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Abstract
Conformal Predictors (CP) (Vovk, Gammerman, and Shafer, 2005) are a novel

approach to dealing with the uncertainty of predictions. Whereas conventionally
one obtains predictions first and then estimates their error, CPs allow the error rate
to be chosen. The predictions output by CP are provably guaranteed to exhibit the
chosen error rate (barring statistical fluctuation). This distinctive property of CP
is referred to as validity and is achieved under minimal assumptions. CPs are of
very wide applicability. In fact, rather than a self-contained method, CPs can be
viewed as framework, in which virtually any ML method can be plugged in. In this
work, we first set the context by defining formally the notion of Conformal Predic-
tion. We then introduce its variants, identify the desirable properties of CPs, and
survey the state-of-the-art. Next, we consider Venn Predictors (VP) (Vovk, Gammer-
man, and Shafer, 2005), which are calibrated probabilistic predictors, i.e. predictors
that output probability estimates that are guaranteed to correspond to actual relative
frequencies (again barring statistical fluctuation). The advantages of CPs and Venn-
ABERS Predictors (VAP) (Vovk, Petej, and Fedorova, 2015) — a form of VP for binary
classification — are illustrated by considering their application to chemoinformatics
problems. The difficulties posed by large-scale, highly imbalanced, sparse datasets
common in this domain were met by the careful implementation of CP and VAP and
by scaling the computations over distributed processing architectures. The results
confirm that the methods produce predictions with validity and calibration prop-
erties, despite the challenges posed by the domain. A further section of the thesis
explores how the desirable properties of CPs can be improved by their combination.
The problem of CP combination can be viewed as a special form of the problem of
p-value combination which has been studied extensively in the context of Classical
Statistical Hypothesis Testing. A selection of combination methods from the litera-
ture is discussed and a new method based on the Neyman-Pearson Lemma (NPL)
is introduced. It is conjectured that the property of Uniform Maximum Power of
the NPL translates into maximal efficiency of the resulting Conformal Predictor. The
various combination methods are compared and contrasted on a synthetic dataset
and, more importantly, on real-world datasets and the results show that some com-
bination methods are indeed synergistic. The implementation of the methods and
its challenges are also discussed. In particular, the NPL-based method hinges upon
the estimation of a ratio of probability densities, for which only Prof. Vapnik’s V-
matrix method appeared to provide the required accuracy. The last part of the thesis
describes Conformal Predictive Distributions (CPDs), a novel non-parametric frame-
work for probabilistic prediction in a regression setting (Vovk et al., 2019). CPDs, a
variant of CP for regression, can output Predictive Distributions with guaranteed
coverage under the assumptions of i.i.d. and unrestricted randomness. We present
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a concrete instance of the CPD framework, known as Kernel Ridge Regression Pre-
dictive Machine (KRRPM) (Vovk et al., 2018) and we discuss its application in the
domain of chemoinformatics on real-world data from a major pharmaceutical com-
pany.
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1.1 Outline of the thesis

The research in this thesis was motivated by the fact that many established Machine
Learning methods do not output predictions with good statistical properties. It is
known for instance that neural networks output estimated probabilities that differ
from relative frequencies (Guo et al., 2017). Conformal methods offer a principled
way to generate predictions with good statistical properties under minimal assump-
tions. This distinctive feature of conformal methods attracted interest in the domain
of chemoinformatics and resulted in our participation to an EU project and in a re-
search collaboration with a major pharmaceutical company. Our work focused on
the following three problems:

1. Conformal methods should cater for the peculiar characteristic of the data sets
prevalent in chemoinformatics, namely size, imbalance and sparseness.

