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Abstract

This paper describes probability forecasting systems that are univer-
sal, or universally consistent, in the sense of being consistent under any
data-generating distribution, assuming that the observations are produced
independently in the IID fashion. The notion of universal consistency is
asymptotic and does not imply any small-sample guarantees of validity.
On the other hand, the method of conformal prediction has been recently
adapted to producing predictive distributions that satisfy a natural prop-
erty of small-sample validity, namely they are automatically probabilisti-
cally calibrated. The main result of the paper is the existence of universal
conformal predictive systems, which output predictive distributions that
are both probabilistically calibrated and universally consistent.

The version of this paper at http://alrw.net (Working Paper 18, first
posted on 17 April 2017) is updated most often. The conference version
is published in the Proceedings of COPA 2019 (Proceedings of Machine
Learning Research 105:105–122).

1 Introduction

Predictive distributions are probability distributions for future labels satisfying
a natural property of validity. They were introduced independently by Schweder
and Hjort [19, Chapter 12] and Shen et al. [21], who also gave several examples
of predictive distributions in parametric statistics. Earlier, related notions had
been studied extensively by Tilmann Gneiting with co-authors and their prede-
cessors (see, e.g., the review [9]). First nonparametric predictive distributions
were constructed in the conference version of [32] based on the method of confor-
mal prediction (see, e.g., [28, 29, 15, 16]). The nonparametric statistical model
used in [32] is the one that is standard in machine learning: the observations are
produced independently from the same probability measure; we will refer to it
as the IID model in this paper. To make the notion of predictive distributions
applicable in the nonparametric context, [32] slightly generalizes it allowing
randomization; unless the amount of training data is very small, randomization
affects the predictive distribution very little, but it simplifies definitions.

This paper follows [32, 30] in studying randomized predictive distributions
under the IID model. Namely, we construct randomized predictive distributions
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that, in addition to the small-sample property of validity that is satisfied au-
tomatically, satisfy an asymptotic property of universal consistency; informally,
the true conditional distribution of the label and the randomized predictive dis-
tribution for it computed from the corresponding object and training data of
size n approach each other as n→∞. (The procedures studied in [32, 30] were
based on the Least Squares method and its modifications, and thus far from
universally consistent; cf. Example 14 below.)

Our approach is in the spirit of Gneiting et al.’s [8] paradigm (which they
trace back to Murphy and Winkler [18]) of maximizing the sharpness of the
predictive distributions subject to calibration. We, however, refer to calibration
as validity, sharpness as efficiency, and include a validity requirement in the
definition of predictive distributions (following Shen et al. [21]). Martin and
Liu [17, Section 3.3] state a similar “Efficiency Principle”: Subject to the validity
constraint, probabilistic inference should be made as efficient as possible.

We are mostly interested in results about the existence (and in explicit con-
structions) of randomized predictive distributions that satisfy two appealing
properties: the small-sample property of validity and the asymptotic property
of universal consistency. However, if we do not insist on the former, randomiza-
tion becomes superfluous (Theorem 26).

As in [32, 30], our main technical tool will be conformal prediction. Before
those papers, conformal prediction was typically applied for computing predic-
tion sets. Conformal predictors are guaranteed to satisfy a property of validity,
namely the correct coverage probability, and a remaining desideratum is their ef-
ficiency, namely the smallness of their prediction sets. Asymptotically efficient
conformal predictors were constructed by Lei et al. [15] in the unsupervised
setting and Lei and Wasserman [16] in the supervised setting (namely, for re-
gression). This paper can be considered another step in this direction, where
the notion of efficiency is formalized as universal consistency.

For convenience, in this paper we will refer to procedures producing ran-
domized predictive distributions as randomized predictive systems; in particu-
lar, conformal predictive systems are procedures producing conformal predic-
tive distributions, i.e., randomized predictive systems obtained by applying the
method of conformal prediction.

The main result of this paper (Theorem 31) is that there exists a univer-
sally consistent, or universal, conformal predictive system, in the sense that it
produces predictive distributions that are consistent under any probability dis-
tribution for one observation. The notion of consistency is used in an unusual
situation here, and our formalization is based on Belyaev’s [3, 4, 24] notion of
weakly approaching sequences of distributions. The construction of a universal
conformal predictive system adapts standard arguments for universal consis-
tency in classification and regression [25, 7, 11].

The importance of universal consistency is demonstrated in [27, Section 5];
namely, applying the expected utility maximization principle to the predictive
distributions produced by a universal predictive system leads, under natural
conditions, to asymptotically optimal decisions.

The main part of this paper starts, in Section 2, from definitions of several
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basic classes of predictive systems. The most important of those classes is that of
conformal predictive systems. The main result of the paper, Theorem 31 stated
in Section 4, requires a slight generalization of conformal predictive systems
(for which we retain the same name). Two simple versions of Theorem 31
are given in Section 3. The first version (Theorem 24) states the existence of
universal predictive systems in a class of predictive systems that is wider than
that of conformal predictive systems but still satisfies a small-sample property of
validity (albeit a weaker one); we refer to them as Mondrian predictive systems.
The other version of Theorem 31 given in Section 3 is even simpler and states the
existence of a universal probability forecasting system, which is deterministic
and not required to satisfy any small-sample properties of validity (Theorem 26).
In conclusion, Section 5 summarizes the paper and lists some natural directions
of further research.

Three appendices clarify main results of this paper and provide further in-
formation. Appendix A further explores the notion of universal consistency
making it more tangible. In particular, Theorem 31 implies that the Lévy
distance between the predictive distribution output by a universal conformal
predictive system and the true conditional distribution of the label of the test
object converges to zero. Appendix B explores another popular notion of va-
lidity for probability forecasting systems, marginal calibration, in relation to
conformal predictive systems. Finally, Appendix C briefly reviews another con-
formal counterpart of probability forecasting systems, Venn predictors, which
has been widely used in the case of classification. Venn predictors satisfy an in-
teresting additional property of validity as compared with conformal predictive
distributions.

The conference version of this paper was published as [26].

Remark 1. There is a widely studied sister notion to predictive distributions
with a similar small-sample guarantee of validity, namely confidence distribu-
tions: see, e.g., [33]. Both confidence and predictive distributions go back to
Fisher’s fiducial inference. Whereas, under the nonparametric IID model of this
paper, there are no confidence distributions, [32], [30], and this paper argue
that there is a meaningful theory of predictive distributions even under the IID
model.

2 Predictive distributions

This section defines several basic classes of predictive systems. We start in Sub-
section 2.1 from defining randomized predictive systems, which are required to
satisfy the small-sample property of validity under the IID model. Next, in
Subsection 2.2 we define conformal predictive systems, which are a subclass of
randomized predictive systems. Subsection 2.3 introduces another subclass of
randomized predictive systems, which is wider than the subclass of conformal
predictive systems of Subsection 2.2; the elements of this wider subclass are
called Mondrian predictive systems. One advantage of Mondrian predictive sys-
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tems is that a universal Mondrian predictive system is much easier to construct
than a universal conformal predictive system.

2.1 Randomized predictive distributions

In this subsection we give some basic definitions partly following [21] and [32].
Let X be a measurable space, which we will call the object space. The observa-
tion space is defined to be Z := X×R; its element z = (x, y), where x ∈ X and
y ∈ R, is interpreted as an observation consisting of an object x ∈ X and its
label y ∈ R. A typical example is where x is a description of a house, and y is
its price. The label is assumed to be a real number, and so we are dealing with
a problem of regression. Our task is, given training data consisting of observa-
tions zi = (zi, yi), i = 1, . . . , n, and a new (test) object xn+1 ∈ X, to predict the
corresponding label yn+1; the pair (xn+1, yn+1) will be referred to as the test
observation. We will be interested in procedures whose output is independent
of the ordering of the training data (z1, . . . , zn); therefore, the training data can
also be interpreted as a multiset rather than a sequence.

Let U be the uniform probability measure on the interval [0, 1].

Definition 2. LetQ : ∪∞n=1(Zn+1×[0, 1])→ [0, 1] be a measurable function. We
call it a randomized predictive system if it satisfies the following requirements:

R1 i For each n, each training data sequence (z1, . . . , zn) ∈ Zn, and each
test object xn+1 ∈ X, the function Q(z1, . . . , zn, (xn+1, y), τ) of y and
τ is monotonically increasing in both y and τ (i.e., it is monotonically
increasing in y for each τ , and it is monotonically increasing in τ for
each y).

ii For each n, each training data sequence (z1, . . . , zn) ∈ Zn, and each
test object xn+1 ∈ X, we have

lim
y→−∞

Q(z1, . . . , zn, (xn+1, y), 0) = 0, (1)

lim
y→∞

Q(z1, . . . , zn, (xn+1, y), 1) = 1.

R2 For each n, the distribution of Q, as function of random training obser-
vations z1 ∼ P ,. . . , zn ∼ P , a random test observation zn+1 ∼ P , and a
random number τ ∼ U , all assumed independent, is uniform, i.e.:

∀α ∈ [0, 1] : P (Q(z1, . . . , zn, zn+1, τ) ≤ α) = α. (2)

The function Q(z1, . . . , zn, (xn+1, ·), τ) is the predictive distribution (function)
output by Q for given training data z1, . . . , zn, test object xn+1, and τ ∈ [0, 1].

