitigation approaches [230].

SECTION SUMMARY

The studies in this section have demonstrated how easily people can be
fooled by phishing attacks. Key aspects such as lack of knowledge and
attention can lead victims into being deceived by such attacks. We also
see somewhat questionable ethics in the Jagatic et al. study whereby
participants were not initially aware that they were involved in a research
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study. One could argue that the study would only work if participants did
not know they were involved. Although, as seen in the Alsharnouby et al.
study, participants can still be fooled by phishing attacks – even when they
know they’re involved in a research study.

3.2 Data Feeds

This section explores the role of data feeds in research; exploring themes
such as data sources, the accuracy and reliability of data, measurement
bias, sampling techniques, etc. It is important to understand these themes
before planning and carrying out a measurement research study in order to
produce the most accurate and reliable results.

Tall et al. (2009)

A specific example of a data source of phishing emails includes the Phish-
erman project: Tall et al. (2009) [265] – a data repository collected by
numerous different organisations. The project aims to “create a single
information resource available that provides ready access to ongoing and
historical phishing attacks for first responders, brand owners, researchers, and
law enforcement”. Stating that challenges include “rapid automated valida-
tion to cope with the increasing scale of the attacks, and privacy protection,
particularly when attacks are targeted at specific individuals”.

Pitsillidis et al. (2012)

Pitsillidis et al. (2012) [228] present a comparative analysis of spam email
feeds; providing examples of data feeds that are available to researchers.
Their study characterises 10 distinct spam feeds by comparing the contents
of these data sources – including assessing false positives in the dataset,
timing of emails collected and temporal uncertainty, and scope.

The study’s main findings suggest significant variations in the spam
feed contents based on how the data is collected – e.g. spam collected via
botnet, MX honeypot, seeded honey accounts, human identification, and
domain blacklists. The study also shows how research conducted using
these data sources can produce differences in findings. The study suggests
that “high-quality blacklist feeds offer very good coverage and first appearance
information. They also offer the best purity since they are usually commercially
maintained, and have low false positives as their primary goal”. However,
the study does note that “[blacklists] are less useful for studies that rely on
last appearance or duration information”.
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Vis et al. (2013) & Lomborg et al. (2014)

Vis et al. (2013) [286] discussed how data is “made”, by whom and how;
focusing on the use of APIs – specifically Twitter’s – for collecting data in
research studies and the tools used to process that data. The study explores
aspects such as how most academics use Twitter’s free API – a random
sample of all global tweets – and do not have access to the firehose dataset
– which includes 100% of all public tweets – “due to the cost involved in
purchasing and processing firehose data”; how Twitter samples its firehose
dataset; how collected data should be inspected for duplicates, spam, etc;
and how features change on Twitter (i.e. data collected in 2009 will be
different in 2013 due to features specific to Twitter’s platform being added,
updated, retired). The study also notes how many researchers do not
include enough details about how they collect data, such as: search and
filter settings, timeframe and dates when data was collected, which APIs or
sources were used, etc.

Similarly, Lomborg et al. (2014) [167] discussed how social media com-
panies that share their data via APIs can help the research community carry
out empirical analysis – as opposed to researchers deploying web crawling
to collect data. The study focuses on Facebook and Twitter as social media
companies that make their data available for researchers via APIs. The study
highlights methodological considerations (such as sampling and constraints
on generalisation; validity and data quality – observing “what” social media
users are doing does not necessarily explain“why” they are doing it; reli-
ability, in terms of software and API design architecture), along with legal
and ethical implications (such as informed consent and anonymisation) of
empirical research that makes use of APIs for data collection.

Gonzalez et al. (2014)

Gonzalez et al. (2014) [99] assess the bias in samples of large online
networks by comparing 3 samples of Twitter data collected through the
search and streaming APIs. The study analyses communications between
Twitter users relating to political protests taking place during a 1 month
period in May 2012; reconstructing the network of mentions and re-tweets
according to the search and streaming APIs. Key findings show that smaller
samples do not present an accurate picture of peripheral activity and that
bias is greater for the network of mentions.

Whilst the Gonzalez et al. (2014) study highlights important consider-
ations for sampling Twitter data, the specific use case of the study’s data
collection involves analysing crowds and large groups of communities with
the aim to monitor and interpret communications in context. Whereas
an analysis of non-interconnected activities on the social network – such
as how many users mention a certain hashtag, or tweet a specific URL –
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would not fall prey to the same bias, since the interactions are not so tightly
related. For example: a random sample of 1% of Twitter users that mention
a specific hashtag, compared to a 10% or 100% random sample, should
produce similar results – since the only relation is the shared mention of a
hashtag.

Morstatter et al.

In a similar study, Morstatter et al. (2013) [196] compare data from Twit-
ter’s streaming API service with data collected via Twitter’s “full, albeit
costly,” Firehose stream service. The study addresses researchers’ concerns
around Twitter’s lack of documentation regarding what and how much
data is shared through their streaming API, and whether sampled data is a
valid representation of the overall activity on Twitter. Using both statist-
ical metrics and metrics that facilitate the comparison of topics, networks,
and location of tweets, the study concludes that the “results of using the
Streaming API depend strongly on the coverage and the type of analysis
that the researcher wishes to perform”.

Similarly to the previous study, some of the strategies used by Morstatter
et al. to determine bias involve assessing strongly interconnected aspects,
such as most frequent hashtags and topic analysis. Additionally, certain
methodologies and techniques can be deployed to compensate for these
biases. For example: Twitter provides a “trending hashtags” API which
allows researchers to quickly determine current trending (most frequently
included in tweets) hashtags in specific geographical regions – which would
alleviate this specific bias raised by Morstatter et al.

Morstatter et al. produced a follow-up study in 2014 [195] which ex-
plained how Twitter’s Sample API can be used to detect bias in the Streaming
API – without having to use Twitter’s Firehose data steam. To detect bias
in the trend of a hashtag, the study demonstrates bootstrapping[74] the
Sample API to obtain a confidence interval for the relative activity for the
hashtag.

Ghosh et al. (2013)

Ghosh et al. (2013) [96] (a study that we discuss in more detail in Section
3.8.2: Information Credibility), investigated the most effective way to sample
data generated by users in social networks. They compared data produced
by “random” versus “expert” (i.e. knowledgeable) user sampling. The
study opens its problem statement with: “though some research studies
[68, 164] have used the firehose, very few organizations in the world have
access to the firehose. So most analytics companies and researchers rely on
sub-sampled data rather than the entire dataset. Against this background,
this paper investigates the following key question: What is the most effective
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way to sample the data generated by the users in social networks?”. Part of
the study’s conclusion states that “...random (1%) sampling preserves certain
important statistical properties of the entire data set, which expert sampling
does not. For example, expert sampling does not capture conversational tweets
that might be deemed as less important by experts.”. Although this paper is
making a comparison between the 2 sampling methods – random versus
expert users – their research demonstrates that Twitter’s sub-sampled API
is still a reliable source of data.

Clayton et al. (2015)

In a 2015 study entitled “Concentrating Correctly on Cybercrime Concen-
tration” [60], Clayton et al. discussed a specific “concentration bias” that
may arise as a result of hidden characteristics of how data is collected.
For example: PhishTank might report 40% of phishing URLs, but 100% of
PayPal phish – so it appears that criminals overwhelmingly target PayPal.
Concentration bias may also arise when only a handful of criminals operate
a certain scam. For example: In 2007, the RockPhish gang accounted for
2/3 of phishing spam – so their techniques suggested concentrations for
most phishing criminals.

Social Media Data Feeds

With regard to leveraging social media data feeds: Osborne et al. (2014) [217]
investigated Facebook, Twitter, and Google plus to determine which is best
for breaking news. Key results from the study show that all 3 sources carried
the the same major events, but that Twitter consistently leads Facebook and
Google Plus – with Facebook and Google Plus mostly reposting newswire
stories from multiple sources. This study shows that Twitter is a useful
source for researchers that want to tap into a data source that is the most
popular platform for users.

Burnap et al (2015). [50] produced COSMOS (the collaborative online
social media observatory): a system to analyse large social media datasets
and manage workflows between tools. Longley et al. (2015) [168] explored
the geotemporal demographics of Twitter usage.

Martin et al. (2015) [176] investigated potential sampling bias that
can arise when using subsets of data – focusing on App Store Mining and
the App Sampling Problem of user reviews. The study notes that specific
metrics (e.g. price, rating, download rank) can vary significantly between
subsets – and suggest the use of correlation analysis to find trends across
partitions to mitigate sampling bias.

Finally, Fungherr et al. (2016) [141] carried out a systematic literature
review of Twitter use in election campaigns, analysing 127 papers. The
study notes that Twitter’s Streaming API is a popular method used by
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researchers for collecting data from the social media platform, with popular
selection criteria being: users, hashtags, and keywords. However, the
study also notes that a large number of papers in the literature review do
not specify their mode of data collection. This makes it difficult to verify
research findings, replicate studies, and compare data.

Later on in this thesis, in Section 3.9: Ethics, we will review existing
studies that have explored ethical issues surrounding the use of data feeds in
cyber security research [266, 10] and concerns about anonymising data [5].

SECTION SUMMARY

As we have seen in this section, there are numerous data feeds available to
researchers. There are also numerous ways to leverage those data feeds.
As noted by Pitsillidis et al., the way in which data providers collect their
data can have a significant impact on the quality and usefulness of that
data. Multiple data sources may produce different results depending on
the suitability of each data source for a particular study.

We also see from these existing studies that Twitter’s free Stream API is
a popular data source amongst researchers. The cost of Twitter’s Decahose
and Firehose data streams simply make them inaccessible for the majority
of academics. However, leveraging Twitter’s free Stream API as a data
source may introduce bias – depending on how the data is used and the
research questions posed. Research that relies on interconnected tweets (i.e.
analysing crowds in context) may incur bias, but techniques are available
to alleviate bias, such as bootstrapping and Twitter’s Trending Hashtags
API.

3.3 Threat Intelligence & Blacklists

Threat intelligence, or cyber threat intelligence, provides information about
current, known active threats. For organisations wanting to protect them-
selves from cyber attacks, threat intelligence plays a key role in their de-
fence mechenisms. For researchers wanting to explore current cyber attacks,
threat intelligence can provide a ground truth to establish what is malicious
and what is benign in the online world. However, is is important to under-
stand the accuracy and reliability of threat intelligence – which includes
blacklists – to ensure this ground truth is correct.

Jung et al. (2004)

Jung et al. (2004) [139] examined spam emails and the use of DNS blacklists
as a filtering technique. Measured between December 2000 and February
2004, the study observed that the volume of email increased by 866%
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between 200 and 2004; blacklist lookups accounted for 14% of all DNS
requests they observed in 2004 – compared to just 0.4% in 2000. The study
also analysed 7 popular blacklists (abuseat, dsbl, opm, rfc-ignorant, sorbs,
spamcop, spamhaus) and observed that 80% of spam sources are identified
in some DNS blacklists; some DNS blacklists appear to be well-correlated
with others.

The measurement study was carried out on the authors’ university mail
servers (at MIT’s Computer Science and Artificial Intelligence Laboratory
– CSAIL); collecting bidirectional TCP SYN/FIN/RST packet traces [140].
Although the Jung et al. study focused on spam emails, their results show
that domain blacklisting can be an effective means of detecting spam emails
– and therefore a potentially reliable ground truth.

Ludl et al. & (2007) & Sheng et al. (2009)

Two key studies: Ludl et al. (2007) [169] and Sheng et al. (2009) [251],
focused on phishing blacklists and how effective they are at protecting users
from phishing email attacks, paying particular attention to the delay from
an email containing a phishing URL being received to that URL appearing
in a blacklist.

Ludl et al. (2007) automatically tested the effectiveness of the blacklists
maintained by Google and Microsoft with 10,000 phishing URLs. Their
findings showed that the Google phishing blacklist initially detected 64.14%
of the 10,000 phishing URLs and that Microsoft’s blacklist detected 50.48%.
These figures rose to 65.22% and 55.88%, respectively, by the end of
the experiment due to delayed additions to the blacklist. After removing
phishing websites that were offline, and therefore not harmful to users,
Google’s blacklist initially detected 87.89% of the now 3,592 remaining
URLs and Microsoft’s detected 59.55%. These figures rose to 90.23% and
67.18% respectively, after delayed blacklist additions. Ludl et al. conclude
that phishing blacklists are “quite successful in protecting users” against
phishing attacks, especially considering that Google’s blacklist detected
over 90% of the phishing attempts.

Sheng et al. (2009) also examined the effectiveness of phishing black-
lists. Their study attempted to show the limitations of the Ludl et al. study.
The Sheng et al. study’s main argument for the limitations of the Ludl et al.
study was that the phishing websites used were not fresh enough. Sheng et
al. showed, in their study, that blacklists take time to update their databases
and therefore fresh phishing websites take time to be detected. Their main
conclusion was that phishing blacklists are ineffective on fresh phishing
websites – defined as being less than a few hours old. The blacklists tested
by Sheng et al. were: Microsoft Internet Explorer version 7, version 8,
Firefox 2, Mozilla Firefox 3, Google Chrome (0.2.149.30), Netcraft toolbar
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(1.8.0), McAfee Site-advisor (2.8.255 free version), and Symantec Norton
360 (13.3.5). Two main tests were carried out in October and November
of 2008. Results show that the majority of phishing blacklists do not reach
their full effectiveness until at least 24 to 48 hours have passed since the
URL was discovered. This means that, when using just a phishing blacklist
as a means of protection, users are vulnerable to fresh phishing websites
that have not been detected yet. Users are particularly at risk at time zero
of phishing websites being published.

These 2 studies, by Ludl et al. and Sheng et al., illustrate that blacklists
can be an effective ground truth – but that the temporal aspects of blacklists
should be considered.

Zhang Et al. (2013) & Metcalf et al. (2015)

Zhang Et al. (2013) [310] analysed 9 blacklists from 3 different categories:
spam (CBL, BRBL, SpamCop, WPBL, and UCEPROTECT), phishing/mal-
ware (SURBL, PhishTank, hpHosts), and active attack/probing behaviour
(Dshield) over a 7-day measurement period. Key results show a significant
overlap within the same category of blacklists: BRBL and CBL (the 2 largest
spam blacklists) cover about 90% of other spam-related lists; hpHosts,
PhishTank, and SURBL (phishing/malware blacklists) also significantly
overlap. Whereas overlaps between categories are trivial.

Similarly, Metcalf et al. (2015) [183] compared the contents of 86
internet blacklists to analyse the ecosystem of blocking network touch
points and blacklists. The study selected blacklists to cover a variety of
target behaviours and geographic areas, such as botnet command and
control, spam email senders, phishing senders, identifiers within email
message bodies, scanning, and malicious download locations. Key results
show that domain-name-based indicators are unique to one list 86% to 97%
of the time and that IP-address-based indicators are unique to one list 82%
to 95% of the time; i.e. there is little overlap between the blacklists they
analysed.

The study concludes that each blacklist contains a distinct set of mali-
cious activity; combining all of these blacklists will not produce a global
ground truth. The study also notes that “academics comparing their results
to one or a few blacklists to test accuracy are advised to reconsider this val-
idation technique”. Experiments carried out for our thesis include 3 popular
phishing blacklists (PT, OP, GSB). Whilst every effort was made to include
a “complete coverage” of phishing blacklists, a number of considerations,
such as financial, contractual, etc, impacted our ability to include such a
complete set of phishing blacklists. We believe that the core blacklists we
have used in our experiments are significant in their coverage and speciality,
therefore should provide accurate results.
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Kuhrer et al.

Kuhrer et al. (2012) [148] presented the design and evaluation of a blacklist
analysis system which the authors used to analyse 49 distinct blacklists.
They collected more than 2.2 million unique blacklist entries and more
than 410,000 distinct URLs during an 80-day measurement period. In
2014 [149], Kuhrer et al. leveraged their 2012 framework to analyse 15
public malware blacklists and 4 blacklists operated by antivirus vendors.
Key results show that less than 20% of malicious domains are detected
between all 15 analysed blacklists, and that most antivirus blacklists failed
to protect against malware that utilise domain generation algorithms.

Peng et al. (2019)

Peng et al. (2019) [223] investigated VirusTotal and its 68 third-party
vendors to examine their labelling process on phishing URLs. The study’s
core methodology involved creating their own phishing URLs (mimicking
PayPal and IRS) then submitting said URLs for scanning by VirusTotal
– allowing them to analyse incoming network traffic and dynamic label
changes at VirusTotal.

Key results show that even the “best” vendors missed 30% of their
phishing URLs and that scanning results are not immediately updated to
VirusTotal after scanning; along with inconsistencies between VirusTotal
scans and some vendors’ scans. Although the VirusTotal dataset is not used
in this thesis, results from Peng et al. illustrate how blacklist coverage is
not perfect.

Guo et al. (2019)

Guo et al. (2019) [162]measured the characterisation of threat intelligence
to understand how effective these methods are as defence mechanisms –
between January 1 2016 and 31 August 2016 and again between 1 Decem-
ber 2017 and 20 July 2018. The study defined a set of 6 threat intelligence
metrics:

1. Volume: total number of indicators in a source

2. Intersection: number of indicators in one source that are not in
another

3. Exclusive contribution: proportion of indicators in one feed but no
others

4. Latency: when an indicator appears in multiple feeds: time taken to
appear in additional feeds after appearing in the first

5. Coverage: proportion of intended indicators in a source
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6. Accuracy: number of correct indicators in a source (i.e. precision)

The study then analysed 47 distinct IP address threat intelligence sources
covering 6 categories of threats (scan, brute-force, malware, exploit, bot-
net, spam) and 8 distinct malware file hash threat intelligence sources.
Key threat intelligence sources analysed in the study include: Facebook
ThreadExchange [79], Paid Feed Aggregator, Paid IP Reputation Service,
Public Blacklists and Reputation Feeds (AlientVault, Badips, Abuse.ch, Pack-
etmail, SpamhausSBL, CBL, SORBS).

Key results show that threat intelligence sources vary widely based on
their collection methods and specialist areas; few sources explain their
data collection methodology; labels can be ambiguous; larger feeds do not
necessarily contain “better” data; data collection does not necessarily imply
the feeds’ attributes (i.e. crowd-sourced feeds are not always slower than
self-collecting feeds); most threat intelligence sources are singletons (low
intersection) with higher-correlating data sources often seeing intersections
of about 10%.

The study notes that the relevance of its 6 defined threat intelligence
metrics (volume, intersection, unique contribution, latency, coverage, and
accuracy) will vary depending on a number of factors, such as the use
case for a specific threat intelligence source, cost of false positives or false
negatives, cost of latency, budget, etc. The study acknowledged that a
“complete” coverage of threat intelligence sources is difficult to achieve
– especially for academic researchers – for a number of reasons, such as
“prohibitively expensive or publication-restricted data sources”. The study
also acknowledged limitations in ground truth, stating that “It is simply very
difficult to obtain the full picture of a certain category of threat, making it
very challenging to precisely determine accuracy and coverage of feeds”.

Ramachandran et al. (2007)

Ramachandran et al. (2007) [237] observed that 35% of spam emails
were missed by the Spamhaus and SpamCop blacklists because the spam
sender’s IP addresses did not reside in the blacklists. In addition to this,
20% of these IP addresses did not appear in these blacklists after 1 month
– most IP addresses evaded the blacklists for about 2 weeks before they
were added; some evaded the blacklists for almost 2 months. To address
this issue, the author’s created a spam filtering system, called SpamTracker,
that analyses the patterns of spam senders in order to detect spam – early
tests showed that their proposed behavioural blacklisting technique can
“complement existing blacklists” – detecting many spammers before they
appear in blacklists.
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Sinha et al. (2008)

Sinha et al. (2008) [254] investigated reputation-based blacklists used to
block spam to determine how effective these techniques are at detecting
spam. The study’s ground truth consists of 4 blacklists (NJABL, SORBS,
SpamHaus, and SpamCop) which were used to analyse more than a million
spam emails received by a university of 7,000 hosts during a measurement
period of 10 days in June 2008.

Key results show that the NJABL blacklist contained 90% false negatives,
SORBS contained 65%, SpamCop contained 35%, and SpamHaus contained
roughly 36% false negatives. False positive rates were generally low across
all blacklists, except SORBS which saw an overall false positive rate of 10%.
The study also observed that 90% of undetected spam sources sent very
little spam and appeared on their network for just 1 second. These results,
similarly to Ramachandran et al. show that popular blacklists can have
very high false positives – therefore allowing large volumes of spam to go
undetected and reach users’ inboxes.

Thomas et al. (2016)

Thomas et al. (2016) [267] investigated threat intelligence “exchanges”;
exploring the potential advantages and disadvantages of global reputation
tracking. Their data includes 45 million IP addresses which abused (spam,
bulk account creation, fake engagement, malware distribution) 6 Google
services (Gmail, YouTube, ReCaptcha, comment spam, bulk account cre-
ation, and Safe browsing) during a 14-day period between 7 and 21 April
2015.

Key results showed that 66% of abusive IP addresses remained active
for only 1 day – after which dynamic IP address reallocation caused the host
to change. Additionally, NATs polluted IP reputation – due to the large user
populations they represent – therefore only 38% of abusive IP addresses
exclusively relayed harmful traffic; the rest shared some overlap with benign
devices. This lack of intersection and correlation among the different
sources makes sharing threat intelligence data challenging – although these
studies [237, 254, 267] focused on blacklists that contain IP addresses as
threat sources.

Moore et al. (2008)

Moore et al. (2008) [191] explored the effectiveness of the crowd-reporting
service PhishTank; examining reports from 176,366 phishing URLs sub-
mitted between February and September 2007. The study observed that
PhishTank is dominated by its most active users and that participation
follows a power-law [208] distribution – which could allow the service
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to be manipulated. The study analysed 3,798 PhishTank users, casting a
total of 881,511 votes – of which, the top two submitters (anti-phishing
organisations themselves), contributed 93,588 and 31,910 phishing records
respectively. Additionally, the top verifiers of PhishTank voted over 100,000
times – whereas most users vote only a few times.

The study also noted that the PhishTank voting community is made up
of 25 moderators; collectively casting 652,625 votes (75% of all votes) –
showing that moderators contribute towards the majority of votes – but
that a significant contribution is still made by regular users. The study com-
pared PhishTank’s blacklist to the curated phishing blacklist of an unnamed
“company” – finding PhishTank to be slightly less complete and significantly
slower to confirm phishing URLs than the blacklist of “company”. The
study also explores cases where incorrect information has propagated into
PhishTank.

Overall, the study observed that PhishTank’s phishing URLs were mostly
accurate; identifying only a few incorrect URLs – all of which were later cor-
rected. The study concludes that they “do not advocate against leveraging
user participation in the design of all security mechanisms”.

Chen et al. (2015)

As we have seen in this section, existing research studies typically rely on
one or more data feeds or blacklists as their source of ground truth. Despite
its promising title, “6 million spam tweets: A large ground truth for timely
Twitter spam detection”, the 2015 study by Chen et al. levered access to Trend
Micro’s Web Reputation Technology as its ground truth. Nevertheless, the
study states that: “currently researchers are using two ways to generate ground
truth, manual inspection and blacklists filtering. While manual inspection can
label a small amount of training data, it is very time–and resource-consuming.
A large group of people is needed during the process. Although HIT (human
intelligence task) websites can help to label the tweets, it is also costly, and
sometimes the results are doubtful [53]. Others apply existing blacklisting
service, such as Google SafeBrowsing, to label spam tweets. Nevertheless, these
services’ API limits make it impossible to label a large amount of tweets. We
used Trend Micro’s Web Reputation Service [214] to identify which URLs were
deemed malicious tweets... We define the tweets which contain malicious URLs
as Twitter spam. In our dataset of 600 million tweets, we identified 6.5 million
malicious tweets, which accounted for approximately 1 % of all tweets”. The
study does not provide further information about the accuracy of Trend
Micro’s Web Reputation Technology – their ground truth. However, the
study does provide a potentially useful benchmark for the percentage of
spam on Twitter.
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SECTION SUMMARY

In this section we have explored existing studies that investigate threat
intelligence and blacklists. We see that blacklists can provide a reliable
defence from, and source of ground truth for, cyber threats. However, the
timings of blacklists needs to be considered since there may be delays from
when a threat becomes active online to when a threat appears in a blacklist.
We also see that blacklists of the same category can contain a significant
overlap which helps to achieve a wide coverage. However, compiling a
complete and comprehensive ground truth is a challenging and difficult
task. Therefore most organisations will make trade-offs to achieve a good
enough ground truth that provides effective protection for their needs.

In this thesis our ground truth is provided by 3 popular phishing and
malware blacklists (GSB, OP, and PT). These blacklists specialise in phishing
attacks – which is a key threat that we are researching – and provide
effective coverage for our requirements. We see from existing studies that
IP blacklisting can be ineffective because IP addresses are often reused
and change frequently – therefore making it difficult to pinpoint threats.
However, URL blacklisting is also not perfect, since it can have high false
positive rates – i.e. they do not detect all threats. Finally, we also see that
crowd-reporting, as provided by the PhishTank blacklist, is a reliable threat
intelligence source. Despite some potential flaws in a crowd-reporting
system, as raised by Moore et al., the technique remains reliable and the
PhishTank blacklist was deemed accurate.

3.4 Phishing & Malware Defence

Although somewhat outside of the scope of this thesis, it is sill within
context and therefore important to understand what defence techniques
are available to protect users against phishing and malware attacks. Some
of the research carried out for this thesis gives examples of where Twitter
might not protect its users against phishing and malware attacks. However,
any number of these users may still have been protected from such attacks
by other defence mechanisms, such those listed in this section.

A high level overview, provided by Gupta (2017) et al. [114] explored
the state of the art and future challenges in the fight against phishing at-
tacks. Along with a literature review of contemporary phishing detection
and defence solutions, the study discusses the history of phishing attacks,
motivation for attackers, along with a taxonomy of various types of phishing
attacks. Similarly, Purkait et al. (2012) [234] reviewed available phishing
literature and phishing countermeasures to determine trends in the literat-
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ure itself along with said attacks. Almomani et al. (2013) [12] present a
comparative study and evaluation of phishing email filtering techniques to
provide an understanding of the problem, its current solution space, and
potential future research directions.

Two core principles for protecting users again phishing and malware
attacks include prevention and detection. In terms of prevention, various
techniques have been proposed, including Dynamic Security Skins [71] and
Trusted Devices [220] along with educational aspects of phishing training
including PhishGuru [150] and the game Anti-Phishing Phil [250]; the
effectiveness of these two educational approaches were analysed [151].
The effectiveness of toolbars in protecting users has been investigated
[300, 311], along with the effectiveness of web browser warnings [76,
206, 6]. Work has explored demographic analysis of phishing susceptibility
and effectiveness of interventions [249]. Research has also explored if
smaller screens on mobile devices can contribute towards users being more
susceptible to phishing attacks [213], along with using using eye movement
tracking to access how “alert” users are during phishing attacks [204], and
explored mouse behaviour as an index of phishing awareness [308].

In terms of detection, there are a number of key focus areas here:
phishing websites themselves, URLs, and for the social network: Twitter
specific features. We see that machine learning plays an important role
here due to its ability to process and detect patterns in large amounts of
data – although it’s important to understand the drawbacks of any machine
learning approach and the importance of training data [9]. A number
of literature reviews exist that explore contemporary state of the art in
machine learning techniques for phishing detection [2, 145, 7].

An existing study proposed, and examined the effectiveness of, proact-
ively blacklisting malicious and phishing domains [81, 229]. A number of
techniques to detect phishing websites have bene proposed [1, 25, 44, 83,
91, 142, 143, 163, 172], such as: CANTINA [312] (and CANTINA+ [301])
to examine website content – along with examining domain top-page similar-
ity features [244], and large-scale automatic classification [298]. Basnet et
al. have explored a number of automated detection techniques [27, 30, 31],
including mining the web to detect phishing URLs [29] and the use of
confidence-weighted linear classifiers to detect phishing emails [28]. An-
omaly based phishing website detection has been explored [219], along
with exploitable redirects on the web [253], and a hybrid phish detection
approach by identity discovery and keywords retrieval [302].

In their 2011 paper entitled “Evaluating a semisupervised approach to
phishing url identification in a realistic scenario”, Gyawali et al [115] discuss
the problem of working with an inbalanced data set (phishing and spam
URLs with 1:654 ratio) and training on data where only 10% is labelled.
In their proposed solution, “labelling only 10% of the URLs manually and
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using a semisupervised learning algorithm... Evaluation results show that
our proposal is competitive if it is applied in combination with appropriate
feature selection and undersampling techniques”. Additionally, a number of
existing studies have developed techniques to detect phishing and malware
attacks using URL-based heuristics [146, 209, 210, 170, 36] – reducing the
overhead required to process web page content.

In their 2011 study, Thomas et al. [268] proposed a real-time spam URL
filtering system called Monarch. They conclude their study by stating: “we
show that Monarch can provide accurate, real-time protection, but that the
underlying characteristics of spam do not generalize across web services. In
particular, we find that spam targeting email qualitatively differs in significant
ways from spam campaigns targeting Twitter”. With that in mind, various
studies have focussed their machine learning based detection efforts on
social networks [262, 41, 49, 90, 212, 304, 306, 309, 179, 307, 59, 4], for
example: by deploying social honeypots and machine learning [156] and
mapping the spread of astroturf in microblog streams [238]. Existing studies
have also focused their machine learning on Twitter specific features such
as looking at redirection chains to detect suspicious URLs [158], analysing
suspended accounts [269], detecting automated accounts [58], using social
graph models [288], and a system called PhishAri to detect phishing in
real-time on Twitter [4].

SECTION SUMMARY

We see that existing studies into phishing and malware defence can typically
be organised into two categories: prevention and detection. Machine
learning plays a key role in detection techniques, due to its ability to analyse
large data sets and detect patterns.

To defend against phishing and malware attacks, many machine learning
techniques include the unique features of social networks, such as Twitter,
to improve their accuracy.

The wealth of existing research demonstrates that numerous defence mech-
anisms already exist to protect people on the internet from phishing and
malware attacks. However, the effectiveness of such techniques will depend
on their application and the specific scenario in which a user encounters an
attack. Therefore these existing defence techniques cannot solely be relied
upon for complete protection from cyber attacks.
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3.5 Web Browser Phishing Detection

A notable study was carried out by Zhang et al. in (2006) [311] in which
various browser extensions were tested to see how effective they were at de-
tecting phishing URLs. Two sources of phishing URLs were used: PhishTank
and APWG. The tools tested in the study were: CallingID, Cloudmark, Earth-
Link, eBay, IE7, Firefox, Firefox/Google, Netcraft, Netscape, SpoofGuard,
TrustWatch.

One of the main results of this study was that SpoofGuard achieved a
detection rate of just over 90% and that Firefox and Google Chrome had
a detection rate of 70% when the URL was first extracted, which rose to
over 80% after 24 hours. Since Google Chrome was using the Google Safe
Browsing blacklist in the experiment, the delayed detection rate is likely to
illustrate the time taken for phishing URLs to appear in the blacklist. Since
this study, most of the tools that were analysed are no longer available or
have not been updated for many years. The main tools to have survived
are the web browsers themselves.

A 2012 study by AV Comparatives [23] carried out a series of phishing
website detection tests on 5 popular web browsers: Apple Safari 5, Google
Chrome 23, Microsoft Internet Explorer 9, Mozilla Firefox 18 and Opera 12.
The exepriments were carried out between the 11th and 19th December
2012. A total of 294 phishing websites were used in the tests. All tests were
carried out on Windows 7 SP1 64-bit. The study’s key findings were that
Opera detected the greatest number of phishing websites (94.2% detected),
followed by Internet Explorer (82%), Chrome (72.4%), Safari (65.6%),
and finally Firefox (54.8%).

3.6 Heuristic Phishing Detection

Due to the previously noted limitations of blacklists, an alternative approach
to detecting phishing websites is to automatically assess various features of a
website. This assessment produces a probability score of how likely a given
website may be a phishing attack. This approach does not require a blacklist
to detect phishing websites. Numerous studies have been carried out into
automated phishing detection and some of the most relevant studies are
explored in this section.

A notable study carried out in 2004 by Chou et al. [56] extracted
various features of a given website by creating a web browser plugin called
SpoofGuard. Their tool assesses two key areas of information about a given
website: stateless and stateful page evaluation. Stateless page evaluation
looks at the URL (for various signs such as the @ character in a URL),
images (to see if logos of another organisation have been used), links (all
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Classified as legitimate Classified as phishing

Legitimate page 4,131 18
Phishing page 115 565

Table 3.1: Ludl et. al (2007): Confusion matrix for page classifier.

links on the page are examined against the URL check) and passwords (does
the page require the user to enter a password into a form, if so is it secure?).
The stateful page evaluation looks at the domain (does the domain look
like a previously visited website?), referring page (has the user come from
an email client such as Hotmail, Gmail etc) and image-domain associations
(a database of images, such as corporate logos, and their association with
domain names). Finally, SpoofGuard evaluates submitted HTTP POST data
to determine if the user is sharing a password with a spoof site. All of
this data is fed into a scorer which combines all of these tests to produce a
phishing probability score. If this score is high enough, the user is presented
with a phishing warning.

We have already seen the results of SpoofGuard’s detection rate in Zhang
et. al’s 2006 study [311]. Without the use of a blacklist, the tool was able
to detect over 90% of phishing websites; outperforming all other tools in
the test. The SpoofGuard plugin was released in 2006 for Internet Explorer
although, its use was more of a proof-of-concept. The tool has not been
updated since the study and no further versions of the plugin have been
released.

The Ludl et al. (2007) study [169] (which was previously mentioned in
the Phishing Blacklists Effectiveness section) also looked at various on page
properties of phishing websites in an attempt to aid phishing detection.
The main properties they look at are: forms, input fields, links, whitelist
references, script tags, suspicious URL and use of SSL. Their study then
continues to build a classification model which uses the J48 algorithm (an
implementation of the decision tree algorithm C4.5 [236] from the data
mining tool Weka [299]) to classify pages as phishing or safe. Table 3.1
shows the classification quality (confusion matrix) of their model whereby
over 80% of phishing websites were correctly identified.

Another study in 2007, by Zhang et al. [312], produced a tool called
CANTINA that uses TF-IDF, an information retrieval and text mining al-
gorithm, and Robust Hyperlinks to detect phishing websites based on their
contents. Their approach essentially uses a lexical signature technique to
uniquely identify web pages. The basic idea is that when producing phish-
ing websites, phishers will simply copy the web page they are attempting
to masquerade as. By making use of these unique lexical signatures (or
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Robust Hyperlinks), CANTINA can then identify when a website is a replica
of a legitimate website based on its signatures’ similarity to the legitimate
website. Their results show that CANTINA was able to detect around 90%
of phishing websites, with 1% false positives.

In 2007, Garera et al. [91] looked specifically at the structure of URLs
to detect phishing attacks. Their approach argues that most phishing URLs
use similar techniques to deceive users. Their study defined four phishing
URL types:

1. Obfuscating the host with an IP address: hostname is replaced with
an IP address and the organisation being masqueraded as normally
placed in URL e.g.:

• http://210.80.154.30/t̃est3/.signin.ebay.com/ebayisapidllsignin.htm

• http:// 0xd3.0xe9.0x27.0x91:8080/.www.paypal.com/uk/login.html

2. Obfuscating host with another domain: valid domain with organ-
isation being masqueraded as in URL. Often relies on redirect e.g.:

• http://21photo.cn

• https://cgi3.ca.ebay.com/eBayISAPI.dllSignIn.ph

• http://2-mad.com/hsbc.co.uk/index.html

3. Obfuscating with large host names: contains masqueraded host-
name in URL along with other words and the actual domain e.g.:

• http://www.volksbank.de.custsupportref1007.dllconf.info/r1/vm/
• http://sparkasse.de.redirector. webservices.aktuell.lasord.info

4. Domain unknown or misspelt: makes use of misspelt domains that
look similar to masqueraded domain or domains that are unknown
e.g.:

• http://www.wamuweb.com/IdentityManagement/
• http://mujweb.cz/Cestovani/iom3/SignIn.html?r=7785

The study acknowledged that URL detection based on these four types
alone was not particularly robust as it could be easily evaded by an attacker.
Therefore, their study also looked at various other website features which
were grouped into: Page Based (including Google’s Page Rank score – in
theory: the higher the Page Rank score, the more reputable the website is),
Domain Based (is the domain in a previously generated White List of trusted
organisations), Type Based (using previously defined obfuscation types as
features) and Word Based (e.g. words such as “login” and “signin” often
appear in phishing URLs). The resulting classifier produced an accuracy of
93.4% although an extensive analysis of this accuracy is not provided in
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Type Total Number of URLs Percentage

1 3,110 33.32%
2 1,616 17.30%
3 4,337 46.46%
4 273 2.9%

Table 3.2: Garera et. al (2007): Distribution of Obfuscation Types.

the research paper. The classifier was used on the Google Safe Browsing
toolbar to detect how many phishing URLs fell into each of the URL types
defined above. Their findings are shown in Table 3.2.

In 2005, Liu et al. [297] proposed a solution that looks at the visual
similarity between websites to determine if a site is phishing. The similarity
assessment used in this technique is carried out by measuring three metrics:

1. Block level similarity: A website is essentially made up of blocks
(text or images); the contents of these blocks can be compared. Text
blocks compare features such as colours, border style and alignment,
etc., and image blocks compare features such as alternative text,
dominant colour, and image size, etc.

2. Layout similarity: Having measured the block level similarity, what
is the similarity of the layout of those blocks on the web page?

3. Overall style similarity: This assesses the visual style of the website
using features such as font family, background colour, text alignment,
and line spacing.

Their study tested this detection technique against 8 known phishing
websites and 320 legitimate websites (to test for false positives). Two tests
were carried out with a similarity threshold of 0.9 and 0.7 respectively. The
first produced no false alarms but missed one and the second produced 4
false alarms but none missing.

The Liu et al. study was further improved in 2008, when Medvet et al.
[181] provided a similar solution. The approach used by Medvet et al. was
different in that it was inspired by two previous anti-phishing solutions:
AntiPhish [147] (a tool that warns user’s when they share the same login
credentials across multiple websites) and DOMAntiPhish [241] (a tool that
builds on AntiPhish by comparing the Document Object Model of websites
to reduce warnings when user’s enter the same login credentials on multiple
trusted websites). Basically, the approach by Medvet et al. takes the three
metrics from the Liu et al. solution to produce a signature for a given
website. A legitimate website’s signature could then be compared to its
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phishing version’s signature to determine if the phishing website was a
copy of the original. These signatures could then be used in a solution such
as AntiPhish to warn when a user is about to share sensitive information
with a website that has copied a trustworthy website. The results from this
signature based detection technique were that 100% of 140 tested phishing
websites pairs were detected (when compared to their legitimate copied
websites). 27 false phishing websites were also tested for which only 2
were falsely detected as phishing.

3.7 Warning Effectiveness

As mentioned in the Introduction section of this chapter, phishing detection
can be rendered useless if it is not communicated and presented to the
user in an effective manner. Alerts and warnings that confuse the user may
be ignored, the phishing detection techniques wasted, and the user may
continue onto a phishing website to share their sensitive data. This section
aims to explore existing research into the effectiveness of such warnings.

In 2006, Wu et al. [300] assessed five web browser toolbars to determine
how effective their warnings were at preventing users from visiting phishing
websites. In their study, the five web browser toolbars were grouped into
three simulated toolbars based on the types of information they display:

1. Neutral Information: information about the website being visited
is shown such as: domain name, hostname, registration date, and
hosting country. This information then allows the user to make their
own decision on whether the site is safe

2. SSL Verification: information simply highlights if the website uses
SSL encryption or not

3. System Decision: this toolbar makes a decision on behalf of the user
and displays a red warning if it believes a website is a phishing attack

Subjects were then given the task of protecting login credentials for
a fictitious user and told to act as a personal assistant to this user. One
of the main findings in this study was that a typical user’s primary goal is
not security; they are usually attempting to carry out some other activity.
Therefore, having a warning message appear in a toolbar was not enough
to encourage users to take evasive action. Most users simply ignored the
warnings or did not understand what they meant – and many users simply
did not understand how sophisticated some phishing attacks can be so were
not aware of what to look out for.

A further study in 2008, by Egelman et al. [76], took the Wu et al.
study one step further by comparing passive and active warnings. In their
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experiments, passive warnings are defined as warning that appear on the
screen but do not obstruct the user’s activity. An active warning, on the
other hand, would interfere with the user’s browsing experience and force
the user to take note of the warning. The results from this study showed
that 79% of people chose to heed active warnings and not visit phishing
websites compared to just 13% of users that were presented with passive
warnings.

Akhawe et al. (2013) [6] conducted a large-scale field study into the
effectiveness of web browser warnings. They define the metrics: passive
and active warning messages. In their experiments, passive warnings are
defined as warning that appear on the screen but do not obstruct the user’s
activity. An active warning, on the other hand, would interfere with the
user’s browsing experience and force the user to take note of the warning.
The results from the study showed that 79% of people chose to heed active
warnings and not visit phishing websites compared to just 13% of users
that were presented with passive warnings.

Felt et al. (2015)[82] explored the concepts of comprehension and
adherence in their study to improve SSL warnings. The study looks at a
number of features that are designed to communicate the warning effect-
ively to users. The features are: technical jargon (text should user simple,
non-technical language that are aimed at a broad user base); reading level
(reading level should target all users – 6th grade reading level e.g. SMOG
formula [178]); brevity (large quantities of text look like they will take
effort to read – warnings should be brief); specific risk description (describe
the risk explicitly and unambiguously); illustration (images can reduce
time to comprehend information and can make warnings more attention-
grabbing and memorable); and risk level (warnings must stand out from
the surrounding environment; red warnings are more effective that black
or green warnings).

3.8 Measurement Studies

In this section we will explore key existing measurement studies that invest-
igate topics related to this thesis. These measurement studies explore the
topics of: URL shorteners, information credibility, networks, and phishing
and malware attacks. Some of these studies carry out their measurements
on Twitter, whilst other studies implement their measurements on the web
in general.

By exploring these topics of measurement studies, we aim to assess how
existing studies carry out their experiments and to explore what methodo-
logies they use. This provides inspiration for the measurement experiments
that are designed and deployed for this thesis, which we will explore in
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Chapter 4: Design & Implementation. These existing measurement studies
can also provide context for the results we see from the research carried out
for this thesis, and also help to understand the landscape we are measuring.

3.8.1 URL Shorteners

URL shorteners play an important role on Twitter. Due to the 280 character
limit per tweet (raised from 140 in 2017 [275]), URL shorteners keep text
count to a minimum. Although Twitter introduced its own URL shortener
in 2011 [279], users can still shorten their submitted URLs via any number
of shorteners – forming a redirection chain for each shortener. This section
explores key papers related to the use of URL shorteners to understand
what URL shorteners are popular both on the internet in general and on
Twitter, how phishers use URL shorteners, how URLs propagate on the web
and Twitter, and more.

Antoniades et al. (2011)

Antoniades et al. (2011) [16] carried out a large-scale crawl of the URL
shortening services bit.ly and ow.ly and examined their use on Twitter. The
authors collected more than 20 million URLs from Twitter – of which 87%
were shortened. The study was carried out before Twitter introduced its
own URL shortening service whereby all tweeted URLs are now shortened
via t.co.

The study’s results show that 50% of tweeted URLs, analysed during
their study, were shortened via bit.ly, 4% via tl.gd, 3.5% via tinyURL, and
1.5% via ow.ly. Results show that 60% of users arrived at tweeted bit.ly URLs
from non-web applications (email, IM, apps, phone, direct) and 23% via
twitter.com. This browsing model suggests a “word of mouth” propagation
of short URLs posted to Twitter.

The study’s methodology involves using Twitter’s Search API to collect
URL-containing tweets and brute-forcing Bitly and Owly’s available key-
space to collect short URLs. Due to the Twitter API’s rate limit, the authors
query the API once every 5 minutes for tweets that contain HTTP URLs;
each request retrieves up to 1,500 tweets and goes back no more than 7
days in time. This method collected more than 20 million tweets containing
HTTP URLs. The bit.ly brute-force collection process involved searching
the entire key-space [0-9, a-z, A-Z] for hashes up to 3 characters in length,
since bit.ly uses random hashes. Ow.ly does not use random hashes, but
serially iterates over the available short URL space. Therefore the authors
collected a full set of ow.ly short URLs created for a 9-day period. Ow.ly
does not provide an API for URL data, therefore results are only shown for
bit.ly.
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Chhabra et al. (2011)

Chhabra et al. (2011) [55] investigated phishers that use URL shortening
services to masquerade phishing URLs on Twitter. Their study sampled
6,474 blacklisted phishing URLs from the blacklist PhishTank that had been
shortened via bit.ly. They showed that the amount of space saved by using
a URL shortener was, on average, 39% and that 50% of phishing URLs saw
a space gain of 37% or less – for context: Antoniades et al. showed, for
generic URLs, a 91% space gain [16]. This implies that URLs shortened by
phishers are not as long as generic URLs; favouring the hypothesis that URL
shorteners are not only used to make communication terse but to obfuscate
the URL to escape any scrutiny which is based on only URL text.

The study’s methodology consists of 3 key phases:

1. Fetch the PhishTank database for the year 2010 and extract URLs
voted as confirmed phishing – resulting in 1,18,119 URLs

2. Query Bitly API for the global shortened URL for any matching URLs
from step 1 dataset, also query the domain name for every phishing
URL in step 1 dataset – this resulted in 6,474 Bitly URLs for “phishing”,
with 3,692 exact matches and the rest domain matches

3. For every Bitly URL from step 2 dataset, query Bitly API for clicks,
clicks-by-day, countries, and referrers – for referrals from Twitter they
use Twitter’s API to fetch additional information

Wang et al. (2013)

Wang et al. (2013) [289]measured short URL spam on Twitter by analysing
click traffic of over 600,000 tweeted Bitly URLs. Tweeted Bitly URL click
traffic analysis shows that the majority of tweeted Bitly clicks are from
direct sources (i.e. email messages, instant messages, applications, etc) and
that spammers utilise popular websites, such as Twitter, Facebook, YouTube,
etc, to attract more attention by cross-posting links.

Their methodology is as follows: query Twitter API every minute to
collect tweets, and associated Twitter users, containing trending topics –
about 600 topics between November 2009 and February 2010. Users or
tweets that were marked as suspended or removed due to violating Twitters
terms of service were marked as spam in the dataset – this is their ground
truth. They also check the short URLs collected in their dataset (including
all URLs in the redirection chain) against public blacklists: Google Safe
Browsing, McAfee SiteAdvisor, URIBL, SURBL, and Spamhaus – labelling
matches as spam, to validate the ground truth.

The study notes that the lag effect of blacklist validation is not a problem
due to their own delay between generating and labelling their dataset. Wang
et al. do not state the delay time between their data collection and labelling
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for spam URLs – therefore it is possible that there could indeed be a lag in
blacklist validation which would mean their labelled dataset may not be
accurate. All short URLs were extracted from their dataset; Bitly made up
about 57%. The study then queried Bitly’s API to collect URL traffic data
on URLs in the dataset of suspended or removed Twitter accounts.

Nikiforakis et al. (2014)

Nikiforakis et al. (2014) [211] investigated the ecosystem of ad-based URL
shortening services from a security and privacy perspective. Their study
explored ad-based URL shorteners on the whole web and was not specific
to Twitter. They discovered that ad-based URL shorteners are susceptible
to a number of vulnerabilities, such as tabnabbing and link hijacking which
can lead to drive-by-downloads, browser-exploits, scams, phishing attacks;
and privacy concerns through the use of sequential (i.e. predictable) URLs
and URL leaking through HTTP Referrer headers.

The authors discovered 892 malicious web pages that used an ad-based
URL shortener – 81% of these came from adf.ly links. In their dataset of
4,300 users that had clicked on an ad-based URL shortener, 50% of users
were running outdated software – 25% of which were susceptible to at
least one identified exploit. The study also analysed 29,709 ad-based short
URLs and discovered that the majority of these URLs were published on
low-reputation websites; 26% of these falling under the category of “Blogs
/ Web Communications” and a further 26% of these short URLs redirected
back within the ad-based short URL ecosystem; bringing users into an
endless loop of ad pages.

After analysing the landing pages of ad-based short URLs, the authors
discovered that the majority of URLs point to high-reputation websites such
as file-hosting services, YouTube videos, Facebook apps. Although less than
10% of the landing pages with file hosting services were available. These
landing page results suggest that many ad-based URL shortening services
are used as “wrappers” to promote popular content that is already free and
widely available to the public – and that the creators of these ad-based URLs
lure their “victims” with appealing content to drive traffic (and thus ad
revenue for profit) without providing the promised content to link-following
users.

The key methodology used in the Nikiforakis et al. study involves
downloading historical data from the blacklist Wepawet [63] between 1st

January and 31st July 2013 and searching for ad-based URLs within this
dataset. To research consumers of ad-based URLS the authors paid for
adverts on 2 of the popular ad-based URL shortening services: $5 for 1,000
impressions from the US and $5 for 5,000 impressions worldwide on adf.ly;
and $6.60 for 2,000 UK impressions on linkbucks.com. They then used

74



3.8. Measurement Studies

partial fingerprint matching (IP address, browser’s User agent, and list of
plugins) and cookies to investigate how lucrative ad-based would be for an
attacker.

Out of the 8,000 impressions paid for, the authors only collected 4,300
fingerprints – mainly due to crawlers, scrapers, and bots lacking proper
Javascript support. They then compared users’ browser set-ups to a list
of known browser exploits [62]. In order to research the producers and
landing pages of ad-based URL shorteners the authors queried Bing’s Search
API for URLs that contained a set of 10 ad-based URL shorteners, then used
the PantomJS [225] scraper. They used WOT Reputation API [292] and
Trendmicro’s Site Safety Center service [273] to categorise the websites.

Maggi et al. (2013)

Maggi et al. (2013) [171] examined how effective short URL counter-
measures are at preventing users from shortening malicious URLs. Again,
this study was not specific to Twitter, as it measured general URL shorten-
ers across the web. They found malicious URL countermeasures to be
ineffective and trivial to bypass. The study also carried out a large-scale
collection of HTTP interactions that originated when internet users accessed
websites that contained short URLs. They monitored 622 distinct URL short-
ening services between March 2010 and April 2012, collecting 24,953,881
unique URLs. The study’s key findings show that relatively small numbers
of internet users encountered malicious short URLs. During their second
year of measurement, the authors noticed in increase in the number of
drive-by-download short URLs.

