
Subtractive Sets over Cyclotomic Rings
Limits of Schnorr-like Arguments over Lattices

Martin R. Albrecht1? and Russell W. F. Lai2??

1 Information Security Group, Royal Holloway, University of London
martin.albrecht@royalholloway.ac.uk

2 Chair of Applied Cryptography, Friedrich-Alexander-Universität Erlangen-Nürnberg
russell.lai@cs.fau.de

Abstract. We study when (dual) Vandermonde systems of the form
V(ᵀ)
T · z = s · w admit a solution z over a ring R, where VT is the

Vandermonde matrix defined by a set T and where the “slack” s is a
measure of the quality of solutions. To this end, we propose the notion
of (s, t)-subtractive sets over a ring R, with the property that if S is
(s, t)-subtractive then the above (dual) Vandermonde systems defined by
any t-subset T ⊆ S are solvable over R. The challenge is then to find
large sets S while minimising (the norm of) s when given a ring R.
By constructing families of (s, t)-subtractive sets S of size n = poly(λ)
over cyclotomic rings R = Z[ζp`] for prime p, we construct Schnorr-like
lattice-based proofs of knowledge for the SIS relation A · x = s · y mod q
with O(1/n) knowledge error, and s = 1 in case p = poly (λ). Our
technique slots naturally into the lattice Bulletproof framework from
Crypto’20, producing lattice-based succinct arguments for NP with better
parameters.
We then give matching impossibility results constraining n relative to
s, which suggest that our Bulletproof-compatible protocols are optimal
unless fundamentally new techniques are discovered. Noting that the
knowledge error of lattice Bulletproofs is Ω(log k/n) for witnesses in Rk
and subtractive set size n, our result represents a barrier to practically
efficient lattice-based succinct arguments in the Bulletproof framework.
Beyond these main results, the concept of (s, t)-subtractive sets bridges
group-based threshold cryptography to lattice settings, which we demon-
strate by relating it to distributed pseudorandom functions.

1 Introduction

Proving knowledge of a short integral vector x satisfying a system of linear
equations of the form A · x = y mod q defined over some ring R, i.e. an answer
? The research of MA was supported by EPSRC grants EP/S020330/1, EP/S02087X/1,
by the European Union Horizon 2020 Research and Innovation Program Grant 780701
and Innovate UK grant AQuaSec.

?? Russell W. F. Lai is supported by the State of Bavaria at the Nuremberg Campus of
Technology (NCT). NCT is a research cooperation between the Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU) and the Technische Hochschule Nürnberg
Georg Simon Ohm (THN).

to a short integer solution (SIS) problem and its generalisations, is a central task
in lattice-based cryptography. Indeed, zero-knowledge variants of such proofs
catalyse constructions of lattice-based privacy-preserving protocols such as group
and ring signatures (e.g. [26,16,37]). These proofs are often also required for
proving the well-formedness of the inputs of basic lattice building blocks. This is
because random elements in R are easily trapdoored [21] such that using them in
computations touching secret values risks their exposure. Furthermore, when y
is a commitment of x encoding the witness to an NP statement, such a proof of
knowledge can be compiled into a (succinct) argument of knowledge for NP [1,10].
The practical performance of such proofs has thus far-reaching consequences.

Prior to 2019 plausibly post-quantum secure proof systems for the SIS problem
could be categorised into three classes: probabilistically-checkable proofs (PCP),
“Stern-like” or “Schnorr-like”.3

PCP-based systems [25] offer succinct proofs for arithmetic circuits from sym-
metric primitives only (e.g. [3]).

Stern-like systems [35,24,28] rely on the combinatorial cut-and-choose tech-
nique, and come with an knowledge extractor which is able to extract a
solution x̃ with ‖x‖ = ‖x̃‖ satisfying A · x̃ = y mod q. Due to their combina-
torial nature, however, Stern-like systems only achieve constant knowledge
error and have to be repeated O(λ) times to make that negligible.

Schnorr-like systems (e.g. [29]) are algebraic and can achieve inverse polynomial
or even negligible error, hence only O(λ/ log λ) repetitions are needed in the
former case and none in the latter. However, the knowledge extractors for
Schnorr-like proofs are only able to extract a solution x̃ to a relaxed statement
A · x̃ = s · y mod q with a “slack” s 6= 1 and “stretch” ‖x̃‖/‖x‖ > 1, which
ultimately force the systems to be instantiated with larger moduli q. These
relaxations may be acceptable in some applications, such as digital signatures,
but can be prohibitive for others, e.g. when the system is recursively composed.

In the discrete logarithm setting, Bünz et al. [12] discovered that the linearity of
Schnorr-like proofs can be exploited for recursively composition. This “Bulletproof”
template was adapted to the lattice setting by Bootle et al. [10], where the task
of proving A · x = y mod q, with A = (A0,A1), is reduced to that of proving
Ã·x̃ = ỹ mod q with Ã = cA0+A1 and ỹ dependent on some random challenge c,
and the dimension of x̃ halved compared to x. By recursively composing the above
protocol log k times, where k is the dimension of x, Bootle et al. [10] obtained
a protocol with poly-logarithmic communication for proving Ax = y mod q,
which implies [1] the first lattice-based zero-knowledge arguments for NP with
poly-logarithmic communication that deviates from the PCP-based framework.

Since 2019 several works [37,11,5,18] managed to give (almost) the best of both
the Stern and Schnorr worlds: neither slack nor stretch as in Stern-like protocols
and inverse-polynomial (but not negligible) soundness error as in Schnorr-like
3 Without counting highly generic constructions requiring Karp reductions.

protocols. All these works prove A · x = y mod q exactly, i.e. A · x̃ = s · y mod q
with s = 1 and ‖x̃‖ = ‖x‖. The work of Beullens [5] generalises the “MPC in the
head with preprocessing” idea of [23] to give a variant of Stern’s protocol with
inverse-polynomial soundness error.4 The works [37,11,18] augment a Schnorr-like
protocol with non-linear constraints fixing x to be, say, ternary.

While these works resolve the question of proving A · x = y mod q without
slack or stretch, they all share the properties of introducing non-linear constraints
and producing linear-size proofs.5 Indeed, unless new techniques are developed, it
is unclear how the non-linear constraints used in these systems can be integrated
into the Bulletproof framework of “folding down” the problem to polylogarithmic
size, exploiting linearity. Thus, it is natural to ask if the approaches taken in these
prior works are necessary, or whether Schnorr-like constructions that reduce or
eliminate stretch and slack while achieving inverse-(super-)polynomial soundness
error have yet to be found.

Knowledge extraction in Schnorr-like proofs for the SIS problem classically
proceeds roughly as follows. Let S = {c0, . . . , cn−1} be a set of challenges. Given
a convincing prover, the extractor E runs the prover multiple times to extract
t solutions x̃i satisfying A · x̃i = ỹ0 + ci y + c2i ỹ2 + · · · + ct−1

i ỹt−1 mod q for
distinct ci ∈ S. In the simple t = 2 case which captures linear-size proofs, E
subtracts the two relations and obtains A · (x̃i0 − x̃i1) = (ci0 − ci1) · y mod q. If
ci0 − ci1 is invertible, e.g. when the ci’s are field elements, and we do not care
about the length of the extracted solution, then E could simply divide both sides
by ci0 − ci1 and obtain an exact solution. The issue in the lattice settings is that
the relation A · x = y mod q is defined over e.g. a cyclotomic ring R = Z[ζ],
where not all elements are invertible. Even if ci0 − ci1 is invertible (mod q), its
inverse and hence the extracted solution might not be short (relative to q).

A workaround is to accept a slack of s which is divisible by ci − cj over R for
all possible ci, cj ∈ S. Then by choosing a large enough modulus q ∈ N, E can
extract a short (relative to q) solution x̃ to A · x̃ = s · y mod q. In matrix form,
it means that the extractor E solves a linear system of the form Vᵀ

T · z = s ·w
where VT is the Vandermonde matrix (Equation (3)) defined by T = {ci0 , ci1 }
and w = (0, 1)ᵀ. In the t = 3 case which captures one level of the lattice
Bulletproof protocol [10], E solves a linear system of the same form except that
T = {ci0 , ci1 , ci2 } and w = (0, 1, 0)ᵀ. In both cases E extracts x̃ =

∑
i∈Zt zi · x̃i

as a solution to A · x̃ = s · y mod q with stretch dependent on ‖z‖.
From this discussion we can reduce the task of finding Schnorr-like protocols

(especially Bulletproof-compatible ones) with small soundness error to the task
of finding a large set S and a small slack s, so that for any t-subset T ⊆ S for
some desired threshold t, the dual Vandermonde systems of linear equations of
the form V ᵀ

T · z = s ·w have a short solution z over R.

4 A similar approach is taken in [2] but for proofs from symmetric primitives.
5 Proof effort can be amortised, though [9].

Contribution. In this work, we give both positive and negative resolutions to
this problem. Our main results are summarised below.

(s, t)-subtractive sets. In Section 3 we define the notion of (s, t)-subtractive sets
of size n over a ring R. If S ⊆ R is (s, t)-subtractive, then for any t-subset
T ⊆ S, (dual) Vandermonde systems defined by T are solvable over R. If S is
(1, t)-subtractive (without slack) then we simply call S subtractive.

(s, t)-subtractive sets over power-of-2 rings. In Section 3.1 we construct a family
of (s, t)-subtractive sets, with different tradeoffs between the set size n, slack s,
and threshold t, over any power-of-2 cyclotomic ring R = Z[ζm] where m = 2`.
This can be seen as a generalisation of [4] who essentially constructed a (2, 2)-
subtractive set of size m. Our family includes a (2, 3)-subtractive set of size
n = m/2+1, which implies a lattice Bulletproof protocol with slack k and stretch
Õ(k2 logm+0.58). In comparison, the protocol of Bootle et al. [10] had slack k3

and stretch Õ(k3 logm+4.5).6

Subtractive sets over prime-power rings. In Section 3.2 we construct a subtractive
set S of prime size p over any prime-power cyclotomic ring R = Z[ζp`]. For
p = poly(λ) it implies a Schnorr-like proof of knowledge for lattice statements
over R without slack with knowledge error O(1/poly(λ)), which in turn implies
a lattice Bulletproof protocol with no slack and stretch Õ(k3 logm+4.58).

No large (s, t)-subtractive sets. In Section 3.3 we prove that if R has an ideal q
of algebraic norm q, then for any (s, t)-subtractive set S over R of size n > q, we
necessarily have s ∈ q. Consequently, there is no family of (2, t)-subtractive sets of
size n > m+ 1 over power-of-2 cyclotomic rings, meaning that our construction is
within a factor of 2 of being optimal. There is also no subtractive set of size n > p
over prime-power cyclotomic rings, meaning that our construction is optimal.

Soundness of lattice Bulletproofs. In Section 4 we construct a slight generalisation
of the Bulletproof protocol from [10] and instantiate it with our subtractive sets.
We prove both completeness and soundness for each level. For the recursive
composition, we note that unfortunately the knowledge error of O(1/n) given
in [10] turns out to be too optimistic: it does not account for the freedom of the
prover to choose for which level(s) to cheat. As we discuss in Section 4.2, we can
hope for O(log k/n) by applying a union bound. Indeed, applying [17, Lemma
3.2], we obtain a knowledge error of 8.16 log k/n. We consider our more careful
analysis of the knowledge error in [10] an independent contribution.

Small slack and negligible knowledge error is unlikely. Based on the technique
for proving the impossibility of large (s, t)-subtractive sets we prove that, for a
natural class of “algebraic” knowledge extractors for Schnorr-like protocols, it is
6 Their stretch analysis appears to be generous, though. We discuss the tightness of
our analysis in Section 4.3.

impossible to achieve knowledge error κ < q−1 ifR has an ideal q of norm q unless
we accept a slack s ∈ q. For a natural generalisation of Schnorr-like protocols,
where the verifier sends two challenges chosen from sets S0 and S1 instead of one,
it is still impossible7 for algebraic knowledge extractors to achieve knowledge
error κ < q−2 unless s ∈ q. For concreteness, we note that a prime-power
cyclotomic ring R = Z[ζp`] always has an ideal

〈
1− ζp`

〉
of norm p. Therefore our

instantiations over prime-power rings are optimal assuming algebraic extractors.
We interpret this as a limit to achieving negligible knowledge error in Schnorr-like
(Bulletproof-compatible) proofs for the SIS problem with small slack without
introducing non-linear relations.

Application to homomorphic secret sharing over rings. Apart from its appli-
cations in constructing Schnorr-like protocols, in Appendix A we demonstrate
how (s, t)-subtractive sets can be used as a tool to bridge group-based threshold
cryptography techniques to the lattice setting by relating them to the construc-
tion of homomorphic secret sharing schemes over rings. Roughly, in matrix form,
the recovery procedure in such a scheme is equivalent to finding the first term
z0 of the solution z to a linear system of the form VT · z = s · w where VT

is the Vandermonde matrix defined by T (as above). As a concrete example,
we generalise the construction of distributed pseudorandom functions from (al-
most) key-homomorphic pseudorandom functions and Shamir secret sharing by
Boneh et al. [7] using (s, t)-subtractive sets.

2 Preliminaries

Let λ ∈ N be the security parameter. For n ∈ N, write [n] := {1, 2, . . . , n},
Zn := {0, 1, . . . , n− 1} denotes the ring of integers modulo n, Z∗n denotes the
multiplicative group of integers modulo n, and the Euler totient function ϕ(n)
denotes the number of positive integers at most and coprime with n. If T ⊆ S
are sets and T has t elements, we write T ⊆t S. If S is a finite set then ←$S
denotes the sampling of a uniformly random element from S.

2.1 Cyclotomic Rings

For m ∈ N, let ζm ∈ C be any fixed primitive m-th root of unity. Denote by K =
Q(ζm) the cyclotomic field of order m ≥ 2 and degree ϕ(m), and by R = Z[ζm]
its ring of integers, called a cyclotomic ring for short. We have R ∼= Z[x]/〈Φm(x)〉,
where Φm(x) is the m-th cyclotomic polynomial. We write σi(x) for 0 ≤ i < ϕ(m)
be the ϕ(m) different embeddings of x ∈ Q[ζm] into C. Cyclotomic fields Q[ζm]
are Galois extensions of Q [36, Thm 2.5], i.e. for all embeddings σi(·) of the field to
C we have σi(Q[ζm]) = Q[ζm]. If f1, . . . , fk ∈ R, we write 〈f1, . . . , fk〉 ⊆ R for the
ideal generated by f1, . . . , fk. If T ⊆ R, we also write 〈T 〉 for the ideal generated
by the elements in T . For T0, T1 ⊆ R, we write T0 − T1 := {t0 − t1 : ti ∈ Ti}.
7 Under mild additional assumptions.

Similarly, we write T0 · T1 − T2 · T3 := {t0 · t1 − t2 · t3 : ti ∈ Ti} and so on. When
m is clear from the context, we omit the subscript m and write ζ = ζm. We will
focus primarily on m ≥ 2 which is a prime-power. Using the “powerful” basis{
ζi
}
i∈Zϕ(m)

, we can view R as a Z-module of dimension ϕ(m).

2.2 Norms and Ring Expansion Factors

For elements x ∈ R we denote the infinity norm of its coefficient vector (with the
powerful basis) as ‖x‖. If x ∈ Rk we write ‖x‖ for the infinity norm of x. We
denote the algebraic norm of elements x ∈ R by N(x) :=

∏
0≤i<n σi(x). It holds

that N(x) = |R/〈x〉|. We define the degree-d expansion factor of a ring R.

Definition 1. Let R be a ring. The degree-d expansion factor of R, denoted by
γR,d, is defined as γR,d := maxS⊆dR

∥∥∏
a∈S a

∥∥ /∏a∈S ‖a‖. If d = 2 we simply
write γR = γR,2.

To upper bound γR,d for a cyclotomic ring R, we prove the following technical
lemma which can be seen as a generalisation of [30, Theorem 3.3] to prime-power
cyclotomic rings together with Proposition 1 given below.

Lemma 1. Let ζ = ζm where m = p` for some prime p. Let d ∈ N. Then
the expression a =

∑
i∈Zdm ai · ζ

i where maxi∈Zdm ‖ai‖ ≤ α can be reduced to
a =

∑
i∈Zϕ(m)

a′i · ζi with maxi∈Zϕ(m) ‖a′i‖ ≤ 2 d · α. Assume further that ai ≥ 0
for all i ∈ Zdm, then we have maxi∈Zϕ(m) ‖a′i‖ ≤ d · α.

