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Abstract

The intraday trades pro�le is the expected intensity of a counting process where the

counts measure the number of trades over an interval. It needs to capture the salient

features of the trading activity, its spikes and periods of relative quietness. This calls for

an estimator with a time varying resolution that allows us to identify jumps. The problem

can be recast as a regression one, using a fused Lasso penalty. The framework allows us

to identify jumps within possibly thousands di�erent locations within a day when the

number of trading days at disposal is in the order of hundreds. This can be done without

imposing any conditions on the counting process except for certain regularity conditions

on the expected intensity. The empirical results suggest that much of the trading activity

in some liquid futures can be captured by a deterministic seasonal component in the trade

arrival process.

Key Words: algorithmic trading; asymptotic distribution; consistency; counting pro-

cess; fused Lasso estimator.

JEL Codes: C58, C52.

1 Introduction

This paper is concerned with estimation of intraday trades pro�les. A trades pro�le shows how

the daily number of trades are expected to be distributed within a day. Such pro�le, and its

extension to include trade sizes, is an important input in high frequency execution algorithms

such as volume weighted average algorithms. There, a large order is split into small orders and

the frequency of trading is dictated by the expected trading activity. The use of a pro�le is

often needed in order to plan how the algorithm will split the orders, have an ex ante estimate
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of completion time, and establish the contribution of each period to the �nal weighted average

price.

Given the irregular time series nature of trades arrival, it is natural to model trades pro�les

with a counting process. Then, the trades pro�le is just an another word for the expected

intensity of the counting process. The di�culty in this problem is that the trades pro�le is

not smooth. The pro�le needs to capture spikes in activity. Such spikes can be concentrated

in as little as a minute of trading if not seconds. Scheduled events are typical examples.

These include opening and close of trading for the product and related ones, option expiries,

economic announcements, inventory reports for commodities, etc. Clearly, we may not know

about all the scheduled events that a�ect the trades pro�le of a traded instrument. Moreover,

we may not know for how long these events may a�ect the pro�le. The e�ect could last

seconds, minutes or hours. Based on these remarks, from a mathematical point of view the

pro�le is a non-smooth function with jump discontinuities at possibly unknown points.

The problem is similar to the one of estimating the seasonality of trade counts. A common

way to estimate a seasonal component is to use a histogram using equally spaced bins. For

the pro�le, we need to devise an adaptive way to choose the bin size at di�erent locations.

This would be simple if we had an oracle that presented us with all jump discontinuities. In

general, the presence of jump discontinuities rules out smoothing estimators, as their strength

is in the recovery of smooth functions (Stone, 1982). This paper uses an estimation technique

that allows us to solve the problem as if we had an oracle, in large samples.

1.1 Paper Outline and Contribution

In Section 2, we discuss the model for trades arrival as given by a counting process with

stochastic intensity. We suppose that the expectation of the stochastic intensity can be written

as

h (t) =
J∑
j=1

hj1Dj (t) .

Here, J is the number jump discontinuities, Dj is the set over which the intensity is constant

with value hj . All these quantities are unknown and need to be estimated from a sample

of intraday trades over multiple days. We use an estimation procedure that identi�es with

probability going to one the sets Dj and computes an estimator ĥ for h that is consistent

under the uniform norm. This is achieved under weak conditions described in Section 2 and

Theorem 1. In Theorem 2, we also derive an asymptotic normality result.

In Section 3, we include some extensions. These include estimation of volumes pro�les and

conditional estimation. The former requires to incorporate size information to trades arrival.

Examples of conditional estimation include previous day number of trades and end of day

trade count. The end of day trade count should be a predictable variable along the lines of
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end of day volume and its prediction can be updated intradaily, as we collect trade information

(Sancetta, 2019).

In the empirical part of the paper, Section 4, we consider estimation of the trades pro�le

for six futures contracts traded on the CME. The aim of that section is to highlight features in

the data that justify the suggested functional form of the expected intensity h. Interestingly,

based on out of sample results, we �nd that a lot of the activity in trades arrival is captured

by the trade pro�le. In Section 5, we rely on simulation results to gauge evidence on whether

the estimator can be trusted when used in typical set ups as the one of the empirical section.

Section 6 concludes. Proofs are deferred to the Appendix.

1.2 Relation to Existing Technical Results

In this paper, we are concerned with adaptive estimation of the expected intensity of a counting

processes. We recast the problem into a panel data problem with martingale errors and

construct a pooled estimator across days. Then, this becomes a signal recovery problem which

has been studied extensively in the literature. In particular the asymptotic analysis relies on

the arguments found in Rinaldo (2009). There, the context is di�erent and the model is an

independent Gaussian one. The Gaussian or sub-Gaussian assumption allows one to use a

strong concentration inequality. We cannot do so here, as trades arrival are not independently

distributed and they cannot be assumed to have Gaussian tails. Here, we only rely on existence

of a second moment for the compensator of the counting process.

From a technical point of view, Alaya et al. (2015) study a problem close to the present

one. There, the intensity/compensator is deterministic but subject to unknown break points,

and the estimator is shown to be consistent in L2. We cannot apply those results for two

reasons. First, we aim at exact recovery of the interval of homogeneity of the expected intensity

together with uniform convergence of the estimator. Second, we do not assume the intensity

to be deterministic. Such an assumption would rule out data being generated from stochastic

processes usually encountered in the �nance and �nancial econometrics literature. Such models

include Hawkes processes (Bauwens and Hautsch, 2009), autoregressive conditional duration

(ACD) models (Engle and Russell, 1998) and models that depend on order book information

(Sancetta, 2018). Finally, we also provide an asymptotic normality result.

2 The Model

Consider a sequence of counting processes
(
N (i)

)
i≥1

, N (i) :=
(
N (i) (t)

)
t∈[0,1]

, with intensity

λ(i), where h (t) = Eλ(i) (t) is left continuous. The quantity h is the mean intensity and

represents our quantity of interest. The index i represents a day and we suppose a sample of
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n days. Then, the counting process admits the stochastic representation

N (i) (t) =

ˆ t

0
λ(i) (s) ds+M (i) (t) , (1)

where
(
M (i) (t)

)
t∈[0,1]

is a martingale with respect to the natural �ltration of N (i) (Brémaud,

1980, Ch.II.T8). The �rst term on the right hand side (r.h.s.) is the compensator. We are

interested in estimating h (t) = Eλ(i) (t), t ∈ [0, 1].

The goal of this paper is to provide a consistent estimator for h under the following con-

ditions.

Regularity Conditions.

Condition 1 (Counting Processes) The counting processes
(
N (i)

)
i≥1

have geometrically de-

caying beta mixing coe�cients and stochastic intensity λ(i).

Condition 2 (Moments) There exist a �nite absolute λ̄2 <∞, such that maxt E
∣∣λ(i) (t)

∣∣2 ≤
λ̄2.

Condition 3 (Model h) The expected intensity h (t) = Eλ(i) (t) satis�es

h (t) =
J∑
j=1

hj1Dj (t) (2)

for some unknown �nite partition D = {Dj : j = 1, 2, ..., J} of [0, 1] where Dj = (δj−1, δj ], for

increasing rational numbers δj with δ0 = 0 and such that δmin := minj≤J |Dj | > 0.

For convenience, we refer to the above set of conditions as the Regularity Conditions.

Remarks on Dependence. Within each day, we do not impose any dependence condition

on N (i). We only restrict dependence across days. Recall that random variables (Xi)i≥1 have

geometrically decaying beta mixing coe�cients if β (m) ≤ be−cm for some �nite b and c > 0,

where for every m ≥ 1

β (m) := sup
j≥1

E sup
Bj

|Pr (Bj |Aj)− Pr (Bj)|

for Aj ∈ Aj and Bj ∈ BJ where Aj and Bj are the sigma algebras generated by {Xi : i ≤ j}
and {Xi : i ≥ m+ j} respectively (see Rio, 2000, section 1.6, and eq. 1.69 for an equivalent

de�nition). Hence, Aj and Bj are past and future events separated by m periods (days).

As an example, in our context we may think that the dependence is only via the total

number of trades. This is an often used assumption by practitioners. Then, we would write
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λ(i) (t) = ζiρ
(i) (t) where ρ(i) =

(
ρ(i) (t)

)
t∈[0,1]

is i.i.d. across i, while (ζi)i≥1 are beta mixing

real valued random variables. Many time series models have geometrically decaying beta

mixing coe�cients. For example, any �nite order ARMA model with independent identically

distributed (i.i.d.) innovations and law absolutely continuous with respect to (w.r.t.) the

Lebesgue measure satis�es geometric mixing rates (Mokkadem, 1988). Similarly, GARCH

models and more generally models that can be embedded in some stochastic recursive equations

are also beta mixing with geometric mixing rate for innovations possessing a density w.r.t. the

Lebesgue measure (Basrak et al., 2002: though for strong mixing, their result actually implies

beta mixing). Many positive recurrent Markov chains also satisfy geometric absolute regularity

(Mokkadem, 1990). Hence, the geometric mixing rate in the Regularity Conditions is satis�ed

by common time series models, though there are notable exceptions (Bradley, 1986, Example

6.2).

Summary of Main Result. The asymptotic results are derived letting L, n → ∞ and

possibly J → ∞, where L−1 is an initial bin size de�ned in Section 2.2. Note that even if J

is �xed, the challenge is that D is unknown and the bin size can be arbitrarily small. Under

these weak conditions, the main theoretical result of the paper is that we can recover D with

probability going to one and that the estimator ĥ for h that we suggest for this problem is

consistent under the uniform norm.

The assumptions are minimal. For example, we are able to recover D under no assumption

on the rate at which L diverges to in�nity. What is critical is that δmin is of larger order of

magnitude than
√
n−1 lnn and this is formalised in (6) in Theorem 1.

2.1 Notation

Use r.h.s. and l.h.s. to mean right hand side and left hand side. The symbol . means that

the l.h.s. is bounded by a constant times the r.h.s., while & means the reverse; � means that

the l.h.s. is bounded above and below by constants times the r.h.s. For a set A use |A| to
denote its cardinality if A is a subset of the integers, or its Lebesgue measure if a subset of R.

2.2 Estimation of the Mean Intensity

To set the scene for the estimation, let ∆l := ∆
(L)
l := ((l − 1) /L, l/L]. By assumption,

minj≤J |Dj | > 0. Hence, we must have that the partition ∆ = {∆l : l = 1, 2, ..., L} is a

re�nement of D for L large enough. This is the case because limL |∆l| = 0 and the coe�cients

δj are rational numbers. De�ne Yl = 1
n

∑n
i=1

´
∆l
dN (i) (t), θ0,l =

´
∆l
h (s) ds, ηl = Yl −´

∆l
h (s) ds. By de�nition of the intensity θ0,l = EYl. Then, we write

Y = θ0 + η,
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where Y , θ0 and η are L × 1 vectors, where their lth entry is denoted with a subscript l. At

all times, it is important to remember that Y and η depend on L and n, while θ0 only on L.

To keep the notation simple, we have suppressed this dependence.

We estimate the unknown vector θ0. As L → ∞, we shrink ∆l. Given that h is left

continuous, by Bochner's lemma, L
´

∆l
h (t) dt is approximately equal to h

(
l
L

)
for large L.

Hence θ0,l = L−1h
(
l
L

)
if h has no jumps in ∆l. An estimator for θ0 is given by

θ̂ = arg inf
x∈RL

(Y − x)′ (Y − x) + 2τ |Dx|1 . (3)

Here, D is an (L− 1)×L matrix such that the (l, l) entry is −1, the (l, l + 1) entry is 1 and all

the other entries are zero; τ ≥ 0 is a tuning parameter; |·|1 is the `1 norm; the prime symbol ′

means transpose.

The estimator θ̂ from (3) can be used to derive an estimator for D. Let J identify the

jumps in θ0, i.e. θ0,l 6= θ0,l−1 if l ∈ J , and θ0,l = θ0,l−1 if l ∈ J c, where J c is the complement

of J in {1, 2, ..., L}. Note that J identi�es the set of jumps of h only if ∆ is a re�nement of

D. From the estimator θ̂ we deduce the set of jumps Ĵ ⊂ {1, 2, ..., L} in the fused estimator,

i.e. l ∈ Ĵ if θ̂l 6= θ̂l−1. We use Ĵ to construct the partition D̂ :=
{
D̂j : j = 1, 2, ..., Ĵ

}
which

is an estimator for D; here Ĵ = 1 +
∣∣∣Ĵ ∣∣∣. Then, the estimator for h (·) is given by

ĥ (·) =
Ĵ∑
j=1

ĥj1D̂j
(·) , (4)

where ĥj = 1
n

∑n
i=1

∣∣∣D̂j∣∣∣−1 ´
D̂j
dN (i) (t).

2.2.1 Numerical Computation of the Estimator

The estimator θ̂ is obtained using a dual formulation of the problem in (3) (Tibshirani and

Taylor, 2011, eq. 13-14, among others). The problem is rewritten as

ẑ := arg min
z∈RL−1:|z|∞≤τ

(
Y −D′z

)′ (
Y −D′z

)
. (5)

Then, θ̂ = Y −D′ẑ. From θ̂ we identify the set D̂l. While conceptually simple, this estimation

method is not e�cient, especially if we aim at �nding solutions for di�erent values of τ that

lead to di�erent values of the degrees of freedom of the estimator (see Section 2.4). In this

respect, Algorithm 1 in Tibshirani and Taylor (2011) can be used to �nd the solution path

for various values of τ . However, given that D is (L− 1) × L with rank L − 1, it is well

known that the problem can be re-written as a standard Lasso problem. In this case existing

methods to solve Lasso problems can also be used. We refer to Tibshirani and Taylor (2011)
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for a discussion.