Requirement R1 says, essentially, that, as a function of y, Q is a distribution
function, apart from a slack caused by the dependence on the random number
τ . The size of the slack is

Q(z1, . . . , zn, (xn+1, y), 1)−Q(z1, . . . , zn, (xn+1, y), 0) (3)
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(remember that Q is monotonically increasing in τ ∈ [0, 1], according to require-
ment R1(i)). In typical applications the slack will be small unless there is little
training data; see Remark 15 for details.

Requirement R2 says, informally, that the predictive distributions agree with
the data-generating mechanism. It has a long history in the theory and practice
of forecasting. The review by Gneiting and Katzfuss [9] refers to it as proba-
bilistic calibration and describes it as critical in forecasting; [9, Section 2.2.3]
reviews the relevant literature.

Remark 3. Requirements R1 and R2 are the analogues (introduced in [19,
Chapter 12] and [21]) of similar requirements in the theory of confidence distri-
butions: see, e.g., [33, Definition 1] or [19, Chapter 3].

Definition 4. Let us say that a randomized predictive systemQ is consistent for
a probability measure P on Z if, for any bounded continuous function f : R→ R,∫

fdQn − EP (f | xn+1)→ 0 (n→∞) (4)

in probability, where:

� Qn is the predictive distribution Qn : y 7→ Q(z1, . . . , zn, (xn+1, y), τ) out-
put by Q as its forecast for the label yn+1 corresponding to the test object
xn+1 based on the training data (z1, . . . , zn), where zi = (xi, yi) for all i;

� EP (f | xn+1) is the conditional expectation of f(y) given x = xn+1 under
(x, y) ∼ P ;

� zi = (xi, yi) ∼ P , i = 1, . . . , n+1, and τ ∼ U , are assumed all independent.

It is clear that the notion of consistency given in Definition 4 does not depend
on the choice of the version of the conditional expectation EP (f | ·) in (4). The
integral in (4) is not quite standard since we did not require Qn to be exactly
a distribution function, so we understand

∫
fdQn as

∫
fdQ̄n with the measure

Q̄n on R defined by Q̄n((u, v]) := Qn(v+) − Qn(u+) for any interval (u, v] of
this form (nonempty, open on the left, and closed on the right) in R.

Definition 5. A randomized predictive system Q is universal, or universally
consistent, if it is consistent for any probability measure P on Z.

As already mentioned in Section 1, Definition 5 is based on Belyaev’s (see,
e.g., [4]). Our goal is construction of universal randomized predictive systems.

2.2 Conformal predictive distributions

A way of producing randomized predictive distributions under the IID model
has been proposed in [32]. This subsection reviews a basic version, and Subsec-
tion 4.1 introduces a simple extension.
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Definition 6. A conformity measure is a measurable function A : ∪∞n=1Z
n+1 →

R that is invariant with respect to permutations of the training observations, i.e.:
for any n, any sequence (z1, . . . , zn) ∈ Zn, any zn+1 ∈ Z, and any permutation
π of the set {1, . . . , n},

A(z1, . . . , zn, zn+1) = A
(
zπ(1), . . . , zπ(n), zn+1

)
.

The standard interpretation of a conformity measure A is that the value
A(z1, . . . , zn, zn+1) measures how well the new observation zn+1 conforms to the
comparison data (z1, . . . , zn). In the context of this paper, and conformal pre-
dictive distributions in general, A(z1, . . . , zn, zn+1), where zn+1 = (xn+1, yn+1),
measures how large the label yn+1 is, in view of the corresponding object xn+1

and comparison data z1, . . . , zn.

Definition 7. Given a conformity measure A, we define the corresponding
conformal transducer as

Q(z1, . . . , zn, (xn+1, y), τ) :=
1

n+ 1

∣∣{i = 1, . . . , n+ 1 | αyi < αyn+1

}∣∣
+

τ

n+ 1

∣∣{i = 1, . . . , n+ 1 | αyi = αyn+1

}∣∣ , (5)

where n ∈ {1, 2, . . .}, (z1, . . . , zn) ∈ Zn is training data, xn+1 ∈ X is a test
object, and for each y ∈ R the corresponding conformity scores αyi are defined
by

αyi := A(z1, . . . , zi−1, zi+1, . . . , zn, (xn+1, y), zi), i = 1, . . . , n,

αyn+1 := A(z1, . . . , zn, (xn+1, y)).
(6)

A function is a conformal transducer if it is the conformal transducer corre-
sponding to some conformity measure.

The usual interpretation of (5) is as a randomized p-value obtained when
testing the IID model for the training data extended by adding the test object
xn+1 combined with a postulated label y (cf. Remark 16 at the end of this
subsection). It is important in this definition that, for each postulated label y,
all elements of the augmented training data sequence (z1, . . . , zn, (xn+1, y)) are
treated symmetrically.

Definition 8. A conformal predictive system is a function that is both a confor-
mal transducer and a randomized predictive system. If Q is a conformal predic-
tive system, Q(z1, . . . , zn, (xn+1, ·), τ) are the corresponding conformal predic-
tive distributions (or, more fully, conformal predictive distribution functions).

Example 9. The simplest non-trivial conformal predictive system is a version of
the classical Dempster–Hill procedure (to use the terminology of [32]; Dempster
[6] referred to it as direct probabilities and Hill [12, 13] as Bayesian nonpara-
metric predictive inference, which was abbreviated to nonparametric predictive
inference by Coolen [1]). The conformity measure is

A(z1, . . . , zn, (xn+1, yn+1)) := yn+1, (7)
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so that it ignores the objects. Since the objects are ignored, we will write
yi in place of zi = (xi, yi) ∈ Z, omitting the objects from our notation. Now
suppose we are given training data y1, . . . , yn and are interested in the conformal
predictive distribution for the next label yn+1; for simplicity, we will assume that
y1, . . . , yn are all different. The conformity scores (6) are αyi = yi and αyn+1 = y,
and so the conformal predictive distribution is

Q(y1, . . . , yn, y, τ) =

{
(i+ τ)/(n+ 1) if y ∈ (y(i), y(i+1)), i = 0, . . . , n

(i− 1 + 2τ)/(n+ 1) if y = y(i), i = 1, . . . , n,

where y(1), . . . , y(n) is the sequence y1, . . . , yn sorted in the increasing order,
y(0) := −∞, and y(n+1) := ∞. A more intuitive (and equally informative)
representation can be given in terms of the intervals

Q(y1, . . . , yn, y) := [Q(y1, . . . , yn, y, 0), Q(y1, . . . , yn, y, 1)] ;

namely,

Q(y1, . . . , yn, y) ={
[i/(n+ 1), (i+ 1)/(n+ 1)] if y ∈ (y(i), y(i+1)), i = 0, . . . , n

[(i− 1)/(n+ 1), (i+ 1)/(n+ 1)] if y = y(i), i = 1, . . . , n.
(8)

For a further discussion of the Dempster–Hill procedure in the context of confor-
mal prediction, see [32]. For another example of a conformal predictive system
(depending on the objects in a simple but non-trivial way), see Example 13.

Remark 10. Requirement R2 in the previous subsection is sometimes referred
to as the frequentist validity of predictive or confidence distributions (see, e.g.,
[33] and [21]). It can be argued that there is no need to appeal to frequencies
in these and similar cases (see, e.g., [20]). However, the property of validity
enjoyed by conformal predictive systems is truly frequentist: for them R2 (see
(2)) can be strengthened to say that the random numbersQ(z1, . . . , zn, zn+1, τn),
n = 1, 2, . . ., are distributed uniformly in [0, 1] and independently, provided
zn ∼ P and τn ∼ U , n = 1, 2, . . ., are all independent [28, Theorem 8.1]. In
combination with the law of large numbers this implies, e.g., that for ε ∈ (0, 1)
the frequency of the event

Q(z1, . . . , zn, zn+1, τn) ∈
[ ε

2
, 1− ε

2

]
(i.e., the frequency of the central (1 − ε)-prediction interval covering the true
label) converges to 1 − ε as n → ∞. Notice that this frequentist conclusion
depends on the independence of Q(z1, . . . , zn, zn+1, τn) for different n; R2 alone
is not sufficient.

For a natural class of conformity measures the corresponding conformal
transducers are automatically conformal predictive systems.
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Definition 11. A conformity measure A is monotonic if A(z1, . . . , zn+1) is:

� monotonically increasing in yn+1, namely

yn+1 ≤ y′n+1 =⇒ A(z1, . . . , zn, (xn+1, yn+1)) ≤ A(z1, . . . , zn, (xn+1, y
′
n+1));

� monotonically decreasing in y1, namely

y1 ≤ y′1 =⇒ A((x1, y1), z2, . . . , zn, zn+1) ≥ A((x1, y
′
1), z2, . . . , zn, zn+1)

(which is equivalent to being monotonically decreasing in yi for any i =
2, . . . , n).

Let An be the restriction of A to Zn+1.

Lemma 12. Suppose a monotonic conformity measure A satisfies the following
three conditions:

� for all n, all training data sequences (z1, . . . , zn), and all test objects xn+1,

inf
y
A(z1, . . . , zn, (xn+1, y)) = inf An, (9)

sup
y
A(z1, . . . , zn, (xn+1, y)) = supAn; (10)

� for each n, the infy in (9) is either attained for all (z1, . . . , zn) and xn+1

or not attained for all (z1, . . . , zn) and xn+1;

� for each n, the supy in (10) is either attained for all (z1, . . . , zn) and xn+1

or not attained for all (z1, . . . , zn) and xn+1.