Proof. Recall that ζ is a root of Φm(x) =
∑p−1
i=0 x

ip`−1 . We thus have the
identities ζm−k = −

∑p−1
i=1 ζ

ip`−1−k for k ∈ [p`−1]. Suppose that the mono-
mials

{
ζip

`−1−k : i ∈ [p− 1]
}

of ζm−k overlap with those of ζm−k′ , we then
have ip`−1 − k = i′p`−1 − k′ for some i, i′ ∈ [p − 1] and k, k′ ∈ [p`−1]. We
have |i′ − i|p`−1 = |k′ − k| < p`−1 which forces i = i′ and hence k = k′.
In other words, the sets of monomials of ζm−k are non-overlapping for dis-
tinct k ∈ [p`−1]. For i ∈ Zdm, write i = jm + k for j ∈ Zd and k ∈ Zm,
and rename ai to aj,k. Then a =

∑
i∈Zdm ai · ζ

i =
∑
j∈Zd ζ

jm ·
∑
k∈Zm aj,k ·

ζk =
∑
j∈Zd

∑
k∈Zm aj,k · ζ

k :=
∑
j∈Zd āj . We observe that each term āj =∑

k∈Zm aj,k · ζ
k where maxi∈Zdm ‖ai‖ ≤ α can be reduced using the above iden-

tities to āj =
∑
k∈Zϕ(m)

a′j,k · ζk with maxk∈Zϕ(m)

∥∥∥a′j,k∥∥∥ ≤ 2α. If ai ≥ 0 for all

i ∈ Zdm, then we have maxk∈Zϕ(m)

∥∥∥a′j,k∥∥∥ ≤ α. The claim then follows. ut

Proposition 1. Let i ∈ N, m = p` for some prime p, ζ = ζm and a ∈ R, then
‖ζim · a‖ ≤ 2‖a‖. When p = 2 then ‖ζim · a‖ = ‖a‖.

Proof. Since the power-of-two case is well known to just be a rotation, we treat
the general case. Let j = i mod m then ζi · a = ζj · a. Write a =

∑
k∈Zm akζ

k

(ak = 0 for k ≥ ϕ(m)), then

ζj · a =
∑
k∈Zm

ak · ζj+k

=
∑

k: j+k<m
ak · ζj+k + ζm ·

∑
k: m≤j+k<2m−1

ak · ζj+k−m

=
∑
k′∈Zm

ak′−j · ζk
′
+
∑

k′′∈Zm

ak′′+m−j · ζk
′′

= b+ c.

By Lemma 1, b and c can each be expressed in the powerful basis with ternary
coefficients. Therefore

∥∥ζi · a∥∥ = ‖b+ c‖ ≤ ‖b‖+ ‖c‖ ≤ 2 · ‖a‖. ut

Combining the above we arrive at bounds for γR,d.

Proposition 2. IfR is a prime-power cyclotomic ring, then γR,d ≤ min(2d, 2d−1)·
ϕ(m)d−1. If R is a power-of-2 cyclotomic ring, then γR,d ≤ ϕ(m)d−1.

Proof. For the power-of-2 case and a, b ∈ R, write a · b as ϕ(m) multiplications
of the form aiζ

i · b, where the ai are the coefficients of a. By Proposition 1, we
obtain γR ≤ ϕ(m). Recursively composing gives the claimed bound.

For the general prime-power case, the same argument gives γR,d ≤ 2d−1 ·
ϕ(m)d−1. For the other bound, consider the product r = a(0) · · · a(d−1) for a(i) ∈ R.
Write r = a(0) · · · a(d−1) =

∑
i∈Zdm ri · ζ

i without modular reduction. Then for
each coefficient ri of r we have ‖ri‖ ≤ ϕ(m)d−1 ·

∏
j∈Zd

∥∥a(j)
∥∥. By Lemma 1,

after reduction we have ‖r‖ ≤ 2d · ϕ(m)d−1 ·
∏
j∈Zd

∥∥a(j)
∥∥. ut

We finish this subsection by giving some propositions that will be useful when
we construct (s, t)-subtractive sets in Sections 3.1 and 3.2.

Proposition 3. For any m ≥ 2,
∑
i∈Zm ζ

i
m = 0.

Proof. We realise ζmm − 1 = (ζm − 1) ·
(∑

i∈Zm ζ
i
m

)
= 0 but ζm 6= 1. ut

Proposition 4. Let m ∈ N,m ≥ 2, then
∥∥(1− ζn)/(1− ζf)

∥∥ ≤ 1 for n, f ∈ Z∗m.

Proof. Let g = f−1 mod m and k = g · n mod m. Then

(1− ζn)/(1− ζf) = (1− ζfgn)/(1− ζf) =
∑
i∈Zk

ζf ·i.

Note that for any i ∈ Zk \ {0}, we have i ∈ Z∗m. Therefore, observing that
fZm = Zm since f ∈ Z∗m, we note that the sum 1 +

∑
i∈Zk \{0} ζ

f ·i can be
expressed as a =

∑
i∈Zm aiζ

i with binary coefficients ai. Then by Lemma 1 we
conclude that a can be expressed in the powerful basis as a ternary vector. ut

2.3 Ideals in Cyclotomic Rings

Our results critically rely on the presence and absence of ideals in R. We recall
some basic facts. In the ring of integers R of any number field, any ideal I ∈ R
can written in a unique way as I =

∏
P PvP(I), the product being over a finite

set of prime ideals, and the exponent vP(I) being in Z. When I is an integral
ideal then all vP(I) ≥ 0 [14, Thm 4.6.14]. Otherwise it is fractional. We mostly
deal with integral ideals in this work. The norm N(I) of the ideal I, i.e. |R/I|, is
N(I) =

∏
PN(PvP(I)) =

∏
PN(P)vP(I) [14, p.187]. For any prime ideal P ⊂ R

we have P ∩ Z = pZ for some rational prime p ∈ Z and we write that P “is
above” p [14, Prop. 4.8.1]. Moreover, for any prime p ∈ Z there exist positive
integers ei such that pR =

∏g
i=1 P

ei
i [14, Thm. 4.8.3], the integer ei is called

the “ramification index” of p at Pi. The degree fi of the field extension defined
by fi = [R/Pi : Zp] is the “residual degree” of p. We have N(Pi) = pfi and∑g
i=1 eifi = ϕ(m) [14, Thm. 4.8.5]. Since Q[ζm] is a Galois extension, all ei = e

for some fixed e and fi = f for some fixed f and ϕ(m) = efg [14, Thm. 4.8.6]. A
prime p ∈ Z ramifies, i.e. has some ei > 1, if and only if it divides the discriminant
of Q[ζm] [14, Thm. 4.8.8]. The discriminant of a prime-power cyclotomic field of
order qk is given by ±qqn−1((q−1)·n−1), i.e. a power of q [36, Prop. 2.1]. Thus, on the
one hand, q ramifies completely in Z[ζqk] and 〈q〉 =

〈
1− ζqk

〉ϕ(m) [36, Lem. 1.4,
Prop. 2.3, p.15]. On the other hand, for all p 6= q we have e = 1 and obtain
ϕ(m) = fg. For any prime p ∈ Z that does not divide m, let f be the smallest
positive integer s.t. pf ≡ 1 mod m. Then p splits into g = ϕ(m)/f distinct prime
ideals in R [36, Thm. 2.13]. Note that this implies pf > m. Combining these
results, we obtain:
Proposition 5. Let R = Z[ζm] with m = pk a prime power. Then there exists
no ideal of norm ≤ m in R except for the ideals above p, i.e. powers of 〈1− ζm〉.
The proper ideal of smallest norm is 〈1− ζm〉 of norm N(〈1− ζm〉) = p.

Remark 1. The bound in Proposition 5 is tight. For example, in Z[ζ256], the ideal
〈257, ζ256 + 3〉 is of norm m+ 1 not above 2. There are, however, Z[ζm] where no
ideal of norm m+ 1 exists. For example, no such ideal exists in Z[ζ1024]: the ideal
with smallest norm not above 2 has norm 12289 (found by brute force search).

2.4 Proof of Knowledge

Let R(stmt,wit) be a binary relation. The language L associated to the relation
R is a set L := {stmt : ∃ wit s.t. R(stmt,wit) = 1}.

Definition 2 (Proof Systems). A proof system Π is an interactive protocol
〈P(stmt,wit),V(stmt)〉 between a PPT prover P and a PPT verifier V, both input a
statement stmt. The prover P additionally inputs a witness wit. Upon termination
the verifier V should decide to accept or reject stmt by outputing a bit b, while the
prover P outputs nothing. For convenience we write b← 〈P(stmt,wit),V(stmt)〉.

A wide class of proof systems, including the so-called sigma protocols, conform
to the following pattern.

Definition 3 (Challenges, Moves, Public Coin). A proof system Π is said
to be f-challenge, (2g + 1)-move, and public-coin with challenge sets Si,j for
i ∈ [f] and j ∈ [g], if the protocol 〈P,V〉 conforms to the following pattern:

– 2g + 1-Move: There are in total 2g + 1 messages being communicated, where
P sends the first, V sends the second, P sends the third, and so on. The
prover P sends the last, i.e. (2g + 1)-th message and after which the verifier
V outputs a bit b.

– f-Challenge and Public-Coin: For j ∈ [g], the j-th message sent by V is a
tuple (ci,j)i∈[f] where ci,j ←$Si,j for all i ∈ [f].

A proof system Π should satisfy completeness and knowledge soundness. We
omit the zero-knowledge property as it is not needed for our purpose.

Definition 4 (ε-Completeness). Π is ε-complete relative to L if

Pr [〈P(stmt,wit),V(stmt)〉] ≥ ε

whenever stmt ∈ L and R(stmt,wit) = 1. If ε = 1, Π is perfectly complete.

Definition 5 (κ-Knowledge Soundness). Let E be a PPT knowledge extrac-
tor. Π is said to have κ-knowledge soundness relative to (E , L′), if for any
stmt and for any (unbounded) adversary A such that 〈A,V(stmt)〉 = 1 with
probability ρ > κ (over the randomness of A and V), EA outputs wit such that
R′(stmt,wit) = 1 with probability at least ρ−κ, where R′ is the relation associated
to L′.

If the above holds, we call Π a proof of knowledge, κ the knowledge error of
Π, E an extractor for L′. If κ = 0 we say Π has perfect knowledge soundness. If
the above only holds for PPT adversaries A, we say that Π has computational
κ-knowledge soundness. Π is then called an argument of knowledge by convention.

We remark that a proof system Π could be complete relative to L while
having knowledge soundness relative to L′, where L ⊂ L′ are not necessarily
equal. In this case we say that Π is a proof system for the languages (L,L′). This
is common in lattice-based proof systems where the knowledge extractor is only
able to extract a relaxed witness of the statement being proven.

3 Subtractive Sets over Cyclotomic Rings

As the central tool for our results, we construct (generalised) substractive sets
over cyclotomic rings. Let S := {c0, . . . , cn−1} ⊆n R. Borrowing the terminology
from [31,33], we say that S is subtractive if ci − cj is invertible over R for any
distinct i and j. Since (the products of) ci − cj might be not quite invertible, but
divide some element s ∈ R, we generalise the notion of subtractiveness as follows.

Definition 6 ((s, t)-Subtractive Sets). For s ∈ R and 1 < t ≤ n ∈ N, we
say that S ⊆n R is (s, t)-subtractive if for any T = {c0, . . . , ct−1} ⊆t S, and for

all i ∈ Zt, it holds that s ∈
〈∏

j∈Zt\{i}(ci − cj)
〉
. The element s is called the

slack of S. If S is (1, n)-subtractive, meaning that ci − cj is invertible in R for
any distinct i, j ∈ Zn, we simply say that S is subtractive.

The expansion factor γ(s,t)
S of S (as an (s, t)-subtractive set) is defined as

γ
(s,t)
S := maxT⊆tS,i∈Zt

∥∥∥s/∏j∈Zt\{i}(ci − cj)
∥∥∥ where the maximum is over all

t-subsets T ⊆t S and all i ∈ Zt.

The above definition of (s, t)-subtractive sets is motivated by the prob-
lem of solving (dual) Vandermonde systems of linear equations of the form

VT · z = s ·w (1) and Vᵀ
T · z = s ·w (2)

respectively in the variable z where VT is the Vandermonde matrix

VT =

1 c0 · · · ct−1

0
1 c1 · · · ct−1

1
...

...
. . .

...
1 ct−1 · · · ct−1

t−1

 (3)

defined by the elements in T = {c0, . . . , ct−1} and t ∈ Rt is some vector over R.
If S is (s, t)-subtractive, then for any T ⊆t S, Equations (1) and (2) each admits
a solution z over R.

Since fully expanded formulae for the solutions to Equations (1) and (2)
(instead of, e.g. those in terms of determinants or matrix inverses) do not seem
to be widely available in the literature, we give them explicitly.

Proposition 6. Fix T = {c0, . . . , ct−1}. Let VT be the Vandermonde matrix
for T , i.e. (VT)i,j = cji for i, j ∈ Zt. For i ∈ Zt, let Ti := T \ {ci} and

(
Ti
j

)
:=∑

J⊆jTi
∏
c∈J c ∈ R, the latter denoting the sum of products of j elements in Ti

where the sum is over all possible j-subsets of Ti. Further, let di :=
∏
j∈Zt\{i}(ci−

cj) ∈ R and w = (w0, . . . , wt−1).
Then, the solution to VT · z = s ·w is given by z = (z0, . . . , zt−1) where

zi =
∑
j∈Zt

(−1)t−i−1 s

dj

(
Tj

t− i− 1

)
wj .

The solution to Vᵀ
T · z = s ·w is given by z = (z0, . . . , zt−1) where

zi =
∑
j∈Zt

(−1)t−j−1 s

di

(
Ti

t− j − 1

)
wj .

Furthermore, if S is (s, t)-subtractive then for any T ⊆t S, we have s/di and
s/dj ∈ R for all i, j ∈ Zt, and therefore zi ∈ R for all i ∈ Zt.

In the context of cryptography, problems in the form VT · z = s · w arise
naturally, e.g. when recovering secrets shared using Shamir secret sharing. On
the other hand, problems in the form Vᵀ

T · z = s ·w arise, e.g. when constructing
knowledge extractors for Schnorr-like proof systems.

We first prove a simple property that, if S is (s, t)-subtractive, then it is also
(s, t− 1)-subtractive.

Proposition 7. If S is (s, t)-subtractive, then S is (s, t′)-subtractive for t′ ≤ t.

Proof. Fix any t′ ∈ {2, . . . , t} and any T ′ = {c0, . . . , ct′−1} ⊆t′ S. Let T be
such that T ′ ⊆t′ T ⊆t S. Write T = {c0, . . . , ct′−1, . . . , ct−1}. Since S is (s, t)-
subtractive, it holds that s ∈

〈∏
j∈Zt\{i}(ci − cj)

〉
for all j ∈ Zt. However, for all

i ∈ Zt′ , it holds that
〈∏

j∈Zt\{i}(ci − cj)
〉
⊆
〈∏

j∈Zt′\{i}
(ci − cj)

〉
. We therefore

have s ∈
〈∏

j∈Zt′\{i}
(ci − cj)

〉
which means S is (s, t′)-subtractive. ut

To prepare for our impossibility results, we generalise the notion of subtractive
sets to weak subtractive sets which permit arbitrary ring operations on differences.

Definition 7 (Weak (s, t)-Subtractive Sets). For s ∈ R and 1 < t ≤ n ∈ N,
S ⊆n R is weakly (s, t)-subtractive if for any T ⊆t S, it holds that s ∈ 〈T − T 〉.

Since subtractive sets are defined by products of differences, they are weakly
(s, 2)-subtractive.

Proposition 8. If S is (s, t)-subtractive, then S is weakly (s, 2)-subtractive.

Proof. Fix any T = {c0, . . . , ct−1} ⊆t S. Since S is (s, t)-subtractive,

s ∈

〈
(c0 − c1) ·

∏
j∈Zt\{0,1}

(c0 − cj)
〉
a ∈ 〈c0 − c1〉. ut

The following proposition is immediate by realising that for any T ′ ⊇ T we
have 〈T ′ − T ′〉 ⊇ 〈T − T 〉.