2.3 Consistency

By de�nition of Y , we place the trades in small equally spaced bins and recast the problem as

a signal extraction problem. Here, we allow L/n → ∞ and concern ourselves with the exact

recovery of the discontinuities of the mean intensity h. Moreover, we consider convergence

under the uniform norm. As already mentioned, the estimation problem is similar to Alaya

et al. (2015). However, there are notable di�erences. In the current notation, those authors

derive a sharp oracle inequality under the L2 norm for L/n → 0 using the total variation

norm with data driven weights. There, h is the compensator for dN (i) ∀i. This means that(
N (i) (t)

)
t∈[0,1]

is a doubly stochastic process. This rules out time series dependence of the

durations. This assumption is not suitable for this problem, as it excludes commonly used

high frequency models such ACD and Hawkes processes. We have the following consistency

result.

Theorem 1 Consider the estimator in (4). Suppose that the Regularity Conditions hold and

that τ in (3) satis�es √
lnn

n
= o (τ) ; τ < min

j
|hj − hj−1|

δmin

8
, (6)

and
√

n
lnn minj |hj − hj−1| δmin →∞, L→∞.

Then, Pr (R)→ 1 where

R =
{
Ĵ = J

}
∩
{

sign
(
θ̂l − θ̂l−1

)
= sign (θl − θl−1) ,∀l ∈ J

}
. (7)

Moreover, maxt∈[0,1]

∣∣∣h (t)− ĥ (t)
∣∣∣→ 0 in probability if

δ−2
min+J
n lnn→ 0.

Throughout, for a real variable x, sign (x) is the sign of x with sign (0) = 0. By the

conditions of the theorem, (6) can only be satis�ed if n is large enough. In particular, it is

necessary that n is of larger order of magnitude than ln (n) (minj |hj − hj−1| δmin)−2. While

this might just be an artifact of the method of proof, it does show that we need the number

of days n to be relatively large when δmin is small. Finally, if the data is m dependent, we can

replace the lnn factor everywhere in the statement of Theorem 1 with a �nite constant.

2.4 Choice of Penalty

The choice of penalty τ is not part of the estimation algorithm. We experimented with di�erent

criteria and found that simple versions of cross-validation (CV) led to the best results, reducing

over�tting. In the simulations, given that computational speed was a concern, we randomly

split the sample days into estimation and validation sample with the standard 70%/30% split
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between days. We use the validation sample to estimate the penalty that minimizes the residual

sum of the squares (RSS). This basic approach works well. In the empirical application, to

minimise the dependency on the sample split, we repeat the split �ve times and average the

RSS. We then choose the penalty that minimizes this averaged RSS.

Using the results from Theorem 2 in Section 2.5, we could suppose a Gaussian loglikelihood

as approximation to the true one. Then, if computational speed is a concern, we also suggest

to use a bias corrected AIC (Hurvich et al., 1998). This suggests choosing the penalty equal

to

τ̂ = arg min
τ∈T

ln


(
Y − θ̂(τ)

)′ (
Y − θ̂(τ)

)
L

+
2
(
Ĵ (τ) + 1

)
L− Ĵ (τ) − 2

 . (8)

Here, the superscript τ makes explicit the dependence of the penalty τ in (3), and T is a set

chosen by the user (e.g. using Algorithm 1 in Tibshirani and Taylor, 2011).

Instead of (8), the loglikelihood of the counting process with intensity equal to ĥ can be

used. However, this would be an approximation, unless we suppose that the intensities λ(i) are

nonstochastic and hence equal to h. Moreover, this is more involved and slower when dealing

with large samples. Nevertheless, we do use a loglikelihood approach for model evaluation in

the empirical section (Section 4).

An alternative to the above procedures is Mallow's Cp, among others. Unfortunately, it

requires to use an unbiased estimator of the variance, adding complexity to the procedure. We

found that all the various procedures are equivalent to some extent, but cross-validation was

the best. The biased corrected AIC procedure in (8) mitigated over�tting relative to AIC and

Mallow's Cp, as expected. Additional details are in Section 5.

Tibshirani and Taylor (2011) derive an algorithm to �nd all the values of τ corresponding

to a jump in the process: the fused Lasso path. This can be slow for large L. To speed up

the search of τ , we use a di�erent method. First, we �nd the smallest penalty that produces

the most constrained model, i.e. the one where all coe�cients are the same. To do so so, we

use the unconstrained estimator of the dual (5). In this case, ẑ = (DD′)−1DY implying that

the smallest τ that still leads to a fully constrained estimator is τ = |ẑ|∞, and denote this

by τmax. Given this value, we consider minimization of the cross-validated RSS and (8) w.r.t.

τ in Tgrid :=
{
τmax10−4, τmax10−3, τmax10−2, τmax10−1, τmax

}
∩
[√

n−1 lnL, τmax

]
, where the

lower bound
√
n−1 lnL is chosen as a majorizer for the l.h.s. in (6). We then use the optimal

value as starting value for τ , say τ0, and use a derivatives free optimizer for τ0 inside a suitable

subset of Tgrid. The results presented in this paper used the Matlab function patternsearch.

We explored the use of other procedures, but found this to be relatively fast and reliable

relative to others. We also note that when carrying out calculations, we set the values of the

estimated coe�cients to be the same unless they di�er by more than 2.5% in absolute value.
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2.5 Asymptotic Distribution

Let sign (·) be the sign function and such that the sign of a vector is the vector of its signs.

Theorem 2 Suppose that the Regularity Conditions hold and that E
∣∣N (i) (1)

∣∣r <∞ for some

r > 2. Then
√
n
(
θ̂ − θ0

)
+
√
nτD′sign

(
Dθ̂
)

=
√
n (Y − θ0) .

Let a be an L× 1 vector with entries bounded by one in absolute value. Then, as n→∞, for

any L ≥ 1, including L→∞,
√
na′ (Y − θ0)→ a′Z

in distribution where Z is a mean zero Gaussian random vector whose covariance matrix C has

(k, l) entry equal to limn
1
n

∑n
i,j=1Cov

(´
∆k
dN (i),

´
∆l
dN (j)

)
, and V ar (a′Z) = a′Ca <∞.

The result is meant to hold for L→∞ at a rate that is independent of n. In this case, we

mean that both
√
na′ (Y − θ0) and a′Z converge in distribution to the same Gaussian random

variable. Depending on the choice of a the limiting Gaussian process can be degenerate. The

simplest example is when L → ∞ and a concentrates over a shrinking interval, e.g. al = 1 if

l = 1 and zero otherwise.

For L → ∞ faster than n, which is the case of interest in this paper, the covariance

matrix cannot be estimated consistently. However, for inference, our interest lies in �nding a

consistent estimator of V ar (a′Z) for �xed a. In this case, we can use standard autoregressive

consistent estimators based on a suitable kernel such as the Bartlett kernel. For de�niteness,

σ̂2
a :=

∑
|i−j|≤m

(
1− |i− j|

m+ 1

)
γ̂a (|i− j|) (9)

where m is an integer and

γ̂a (|i− j|) :=
1

n

n∑
i=1

(
L∑
l=1

al

ˆ
∆l

dN (i)

)(
L∑
l=1

al

ˆ
∆l

dN (j)

)
.

Lemma 1 Suppose that the conditions of Theorem 1 hold and that the vector a is such that

V ar (a′Z) > 0 as L→∞. Then, for m = o
(
n1−max{2/r,1/2}), ∣∣σ̂2

a − a′Ca
∣∣→ 0 in probability.

3 Extensions

We brie�y discuss extensions to some problems of interest.
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3.1 Volumes Pro�le

Volumes pro�les are obtained if we associate trade sizes to each trade arrival. Let V (i) (t) be

the volume cumulated until time t on day i. Suppose that EV (i) (t) =
´ t

0 v (s) ds, where v (s)

is the traded volume intensity. We are interested in an estimator for v (s). We could use the

model

v (t) =
J∑
j=1

vjhj1Dj (t) .

Assuming that (2) holds true, we deduce that the coe�cient vj represent the expected trade

size during the interval Dj . These can be consistently estimated once D̂ is estimated.

3.2 Conditioning

Suppose that G is the sigma algebra generated by some random variable, and we are interested

in E
[
N (i) (t) |G

]
. We make the following modelling assumption:

E
[
N (i) (t) |G

]
=

ˆ t

0

J∑
j=1

gj1Dj (s) ds.

Whether this is a strong assumption, it depends on the exact de�nition of G. The simplest

example is to condition on the day of the week. Because of news announcements, option

expiries etc., the pro�le could be di�erent on di�erent days of the week. Next, we give two

more examples.

Previous Day Trade Count. Suppose that the processes N (i) depend on the �nal value

of the previous day process N (i−1) (1). We want to use G =
{
N (i−1) (1) ∈ G

}
where G is a

closed interval in the positive real line. Then, to estimate the coe�cients gj we use

ĝj =
1

nG

n∑
i=1

1{N(i−1)(1)∈G}
∣∣∣D̂j∣∣∣−1

ˆ
D̂j

dN (i) (t) ,

where nG =
∑n

i=1 1{N(i−1)(1)∈G}. If nG = 0 ĝj := 0.

End of Day Trade Count. Suppose that G =
{
N (i) (1) ∈ G

}
. Then, ĝj is as above with

1{N(i−1)(1)∈G} replaced by 1{N(i)(1)∈G}. This case is of interest in some prediction problems

if we have a prediction interval for N (n+1) (1) that can be updated during the trading day,

say G(n+1) = [ν (t)− ε, ν (t) + ε], for some ε > 0, where ν (t) de�nes a point prediction for

N (n+1) (1) that is updated during the n+ 1 trading day. This allows us to split the prediction

problem into a conditional pro�le estimation and a prediction of the daily trades count that
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can be updated intraday (Sancetta, 2019, for the case of an intraday point prediction for end

of day volume).

3.3 Pro�le Estimation for Illiquid Instruments

When instruments are illiquid, the partition ∆ can be too �ne and not much data could fall in

∆l for some l ∈ {1, 2, ..., L}. To mitigate the problem, we can consider and adaptive partition

∆̃ =
{

∆̃1, ∆̃2, ..., ∆̃I

}
where I is an integer that depends on the sample. In particular, suppose

that ∆̃p−1 =
(
dp−2

L ,
dp−1

L

]
is given, and let

dp := min

{
x ∈ {dp−1 + 1, dp−1 + 2, ..., L} :

1

n

n∑
i=1

ˆ x/L

dp−1/L
dN (i) (t) ≥ ρN̄

}
.

Here, N̄ := 1
n

∑n
i=1N

(i) (1) and ρ ∈ (0, 1). We can choose ρ = 0.01 in which case at

least 1% of the data falls in each bin. Hence, ∆̃ depends on ρ, the sample and the ini-

tial partition ∆ via L. This construction ensures that ∆ is a re�nement of ∆̃. We de�ne

Zp =
(
L
∣∣∣∆̃p

∣∣∣)−1
1
n

∑n
i=1

´
∆̃p
dN (i) (t) and set Yl = Zp(l) where p (l) is such that ∆l ∈ ∆̃p(l).

As usual Yl is the l
th entry in Y used in (3). The quantity L

∣∣∣∆̃p

∣∣∣ is the number of intervals
of size L−1 contained in ∆̃p. This construction forces Yl = Yl+j for j ≥ 1 if not enough data

can be found in a bin of size 1/L. Work carried out by the author, but not reported here

showed that for illiquid instruments this adjustment mitigates issues related to data sparsity.

By setting ρ = 0 we recover the usual de�nition of Y .

4 The Intensity of Trades Arrival on Six CME Futures

We consider the front month of six futures contracts traded on the CME: EURUSD (6E),

AUDUSD (6A), EURCHF (RF), EURGBP (RP), e-mini S&P500 (ES), Crude Oil (CL). The

CME ticker for the Globex platform is reported in parenthesis. Globex is the electronic

platform of CME, to be distinguished from the open outcry. Two of these six futures are not

very liquid (RF, RP) and are included to gauge whether the estimator performs well in this

case. The sample period is 2013.04.01-2013.10.01. The data is proprietary and was collected

by a Chicago trading �rm colocated at the Aurora data center in Chicago, with nanosecond

precision timestamps. All messages sent by the CME, were recorded with no con�ation.

The study aims to address the following four points: (1.) identify the salient features of

the intraday pro�le based on the day of the week; (2.) produce a predictor of the pro�le

for di�erent days of the week; (3.) compare the out-of-sample predictions generated by the

adaptive estimator to one-minute and thirty-minute bin estimators; (4.) verify if accounting

for di�erent days of the week is important.
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4.1 Estimation and Performance Evaluation

The expected intensity h is estimated conditioning on di�erent days of the week, as outlined

in Section 3.2. We consider the estimator (4) of this paper with τ chosen by CV as described

in Section 2.4. We choose the partition such that each ∆l is one minute. Hence, we have 1440

bins in a day. On Fridays due to trading ending before midnight GMT, we have less bins.

Figure 1 shows the one-minute binned pro�le for crude oil. When carrying out calculations,

we also set the values of the estimated coe�cients to be the same unless they di�er by more

than 2.5% in absolute value. To evaluate the performance we use the loglikelihood. The

loglikelihood for the counting processes
(
N (i)

)
i≥1

is proportional to

n∑
i=1

N(i)(1)∑
j=1

ln
(
λ(i)

(
T

(i)
j

))
−

n∑
i=1

ˆ 1

0
λ(i) (t) dt,

where T
(i)
j is the time of the jth jump on the ith day. However, given that we are not interested

in the stochastic intensities λ(i), we replace these with our estimators for h. We denote by

Ln (h) the loglikelihood using an intensity h in place of λ(i) in the above display, and consider

the test statistic

Sn :=
Ln
(
h(1)

)
− Ln

(
h(2)

)
σ̂1,2

. (10)

Here, h(1) and h(2) are two competing models and

σ̂2
1,2 =

n∑
i=1

N(i)(1)∑
j=1

∣∣∣ln(h(1)
(
T

(i)
j

)
/h(2)

(
T

(i)
j

))∣∣∣2 .
Model parameters are estimated in the estimation sample, and the statistic Sn is computed in

the subsequent test sample of n days. In particular, here we use 67% of the sample to compute

the adaptive model, the one-minute, and the thirty-minute binned estimators conditioning on

di�erent days of the week. For comparison, we also estimate the adaptive model without

distinguishing by day of the week, except for Fridays. We then use the remaining 33% of

the sample to compute Sn. Under the null that the models perform equally well, assuming

that the intensity is not stochastic, Sn is asymptotically standard normal (Sancetta, 2018,

Proposition 1 for details).