2. Conformal methods should be applicable at scale.

3. Conformal methods should take advantage of the benefits of ensembling.

While the application of Conformal Predictors to chemoinformatics was already not
a novel idea at the outset — as it had already been proposed as early as in (Norinder
et al., 2014) — the widening of the domain of applicability required new techniques
(such as Mondrian CP). We believe that the application of calibrated probabilistic
predictors (Venn-ABERS) and of Conformal Predictive Distributions to chemoinfor-
matics is novel.
An approach to the scalability of CP was explored in (Capuccini et al., 2015) within
the limits of the Spark framework (Zaharia et al., 2016). Our focus was instead on
exploiting High Performance Computing systems (colloquially referred to as super-
computers) and on the search for efficiency.
As to the combination of CP, (Balasubramanian, Chakraborty, and Panchanathan,
2015) provided a first comprehensive attempt. The preservation of validity and the
search for methods with a theoretical grounding seemed the most logical direction
in which to conduct further research.

The thesis is articulated as follows. After framing the problem of prediction un-
der uncertainty in Section 1.2, we introduce Conformal Prediction (CP) in Chapter 2,
providing formal definitions as well as the intuition behind it. The application of
CP to the problem of predicting the biological activity of chemical compounds is
discussed in Chapter 3, where we show results on challenging real-world public-
domain datasets, with high imbalance, high sparseness, and high dimensionality.
Probabilistic prediction — in the form of Venn Predictors — is presented in Chap-
ter 4, where we also present an example of its application to the compound activity
prediction problem. Chapter 5 explores the topic of CP Combination, i.e. the idea
of combining CPs in order to obtain one with better properties, examining existing
ideas and proposing new methods. A method with potentially optimal efficiency
is presented in Chapter 6 and its performance is evaluated on a synthetic dataset,
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under different correlation levels. In Chapter 7, we show how a variant of CP can
produce probabilistic predictions, referred to as Conformal Predictive Distributions,
in a regression setting. The method’s advantages and limitations are discussed using
an application to real world data sets from a major pharmaceutical company.

1.2 Context

Uncertainty permeates the world. This bare fact sits uncomfortably with Mankind’s
instinctive urge to explain the world through a mechanistic interplay of cause and
effect. Our minds are programmed to look for a reason behind all occurrences. All
cultures seem to have created at some point elaborate superstitions to satisfy their
need for an explanation. Some thinkers, however, realized very early the illusory na-
ture of a fully deterministic account. As early as the first century BC, Lucretius found
it necessary to introduce the notion of “clinamen”, an unexplained “deviation” in
the otherwise fully deterministic motion of atoms that Democritus and then Epi-
curus postulated. A discussion of the implications of determinism vs. randomness
on free-will, ethics, etc., while fascinating, would be outside the scope of this work.
Let’s just conclude these initial considerations by observing how, in the present age,
uncertainty is central to Physics. In Quantum Mechanics, the laws governing the
wave function are deterministic, but the observations accompanied by the collapse
of the wave function can only be predicted in probabilistic terms.

Returning closer to the main subject, it may be useful to distinguish two mech-
anisms by which the ideal goal of exact prediction is thwarted: aleatoric variabil-
ity and epistemic uncertainty. The latter refers to the incomplete knowledge of the
mechanism that generates the data, where as the former warns us that, even if we
had perfect knowledge of the observation-generating process, its nature may be in-
trinsically stochastic.

If we accept that a degree of uncertainty is an inescapable fact of life, then it
can be argued that the primary goal of prediction should to estimate probabilities as
accurately as possible.

The term ‘probability’ is encountered on a daily basis, but its precise mean-
ing remains elusive. The mathematician and philosopher Bertrand Russell noted
in 1929 that “Probability is the most important concept in modern science, espe-
cially as nobody has the slightest notion what it means”. To this day, there seem to
be no consensus on a single definitive notion. The “Interpretations of Probability”
entry in the authoritative “Stanford Encyclopedia of Philosophy” lists six interpre-
tations, although one could argue that most of the debate is between Frequentists
and Bayesians. While it would seem that the tales of fierce, no-holds-barred, ad-
hominem confrontation between Bayesians and Frequentists are but a caricature of
what are now civilized exchanges of opinions between open-minded scientists, fun-
damental differences persist. It is fair to say that in this work when the term “prob-
ability” is used, what the author has in mind is a limit of relative frequencies in
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repeated experiments. It is well-understood that this view has limitations. In many
cases, one deals with probabilities for which no actual experiment can be performed
and one has to resort to a rather contrived thought-experiment to express a limit of
a relative frequency. But the definition of such an experiment helps to clarify ex-
actly what we are expressing. Let’s consider for instance Bertrand’s chord Paradox
(Figure 1.1). A seemingly clear question in the geometrical setting can legitimately
admit multiple different answers. If this happens in the Platonic realm of rigorously
defined pure ideas such as geometry, we can imagine the potential for confusion and
misunderstanding in fields such social sciences, biology, etc.