Proposition 9. If S ⊆n R is weakly (s, t) subtractive then S is weakly (s, t′)
subtractive for any t < t′ ≤ n.

Remark 2. Note that t behaves differently between (s, t)-subtractive sets and
weakly (s, t)-subtractive sets. On the one hand, S being (s, t)-subtractive implies
S being (s, t′)-subtractive for smaller t′. On the other hand, S being weakly
(s, t)-subtractive implies S being weakly (s, t′)-subtractive for larger t′.

3.1 Power-of-2 Cyclotomic Rings

Power-of-2 cyclotomic rings R = Z[ζm], where m = 2` for some ` ∈ N, are popular
among lattice-based constructions due to implementation convenience such as fast
multiplication via a number theoretic transform (NTT). We construct families of
(s, t)-subtractive sets over R with different tradeoffs between n, t, and s.

Theorem 1. Let R = Z[ζm] with m = 2` ≥ 4. Then for i = 0, . . . , `, the set

Si :=
{

0, 1, ζ, . . . , ζ2i−1
}
⊆ni R

is (si,t, t)-subtractive for any si,t ∈ 〈1− ζ〉dlog te(ni−1)/2, where ni = 2i + 1.
Let jt be the smallest such that dlog te ≤ 2jt . If i+ jt ≤ `, then we can pick

si,t = 1− ζ2i+jt−1 such that γ(si,2,2)
Si

= 1 and γ(si,3,3)
Si

≤ ϕ(m) for all i = 0, . . . , `.
Empirically, for 4 ≤ m ≤ 2048, we have γ(2,3)

S`−1
= m/8 and γ(1−ζm/4,3)

S`−2
= m/16.

Proof. If i = 0, then Si = {0, 1} is subtractive. In the following we assume i ∈ [`].
For k ∈ Z, let Ev(k) be the even part of k, i.e. the largest power of 2 which

divides k. It suffices to consider the case 0 /∈ T ⊆t Si, since in the case where
0 ∈ T , the difference between any other element in T and 0 is a unit. To handle
both cases together, let T ′ = T \{0} so that t′ = |T ′| = t if 0 /∈ T and t′ = t− 1
otherwise. In any case, we have t′ ≤ 2i and t′ ≤ t. Write T ′ =

{
ζj0 , . . . , ζjt′−1

}
.

We consider the ideal〈 ∏
k∈Zt′\{0}

(ζj0 − ζjk)
〉

=
〈 ∏
k∈Zt′\{0}

(1− ζj0−jk)
〉

=
〈 ∏
k∈Zt′\{0}

(1− ζEv(j0−jk))
〉

(4)

=
∏

k∈Zt′\{0}

〈1− ζ〉Ev(j0−jk) (5)

= 〈1− ζ〉
∑

k∈Z
t′ \{0}

Ev(j0−jk)
.

For Equality (4) we use that if k = ef with e a power of 2 and f odd, then 1−ζef
and 1− ζe are divisible by each other in R. First, note that (1− ζef)/(1− ζe) =
1+ζe+ · · ·+ζe(f−1). Second, since gcd(f,m) = 1, let g = f−1 mod m and observe
(1−ζe)/(1−ζef) = (1−ζefg)/(1−ζef) = 1+ζef + · · ·+ζef(g−1). For Equality (5)
we use 1− ζ2 = −(1− ζ)2 + 2(1− ζ), 2 ∈

〈
(1− ζ)2

〉
, and 2 ∈

〈
1− ζ2〉.

Note that since 0 ≤ j0, jk < 2i, we have Ev(j0 − jk) ≤ 2i−1. Furthermore,
for any fixed j0, there is at most one jk such that Ev(j0 − jk) = 2i−1. Beside
such k, there are then at most 2 = 21 other jk’s such that Ev(j0 − jk) = 2i−2.
Beside these k’s, there are at most 4 = 22 other jk’s such that Ev(j0− jk) = 2i−3.

Continue this way, we have∑
k∈Zt′\{0}

Ev(j0 − jk) ≤ 1 · 2i−1 + 2 · 2i−2 + · · ·+ 2τ−1 · 2i−τ−2 + (t′ − 2τ) · 2i−τ−1

< 1 · 2i−1 + 2 · 2i−2 + · · ·+ 2τ−1 · 2i−τ−2 + 2τ · 2i−τ−1

= (τ + 1) · 2i−1 ≤ dlog t′e 2i−1 ≤ dlog te 2i−1

where τ is the maximum non-negative integer such that 1+2+4+· · ·+2τ−1 ≤ t′−2
or equivalently 2τ < t′ ≤ 2τ+1. Note that 2τ < t′ ≤ 2i and hence τ < i. Therefore
i− τ − 1 ≥ 0 and hence 2i−τ−1 ≥ 1.

Since
∑
k∈Zt′\{0}

Ev(j0 − jk) ≤ dlog te 2i−1, we have

〈1− ζ〉dlog te2i−1
⊆ 〈1− ζ〉

∑
k∈Z

t′ \{0}
Ev(j0−jk)

=
〈 ∏
k∈Zt′\{0}

(ζj0 − ζjk)
〉

for all k ∈ Zt′ . Therefore, for any si,t ∈ 〈1− ζ〉dlog te2i−1
, we have

si,t ∈

〈 ∏
k∈Zt′\{0}

(ζj0 − ζjk)
〉

for all k ∈ Zt′ . Thus Si is (si,t, t)-subtractive.
Let jt be the smallest such that dlog te ≤ 2jt . Let si,t = 1−ζ2ei,t where ei,t :=

i+jt−1. Suppose i+jt ≤ `, then dlog te 2i−1 ≤ 2i+jt−1 ≤ 2`−1 = m/2. Therefore
〈si,t〉 = 〈1− ζ〉2

ei,t ⊆ 〈1− ζ〉dlog te2i−1
and hence si,t ∈ 〈1− ζ〉dlog te2i−1

.
We now establish γ(s,t)

Si
as claimed above, starting with t = 2. Hence, we have

jt = dlog dlog tee = 0, si,2 = 1− ζ2i−1 and

γ
(si,2,2)
Si

= max
α,β∈Z2i

∥∥∥∥ si,2
ζα − ζβ

∥∥∥∥ = max
α,β∈Z2i

∥∥∥∥∥ 1− ζ2i−1

ζα(1− ζβ−α)

∥∥∥∥∥ = max
α,β∈Z2i

∥∥∥∥∥1− ζ2i−1

1− ζ2ηµ

∥∥∥∥∥ ≤ 1

where 2η = Ev(β−α) with η ∈ Zi, µ is the odd part of β−α satisfying β−α = 2ηµ,
and the last equality can be derived through a routine calculation.8

8 Let µ = ν−1 mod m and h := 2i−η−1ν. We write (1 − ζ2i−1
)/(1 − ζ2ηµ) =∑

j∈Zh
ζ2ηµj =

∑
j∈Zh

ζµjm′ where ζm′ = ζ2η
m is a primitive 2`−η-th root of unity.

Since µ ∈ Z∗m′ , we have µZm′ = Zm′ . Let k be the largest multiple of m′ with k ≤ h.
We have

∑
j∈Zh

ζµj
m′ =

∑
j∈Zh\Zk

ζµj
m′ +

∑
j∈Zk

ζµj
m′ =

∑
j∈Zh\Zk

ζµj
m′ +

∑
j∈Zk

ζj
m′ =∑

j∈Zh\Zk
ζµjm′ where the last equality is due to Proposition 3. Since h − k < m′,

Zh\Zk can be embedded into Zm′ . Using µZm′ = Zm′ again, we have
∑

j∈Zh\Zk
ζµj
m′ =∑

i∈Zm′
aiζ

i for some ai ∈ {0, 1}. By Lemma 1 we conclude that
∥∥∥∑i∈Zm′

aiζ
i
∥∥∥ ≤ 1.

For t = 3, hence jt = dlog dlog tee = 1 and si,2 = 1− ζ2i , we have

γ
(si,3,3)
Si

= max
α,β,γ∈Zi

∥∥∥∥ si,3
(ζα − ζβ)(ζα − ζγ)

∥∥∥∥
= max
α,β,γ∈Zi

∥∥∥∥∥ 1− ζ2i

(1− ζβ−α)(1− ζγ−α)

∥∥∥∥∥ = max
α,β,γ∈Zi

∥∥∥∥∥1− ζ2i−1

1− ζβ−α ·
1 + ζ2i−1

1− ζγ−α

∥∥∥∥∥
≤ γR ·

(
γ

(si,2,2)
Si

)2
= γR = ϕ(m).

The empirical results are verified by direct computation (cf. Appendix B). ut

We highlight some notable settings of (s, t) in Theorem 1. The case t = 2
is useful for constructing knowledge extractors of Schnorr-like proof systems.
In this setting, S` ⊆m+1 R chosen in prior works [4] is (2, 2)-subtractive, while
S`−1 ⊆m/2+1 is (1 − ζm/4, 2)-subtractive. Note that although

∥∥1− ζm/4
∥∥ = 1,

multiplying (1 − ζm/4) to an element f ∈ R results in an element of length∥∥(1− ζm/4)f
∥∥ ≤ 2 ‖f‖ if we consider the infinity norm as prior works did [10],

and hence S`−1 appears to be not better than S` in terms of slack. However, for
the Euclidean norm ‖·‖2, we have

∥∥(1− ζm/4)f
∥∥

2 <
√

2 ‖f‖2 ≤ 2 ‖f‖2 = ‖2f‖2.
The case t = 3 is useful for lattice Bulletproofs, as we will see in Section 4.1.

Bootle et al. [10] chose S` \{0} ⊆m R as the challenge set for their instantiation
of lattice Bulletproof, and essentially proved that S` \{0} is (8, 3)-subtractive.
The above tighter analysis shows that S` is in fact (4, 3)-subtractive. Similar
to the t = 2 case, we notice that S`−1 ⊆m/2+1 R is (2, 3)-subtractive and
S`−2 ⊆m/4+1 R is (1− ζm/4, 3)-subtractive. As discussed in the t = 2 case, the
slack 1− ζm/4 is better than 2 if we consider the Euclidean norm.

For general ni and t useful in t-out-of-ni secret sharing, assuming m = 2` is
(polynomially) large enough so that ` > i + tj , then ‖si,t‖ = 1, which is more
manageable than the (n!, t)-subtractive set Zn chosen by Boneh et al. [7].

We observe that among all sets Si constructed in Theorem 1, only S0 ⊆2 R
is subtractive, while the others are (si,t, t)-subtractive for some si,t 6= 1. As we
will see in Section 3.3, this is not a shortcoming of the construction but rather
a fundamental limit in power-of-2 cyclotomic rings. Indeed, in Proposition 12
and Lemma 2 we show that over power-of-2 cyclotomic rings no subtractive set
of size greater than 2 exists.

We finish this section with a technical proposition, giving a bound for ‖cizi‖
that is tighter than the generic bound 2 · γR · γ(2,3)

S .

Proposition 10. Let S = S`−1, (s, t) = (2, 3), {c0, c1, c2} ⊂t S and zi as defined
in Proposition 6, then ‖ci · zi‖ ≤ ϕ(m). Empirically, for all 8 ≤ m = 2` ≤ 512
we have max(‖ci · zi‖) = ϕ(m)− 2.

Proof. We write c0 = ζi, c1 = ζj , c2 = ζk. Wlog, we consider

c0 · z0 = −s · c0 · (c1 + c2)
(c0 − c1) · (c0 − c2) = 2 · ζi(ζj + ζk)

(ζi − ζj) · (ζj − ζk) = 2 · ζi−j · (ζj−k + 1)
(ζi−j − 1) · (ζi−k − 1) .

Multiplying by ζi−j does not change the norm so we can consider

‖g‖ =
∥∥∥∥ 2 · (ζj−k + 1)

(ζi−j − 1) · (ζi−k − 1)

∥∥∥∥
‖2 g‖ =

∥∥∥∥(ζj−k + 1) · 2
ζi−j − 1 ·

2
ζi−k − 1

∥∥∥∥ ≤ 2 · γR ·
(
γ

(2,2)
S

)2
.

Since ‖c0 · z0‖ = ‖g‖ = ‖2 g‖/2, we obtain ‖c0 · z0‖ ≤ ϕ(m). The empirical results
are verified by direct computation (cf. Appendix B). ut

3.2 Prime-Power Cyclotomic Rings

We turn to prime-power cyclotomic rings R := Z[ζm] where m is a power of
a prime p. Although we are interested mostly in the case p > 2, the following
results also hold for p = 2. To construct subtractive sets over prime-power
cyclotomic rings, we recall the well-known fact that µk := (ζk − 1)/(ζ − 1) is
invertible over R when gcd(k, p) = gcd(k,m) = 1. Indeed its inverse is given
by νk :=

∑
i∈Zh ζ

ik mod m where h = k−1 mod m. Our subtractive set of size
over prime-power cyclotomic rings of order consist precisely of these invertible
elements with an additional zero.

Theorem 2 (Prime-Power). Let R = Z[ζm] with m = p` for some prime p.
Then the set

S := {µ0, . . . , µp−1} ⊆p R

is subtractive, where µi = (ζi − 1)/(ζ − 1) for i ∈ Zp. Furthermore, γ(1,2)
S = 1,

γ
(1,3)
S ≤ 4ϕ(m) and 4 (t−1) ·ϕ(m)t−2 for 3 < t ≤ p. Empirically, γ(1,3)

S = ϕ(m)/2
for all primes 3 ≤ m ≤ 277.

Proof. For any 0 ≤ i < j < p, it holds that9

µj − µi = ζj − 1
ζ − 1 −

ζi − 1
ζ − 1 =

j−1∑
k=0

ζk −
i−1∑
k=0

ζk = ζi + ζi+1 + · · ·+ ζj−1

= ζi · (1 + ζ + · · ·+ ζj−i+1) = ζi · µj−i

which is a unit in R since j − i ∈ Z∗p. Consequently µi − µj = (−1) · (µj − µi) is
also a unit in R. Therefore S is subtractive.

We next upper bound γ(1,t)
S . In the case t = 2, we have

γ
(1,2)
S = max

i,j∈Zp

∥∥∥∥ 1
µj − µi

∥∥∥∥ = max
i,j∈Zp

∥∥∥∥ 1
µj−i

∥∥∥∥ ≤ 1

where the inequality is due to Proposition 4.
For 2 < t ≤ p, let T =

{
µi0 , . . . , µit−1

}
⊆t S. We examine the norm of r−1

where r :=
∏
j∈[t−1](µi0 − µij). By the above analysis, we know that µi0 − µij

9 We adopt the convention that the empty sum is 0.

equals some power of ζ multiplied by µi0−ij . Therefore r can be written as r =
ζj0µj1 . . . µjt−1 for some j0 ∈ Z and j1, . . . , jt−1 ∈ Z∗p. Note that multiplication
by ζj0 increases the norm at most by a factor of two. Let νj = µ−1

j for j ∈
{j1, . . . , jt−1}. Then νj =

∑k−1
i=0 ζ

ij mod m where k = j−1 mod m. By Lemma 1,
we have ‖νj‖ ≤ 1 for all j ∈ Z∗p. Summarising the above, we can upper bound
γ

(1,t)
S as

γ
(1,t)
S ≤ 2 γR,t−1 ‖νj1‖ . . .

∥∥νjt−1

∥∥ ≤ 4 (t− 1) · ϕ(m)t−2

where in the second inquality we used Proposition 2. When t = 3, we can
use γR,2 ≤ 2ϕ(m). The empirical results are verified by direct computation
(cf. Appendix B). ut

Remark 3. Theorem 2 can be generalised to give a size ϕ(rad(m))+1 subtractive
set over the cyclotomic ring of any order m with prime-power factorisation
m =

∏
i p
`i
i , where the radical rad(m) =

∏
i pi of m is the product of distinct

prime divisors of m, by viewing the m-th cyclotomic ring as a tensor product of
the p`ii -th cyclotomic rings.

Proposition 11. Let S be as defined in Theorem 2, (s, t) = (1, 3), {c0, c1, c2} ⊂t
S and zi as defined in Proposition 6, ci · zi = ζj · a for some a with ‖a‖ ≤ 4ϕ(m)
and thus ‖ci · zi‖ ≤ 8ϕ(m). Empirically, for all prime 3 ≤ m ≤ 229 we have
max(‖ci · zi‖) = ϕ(m)− 1.