4.2 Results

We compute summary statistics for the one-minute binned data in the form of the �rst four cen-

tral moments and the autocorrelation function (acf). These show that the data are far from be-

ing generated from an homogeneous Poisson model and that time series dependence within each
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day is strong. The persistency in the acf is often the result of heterogeneity/non-stationarity, as

discussed by other authors in the related context of volatility estimation (St ric  and Granger,

2005). The theoretical setup of the paper covers such situations. Details are in Table 1.

We estimate the model for trade counts with penalty chosen using cross-validation. The

resulting degrees of freedom/number of jumps tend to be unexpectedly high (see Table 2).

With such large number of degrees of freedom, the estimated pro�les capture the features

of the trading activity. For example, the weekly Petroleum report from the U.S. Energy

Information Administration is released on Wednesdays at 10:30am EST. The estimator for

the crude oil pro�le on Wednesday captures the spike in trading activity around the release.

This large spike at 10:30 EST is not present in the estimator for the other days. Figures 2 and

3 show the estimated trades pro�le for Wednesdays and Thursdays, for comparison. Due to

daylight saving time, this corresponds in the plots to 14:30 GMT, which is 870 minutes after

midnight.

Using the statistic (10) we �nd that there is clear gain in using the adaptive estimator as

opposed either a one-minute or 30-minute binned estimator. Coarsely binning data at regular

times is not the right way to obtain a less noisy estimator. In fact the results show that the

performance is severely compromised. However, we also see that accounting for di�erent days

of the week may not always be crucial. In fact, we compare the adaptive estimator to the one

where we do not condition on days of the week except for Fridays. This is because for our

products, trading ends on Fridays at 4pm Central for the week. Table 3 reports the results.

It is worth mentioning that considerations beyond the reported statistical �t may dictate the

choice of model. For example, an algorithm that tries to exploit the liquidity around the

Wednesday Petroleum report may require appropriate conditioning even if the overall �t is

worse. More generally, if the cost of missing a spike in intensity is relatively high, one may

need to resort to a loss function that accounts for such preferences in order to evaluate a

model. Further discussion is beyond the scope of this paper.

The adaptive estimators appear to be relatively noisy. Hence, the analysis was also carried

out imposing an upper bound on the maximum degrees of freedom. As opposed to Figure

2, Figure 4 shows the plot for such highly penalised estimator of crude oil. The plot is

more regular. However, on an additional set of results, the highly penalised estimator fared

considerably worse in terms of the test statistic (10) for all six futures. The reason is that

a highly penalised estimator may miss important spikes and the cost of this in terms of

loglikelihood is high.

5 Finite Sample Simulation Study

We simulate from a count process with deterministic intensity. We consider di�erent scenarios

in order to understand the strengths and weaknesses of the procedure. In particular we consider
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the following nonstochastic intensity such that for every day i,

λ(i) (t) = h (t) =
K∑
k=1

bk1( k−1
K

, k
K ] (t) (11)

where K ∈ {200, 2000} and we vary the coe�cients bk. We de�ne a partition {K0,K1} of
{1, 2, ...,K} such that bk = K if k ∈ K0 and bk ∈ {2K, 10K} if k ∈ K1. Within this context,

we discuss two con�gurations for K0 and K1.

Few discontinuities: J=3 in (2). We let K1 = (c1K, c2K] ∩ {1, 2, ...,K} with (c1, c2) ∈
{(0.45, 0.55) , (0.49, 0.51)}. Hence the fraction of the sample where we have a higher intensity

is equal to d = c2 − c1 and it is placed in the middle of the interval over which the intensity

is de�ned. In this setup h is piecewise constant and larger for t ∈ (c1, c2]. This construction

ensures that in each interval
(
k−1
K , kK

]
with k ∈ K0, we expect one event. The expected total

number of events within each day is O (K).

Many discontinuities: J=10,50 in (2). We let K1 =
⋃
s≥1 (c1,sK, c2,sK] ∩ {1, 2, ...,K},

where c1,s = 2 (s− 1) d, c2,s = (2s− 1) d, and d ∈ {0.1, 0.2}. Hence, we keep the fraction of

the sample where intensity is constant equal to d and alternate between high and low intensity.

According the previous remarks, the expected total number of events within each day is again

O (K), but larger than the previous setup.

Estimation details. For each simulation, n ∈ {50, 500}. We consider an estimator for h

using the partition ∆ with L ∈ {0.1K, 0.5K}. This means that within each bin ∆l ∈ ∆, we

expect a number bk/L of events. The penalty is estimated using cross-validation, bias corrected

AIC, and τ = penScale× τmax where penScale ∈ {1, 0.25, 0.1, 0}. When penScale = 0 we use

τ =
√
n−1 lnL (see Section 2.4).

This setup allows us to gauge the properties of the estimation procedure and penalty choice

for numerous data generating processes.

Regarding the choice of τ , cross-validation gives the best results. Among various metrics

we also look at false positives and negatives. A false positive happens when we estimate a

jump when in fact h is constant. A false negative is when we do not detect a jump in h.

Cross validation produces a number of false positives, but not as many as the bias corrected

AIC. The latter over�ts and produces worst results. An illustrative subset of the results is

reported in Table 4, where we look at the small sample n large L problem, which is one of the

most di�cult designs in our simulations. The full set of results is reported as supplementary

material. While not reported there, we also note that standard AIC and Mallow's Cp performed

worse.
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We note that the price to pay for a false negative is large, particularly when the jump

discontinuity is large as in the results from Table 4. In this case, it is always preferable to allow

for excess false positive as long as the number of false negatives is minimised. To aid intuition,

we also plotted the true intensity against the estimated ones. Visual inspection con�rms

that the procedure can successfully detect discontinuities (Figure 5 shows two examples using

di�erent sample sizes).

Irrespective of the method used to choose τ , we highlight a few main conclusions from

the full set of simulations. As expected, the higher the true jump size in the intensity, the

easier is to identify a jump discontinuity. Of course, the larger can be the error when missing

a discontinuity. To estimate the trade pro�le, it is clear that we should use a large value of

L. This means that instead of using L as initial smoothing parameter, L should be such that

LEYl is a good approximation for h
(
l
L

)
. We would then rely on the estimator (4) to denoise

Y . Table 5 substantiates these claims. We refer the reader to the supplementary material for

the full set of results.

Finally, we also applied Theorem 2 to the simulated data. We considered ak = 1 when

k ∈ K1 and zero otherwise. We found that even when the cardinality of K1 is large, the Q-Q

plot is relatively close to a normal distribution (Figure A.1.3.1 shows such result for the same

simulation designs as in Figure 5).

6 Conclusion

This paper considered the problem of estimating the intraday trades pro�le of �nancial in-

struments. This is a quantity used as input in execution algorithms. For example, some

implementation shortfall algorithms need to rely on such pro�le to determine ex ante how to

break a large order into small ones and establish the overall required time to fully execute the

order. The procedure is of interest when we need to identify signi�cant recurrent events in

an automated way for a large number of securities. In fact, the trades pro�le can be viewed

as the intraday seasonal component in a counting process. The empirical results show that

using traditional estimators such as thirty-minute averages of trades arrivals is suboptimal and

misses the important features of the market.

The proposed procedure is simple to implement and only requires to solve a quadratic

programming problem. The statistical framework is the one where we want to identify possible

jumps in the true expected intensity, where the jump location is within possibly thousand

di�erent points within the day, and the number of days at disposal is possibly an order of

magnitude lower. We impose no dependence conditions on the counting process within each

day.

The theoretical results show that the estimator is consistent and simulation results show

that in small samples the results are reasonably reliable. We also propose an extension to
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less liquid instruments in order to mitigate noise in the estimation in thinly traded instru-

ments. Our results also provide asymptotic normality of some function of the estimator. This

asymptotic theory can be used to test if the pro�le may depend on the day of the week.

It is natural to think about estimation of these pro�les as the �rst step in modelling the

intensity of trade arrivals. The empirical results suggest that much of the activity that could

be regarded as stochastic is deterministic. Hence, it is possible that the strong dependence in

trade arrivals and the success of self exciting processes (Hawkes processes) might be due to

unmodelled intraday seasonality. More work is needed in this direction and this will be the

subject of future research.
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Appendix

A.1 Proofs

We introduce some additional notation. De�ne εl = 1
n

∑n
i=1

´
∆l
dM (i) (t), and θl = 1

n

∑n
i=1

´
∆l
λ(i) (s) ds.

Note that θ0,l = Eθl. Here, we shall just use Eθl when referring to θ0,l. Then, η = (1− E) θ+ε,

using vector notation. This decomposes the error into the di�erence between the stochastic

intensity and the expected one, and a martingale di�erence. Once again, it is important to

keep in mind the implicit dependence on n and L.

De�ne Bj := {l : ∆l ∈ Dj}, and bmin := minj≤J |Bj | to be the smallest number of elements

in ∆ within each Dl. Then, bmin depends on L and for L → ∞, bmin = bLδminc, where b·c is
the integer part of its argument. This is because there are L elements in ∆ and the size of the

smallest Dj is δmin.

To ease notation, we may use bj := |Bj |. For each l ∈ {1, 2, ..., L}, we let Bs(l) be Bj where
j is such that ∆l ∈ Dj , and bs(l) :=

∣∣Bs(l)∣∣. Hence, given l ≤ L, Bs(l) is the block of integers Bj
such that ∆l ∈ Dj . For arbitrary l ≤ L, this is only possible when L → ∞ and surely larger

than δ−1
min.

The structure of the proof for the �rst part is the same as the proof of Theorem 2.3 in

Rinaldo (2009). There, control of certain errors via maximal inequalities is shown to imply

the event R. Due to the di�erent structure of the problem and di�erent tail conditions, we

need to apply di�erent maximal inequalities and rely on the decomposition (1). To this end

we need a few preliminary lemmas.

A.1.1 Preparatory Lemmas

We shall need the second moment of the process.

Lemma 2 Under the Regularity Conditions, E
(´
dN (i) (t)

)2 ≤ 2
´
h (t) dt+2E

(´
λ(i) (t) dt

)2
.

Proof. Adding and subtracting
´
λ(i) (t) dt, and using a basic inequality,

E
(ˆ

dN (i)

)2

≤ 2E
(ˆ

dM (i)

)2

+ 2E
(ˆ

λ(i) (t) dt

)2

.

The �rst expectation on the r.h.s. is equal to the expectation of the compensator which in

turn equals
´
h (t) dt, and we obtain the statement of the lemma.

We shall make use of the following basic inequality.

Lemma 3 Under the Regularity Conditions,

E
(ˆ

∆l

λ(i) (s) ds

)2

≤ L−2λ̄2. (A.1)
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Proof. We prove this for arbitrary moments r ≥ 1 assuming they exist. Write
(´

∆l
λ(i) (s) ds

)r
as |∆l|r

(´
∆l
λ(i) (s) ds

|∆l|

)r
, and use Jensen inequality to deduce that the latter quantity is

bounded above by L−(r−1)
´

∆l

∣∣λ(i) (s)
∣∣r ds using |∆l| = L−1. We then take expectation, and

by Tonelli's theorem we can switch the order of integration and expectation. This implies

that the l.h.s. of (A.1) is bounded above by L−(r−1)
´

∆l
E
∣∣λ(i) (s)

∣∣r ds. Using Condition 2 we

deduce the statement of the lemma for r = 2.

We shall need the following Bernstein inequality for beta mixing random variables.

Lemma 4 Let (Xi)i≥1 be a sequence of random variables with values in a Polish space X
and with beta mixing coe�cient β (m) for any m ≥ 1. Let F be a �nite set of functions on

X . Suppose that maxi≤n maxf∈F V ar (f (Xi)) < ∞. Then, for any integer valued sequence

m→∞ such that n/m→∞

Pr

(
max
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(1− E) f (Xi)

∣∣∣∣∣ > x

)
≤ 4

(
1 +

2m

n

)( m

nx2

)
max
i≤n

∑
f∈F

V ar (f (Xi)) +
2nβ (m)

m
.

Proof. The argument is well known, but outlined for clarity, as we make some slightly

changes. For j = 1, 2, 3, ..., partition {1, 2, ..., n} into blocks

H1,j := {i ≤ n : 1 + 2 (j − 1)m ≤ i ≤ m+ (2j − 1)m} , H2,j := {i ≤ n : 1 + (2j − 1)m ≤ i ≤ 2jm} .

Write Z1,j (f) := 1
m

∑
i∈H1,j

f (Xi), Z2,j (f) := 1
m

∑
i∈H2,j

f (Xi). To ease notation, assume

that Ef (Xi) = 0 for all f ∈ F and i ≥ 1. Let n1 and n2 be the number of non empty

elements in {H1,j : j ≥ 1} and {H2,j : j ≥ 1}, respectively. Note that {H1,j : j = 1, 2, ..., n1}∪
{H2,j : j = 1, 2, ..., n2} = {1, 2, ..., n}, and that n1, n2 ∈ [bn/ (2m)c , bn/ (2m)c+ 1]. By a basic

set inequality, Pr
(
maxf∈F

∣∣ 1
n

∑n
i=1 f (Xi)

∣∣ > x
)
is bounded above by

Pr

max
f∈F

∣∣∣∣∣∣mn
n1∑
j=1

Z1,j (f)

∣∣∣∣∣∣ > x/2

+ Pr

max
f∈F

∣∣∣∣∣∣mn
n2∑
j=1

Z2,j (f)

∣∣∣∣∣∣ > x/2

 . (A.2)

To ease notation de�ne XH1,j := (Xi)i∈H1,j
. By Berbee's lemma (Rio, 2000, Lemma 5.1), there

is a sequence
(
X∗H1,j

)
j≤n1

such that X∗H1,j
and XH1,j have same law, X∗H1,j

is independent of

the sigma algebra generated by
{
XH1,i : i ≤ j − 1

}
and Pr

(
XH1,j 6= X∗H1,j

)
≤ β (m). Note

that XH1,j and XH1,j−1 are separated by m observations. De�ne Z∗1,j (f) := 1
m

∑
i∈H1,j

f (X∗i ).