SUBSECTION SUMMARY

The studies explored in this subsection shed light on how URL shorteners
are used. Bitly tends to dominate the url shortening market as the most
frequently used shortening service. We see how how phishers can take
advantage of URL shortening services to increase their coverage and gain
more victims. We also see URL shortening as a popular technique used in an
attempt to hide phishing URLs. Exploring different types of URL shortening
services shows that ad-based URL shorteners may provide hidden motives.
Not only are URLs, that are shortened with ad-based URL shortening ser-
vices, ripe with phishing URLs, people that share such URLs may be more
motivated by profits than their users’ best interest.

When exploring the methodologies employed by these existing studies, we
see the popularity of APIs and blacklists as data sources and ground truths.
Many of the studies lookup large datasets of URLs, obtained from sources
such as Twitter’s Stream API, in one or more blacklists. This allows the
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studies to determine how many of their sampled URLs fall into certain
categories (e.g. phishing). We also see effective use of the Bitly API to
retrieve and analyse statistics for certain URLs – such as clicks and referrers
– which can help to determine a URL’s popularity and therefore its impact
during a cyber attack campaign.

3.8.2 Information Credibility

This section aims to provide a summary of existing research that explores
information credibility on Twitter. Although not directly related to this
thesis’ methodology, the topic of information credibility links into cases
where phishing and/or malware URLs are spread via “trending topics”. This
relates to the previous section (3.8.1: URL Shorteners) where we saw how
“word of mouth” propagation of shortened spam URLs ties into information
credibility.

We will explore the theory that Twitter users whom fall victim to so-
called “fake news” on Twitter may be at risk of phishing and malware URL
attacks. Although most of the studies we examine in this section involve
creating novel machine learning classifiers, they all require training data.
This training data can provide measurements of information credibility on
Twitter – which will be our main focus of these studies. The measurement
data in these existing studies illustrates and highlights the prevalence of
misinformation on Twitter.

Twitter is an open platform whereby anyone can tweet a message pub-
licly. The means it can be difficult for Twitter users to determine what
information is accurate and reliable on the social network; the spread of
misinformation and so-called “fake news” is a common problem in contem-
porary culture [67, 155, 8] (e.g. misleading Coronavirus map (February
2020) [33], misleading Australia wildfire maps (January 2020) [32], out-of-
context photos (February 2020) [165]). In April 2019, the UK government
launched a sub-committee to tackle disinformation [123] – although the
problem of so called “fake news” in society is not new [260].

Castillo et al. (2011)

Castillo et al. (2011) [53] investigated the information credibility of news
propagated through Twitter by using machine learning techniques to auto-
matically classify tweets related to “trending” topics as either credible or
not credible. The study used human assessment, via Mechanical Turk [14],
to evaluate their machine learning classifier. Their results show that there
are measurable differences in the way messages propagate on Twitter, that
can be used to classify messages automatically as credible or not credible,
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with precision and recall of their machine learning classifier in the range of
70% to 80%.

The study’s methodology for gathering training data is as follows: the
authors use Twitter events detected by Twitter Monitor [177] (an online
tool that detects bursts in frequency of sets of keywords and returns a
keyword-based query for each event) during a 2-month period. For each
event detected by Twitter Monitor, the authors collected all tweets during a
2-day window centred on the peak of each burst. The authors do not state
if they used Twitter’s API to search for this information. Each set of tweets,
produced from each Twitter event, corresponds to a “topic”. They collected
over 2,500 topics. The authors then randomly selected 383 topics from the
Twitter Monitor collection to be categorised, by humans via Mechanical
Turk, as either “news” (statements about a fact or actual event) or “chat”
(messages based purely on personal/subjective opinions) manually. Topics
were grouped into sets of 3 per task and 7 different human evaluators
on Mechanical Turk were required to evaluate each task, during a 10-day
period. Each topic was assigned a label if 5 out of 7 evaluators agreed on
the label – otherwise the topic was labelled as “unsure”.

Results of this labelling process show that: 29.5% (113 cases) of topics
were labelled as “news” and 34.9% (134 cases) as “chat” while 35.6% (136
cases) were labeled as “unsure”. The authors then ran an event supervised
classifier on 2,524 cases detected by Twitter Monitor, whereby 747 cases
were labelled as “news”. These labels were manually verified by humans,
via Mechanical Turk, whereby evaluators assessed each case from a sample
of 10 tweets per case – again, 7 evaluators were assigned per task and
5 out of 7 evaluators must agree per label, otherwise it was labelled as
“ambiguous”. Results showed that 41% (306 cases) were labelled as “almost
certainly true”, 31.8% (237 cases) as “likely to be false”, 8.6% (65 cases)
as “almost certainly false” and 18.6% (139 cases) as “ambiguous”.

Although the Castillo et al. study approaches the problem of information
credibility on Twitter from a machine learning perspective (i.e. creating
a classifier to automatically detect credible news), their methodology for
collecting ground truth data for training the classifier itself produces an
insightful measurement. In their training data: 35.6% of trending Twitter
topics were classified as “chat” versus 34.9% as “news” – a fairly balanced
ratio. However, when testing their classifier: 747 out of 2,524 (30%)
trending topics on Twitter were automatically classified as “news”, with
237 (32%) of these topics being manually labelled by humans as “almost
certainly true”. This means that only 237 (9%) of the original 2,524 Twitter
topics were deemed newsworthy (i.e. statements about a fact or actual
event) – a low proportion of topics on Twitter. This provides evidence to
suggest that over 90% of trending topics, discovered by the authors of the
study, were either “chat” (messages based purely on personal/subjective
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opinions) or it was not clear if they were newsworthy. In summary, the
Castillo et al. study data shows that a low proportion (9%) of trending
topics on Twitter are regarded as credible news.

Gupta et al. (2012)

Gupta et al. (2012) [112] analysed the credibility of information in tweets
corresponding to 14 high impact news events of 2011 around the globe.
They analysed 5,578 tweets and found, on average, 30% of tweets posted
about an event contained situational information about the event, but only
17% of these tweets contained credible information. 14% of tweets were
spam (i.e. tweets contained words belonging to trending topics but were not
related to the event). 50% of tweets relating to an event express personal
opinion or reactions and therefore provide no useful information. The study
also used regression analysis to identify important content and sourced
based features, which they use to train a supervised machine learning and
relevance feedback approach, to rank tweets according to their credibility
score – therefore predicting the credibility of information in a tweet.

The study’s methodology involved querying Twitter’s Trends API every
3 hours to return the top 10 trending topics on Twitter. They then used
Twitter’s Streaming API to collect tweets corresponding to these trends as
query search words. They collected tweets relating to a topic until it was no
longer trending. This methodology is similar to Castillo et al. (2011) [53],
except the Twitter Trends API is used as a source for trending topics. Gupta
et al. (2012) [112] collected over 35 millions tweets (of which over 22
million were singleton and over 13 million were re-tweets/replies) from
more than 6 million Twitter users. This dataset contained over 4 million
tweets with URLs and 3,586 unique trending topics. Data was gathered
from the time period 12th July 2011 to 30th August 2011.

The authors then shortlisted their dataset of 3,586 trending topics down
to 14 major events that occurred globally during their data collection period.
Each event had 1 or more trending topics associated with it. For each event,
the authors considered tweets containing the words in trending topics to
be the set of tweets for that event. Criteria for event selection included:
news events like political, financial, natural hazards, terror strikes and
entertainment news. Each event had at least 25,000 tweets, and topics
were trending for at least 24 hours. Human annotators were then used to
evaluate the credibility of 500 tweets per 14 topics (7,000 tweets in total) –
each tweet was annotated by 3 different humans. To check the reliability
of their human annotation results, they used the Cronbach Alpha score to
calculate the inter-annotation agreement for all 7,000 tweets, producing a
value of 0.748 (>0.7 implies high agreement between annotators [153]).
The authors labelled each tweet when at least 2 annotators agreed on the
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same label and discarded all tweets when all three annotators gave different
labels. This resulted in a dataset of 5,578 tweets.

Again, the Gupta et al. (2012) [112] study focuses on tackling informa-
tion credibility from the perspective of building a machine learning classifier.
However, again, training data is required which provides an insightful meas-
urement of information credibility on the social network. In their results we
see that 17% of tweets relating to a news event contain credible information.
14% of tweets contained trending topics that were unrelated to the news
event (spam) and 50% of tweets expressed personal opinions or reactions.
This study shows that a low proportion (17%) of tweets relating to trending
topic are credible. Although the authors verify that the human annotators
agree on the evaluations, the authors do not verify if the annotations are
correct – therefore the ground truth of their data may not be accurate.
The authors do acknowledge the limitations of using human annotation to
establish ground truth.

Ghosh et al. (2013)

Ghosh et al. (2013) [96] investigated how to sample the data generated
from Twitter users by analysing the differences between sampling tweets
from random versus “expert” users (i.e., “Twitter users whose followers
consider them to be knowledgeable on some topic”). This is based on
existing research which suggested that “topical experts are often the primary
drivers of interesting discussions on Twitter” [20].

During a 1-month period, Ghosh et al. sampled over 63 million tweets
from around 500,000 “expert” users and a subsampled set of over 21 million
random users. From a random sample of 1 million tweeted URLs: 1,520
URLs (tweeted by 1,447 users; 0.140%) from the random sample were
malicious versus 129 URLs (tweeted by 46 users; 0.022%) in the “expert”
sample. Of these 1,447 users, 501 (34.6%) were suspended by Twitter. Out
of those 501 users, 468 (93%) joined Twitter during the same month the
measurement was carried out. A “significant fraction” of the remaining
accounts had posted over 100 malicious URLs in their lifetime. In addition
to these measurements, the authors also compared the datasets for diversity,
timeliness, and trustworthiness of the information contained within them.

Overall, their results show that “experts”’ tweets are “significantly richer
in information content (whereas close to 90% of the random sample is
devoid of topical information), cover more diverse topics, and more popular
content. Experts’ tweets are also more trustworthy (contain considerably
fewer malicious URLs and spam) and they often capture breaking news
stories marginally earlier than random sampling”.

The methodology used by Ghosh et al. for sampling random and expert
Twitter users is as follows:
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1. Twitter’s Stream API is used to to collect a 1% random sample of all
tweets during December 2012

2. To generate a set of expert Twitter users: crawl the first 50 million
Twitter user accounts (in terms of creation date), using Twitter’s API.
To filter these users down to expert users: use the List-rank [94, 54]
metric whereby users are ranked according to how many Twitter Lists
they reside in – the authors require a user to appear in at least 10
Lists for inclusion in their dataset

Their resulting dataset, based on this List-rank criteria, consists of
584,759 “expert” Twitter users. The study then collects all tweets pos-
ted by this set of expert Twitter users during December 2012. The authors
acknowledge that this set of “expert” users is biased towards those that
joined Twitter early and therefore countries where Twitter first became
popular (e.g. USA). However, they state that their aim is to test their Twitter
sampling methodology and “not to identify all experts or obtain an unbiased
sample of experts in Twitter”.

During the month of December 2012, their study collected 63,497,081
tweets from 427,674 “expert” Twitter users, and 124,253,878 tweets from
30,046,582 random Twitter users – which was subsampled down to 63,497,081
tweets from 21,941,041 Twitter users so that the number of tweets was
comparable to the “expert” dataset. To check for malicious URLs: the au-
thors randomly selected 1 million URLs from each of the two datasets and
checked how many were blacklisted. They did this by looking up each URL
via Google’s Safe Browsing API and also checked for malware “warning
pages” where URL shortening services such as bit.ly and tinurl were used.

Ghosh et al. (2013) provide evidence that “expert” Twitter users tweet
considerably fewer malicious URLs compared to random users. However,
their dataset of “expert” users is based on those that appear in 10 or more
Twitter Lists and that were one of the first 50 million to register on Twitter.
This does bias their definition of “expert” users towards early adopters
of Twitter and, typically, American citizens. The primary focus of this
research paper is not a measurement study, but an introduction to a novel
sampling method for Twitter data and a proof-of-concept of this sampling
methodology. However, the results from this study do support the idea that
users whom supply misinformation, or so-called “fake news”, on Twitter are
also more likely to include malicious URLs within their tweets. Therefore,
Twitter users that fall for misinformation may be at an increased risk of
phishing and malware attacks.

Gupta et al. (2013)

Gupta et al. (2013) [113] investigated the role of Twitter, during Hurricane
Sandy (2012), to spread fake images about the disaster. They identified
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10,350 unique tweets containing fake images that were circulated on Twit-
ter, during Hurricane Sandy. Their study discovered that 86% of tweets
spreading the fake images were retweets. They showed that the top 30
of 10,215 users (0.3%) resulted in 90% of the retweets of fake images.
Also, network links such as follower relationships of Twitter, contributed
very little (only 11%) to the spread of these fake photos’ URLs. With this
data, the study goes on to produce a machine learning classifier to detect
fake images of Hurricane Sandy, achieving an accuracy of 97%. They show
that tweet based features (as opposed to user based features) were more
effective at distinguishing real images from fake images of Hurricane Sandy.

The methodology employed by the Gupta et al. study is similar that of
Ghosh et al. (2013), in that they use Twitter’s Trends API every hour to
get current trending topics, then use these topics as query search words for
Twitter’s Streaming API. The Gupta et al. measurement duration was 20
months. Tweets containing the words “hurricane” and “sandy”, between
20th October and 1st November 2012, were extracted from their sampling
setup. This dataset contained 1,782,526 tweets from 1,174,266 million
unique users – of which 622,860 tweets contained URLs. The study’s ground
truth for fake images was a set of “articles, tweets, and blogs” [199, 15, 295];
a prominent data source used was a Guardian website listing fake Hurricane
Sandy images [111]. The study discovered 10,350 tweets with fake images,
10,215 users with fake images, 5,767 tweets with real images, and 5,678
users with real images.

The Gupta et al. (2013) study shows that, in their dataset, misinform-
ation on Twitter – fake images of Hurricane Sandy – was created by a
small group of users but then spread by retweets – mostly by users that
did not follow the creator. This case study illustrates how misinformation
propagates on the social network and how fake news is spread by large
numbers of users. Although the Ghosh et al. study focuses on fake images
of Hurricane Sandy as their “malicious” content, the study demonstrates
how malicious content in general (e.g. phishing and malware URLs) might
spread on Twitter.

Giglietto et al. (2014)

Giglietto et al. (2014) [97] investigated Twitter conversations that occur
whilst people watch a television programme on another device. They
sampled 2,489,669 tweets that contained hashtags relating to 11 popular
Italian political talk shows. The result of categorising tweets in their dataset
was: 59% personal opinions, 19% attention-seeking, 15% pure information,
5% emotion.

The study’s key methodology uses Twitter’s firehose – which contains
100% of tweets – via DiscoverText GNIP importer [138]. They sampled
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tweets between 30th August 2013 and 30th June 2013 that contained hasht-
ags relating to one of 11 political talk shows on the Italian free-to-air
broadcasters. This dataset spans the complete series (1,076 episodes) of
the 11 talk shows. They then analysed their dataset based on activity per
minute and peaks detection to focus on content at a deeper level.

The study shows that, in their dataset, only 15% of tweets contained
pure information that was not tainted by personal opinion – although they
do not verify the accuracy of these information tweets. Also, it is important
to note that their dataset consisted of tweets relating to political talk shows.
This sort of TV show is perhaps more likely to generate comments that are
opinion based and therefore may possibly bias the results somewhat. Their
results are similar to those in the Gupta et al. (2012) study, whereby 17%
of tweets were deemed “credible”, and in the Castillo et al. study, whereby
9% of tweets were “newsworthy”.

SUBSECTION SUMMARY

This subsection has explored key existing studies relating to information
credibility, misinformation, and the spread of so called “fake news” on Twit-
ter. We saw how trending hashtags, and high impact events, are commonly
hijacked by Twitter users aiming to spread misinformation – with only 9%
to 17% of tweets relating to trending topics being credible. Ghosh et al.
provided empirical evidence that “expert” Twitter users tweet considerably
fewer malicious URLs compared to “random” users – supporting the notion
that Twitter users whom fall for misinformation may be more susceptible
to phishing and malware attacks. We also saw how quickly misinformation
can spread on a social media platform – such as in the case study of fake
images of Hurricane Sandy.

Overall, we see that, due its open platform nature whereby anybody can
broadcast a message, Twitter will always attract users wishing to spread
misinformation. It can be difficult for general Twitter users to distinguish
“fake news” from credible information on the platform, and this misinform-
ation can be ripe with malicious content. Therefore it is vital that Twitter
encourages and highlights credible information on its platform and protects
users from phishing and malware attacks.

3.8.3 Networks

The spread of information on Twitter, whether that be, for example, mis-
information or phishing URLs, can be traced through various links of con-
nected users. By investigating these links of users, or networks, we can
understand how such information spreads on the social network in the first

82



3.8. Measurement Studies

place. This section explores networks on Twitter to explore topics such as
how URLs are spread on the social network, analysing spammers’ social
networks, investigating link farming, and how follower markets operate.

Rodrigues et al. (2011)

Rodrigues et al. (2011) [240] investigated the concept of “word-of-mouth”
as a way for Twitter users to share and discover URLs. Their key findings
are:

• URLs spread via word-of-mouth to a large proportion of Twitter users
– in some cases millions of users

• Popular URLs are usually started by multiple “initiators” (tree root;
users that independently share a URL)

• Unpopular domains can gain exposure via word-of-mouth

• URL propagation trees on Twitter are wider than they are deep (in
contrast to URL propagation trees on email)

• Users who are geographically close together are more likely to share
the same URL

• Nearly 90% of URLs the study’s dataset are introduced by a single
Twitter user, without any retweets

• Whereas, URLs with retweets typically gained a 3.5 times larger
audience than those without

In terms of their methodology: the study uses the same dataset from
Cha et al. (2010) [54] which was gathered when Twitter agreed to whitelist
58 of the study’s servers in August 2009. The authors crawled through
all Twitter user IDs ranging from 0 to 80 million; no Twitter users with
an ID greater than 80 million existed at that time. The resulting dataset
consisted of 54,981,152 Twitter users; 1,963,263,821 directed follower
links; and all 1,755,925,520 public tweets posted by these Twitter users
between March 2006 and September 2009 (excluding 8% of Twitter users
set to private). Nearly 75% of these URLs were link shorteners – although
their methodology to determine if a URL is a shortener was simply if the
final URL is different from the tweeted URL.

The study then focuses on 2 datasets; subsets from their large dataset, of
1-week periods (to mitigate link rot in URL shorteners). Dataset 1 (D1), Jan
1-7 2009, consists of 1,239,445 distinct URLs; 6,028,030 tweets; 295,665
retweets; and 995,311 users. Dataset 2 (D2), Apr 1-7 2009, consists of
4,628,095 distinct URLs; 17,381,969 tweets; 1,178,244 retweets; 2,040,932
users. Top domains were:
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• 8.5%: Twitpic.com

• 3%: Blip.fm

• 2.1%: YouTube.com

• 2.1%: Plurk.com

• 1.4%: Tumblr.com

The study observed 30 URL shortening services in total. The top URL
shortening services were:

• 68% (D1), 81% (D2): Tinyurl.com

• 11% (D1), 24%24 (D2): Bit.ly

Interestingly, between January and April 2009 bit.ly doubled its pres-
ence. In their dataset, since September 2009, more than 30% of tweets
contain URLs – equivalent to 1.3 million distinct URLs per day.

After categorising URLs, they consisted of:

• 10%: Photos

• 4%: Music

• 3%: Videos

• 1%: news

• 0.3%: applications

The study also discovered that “word-of-mouth gives all URLs and
content a chance to become popular, independent of popularity of the
domain it comes from”. URLs from popular domains reached, on average,
49,053 users while unpopular domains reached 1,107 users. Therefore
offering URLs from domains that are unheard of a fair chance to gain
popularity via word-of-mouth sharing on Twitter.

Yang et al. (2012)

Yang et al. (2012) [305] carried out an empirical analysis of the cyber
criminal ecosystem on Twitter. By exploring inner social relationships of
2,060 criminal accounts, they discovered a community whereby criminal
accounts are socially connected – with a hub of accounts in the centre of
the graph that are more inclined to follow criminal accounts. The study
also explores outer social relationships between criminal accounts and their
friends outside the criminal community, categorised into:

• Social butterflies: accounts with very large followers and followings,
whereby 48% of accounts follow back, compared to 1.5% on normal
accounts
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• Social promoters: large following-follower ratios, large following
numbers, and high URL ratios

• Dummies: have few tweets but many followers

In terms of methodology, their dataset is the same used in their previous
study [304]: they used Twitter’s Streaming API to crawl Twitter accounts in
multiple rounds to mitigate sampling bias. In each round, their crawler ran-
domly selects 20 seed Twitter accounts and collects all those seed accounts’
followers and followings, this process is then repeated. In each round the
40 most recent Tweets and URLs are collected. Using this sampling method
to gather data from April to July 2010, the study collected: 485,721 Twitter
accounts with 791,648,649 followings; 855,772,191 followers; 14,401,157
tweets; and 5,805,351 URLs – recording only the final landing page for any
redirections.

The authors discovered 10,004 accounts that posted malicious URLs,
as detected with GSB and a high-interaction client honeypot implemen-
ted using Capture-HTC [124]. Of this dataset, the authors only included
accounts with a spam ratio (number of spam tweets to total number of
tweets) greater than 10%, resulting in 2,933 accounts. They then further
manually verified these spam accounts, resulting in 2,060 spam accounts,
which are then used in their dataset for the social analysis. The study also
developed a criminal account inference algorithm.

The Yang et al. study illustrates how criminal users on Twitter are well
connected to other criminal users, therefore forming criminal networks. It
shows how legitimate Twitter users may be exposed to content and URLs
that are promoted by these criminal networks.

Ghosh et al. (2012)

Ghosh et al. (2012) [95] investigate link farming on Twitter, whereby users
acquire large numbers of followers to increase their audience, perceived in-
fluence, and ranking. They analysed over 41,352 spammer Twitter accounts
and discovered that link farming is wide spread on the social network –
27% of all 54,981,152 Twitter accounts in their study had been targeted by
these spammer Twitter accounts. They also discovered that the majority
of spammers’ links are farmed from a small fraction of Twitter users (“so-
cial capitalists”) who follow back anyone that follows them. The authors
propose a method to rank spammers which penalises users for following a
large number of spam accounts on the social network.

In terms of methodology, the authors use the same dataset from the Cha
et al. (2010) [54] study (same as the Rodrigues et al. study), consisting of
54,981,152 Twitter user accounts. To detect spammers, the authors rely on
Twitter’s policy of suspending accounts that have breached its rules [278]. In
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February 2009 their crawler scanned all Twitter accounts in the dataset and
selected those whose profile page redirects to http://twitter.com/suspended;
collecting 379,340 such accounts that were suspended between August
2009 and February 2011.

Their method of spam verification for these accounts is if bit.ly or tunyurl
short URLs have been posted by these users that lead to warning pages
by these URL shortening services. This method resulted in the verification
of 41,352 suspended accounts that had posted at least one shortened,
blacklisted URL – this dataset is used for their study.

It is important to note that 76% of the top 100,00 link farmers in their
study were legitimate Twitter users. They discovered that these “social cap-
italists” are highly likely to follow back any user that follows them, because
this is a good social strategy to gain an audience and connect with more
people. These users include many successful bloggers and domain experts.
Although legitimate link farmers exhibit very different network connectivity
than spammers, many of the legitimate link farmers unknowingly connect
with spammers – which allows the spammers to increase their reputation
and exposure. The study does proposes a ranking system to discourage
“social capitalists” from colluding with spammers.

The Ghosh et al. study shows how easy it is for spammers on Twitter
to gain influence and a large audience. By exploiting the reciprocality of
legitimate “social capitalists” Twitter users, spammers can expand their
networks with relatively low effort. This then gives the spammers freedom
to share any content they so choose, such as malicious or phishing URLs –
depending on their motives.

Stringhini et al. (2013)

Stringhini et al. (2013) [263] investigated Twitter follower markets – a
multi-million dollar industry [224] – whereby users of the social network
can purchase additional followers for a fee. The study focuses on pyramid
markets, whereby free users of the market allow their Twitter accounts to
be controlled by the pyramid merchant – these free accounts are referred
to in the study as “victims”. Paying customers of the pyramid markets then
gain followers when the merchant instructs the victim (free) accounts to
follow the paying customers. The study discovered the market rate for
followers to be between $40 and $26 for 10,000 followers.

The study analysed the characteristics of both victim accounts and
market customers. They detect that customers initially see a dramatic
increase in followers to their Twitter accounts, followed by a steady decrease
as victim accounts unfollow the customers due to the content not being
interesting – about 70% of customers lose more than 100 followers. By
analysing the characteristics of follower dynamics, the study also developed
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a system to detect customers of follower markets.
For their methodology and data gathering, the study obtained a ground-

truth consisting of 69,222 victims and 2,909 customers of follower markets.
To locate popular follower markets, the study used search engines and a
Support Vector Machine (SVM) classifier to distinguish genuine real Twitter
follower market websites from benign ones. To collect Twitter accounts of
victims, the authors purchased followers from 5 top markets (BigFollow:
16,185, Bigfolo: 1,404, JustFollowers: 20,897, NewFollow: 10,307, and
InterTwitter: 20,429).

To detect and collect customers, the authors registered 180 new Twitter
accounts, set them up as free (victim) accounts in follower markets, then
developed an algorithm – based on analysing the followers of these newly-
created Twitter accounts – to identify the market customers (BigFollow:
2,781, Bigfolo: 37, and JustFollowers: 91). The study also collected 4
million legitimate Twitter users consisting of 2 million randomly-sampled
users and 2 million randomly-sampled legitimate users comparable with
market customers (i.e. with >100 followers).

To establish the market size, the authors searched for tweets advertising
the follower markets in their dataset, using Twitter’s 10% Steam API feed
sample from 16th January to 7th May 2013. They collected over 3.3 billion
tweets and discovered that 5,473,041 tweets were advertising follower
markets along with 740,506 victims. The study notes that, to hide their
involvement in purchasing followers, premium customers gain followers
slowly (e.g. 3,000 over 1 month).

The Stringhini et al. study illustrates how anyone on Twitter can increase
their number of followers for a fee. In the Ghosh et al. study, we saw
how spammers can exploit the reciprocality of legitimate “social capitalist”
Twitter users to expand their followers with relatively low effort. With the
Stringhini et al. study, we see a different – paid – method for spammers
to achieve a similar outcome. These studies show how easy it could be for
phishing and malware URLs to reach large audiences on Twitter – and how
these dangerous URLs can appear to come from influential Twitter users
with large followers. Victims of these attacks on Twitter may believe that
the attacks originated from trustworthy Twitter users.

SUBSECTION SUMMARY

The existing studies we have explored in this subsection show how URLs can
propagate on Twitter, such as via “word-of-mouth”. We also see how Twitter
users with nefarious motives can exploit the social network to increase their
reputation and, therefore, influence. We see here how a malicious individual
(or criminal group) can carry out a Sybil attack (defined in Section 2.5:
Sybil Attack) by controlling numerous fake Twitter accounts in order to
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manipulate legitimate Twitter users. A Sybil attack could be carried out
either by leveraging the criminal community and link farming, as explored
by Yang et al. and Ghosh et al.; by paying for followers, as explored by
Stringhini et al.; or a combination of both paid and free techniques.

3.8.4 Phishing & Malware

This section begins with an exploration of existing phishing and malware
measurement studies whose scopes examine the web in general. This
section then narrows down into Twitter specific phishing and malware
measurement studies.

Phishing & Malware Measurement Studies
On The Web In General

Moshchuk et al. (2006)

Moshchuk et al. (2006) [197] investigated the prevalence of spyware on
the web by using a web crawler to carry out a large-scale, longitudinal
study. The study carried out 2 key measurement periods: one in May
2005 (over 18 million URLs crawled) and one in October 2005 (nearly
22 million URLs crawled). In both crawls, the authors found executable
files in approximately 19% of the crawled websites, and spyware-infected
executables in about 4% of the crawled websites. In May 2005, after
crawling 18 million URLs, the authors discovered spyware in 13.4% of
21,200 executables they identified. They also discovered that 5.9% of
websites they processed contained scripted “drive-by-download” attacks.

The authors observed a noticeable decline in the presence of “drive-by-
download” attacks in October compared to May 2005 (2.4% compared to
1.6%, respectively). The key methodology for their study involved using
the Heritrix public domain Web crawler [126] to crawl over 2,500 websites
for executable downloads, installing these executables in a virtual machine,
then running the Lavasoft AdAware anti-spyware tool [154] as their ground
truth to detect spyware. The study crawled websites from 8 categories:
adult entertainment, celebrity-oriented, games-oriented, kids, music, online
news, pirate/warez, and screensaver or “wallpaper”. They also included
CNet’s download.com shareware site.

Boshmaf et al. (2013)

Boshmaf et al. (2013) [46] investigated how vulnerable online social
networks (OSNs) are to a large-scale infiltration campaign run by an army
of “socialbots”: bots that control OSN accounts and mimic actions of real
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users. “Socialbots”, as opposed to other bots, are designed to pass as real
humans. The bots achieve this by either mimicking the actions of real users
or by simulating a user by using artificial intelligence. As a result, this
“socialbot” is able to gain influence on its target OSN – and can therefore
manipulate users on the platform (e.g. to spread misinformation, alter
political opinion, expose malicious URLs, etc).

The study used Facebook as its data source and ran their “socialbot” for
8 weeks on the platform. The study’s key results show that, by exploiting
known social behaviours of users, Facebook can be infiltrated with a success
rate of up to 80%. Depending on a user’s privacy settings, even more
private user data can be exposed. The study notes that running such a
large-scale infiltration campaign may be profitable but is not effective in
terms of sustainability or being an independent business.

Gonzalez et al. (2011)

Gonzalez et al. (2011) [98] investigated the prevalence of phishing by
form – a technique whereby phishers use forms on well-know websites (e.g.
Google Forms) to elicit information from their victims. This type of phishing
attack is successful for criminals because the forms are hosted on trusted
websites (such as Google.com) therefore convincing victims of the attack
that it is safe to submit their private information to the phishing form.

The study leveraged 2 key data sources: PhishingCorpus [203] which
consisted of 2,240 emails, containing 82 phishing emails, collected between
7 August 2007 and 26 July 2011; and the PhishTank archive, containing
approximately 151,500 confirmed phishing URLs collected between July
2010 and August 2011.

The authors observed that, in their dataset, the first occurrence of a
phishing email that employed the phishing by form technique occurred on
December 14 2009. This email message told the receiver that they had ex-
ceeded their inbox quota and must therefore “re-validate by authenticating
or risk loosing email access”; the email included a URL to a form hosted on
eformit.com. The study observed the first occurrence of a phishing by form
attack that adopted a Google Sheets form in March 2011.

In terms of how popular the phishing by form technique is: 0.13% of
the PhishTank URLs and 3.7% of the PhishingCorpus messages leveraged
this technique. The average lifetime of a phishing by form site is 15 days
22 hours. In comparison, the average lifetime of regular phishing sites in
the PhishTank dataset ranged from less than 1 hour to over 500 days, with
an average of 13 days 11 hours.
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Motoyama et al. (2011)

Motoyama et al. (2011) [198] investigated the prevalence of web abuse
jobs posted to online labour markets. The study analysed 7 years’ of data
collected from the freelance job sharing platform Freelancer.com. The study
identified web abuse jobs, in the dataset, and categorised them under
account creation, social network link generation, and search engine op-
timisation support, along with characterising the evolution of price and
demand.

For data collection, the study used Freelancer’s API to crawl the entire
project IDs’ space – which ranged from 1 to 1,015,634 – between December
16 2006 and April 6 2011. This dataset contained 815,709 active users and
842,199 jobs that were posted between February 5 2004 and April 6 2011.
The study noted that approximately 46% of posted jobs report a worker
selected – although this number represents a lower bound on the number
of job transactions since some buyers and sellers will conform jobs through
private messaging, away from the Freelancer website.

To categorise jobs: the study first manually identified the categories
of jobs on the site, then used a combination of keyword matching and
supervised learning to categorise all jobs in their dataset – focusing on
“dirty” jobs that relate to account creation, “CAPTCHA” solving, verified
accounts, search engine optimisation (e.g. link building) tasks, etc.

Key results of this study identify various different job types among a
number of classes that fall under “dirty” jobs – along with the price for each
job. This illustrates that malicious users can easily purchase labour to assist
in their web abuse activities – again, increasing the number of techniques
available to reach more victims.

Thomas et al. (2017)

Thomas et al. (2017) [270] carried out a longitudinal measurement study
to investigate the underground ecosystem fuelling credential theft. The
study collected data between March 2016 and March 2017 and identified
788,000 potential victims of off-the-shelf keyloggers; 12.4 million potential
victims of phishing kits; and 1.9 billion usernames and password exposed
via data breaches and traded on black market forums. Using this data, the
study explored how easy it is for criminals to gain access to a victim’s email
account – due to exposed passwords matching the email account password
(i.e. when people use the same password for multiple websites). In their
dataset, 7-25% of exposed passwords matched the victim’s Google account.

The study also examined the miscreants’ toolbox to discover easy to
acquire key-loggers, phishing kits, etc., that help to drive this lucrative
underground ecosystem. Data collection for the study involved regularly
crawling paste sites and black hat forums for data breach credential leaks,
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then parsing the crawled data for verification. With ethics in cyber security
research being a hotly debated topic [75], the study does state that they do
not purchase or trade credential leaks, any discovered plain text passwords
were hashed in their dataset, and that all exposed Google accounts were
re-secured via a forced password reset – as per Google policies [264]. The
study also attempts to address the vulnerability of exposed user credentials
by suggesting a number of mitigation techniques such as blocking login
attempts where the user’s history or device(s) does not match.

Wang et al. (2012)

Wang et al. (2012) [291] measured malicious crowd-sourcing systems
to investigate crowdturfing – a portmanteau of “crowd-sourcing” and “as-
troturfing”, whereby customers initiate “campaigns” and users typically
receive financial compensation for performing “tasks” that go against accep-
ted user policies. For its data source, the study used 2 popular crowdturfing
platforms in China: Zhubajie (ZBJ, zhubajie.com, active since Nov 2006)
and Sandaha (SDH, sandaha.com, active since March 2010). The authors
crawled these 2 sites in September 2011.

Key results show that $4 million dollars was spent on crowdturfing
campaigns on these sites during the study’s measurement period. The
study observed a total of 76,000 crowdturfing campaigns posted to ZBJ
(92% of all campaigned posted during the timeframe) and 3,000 posted to
SDH (88% of all campaigns posted to the site). For ZBJ, these campaigns
consisted of 169,000 workers, 17.4 million total tasks, 6.3 million (36%)
submissions, and 3.5 million (56%) were accepted. This generated $3
million: $2.4 million for workers and $595,000 for ZBJ (20% commission).
For SDH: the 3,000 posted campaigns consisted of 11,000 workers, 1.1
million tasks, 1.4 million submissions (130%), and 751,000 (55%) were
accepted. This generated $161,000: $129,000 for workers and $32,000
(20% commission) for SDH.

The most popular types of campaigns posted to these sites include:
account registration, forum posting, blog posting, microblog (e.g. Twitter),
Q&A (posting and answering questions on Q&A sites like Quora.com), etc.
The study also posted its own benign crowdturfing campaigns to these
websites (ZJB and SDH), including a link for “more info” within each
campaign’s description, which is used to measure the total number of clicks
each campaign received – along with allowing workers to carry out “tasks”
that the study can measure. This experimental setup allowed the authors
of the study to evaluate the effectiveness of the crowdturfing campaigns
that they advertised on the sites.

Key results show career crowdturfers that control thousands of accounts
on OSNs – which are carefully managed by hand. These workers can gen-
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erate significant information cascades which are not detected by security
systems designed to catch automated spam – therefore allowing the spread
of potentially dangerous information or malicious URLs into OSNs. The au-
thors note that the spam generated from these campaigns is highly effective,
driving hundreds of clicks from normal users.

Schryen et al. (2007) & Prince et al. (2005)

Schryen et al. (2007) [247] investigated the impact that placing email
addresses on the Internet has on the receipt of spam. Key results show
that web placement attracts 70% of all honeypot spam emails, followed by
newsgroup placements (28.6%) and newsletter subscriptions (1.4%). More
than 43% of email addresses on the web have been abused, compared to
about 27% on newsgroups and 4% for newsletter subscription. Only about
1.5% of spam emails’ topics were related to the location where the email
addresses were sourced from – i.e. spammers send emails in a “context
insensitive” manner. Their honeypot received 57,273 emails, of which,
26,882 (47%) were spam.

In a similar study, Prince et al. (2005) [231] investigated spammers’
email harvesting techniques by analysing data gathered from the Project
Honey Pot [283] – a distributed honey pot network of over 5,000 members
to track email harvesters and spammers. The study observed that approx-
imately 6.5% of traffic visiting their honey pots subsequently turned out
to be spam harvesters. The average time from a spam trap email address
being harvested to receiving its first email is just over 11 days – with the
fastest turnaround being less than 1 second and the longest being over 223
days.

These studies highlight the risks associated with leaving contact de-
tails publicly visible on the internet and how mass crawling is a common
technique used by spammers.

Irani et al. (2008)

Irani et al. (2008) [132] investigated the evolution of phishing emails –
by exploring over 300,000 messages collected between August 2006 and
December 2007. The study observed 2 key techniques used by phishers for
sending messages: flash attacks, where a large volume of messages are sent
over a short period of time; and non-flash attacks, where the same phishing
message is sent over a relatively longer period of time. They also classiffied
phishing features into 2 groups: transitory, whereby features are present in
a few attacks and have a relatively short life spam; and pervasive, whereby
features are present in most of the attacks and have a long life span.

The authors conclude that transitory features are generally a strong
indicator of phishing, and pervasive are weak selectors of phishing. The
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paper does not specifically cite the source of the dataset, other than stating it
was provided by “a large anti-phishing organisation”. The corpus contained
over 1.8 million spam and phishing messages spanning 15 months from
August 2006 to December 2007 – with the study’s authors using a number
of conservative techniques to filter the dataset down to just phishing email.

McGrath et al. (2008)

McGrath et al. (2008) [180] investigated various aspects of phisher modi
operandi, examining the anatomy of phishing URLs and domains, registra-
tion of phishing domains and time to activate, along with the servers used
to host phishing content. The core aim of their study is to provide heurist-
ics for filtering systems. In doing this, the paper provides an interesting
measurement study with information that is relevant to this thesis’ topic.

The study’s data sources are PhishTank (consisting of 44,320 URLs,
17,105 domains, 144 TLDs) and MarkMonitor [174] (consisting of 25,304
URLs, 7,394 unique domains, 116 TLDs) – both were collected over a
duration of 71 days from November 30 2007. The study also collected data
from DMOZ (the Open Directory Project [205]), used to observe differences
between phishing URLs and good URLs, which contains over 9 million
unique URLs and 2.7 million unique domain names. 14% of phishing
URLs contained in PhishTank were also in MarkMonitor. Similarly, 12% of
domains in PhishTank were also in MarkMonitor.

Han et al. (2016)

Han et al. (2016) [117] examined phishing kits to analyse phishing attacks,
their mechanisms, the behaviour of criminals, their victims, and the security
community involved in the process. The study collected data over a period
of 5 months by running phishing kits in sandboxes – which protected the
identify of victims. This allowed the authors to conduct a lifecycle analysis,
from the time in which the attacker first installs and tests the phishing pages
on a compromised host, until the last interaction with victims and security
researchers.

For data collection, the study utilised infrastructure from their previous
research [52], and leveraged the popularity of Amazon EC2 as a target
for attackers looking for machines to compromise [116], to install their
honeypot on. The honeypot contained 18 vulnerable PHP pages that were
known to be exploited by hackers– and allowed attackers to upload their
phishing kits to the researchers’ machine. The paper contains details of
their infrastructure and implementation, along with how they designed the
system to convince attackers that their phishing kits were working, whilst
protecting the victims.
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Key results from the study: the authors collected 643 unique phishing
kits between September 2015 and January 2016. Of this dataset, 474 kits
(74%) were correctly installed by 471 distinct attackers. The remaining
kits were likely automatically uploaded by bots but never unpacked or
configured. The successfully installed phishing kits targeted 36 unique
organisation: mostly banks, social networks, and e-commerce portals. The
5 most frequently targeted organisations were: Paypal (375), Apple (26),
Google (10), Facebook (9) and the French online tax payment system (6).

The study includes detailed analysis of how phishing kits were setup
and operated by attackers, the behaviour of victims of the kits, and the
lifecycle of the kits. Key results show an average lifetime of 8 days for
phishing kits uploaded to their research infrastructure. Most attackers
discovered the honeypot via Google (28%) and Yahoo (0.8%). Over 40%
of the attacks came with Facebook referrers – suggesting that attackers
leverage the social network to share data. Once installed, 70% of attackers
visited the phishing pages and 58% submitted fake credentials to verify the
installation succeeded. Their honeypot received 2,468 victims, connected
to 127 distinct phishing kits. 215 users (9%) submitted their credentials to
the phishing page.

An important finding in the study was the observation of a spike in
phishing kit visitors just after a phishing page appears in a public phishing
blacklist. This crowd phenomenon may lead other studies, that measure
phishing web page traffic, to unknowingly overestimate the real number
of victims. The study also measured the detection times for the blacklists
GSB and PhishTank to detect the phishing kits installed on their research
infrastructure. Whilst 98% of phishing pages were correctly identified
by the 2 blacklists, the study observed an average delay time of 12 days.
The study splits this figure into 2 separate categories: phishing kits which
received victims were blacklisted in an average of 20 days after installation,
while phishing kits with no victims were blacklisted in an average of 10
days after installation.

The study notes that the delay in detection time varies depending on
the evasion techniques used by the attackers. 62% of phishing kits were
blacklisted only after 75% of victims had already connected. However,
in another category, 27% phishing kits were blacklisted before 25% of
victims had connected to the URLs. The study also noticed that GSB initially
blacklisted individual phishing kits. But after many URLs were reported for
the same domain name, GSB started to blacklist entire directories in those
domains – a blacklisting technique that may proactively blacklist other kits
that were installed within these same directories. The study states that their
“...results show that GSB and PhishTank are not fast enough to blacklist
new phishing kits, which leaves victims on their own to identify and protect
against phishing attacks”.
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Cui et al. (2017)

Cui et al. (2017) [64] monitored 19,066 phishing attacks over a period of
10 months and observed that the attacks were replicas or variations of other
attacks in their dataset. The study suggests that small groups of attackers
could be behind a large part of current attacks – therefore taking down that
group could have a significant impact on the observed phishing attacks.
The study proposed a number of techniques to improve phishing website
detection and prevention.

The study utilised PhishTank as its dataset, collecting 21,303 “verified”
URLs between January 1 and October 5 2016. The study then used a
crawler to fetch the DOM of each URL along with the server’s IP address.
2,237 of the total URLs they collected from PhishTank were unreachable:
350 returned 400-level HTTPS errors [128], 59 were reported to have been
taken down by the hosting provider, and 1,828 were empty or failed to load.
Therefore the study were left with 19,066 URLs that they could process.

Moore et al.

Moore et al. have produced numerous studies that explored phishing
blacklists, their overlap, and effectiveness of takedown efforts by defenders
[188, 189, 190, 191, 194, 192, 193]: In 2007 they analysed the current
state of phishing attacks and defence [188], they also examined the impact
of website take-down on phishing [189]; in 2008 they followed-up on their
2007 studies with an investigation into the consequence of non-cooperation
in the fight against phishing [190]; In 2009 they explored the temporal
correlations between spam and phishing websites [194], they also examined
website compromise and re-compromise [192]; and in 2010 they explored
the difficulties involved in measuring phishing on the internet [193].

SUBSECTION SUMMARY

As we have seen in this subsection, there is a wealth of existing literature that
has measured phishing and malware on the web in general. From exploring
spyware and phishing by form, to analysing socialbots and crowdturfing.

The longitudinal spyware measurement study, executed by Moshchuk et al.,
involved 2 large-scale web crawl measurements which were carried out 5
months apart. The study’s ground truth relies on the Lavasoft AdAware anti-
spyware tool to detect spyware, once discovered executables were installed
on the author’s virtual machine. In its write-up, the study details which
versions of the AdAware spyware detection database was used along with a
description of their hardware setup. This greatly improves the verifiability
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of the study and allows for other researchers to repeat and replicate the
study to compare results.

Many of the existing studies we have explored in this section relate to
other measurement topics we have explored in previous sections, such as
information credibility and networks. We see a number of studies that
analyse the labour market behind malicious activities on the web. The
Motoyama et al. and Wang et al. studies provide evidence to illustrate how
easy it can be to purchase labour for driving malicious campaigns (such as a
Sybil attack, posting phishing URLs, etc). In the Thomas et al. study we see
empirical evidence of how easy it can be for criminals to gain unauthorised
access to individuals online accounts.

The methodologies involved in studies that examine underground ecosys-
tems first require access to key data. This is often provided as an API to a
job market – such as the Freelancer API in the Motoyama et al. study – or
crawling the web, as seen in the Thomas et al. and Moshchuk et al. studies.
Correctly labelling datasets to determine underground jobs often leverages
machine learning techniques, as seen in the Motoyama et al. study.

Having explored measurement studies that examine phishing and malware
on the web in general, we shall now explore existing studies that have
focussed their measurements onto the social networking platform: Twitter.

Phishing & Malware Measurement Studies
On Twitter

Grier et al. (2010)

Grier et al. (2010) [110] characterised spam on Twitter: finding that 2
million (8%) of 25 million URLs posted to the social network point to either
phishing, malware, or scam websites (using the umbrella term “spam” for
these 3 categories). The study used blacklists as their ground truth. The
study identified 2 types of spamming accounts: those created primarily for
sending spam, and legitimate accounts that have been compromised. The
study analysed clickthrough rates for spam URLs to determine that 0.13%
of Twitter users visited these blacklisted spam websites. The study also
measured the performance of blacklists, as a filter for protecting Twitter
users against spam attacks, to discover that blacklists are too slow – allowing
more than 90% of Twitter users to view a potentially harmful website before
it becomes blacklisted. The 3 blacklists used in this study are: GSB [102],
URIBL [285], and Joewein [296].
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Whilst many scams present in email carry over to Twitter, the study
identified Twitter-specific features that spammers use to gain exposure:

• Call outs: whereby a specific Twitter user is addressed (e.g. win an
iPhone @victim)

• Retweets: approximately 1.8-11.4% of spam tweets are retweets
of blacklisted URLs, with sources including purchased retweets and
spam accounts retweeting other spam accounts

• Tweet hijacking: whereby spammers prepend spam URLs in retweets
– a technique that is not against Twitter’s rules

• Trend setting: seen when a large enough volume of tweets contain a
specific matching hashtag(s), at which point the specific hashtag(s)
becomes trending – something spammers can exploit

• Trend hijacking: whereby spammer append currently trending hasht-
ags to their spam tweets

The study uses Twitter’s Stream API as a data source to collect over 200
million tweets over a 1 month duration, between January and February
2010. They use two data taps: a random sample of all tweets to generate
statistics about the amount of URLs in tweets and general Twitter trends,
and a URL specific stream to carry out their core measurements. Of the
detected 2 million blacklisted URLs in the study, 5% were malware and
phishing while the remaining 95% were scams. 245,000 tweeted URLs in
their dataset were shortened with bit.ly, therefore the study was able to
leverage Bitly’s API to analyse click traffic; discovering a combined total
of over 1.6 million clicks. Of these Bitly URLs that received clicks, 50%
receive fewer than 10 clicks, whilst the upper 10% of URLs receive 85% of
the 1.6 million clicks.

The techniques identified by Grier et al., that spammers use to gain
exposure, are relatively easy for spammers to deploy. This adds to the
techniques we have already seen in previous studies, illustrating that there
is a healthy amount of such techniques available for phishing and malware
creators to use as part of their arsenal to gain victims via Twitter.

Stringhini et al. (2010)

Stringhini et al. (2010) [262] investigated to what extent spam has entered
social networks; specifically focusing on spammers’ modus operandi. The
study consists of a measurement study followed by the development of
a machine learning classifier to automatically detect spammers in social
networks.

Their measurement study involved logging profile traffic (e.g friend
requests, messages, invitations, etc) by deploying 300 “honey-profiles” to
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each of the social networks: Facebook, MySpace, and Twitter (900 profiles
in total). These honey profiles acted passively and did not send any friend
requests – but did accept all friendship request they received. The author’s
system collected traffic logs of their profiles for 12 months on Facebook (6
June 2009 to 6 June 2010) and for 11 months on MySpace and Twitter (24
June 2009 to 6 June 2010). Profiles were checked slowly (approximately 1
account visited every 2 minutes) to avoid being detected as a bot by the
social networking site – which would have resulted in the profile’s account
being deleted.

Overall, their profiles received 4,250 friend requests and 85,569 mes-
sages: the Facebook profile received 3,831 friend request (of which 173
were from spammers) and 72,431 messages (of which 3,882 were spam-
mers); MySpace received 22 friend requests (of which 8 were from spam-
mers) and 25 messages (0 spam); and Twitter received 397 friend requests
(of which 361 were from spammers) and 13,113 messages (of which 11,338
were spammers). In order to label profiles as spam, the authors first manu-
ally checked all profiles (that contacted their honey profiles) to detect
common traits. Spammers were typically either braggers (bots that post
messages to their own feed) or posters (bots that send a direct message to
other users).

The authors then trained a spam identification classifier which used
features such as FF ratio (number of friend requests versus actual friends),
URL ratio (messages received that contain URLs versus total number of
messages), message similarity (between messages received from different
users), etc. Although this study analysed 3 social network, and focused on
spam as a general term, it does illustrate the volume of spam measured on
the social networks along with highlighting the spammers’ modus operandi.

Lee et al. (2011)

Whilst the previous study, Stringhini et al., examined 3 social networks
(which included Twitter), Lee et al. (2011) [157] focused their investigation
on the modus operandi of “content polluters” on just the Twitter social
network. The paper begins with a measurement study, followed by an
evaluation of features to create a machine learning classifier to automatically
detect content polluters.