AA

CC DD
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AA

BB

CC DD

EE

FF

GG II

FIGURE 1.1: Bertrand’s (chord) Paradox. What is the probability of a chord being
longer than the side of an inscribed equilateral triangle? We illustrate here
2 of the 3 seemingly legitimate arguments Bertrand showed in 1889 in
his “Calcul des probabilitès”. In the diagram on the left, we consider the
chords constructed by connecting point E with points on the circumfer-
ence. The chords we seek are those corresponding to points on the arc CD
in green. So the probability is 1

3 . In the diagram on the right, we consider
instead the chords constructed by taking the perpendicular to a radius.
The chords longer than the side are those corresponding to the points in
one half of the radius (segment AF). So the probability is 1

2 . (Bertrand also
showed a third construction leading to yet another value of probability).

Moreover, it has long been suspected that human brains are not very well-
equipped to process probabilities, but it was only recently that the cognitive illu-
sions and the semantic biases that affect our probabilistic reasoning were clearly
exposed (Kahneman, 2011). This inability is insidious and not confined only to the
general population. In the outcry that followed Marilyn Vos Savant’s discussion
of the Monty Hall’s dilemma even academics and professional statisticians embar-
rassed themselves by sanctimoniously rebutting the correct answer (Savant, 1997;
Rosenhouse, 2009).

That is not to say that the Bayesian notion is without merit. A subjective proba-
bility can be manipulated in a way that is consistent with Kolmogorov’s axioms just
as well the frequentist notion. Also, and perhaps more importantly, the challenge
brought by empiricists to the idea of an “unobservable” belief to which a numerical
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value is attached by way of an unknown process that potentially differs from one
individual to the other can be addressed. Indeed the ardent subjectivist Bruno De
Finetti proposed in the 1930s to obtain an objective personal belief by using a betting
framework. Specifically, De Finetti would define the probability of an event A is the
price p at which an individual is willing to trade “tickets” that pay out 1 if event
A occurs. Although it does not solve all the problems, this notion is a step in the
right direction. In recent years, (Shafer and Vovk, 2019) used a similar device in an
attempt to unify frequentist and subjectivist approaches at a level deeper than the
level of axioms. By also bringing together ideas from Cournot, Ville, Von Mises, and
others, they have reframed the notion of probability into a game-theoretic context.
In a way that recalls De Finetti’s set-up, the expected values in a probability model
are viewed as prices of future payoffs in a game. The key point (referred to as the
fundamental interpretative hypothesis) is that if a winning gambling strategy exists,
the probability model has to be rejected.

1.3 Hedging predictions

The usefulness of the notion of probability could be seen in the role that it plays
in processes that use the available information to derive decisions that are optimal
in some sense toward the achievement of a certain goal. Assigning a probability to
the events allows a mathematical treatment of the problem of deciding a course of
action. Machine Learning methods can complement bare predictions (i.e. the value
of the label, be it discrete or continuous, in supervised learning setting) with an
estimate of probability. Bayesian methods do this directly, but the actual reliability
of their estimate depends on how well the assumptions match reality. In general,
cross validation can produce estimates of the error that are robust as long as the
validation is truly representative of the test set. In the conventional approach, in
summary, the error rate is estimated and fixed after the model is trained.

Conformal Predictors differ from the conventional approach in that they allow to
choose the error rate of the predictions, as opposed to just producing an estimate of
it. The predictions are guaranteed to exhibit the chosen error rate (barring statistical
fluctuations), in a sense that will be made precise later. A key difference between the
conventional approach and CP is that in the latter the prediction is not a single value,
but a set. In the context of CP, each prediction can take a multiplicity of values, from
none (the empty set is a possible prediction) to the entire domain of the labels (in
which case, the prediction is hardly of any use).