Then,

Pr

max
f∈F

∣∣∣∣∣∣
n1∑
j=1

Z1,j (f)

∣∣∣∣∣∣ > nx

2m

 ≤ Pr

max
f∈F

∣∣∣∣∣∣mn
n1∑
j=1

Z∗1,j (f)

∣∣∣∣∣∣ > nx

2m

+ (n1 − 1)β (m)
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setting Z∗1,i (f) = Z1,i (f) and applying Berbee's lemma to the remaining n1−1 blocks of vari-

ables. The same applies to Z2,j (f). In consequence, with an additional error (n1 + n2 − 2)β (m),

in (A.2) we can consider sums of independent random variables. We deduce that

Pr

(
max
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(1− E) f (Xi)

∣∣∣∣∣ > x

)
≤ Pr

max
f∈F

∣∣∣∣∣∣
n1∑
j=1

Z∗1,j (f)

∣∣∣∣∣∣ > nx

2m


+ Pr

max
f∈F

∣∣∣∣∣∣
n2∑
j=1

Z∗2,j (f)

∣∣∣∣∣∣ > nx

2m


+ (n1 + n2 − 2)β (m) . (A.3)

Then, by the union bound, Chebyshev's inequality and independence, the �rst term on the

r.h.s. is bounded above by (
2m

nx

)2

n1

∑
f∈F

E
∣∣Z∗1,j (f)

∣∣2 .
By convexity of the square we deduce that

∣∣∣Z∗1,j (f)
∣∣∣2 ≤ 1

m

∑
i∈H1,j

|f (X∗i )|2 so that, swapping

order of summation, the above display is bounded above by
(

2m
nx

)2
n1 maxi

∑
f∈F E |f (X∗i )|2.

We repeat the same argument for the second term on the r.h.s. of (A.3). Then, the statement

of the lemma follows once we recall that n1, n2 ≤ bn/ (2m)c + 1 so that max {n1, n2} ≤
n (2m)−1 + 1 and (n1 + n2 − 2)β (m) ≤ nm−1β (m).

The following is an application of the above.

Lemma 5 Under the Regularity Conditions, for any x > 0,

Pr

(
max
l≤L
|θl − Eθl| ≥ x

)
≤ 4

(
1 +

2m

n

)(
mλ̄2

nx2L

)
+

2nβ (m)

m
.

Proof. Note that θl − Eθl = 1
n

∑n
i=1 (1− E)

´
∆l
λ(i) (s) ds. Moreover, from Lemma 3,

E
(´

∆l
λ(i) (s) ds

)2
≤ L−2λ̄2. Bounding the variance by the second moment and applying

Lemma 4, we deduce the statement of the lemma.

We now control the error term.

Lemma 6 Under the Regularity Conditions, for any x > 0,

Pr

(
max
l≤L
|εl| ≥ x

)
≤ 4

(
1 +

2m

n

)( m

nx2

)ˆ 1

0
h (s) ds+

2nβ (m)

m
.

Proof. By de�nition, εl = 1
n

∑n
i=1

´
∆l
dM (i) (t). By standard isometry, E

(´
∆l
dM (i) (t)

)2
=

E
´

∆l
λ(i) (s) ds and the r.h.s. is equal to

´
∆l
h (s) ds. We apply Lemma 4, so that summing

over l ≤ L gives the statement of the lemma.
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We shall also need the following bound.

Lemma 7 For each l ≤ L, let ηB(l) = 1
bs(l)

∑
k∈Bs(l) ηk. Under the Regularity Conditions, for

any x > 0, and large L,

Pr

(
max
l∈J

∣∣ηB(l) − ηB(l−1)

∣∣ ≥ x) ≤ 16

(
1 +

2m

n

)(
16m

nx2

)(
λ̄2

L
+

´ 1
0 h (s) ds

b2min

)
+

4nβ (m)

m
.

Proof. Clearly,

Pr

(
max
l∈J

∣∣ηB(l) − ηB(l−1)

∣∣ ≥ x) ≤ 2 Pr

(
max
l∈J

∣∣ηB(l)

∣∣ ≥ x/2)
and using the de�nition ηk = (1− E) θk + εk, the r.h.s. is bounded above by

2 Pr

max
l∈J

∣∣∣∣∣∣ 1

bs(l)

∑
k∈Bs(l)

(1− E) θk

∣∣∣∣∣∣ ≥ x

4

+ 2 Pr

max
l∈J

∣∣∣∣∣∣ 1

bs(l)

∑
k∈Bs(l)

εk

∣∣∣∣∣∣ ≥ x

4

 =: I + II.

The event in the �rst probability is contained in the event
{

maxl≤L |(1− E) θl| ≥ x
4

}
, and we

bound I using Lemma 5 with x replaced by x/4:

I ≤ 8

(
1 +

2m

n

)(
16mλ̄2

nx2L

)
+

2nβ (m)

m
.

We now bound II. We note that

1

bs(l)

∑
k∈Bs(l)

εk =
1

bs(l)

∑
k∈Bs(l)

1

n

n∑
i=1

ˆ
∆k

dM (i) (t) .

Then, we apply Lemma 4 with f (Xi) = 1
bs(l)

´
∆Bs(l)

dM (i) (t), where ∆Bs(l) =
⋃
k∈Bs(l) ∆k

and we used linearity of the sum and integral. The mean zero variable f (Xi) has variance

b−2
s(l)

´
∆Bs(l)

h (s) ds. We also note that [0, 1] =
⋃
l∈J ∆Bs(l) because for each distinct k and l in

J , ∆Bs(k) and ∆Bs(l) have empty intersection by de�nition of J and in fact
{

∆Bs(l) : l ∈ J
}

is a partition of [0, 1]. By these remarks, from Lemma 4, summing over l ∈ J , and using the

lower bound bs(l) ≥ bmin, we deduce that

II ≤ 8

(
1 +

2m

n

)(
16m

nb2minx
2

)ˆ 1

0
h (s) ds+

2nβ (m)

m
.

Putting the upper bounds for I and II together we obtain the statement of the lemma.

Next, we relate the smallest absolute change in the adjacent elements in θ0 to the smallest

jump in h.
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Lemma 8 Under the Regularity Conditions, α := minl∈J |θ0,l − θ0,l−1| = minj≤J |hj − hj−1| /L
for L→∞.

Proof. Using the de�nition of θ0,l and the functional form of h,

θ0,l − θ0,l−1 =

J∑
j=1

hj

(ˆ
∆l

1Dj (s) ds−
ˆ

∆l−1

1Dj (s) ds

)
.

For l ∈ J we must have a jump so that minl∈J |θ0,l − θ0,l−1| = minj |hj − hj−1| /L for L large

enough.

A.1.2 Proof of Theorem 1

We follow the proof of Theorem 2.3 in Rinaldo (2009) except for minor modi�cations due

to the fact that the data arise from counting processes with a panel data type of structure.

Hence, we only provide a sketch and refer to Rinaldo (2009) when needed.

Let J c be the complement of J in {1, 2, ..., L}, so that |J c| ≤ L by de�nition. De�ne

dηl = ηl − ηl−1, α = minl∈J |Eθl − Eθl−1|. From Rinaldo (2009), Pr (R) → 1 if the following

hold:

(1) Pr
(
maxl∈J c

∣∣dηl ∣∣ ≥ 4τ
)
→ 0 (eq. A.4 in Rinaldo, 2009);

(2) τ < αbmin/4 (eq. A.7 and the display immediately below that in Rinaldo, 2009);

(3) Pr
(
maxl∈J

∣∣ηB(l) − ηB(l−1)

∣∣ ≥ α/2)→ 0 (eq. A.6 in Rinaldo, 2009).

Here, ηB(l) is as de�ned in Lemma 7.

Proof of Point (1) Start with the simple bound

I := Pr

(
max
l∈J c

∣∣dηl ∣∣ ≥ 4τ

)
≤ 2 Pr

(
max
l≤L
|ηl| ≥ 2τ

)
≤ 2 Pr

(
max
l≤L
|θl − Eθl| ≥ τ

)
+ 2 Pr

(
max
l≤L
|εl| ≥ τ

)
.

We shall apply Lemmas 5 and 6. By the Regularity Conditions, in those lemmas we can choose

m a constant multiple of lnn to ensure that nβ (m) go to zero. By these lemmas, we see that

choosing τ−1 = o
(√

n
lnn

)
both probabilities on the r.h.s. go to zero.

Proof of Point (2) Using Lemma 8, and multiplying both sides by bmin, we have that

αbmin > minj≤J |hj − hj−1| bmin/L for L large enough. Then, αbmin > minj≤J |hj − hj−1| δmin/2,

given that bmin ≥ Lδmin/2. By this last inequality and (6), we deduce that αbmin > 4τ so that

Point 2 is satis�ed.

Proof of Point (3) This directly follows from Lemma 7 and the inequality bmin ≥ Lδmin/2,

as long as α−1 = o
(
Lδmin

√
n
m

)
, which is the case by the conditions of the theorem if√

nδ2min
lnn minj≤J |hj − hj−1| → ∞. This concludes the proof that Pr (R)→ 1.
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We now show that
∣∣∣ĥ− h∣∣∣

∞
→ 0 in probability. It is su�cient show that I := Pr

(
maxj≤J

∣∣∣ĥj − hj∣∣∣ > ε
)

for any ε > 0. On R, D = D̂, so that ĥj − hj = 1
n

∑n
i=1 |Dj |

−1 (1− E)
´
Dj
dN (i) (t). We

apply Lemma 4 with Xi (·) = N (i) (·) and fj (Xi) = |Dj |−1 ´
Dj
dN (i) (t) for j = 1, 2, ..., J .

With this notation, V ar (fj (Xi)) is bounded above by 2δ−2
min

´
Dj
h (t) dt + 2λ̄2 using Lemma

2 and Lemma 3 together with |Dj |−1 ≤ δ−1
min. Hence, by Lemma 4 we have that I ≤

8
(
1 + 2m

n

) (
m
nε2

) (
δ−2

min

´ 1
0 h (t) dt+ Jλ̄2

)
+2nm−1β (m) withm proportional to lnn. This goes

to zero as long as
(δ−2

min+J) lnn

n → 0 as stated in the theorem, so that the proof is completed.

A.1.3 Proof of Theorem 2

Set the derivative of the absolute value |·| at zero equal to zero. Hence, its derivative is the

sign function sign (·), which we de�ned to be zero at zero. The �rst derivative of (3) evaluated

at the optimum x = θ̂, satis�es

−a′
(
Y − θ̂

)
+ τa′D′sign

(
Dθ̂
)

= 0

for any a with entries bounded by one in absolute value. Recall that by sign (·) of a vector

we mean the vector of its signs. Adding and subtracting a′θ0, and multiplying by
√
n, deduce

that
√
na′
(
θ̂ − θ0

)
+ τ
√
na′D′sign

(
Dθ̂
)

= −
√
na′ (Y − θ0) . (A.4)

To ease notation, let X(i) be the vector with lth entry equal to X
(i)
l =

´
∆l

(
dN (i) (t)− h (t) dt

)
,

l = 1, 2, ..., L. By de�nition of Y ,

√
na′ (Y − θ0) =

1√
n

n∑
i=1

a′X(i).

Then,
(
a′X(i)

)
i≥1

is a sequence of real valued beta mixing random variables. Of course,

there is a possible implicit dependence of L on n. Convergence of the r.h.s. to a normal

random variable follows from Theorem 3.6 in Davidson (1992), as his dependence condition

A is satis�ed in our case. To see this, note that the strong mixing coe�cients are bounded

by the beta mixing coe�cients (Rio, 2000), hence the mixingale assumption in Davidson is

satis�ed: see the discussion below his De�nition 2.1. Moreover, maxi E
∣∣a′X(i)

∣∣r < ∞ for

some r > 2. To see this, we use the fact that each entry in a is bounded by one in absolute

value, so that it is su�cient to verify that E
∣∣N (i) (1)

∣∣r <∞, which is the case by assumption.

We used the fact that
⋃L
l=1 ∆l = (0, 1] and that N (i) (0) = 0. Finally, we need to check

that a′Ca = limn
1
n

∑n
i,j=1Cov

(
a′X(i), a′X(j)

)
< ∞. By a standard covariance inequality,

Cov
(
a′X(i), a′X(j)

)
≤ β (|i− j|)

r−2
r maxi E

(∣∣a′X(i)
∣∣r)2/r

(Rio, 2000, eq. 1.12), which implies

that a′Ca <∞ by the geometric decay of the mixing coe�cients. This concludes the proof of
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the theorem.

A.1.3.1 Proof of Lemma 1

By the same argument as in the proof of Theorem 2, E
∣∣∣∑L

l=1 al
´

∆l
dN (i)

∣∣∣r < ∞. Then, the

lemma is a re-statement of Theorem 2.1 in Davidson (2020). Note that the same remarks

regarding the dependence condition used the proof of Theorem 2 apply here.