Proof. We write c0 = (ζi− 1)/(ζ− 1), c1 = (ζj − 1)/(ζ− 1), c2 = (ζk− 1)/(ζ− 1).
Wlog, we consider

c0 · z0 = −s · c0 · (c1 + c2)
(c0 − c1) · (c0 − c2) = −(ζi − 1) · (ζj + ζk − 2)

((ζi − ζj) · (ζi − ζk))

= −ζ−j−k ·
[
ζi − 1
ζi−j − 1 ·

ζj − 1
ζi−k − 1 + ζi − 1

ζi−j − 1 ·
ζk − 1
ζi−k − 1

]
Multiplication by −ζ−j−k at most doubles the norm (Proposition 1) and we have∥∥(ζi − 1)/(ζj − 1)

∥∥ = 1 for j 6= 0 (Proposition 4). Thus, ‖c0 · z0‖ ≤ 4 · γR ≤
8ϕ(m). The empirical results are verified by direct computation (cf. Appendix B).

ut

3.3 Impossibility of Large Subtractive Sets

In this section we prove two flavours of impossibility results concerning subtractive
sets. The first kind of results state that if S is an (s, t)-subtractive set of sufficient
size, then s belongs to the ideal 〈1− ζ〉e for some e lower bounded from 0. The
second kind of results state that if R contains an ideal of small algebraic norm,
then either S cannot be too large, or S is weakly (s, t)-subtractive with s belonging
to that ideal. The key observation in all our proofs is that if we consider N(I) + 1
elements ci ∈ R then there must be two elements, say, ci, cj s.t. ci ≡ cj mod I
and thus ci − cj ∈ I.

We first prove that S ⊆n R cannot be (s, t)-subtractive unless

s ∈ I = 〈1− ζ〉min{dn/pe,t}−1
.

The size of I in a sense shrinks when t and n grow, since |R/I| = pmin{dn/pe,t}−1.
The result thus rules out all S that are too “large” relative to s, in the sense that
I becomes so “small” that the choice of s ∈ I is highly restrictive.

Proposition 12. Let R be a prime-power cyclotomic ring of order m a power
of p, and n > p. If S ⊆n R is (s, t)-subtractive, then s ∈ 〈1− ζ〉e where

e ≥ min{dn/pe , t} − 1 > 0.

Proof. Proposition 5 shows that N(〈1− ζ〉) = |R/〈1− ζ〉| = p. The ideal 〈1− ζ〉
therefore partitions R into p cosets. Let n =

∑
k∈Zp nk such that nk elements

in S belong to the k-th coset. Let n̄ := maxk∈Zp nk ≥ dn/pe be attained when
k = k̄. Let T = {c0, . . . , ct−1} ⊆t S be such that T contains min{n̄, t} ≥
min{dn/pe , t} > 0 elements in the k̄-th coset. Let j be such that vj belongs to the
k̄-th coset. The product r =

∏
i∈Zt\{j̄}(ci−cj) has a factor 1−ζ with multiplicity

at least min{dn/pe , t}− 1. Since S is (s, t)-subtractive, s has a factor 1− ζ with
multiplicity at least min{dn/pe , t}− 1. In other words, s ∈ 〈1− ζ〉min{dn/pe,t}−1.

ut

Remark 4. An interesting observation is that, when m = 2 hence ζ = −1 and
R = Z, the above lower bound implies that an (s, t)-subtractive set S ⊆n Z
for t ≥ dn/2e must have |s| ≥ 2dn/2e−1 = 2Ω(n). On the other hand, the trivial
choice of S = Zn (chosen by, e.g. Boneh et al. [7] for higher m) has a slack of
n! = 2O(n lgn) which almost reaches the lower bound. When m is a higher power
of 2, there are however much better choices of S, such as the ones constructed in
Theorem 1 rather than S = Zn.

Through a more careful analysis, we can prove a strengthened lower bound.

Lemma 2. Let R be a prime-power cyclotomic ring of order m a power of p. Let
n > p` for some ` ∈ N. If S ⊆n R is (s, t)-subtractive, then s ∈ 〈1− ζ〉e where

e ≥
∑̀
i=1

min
{⌈
n/pi

⌉
− 1, t− 1

}
> 0.

Proof. Let P = 〈1− ζ〉. Recall from Proposition 5 that N(P) = |R/P| = p.
Since |S| = n > p`, by the pigeonhole principle there exists S1 ⊆dn/pe S such that
all elements of S1 belong to the same equivalence class C1 modulo P. Similarly,
there exists S2 ⊆dn/p2e S1 such that all elements of S1 belong to the same
equivalence class C2 modulo P2. Continue analogously, for j ∈ [`], there exists
Sj ⊆dn/pje Sj−1 such that all elements of Sj belong to the same equivalence class
Cj modulo Pj .

Consider a binary matrix H of ` rows and n columns, where the first
⌈
n/pj

⌉
columns are labeled by the elements of Sj for j ∈ [`]. The remaining columns
are labeled by the elements of S \ S1. The (i, v)-th entry is 1 if v belongs to the
equivalence class Ci modulo Pi, i.e. the first

⌈
n/pi

⌉
entries of row i are 1.

Pick T ⊆t S such that S` ⊆ . . . ⊆ Sk ⊆ T ⊆ Sk−1 ⊆ S for some k ∈ [`], where
S0 := S. Note that T labels the first t columns of H.

Let v∗ ∈ S` ⊆ T be the element that labels the first column of H, and
T̄ = T \ {v∗} labels the second to the t-th column. Consider the product r =∏
v∈T̄ (v − v∗). Note that for v ∈ T̄ , if v belongs to the equivalence class Ci

modulo Pi, then (v − v∗) contributes a factor (1− ζ)i of r. There multiplicity of
the factor (1− ζ) of r is at least the number of 1’s in the first t columns of H
minus that of the first column. By collecting the columns of interest, let Ht be
the submatrix of H formed by the second to the t-th column. Observe that the
i-th row of Ht contains min

{⌈
n/pi

⌉
, t
}
− 1 many 1’s. Therefore the number of

1’s in Ht is given by
∑`
i=1 min

{⌈
n/pi

⌉
− 1, t− 1

}
. ut

Concretely, for power-of-2 cyclotomic rings we obtain:

Corollary 1. Let R be a power-of-2 cyclotomic ring of order m ≥ 8 and n ≥
ϕ(m). If S ⊆n R is (s, 3)-subtractive, then s ∈ 〈1− ζ〉e where e ≥ 2 log2m− 3.

Proof. Let m = 2`+2 for some ` ∈ N. Then n ≥ ϕ(m) = 2`+1. By Lemma 2 we
have e+` ≥

∑`
i=1 min

{⌈
n/2i

⌉
, 3
}
. Note that since n ≥ 2`+1 we have n/2`−1 ≥ 4

and hence n/2i ≥ 3 for i = 1, . . . , ` − 1. When i = `, we have n/2` ≥ 2 and
therefore min

{⌈
n/2`

⌉
, 3
}
≥ 2. Therefore e + ` ≥ 3(` − 1) + 2 = 3` − 1, or in

other words e ≥ 2`− 1 = 2 log2m− 3. ut

Next, we upper bound the size n of weakly (s, t)-subtractive sets.

Lemma 3. Let I ⊂ R be an ideal of norm N(I). There exists no weakly (s, t)-
subtractive set of size (t− 1) ·N(I) + 1 for s 6∈ I.

Proof. Assume S is such a weakly (s, t) subtractive set of size (t− 1) ·N(I) + 1.
There are N(I) cosets of I. Sort the elements of S into buckets depending on
which coset of mod I they land in. By the pigeonhole principle, there must exist
at least one bucket containing t elements. Let T = {ci}i∈Zt be a such a set of
challenges of size t s.t. all ci ≡ cj mod I for i, j ∈ Zt ⇔ ci − cj ∈ I. Thus,
〈T − T 〉 ⊂ I and s ∈ I. ut

Finally, deploying Proposition 12 and Lemmas 2 and 3 we arrive at our central
impossibility results for power-of-two cyclotomic rings and prime cyclotomic rings.
First, since (2, t)-subtractive sets are weakly (2, 2)-subtractive and there are
power-of-two cyclotomic rings that contain an ideal of norm m+ 1, we arrive at
the theorem below. We state the result for s = 2 as opposed to, say, s = 1− ζ as
the former is more general than the latter: the existence (1 − ζ, t)-subtractive
sets implies the existence of (2, t)-subtractive sets.

Theorem 3. There is no family of (2, t)-subtractive sets of size n > m+ 1 in
the power of two cyclotomic ring Z[ζm] where m = 2` for some ` ∈ N.

Comparing this bound with our construction in Theorem 1, our construction
achieves size m/2 + 1 compared to the limit of m + 1. Thus, for s = 2 our
construction is within a factor of two of being optimal (see below for s = 1).
However, we note that the above theorem does not rule out the existence of (2, t)-
subtractive sets of size n > m+ 1 for specific choices of m, e.g. m = 210 = 1024
is a good candidate, cf. Remark 1.

Second, since (1, t)-subtractive sets are weakly (1, 2)-subtractive and prime-
power cyclotomic rings contain an ideal of norm p, this rules out larger subtractive
sets by Lemma 3. An alternative route to the same statement is by noting that
e ≥ 1 in Proposition 12 and that 1 /∈ 〈1− ζ〉. Therefore the subtractive sets for
prime-power cyclotomic rings in Theorem 2 are in a sense optimal. On the flip
side it means that over a power-of-2 cyclotomic ring the only subtractive sets are
of size 2, such as S = {0, 1}.

Theorem 4. There is no subtractive set of size n > p in any prime-power
cyclotomic ring Z[ζp`] for any prime p ∈ N and any ` ∈ N.

Finally, Lemma 3 rules out many natural algebraic strategies of constructing
knowledge extractors for Schnorr-like proof systems that go beyond some gener-
alised form of matrix inversion. For example, an algebraic extractor could attempt
to compute s by running an extended Euclidean algorithm on pairs c0−c1, c2−c3,
i.e. attempt to find (small) r0, r1 s.t. s = r0 · (c0− c1) + r1 · (c2− c3), cf. [20,34,32]
for the application of the Euclidean algorithm for finding small elements of this
form in number rings. By Lemma 3 such extensions do not significantly improve
the bounds. We will make use of this implicitly in Section 4 below.

4 Proof of Knowledge of Lattice Statements

In this section we give positive and negative results on using subtractive sets over
cyclotomic rings to construct proof systems for lattice statements of the form

Ls,β :=
{

(A,y) ∈ Rh×kq ×Rhq : ∃x ∈ Rk s.t. Ax = sy ∧ ‖x‖ ≤ β
}
.

4.1 Generalised Lattice Bulletproof

Let k be a power of 2, kr := k/2r and γr > 0 for r ∈ {0, . . . , log k}, and S0, S1 ⊆ R.
In Figure 1 we write down a slight generalisation of the lattice Bulletproof protocol
in [10], who considered h = 1,R being a power-of-2 cyclotomic ring, and S1 = {1}.
Given a matrix A ∈ Rh×kr , we can parse it as A = (A0,A1) with Ai ∈ Rh×kr+1 .
Similarly, given a vector x ∈ Rkr we can parse it as x = (x0,x1) with xi ∈ Rkr+1 .

Lemma 4. Suppose that ‖c‖ ≤ 1 for all c ∈ S0 and ‖d‖ ≤ 1 for all d ∈ S1 (which
is the case for S constructed in Theorems 1 and 2). Let γr = 2r+1 · γR,r+2 · β for

Πr.〈P((A,y),x)|V(A,y)〉 where (A,y) ∈ Rh×krq ×Rhq , x ∈ Rkr , r ∈ Zlog k

l := A1x0, r := A0x1 l, r ∈ Rh c←$S0, d←$S1

c ∈ R, d ∈ R Ã := (cA0 + dA1)

ỹ := d2l + cdy + c2r

x̃ := dx0 + cx1 x̃ ∈ Rkr+1
Ã · x̃ ?= ỹ

‖x̃‖
?
≤ γr

Πlog k.〈P((A,y),x)|V(A,y)〉 where (A,y) ∈ Rh×1
q ×Rhq , x ∈ R, r = log k

x ∈ R Ax ?= y

‖x‖
?
≤ γlog k

Fig. 1. Lattice Bulletproof protocolΠr for round r ∈ {0, . . . , log k} generalised from [10].

r ∈ Zlog k and γlog k = γlog k−1 = k ·γR,log k+1 ·β. In Π0, if the prover’s input x(0)

satisfies ‖x‖ ≤ β, then the verifier accepts with certainty. For r ∈ [log k], if for
all r′ ∈ [r], the prover’s input x(r′) is equal to the prover’s second message sent
in an honest execution of Πr′−1, then the verifier in Πr accepts with certainty.
Consequently, the recursive composition of Π0, . . . ,Πlog k yields a proof system
Π which is perfectly complete relative to L1,β.

In case R = Z[ζ2`], S0 is constructed from Theorem 1, and S1 = {1}, then
we can set γr := 2r+1 · β and γlog k = k · β instead.

Proof. For all r ∈ Zlog k, suppose that A · x = y, then

(cA0 + dA1) · z = (cA0 + dA1) · (dx0 + cx1)
= d2 A1 · x0 + c · d · (A0 · x0 + A1 · x1) + c2 A0 · x1

= d2 l + cdy + c2 r.

In Π0, if ‖x‖ ≤ β, then observe that ‖dx0 + cx1‖ ≤ 2 γR β. Fix r ∈ [log k].
Since for all r′ ∈ [r], the prover’s input x(r′) is equal to the prover’s second
message sent in an honest execution of Πr′−1, we have that the prover’s input
x(r) is equal to a sum of 2r terms, each term being a product of r challenges
and a subvector of x(0). If r = log k, then the input x(log k) is sent directly to the
verifier, which has norm upper bounded by k · γR,log k+1 · β = γlog k. If r < log k,
then the prover’s second message in Πr is a sum of 2r+1 terms, each term being
a product of r + 1 challenges and a subvector of x(0). The norm of this message
is thus upper bounded by 2r+1 · γR,r+2 · β = γr.

The strengthened claim regarding power-of-2 cyclotomic rings follows from
realising that each element in S0 is either zero or a power of ζ, and that multipli-
cation by ζ does not increase norm. ut

Theorem 5. Let R be a prime-power cyclotomic ring of order m being a power
of a prime p. Let S0 ⊆n R be an (s, 3)-subtrative set of size n = poly(λ) and
S1 = {1}. For r ∈ {0, . . . , log k}, let γr be defined as in Lemma 4. Suppose that
S0 is constructed from Theorem 1 or Theorem 2, then Πlog k has perfect knowledge
soundness relative to Ls,γ′log k

, and Πr has 2(r+1)
n -knowledge soundness relative

to Ls,γ′r for r ∈ Zlog k, where γ′log k = γ′log k−1, and

γ′r =
{

24 · ϕ(m) · γR · γr p > 2
3 · ϕ(m) · γR · γr p = 2.

Proof. For r = log k, there exists a trivial (log k)-th extractor Elog k which simply
outputs the prover’s message. If a prover A successfully convinces the verifier V,
then the prover’s message is exactly the witness.

For r ∈ Zlog k, let A be a prover who successfully convinces the verifier V in
Πr to accept a statement (A,y) with probability ρ > 2(r + 1)/n. Consider a
binary matrix H with rows indexed by the random coins χ of A, columns indexed
by c ∈ S0, and the (χ, c)-th entry is 〈A(χ),V(stmt; c)〉, i.e. whether V accepts of
rejects when A runs on the randomness χ and V chooses c ∈ S0 as the challenge.
By our assumption on A, a ρ-fraction of the entries of H are 1. Adopting the
terminologies in [15], a row of H is semi-heavy if it contains at least three 1’s.
Since ρ > 2(r + 1)/n ≥ 2/n, write ρ = (2 + δ)/n for some δ > 2r. Suppose there
are in total R rows in H, so that ρRn = (2 + δ)R entries are 1. At most 2R of
them can be located in non-semi-heavy rows, while at least δR of them are in
semi-heavy rows. Therefore the fraction of 1’s in semi-heavy rows among all 1’s
is at least δ/(2 + δ).