The conventional approach and CP can be seen as two alternative ways of hedg-
ing a prediction. The conventional approach produce single-valued predictions and
complements them with the estimated error rate, whereas in Conformal Prediction
the error rate is chosen (as opposed to estimated) and the predictions are made nar-
rower or wider so that the targeted error rate is achieved. The smaller the target
error rate, the wider the CP predictions are going to be and vice versa.
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1.4 Application: Chemoinformatics

In this thesis we will discuss the application of conformal and probabilistic pre-
diction to problems of chemoinformatics, which can be defined as “the discipline
organizing and coordinating the increasing application of computers in chem-
istry” (Polanski, 2009). More specifically we will focus on the prediction of biolog-
ical, physicochemical, or pharmacokinetic properties of compounds. It is perhaps
helpful to the general reader if we devote a few words to put the problem into its
wider context, with the aim to provide just enough background for the reader to
make sense of the objectives of the present research.

1.4.1 Drug discovery and development

The cost of developing a new pharmaceutical drug has increased steadily over the
years. The statistics are a subject of controversy, but if one takes the overall Research
and Development yearly expenditure for pharmaceutical sector and divides it by the
number of new drugs approved by the Federal Drug Administration every year, the
result is of the order of billions of US dollars (Wouters, McKee, and Luyten, 2020).
Despite the constant flux of technological advances that have introduced techniques
that were unthinkable a few years earlier, the pharmaceutical industry is faced with
increased costs in bringing to fruition its research efforts.

Simplifying massively, the development of a new drug can be described as a
pipeline, divided into the sequential stages of drug discovery, drug development,
and clinical trials (further divided into Phase I, II, and III). Researchers first select
a biological target of interest (often an enzyme — a protein that acts as a catalyst
for a chemical reaction — that is involved in a disease that we seek to treat) and
then, starting from libraries of millions of compounds, identify those with promis-
ing activity towards that target. To be a drug, a compound has to have a number of
desirable properties in terms of absorption, distribution, metabolism, excretion, and
last but not least toxicity1. During drug development, medicinal chemists modify
the structure of the hits — the active compounds identified during drug discovery
— through a process of trial-and-error guided by their expert judgement in the pur-
suit of those properties. When this objective is reached, the few candidate drugs
that emerge from this process go through trials to establish dosage, safety, and end
efficacy.
In this thesis the universe of discourse (as far as applications are concerned) will be
drug discovery and development. In those two stages, the costs are driven primarily
by the large number of lab tests that are performed.

1Absorption, distribution, metabolism, excretion properties are pharmacokinetic properties and of-
ten referred to as ADME properties. Informally, pharmacokinetics refers to “what the body does to
the drug”. Physicochemical properties include solubility and hydrophilicity. By biological properties,
we’ll tend to refer to activity (inhibitory or enhancing) towards a target and to toxicity.
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1.4.2 The role of Machine Learning

A variety of approaches have been pursued to reduce the number of lab tests during
drug discovery and development. One broad class is predicated on the application
of physics and geometry to the calculation, for instance, of the affinity with which
a ligand binds to the active site of an enzyme. While this approach is undeniably
sound for a scientific perspective, the computational difficulties that it entails are
enormous. Another broad class takes instead a statistical approach to the prediction
of properties. The Quantitative Structure-Activity Relationship (QSAR) techniques
are firmly in this second class. They rest on the idea that if a suitable description of
the relevant features of the molecular structure is found, then it is possible to create a
statistical model of wide applicability to predict properties. QSAR techniques have
been proposed since the 1960s (Dearden, 2017), but came into their own in recent
years with the widespread availability of vast amounts of computing power and the
advent of Machine Learning.