24



Figures

Figure 1: One-Minute Binned Estimator of the Intensity of Trades Arrivals for Crude Oil (CL)
on Wednesdays. Time in the abscissa is in GMT. The sample period is 2013.04.01-2013.10.01.
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Figure 2: Adaptive Estimator of the Intensity of Trades Arrivals for Crude Oil (CL) on
Wednesdays. Time in the abscissa is in GMT. The sample period is 2013.04.01-2013.10.01.
The weekly Petroleum report from the U.S. Energy Information Administration is released on
Wednesdays at 10:30am EST. Due to daylight saving time, 10:30am EST corresponds to 14:30
GMT, which is 870 minutes after midnight. At this time, a spike in intensity of trades arrival
as high as 1000 contracts per minute can be seen.
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Figure 3: Adaptive Estimator of the Intensity of Trades Arrivals for Crude Oil (CL) on
Thursdays. Time in the abscissa is in GMT. The sample period is 2013.04.01-2013.10.01.
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Figure 4: Highly Penalised Adaptive Estimator of the Intensity of Trades Arrivals for Crude
Oil (CL) on Wednesdays. Details are as for Figure 2, but estimation was carried out increasing
the penalty to reduce the maximum number of degrees of freedom.
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Figure 5: True and Estimated Intensities from Simulations. The true intensity is as in (11).
The estimated intensity is based on the estimator in (3) using the penalty chosen by cross-
validation with sample size n = 50 (top panels) and n = 500 (bottom panels). The left hand
panels represent K = 200, L = 20, J = 10, d = 0.1 with bk = 400 when k ∈ K1. The right
hand side is for K = 2000, L = 1000, J = 50, d = 0.02, with bk = 4000 when k ∈ K1. The
estimated intensity with largest (max), smallest (min) median (med) error in L1 norm are
reported out of 250 simulations. For min and med the �t is indistinguishable from the true
one in all plots.
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Figure 6: QQPlot for Statistics in Theorem 2. The plot is shown for the sample quantiles of√
na′ (Y − θ0) /σ̂a where ak = 1 if k ∈ K1 and zero otherwise. The standard deviation σ̂a in

(9) is computed with m = 0. As by Theorem 2, the distribution is standard normal. The
true intensity is as in (11). The estimated intensity is based on the estimator in (3) using the
penalty chosen by cross-validation with sample size n = 50 (top panels) and n = 500 (bottom
panels). The left hand panels represent K = 200, L = 20, J = 10, d = 0.1 with bk = 400 when
k ∈ K1. The right hand side is for K = 2000, L = 1000, J = 50, d = 0.02, with bk = 4000
when k ∈ K1. The estimated intensity with largest (max), smallest (min) median (med) error
in L1 norm are reported out of 250 simulations.
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Tables

Table 1: Summary Statistics. Summary statistics for one-minute binned number of trades
are reported: mean, standard deviation (std), skewness (skew), kurtosis (kurt), the value of
the sample autocorrelation function (acf) at lags 1, 10 and 20 (acf1, acf10, and acf20), the
average number of trades within each day (avg.trd/day) and the total number of trades over
the sample (tot.trd). The sample acf's are computed for each day and then averaged across
all days. Standard errors for the acf's are not reported as all the numbers are signi�cant at
conventional levels.

mean std skew kurt acf1 acf10 acf20 avg.trd/day tot.trd
CL 49.72 84.89 4.29 35.55 0.76 0.55 0.49 68,971 5,862,563
6A 20.32 30.14 7.04 114.67 0.58 0.33 0.28 28,331 2,549,758
6E 40.11 71.16 8.89 167.48 0.62 0.39 0.33 55,913 5,032,155
RF 0.30 1.46 16.82 568.95 0.24 0.08 0.06 388 35,302
RP 0.39 1.65 13.86 381.19 0.26 0.09 0.07 510 46,437
ES 96.63 181.96 6.05 113.94 0.77 0.58 0.51 135,087 12,292,931
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Table 2: Degrees of Freedom for Adaptive Estimated Model. The penalty is chosen using CV.
Estimations are day of the week speci�c as discussed in Section 3.2.

Mon Tue Wed Thu Fri
CL 653 588 540 582 531
6A 506 430 533 531 442
6E 570 542 628 562 534
RF 77 89 118 143 112
RP 89 119 158 162 117
ES 565 560 504 544 492
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Table 3: Model Performance. The t-statistics for the standardised likelihood ratio statistic is
reported. A large positive value favours the day of the week speci�c adaptive estimator. The
statistic is asymptotically standard normal under the null of equality of model performance.
A large value rejects a given model in favour of the day of the week speci�c adaptive intensity
model. Binned30 and binned1 are equally spaced bin estimators with 30 and one-minute bin
size. Adaptive_basic is the adaptive model that uses the same pro�le for Monday through
Thursday and a separate one for Fridays.

adaptive vs. binned30 adaptive vs. binned1 adaptive vs. adaptive_basic

CL 176.45 36.85 -42.15
6A 159.59 39.51 8.34
6E 155.32 33.34 34.75
RF 215.76 25.68 -1.32
RP 200.36 27.15 -5.52
ES 312.55 57.99 -5.80
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Table 4: Simulations Sensitivity to Choice of τ . Results are reported for di�erent designs with
details in Section 5. In the details about the design, b1 denotes the value of bk for k ∈ K1.
The columns report the Monte Carlo approximation for the expected sup norm (sup), the
expected L1 norm, the expected number of false negative (fn), and the expected number of
false positive (fp). An fn occurs when a true jump is missed, an fp when a jump is erroneously
detect. The columns τ and df report the selected penalty and resulting degrees of freedom
using CV and the modi�ed AIC in (8), as described in Section 5.

sup L1 fn fp τ df

J=3 | n=50 |K=2000 | L=1000 | d=0.02 | b1=20000
penScale =CV 486 0.007 0.8 5.9 2.3 8.1
penScale =AIC 327 0.018 0.7 27.6 0.4 29.9
penScale =1 17640 0.299 2.0 0.0 178.8 1.0
penScale =0.25 201 0.004 0.8 1.6 44.7 3.8
penScale =0.1 209 0.004 0.8 2.1 17.9 4.3
penScale =0 1042 0.029 0.8 58.1 0.4 60.3
J=50 | n=50 | K=2000 | L=1000 | d=0.02 | b1=20000
penScale =CV 1411 0.010 2.0 79.7 1.3 80.7
penScale =AIC 2005 0.019 1.8 176.3 0.4 177.6
penScale =1 9012 0.818 2.0 0.0 187.3 1.0
penScale =0.25 323 0.007 2.0 49.0 46.8 50.0
penScale =0.1 358 0.007 2.0 49.0 18.7 50.0
penScale =0 2005 0.019 1.8 177.3 0.4 178.6
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Table 5: Simulations for Penalty Chosen Using CV. Results are reported for di�erent designs
with details in Section 5. In the details about the design, b1 denotes the value of bk for
k ∈ K1. The columns report the Monte Carlo approximation for the expected sup norm (sup),
the expected L1 norm, the expected number of false negative (fn), and the expected number of
false positive (fp). An fn occurs when a true jump is missed, an fp when a jump is erroneously
detect. The columns τ and df report the selected penalty and resulting degrees of freedom
using CV, as described in Section 5.

sup L1 fn fp τ df
J=10, 50 | n=50 | penScale =CV
K=200 | L=20 | d=0.1 | b1=400 22 0.025 0.8 10.3 0.3 12.5
K=200 | L=20 | d=0.1 | b1=2000 44 0.011 0.9 9.4 0.5 11.5
K=200 | L=20 | d=0.02 | b1=400 137 0.321 0.9 9.4 5.6 11.5
K=200 | L=20 | d=0.02 | b1=2000 1112 0.785 0.8 9.5 0.5 11.7
K=200 | L=100 | d=0.1 | b1=400 50 0.035 1.9 18.8 0.5 19.9
K=200 | L=100 | d=0.1 | b1=2000 110 0.015 1.9 15.2 0.8 16.2
K=200 | L=100 | d=0.02 | b1=400 217 0.059 1.0 50.8 0.3 52.8
K=200 | L=100 | d=0.02 | b1=2000 1837 0.050 1.0 54.9 0.3 56.9
K=2000 | L=200 | d=0.1 | b1=4000 217 0.010 2.0 15.6 1.4 16.6
K=2000 | L=200 | d=0.1 | b1=20000 298 0.003 2.0 11.5 2.9 12.5
K=2000 | L=200 | d=0.02 | b1=4000 2062 0.022 1.7 74.5 0.4 75.8
K=2000 | L=200 | d=0.02 | b1=20000 18112 0.011 1.9 58.5 0.9 59.6
K=2000 | L=1000 | d=0.1 | b1=4000 466 0.011 2.0 22.9 1.6 23.9
K=2000 | L=1000 | d=0.1 | b1=20000 956 0.004 2.0 16.4 3.4 17.4
K=2000 | L=1000 | d=0.02 | b1=4000 646 0.027 2.0 112.9 0.6 113.9
K=2000 | L=1000 | d=0.02 | b1=20000 1411 0.010 2.0 79.7 1.3 80.7
J=10, 50 | n=500 | penScale =CV
K=200 | L=20 | d=0.1 | b1=400 4 0.005 0.9 8.3 0.1 10.4
K=200 | L=20 | d=0.1 | b1=2000 11 0.003 0.9 8.2 0.2 10.2
K=200 | L=20 | d=0.02 | b1=400 124 0.320 0.9 8.4 0.1 10.5
K=200 | L=20 | d=0.02 | b1=2000 1087 0.785 1.0 8.0 0.2 10.0
K=200 | L=100 | d=0.1 | b1=400 15 0.007 2.0 12.5 0.1 13.6
K=200 | L=100 | d=0.1 | b1=2000 18 0.003 2.0 10.2 0.3 11.2
K=200 | L=100 | d=0.02 | b1=400 205 0.024 1.0 49.1 0.1 51.1
K=200 | L=100 | d=0.02 | b1=2000 1814 0.031 1.0 49.1 0.1 51.1
K=2000 | L=200 | d=0.1 | b1=4000 37 0.002 2.0 9.5 0.5 10.5
K=2000 | L=200 | d=0.1 | b1=20000 36 0.001 2.0 9.2 0.9 10.2
K=2000 | L=200 | d=0.02 | b1=4000 2014 0.006 2.0 52.7 0.1 53.7
K=2000 | L=200 | d=0.02 | b1=20000 18037 0.005 2.0 49.7 0.3 50.7
K=2000 | L=1000 | d=0.1 | b1=4000 140 0.002 2.0 12.3 0.5 13.3
K=2000 | L=1000 | d=0.1 | b1=20000 130 0.001 2.0 10.7 1.1 11.7
K=2000 | L=1000 | d=0.02 | b1=4000 199 0.006 2.0 67.7 0.2 68.7
K=2000 | L=1000 | d=0.02 | b1=20000 298 0.002 2.0 55.5 0.4 56.5
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Supplement to �Intraday Trades Pro�le

Estimation: An Intensity Approach� by

Alessio Sancetta

Simulation Results

Results are reported for di�erent designs with details in Section 5. In the details about

the design, b1 denotes the value of bk for k ∈ K1. The columns report the Monte Carlo

approximation for the expected sup norm (sup), the expected L1 norm, the expected number

of false negative (fn), and the expected number of false positive (fp). An fn occurs when a

true jump is missed, an fp when a jump is erroneously detect. The columns τ and df report

the selected penalty and resulting degrees of freedom using di�erent methods as described in

Section 5

Table A: Simulation Results.

sup L1 fn fp τ df

J=3 | n=50 | penScale =AIC

K=200 | L=20 | d=0.1 | b1=400 15 0.020 0.8 2.8 0.3 5.0

K=200 | L=20 | d=0.1 | b1=2000 23 0.015 0.7 3.0 0.3 5.2

K=200 | L=20 | d=0.02 | b1=400 163 0.050 0.8 3.2 0.3 5.4

K=200 | L=20 | d=0.02 | b1=2000 1443 0.259 0.7 2.7 0.3 5.0

K=200 | L=100 | d=0.1 | b1=400 192 0.035 1.6 7.7 0.4 9.2

K=200 | L=100 | d=0.1 | b1=2000 1791 0.049 1.6 9.8 0.3 11.2

K=200 | L=100 | d=0.02 | b1=400 32 0.035 0.8 7.5 0.3 9.7

K=200 | L=100 | d=0.02 | b1=2000 58 0.032 0.8 7.5 0.3 9.7

K=2000 | L=200 | d=0.1 | b1=4000 1968 0.020 1.5 28.2 0.4 29.8

K=2000 | L=200 | d=0.1 | b1=20000 17974 0.016 1.5 31.5 0.3 33.0

K=2000 | L=200 | d=0.02 | b1=4000 252 0.020 0.7 26.9 0.4 29.2

K=2000 | L=200 | d=0.02 | b1=20000 327 0.018 0.7 27.6 0.4 29.9

K=2000 | L=1000 | d=0.1 | b1=4000 516 0.029 0.7 50.8 0.4 53.0

K=2000 | L=1000 | d=0.1 | b1=20000 1585 0.023 0.7 65.7 0.4 68.0

K=2000 | L=1000 | d=0.02 | b1=4000 437 0.029 0.8 47.3 0.4 49.5

K=2000 | L=1000 | d=0.02 | b1=20000 1022 0.028 0.8 53.8 0.4 56.1

J=3 | n=50 | penScale =CV

K=200 | L=20 | d=0.1 | b1=400 15 0.020 0.7 3.1 0.6 5.3

K=200 | L=20 | d=0.1 | b1=2000 22 0.014 0.8 2.8 1.1 5.0

K=200 | L=20 | d=0.02 | b1=400 165 0.050 0.9 2.9 8.6 5.0
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Table A: Simulation Results.