In their measurement study, the authors deployed 60 honeypots to the
Twitter social network, during a 7 month measurement period, harvesting
36,000 candidate content polluters. Their measurements ran from 30
December 2009 to 2 August 2010, gaining 36,043 followers, of which
7,773 (24%) Twitter users followed more than one of the authors’ honeypot
accounts. After removing users that followed more than 1 account, the
study was left with 23,869 users.
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The approach, used by the authors to attract content polluters on Twitter,
differs from that in [262]. Lee et al. actively send out spam-looking tweets
– in order to discourage regular Twitter users from following their honeypot
accounts – whereas the honeypot accounts used in [262] are passive. Lee et
al. deduce that any Twitter user that follows their honeypot accounts must
be a bot – since no real human Twitter user would want to follow them. To
verify this, the authors investigated their 23,869 newly acquired followers
and discovered that 5,562 (23%) had been suspended by Twitter – with an
average time of 18 days for the accounts to be banned after following the
honeypots.

The authors then used the Expectation-Maximization (EM)[69] cluster
analysis algorithm to find groups of users with similar behaviours. This
allowed the authors to explore common themes amongst the content pol-
luters to produce a set of features (follower ratio, tweet frequency, etc.).
The results of the measurement aspect of this study illustrate the number
of active content polluters – 36,000 – that were active during a 7-month
timeframe.

Thomas et al. (2013)

Thomas et al. (2013) [271] investigated the market for fraudulent Twitter
accounts to monitor prices, availability, and fraud – perpetrated by 27
merchants over the course of a 10-month period. The study also analysed
10-20% of the fraudulent Twitter accounts, produced by said merchants, to
discover that they had generated $127,000 to $459,000 in revenue. The
study also produced a machine learning classifier to automatically detect
fraudulent accounts sold via the marketplace.

As part of their measurement, the study, with permission from Twitter,
purchased 121,027 fraudulent Twitter accounts on a bi-weekly basis from
June 2012 to April 2013. Prices ranged from $0.01 to $0.20 per account
– with a median cost of $0.04. Similarly to [291, 198], the Thomas et
al. study leverages the “underground market” to discover merchants’ web
abuse services. The authors’ discovered these underground markets on
blackhat forums and freelance labour markets (including Freelancer.com –
which we saw in [198]).

In terms of ethical considerations related to buying fraudulent services
from underground markets, the authors consulted with Twitter to produce
a set of guidelines for interacting with merchants; which is featured in the
appendix of their paper. The Thomas et al. study provides further informa-
tion as to the prevalence of underground markets – and demonstrates how
readily available these services are to purchase.
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Oliver et al. (2014)

Oliver et al. (2014) [214] examined 573.5 million URL-containing tweets,
over a 2-week period, from 25 September to 9 October 2013 to understand
how Twitter is abused. They discovered 33.3 million (5.8%) malicious
tweets. In their study, malware tweets receive an average of 0.03065 clicks
per tweet whilst “traditional phishing” tweets received 0.00959 clicks per
tweet. The study leverages 2 methods to identify malicious tweets: the
blacklist Trend Micro Web Reputation Technology and a clustering algorithm
which is described in the paper. The paper also details specific campaigns
that they observed during their measurements.

Liu et al. (2014)

Liu et al. (2014) [166] investigated the evolution of Twitter users and
behaviour in a 7-year longitudinal study; analysing over 37 billion tweets
between 2006 and 2013. The study utilises 2 key datasets: an almost-
complete collection of all tweets between 21 March 2006 and 14 August
2009, collected by previous work [54]; and data collected via Twitter’s
“gardenhose” (a random sample of approximately 10% of all public tweets)
between 15 August 2009 and 31 December 2013.

Key results of the study observe an increase in the number of suspended
Twitter users, with over 6% of the entire Twitter population suspended
by late 2013 – which is in line with [271]. When examining the average
ratio of friends-to-followers, the ratio increases from 1.50 to a high of
1.77 in January 2012 before returning to its previous value. This increase
corresponds well with the rise of Twitter follower spam in 2010 and 2011
(Stringhini et al.(2012) [261]).

SUBSECTION SUMMARY

In this subsection we have explored existing studies that measure phishing
and malware on Twitter. We see studies leveraging methodologies that
involve “infiltrating” the social network in order to measure malicious users.
This is seen in both the Stringhini et al. and Lee et al. study whereby social
honeypot accounts are deployed to the social network to gain spammer
followers. Whilst the Stringhini et al. study takes a passive measurement
process towards this, the Lee et al. proactively sent out spam-looking Tweets
in order to discourage regular followers. This increases the robustness of
their methodology with the theory that only bots would follower their hon-
eypot accounts – which they also verified by checking which accounts had
been suspended by Twitter. Another interesting methodology is leveraged
by Thomas et al., whereby fraudulent Twitter accounts were purchased
from the underground marketplace in order to study them. This empirical
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approach to collecting data for their study provides a unique insight into
the underground economy of purchasing fraudulent accounts.

Establishing ground truth is crucial in many of these existing measurement
studies. We see many studies relying on blacklists for their ground truth,
such as GSB, URIBL, and Joewin in the Grier et al. study; and Trend Micro,
along with a clustering algorithm, in the Oliver et al. study. We also see
methodologies which do not require blacklists to determine ground truth,
as seen in the Liu et al. study, which examined accounts which have been
suspended by Twitter. The main disadvantage of their methodology is that
they cannot specifically categorise suspended accounts to determine why an
account was suspended by Twitter. They could potentially cross-reference
these suspended accounts with one or more blacklists to elaborate on their
findings.

3.9 Ethics

Building on from the introduction to Ethics in Section 1.7, this section
explores how ethics has been approached in existing literature and examines
key ethical considerations surrounding cyber security research. Drawing
on existing studies and literature reviews, this section aims to discuss
the important ethical considerations in key areas such as using publicly
available data – some of which is generated by humans, dealing with
compromised accounts, and how to research phishing vicariously; without
actually becoming a phisher or breaking the law. We will also explore the
ethical considerations of sharing measurement data, since measurement
datasets can be of great benefit to the research community – but must be
shared responsibly.

Thomas et al. (2017)

Thomas et al. (2017) [266] explored “ethical issues in research using
datasets of illicit origin”; examining the ethical principles from more than
20 peer reviewed papers that deal with illicitly obtained data sets. The
study draws on case studies that acquire their data via: malware and
exploitation (Carna scan, 2012; AT&T iPad users database brute force,
2012; malware source code – e.g. Zeus 2011, Mirai botnet 2016), password
dumps, leaked databases (Booter database leak; Patreon crowd-funding,
2015; underground forums), financial data leaks (Panama/Mossack Fonseca
papers leak, 2015), and classified materials (Manning’s WikiLeaks dump of
700,000 documents, 2010; Snowden’s NSA and GCHQ data leak, 2013).
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Key ethical topics raised by Thomas et al. include: informed consent,
human rights, releasing and using shared data, hacking and intervening,
analysis techniques, ethical review, and REBs. The study addresses con-
cerns around anonymising datasets: “Both Allman & Paxson, and Partridge
warn against relying on the anonymisation of data since deanonymisation
techniques are often surprisingly powerful. Robust anonymisation of data is
difficult, particularly when it has high dimensionality, as the anonymisation
is likely to lead to an unacceptable level of data loss” [5].

Thomas et al. state the following set of ethical issues that require consid-
eration when conducting research with data of illicit origin: identification
of stakeholders, informed consent, identify harms, safeguards, justice, and
public interest. Thomas et al. state the following list of legal issues sur-
rounding research with data collected illegally – although they state that
the laws can be complex and that researchers should seek their own legal
advice: computer misuse, copyright, data privacy, GDPR, terrorism (e.g.
failing to report terrorist activities), indecent images (e.g. if scraping certain
data dumps), national security, and contracts.

Overall, Thomas et al. conclude that, of the papers they reviewed,
ethical issues are tackled “inconsistently, and sometimes not at all” – and
that safeguards and legitimate ethical justifications are often lacking. Many
of the papers reviewed in the study did not clearly address the positive
benefits of their research or state Research Ethics Board (REB) approval.
Thomas et al. note that most research studies that do not involve humans do
not require REB approval – however, the authors suggest that any research
that involves human data, even if that data is acquired non-directly from
humans, should still seek approval from REB.

Although Thomas et al. focus on data that has been obtained via “illicit
origin”, whereas data acquired for this thesis does not come from such
sources, the ethical and legal issues raised in their study are still relevant
to any study carried out in the cyber security area. A similar paper, by
Egelman et al. (2012) [75] discusses the ethics of performing research
using public data of illicit origin.

A number of other studies carried out by Thomas et al., such as in
2013 [271] and 2017 [270] also encountered specific ethical issues. In
their 2013 study, the authors worked closely with Twitter to produce a set
of guidelines to purchase fraudulent Twitter accounts. Interacting with
these merchants in an ethical manner allowed the authors to study the
underground marketplace and measure the prevalence of Twitter fraud on
the social network. Additionally, in their 2017 study, the authors complied
with Google’s policy of resetting breached accounts. This allowed the study
to analyse compromised accounts within their dataset. As a result, the
study was able to measure the prevalence of compromised accounts “in the
wild” and to reverse engineer how such accounts became victims in the first
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place. This also enabled the study to produce a set of guidelines to help
increase account security.

Han et al.

As we have seen, it is often necessary to infiltrate an underground economy,
or network, in order to effectively measure it. Since this is sometimes the
only way to acquire empirical date for analysis. This might even involve
carrying out the activities of – and therefore behaving exactly like – a
criminal, as seen in the Han et al. study [117]. This requires careful
planning and thorough ethical policies.

In their study, the authors deploy their phishing kits in sandboxed en-
vironments to ensure no data is leaked. They also disable the phishing
websites from actually submitting any data in the first place – which allevi-
ates risk from data leaks. Although such risk cannot be entirely eliminated
from the study, since a “victim” to the researchers’ phishing page will still
enter their credentials into an online form. Therefore it is possible that
this data could still be leaked from the victim’s computer – although, since
this data is not entering the researchers’ servers, the study would be less
responsible in the event of such a data leak.

Alllman et al. (2007)

Alllman et al. (2007) [10] discuss various issues and ethical considerations
relating to shared measurement data. They propose a “framework” for how
researchers and users can treat particular datasets. Their paper focuses
on data acquired through network measurements, however, many of the
points raised in their paper also apply to other types of measurement data.

The paper discusses how difficult it can be for researchers to acquire
measurement data, due to requiring the right opportunity in terms of
administrative and legal permissions, operation support and resources,
along with time consuming debugging and monitoring the measurement
process for faults, etc. With these challenges in mind, the authors discuss
how important it can be for the research community for researchers to
share their measurement datasets. However, the authors also express their
concerns about how datasets can sometimes be shared, particularly in terms
of attitudes and assumptions from some researchers about how to provide
and share measurement data. Therefore the authors discuss some high-level
issues that should be considered when sharing such data.

In terms of data release considerations: the authors advise that data
sharers understand the threat model and apply a suitable anonymisation
policy – however, despite anonymisation techniques, data sharers are likely
to release more information than they realise. Data sharers should also
explicitly define an Acceptable Use policy for the data to ensure such data
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is used appropriately – and that researchers whom breach regulations
run the risk of censure when attempting to publish work that utilises the
data. Data sharers should also explicitly define what metadata has been
collected (and anything that is not shared) to help researchers answer any
questions about the data. Finally, data sharers should explicitly state any
notification requirements if their data is used in any publications and what
acknowledgements should be used.

The authors also discuss purpose-provided data, in situations where data
is released publicly, or when sharing data amongst colleagues or students.
In these situations the data sharer may be more lax on anonymising the
data because they trust the researcher(s). The authors offer guidelines
which include: limiting re-distribution of data and keeping the data secure,
when sharing non-pubic data: state whom has access to the data, and
finally data should only be accessible to researchers for the the duration of
a specified project – with permission sought for additional research projects.
The authors discuss various issues relating to de-anonymising data along
with numerous points to consider. Finally, the authors discuss interactions
between data sharers and researchers that use the data. The authors advise
researchers to ask about any “blind spots” in shared data, that may arise as
a result of anonymisation techniques, and not to make assumptions about
the data.

Williams et al.

Williams et al. (2017) [293] report on an ethics consultation to identify best
practice procedures for the publication of Twitter data in research findings
– predominantly focusing on the UK context. The study explores ethical
considerations around informed consent, anonymisation, and the minim-
isation of harm; how conflicts can arise between commercial, regulatory,
and academic practices; and how sometimes good ethical practice might
compromise academic integrity.

The study acknowledges that it was not able to produce a firm consensus
on best practices of publishing tweets and the handling of Twitter data. A
key area of disagreement arose over whether or not publicly available data
is affected by standard ethical obligations relating to informed consent,
anonymisation, and the minimisation of harm. Some argue that, in every
case, if consent cannot be obtained, then research data cannot be used.
However, others argue that the situation should be approached on a case-
by-case basis. The study highlights that, whilst a full consensus on the
ethical use of Twitter data is unlikely, there is an urgent need for discussion
on the topic and to find a shared pathway that researchers can follow.

The primary focus of the Williams et al. study is on the ethical con-
siderations of publicising Twitter data; specifically sharing the contents of
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individual tweets. Although we do not feature individual tweets in this
thesis, the ethical considerations raised in the study are still important to
consider.

SECTION SUMMARY

As we have seen in these existing studies, there are many ethical considera-
tions that need to be carefully addressed when researching cyber security
topics. This is especially true when such research involves the acquisition
and analysis of empirical data. We shall continue to explore the ethics
of cyber security research when we plan and design our experiments in
Chapter 4: Design & Implementation.

3.10 Literature Review

In this section we analyse key methodologies of existing measurement
studies. Table 3.3 shows the studies we will focus on, along with the metrics
and methodologies that their measurements use to evaluate effectiveness.

The Grier et al. (2010) [110] study aims to characterise phishing,
malware and scam URLs posted to Twitter. As part of their broad study,
they analysed blacklist delays and performance. This part of the study
focuses on 3 metrics: blacklist delays, number of blacklisted URLs posted
to Twitter, and user clicks. One of the first limitations of this study is that it
only touches on blacklist performance as part of an overall, broad analysis
of spam on Twitter. The study does not provide a fine-grained nor in-depth
assessment into how effective Twitter’s use of blacklists are at protecting
its users from phishing and malware attacks. Another limitation of the
study is that details of their methodology are not provided. This limits the
replicability and reproducibility of the study. This links to our first and
second research questions.

For the first metric, blacklist delays, the study’s methodology measures
the delay from when a blacklisted URL is tweeted to when it appears in
a blacklist. The methodology treats multiple tweets of the same URLs as
being unique, independent events. One of the main problems with this
methodology is that a URL may be tweeted at a certain point in time, then
tweeted again on multiple occasions at much later dates, closer to the point
at which that URL becomes blacklisted. This then skews the results because
the average delay time for that URL to become blacklisted, when calculated
using all tweet times containing that URL, will appear to be smaller than
the time of first tweet to blacklist delay. This will tend to underestimate
the exposure of users. This links to our fifth research question.
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Study Metric Methodology

Grier et al. (2010)
[110]

Blacklist delays Delay = from time of tweet
to time of blacklist; multiple
URLs treated independently

Number of blacklisted
URLs posted to Twitter

Check tweeted URLs for
membership in blacklist:
GSB, Joewein, and URIBL

Blacklistd URL user clicks Get Bitly click data (via
Bitly’s API) for blacklisted,
tweeted URLs in dataset that
have been shorted with Bitly

Zhang et al. (2006)
[311]

Phishing detection rates
of web browser

Compare detection rates of
9 web browser extensions

AV Comparatives
(2012) [23]

Phishing detection rates
of web browser

Compare detection rates of
5 web browsers

Ludl et al. (2007)
[169]

Phishing blacklist detec-
tion rates

Lookup known phishing
URLs (sent via email) in
blacklists GSB and Microsoft

Sheng et al. (2009)
[251]

Phishing blacklist detec-
tion rates

Visit known phishing URLs
(sent via email) in web
browsers

Table 3.3: Summary of key existing studies’ metrics and methodologies for
evaluating effectiveness.

The study’s second metric is: number of blacklisted URLs posted to
Twitter. The methodology involves checking each tweeted URL in their
dataset for membership in 3 blacklists: GSB, Joewein, and URIBL. Since
this study aims to characterise “spam” on Twitter, they include the spam
blacklists Joewein, and URIBL. Although the study’s scope of blacklists is
fine for their broad characterisation of spam, it does limit the preciseness of
the study. More specialist blacklists – such as OP and PT – would be needed
to provide suitable coverage for a fine-grained, in-dept analysis of phishing
on Twitter. Another limitation of the study’s methodology is that it does
not address URL redirection chains. A single URL may contain multiple
hops before reaching its final landing page. All of the URLs contained in
this redirection chain should be checked for blacklist membership to ensure
more comprehensive coverage. This links to both our first and second
research questions.

The study’s third metric is: blacklisted URL user clicks. The methodology
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involves retrieving Bitly click data, via Bitly’s API, for blacklisted and tweeted
URLs in their dataset that have been shorted with a Bitly URL. There are a
number of limitations to this approach of gathering URL click data. One, is
that only checking Bitly URLs for click data may skew the results. Bitly was
the biggest URL shortener when the measurement study was conducted;
this may carry an inherent bias of trust resulting in disproportionately more
people clicking on Bitly links compared to other URLs or URL shorteners.
Another limitation is that click data from Bitly includes the entire history
of a link. This means that clicks that were recorded before the URL was
tweeted, or became blacklisted, may be included in the results – therefore
potentially producing inaccurate results. This can be rectified by defining a
start date for click data in Bitly’s API. Additionally, the study does not state
if click data from Bitly has been verified as coming from Twitter (see the
aforementioned limitation of the replicability of their study) – therefore
clicks may not have come from Twitter. This may also potentially affect the
accuracy of the results. This can be rectified by filtering Bitly’s click data
by referring domain (in this case Twitter). The measurement study was
carried out in 2010. A year later, Twitter launched its own URL shortening
service: t.co. Since then, all URLs posted to Twitter are shortened via this
service. This gives Twitter full control over and monitoring of URLs posted
to, and clicks leaving, its platform. Some of the limitations of the study’s
methodology could be addressed by making use of Twitter’s URL shortener.
This would allow the metric to determine if a given URL was blocked by
Twitter at time of click. These limitations link to our sixth, seventh, and
eighth research questions.

Zhang et al. (2006) [311] used the metric of analysing phishing de-
tection rates of web browsers as their measure of effectiveness. Their
methodology involved visiting known phishing URLs from APWG and GSB
in web browsers with phishing detection extensions installed. Their study
included 9 such web browser extensions. One of the main limitations of
this approach is that the detection rates of the web browsers themselves
are not being tested. Only the browser extensions. This links to our first
research question.

The limitation of the previous study is addressed by an AV Comparatives
(2012) [23] study. The study considers the same metric: phishing detection
rates of web browsers. It improves on the previous study by visiting known
phishing URLS within the web browsers – without any additional extensions
installed. One of the key limitations of this study is that the web browsers
are only tested on one operating system Microsoft Windows. Whilst results
should be consistent across operating systems, it is important to verify.
Another limitation of the study is that it is not clear how many of the
phishing websites had already been detected by blacklists when they were
tested in the web browsers. The effectiveness of web browser’s phishing
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detection rates could be improved by splitting the results into URLs that
were blacklisted and non-blacklisted at time of test. This links to our first
research question.

Both Ludl et al. (2007) [169] and Sheng et al. (2009) [251] feature the
metric of phishing blacklist detection rates as their measures of effectiveness.
Both studies use a similar methodology that involves visiting phishing URLs
– sourced via phishing email campaigns – in web browsers to determine
blacklist detection rates. This technique works because web browsers
use the blacklists to check if a visited website is “safe”. One of the main
limitations of the 2007 study is that the phish used to determine detection
rates were not “fresh” enough. Blacklists take time to update, therefore
a freshly emailed phishing URL is unlikely to have had time to appear in
a blacklist. The 2009 study addressed this limitation by using phishing
URLs that were more fresh. A limitation of both of these studies is that
blacklist effectiveness is being assessed via the web browser’s detection rate.
However, there can be a delay in web browsers updating their blacklists
– which may affect the accuracy of the studies’ results. Additionally, web
browsers may feature heuristics that can detect phishing websites without
a blacklist. This may cause the study to conclude that blacklists have a
higher detection rate that they actually do. Another limitation of the study
is that it focuses on phishing emails as a source of URLs. Since the aim of
our research is to assess the detection rates of phishing URLs on Twitter,
the same methodology – using phishing email as a source – would produce
inaccurate results in our studies. These limitations link to our first and
second research questions.

No previous studies – that have analysed either GSB, OP, or PT – have
assessed the blacklists against the framework we defined in Section 2.16.2.
In particular, metrics such as size, comprehensiveness, overlap, have not
previously been studied. In addition to this, no previous studies have
assessed the effectiveness of Twitter’s URL shortener (t.co) in their work.
These gaps in existing literature link to our third, fourth, sixth, and seventh
research questions.

SECTION SUMMARY

Our critical analysis in this section has highlighted key limitations of existing
studies, such as the methodologies used to measure metrics in order to eval-
uate effectiveness. The main limitations we identify in existing literature,
linked to our research question(s), are summarised in Table 3.4.
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Study Limitation RQ

[110]

Broad study of spam on Twitter that is not specific to phishing &
malware nor fine-grained or in-depth.

1, 2

Details of methodology, implementation, etc not provided. Limits
reproducibility.

1, 2

Multiple tweets of same URL treated independently; underestim-
ates results.

5

Does not use specialist blacklists. 1, 2

Does not address URL redirection chain (or implementation de-
tails).

1, 2

Only checking Bitly URLs may skew results. 8

Bitly click data includes entire history; may produce inaccurate
results.

8

Does not state if Bitly clicks come from Twitter. 8

Does not include Twitter’s URL shortener (t.co). 6, 7

Out of date since Twitter has evolved; user base increased from
30 million in 2010 to over 330 million users in 2017, daily tweets
increased from 35 million in 2010 to over 500 million in 2017,
character limit increased from 140 to 280, dynamics changed, etc.

1, 2,
5, 8

[311] Does not test “vanilla” web browser phishing detection rates. 1

[23]
Only tests web browsers on Microsoft Windows operating system. 1

Not clear how many tested URLs were blacklisted at time of test. 1

[169] Tested phishing URLs are not “fresh” enough. 1, 2

[169,
251]

Blacklist effectiveness tested via web browsers; may introduce bias
and inaccurate results.

1, 2

Does not assess if web browsers feature phishing detection heurist-
ics; may bias results.

1, 2

Focuses on phishing emails as a source – not tweeted URLs. 1, 2

n/a

No previous studies have analysed or characterised blacklists GSB,
PT, and OP for URL uptake, dropout, typical lifetimes, and overlap.

3, 4

No previous studies have analysed the effectiveness of Twitter’s URL
shortener (t.co) at protecting users from phishing and malware
attacks. Most studies were conducted before Twitter introduced
its URL shortener (in 2011).

6, 7

Table 3.4: Key limitations and omissions of existing studies, linked to our
Research Question (RQ) numbers.
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CHAPTER SUMMARY

In this chapter we summarised existing literature to explore various meth-
odologies, justify our research methodology, and provide context to our
research findings. We also reviewed existing studies to identify and address
methodological limitations.

We explored human aspects and psychology behind phishing and malware
attacks; exploring why phishing attacks work, usability studies to investigate
how people interact with phishing attacks, and mitigation techniques.

We saw that Twitter’s free Streaming API is a popular data source amongst
researchers and that the cost of the Twitter Decahose and Firehose streams
are too expensive for most academics.

Blacklists typically constitute a reliable foundation for ground truth in
existing studies – however, delays must be considered. Complete ground
truth coverage is often unrealistic. Therefore, blacklists that specialise in
specific attacks (e.g. phishing) usually provide effective cover.

Phishing and malware defence – typically organised into the categories:
prevention and detection – often involve educating users as a prevention
strategy and machine learning as a detection technique.

We explored existing research into web browser phishing detection, heuristic
phishing detection, and warning effectiveness – all relating to Chapter 7:
Web Browser Phishing Detection.

Existing studies can provide additional context to our results. We explored
topics such as information credibility and propagation to understand how
victims may encounter threats on Twitter. This can help paint the “bigger
picture”; understanding where our results fit within the wider environment.

We explored how existing studies approach various ethical considerations
of cyber security research. Existing studies identify best practices for ethics
and encourage a consistent approach to ethical considerations. We also
saw advice for responsibly sharing measurement data.

Finally, we evaluated existing studies to highlight key limitations, such as
methodologies used to measure metrics in order to evaluate effectiveness.
The main limitations we identify in existing literature, linked to our research
question(s), are summarised in Table 3.4.
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Design & Implementation

OUTLINE

This chapter details the design, methodology, and implementation of our
empirical measurement studies. We present our measurement system:
Phishalytics; including the design architecture, core systems, and shared
components. We discuss the chronological order of our studies, key design
decisions, ethical considerations, and our test-driven development process.

Towards the end of this chapter we describe the methodology of our 4
main studies (Chapters 5 to 8). Finally, we present our infrastructure and
technical implementation details.

Having explored existing research, we see the following omissions in current
knowledge:

• Research into 3 phishing blacklist we use (GSB, OP, and PT): uptake,
dropout, typical lifetimes, and overlap of URLs in these blacklists.
Existing studies have explored some aspects of some of these blacklists,
but not all 3 for our research questions.

• We identify existing literature that investigates Twitter’s use of black-
lists and delay times as part of a broader research study on spam [110].
We want to repeat part of their study, to determine if the results have
changed, and also further explore how effectively Twitter uses black-
lists. We also want to carry out a novel, fine-grained and in-depth
study of phishing and malware on Twitter.

• Research that investigates Twitter’s URL shortener (t.co), how effect-
ive it is at protecting Twitters uses against phishing and malware
attacks, and how it compares to other blacklists.
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The methodology and experiments we plan, and the infrastructure we
build, are designed to answer our core research questions and help to fill
these ommisions in existing literature. We will also explain some of our key
design decisions.

Some of the key challenges that can arise while working with APIs during
a longitudinal measurement study include the ever-changing landscape that
is being measured, along with changes to the various APIs themselves. One
of our studies (Chapter 6: Time-of-Post Twitter Study) leverages a version
of GSB which did not enforce a rate limit on lookups at the time when
we carried out that specific study. This meant we could lookup all URLs
in our study to determine how many resided in GSB. However, after we
completed this study, GSB implemented a rate limit of 10,000 lookups per
day. Therefore, our studies that took place after this new rate limited had
been introduced use an altered methodology to work around this rate limit
(Chapter 8: Time-of-Click Twitter Study and Chapter 5: Blacklist Analysis
Study).

4.1 Phishalytics Design Overview

Phishalytics will collect data from various sources, store that data in a
manner which allows efficient lookups, then perform analyses on that data.
We also need to be aware of ethical and privacy considerations, professional
standards, and hardware / software limitations.

Phishalytics consists of 4 core systems: the Blacklist Analysis System
(BAS), the Phishing & Malware Tweet Detection System (PMTDS), the Web
Browser Testing Suite (WBTS), and the Twitter URL Shortener Investigation
System (TURLSIS). These 4 core systems are described in the subsequent
sections (4.1.1 to 4.1.4). The overall architecture of Phishalytics can be
seen in Figure 4.1. Table 4.1 shows which Phishalytics systems are used in
which of our studies and thesis chapters.

In addition to the 4 core systems already mentioned, Phishalytics also
contains a number of shared components. These include the Tweet History
Search System (THSS), the URL Click Data Lookup System (CDLS), the
Blacklist Update and Lookup System (BULS), the URL Redirection Chain
Extractor System (RCES), and Tweet Collection System (TCS). These shared
components are described in Section 4.1.5.

Key data sources that we use for our experiments include: Twitter’s API,
Google’s Safe Browsing (GSB) API, and the PhishTank (PT), and OpenPhish
(OP) data feeds. For our measurement studies we build an infrastructure
that is designed to work around some limitations of the data sources we
use. These limitations include: Twitter’s data feed is a “small sample” of all
global tweets, the GSB API blacklist, in some of our studies, is limited to
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Figure 4.1: Phishalytics design architecture.

System Study Chapter

BAS Blacklist Analysis Study 5

PMTDS Time-of-Post Twitter Study 6

WBTS Web Browser Phishing Detection 7

TURLSIS Time-of-Click Twitter Study 8

Table 4.1: Phishalytics core systems linked to our relevant studies and
thesis chapters.

10,000 daily lookup per day, and our Twitter URL Shortener Investigation
System (TURLSIS) cannot send too many HTTP requests per second because
this would flood Twitter’s servers. The design decisions and methodology
described in this section ensure that, despite these limitations of the data
sources we use, our measurement framework, and experiments we run on
this framework, produce accurate results to answer our research questions.
The implementation details of the methodology described in this section
are explained in more technical details in Section 4.8: Infrastructure &
Implementation.

4.1.1 Blacklist Analysis System (BAS)

In Chapter 5: Blacklist Analysis Study we use BAS to analyse 3 key blacklists:
GSB, OP, and PT. We investigate URL uptake, dropout, typical lifetimes,
and overlap. These characteristics of the blacklists help us to evaluate the
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effectiveness of the blacklists. BAS interacts with the BULS component
to retrieve information about each of the 3 blacklists. BAS then analyses
the blacklists’ information through a number of different experiments to
determine the characteristics of the blacklists. The methodology we use in
BAS is described in Section 4.7.1.

4.1.2 Phishing & Malware Tweet Detection System
(PMTDS)

In Chapter 6: Time-of-Post Twitter Study we use PMTDS to investigate how
effective Twitter’s use of blacklists is at protecting its users from phishing and
malware attacks. Our study focuses on the delay period between an attack
URL first being tweeted to appearing in one of the 3 blacklists. PMTDS
interacts with the shared components: TCS, RCES, and BULS. PMTDS
does this by checking all publicly tweeted URLs in the TCS component for
blacklist membership in the BULS component. The redirection chains for
all URLs in the TCS component are extracted via the RCES component.
PMTDS then carries out a number of measurements and experiments to
investigate how effective Twitter’s use of blacklists is in protecting its users
from phishing and malware attacks. The methodology we use in PMTDS is
described in Section 4.7.2.

4.1.3 Web Browser Testing Suite (WBTS)

In Chapter 7: Web Browser Phishing Detection we use WBTS to test the
detection rates of popular web browsers across different operating systems.
This section gives an overview of the design for WBTS. The methodology
for WBTS is described in Section 4.7.3 and the infrastructure and imple-
mentation details are described in Section 4.8.9.

WBTS comprises 4 core components: the Master Controller (MC), Test
Machines (TMs), a Monitoring System (MS), and the Test Suite Software
(TSS). The architecture design for WBTS can be seen in Figure 4.2. The 4
core components, along with their roles, are described in Table 4.2.

One of the main problems encountered during the tests was that, oc-
casionally, the system for testing a web browser would fail. This could
have been for any number of reasons such as the browser failing to load,
keyboard shortcut not working, application unavailable for focusing etc.
Detecting these failures was problematic since it was not always feasible to
watch the TMs constantly. Therefore the Monitoring System (MS) provided
an effective solution to alert the author to any problems.
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Master Controller 
(MC)

Web Browser Test Suite (WBTS)

Monitoring System 
(MS)

Alert

Web 
browser

Test Machine (TM)

Web 
browser

Test Machine (TM)

Web 
browser

Test Machine (TM)

Figure 4.2: Web Browser Testing Suite (WBTS) design architecture.

Component Role

Master Controller (MC) Extract phishing URLs from data source, orches-
trate tests (on TMs), collate data, analyse data,
produce statistics and reports

Testing Machines (TMs) Run various operating systems and web browsers
in a safe environment; execute TSS to determine
web browser detection rates (when instructed by
MC)

Monitoring System (MS) Provide a monitoring and alert system to detect
errors and improve recovery time from failed tests

Test Suite Software (TSS) Custom-built software tailored to each specific op-
erating system and component; runs on MC, TMs,
and MS

Table 4.2: Overview of the Web Browser Testing Suite (WBTS) system core
components.

4.1.4 Twitter URL Shortener Investigation System
(TURLSIS)

In Chapter 8: Time-of-Click Twitter Study we use TURLSIS to investigate
how effective Twitter’s URL shortening service (t.co) is at protecting Twitter
users from phishing and malware attacks. TURLSIS interacts with the same
shared components as PMTDS, that is: BULS, RCES, and TCS. TURLSIS
also interacts with PMTDS to provide additional functionality. TURLSIS
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does this by checking all tweets that contain phishing URLs (from PMTDS)
and checking which URLs have been blocked by Twitter at time of click.
The methodology used in TURLSIS is described in Section 4.7.4 and the
technical implementation details are described in Section 4.8.8.

4.1.5 Shared Components

Tweet History Search System (THSS)

The THSS component establishes historical context for tweets to determine
when a given tweet first appeared on Twitter’s platform. THSS receives
its data from Twitter’s search API – which is external to Phishalytics. The
THSS component is used by the core system: PMTDS. The technical im-
plementation details for the THSS component are described in Section
4.8.7.

URL Click Data Lookup System (CDLS)

The CDLS component provides click data for blacklisted URLs that have
been shortened with Bitly. CDLS receives its data from Bitly’s API – which is
external to Phishalytics. The CDLS component is used by the shared com-
ponent BULS and the core system PMTDS. The technical implementation
details for the CDLS component are described in Section 4.8.5.

Blacklist Update and Look-up System (BULS)

The BULS component stores, updates and performs lookups against popular
blacklists. It receives its data from 3 blacklists: GSB, OP, and PT. These
blacklists are external to Phishalytics. The BULS component is used by all
4 of the Phishalytics core systems. The technical implementation details
for BULS are described in Section 4.8.6.

URL Redirection Chain Extractor System (RCES)

Across all our studies, for any tweeted URL, there could be a number of
hops or redirections that are made before arriving at the final landing
page. For this reason a redirection chain extractor is used to check each
URL contained within in a redirection chain against each of the blacklists.
The technicalities of this redirection chain extractor system are explained
in more detail in Section 4.8.4. The RCES component expands all URLs
that are contained within a URL chain. The RCES component allows core
Phishalytics systems to check URL redirection chains for blacklist member-
ship. The RCES component is used by the core systems: PMTDS and TUSIS
in Chapters 6 and 8 when we investigate phishing on Twitter.
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Infrastructure 
linked to methodology

Web Browser Phishing 
Detection (2015)

Time-of-Post Twitter 
Study (2017)

Time-of-Click Twitter 
Study (2018-19)

Analysis of Phishing 
Blacklists (2019)

GSB update

ML Classifier Project 
(2016)

Figure 4.3: Timeline of our research projects.

Tweet Collection System (TCS)

The TCS component receives its data – live tweets – from Twitter’s stream
API. Twitter’s stream API is external to Phishalytics. These tweets are saved
into a database. The TCS component receives 2 sources of live tweets:
sample and URL-containing. The implementation details for the TCS com-
ponent are described in Section 4.8.3. The TCS component is used by the
core systems PMTDS and TUSIS in Chapters 6 and 8 when we investigate
phishing on Twitter

4.2 Timeline of Research Projects

To improve the overall narrative and comprehensibility of this thesis, our
studies are not presented chronologically. Figure 4.3 shows the chronolo-
gical order of our projects. Chronologically, we conducted our analysis of
phishing blacklists (2019; Chapter 5: Blacklist Analysis Study) last. How-
ever, to present a clearer understanding of blacklists, and correlate certain
findings with later chapters, we present our analysis of phishing blacklists
(2019) first. Following this, we present our time-of-post Twitter study
(2017; Chapter 6: Time-of-Post Twitter Study) which includes a key finding:
large numbers of phishing and malware URLs are posted to Twitter.

To provide context to the time-of-post Twitter study (2017), we examine
the effectiveness of web browser phishing detection in our 2015 study
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(Chapter 7: Web Browser Phishing Detection). Therefore exploring what
impact the results from our 2017 study might have on user safety in terms
of exposure to phishing URLs. We follow-up on our 2017 findings in our
time-of-click Twitter study (2018-19; Chapter 8: Time-of-Click Twitter Study)
by investigating Twitter’s approach to protecting users from phishing and
malware URLs at time of click.

Our ML classifier project (see Section 4.6.2) took considerable time
to plan, research, implement, and test. The project ultimately provided a
motive for our subsequent measurement studies – and did not directly result
in a research study or publication. We include it in the timeline diagram
to show how it impacted and influenced other projects. The ML classifier
project initially connected to the existing web browser detection system to
test how effective web browsers were at detecting “fresh phish”. That is,
all URLs classified as phishing by the ML classifier were immediately sent
to the web browser testing suite for analysis. See Section 9.9 where we
discussion our ML classifier and future work.

Understanding that our studies are not presented chronologically helps
to explain certain discrepancies between contiguous chapters. For example:
we did not factor in certain key findings from our phishing blacklist analysis
study (2019) – such as OP’s faster phishing URL detection compared to
PT – in the time-of-post Twitter study (2017). We could have designed an
experiment with this finding in mind to determine if the OP blacklist is
more effective on Twitter due to its detection speed, etc.

4.3 Key Design Decisions

Many of our key design and methodology decisions were influenced by
the knowledge gained from existing literature. We also replicate some
experiments found in existing literature to determine how the measurement
landscape has changed over time and if results are still similar.

As we saw in the previous chapter, the vast majority of existing studies,
that leverage Twitter’s streaming API, use Twitter’s free version and not the
paid Decahose (10%) or Firehose (100%) versions. We decided to also use
Twitter’s free stream as a data source. Our reason for using Twitter’s free
stream, as per other academic researchers, is cost. We contacted Twitter
for a quote to access the Decahose feed and received a figure that was
considerably beyond our budget. We utilise a number of Twitter’s other
APIs, such as their Search API and Hashtags API, in order to alleviate any
bias that could occur as a result of using Twitter’s smaller data feed.

We also saw in the previous chapter how important a comprehensive
and reliable ground truth is. In our study, we want to determine which
tweeted URLs are phishing or malware, which requires a source of ground

118



4.4. Data Collection

truth. We decided to leverage blacklists for this ground truth, since blacklists
provide an efficient and reliable source. Another source of ground truth
would be to leverage a honeypot. However, we decided that the main
focus of our study would be on phishing websites. Phishing attacks are
very difficult to detect using honeypots due to their use of psychological
social engineering techniques (such as lack of knowledge, distractions,
etc) – which can work well on humans, but not computers. Malicious
websites are easier to detect using honeypots since their malicious activity
(such as executing malicious code on the honey client machine) can be
objectively monitored and detected by the machine. Therefore we decided
that blacklists would provide an adequate ground truth for our study.

We decided to use the URL blacklists: GSB, PT, and OP, because they are
specialised phishing blacklists (and, in the case of GSB, also contain malware
URLs). As we saw in previous literature, a complete and comprehensive
ground truth can be difficult to achieve and often is not required. Because
we will be analysing just phishing and malware URLs in our study, leveraging
these blacklists provides us with the specialist ground truth we require.
Our decision to choose URL blacklists was because we receive a source of
ULRs (from Twitter) – which means we can lookup tweeted URLs in the
blacklists to determine membership. We did not consider IP blacklists to be
suitable for our research due to, as seen in previous literature, IP addresses
changing frequently which would make blacklist membership ineffective.
Another reason for choosing the 3 blacklists is that they offer open access
and their rate limits are compatible with our requirements of looking up
large numbers of URLs – although, as mentioned, we did experience some
problems with GSB’s rate limit.

Some previous studies criticise researchers for not including enough
details of their methodology and implementation in their write-ups. There-
fore, this thesis aims to take a thorough and detailed approach to explaining
our methodology, implementation, and technical setup.

4.4 Data Collection

Our measurement studies require a source of live tweets from Twitter. To
achieve this we setup two sources of incoming tweet feeds using Twitter’s
Stream API. The first stream provides a small sample of all global tweets and
the second stream provides a sample of all global tweets that contain one or
more URLs. The first stream is used to provide a general picture of Twitter
activity during collection – and to help alleviate any bias – and the second
stream is used to carry out our measurement analysis. Our analysis involves
searching for tweeted URLs in various blacklists, measuring blacklist delay
times, and determining which tweeted URLs are blocked by twitter. Both
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of these tweet streams are saved locally in a database.
We also require a way to store and search various blacklists. We retrieve

a copy of each blacklist (GSB, PT, and OP) and store them in our database.
We use GSB’s API to retrieve the latest copy of the blacklist. Each URL within
the GSB blacklist is encrypted as a SHA-256 hash prefix. To determine if
a given URL resides in the GSB blacklist: the URL’s full hash is calculated,
then this URL’s hash prefix is checked for membership in the local copy of
the blacklist. If there is a match (on the hash prefix), then the full URL hash
is retrieved from Google’s servers to determine if there is a match on the
our local, precalcualted full URL hash. If the full URL hash matches then
that means the URL resides in GSB. URLs in GSB are categorised as either
social engineering, malicious, unwanted software, or potentially harmful
application. The blacklists PT and OP are provided as JSON files which we
retrieve directly from their websites – the technical details of this can be
seen in Section 4.8: Infrastructure & Implementation.

Another requirement for our study is the ability to check all tweeted
URLs, collected from Twitter’s Stream API, to determine if they have been
blocked by Twitter. All URLs tweeted on Twitter’s platform are shortened via
Twitter’s URL shortener, t.co. These t.co shortened URLs are stored in our
database alongside the corresponding full URLs. We retrieve the redirection
chain of each t.co URL in our dataset to determine which URLs have been
blocked by Twitter. Full details of this are in Section 4.8.8: Twitter URL
Shortener Investigation System.

4.5 Ethical Considerations

Building on from what we have already discussed and explored in Sections
1.7: Ethics and 3.9: Ethics, we now describe the main ethical considerations
that we incorporate into our experiments and research.

All data sources that are used in this thesis are public. These data
sources are provided by reputable organisations and include Acceptable
Use policies, which we adhere to throughout this project.

Twitter is a social network that consists of people publicly broadcasting
their own messages (i.e. tweets); it’s a microblogging platform. By default,
Twitter users’ tweets are public, and Twitter shares these public Tweets with
third parties via its API service. Upon signing-up to the service, all Twitter
users agree to Twitter’s Terms of Service [277], which states that:

“By submitting, posting or displaying Content on or through the
Services, you grant us a worldwide, non-exclusive, royalty-free
license (with the right to sublicense) to use, copy, reproduce,
process, adapt, modify, publish, transmit, display and distribute
such Content in any and all media or distribution methods now
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known or later developed (for clarity, these rights include, for
example, curating, transforming, and translating). This license
authorizes us to make your Content available to the rest of the
world and to let others do the same. You agree that this license
includes the right for Twitter to provide, promote, and improve
the Services and to make Content submitted to or through
the Services available to other companies, organizations or
individuals for the syndication, broadcast, distribution, Retweet,
promotion or publication of such Content on other media and
services, subject to our terms and conditions for such Content
use”

As we have seen in our previous ethics sections, datasets that consist of
human-produced data require ethical care and consideration. Therefore,
because our dataset of tweets is generated by humans, we need to address
how we shall process this data. Twitter users have agreed to share submitted
content with Twitter and that Twitter may share this data with third parties.
In addition to Twitter’s Developer Agreement, we will process the data we
receive from Twitter in an objective and scientific manner in a way that
does not cause harm or distress to any Twitter users. Our aim for processing
this data is to answer our research questions in order to gain scientific
discoveries. Data we receive from our various sources is only used for the
purpose of our research and experiments.

In terms of privacy: the only personal identifiable information we collect
from Twitter is usernames – which Twitter users agree to make public when
they register. It is important to note that any Twitter user can choose to set
their account to “private”, in which case their tweets will not be shared with
Twitter’s third parties and therefore we do not receive them in our dataset.
We do not collect IP addresses or geographical information of Twitter users
in our dataset.

It is important to note that a given Twitter user may have tweeted
phishing or malware URLs because their account has been compromised.
Therefore the privacy of the user in such a situation needs to be considered.
In this situation, the individual that owns this Twitter account is probably
unaware that their account has been hijacked. Consequently, in addition
to Twitter’s Acceptable Use policy, and to further maintain user privacy,
this thesis does not specifically identify individual Twitter accounts that
we observe to have shared blacklisted URLs. Also, since twitter usernames
can easily be used to identify individuals that own the accounts, this addi-
tional ethical consideration further enhances the privacy of the people that
contributed to the information in our dataset.

The PhishTank and OpenPhish blacklist datasets are public. Therefore,
all URLs contained within these datasets are visible to anyone, worldwide.
The GSB blacklist is publicly available, however, all URLs residing in the
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blacklist are hashed – therefore all URLs in GSB are private. Our infrastruc-
ture is designed so that all data we receive from PT, OP, GSB, and Twitter is
transmitted via secure SSL connection and stored securely on our system.

4.5.1 Ethically Responsible Data Sharing

Our infrastructure has been designed so that we can share our dataset(s)
with other researchers in a way that Twitter usernames and URLs/domain
names are hashed to maintain privacy. This ensures that each username
or URL/domain is uniquely identifiable within the dataset – but without
revealing the actual source. Although our data has been acquired from
publicly available sources – and therefore does not require anonymising –
it does mean that we can anonymise our data before sharing if the need
arises (e.g. via risk assessment, etc).

4.6 Test-Driven Development

By employing a test-driven development process, we were able to ensure
that our infrastructure could accurately collect and measure the empirical
data we required for our experiments. This involved testing our infrastruc-
ture on smaller sets of data, or running the system for shorter periods of
time, to carry out tests and fix any errors. This process was time consuming
and laborious. However, the result allowed us to create a reliable and sturdy
measurement infrastructure that could run, uninterrupted and continuously,
for months at a time without fault. This was crucial, since some of our
experiments could not resume if they were interrupted.

This section describes some examples of where parts of our infrastructure
required a more thorough test-driven development process. Since our
infrastructure incorporates and relies upon many external libraries and
services, there were some situations where we needed to make suitable
modifications and adjustments or ensure that certain services were reliable.
There were also occasions where we needed to alter the direction of our
research as a result of problems that we occurred.

4.6.1 GSB Python library

We use the Python library gglsbl [84] to implement our local copy of GSB.
An important modification was made to the gglsbl library to improve lookup
times for large numbers of URLs. In the library, the method lookup_url()
is used to lookup an individual URL in the local hash prefix database. It
does this by performing a search in the SQLite database for that URL’s hash
prefix. This lookup technique caused a bottleneck when testing the system
on large volumes of URLs, therefore we modified the library to output a
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Python dictionary (hash table) of all URL hash prefixes. Our system can then
perform a lookup for each tweeted URL’s hash prefix against this dictionary.
Since the Python dictionary implementation uses a hash map, the typical
time complexity for this lookup is constant; O(1). This means lookups are
considerably faster than using the off-the-shelf version of the GSB library.

4.6.2 Machine Learning Classifier

One of our early research aims was to determine blacklist delays by lever-
aging a source of “fresh phish”. Our intention was to conduct a lifecycle
analysis study. Our methodology involved creating a machine learning clas-
sifier to automatically detect tweets that contained phishing URLs. These
URLs would be frequently checked for blacklist membership. Delay times
could then be calculated on these blacklisted URLs.

We designed a machine learning classifier, based on PhishAri (Aggarwal
et al. 2012 [4]), to detect tweets that contain suspected phishing URLs.
Whilst the classifier we built appeared to work, it was detecting large
volumes of tweeted URLs that already resided in the GSB blacklist. These
early results contradicted prior knowledge ([200, 201]) that Twitter did
not allow blacklisted URLs to be tweeted. Therefore we suspected that our
classifier was not accurate. To test the accuracy of our classifier, we defined
our first measurement study to establish the facts: how many tweets contain
blacklisted URLs? In this experiment, we also measured the delay times for
URLs – that did not reside in a blacklist at time of tweet – to appear in a
blacklist after being tweeted.

Ultimately, our first measurement study grew, became more complex,
and provided a rich set of data for answering our research questions. The
results of our first measurement study also provided more areas to explore.
Therefore we carried out various extensions and follow up experiments
to our initial measurement study. Consequently, we did not return to the
original machine classifier for detecting “fresh phish” because we were
able to answer our research questions without it. We believe the data we
collected from our measurement studies presents a lifecycle analysis of
blacklisted phishing and malware URLs on Twitter.

Many of the features we built for the machine learning part of our
research ultimately evolved into other research experiments that were used
for this thesis. In particular, the original infrastructure we built for designing
and testing the machine learning classifier ultimately developed into our
measurement experiments. Specific parts of the system, such as the tweet
collection system, along with the meta data it collects, and the blacklist
data collection system, were modified for our other experiments. Since
our machine learning classifier provided motivation for our measurement
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Category Feature

URL Based

Length of URL
Number of dots in URL
Number of redirects
Levenshtein distance from tweeted to landing URL
Presence of conditional redirects (e.g Safari redir-
ected to different page to Google bot)
Number of subdomains in URL
Number of forward slashes in URL*

Tweet Based

Number of @ tags used in tweet
Number of # tags used in tweet
Presence of trending hashtags in tweet
Length of tweet
Number of RTs
Position of # tags

Network Based

Number of followers
Number of friends
Follower-folowee ratio
User profile description has text (true/false)
Age of account
Number of tweets
Number of lists user appears in **
Number of tweet favourites (from other users)*
Number of tweets favourited (by user)*
User has default profile (true/false)*

Table 4.3: Twenty-three-feature model training features for our machine
learning classifier.
* New features we add in addition to those in [4].
** Feature we improve from [4].

studies, and played a key role in our research direction, we provide details
of the classifier in the rest of this section.

We will now outline the details of our machine learning classifier that is
designed to detect phishing tweets. Our classifier uses 1 of 2 feature sets:
either the 23-feature model or the 6-feature model. The 23-feature model
consists of 3 categories: URL-based (7 features), tweet-based (6 features),
and network-based (10 features). Table 4.3 summarises the features of the
23-feature model; Table 4.4 the 6-feature model. 19 of our features are
based on the 22-feature model in [4] with the exception of all 3 features in
their WHOIS category because we were unable to access WHOIS domain
information during our experiments. We also improve their feature “part of
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Number of friends

Number of followers

Follower-folowee ratio

Age of account

Number of @ tags used in tweet

Number of hash tags used in tweet

Table 4.4: Six-feature model training features for our machine learning
classifier.

list” to “number of lists user appears in” because we believe this increases
the feature richness. We provide 4 additional features, marked with an *
in Table 4.3. The reason for splitting into two models (23 and 6-feature)
is that [4] produce a 7 feature model based on an evaluation of the most
informative features for detecting phishing tweets in their 22-feature model.
We were unable to include 1 of the features from their 7-feature model due
to the aforementioned WHOIS limitation.