Then the conformal transducer corresponding to A is a randomized predictive
system.

As usual, the two inf in (9) are allowed to take value −∞, and the two sup in
(10) are allowed to take value∞. The conditions of Lemma 12 will be satisfied if
(9) and (10) hold with inf An and supAn replaced by −∞ and ∞, respectively;
we will usually use this simplified version of the lemma (except for the proof of
our main result, where we will need a [0, 1]-valued conformity measure). Before
proving Lemma 12, we will give less trivial examples of conformal predictive
systems (cf. Example 9).

Example 13. In this example we will modify the conformity measure (7) of
the Dempster–Hill procedure by making it dependent, in a very simple way, on
the objects; it will satisfy all conditions of Lemma 12 (with −∞ and ∞ on the
right-hand sides of (9) and (10), respectively). Namely, we set

A
(
(x1, y1), . . . , (xn, yn), (xn+1, yn+1)

)
:= yn+1 − ŷn+1, (11)

where ŷn+1 is the label yi corresponding to the nearest neighbour xi of xn+1:
i ∈ arg mink∈{1,...,n} ρ(xk, xn+1), ρ being a measurable metric on the object
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space X. In this example we only consider the case where the pairwise distances
ρ(xi, xj), i, j ∈ {1, . . . , n+1}, are all different; the definition will be completed in
Example 32. For each i ∈ {1, . . . , n}, let ŷi be the label yj corresponding to the
nearest neighbour xj to xi among x1, . . . , xn: j ∈ arg mink∈{1,...,n}\{i} ρ(xk, xi).
Let I ⊆ {1, . . . , n} be the set of i ∈ {1, . . . , n} such that xi is closer to xn+1 than
to any of xj , j ∈ {1, . . . , n}\{i}. The conformity scores (6) are αyn+1 = y− ŷn+1,
where ŷn+1 is defined as in (11), αyi = yi − y if i ∈ I, and αyi = yi − ŷi if
i ∈ {1, . . . , n} \ I. Solving the equation αyi = αyn+1 (cf. (5)) gives y = Ci :=
(ŷn+1 + yi)/2 if i ∈ I and

y = Ci := ŷn+1 + (yi − ŷi) (12)

if i ∈ {1, . . . , n} \ I. Assuming, for simplicity, that C1, . . . , Cn are all different,
we obtain the conformal predictive distribution

Q(y1, . . . , yn, y) ={
[i/(n+ 1), (i+ 1)/(n+ 1)] if y ∈ (C(i), C(i+1)), i = 0, . . . , n

[(i− 1)/(n+ 1), (i+ 1)/(n+ 1)] if y = C(i), i = 1, . . . , n
(13)

(cf. (8)), where C(1), . . . , C(n) is the sequence C1, . . . , Cn sorted in the increasing
order, C(0) := −∞, and C(n+1) :=∞.

The naive nearest-neighbour modification of the Dempster–Hill predictive
distribution (8) would be (13) with all Ci defined by (12). The conformal
predictive distribution is different only for i ∈ I, and I is typically a small
set (its expected size is 1). For such i the conformal predictive distribution
modifies the residual yi− ŷi in (12) by replacing it by (yi− ŷn+1)/2. Intuitively,
the nearest neighbour to xi in the augmented set {x1, . . . , xn+1} is xn+1, so
we would like to use yn+1 instead of ŷi; but since we do not know yn+1 as
yet, we have to settle for its estimate ŷn+1, and the resulting loss of accuracy
is counterbalanced by halving the new residual. This seemingly minor further
modification ensures the small-sample property of validity R2.

Example 14. Another natural conformity measure is (11) with ŷn+1 being the
Least Squares prediction of yn+1 computed for the object xn+1 given z1, . . . , zn
as training data; this makes yn+1 − ŷn+1 the deleted residual for yn+1. Al-
ternative definitions use ordinary residuals (where (xn+1, yn+1) is added to the
training data) and studentized residuals (which are half-way between deleted
and ordinary residuals, in a certain sense). These conformity measures give
rise to what is called Least Squares Prediction Machines in [32]. Only the
studentized version is a randomized predictive system; the other two versions
satisfy property R1(i) only under the assumption of the absence of high-leverage
points. See [32] for an in-depth study of properties of Least Squares Prediction
Machines, especially of their asymptotic efficiency under a standard Gaussian
linear model. Kernelized versions are studied in [30].

Remark 15. The degree to which a randomized predictive system is affected
by randomness, for given training data (z1, . . . , zn), test object xn+1, and postu-
lated label y, is (3). As already mentioned, in interesting cases this difference will
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be small. For example, for the Dempster–Hill predictive system (Example 9),
the nearest neighbour predictive system (Example 13), and Least Squares Pre-
diction Machines (Example 14), the difference (3) is 1/(n + 1) except for at
most n values of y, apart from pathological cases (see, e.g., (8) and (13)). A
randomized predictive system can be universal only if the difference (3) is small
with high probability.

Proof of Lemma 12. We need to check requirements R1 and R2. R2 is the stan-
dard property of validity for conformal transducers (see, e.g., [28, Theorem 8.1]).
The intuition behind the proof of this property is given in Remark 16 at the
end of this subsection.

The second statement of R1(i) is that (5) is monotonically increasing in τ ;
this follows from (5) being a linear function of τ with a nonnegative slope (the
slope is in fact always positive as i = n+ 1 is allowed).

The first statement of R1(i) is that (5) is monotonically increasing in y. We
can rewrite (5) as

Q(z1, . . . , zn, (xn+1, y), τ) =
1

n+ 1

n+1∑
i=1

(
1{αy

i<α
y
n+1} + τ1{αy

i =α
y
n+1}

)
, (14)

where 1{E} stands for the indicator function of a property E, and it suffices to
prove that each addend in (14) is monotonically increasing in y; we will assume
i ≤ n (the case i = n + 1 is trivial). This follows from αyi being monotonically
decreasing in y and αyn+1 being monotonically increasing in y, and therefore,

1{αy
i<α

y
n+1} + τ1{αy

i =α
y
n+1}

taking all or some of the values 0, τ , 1 in this order as y increases.
For concreteness, we will prove only the first statement of R1(ii), (1). Fix

an n. First let us assume that the infy in (9) is attained for all (z1, . . . , zn) and
xn+1. We will have αyn+1 = inf An for sufficiently small y, and plugging τ := 0
into (5) will give 0, as required. It remains to consider the case where the infy in
(9) is not attained for any (z1, . . . , zn) and xn+1. Since mini=1,...,n α

0
i > inf A,

we will have, for sufficiently small y,

αyn+1 < min
i=1,...,n

α0
i ≤ min

i=1,...,n
αyi ,

and so plugging τ := 0 into (5) will again give 0.

Remark 16. The proof of Lemma 12 refers to [28] for a complete proof of R2.
However, the intuition behind the proof is easy to explain. Setting τ := 1 and
assuming that there are no ties among the conformity scores, the right-hand side
of (5) evaluated at y := yn+1 is the rank of the last observation (xn+1, yn+1)
in the augmented training data (z1, . . . , zn, (xn+1, yn+1)). Under the IID model
(and the weaker assumption of the exchangeability of all the n+1 observations),
the rank is uniformly distributed in the set {1, . . . , n+1}. Dividing by n+1 and
making τ ∼ U leads to (5) (evaluated at y := yn+1) being uniformly distributed
in [0, 1] (even if some conformity scores are tied). This makes (5) a bona fide
randomized p-value for testing the IID model.
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2.3 Mondrian predictive distributions

First we simplify our task by allowing Mondrian predictive distributions, which
are more general than conformal predictive distributions but enjoy the same
property of validity R2.

Definition 17. A taxonomy κ is an equivariant measurable function that as-
signs to each sequence (z1, . . . , zn, zn+1) ∈ Zn+1, for each n ∈ {1, 2, . . .}, an
equivalence relation ∼ on {1, . . . , n+ 1}.

The requirement that κ be equivariant will be spelled out in Definition 18.
The idea behind a taxonomy is to determine the comparison class for computing
the p-value (5); instead of using all available data we only use the observations
that are equivalent to the test observation (intuitively, similar to it in some
respect, with the aim of making the p-value more relevant).

The notation (i ∼ j | z1, . . . , zn+1), where i, j ∈ {1, . . . , n+ 1}, means that i
is equivalent to j under the equivalence relation assigned by κ to (z1, . . . , zn+1)
(where κ is always clear from the context and not reflected in our notation).
The measurability of κ means that, for all n, i, and j, the set {(z1, . . . , zn+1) |
(i ∼ j | z1, . . . , zn+1)} is measurable.

Definition 18. A permutation π of {1, . . . , n + 1} respects an equivalence re-
lation ∼ if π(i) ∼ i for all i = 1, . . . , n + 1. The requirement that a Mondrian
taxonomy κ be equivariant means that, for each n, each (z1, . . . , zn+1) ∈ Zn+1,
and each permutation π of {1, . . . , n + 1} respecting the equivalence relation
assigned by κ to (z1, . . . , zn+1), we have

(i ∼ j | z1, . . . , zn+1) =⇒ (π(i) ∼ π(j) | zπ(1), . . . , zπ(n+1)). (15)

Remark 19. The notion of taxonomy used in this paper is introduced in [31]
under the name of Venn taxonomies and subsumes Mondrian taxonomies as
defined in [28, Section 4.5], Venn taxonomies as defined in [28, Section 6.3], and
n-taxonomies as defined in [2, Section 2.2]. A narrower notion of taxonomy
requires that (15) hold for all permutations π of {1, . . . , n + 1}; the taxonomy
of Subsection 3.2 belongs to this narrower class.