sup L1 fn fp τ df

K=200 | L=20 | d=0.02 | b1=2000 1442 0.258 0.8 2.7 0.7 5.0

K=200 | L=100 | d=0.1 | b1=400 191 0.028 1.6 5.8 0.7 7.2

K=200 | L=100 | d=0.1 | b1=2000 1790 0.041 1.6 5.3 1.3 6.7

K=200 | L=100 | d=0.02 | b1=400 30 0.031 0.8 6.3 0.4 8.5

K=200 | L=100 | d=0.02 | b1=2000 52 0.026 0.8 5.9 0.6 8.2

K=2000 | L=200 | d=0.1 | b1=4000 1958 0.006 1.6 3.6 2.5 5.0

K=2000 | L=200 | d=0.1 | b1=20000 17967 0.007 1.6 3.7 4.5 5.1

K=2000 | L=200 | d=0.02 | b1=4000 127 0.006 0.8 3.3 1.4 5.6

K=2000 | L=200 | d=0.02 | b1=20000 192 0.006 0.8 3.9 2.1 6.1

K=2000 | L=1000 | d=0.1 | b1=4000 296 0.006 0.7 4.4 2.7 6.7

K=2000 | L=1000 | d=0.1 | b1=20000 524 0.004 0.7 3.9 5.0 6.2

K=2000 | L=1000 | d=0.02 | b1=4000 287 0.006 0.8 4.6 1.6 6.9

K=2000 | L=1000 | d=0.02 | b1=20000 486 0.007 0.8 5.9 2.3 8.1

J=3 | n=50 | penScale =1

K=200 | L=20 | d=0.1 | b1=400 180 0.164 2.0 0.0 9.7 1.0

K=200 | L=20 | d=0.1 | b1=2000 1620 0.852 2.0 0.0 81.8 1.0

K=200 | L=20 | d=0.02 | b1=400 196 0.039 2.0 0.0 2.7 1.0

K=200 | L=20 | d=0.02 | b1=2000 1764 0.299 2.0 0.0 16.9 1.0

K=200 | L=100 | d=0.1 | b1=400 180 0.164 2.0 0.0 9.7 1.0

K=200 | L=100 | d=0.1 | b1=2000 1620 0.852 2.0 0.0 81.8 1.0

K=200 | L=100 | d=0.02 | b1=400 196 0.039 2.0 0.0 3.0 1.0

K=200 | L=100 | d=0.02 | b1=2000 1764 0.299 2.0 0.0 18.4 1.0

K=2000 | L=200 | d=0.1 | b1=4000 1801 0.163 2.0 0.0 92.2 1.0

K=2000 | L=200 | d=0.1 | b1=20000 16200 0.853 2.0 0.0 812.3 1.0

K=2000 | L=200 | d=0.02 | b1=4000 1961 0.038 2.0 0.0 22.1 1.0

K=2000 | L=200 | d=0.02 | b1=20000 17640 0.299 2.0 0.0 178.8 1.0

K=2000 | L=1000 | d=0.1 | b1=4000 1801 0.163 2.0 0.0 92.3 1.0

K=2000 | L=1000 | d=0.1 | b1=20000 16200 0.853 2.0 0.0 812.3 1.0

K=2000 | L=1000 | d=0.02 | b1=4000 1961 0.038 2.0 0.0 22.3 1.0

K=2000 | L=1000 | d=0.02 | b1=20000 17640 0.299 2.0 0.0 178.8 1.0

J=3 | n=50 | penScale =0.25

K=200 | L=20 | d=0.1 | b1=400 9 0.013 0.9 1.2 2.4 3.3

K=200 | L=20 | d=0.1 | b1=2000 15 0.010 1.0 1.0 20.5 3.0

K=200 | L=20 | d=0.02 | b1=400 161 0.047 0.8 2.0 0.7 4.2

K=200 | L=20 | d=0.02 | b1=2000 1440 0.253 1.0 1.0 4.2 3.1

K=200 | L=100 | d=0.1 | b1=400 192 0.019 1.6 2.7 2.4 4.1
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Table A: Simulation Results.

sup L1 fn fp τ df

K=200 | L=100 | d=0.1 | b1=2000 1800 0.033 2.0 2.0 20.5 3.0

K=200 | L=100 | d=0.02 | b1=400 24 0.020 0.8 2.9 0.7 5.1

K=200 | L=100 | d=0.02 | b1=2000 39 0.013 0.8 1.5 4.6 3.7

K=2000 | L=200 | d=0.1 | b1=4000 1974 0.005 1.7 2.1 23.1 3.4

K=2000 | L=200 | d=0.1 | b1=20000 18000 0.006 2.0 2.0 203.1 3.0

K=2000 | L=200 | d=0.02 | b1=4000 94 0.004 0.8 1.6 5.5 3.9

K=2000 | L=200 | d=0.02 | b1=20000 122 0.004 0.9 1.1 44.7 3.1

K=2000 | L=1000 | d=0.1 | b1=4000 202 0.004 0.7 2.0 23.1 4.2

K=2000 | L=1000 | d=0.1 | b1=20000 63 0.003 1.0 1.0 203.1 3.0

K=2000 | L=1000 | d=0.02 | b1=4000 213 0.004 0.8 2.6 5.6 4.8

K=2000 | L=1000 | d=0.02 | b1=20000 201 0.004 0.8 1.6 44.7 3.8

J=3 | n=50 | penScale =0.1

K=200 | L=20 | d=0.1 | b1=400 10 0.015 0.8 1.6 1.0 3.8

K=200 | L=20 | d=0.1 | b1=2000 15 0.010 1.0 1.0 8.2 3.0

K=200 | L=20 | d=0.02 | b1=400 164 0.054 0.7 4.4 0.3 6.8

K=200 | L=20 | d=0.02 | b1=2000 1440 0.254 0.8 1.3 1.7 3.5

K=200 | L=100 | d=0.1 | b1=400 190 0.022 1.6 3.8 1.0 5.2

K=200 | L=100 | d=0.1 | b1=2000 1796 0.033 1.8 2.1 8.2 3.3

K=200 | L=100 | d=0.02 | b1=400 34 0.036 0.8 8.2 0.3 10.4

K=200 | L=100 | d=0.02 | b1=2000 39 0.015 0.8 2.1 1.8 4.3

K=2000 | L=200 | d=0.1 | b1=4000 1962 0.005 1.6 2.4 9.2 3.7

K=2000 | L=200 | d=0.1 | b1=20000 17999 0.006 2.0 2.0 81.2 3.0

K=2000 | L=200 | d=0.02 | b1=4000 98 0.005 0.8 1.8 2.2 4.0

K=2000 | L=200 | d=0.02 | b1=20000 130 0.004 0.8 1.3 17.9 3.5

K=2000 | L=1000 | d=0.1 | b1=4000 273 0.005 0.7 2.8 9.2 5.1

K=2000 | L=1000 | d=0.1 | b1=20000 141 0.003 0.9 1.2 81.2 3.4

K=2000 | L=1000 | d=0.02 | b1=4000 273 0.005 0.8 3.0 2.2 5.2

K=2000 | L=1000 | d=0.02 | b1=20000 209 0.004 0.8 2.1 17.9 4.3

J=3 | n=50 | penScale =0

K=200 | L=20 | d=0.1 | b1=400 19 0.025 0.7 4.9 0.2 7.2

K=200 | L=20 | d=0.1 | b1=2000 27 0.018 0.7 4.9 0.2 7.3

K=200 | L=20 | d=0.02 | b1=400 164 0.055 0.7 4.9 0.2 7.3

K=200 | L=20 | d=0.02 | b1=2000 1444 0.264 0.7 4.8 0.2 7.1

K=200 | L=100 | d=0.1 | b1=400 192 0.041 1.6 10.8 0.3 12.2

K=200 | L=100 | d=0.1 | b1=2000 1791 0.051 1.6 11.4 0.3 12.8

K=200 | L=100 | d=0.02 | b1=400 35 0.038 0.8 8.9 0.3 11.2
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Table A: Simulation Results.

sup L1 fn fp τ df

K=200 | L=100 | d=0.02 | b1=2000 61 0.035 0.8 9.2 0.3 11.5

K=2000 | L=200 | d=0.1 | b1=4000 1970 0.022 1.4 34.9 0.3 36.4

K=2000 | L=200 | d=0.1 | b1=20000 17975 0.016 1.5 33.9 0.3 35.4

K=2000 | L=200 | d=0.02 | b1=4000 263 0.022 0.7 33.4 0.3 35.7

K=2000 | L=200 | d=0.02 | b1=20000 335 0.020 0.7 33.4 0.3 35.7

K=2000 | L=1000 | d=0.1 | b1=4000 547 0.031 0.7 59.3 0.4 61.6

K=2000 | L=1000 | d=0.1 | b1=20000 1590 0.023 0.7 67.1 0.4 69.3

K=2000 | L=1000 | d=0.02 | b1=4000 470 0.032 0.8 57.2 0.4 59.4

K=2000 | L=1000 | d=0.02 | b1=20000 1042 0.029 0.8 58.1 0.4 60.3

J=10, 50 | n=50 | penScale =AIC

K=200 | L=20 | d=0.1 | b1=400 21 0.034 1.0 8.1 0.9 10.1

K=200 | L=20 | d=0.1 | b1=2000 41 0.010 1.0 8.7 0.4 10.8

K=200 | L=20 | d=0.02 | b1=400 106 0.333 2.0 0.4 1.7 1.4

K=200 | L=20 | d=0.02 | b1=2000 1108 0.786 0.9 8.7 0.5 10.8

K=200 | L=100 | d=0.1 | b1=400 50 0.037 1.8 20.0 0.3 21.2

K=200 | L=100 | d=0.1 | b1=2000 144 0.021 1.8 23.7 0.3 25.0

K=200 | L=100 | d=0.02 | b1=400 129 0.271 1.8 10.9 1.8 12.2

K=200 | L=100 | d=0.02 | b1=2000 1836 0.049 1.0 53.5 0.3 55.5

K=2000 | L=200 | d=0.1 | b1=4000 326 0.019 1.7 40.7 0.3 42.0

K=2000 | L=200 | d=0.1 | b1=20000 735 0.008 1.8 38.9 0.3 40.1

K=2000 | L=200 | d=0.02 | b1=4000 2062 0.023 1.7 79.2 0.4 80.6

K=2000 | L=200 | d=0.02 | b1=20000 18136 0.013 1.6 76.4 0.3 77.7

K=2000 | L=1000 | d=0.1 | b1=4000 683 0.028 1.9 76.4 0.4 77.5

K=2000 | L=1000 | d=0.1 | b1=20000 2008 0.017 1.8 119.1 0.4 120.3

K=2000 | L=1000 | d=0.02 | b1=4000 744 0.033 1.9 145.7 0.4 146.8

K=2000 | L=1000 | d=0.02 | b1=20000 2005 0.019 1.8 176.3 0.4 177.6

J=10, 50 | n=50 | penScale =CV

K=200 | L=20 | d=0.1 | b1=400 22 0.025 0.8 10.3 0.3 12.5

K=200 | L=20 | d=0.1 | b1=2000 44 0.011 0.9 9.4 0.5 11.5

K=200 | L=20 | d=0.02 | b1=400 137 0.321 0.9 9.4 5.6 11.5

K=200 | L=20 | d=0.02 | b1=2000 1112 0.785 0.8 9.5 0.5 11.7

K=200 | L=100 | d=0.1 | b1=400 50 0.035 1.9 18.8 0.5 19.9

K=200 | L=100 | d=0.1 | b1=2000 110 0.015 1.9 15.2 0.8 16.2

K=200 | L=100 | d=0.02 | b1=400 217 0.059 1.0 50.8 0.3 52.8

K=200 | L=100 | d=0.02 | b1=2000 1837 0.050 1.0 54.9 0.3 56.9

K=2000 | L=200 | d=0.1 | b1=4000 217 0.010 2.0 15.6 1.4 16.6
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Table A: Simulation Results.

sup L1 fn fp τ df

K=2000 | L=200 | d=0.1 | b1=20000 298 0.003 2.0 11.5 2.9 12.5

K=2000 | L=200 | d=0.02 | b1=4000 2062 0.022 1.7 74.5 0.4 75.8

K=2000 | L=200 | d=0.02 | b1=20000 18112 0.011 1.9 58.5 0.9 59.6

K=2000 | L=1000 | d=0.1 | b1=4000 466 0.011 2.0 22.9 1.6 23.9

K=2000 | L=1000 | d=0.1 | b1=20000 956 0.004 2.0 16.4 3.4 17.4

K=2000 | L=1000 | d=0.02 | b1=4000 646 0.027 2.0 112.9 0.6 113.9

K=2000 | L=1000 | d=0.02 | b1=20000 1411 0.010 2.0 79.7 1.3 80.7

J=10, 50 | n=50 | penScale =1

K=200 | L=20 | d=0.1 | b1=400 102 0.333 2.0 0.0 10.9 1.0

K=200 | L=20 | d=0.1 | b1=2000 903 0.818 2.0 0.0 91.6 1.0

K=200 | L=20 | d=0.02 | b1=400 102 0.333 2.0 0.0 2.9 1.0

K=200 | L=20 | d=0.02 | b1=2000 903 0.818 2.0 0.0 19.7 1.0

K=200 | L=100 | d=0.1 | b1=400 102 0.333 2.0 0.0 10.9 1.0

K=200 | L=100 | d=0.1 | b1=2000 903 0.818 2.0 0.0 91.6 1.0

K=200 | L=100 | d=0.02 | b1=400 102 0.333 2.0 0.0 3.2 1.0

K=200 | L=100 | d=0.02 | b1=2000 903 0.818 2.0 0.0 20.3 1.0

K=2000 | L=200 | d=0.1 | b1=4000 1006 0.333 2.0 0.0 102.7 1.0

K=2000 | L=200 | d=0.1 | b1=20000 9012 0.818 2.0 0.0 905.1 1.0

K=2000 | L=200 | d=0.02 | b1=4000 1006 0.333 2.0 0.0 23.9 1.0

K=2000 | L=200 | d=0.02 | b1=20000 9012 0.818 2.0 0.0 187.3 1.0

K=2000 | L=1000 | d=0.1 | b1=4000 1006 0.333 2.0 0.0 102.7 1.0

K=2000 | L=1000 | d=0.1 | b1=20000 9012 0.818 2.0 0.0 905.1 1.0

K=2000 | L=1000 | d=0.02 | b1=4000 1006 0.333 2.0 0.0 23.9 1.0

K=2000 | L=1000 | d=0.02 | b1=20000 9012 0.818 2.0 0.0 187.3 1.0

J=10, 50 | n=50 | penScale =0.25

K=200 | L=20 | d=0.1 | b1=400 14 0.019 1.0 8.0 2.7 10.0

K=200 | L=20 | d=0.1 | b1=2000 31 0.009 1.0 8.0 22.9 10.0

K=200 | L=20 | d=0.02 | b1=400 133 0.323 1.2 6.5 0.7 8.3

K=200 | L=20 | d=0.02 | b1=2000 1103 0.785 1.0 8.0 4.9 10.0

K=200 | L=100 | d=0.1 | b1=400 22 0.020 2.0 9.2 2.7 10.2

K=200 | L=100 | d=0.1 | b1=2000 31 0.009 2.0 9.0 22.9 10.0

K=200 | L=100 | d=0.02 | b1=400 208 0.112 1.2 40.4 0.8 42.2

K=200 | L=100 | d=0.02 | b1=2000 1829 0.045 1.0 48.0 5.1 50.0

K=2000 | L=200 | d=0.1 | b1=4000 49 0.006 2.0 9.0 25.7 10.0

K=2000 | L=200 | d=0.1 | b1=20000 100 0.003 2.0 9.0 226.3 10.0

K=2000 | L=200 | d=0.02 | b1=4000 2042 0.015 2.0 49.0 6.0 50.0
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Table A: Simulation Results.