Our model uses the random forrest algorithm for classification. This
is based on the evaluation and results from [4]. For each data point to
be classified, the random forrest algorithm randomly chooses a subset of
features (from 4.4 or 4.3) for classification. The algorithm selects the
most relevant features of the data point, therefore improving the predictive
accuracy and controlling over-fitting. We trained our classifier on tweets
collected during 25, 26 and 27 March 2017 which consisted of 453 phishing
tweets. These tweets were labelled by checking all tweets during this
timeframe for URLs that were blacklisted. A sample of 451,000 benign
tweets were then evenly selected throughout this timeframe. The ratio of
benign to phishing tweets altered the weighting of our classifier, which we
discuss later. We then tested the classifier on approximately 24 hours’ worth
of tweets whose timestamps immediately followed the training data. This
training data consisted of 1 million tweets: 999,861 benign; 139 phishing.

To assess the accuracy of our classifier we use the confusion matrix
seen in Table 4.5, where TP is true positive, FN is false negative, FP is
false positive, and TN is true negative. We then use the confusion matrix
evaluations in 4.6. Table 4.7 shows the confusion matrix for our 23-feature
model after testing. As a comparison, the same test was carried out using the
6-feature model; the confusion matrix is shown in Table 4.8. The accuracy
of our 23-feature model classifier to predict phishing tweets is as follows:
28% sensitivity (or true positive rate), 99% specificity (or true negative
rate), 0.00016% fall-out (or false positive rate), and 72% miss-rate (or
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Predicted
Phishing Benign

Actual
Phishing TP FN
Benign FP TN

Table 4.5: Confusion matrix for classification.

Evaluation Equation

Sensitivity (or recall; hit rate; true positive rate (TPR)) TP / (TP + FN)

Specificity (or selectivity; true negative rate (TNR)) TN / (FP + TN)

Fall-out (or false positive rate (FPR)) FP / (FP + TN)

Miss-rate (or false negative rate (FNR)) FN / (FN + TP)

Precision (or positive predictive value (PPV)) FN / (FN + TP)

Accuracy (ACC) (TP + TN) / (P + N)

Table 4.6: Confusion matrix evaluators.

Predicted
Phishing Benign

Actual
Phishing 39 (28%) 100 (72%)
Benign 16 (0.0016%) 999845 (99%)

Table 4.7: Confusion matrix for our 23-feature model classifier results on 1
million testing tweets (999,861 benign; 139 phishing).

Predicted
Phishing Benign

Actual
Phishing 14 (10%) 125 (90%)
Benign 67 (0.0067%) 999794 (99%)

Table 4.8: Confusion matrix for our 6-feature model classifier results on 1
million testing tweets (999,861 benign; 139 phishing).

false negative rate). This gives an overall accuracy of 99%. The precision
(positive predictive value) is 71% on phishing classification and 99% on
benign classification.

Table 4.9 shows the confusion matrix for the machine learning classifier
in [4]. When comparing the results of our 23-feature classifier to [4],
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Predicted
Phishing Benign

Actual
Phishing 92.31% 7.78%
Benign 9.60% 94.41%

Table 4.9: For comparison: confusion matrix for the classifier used in
Aggarwal et. al. (2012) [4].

a noticeable difference is that [4] has a higher sensitivity (true positive
rate) for phishing classification, 92.31% compared to our classifier’s 28%.
However, our classifier’s specificity (true negative rate) is 99% compared
to 94.41% in [4]. The reason for this is that we adjusted the weighting
of our classifier to increase the accuracy of the specificity (true negative
rate). In our dataset – a typical sample of tweets from a 24-hour period –
the weighting of benign to phishing tweets is considerably higher; there are
7,193 benign tweets for every phishing tweet. We needed our classifier to
more accurately identify benign tweets so that there was less benign “noise”
in our model’s classifications. The reason for this is that our measurement
infrastructure at the time could only handle a smaller number of predicted
phishing URLs. Our measurement infrastructure could process 55 predicted
phishing URLs (39 true positives; 16 false positives) – as produced from
our 23-feature classifier (4.7). Wheres [4] would have produced 96,115
predicted phishing URLs (128 true positives; 95,987 false positives). Despite
this trade-off between sensitivity and specificity, our classifier has a higher
accuracy – 99% – compared to 92.52% in [4].

Based on our 23-feature model, the confusion matrix in 4.7 shows that
39 tweets were correctly classified as phishing during a 24-hour period.
However, all of these tweets contained URLs that already resided in the GSB
blacklist. It is this result that contradicted prior knowledge that Twitter does
not allow blacklisted URLs to be tweeted. This motivated our subsequent
measurement studies to determine the facts surrounding blacklisted URLs
on Twitter.

4.6.3 Hash Collisions in GSB

As previously described, the GSB blacklist consists of hashed URLs in order
to maintain privacy for the whole dataset. Our local copy of GSB is stored as
a database of SHA-256 URL hash prefixes; the majority of the hash prefixes
are 4 bytes (232 bits). Due to these short URL hash prefixes there is likely to
be an increase in the number of collisions as the size of the dataset grows.
The average number of collisions in k samples, each a random choice among
n possible values is:
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Figure 4.4: Histogram Showing Hash Prefix Collisions for a Counter of
3,107,744 SHA256 Hashes.

N(n, k) = k(k− 1)/2n

In our dataset of 1,731,452 SHA-256 URL hash prefixes there will be
approximately 349 collisions. Therefore our GSB measurement calculations
are accurate to within 0.02%.

We are unable to see the total number of collisions within our GSB
dataset because those collisions have already occurred. Therefore, to test
our statistical model, we generated 3,107,744 random SHA256 hashes,
then counted the total number of collisions on the prefixes of those hashes.
The histogram in Figure 4.4 shows the SHA256 hash prefixes of a counter
running up to a total of 3,107,744. The experiment was also repeated on
the full hashes which resulted in zero collisions. Figure 4.5 repeats this
experiment but with a counter of 31,077,440 to illustrate how increasing
the number of hash prefixes affects the number of collisions – with some
hash prefixes colliding more than once.

In our example set of 3,107,744 random SHA256 hashes, the calculation
is as follows:

(3,107,744)(3,107,744-1)/(2(232)) = 1124.3472879 collisions

By calculating the number of hash collisions in our GSB dataset, and
verifying with a statistical model, we are able to determine the accuracy of
our results where hash collisions may occur.
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Figure 4.5: Histogram Showing Hash Prefix Collisions for a Counter of
31,077,440 SHA256 Hashes.

4.6.4 GSB Rate Limitations

As previously mentioned, GSB introduced a rate limit during one of our
experiments. Although we had already completed one measurement study,
we wanted to expand our results and also compare our existing results with
additional data. The API rate limit was unexpected and meant we were
unable to continue with one of our experiments with the methodology we
were using. Therefore we designed an altered methodology and tested
it on small sets of data or for small durations of time (e.g. a few hours).
Part of this test-driven design process allowed us to determine if our new
methodology would be able to check enough URLs – without reaching the
rate limit – to answer our research questions whilst maintaining a high
level of accuracy.

4.6.5 Update Frequencies

Many of our data sources feature limitations on how frequently we can
access them in order to update our system. For most of these, it is simply a
case of predetermining how often will retrieve certain data, as is the case
with the OP and PT databases.

For the GSB rate limit, we needed to predict how frequently we would
send a request to Google’s API. The GSB API features 2 types of requests:
updating our local copy of the blacklist, and retrieving a URL’s full hash
(after a local URL hash prefix match) to determine if there is a match.
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In order to estimate how frequently we would need to lookup URL hash
prefixes in GSB, we analysed the typical percentage of blacklisted URLs
within each set. We also needed to include hash collisions that resulted in
false positives – i.e. benign URL hash prefixes that collided with malicious
URL hash prefixes – since these would constitute a request and therefore
count towards out our daily rate limit.

Our technique to determine if a URL has been blocked by Twitter involves
checking the t.co URL to test if it has been redirected to a webpage that
informs us it is blocked. This process involves visiting large numbers of
t.co URLs to determine their statuses. We achieve this by leveraging CPU
threading on our measurement infrastructure in order to simultaneously
process multiple URLs at a time. However, this process of sending multiple
requests can overload Twitter’s servers. Therefore part of our test-driven
design process involved carefully testing and adjusting our system to ensure
we can test large volumes of URLs without overloading Twitter’s servers.
Technical details of this system can be seen in Section 4.8.8: Twitter URL
Shortener Investigation System of the Implementation Section.

4.6.6 Error Reporting

To improve the efficiency of the test-driven development process, whenever
an error was detected, an email was sent to the author, detailing the error.
This meant that the measurement infrastructure interface did not need to
be monitored 27/4 to detect, debug, and fix errors.

A problem that arose due our error reporting setup was that, when a
critical error ocurred, a large numbers of emails would sometimes be sent
to the author in a short amount of time. Once the specific error had been
fixed, many emails would continue to be received by the author. This was
because error reporting emails had been delayed by the recipient’s mail
server – therefore taking, in some cases, many days to arrive. This made the
error reporting system misleading and confusing since it appeared an error
was still present when it had actually been fixed. To fix this: timestamps
were added to the contents of error reporting emails to determine which
timeframe the emails related to. This improved the test-driven development
process by making it much smoother and more efficient to detect and fix
any bugs that arose.

4.7 Methodology Overview

An overview of our key methodology is described in this section. The specific
methodology used for each study is described in the relevant chapters (5,
6, 7, and 8).
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4.7.1 Blacklist Analysis Study

For our blacklist analysis study (Chapter 5: Blacklist Analysis Study) we
use the Blacklist Analysis System (BAS) to update and track URL uptake
and dropout for each of the 3 blacklists (GSB, PT, and OP). These systems
regularly obtain the latest copies of the blacklists and stores them locally in
a database on our system. With this data we can then measure, for each
blacklist update, the number of URLs that are added and removed. We
can also analyse the number of times each URL is added to and removed
from a blacklist – and whether or not this happens multiple times. We
can also measure the duration that each URL remains in a blacklist for
and analyse any intersection between blacklists, timestamps for temporal
analysis, volumes, etc.

Our justification for the duration of data captures in our study – 75
days – comes from a combination of existing studies and the limitations of
our infrastructure. The duration of the measurement study in Zhang Et al.
(2013) [310] was 7 days, Kuhrer et al. (2012) [148] 80 days, Grier et al.
(2010) [110] 1 month. Therefore, we believe our duration of data capture
is similar to most, and improves on some, existing studies. A limiting
factor to our data capture duration is our infrastructure. As described
previously (in Section 4.6: Test-Driven Development), it was time consuming
to ensure our measurement studies remained running without errors. In
many cases, when an error occurs in one of our measurement studies, the
entire experiment has to be restarted.

4.7.2 Time-of-Post Twitter Study

Our Twitter blacklist delay study (Chapter 6: Time-of-Post Twitter Study) uses
the Phishing & Malware Tweet Detection System (PMDS) before Google
introduced a rate limit on the GSB API. We implement a fast and slow
blacklist lookup system: the slow lookup system ensures we can check all
URLs we have collected since the experiment began – but is time consuming.
The fast lookup system increases our measurement granularity by regularly
checking tweeted URLs for blacklist membership – but is limited to a subset
of recently tweeted URLs. Timestamps for when URLs were tweeted and
when URLs were added to the blacklist(s) are used to calculate delay periods.
We also leverage Twitter’s Search API to alleviate bias that may arise from
using a “small sample” via Twitters Stream API – allowing us to determine
tweet timestamps that may not have been included in the Stream API.

We use Bitly’s API to determine URL click data for tweeted URLs that
are blacklisted. Our justification using Bitly for click metrics is that previous
studies [16] show Bitly to be the most popular URL shortening service; 50%
of Twitter URLs were shortened with Bitly.
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As in our blacklist analysis study in the previous subsection (4.7.1), our
justification for the duration of data captures in our study – 2 months –
comes from a combination of existing studies and the limitations of our
infrastructure.

4.7.3 Web Browser Phishing Detection

Our web browser study (Chapter 7: Web Browser Phishing Detection) uses
the Web Browser Testing Suite (WBTS). The master controller (MC) will
extract a set number of URLs from one of the phishing website sources
and save these URLs into a database. The MC will then send this set of
URLs to the Testing Machines (TMs), which will individually open each
phishing URL in a pre-determined set of browsers. The resulting phishing
detection status (phishing or not phishing), as detected by the web browser,
shall then be returned to the MC and saved into the database for future
processing. The main services that the MC provides are:

1. Extract phishing URLs from pre-determined sources

2. Store phishing URLs and test data in a database

3. Send phishing URLs to TMs for testing

4. Retrieve results data from TMs and save into database

5. Process results from tests stored in database

6. Provide test status for Monitoring System (MS)

The visiting of phishing URLs in web browsers needs to be carried
out in a natural way that mimics the behaviour of a human user. The
reason for this is that the experiment should be as similar to a real human
accessing a phishing website as possible. Therefore, specific features, such
as timings and the way in which each web browser is opened, are carefully
considered. Ultimately this was achieved by copying each phishing URL
into the operating system’s clipboard and then using the keyboard shortcut
for paste (ctrl + v or cmd + v) to enter the URL into the web browser.

An early problem that was detected was that many of the web browsers
take at least a few seconds before a phishing website is detected. Therefore,
after navigating to a phishing website, a delay of around 10 seconds is
applied before assessing whether or not the website has been flagged as
phishing. After some trial and error, the most reliable method for determ-
ining if a phishing warning has been triggered was to look at the web
browser’s title. All web browsers change the title of the current web page
to that of a phishing warning when the detection has been triggered. There-
fore the determination process was a case of checking each web browser’s
current page title against a pre-determined list of strings.
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Bespoke Test Suite Software (TSS) was produced to automate the
browser tests. Technical details for the TSS are described in Section 4.8.9.
A high level overview of the main testing algorithm is outlined below:

1. Connect to MC and fetch new phishing URL to test. If no URL available,
there is no job currently active, wait for 1 minute before checking
again

2. For the new phishing URL retrieved from step 1, check this new
URL has not just been processed. If it has, another test is probably
running, wait 5 seconds before checking again for a new URL (allows
for parallel testing)

3. Copy phishing URL to system clipboard

4. Open web browser or focus already opened web browser (this will
be one of the pre-determined web browsers for the specific operating
system) and wait 3 seconds (mimic typical human behaviour and also
allow time for web browser to load)

5. Send keyboard shortcut for new tab (ctrl + t or cmd + t) then wait 1
second for tab to load

6. Send keyboard shortcut for paste (ctrl + v or cmd + v) then wait 5 to
10 seconds for website to load

7. Check browser title for phishing warning

8. Send phishing status along with web browser and operating system
info to MC

9. Close web browser or browser tab with keyboard shortcut (ctrl + w
or cmd + w)

10. Repeat steps 4 to 9 for each web browser

11. Repeat steps 1 to 10 until there is no new phishing URL (as determined
in step 1)

Due to the limitations of the computing power on the virtual machine,
only one operating system could be running at a time. Therefore a batch of
phishing URLs would be processed on one operating system. Once the test
had finished, that operating system would be paused (its state saved on
the virtual machine for quick start and stop) and the next operating system
started.

4.7.4 Time-of-Click Twitter Study

In our Twitter URL shortener study (Chapter 8: Time-of-Click Twitter Study)
uses the Twitter URL Shortener Investigation System (TURLSIS). We im-
plemented changes to our methodology to allow for the newly introduced
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GSB API rate limit. Key changes include looking up URLs for GSB blacklist
membership over 24-hour and, additionally, 7-day periods. This study also
analyses the redirection chain of Twitter’s URL shortener (t.co) to determine
if tweeted URLs have been blocked by Twitter.

Our justification for the duration of data captures in our study – 7 days
and, additionally, 24 hours – comes from the limitations of the data source
we were working with. As previously explained, the GSB rate limit changed
during this study, therefore we designed a methodology that would work
within GSB’s new rate limit whilst still achieving our research aims and
answering our research questions.

4.8 Infrastructure & Implementation

Having discussed the overall design and methodology for our experiments,
this section explores the details of our technical implementation. We will
explore the overall technical setup, along with specific libraries and func-
tions of our infrastructure. The full codebase for Phishalytics is available
on GitHub at:

https://github.com/sjbell/phishalytics

4.8.1 Architecture Overview

Our entire system is implemented on a virtual machine running the Ubuntu
operating system, version 16.04 LTS, 8 core CPU, 24 GB RAM. The measure-
ment framework is written in the programming language Python – which
consists of approximately 77,259 lines of Python code across 156 Python
files. In total, we collected over 1.5TB of data from Twitter, GSB, OP, and
PT, during our measurement experiments and analyses.

4.8.2 Interface

Interacting with our measurement infrastructure system is carried out via an
SSH connection in a terminal window. The server-side interface leverages
GNU Screen [85], a window manager and terminal multiplexer application.
Figure 4.6 shows a screenshot of our system during one of our measurement
studies. The layout consists of 18 windows; 16 small and 2 large. The two
larger windows display a development area and the system monitor (htop
command: showing CPU and RAM usage, top processes, etc ). As seen in
Figure 4.6, the 16 smaller windows are labelled s1 to s16. These windows
contain the following systems:

• s01: Twitter filter stream (tweets containing URLs). Each character
in this window represents the following:
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Figure 4.6: Screenshot of our measurement infrastructure system interface
running in an SSH terminal window.

– “#” the tweet that is about to be processed is a retweet
– “.” tweet received from Twitter Stream API for processing
– “!” for each URL within this single tweet
– “+” tweet saved to our system’s database

• s02: Twitter sample stream (same characters as above)

• s03: Update our local copy of GSB blacklist

• s04: Update our local copies of PT and OP blacklists

• s05: Fast GSB Twitter URL lookup system

• s06: Slow (comprehensive) GSB Twitter URL lookup system

• s07: Slow (comprehensive) OP and PT Twitter URL lookup system

• s08: Fast OP and PT Twitter URL lookup system

• s09: GSB timestamp lookup system

• s10: Twitter search API lookup system

• s11: Retrieve and save current trending hashtags from Twitter API

• s12: Post Twitter collection processing (for metadata such as: lookup
redirections chains, num URL hops, landing page URL, calculate
Levenshtein distance, determine if trending hashtags used, etc)

• s13: Calculate, update, and compare GSB sizes

• s14: Not currently being used for the present study
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• s15: Check everything is functioning correctly, check all feeds are
live, etc. Send error notification emails to authors

• s16: Currently trending hashtags on Twitter for London

Not all currently running systems are displayed in windows s1 to s16.
The development window (currently showing 18 bash2 in Figure 4.6) can
switch between numerous windows that are running various systems and
experiments. Windows s1 to s16 were mainly used to display systems that
required frequent monitoring and also to provide some reassurance to the
author whilst longitudinal measurement experiments were running. Many
of the windows feature progress bars and colour coded statuses (such as
s15) to aid efficient interpretation by the user.

In windows s1 and s2 we see some tweets that have been processed by
our infrastructure but not saved to our database (each instance represented
by a “.”). This is when the URL in a tweet object does not contain an
expanded URL. This occurs when the tweet contains a link to another tweet
or Twitter profile – seen when a tweet “mentions” another twitter user or
tweet. Our system drops these URLs because they are not relevant to our
measurement study.

Window s10 illustrates a rate limit that has been reached for Twitter’s
Search API. The system will pause its current process and wait until the
rate limit has been reset. S11 shows that the current rate limit for Twitter’s
Trending Hashtags API, at time of screenshot, was 13 out of 75 requests
per 15 minutes.

4.8.3 Tweet Collection System (TCS)

Our Twitter collection system uses Twitter’s Stream API, implemented via the
Tweepy [274] library. After authorising Tweepy to access Twitter, the sample()
and filter() methods are used to collect sample and URL containing tweets.
The filter method uses keywords “http” and “https” to filter out tweets
containing URLs. All data received from Twitter’s Stream API, using these
two methods, is stored in a MySQL [216] version 5.7.19-0ubuntu0.16.04.1
database in two tables for sample tweets and URL-containing tweets, re-
spectively.

The track parameter is an array of search terms to stream:

1 stream = tweepy.Stream(auth , listener)
2 stream.filter(track=[‘‘http ,https ’’])

The sample method returns, approximately, a 1% sample of all global
tweets:

1 stream = tweepy.Stream(auth , listener)
2 stream.sample ()

136



4.8. Infrastructure & Implementation

4.8.4 URL Redirection Chain Extraction System (RCES)

The URL redirection chain extraction system uses Python’s Requests lib-
rary [235] to send an HTTP request for each URL using a Macintosh Safari
user agent header so the request appears to come from a regular user via
the Safari web browser. The reason for setting this header is so the request
extracts the same redirection chain that a legitimate user would see and
not a redirection chain that a bot would see – therefore reducing bias in our
results. The Request library’s Response object contains a History property
which consists of a list of Response objects that were created to complete
the HTTP request. This list is then used to extract the redirection chain for
a given URL in our system.

1 user_agent = ’Mozilla /5.0 (Macintosh; Intel Mac
OS X 10_11_5) AppleWebKit /601.6.17 (KHTML , like
Gecko) Version /9.1.1 Safari /601.6.17 ’

2 set_headers = {
3 ’User -Agent’: user_agent
4 }
5 with eventlet.Timeout (10):
6 try:
7 r = requests.head(url , headers=set_headers ,

timeout =(3.05 ,6), allow_redirects=True)
8 if len(r.history) > 0:
9 chain = []

10 status_code = r.history [0]. status_code
11 final_url = r.url
12 for resp in r.history:
13 chain.append(resp.url)
14 r.close()
15 return (str(status_code),

str(len(r.history)), chain , final_url ,
tweet_id)

16 else:
17 r.close()
18 return (str(r.status_code), 0, [],url ,

tweet_id)
19 except:
20 # handle error

4.8.5 URL Click Data Lookup System (CDLS)

The core functionality of CDLS is to retrieve URL click data from Bitly’s
API. We improve on limitations in existing studies by filtering blacklisted
URL click data from Bitly by data range and ensuring clicks come from
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the domain name: twitter.com. To filter Bitly click data by date range we
provide the required date range to the Bitly API URL click data endpoint.
To filter Bitly click data by referrer we use the Bitly API metric by referrer
endpoint.

1 bitly = bitly_api.Connection(access_token)
2 response = bitly.referrers(bitly_url)
3 for r in response:
4 if ‘referrer’ in r:
5 if r[‘referrer ’] == ‘https ://t.co/’:
6 bitly_clicks = r[‘clicks ’]

4.8.6 Blacklist Update and Lookup System (BULS)

We use 3 blacklists in our system: GSB, OP and PT. To implement our GSB
lookup system, the library gglsbl [84] version 1.4.10 is used. This library
allows our system to fetch the latest GSB hash prefixes and also perform
lookups against the database. The library uses the SQLite [255] database for
storing GSB data. The library contains a method update_hash_prefix_cache()
which is used to update the URL hash prefix database. This method is called
every 10 minutes in the fast GSB lookup system and at the beginning of
each cycle of the slow GSB lookup system.

During our experiment, we observed that the GSB blacklist typically
contains approximately 4.8 million URL hash prefixes of which approxim-
ately 3.1 million are unique. Of these, there are approximately 1 million
unique URL hash prefixes labelled malware and approximately 1.8 million
unique URL hash prefixes labelled social engineering. The remaining URL
hash prefixes labels are not used in our study.

Both the PT and OP datasets are downloaded as JSON files from their
websites. The URL entries from these files are then extracted and saved
into our local MySQL database. Metadata stored along with URLs includes
discovery timestamps from the blacklists and timestamps for when URLs
were added to our database. Both datasets are downloaded every hour and
new entries saved in the local database. URL lookups against these two
databases are completed by importing all URLs from both databases and
storing them in a Python dictionary in order to perform faster lookups, as
per our GSB lookup implementation.

4.8.7 Tweet History Search System (THSS)

THSS uses the Tweepy library to interact with Twitter’s Search API. After
authorising Tweepy to access Twitter, the Search method is used to search
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for a given URL. This method will return the oldest tweet in Twitter’s search
history, that contains a given URL string, if it can be found.

1 api = tweepy.API(auth)
2 results = api.search(q=query ,

result_type="recent", count =100, until=tomorrow)

4.8.8 Twitter URL Shortener Investigation System
(TURLSIS)

Our t.co URL checking system determines if Twitter blocks tweeted URLs.
The system uses Python’s Requests library [235] to send an HTTP request to
each t.co URL, along with a Macintosh Safari user agent header setting so
the request appears to come from a regular user via the Safari web browser.
We discovered that t.co only displays warning pages to web browsers – a
warning page was not displayed when this user agent setting was disabled.
We use Python’s Threading library to concurrently check 200 t.co URLs
approximately every 3.5 seconds. This is achieved by setting the Requests
library’s connect timeout value to 3.05 seconds and read timeout value to 6.05
seconds. A value slightly larger than a multiple of 3 is used since this is the
default TCP packet retransmission window [127]. These settings ensure our
system runs efficiently and does not get stuck waiting indefinitely for servers
to respond. Additional time is incurred when factoring in computations
such as database inserts, GSB URL lookups etc – hence the overall average
batch completion time of 3.5 seconds for 200 URLs.

Our t.co URL checking system takes approximately 7 hours to check
all, approximately 1.5 million unique t.co URLs, collected during a 24-
hour period (1.5 million / 200 [per batch] * 3.5 seconds = 7.3 hours).
Of those approximately 1.5 million t.co URLs, our system typically drops
approximately 400 (0.03%) connections (i.e. read timeout errors). It is
important to note that many of these timeouts likely occur because the
website being tested is offline therefore a larger timeout value would have
minimal impact. We decided to process 200 t.co URLs per 3.5 second
batch by testing various different timings. When more than 200 t.co URLs
were processed in a 3.5 second period Twitter’s servers returned HTTP 503
status code responses (temporary overload [129]). After fine tuning and
experimenting with different timing values, we concluded that processing
200 t.co URLs per 3.5 second batch worked well – typically returning zero
to one 503 errors per 1.5 million t.co URLs processed. This means that our
system is rate limited and therefore not overloading Twitter’s servers with
requests.

The method getStatus will return the response from Twitter for a given
t.co URL – containing the redirection chain to determine if the URL was
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blocked by twitter:

1 def getStatus(url):
2

3 set_headers = {
4 ‘‘User -Agent’’: ‘‘Mozilla /5.0 (Windows NT

6.1; WOW64) AppleWebKit /537.21 (KHTML , like
Gecko) Mwendo /1.1.5 Safari /537.21 ’’,

5 }
6

7 r = requests.head(url , headers = set_headers ,
timeout = (3.05, 6.05), allow_redirects =
True)

8 redirection_chain = []
9 if len(r.history) > 0:

10 for e in r.history:
11 redirection_chain.append(e.url)
12 return redirection_chain , r

4.8.9 Web Browser Testing Suite (WBTS)

Each Testing Machine (TM) is responsible for running one of the three main
operating systems: Microsoft Windows 8.1, Apple Mac Yosemite 10.10.1 or
Ubuntu 14.04 desktop edition. The software solution VirtualBox was used
to provide the Virtual Machine (VM) environment. The VM was running on
a Dell Inspiron laptop with 4 GB of RAM and an Intel i3 dual core CPU (2.53
GHz) running under Ubuntu 14.04 64-bit operating system. Unfortunately
it was not possible to run the web browsers Chromium or Opera under
Windows nor Firefox under Apple Mac. This was due to technical and time
constraints on controlling these browsers through the various programming
languages.

The operating systems for each TM are described below. These descrip-
tions also include an overview of the custom-built Test Suite Software (TSS)
used to carry out the test:

Microsoft Windows

Microsoft Windows version 8.1 was used to carry out all experiments under
the Windows operating system. Three browsers were deployed under
this test environment: Microsoft’s Internet Explorer version 11, Google’s
Chrome version 44, and Mozilla’s Firefox version 40. Browser updates were
disabled throughout the testing phase to ensure the same browser version
was consistent across all test.
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The TSS for automating browser testing on Windows was written in
C#. It is one of the main programming languages used by Windows and
provides services for interacting with core operating system functions such
as executing applications, accessing the clipboard and focusing between
application windows. Therefore C# provided an ideal programming envir-
onment for carrying out the main tasks of the automated tests required for
this experiment.

Apple Mac

Apple Mac Yosemite 10.10.1 was used to carry out all experiments under
the Apple operating system. Two browsers were deployed under this test
environment: Apple’s Safari version 8 and Google’s Chrome version 44.
Again, Browser updates were disabled throughout testing.

The TSS programming language used under the Mac environment was
AppleScript. The decision to use AppleScript was made because it provided
an efficient solution to carry out all of the required automation tasks such
as focusing windows and accessing the system clipboard. Initially, the
programming language objective C was considered due to its native support
on Apple’s operating systems. But, due to time constraints in developing a
short Objective C application, AppleScript was chosen instead.

Linux

Canonical’s Ubuntu version 14.04 was used to carry out all experiments
under the Linux operating system. Three browsers were deployed under
this test environment: Google’s Chrome version 44, Chromium version 43,
and Mozilla’s Firefox version 39. Browser updates were disabled.

The TSS programming language Python was used for the Linux environ-
ment because Ubuntu has no equivalent native language such as Microsoft’s
C# or Apple’s Applescript. Instead, the library gtk.cipboard was used to
access the system clipboard and the package xdotool (accessed via system
calls) was used to focus application windows and enter keyboard presses.

Monitoring System

The Monitoring System (MS) ran on a Raspberry Pi [284] computer. The
Raspberry Pi’s general purpose input/output (GPIO) pins were used to
connect a breadboard with a multicoloured LED along with appropriate
resistors. The TSS then allowed the Raspberry Pi to connect to the remote
web server to determine the current status of any tests. The Raspberry Pi
could then power the multicoloured LED to display the following three
statuses:

• White: no test running
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• Green: test running, no problems detected

• Red: problem, test halted

CHAPTER SUMMARY

This chapter described our measurement infrastructure: Phishalytics; in-
cluding the design architecture, 4 core systems, and additional shared
components.

We described the methodology, design decisions, data sources, experimental
set up, and technical implementation for our various measurement studies.
We also discussed why the chronological order of our studies differs to the
presentation order of our subsequent study chapters.

We described various challenges of conducting longitudinal measurement
studies, such as dealing with the ever-changing landscape. For example:
the GSB API introduced a rate limit after our time-of-post Twitter study,
resulting in us changing our methodology for the time-of-click study.

Over the next 4 chapters we will present our 4 research studies. We discuss
our results in more detail, and addresses various topics raised in previous
chapters, in Chapter 9: Discussion.
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Blacklist Analysis Study

An Analysis of Phishing Blacklists: Google Safe Browsing,
OpenPhish, and PhishTank

OUTLINE

This chapter presents an edited version of our research paper: BELL, S., AND

KOMISARCZUK, P. An Analysis of Phishing Blacklists: Google Safe Browsing,
OpenPhish, and PhishTank. In Proceedings of the Australasian Computer
Science Week Multiconference (2020).

Blacklists play a vital role in protecting internet users against phishing
attacks. The effectiveness of blacklists depends on their size, scope, update
speed and frequency, and accuracy – among other characteristics. In this
study we present a measurement study that analyses 3 key phishing black-
lists: Google Safe Browsing (GSB), OpenPhish (OP), and PhishTank (PT).
We investigate the uptake, dropout, typical lifetimes, and overlap of URLs
in these blacklists.

During our 75-day measurement period we observe that GSB contains,
on average, 1.6 million URLs, compared to 12,433 in PT and 3,861 in
OP. We see that OP removes a significant proportion of its URLs after 5
and 7 days, with none remaining after 21 days – potentially limiting the
blacklist’s effectiveness. We observe fewer URLs residing in all 3 blacklists
as time-since-blacklisted increases – suggesting that phishing URLs are often
short-lived. None of the 3 blacklists enforce a one-time-only URL policy –
therefore protecting users against reoffending phishing websites. Across all
3 blacklists, we detect a significant number of URLs that reappear within 1
day of removal – perhaps suggesting premature removal or re-emerging
threats. Finally, we discover 11,603 unique URLs residing in both PT and
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OP – a 12% overlap. Despite its smaller average size, OP detected over 90%
of these overlapping URLs before PT did.

5.1 Introduction

As we explored in Chapter 2: Background, phishing attacks lure their victims
into revealing sensitive information such as passwords and credit card
numbers by spoofing legitimate organisations. Phishing campaigns are
a dangerous threat in the cyber world and the number of these attacks
continues to grow. Phishing blacklists are a popular defence strategy that
aim to protect people from phishing attacks. These blacklists typically
contain known phishing URLs, providing an access control list which is
used to prevent users from visiting these dangerous websites

For these phishing blacklists to be effective they need to be updated
quickly and regularly to protect users from emerging phishing attacks. URLs
should be removed from a blacklist when their website is no longer a threat
– so as not to impact website visitors once it is safe – but also added again
if that same website becomes a threat in the future. The number of URLs
contained in a blacklist can contribute to its effectiveness; a small set of
niche blacklisted phishing URLs will not provide a user with full protection
compared to a large and comprehensive blacklist with a wide net. It is
also important to understand the inner-workings of these blacklists as this
can help determine how effective they will be at protecting people against
phishing attacks.

In this chapter we study 3 blacklists: GSB, PT, and OP, to determine
uptake, dropout, typical lifetimes, and any overlap of URLs in these black-
lists. Over a 75-day measurement period we regularly retrieve the latest
copy of the 3 blacklists and store timestamps for when URLs are added
and removed from each blacklist. Using this data we can then calculate
various differences between timestamps to carry out our measurements.
We discover that, in total, 1,731,452 URLs are aded to GSB; 52,234 to OP;
and 48,473 to PT. Throughout our measurement study the average number
of URLs contained within each blacklist is: 1,581,351 for GSB; 3,861 for
OP; and 12,433 for PT. This shows that GSB is by far the largest blacklist in
our study. We also see 17 times more URLs added to GSB than PT and OP
combined. The sheer volume of URLs in the GSB blacklist compared to PT
and OP combined will likely make GSB a more effective weapon to protect
users against phishing attacks.

By measuring URL durations in blacklists we discover that the OP black-
list removes a significant volume of URLs from its dataset after a duration
of 5 and 7 days; no URLs remain in OP for more than 21 days. Therefore
potentially limiting OP’s effectiveness at protecting users from phishing
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attacks. We see that, across all 3 blacklists, as time increases, fewer URLs
remain in the blacklists. This is because, once blacklisted, phishing URLs
are often short-lived.

Through analysing URLs that reappear in blacklists we determine that
none of the 3 blacklists enforce a one-time-only URL policy in their dataset;
URLs reappear in the blacklists if they continue or re-emerge as a threat.
This is good for users because it means they will be protected against
reoffending phishing websites. We also show that large numbers of URLs
reappear in all 3 blacklists within 1 day of removal – suggesting that these
URLs were either removed too soon or that they came back online again.

As a result of comparing the PT and OP blacklists we discover that
11,603 unique URLs reside in both of these blacklists, which is 12% of the
total number of URLs added to both blacklists. Despite its smaller average
size – seen in the earlier measurement – OP detected over 90% of these
overlapping URLs before PT did.

To the best of our knowledge, our study is the first to analyse uptake,
dropout, typical lifetimes, and any overlap of URLs in the blacklists: GSB,
PT, and OP.

We organise the remainder of this chapter as follows. Section 5.2
explores previous studies related to our work. Section 5.3 provides an
overview of our experiments. Section 5.4 provides an overview of our
methodology. Section 5.5 presents our key measurement results and inter-
pretations, followed by our conclusion in Section 5.6. The results of our
study are discussed in Section 9.2: Blacklist Analysis Study.

5.2 Related Literature Summary

In Section 3.3: Threat Intelligence & Blacklists we explored a number of
existing studies that relate to our study by investigating threat intelligence
and blacklists. In Section 3.3: Guo et al. (2019), Guo et al. (2019) [162]
measured the characterisation of threat intelligence to understand how
effective these methods are as defence mechanisms. Their study defined
6 threat intelligence metrics (volume, intersection, unique contribution,
latency, coverage, and accuracy) to help determine the effectiveness of a
threat intelligence source. In our study we explore some of these metrics
as part of our investigation into the 3 blacklists we are studying.

2 further studies that we explored in Section 3.3 [310, 183] analysed
blacklist characterisation and overlap – however these studies take a very
general look at blacklists as a whole, covering various genres of black-
lists. Whereas our study focuses on just the characterisation and overlap
of phishing blacklists. Zhang Et al. (2013) [310] analysed 9 blacklists
from 3 different categories: spam (CBL, BRBL, SpamCop, WPBL, and UCE-
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PROTECT), phishing/malware (SURBL, PhishTank, hpHosts), and active
attack/probing behaviour (Dshield). Key results show a significant over-
lap within the same category of blacklists: BRBL and CBL (the 2 largest
spam blacklists) cover about 90% of other spam-related lists; hpHosts,
PhishTank, and SURBL (phishing/malware blacklists) also significantly
overlap. Whereas overlaps between categories are trivial. The results
from [310, 183] show that general blacklists often do not overlap because
each blacklists focuses on a specific type of attacks (e.g. phishing, malware,
spam, etc). The methodology used by [310] groups phishing and malware
attacks into the same category. However, there are a number of key differ-
ences between these two attacks, therefore grouping them together may
affect the results. Also, [310] did not include OpenPhish in their study and
their measurement period was limited to 7 days. In this study we want to
compare blacklists focus on phishing attacks.

Existing literature, such as [161, 117, 64], describe various blacklist
datasets in terms of size, etc. However, existing studies do not specifically
investigate and measure the characterisations of the blacklists themselves –
since they are usually part of a broader set of research aims. In our study, we
will analyse the phishing blacklists: Google Safe Browsing, OpenPhish, and
PhishTank to explore uptake, dropout, typical lifetimes, and any overlap of
URLs in these blacklists. Our purpose is to help the research community
gain a more detailed understanding of these 3 blacklists. To the best of our
knowledge, ours is the first study to analyse these 3 blacklists in such a way

5.3 Overview of Experiments

The key experiments we carry out in this study are:

1. Analysis of blacklists: PT, OP, and GSB, to determine number of URLs
in each and how their sizes vary over time

2. Measure how long URLs remain in each blacklist for

3. Measure and analyse blacklisted URLs that are removed from then
re-added to the same blacklist; timings between reappearance

4. Comparison of URLs between blacklists and detection times of over-
lapping URLs

5.4 Methodology

Our core methodology involves regularly retrieving the latest copy of the 3
blacklists and storing each URL that is added or removed along with the
timestamp of when this occurred. To calculate the total number of URLs
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in each blacklist we count the total number of entries in each JSON file
for PT and OP and the total number of rows in the SQLite Database for
GSB. We also remove duplicates to determine how many of these URLs – or
hash prefixes in the case of GSB – are unique. To count the total number of
domain names in each blacklist we extract the domain from all URLs in the
blacklists then group and total these.

We use the aforementioned URL added/removed timestamps to calcu-
late the duration each URL remained in the blacklists for. URLs which have
not been removed from a blacklist currently still reside in that blacklist,
therefore we use the current timestamp – at time of measurement – to cal-
culate duration in blacklist. Using this, we show the total number of URLs
in each blacklist that did not have a removal timestamp and are therefore
still in the blacklist. Since each blacklist only contains a list of URLs – not a
list of URLs to be removed – we set the removal timestamp for a given URL
to when our system sees that a previously added URL no longer appears in
the blacklist.

Our local copy of GSB is stored as a database of SHA-256 URL hash
prefixes; the majority of the hash prefixes are 4 bytes (232 bits). Due
to these short URL hash prefixes there is likely to be an increase in the
number of collisions as the size of the dataset grows. The average number
of collisions in k samples, each a random choice among n possible values
is: N(n, k) = k(k− 1)/2n. In our dataset of 1,731,452 SHA-256 URL hash
prefixes there will be approximately 349 collisions. Therefore our GSB
measurement calculations are accurate to within 0.02%.

To measure URL reappearance in blacklists, we analyse all URLs in
each blacklist that have been added more than once. We calculate the
duration of time a reappearing URL was included in the blacklist and the
duration of time that URL was excluded from the blacklist – we repeat
this for the number of times a URL was added to a blacklist. If, on the
final inclusion timestamp for a reappearing URL in a blacklist, there is no
removal timestamp then we assume the URL is still in the blacklist (as
before).

5.5 Results

5.5.1 Overview of Blacklists

This section analyses the number of URLs added to and removed from each
of the 3 blacklist: PT, OP, and GSB, during our 75-day measurement study
from March to June 2019. Table 5.1 provides an overview of the 3 black-
lists, showing total number of unique URLs added, removed, not removed,
and added and removed once, in each blacklist during our measurement
experiments from March to June 2019. The number of URLs not removed
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PT OP GSB

URLs Domains URLs Domains URLs*

Added 48,473 20,458 52,234 14,721 1,731,452
Removed 33,245 15,327 46,866 13,315 633,321
Not removed 15,228 6,729 5,368 1,774 1,098,131
Added and
removed once

30,967 14,409 43,103 12,147 113,530

Table 5.1: Overview of blacklists: PT, OP, and GSB showing total number of
unique URLs and domains added, removed, not removed, and remaining
in each blacklist. Measured between March and June 2019. *Number of
SHA-256 URL hash prefixes for GSB.

shows how many URLs were added to each blacklist but which were not
removed during our measurement – therefore we conclude that these URLs
remain in the blacklist at time of measurement. These results show that
GSB is a considerably larger blacklist; with 33 times as many URLs added
to GSB compared to OP and over 17 times as many URLs added to GSB
compared to PT and OP combined. The increased size of GSB, compared
to PT and OP, suggests that it may detect more URLs and therefore be more
effective at detecting phishing websites compared to PT and OP.

When comparing the number of domains to the number of URLs for
PT and OP, in Table 5.1, we see that there are at least twice as many URLs
compared to domains for each data set. This suggests that each domain
has about 2-3 blacklisted URLs. However, the average number of URLs
per domain name is 1. The 10 most frequent domain names added to PT
consist of 4,566 URLs – 1% of the dataset. The 3 most frequent domain
names in PT consist of 1,459; 829; and 388 URLs, respectively. The 10
most frequent domain names added to OP consist of 8,412 URLs – 16% of
the dataset. The 3 most frequent domain names in OP consist of 3,487;
1,965; and 6,55 URLS, respectively. This shows that the majority of domain
names appear in both the OP and PT blacklists only once but that a small
number of domain names contain multiple different blacklsited URLs. The
most frequent domain names in both blacklists appear significantly more
times than any other domain in the dataset.

The 3 box plots in Figure 5.1 show the number of URLs in each of the
3 blacklists: PT, OP, and GSB, on each update. PT and OP were updated
once per hour and GSB was updated every 5 minutes. All 3 blacklists were
updated 24/7 throughout the measurement experiment which ran from
March to June 2019. These box plots show that the number of URLs in
the PT blacklist ranged from 9,313 to 15,500 with a median of 12,433;
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Figure 5.1: Box plots showing number of URLs in blacklists: PT, OP, GSB,
at each update. Measured between March and June 2019.

the lower quartile was 10,174 and the upper quartile was 14,041. The OP
blacklist saw a range of 1,889 to 9,047 URLs with a median of 3,861; the
lower quartile was 3,096 and the upper quartile was 5,748. Finally, the
number of URLs in GSB ranged from 1,491,850 to 1,733,813 with a median
of 1,581,351; the lower quartiles was 1,551,780 and the upper quartile was
1,677,262. These figures show that the number of URLs in all 3 blacklists
stayed within reasonably consistent ranges throughout the measurement
study. The range in number of URLs in these blacklists varied by 6,187 in
PT; 7,158 in OP; and 241,963 in GSB. This range difference compared to
the median number of URLs for each blacklist is PT: 50%, OP: 185%, and
GSB: 15%. This shows that the range of URLs in the OP blacklist, during
our measurement study, was considerably greater then the average number
of URLs we saw in the blacklist. This is likely due to large numbers of URLs
that are removed from the OP blacklist, therefore keeping its average size
down, and may suggest that URL durations in OP are relatively short. In
GSB, the range in number of URLs was relatively small compared to the
average number of URLs – suggesting that URLs may remain in the blacklist
for some time.

Overall, the findings in Table 5.1 and Figure 5.1 show that GSB is by far
the largest of the 3 backlists, in terms of number of URLs added, and also
sees the greatest number of URLs that remain in the blacklist throughout
our measurement study. We see that the median number of URLs contained
within GSB, throughout our measurement period, is just over 1.5 million.
In comparison, the median number of URLs in PT was 12,433 and in OP
was 3,861 – both over 99% less than GSB’s median. Also, 97% fewer URLs
were added to both PT and OP than GSB – this further illustrates the scale
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Category URLs

Threat Type
Threat type unspecified 0
Malware 362,230
Social engineering 8,718,240
Unwanted software 599,546
Potentially harmful application 37,790

Platform Type
Platform type unspecified 0
Windows 1,609,928
Linux 1,609,928
Android 20,451
OSX 1,609,928
iOS 37,790
Any platform 1,609,927
All platforms 1,609,927
Chrome 1,609,927

Threat Entry Type
Threat entry type unspecified 0
URL 9,717,803
Executable 0

Table 5.2: Overview of GSB blacklists showing total number of unique
SHA-256 URL hash prefixes in each category.

of GSB and how many URLs are added. Interestingly, during our study,
the OP blacklist saw 3,761 more URLs added to it than PT. However, the
median number of URLs residing in OP was 8,572 less than PT’s median – a
69% decrease. This shows that even though 3,761 more URLs were added
to OP during our study, the average number of URLs in OP remains low
– possibly due to more frequent cleansing of the OP dataset. Due to the
higher number of URLs residing in GSB compared to OP and PT, it is likely
that GSB would catch a greater number of phishing URLs when deployed to
check a random feed of URLs. Therefore GSB may be more effective than
PT and OP at protecting users from phishing attacks due to its greater size.

5.5.2 GSB Categories

This section analyses the total number of URLs in each category of the GSB
blacklist. Table 5.2 provides an overview of the GSB blacklist, showing total
number of unique SHA-256 URL hash prefixes in each category. The three
main categories within GSB are: threat type, platform type, and threat

150



5.5. Results

Category URLs

Malware 362,230
Windows 57,223
Linux 57,223
Android 0
OSX 57,223
iOS 18,895
Any platform 57,222
All platforms 57,222
Chrome 57,222

Social engineering 8,718,240
Windows 1,453,040
Linux 1,453,040
Android 0
OSX 1,453,040
iOS 0
Any platform 1,453,040
All platforms 1,453,040
Chrome 1,453,040

Unwanted software 599,546
Windows 99,665
Linux 99,665
Android 1,556
OSX 99,665
iOS 0
Any platform 99,665
All platforms 99,665
Chrome 99,665

Potentially harmful application 37,790
Windows 0
Linux 0
Android 18,895
OSX 0
iOS 18,895
Any platform 0
All platforms 0
Chrome 0

Table 5.3: Overview of GSB blacklist showing total number of unique
SHA-256 URL hash prefixes in categories: Threat Type and Platform Type,
combined.

entry type. The subcategories of threat type are: threat type unspecified,
malware, social engineering, unwanted software, and potentially harmful
software. The subcategories of platform type are: Windows, Linux, Android,
OSX, iOS, any platform, all platforms, and Chrome. The subcategories of
threat entry type are: threat entry type unspecified, URL, and executable. In
Table 5.3, categories threat type and platform type are combined to show
the total number of URLs in both.

Tables 5.2 and 5.3 show that, of the 4 main threat type categories, social
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engineering contains the greatest number of total URLs at 8,718,240. Of
this total, 1,453,040 URLs are unique; this number remains consistent
across all platform types within the social engineering category. This is
because phishing attacks are not software or platform specific; they rely
on human presence for the attack be effective. There are 599,546 total
URLs categorised as unwanted software, of which 99,665 unique; URLs are
consistently shared across all platforms except Android which sees 1,556
unique URLs. In the Malware threat type category: there are 362,230
total URLs, of which 57,223 unique URLs are on Windows, Linux, and
OSX platforms, while iOS sees 18,895 unique URLs and Android sees 0
URLs. Finally, the potentially harmful application category has 37,790 total
URLs, of which 18,895 unique URLs are categorised to the Android and
iOS platform, while the remaining platforms see 0 URLs. These figures
show that GSB contains more social engineering URLs in its blacklist than
other threat type. Suggesting that GSB may be more effective at detecting
phishing URLs than other types of threats listed within its categories.

KEY FINDINGS

The GSB blacklist contained an average of 1,581,351 URLs, compared
to 12,433 in PT and 3,861 in OP. We see 17 times more URLs added
to GSB than PT and OP combined.

Social engineering URLs make up the bulk of all URLs in GSB. This
makes GSB the largest phishing blacklist in our study; suggesting
that GSB should detect a greater number of URLs – therefore making
it a more effective blacklist than PT and OP.

The average number of URLs in the OP blacklist is 93% less than than
the total number of added URLs to OP – suggesting that OP enforces
strict limits on how long URLs remain in its dataset for.

5.5.3 URL Durations in Blacklists

In this section we analyse how long URLs remain in each of the 3 blacklists
(PT, OP, GSB) for. Figures 5.2a to 5.2c are histograms showing URL durations
in the 3 blacklists, in days, for URLs which were added to and removed
from each blacklist at least once, only once, and greater than once. These
results were measured between March and June 2019. The y-axes of these
histograms are shown on a logarithmic scale to make the results clearer
despite a wide variance in range.
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Figure 5.2: Histograms of URL durations (days) in blacklists: PT, OP, GSB,
for URLs that are added to and removed from each blacklist at least once,
only once, and greater than once. Logarithmic y-axes. Measured between
March and June 2019.