With the above observation, we construct the r-th knowledge extractor E = Er
as follows. E runs 〈A(χ),V(stmt; c0)〉 for some uniformly chosen χ and c0←$S0.
If 〈A(χ),V(stmt; c0)〉 = 0, E aborts. Otherwise, we have 〈A(χ),V(stmt; c0)〉 = 1,
which happens with probability ρ. Then, E runs 〈A(χ),V(stmt; c)〉 for all c ∈
S0 \{c0}. Note that this can be done in polynomial time since n = poly(λ). By
the above observation about semi-heavy rows, since the (χ, c0)-th entry of H is 1,
with probability at least δ/(2+δ), the row in H indexed by χ is a semi-heavy row,
and in this case there are at least 2 more 1’s in this row. Denote the indices of two
of these entries by (χ, c1) and (χ, c2) respectivly. To summarise, with probability
ρδ/(2 + δ) = δ/n > 2r/n ≥ 0, we have 〈A(χ),V(stmt; c)〉 = 1 for c ∈ {c0, c1, c2}.

Suppose the above event happens, E reads from the communication transcripts
the responses x̃i which satisfy

(ciA0 + A1) · x̃i = l + ciy + c2i r and ‖x̃i‖ ≤ γr
for all i ∈ Z3. In matrix form, we can write

A ·
(
c0x̃0 c1x̃1 c2x̃2
x̃0 x̃1 x̃2

)
=
(
l y r

)
· V ᵀ
{c0,c1,c2}

Let w = (0, 1, 0) ∈ R3. By Proposition 6, the solution z = (z0, z1, z2) to the
equation V ᵀ

{c0,c1,c2} · z = s ·w is given by

zi = − s

di

∑
j∈Z3\{i}

cj

for i ∈ Z3. Define x = (
∑2
i=0 ci zi · x̃i,

∑2
i=0 zi · x̃i). We have

A · x = A ·
(
c0x̃0 c1x̃1 c2x̃2
x̃0 x̃1 x̃2

)
· z =

(
l y r

)
· V ᵀ
{c0,c1,c2} · z = s · y.

Furthermore, we notice that x is a sum of 3 terms, each being a product of
cizi and x̃i. Using Propositions 10 and 11 we have ‖cizi‖ ≤ ϕ(m) and 8ϕ(m)
respectively, and x̃i of norm at most γr. The norm ‖x‖ therefore satisfies

‖x‖ ≤
{

24 · ϕ(m) · γR · γr p > 2
3 · ϕ(m) · γR · γr p = 2

= γ′r

Our r-th extractor E therefore outputs x as a witness of (A,y) ∈ Ls,γ′r with
probability at least δ/n > 2r/n. ut

4.2 On the Knowledge Soundness of Recursive Composition

Knowledge error is at least Ω(log k/n). In their original analysis, Bootle et al. [10]
optimistically claimed without proof that the protocol Π obtained from the
recursive composition of Π0, . . . ,Πlog k has knowledge error O(1/n). We disprove
this by constructing a cheating prover who can convince the verifier in Πr with
probability at least 1/n for any statement (A,y). Consequently we obtain a
cheating prover who can convince the verifier in Π with probability at least
1− (1− 1/n)log k ≥ log k

2n = ω(1/n) assuming n ≥ log k = ω(1).
Our cheating prover Ar for Πr is essentially a “zero-knowledge simulator”

which does the following. Guess the challenge to be sent by the verifier as c∗
uniformly at random. Sample an arbitrary vector x̃ ∈ Rkr+1 of norm at most
γr. Compute (Ã, ỹ) as an honest prover would. Pick an arbitrary vector r ∈ Rh.
Compute l = Ãx̃−cỹ−c2r. Send (l, r) as the first message and receive a challenge
c. If c 6= c∗ then abort. Otherwise send x̃ as the second message. Clearly Ar
succeeds whenever c = c∗, which happens with probability at least 1/n.

Now consider an adversary A against the verifier in Π. To cheat, it suffices for
A to cheat in at least one round r ∈ Zlog k. The success probability of A is then
at least 1− (1− 1/n)log k ≥ 1− 1

1+log k/n = log k
n+log k ≥

log k
2n = ω(1/n), where we

assumed n ≥ log k = ω(1). In general, if Π is obtained by recursively composing
Π0, . . . ,Π` for some ` ≥ 0, where in Π` the prover simply sends the witness, then
A succeeds with probability at least Ω(`/n) which is ω(1/n) if the number of
rounds ` is super-constant.

On achieving knowledge error O(log k/n). In the proof of Theorem 5, we showed
that for r ∈ Zlog k if Ar is a cheating prover in Πr with success probability greater
than 2(r+1)/n, then our extractor Er succeeds with probability greater than 2r/n.
This intuitively suggests that ifA is a cheating prover in Π obtained by recursively
composing Π0, . . . ,Πlog k with success probability greater than 2 log k/n, then by
recursively running the extractors Elog k, . . . , E0 one should construct an extractor
E which succeeds with positive probability. In other words, the knowledge error
of Π is intuitively at most 2 log k/n. This does not contradict with the existence
of the attacker A with success probability 1− (1− 1/n)log k constructed above,
since by the union bound we have 1− (1− 1/n)log k ≤

∑
r∈Zlog k

1/n = log k/n.
If the knowledge error is indeed at most 2 log k/n, then repeating the protocol
λ/(logn− log log k− 1) times (instead of λ/ logn times suggested in [10]) suffices
to achieve knowledge error 2−λ.

Formalising the above intuition requires a very strong “forking lemma” which
extracts a full depth-(log k) ternary tree of accepting transcripts in expected
polynomial time when given any cheating prover for Π with success probability
greater than 2 log k/n. Unfortunately, such a formalisation appears to be out of
reach with the current proof techniques. Indeed, the forking lemma in [8, Lemma
1] (and its variants) used in subsequent works (e.g. [12,13]) implies a knowledge
error of n−1/3k1.58. The concrete analysis in [22] implies a knowledge error of
5n−1/2k1.58 log k. A common problem in these analyses is that the extractor
being constructed runs the cheating prover with uniformly random challenges
every time, without insisting that the challenges in each round are distinct. This
incurs a substantial loss in extraction probability.

The tightest bound that we are aware of is given in [17, Lemma 3.2], which
implies a knowledge error of α

log k

α−1
3
n for any α >

(
n
n−3

)2
. The minimum of the

factor αlog k

α−1 is
(

1 + 1
log k−1

)log k
/ 1

log k−1 ≤ e log k attained when α = 1 + 1
log k−1

and e is Euler’s number. Let n ≥ 9 log k.10 We can check that the requirement
α >

(
n
n−3

)2
is fulfilled. We therefore obtain a knowledge error of 8.16 log k

n

whenever n ≥ 9 log k, which requires λ/(logn− log log k − 4) parallel repetitions
to achieve a knowledge error of 2−λ.

For a concrete feeling of the number of repetitions required, suppose we aim
for around 2−80 knowledge error, choose a ring R of degree ϕ(m) ≈ 1024, an
(s, 3)-subtractive set of size n ≈ 210, and k = 220, which encodes the assignment
of the internal wires an arithmetic circuit of size 230. Then if we can achieve the
(near optimal) knowledge error of 2 log k/n, only 20 repetitions are needed. With
the provable knowledge error of 8.16 log k/n however, we need 50 repetitions.

4.3 On the Quality of the Extracted Witness

Suppose we are able to construct an extractor by using one of the forking lemmas,
then due to the additional structural guarantee of the extracted solution, we can
10 The requirement n ≥ 9 log k is realistic. Typically, we have n ≈ 1000 and log k � 100.

obtain a tighter upper bound of the norm of the extracted solution x. Specifically,
observe that by construction x is a sum of 3log k terms, each term being a product
of log k terms of the form cizi and one more term of norm at most γ′log k.

For the prime-power case, recall that γ′log k = k · γR,log k+1 · β. From Propo-
sition 11 we have ‖cizi‖ ≤ 8m and a naive application would yield a factor of
(8m)log k in the bound of ‖x‖. We can obtain a slightly better bound by observ-
ing that a factor 2 in 8m is contributed by a multiplication by a power of ζ
(cf. Proposition 11). If we collect all the log k powers of ζ and only multiply them
in one shot, then (8m)log k can be replaced by 2 · (4m)log k. We therefore obtain

‖x‖ ≤ 3log k · γR,log k+1 ·
(

2 · (4m)log k
)
· (k · γR,log k+1 · β)

= 3log k ·
(

2 (log k + 1) · ϕ(m)log k
)2
· 2 · (4m)log k · k · β

= Õ(k3 logm+4.58) · β.

When when p = poly(λ), we can set s = 1 and choose a modulus

q = Õ(k3 logm+4.58) · β.

We remark that even with the more careful analysis, the factor 2 · (4m)log k is
still somewhat loose. If we instead use the empirical estimation in Proposition 11
that ‖ci · zi‖ ≤ m, we can set

q = O(‖x‖) = Õ(k3 logm+2.58) · β.

For the power-of-2 case we recall that γ′log k = k · β and thus

‖x‖ ≤ 3log k · γR,log k+1 · ϕ(m)log k · (k · β)

= 3log k · ϕ(m)2 log k · k · β
= Õ(k2 logm+0.58) · β.

Since s = 2 for the power-of-2 case, we have a total slack of k after recursive
composition. Therefore we can choose a modulus q = Õ(k2 logm+1.58) · β. For
comparison, [10] give a bound of Õ(k3 logm+4.5) · β which is larger by a factor of
Õ(klogm+3).

Remark 5. We may ask if another factor of log k can be shaved off the exponent by
a more careful analysis of products of the form

∏
0≤j<log k cij · zij . Experimenting

(cf. Appendix B) with random products of this form in the power-of-2 case
suggests the norm grows as (m/4)2(log k−1) in the worst case (over the choice of
cij · zij) which is comparable to our analytical bound. The same bound is also
approached from above in the prime case as m grows. Using that these products
are over randomness of the extractor, we may also consider the average case
which empirically grows as (m/4)log k+o(log k). Based on this data, we speculate
that q = Õ(klogm+O(1)) · β is attainable.

4.4 Impossibility

A wide class of proof systems has knowledge soundness relative to (E , Ls,β), where
E is a knowledge extractor conforming to the following pattern.

Definition 8 (Algebraic Extractors). Let Π be a proof system conforming
to Definition 3 with g = 1 (3-move). Let E be an extractor for Ls,β. We say E is
3-move degree-d algebraic if EP conforms to the following pattern:

1. E specifies a special monomial M∗ ∈M, whereM is the set of all f -variate
degree-d homogenous monomials.

2. E runs P some number of times to generate t accepting transcripts for some
t ∈ N. In the k-th transcript, let the verifier challenges be (ci,k)i∈Zf .

3. E finds coefficients ak ∈ R for k ∈ Zt such that∑
k∈Zt

ak ·M(ck) = 0 ∀ M ∈M \{M∗} ,

∑
k∈Zt

ak ·M∗(ck) = s.

4. If E fails to find the coefficients ak in the above step, it aborts.

We justify the definition of algebraic extractors, focusing on 3-move 2-challenge
protocols. One challenge protocols can be captured by setting S1 := {1}.

We first consider a linear-size Schnorr-like proof system which is complete for
L1,β . Classically a knowledge extractor E for Ls,β′ for some (s, β′) is of degree
d = 1 and proceeds as follows: Suppose P is a convincing prover for the statement
(A,y). The extractor EP collects from t = 2 correlated accepting transcripts
an image ỹ and two preimages x̂0 and x̂1, such that A · x̂0 = c1,0ỹ + c0,0y and
A · x̂1 = c1,1ỹ + c0,1y. Subtracting the two equations yields A · (x̂0 − x̂1) =
(c1,0 − c1,1) · ỹ + (c0,0 − c0,1) · y. The extractor E then attempts to solve the
following system of linear equations(

c1,0 c1,1
c0,0 c0,1

)
z = s

(
0
1

)
for z = (z0, z1), and return x = z0x̂0 + z1x̂1. The special monomial here is
M∗({(X0, X1)}) = X0 for some formal variables Xi.

Next we observe that in the proof of knowledge soundness of the lattice
Bulletproof protocol constructed in Section 4.1, the degree-2 knowledge extractor
solves the following system of linear equations c21,0 c21,1 c21,2

c0,0 · c1,0 c0,1 · c1,1 c0,2 · c1,2
c20,0 c20,1 c20,2

 z = s

0
1
0

for z = (z0, z1, z2). The special monomial here is M∗({(X0, X1)}) = X0X1.

A degree-2d example can be obtained by modifying the lattice Bulletproof
protocol in Section 4.1, such that instead of “folding” A and x in halves when
given challenges (c0, c1), we compute

Ã :=
d∑
k=0

cd−k0 · ck1 ·Ak and x̃ :=
d∑
k=0

ck0 · cd−k1 · xk.

Let M∗({(X0, X1)}) = Xd
0 ·Xd

1 and notice that

Ã · x̃ ∈M∗({(c0, c1)}) · y + 〈{M({(c0, c1)}) : M ∈M \{M∗}}〉.

Remark 6. Both Definition 8 and our results below can be generalised to g > 1.
However, we found no good candidate construction with more than three moves.
Thus, in order to avoid preempting future generalisations we do not formalise it
here.

The next technical lemma shows that the above extraction strategy forces
s ∈ 〈M∗(S∗)−M∗(S∗)〉 · I−1 (a fractional ideal) for some ideal I and for S∗ =
{(c0,k, . . . , cf−1,k)}k∈Zt . Here and in what follows we extend the notation of
M∗(·) to sets in the natural way, e.g. M∗(X0, X1) = X0 · X1 is extended to
M∗({(X0, X1), (Y0, Y1)}) = {X0 ·X1, Y0 · Y1}. To illustrate the lemma, consider
the linear-size Schnorr proof with S1 = {1} as an example. Here the lemma states
that s ∈ 〈c0,0 − c0,1〉. Similarly, for the lattice Bulletproof the lemma states that
s ∈

〈
{ci,0 · ci,1 − cj,0 · cj,1}i6=j

〉
when

〈
{c2i,0}, {c2j,0}

〉
= R for i, j ∈ Z3.

Lemma 5. Let d, f, t ∈ N, ak, ci,k ∈ R for i ∈ Zf and k ∈ Zt. For i ∈ Zf , write
S∗i := {ci,k : k ∈ Zt}, S∗ =

∏
i∈Zf S

∗
i . For k ∈ Zt, write ck = (c0,k, . . . , cf−1,k) ∈

S∗. LetM be the set of f -variate degree-d homogeneous monomials. FixM∗ ∈M.
For M ∈M \{M∗}, let M̄ := M/ gcd(M,M∗). Suppose

U := {(M, j) : M ∈M \{M∗} ,M(cj) 6= 0, j ∈ Zt} 6= ∅.

Let I :=
⋂

(M,j)∈U
〈
M̄(cj)

〉
. If

∑
k∈Zt ak ·M(ck) = 0 for all M ∈ M \ {M∗}

then

s :=
∑
k∈Zt

ak ·M∗(ck) ∈ 〈M∗(S∗)−M∗(S∗)〉 · I−1

the latter being a fractional ideal in the field of fractions K of R.

Proof. For any (M, j) ∈ U , we have aj = −
∑
k∈Zt\{j} ak

M(ck)
M(cj) ∈ K. Extending

the given notation, let M̂∗ = M∗/ gcd(M,M∗) (dependent on M). We obtain

s =
∑
k∈Zt

akM
∗(ck) =

∑
k∈Zt\{j}

akM
∗(ck) + ajM

∗(cj)

=
∑

k∈Zt\{j}

akM
∗(ck)−

 ∑
k∈Zt\{j}

ak
M(ck)
M(cj)

M∗(cj)

=
∑

k∈Zt\{j}

ak
M∗(ck)M(cj)−M(ck)M∗(cj)

M(cj)

=
∑

k∈Zt\{j}

ak
M∗(ck)M̄(cj)−M(ck)M̂∗(cj)

M̄(cj)

∈ 1
M̄(cj)

〈
M(S∗)M̂∗(S∗)−M∗(S∗)M̄(S∗)

〉
= 1
M̄(cj)

〈
M̄(S∗)M∗(S∗)− M̄(S∗)M∗(S∗)

〉
⊆ 1
M̄(cj)

〈M∗(S∗)−M∗(S∗)〉.