Applying Machine Learning techniques presents some challenges. The first is to
assemble a training set that (a) is sufficiently representative of the problem domain
and (b) describes the objects (compounds) by means of features that are relevant for
the specific prediction task. In the case of chemoinformatics, (a) means performing
assays for the property of interest to a large set of compounds. The chemical space,
i.e. the set of all possible molecules, is immensely vast, even if we limit ourselves to
the so-called small molecules2. An estimate often quoted for its size is 1060 (Bohacek,
McMartin, and Guida, 1996, page 43), but in recent years this has been revised down
to 1033 or even 1023 (Polishchuk, Madzhidov, and Varnek, 2013, Table 1). Be as it may,
it is clear that any training set produced with the current technologies can only cover
a negligible fraction of such a space. The challenge posed by (b) is still the subject
of an active area of research. In this study, the features describing a compound are
extracted from the topology of the molecule, viewed as a labelled graph. This will
be explained with some examples in Section 3.1.

One legitimate question is whether statistical modelling of biological properties
is at all possible or useful. One could argue that whenever we employ statistical
modelling, we rely heavily on some assumption of regularity on some neighbor-
hood in the problem space. There is unfortunately a phenomenon called the “ac-
tivity cliff” which consists in heavy non-linearity in the properties (Maggiora, 2006).
Whereas small changes in the structure of a molecule generally result in correspond-
ingly small changes in the in property under study, in a few cases a further small
structural change can turn out to have surprisingly disproportionate effects. This
seems to militate against the assumption of regularity which inevitably underpins
any statistical approach.

2While the notion of small molecule is used widely in pharmacology, there is no universally ac-
cepted definition. Just to provide some element of reference, one definition limits the molecular weight
to less than 900 Daltons.
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Despite these potential issues and the controversy that they bring about, Machine
Learning techniques appear to have found a role as useful tools for discovering and
developing new drugs (Schneider et al., 2020).
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Conformal Predictors
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2.1 Notation

In the sequel, we will operate, unless otherwise stated, within the setting of super-
vised learning, using the follow notation and conventions.
A training set Z = {z1, z2, . . . , z`} contains examples zi = (xi, yi) consisting of an object
xi ∈ X and a label yi ∈ Y. We use the `+ 1 index to denote the test object x`+1.

We distinguish between two modes of operation, namely batch vs. online. In the
batch mode, the training set is provided once, in its entirety. The model is trained on
it and then used to make an indefinite number of predictions. The actual labels of
the test objects, possibly revealed after prediction, are not used to create new training
examples. The order of the training examples and the test examples is irrelevant.

In the online mode, instead, the training examples are presented in a sequence.
At step i, the ML method will have a training set {(x1, y1), . . . , (xi−1, yi−1)} and will
be presented with a test object xi. It will output a prediction ŷi and the actual label yi

will be revealed. The example zi = (xi, yi) will be added to the training set and the
execution will move on to the next step i + 1.

2.2 Introduction

The most straightforward form of prediction consists in a providing a single value,
i.e. what we will refer to as a bare prediction. While this may be adequate in some
simple applications, it is easy to convince ourselves that in fact it omits valuable
information. The bare prediction does not convey the strength of the statistical evi-
dence that supports its specific value; the strength of the evidence could be simply
marginally lower for other values, but one would not be aware to this fact. Addi-
tional information should complement the bare prediction.

Conformal Predictors convey this information in a novel way. They offer a prin-
cipled, efficient, and flexible way to obtain predictions that guarantee a given error
rate, under minimal assumptions. The predictions are sets, discrete in case of classi-
fication and continuous in the case of regression.

As noted in (Hedging predictions in Machine Learning, 2007), “the problem of
hedged prediction is intimately connected with the problem of testing randomness”.
The theoretical foundations of CP can be traced to the universal test of randomness
by Per Martin-Löf.

The predictions produced by the conformal algorithm are (a) invariant with re-
spect to the old examples, (b) correct with the advertised probability, and (c) nested.
They are optimal among all region predictors with these properties.