In Figure 5.2a we see that the most frequent duration for URLs in the PT
blacklist, at just over 10,100 URLs, is between 0 and 5 days. Further analysis
of this data revealed a frequency of 14,000 URLs with a duration between 0
and 1 day. We see that about 5,000 URLs remain in the blacklist for between
5 and 15 days. The histogram displays a skewed right pattern; we see the
frequency of URLs decrease as the duration in the blacklist increases. There
is an increase in URL frequency to the right of the graph at 65+ days – this
suggests that PT may possibly cleanse its database at this time therefore
resulting in a large numbers of URLs being purged. These durations show
that a lot of phishing websites that appear in PT are removed within 24
hours. This may be because these websites are taken offline soon after
appearing in the blacklist and therefore no longer pose a threat to users.
We see that some URLs remained in the blacklist for the entire duration of
our experiment which may suggest that phishing websites stay in the PT
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blacklist while they continue to pose an active threat to users. However,
the increase in number of URLs removed at a duration of 65+ days in the
blacklist is a concern if these websites are still actively serving phishing
content at time of removal. An analysis of the contents of these websites
may provide a clearer picture of why these URLs are removed at 65+ days.
We also see that a greater number of URLs are added to the PT blacklist
only once. The median duration for URLs in the PT blacklist is 2 days.

The histogram in Figure 5.2b shows URL durations in the OP blacklist.
The multimodal pattern in this histogram reveals a spike at the 5 and 7
day durations along with a maximum duration of 21 days. For URLs that
are added and removed only once, we see 25,578 URLs with a duration
of 5 days and 24,790 URLs with a duration of 7 days – all other duration
days see less than 650 URLs each. There are significantly fewer URLs in
the blacklist after the 7 day duration and just over 10 URLs between the
10 and 14 day durations. This suggests that the OP blacklist may carry
out cleansing of its dataset on URLs which have been in the blacklist for
5 days and 7 days along with a maximum duration of 21 days. It may be
that websites which have been taken offline are checked and removed after
being in the blacklist for 5 days and that this check is carried out again
after 7 days. No URLs remain in OP after 21 days – which may reduce the
effectiveness of OP if used to protect users from phishing attacks. Since any
phishing websites that stays online for over 21 days may no longer appear
in the blacklist, a user may believe that these websites are safe – when they
are not. This poses serious security issues about using the OP blacklist to
protect people from phishing attacks. Compared to PT, OP has significantly
more URLs that are added to the blacklist more than once. The median
duration in the OP blacklist is 5 days.

Figure 5.2c shows a histogram of URL durations in the GSB blacklist.
We use GSB’s Update API to retrieve the latest copy of the blacklist for
these experiments. URLs are encrypted as SHA-256 hash prefixes in the
local database therefore there are a number of hash collisions in our results.
This happens when 2 different URLs share the same hash prefix and would
appear in our results as an inaccurate URL duration. For example we saw a
number of URLs in our dataset which had negative durations in GSB. This is
because the removal timestamp of URL hash prefix has matched a different
URL’s hash prefix – for a URL that was removed before the original URL
was added – therefore showing as a negative duration in the blacklist. We
filter our results to only show URLs with positive durations, however, a
small number of the results shown are likely to still contain collisions.

Figure 5.2c shows a skewed right pattern, with the greatest frequency
of URLs having the shortest duration in GSB. As duration increases, the
frequency of URLs decreases. This is likely because a lot of URLs are taken
offline soon after they appear in a blacklist. A possible reason for this is that
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the URL’s hosting provider becomes aware of the blacklisted URL on their
server and therefore terminates the related account. Another reason is that
blacklisted websites are likely to see a reduction in visitor traffic, due to
visitors being unable to access the blacklisted site, therefore attackers may
quickly move on and set-up a new website. There is a slight increase in
frequency of URLs at the 53 to 60 day duration period, for URLs added once,
and 60 to 70 day period for URLs added more than once. This is possibly
due to GSB cleansing the dataset at this duration for each URL although we
continue to see URLs remain in the blacklist for longer than 60 days – albeit
less frequently. As with the PT blacklist, there is no apparent limit on the
duration of which URLs remain in GSB other than the potential 53 to 70
day duration cleanse. The median duration in the GSB blacklist is 10 days.
A greater quantity of URLs were added to GSB more than once compared to
just once. Overall, we see that there is a steady decrease in the frequency
of URLs as their durations in the blacklist increase – which is to be expected
as blacklisted websites are often taken offline shortly afterwards.

KEY FINDINGS

Across all 3 blacklists: as time increases, fewer URLs remain in the
blacklists. This is because, once blacklisted, phishing URLs are often
short-lived.

The OP blacklist limits the majority of URLs in its dataset to a duration
of either 5 or 7 days; no URLs remained in OP for more than 21 days
– therefore potentially limiting the blacklists effectiveness.

5.5.4 URL Reappearance in Blacklists

In this section we investigate URLs that are re-added to a blacklist, at a later
date, after having previously been removed. This may happen if an attack
website is deemed to be safe and is therefore removed from a blacklist - but
then later becomes a threat again so is re-added to the blacklist.

Table 5.4 shows, for each of the 3 blacklists, the number of times each
URL was added. This clearly shows how many URLs were added to a each
blacklist only once, and how many URLs were added more than once. We
see that, for PT, over 95% of all URLs are added to the blacklist only once,
just over 3% are added only twice, and 0.01% are added only 3 times. No
URLs were added to PT more than 6 times during our measurement study.
Similarly, in the OP blacklist, we see 93% of all added URLs are only added
once, and 5% are added only twice. We see an increase in the number
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Num URLs

Num times
added to
blacklist

PhishTank OpenPhish GSB

1 47,127 49,128 620,089
2 1,571 2,604 43,524
3 636 726 488,474
4 9 334 256,836
5 1 148 367,686
6 1 24 159,992
7 0 1 64,382
8 0 1 56,166
9 0 0 1,447

10 0 0 69

Table 5.4: Overview of blacklists: PT, OP, and GSB, showing number of
times each URL was added. Measured between March and June 2019.

of URLs added between 3 and 6 times in OP compared to PT; no URLs
were added to OP more than 8 times. For the GSB blacklist, we see that
the highest frequency – 30% of all added URLs – were only added once.
Interestingly, we see a significant drop in the number URLs that were added
to the blacklist twice – just 2% of all URLs added to GSB. The number of
URLs added 3 times to GSB increases to 24% of all URLs. The reason for
this dip in number of URLs added to GSB between 1 and 3 times may be
that if a URL is added to the blacklist twice then there is a significantly
higher chance that it will continue to reappear. Hence URLs appearing 3 to
8 times are seen more frequent than appearing just twice.

The GSB blacklist is much larger then PT and OP, as a result, we see
a significant increase in the number of times URLs were re-added to the
to blacklist. To help visualise all of this data, the frequency of URLs that
are re-added to the GSB blacklist is represented as a histogram, seen in
Figure 5.3. This histogram shows us that the highest frequency of URLs
were added to the blacklist between 1 and 6 times. The maximum number
of times URLs were added to the blacklist was 18 and we see over 10 URLs
were added to the GSB blacklist between 15 and 18 times. Although there
will be some URL hash prefix collision within these results, we can still see
that GSB allows websites to be re-added to its blacklist multiple times. This
may be due to GSB frequently monitoring previously blacklisted websites
– that have since been removed from the backlist – to determine if they
reoffend. When such websites are found to be hosting malicious content
again then they might be re-added to the blacklist
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Figure 5.3: Histogram of number of times each URL was added to GSB
blacklist. Logarithmic y-axis. Measured between March and June 2019.

Overall, we see that, for all 3 blacklists, once a URL has been removed
it can reappear again at a later date. This shows that none of the blacklists
enforce a one-time-only URL policy in their dataset and that all 3 blacklists
will re-add URLs if they continue or re-emerge as a threat. This is good for
users because they will be protected against reoffending phishing websites.

To further explore URLs that are re-added to blacklists, we calculate the
duration between removal and reappearance timestamps for all URLs that
are re-added to the 3 blacklists. These durations are shown as histograms
in Figures 5.4a to 5.4c. We use smaller bin widths in these histograms to
produce finer granularity results. Although these reductions in bin widths
produce multimodal graphs, we still see a general skewed right multimodal
pattern in all 3 of these histograms. This shows that, in all 3 blacklists,
fewer URLs reappear as the time since they were removed increases. This is
understandable because you would expect the majority of phishing URLs to
be taken offline as the duration of time since they were added to a blacklist
increases.

We see delays between URL removal and reappearance in the PT blacklist
in Figure 5.4a. In this histogram, 285 URLs reappear in the PT blacklist
within 1 day; this is the most frequent reappearance delay representing
12% of all reappearing URLs in the blacklist. In comparison, just 38 URLs
reappear in the PT blacklist 1 day after being removed. We still see over 20
URLs re-added to PT after more than 30 days since the URLs were originally
removed. No URLs reappeared in PT after 50 days. An interesting example
of the make-up of a phishing URL in this dataset is:
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Figure 5.4: Histograms of URL durations (days) between URLs being re-
moved and re-added in blacklists: PT, OP, GSB. Logarithmic y-axes. Meas-
ured between March and June 2019.

http://www.facebook.com.https.s1.[redacted].com

The domain name [redacted].com includes the subdomains www, face-
book, com, https and s1. The results of combining these subdomains is that,
to a user, this gives the appearance that the URL leads to facebook.com
– illustrating a very common masquerading technique used by phishers.
We have redacted the actual phishing domain from this example URL for
privacy and security. This URL was re-added to PT 46 days after removal.

Figure 5.4b shows delays between URL removal and reappearances in
the OP blacklist. 779 URLs are re-added to the blacklist within 1 day of
removal and 564 URLs are added 1 day after removal. There is a noticeable
drop in the number of URLs re-added to OP between 2 and 5 days after
removal. The number of URLs then increases again from 6 days after
removal. This relates to the pattern seen in Figure 5.2b (results Section
5.5.3: URL durations in blacklists), where there is a peak in number of URLs
that remain in OP for 5 and 7 days. This may suggest that OP does not
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allow certain URLs to reappear in its dataset, within a certain time period,
if they have been previously cleansed.

Delays between URL removal and reappearance in the GSB blacklist are
shown in Figure 5.4c. We see that over 3,200 URLs are re-added to the
blacklist within 1 day, and 1,000 URLs reappear 1 day after being removed.
Interestingly, there is a peak of over 500 URLs that reappear in the blacklist
26 days after removal. This may be where one specific campaign – which
had previously been neutralised – later became a threat again and therefore
reappeared in the blacklist.

KEY FINDINGS

Overall, we see that none of the 3 blacklists enforce a one-time-only
URL policy in their dataset therefore all 3 blacklists re-add URLs if
they continue to be, or re-emerge as, a threat. This is good for users
because they will be protected against reoffending phishing websites.

We also see that a large number of URLs reappear in the blacklists
within 1 day of removal – suggesting that these URLs were either
removed too soon or that they came back online again.

5.5.5 Blacklist Overlap

In this section we explore how many URLs reside in both the PT and OP
blacklists. We do not analyse URLs that also reside in GSB because URLs
are encrypted in the GSB blacklist. In total 11,603 unique URLs – consisting
of 6,079 unique domain names – appeared in both the PT and OP blacklists
during our measurement study carried out between March and June 2019.
The 10 most frequent domain names, appearing in bot PT and OP, consist
of 998 URLs; less than 1% of the dataset.

Figure 5.5 is a histogram showing the difference (in days) between PT
and OP first detection times for all URLs residing in both blacklists. Positive
values indicate that PT detected a URL before OP, negative values indicate
OP detected a URL before PT. For example: if a phishing URL appears in
PT on April 1 and then in OP on April 30 then the difference in detection
times between PT and OP is 30 days. If a phishing URL appears in OP on
April 1 and then in PT on April 30 then the difference in detection times
between PT and OP is -30 days (i.e., OP detected the URL before PT). The
histogram shows that 807 URLs were first detected by PT and that 9,990
URLs were first detected by OP. Both blacklists detect 814 URLs within 1
day. These results show that OP detected 92% more URLs before PT did –
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Figure 5.5: Histogram of delays (in days) between PT and OP detecting
URLs. Positive values indicate PT detected URLs before OP, negative values
indicate OP detected URLs before PT. Logarithmic y-axis. Measured between
March and June 2019.

suggesting that OP detects phishing URLs more quickly than OP. However,
there are lead and lag times of over 60 days for both blacklists – meaning
that both blacklists took at least 2 months to detect some URLs that had
already been detected by the other blacklist. Overall, PT saw the greatest
number of URLs with delays of over 60 days. Our experiments ran for just
over 70 days which defines the upper delay limit for this study.

Figure 5.6 shows the difference (in hours) between PT and OP first
detection times for all URLs residing in both blacklists. This histogram
shows the first 24 hours of lead and lag times for both PT and OP and is
represented on a linear scale for clarity. We see that, in the first 24 hours,
894 URLs were first detected by PT and 9,697 URLs were first detected by
OP. Both blacklists detect 1,020 URLs within 1 hour. We cannot increase our
measurement granularity any further than 1 hour because both blacklists
are updated once per hour. The reason we see more URLs detected in
our hourly difference measurements (compared to our daily difference
measurements) is because we are performing a frequency analysis of all
URL timings during our measurement timeframe; we have finer granularity
of the hourly delay timings (compared to daily delay timings). In these
results we see that OP detected 91% more URLs before PT did – again,
illustrating OP’s faster detection times. We see lead and lag times up to the
maximum duration, 24 hours, for both blacklists – i.e., both blacklists see
up to a 24-hour delay. However, significantly more URLs were first detected
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Figure 5.6: Histogram of delays (in hours) between PT and OP detecting
URLs – limited to first 24 hours. Positive values indicate PT detected URLs
before OP, negative values indicate OP detected URLs before PT. Linear
y-axis. Measured between March and June 2019.

by the OP blacklist.
The reason OP detects over 90% of URLs before PT is likely because the

PT blacklist is a community based network that relies on people submitting
potential phishing URLs. Members of the community then vote whether
these submitted potential phishing URLs are genuinely phishing or not.
This process of submitting and then manually verifying phishing URLs takes
time. Whereas the OP blacklist uses autonomous algorithms to detect zero
day phishing websites. Automated detection is faster and does not require
multiple people to vote – therefore detection times are reduced.

As previously mentioned, we only check URLs that reside in both PT
and OP. In future work we would like to include GSB so we can compare
the detection times between all 3 blacklists.
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KEY FINDINGS

We see that 11,603 unique URLs reside in both the PT and OP black-
lists and that OP was faster at detecting over 90% of these URLs.
However, both blacklists have large lead and lag time delays between
each other of over 60 days – illustrating how far behind the other
blacklist can be.

OP’s automated approach to phishing detection likely explains its
faster detection rates whereas PT’s manual, community-driven veri-
fication approach may explain its lag.

5.6 Conclusion

This measurement study analysed 3 key phishing blacklists: Google Safe
Browsing (GSB), OpenPhish (OP), and PhishTank (PT). We investigated the
uptake, dropout, typical lifetimes, and considered the overlap of URLs in
these blacklists. During our 75-day measurement period we observed that
GSB contained an average of 1,581,351 URLs, compared to 12,433 in PT
and 3,861 in OP. GSB is seen as a ground truth with respect to blacklisting
resources and we saw in this study 17 times more URLs added to GSB than
PT and OP combined. The sheer volume of URLs in the GSB blacklist could
make GSB an effective weapon in the protection of users against phishing
attacks through URL blacklisting.

Our measurements revealed that the OP blacklist removed a significant
volume of URLs from its dataset after a duration of 5 and 7 days; no URLs
remained in OP for more than 21 days. Therefore potentially limiting OP’s
effectiveness at protecting users from phishing attacks. We saw that, across
all 3 blacklists, as time increased, fewer URLs remained blacklisted; phishing
URLs are often short-lived. We determined that none of the 3 blacklists
enforced a one-time-only URL policy in their dataset; URLs reappeared in
the blacklists if they continued or re-emerged as a threat. This is good for
users because they will be protected against reoffending phishing websites.
We also showed that a significant number of URLs reappear in all 3 blacklists
within 1 day of removal – suggesting that these URLs were either removed
too soon or that they came back online. Finally, we compared the PT and OP
blacklists and discovered that 11,603 unique URLs resided in both of these
blacklists – a 12% overlap. Despite its smaller average size, OP detected
over 90% of these overlapping URLs before PT did.
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Time-of-Post Twitter Study

Catch Me (On Time) If You Can: Understanding the Effectiveness
of Twitter URL Blacklists

OUTLINE

This chapter presents an edited version of our research paper: BELL, S.,
PATERSON, K., AND CAVALLARO, L. Catch Me (On Time) If You Can: Un-
derstanding the Effectiveness of Twitter URL Blacklists. arXiv preprint
arXiv:1912.02520 (2019).

With more than 500 million daily tweets from over 330 million act-
ive users, Twitter constantly attracts malicious users aiming to carry out
phishing and malware-related attacks against its user base. It therefore
becomes of paramount importance to assess the effectiveness of Twitter’s
use of blacklists in protecting its users from such threats. We collected
more than 182 million public tweets containing URLs from Twitter’s Stream
API over a 2-month period and compared these URLs against 3 popular
phishing, social engineering, and malware blacklists, including Google Safe
Browsing (GSB). We focus on the delay period between an attack URL first
being tweeted to appearing on a blacklist, as this is the timeframe in which
blacklists do not warn users, leaving them vulnerable. Experiments show
that, whilst GSB is effective at blocking a number of social engineering and
malicious URLs within 6 hours of being tweeted, a significant number of
URLs go undetected for at least 20 days. For instance, during one month,
we discovered 4,930 tweets containing URLs leading to social engineering
websites that had been tweeted to over 131 million Twitter users. We also
discovered 1,126 tweets containing 376 blacklisted Bitly URLs that had
a combined total of 991,012 clicks, posing serious security and privacy
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threats. In addition, an equally large number of URLs contained within
public tweets remain in GSB for at least 150 days, raising questions about
potential false positives in the blacklist. We also provide evidence to suggest
that Twitter may no longer be using GSB to protect its users.

6.1 Introduction

As we saw in Section 2.13, Twitter features a large user base – including
politicians, celebrities, societal influencers – which makes Twitter an attract-
ive target for malicious users to carry out phishing and malware attacks.
One of the main ways these attacks are carried out is by leading victims to
a malicious site, by including one or more URLs in a tweet, whereby the
attack can occur.

Phishing attacks on Twitter have been known to lure victims in by offer-
ing verification on the social network but instead take them to a fake login
page to steal their Twitter username and password [45], while malware
attacks have included drive-by-download links contained within tweets,
cross-site scripting attacks [21], and Android malware that is controlled by
tweets [78].

One of the ways in which Twitter is improving its security for users is by
implementing numerous rules [278] that govern what type of content users
– and politicians [280, 144] – of the platform can and cannot send. In
2009, it was reported [200] that Twitter had started to use the phishing and
malware blacklist Google Safe Browsing (GSB), already used by popular
web browsers to filter out and protect its users from attack URLs. We provide
evidence that suggests Twitter is not using GSB effectively to protect its
users.

Our study aims to assess how effective Twitter’s use of blacklists is in
protecting its users from phishing and malware attacks. In particular, we
focus on the delay period between an attack URL first being tweeted to
appearing in one of 3 defined blacklists, as this is the timeframe in which
blacklists do not warn users against the attack. We collected over 182
million public tweets containing URLs from Twitter’s Stream API over a
2-month period and compared these URLs against 3 popular phishing, social
engineering, and malware blacklists that are used in leading web browsers,
antivirus solutions, and other online protection technologies.

During one month we discovered 4,930 tweets containing URLs leading
to social engineering websites that had been tweeted to over 131 million
Twitter users. The majority of URLs contained within these tweets took
between 20 and 30 days to appear in GSB. We focus on GSB because it is
the main protection used in popular web browsers. In the same month we
also discovered 1,126 tweets containing 376 blacklisted Bitly URLs that
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had a combined total of 991,012 clicks – these Bitly URLs represent 11% of
the total blacklisted social engineering URLs in our dataset for that month.
This demonstrates that Twitter users are clicking on and being exposed to
dangerous websites.

We also discovered that, while the GSB blacklist is effective at blocking
a large number of social engineering and malicious URLs within 6 hours of
being tweeted, a large number of URLs go undetected for at least 20 days,
with users potentially exposed to attacks during this delay. In addition, an
equally large number of URLs contained within public tweets remained in
the GSB blacklist for at least 150 days, potentially raising issues with false
positives in the blacklist.

Twitter provides a Stream API to access a source of live tweets. There
are 3 ways of accessing this API: the filter/sample, decahose, and firehose
streams. These feeds contain, approximately, 1%, 10%, and 100% of all
public tweets, respectively. The filter/sample feed is free to access, while
the decahose and firehose feeds come at a substantial cost. Our study made
use of Twitter’s filter/sample stream. There are methodological limitations
to using this smaller sample feed. For example, URLs of interest may not
be contained in the feed we receive. We compensate as much as possible
for this, with techniques such as using Twitter’s Search API to determine
original tweet date instead of relying what our 1% sample tells us.

To the best of our knowledge ours is the first in-depth study that spe-
cifically focuses on the impact of blacklist delays on Twitter traffic. Our
study provides a present-day snapshot of the current state of phishing and
malware URLs being posted to Twitter. A previous study from 2010 [110]
took important first steps in this direction, but Twitter’s active user base has
grown from 30 million users in 2010 to 330 million users in 2017 [259]
and the number of daily Tweets has grown from 35 million in 2010 to over
500 million in 2017 [130]. We replicate the experiment of [110] (to the
extent we can in the face of missing details in [110]) but also present a
more comprehensive and detailed analysis of malicious URLs on Twitter. In
particular, we introduce a new methodology to measure delay from first
tweet to membership in the GSB blacklist to determine effectiveness of
Twitter URL blacklists. We are also able to determine worst-case scenario
delay periods, and we measure the duration of time that URLs stay in GSB.

We organise the remainder of this chapter into the following sections:
Section 6.2 introduces key related work, Section 6.3 describes our meth-
odology, Section 6.4 provides an overview of our experiments, Section 6.5
presents our results, and Section 6.6 provides concluding remarks. The
results of this study are discussed in Section 9.3: Time-of-Post Twitter Study.
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6.2 Related Literature Summary

As we saw in Section 3.3: Ludl et al. & (2007) & Sheng et al. (2009), Ludl
et al. and Sheng et al., illustrated that blacklists can be an effective ground
truth – but that temporal aspects of blacklists should also be considered.
The experiments carried out in this thesis focus on Twitter as a delivery
platform for phishing attacks rather than e-mail.

Whilst existing studies have looked at the phishing landscape in terms of
detecting and preventing phishing attacks, they have not focused specifically
on the relationship between blacklists and phishing and malware attacks on
Twitter. However, in a 2010 study, Grier et al. [110] characterised phishing,
malware and scam URLs posted to Twitter. As part of their broad study, of
which their overall aim was to characterise spam on Twitter, they analysed
blacklist delays and performance, looking at the blacklists GSB, Joewein,
and URIBL. One of their main findings was that malicious URLs either
appeared in the GSB blacklist, on average, 29.58 days before being tweeted
or, if the URLs were not blacklisted at time of tweeting, it took, on average,
24.9 days for the GSB blacklist to detect the URLs. Phishing URLs either
appeared in the GSB blacklist, on average 2.57 days before being tweeted,
or, if not in the blacklist at time of tweet, an average of 9.01 days after
tweeting. Grier et al also produced evidence showing 100,000 phishing and
malware URLs were posted to Twitter during a 1 month period. The study
provided evidence showing that spam URLs received 1.6 million clicks from
Twitter users. In June 2010 Twitter announced [279] that it was working
on its own URL shortening service – this service launched a year later in
June 2011 [42]. Therefore the 2010 study was conducted before Twitter
implemented its URL shortener, t.co.

Whilst the Grier et al. study [110] looked at the delay for tweeted URLs
to appear in a blacklist, it treated multiple tweets of the same URL as being
unique, independent events. We take a different approach. We focus on the
delay time between when a blacklisted URL is first tweeted to when it first
appears in a blacklist such as GSB. We believe this provides a more accurate
measurement to ascertain the effectiveness of Twitter URL blacklisting.
This is because it enables us to determine how long users are exposed to
a specific attack URL since it was first posted to Twitter. One of the main
problems with the methodology in [110] is that a URL may be tweeted
at a certain point in time, then tweeted again on multiple occasions at
much later dates, closer to the point at which that URL becomes blacklisted.
This then skews the results because the average delay time for that URL to
become blacklisted, when calculated using all tweet times containing that
URL, will appear to be smaller than the time of first tweet to blacklist delay.
This will tend to underestimate the exposure of users.

A missing detail from [110] is how the historical blacklist data from
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GSB was obtained. Our study uses timestamps of when URL hash prefixes
were downloaded into our local copy of GSB to determine when a URL first
appeared in the GSB blacklist. Grier et al. [110] were also not specific about
which version of Twitter’s Stream API they use, other than mentioning that
it is a 10% feed. It is important to note that a 10% feed in 2010 will have
produced approximately 3.5 million tweets per day – similar to the 3 million
tweets per day that we collect in our study. The methodology section of our
study explains what version of Twitter’s Stream API we used, in an effort to
improve the reproducibility of our study.

It is important to note that the aim of [110] was to characterise spam
on Twitter, looking at phishing, malware, and scams; that study touched
on blacklist performance as part of an overall, broad analysis of spam
on Twitter. In contrast, our study aims to assess how effective Twitter’s
use of blacklists are at protecting its users from phishing and malware
attacks. In contrast, we carry out a more fine-grained and in-depth study
into the effectiveness of blacklists on Twitter, particularly focusing on delay
periods. As well as replicating the relevant experiments from [110], we
also introduce a new methodology to measure the delay between when
a blacklisted URL is first tweeted to when it first appears in a blacklist.
We also add the PhishTank and OpenPhish phishing blacklists to our study.
Finally, and importantly, we check redirection chains for each tweeted URL,
since blacklisted URLs may be hidden in such chains.

6.3 Methodology

As described in the previous subsection, tweets containing URLs are collec-
ted from the Twitter stream and saved into a local database. 3 blacklists
are also stored in the local database. In order to determine which tweeted
URLs appear in the 3 blacklists two systems are used: fast and slow. The
fast system checks the 3 million most recently tweeted URLs (equivalent
to about 24 hours of tweets) against the GSB blacklist every 10 minutes
and the OpenPhish and PhishTank blacklists every hour. We determined
this 10 minute update frequency by carrying out a small-scale study to
observe how frequently the GSB Update API blacklist updates. OpenPhish
and PhishTank refresh their blacklists every 60 minutes. The slow system
checks all tweeted URLs we have collected since our experiment began
and performs a lookup on the latest versions of all 3 blacklists. This slow
lookup system will complete its cycle of all URLs relatively quickly at first
but increase in duration as the number of URLs in the experiment grow.
The main slowdown in this lookup system is that the GSB API requires
any hash prefix match to be sent to GSB’s servers for the full hash to be
downloaded then checked for a match. This system is necessarily slower
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in its operation, taking a number of hours to complete a pass over our
full collection of tweets. As previously mentioned, in this study our access
to GSB was not rate limited, therefore we could lookup all URLs in our
study for blacklist membership. The reason for these two lookup systems
(fast and slow) is because GSB does not include a “time of inclusion” for
blacklisted URLs. This system helps us to determine when URLs appear in
the GSB blacklist, with finer resolution on URLs that are Tweeted within 24
hours. The outcome is that we can produce more accurate results in our
measurements.

During the experiment it was discovered that the library implementation
we use for GSB’s Update API also stores timestamps for when blacklisted
URL hash prefixes were added to the local database. We then built a system
to lookup each blacklisted URL’s hash prefix timestamp to determine when
each URL was added to our local copy of the blacklist. The GSB Update API
library stores each blacklisted URL as a 4-byte SHA256 hash prefix; due to
the small size of these URL hash prefixes, there is a chance that collisions
may occur. Because of this, only hash prefix lookups that had zero collisions
were used for the experimental results. This additional system complements
the previously mentioned fast and slow lookup systems because the new
system will produce more accurate results for when a URL is already in
GSB – particularly if a URL has been in GSB for a significant amount of
time. The fast and slow systems are still required for when Tweeted URLs
are not in GSB at time of tweet.

When calculating the time from a tweet appearing in the Twitter Stream
feed to appearing in one of the 3 defined blacklists, some tweeted URLs may
have previously appeared on Twitter prior to being received in the Twitter
Stream feed. To compensate for this, we carry out another experiment.
In this experiment, when computing delays from time of tweet to time of
blacklist appearance, we built a system to lookup each blacklisted URL in
Twitter’s Search API. Our system can determine when the URL was first
tweeted; this timestamp can then be used to calculate the delay between first
tweet and first blacklist appearance, therefore increasing the accuracy of
the measurement. Limitations of using this approach, as stated in Twitter’s
Search API documentation, are that it is limited to 7-10 days, it is not an
exhaustive source of tweet. Therefore not all tweets will be indexed or
made available via the search interface.

6.4 Overview of Experiments

Our first experiment analyses tweets collected from Twitter’s Stream API
with the sample method; these sample tweets are collected during the
same time frame as the URL-containing tweets. This experiment shows
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us the ratio of URL containing to non-URL containing tweets along with a
breakdown of the numbers of tweets received per day.

Our second experiment replicates one of the experiments carried out by
Grier et al. [110] in which the delay from a URL being tweeted to appearing
in the blacklists is calculated. This experiment shows what has changed
since the 2010 study – particularly since Twitter’s active user base has grown
from 30 million in 2010 to over 330 million in 2017 and total number of
daily tweets has grown from 35 million in 2010 to over 500 million in 2017.

Our third experiment uses a different methodology to the 2010 study
[110], in that we use the timestamp for when a blacklisted URL was first
tweeted to calculate delay to first appearing in a blacklist. If a URL is
tweeted multiple times then only the first tweet to contain that URL will be
used to calculate delay. This measurement is important as it allows us to
determine how long it takes for URLs to appear in blacklists after they are
first tweeted. This experiment also includes the PhishTank and OpenPhish
databases.

Our fourth experiment is an improvement on the previous experiment
in that the Twitter Search API system is used to determine when a URL
was first tweeted. Within Twitter’s Search API limit, of 180 calls per 15
minute window, URLs that appear in blacklists are searched for on Twitter
to determine their original tweet date. This allows us to determine, with
more accuracy than the previous experiment, when a URL was first Tweeted
(i.e. if we did not receive the original tweet containing a given URL in
our Twitter Stream). This also provides us with the worst case scenario
measurement.

Our fifth experiment analyses for how long blacklisted tweeted URLs
remain in the GSB blacklist for. In order to carry out this experiment the
timestamp for when a URL first appears in the Twitter Filter (URL) Stream
is compared against the last time the system matched the same URL in the
GSB blacklist. The difference between these two timestamps is used as the
measurement.

6.5 Results

6.5.1 Twitter Dataset Analysis

This first results subsection provides an overview of the dataset obtained
from collecting tweets via the Twitter Stream API Sample method during
October and November 2017. We collect, approximately, 3.4M sample
tweets and 3M URL-containing tweets per-day. Overall, the Twitter Stream
Sample collected 105,306,234 tweets in October 2017 and 100,817,746
tweets in November 2017; of these, only 23% contained URLs. The Twitter
Stream Filter (URL) collected 91,871,659 tweets in October 2017 and
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October November

Twitter Sample 105,306,234 100,817,746
URL 24,085,266 23,478,257
Non-URL 81,220,968 77,339,489

Twitter Filter (URL) 91,871,659 90,719,779

Table 6.1: Total number of collected Twitter sample and Twitter filter (URL)
stream Tweets, October and November 2017.
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Figure 6.1: Total Tweets collected per day: sample stream & filter (URL)
stream API, October and November 2017.

90,719,779 in November 2017, as shown in Table 6.1. Figure 6.1 shows
the per-day total number of Twitter Sample Stream tweets, including URL
and non-URL containing tweets, along with total number of Twitter Filter
(URL) Stream tweets collected in October and November 2017.

There are 10,029 unique URLs that first appeared in the Twitter Stream
Filter (URL) in either October or November that subsequently appeared in
one of the GSB, OpenPhish or PhishTank blacklists at some point during our
experiments. Of these URLs, 5,464 appeared in one of the blacklists within
1 month before or after first appearing in the Twitter Filter (URL) Stream, as
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Oct ’17 Nov ’17

Blacklist URLs Domains URLs Domains

GSB SE? 4,912 397 2,495 268
GSB SE† 3,273 212 930 182
GSB SE§ 295 89 294 73
GSB Malware? 1,563 250 1,054 144
GSB Malware† 718 82 543 65
GSB Malware§ 230 37 131 29
OpenPhish? 2 2 1 1
OpenPhish† 1 1 1 1
PhishTank? 2 2 4 3
PhishTank† 1 1 4 3

Table 6.2: Number of unique, blacklisted social engineering (SE) and
malware URLs & domains first tweeted in October and November 2017.
?Blacklisted anytime during experiment.
†Blacklisted within 1 month from first tweet date.
§Blacklisted within 1 month from first tweet date and using Twitter’s Search
API to determine URL first tweet date.

seen in Table 6.2. It is interesting to note that only 9 URLs from OpenPhish
and PhishTank appeared in the Twitter Filter (URL) stream during the
October and November timeframe. In October, of the 2 OpenPhish URLs
that were tweeted, 1 had been added to the OpenPhish blacklist on the 22nd
August 2017 and the other had a delay of 12 days from date first tweeted to
appearing in the blacklist. Of the 2 PhishTank URLs from October: one had
been tweeted on the 15th October 2017, but was blacklisted by OpenPhish
on 1st September 2017, the other was blacklisted approximately 5 minutes
after being tweeted. For November: the 1 OpenPhish URL appeared in the
blacklist approximately 5 minutes after being tweeted. For the 4 PhishTank
URLs, blacklist delays were approximately 32 minutes, 35 minutes, 21 days
and 9 days after tweet. Considerably fewer tweeted URLs appeared in the
OpenPhish and PhishTank blacklists compared to GSB. One reason for this
difference may be that the GSB blacklist contains approximately 3 million
URLs whereas the PhishTank and OpenPhish blacklists contain 28,000 URLs
combined; there are fewer URLs for PhishTank and OpenPhish to detect.
Another possibility is that Twitter is using the PhishTank and OpenPhish
blacklists and therefore preventing users from tweeting URLs contained
within these blacklists. However, if that were the case, then we would still
see URLs in the Twitter Stream before they appear in the OpenPhish or
PhishTank blacklists.

Figures 6.2a and 6.2b show the total number of unique URLs per day
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(b) Malware, Oct & Nov 2017

Figure 6.2: Total unique first tweeted social engineering & malware URLs
per day that first appeared in GSB blacklist within 1 month before or after
Tweet in October & November 2017.

that first appeared in the Twitter Filter (URL) Stream in the given month that
subsequently first appeared in the GSB Blacklist, as either social engineering
or malware, within 1 month before or after appearing in the Twitter Filter
(URL) Stream for October and November 2017.

KEY FINDINGS

These results show that we collected, approximately, 3.4M sample
and 3M URL-containing tweets per day throughout October and
November 2017. Of these, 5,464 unique URLs appeared in one of
the 3 blacklists within 1 month before or after first appearing in the
Twitter Stream Filter (URL). This volume of tweets provides us with
a good amount of data to explore delay times, click metrics, and
overall time in GSB in the upcoming sections.

We also see there are only 9 URLs from the OpenPhish and PhishTank
blacklists. This may possibly be because the PhishTank and OpenPhish
blacklists contain fewer URLs (approximately 28,000) compared to
GSB (approximately 3 million).

6.5.2 Blacklist Delays – All Blacklisted Tweets

In this subsection we replicate one of the experiments carried out in 2010
by Grier et al. [110]. It is important to note that it is difficult to replicate
their study exactly because their methodology is not completely explained
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in their paper. Specifically, they do not explain how a historical copy of the
GSB blacklist is acquired or if they allow a delay period of 1 month before
and after every URL is tweeted. To the best of our knowledge, based on
their paper, this is a replication of one of the experiments in their study.

In this experiment the delay period for a tweeted URL to appear in the
GSB blacklist is calculated using time of tweet to time first appearing in
blacklist. If a URL is tweeted multiple times then each posting is treated
as a unique, independent event. This is the same methodology used by
[110]. In our results a negative delay value represents a URL that appears
in the blacklist before it is tweeted and a positive delay value represents a
URL that appears in the blacklist after being tweeted. This is because we
are measuring the delay from a URL being tweeted to first appearing in a
blacklist, so a delay value of 20 days means it took 20 days from that URL
being tweeted to appearing in a blacklist. The Grier et al. [110] study uses
lead and lag times in their measurements, where a lead time signifies a
URL that appears on Twitter before being blacklisted and a lag time is used
to denote a URL that appears in a blacklist after being tweeted. As a result,
their lead times are positive and lag times are negative values.

Our first experiment looks at URLs that were tweeted during October and
November 2017 which were subsequently labelled as social engineering
in the GSB blacklist within 1 month before or after being tweeted. We
believe this is the most accurate way to carry out this measurement since
the same timeframe is applied to all individual tweets, regardless of when
they were tweeted in the month. This methodology is not defined in [110]
so it may affect the comparison. Timestamps for when tweets are received
from the Twitter Filter (URL) Stream are used as tweet date and URL hash
prefix timestamps from the GSB blacklist library are used to determine
time first appeared in GSB blacklist to calculate total delay from tweet to
blacklist, as described in the methodology section of our study. During
this experiment a total of 7,597 tweets containing social engineering URLs
in the GSB blacklist were recorded in October and 5,193 in November, as
seen in Figures 6.3a and 6.3b. We then carry out the same experiment for
malware URLs: a total of 1,110 tweets containing malware URLs embedded
the GSB blacklist were recorded in October and 914 in November, as seen
in Figures 6.3c and 6.3d. An additional step we take in our experiments,
which was not carried out in [110], is to further investigate anomalies in
these results and to also clean the results by removing the most frequent
domain names. This is explained further in the next subsection. For tweets
containing blacklisted social engineering URLs In October there is a spike of
tweets at -8 days and again between -2 and -4 days. These spikes are caused
by one domain name. For tweets containing blacklisted social engineering
URLs in November, there is a peak of 3,316 tweets that have a delay time
of between 13 and 14 days, as seen in Figure 6.3b. This spike is caused by
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Figure 6.3: Delay time for all tweets containing GSB blacklisted URLs
(including most frequent domain names) labelled social engineering and
malware, November and October 2017.

GSB SE GSB Malware

Oct Nov Oct Nov

Avg. lag (days) 22.62 12.71 17.99 15.02
Avg. lag – top domains removed (days) 11.05 13.37 15.55
Avg. lead (days) -5.39 -12.18 -19.41 -12.57
Avg. lead – top domains removed (days) -5.46 -18.24 -12.73

Table 6.3: Average delay times for all tweeted blacklisted social engineering
(SE) and malware URLs. Lead and lag times indicate appearing in blacklist
before or after being tweeted, respectively.

one domain name.
When comparing our results to the 2010 study [110] it is important to re-

member that their study had access to a 10% Twitter feed of approximately
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Google Phishing Google Malware

Avg. lead period (days) 2.57 29.58
Avg. lag period (days) -9.01 -24.9

Table 6.4: For comparison: Grier et al (2010) [110] results: blacklist
performance, measured by the number of tweets posted that lead or lag
detection. Positive numbers indicate lead, negative numbers indicate lag.

35 million tweets per day in 2010; our 2017 study collects approximately
3 million URL-containing tweets per day – comparable numbers. The first
noticeable difference is that there are a greater number of overall tweets
containing blacklisted social engineering URLs in our study (Figures 6.3a
and 6.3b). Whereas [110] sees a greater number of tweets containing mal-
ware URLs appear in GSB after they have been tweeted. We see significantly
more tweets containing blacklisted URLs appearing on Twitter after they
have appeared in the GSB blacklist for both social engineering and malware
URLs. In our study, for social engineering tweets in November, the delay
with the greatest number of tweets is 13.5 days with approximately 3,275
tweets. In [110], the delay with the greatest number of tweets approxim-
ately -6 days with approximately 58 tweets. In our study, when looking at
social engineering tweets in October, the delay with the greatest number of
tweets is 26 days with 790 tweets. This shows that, in our results, there is
a greater volume of social engineering tweets appearing on Twitter. The
results in [110] show that the average lag time for social engineering tweets
is 9.01 days and the average lead period is -2.57 days. For malware tweets
the average lag time is 24.90 days and the average lead time is -29.58 days.
The results for the average lead and lag times for our experiments can be
seen in Table 6.3; [110] can be seen in Table 6.4. These figures show that
the lag time averages can vary depending on if the most frequent domain
names are included in the calculation, as is the case for social engineering
and malware tweets in October.

175



Chapter 6. Time-of-Post Twitter Study

KEY FINDINGS

One of the most significant differences between our results and those
in 2010 [110] is that, in our results, there are substantially more
URLs being posted to Twitter after they appear in the GSB blacklist,
compared to [110].

This suggests that Twitter has altered its filtering process to allow
some URLs blacklisted by GSB to be tweeted or they may have stopped
using the GSB blacklist altogether and built their own URL filtering
system.

6.5.3 Blacklist Delays – From Time of First Tweet

In this subsection we use a different methodology to [110] in that the
timestamp for when a blacklisted URL was first tweeted is used to calculate
delay to first appearing in a blacklist. This new methodology is important as
it allows us to determine how long it takes for URLs to appear in blacklists
after they are first tweeted – therefore calculating how long users are
exposed to attacks for. If a URL is tweeted multiple times then only the
first tweet to contain that URL will be used to calculate delay. One of the
main problems with the measurement carried out in [110] is that a URL
may be tweeted at a certain point in time, then tweeted again on multiple
occasions at a much later point in time; closer to the point at which that URL
becomes blacklisted. This then skews the results because, in this example,
the average delay time for that URL to become blacklisted, when calculated
from all tweet times containing that URL, will be less when compared to
just the time of first tweet to blacklist delay.

In this experiment we look at unique URLs that were first tweeted
during October and November 2017 which were subsequently labelled as
social engineering in the GSB blacklist within 1 month before or after being
tweeted. Timestamps for when tweets were received from the Twitter Filter
(URL) Stream are used as the tweet date and URL hash prefix timestamps
from the GSB blacklist library are used to determine time first appeared in
GSB blacklist to calculate total delay from tweet to blacklist, as described
in the methodology section. During this experiment a total of 3,273 unique
social engineering URLs were recorded in October and 930 in November.

During October the majority of social engineering URLs saw a delay
period of approximately 18 to 26 days from being tweeted to appearing
in the GSB blacklist. Upon further investigation it was discovered that
7 domain names accounted for 76% of the total dataset, 2,487 URLs, as
shown in Table 6.5. All of the URLs contained within this dataset are HTTP;
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Domain TLD Number of URLs

1 .cn 614
2 .cn 582
3 .com 554
4 .com 273
5 .cn 203
6 .cn 188
7 .life 73

Table 6.5: October 2017 seven most frequent social engineering domains
tweeted (domain names redacted).

none of them are HTTPS. We extract the domain name for each URL, as per
these examples:

• http://example.com/some-web-page.html

• http://subdomain.example.com

• https://example.com/some-secure-page.html

Figure 6.4a shows frequency distribution for both the original 3,273
URLs along with the remaining 426 URLs after the top 7 domains names
have been removed. This histogram, with the top 7 URLs removed, shows
that the majority of URLs appeared in the GSB blacklist within 6 hours
of being tweeted, as seen, after being zoomed in to 24 hours, in Figure
6.5a. A similar pattern is also seen in November where there is a peak at
around 6 hours, as seen in Figure 6.5b, although still a high number of URLs
are blacklisted between 6 and 24 hours. Figures 6.4a-6.4d and 6.5a-6.5b
show the delay period between tweet and blacklist, with the number of
unique URLs on the y axis and delay period along the x axis. A delay period
greater than zero means that the URL appeared in the GSB blacklist after it
appeared on Twitter. A delay of less than zero means that it was already
in the GSB blacklist at time of Tweet. The negative delay values, in these
graphs, show that large numbers of URLs were tweeted after they appeared
in the GSB blacklist. As with the previous subsection, this further suggests
that Twitter are either not using the GSB blacklist or are allowing some
URLs in GSB to be tweeted. This means that Twitter users are exposed to
social engineering and malware attacks.

In terms of the impact of these tweets, looking at just the top 7 most
frequent domains that were first tweeted in October 2017 and appeared
in GSB within 1 month before or after being tweeted, these 2,487 unique
URLs were tweeted by 1,227 individual Twitter accounts, making up 4,930
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Figure 6.4: Delay from time of URL first tweet to appearing in GSB blacklist
(including most frequent domain names) labelled social engineering and
malware, November and October 2017.

total tweets. These 1,227 Twitter accounts have a combined number of
131,116,820 followers giving a sense of the total number of Twitter users
potentially exposed to these social engineering tweets.

Figure 6.6a shows the distribution of these top 7 domains names in
the dataset showing that Domains 1, 2, 3, 5 and 6 appear predominantly
towards the 16 to 30 day delay mark with a few outliers around the 14
to 16 day mark, the majority of Domain 4 spans from -5 to 26 days and
Domain 7 stays around the 25 to 31 day mark.

When comparing the most frequently tweeted domains that are flagged
as social engineering in GSB in October and November there are 4 domains
names that appear in both months. This shows that, during the two months
in which we collected data from Twitter and GSB, there were a number of
large campaigns that spanned across both of these months. One of these
domain names is in the Alexa top 100, suggesting that this website had
become compromised, potentially by some sort of social engineering advert.
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Figure 6.5: Social engineering URLs: delay from tweet to first appearing in
GSB blacklist (Figures 6.4a and 6.4b), first 24 hours, October & November
2017.
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Figure 6.6: Box plots showing most frequent social engineering & malware
domains for October 2017.

One theory as to why Twitter continues to allow URLs from this domain,
and others like it, to be tweeted on its network is because the main web
browsers (such as Chrome, Safari, Firefox etc.) have built-in protection
– which should prevent users from visiting dangerous websites. Twitter
can then outsource the protection of its users to the web browsers. This is
also the case on both the Android and iOS Twitter apps whereby links are
scanned by the Chrome and Safari web browser blacklists. One of the main
weaknesses to this approach is that there may be an attack space when web
browsers update their blacklists. If a user visits a newly blacklisted website,
but their web browser has not updated their local copy of the blacklist,
then the user will be allowed to visit the dangerous website without any
warnings – exposing them to the attack.
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When analysing the target of the social engineering campaign tweets
in October many of the tweets appear to be using click-bait techniques.
These tweets often use misleading titles to promote, for example, health
techniques with little evidence to backup their claims. Examples of tweets
seen in our dataset include “This Is What Happens When You Press This
Point Near Your Ear For One Minute” and “This Leaking From Your Eye Can
Be a Sign of a Dangerous Eye Infection”. These click-bait techniques are
commonly used to attract large numbers of people to a website in order to
generate revenue from adverts.

We then repeat the experiment, only this time analysing all tweeted
malware URLs, as classified by GSB. A total of 718 unique malware URLs
were recorded during the same timeframe in October 2017 and 543 unique
malware URLs in November 2017. When looking at the frequency distribu-
tion of delays, the largest peak of GSB blacklisted malware URLs in October
occurs at approximately 25 days and was caused by 2 domain names (con-
sisting of 219 and 161 URLs) making up 39% of the October dataset of 718
URLs. The total number of tweeted Malware URLs in October can be seen
in Figure 6.4c and shows frequency distribution for the month including
the 2 outlying domain names. Figure 6.6b shows the distribution of these
top 2 domain names in the dataset, showing that Domain 1 mostly covered
days 5 to 25, with its median at approximately 19.5 days. Domain 2 is
predominantly spread over the -20 to 12 day delay period, with its median
being just over 0 days. Finally, in November 2017, the largest peak appears
at around 14 days and is caused by 1 outlying domain name (consisting of
140 URLs) which made up 26% of the dataset. The frequency distribution
for November can be seen in Figure 6.4d.

Figure 6.7 shows a boxplot of tweeted GSB blacklisted social engineering
and malware URL delays in October and November 2017. The first row
shows the distribution of social engineering URLs in October 2017, before
the top 7 domains were removed whilst the second row shows the same
timeframe but with the top 7 domains removed. Row three shows GSB
blacklisted social engineering URLs in November, row four shows malware
URLs in October and row five shows malware URLs in November 2017.
This shows that, for social engineering URLs, the median delay time was
around 7 days in October and just over 0 days in November. For malware
URLs the median delay was around 11 days in October and around 8.5
days in November.

These graphs show that GSB appears to be quicker at detecting social
engineering websites than malware websites. One reason for this may be
that the criteria for the social engineering flag may include a wider net.
Therefore, as we saw with the Alexa top 100 domain, some high traffic
websites may become blacklisted when they fall into this net. Whereas
flagging a website in the malware blacklist requires Google to be certain the
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Figure 6.7: Delay from first tweet to first appearing in GSB blacklist – social
engineering and malware, October and November 2017.

website is harming – or attempting to harm – the user’s computer in some
way. This potentially stricter classification may take more time to confirm
and may explain why malware is slower to detect than social engineering
in our results.

KEY FINDINGS

One of the key takeaways from these experiments is that Twitter
allow considerably more URLs to be tweeted after appearing in the
GSB blacklist, compared to the 2010 study [110]. As previously men-
tioned, this may be because Twitter is relying more on web browsers’
built-in protection from malware and phishing URLs. However, one
of the biggest weaknesses to this approach is that the built-in black-
lists used by web browsers take time to update and this creates an
attack space.

The results in this section also show there is a significant delay – 20
to 30 days in some cases – before URLs are blacklisted. We also see
where a combined total of 131,116,820 twitter users are exposed to
2,487 unique blacklisted URLs. This means Twitter users are exposed
to these dangerous attacks for a substantial amount of time.
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Figure 6.8: Delay from first tweet to first appearing in GSB blacklist – using
Twitter Search API to determine URL first tweet date – social engineering
and malware, October and November 2017.

Even though the experiments in this subsection do not identify absolute
earliest time of tweet, our delay measurement will always be an under-
estimate. Therefore the real situation, in terms of Twitter users being
exposed to dangerous URLs due to blacklist delay times, is much worse.
This methodological weakness is addressed in the next subsection.