Definition 20. Define

κ(j | z1, . . . , zn+1) := {i ∈ {1, . . . , n+ 1} | (i ∼ j | z1, . . . , zn+1)}

to be the equivalence class of j. The Mondrian transducer corresponding to a
taxonomy κ and a conformity measure A is

Q(z1, . . . , zn, (xn+1, y), τ)

:=

∣∣{i ∈ κ(n+ 1 | z1, . . . , zn, (xn+1, y)) | αyi < αyn+1

}∣∣
|κ(n+ 1 | z1, . . . , zn, (xn+1, y))|

+ τ

∣∣{i ∈ κ(n+ 1 | z1, . . . , zn, (xn+1, y)) | αyi = αyn+1

}∣∣
|κ(n+ 1 | z1, . . . , zn, (xn+1, y))|

, (16)
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where n ∈ {1, 2, . . .}, (z1, . . . , zn) ∈ Zn is training data, xn+1 ∈ X is a test
object, and for each y ∈ Y the corresponding conformity scores αyi and αyn+1

are still defined by (6). A function is a Mondrian transducer if it is the Mon-
drian transducer corresponding to some taxonomy and conformity measure. A
Mondrian predictive system is a function that is both a Mondrian transducer
and a randomized predictive system, as defined in Subsection 2.1.

Notice that the denominator in (16) is always positive. The Mondrian p-
value (16) differs from the original p-value (5) in that it uses only the equivalence
class of the test observation (with a postulated label) as comparison class. See
[28, Fig. 4.3], for the origin of the attribute “Mondrian”.

Lemma 21. If a taxonomy does not depend on the labels and a conformity
measure is monotonic and satisfies the three conditions of Lemma 12, the corre-
sponding Mondrian transducer will be a randomized (and, therefore, Mondrian)
predictive system.

Proof. As in Lemma 12, the conformity scores (defined by (6)) αyi are monoton-
ically increasing in y when i = n + 1 and monotonically decreasing in y when
i = 1, . . . , n. Since the equivalence class of n+ 1 in (16) does not depend on y,
the value of (16) is monotonically increasing in y: it suffices to replace (14) by

Q(z1, . . . , zn, (xn+1, y), τ) =
1

|κ(n+ 1 | z1, . . . , zn, (xn+1, y))|∑
i∈κ(n+1|z1,...,zn,(xn+1,y))

(
1{αy

i<α
y
n+1} + τ1{αy

i =α
y
n+1}

)
in the argument of Lemma 12. In combination with the obvious monotonicity in
τ , this proves R1(i). R1(ii) is demonstrated as in Lemma 12. The proof of R2 is
standard and valid for any taxonomy (see, e.g., [28, Section 8.7]); the intuition
behind it is given in Remark 22 below.

The properties listed in Lemma 21 will be satisfied by the conformity measure
and taxonomy defined in Subsection 3.2 to prove Theorem 24, a weaker form of
the main result of this paper.

Remark 22. Remark 16 can be easily adapted to Mondrian predictive systems.
For τ := 1 and assuming no ties among the conformity scores, the right-hand
side of (16) at y := yn+1 is the rank of the last observation (xn+1, yn+1) in its
equivalence class divided by the size of the equivalence class. Let us introduce
another notion of equivalence: sequences (z1, . . . , zn+1) and (z′1, . . . , z

′
n+1) in

Zn+1 are equivalent if

(z′1, . . . , z
′
n+1) =

(
zπ(1), . . . , zπ(n+1)

)
for some permutation π of {1, . . . , n+ 1} that respects the equivalence relation
assigned by κ to (z1, . . . , zn+1); this is indeed an equivalence relation since κ is
equivariant. The stochastic mechanism generating the augmented training data
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(the IID model) can be represented as generating an equivalence class (which is
always finite) and then generating the actual sequence of observations in Zn+1

from the uniform probability distribution on the equivalence class. Already
the second step ensures that the rank is distributed uniformly in the set of
its possible values, which leads to (16) being uniformly distributed in [0, 1],
provided y := yn+1 and τ ∼ U .

Remark 23. One advantage of conformal predictive systems over Mondrian
predictive systems is that the former satisfy a stronger version of R2, as ex-
plained in Remark 10.

3 Basic results on universal consistency

A simplified version of the main result of this paper is given in Subsection 3.1
as Theorem 24, and it states the existence of Mondrian predictive systems that
are universal. An example of a universal Mondrian predictive system is given in
Subsection 3.2, and Subsection 3.3 is devoted to a short proof that this predictive
system is indeed universal. Subsection 3.4 gives an even shorter proof of the
existence of a universal probability forecasting system (Theorem 26).

3.1 Universal Mondrian predictive systems and probabil-
ity forecasting systems

Our results (Theorems 24, 26, and 31) will assume that the object space X
is standard Borel (see, e.g., [14, Definition 12.5]); the class of standard Borel
spaces is very wide and contains, e.g., all Euclidean spaces Rd. In this subsection
we start from an easy result (Theorem 24) and its adaptation to deterministic
forecasting (Theorem 26).

Theorem 24. If the object space X is standard Borel, there exists a universal
Mondrian predictive system.

In Subsection 3.2 we will construct a Mondrian predictive system that will
be shown in Subsection 3.3 to be universal.

Belyaev’s generalization of weak convergence can also be applied in the situ-
ation where we do not insist on small-sample validity; for completeness, we will
state a simple corollary of the proof of Theorem 24 covering this case (Theo-
rem 26 below).

Definition 25. A probability forecasting system is a measurable function Q :
∪∞n=1Z

n+1 → [0, 1] such that:

� for each n, each training data sequence (z1, . . . , zn) ∈ Zn, and each test
object xn+1 ∈ X, Q(z1, . . . , zn, (xn+1, y)) is monotonically increasing in y;

� for each n, each training data sequence (z1, . . . , zn) ∈ Zn, and each test
object xn+1 ∈ X, we have

lim
y→−∞

Q(z1, . . . , zn, (xn+1, y)) = 0,

13



lim
y→∞

Q(z1, . . . , zn, (xn+1, y)) = 1;

� for each n, each training data sequence (z1, . . . , zn) ∈ Zn, and each test
object xn+1 ∈ X, the function Q(z1, . . . , zn, (xn+1, ·)) is right-continuous
(and therefore, a bona fide distribution function).

A probability forecasting system Q is universal, or universally consistent, if, for
any probability measure P on Z and any bounded continuous function f : R→
R, (4) holds in probability, where Qn : y 7→ Q(z1, . . . , zn, (xn+1, y)), assuming
zn ∼ P are independent.

Theorem 26. If the object space X is standard Borel, there exists a universal
probability forecasting system.

Theorem 26 will be proved in Subsection 3.4.

3.2 Histogram Mondrian predictive systems

Remember that the measurable space X is assumed to be standard Borel. Since
every standard Borel space is isomorphic to R or a countable set with discrete
σ-algebra (combine Theorems 13.6 and 15.6 in [14]), X is isomorphic to a Borel
subset of R. Therefore, we can set, without loss of generality, X := R, which
we will do.

Definition 27. Fix a monotonically decreasing sequence hn of powers of 2 such
that hn → 0 and nhn → ∞ as n → ∞. Let Pn be the partition of X into the
intervals [khn, (k+ 1)hn), where k are integers. We will use the notation Pn(x)
for the interval (cell) of Pn that includes x ∈ X. Let A be the conformity
measure defined by A(z1, . . . , zn, zn+1) := yn+1, where yn+1 is the label in zn+1.
This conformity measure will be called the trivial conformity measure. The
taxonomy under which (i ∼ j | z1, . . . , zn+1) is defined to mean xj ∈ Pn(xi) is
called the histogram taxonomy.

Lemma 28. The trivial conformity measure is monotonic and satisfies all other
conditions of Lemma 12. Therefore, the Mondrian transducer corresponding to
it and the histogram taxonomy is a randomized predictive system.

Proof. The infimum on the left-hand side of (9) is always −∞ and never at-
tained, and the supremum on the left-hand side of (10) is always ∞ and never
attained. By definition, the histogram taxonomy does not depend on the labels.
It remains to apply Lemma 21.

Definition 29. The Mondrian predictive system corresponding to the trivial
conformity measure and histogram taxonomy is called the histogram Mondrian
predictive system.

The histogram Mondrian predictive system will be denoted Q in the next
subsection, where we will see that it is universal.
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3.3 Proof of Theorem 24

Let us fix a probability measure P on Z; our goal is to prove the convergence
(4) in probability. We fix a version of the conditional expectation EP (f | x),
x ∈ X, and use it throughout the rest of this paper. We can split (4) into two
tasks:

EP (f | Pn(xn+1))− EP (f | xn+1)→ 0, (17)∫
fdQn − EP (f | Pn(xn+1))→ 0, (18)

where EP (f | Pn(xn+1)) is the conditional expectation of f(y) given x ∈
Pn(xn+1) under (x, y) ∼ P .