We conclude that

s ∈
⋂

(M,j)∈U

1
M̄(cj)

〈M∗(S∗)−M∗(S∗)〉 = 〈M∗(S∗)−M∗(S∗)〉 · I−1.

ut

We can now state the main result of this section which rules out algebraic
extractors achieving inverse polynomial soundness error and small slack. We
state our impossibility for 3-move protocols for simplicity. However, as mentioned
above, the ideas in the proof generalise to arbitrary moves. At a high level, our
proof strategy is to construct an adversary that only answers challenges such
that all accepting transcripts land in the same coset c of some ideal q chosen
by the adversary, i.e. c ≡ ci,k mod q. Then, e.g. for linear-size Schnorr proofs
c0,0 − c0,1 ∈ q which implies s ∈ q by Lemma 5.

Theorem 6. Let R be a cyclotomic ring. Let q ⊆ R be a prime ideal of norm
N(q) = |R/q| = q. Let Π be an f-challenge 3-move public-coin proof system,
where Si \ {0} 6= ∅ for i ∈ Zf , and

∏
i∈Zf |Si| =

∏
i∈Zf ni ≥ qf . Let E be a

degree-d algebraic extractor for Ls,β. Let κ < q−f/2. Suppose Π has κ-knowledge
soundness relative to (E , Ls,β) for some β ∈ R, then s ∈ qd−1.

Proof. Let κ = q−f/2−ε for some ε > 0. Suppose the claim is false, then s /∈ qd−1.
Let M∗ be the special monomial specified by E . Pick any i∗ ∈ Zf such that

M∗(C) 6= Cdi∗ . Let S∗i∗ ⊆ Si∗ \{0} be a largest subset so that all elements belong

to the same coset modulo q. For each i ∈ Zf \ {i∗}, let S∗i ⊆ Si be a largest
subset so that all elements belong to the same coset modulo q. We note that
by construction S∗i has the property that S∗i − S∗i ⊆ q for all i ∈ Zf , and S∗i∗
contains only non-zero elements. Since q has q cosets, by the pigeonhole principle,
|S∗i | ≥ dni/qe for all i ∈ Zf \ {i∗}. For i = i∗, if Si∗ contains only non-zero
elements, then |S∗i∗ | ≥ dni∗/qe. Otherwise |S∗i∗ | ≥ d(ni∗ − 1)/qe.

We construct an adversaryA. This adversaryA behaves almost exactly like the
honest prover P , except that it insists on answering only those challenges coming
from S∗ :=

∏
i∈Zf S

∗
i . If A is challenged with any other values, it aborts. If Si∗

contains only non-zero elements, then A successfully convinces the honest verifier
V with probability ρ =

∏
i∈Zf dni/qe /ni ≥ q−f > q−f/2 − ε = κ. Otherwise,

by noting that ni∗ > 1 since Si∗ contains at least one non-zero element, we
have ρ = (d(ni∗ − 1)/qe /ni∗)

∏
i∈Zf\{i∗} (dni/qe /ni) ≥ q−1(1− 1/ni∗)q−(f−1) ≥

q−f/2 > q−f/2− ε = κ.

On the other hand, we see that for any algebraic extractor E , EA fails to
find algebraic combinations of differences of challenges to produce s. To see why,
suppose that E does not abort according to Definition 8. Since S∗i∗ is constructed
such that 0 /∈ S∗i∗ andM∗(C) 6= Cdi∗ , the setU defined in the statement of Lemma 5
is non-empty. By Lemma 5, we have s ∈ 〈M∗(C)−M∗(C)〉 · I−1 ⊆ qd · I−1.
Since q is prime, we either have q = I, or q and I are coprime. In the former case
we have s ∈ qd−1, and in the latter we have s ∈ qd ⊆ qd−1 since s is integral.

To conclude, EA always fails, which contradicts to the claim that Π has
κ-knowledge soundness relative to (E , Ls,β) for some β ∈ R. ut

Remarks about the tightness of Theorem 6. The assumption that q is prime is
made without loss of generality: if q is not prime then we can pick a prime factor
of q. The assumption

∏
i∈Zf |Si| ≥ qf can typically be dropped if Π admits a

“zero-knowledge simulator” which simulates the prover’s messages by guessing
the challenge to be sent by the verifier, which can be done with probability at
least q−f if

∏
i∈Zf |Si| < qf .11 The assumption κ < q−f/2 (instead of κ < q−f)

is made to account for the unlikely scenario that the extractor E manages to
collect challenge tuples which contain too many zeros. The conclusion s ∈ qd−1

(instead of s ∈ qd) is to account for the unlikely event that I 6= R.
For example, if there exists i∗ ∈ Zf such that M∗(C) 6= Cdi∗ , 0 /∈ Si∗ , and

µ ∈ Si∗ for some invertible element µ ∈ R (e.g. µ = 1), then we can assume
κ < q−f instead and conclude that s ∈ qd using the same proof. In particular,
with this additional (natural) assumption, if s = 1 and q = 〈1− ζ〉 which has
norm p, then Π does not have κ-knowledge soundness relative to (E , Ls,β) for
any algebraic extractor E , any β ∈ R, any κ < q−f , and any f ∈ N.

By repeating f times a 1-challenge 3-move public-coin proof system with
knowledge error p−1, which can be constructed from a subtractive set of size
p, such as the one constructed in Theorem 2, one can reduce the knowledge

11 Although such a simulator usually exists naturally, it seems difficult to argue about
its existence generically.

error to p−f relative to an algebraic extractor. Therefore the bound κ < p−f in
Theorem 6 is in a sense tight, assuming algebraic extractors.

Acknowledgments

We thank Jonathan Bootle for comments on an earlier version of this work.

References

1. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 669–699.
Springer, Heidelberg (Aug 2018). 10.1007/978-3-319-96881-0_23

2. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic cir-
cuits and their application to lattice-based cryptography. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 495–526.
Springer, Heidelberg (May 2020). 10.1007/978-3-030-45374-9_17

3. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Au-
rora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Heidelberg
(May 2019). 10.1007/978-3-030-17653-2_4

4. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better zero-
knowledge proofs for lattice encryption and their application to group signatures.
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (Dec 2014). 10.1007/978-3-662-45611-8_29

5. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107,
pp. 183–211. Springer, Heidelberg (May 2020). 10.1007/978-3-030-45727-3_7

6. Boldyreva, A., Micciancio, D. (eds.): CRYPTO 2019, Part I, LNCS, vol. 11692.
Springer, Heidelberg (Aug 2019)

7. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (Aug 2013). 10.1007/
978-3-642-40041-4_23

8. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin and Coron
[19], pp. 327–357. 10.1007/978-3-662-49896-5_12

9. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: More efficient amortization of
exact zero-knowledge proofs for LWE. Cryptology ePrint Archive, Report 2020/1449
(2020), https://eprint.iacr.org/2020/1449

10. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP approach to
succinct quantum-safe zero-knowledge. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 441–469. Springer, Heidelberg (Aug
2020). 10.1007/978-3-030-56880-1_16

11. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In: Boldyreva and Micciancio [6], pp. 176–202.
10.1007/978-3-030-26948-7_7

https://doi.org/10.1007/978-3-319-96881-0_23
10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-030-45374-9_17
10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-030-17653-2_4
10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-45611-8_29
10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-030-45727-3_7
10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-642-40041-4_23
10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-662-49896-5_12
10.1007/978-3-662-49896-5_12
https://eprint.iacr.org/2020/1449
https://doi.org/10.1007/978-3-030-56880-1_16
10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-030-26948-7_7
10.1007/978-3-030-26948-7_7

12. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy. pp. 315–334. IEEE Computer Society Press (May 2018).
10.1109/SP.2018.00020

13. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105,
pp. 677–706. Springer, Heidelberg (May 2020). 10.1007/978-3-030-45721-1_24

14. Cohen, H.: A Course in Computational Algebraic Number Theory, vol. 138. Springer
Science & Business Media (2013)

15. Damgård, I.: On σ-protocols. https://www.cs.au.dk/~ivan/Sigma.pdf (2010)
16. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and

zero-knowledge proofs of automorphism stability. In: Lie et al. [27], pp. 574–591.
10.1145/3243734.3243852

17. del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for FHE and ring-
LWE ciphertexts. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442,
pp. 344–373. Springer, Heidelberg (Apr 2019). 10.1007/978-3-030-17253-4_12

18. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: New
techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 259–288. Springer, Heidelberg (Dec
2020). 10.1007/978-3-030-64834-3_9

19. Fischlin, M., Coron, J.S. (eds.): EUROCRYPT 2016, Part II, LNCS, vol. 9666.
Springer, Heidelberg (May 2016)

20. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSIGN: Digital signatures using the NTRU lattice. In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (Apr 2003).
10.1007/3-540-36563-X_9

21. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosys-
tem. In: ANTS. pp. 267–288 (1998)

22. Jaeger, J., Tessaro, S.: Expected-time cryptography: Generic techniques and ap-
plications to concrete soundness. In: Pass, R., Pietrzak, K. (eds.) TCC 2020,
Part III. LNCS, vol. 12552, pp. 414–443. Springer, Heidelberg (Nov 2020).
10.1007/978-3-030-64381-2_15

23. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie et al. [27], pp. 525–537. 10.1145/
3243734.3243805

24. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (Dec 2008).
10.1007/978-3-540-89255-7_23

25. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC. pp. 723–732. ACM Press (May 1992). 10.1145/
129712.129782

26. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin and Coron [19], pp. 1–31. 10.1007/978-3-662-49896-5_1

27. Lie, D., Mannan, M., Backes, M., Wang, X. (eds.): ACM CCS 2018. ACM Press
(Oct 2018)

28. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (Feb / Mar
2013). 10.1007/978-3-642-36362-7_8

https://doi.org/10.1109/SP.2018.00020
10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_24
10.1007/978-3-030-45721-1_24
https://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1145/3243734.3243852
10.1145/3243734.3243852
https://doi.org/10.1007/978-3-030-17253-4_12
10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-64834-3_9
10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/3-540-36563-X_9
10.1007/3-540-36563-X_9
https://doi.org/10.1007/978-3-030-64381-2_15
10.1007/978-3-030-64381-2_15
https://doi.org/10.1145/3243734.3243805
10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
10.1145/3243734.3243805
https://doi.org/10.1007/978-3-540-89255-7_23
10.1007/978-3-540-89255-7_23
https://doi.org/10.1145/129712.129782
10.1145/129712.129782
https://doi.org/10.1145/129712.129782
10.1145/129712.129782
https://doi.org/10.1007/978-3-662-49896-5_1
10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-642-36362-7_8
10.1007/978-3-642-36362-7_8

29. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (Apr 2012). 10.1007/978-3-642-29011-4_43

30. Lyubashevsky, V., Micciancio, D.: Generalized compact Knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (Jul 2006).
10.1007/11787006_13

31. Norton, G.H., Salagean-Mandache, A.: On the key equation over a commutative
ring. Des. Codes Cryptogr. 20(2), 125–141 (2000)

32. Pornin, T., Prest, T.: More efficient algorithms for the NTRU key generation using
the field norm. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443,
pp. 504–533. Springer, Heidelberg (Apr 2019). 10.1007/978-3-030-17259-6_17

33. Quintin, G., Barbier, M., Chabot, C.: On generalized reed-solomon codes over
commutative and noncommutative rings. IEEE Trans. Inf. Theory 59(9), 5882–5897
(2013). 10.1109/TIT.2013.2264797, https://doi.org/10.1109/TIT.2013.2264797

34. Stehlé, D., Steinfeld, R.: Making NTRUEncrypt and NTRUSign as secure as standard
worst-case problems over ideal lattices. Cryptology ePrint Archive, Report 2013/004
(2013), http://eprint.iacr.org/2013/004

35. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (Aug
1994). 10.1007/3-540-48329-2_2

36. Washington, L.C.: Introduction to cyclotomic fields, vol. 83. Springer Science &
Business Media (1997)

37. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: Construction and applications.
In: Boldyreva and Micciancio [6], pp. 147–175. 10.1007/978-3-030-26948-7_6

A Distributed Pseudorandom Functions

A.1 Preliminaries

Definition 9 (Pseudorandom Functions). A pseudorandom function PRF
is a tuple of PPT algorithms (Setup,KGen,FEval) defined over a key space K, a
message space X , and an image space Y. The setup algorithm Setup(1λ) generates
the public parameters pp. The key generation algorithm KGen(pp) outputs a key
k ∈ K. The deterministic function evaluation algorithm FEval(k ∈ K, x ∈ X)
outputs an image y ∈ Y. By convention we write PRF(k, x) = FEval(k, x).

The security of PRF guarantees that for any PPT adversary A,∣∣∣Prpp←Setup(1λ),k←KGen(pp)

[
APRF(k,·) = 1

]
− Prf ←$YX

[
Af(·) = 1

]∣∣∣ ≤ negl(λ)

where YX denotes the set of all functions from X → Y.

Definition 10 (β-Almost Key-Homomorphism). A pseudorandom function
PRF is said to be β-almost key-homomorphic if the following are satisfied. The key
space K and the image space Y are R-modules for some ring R equipped with a
norm ‖·‖ suitably extended to K and Y. There exists an additional key-evaluation

https://doi.org/10.1007/978-3-642-29011-4_43
10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/11787006_13
10.1007/11787006_13
https://doi.org/10.1007/978-3-030-17259-6_17
10.1007/978-3-030-17259-6_17
https://doi.org/10.1109/TIT.2013.2264797
10.1109/TIT.2013.2264797
https://doi.org/10.1109/TIT.2013.2264797
http://eprint.iacr.org/2013/004
https://doi.org/10.1007/3-540-48329-2_2
10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-3-030-26948-7_6
10.1007/978-3-030-26948-7_6

algorithm KEval which, on input an R-linear map f : Kn → K for some n ∈ N
and n images y0, . . . , yn−1, outputs an image y ∈ Y.

The evaluation correctness guarantees that, any any pp ∈ Setup(1λ), any
k0, . . . , kn−1 ∈ KGen(pp), any x ∈ X , if yi = PRF(ki, x) for all i ∈ Zn, then

‖KEval(f, y0, . . . , yn−1)− PRF(f(k0, . . . , kn−1), x)‖ ≤ max
k∈Rt:‖k‖≤β

f(k).

Definition 11 (Distributed Pseudorandom Functions). A (t, n)-distributed
pseudorandom function Π is a tuple (Setup,KGen,FEval,Share,SEval,Rec) of
PPT algorithms defined over a key space K, a message space X , and an image
space Y. (Setup,KGen,FEval) is a pseudorandom function defined over K, X , and
Y, denoted by PRF. The key sharing algorithm Share(k ∈ K) outputs n shares
(k0, . . . , kn−1) ∈ Kn. The share evaluation algorithm SEval(k ∈ K, x ∈ X) returns
an image share y. The image recovery algorithm Rec inputs a subset I ⊆t Zn and
t image shares (yi)i∈I and returns an image y ∈ Y.

The correctness of Π guarantees that PRF is correct, and for any pp ∈
Setup(1λ), any k ∈ KGen(pp), any (k0, . . . , kn−1) ∈ Share(k), any x ∈ X , any
yi ∈ SEval(ki, x) for i ∈ Zn, and any I = {i0, . . . , it−1} ⊆t Zn, it holds that
PRF(k, x) = Rec(I, yi0 , . . . , yit−1).

The security of Π guarantees that for any PPT adversary A,∣∣Pr
[
Pseudorandom0

Π,A(1λ) = 1
]
− Pr

[
Pseudorandom1

Π,A(1λ) = 1
]∣∣ ≤ negl(λ)

where the experiment Pseudorandomb
Π,A(1λ) does the following. Initiate a set

Q := ∅. Generate pp ← Setup(1λ) and k ← KGen(pp). Share the key k as
(k0, . . . , kn−1)← Share(k). Give pp to A and let it choose a set C∗ ⊆t′ Zn with
t′ < t. Give {ki : i ∈ C∗} to A, and provide it with oracle access to SEvalO.
The oracle SEvalO(x) records x into Q and returns (yi)i∈Zn\C∗ where yi ←
SEval(ki, x). A eventually returns x∗ ∈ X with x∗ /∈ Q. If b = 0, give A the
image y = PRF(k, x∗). Else b = 1 then give A a random y←$Y. Allow A to
further access SEvalO, and wait for it to return a bit b′. Output b′ if A did not
violate the above restrictions on C∗ and x∗. Otherwise output 0.