6.5.4 Blacklist Delays – Twitter Search API

The experiments in this subsection aim to further improve the accuracy
of the experiments carried out in the previous subsection. We do this by
making use of Twitter’s Search API to determine the original tweet date
for blacklisted URLs. Also, because we use Twitter’s 1% feed of tweets
there may be instances where a URL appears outside of our Twitter Stream.
By using Twitter’s Search API we can determine when a given URL was
tweeted. The measurements taken in this experiment are the same as in
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the previous subsection, that is the delay between a blacklisted URL first
being tweeted and first appearing in the GSB blacklist within 1 month
before of after tweet date, only in this section each URL is searched for
on Twitter and the timestamp of that search result is used for the delay
calculation. Using this method, in October 2017, 295 social engineering
and 230 malware URLs are recorded; their delays can be seen in Figures
6.8a and 6.8c. In November 2017, 284 social engineering and 131 malware
URLs are recorded and can be seen in Figures 6.8b and 6.8d.

It is important to note that there are significantly fewer URLs in this
part of the dataset. This is because Twitter states that its Search API is not
a complete search, therefore some URLs we try to determine original tweet
timestamps for cannot be found. In this case these URLs are dropped from
the dataset. A clear pattern that emerges in all 4 of these graphs is that there
are no URLs with a delay from first Tweet to first blacklist of more than 10
days. This is because Twitter’s Search API is limited to 7-10 days; any URLs
the system searches for that appeared in the GSB blacklist more than 7-10
days after being tweeted will not show up in a Twitter search if the URL
has not been tweeted again since. This limits these graphs, since they show
a reduced picture of delays between URLs being tweeted and appearing in
the GSB blacklist. However, as seen in the previous two sections, there are
still high numbers of URLs already in the GSB blacklist at time of tweet.

KEY FINDINGS

Measurements in the previous subsection do not show the worst-case
scenario in terms of delay from first tweet to appearing in blacklist
because URLs may have been previously tweeted. However, results in
this section, whilst showing fewer URLs in the dataset, do show the
worst case scenario for delay from first tweet to blacklist membership.
This adds additional evidence that Twitter are not blocking all GSB
URLs and may to be relying on other, possibly third-party techniques,
to protect its users against attacks.

There is also a significant number of URLs that take between 0 and
10 days to appear in the GSB blacklist – meaning users are exposed to
social engineering and malware attacks during these delay periods.

6.5.5 Blacklisted URL Clicks

To explore the impact of tweets that contain blacklisted URLs, we lookup
Bitly URLs that either directly appear in or are embedded in the redirection
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Phishing (GSB) Malware (GSB)

Data Oct ’17 Nov ’17 Oct ’17 Nov ’17

Tweets containing Bitly URLs 1,126 146 32 103
Unique Bitly URLs 376 141 30 66
Percentage of all blacklisted URLs
in this category and timeframe

11% 15% 4% 12%

Bitly clicks 991,012 450,039 61,140 194,503

Table 6.6: Total number of tweets containing Bitly URLs, unique Bitly URLs,
percentage of all URLs for each category and timeframe, and total Bitly
clicks for tweets containing GSB blacklisted phishing and malware URLs,
in our dataset, during October and November 2017.

chain that leads to the GSB blacklist, in our dataset. Bitly [43] is a URL
shortening service that also provide public analytics for URL clicks, referrers,
and location, via an API. By extracting Bitly links from our dataset of tweeted
URLs that subsequently appear in the GSB blacklist, we can then use the
Bitly API to lookup how many clicks each URL received.

Table 6.6 shows, from our dataset of tweeted URLs that subsequently
appeared in the GSB blacklist, the total number of unique Bitly URLs,
percentage of all URLs in this category and timeframe, total number of
tweets containing Bitly URLs for this category and timeframe, and total
number of Bitly URL clicks, during October and November 2017. In October,
there were 376 unique Bitly URLs that were either flagged themselves or
part of a redirection chain that was in the GSB blacklist as social engineering.
These 376 Bitly URLs make up 11% of the 3,273 total social engineering
URLs detected in that month in our dataset. The total number of clicks for
this 11% is 991,012.

To investigate the impact of tweeting a blacklisted URL to a twitter
account with a high number of followers, we extracted a blacklisted URL,
from our dataset, that uses Bitly. The blacklisted Bitly URL was tweeted by
an account with 3.7 million followers on October 24 and flagged as social
engineering in GSB on November 11. The URL received 276 clicks during
the week of October 22 2017, of which 270 came from Twitter. 176 of
these clicks came from the USA, 19 from Canada, 12 from the UK and the
remaining 34 from elsewhere. This URL did not receive any more clicks
after the week of October 22 at which point it appears to have been blocked
by Bitly. This example shows that a single tweet, from a high follower
account, posting a dangerous URL, can receive a high number of global
clicks – therefore exposing a large amount of twitter users to the attack. It
also shows that GSB took 18 days to add the URL to its blacklist, while Bitly
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appears to have blocked the URL much sooner. In this scenario, Twitter
appears to have outsourced its filter to Bitly – relying on Bitly to protect
Twitter’s own users.

KEY FINDINGS

These results show that, in one month alone, 1,052,152 clicks were
exposed to dangerous malware and social engineering attacks due
to Twitter not blocking harmful URLs. These click metrics represent
11% of our dataset, which is, approximately, 1% of all global Tweets
on twitter – giving a sense of the scale and impact caused by Twitter
allowing blacklisted URLs to appear on their social network.

6.5.6 Posting Blacklisted URLs to Twitter

In a separate experiment we created a private account on Twitter whereby
the account’s tweets were not publicly visible. We then attempted to tweet
a sample of 30 blacklisted URLs: 10 from GSB, 10 from OpenPhish and
10 from PhishTank. In this experiment, 8 of the OpenPhish URLs and 9 of
the PhishTank URLs could not be posted to Twitter. All of the GSB URLs
were posted successfully to Twitter. For tweets containing blacklisted URLs
that could not be posted to Twitter this error message was displayed: “This
request looks like it might be automated. To protect our users from spam
and other malicious activity, we can’t complete this action right now. Please
try again later”. We were able to tweet messages that did not contain
blacklisted URLs without receiving this error message. This suggests that
Twitter may display this generic error message when URLs that it has filtered
are requested to be tweeted on the social network. It is important to note
that this was a small-scale study and that the Twitter account used for this
experiment was set to private, therefore all tweets were hidden from the
public. Public Twitter accounts may see different results in this experiment
– for example: public tweets may go through a stricter filtering process.
Due to ethical considerations, we did not post any public tweets containing
blacklisted URLs.

KEY FINDINGS

The outcome of this experiment shows that Twitter appears to be
blocking more URLs on the PhishTank and OpenPhish blacklists com-
pared to GSB. Providing further evidence that Twitter is not using
the GSB blacklist – therefore exposing users to dangerous URLs.
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Figure 6.9: Unique social engineering & malware URLs duration in GSB –
first tweeted October, November 2017.

6.5.7 URL Time in GSB

This section explores the duration of time that unique URLs remained in
the GSB blacklist for. Each experiment takes all unique URLs that were first
tweeted in a given month, then, if a URL is not in GSB at time of tweet, the
duration in GSB is calculated as when the system first detects the URL in
GSB to when the system last saw the same URL in GSB. If a URL is already
in GSB at time of tweet then the GSB library URL hash prefix timestamp is
used as time first blacklisted and the time our system last saw the URL in
GSB as the final timestamp. The difference between these timestamps is
used to calculate total time in GSB for each URL. These duration periods
are then plotted on histograms to show the frequency of different duration
in GSB for all URLs.

Figures 6.9a and 6.9b show the duration of time that social engineering
URLs spent in the GSB blacklist in October and November 2017 and Figures
6.9c and 6.9d show the duration of time malware URLs appeared in the
GSB blacklist in October and November 2017. All four of these graphs
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have a logarithmic scale on the y axis so both high and low numbers are
illustrated clearly.

KEY FINDINGS

One of the main conclusions from these graphs is that there is a
general downward trend. This shows that, over time, the number
of URLs in the GSB blacklist is reducing – meaning that URLs are
removed from the blacklist, presumably once they are no-longer
perceived as a threat.

Our experiment ran for 150 days and there were over 1,000 URLs
remaining in the blacklist, for each category, at the end of the experi-
ment – meaning that many URLs remained in the GSB blacklist for at
least 150 days. Some of these URLs may still be dangerous, however,
there may be false positives in this blacklist which would mean these
URLs are, unnecessarily, being blocked. Exploring long-term false
positives in GSB is something we may explore in future work.

6.6 Conclusion

This study examined how effective URL blacklists are in protecting Twitter
users against phishing and malware attacks. We analysed over 182 million
URL-containing public tweets collected from Twitter’s Stream API, over
a 2 month period, and compared these URLs against 3 popular social
engineering, phishing, and malware blacklists. Our main discovery was
that, although the majority of phishing and malware URLs are detected by
the GSB blacklist (which is used by popular web browsers) within 6 hours
of being tweeted, there are still a large number of URLs that take at least
20 days to appear in GSB. We discovered 4,930 tweets containing URLs
leading to social engineering websites that took between 18 and 30 days
to appear in the blacklist. Between them, these 4,930 tweets had been
tweeted to over 131 million Twitter users. We also discovered 1,126 tweets
containing 376 blacklisted Bitly URLs that had received a combined total
of 991,012 clicks. These URLs represented 11% of the total blacklisted
social engineering URLs in that month. The fact that the GSB blacklist
can take weeks to detect dangerous URLs poses serious security risks to
Twitter users: tweets containing blacklisted URLs are sent to large numbers
of followers and receive a significant amount of clicks, thereby exposing
users to dangerous websites. Conversely, and surprisingly to us, there are
large numbers of URLs being tweeted that have already been blacklisted by
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GSB. This strongly indicates that Twitter is not using the GSB blacklist to
block malicious tweets at the time of tweeting, contrary to what was once
reported to be the case [200]. In summary, whilst blacklists are reasonably
effective at protecting Twitter users from phishing and malware attacks,
there is still an unprotected space that leaves Twitter users vulnerable.
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7
Web Browser Phishing Detection

Browsing for Phish: An Analysis of Web Browser Phishing
Detection Technology

OUTLINE

This chapter investigates how effective popular web browsers are at detect-
ing phishing websites. Our aim is to explore whether or not Twitter can
rely on web browsers to protect users against phishing attacks.

One of our key findings in the previous chapter was that large numbers
of blacklisted URLs are publicly tweeted on Twitter. We also discovered
that the GSB blacklist can be slow to detect these URLs – which may create
an opportunity for attackers. Can web browsers provide effective defence
against such attacks?

This chapter is an edited version of our CDT summer project entitled:
Browsing for Phish: An Analysis of Web Browser Phishing Detection Technology
(2015).

7.1 Introduction

The aim of our study is to carry out an investigation into the effectiveness
of web browsers’ built-in phishing detection technology – to explore how
effective their anti-phishing defences are – and to assess how well users are
being protected from phishing attempts carried out by attackers.

Many of today’s popular web browsers (specifically: Chrome, Safari,
Firefox, Opera, and Vivaldi – see Section 2.6.1) have the GSB blacklist built
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in. This is designed so that users are protected from phishing and malware
attacks. Our methodology to measure web browser phishing detection
effectiveness involves using a different data set of blacklisted phishing URLs
from GSB. Our data set of testing URLs comprises the PT and OP blacklists
to determine web browser detection rates for URLs that are blacklisted
and not-blacklisted by GSB at time of test. This methodology allows us
to investigate web browser phishing detection rates for both known and
unknown phishing websites – therefore determining web browsers’ heuristic
and blacklsited phishing detection rates.

Our study involves creating an automated testing environment to assess
many of today’s popular web browsers, across a variety of operating systems,
to determine how effective these browsers are at detecting phishing attacks.
Various phishing detection technologies, such as blacklists and dynamic
page analysis, are examined for their effectiveness.

Since most of the popular web browsers come pre-installed with anti-
phishing technology built in, the core focus of our study is to analyse how
effective these browsers are at detecting phishing websites. The only way
for a victim to view a phishing website is through an internet browser,
therefore it makes sense that this window into the world wide web provides
built-in phishing detection. In theory, this should give the user a better
chance at being protected from phishing website attacks.

To determine which web browsers should be included in our study, usage
statistics can be helpful to assess which browsers are the most commonly
used to browse the web. As we saw in Section 1.9.3: Web Browser Usage
Statistics, the most popular web browsers in January 2020 were: Chrome,
Safari, Firefox, Internet Explorer (Edge), and Opera.

As previously mentioned, the overall aim of this study is to carry out an
investigation into the effectiveness of web browser phishing detection tech-
nology. The original aim of our study was to focus specifically on browser
plug-ins and extensions that enhance the user’s protection against phishing
websites. However, soon into the initial phase of our study (assessing which
tools to test) it became apparent that many of these browser plug-ins are
becoming less popular. The main reason for this is that web browsers’
built-in phishing detection has made such plug-ins redundant. So that
steered our study into a new direction: how effective are the most popular
web browsers (running across a variety of operating systems) at detecting
phishing websites? The main aims of our study are:

1. Establish an automated testing environment in order to:

a) Run the most popular web browsers (Chrome, Safari, Firefox,
and Internet Explorer) under the most popular operating systems
(Windows, OSX, and Linux Ubuntu)

b) Execute automated phishing detection tests on above web browsers
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2. Determine phishing detection capabilities of most popular web browsers
against both known (backlisted) and unknown (non-blacklisted)
phishing websites

3. Reverse engineer web browser phishing detection methodology

4. Can phishing detection be circumvented – If so how?

5. Assess effectiveness of phishing warnings produced by web browsers

7.2 Related Literature Summary

As we previously explored (in Section 3.3: Threat Intelligence & Black-
lists), numerous studies have investigated the effectiveness of web browser
phishing detection. Most notably: Zhang et al. (2006) [311] and AV Com-
paratives (2012) [23]. A key limitation of the 2006 [311] study was that it
focused on web browser extensions and not on the “vanilla” web browsers
themselves (i.e. without any add-ons). The main limitation of the 2012 [23]
study was that, whilst it tested popular web browsers, the research was
limited to the Windows operating system.

In our experiments we will test the phishing detection effectiveness
of web popular browsers. We improve existing research by not using any
additional extensions or plug-ins with the web browsers. The web browsers
will be “off the shelf” installations. We will further improve existing research
by testing the web browsers across multiple operating systems. Existing
work does not identify the heuristic phishing detection rates of web browsers
(i.e. phishing websites that are not in the GSB blacklist). We address this
limitation by characterising URLs as either blacklisted or not-blacklisted by
GSB at time of test.

Our experiment to evaluate the effectiveness of web browser warnings
in preventing users from visiting phishing websites will build on existing
studies (summarised in Table 2.5). We repeat the existing studies to see
if there have been any changes in the web browser warnings. We also
combine metrics from multiple existing studies for the first time to evaluate
the web browser warnings’ effectiveness.

7.3 Overview of Experiments

A key part of this study is to carry out automated testing on a number
of different web browsers across the three main operating systems. This
automated testing needs to appear natural to the computer and replicate the
same interactions that a user of the computer would undertake. We use the
Web Browser Testing Suite (WBTS) to carry out our experiments. The WBTS
system design overview is described in Section 4.1.3, the methodology is
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outlined in 4.7.3, and the implementation details are in 4.8.9. The main
experiments that we carry out are described below.

Our first experiment is designed to test the phishing detection rates of
5 popular web browsers (Firefox, Chrome, Chromium, Safari, and Internet
Explorer) across the most popular desktop operating systems (Microsoft’s
Windows, Apple’s Mac, and Ubuntu for Linux). For this experiment, we
categorise the phishing URLs to be tested into: blacklisted (at time of test),
non-blacklisted (at time of test), and combined. We then compare the
detection rates of web browsers across multiple operating systems.

Our second experiment tests how much time it takes for a website to
become blacklisted.

Our third experiment analyses Chromiums source code to reverse en-
gineer its phishing detection methodology. This is used to verify whether
Chrome can detect phishing websites that are not blacklisted.

Our final experiment analyses warnings that the popular web browsers
display when a user attempts to visit a phishing website. Our analysis is
used to determine the effectiveness of warnings that are displayed to users.

7.4 Results

In total, 398 unique URLs were tested during various different experiments
against the web browsers: Internet Explorer, Chrome, Chromium, Firefox,
and Safari – during August 2015. The main results of these experiments
are shown below

7.4.1 Blacklisted Phishing Websites

The results in Table 7.1 show the total number of phishing websites that
were detected that were known to be in the Google Safe Browsing Blacklist.
207 phishing URLs were tested in this experiment. Some of the variations
in detection rates across operating systems are likely to be caused by a
delay in the web browser updating its own local copy of the blacklist.

7.4.2 Non-Blacklisted Phishing Websites

The results in Table 7.2 show the total number of detected phishing web-
sites that were not listed in the Google Safe Browsing blacklist. In total
191 phishing websites were tested, (however, during the experiments this
number fell to 171 since these websites either went offline or were added
to the blacklist). It is interesting to note that many of the phishing web-
sites that bypassed the non-blacklist detection methods were compromised
WordPress websites.
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Browser Detection Rate

Internet Explorer (on Windows) 98%
Chrome (on Windows) 94%
Firefox (on Windows) 95%
Safari (on Mac Yosemite) 99%
Chrome (on Mac Yosemite) 100%
Chrome (on Ubuntu) 94%
Chromium (on Ubuntu) 95%
Firefox (on Ubuntu) 81%

Table 7.1: Blacklisted phishing website detection rates of popular web
browsers.

Browser Detection Rate

Internet Explorer (on Windows) 78%
Chrome (on Windows) 38%
Firefox (on Windows) 71%
Safari (on Mac Yosemite) 58%
Chrome (on Mac Yosemite) 74%
Chrome (on Ubuntu) 72%
Chromium (on Ubuntu) 68%
Firefox (on Ubuntu) 74%

Table 7.2: Non-blacklisted phishing website detection rates of popular web
browsers.

These results show that, when presented with a phishing website that
is not in the Google Safe Browsing database, the web browsers were able
to detect 38% to 78% of phishing websites.

7.4.3 Total Detection Rate

Table 7.3 shows our results for the detection rates of web browsers on
both blacklisted and non-blacklisted phishing websites, across 3 popular
operating systems (OS). For comparison, Table 7.4 shows the results from
the AV Comparatives (2012) [23] study – which was limited to the Windows
OS. We address the single operating system (Windows) limitation of the
2012 study by adding 2 popular operating systems: Mac and Ubuntu. By
comparing our results with the 2012 study, we see that it can be useful to
categorise results into blacklisted and non-blacklisted at time of test. Since
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Browser Detection Rate

Internet Explorer (on Windows) 85%
Chrome (on Windows) 66%
Firefox (on Windows) 83%
Safari (on Mac Yosemite) 79%
Chrome (on Mac Yosemite) 87%
Chrome (on Ubuntu) 83%
Chromium (on Ubuntu) 82%
Firefox (on Ubuntu) 78%

Table 7.3: Total combined (blacklisted and non-blacklisted) phishing web-
site detection rates of popular web browsers across multiple OSs.

Browser Detection Rate

Opera 94.2%
Internet Explorer 82.0%
Chrome 72.4%
Safari 65.6%
Firefox 54.8%

Table 7.4: AV Comparatives (2012) [23]: web browser phishing detection
test results – limited to Windows OS.

the combination of both can cause the results to be misleading. The 2012
results show that Chrome saw a 72.4% detection rate. In our results, we
see Chrome’s detection rates are: 66%, 87%, and 83% across the operating
systems: Windows, Mac, and Ubuntu, respectively. The 2012 study tested
Chrome on the Windows operating system only. Therefore it is interesting
to note the lower detection rate in our results compared to 2012.

KEY FINDINGS

Our results in this section show that the web browsers we tested were
able to detect 81% to 100% of known (i.e. blacklisted) websites but
only 38% to 78% of unknown (i.e. non-blacklisted) websites. This
provides evidence that the web browsers could miss up to 19% of
known – and up to 62% of unknown – phishing websites.
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7.4.4 Comparrison Across Multiple Operating Systems

The Google Chrome web browser was tested across all three operating
systems to compare its detection rate. As the results above show, there
was quite a variation between these detection rates. The total detection
rate were: Windows: 66%, Mac: 87% and Ubuntu: 83%. One of the main
differences that stands out from the results was the low detection (38%)
rate of non-blacklisted URLs on the Windows operating system.

7.4.5 Time to Blacklist Websites

In this section we look at the results from two experiments which tested a
total of 200 phishing URLs to see how long it took for the URLs to appear
in the Google Safe Browsing blacklist. In the first experiment, of the 100
tested phishing URLs, only 3 appeared in the blacklist after 48 hours. In
the second test, of 100 phishing URLs, 11 were appeared in the blacklist
after 48 hours.

7.4.6 Chromium Phishing Detection Analysis

It is interesting to observe that, based on the above results, Chrome doesn’t
rely entirely on the Safe Browsing blacklist of phishing websites for its
phishing detection mechanism. There is clearly further technology under
the hood which is capable of detecting phishing websites that have not
previously been blacklisted. This section of the results shall attempt to
reverse engineer Google Chrome’s phishing detection methodology.

The results above show that both the Chrome and Chromium web
browsers produce similar phishing detection rates. Therefore it’s likely
that Chrome uses a similar phishing detection methodology to Chromium.
Since Chromium is an open source version of Chrome, reverse engineering
Chromium’s phishing detection methodology is likely to produce a similar
methodology to that of Chrome.

We dissected Chromium’s source code [100] to reverse engineer its
main phishing detection methodology. Based on our analysis of the code,
Chromium’s phishing detection algorithm is outlined below:

1. If URL in GSB blacklist: show phishing warning

2. Extract features from browser

a) has page been visited before (number of visits in history)
b) number of times URL typed into omnibox
c) number of times URL reached by clicking a link
d) number of times visited more than 24 hours ago
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3. Extract features from website

a) URL host features (e.g. is the URL hostname an IP address?)
b) URL host tokens (e.g. number of hostnames greater than one

looks phishy)
c) URL path token features (extract URL path)
d) DOM HTML form features

i. does page have <form> tags?
ii. does “action” element of form point to different url?

iii. does page have <input type=“password”> elements?

e) DOM HTML link features

i. number of links that point to a different domain

f) DOM HTML script features

i. set if more than one <script> element
ii. set if more than six <script> elements

g) Other (e.g. number of image sources – “src” – that point do
different URL)

h) Page term features (i.e. words on the page)
i) SHA-256 hashes of terms so phishers cannot work out what

terms are used for phishing classification

4. Phishing classifier:

a) Produce a feature map of above features and hand to below
Scorer, which computes the probability that the page is phishy.
If the page is phishy, show phishing warning

5. Scorer

a) Uses the above features to calculate a phishing probability score
based on machine learning approach

Looking at this algorithm, part 4: Phishing Classifier takes various fea-
tures from part 2: Browser Features and 3: On Page Features to produce a
feature map containing all of the extracted features that are met. Part 5:
Scorer uses a machine learning approach to calculate the probability that
the given website is a phishing attack. This machine learning approach is
regularly modified in order to provide the most accurate phishing detection.
It is noticeable that this detection methodology takes two main factors into
account: browser features (data about how often, if at all, this website
has been visited recently) and page features (use of password input fields,
number of script elements, use of external images et). This approach, along
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with these features, is similar to previous studies noted in our Existing Lit-
erature Section: 3.6: Heuristic Phishing Detection. The use of this algorithm
in Chromium (and probably Chrome) would explain why phishing websites
that do not exist in the phishing blacklist are still able, in some cases, to
be detected. It is interesting to note that no visual similarity comparison
technique could be found in the Chromium source code. This is probably
because maintaining a database of trusted websites (such as banks, social
media, online auctions etc) for comparing visual similarity would likely be
time consuming. Although storing their visual similarity signature would
not require much space on the clients hard drive.

KEY FINDINGS

Our findings in this section show how Chromium’s heuristic phishing
detection technique analyses, for a given webpage, various browser
and website features, such as: how many times a webpage has been
previously visited, whether the webpage’s hostname is an IP address,
whether the webpage contains a password input, etc. A machine
learning classifier then processes these features to calculate a phishing
likeliness probability score for that webpage.

In Section 9.4 we will discuss a number of hypothetical techniques
that could bypass the heuristic phishing detection, such as: hijacking
previously visited websites, misspelt domain names of popular brands
(e.g. ebayy.com), leveraging JavaScript to re-write webpage contents
to bypass initial checks, etc.

7.4.7 Effectiveness of Browser Warnings

All of the web browsers tested during our experiments displayed an active
warning that blocked the detected phishing website from loading. However,
the effort required by the user to circumnavigate these warnings (e.g. click
count, time spent on warning, brevity) varies. In Google Chrome (Figure
7.1) the user must click on “Details” (Figure 7.2), at which point the message
“if you understand the risks to your security, you may visit this infected site”
is displayed. The user is required to click a link with the text “visit this
infected site”. Additionally, there is only 1 button shown on the warning
page, which contains the text “Back to safety”, therefore encouraging the
users to follow the command.

Microsoft Internet Explorer (Figure 7.3) displays a similar warning
message to users: it shows an image of a green tick (positive reinforcement)
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Figure 7.1: Google Chrome Phishing Warning.

Figure 7.2: Google Chrome Phishing Warning Details.

next to a link with the text “go to my homepage instead” to encourage the
user to navigate away from the website. Additionally, an image of a red
cross is shown next to a link with the text, in smaller font to the previous
link, “disregard and continue (not recommended)” to discourage the user
from visiting the phishing website. Although not much effort is required
from the user to continue navigating onto the phishing website, the use of
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Figure 7.3: Microsoft Internet Explorer Phishing Warning.

Figure 7.4: Apple Safari Phishing Warning.

effective language and red warning imagery acts as a clear deterrent.
The phishing warning presented to Apple Safari (Figure 7.4) users is

possibly the weakest, in terms of encouraging users to navigate away from
the phishing website. The main reason is that the first button shown has
the text “Ignore warning” followed by a second button which features the
text “Go Back”. It would require very little effort for a user to click on
the “Ignore Warning” button due to its convenient placement and lack of
discouraging language or colour.

Finally, Mozilla Firefox (Figure 7.5) presents its users with a phishing
warning that requires a little more effort in order to continue navigating
onto the phishing website. Only two buttons are displayed to the user,
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Figure 7.5: Mozilla Firefox Phishing Warning.

Web Browser

Metric Chrome Firefox Safari IE

Neutral information No No No No

System decision Yes Yes Yes Yes

Passive warning No No No No

Active warning Yes Yes Yes Yes

Click count 2 1 1 1

Time spent on warning Low Low Low Medium

Technical jargon Low Low Low Low

Reading level Low Low Low Low

Brevity High High / Medium High High

Specific risk description Yes Yes Yes Vague

Illustration Yes Yes No Yes

Risk level Yes Yes Yes Yes

Table 7.5: Effectiveness of web browser warnings results.

which contain the text “Get me out of here!” and “Why was this page
blocked?”. The latter button takes the user to a Mozilla support page which
explains how the browser’s built-in phishing and malware protection work.
The user is required to click on the text at the bottom right of the screen, in
a smaller font, which features the text “Ignore this warning”. Whilst the
placement of this bypass link is effective at discouraging the user to click
on it, the use of language and colour is not particularly strong.
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Table 7.5 shows the results of our evaluation of the effectiveness of web
browser warnings that we tested. We see that none of the web browsers
show neutral information or passive warnings. This a good for effectiveness
because the presence of these metrics has been shown to reduce warning
effectiveness [300, 76]. All web browsers make a system decision and show
an active warning that requires the user to take action: continue to visit
the phishing website or navigate away. This is good for effectiveness. The
Chrome warning required the user to make 2 clicks to visit the phishing
website, whereas the rest of the browsers required 1 click. Existing literature
shows that, whilst click count does contribute to web browser warning
effectiveness, its impact is low [6]. We calculate time spent on warning as
the time required to read all text displayed. IE displayed the most amount
of text both in the warning and in the buttons, therefore requiring more
time to read. The rest of the browsers all required low time to read. This
improves effectiveness. All of the web browsers displayed a low level of
technical jargon and low reading level. This means that the warnings are
accessible to a wide audience range of reading and technical comprehension
levels – good for effectiveness. The Firefox warning message was high /
medium brevity. This is because the text is quite verbose and repeats itself
in places. All other browsers scored high in brevity (i.e. the messages were
brief) – good for effectiveness. The specific risk description displayed in the
IE warning was somewhat vague because it described phishing websites
as “unsafe” and did not mention the specific threat: phishing. All of the
other web browsers specified that the warning was about a phishing threat.
Safari did not display any illustrations on its warning, whereas all other
web browsers did. Illustrations can improve effectiveness. All warnings
used the colour red (red improves warning effectiveness): Chrome features
a red background with white text, Firefox features a dark red background
with white text, Safari features a red title ("Suspected Phishing Site"), and
finally IE features a red border. However, it is interesting to note that
each browser’s warning uses red in different ways. From Chrome’s full
bright-red background, to Safari’s subtle red title. These alternate uses of
red may impact their effectiveness – although these fine-grained measures
are outside the scope of our study. Overall we see that all 4 of the web
browsers we tested show effective warnings to deter users from visiting
phishing websites. Chrome scored the highest (i.e. its warnings were the
most effective).

It is important to note that there are many other effectiveness metrics
that we were unable to measure in this study. Such as: technical knowledge
of user, focus level of user (e.g. are they in a distracted state, noisy place),
etc. One such metric that we were unable to measure is warning fatigue.
Akhawe et al. (2013) [6]) state that the effectiveness of web browser
warnings will depend on how many similar warnings the user has recently
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seen. Warning fatigue is difficult to measure because it is dependent on
user context and the situation.

KEY FINDINGS

All of the web browsers we tested in our experiments displayed a
warning page to the user once a phishing website had been detected.
These warning pages required the user to take a specific action –
which was mostly deterred – in order to continue navigating to the
potential attack website.

However, varying degrees of effort and attention were required from
the user in order to bypass the web browsers’ warnings. The warning
which required the most amount of effort and attention from the
user, in oder to bypass it, was Google Chrome, since the bypass link
is initially hidden from the user. In contrast, Apple Safari presents
a weaker warning since the bypass button features prominently on
the page without much discouragement to click on it. Therefore, we
see that Chrome presents the most effective web browser warning to
prevents its users from visiting phishing websites.

7.5 Conclusion

This study has successfully created a comprehensive testing environment
to assess the effectiveness of web browser anti-phishing technology across
a variety of different operating systems. Through this test suite, popular
web browsers were presented with a number of phishing websites and their
phishing detection rates measured.

Our study was able to conclude, by testing both phishing blacklist and
phishing heuristic detection techniques, that most of today’s popular web
browsers are able to detect, on average, 80% of both blacklisted and non-
blacklisted phishing websites.

The phishing detection methodology of the Chromium web browser
was analysed, reverse engineered, and described; illustrating how the
web browser is able to detect non-blacklisted phishing websites – without
requiring a blacklist.

Overall, we see that automated phishing detection, which is built into
all of the popular web browsers we tested, can be effective – although
the heuristic detection of non-blacklisted phishing websites is typically
lower, such as the Google Chrome web browser running in our Windows
environment which only detected 38% of non-blacklisted phishing websites.
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Our results also show that web browsers display active warning pages
that encourage users to avoid visiting detected phishing websites. Although
not flawless, some effort and attention is required from users that want to
bypass these warnings in order to access the phishing sites – although, in
some cases, users could accidentally click through to the phishing websites.

CHAPTER SUMMARY

Results from our previous study (seen in Chapter 6: Time-of-Post Twitter
Study) showed us that large numbers of blacklisted URLs are tweeted on
the social network – and that GSB can be slow to detect these URLs. In
this chapter we saw that web browsers do indeed protect users against
phishing attacks. However, the effectiveness of this built-in defence mech-
anism depends on a number of factors, such as whether or not a website is
blacklisted and blacklist update delay times.

In this chapter, we also saw that web browsers are reasonably effective
at blocking known (i.e. blacklisted) phishing attacks. This might suggest
that Twitter does not need to protect its own users against phishing attacks
– because Twitter can rely on the web browsers as a defence mechanism.
However, as we saw in Table 7.2, web browsers are not as effective at
detecting fresh (i.e. non-blacklisted) phishing websites – detecting only
38% to 78% of these. Also, users are not completely protected against
known phishing attacks, since blacklists take time to update – which can
create a window of opportunity for attackers. Therefore, if Twitter is relying
on web browsers to protect their users against phishing attacks, then Twitter
could be leaving its users exposed and vulnerable to these attacks.
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8
Time-of-Click Twitter Study

Measuring the Effectiveness of Twitter’s URL Shortener (t.co) at
Protecting Users from Phishing and Malware Attacks

OUTLINE

This chapter presents an edited version of our multi-award-winning re-
search paper: BELL, S., AND KOMISARCZUK, P. Measuring the Effectiveness
of Twitter’s URL Shortener (t.co) at Protecting Users from Phishing and
Malware Attacks. In Proceedings of the Australasian Computer Science Week
Multiconference (2020).

In this study we investigate how effective Twitter’s URL shortening
service (t.co [276]) is at protecting users from phishing and malware attacks.
We show that over 10,000 unique blacklisted phishing and malware URLs
were posted to Twitter during a 2-month timeframe in 2017. This lead to
over 1.6 million clicks which came directly from Twitter users – therefore
exposing people to potentially harmful cyber attacks. However, existing
research does not explore if blacklisted URLs are blocked by Twitter at time
of click.

Our study investigates Twitter’s URL shortening service to examine the
impact of filtering blacklisted URLs that are posted to the social network.
We show an overall reduction in the number of blacklisted phishing and
malware URLs posted to Twitter in 2018-19 compared to 2017, suggesting
an improvement in Twitter’s effectiveness at blocking blacklisted URLs at
time of tweet. However, only about 12% of these tweeted blacklisted URLs
– which were not blocked at time of tweet and therefore posted to the
platform – were blocked by Twitter in 2018-19. Our results indicate that,
despite a reduction in the number of blacklisted URLs at time of tweet,
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Twitter’s URL shortener is not particularly effective at filtering phishing and
malware URLs – therefore people are still exposed to these cyber attacks
on Twitter.

8.1 Introduction

This chapter follows on from our previous study, in Chapter 6: Time-of-Post
Twitter Study, where we investigated Twitter’s use of blacklists along with
blacklist delay times. Based on some of the results in that previous study,
we want to further explore what impact Twitter’s URL shortening service
might have on protecting its users against phishing and malware attacks.

In June 2010 Twitter announced [279] that it was working on its own
URL shortening service (t.co) – this service launched a year later in June
2011[42]. All URLs posted to Twitter (i.e. tweeted) are shortened via
Twitter’s URL shortening service (t.co). If a URL has already been shortened
with an existing URL shortener(s) (such as Bitly, Goo.gl, etc) then a redirec-
tion chain is formed, starting with t.co. This gives Twitter full control over
and monitoring of URLs posted to, and clicks leaving, its network.

The aim of our study is to explore how effective Twitter’s URL shortening
service, (t.co) is at protecting Twitter users from phishing and malware
attacks. A 2010 study [110] provided evidence to suggest that Twitter is
not using GSB effectively to protect users from such attacks. The study
showed that 100,000 phishing and malware URLs were tweeted to the
social network – therefore endangering users. Some of these blacklisted
URLs accumulated 1.6 million clicks from Twitter users – although the total
number of URL clicks in the study includes phishing, malware, and scam
URLs. These specific results from the 2010 paper were part of a much larger
study aiming to characterise spam and analyse features unique to Twitter. As
previously mentioned, Twitter’a URL shortening service launched in 2011,
therefore the 2010 [110] study was not able to research t.co URLs because
the study was conducted before Twitter implemented its URL shortener.

In 2017 [40]we investigated the delay times between phishing/malware
URLs being tweeted to appearing in blacklists. In this follow-up study to
our 2017 work, we build on our existing research to investigate Twitter’s
URL shortener.

Existing research suggests that Twitter is not effectively using the GSB
blacklist and therefore relying on web browsers built-in protection to pre-
vent users from visiting dangerous URLs. Twitter’s “time of click” URL
filtering (via t.co) has not previously been studied. The main motivation for
our study is to determine if blacklisted URLs, tweeted to the social network,
are filtered at time of click – via Twitter’s URL shortener (t.co) – and, if they
are, how effective this filtering process is.

206



8.2. Methodology

In our study we investigate if, since the 2010 study, the same volume
of phishing and malware URLs are still being posted to Twitter. We also
investigate if Twitter has implemented a filter to block blacklisted phishing
and malware URLs on their platform at time of click – therefore preventing
users from visiting these potentially harmful websites.

Our main research questions are:

• Are phishing and malware URLs still being posted to Twitter (i.e.
tweeted)?

• Has Twitter moved to a “time of click” defence strategy – via their
t.co URL shortener – rather than a “time of post”?

• If so: does Twitter’s filtering (via t.co) complement GSB blacklisting?

• How many tweeted URLs that are blacklisted are also filtered by t.co?

We organise the remainder of this chapter as follows. Section 8.2
explains our methodology, Section 8.3 provides an overview of our experi-
ments. Section 8.4 presents our key measurement results and interpreta-
tions, followed by our conclusion in Section 8.5. The results of this study
are discussed in Section 9.5: Time-of-Click Twitter Study.

8.2 Methodology

As described in the previous subsection, we collect URL-containing tweets
from Twitter’s Filter Stream API and store them in a local database. We
also store 3 blacklists in the local database. In order to determine which
tweeted URLs appear in the 3 blacklists two main systems are used: a GSB
blacklist lookup system and a PhishTank and OpenPhish blacklist lookup
system. Our GSB blacklist system uses GSB’s API to check tweeted URLs
for blacklist membership. This API is rate limited to 10,000 lookups per 24-
hour period, therefore we check all tweeted URLs from the past 24-hours to
7-days for GSB membership approximately every 7 hours. The GSB blacklist
lookup system updates its list of URLs every 10 minutes and the PhishTank
and OpenPhish blacklist lookup system updates its URLs once every hour.
Timestamps for when URLs are added and removed from the PhishTank
and OpenPhish blacklists are used to determine URL membership times.

To determine if a tweeted URL has been blocked by Twitter we analyse
the redirection chair for each t.co URL collected via Twitter’s Filter Stream
API. If a tweeted URL (shortened via t.co) has been blocked by Twitter then
a warning page is displayed to the user and there is no redirection chain. If
a URL is not blocked by Twitter then t.co forwards the user directly to the
URL that was shortened, thereby creating a redirection chain. By analysing
which t.co URLs have redirection chains and which do not then we can
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determine which tweeted URLs have been blocked by Twitter. This system
is carefully rate limited to ensure we do not flood Twitter’s servers.

8.3 Overview of Experiments

The key experiments we carry out in this study are:

1. Measure number of phishing and malware URLs posted to Twitter.
Also, to assess impact, measure clicks from Twitter users to these
blacklisted URLs (carried out in our previous study, seen in Chapter
6: Time-of-Post Twitter Study)

2. Measure Twitter Filtering: does Twitter filter URLs (via its t.co URL
shortener)? If so, does Twitter block blacklisted URLs?

• 24-hour measurement period
• 7-day measurement period

Measure number of phishing and malware URLs posted to Twitter
The aim of this experiment is to understand how many phishing and mal-
ware URLs are posted to Twitter. We also want to understand the impact
of these tweeted URLs by investigating how many clicks they receive from
Twitter users. We use Twitter’s Stream API to collect URL-containing tweets,
along with the GSB API and the OP and PT phishing blacklists. Tweeted
URLs are checked for membership in GSB every 10 minutes, and member-
ship in PT and OP every hour, throughout the experiment. We then use
Bitly’s API to measure how many clicks blacklisted Bitly URLs receive that
were posted to Twitter, in our dataset.

Measure Twitter Filtering: This section is split into two experiments:
24-hour measurements and 7-day measurements. Both experiments have 3
key aims:

1. determine how many tweeted URLs are blocked by Twitter (via the
t.co URL shortener)

2. determine how many tweeted URLs are blacklisted by either GSB, OP,
or PT

3. determine how many tweeted URLs are blocked by Twitter and black-
listed – by either GSB, OP, or PT

Both experiments involve collecting URL containing tweets, via Twitter’s
Stream API, then checking these URLs to determine if they are blocked by
Twitter and/or blacklisted by GSB, OP or PT. For the 24-hour measurements
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this check is carried out once for Twitter filtering and GSB membership. For
the 7-day experiment this check is carried out 25 times over the duration of
7 days. The specific methodology for each experiment are described below.

24-hour experiments: This measurement experiment analyses all tweeted
URLs we collect from Twitter’s Stream API over the past 24 hours. We de-
termine how many tweeted URLs are blocked by Twitter’s URL shortener
(t.co), by checking all tweeted URLs from the past 24 hours – it takes ap-
proximately 7 hours to complete this check due to rate limiting. We collect
approximately 3 million tweeted URLs from Twitter’s Stream API per 24
hours, of which approximately 1.5 million are unique. Therefore each 7
hour cycle checks approximately 1.5 million tweeted URLs to determine
if they have been blocked by Twitter. The second part of this experiment,
which determines how many tweeted URLs are included in the 3 main black-
lists (GSB, OP, and PT), checks all tweeted URLs from the past 24 hours for
blacklist membership and takes approximately 10 minutes to complete this
lookup. Each tweeted URL is only checked for GSB membership once in
this experiment due to the GSB API rate limit. This experiment is carried
out on a rolling timeline, i.e. at the start of each lookup cycle the most
recent tweeted URLs from the past 24-hours are checked.

7-day experiments: This experiment is similar to the previous, however,
the methodology in this experiment is altered to check tweeted URLs for
GSB membership multiple times over a 7-day period. In this experiment the
two parts are combined so that all tweeted URLs are checked to determine
if they have been blocked by Twitter’s URL shortener t.co and for GSB
membership at the same time. This means both parts of this experiment
take approximately 7 hours to check 1.5 million tweeted URLs. The main
advantage to this methodology is that we can determine if tweeted URLs
appear in the GSB blacklist and also check if they are blocked by Twitter – at
the same time. We also check tweeted URLs for GSB membership multiple
times, over a 7-day period, which means we can determine if URLs are
removed from and possibly re-appear in GSB. This experiment includes OP
and PT blacklist lookups, as before.

8.4 Results

8.4.1 Time-of-Post Defence Summary

As we saw from our previous study’s results, in Sections 6.5.1: Twitter
Dataset Analysis and 6.5.5: Blacklisted URL Clicks of Chapter 6: Time-of-Post
Twitter Study, over 10,000 phishing and malware URLs were posted to
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Twitter during our 2-month measurement timeframe. More than 45% of
these URLs took over 1 month to become blacklisted. This means these
blacklisted URLs were publicly available for Twitter users to visit – therefore
exposing people to these potentially harmful attacks.. This lead to over 1.6
million clicks which came directly from Twitter users – therefore exposing
people to potentially harmful cyber attacks. In the next subsection we assess
if Twitter implements additional protection for its users against these attacks.
We do this by investigating Twitter’s URL shortener (t.co) to determine if a
filtering system is implemented.

8.4.2 Investigation of Twitter Filtering

Building on from our previous subsection, where we show that phishing
and malware URLs are posted to Twitter and receive clicks from Twitter
users, this subsection investiagtes if Twitter implements a filtering system
to protect its users against blacklisted URLs. This subsection is split into
two key measurement experiment: 24-hour and 7-day.

24-hour Measurement Period

We collected tweeted URLs via Twitter’s Stream API (using URL filter),
to determine how many of these tweeted URLs are blocked by Twitter
(via their URL shortener t.co); how many of these URLs are blacklisted
by the 3 blacklists: Google Safe Browsing (GSB), OpenPhish (OP), and
PhishTank (PT); and how many of these URLs are both blocked by Twitter
and blacklisted. We collected these tweeted URLs over a 3-month period
during November, December, and January 2018-19. All tweeted URLs from
the past 24 hours were checked, approximately, every 10 minutes for GSB
blacklist membership, every hour for OP and PT blacklist membership, and
every 7 hours for Twitter filtering.

Table 8.1 shows an overview of the total number of tweeted, blocked
by Twitter (via t.co), and blacklisted URLs we collected during November,
December, and January 2018-19. The table also shows the total number of
tweeted URLs that were both blocked by Twitter and blacklisted (in one of
the 3 blacklists). The total number of tweeted URLs we collected is broken
down into total unique t.co (shortened) and total unique unshortened URLs.
All URLs posted to Twitter (i.e. tweeted) are shortened via Twitter’s URL
shortener, t.co. We define an “unshortened URL” to be the original tweeted
URL that has an associated (i.e. shortened) t.co URL. A single tweeted
URL can be shortened to one or more different t.co URLs – for example:
a number of different Twitter users may tweet the same URL which gets
shortened to separate t.co URLs. Therefore we see a higher number of
unique t.co URLs in the results table compared to unique unshortened
URLs. The table also shows how many unique t.co URLs were blocked by
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Nov ’19 Dec ’19 Jan ’19

Total tweeted URLs 85M 88M 88M
Unique t.co (shortened) 35M 35M 36M

Blocked by Twitter 10,297 4,038 5,636
Unique unshortened 31M 31M 32M

Blocked by Twitter 5,923 3,893 4,389
Blacklisted 67 118 251
GSB 62 117 249

GSB phishing 54 94 108
GSB malware 2 8 115
GSB other 6 15 27

PT 5 1 2
OP 0 0 0
Blocked by Twitter
and blacklisted

12 16 18

GSB 7 15 16
PT 5 1 2
OP 0 0 0

Table 8.1: Overview showing total number of tweeted, blocked by Twitter
(via t.co), and blacklisted URLs up to 24-hours after time of tweet, in our
dataset. Experiments conducted during Nov, Dec, & Jan 2018-19 (M =
million).

Twitter and how many unshortened URLs were blocked by Twitter; how
many tweeted URLs appeared in the 3 main blacklists (GSB, OP, and PT),
along with categorisations for GSB; and finally how many tweeted URLs
were blocked by Twitter and blacklisted, along with which blacklists they
appeared in.

The results in Table 8.1 show that Twitter’s defence strategy does indeed
involve filtering URLs at time of click via their URL shortener, t.co. However,
we also see that, of the tweeted URLs which were blacklisted, only 7-18%
were also blocked by Twitter: 18% (12 of 67) in November, 14% (16 of
118) in December, and 7% (18 of 251) in January. This shows that, in
our dataset, over 80% of blacklisted phishing and malware URLs posted to
Twitter are not blocked by the social network – therefore allowing Twitter
users to click on these potentially dangerous links.

These results show that Twitter blocked over 14,000 unique, unshortened
URLs during our 3-month measurement period – but only 2% of these were
blacklisted phishing and malware URLs in GSB, OP, or PT. It is important to
note that Twitter’s Rules [278]mainly focus on preventing graphic violence,
abusive behaviour, violence and physical harm, hateful conduct, imperson-
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ation, and spam. Twitter does explicitly state that malware/phishing is not
allowed on its platform: “You may not publish or link to malicious content
intended to damage or disrupt another person’s browser or computer or
to compromise a person’s privacy”. However, this is a small part of its
extensive list of rules. Therefore, it is likely that the majority of these URLs
blocked by Twitter are for violations of its rules other than phishing/mal-
ware. Analysis of the categorisation of URLs blocked by Twitter, that are
not phishing/malware, is outside the scope of our study.

Our results also show that a larger volume of phishing URLs than mal-
ware URLs were posted to the social network, which we also saw in our
2017 experiments. This suggests that Twitter continues to be an effective
platform for malicious users to carry out social engineering attacks on – or
perhaps that Twitter is more aggressive at removing malicious URLs there-
fore eliminating them from the platform in the first place. It is interesting to
observe that all tweeted URLs residing in the PT blacklist were also filtered
by Twitter. This may suggest that Twitter blocks any URLs residing in the
PT blacklist at time of tweet – however it is not possible to extract this
information from our experiments directly. Upon further analysis of the
top domains in this dataset, we discovered that the majority of domains
blocked by Twitter are shortened URLs (via services Bitly, Zaper, goo.gl,
Ow.ly, flic.kr, page.link, etc.) and a large number of pornographic websites.
This suggests the shortened and pornographic URLs direct to websites that
are in violation of Twitter’s Rules. The results also show a small number of
GSB blacklisted URLs labelled as “other”, these include unwanted software
and potentially harmful applications.
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KEY FINDINGS

Results from our 24-hour measurement experiments show that Twit-
ter’s defence strategy does indeed involve filtering URLs at time of
click via their URL shortener, t.co. However, we also see that, of the
tweeted URLs which were blacklisted, only 7-18% were also blocked
by Twitter.

During our 3-month measurement study, Twitter blocked over 14,000
unique URLs – but only 2% of these were blacklisted phishing and
malware URLs in either the GSB, OP, or PT blacklists.

Our results also show that a larger volume of phishing URLs than
malware URLs were posted to Twitter during our measurement study
– a similar finding to our 2017 study (Chapter 6: Time-of-Post Twitter
Study). This may suggest that Twitter continues to be an effective
platform for malicious users to carry out social engineering attacks
on.

It is important to note that, during these 24-hour measurement exper-
iments, tweeted URLs were checked for GSB blacklist membership once
within 10 minutes of tweet and checked for Twitter filtering up to 4 times
within 24 hours of tweet. Tweeted URLs were not measured beyond 24
hours. We improve on this methodology in the next subsection.

7-day Measurement Period

The results in this subsection analyse tweeted URLs we collected via Twitter’s
Stream API, to determine how many of these tweeted URLs are blocked
by Twitter (via their URL shortener t.co); how many of these URLs are
blacklisted by the 3 blacklists: Google Safe Browsing (GSB), OpenPhish
(OP), and PhishTank (PT); and how many of these URLs are both blocked
by Twitter and blacklisted. We carried out 4 key experiments, each over a
duration of 7 days. Each experiment collects 3 million tweeted URLs from
the past 24 hours then analyses that batch of URLs over a 7-day period.
This differs from the previous section whereby tweeted URLs were only
analysed for up to 24 hours after tweet. These experiments were conducted
in April and May 2019. All tweeted URLs from the most recent 24-hour
period were checked every 7 hours for Twitter filtering and membership
in the 3 blacklists (GSB, OP, and PT). In total, all tweeted URLs from the
same 24-hour period are checked 25 times for Twitter filtering and blacklist
membership.