The convergence (17) follows by Paul Lévy’s martingale convergence theorem
[23, Theorem 7.4.3]. Paul Lévy’s theorem is applicable since, by our assumption,
the partitions Pn are nested (as hn are powers of 2) and, therefore, the random
variables EP (f | Fn) form a martingale, where Fn is the σ-algebra on X × R
generated by Pn. This theorem implies EP (f | Pn(x))−EP (f | x)→ 0 P -almost
surely and, therefore, in probability when (x, y) ∼ P . The last convergence is
clearly equivalent to (17) (in P∞-probability).

It remains to prove (18). Let ε > 0; we will show that∣∣∣∣∫ fdQn − EP (f | Pn(xn+1))

∣∣∣∣ ≤ ε (19)

with high probability for large enough n. By [7, the proof of Theorem 6.2],
the number N of observations zi = (xi, yi) among z1, . . . , zn such that xi ∈
Pn(xn+1) tends to infinity in probability. Therefore, it suffices to prove that
(19) holds with high conditional probability given N > K for large enough K.
Moreover, it suffices to prove that, for large enough K, (19) holds with high
conditional probability given x1, . . . , xn+1 such that at least K of objects xi
among x1, . . . , xn belong to Pn(xn+1). (The remaining randomness is in the
labels.) Let I ⊆ {1, . . . , n} be the indices of those objects; remember that our
notation for |I| is N . By the law of large numbers, the probability (over the
random labels) of ∣∣∣∣∣ 1

N

∑
i∈I

f(yi)− EP (f | Pn(xn+1))

∣∣∣∣∣ ≤ ε/2 (20)

can be made arbitrarily high by increasing K. It remains to notice that∫
fdQn =

1

N + 1

∑
i∈I

f(yi); (21)

this follows from Q̄n (in the notation of Subsection 2.1) being concentrated at
the points yi, i ∈ I, and assigning weight ai/(N + 1) to each such yi, where ai
is its multiplicity in the multiset {yi | i ∈ I} (our use of the same notation for
sets and multisets is always counterbalanced by using unambiguous descriptors).
Interestingly,

∫
fdQn in (21) does not depend on the random number τ .
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3.4 Proof of Theorem 26

Define a probability forecasting system Q by the requirement that

Qn(·) := Q(z1, . . . , zn, (xn+1, ·))

be the distribution function of the empirical probability measure of the multiset
{yi | i ∈ I}, in the notation of the previous subsection. In other words, the
probability measure corresponding to Qn is concentrated on the set {yi | i ∈ I}
and assigns the weight ai/N to each element yi of this set, where ai is its
multiplicity in the multiset {yi | i ∈ I}. (This is very similar to Q̄n at the end
of the previous subsection.) If I = ∅, let Qn(·) be the distribution function of the
probability measure concentrated at 0. We still have (20) with high probability,
and we have (21) with N in place of N + 1.

4 Main result

The main result of this paper, Theorem 31, is stated in Subsection 4.1. It
asserts the existence of universal conformal predictive systems. An example of
such a conformal predictive system is given in Subsection 4.2, and it is shown
in Subsection 4.3 to be universal. One advantage of Theorem 31 over the result
of Subsection 3.1 (Theorem 24) is that, as compared with Mondrian predictive
systems, conformal predictive systems enjoy a stronger small-sample property
of validity (see Remarks 10 and 23).

4.1 Universal conformal predictive systems

In this subsection we will introduce a clearly innocuous extension of conformal
predictive systems allowing further randomization. In particular, the extension
will not affect the small-sample property of validity, R2 (or its stronger version
given in Remark 10).

First we extend the notion of a conformity measure.

Definition 30. A randomized conformity measure is a measurable function
A : ∪∞n=1(Z × [0, 1])n+1 → R that is invariant with respect to permutations of
extended training observations: for any n, any sequence (z1, . . . , zn+1) ∈ Zn+1,
any sequence (θ1, . . . , θn+1) ∈ [0, 1]n+1, and any permutation π of {1, . . . , n},

A
(
(z1, θ1), . . . , (zn, θn), (zn+1, θn+1)

)
= A

(
(zπ(1), θπ(1)), . . . , (zπ(n), θπ(n)), (zn+1, θn+1)

)
.

This is essentially Definition 6 of Subsection 2.2, except that each observation
is extended by adding a number (later it will be generated randomly from U)
that can be used for tie-breaking. We can still use the same definition, given
by the right-hand side of (5), of the conformal transducer corresponding to a
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randomized conformity measure A, except for replacing each observation in (6)
by an extended observation:

αyi := A
(
(z1, θ1), . . . , (zi−1, θi−1), (zi+1, θi+1), . . . , (zn, θn), (xn+1, y, θn+1),

(zi, θi)
)
, i = 1, . . . , n,

αyn+1 := A
(
(z1, θ1), . . . , (zn, θn), (xn+1, y, θn+1)

)
.

Notice that our new definition of conformal transducers is a special case of
the old definition, in which the original observation space Z is replaced by the
extended observation space Z× [0, 1]. An extended observation (z, θ) = (x, y, θ)
will be interpreted to consist of an extended object (x, θ) and a label y. The
main difference from the old framework is that now we are only interested in the
probability measures on Z× [0, 1] that are the product of a probability measure
P on Z and the uniform probability measure U on [0, 1].

The definitions of randomized predictive systems and monotonic conformity
measures generalize by replacing objects xj by extended objects (xj , θj). We still
have Lemma 12. Conformal predictive systems are defined literally as before.

Theorem 31. Suppose the object space X is standard Borel. There exists a
universal conformal predictive system.

In Subsection 4.2 we will construct a conformal predictive system that will
be shown in Subsection 4.3 to be universal. The corresponding randomized
conformity measure will be monotonic and satisfy all the conditions of Lemma 12
(with objects replaced by extended objects).

Example 32. We can use the notion of a randomized conformity measure to
complete the definition in Example 13. Now we drop the assumption that the
pairwise distances among x1, . . . , xn+1 are all different. We can use the same
conformity measure (11), except that now the index j of the nearest neighbour
xj of xi, i ∈ {1, . . . , n + 1}, is chosen randomly from the uniform probability
measure on the set arg mink∈{1,...,n}\{i} ρ(xk, xi).

4.2 Histogram conformal predictive systems

In this subsection we will use the same partitions Pn of X = R as in Subsec-
tion 3.2.

Definition 33. The histogram conformity measure is defined to be the random-
ized conformity measure A with A((z1, θ1), . . . , (zn, θn), (zn+1, θn+1)) defined
as a/N , where N is the number of objects among x1, . . . , xn that belong to
Pn(xn+1) and a is essentially the rank of yn+1 among the labels corresponding
to those objects; formally,

a := |{i = 1, . . . , n | xi ∈ Pn(xn+1), (yi, θi) ≤ (yn+1, θn+1)}| ,
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where ≤ refers to the lexicographic order (so that (yi, θi) ≤ (yn+1, θn+1) means
that either yi < yn+1 or both yi = yn+1 and θi ≤ θn+1). If N = 0, set, e.g.,

A
(
(z1, θ1), . . . , (zn, θn), (zn+1, θn+1)

)
:=

{
1 if yn+1 ≥ 0

0 otherwise.

Since the histogram conformity measure is monotonic and satisfies all other
conditions of Lemma 12 (where now both inf and sup are always attained as
0 and 1, respectively), the corresponding conformal transducer is a conformal
predictive system. In the next subsection we will show that it is universal.

4.3 Proof of Theorem 31

The proof in this subsection is an elaboration of the proof of Theorem 24 in
Subsection 3.3. The difference is that now we have a different definition of Qn.
It suffices to show that (19) holds with probability at least 1−ε for large enough
n, where ε > 0 is a given (arbitrarily small) positive constant. In view of (20),
it suffices to prove that ∣∣∣∣∣

∫
fdQn −

1

N

∑
i∈I

f(yi)

∣∣∣∣∣ ≤ ε/2 (22)

holds with probability at least 1− ε/2 for large enough n. In this subsection we
are using the notation introduced in Subsection 3.3, such as N and I.

On two occasions we will use the following version of Markov’s inequality
applicable to any probability space (Ω,F ,P).

Lemma 34. Let G be a sub-σ-algebra of F and E ∈ F be an event. For any
positive constants δ1 and δ2, if P(E) ≥ 1 − δ1δ2, then P(E | G) > 1 − δ1 with
probability at least 1− δ2.

Proof. Assuming P(E) ≥ 1− δ1δ2,

P
(
P(E | G) ≤ 1− δ1

)
= P

(
P(Ec | G) ≥ δ1

)
≤ E (P(Ec | G))

δ1
=

P(Ec)

δ1
≤ δ1δ2

δ1
= δ2,

where Ec is the complement of E and the first inequality in the chain is a special
case of Markov’s.

Set C := sup |f |∨10. Remember that ε > 0 is a given positive constant. Let
B be so large that y ∈ [−B,B] with probability at least 1 − 0.001ε2/C when
(x, y) ∼ P . This is the first corollary of Lemma 34 that we will need:

Lemma 35. For a large enough n, the probability (over the choice of
z1, . . . , zn, xn+1) of the fraction of yi, i ∈ I, satisfying yi ∈ [−B,B] to be
more than 1− 0.02ε/C is at least 1− 0.11ε.
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Proof. By Lemma 34 we have

P (P(y ∈ [−B,B] | x ∈ Pn(x′)) > 1− 0.01ε/C) ≥ 1− 0.1ε, (23)

where the inner P is over (x, y) ∼ P and the outer P is over x′ ∼ PX, PX being
the marginal distribution of P on the object space X. To obtain the statement
of the lemma it suffices to combine (23) with the law of large numbers.