A.2 Our Result

Generalising the construction of Boneh et al. [7], we give a generic construc-
tion of (t, n)-distributed pseudorandom functions from almost key-homomorphic
pseudorandom functions and (s, t)-subtractive sets of size n.

Let q ∈ N be a modulus. Let R = Z[ζm] be the m-th cyclotomic ring, and
S = {c0, . . . , cn−1} ⊆n R be an (s, t)-subtractive set such that ‖c‖ ≤ 1 for all
c ∈ S. Let PRF = PRF.(Setup,KGen,FEval) be a β-almost key-homomorphic
pseudorandom function with key space K being an Rq-module, arbitrary message
space X , and image space Y being an R-module. We construct a (t, n)-distributed
pseudorandom function dPRF = dPRF.(Setup,KGen,FEval,Share,SEval,Rec) as
follows.

For u ∈ N with u < q, define b·cu : Rq → Ru to be the operation which maps
each coefficient xi ∈ Zq of x ∈ Rq to x′i, where x′i · bq/uc is the largest multiple
of bq/uc at most xi, and returns

∑
i∈ϕ(m) x

′
iζ
i. Observe that for x, y ∈ R, if

‖x− y‖ ≤ bq/uc, then bxcu = bycu. The operation b·cu naturally extends to Rq-
modules by viewing elements as Rq vectors and performing b·cu coordinate-wise.

The setup and key generation algorithms PRF.(Setup,KGen) = dPRF.(Setup,KGen)
are identical. The function evaluation algorithm dPRF.FEval(k, x) computes
bPRF.FEval(k, x)cu. The share algorithm Share(k) defines the polynomial f(X) =
k + a1X + . . .+ at−1X

t−1 ∈ Rq[X] where a1, . . . , at−1←$Rq. It returns

{ki : ki = f(ci), i ∈ Zn} .

The share evaluation algorithm SEval(k, x) is identical to FEval(k, x). The image
recovery algorithm Rec(I, y0, . . . , yt−1) defines the t-subset T := {ci ∈ S : i ∈ I } ⊆t
S. By Proposition 6, for any t = (t0, . . . , tt−1) ∈ Rt, the Vandermonde system
VT z = st admits a unique solution z = (z0, . . . , zt−1) over R, where in particular
z0 is given by

z0 =
∑
j∈Zt

(−1)t−1 s

dj

(
Tj
t− 1

)
kj

=
∑
j∈Zt

(−1)t−1 s

dj

 ∏
i∈S\ij

ci

 tj .

Define the R-linear map

f(K0, . . . ,Kt−1) :=
∑
j∈Zt

(−1)t−1 s

dj

 ∏
i∈S\ij

ci

Kj .

The image recovery algorithm outputs bKEval(f, y0, . . . , yt−1)cu.

Lemma 6. If t · γR,t+1 · γS · β ≤ bq/uc, then dPRF is correct. Furthermore, if
S is instantiated with any (s, t)-subtractive set constructed in Theorem 1, then
dPRF is correct if t · γR,2 · γS · β ≤ bq/uc.

Proof. By the β-almost key-homomorphic property of PRF, we have

‖KEval(f, y0, . . . , yt−1)− PRF(f(k0, . . . , kt−1), x)‖
≤ max

k∈Rt:‖k‖≤β
f(k) ≤ t · γR,t+1 · γS · β ≤ bq/uc .

Therefore bKEval(f, y0, . . . , yt−1)cu = bPRF(f(k0, . . . , kt−1), x)cu as desired.
If S is instantiated with any (s, t)-subtractive set constructed in Theorem 1,

since elements in S are either 0 or powers of ζ, products of elements in S are
either 0 or powers of ζ, and multiplication by (any product of t − 1 of) them
does not increase the norm. Therefore the γR,t+1 factor above can be replaced
by γR,2. ut

Proposition 13. If PRF is secure, then dPRF is secure.

The proof of security follows the outline of the proof of [7, Theorem 7.2]
closely, and is thus omitted.

B Source code

-*- coding: utf -8 -*-
"""
Verify quality of subtractive sets empirically.

To run tests , run::

- ‘‘$ sage -sh‘‘
- ‘‘$ PYTHONPATH ="‘pwd ‘" sage -t quality.py‘‘

"""
from sage.all import (

Combinations ,
CyclotomicField ,
Permutations ,
PolynomialRing ,
QQ,
SR,
Subsets ,
ZZ,
ceil ,
euler_phi ,
infinity ,
is_power_of_two ,
is_prime ,
log ,
matrix ,
prod ,
proof ,
random_prime ,
var ,
vector ,

)
from multiprocessing import Pool

proof.number_field(False) # we’re cool with the Riemann hypothesis

def vandermonde_solve(s, w, transpose=True , symbolic_ring=False):
"""
Return explicit solutions ‘z‘ for Vandermonde systems ‘V(^T) · z == s · w‘

:param s: slack
:param w: target vector
:param transpose: solve the transposed system
:param symbolic_ring: return symbols instead of quotients of polynomials

EXAMPLE ::

sage: from quality import vandermonde_solve
sage: V, z = vandermonde_solve(s=1, w=(0,1,0))
sage: z[0]
(-c_1 - c_2)/(c_0^2 - c_0*c_1 - c_0*c_2 + c_1*c_2)

"""
t = len(w)

if symbolic_ring:
R = SR
c = var(["c_%d" % i for i in range(t)])

else:
R = PolynomialRing(ZZ, ["c_%d" % i for i in range(t)])
c = R.gens()

T = set(c)

V = matrix(R, t, t, [[c[i] ** j for j in range(t)] for i in range(t)])

def T_(i):
return T.difference(set([c[i]]))

def ovr(i, j):
return sum(prod(c_ for c_ in J) for J in Subsets(T_(i), j))

def d_(i):
return prod(c[j] - c[i] for j in range(len(c)) if j != i)

z = []

for i in range(t):
if transpose is False:

z.append(
sum((-1) ** (t - i - 1) * s / d_(j) * ovr(j, t - i - 1) * w[j] for j in range(t))

)
else:

z.append(
sum((-1) ** (t - j - 1) * s / d_(i) * ovr(i, t - j - 1) * w[j] for j in range(t))

)

z = vector(z)

if not symbolic_ring:
if transpose is False:

assert V * z == s * vector(ZZ, w)
else:

assert V.T * z == s * vector(ZZ, w)
return V, z

def gamma_S_power_of_two(m, i, t, norm=infinity):
"""
Return maximum norm of an element in the ‘(s,t)‘ subtractive set ‘S_i ‘
"""
R, z = PolynomialRing(QQ, "z"). objgen ()
phi = z ** (m // 2) + 1
ni = 2 ** i + 1
ell = int(log(m, 2))
j_t = ceil(log(ceil(log(t, 2))))
assert ceil(log(t, 2)) <= 2 ** j_t

if i + j_t > ell:
raise ValueError("i: {i}, t: {t} is too large".format(i=i, t=t))

s = (1 - z ** (2 ** (i + j_t - 1))) % phi

def norm_(r):
return ZZ(r.change_ring(ZZ).norm(norm).ceil ())

max_norm = 0
max_elem = None

We can fix I[0] to 0 because (z^i - z^k) == z^(k)*(z^(i-k) - z^0) and 1/z^k == z^j for some j

for I in Combinations(range(1, 2 ** i), t - 1):
r = s

for j in range(t - 1):
r = r * (1 - z ** I[j]). inverse_mod(phi) % phi

if max_norm < norm_(r):
max_norm = norm_(r)
max_elem = r

print(
(

"m: {m:4d}, i: {i:2d}, t: {t:2d}, n: m/{m_n:d} + 1, "
"γ_S: {gamma_s :3d}, |elem|_2: {elem :.1f}, s: {s}"

). format(
i=i, t=t, s=s, m=m, m_n=m // (ni - 1), gamma_s=max_norm , elem=float(max_elem.norm (2))

)
)
return max_norm , max_elem

def gamma_S_prime(m, t, norm=infinity):
"""
Return maximum norm of an element in the ‘(1,t)‘ subtractive set ‘S‘
"""
R, z = PolynomialRing(QQ, "z"). objgen ()
phi = sum(z ** i for i in range(m))

s = R(1)

def norm_(r):
return ZZ(r.change_ring(ZZ).norm(norm).ceil ())

max_norm = 0
max_elem = None

inv_ = {}
for I in Combinations(range(m), 2):

inv_[tuple(I)] = (z - 1) * (z ** I[0] - z ** I[1]). inverse_mod(phi) % phi

for I in Permutations(range(m), t):
r = s

for j in range(1, t):
J = tuple(sorted ([I[0], I[j]]))
r = r * inv_[J] % phi

if max_norm < norm_(r):
max_norm = norm_(r)
max_elem = r

print(
(

"m: {m:4d}, t: {t:2d}, n: {m:4d}, " "γ_S: {gamma_s :3d}, |elem|_2: {elem :.1f}, s: {s}"
). format(t=t, s=s, m=m, gamma_s=max_norm , elem=float(max_elem.norm (2)))

)
return max_norm , max_elem

def gamma_S(M, jobs=1, norm=infinity):
"""
Verify quality of subtractive sets empirically.

:param M: iterable cyclotomic orders
:param jobs: number of jobs to run in parallel
:param norm: infinity or 2

EXAMPLE ::

sage: from quality import gamma_S
sage: _ = gamma_S(M=[8,16,32], jobs =1)
m: 8, i: 2, t: 3, n: m/2 + 1, γ_S: 1, |elem|_2: 1.4, s: 2
m: 16, i: 3, t: 3, n: m/2 + 1, γ_S: 2, |elem|_2: 3.5, s: 2
m: 32, i: 4, t: 3, n: m/2 + 1, γ_S: 4, |elem|_2: 9.4, s: 2

sage: _ = gamma_S(M=[3,5,7], jobs =1)
m: 3, t: 3, n: 3, γ_S: 1, |elem|_2: 1.0, s: 1
m: 5, t: 3, n: 5, γ_S: 2, |elem|_2: 3.2, s: 1
m: 7, t: 3, n: 7, γ_S: 3, |elem|_2: 5.3, s: 1

"""

pool = Pool(jobs)
results = []
for m in M:

if is_power_of_two(m):
k = int(log(m, 2))
results.append(

pool.apply_async(
gamma_S_power_of_two , [], {"m": m, "i": k - 1, "t": 3, "norm": norm}

)
)

elif is_prime(m):
results.append(pool.apply_async(gamma_S_prime , [], {"m": m, "t": 3, "norm": norm }))

else:
raise NotImplementedError

pool.close()

results = [res.get() for res in results]
return results

def cizi_size_prime(zeta , i, j, k):
"""
Compute ‘z_i · c_i ‘

:param zeta: a root of unity
:param i: 0 ≤ i < m
:param j: 0 ≤ j < m
:param k: 0 ≤ k < m

"""
F = (

-(zeta ** i - 1)
* (zeta ** j + zeta ** k - 2)
/ ((zeta ** i - zeta ** j) * (zeta ** i - zeta ** k)),
(zeta ** i + zeta ** k - 2)
* (zeta ** j - 1)
/ ((zeta ** i - zeta ** j) * (zeta ** j - zeta ** k)),
-(zeta ** i + zeta ** j - 2)
* (zeta ** k - 1)
/ ((zeta ** i - zeta ** k) * (zeta ** j - zeta ** k)),

)

return max(f.vector (). change_ring(ZZ).norm(infinity) for f in F)

def cizi_size_power_of_two(zeta , i, j, k):
"""
Compute ‘z_i · c_i ‘

:param zeta: a root of unity
:param i: 0 ≤ i < m
:param j: 0 ≤ j < m
:param k: 0 ≤ k < m

"""
F = (

-2
* zeta ** i
* (zeta ** j + zeta ** k)
/ ((zeta ** i - zeta ** j) * (zeta ** i - zeta ** k)),
2
* (zeta ** i + zeta ** k)
* zeta ** j
/ ((zeta ** i - zeta ** j) * (zeta ** j - zeta ** k)),
-2
* (zeta ** i + zeta ** j)
* zeta ** k
/ ((zeta ** i - zeta ** k) * (zeta ** j - zeta ** k)),

)

return max(f.vector (). change_ring(ZZ).norm(infinity) for f in F)

def cizi_size(m, jobs =1):
"""
Check grows of ‘z_i · c_i ‘

:param m: order
:param jobs: number of jobs to run in parallel

EXAMPLE ::

sage: from quality import cizi_size
sage: cizi_size (16, jobs =2) == 16/2 - 2
True
sage: cizi_size (17, jobs =4) == 17-2
True

"""
pool = Pool(jobs)
K, zeta = CyclotomicField(m, "zeta"). objgen ()

t = 3
results = []
if is_prime(m):

f = cizi_size_prime
IJK = Permutations(range(m), t)

elif is_power_of_two(m):
f = cizi_size_power_of_two
IJK = Combinations(range(m), t)

for ijk in IJK:
results.append(pool.apply_async(f, [zeta] + list(ijk)))

pool.close()

return max([res.get() for res in results])

def cizi(m, prime_diff=True):
"""
Return a random ‘c_i · z_i ‘

:param m: order of root of unity
:param prime_diff: use ‘i=0, j=p, k=2p‘

"""
K, z = CyclotomicField(m). objgen ()
if prime_diff:

p = random_prime(m)
i, j, k = 0, p, 2 * p

else:
i, j, k = Combinations(range(euler_phi(m)), 3). random_element ()

if is_power_of_two(m):
return 2 * (z ** j + z ** k) / ((z ** i - z ** j) * (z ** i - z ** k))

else:
return -(z ** i - 1) * (z ** j + z ** k - 2) / (z ** i - z ** j) / (z ** i - z ** k)

def cizicjzj_size_kernel(m, max_degree , trials , power=True , **kwds):
"""
Sample products of ‘c_i · z_i ‘ and return the maximum norm encountered.

:param m: order of root of unity
:param max_degree: compute up to (including) this many products
:param trials: number of trials per degree
:param power: power up the same element (worst case)

"""

def r_norm(x):
return x.vector (). norm(infinity)

sizes = []
for d in range(1, max_degree + 1):

max_ = 0

for _ in range(trials):
if power:

p = cizi(m, **kwds) ** d
else:

p = 1
for _ in range(d):

p *= cizi(m, **kwds)
max_ = max(max_ , r_norm(p))

sizes.append(max_)
return (m, sizes)

def cizicjzj_size(M, max_degree , trials , jobs=1, **kwds):
"""
Sample products of ‘c_i · z_i ‘ and return the maximum norm encountered.