Table 8.2 shows the overview of results for these experiments and

213



Chapter 8. Time-of-Click Twitter Study

Exp. #1 #2 #3 #4

Total tweeted URLs 3M 3M 3M 3M
Unique t.co (shortened) 1.4M 1.4M 1.3M 1.4M

Blocked by Twitter 373 765 313 260
Unique unshortened 1.2M 1.2M 1.2M 1.2M

Blocked by Twitter 350 734 230 241
Unique Blacklisted 9 13 13 18
GSB 9 13 13 16

GSB Phishing 5 11 12 14
GSB Malware 1 0 0 1
GSB Other 3 2 1 1

PT 0 0 0 2
OP 0 0 0 0
Blocked by Twitter
and blacklisted

1 1 3 4

GSB 1 1 3 2
PT 0 0 0 2
OP 0 0 0 0

Table 8.2: Overview of experiments #1-4 showing total number of tweeted,
blocked by Twitter (via t.co), and blacklisted URLs, in our dataset. Each
experiment measures a 24-hour batch of tweeted URLs over a 7-day period
during April & May 2019 (M = million).

are categorised into the 4 experiments that each ran for 7 days. When
comparing the results in Tables 8.1 and 8.2 (i.e. comparing the 24-hour
to 7-day experiment results), Table 8.1 shows that 0.01-0.02% unique
unshortened URLs were blocked by Twitter when measured for 24-hours.
In comparison, Table 8.2 shows 0.02-0.06% unique unshortened URLs
were blocked by Twitter when measured for 7 days. Table 8.1 shows that
6-13% of tweeted URLs residing in GSB were also blocked by Twitter when
measured for 24 hours. In comparison, Table 8.2 shows 8-23% of tweeted
URLs residing in GSB were also blocked by Twitter when measured for 7
days. This increase suggests that the number of URLs filtered by Twitter
and residing in GSB might increase as the duration of time measured since
time of tweet increases. This may be due to a delay between tweeted URLs
appearing in GSB and Twitter updating its list of URLs to block via t.co.
This can be further investigated by analysing the number of tweeted URLs
blocked by Twitter and residing in GSB during each of the 25 iterations of
the experiments.

Figures 8.1a to 8.1c show the total number of unique t.co and unique
unshortened URLs blocked by Twitter alongside how many tweeted URLs
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Figure 8.1: Experiments #1-4 showing total number of unique t.co and
unique unshortened URLs blocked by Twitter alongside total number of
tweeted URLs residing in GSB blacklist for each experiments’ 25 iterations.
Each experiment was measured over a 7-day period during April & May
2019. Shown on a logarithmic scale Y-axis.

appeared in the GSB blacklist. These totals are measured during 25 itera-
tions for each of the 4 experiments shown in Table 8.2. A single iteration
takes approximately 7 hours to complete and involves analysing all 3 million
tweeted URLs from the most recent 24-hour period prior to that experiment
starting. These URLs are checked to determine if they are blocked by twitter
and also to determine if they appear in one of the 3 blacklists (GSB, OP,
and PT). Each experiment (#1-4) measures a batch of 3 million tweeted
URLs for 25 iterations – just over 7 days. Figures 8.1a to 8.1c show that
Twitter’s system to block URLs posted on its network is dynamic – it is
actively blocking and unblocking URLs. At some point during the 7 day
measurements, all 4 experiments see a temporary spike in the number of
URLs blocked by Twitter. This shows that Twitter is actively monitoring its
network for websites that breach its rules [278] and blocking such web-
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sites once discovered. We can also deduce that Twitter unblocks websites
presumably once it is determined they no longer breach the rules.

In experiment #1 there are 4 tweeted URLs residing in GSB during
iteration 1 compared to 9 tweeted URLs residing in GSB during iteration 25
(Figure 8.1a). This shows that the number of tweeted URLs residing in GSB
has slightly more than doubled during the 7 day period of this experiment.
Whereas experiment #2 started with 7 tweeted URLs residing in GSB and
finished, at the end of day 7, with 8 tweeted URLs in GSB. The number
of tweeted URLs in GSB throughout all 25 iterations of this experiment
stayed relatively consistent with a range from 7 at its lowest to 9 at its
highest (Figure 8.1b). A similar pattern can also be seen in experiment #3
which started with 8 tweeted URLs residing in GSB on the first iteration and
finished on 10 with a range from 5 to 10. Interestingly, the first 4 iterations
of this experiment measured the number of tweeted URLs in GSB as 8, 7, 6,
and 5, respectively (Figure 8.1c).

Analysing the individual iterations shows how both Twitter filtering and
GSB blacklisting are dynamic; the number of blocked or blacklisted URLs
can change depending on a websites threat level. This means that Twitter
can unblock a website once it no longer poses a threat to its users. We see
a trend that the number of URLs blocked by Twitter does typically increase
over time, although not necessarily by that much – and in some cases the
volume of URLs blocked by Twitter may temporarily increase due to a large
attack campaign. We see that the volume of tweeted URLs residing in GSB
does not necessarily increase as time passes in all cases. This suggests that
running experiments for longer than 7 days may not yield a significant
increase in the number of URLs blacklisted by GSB.

We do see a slight increase in the percentage of URLs blocked by Twitter
that are also blacklisted by GSB between the 24-hour measurement and 7-
day measurement. The 24-hour measurement experiment saw, on average,
10% of GSB blacklisted URLs also blocked by Twitter. Whereas the 7-day
measurement experiment saw, on average, 13.5% of GSB blacklisted URLs
also blocked by Twitter. However, the number of blacklisted URLs in the
7-day experiments is significantly lower than the 24-hour experiments
therefore a comparison between the two percentages is not entirely equal.
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KEY FINDINGS

When comparing our 24-hour to 7-day experiment results, we see a
slight increase in the percentage of URLs that were blocked by Twitter.
We also see a slight increase in the percentage of URLs that were
both blacklisted by GSB and blocked by Twitter. This may suggest
that the number of URLs filtered by Twitter and residing in GSB
might increase as the duration of time measured since time of tweet
increases –possibly due to blacklist update delay times.

By analysing the iterations of each 7-day experiment, we see that
Twitter’s URL filtering (via t.co) is dynamic; the set of URLs to block-
/unblock is actively updated. The number of GSB blacklisted URLs
typically increase slightly over time – although in some cases the
volume of GSB blacklisted URLs may temporarily increase before
returning to its original volume.

Our results in this section show that fewer phishing and malware URLs
were posted to Twitter during our experiments in 2018-19 compared
to 2017. This suggests that Twitter may have become more effective
at blocking blacklisted URLs at time of Tweet. However, on average,
only 12% of blacklisted URLs were blocked by Twitter.

8.5 Conclusion

This study measured the effectiveness of Twitter’s URL shortener (t.co) at
protecting users from phishing and malware attacks. In 2017 we analysed
over 182 million URL containing tweets collected from Twitter’s Stream
API over a 2-month period, and compared these URLs against 3 popular
social engineering, phishing, and malware blacklists. Our main findings
were that over 10,000 blacklisted phishing and malware URLs were posted
to Twitter during this timeframe. This lead to over 1.6 million clicks which
came directly from Twitter users – therefore exposing people to potentially
harmful cyber attacks. We then investigated if Twitter filters URLs posted to
its platform. We discovered a reduction in the number of phishing and mal-
ware URLs posted to Twitter in 2018-19 compared to 2017 – suggesting an
improvement in Twitter’s effectiveness at filtering blacklisted URLs at time
of tweet. However, we also discovered that only about 12% of blacklisted
phishing and malware URLs – which were not blocked at time of tweet and
therefore posted to the platform – were blocked by Twitter in 2018-19. Our
results indicate that, despite a reduction in the number of blacklisted URLs
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posted to the social network, Twitter’s URL shortener is not particularly
effective at filtering phishing and malware URLs – therefore people are still
exposed to these cyber attacks on Twitter.
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9
Discussion

OUTLINE

This chapter answers our research questions (defined in Section 1.3) and
discusses our research findings (presented in Chapters 5 to 8). We start with
a summary of our aims, followed by a discussion about the soundness of
measurements; including the challenges of measuring a constantly evolving
landscape. This is followed by discussions about each of our research
studies, in Sections 9.2 to 9.5.

We then discuss our effectiveness evaluation framework and consider its
metrics. This is followed by discussions on how effectively our measure-
ment study findings address our research questions, and considerations for
context (provided by existing literature) and other external factors.

We then discuss our machine learning classifier (previously described in
Section 4.6.2), Twitter (including motives and data sharing), ground truth,
and ethics. We discuss how our research applies to other social media
platforms (such as Facebook, Reddit, 4chan, etc). Finally, we discuss recom-
mendations; including ground truth, safe Twitter use, and measurement
study methodology.

Our primary aim is to investigate the effectiveness of Twitter’s phishing
and malware defence system. We want to determine how well-protected
Twitter users are from phishing and malware attacks. Twitter has come
under increasing pressure to protect its users from cyberattacks. In 2010,
Twitter settled a case with the US Federal Trade Commission (FTC) in which
Twitter agreed to strengthen security throughout the platform and to carry
out an independently assessed bi-annual information security audit for 10
years [86, 87, 88].
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We evaluate the effectiveness of Twitter’s phishing and malware defence
system by defining a set of metrics and framework (Section 2.16: Effect-
iveness), addressing soundness and limitations of existing work (Chapter
3: Related Literature), creating Phishalytics – our measurement system
(Chapter 4: Design & Implementation), then conducting numerous meas-
urement studies (Chapters 5 to 8). Twitter’s cybersecurity defence system
may rely on other technologies to function. Therefore, our effectiveness
evaluation includes blacklists (Chapter 5) web browser detection rates, and
web browser warnings (Chapter 7).

As part of our investigation we explore the characteristics of popular
phishing and malware blacklists (Chapter 5). We investigate the effective-
ness of Twitter’s cybercrime defence system at time-of-tweet to examine the
impact of blacklist delay times on user security (Chapter 6). We examine
to what extent Twitter might be relying on web browsers’ built-in security,
and we analyse the effectiveness of web browsers’ security (Chapter 7).
Finally, we investigate the effectiveness of Twitter’s cybercrime defence
system at time-of-click and compare findings to Twitter’s use of blacklists.
We also update and strengthen existing measurement studies to improve
our understanding of how the landscape we are measuring has changed
over time.

Our empirical observations show that over 10,000 blacklisted phishing
and malware URLs were publicly shared (i.e. tweeted) on Twitter (Section
6.5.1). During one month, we discovered 4,930 tweets, containing 2,487
total unique URLs, leading to social engineering websites that had been
tweeted to over 131 million Twitter users (Section 6.5.3). Blacklisted
phishing and malware URLs – tweeted publicly on the social network –
received more than 1.6 million clicks from Twitter users (Section 6.5.5).
Our URL click data methodology leverages Bitly URLs, which comprises
11% of our dataset. Therefore our URL-click finding will considerably
underestimate the actual number of URL clicks. We observed that Twitter’s
time-of-click defence system (provided by Twitter’s URL shortener: t.co)
blocked only 12% of blacklisted phishing and malware URLs (Section 8.4.2).

Our findings suggest that Twitter may no-longer be using the GSB
blacklist to protect its users – contradicting prior knowledge [200, 201]. We
explored the hypothesis that Twitter may be relying on web browsers – most
of which have GSB built in (Section 2.6.1) – to protect users from phishing
attacks. This may be an effective strategy to protect users from blacklisted
websites: our observations show that 81% to 100% of these websites are
blocked by web browsers. However, this strategy is not as effective for
unknown (i.e. non-blacklisted) phishing websites: our observations show
that only 38% to 78% of these website are blocked by web browsers. Our
findings suggest more can be done to strengthen Twitter’s phishing and
malware defence system. We explore our research questions further in
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Section 9.7. We address the soundness of our measurements and findings
in this chapter by exploring various aspects that may influence our results;
such as perspective, context, and external factors.

Our secondary aim is to address soundness and improve measurement
studies, thereby strengthening our measurement studies’ contribution to the
internet measurement research community. We do this by exploring back-
ground concepts (Section 3.1), data feeds (Section 3.2), threat intelligence
(Section 3.3), context (Sections 3.4 to 3.8), and ethics (Section 3.9) from
existing studies. We also identify and addressing limitations of existing
work (Section 3.10). Our exploration covers various methodologies which
provide inspiration and justify our research methodology.

We aim to improve the quality, quantity, and analysis of data available to
the research community for evaluating the effectiveness of Twitter’s phish-
ing and malware defence system. We present the details of our methodology
(Section 4.7), infrastructure, and technical implementation (Section 4.8)
to improve our studies’ reproducibility (as defined in Section 2.1.1). We
present our results (Chapters 5 to 8) in a format that can be used and inter-
preted by our intended audience, including, but not limited to: researchers,
policymakers, and technology designers. Finally, we aim to contribute to the
current understanding of how to collect and analyse internet measurements
– specifically relating to cybercrime on Twitter – and to give insight into
how the internet behaves. The full codebase for Phishalytics is available
on GitHub at:

https://github.com/sjbell/phishalytics

In this chapter we aim to analyse the findings from our research studies
(presented in Chapters 5 to 8) and discuss the wider implications of our
research. We begin with a discussion about measurement studies.

9.1 Soundness of Measurement Studies

Results from our measurement studies, along with our effectiveness evalu-
ation framework, may be of particular interest to researchers, policymakers,
technology designers, etc. It it important to discuss the soundness of meas-
urement studies, along with strengths and weaknesses. Measurement stud-
ies cannot usually provide a full picture of a given area. They can, however,
provide a reasonable snapshot of an ever-changing and evolving landscape.
A snapshot that is of great use to society in areas such as benchmarking
future snapshots, improving user security, etc.

If you recall our example in 2.1:

A highly contagious computer virus is spreading across the inter-
net; causing global havoc. The virus’s main transmission vector
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is drive-by-download. You want to determine how prevalent
the malware is on websites. A measurement study could be con-
ducted whereby all public-facing websites on the internet are
checked for the specific malware strain. By visiting all public-
facing websites, and checking them for the malware strain, we
can start to understand how many websites are spreading the
strain and what impact this may have.

In our example, it would be practically impossible to visit every single
public-facing website on the internet. There are likely to be other limitations
and implementation challenges that may impact the results. Therefore,
with these considerations in mind, we understand that our example meas-
urement study may provide a reasonable snapshot to help us understand
the prevalence of said malware at the time the study was carried out.

Measurement study results should be interpreted alongside wider con-
text, including methodology, existing literature, and unmeasured influences.
In Chapter 3 we categorised existing literature to explore how various topics
may influence our measurement study results. After analysing the results
from our measurement studies, we will review our research questions in
Section 9.7, and explore context in Section 9.8.

The strengths of measurement studies include providing accurate and
scientific data to help guide future research, implement policies, addressing
security weaknesses, and other contributions. Measurement studies can
provide society with great knowledge; providing we address soundness,
and understand how to interpret results and implement the knowledge.

9.1.1 Measuring a Constantly Evolving Landscape

There are a number of challenges that arise when attempting to conduct
a longitudinal measurement study. As previously discussed, one of the
biggest challenges is trying to measure a constantly changing and evolving
landscape. This can make it difficult to compare results from measurements
that were carried out at different times. Even a single measurement –
such as a week or month in duration – might contain large changes in
the landscape. Identifying these changes within the measurements can be
complex and time consuming.

For example: hypothetically, Twitter might be used by mainly musicians
in 2004 but by 2014 it could be predominantly politicians that use the
social network – which could affect measurement results depending on the
research aims and questions.

We attempt to address these challenges by using various techniques,
such as comparing historical measurement studies in relation to growth
(e.g. comparing the number of Twitter users in a 2010 study compared to
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the number of Twitter users in a 2017/19 study), and analysing the ratio
and percentage of blacklisted URLs in dataset from different time periods.

Whilst we can attempt to compensate for as many of these challenges as
possible, there will always be aspects of measuring a constantly changing
and evolving landscape that are outside of our control. Some of these
changes could be identified through additional measurement studies or
research, such as analysing Twitter demographics and how people use the
social platform. However, there are still likely to be – at least to some extent
– unknown biases in the results.

In our literature review (Chapter 3) we explored some possible contexts
surrounding malicious and phishing URLs on Twitter – such as misinforma-
tion and its propagation, networks, URL shorteners, etc. These key areas of
context might help to understand and explain the bigger picture of phishing
and malware URLs on Twitter and to be aware of how, and in what ways,
the landscape that we attempt to measure is constantly evolving.

9.2 Blacklist Analysis Study

The discussion in this section relates to our study from Chapter 5: Blacklist
Analysis Study. In this study we carried out 4 key experiments:

1. Analysis of blacklists: PT, OP, and GSB, to determine number of URLs
in each and how their sizes vary over time

2. Measure how long URLs remain in each blacklist for

3. Measure and analyse blacklisted URLs that are removed from then
re-added to the same blacklist; timings between reappearance

4. Comparison of URLs between blacklists and detection times of over-
lapping URLs

Our results show that the average number of URLs contained within each
of the 3 blacklist was: 1,581,351 for GSB; 12,433 for PT; and 3,861 for OP.
We see that GSB is by far the largest of the 3 blacklists we analysed. Along
with social engineering, GSB also contains URLs categorised as malware,
unwanted software, and potentially harmful application. These threat types
are organised into different platform types (such as Linux, OSX, Windows
etc) and the number of URLs within each threat type and platform type
varies. However, the number of URLs under each platform type for social
engineering URLs always remains the same – because these attacks rely on
human presence and are not platform specific. GSB encrypts all URLs in its
blacklist which makes it difficult for us to analyse individual URLs - unless
a URL is already known to us.
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Across all 3 blacklists, as time increases, fewer URLs remain in the
blacklists. This is because, once blacklisted, phishing URLs are often short-
lived. We discovered that the OP blacklist removes a significant amount
of URLs from its dataset after 5 and 7 days; no URLs remained in OP for
more than 21 days. This may potentially limit the effectiveness of OP as a
blacklist because users may no longer be prevented from visiting an active
phishing website once it has been in the blacklist for over 21 days.

Our results show that none of the 3 blacklists in our study enforce a
one-time-only URL policy in their datasets. Therefore all 3 blacklists re-add
any URLs to their dataset that become a threat again. This is good for users
because they will be protected against reoffending phishing websites. We
also see that a large number of URLs reappear in the blacklists within 1 day
of removal – suggesting that these URLs were either removed too soon or
that they came back online again. Without knowing the response status of
these websites we do not know specifically why these websites reappeared
in the blacklists.

Our results show that 11,603 unique URLs reside in both the PT and OP
blacklists. We also see that OP was faster at detecting over 90% of URLs
that eventually resided in both blacklists. However, both blacklists have
lead and lag time delays of over 65 days. This may limit the effectiveness if
just one of these two blacklists is used. OP deploys an automated approach
to phishing detection and this likely explains the faster detection rates
seen in our results. Conversely, PT employs a manual, community-driven
verification voting system to confirm phishing URLs submitted to its dataset
and this may explain its lag behind OP.

9.2.1 Website Analysis

One area which we did not explore in this study is the contents of the
blacklisted URLs themselves. Analysing page content may have furthered
our research in a number of ways, such as determining how long a black-
listed URL remains a threat for. This might help to explain why URLs are
removed from blacklists. This sort of analysis can be very time consuming,
so would therefore benefit from automated analysis – allowing us to fre-
quently process large numbers of blacklisted URLs. However, this setup
would require additional infrastructure to analyse malicious and phishing
pages, such as a honeypot. Also, as previously discussed, accurately and
automatically detecting phishing websites can be a complex and challenging
task. A simple form of analysis which we did consider was capturing the
HTML contents of each blacklisted webpage then comparing these contents
However, even this simple form of analysis would still require a deeper level
of analysis to determine the context of each blacklisted webpage’s content.
Also, this simple type of analysis may not reveal enough information or
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even potentially produce misleading results.

9.2.2 GSB Hash Collisions

All URLs in GSB are encrypted, which means all of our measurements that
determine blacklist add and remove timestamps – based on URL matching
– will contain a small number of hash collisions. Although our results
contain some noise, we still see patterns in the data which are significant
beyond the percentage of hash collisions. In Section 4.6.3: Hash Collisions
in GSB we produced a statistical model to show that our GSB measurement
calculations are accurate to within 0.02%.

9.2.3 PT & OP False Positives

Although we show that the OP blacklist detected over 90% of URLs before PT,
we did not analyse false positives in either the PT or OP dataset. It may be
that the OP blacklist contains false positives due to its automation whereas
the PT blacklist contains fewer false positives because of its human-driven
verification process.

9.2.4 Future Work

Future work could explore the overlap between PT/OP and GSB blacklisted
URLs. As previously discussed, a number of challenges would need to
be addressed in relation to the encryption of URLs in GSB. Whilst a one-
off comparison would be relatively simple to complete, a more thorough
approach that regularly checks the overlap of these blacklists would likely
produce more insightful and meaningful results – such as the response
times of GSB compared to PT and OP, characteristics of overlapping URLs,
etc.

As previously discussed, analysing website content of blacklisted URLs
could be a challenging task. However, if done correctly, and with the right
approach, it could reveal interesting findings that provide further insight
into our results. Future work could also retrieve the status and contents of
blacklisted URLs to improve our understanding of the impact of blacklisting
on websites. This could allow us to determine if phishing websites are
offline when removed from blacklists, among other research questions.

9.3 Time-of-Post Twitter Study

The discussion in this section relates to our study from Chapter 6: Time-of-
Post Twitter Study.
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9.3.1 Twitter Search API

In our study we leverage Twitter’s Search API to determine when a black-
listed URL was first tweeted. However, this API is limited to 7-10 days
and is not a complete search. This means that the resulting dataset in this
experiment is smaller compared to using the Twitter Stream to determine
tweet timestamps. Despite these limitations, this methodology provides a
more accurate measurement, compared to the experiment where we do
not use Twitter’s Search API, as it produces the worst case scenario when
calculating delay from first tweet to first appearing in blacklist.

9.3.2 Hijacked Websites

One of the weaknesses in our study is what happens when benign web-
sites become malicious due to compromise, change of ownership, adverts
appearing on the website from third parties etc. In theory, these websites
will become blacklisted but then removed from the blacklist once/if they
remove the malicious content. One way this weakness could be mitigated
in future work would be by exploring metadata for websites such as WHOIS
and also analysing the websites contents to determine if it was benign.
However, whilst these websites may indeed have been benign, they have
for some reason started to include malicious content which could harm
users. Therefore we believe they are still relevant to our study.

9.3.3 Retroactive Blacklist Membership

One of the potential pitfalls of using retroactive blacklist membership de-
tection to determine unsafe URLs is that Google’s Safe Browsing uses path
prefix expansion. When given a URL to check for blacklist membership
the API will iteratively try broader and broader URLs (e.g., x.y.z/a/b/c,
x.y.z/a/, x.y.z, y.z). If the entire host of a website becomes blacklisted then
this may be misinterpreted as a historical URL being missed when actually
it is a fresh incident. One potential way to mitigate this would be to use a
modified version of the GSB library that flags if an entire domain has been
blacklisted. This would at least allow the resulting measurements to only
include URLs whereby the entire domain has not been blacklisted.

9.3.4 Twitter Filter Analysis

During the months of October and November, there were 9 unique URLs
that were first tweeted in these months that appeared in the PhishTank
and OpenPhish blacklists at some point. Compared to the number of
tweeted URLs that appeared in the GSB blacklist this is a significantly
smaller number. The PhishTank blacklist typically contains around 5,000
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blacklisted URLs and OpenPhish around 23,000 whereas the GSB blacklist
typically contains around 3 million URLs. Therefore, it may be that our
October and November measurements found more tweeted URLs in the
GSB blacklist simply because it contained more blacklisted URLs. However,
it is also possible that Twitter is incorporating the OpenPhish and PhishTank
URLs into its filtering process; this would explain why we did not see many
in our results. Although, if this were true, we would expect to see some
tweeted URLs before they appeared in either of these blacklists.

Another possible reason is that Twitter has developed its own heuristics
to detect phishing URLs. Therefore, any websites that eventually make
it into either the PhishTank or OpenPhish blacklists have already been
caught by Twitter’s heuristic and prevented from being tweeted. This might
explain why we saw fewer matches from these two blacklists compared to
GSB. Whilst we could carry experiments to analyse this further, we would
essentially be “reverse engineering” Twitter’s filtration process. This is
something that Twitter knows the answer to and therefore may not be the
best use of resources to investigate. It is also hard to devise experiments
to test Twitter’s filtration methodology without violating Twitter’s terms
of service, for example: by tweeting known malicious and phishing URLs
publicly.

9.3.5 Future Work

Two key areas of future work, which we explored in subsequent studies,
involved investigating web browsers built-in phishing protection technology
and investigating Twitter’s URL shortener, t.co, to understand how that
impacts malicious URLs posted to Twitter.

Another area for future work involves increasing our ground truth
coverage. There are a number of ways in which this might be achieved,
such as: leveraging a honeypot to analyse malicious content, increasing
the number of blacklists used in the study, producing a machine learning
classifier to detect malicious and phishing URLs. Increasing the ground
truth coverage in this study might help to detect more URLs (i.e. false
negatives) – that might have been missed in our original study – and could
also help to detect benign URLs that are incorrectly blacklisted (i.e. false
positives).

9.4 Web Browser Phishing Detection

The discussion in this section relates to our study from Chapter 7: Web
Browser Phishing Detection. The original aims of this project were:

1. Establish an automated testing environment
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a) Run most popular web browsers (Internet Explorer, Chrome,
Safari and Firefox) under the most popular operating systems
(Windows, OSX and Linux Ubuntu)

b) Ability to execute automated phishing detection tests on above
web browsers

2. Determine phishing detection capabilities of most popular web browsers
against both known (backlisted) and unknown (non blacklisted)
phishing websites

3. Reverse engineer web browser phishing detection methodology

4. Can phishing detection be circumvented. If so how?

5. Assess effectiveness of phishing warnings produced by web browsers

9.4.1 Parallel Testing

The automated testing environment was built and able to run the various
operating systems and web browsers within it. However, one of the main
limitations of the test environment was that only one operating system
could run at once. This meant that tests could not run in parallel and many
phishing websites may have gone offline or appeared in blacklists during
testing. Another limitation of the test environment was the time taken to
test a single phishing website and this meant that large numbers of URLs
were difficult to test. One way of improving this would be to have a separate
virtual machine for each browser being tested. However, the timings used
to represent a human would still reduce the total test completion time.

9.4.2 Sample Size

Automated phishing detection tests were carried out on all browsers and
results were concluded. One of the main limitations of these tests was
the small sample size of phishing websites along with only one source of
phishing URLs. A set of results that compared each source of phishing
URLs, along with a large number of URLs (e.g. in the thousands) may have
produced different detection rates amongst browsers. A greater number of
tested phishing websites might also have eliminated the low detection rate
seen in Google Chrome under the Windows operating system, or produced
more conclusive evidence as to the reason for this lower detection rate.

9.4.3 False Positives & Verification

Another general limitation of tests such as these, that use phishing lists as
input, is that some websites might be accidentally flagged by the community
as phishing when they are actually legitimate websites. During these tests no
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screening was carried out on the phishing websites to determine their true
phishiness (although the browser tests were monitored during experiments
and all observed websites gave the appearance of a phishing website). This
problem could be addressed by taking manual random samples from the
phishing websites to check if they are genuine phishing websites.

9.4.4 Circumventing Anti-Phishing Detection

Based on the phishing detection methodology used by Chromium (see
7.4.6: Chromium Phishing Detection Analysis, this section briefly outlines
a number of theoretical circumvention approaches that could be used to
bypass Chromium’s phishing detection methods:

• Encourage user to visit phishing website before an actual attack is
carried out. This could be achieved by purchasing expired domain
names, creating a content scraping website (e.g. by pulling popu-
lar news articles from other websites) or by gaining unauthorised
access to existing websites. As mentioned at the beginning of this
section, many of the phishing websites that were not detected by
Chrome, Chromium, Safari and Firefox’s non-backlist approach were
compromised WordPress sites

• Using a single domain name that is of a similar spelling to a trusted
website (e.g. ebayy.com) since this would bypass many of the URL
structure checks. However, this adds quite an additional cost for
phishers since a new domain name will need to be purchased for
every phishing campaign and domain misspellings are probably quite
rare to find.

• A webpage that uses JavaScript to rewrite the HTML contents and
elements of the page could be deployed in order to bypass many of
the initial checks. For example: form and script tags could be added
dynamically after the page loads, as well as with password input
fields. It is not clear if Chromium’s phishing detection would detect
such alterations after the page has loaded or if a delay in making
these alterations to the page (e.g. 5 seconds after the page loads)
would affect detection

Whilst some of the above techniques may work in the short term, they
only address the limitations of automated phishing detection – and one
of the main purposes of automated phishing detection is to address the
limitations of blacklists (i.e. update delays). Ultimately, a website that
is phishy is likely to be reported and eventually included in a phishing
blacklist – at which point circumvention becomes very difficult.
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9.4.5 Future Work

The reverse engineering of Chromium’s phishing methodology gave an over-
view of the algorithm and basic features used to make phishing predictions.
However, key elements of the algorithm (such as the phishing word list and
actual weightings of features) could not be determined by looking at the
source code alone. Further experiments could be carried out that attempt to
deduce the phishing word list or that try adjusting various phishy features
of a webpage in order to deduce the weightings of these features.

Although the phishing detection circumvention techniques were based
on Chromium’s phishing detection methodology and previous research
into automated phishing detection, all proposed solutions were purely
theoretical and have not been tested for practicality. Further research into
effective phishing detection circumvention methods could be carried out
but, as mentioned, these techniques would be short lived once the website
is added to a blacklist.

The assessment of phishing warnings produced by web browsers was
based on previous studies and no actual testing was carried out on human
participants. To produce more conclusive findings, a study could be carried
out that involves people attempting to visit phishing websites to see how
easily these web browser warnings can be bypassed.

Another limitation of this study is that is only uses phishing URLs. The
origins of these URLs have not been explored, although this would merit
an entirely different approach of study. Since phishing URLs come from
a variety of online sources it would be interesting to study the number of
successful phishing attacks compared to phishing URL sources. This would
then conclude if certain user groups (such as social media, email, etc) are
more likely to be fooled into phishing attacks.

9.5 Time-of-Click Twitter Study

The discussion in this section relates to our study from Chapter 8: Time-of-
Click Twitter Study. In this study we carried out 2 key experiments:

1. Measure number of phishing and malware URLs posted to Twitter.
Also, to assess impact, measure clicks from Twitter users to these
blacklisted URLs

2. Measure Twitter Filtering: does Twitter filter URLs (via its t.co URL
shortener)? If so, does Twitter block blacklisted URLs?

• 24-hour measurement period
• 7-day measurement period
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Our results from (1) show that, during our 2-month measurement
timeframe in 2017, over 10,000 unique phishing and malware URLs were
posted to Twitter. The impact of these blacklisted URLs appearing on Twitter
was that Twitter users generated over 1.6 million clicks to these potentially
harmful websites. Our results from (2) show that, over a 3-month period
in 2019, Twitter filtered over 14,000 tweeted URLs via its URL shortener
(t.co). However, only 2% of these filtered URLs were blacklisted phishing
and malware URLs. We see that, during a 24-period, Twitter filtered 6-10%
of blacklisted URLs. This increased to 8-30% when measured over a 7-day
period. This suggests that Twitter’s “time of click” URL filter does improve
slightly as time increases, but that a large number of blacklisted phishing
and malware websites are not filtered. It is important to note that our 2017
and 2019 datasets were collected using the same sampling strategy.

Our results from these 2 experiments show that, overall, there are fewer
phishing and malware URLs being posted to Twitter in 2019 when compared
to 2017 and 2010 results. We also see that Twitter adopts both a “time of
tweet” and “time of click” defence strategy to protect its users not only from
phishing and malware attacks, but also from any user or URL in violation
of its set of rules [278]. Twitter is filtering large numbers of tweeted URLs,
at time of click, but it appears the majority of these blocked URLs are for
violations of its rules other than phishing/malware attacks. Twitter appears
to have improved its “time of tweet” defence strategy, since 2010 and 2017,
and is perhaps relying on this defence strategy to protect its users from
phishing and malware attacks.

9.5.1 Categorising Blocked URLs

In our study we measure the number of t.co URLs that have been blocked by
Twitter. However, we did not categorise these URLs. Ideally, we wanted to
analyse the blocked URLs to determine how many were phishing, malware,
etc. Twitter blocks URLs that breach its rules [278], however, this set of
rules is quite long and comprehensive – and phishing and malware attacks
are only a small part of this comprehensive list of rules. After an initial
small, manual, sample of blocked websites, there were concerns about
the author’s welfare, due to viewing the types of content that had been
blocked by Twitter. Therefore the decision was made to not manually
inspect blocked websites to determine categorisation.

9.5.2 Inconclusive Hypotheses

One of the main findings of our study is that, since less malware and
phishing URLs were tweeted in 2018-19 compared to 2017, Twitter might
have become better at catching malicious content. However, this is not
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necessarily the case, since it could also be that the trend of malware and
phishing decreased, or any number of other reasons. Unfortunately, there is
no way to determine which of these hypotheses is correct by looking at the
measurements performed in our study due to our very specific measurement
focal point. Therefore, as seen in Chapter 3: Related Literature, we have
tried to explore the context in which phishing and malware URLs might
appear on Twitter to improve our understanding of the bigger picture, and
where our results fit into the overall picture.

9.5.3 Limitations

There are some limitation to the data sources used in our measurement
experiments. These limitations include: Twitter’s data feed is a “small
sample” of all global tweets, the GSB API blacklist is limited to 10,000 daily
lookup per day, and our Twitter URL filter checking system cannot send too
many HTTP requests per second because this would flood Twitter’s servers.
To compensate for these limitations we planned our methodology and built
an infrastructure in a way that, to the best of our ability, allows us to carry
out accurate measurements to answer our research questions.

We do not detect tweets containing phishing or malicious URLs that
never make it into GSB. Therefore GSB is our ground truth. We attempt to
mitigate this by using the OpenPhish and PhishTank blacklists.

There are limitations to carrying our measurement experiments in an en-
vironment which evolves quickly and constantly. This makes it challenging
to directly compare results obtained in 2010 and 2017 to results carried
out in 2018-19. We mitigate this by setting up experiments in similar ways
to previous studies, comparing figures from previous studies in percentages,
and exploring other aspects that may have altered the environment which
we are measuring.

9.5.4 Future Work

In future work we would like to explore automated options for the categor-
isation of blocked URLs. This could include techniques such as leveraging
a honeypot to automatically determine if a website is attempting to run
or install malicious code on the client machine. Other Another technique
might involve automated lexical analysis to determine the content of a
webpage to aid categorisation. However, the accuracy of these methods
would need to be assessed – which generally goes beyond the scope of this
thesis.
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9.6 Effectiveness Framework

In this section we discus the results from our measurement studies within
the effectiveness framework we defined in Section 2.16.2. We will discuss
the results of each metric from our measurement framework.

9.6.1 Time-of-Post

Number of blacklisted phishing/malware URLs posted to Twitter.

In Section 6.5.1 we saw 10,029 unique blacklisted phishing/malware URLs
posted to Twitter. In our effectiveness framework, a lower number on this
metric contributes to being more effective. In other words: the closer to 0
this number is, the more effective Twitter’s phishing and malware defence
system may be.

In our results this number is considerably greater than 0 – with a Very
High effectiveness impact. Therefore, we can say that, for this metric,
Twitter’s phishing and malware defence system may not be particularly
effective.

9.6.2 Time-of-Click

Number of blacklisted phishing/malware URLs blocked by Twitter at time of
click.

In Section 8.4.2 we saw that 436 phishing/malware URLs were blacklisted
at time of post, but only 48 (11%) were blocked by Twitter at time of
click. In our effectiveness framework, the effectiveness contributor for this
metric is higher. In other words: the closer to 436 this number is, the more
effective Twitter’s phishing and malware defence system may be.

In our results, we only see 11% of blacklisted URLs being blocked by
twitter – with a High effectiveness impact. Therefore, we can say that, for
this metric, Twitter’s phishing and malware defence system may not be
particularly effective.

9.6.3 Blacklist Delay

Delay time from time of tweet to blacklist membership.

In sections 6.5.2, 6.5.3, and 6.5.4 we see delays of of over 20 days in some
cases. In the effectiveness framework, the effectiveness contributor is lower.
In other words: the closer to 0 this number is, the more effective Twitter’s
phishing and malware defence system may be.
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Our results show large numbers of URLs with blacklist delay times
of more than 0 days; this metric has a Very High effectiveness impact.
Therefore, we can say that, for this metric, Twitter’s phishing and malware
defence system may not be particularly effective.

9.6.4 Duration in Blacklist

In Section 6.5.7 we see that, as the age of URLs increases, blacklist mem-
bership decreases. However, we also see that 1,000 URLs remain in the
blacklist for the entire duration of our experiment; 150 days. In Section
5.5.3 we see that the OP blacklist limits the majority of its URLs to a dura-
tion of either 5 or 7 days; no URLs remained in OP for more than 21 days.
In our framework, the effectiveness contributor for this metric is that it
should at least match duration of the URL attack campaign.

In our measurement studies we were unable to attribute specific attack
campaigns to blacklist membership durations. Therefore our evaluation
of effectiveness is based on the fact that URLs can remain in the blacklists
for as long as required. We see that the OP blacklist limits membership
durations. This metric has a Very High effectiveness impact, therefore the
effectiveness of OP could be limited due to its duration limit.

9.6.5 User Views

Number of potential Twitter user views (of blacklisted phishing/malware
URLs).

In Section 6.5.3 we see that 2,487 unique blacklisted phishing/malware
URLs were retweeted by 1,227 Twitter accounts with a combined number
of 131,116,820 followers. In the effectiveness framework, the effectiveness
contributor is lower. In other words: the closer to 0 this number is, the
more effective Twitter’s phishing and malware defence system may be.

Our results show the number of potential Twitter user views was signi-
ficantly high (over 131 million); this metric has a High effectiveness impact.
Therefore, we can say that, for this metric, Twitter’s phishing and malware
defence system may not be particularly effective.

9.6.6 Number of Clicks

In Section 6.5.5 we see that blacklisted phishing/malware URLs posted to
Twitter received a combined total of 1,052,152 clicks directly from Twitter.
In the effectiveness framework, the effectiveness contributor is lower. In
other words: the closer to 0 this number is, the more effective Twitter’s
phishing and malware defence system may be.
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Our results show that blacklisted phishing/malware URLs posted to
Twitter received a significant volume of clicks from Twitter (over 1 million);
this metric has a Very High effectiveness impact. Therefore, we can say that,
for this metric, Twitter’s phishing and malware defence system may not be
particularly effective.

9.6.7 Web Browser Phishing Detection: Known URLs

Number of known blacklisted phishing URLs blocked by the web browser.

In Section 7.4.1 we see that 81-100% of known blacklisted phishing URLs
are detected by web browsers. In the effectiveness framework, the effective-
ness contributor is higher. In other words: the closer to 100% this number
is, the more effective Twitter’s phishing and malware defence system may
be.

Our results show this metric reports 80-100%. However, the metric has
a Low effectiveness impact because this metric indicates the user has left
Twitter; therefore Twitter has failed to protect the user effectively. We now
have to rely on the web browser’s effectiveness to defend the user against
the attack. Therefore we can say that, for this metric, the web browser has
contributed to effectiveness – but this will likely be negated by the fact that
Twitter failed to protect the user from this attack.

9.6.8 Web Browser Phishing Detection: Unknown URLs

Number of unknown blacklisted phishing/malware URLs blocked by the web
browser.

In Section 7.4.2 we see that 38-78% of unknown blacklisted phishing
URLs are detected by web browsers. In the effectiveness framework, the
effectiveness contributor is higher. In other words: the closer to 100%
this number is, the more effective Twitter’s phishing and malware defence
system may be.

Our results show this metric reports 38-78%. However, this metric has
a Medium effectiveness impact because this metric indicates the user has
left Twitter; therefore Twitter has failed to protect the user effectively. We
must now rely on the web browser’s effectiveness to defend the user against
the attack. Therefore we can say that, for this metric, the web browser has
contributed to effectiveness – but this will likely be negated by the fact that
Twitter failed to protect the user from this attack.

9.6.9 Accuracy of Ground Truth

E.g. number of false positives / negatives.
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We did not directly measure the accuracy of ground truth (i.e. blacklists) in
our study. Section 3.3 explored existing literature that attempt to assess the
accuracy of the blacklists we use. See saw that blacklists can provide a reli-
able defence from, and source of ground truth for, cyber threats. However,
blacklist delays need to be considered. We also saw that blacklists of the
same category can contain a significant overlap which helps to achieve a
wide coverage. However, compiling a complete and comprehensive ground
truth is a challenging and difficult task. Therefore most organisations
will make trade-offs to achieve a good enough ground truth that provides
effective protection for their needs.

Our measurement studies use blacklists that specialise in phishing at-
tacks – which is a key threat that we are researching – and provide effective
coverage for our requirements. Therefore, based on existing literature,
our ground truth should be accurate. In the effectiveness framework, the
effectiveness contributor is “high accuracy”. In other words: the more
accurate the ground truth is, the more effective the ground truth may be;
this metric has a Very High effectiveness impact. Therefore we can say that,
for this metric, based on existing literature, the 3 blacklists we study may
provide effective protection against phishing/malware attacks.

Our results in Chapter 6 show that Twitter may not be using these 3
blacklists particularly well. Therefore, this may reduce the effectiveness of
Twitter’s phishing and malware defence system.

9.6.10 Blacklist Speciality

E.g dedicated phishing blacklist.

In Section 5.5.1 we see that the 3 blacklist we analyse (GSB, PT, and
OP) all specialise in either phishing or malware URLs. In our effectiveness
framework, the effectiveness contributor is “high speciality”. In other words:
the more specialised the blacklist is, the more effective the blacklist may
be. This metric has a Very High effectiveness impact.

However, as with the previous metric, our results in Chapter 6 show that
Twitter may not be using these blacklists particularly well, therefore this
may reduce the effectiveness of Twitter’s phishing and malware defence
system.

9.6.11 Blacklist Size

E.g. number of URLs in blacklist.

In Section 5.5.1 we see that the average size of the 3 blacklist we analyse (in
terms of number of URLs) are GSB: 1.5 million, PT: 12,433, and OP: 3,861.
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In our effectiveness framework, the effectiveness contributor is “high”. In
other words: the larger the size of the blacklist is, the more effective the
blacklist may be. This metric has a Medium effectiveness impact. This may
help to explain why our results show that GSB detected more blacklisted
phishing/malware URLs compared to PT and OP.

As with the previous metric, our results in Chapter 6 show that Twitter
may not be using these blacklists particularly well, therefore this may reduce
the effectiveness of Twitter’s phishing and malware defence system.

9.6.12 Blacklist Comprehensiveness

I.e. comprehensiveness of cover.

Difficult to access and impossible to practically implement 100% [223],
[149], [148], [310], [183]). In Section 5.5.2 we see an overview of
the categories within GSB, and how many URLs reside in each category.
This analysis may gave in indication to the comprehensiveness of GSB.
However, based on this data alone we cannot draw a full conclusion as to
the comprehensiveness of GSB, PT, or OP. In our effectiveness framework,
the effectiveness contributor is “higher comprehensiveness”. In other words:
the more comprehensive the blacklist is, the more effective the blacklist
may be. This metric has a Medium effectiveness impact.

However, as with the previous metric, our results in Chapter 6 show that
Twitter may not be using these blacklists particularly well, therefore this
may reduce the effectiveness of Twitter’s phishing and malware defence
system.

9.6.13 Blacklist Intersection

Intersection of blacklists.

In Section 5.5.5 we see that 11,603 URLs exist in both the PT and OP
blacklists. In our effectiveness framework, the effectiveness contributor is
“lower”. In other words: the fewer URLs that intersect multiple blacklists,
the more effective the blacklist may be. This metric has a Low effectiveness
impact. This suggests that using both the PT and OP blacklists may not
provide full coverage. Effectiveness may be increased by including an
additional blacklist, such as GSB.

As with the previous metric, our results in Chapter 6 show that Twitter
may not be using these blacklists particularly well, therefore this may reduce
the effectiveness of Twitter’s phishing and malware defence system.
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9.6.14 Blacklist Update Frequency

Including client endpoints (e.g. GSB in web browsers updates at lower fre-
quency to GSB online blacklist).

During our experiments (see Section 4.8.6) we observed that GSB updates
approximately every 10 minutes; PT and OP update every hour. In our
effectiveness framework, the effectiveness contributor is “higher”. In other
words: the more frequently the blacklist updates, the more effective the
blacklist may be. This metric has a High effectiveness impact. This suggests
that the GSB blacklist may be more effective than PT and OP because GSB
will update 6 times during the time that both OP and PT update only once.

As with the previous metric, our results in Chapter 6 show that Twitter
may not be using these blacklists particularly well, therefore this may reduce
the effectiveness of Twitter’s phishing and malware defence system.

9.6.15 Benchmarking

If possible, use existing studies to benchmark "effectiveness" results (e.g. com-
pare a 2010 study to a 2020 study).

Needs to be in context of Twitter user numbers at time of measurement.
For example: 30 million total tweets per day of which 3 million phishing
in 2010 (10%) compared to 300 million tweets per day of which 3 million
phishing in 2020 (1%) = same volume of phishing tweets but different
ratio.

Our results in Section 6.5.2 show that in 2017 a greater number of
blacklisted phishing URLs were tweeted compared to a 2010 study. In
addition to this, our results in 2017 show fewer numbers of blacklisted
malware URLs tweeted compared to a 2010 study. Our 2018-19 results
8.4.2 show that fewer blacklisted phishing and malware URLs were posted
to Twitter compared to our 2017 results.

In our effectiveness framework, the effectiveness contributor is “im-
provement on previous studies’ results”. In other words: the greater the
improvement on previous studies’ results, the more effective Twitter’s phish-
ing and malware defence system may be. This metric has a Very Low impact
score. This is because, due to the previously mentioned limitations of meas-
urement studies, a direct comparison between results may not be entirely
accurate.

When comparing previous results, we see that the effectiveness of Twit-
ter’s phishing defence system may have decreased from 2010 to 2017.
The effectiveness of Twitter’s malware defence system may have increased
from 2010 to 2017. Finally, the effectiveness of Twitter’s phishing and
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malware defence system may have increased from 2017 to 2018-19.

9.6.16 Evaluation

As we have discussed, our framework provides a guide that contributes
towards evaluating the effectiveness of Twitter’s phishing and malware
defence system through various measurements. However, as previously
discussed in Sections 2.1 and 3.8, we must consider soundness, be care-
ful not to make absolute claims, or draw conclusions from dichotomous
thinking and measurement fallacies. Results must be understood in context,
alongside relevant background topics and existing literature.

We could say that, in the absence of additional information, the results
obtained in chapters 5 to 8, when evaluated inline with our measurement
framework, suggest that Twitter may not be particularly effective at protect-
ing its users from phishing and malware attacks. However, our measure-
ments are taken from specific observation points – therefore other factors
may contribute towards Twitter’s effectiveness that we did not measure
during our studies (e.g. real world events).

In Chapter 3 we summarised existing literature that may provide context
to our studies (which we explore further in Section 9.8). For example, we
saw how phishing and malware attacks may propagate via URL shorteners
(Section 3.8.1) or misinformation (see 3.8.2) (e.g. via trending hashtags).

Phishing / malware tweets that propagate via certain trending hashtags
could be more effective at bypassing Twitter’s phishing and malware defence
system – e.g due to commercial pressures on said hashtags linked to Twitter’s
advertising platform. Or a respected and trusted Twitter account may
become hijacked, resulting in malicious tweets sent to unsuspecting users;
bypassing Twitter’s defences that rely on account reputation.

These are hypothetical examples to illustrate the myriad of potential
events that may occur outside the observation points of our measurement
studies. Therefore, our effectiveness framework should be used as an
approximate guide.

When evaluating effectiveness it is also important to consider the risk ap-
petite (see Section 2.11 for definition) of individual Twitter users (including
organisations and businesses). Our evaluation could conclude that Twit-
ter is not effective at protecting users from phishing and malware attacks.
However, Twitter users with high risk appetites may interpret evaluation
differently, concluding that Twitter is effective at protecting its users from
phishing and malware attacks.

Our framework features effectiveness contributors and impacts for the
metrics we measure. These could pivot, allowing organisations to customise
our framework to reflect their risk appetite. For example: an organisation
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with a high risk appetite might reduce effectiveness impacts to between
Medium and Very Low. Whereas an organisation with a low risk appetite
might increase effectiveness impacts to between Medium and Very High.

In summary, we address the soundness of our measurement study con-
clusions. Our results must be interpreted alongside context to avoid di-
chotomous thinking and oversimplification. Evaluating the effectiveness
of Twitter’s phishing and malware defence system is complex. The risk
appetite, and risk awareness, of Twitter users should also be considered
when evaluating effectiveness. Our framework and analysis contributes
towards evaluating effectiveness but cannot provide a complete picture on
its own.

9.7 Research Questions

Our research questions, that we defined in Section 1.3, are:

1. How effective is Twitter at protecting its users from phishing and
malware URL attacks?

2. How effective are blacklists at helping Twitter to protect its users
from phishing and malware attacks?

3. What do popular phishing and malware blacklists consist of? Uptake,
dropout, typical lifetimes, and overlap of URLs in these blacklists

4. What is the lifetime of a URL in a phishing/malware blacklist?

5. Are blacklists affected by delays – and, if so, what impact do blacklist
delays have on user security?

6. How effective is Twitter’s URL shortener, t.co, at protecting Twitter
users from phishing and malware attacks?

7. What is the comparison between Twitter’s use of blacklists and Twit-
ter’s URL blocking (via t.co) at protecting users from phishing and
malware attacks?

8. To explore the impact of phishing and malware attacks on Twitter:
how many Twitter users click on publicly tweeted phishing or malware
URLs that have been blacklisted?

Based on our findings in Chapters 5 to 8 we shall now address each
research question (RQ) in the following subsections.

9.7.1 RQ 1

How effective is Twitter at protecting its users from phishing and malware URL
attacks?

240



9.7. Research Questions

Our results (Section 6.5) show that Twitter does protect its users against
some phishing and malware attacks. However, we observed over 10,000
blacklisted phishing and malware URLs that had been publicly shared on
the social network (Section 6.5.1). Additionally, during one month, we
discovered 4,930 tweets containing URLs leading to social engineering
websites that had been tweeted to over 131 million Twitter users (Section
6.5.3). Therefore potentially exposing Twitter users to dangerous attacks.