Since f is uniformly continuous over [−B,B], there is a partition

−B = y∗0 < y∗1 < · · · < y∗m < y∗m+1 = B

of the interval [−B,B] such that

max
y∈[y∗j ,y∗j+1]

f(y)− min
y∈[y∗j ,y∗j+1]

f(y) ≤ 0.01ε (24)

for j = 0, 1, . . . ,m. Without loss of generality we will assume that y ∈
{y∗0 , . . . , y∗m+1} with probability zero when (x, y) ∼ P . We will also assume,
without loss of generality, that m > 10.

Along with the conformal predictive distribution Qn we will consider the
empirical distribution function Q∗n of the multiset {yi | i ∈ I} (as defined in
Subsection 3.4, where it was denoted Qn); it exists only when N > 0. The next
lemma will show that Qn is typically close to Q∗n. Let K be an arbitrarily large
positive integer.

Lemma 36. For sufficiently large n, Qn(y∗j ) and Q∗n(y∗j ) (both exist and)
differ from each other by at most 1/K + 0.11ε/C(m + 1) + 1/n for all j =
0, 1, . . . ,m+ 1 with probability (over the choice of z1, . . . , zn, xn+1 and random
numbers τ, θ1, . . . , θn+1) at least 1− 0.11ε.

Proof. We can choose n so large that N ≥ K with probability at least 1 −
0.01ε2/C(m+ 1)(m+ 2). By Lemma 34, for such n the conditional probability
that N ≥ K given x1, . . . , xn is at least 1−0.1ε/C(m+1) with probability (over
the choice of x1, . . . , xn) at least 1− 0.1ε/(m + 2). Moreover, we can choose n
so large that the fraction of xi, i = 1, . . . , n, which have at least K − 1 other xi,
i = 1, . . . , n, in the same cell of Pn is at least 1−0.11ε/C(m+1) with probability
at least 1− 0.11ε/(m+ 2) (indeed, we can choose n satisfying the condition in
the previous sentence and generate sufficiently many new observations).

Let us fix j ∈ {0, 1, . . . ,m + 1}. We will show that, for sufficiently large n,
Qn(y∗j ) and Q∗n(y∗j ) differ from each other by at most 1/K+0.11ε/C(m+1)+1/n
with probability at least 1 − 0.11ε/(m + 2). We will only consider the case
N > 0; we will be able to do so since the probability that N = 0 tends to 0 as
n→∞. The conformity score of the extended test observation (xn+1, y

∗
j , θn+1)

with the postulated label y∗j is, almost surely, a/N , where a is the number of
observations among (xi, yi), i ∈ I, satisfying yi ≤ y∗j . (We could have written
yi < y∗j since we assumed earlier that y = y∗j with probability zero.) If a cell
of Pn contains at least K elements of the multiset {x1, . . . , xn}, the percentage
of elements of this cell with conformity score less than a/N is, almost surely,
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between a/N −1/K and a/N +1/K; this remains true if “less than” is replaced
by “at most”. (It is here that we are using the fact that our conformity measure
is randomized and, therefore, conformity scores are tied with probability zero.)
And at most a fraction of 0.11ε/C(m+1) of elements of the multiset {x1, . . . , xn}
are not in such a cell, with probability at least 1 − 0.11ε/(m + 2). Therefore,
the overall percentage of elements of the multiset {x1, . . . , xn} with conformity
score less than a/N is between a/N − 1/K − 0.11ε/C(m+ 1) and a/N + 1/K +
0.11ε/C(m + 1), with probability at least 1 − 0.11ε/(m + 2); this remains true
if “less than” is replaced by “at most”. Comparing this with the definition (5),
we can see that Qn(y∗j ) is between a/N − 1/K − 0.11ε/C(m + 1) − 1/n and
a/N + 1/K+ 0.11ε/C(m+ 1) + 1/n, with probability at least 1−0.11ε/(m+ 2).
It remains to notice that Q∗n(y∗j ) = a/N almost surely.

Now we are ready to complete the proof of the theorem. For sufficiently
large n, we can transform the left-hand side of (22) as follows (as explained
later):∣∣∣∣∣

∫
fdQn −

1

N

∑
i∈I

f(yi)

∣∣∣∣∣ =

∣∣∣∣∫ fdQn −
∫
fdQ∗n

∣∣∣∣ (25)

≤

∣∣∣∣∣
∫
(−B,B]

fdQn −
∫
(−B,B]

fdQ∗n

∣∣∣∣∣ (26)

+ C
(
Q∗n(−B) + 1−Q∗n(B) +Qn(−B) + 1−Qn(B)

)
≤

∣∣∣∣∣
m∑
i=0

f(y∗i )
(
Qn(y∗i+1)−Qn(y∗i )

)
−

m∑
i=0

f(y∗i )
(
Q∗n(y∗i+1)−Q∗n(y∗i )

)∣∣∣∣∣ (27)

+ 0.02ε+ C

(
0.08

ε

C
+

2

K
+

0.22ε

C(m+ 1)
+

2

n

)
≤

m∑
i=0

|f(y∗i )|
∣∣Qn(y∗i+1)−Q∗n(y∗i+1)−Qn(y∗i ) +Q∗n(y∗i )

∣∣+ 0.2ε (28)

≤
m∑
i=0

|f(y∗i )|
(

2

K
+

0.22ε

C(m+ 1)
+

2

n

)
+ 0.2ε (29)

≤ 2C(m+ 1)

K
+ 0.42ε+

2C(m+ 1)

n
≤ 0.5ε. (30)

The inequality in line (26) holds always. The inequality in line (27) holds with
probability (over the choice of z1, . . . , zn, xn+1, and random numbers τ and
θ1, . . . , θn+1) at least 1 − 0.11ε − 0.11ε = 1 − 0.22ε by (24) and Lemmas 35
and 36: the addend 0.02ε arises by (24) from replacing integrals by sums, the
addend 0.08ε/C is four times the upper bound on Q∗n(−B), or 1−Q∗n(−B), given
by Lemma 35 (the factor of four arises from bounding Q∗n(−B), 1 − Q∗n(−B),
Qn(−B), and 1 − Qn(−B)), and the expression 2/K + 0.22ε/C(m + 1) + 2/n
arises from applying Lemma 36 to reduce bounding Qn(−B) and 1 −Qn(−B)
to bounding Q∗n(−B) and 1−Q∗n(−B), respectively. The inequality in line (28)
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holds for sufficiently large K and n. The inequality in line (29) holds with
probability at least 1 − 0.11ε by Lemma 36, but this probability has already
been accounted for. And finally, the second inequality in line (30) holds for
sufficiently large K and n. Therefore, the whole chain (25)–(30) holds with
probability at least 1− 0.22ε ≥ 1− ε/2. This proves (22), which completes the
overall proof.

To avoid any ambiguity, this paragraph will summarize the roles of ε, B, m,
K, and n in this proof. First we fix a positive constant ε > 0 (which, however,
can be arbitrarily small). Next we choose B, sufficiently large for the given ε,
and after that, a sufficiently fine partition of [−B,B] of size m. We then choose
K, which should be sufficiently large for the given ε and partition. Finally, we
choose n, which should be sufficiently large for the given ε, partition, and K.

5 Conclusion

This paper constructs a hierarchy of universally consistent predictive systems,
where the notion of universal consistency is based on Belyaev’s notion of weakly
approaching sequences of distributions. The most basic one is the universal
probability forecasting system (Theorem 26). It does not satisfy any small-
sample properties of validity, and its construction is standard and very simple.
The next level in the hierarchy is occupied by the universal Mondrian pre-
dictive system (Theorem 24). Mondrian predictive systems are automatically
probabilistically calibrated, but their definition is more complicated than that
of conformal predictive systems. The main result of this paper is the construc-
tion of a universal conformal predictive system. Perhaps the most important
potential applications of universal predictive systems are in decision making,
where minimizing the expected loss under predictive distributions output by a
universal predictive system provides a natural decision strategy.

There are many interesting directions of further research. These are the
most obvious ones:

1. Investigate the best rate at which conformal predictive distributions and
the true conditional distributions can approach each other.

2. Replace universal consistency by strong universal consistency (i.e., conver-
gence in probability by convergence almost surely), perhaps in the online
prediction protocol (as in Remark 10).

3. Construct more natural, and perhaps even practically useful, universal
randomized predictive systems.
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[4] Yuri Belyaev and Sara Sjöstedt–de Luna. Weakly approaching sequences
of random distributions. Journal of Applied Probability, 37:807–822, 2000.
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A An implication of universal consistency

The definition of universal consistency is given in terms of the notion of consis-
tency (4), which means, intuitively, that the predictive distribution and the true
conditional distribution of the label of the test object approach each other. The
notion of approaching given by (4) is in the spirit of the standard notion of weak
convergence but it is not really explicit; in particular, it is not clear whether a
natural distance between the corresponding distribution functions tends to zero.
In this appendix we will see that this is indeed the case for Lévy distance.