:param M: iterable of orders of roots of unity
:param max_degree: compute up to (including) this many products
:param trials: number of trials per degree
:param power: power up the same element (worst case)

EXAMPLE ::

sage: from quality import cizicjzj_size
sage: D = cizicjzj_size ([8, 16, 32], max_degree =10, trials =10, jobs=4, prime_diff=True)
sage: D = cizicjzj_size ([7, 17, 31], max_degree =10, trials =10, jobs=4, prime_diff=False)

"""
pool = Pool(jobs)
results = []
for m in M:

kwds_ = kwds.copy()
kwds_["max_degree"] = max_degree
kwds_["trials"] = trials
results.append(pool.apply_async(cizicjzj_size_kernel , [m], kwds_))

pool.close()
return dict([res.get() for res in results])

def cizicjzj_plotit(data , prediction=lambda d: 2 * d - 1, base=lambda m: m / 4):
"""
Plot experimental data from ‘‘cizicjzj ‘‘
"""
import matplotlib.pyplot as plt

max_degree = len(list(data.values ())[0])

plt.clf()
plt.figure(figsize =(12, 6), dpi =300)
plt.plot([prediction(d) for d in range(1, max_degree + 1)], label="prediction")

for m, data in data.items ():
plt.plot([log(d, base(m)) for d in data], label="$m=%d$" % m)

plt.legend ()
return plt

	Subtractive Sets over Cyclotomic Rings

-*- coding: utf-8 -*-
"""
One level of the lattice Bulletproof protocol.
"""
from sage.all import (
 is_even,
 set_random_seed,
 ZZ,
 CyclotomicField,
 matrix,
 random_vector,
 ideal,
 proof,
 vector,
 GF,
 euler_phi,
 is_prime,
 is_power_of_two,
 prod,
 Subsets,
 shuffle,
)
from functools import partial
from dataclasses import dataclass

proof.number_field(False)

def Af(A):
 k = A.ncols()
 A = A.matrix_from_columns(range(k // 2)), A.matrix_from_columns(range(k // 2, k))
 return A

def vandersolve(c, s, transpose=True):
 t = len(c)
 V = matrix(t, t, [[c[i] ** j for j in range(t)] for i in range(t)])

 w = vector(V.base_ring(), t, (0, 1, 0))

 T = set(c)

 def T_(i):
 return T.difference(set([c[i]]))

 def ovr(i, j):
 return sum(prod(c_ for c_ in J) for J in Subsets(T_(i), j))

 def d_(i):
 return prod(c[j] - c[i] for j in range(len(c)) if j != i)

 z = []
 for i in range(t):
 if transpose is False:
 z.append(
 sum((-1) ** (t - i - 1) * s / d_(j) * ovr(j, t - i - 1) * w[j] for j in range(t))
)
 else:
 z.append(
 sum((-1) ** (t - j - 1) * s / d_(i) * ovr(i, t - j - 1) * w[j] for j in range(t))
)

 z = vector(z)

 if transpose is False:
 assert V * z == s * w
 else:
 assert V.T * z == s * w
 return V, z

def bulletproof(A, y, x, c):
 k = A.ncols()
 x = x[: k // 2], x[k // 2 :]
 A = Af(A)

 l = A[1] * x[0] # noqa
 r = A[0] * x[1]

 x_ = x[0] + c * x[1]
 return l, r, x_

 if not is_even(k):
 raise ValueError

def extractor(B, seed=None):
 t = 3
 k = B.A.ncols() // 2
 if seed is not None:
 set_random_seed(seed)

 S = list(B.S)
 shuffle(S)

 c = []
 x_ = []

 for i in range(t):
 c.append(S[i])
 l, r, x = B.P(B.A, B.y, c=c[i])
 x = vector(B.R, k, [x[i].lift() for i in range(k)])
 x_.append(x)
 y = l + c[i] * B.y + c[i] ** 2 * r
 A = Af(B.A)
 A = c[i] * A[0] + A[1]
 if A * x != y:
 print(A * x)
 print(y)
 raise ValueError

 V, z = vandersolve(c, B.s, transpose=True)

 x = vector(B.R, 2 * k)
 for i in range(t):
 for j in range(k):
 x[0 + j] += z[i] * c[i] * x_[i][j]
 x[k + j] += z[i] * x_[i][j]

 return x

@dataclass
class Bulletproof:
 P: object
 A: object
 y: object
 S: object
 s: object
 R: object
 R_q: object

def Sf(m):
 K, zeta = CyclotomicField(m, "zeta").objgen()
 R = K.ring_of_integers()

 if is_prime(m):
 S = [R((1 - zeta ** i) / (1 - zeta)) for i in range(m)]
 s = R(1)
 elif is_power_of_two(m):
 S = [R(0)] + [R(zeta ** i) for i in range(m / 2)]
 s = R(2)
 return S, s

def gen_instance(m, k, h, q=127):
 K, zeta = CyclotomicField(m, "zeta").objgen()
 R = K.ring_of_integers()
 R_q = R.quotient_ring(ideal(R(q)), names="zeta")

 A = matrix(R_q, h, k)
 S, s = Sf(m)

 for i in range(h):
 for j in range(k):
 A[i, j] = R(list(random_vector(GF(q), euler_phi(m)).lift()))

 x = vector(R, k)
 for i in range(k):
 x[i] = R(list(random_vector(ZZ, euler_phi(m), x=-1, y=2)))

 P = partial(bulletproof, x=x)

 print("x=", x)
 y = A * x
 print("y=", y)

 return Bulletproof(P=P, A=A, y=y, S=S, s=s, R=R, R_q=R_q)

-*- coding: utf-8 -*-
"""
Verify quality of subtractive sets empirically.

To run tests, run::

- ``$ sage -sh``
- ``$ PYTHONPATH="`pwd`" sage -t quality.py``

"""
from sage.all import (
 Combinations,
 CyclotomicField,
 Permutations,
 PolynomialRing,
 QQ,
 SR,
 Subsets,
 ZZ,
 ceil,
 euler_phi,
 infinity,
 is_power_of_two,
 is_prime,
 log,
 matrix,
 prod,
 proof,
 random_prime,
 var,
 vector,
)
from multiprocessing import Pool

proof.number_field(False) # we're cool with the Riemann hypothesis

def vandermonde_solve(s, w, transpose=True, symbolic_ring=False):
 """
 Return explicit solutions `z` for Vandermonde systems `V(^T) ⋅ z == s ⋅ w`

 :param s: slack
 :param w: target vector
 :param transpose: solve the transposed system
 :param symbolic_ring: return symbols instead of quotients of polynomials

 EXAMPLE::

 sage: from quality import vandermonde_solve
 sage: V, z = vandermonde_solve(s=1, w=(0,1,0))
 sage: z[0]
 (-c_1 - c_2)/(c_0^2 - c_0*c_1 - c_0*c_2 + c_1*c_2)

 """
 t = len(w)

 if symbolic_ring:
 R = SR
 c = var(["c_%d" % i for i in range(t)])
 else:
 R = PolynomialRing(ZZ, ["c_%d" % i for i in range(t)])
 c = R.gens()
 T = set(c)

 V = matrix(R, t, t, [[c[i] ** j for j in range(t)] for i in range(t)])

 def T_(i):
 return T.difference(set([c[i]]))

 def ovr(i, j):
 return sum(prod(c_ for c_ in J) for J in Subsets(T_(i), j))

 def d_(i):
 return prod(c[j] - c[i] for j in range(len(c)) if j != i)

 z = []
 for i in range(t):
 if transpose is False:
 z.append(
 sum((-1) ** (t - i - 1) * s / d_(j) * ovr(j, t - i - 1) * w[j] for j in range(t))
)
 else:
 z.append(
 sum((-1) ** (t - j - 1) * s / d_(i) * ovr(i, t - j - 1) * w[j] for j in range(t))
)

 z = vector(z)

 if not symbolic_ring:
 if transpose is False:
 assert V * z == s * vector(ZZ, w)
 else:
 assert V.T * z == s * vector(ZZ, w)
 return V, z

def gamma_S_power_of_two(m, i, t, norm=infinity):
 """
 Return maximum norm of an element in the `(s,t)` subtractive set `S_i`
 """
 R, z = PolynomialRing(QQ, "z").objgen()
 phi = z ** (m // 2) + 1
 ni = 2 ** i + 1
 ell = int(log(m, 2))
 j_t = ceil(log(ceil(log(t, 2))))
 assert ceil(log(t, 2)) <= 2 ** j_t

 if i + j_t > ell:
 raise ValueError("i: {i}, t: {t} is too large".format(i=i, t=t))

 s = (1 - z ** (2 ** (i + j_t - 1))) % phi

 def norm_(r):
 return ZZ(r.change_ring(ZZ).norm(norm).ceil())

 max_norm = 0
 max_elem = None

 # We can fix I[0] to 0 because (z^i - z^k) == z^(k)*(z^(i-k) - z^0) and 1/z^k == z^j for some j

 for I in Combinations(range(1, 2 ** i), t - 1):
 r = s

 for j in range(t - 1):
 r = r * (1 - z ** I[j]).inverse_mod(phi) % phi

 if max_norm < norm_(r):
 max_norm = norm_(r)
 max_elem = r

 print(
 (
 "m: {m:4d}, i: {i:2d}, t: {t:2d}, n: m/{m_n:d} + 1, "
 "γ_S: {gamma_s:3d}, |elem|_2: {elem:.1f}, s: {s}"
).format(
 i=i, t=t, s=s, m=m, m_n=m // (ni - 1), gamma_s=max_norm, elem=float(max_elem.norm(2))
)
)
 return max_norm, max_elem

def gamma_S_prime(m, t, norm=infinity):
 """
 Return maximum norm of an element in the `(1,t)` subtractive set `S`
 """
 R, z = PolynomialRing(QQ, "z").objgen()
 phi = sum(z ** i for i in range(m))

 s = R(1)

 def norm_(r):
 return ZZ(r.change_ring(ZZ).norm(norm).ceil())

 max_norm = 0
 max_elem = None

 inv_ = {}
 for I in Combinations(range(m), 2):
 inv_[tuple(I)] = (z - 1) * (z ** I[0] - z ** I[1]).inverse_mod(phi) % phi

 for I in Permutations(range(m), t):
 r = s

 for j in range(1, t):
 J = tuple(sorted([I[0], I[j]]))
 r = r * inv_[J] % phi

 if max_norm < norm_(r):
 max_norm = norm_(r)
 max_elem = r

 print(
 (
 "m: {m:4d}, t: {t:2d}, n: {m:4d}, " "γ_S: {gamma_s:3d}, |elem|_2: {elem:.1f}, s: {s}"
).format(t=t, s=s, m=m, gamma_s=max_norm, elem=float(max_elem.norm(2)))
)
 return max_norm, max_elem

def gamma_S(M, jobs=1, norm=infinity):
 """
 Verify quality of subtractive sets empirically.

 :param M: iterable cyclotomic orders
 :param jobs: number of jobs to run in parallel
 :param norm: infinity or 2

 EXAMPLE::

 sage: from quality import gamma_S
 sage: _ = gamma_S(M=[8,16,32], jobs=1)
 m: 8, i: 2, t: 3, n: m/2 + 1, γ_S: 1, |elem|_2: 1.4, s: 2
 m: 16, i: 3, t: 3, n: m/2 + 1, γ_S: 2, |elem|_2: 3.5, s: 2
 m: 32, i: 4, t: 3, n: m/2 + 1, γ_S: 4, |elem|_2: 9.4, s: 2

 sage: _ = gamma_S(M=[3,5,7], jobs=1)
 m: 3, t: 3, n: 3, γ_S: 1, |elem|_2: 1.0, s: 1
 m: 5, t: 3, n: 5, γ_S: 2, |elem|_2: 3.2, s: 1
 m: 7, t: 3, n: 7, γ_S: 3, |elem|_2: 5.3, s: 1

 """

 pool = Pool(jobs)
 results = []
 for m in M:
 if is_power_of_two(m):
 k = int(log(m, 2))
 results.append(
 pool.apply_async(
 gamma_S_power_of_two, [], {"m": m, "i": k - 1, "t": 3, "norm": norm}
)
)
 elif is_prime(m):
 results.append(pool.apply_async(gamma_S_prime, [], {"m": m, "t": 3, "norm": norm}))
 else:
 raise NotImplementedError
 pool.close()

 results = [res.get() for res in results]
 return results

def cizi_size_prime(zeta, i, j, k):
 """
 Compute `z_i ⋅ c_i`

 :param zeta: a root of unity
 :param i: 0 ≤ i < m
 :param j: 0 ≤ j < m
 :param k: 0 ≤ k < m

 """
 F = (
 -(zeta ** i - 1)
 * (zeta ** j + zeta ** k - 2)
 / ((zeta ** i - zeta ** j) * (zeta ** i - zeta ** k)),
 (zeta ** i + zeta ** k - 2)
 * (zeta ** j - 1)
 / ((zeta ** i - zeta ** j) * (zeta ** j - zeta ** k)),
 -(zeta ** i + zeta ** j - 2)
 * (zeta ** k - 1)
 / ((zeta ** i - zeta ** k) * (zeta ** j - zeta ** k)),
)

 return max(f.vector().change_ring(ZZ).norm(infinity) for f in F)

def cizi_size_power_of_two(zeta, i, j, k):
 """
 Compute `z_i ⋅ c_i`

 :param zeta: a root of unity
 :param i: 0 ≤ i < m
 :param j: 0 ≤ j < m
 :param k: 0 ≤ k < m

 """
 F = (
 -2
 * zeta ** i
 * (zeta ** j + zeta ** k)
 / ((zeta ** i - zeta ** j) * (zeta ** i - zeta ** k)),
 2
 * (zeta ** i + zeta ** k)
 * zeta ** j
 / ((zeta ** i - zeta ** j) * (zeta ** j - zeta ** k)),
 -2
 * (zeta ** i + zeta ** j)
 * zeta ** k
 / ((zeta ** i - zeta ** k) * (zeta ** j - zeta ** k)),
)

 return max(f.vector().change_ring(ZZ).norm(infinity) for f in F)

def cizi_size(m, jobs=1):
 """
 Check grows of `z_i ⋅ c_i`

 :param m: order
 :param jobs: number of jobs to run in parallel

 EXAMPLE::

 sage: from quality import cizi_size
 sage: cizi_size(16, jobs=2) == 16/2 - 2
 True
 sage: cizi_size(17, jobs=4) == 17-2
 True

 """
 pool = Pool(jobs)
 K, zeta = CyclotomicField(m, "zeta").objgen()

 t = 3
 results = []
 if is_prime(m):
 f = cizi_size_prime
 IJK = Permutations(range(m), t)
 elif is_power_of_two(m):
 f = cizi_size_power_of_two
 IJK = Combinations(range(m), t)
 for ijk in IJK:
 results.append(pool.apply_async(f, [zeta] + list(ijk)))
 pool.close()

 return max([res.get() for res in results])

def cizi(m, prime_diff=True):
 """
 Return a random `c_i ⋅ z_i`

 :param m: order of root of unity
 :param prime_diff: use `i=0, j=p, k=2p`

 """
 K, z = CyclotomicField(m).objgen()
 if prime_diff:
 p = random_prime(m)
 i, j, k = 0, p, 2 * p
 else:
 i, j, k = Combinations(range(euler_phi(m)), 3).random_element()
 if is_power_of_two(m):
 return 2 * (z ** j + z ** k) / ((z ** i - z ** j) * (z ** i - z ** k))
 else:
 return -(z ** i - 1) * (z ** j + z ** k - 2) / (z ** i - z ** j) / (z ** i - z ** k)

def cizicjzj_size_kernel(m, max_degree, trials, power=True, **kwds):
 """
 Sample products of `c_i ⋅ z_i` and return the maximum norm encountered.

 :param m: order of root of unity
 :param max_degree: compute up to (including) this many products
 :param trials: number of trials per degree
 :param power: power up the same element (worst case)

 """

 def r_norm(x):
 return x.vector().norm(infinity)

 sizes = []
 for d in range(1, max_degree + 1):
 max_ = 0
 for _ in range(trials):
 if power:
 p = cizi(m, **kwds) ** d
 else:
 p = 1
 for _ in range(d):
 p *= cizi(m, **kwds)
 max_ = max(max_, r_norm(p))
 sizes.append(max_)
 return (m, sizes)

def cizicjzj_size(M, max_degree, trials, jobs=1, **kwds):
 """
 Sample products of `c_i ⋅ z_i` and return the maximum norm encountered.

 :param M: iterable of orders of roots of unity
 :param max_degree: compute up to (including) this many products
 :param trials: number of trials per degree
 :param power: power up the same element (worst case)

 EXAMPLE::

 sage: from quality import cizicjzj_size
 sage: D = cizicjzj_size([8, 16, 32], max_degree=10, trials=10, jobs=4, prime_diff=True)
 sage: D = cizicjzj_size([7, 17, 31], max_degree=10, trials=10, jobs=4, prime_diff=False)

 """
 pool = Pool(jobs)
 results = []
 for m in M:
 kwds_ = kwds.copy()
 kwds_["max_degree"] = max_degree
 kwds_["trials"] = trials
 results.append(pool.apply_async(cizicjzj_size_kernel, [m], kwds_))

 pool.close()
 return dict([res.get() for res in results])

def cizicjzj_plotit(data, prediction=lambda d: 2 * d - 1, base=lambda m: m / 4):
 """
 Plot experimental data from ``cizicjzj``
 """
 import matplotlib.pyplot as plt

 max_degree = len(list(data.values())[0])

 plt.clf()
 plt.figure(figsize=(12, 6), dpi=300)
 plt.plot([prediction(d) for d in range(1, max_degree + 1)], label="prediction")

 for m, data in data.items():
 plt.plot([log(d, base(m)) for d in data], label="$m=%d$" % m)
 plt.legend()
 return plt