sup L1 fn fp τ df

K=2000 | L=200 | d=0.02 | b1=20000 18106 0.009 2.0 49.0 46.8 50.0

K=2000 | L=1000 | d=0.1 | b1=4000 219 0.007 2.0 9.4 25.7 10.4

K=2000 | L=1000 | d=0.1 | b1=20000 100 0.003 2.0 9.0 226.3 10.0

K=2000 | L=1000 | d=0.02 | b1=4000 397 0.014 2.0 49.6 6.0 50.6

K=2000 | L=1000 | d=0.02 | b1=20000 323 0.007 2.0 49.0 46.8 50.0

J=10, 50 | n=50 | penScale =0.1

K=200 | L=20 | d=0.1 | b1=400 15 0.020 1.0 8.1 1.1 10.1

K=200 | L=20 | d=0.1 | b1=2000 31 0.009 1.0 8.0 9.2 10.0

K=200 | L=20 | d=0.02 | b1=400 139 0.320 0.8 10.2 0.3 12.4

K=200 | L=20 | d=0.02 | b1=2000 1103 0.785 1.0 8.0 2.0 10.0

K=200 | L=100 | d=0.1 | b1=400 45 0.025 2.0 12.0 1.1 13.0

K=200 | L=100 | d=0.1 | b1=2000 32 0.009 2.0 9.0 9.2 10.0

K=200 | L=100 | d=0.02 | b1=400 217 0.058 1.0 50.2 0.3 52.2

K=200 | L=100 | d=0.02 | b1=2000 1829 0.045 1.0 48.0 2.0 50.0

K=2000 | L=200 | d=0.1 | b1=4000 110 0.007 2.0 9.3 10.3 10.3

K=2000 | L=200 | d=0.1 | b1=20000 100 0.003 2.0 9.0 90.5 10.0

K=2000 | L=200 | d=0.02 | b1=4000 2042 0.015 2.0 49.3 2.4 50.3

K=2000 | L=200 | d=0.02 | b1=20000 18106 0.009 2.0 49.0 18.7 50.0

K=2000 | L=1000 | d=0.1 | b1=4000 457 0.007 2.0 12.5 10.3 13.5

K=2000 | L=1000 | d=0.1 | b1=20000 132 0.003 2.0 9.0 90.5 10.0

K=2000 | L=1000 | d=0.02 | b1=4000 637 0.017 2.0 61.7 2.4 62.7

K=2000 | L=1000 | d=0.02 | b1=20000 358 0.007 2.0 49.0 18.7 50.0

J=10, 50 | n=50 | penScale =0

K=200 | L=20 | d=0.1 | b1=400 23 0.026 0.7 10.8 0.2 13.1

K=200 | L=20 | d=0.1 | b1=2000 47 0.012 0.7 10.2 0.2 12.5

K=200 | L=20 | d=0.02 | b1=400 139 0.320 0.8 10.6 0.2 12.9

K=200 | L=20 | d=0.02 | b1=2000 1114 0.785 0.7 10.3 0.2 12.6

K=200 | L=100 | d=0.1 | b1=400 54 0.039 1.8 22.3 0.3 23.5

K=200 | L=100 | d=0.1 | b1=2000 146 0.021 1.7 25.2 0.3 26.5

K=200 | L=100 | d=0.02 | b1=400 217 0.059 1.0 50.8 0.3 52.8

K=200 | L=100 | d=0.02 | b1=2000 1837 0.050 1.0 54.9 0.3 56.9

K=2000 | L=200 | d=0.1 | b1=4000 331 0.020 1.6 44.7 0.3 46.1

K=2000 | L=200 | d=0.1 | b1=20000 736 0.008 1.8 39.5 0.3 40.7

K=2000 | L=200 | d=0.02 | b1=4000 2064 0.024 1.6 83.5 0.3 84.9

K=2000 | L=200 | d=0.02 | b1=20000 18137 0.013 1.6 77.3 0.3 78.7

K=2000 | L=1000 | d=0.1 | b1=4000 729 0.029 1.8 83.9 0.4 85.1
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Table A: Simulation Results.

sup L1 fn fp τ df

K=2000 | L=1000 | d=0.1 | b1=20000 2010 0.017 1.8 120.3 0.4 121.5

K=2000 | L=1000 | d=0.02 | b1=4000 763 0.033 1.9 149.9 0.4 151.1

K=2000 | L=1000 | d=0.02 | b1=20000 2005 0.019 1.8 177.3 0.4 178.6

J=3 | n=500 | penScale =AIC

K=200 | L=20 | d=0.1 | b1=400 3 0.003 0.9 1.3 0.1 3.4

K=200 | L=20 | d=0.1 | b1=2000 4 0.003 0.9 1.5 0.1 3.6

K=200 | L=20 | d=0.02 | b1=400 160 0.034 0.9 1.3 0.1 3.4

K=200 | L=20 | d=0.02 | b1=2000 1440 0.246 0.9 1.3 0.1 3.4

K=200 | L=100 | d=0.1 | b1=400 198 0.009 1.7 3.5 0.1 4.8

K=200 | L=100 | d=0.1 | b1=2000 1798 0.027 1.7 3.4 0.1 4.7

K=200 | L=100 | d=0.02 | b1=400 8 0.005 0.9 2.3 0.1 4.4

K=200 | L=100 | d=0.02 | b1=2000 11 0.004 0.9 2.4 0.1 4.5

K=2000 | L=200 | d=0.1 | b1=4000 1997 0.002 1.9 4.5 0.1 5.6

K=2000 | L=200 | d=0.1 | b1=20000 17994 0.004 1.9 4.4 0.1 5.6

K=2000 | L=200 | d=0.02 | b1=4000 49 0.002 0.9 3.7 0.1 5.7

K=2000 | L=200 | d=0.02 | b1=20000 50 0.002 0.9 3.6 0.1 5.7

K=2000 | L=1000 | d=0.1 | b1=4000 109 0.003 0.9 7.7 0.1 9.9

K=2000 | L=1000 | d=0.1 | b1=20000 165 0.002 0.9 7.3 0.1 9.5

K=2000 | L=1000 | d=0.02 | b1=4000 103 0.003 0.9 7.5 0.1 9.6

K=2000 | L=1000 | d=0.02 | b1=20000 128 0.002 0.9 7.3 0.1 9.5

J=3 | n=500 | penScale =CV

K=200 | L=20 | d=0.1 | b1=400 3 0.003 1.0 1.3 0.2 3.3

K=200 | L=20 | d=0.1 | b1=2000 4 0.003 1.0 1.2 0.3 3.3

K=200 | L=20 | d=0.02 | b1=400 160 0.034 1.0 1.2 0.2 3.3

K=200 | L=20 | d=0.02 | b1=2000 1440 0.246 0.9 1.2 0.2 3.3

K=200 | L=100 | d=0.1 | b1=400 198 0.008 1.7 2.6 0.2 3.9

K=200 | L=100 | d=0.1 | b1=2000 1798 0.027 1.7 2.5 0.4 3.7

K=200 | L=100 | d=0.02 | b1=400 7 0.004 0.9 1.9 0.1 4.0

K=200 | L=100 | d=0.02 | b1=2000 11 0.004 0.9 1.9 0.2 4.0

K=2000 | L=200 | d=0.1 | b1=4000 1998 0.002 1.9 2.1 0.7 3.1

K=2000 | L=200 | d=0.1 | b1=20000 17996 0.003 1.9 2.1 1.4 3.1

K=2000 | L=200 | d=0.02 | b1=4000 22 0.001 1.0 1.1 0.4 3.1

K=2000 | L=200 | d=0.02 | b1=20000 29 0.001 1.0 1.1 0.6 3.1

K=2000 | L=1000 | d=0.1 | b1=4000 60 0.001 0.9 1.5 0.8 3.7

K=2000 | L=1000 | d=0.1 | b1=20000 54 0.001 0.9 1.3 1.5 3.5

K=2000 | L=1000 | d=0.02 | b1=4000 59 0.001 0.9 1.5 0.5 3.6
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Table A: Simulation Results.

sup L1 fn fp τ df

K=2000 | L=1000 | d=0.02 | b1=20000 67 0.001 0.9 1.5 0.7 3.6

J=3 | n=500 | penScale =1

K=200 | L=20 | d=0.1 | b1=400 180 0.164 2.0 0.0 9.2 1.0

K=200 | L=20 | d=0.1 | b1=2000 1620 0.853 2.0 0.0 81.3 1.0

K=200 | L=20 | d=0.02 | b1=400 196 0.038 2.0 0.0 2.0 1.0

K=200 | L=20 | d=0.02 | b1=2000 1764 0.299 2.0 0.0 16.4 1.0

K=200 | L=100 | d=0.1 | b1=400 180 0.164 2.0 0.0 9.2 1.0

K=200 | L=100 | d=0.1 | b1=2000 1620 0.853 2.0 0.0 81.3 1.0

K=200 | L=100 | d=0.02 | b1=400 196 0.038 2.0 0.0 2.1 1.0

K=200 | L=100 | d=0.02 | b1=2000 1764 0.299 2.0 0.0 17.8 1.0

K=2000 | L=200 | d=0.1 | b1=4000 1800 0.164 2.0 0.0 90.7 1.0

K=2000 | L=200 | d=0.1 | b1=20000 16200 0.853 2.0 0.0 810.7 1.0

K=2000 | L=200 | d=0.02 | b1=4000 1960 0.038 2.0 0.0 20.4 1.0

K=2000 | L=200 | d=0.02 | b1=20000 17640 0.299 2.0 0.0 177.3 1.0

K=2000 | L=1000 | d=0.1 | b1=4000 1800 0.164 2.0 0.0 90.7 1.0

K=2000 | L=1000 | d=0.1 | b1=20000 16200 0.853 2.0 0.0 810.7 1.0

K=2000 | L=1000 | d=0.02 | b1=4000 1960 0.038 2.0 0.0 20.4 1.0

K=2000 | L=1000 | d=0.02 | b1=20000 17640 0.299 2.0 0.0 177.3 1.0

J=3 | n=500 | penScale =0.25

K=200 | L=20 | d=0.1 | b1=400 2 0.003 1.0 1.0 2.3 3.0

K=200 | L=20 | d=0.1 | b1=2000 3 0.003 1.0 1.0 20.3 3.0

K=200 | L=20 | d=0.02 | b1=400 160 0.034 1.0 1.0 0.5 3.0

K=200 | L=20 | d=0.02 | b1=2000 1440 0.246 1.0 1.0 4.1 3.0

K=200 | L=100 | d=0.1 | b1=400 199 0.007 1.9 2.0 2.3 3.1

K=200 | L=100 | d=0.1 | b1=2000 1800 0.026 2.0 2.0 20.3 3.0

K=200 | L=100 | d=0.02 | b1=400 6 0.003 0.9 1.3 0.5 3.4

K=200 | L=100 | d=0.02 | b1=2000 9 0.003 1.0 1.0 4.5 3.0

K=2000 | L=200 | d=0.1 | b1=4000 2000 0.002 2.0 2.0 22.7 3.0

K=2000 | L=200 | d=0.1 | b1=20000 18000 0.003 2.0 2.0 202.7 3.0

K=2000 | L=200 | d=0.02 | b1=4000 20 0.001 1.0 1.0 5.1 3.1

K=2000 | L=200 | d=0.02 | b1=20000 26 0.001 1.0 1.0 44.3 3.0

K=2000 | L=1000 | d=0.1 | b1=4000 29 0.001 0.9 1.1 22.7 3.2

K=2000 | L=1000 | d=0.1 | b1=20000 17 0.001 1.0 1.0 202.7 3.0

K=2000 | L=1000 | d=0.02 | b1=4000 42 0.001 0.9 1.3 5.1 3.4

K=2000 | L=1000 | d=0.02 | b1=20000 29 0.001 1.0 1.0 44.3 3.0

J=3 | n=500 | penScale =0.1
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Table A: Simulation Results.