It will be convenient to represent the data-generating probability measure
P on the observation space Z = X × R as the combination of the marginal
distribution PX on X, PX(E) := P (E × R) for the measurable E ⊆ X, and
a regular conditional distribution of y ∈ R given x ∈ X. Let us fix a regular
distribution function FP (y | x) of y given x for (x, y) ∼ P . Its defining property
is that, for each x ∈ X, FP (· | x) is a distribution function on R, and for each
u ∈ R, FP (u | x) is a version of the conditional probability that y ≤ u given x
when (x, y) ∼ P . (It exists by, e.g., Theorem 2.7.4 in [22], in combination with
Doob’s theorem [5, I.18].) Intuitively, (x, y) ∼ P can be thought of as generated
in two steps: first x ∼ PX and then y ∼ FP (· | x).

Definition 37. A DF-type random function is a function Q on a sample space
whose values are increasing functions y ∈ R 7→ Q(y) ∈ [0, 1] and which is
measurable in the sense of Q(y) being measurable for each y ∈ R.

Definition 37 is a generalization of the standard notion of a CDF-valued
random quantity [9, Section 2.1], in which the random functions y 7→ Q(y) are
required, additionally, to be right-continuous and satisfy limy→−∞Q(y) = 0
and limy→∞Q(y) = 1.

Definition 38. A sequence of DF-type random functions Qn weakly approaches
(in probability) another sequence of DF-type random functions Q′n if, for any
bounded continuous function f : R→ R,∣∣∣∣∫ fdQ̄n −

∫
fdQ̄′n

∣∣∣∣→ 0 (n→∞) (31)
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in probability, where Q̄, for an increasing function Q : R → [0, 1], is defined at
the end of Subsection 2.1. This relation between Qn and Q′n is symmetric (in

fact, an equivalence relation) and denoted Qn
wa←→ Q′n.

Definition 4 can be restated in terms of Definition 38, namely: a random-
ized predictive system Q is consistent for P if and only if the sequences of
random functions Qn and FP (· | xn) weakly approach each other assuming
zi = (xi, yi) ∼ P , i = 1, . . . , n+ 1, and τ ∼ U are all independent.

Remark 39. Definition 38 essentially follows Belyaev [3, 4]. It is a version of
Belyaev and Sjöstedt–de Luna’s [4] Definition 3. Their Definition 1 assumes
that both Qn and Q′n are deterministic, and their Definition 2 assumes that one
of them is deterministic; all mathematical results in [4] use either Definition 1
or Definition 2.

The notion of tightness is as important in the theory of weakly approach-
ing sequences of distribution functions (or probability measures) as it is in the
standard theory of weak convergence (e.g., it is used constantly in [4] and [24]).
The following definition is modelled on [4, Definition 4].

Definition 40. A sequence of DF-type random functions Qn is tight (in prob-
ability) if, for any ε > 0 and δ > 0, there is C ∈ (0,∞) such that

lim inf
n→∞

P
(
Q̄n([−C,C]) ≥ 1− ε

)
≥ 1− δ. (32)

Notice that a tight sequence Qn always satisfies Q̄n(R) → 1 in probability
as n→∞.

The next two lemmas show that the sequences of DF-type random functions
considered in this paper are tight.

Lemma 41. The sequence of random functions FP (· | xn) is tight, assuming
zi = (xi, yi) ∼ P , i = 1, 2, . . ., are all independent.

Proof. In the current IID case the requirement of being tight, as applied to the
sequence of random functions FP (· | xn), can be rewritten as: for any ε > 0 and
δ > 0, there is C ∈ [0,∞) such that

P
(
FP ([−C,C] | x) ≥ 1− ε

)
≥ 1− δ

(cf. (32)), where P refers to x ∼ PX. It remains to use the σ-additivity of the
probability measure PX.

The following lemma generalizes [4, Lemma 5].

Lemma 42. If Qn
wa←→ Q′n and the sequence Qn is tight, Q′n is also tight.

Proof. Suppose Qn
wa←→ Q′n, Qn is tight, but Q′n is not tight; we will arrive at

a contradiction.
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There exist ε > 0 and δ > 0 such that, for any C ∈ [0,∞), there are infinitely
many n such that

P
(
Q̄′n([−C,C]) ≥ 1− ε

)
< 1− δ. (33)

Fix such ε and δ. Fix C ∈ (1,∞) such that, from some n on,

P
(
Q̄n([−C + 1, C − 1]) ≥ 1− ε/2

)
≥ 1− δ/2. (34)

Let f : R→ [0, 1] be a continuous function satisfying

f(u) =

{
0 if |u| ≤ C − 1

1 if |u| ≥ C

(there are no restrictions for |u| ∈ (C − 1, C), apart from f being continuous
and taking values in [0, 1]). Passing to a subsequence, we assume, without loss
of generality, that (33) holds for all n. By (33) and (34), we have

P
(∫

fdQ̄′n > 0.9ε

)
> 0.9δ (35)

P
(∫

fdQ̄n ≤ ε/2
)
≥ 1− δ/2, (36)

respectively, both inequalities holding from some n on; (35) also uses Q′n(R)→ 1

(in probability), which follows from Qn(R)→ 1 and Qn
wa←→ Q′n (specialized to

f := 1). By the inequality P(A ∩B) ≥ P(A) + P(B)− 1, (35) and (36) give

P
(∫

fdQ̄′n −
∫
fdQ̄n > 0.4ε

)
> 0.4δ

from some n on, which contradicts Qn
wa←→ Q′n.

The following lemma says that for tight sequences of DF-type random func-
tions the notion of weakly approaching sequences agrees with a standard notion
of closeness of distribution functions, Lévy distance; it generalizes the neces-
sity half of [4, Lemma 10]. Let us extend Lévy distance to arbitrary increasing
functions Q,Q′ : R→ [0, 1]:

ρL(Q,Q′) := inf {h > 0 | ∀u ∈ R : Q(u− h)− h ≤ Q′(x) ≤ Q(u+ h) + h} .

Lemma 43. If Qn
wa←→ Q′n and the sequence Qn is tight, the Lévy distance

between Qn and Q′n tends to 0 in probability.

Proof. Suppose Qn
wa←→ Q′n, the sequences Qn and Q′n are tight, but the con-

vergence ρL(Qn, Q
′
n)→ 0 in probability fails. Our goal is to arrive at a contra-

diction (cf. Lemma 42).
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Fix ε > 0 and δ > 0 such that ρL(Qn, Q
′
n) > ε with probability more than

δ for infinitely many n. Passing to a subsequence, we assume, without loss of
generality, that

P (ρL(Qn, Q
′
n) > ε) > δ (37)

for all n. As both Qn and Q′n are tight, there is C ∈ (0,∞) such that, from
some n on,

P
(
Qn([−C,C]) ≥ 1− ε

2

)
≥ 1− δ

4
(38)

and

P
(
Q′n([−C,C]) ≥ 1− ε

2

)
≥ 1− δ

4
. (39)

The conjunction of (37)–(39) implies

P
(
∃u ∈ [−C,C − ε] : Q′n(u) > Qn(u+ ε) + ε

or Qn(u) > Q′n(u+ ε) + ε
)
>
δ

2
(40)

from some n on (this follows from the inequality P(A∩B∩C) ≥ P(A) +P(B) +
P(C) − 2 combined with the conjunction of the events under the probability
sign in (37)–(39) implying the event under the probability sign in (40)). In-
equality (40) implies that there exists a positive integer N such that

P

(
∃i ∈ {1, . . . , N} : Q′n

(
−C + 2C

i− 1

N

)
> Qn

(
−C + 2C

i

N

)
+

2C

N

or Qn

(
−C + 2C

i− 1

N

)
> Q′n

(
−C + 2C

i

N

)
+

2C

N

)
>
δ

2
(41)

from some n on. Fix such an N .
On the other hand, Qn

wa←→ Q′n implies

lim sup
n→∞

(∫
fdQ̄n −

∫
fdQ̄′n

)
≤ 0 (42)

(cf. (31)), which, when applied to a continuous function f : R→ [0, 1] satisfying

f(u) =

{
1 if u ≤ −C + 2C i−1

N

0 if u ≥ −C + 2C i
N

for a given i ∈ {1, . . . , N} and in conjunction with Q̄n(R)→ 1, implies

lim sup
n→∞

(
Q̄n

(
−C + 2C

i− 1

N

)
− Q̄′n

(
−C + 2C

i

N

))
≤ 0, (43)
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where we continue to use the same notation Q̄n and Q̄′n for the distribution
functions of the probability measures Q̄n and Q̄′n. Both (42) and (43) hold in
probability, and the latter implies that

P
(
Q̄n

(
−C + 2C

i− 1

N

)
− Q̄′n

(
−C + 2C

i

N

)
≤ 2C

N

)
≥ 1− δ

4N
(44)

from some n on. Combining the inequality (44) for i = 1, . . . , N and the same
inequalities with Q̄n and Q̄′n swapped (therefore, combining 2N inequalities in
total) gives the negation of (41). This contradiction completes the proof of the
lemma.

Combining Theorem 31 with Lemmas 41 and 43, we can see that the Lévy
distance between the predictive distribution output by a universal conformal
predictive system and the true conditional distribution of the label of the test
object indeed converges to zero.