Our findings may be influenced by many factors, such as hijacked web-
sites (Section 9.3.2) and retroactive blacklist membership (Section 9.3.3).
Therefore, our results are not absolute (i.e. not independent; require con-
text), but would suggest that Twitter may not be effective at protecting its
users from phishing and malware URL attacks – and, therefore, could do
more to protect its users against cyber attacks.

As we discussed in Section 9.6.16, when evaluating effectiveness, it is
important to consider the risk appetite, and risk awareness, of individual
Twitter users (including organisations and businesses). Determining how
effectively Twitter protects its users from phishing and malware attacks
may very well depend on the risk appetite of those users.

9.7.2 RQ 2

How effective are blacklists at helping Twitter to protect its users from phishing
and malware attacks?

Twitter does not appear to be effectively leveraging the GSB blacklist to
protect users against phishing and malware threats (Section 6.5.1). Contex-
tually, Twitter may be relying on web browsers built-in security to protect
users from phishing attacks. However, our results show that whilst web
browsers detect at least 81% of know (i.e. blacklisted) phishing websites
(Section 7.4.1), web browsers only detect 38%-78% of unknown (i.e. non-
blacklisted) phishing websites (Section 7.4.2). Therefore, in the worst case
scenario, Twitter users could be exposed to 62% of phishing attacks.

Whilst our study observed blacklisted URLs posted to Twitter, our ground
truth was limited to 3 blacklists (GSB, OP, and PT). Therefore, there may
be phishing and malware URLs posted to Twitter that we did not detect.
We are also unable to measure the number of phishing and malware URLs
that Twitter blocked at time of tweet – only those that Twitter does not
block. Twitter may have a sophisticated detection system that detected –
and blocked – significantly more than the 10,000 URLs we observe that
bypassed Twitter’s defence systems (Section 9.3.4). Therefore, considering
these contextual implications, our results could suggest that blacklists may
not be effective at helping Twitter to protect its users from phishing and
malware attacks.
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9.7.3 RQ 3 & 4

What do popular phishing and malware blacklists consist of? Uptake, dropout,
typical lifetimes, and overlap of URLs in these blacklists.

What is the lifetime of a URL in a phishing/malware blacklist?

Our analysis of popular phishing and malware blacklists (GSB, OP, and
PT) observed an average of 1.6 million URLs in the GSB blacklist, over 12
thousand URLs in PT, and nearly 4 thousand URLs in OP (Section 5.5.1).
The OP blacklist appears to enforce strict limits on how long URLs can
remain in its dataset for (Section 5.5.3). The PT and OP blacklists see
a 12% overlap of URLs; OP detected over 90% of these URLs before PT
(Section 5.5.5). On average, URLs remain in GSB for 10 days, PT for 2
days, and OP for 5 days. However, we also see that some URLs remain in
blacklists for the entire duration of our measurement experiments (Section
5.5.3).

Our findings may be influenced by hash collisions in the GSB blacklist;
whereby more than 1 URL may share the same hash prefix (Section 9.2.2).
This consideration would impact the GSB figures in our study. Contextu-
ally, our study did not explore the contents of blacklisted websites, nor
false positives. Existing research (Section 3.3) addresses the accuracy of
the blacklist we study, and there is scope for future work (Section 9.2.4).
Wider implications of our research may contribute towards future work
by improving our understanding of the blacklists we study. This may help
future research, and organisations, for example: when choosing a suitable
blacklist (See 9.17: Recommendations).

9.7.4 RQ 5

Are blacklists affected by delays – and, if so, what impact do blacklist delays
have on user security?

Blacklist delays can have a significant impact on user security. Although the
majority of URLs in our study were detected by the GSB blacklist within
6 hours of being tweeted, a significant number of URLs took over 20 days
to appear in GSB (Sections 6.5.4 to 6.5.2). Blacklist delays can also affect
web browsers’ ability to defend against such attacks; reducing detection
rates from between 81% and 100% (Section 7.4.1) down to between 38%
and 78% (Section 7.4.2).

Our results show that blacklists are indeed affected by delays. Contextu-
ally, numerous factors may influence our results, such as hijacked websites
(Section 9.3.2); whereby a benign websites later becomes hijacked, im-
pacting our delay measurement. The impact of blacklist delays on user
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security include creating an attack space for cybercriminals. The impact of
delays could be mitigated by incorporating a machine learning classifier to
detect phishing and malware websites before they are blacklisted. However,
factors such as accuracy and commercial liabilities should be considered.

9.7.5 RQ 6 & 7

How effective is Twitter’s URL shortener, t.co, at protecting Twitter users from
phishing and malware attacks?

What is the comparison between Twitter’s use of blacklists and Twitter’s URL
blocking (via t.co) at protecting users from phishing and malware attacks?

Our results show that Twitter does block certain URLs at time of click (via
its URL shortener, t.co), therefore providing additional protection to Twitter
users. However, we observed that only 12% of blacklisted phishing and
malware URLs were blocked by Twitter at time of click (Section 8.4.2) –
therefore potentially exposing people to these threats.

Our results suggest that Twitter’s URL shortener (t.co) is not particularly
effective at protecting Twitter users from phishing and malware attacks
at time of click. However, as we have already seen with our previous
research questions, context is important. Our ground truth for classifying
phishing and malware URLs is the 3 blacklists (GSB, OP, and PT); our
measurements do not include tweeted phishing or malware URLs that are
not blacklisted. Also, we did not consider the contents of blacklisted website
in our measurements – which could improve website threat classification.

Wider implications of our results suggest that Twitter users should be
extremely cautious when clicking tweeted links to external websites. Even
trusted Twitter account can become hijacked and send dangerous URLs to
unsuspecting Twitter users. Twitter users should ensure that the devices
they access Twitter on (laptops, phones, tablets, etc) include adequate
protection against phishing and malware attacks that match the level of
risk they are comfortable with (See 9.17: Recommendations).

9.7.6 RQ 8

To explore the impact of phishing and malware attacks on Twitter: how many
Twitter users click on publicly tweeted phishing or malware URLs that have
been blacklisted?

Our study observed blacklisted phishing and malware URLs – tweeted
publicly on the social network – received more than 1.6 million clicks from
Twitter users (Section 6.5.5). This finding highlights the implication of
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ineffective phishing and malware protection: people exposed to potentially
harmful cyber attacks.

As with many of our previous research question outcomes, it is important
to understand context and wider implications of this finding. Our results
may be influenced by many factors, such as website hijackings, Twitter
user account hijackings (Section 9.3.2) or retroactive blacklist membership
(Section 9.3.3). For example: our methodology to determine phishing
and malware click data on Twitter consists of retrieving Bitly click data
for blacklisted URLs. Therefore, if a benign website receives a certain
volume of clicks from Twitter, but later becomes blacklisted, then clicks
during the benign timeframe may be included. We try to mitigate this as
much as possible by specifying timeframes to the Bitly API that match URL
blacklisting timestamps.

Another consideration of our findings is what additional protection
Twitter users may, or may not, have after they click a blacklisted URL –
therefore leaving Twitter’s platform. In previous research questions we
investigated Twitter’s phishing and malware defence system at time of
click (via Twitter’s URL shortener, t.co) and we reviewed phishing defence
systems of web browsers. As we previously mentioned in Section 2.14,
users may have additional protection from anti-virus software, web browser
plug-ins, network-level defences, etc. These considerations all address
the same question: what additional technologies are in place to address
weaknesses in Twitter’s defence systems. In other words: how can we
protect users from phishing and malware attacks that Twitter missed?

9.7.7 Evaluation

There are various aspects to consider when assessing how well we have
answered our research questions. As previously discussed, it is important
to consider the difficulty of measuring a constantly changing landscape.
Our results in one timeframe may be affected by different aspects to those
in another. Additionally, the risk appetite of Twitter users may influence
the evaluation of how effectively Twitter protects said users from phishing
and malware attacks.

Another consideration is that our measurements offer a very specific
window into phishing and malware activity on Twitter. We have not explored
the wider context of these malicious attacks on Twitter, such as their origins,
victims, or analysed the attacks themselves. Our ground truth is consists
of 3 blacklists that mostly specialise in phishing attacks. Therefore our
research questions focus on these types of cyber attacks.

With these considerations in mind it does create scope for future work –
and existing literature – to create a more complete picture of our results.
We explored some key existing literature in Chapter 3: Related Literature.
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Our findings improve our understanding of how effective Twitter’s phish-
ing and malware defence system is. Our results show that Twitter does
block some known blacklisted URLs at time of tweet and some known black-
listed URLs at time of click. We saw how Twitter’s URL shortener (t.co) can
protect Twitter users from dangerous URLs at time of click – and how this
defence mechanism compares to blacklists.

However, we observed over 10,000 phishing and malware URLs – pub-
licly broadcast to over 131 million Twitter users – received over 1.6 million
clicks directly from Twitter users. Suggesting there is considerable room
for improvement in Twitter’s defence system. More must be done to protect
Twitter users from phishing and malware attacks.

9.8 Context

In Section 1.9 we explored context of our research topic; such as legislation,
phishing and malware attack statistics, and web browser usage figures. In
this section we built on that foundation and provide context to our research
findings by exploring existing literature (from Chapter 3).

Exploring context can address soundness, enhance our perspective,
strengthen our results, and improve our understanding of wider implica-
tions. We illustrate this by exploring context from 3 topics: URL shorteners
(Section 9.8.1), information credibility (Section 9.8.2), and networks (Sec-
tion 9.8.3). Our exploration of these 3 topics of context is by no means
exhaustive. Other contexts that could influence our findings include real-
world events such as major sporting events, global pandemics, and political
events. These real-world events may cause a surge in related Tweets and
hashtags, which is likely to attract malicious actors. This may influence our
measurement results if we did not consider the impact of such events.

9.8.1 URL Shorteners

Antoniades et al. (2011) [16] concluded that phishers use the Bitly URL
shortener not only for reducing space but also to hide their identity. The
implications for the context provided by [16] are that the click figures from
our measurement studies could be biased. This is because [16] suggest a
higher proportion of phishing URLs posted to Twitter are shortened via Bitly,
and we use Bitly as our click data ground truth. Therefore we may be using
a biased ground truth. However, the study was conducted [16] in 2011
and has not been repeated since. Twitter introduced its own URL shortener
after the [16] study, in 2011, which may potentially reduce reliance and
trust in Bitly. Although our studies did not measure user trust in t.co or
bit.ly, it is possible that user trust may have shifted.
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Nikiforakis et al. (2014) [211] investigated the ecosystem of ad-based
URL shortening services from a security and privacy perspective. The study
discovered that ad-based URL shorteners are susceptible to a number of
security vulnerabilities, such as tabnabbing and link hijacking which can
lead to drive-by-downloads, browser-exploits, scams, phishing attacks; and
privacy concerns through the use of sequential (i.e. predictable) URLs and
URL leaking through HTTP Referrer headers.

Many of the vulnerabilities and privacy concerns identified in [211]
may not be detected by blacklists or web browsers’ heuristic detection.
This means our measurement studies might also not have detected the
vulnerabilities and privacy concerns identified in [211]. The implications of
[211] on our research findings are that our measurement results are likely
to underestimate the number of phishing and malware attacks on Twitter;
therefore reducing the effectiveness Twitter’s defence system.

Finally, results from Maggi et al. (2013) [171] show that countermeas-
ures to prevent users from shortening phishing and malware URLs are
ineffective and trivial to bypass. This provides further justification for our
methodology of checking all hops in tweeted URL redirection chains for
blacklist membership. Contextually, it shows that Twitter users should be
extremely careful when clicking shortened links on Twitter because the
defence systems of URL shorteners may not be particularly effective.

9.8.2 Information Credibility

Castillo et al. (2011) [53] discovered that over 90% of trending topics
in their dataset were not “newsworthy” (i.e. statements about a fact or
actual event). Building on this, Gupta et al. (2012) [112] discovered that
only 17% of tweets about high impact news events contained credible
information. Ghosh et al. (2013) [96] discovered that tweets from experts
are more trustworthy; containing considerably fewer malicious URLs and
spam.

Findings from existing studies illustrate the low ratio of credible inform-
ation on Twitter. Additionally, due its open platform whereby anybody can
broadcast a message, Twitter attracts users that want to spread misinforma-
tion. Therefore it can be difficult for general Twitter users to distinguish
“fake news” from credible information.

Misinformation may exploit emotional responses from Twitter users (e.g.
by leveraging specific trending topics). Being in a heightened emotional
state can impact rational decision-making [160, 61, 272] thereby potentially
leading Twitter users into an attack. Misinformation, whilst being a danger
in and of itself, may also contain phishing and malware attacks. If a person’s
judgement is reduced, they could be more susceptible to an attack.
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Results from our measurement studies show large volumes of blacklisted
phishing and malware URLs were tweeted publicly. Therefore it is vital
that Twitter highlights credible information on its platform – and flags
misinformation – to protect users from phishing and malware attacks.

9.8.3 Networks

Yang et al. (2012) [305] investigated cyber criminal ecosystems on Twitter;
discovering how criminals are socially connected and how URLs are pro-
moted by their large social groups. Ghosh et al. (2012) [95] investigated
link farming on Twitter; whereby users acquire large numbers of followers
to increase their audience, perceived influence, and ranking. Stringhini et
al. (2013) [263] investigated Twitter follower markets; whereby users of
the social network can purchase followers.

The results in [305, 95, 263] highlight tactics used by cybercriminals
to masquerade as legitimate and more trustworthy. These existing studies
provide context to our measurement studies by showing how Twitter users
may be exposed to phishing or malware URLs.

Our results show that over 10,000 blacklisted phishing and malware
URLs were tweeted during our study (Section 6.5.1). However, our meas-
urements do not observe how those tweeted URLs propagated – or what
promotion techniques cybercriminals used. It may be that all 10,000 black-
listed URLs were shared by independent Twitter users; not part of large
criminal networks. However, the opposite may also be true. During one
month, our measurement study discovered 2,487 blacklisted phishing URLs
had been tweeted by 1,227 individual Twitter accounts (in 4,930 tweets) to
over 131 million Twitter users (Section 6.5.3). It could be that those 1,227
Twitter accounts were part of criminal networks. However, they could also
be independent accounts.

9.9 Machine Learning Classifier to Detect
Fresh Phish

As discussed in Section 4.6.2, we designed a machine learning (ML) classi-
fier to detect tweets that contain suspected phishing URLs. The purpose of
the ML classifier was to determine blacklist delays to conduct a lifecycle
analysis study. Our methodology involved using the ML classifier to auto-
matically detect tweets that contained phishing URLs. These URLs would
then be frequently checked for blacklist membership; delay times calculated.
The ML classifier produced results that contradicted prior knowledge that
blacklisted URLs could not be posted to Twitter. Therefore, the rest of our
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time was dedicated to conducting measurement studies to investigate this
finding. Because of this our ML work was not taken further.

Future research could expand our ML work by integrating the classifier
into Phishalytics. The classified “fresh” phishing tweets would mark time
zero in a blacklist lifecycle analysis measurement. This would improve
the accuracy of our metric for “time of first tweet” for two reasons. Firstly,
phishing tweets could be categorised into blacklisted and non-blacklisted
at time of tweet. Therefore improving the quality of data that shows
how many blacklisted URLs are tweeted. Secondly, our measurement
studies used retroactive blacklist membership for phishing detection – which
relied on GSB URL hash prefix lookup methodology. The URL hash prefix
lookup methodology was prone to hash prefix collisions (see Section 4.6.3)
therefore reducing the size of our usable dataset. By leveraging a source
of “fresh” phishing URLs (i.e. pre blacklist membership URLs) from a ML
classifier, the resulting measurements would contain a more accurate and
richer dataset because GSB membership could be detected in real time.
Therefore eliminating the GSB hash collision issue.

Future research could also improve the accuracy of the ML classifier.
We improved the classifier’s overall accuracy from 92.52% [4] to 99% by
adding new features and altering the ratio of benign to phishing tweets
in the training data. However, although we increased the detection rate
of benign classification from 94.41% [4] to 99%, the trade-off was that
the detection rate for phishing classification fell from 92.31% [4] to 28%
– therefore missing 72% of phishing tweets. However, it is important to
consider the application of the ML classifier. In a typical 24-hour period
(approximately 3 million tweets; 1 million unique URLs – see GSB obser-
vation in Section 4.8.6) there will be approximately 139 phishing tweets
and 999,861 benign tweets. Although our classifier will only detect 39
(and miss 100) phishing tweets, it will correctly classify 999,845 (and miss
only 16) benign tweets. Whereas [4] will detect 128 (and miss 11) phish-
ing tweets, it will incorrectly classify 95,987 benign tweets as phishing.
Therefore, although [4] will be more effective at protecting the user against
phishing attacks, it comes at the cost of a high false negative (or miss) rate.
If the application of the ML classifier’s aim is solely to protect the user from
phishing attacks, then it succeeds. However, if false positives are going to
present a problem (for example, commercial liabilities such as in consumer
products) then there is still work to be done in improving the accuracy of
the ML classifier.
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9.10 Twitter

This section discusses topics about Twitter. We will address Twitter’s phish-
ing & malware detection, motives, data sharing, and sample stream size.

9.10.1 Twitter’s Phishing & Malware Detection

One of the key takeaways from our research is that Twitter may not be
effectively using the blacklists we analysed (GSB, OP, and PT). However, it is
possible that Twitter’s phishing and malware detection is much worse than
the 3 blacklists combined – but it is also possible that Twitter’s detection
is much better, or that it simply detects different content. Ultimately, we
cannot say for sure based on our specific measurement perspective.

9.10.2 Twitter’s Motives

One of the key research questions we are trying to answer in this thesis is:
how effective is Twitter’s phishing and malware defence system at protecting
its users. As we have seen from our research studies, there appear to be
limitations of Twitter’s defence system and potential room for improvement
– which may be leaving Twitter users exposed to such attacks.

However, it is important to understand the context of Twitter’s motives.
Twitter, as with all other responsible social media platforms, is under con-
stant pressure to take action over users that post malicious content to its
platform; this often involves the removal of offending accounts. However,
Twitter also needs to demonstrate its continued growth.

On the 7th November 2013, Twitter became a public company, listing
its shares on the New York Stock Exchange (NYSE). On that day, Twit-
ter’s shares opened at $26.00 and closed at $44.90, giving the company a
valuation of around $31 billion [35]. On the 5th February 2014, Twitter
published its first results as a public company, showing a net loss of $511
million in the fourth quarter of 2013 [73]. Since then, Twitter has been
under constant pressure from investors to increase its net worth. On the
26th July 2019 it was reported [135] that Twitter had started to hide its
monthly usage numbers and that the number of Twitter users had spent
a year in decline [134]. During that year, Twitter removed bots, spam,
and other bad user accounts from its platform – which may have partly
driven Twitter’s move to obscure its user numbers. Bear in mind: one of the
key ways in which Twitter achieves financial growth is through advertising
revenue – which is directly impacted by its number of users. On the 6th
February 2020, Twitter reported fourth quarter revenues of $1.01bn for the
first time ever [173], increasing its shares by 8%.
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Twitter must strike a balance between publicising its user base growth,
taking action against malicious users, and how this impacts its shareholders
and net worth. This becomes a fine balancing act for Twitter to keep
multiple parties happy at the same time.

9.10.3 Twitter’s Data Sharing

Twitter’s sharing of its data has a positive impact on the research and
academic community. As we have seen, numerous studies have benefited
from Twitter’s open data. However, Twitter is also very careful with its
full data set, charging a premium for access. As previously mentioned,
we contacted Twitter directly and were given a quote for accessing their
Decahose (10%) Feed (Twitter provides 3 feeds: free, approximately 1%;
10%; and 100%) – but this quote was considerably beyond what academic
researchers – and probably most businesses – can afford. This means that
Twitter has placed its full, and even 10%, dataset out of reach of the majority
of academics. As a result, Twitter could say, in response to any academic
study: we accept that this study is interesting, but the results might not be
accurate because the study only has access to 1% of our data. Therefore giving
Twitter something of a layer of protection against research carried out on
its data. But this raises an important question: which organisations can
afford access to Twitter’s full, 100%, dataset? And, for those organisations
that can afford access to Twitter’s 100% dataset, in what ways are these
organisations using the dataset to make access to it profitable?

January 2021 Update

On the 21st of January 2021, Twitter announced1 the launch of its Academic
Research product track; part of their new v2 API. In their announcement,
Twitter state:

“Our developer platform hasn’t always made it easy for researchers
to access the data they need, and many have had to rely on their
own resourcefulness to find the right information. Despite this,
for over a decade, academic researchers have used Twitter data
for discoveries and innovations that help make the world a better
place.”

Twitter state that their new Academic Research product track includes:
1https://blog.twitter.com/developer/en_us/topics/tools/2021/

enabling-the-future-of-academic-research-with-the-twitter-
api.html
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• “Higher levels of access to the Twitter developer platform for free, includ-
ing a significantly higher monthly Tweet volume cap of 10 million (20x
higher than what’s available on the Standard product track today)”

• “Free access to full-archive search”

• “Shortened URLs are fully unwound for easier URL analysis”

Despite claims of “higher monthly Tweet volume” in their v2 API, Twit-
ter have introduced limitations compared to their previous v1.1 API. For
example: our measurement studies had access to Twitter’s v1.1 API. We
received over 91 million monthly tweets via Twitter’s Filter API and over
105 million monthly tweets on Twitter’s Sample API (section 6.5.1: Twitter
Dataset Analysis). That is, Twitter’s old v1.1 API produced over 8x more
Tweets than Twitter’s new Academic Research product track – which itself
claims to offer 20x more tweets then their new Standard track. Suggesting
the new v2 API severely restricts tweet data volumes compared to the previ-
ous v1.1 API. This raises questions over the true volume of data that Twitter
is sharing with academics. However, Twitter’s v2 API feature of allowing
academics free access to the “full-archive search” is a useful addition that
would have improved our research.

Twitter’ new Academic Research access requires a more stringent ap-
plication process:

“We require this additional application step to help protect the
security and privacy of people who use Twitter and our developer
platform. Each application will go through a manual review pro-
cess to determine whether the described use cases for accessing
our Academic Research product track adhere to our Developer
Policy, and that applicants meet these three requirements: you
are either a master’s student, doctoral candidate, post-doc, fac-
ulty, or research-focused employee at an academic institution or
university; you have a clearly defined research objective, and you
have specific plans for how you intend to use, analyze, and share
Twitter data from your research; you will use this product track
for non-commercial purposes.”

This access requirement raises questions about Twitter’s influence over
academic research. It also excludes independent researchers and non-profits
from accessing Twitter’s research data. Will this new application process
give Twitter the power to decide what research can and cannot access its
platform? Will Twitter be granted full, or even partial, intellectual property
(IP) rights to research – or include non-disclosure agreements (NDA)?

The discourse in Twitter’s announcement of the Academic Research track
includes: “enabling the future of academic research with the Twitter API”,
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“invest in the success of the academic research community with tailored solu-
tions that better serve their goals”, and “we are excited to enable even more
research that can create a positive impact on the world, and on Twitter, in
the future”. This language shows that, whilst Twitter may indeed want to
“enable” academic research, it is important to consider Twitter’s motives.
Twitter is a for-profit organisation with financial pressures. It must invest
in its platform to sustain future growth and success. Will Twitter allow
objective and scientific research that improves society but, perhaps, conflicts
with Twitter’s motives?

9.10.4 Twitter Sample Stream Size

We use Twitter’s Stream API as a source of tweeted URLs in our research.
This stream typically contains approximately 1% of all global tweets. This
does mean that our measurements and analysis are of this 1% sample –
and not the full Twitter dataset. However, Twitter states that their stream
API provides a random sample of its full data set, therefore this should
provide an accurate representation of its full dataset. As we explored in
Section 3.2: Data Feeds, the accuracy of using Twitter’s sampled dataset
will depend on the type of research being carried out. Our research does
not rely on an interconnection of tweets or groups of users on Twitter.
However, we do require the timestamps of when URLs in our dataset are
first tweeted in order to calculate delay times. Therefore there could be
instances when the first appearance of a tweeted URL occurs outside of our
dataset. We compensate as much as possible for this by using techniques
such as Twitter’s Search API to determine first tweet timestamps.

9.11 Ground Truth

A key aspect to the accuracy of our measurement studies lies in our ground
truth. We use this ground truth to determine which URLs in our datasets are
phishing or malicious, and therefore produce our metrics. In our research,
we do not detect tweets containing phishing or malicious URLs that never
make it into GSB, PT or OP. Therefore these 3 blacklists make up our ground
truth. In Chapter 4: Design & Implementation, we discussed our reasoning
behind focusing on these 3 blacklists and concluded that they are 3 popular
and specialised blacklists that would be suitable for our study. In Chapter
5: Blacklist Analysis Study, our results show that GSB contains significantly
more phishing URLs than PT and OP. This might help to explain why GSB
features so prominently at detecting tweeted URLs that are blacklisted in
our other studies. However, we also hypothesised that Twitter may block
all URLs that reside in the OP and PT blacklists – which might also explain
why we see such few PT and OP blacklisted URLs in our Twitter feed.
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We have also discussed how we could leverage additional techniques
to increase our ground truth coverage – such as with a honeypot, machine
learning classifier, or using more blacklists. A limitation of our triad of black-
lists ground truth is that we do not verify the accuracy of these blacklists.
However, these blacklists are provided by reputable organisations. Also,
we explored existing studies [60, 310, 191] that analysed the effectiveness
and reliability of the community-based voting blacklist, PhishTank.

As we discussed in 3.3: Threat Intelligence & Blacklists, experiments
carried out for our thesis include 3 popular phishing blacklists (PT, OP, GSB).
Whilst every effort was made to include a complete coverage of phishing
blacklists, a number of realistic considerations, such as financial, contractual,
etc, impacted our ability to include such a complete set of phishing blacklists.
We believe that the core blacklists we have used in our experiments are
significant in their coverage and speciality, therefore should provide accurate
results.

9.12 Ethics

In Chapter 3: Related Literature, we reviewed existing literature that has
explored ethical considerations of cyber security research. In Chapter
4: Design & Implementation, we designed our measurement studies and
infrastructure to accommodate these ethical considerations. In chapters 5
to 8 we carried out our research in an objective and scientific manner that
related to our research questions. As discussed in 4.5: Ethical Considerations,
we are able to share our measurement data, that we have collected for our
studies, with other researchers in a privacy-aware manner.

9.13 Comparing Twitter and GSB Policies

In our results we see that GSB detects more tweeted URLs than are blocked
by Twitter. We mentioned that phishing and malware are only a small part
of Twitter’s comprehensive list of rules. In Table 9.1 we compare Twitter
and GSB’s policies on phishing and malware. We see that Twitter’s policy
covers malware, phishing, and unwanted software all in one statement.
Whereas GSB approaches each attack separately. GSB also explicitly states
what action Google Chrome will take if a dangerous website is found – a
warning within the browser will be shown. Whereas Twitter do not state
what action they will take if a dangerous website is discovered.

This comparison shows, as we would expect, that GSB’s core focus
is to detect attack websites and protect its users from them. Whereas
Twitter states – as part of its broad policy that needs to address many rules
that govern what users cannot do on its platform – that users may not
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Policy Twitter[278] GSB[107, 101, 105]

Phishing “You may not publish or
link to malicious content
intended to damage or
disrupt another person’s
browser or computer or to
compromise a person’s pri-
vacy.”

“Since 2005, Safe Browsing has protected
users across the web from Social Engineer-
ing attacks... If Google detects that [a] web-
site contains social engineering content, the
Chrome browser may display a “Deceptive site
ahead” warning when visitors view [the] site.”

Malware Same as above “Since 2006, Safe Browsing has warned users
when they attempt to navigate to sites that
might be malicious... Google checks websites
to see whether they host software or download-
able executables that negatively affect the user
experience.”

Unwanted
Software

Same as above “In 2014, we added protection against a broad
category of harmful technology that we now
call “Unwanted Software”: for example, pro-
grams disguised as helpful downloads that ac-
tually make unexpected changes to your com-
puter like switching your homepage or other
browser settings to ones you don’t want... ”

Table 9.1: Comparison of Twitter and GSB policies for both phishing and
malware.

publish malicious content. In some ways it could be beneficial for Twitter to
outsource the detection of dangerous websites to GSB, since GSB specialises
in detecting that sort of content. However, our results suggests that Twitter
is not preventing its users from visiting all websites that reside in GSB. It
could also be that, as we see in the policy wordings, GSB wants to clearly
promote its interest in detecting these attacks – since GSB wants users to
trust it as a protection provider. Whereas Twitter does not need to promote
its detection efforts, since their policy simply states that users may not
publish malicious content. Twitter may still deploy detection techniques
that we have been unable to measure in this thesis.

9.14 Design & Implementation

Theoretically, if we could access Twitter’s Firehose (100%) feed, it would
be interesting to repeat our experiments and compare the results. There
may very well be small patterns starting to emerge in our tweets dataset
that might develop into clear patterns, or they might also even out and
not actually be patterns at all. It would also be interesting to repeat our
study with additional blacklists – especially malware blacklists. Our ground
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truth of malware detection was GSB, which featured phishing URLs more
predominantly. This meant we saw fewer tweeted malware URLs in our
dataset. Also, as previously discussed, incorporating techniques such as
machine learning, honeypots, etc, could help to increase that ground truth
coverage.

In terms of implementation, it is important to plan ahead with a longit-
udinal measurement study. During our measurements there was no planned
IT maintenance and we experienced relatively little down time. Sometimes
the virtual machine we were running our experiments on would slow down
due to heavy use of other virtual machines on the system. But overall this
was not too much of a problem.

9.15 Test Driven Development (TDD)

Overall, the TDD process worked well and allowed us to test certain features
on smaller sets of data and iron out any problems before deployment. The
TDD process also allowed us to be flexible with our research and change
direction as we discovered new information or tried different techniques.

The process of finding and debugging errors was, at times, quite frus-
trating and often time consuming due to the impact it had on our running
experiments. As previously discussed in Section 4.6, changes to our data
sources (such as API changes) would sometimes impact our measurement
studies. Where required, we adapted to these changes in various ways,
such as altering our methodology.

9.16 Application to Other Social Media
Platforms

In this thesis we investigate the effectiveness of Twitter’s phishing and
malware defence system. We expand the definition of effectiveness in this
context, provide an effectiveness evaluation framework, design a meas-
urement infrastructure, and improve measurement studies by addressing
soundness and limitations of existing work. Our work can also be applied
to other, suitable, online social networks (OSNs). Our research methodo-
logy requires URLs (that have been shared on the OSN) and a source of
ground truth (e.g. blacklists) to measure effectiveness. Therefore, OSNs
that are suitable for our measurements should be reasonably text based.
That is, OSNs that allow its users to submit and share text; including URLs.
Examples of such OSNs include Facebook, Reddit, forums, IRC, Tumblr,
4chan, etc.
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Another important consideration when applying our research to other
OSNs is how user-contributed text is publicly shared. For example: on
Twitter, all user accounts are set to public by default. This means all
users’ tweets are shared publicly and included in Twitter’s data stream API.
Whereas on Facebook, all user profiles are set to share with friends only by
default. This means that researchers can only access Facebook users’ posts
if they are friends with the users.

Another important consideration when applying our research to other
OSNs is the data sharing policies and data feeds of the OSNs. We leverage
Twitter for our research because Twitter’s data sharing policy is generous.
For example: all tweets are public and users agree to share submitted
content (i.e. their tweets) with Twitter and third parties (unless a user
explicitly sets their account to private). Therefore, Twitter’s data-sharing
policy provides researchers with a rich set of data that is suitable for em-
pirical studies. Researchers can access Twitter’s data through Twitter’s
comprehensive API that is well documented2, features various endpoints3,
and includes numerous tools and libraries across multiple programming
languages4. These aforementioned points improve the accessibility and
efficiency of working with Twitter’s data, therefore resulting in improved
access to data for researchers.

9.17 Recommendations

Based on our findings, we make the following recommendations to poli-
cymakers, technology designers, researchers, and other interested parties.
Any organisation wanting to defend their system against phishing and mal-
ware attacks by using a blacklist(s) should carefully consider the available
blacklist providers. Due to its size, GSB may provide a certain level of
coverage against these attacks. However, the effectiveness of any such
protection will depend on the requirements of the organisation; aspects
such as risk appetite must be considered.

Additional protection can be provided by specialist phishing blacklists
such as PT and OP. It is important to note that there are usually delay times
for attack URLs to appear in blacklists. Therefore, blacklist services such
as OP, which leverage automated phishing detection, may detect phishing
attack URLs faster than traditional blacklist services. However, the trade-off
in using a faster detection service is that the duration, and volume, of attack
URLs in the blacklist may be limited. Therefore, attack URLs should always
be cross-checked with other blacklists.

2https://developer.twitter.com/en/docs
3https://developer.twitter.com/en/docs/api-reference-index
4https://developer.twitter.com/en/docs/twitter-api/tools-and-

libraries
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The impact of blacklist delays on user security should also be considered.
This applies to all internet users and social media users, not just those on
Twitter. Blacklists do not offer 100% protection due to many factors, such as
delays. Blacklists take time to update, thereby creating an attack space that
cybercriminals can exploit. We observed that heuristic phishing detection
of web browsers only catches 38% to 78% of phishing attacks – exposing
users to 62% of phishing attacks in the worst case. Therefore internet users
should always be aware that they may not be protected against online
threats.

Anyone using Twitter should ensure they have adequate phishing and
malware protection installed on their device. Any warnings produced by
the web browser, or any other protection service, should be adhered to
and websites flagged as dangerous should not be visited. This protection
is especially important because, as we saw in Chapter 6 and 8, significant
numbers of phishing and malware URLs are not blocked by Twitter either at
time of tweet or time of click – therefore exposing Twitter users to potential
threats. As a direct result, we saw that, during one month alone, phishing
and malware attacks on Twitter received more than 1 million clicks. Twitter
users should not click any links on Twitter from anyone they do not know
or trust. Any organisation using Twitter should ensure its risk appetite
aligns with its phishing and malware defence strategy; organisations with
lower risk appetites should enforce higher levels of phishing and malware
protection as part of its risk management strategy.

Researchers aiming to leverage Twitter’s data feed should consider
the suitability of the sample size. Twitter’s v1.1 filtered stream provides
a sample of approximately 1% of all global (depending on defined para-
meters) tweets [195]. This size may introduce bias in studies that rely
on interconnected tweets (i.e. analysing crowds in context) for accuracy.
Researchers with suitable financial budgets may consider Twitter’s 10% and
100% streams to improve accuracy. In addition to this, Twitter claim to
have increased their data feed sizes in its newly launched Academic Research
product tract, part of its v2 API. This also includes access to Tweet history.
However, monthly tweet volumes in the v2 API may have reduced compared
to the v1.1 API (see Section 9.10.3).

Empirical studies aiming to measure the effectiveness of Twitter’s (or
any other social media platform’s) phishing and malware defence system
– or, more generally, cybercrime defence system – should evaluate the ac-
curacy and coverage of their ground truth. Our ground truth comprised
3 blacklists (GSB, PT, and OP). Any non-blacklisted dangerous URLs are
not measured in our studies; potentially affecting the soundness of our
measurements. The accuracy of ground truth can be evaluated by exploring
existing literature (see Section 3.3: Threat Intelligence & Blacklists), check-
ing for false positives / negatives (e.g. through random sampling, machine
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learning classification, etc), examining reputation of data provider, etc. The
coverage of ground truth can be improved by increasing the number of
threat intelligence sources (such as blacklists, honeypots, machine learning
classifier(s), etc).

Measurement studies should clearly describe their methodology and
technical implementation details. This improves reproducibility of the study.
It may be useful to repeat a specific measurement study in future; providing
a benchmark to determine how the landscape has changed (e.g. in terms
of threats, technologies, demographics, etc). Measurement studies should
share their resulting data and make it easily available. This allows future
research to reproduce the measurements and also build on and improve
the data.

Finally, it is important to address the soundness of measurements and
conclusions. Be careful not to make absolute claims (i.e. not independ-
ent; require context) or draw conclusions from dichotomous thinking and
measurement fallacies. Measurement study results may require context,
alongside relevant background topics and existing literature, for sound
interpretation.

CHAPTER SUMMARY

In this chapter we answered our research questions by evaluating the
effectiveness of Twitter’s phishing and malware defence system at time-of-
tweet and time-of-click. Our findings suggest more can be done to strengthen
Twitter’s cybersecurity defence system and improve user security.

We addressed soundness, discussed our measurement study results within
our effectiveness framework, and assessed our research findings. Evaluating
the effectiveness of Twitter’s cybercrime defence system is complex and
non-trivial. Our framework and analysis contributes towards evaluating
effectiveness but cannot provide a complete picture on its own.

We discussed how our research findings could be influenced by numerous
factors and contexts; such as URL shorteners, information credibility, and
cybercriminal networks. Our measurements offer a focused window into
phishing and malware activity on Twitter as a snapshot that can be used for
benchmarking.

We discussed Twitter’s potential financial motives, such as pressure to grow
its user-base – despite conflicts with community safety (e.g. by removing
malicious accounts). We also discussed Twitter’s data sharing practices;
raising questions about how organisations finance access to Twitter’s full
data feeds.
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We addressed limitations of our research, such as using 3 blacklists (GSB, OP,
and PT) as our ground truth and explored how future work could increase
ground truth coverage (e.g. by leveraging honeypots, machine learning,
and additional blacklists).

We explored how our research methodology can be applied to other online
social networks (OSNs) such as Facebook, Reddit, and 4chan. We made
recommendations on blacklist usage, implications of blacklist delays on
user security, and the importance of Twitter users’ risk awareness. Finally,
we highlighted the importance of sharing measurement study methodology,
technical implementation details, and resulting datasets with the research
community.
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10
Conclusion

In this thesis we investigated the effectiveness of Twitter’s phishing and
malware defence system. We defined a set of effectiveness evaluation
metrics and framework, created Phishalytics; our measurement system,
then conducted numerous measurement studies. Our measurements studies
improve the quality, quantity, and analysis of data available to the internet
measurement research community and address our core research questions:

1. How effective is Twitter at protecting its users from phishing and
malware URL attacks?

2. How effective are blacklists at helping Twitter to protect its users
from phishing and malware attacks?

3. What do popular phishing and malware blacklists consist of? Uptake,
dropout, typical lifetimes, and overlap of URLs in these blacklists

4. What is the lifetime of a URL in a phishing/malware blacklist?

5. Are blacklists affected by delays – and, if so, what impact do blacklist
delays have on user security?

6. How effective is Twitter’s URL shortener, t.co, at protecting Twitter
users from phishing and malware attacks?

7. What is the comparison between Twitter’s use of blacklists and Twit-
ter’s URL blocking (via t.co) at protecting users from phishing and
malware attacks?

8. To explore the impact of phishing and malware attacks on Twitter:
how many Twitter users click on publicly tweeted phishing or malware
URLs that have been blacklisted?

Table 10.1 summarises our contributions; linked to our research questions.
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Contribution RQ

Expand the definition of effectiveness – for measuring Twitter’s cybercrime
defence system – to include new and improved metrics; addressing soundness
and limitations of existing work.

All

Define an effectiveness evaluation framework. All

Design and implement Phishalytics: novel measurement infrastructure to con-
duct longitudinal measurement studies.

All

Measurement data (1.5TB); available to help future research. All

Methodology to improve current understanding of how to collect and analyse
internet measurements.

All

Phishalytics technical implementation details and full codebase [37] to aid
reproducibility.

All

Novel characterisation and analysis of 3 popular phishing blacklists; including
comprehensiveness and typical URL uptake, dropout, lifetime, and overlap
[38].

3, 4

Novel, fine-grained and in-depth study into the effectiveness of blacklists at
protecting Twitter users from phishing and malware attacks; time-of-tweet
defence study [40].

1, 2, 5, 8

Novel evidence to suggest Twitter may no longer be using the GSB blacklist to
protect users.

1, 2

Contemporary analysis of Twitter’s phishing and malware defence system at
time of tweet.

1, 2, 5, 8

Improve internet measurements by including URL redirection chain(s); address-
ing soundness and methodological limitations of existing literature.

1, 2, 5

Improve internet measurements by introducing specialised blacklists: GSB,
PT, and OP; addressing soundness and methodological limitations of existing
literature.

2, 3, 4, 5

Improve measurement accuracy of tweeted URL blacklist delay times; address-
ing soundness and methodological limitations of existing work.

1, 2, 5, 8

Novel implementation of historical tweet context in methodology to increase
accuracy of time of first tweet.

1, 2, 5

Improve measurement accuracy of blacklisted URL clicks by defining timeframe
and referrer; addressing methodological limitations of existing literature.

8

Update and improve the accuracy of existing research into the effectiveness
of web browser phishing detection; test suite comprising multiple operating
systems; categorisation of URL blacklist status at time of test – to determine
heuristic detection; web browser warning effectiveness framework.

1

Novel study into the effectiveness of Twitter’s phishing and malware defence
system at time-of-click; Twitter’s URL shortener (t.co) [39].

6, 7

Table 10.1: Thesis contributions linked to research question (RQ) numbers.
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Blacklist Analysis Study (Chapter 5)
We investigated 3 key phishing blacklists: Google Safe Browsing (GSB),
OpenPhish (OP), and PhishTank (PT). In this longitudinal measurement
study we analysed the uptake, dropout, typical lifetimes, and considered
the overlap of URLs in these blacklists. During our 75-day measurement
period we determined that GSB contained an average of 1,581,351 URLs,
compared to 12,433 in PT and 3,861 in OP. We contribute the first such
study of these 3 blacklists.

Our measurements revealed that the OP blacklist removed a significant
volume of URLs from its dataset after a duration of 5 and 7 days; no URLs
remained in OP for more than 21 days. Therefore potentially limiting
OP’s effectiveness at protecting users from phishing attacks. We saw that,
across all 3 blacklists, as time increased, fewer URLs remained blacklisted –
phishing URLs are often short-lived.

We determined that none of the 3 blacklists enforced a one-time-only
URL policy in their dataset; URLs reappeared in the blacklists if they con-
tinued or re-emerged as a threat. This is good for users because they will
be protected against reoffending phishing websites. We also showed that
a significant number of URLs reappear in all 3 blacklists within 1 day of
removal – suggesting that these URLs were either removed too soon or that
they came back online.

Finally, we compared the PT and OP blacklists and discovered that
11,603 unique URLs resided in both of these blacklists – a 12% overlap.
Despite its smaller average size, OP detected over 90% of these overlapping
URLs before PT did.

Time-of-Post Twitter Study (Chapter 6)
We examined how effective URL blacklists are at protecting Twitter users
against phishing and malware attacks. In this longitudinal measurement
study we analysed over 182 million URL-containing public tweets collected
from Twitter’s Stream API, over a 2 month period, and compared these
URLs against 3 popular social engineering, phishing, and malware blacklists
(GSB, PT, and OP).

Our main discovery was that, although the majority of phishing and
malware URLs are detected by the GSB blacklist (which is used by popular
web browsers) within 6 hours of being tweeted, there are still a large
number of URLs that take at least 20 days to appear in GSB.

We discovered 4,930 tweets containing URLs leading to social engineer-
ing websites that took between 18 and 30 days to appear in the blacklist.
Between them, these 4,930 tweets had been tweeted to over 131 million
Twitter users. We also discovered 1,126 tweets containing 376 blacklisted
Bitly URLs that had received a combined total of 991,012 clicks. These
URLs represented 11% of the total blacklisted social engineering URLs in

263



Chapter 10. Conclusion

that month.
The fact that the GSB blacklist can take weeks to detect dangerous URLs

poses serious security risks to Twitter users: tweets containing blacklisted
URLs are sent to large numbers of followers and receive a significant amount
of clicks, thereby exposing users to dangerous websites.

Conversely, and surprisingly to us, there are large numbers of URLs
being tweeted that have already been blacklisted by GSB. This may suggest
that Twitter is not using the GSB blacklist to block malicious tweets at the
time of tweeting, contrary to what was once reported to be the case [200].

In summary, whilst blacklists are reasonably effective at protecting Twit-
ter users from phishing and malware attacks, there is still an unprotected
space that leaves Twitter users vulnerable. It could be that Twitter relies on
web browser’s built-in defence systems to protect users against phishing
and malware attacks.

Web Browser Phishing Detection Study (Chapter 7)
We created a comprehensive testing environment to assess the effectiveness
of web browsers’ anti-phishing technology – across a variety of different
operating systems. We then used this testing environment to measure how
effective popular web browsers are at detecting phishing websites.

By testing popular web browsers against both known (i.e. blacklisted)
and unknown (i.e. non-blacklisted) phishing websites, our results showed
that most of today’s popular web browsers are able to detect over 80% of
known phishing websites. This might suggest that Twitter does not need
to protect its own users against phishing attacks – because Twitter can
rely on the web browsers to act as a defence mechanism. However, the
web browsers we tested were not as effective at detecting unknown (i.e.
non-blacklisted) phishing websites – detecting only 38% to 78%.

We also analysed the heuristic phishing detection methodology of the
Chromium web browser to improve our understanding of how it works
and its effectiveness. We posed a number of theoretical phishing detection
circumvention techniques, along with their potential weaknesses.

It is important to note that users are not completely protected against
known phishing attacks, since blacklists take time to update – which can
create a window of opportunity for attackers. Therefore, if Twitter is
relying on web browsers to protect their users against phishing websites,
then Twitter could be leaving its users exposed and vulnerable to some of
these attacks.
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Time-of-Click Twitter Study (Chapter 8)
We investigated the effectiveness of Twitter’s URL shortener (t.co) at pro-
tecting users from phishing and malware attacks. In this longitudinal
measurement study we follow-up from one of our key findings in Chapter
6: that over 10,000 blacklisted phishing and malware URLs were posted
to Twitter during our 2-month measurement study, which lead to over 1.6
million clicks that came directly from Twitter users – therefore exposing
people to potentially harmful cyber attacks.

We investigate if Twitter blocks any URLs posted to its platform at time
of click – therefore potentially protecting its users against the 10,000+
blacklisted URLs that we detected in the twitter dataset in Chapter 6. We
discovered a reduction in the number of phishing and malware URLs posted
to Twitter in 2018-19 compared to 2017 – suggesting a potential improve-
ment in Twitter’s effectiveness at filtering blacklisted URLs at time of tweet.
However, we also discovered that only about 12% of blacklisted phishing
and malware URLs – which were not blocked at time of tweet and therefore
posted to the platform – were blocked by Twitter in 2018-19 at time of
click.

Our results indicate that, despite a reduction in the number of blacklisted
URLs posted to the social network, Twitter’s URL shortener is not particularly
effective at filtering phishing and malware URLs – therefore people are still
exposed to these cyber attacks on Twitter.

Discussion Summary
Key points we discussed in Chapter 9 include the difficulties of conducting
longitudinal measurement studies in an ever-changing landscape and the
challenges associated with comparing results from different measurement
timeframes.

We addressed limitations of datasets we use, such as Twitter and other
APIs. We mitigate limitations by meticulously planning and researching
our methodology. We also discussed our ground truth, which consists of 3
popular blacklists, and explored potential areas for future work.

We discussed the soundness of measurements and conclusions; draw-
ing absolute conclusions (i.e. not independent; require context) from our
measurement results may lead to dichotomous thinking and oversimpli-
fication. Evaluating the effectiveness of Twitter’s phishing and malware
defence system is complex. Our framework and analysis contributes to-
wards evaluating effectiveness but cannot provide a complete picture on its
own.

We explored how existing literature can provide context to our measure-
ment study results and what implications these may have. We also discussed
Twitter’s motives; how it is under increasing financial pressure to grow the
platform and its user-base. Yet, simultaneously, keep its community safe
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and remove malicious accounts.
We made recommendations on blacklist usage, implications of blacklist

delays on user security, and the importance of Twitter users’ risk awareness.
Twitter users should ensure their risk appetite aligns with their phishing
and malware defence strategy; lower risk appetites should enforce higher
levels of phishing and malware protection.

Finally, we highlighted the importance of sharing measurement study
methodology, technical implementation details, and resulting datasets with
the research community. We aim to improve risk awareness and better
enable policymakers, researchers, and technology designers to strengthen
online user security.

RESEARCH SUMMARY

Addressing our 8 research questions (RQ):

RQ 1: Our research results show that Twitter does protect its users against
some phishing and malware attacks. However, we observed over 10,000
blacklisted phishing and malware URLs that had been publicly shared on
the social network. Therefore, suggesting that Twitter could do more to
protect its users against cyber attacks.

RQ 2: Twitter does not appear to be effectively leveraging the GSB blacklist
to protect users against phishing and malware threats. Twitter may be
relying on web browsers’ built-in security to defend against such attacks.
However, web browsers are not perfect at detecting phishing attacks –
missing up to 62% of non-blacklisted URLs.

RQ 3 & 4: Our analysis of popular phishing and malware blacklists (GSB,
OP, and PT) observed an average of 1.6 million URLs in the GSB blacklist,
over 12 thousand URLs in PT, and nearly 4 thousand URLs in OP. The OP
blacklist appears to enforce strict limits on how long URLs can remain in
its dataset for. The PT and OP blacklists see a 12% overlap of URLs; OP
detected over 90% of these URLs before PT. On average, URLs remain in
GSB for 10 days, PT for 2 days, and OP for 5 days. However, we also see that
some URLs remain in blacklists for the entire duration of our measurement
experiments.

RQ 5: Blacklist delays can have a significant impact on user security. Al-
though the majority of URLs in our study were detected by the GSB blacklist
within 6 hours of being tweeted, a significant number of URLs took over 20
days to appear in GSB. Blacklist delays can also affect web browsers’ ability
to defend against such attacks.
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RQ 6 & 7: Twitter does block certain URLs at time of click (via its URL
shortener, t.co), therefore providing additional protection to Twitter users.
However, we observed that only 12% of blacklisted phishing and malware
URLs were blocked by Twitter at time of click – therefore potentially expos-
ing people to these threats.

RQ 8: Our study observed that blacklisted phishing and malware URLs –
that were tweeted publicly on the social network – received more than 1.6
million clicks from Twitter users – therefore exposing people to potentially
harmful cyber attacks.

Results from our measurement studies should be interpreted in context;
external factors of the landscapes outside our measurements may influence
our findings. We aim to improve risk awareness and better enable policy-
makers, researchers, and technology designers to strengthen online user
security.

We contribute towards the internet measurement community, and improve
the reproducibility of our measurement studies, by including our methodo-
logy, technical implementation details, and sharing our resulting data (see
Chapter 4).
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