sup L1 fn fp τ df

K=200 | L=20 | d=0.1 | b1=400 2 0.003 1.0 1.0 0.9 3.0

K=200 | L=20 | d=0.1 | b1=2000 3 0.003 1.0 1.0 8.1 3.0

K=200 | L=20 | d=0.02 | b1=400 160 0.034 1.0 1.1 0.2 3.1

K=200 | L=20 | d=0.02 | b1=2000 1440 0.246 1.0 1.1 1.6 3.1

K=200 | L=100 | d=0.1 | b1=400 198 0.007 1.7 2.1 0.9 3.4

K=200 | L=100 | d=0.1 | b1=2000 1800 0.026 2.0 2.0 8.1 3.0

K=200 | L=100 | d=0.02 | b1=400 6 0.003 0.9 1.3 0.2 3.4

K=200 | L=100 | d=0.02 | b1=2000 10 0.003 0.9 1.1 1.8 3.2

K=2000 | L=200 | d=0.1 | b1=4000 1999 0.002 2.0 2.0 9.1 3.0

K=2000 | L=200 | d=0.1 | b1=20000 18000 0.003 2.0 2.0 81.1 3.0

K=2000 | L=200 | d=0.02 | b1=4000 20 0.001 1.0 1.0 2.0 3.1

K=2000 | L=200 | d=0.02 | b1=20000 26 0.001 1.0 1.0 17.7 3.0

K=2000 | L=1000 | d=0.1 | b1=4000 38 0.001 0.9 1.2 9.1 3.3

K=2000 | L=1000 | d=0.1 | b1=20000 17 0.001 1.0 1.0 81.1 3.0

K=2000 | L=1000 | d=0.02 | b1=4000 42 0.001 0.9 1.3 2.0 3.4

K=2000 | L=1000 | d=0.02 | b1=20000 44 0.001 0.9 1.2 17.7 3.2

J=3 | n=500 | penScale =0

K=200 | L=20 | d=0.1 | b1=400 3 0.003 0.9 1.5 0.1 3.5

K=200 | L=20 | d=0.1 | b1=2000 4 0.003 0.9 1.6 0.1 3.7

K=200 | L=20 | d=0.02 | b1=400 160 0.034 0.9 1.5 0.1 3.5

K=200 | L=20 | d=0.02 | b1=2000 1440 0.247 0.9 1.5 0.1 3.6

K=200 | L=100 | d=0.1 | b1=400 198 0.009 1.7 3.8 0.1 5.1

K=200 | L=100 | d=0.1 | b1=2000 1798 0.028 1.7 3.6 0.1 4.9

K=200 | L=100 | d=0.02 | b1=400 8 0.005 0.9 2.5 0.1 4.6

K=200 | L=100 | d=0.02 | b1=2000 12 0.004 0.9 2.6 0.1 4.7

K=2000 | L=200 | d=0.1 | b1=4000 1997 0.002 1.9 4.6 0.1 5.7

K=2000 | L=200 | d=0.1 | b1=20000 17994 0.004 1.9 4.5 0.1 5.7

K=2000 | L=200 | d=0.02 | b1=4000 50 0.002 0.9 3.8 0.1 5.9

K=2000 | L=200 | d=0.02 | b1=20000 50 0.002 0.9 3.7 0.1 5.8

K=2000 | L=1000 | d=0.1 | b1=4000 110 0.003 0.9 7.9 0.1 10.1

K=2000 | L=1000 | d=0.1 | b1=20000 166 0.002 0.9 7.4 0.1 9.6

K=2000 | L=1000 | d=0.02 | b1=4000 103 0.003 0.9 7.7 0.1 9.8

K=2000 | L=1000 | d=0.02 | b1=20000 128 0.002 0.9 7.4 0.1 9.6

J=10, 50 | n=500 | penScale =AIC

K=200 | L=20 | d=0.1 | b1=400 4 0.005 0.9 8.2 0.1 10.3

K=200 | L=20 | d=0.1 | b1=2000 11 0.003 0.9 8.3 0.1 10.4
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Table A: Simulation Results.

sup L1 fn fp τ df

K=200 | L=20 | d=0.02 | b1=400 124 0.320 1.0 8.3 0.1 10.3

K=200 | L=20 | d=0.02 | b1=2000 1087 0.785 1.0 8.0 0.1 10.0

K=200 | L=100 | d=0.1 | b1=400 15 0.008 2.0 13.4 0.1 14.4

K=200 | L=100 | d=0.1 | b1=2000 23 0.004 2.0 12.2 0.1 13.2

K=200 | L=100 | d=0.02 | b1=400 205 0.024 1.0 48.8 0.1 50.8

K=200 | L=100 | d=0.02 | b1=2000 1814 0.031 1.0 48.9 0.1 50.9

K=2000 | L=200 | d=0.1 | b1=4000 65 0.003 2.0 12.1 0.1 13.1

K=2000 | L=200 | d=0.1 | b1=20000 55 0.001 2.0 11.0 0.1 12.1

K=2000 | L=200 | d=0.02 | b1=4000 2015 0.006 2.0 54.6 0.1 55.7

K=2000 | L=200 | d=0.02 | b1=20000 18037 0.005 2.0 52.7 0.1 53.7

K=2000 | L=1000 | d=0.1 | b1=4000 164 0.003 2.0 19.6 0.1 20.6

K=2000 | L=1000 | d=0.1 | b1=20000 340 0.001 2.0 17.9 0.1 18.9

K=2000 | L=1000 | d=0.02 | b1=4000 206 0.006 2.0 76.1 0.1 77.1

K=2000 | L=1000 | d=0.02 | b1=20000 485 0.003 2.0 69.2 0.1 70.2

J=10, 50 | n=500 | penScale =CV

K=200 | L=20 | d=0.1 | b1=400 4 0.005 0.9 8.3 0.1 10.4

K=200 | L=20 | d=0.1 | b1=2000 11 0.003 0.9 8.2 0.2 10.2

K=200 | L=20 | d=0.02 | b1=400 124 0.320 0.9 8.4 0.1 10.5

K=200 | L=20 | d=0.02 | b1=2000 1087 0.785 1.0 8.0 0.2 10.0

K=200 | L=100 | d=0.1 | b1=400 15 0.007 2.0 12.5 0.1 13.6

K=200 | L=100 | d=0.1 | b1=2000 18 0.003 2.0 10.2 0.3 11.2

K=200 | L=100 | d=0.02 | b1=400 205 0.024 1.0 49.1 0.1 51.1

K=200 | L=100 | d=0.02 | b1=2000 1814 0.031 1.0 49.1 0.1 51.1

K=2000 | L=200 | d=0.1 | b1=4000 37 0.002 2.0 9.5 0.5 10.5

K=2000 | L=200 | d=0.1 | b1=20000 36 0.001 2.0 9.2 0.9 10.2

K=2000 | L=200 | d=0.02 | b1=4000 2014 0.006 2.0 52.7 0.1 53.7

K=2000 | L=200 | d=0.02 | b1=20000 18037 0.005 2.0 49.7 0.3 50.7

K=2000 | L=1000 | d=0.1 | b1=4000 140 0.002 2.0 12.3 0.5 13.3

K=2000 | L=1000 | d=0.1 | b1=20000 130 0.001 2.0 10.7 1.1 11.7

K=2000 | L=1000 | d=0.02 | b1=4000 199 0.006 2.0 67.7 0.2 68.7

K=2000 | L=1000 | d=0.02 | b1=20000 298 0.002 2.0 55.5 0.4 56.5

J=10, 50 | n=500 | penScale =1

K=200 | L=20 | d=0.1 | b1=400 100 0.333 2.0 0.0 10.2 1.0

K=200 | L=20 | d=0.1 | b1=2000 901 0.818 2.0 0.0 90.5 1.0

K=200 | L=20 | d=0.02 | b1=400 100 0.333 2.0 0.0 2.2 1.0

K=200 | L=20 | d=0.02 | b1=2000 901 0.818 2.0 0.0 18.5 1.0
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Table A: Simulation Results.

sup L1 fn fp τ df

K=200 | L=100 | d=0.1 | b1=400 100 0.333 2.0 0.0 10.2 1.0

K=200 | L=100 | d=0.1 | b1=2000 901 0.818 2.0 0.0 90.5 1.0

K=200 | L=100 | d=0.02 | b1=400 100 0.333 2.0 0.0 2.3 1.0

K=200 | L=100 | d=0.02 | b1=2000 901 0.818 2.0 0.0 18.7 1.0

K=2000 | L=200 | d=0.1 | b1=4000 1002 0.333 2.0 0.0 100.8 1.0

K=2000 | L=200 | d=0.1 | b1=20000 9003 0.818 2.0 0.0 901.6 1.0

K=2000 | L=200 | d=0.02 | b1=4000 1002 0.333 2.0 0.0 21.2 1.0

K=2000 | L=200 | d=0.02 | b1=20000 9003 0.818 2.0 0.0 182.3 1.0

K=2000 | L=1000 | d=0.1 | b1=4000 1002 0.333 2.0 0.0 100.8 1.0

K=2000 | L=1000 | d=0.1 | b1=20000 9003 0.818 2.0 0.0 901.6 1.0

K=2000 | L=1000 | d=0.02 | b1=4000 1002 0.333 2.0 0.0 21.2 1.0

K=2000 | L=1000 | d=0.02 | b1=20000 9003 0.818 2.0 0.0 182.3 1.0

J=10, 50 | n=500 | penScale =0.25

K=200 | L=20 | d=0.1 | b1=400 3 0.005 1.0 8.0 2.6 10.0

K=200 | L=20 | d=0.1 | b1=2000 11 0.003 1.0 8.0 22.6 10.0

K=200 | L=20 | d=0.02 | b1=400 123 0.320 1.0 8.0 0.6 10.0

K=200 | L=20 | d=0.02 | b1=2000 1087 0.785 1.0 8.0 4.6 10.0

K=200 | L=100 | d=0.1 | b1=400 3 0.005 2.0 9.0 2.6 10.0

K=200 | L=100 | d=0.1 | b1=2000 11 0.003 2.0 9.0 22.6 10.0

K=200 | L=100 | d=0.02 | b1=400 205 0.023 1.0 48.0 0.6 50.0

K=200 | L=100 | d=0.02 | b1=2000 1813 0.031 1.0 48.0 4.7 50.0

K=2000 | L=200 | d=0.1 | b1=4000 16 0.002 2.0 9.0 25.2 10.0

K=2000 | L=200 | d=0.1 | b1=20000 29 0.001 2.0 9.0 225.4 10.0

K=2000 | L=200 | d=0.02 | b1=4000 2013 0.005 2.0 49.0 5.3 50.0

K=2000 | L=200 | d=0.02 | b1=20000 18037 0.005 2.0 49.0 45.6 50.0

K=2000 | L=1000 | d=0.1 | b1=4000 16 0.002 2.0 9.0 25.2 10.0

K=2000 | L=1000 | d=0.1 | b1=20000 29 0.001 2.0 9.0 225.4 10.0

K=2000 | L=1000 | d=0.02 | b1=4000 50 0.004 2.0 49.0 5.3 50.0

K=2000 | L=1000 | d=0.02 | b1=20000 107 0.002 2.0 49.0 45.6 50.0

J=10, 50 | n=500 | penScale =0.1

K=200 | L=20 | d=0.1 | b1=400 3 0.005 1.0 8.0 1.0 10.0

K=200 | L=20 | d=0.1 | b1=2000 11 0.003 1.0 8.0 9.1 10.0

K=200 | L=20 | d=0.02 | b1=400 123 0.320 1.0 8.0 0.2 10.0

K=200 | L=20 | d=0.02 | b1=2000 1087 0.785 1.0 8.0 1.9 10.0

K=200 | L=100 | d=0.1 | b1=400 4 0.005 2.0 9.0 1.0 10.0

K=200 | L=100 | d=0.1 | b1=2000 11 0.003 2.0 9.0 9.1 10.0
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Table A: Simulation Results.

sup L1 fn fp τ df

K=200 | L=100 | d=0.02 | b1=400 205 0.023 1.0 48.0 0.2 50.0

K=200 | L=100 | d=0.02 | b1=2000 1813 0.031 1.0 48.0 1.9 50.0

K=2000 | L=200 | d=0.1 | b1=4000 16 0.002 2.0 9.0 10.1 10.0

K=2000 | L=200 | d=0.1 | b1=20000 29 0.001 2.0 9.0 90.2 10.0

K=2000 | L=200 | d=0.02 | b1=4000 2013 0.005 2.0 49.0 2.1 50.0

K=2000 | L=200 | d=0.02 | b1=20000 18037 0.005 2.0 49.0 18.2 50.0

K=2000 | L=1000 | d=0.1 | b1=4000 23 0.002 2.0 9.0 10.1 10.0

K=2000 | L=1000 | d=0.1 | b1=20000 29 0.001 2.0 9.0 90.2 10.0

K=2000 | L=1000 | d=0.02 | b1=4000 56 0.004 2.0 49.0 2.1 50.0

K=2000 | L=1000 | d=0.02 | b1=20000 107 0.002 2.0 49.0 18.2 50.0

J=10, 50 | n=500 | penScale =0

K=200 | L=20 | d=0.1 | b1=400 5 0.006 0.9 8.5 0.1 10.5

K=200 | L=20 | d=0.1 | b1=2000 11 0.003 0.9 8.4 0.1 10.5

K=200 | L=20 | d=0.02 | b1=400 124 0.320 0.9 8.5 0.1 10.6

K=200 | L=20 | d=0.02 | b1=2000 1087 0.785 1.0 8.0 0.1 10.0

K=200 | L=100 | d=0.1 | b1=400 15 0.008 2.0 13.6 0.1 14.7

K=200 | L=100 | d=0.1 | b1=2000 23 0.004 2.0 12.3 0.1 13.3

K=200 | L=100 | d=0.02 | b1=400 205 0.024 1.0 49.1 0.1 51.1

K=200 | L=100 | d=0.02 | b1=2000 1814 0.031 1.0 49.1 0.1 51.1

K=2000 | L=200 | d=0.1 | b1=4000 65 0.003 2.0 12.2 0.1 13.2

K=2000 | L=200 | d=0.1 | b1=20000 55 0.001 2.0 11.1 0.1 12.1

K=2000 | L=200 | d=0.02 | b1=4000 2015 0.006 2.0 54.7 0.1 55.8

K=2000 | L=200 | d=0.02 | b1=20000 18037 0.005 2.0 52.7 0.1 53.8

K=2000 | L=1000 | d=0.1 | b1=4000 165 0.003 2.0 19.8 0.1 20.8

K=2000 | L=1000 | d=0.1 | b1=20000 340 0.001 2.0 17.9 0.1 18.9

K=2000 | L=1000 | d=0.02 | b1=4000 207 0.006 2.0 76.2 0.1 77.2

K=2000 | L=1000 | d=0.02 | b1=20000 485 0.003 2.0 69.3 0.1 70.3
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