B Marginal calibration

The main notion of validity (R2 in Definition 2) used in this paper is, in the ter-
minology of [9, Definition 3(b)], being probabilistically calibrated. This property
is generally regarded to be the most important of several calibration properties
considered in probability forecasting. The following definition gives another
popular calibration property [9, Definition 3(a)] as applied to conformal predic-
tive systems (of course, this property is applicable in a much wider context).
The number of training observations will be referred to as the sample size.

Definition 44. A conformal predictive system is marginally calibrated for a
sample size n and a probability measure P on Zn+1 if, for any y ∈ R,

EQ(z1, . . . , zn, (xn+1, y), τ) = P(yn+1 ≤ y), (45)

where both E and P are over (z1, . . . , zn, (xn+1, yn+1), τ) ∼ P × U .

In this appendix we will see that conformal predictive systems are not always
marginally calibrated under the IID model. But we will start from an easier
statement.

The probabilistic calibration property R2 for a given sample size n depends
only on the observations (z1, . . . , zn+1) being generated from an exchangeable
distribution on Zn+1 (and τ ∼ U independently): see Remark 16 or, e.g., [28,
Theorem 8.1]. The following example shows that there are conformal predic-
tive systems that are not marginally calibrated for some sample size n and
an exchangeable probability measure on Zn+1, even among conformal predic-
tive systems corresponding to conformity measures satisfying the conditions of
Lemma 12.

Example 45. Set n := 1, suppose |X| > 1, and let the data be generated from
the exchangeable probability measure P on Z2 that assigns equal weights 1/2
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to the sequences ((x−1,−1), (x1, 1)) and ((x1, 1), (x−1,−1)) in Z2, where x−1

and x1 are two distinct elements of X (fixed for the rest of this appendix). Let
a conformity measure A satisfy

A((x1, y1), (x2, y2)) =

{
y2 if x2 = x1

3y2 + 2 if x2 = x−1;
(46)

it is clear that A can be extended to the whole of X and to all sample sizes
n in such a way that it satisfies all conditions in Lemma 12. For y = 0, the
right-hand side of (45) is 1/2, whereas the left-hand side is different, namely
3/4:

� with probability 1/2 the training and test data form the sequence
((x−1,−1), (x1, 1)), and so the conformal predictive distribution is

Q((x−1,−1), (x1, y)) =


[0, 1/2] if y < −1

[0, 1] if y = −1

[1/2, 1] if y > −1;

(47)

the position y = −1 of the jump is found from the condition αy1 = αy2 , i.e.,
3× (−1) + 2 = y;

� with probability 1/2 the training and test data form the sequence
((x1, 1), (x−1,−1)), and so the conformal predictive distribution is

Q((x1, 1), (x−1, y)) =


[0, 1/2] if y < −1/3

[0, 1] if y = −1/3

[1/2, 1] if y > −1/3;

(48)

the position y = −1/3 of the jump is found from the same condition
αy1 = αy2 , which becomes 1 = 3y + 2;

� therefore, the mean value of the conformal predictive distribution at y = 0
is 3/4.

Example 45 can be strengthened by replacing the assumption of exchange-
ability by the IID model.

Example 46. Now we assume that the two observations are generated inde-
pendently from the probability measure on Z assigning equal weights 1/2 to the
observations (x−1,−1) and (x1, 1). We consider the same conformity measure
as in Example 45: see (46). For y = 0, the right-hand side of (45) is still 1/2,
and the left-hand side becomes 5/8:

� with probability 1/4 the training and test data form the sequence
((x−1,−1), (x1, 1)), and so the conformal predictive distribution is (47),
averaging 3/4 at y = 0;
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� with probability 1/4 the training and test data form the sequence
((x1, 1), (x−1,−1)), and so the conformal predictive distribution is (48),
averaging 3/4 at y = 0;

� with probability 1/4 the training and test data form the sequence
((x−1,−1), (x−1,−1)), and so the conformal predictive distribution is

Q((x−1,−1), (x−1, y)) =


[0, 1/2] if y < −1

[0, 1] if y = −1

[1/2, 1] if y > −1,

which is 3/4 on average at y = 0; the position y = −1 of the jump is found
from the condition αy1 = αy2 , which now is 3× (−1) + 2 = 3y + 2;

� finally, with probability 1/4 the training and test data form the sequence
((x1, 1), (x1, 1)), and so the conformal predictive distribution is

Q((x1, 1), (x1, y)) =


[0, 1/2] if y < 1

[0, 1] if y = 1

[1/2, 1] if y > 1,

which is 1/4 on average at y = 0; the position y = 1 of the jump is found
from the condition αy1 = αy2 , which now is 1 = y;

� therefore, the mean value of the conformal predictive distribution at y = 0
is 5/8.

C Venn predictors

In [32] and this paper, conformal prediction is adapted to probability forecast-
ing. An older method of probability forecasting enjoying properties of validity
similar to those of conformal prediction is Venn prediction [28, Chapter 6].
This appendix reviews Venn prediction and its properties of validity. We fix the
sample size n.

Definition 47. Let κ be a taxonomy (as defined in Definition 17). The Venn
predictor corresponding to κ is the family {Qu | u ∈ R} of distribution functions
defined by

Qu(z1, . . . , zn, (xn+1, y))

:=
|{i ∈ κ(n+ 1 | z1, . . . , zn, (xn+1, u)) | yi ≤ y}|

|κ(n+ 1 | z1, . . . , zn, (xn+1, u))|
(49)

for any training data (z1, . . . , zn) and test object xn+1.
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The definition (49) is similar to, but simpler than, (16). The intuition is
that the Venn predictor contains (for u := yn+1 being the actual label in the
test observation) the true empirical distribution function of the labels in the
observations that are similar, in a suitable sense (determined by κ), to the test
observation. The Venn prediction (49) is useful when the distribution functions
Qu are close to each other for different u. Whereas this is a reasonable as-
sumption for a suitable choice of κ in the case of classification (such as binary
classification, yi ∈ {0, 1}, in [31]), in the case of regression it might make more
sense to restrict attention to

{Qu | u ∈ Γε(z1, . . . , zn, xn+1)}

for a conformal predictor Γ (see, e.g., [28, Section 2.2]) and a small significance
level ε > 0.

The following theorem shows that Venn predictors are ideal in the technical
sense of [10, Definition 2.2] (and independent work by Tsyplakov).

Theorem 48. Let G be the σ-algebra on Zn+1 consisting of the measurable sub-
sets E of Zn+1 that are predictably invariant with respect to the taxonomy κ in
the following sense: if a permutation π of {1, . . . , n+1} respects the equivalence
relation ∼ assigned by κ to (z1, . . . , zn+1) (in the sense of Definition 18) and
leaves n+ 1 in the same equivalence class, then

(z1, . . . , zn+1) ∈ E =⇒ (zπ(1), . . . , zπ(n+1)) ∈ E.

For any y ∈ R,

Qyn+1(z1, . . . , zn, (xn+1, y)) = P(yn+1 ≤ y | G), (50)

where (z1, . . . , zn, (xn+1, yn+1)) are generated from an exchangeable probability
distribution on Zn+1.

Equation (50) expresses the condition of being ideal, with respect to some
information base (namely, the σ-algebra G). According to [10, Theorem 2.8],
this means that Venn predictors are both marginally and probabilistically cal-
ibrated, in the sense of one of their component distribution functions, namely
Qyn+1(z1, . . . , zn, (xn+1, ·)), being such. And according to [10, Theorem 2.11],
in the case of the binary label taking values in {0, 1}, being probabilistically
calibrated is equivalent to being conditionally calibrated

P(yn+1 = 1 | pn+1) = pn+1, (51)

where pn+1 := 1−Qyn+1(z1, . . . , zn, (xn+1, 0)) is the predicted probability that
yn+1 = 1. Equation (51) for Venn predictors, in the case of binary classification,
is Theorem 1 in [31].

Proof of Theorem 48. Fix y ∈ R. Let P be the data-generating distribution
(an exchangeable probability distribution on Zn+1), Q be the random variable
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Qyn+1(z1, . . . , zn, (xn+1, y)), and E ∈ G. Notice that Q is G-measurable. Our
goal is to prove ∫

E

1{yn+1≤y}dP =

∫
E

QdP, (52)

where (z1, . . . , zn, (xn+1, yn+1)) ∼ P .
There are finitely many equivalence relations on the set {1, . . . , n+ 1}. For

each of them the set of data sequences (z1, . . . , zn+1) that are assigned this
equivalence relation by the taxonomy κ is measurable (by the requirement of
measurability in the definition of a taxonomy) and, moreover, is an element of
G. Therefore, E can be decomposed into a disjoint union of elements of G all
of whose elements are assigned the same equivalence relation by κ. We will
assume, without loss of generality, that all elements of E are assigned the same
equivalence relation, which is fixed to the end of this proof. Let κ(j) stand for
the equivalence class of j ∈ {1, . . . , n+ 1}.

Let us say that two data sequences in E are similar if, for any equivalence
class C ⊆ {1, . . . , n+1}, they have the same numbers of observations with indices
in C and with labels less than or equal to y. Following the same argument as in
the previous paragraph, we further assume that all elements of E are similar.

Now we can see that both sides of (52) are equal to

P (E)
|{i ∈ κ(n+ 1) | yi ≤ y}|

|κ(n+ 1)|

(cf. (49)).
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