2.3 I.i.d. Assumption and Exchangeability

The properties of CPs are guaranteed by a theoretical apparatus that rests on mini-
mal assumptions. In this section, we will define such assumptions
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I.i.d. assumption

Let’s consider n random variables X1, . . . , Xn taking values in a space I and let FXi

be the distribution of Xi. The X1, . . . , Xn variables are independent and identically
distributed (i.i.d.) if and only if

FX1(x) = FXk (x) ∀k ∈ {1, . . . , n} and ∀x ∈ I (2.1)

FX1,...,Xn (x1, . . . , xn) = FX1(x1) · · · · · FXn (xn) ∀x1, . . . , xn ∈ I (2.2)

This can be paraphrased by saying that the marginal probability of each variable
is the same as that of any other of the n variables and that the joint distribution is
simply the product of the marginal distributions for each variable. The i.i.d. assump-
tion also means that the probability distribution of any Random Variable (RV) does
not depend on the values of the other RVs. Informally, one could say that the knowl-
edge of the values taken by the other RVs is of no help in predicting the distribution
of any RV.

The i.i.d. assumption is pervasive in Machine Learning. The setting of Statistical
Learning Theory stipulates “random vectors x ∈ Rn drawn independently from a
fixed but unknown probability distribution F(x)” (Vapnik, 1995, Page 17). Indeed,
the vast majority of ML algorithms relies, explicitly or implicitly, on the assumption
that the test examples be drawn from the same distribution as the training examples.
There are also, however, approaches that do away even with this seemingly minimal
requirement1.

One such example is the framework of Prediction with Expert Advice (Cesa-
Bianchi and Lugosi, 2006), in which the Forecaster is presented by Nature with a
sequence of examples (with concealed label). At each step, the Forecaster predicts
the label, which is then revealed by Nature and a Loss is computed as a function of
predicted and actual labels. The loss is cumulated over the sequence. The key point
here is that no assumption is made on their distribution of the examples that Nature
presents to the Forecaster. In fact, the choice of the examples that are presented can
even be adversarial. In such a hostile environment, one might as well wonder if
prediction is at all possible in any meaningful way. Prediction with Expert Advice
posits the existence of a number of Experts (or reference forecasters) that make their
predictions available as Advice to the Forecaster before Nature reveals the true label.
The problem that can be studied is that of determining rules that minimizes Regret,
i.e. the difference between the loss deriving from the choice of the Forecaster and
that of the best Expert (see (Herbster and Warmuth, 1998; Vovk, 2001; Kalnishkan
et al., 2015; Korotin, V’yugin, and Burnaev, 2019)

Finally, let’s conclude these remarks with an epistemological observation. Re-
course to the i.i.d assumption (or perhaps just the weaker assumption discussed in
the next paragraph) appears inevitable whenever the methods are fundamentally

1In addition to the discussion that follows, another example of such approaches is the study of
stochastic processes, in which successive examples are not necessarily i.i.d.
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applying the inductive method, as is the case of statistical learning methods, which
are prevalent in the current (year 2020) incarnation of Artificial Intelligence. The
dominant AI paradigm until the 1990, which is now often referred to Good Old
Fashioned AI (GOFAI) (Haugeland, 1989, p.112) was chiefly concerned with the ma-
nipulation of symbols and as such can be viewed as an application of the deductive
method. In Symbolic AI, inference did not seek justification in the regularity as-
sumption that underpins the inductive method, but was a mechanical application
of principles of logic and by its nature independent of the statistics of the data (we
prove that the sum of the internal angle of triangle is 180 degrees as opposed to
looking at many triangles and concluding that the sum appears to be 180 degrees).
Just as the limits of GOFAI became apparent and the interest fizzled out, especially
as the statistical approach gained traction, there seems to be a growing awareness of
the limitations of the current “inductivist” approach. Despite all the successes, the
state-of-the-art still relies largely on the training set to contain examples sufficiently
correlated to any possible test object to get a useful prediction. Hence, larger and
larger training sets are needed to cover all possible test objects that the model will be
asked to predict on. Even if the technological advances and great engineering feats
allow further scaling in this direction, it’s hard not to wonder if this “blind” reliance
on correlation is the right path forward. While it has been taught for decades in any
statistics course that correlation does not imply dependence, it is only relatively re-
cently that the extent of the implications have been clearly articulated. A new field of
research has sprung to focus on the idea of causation (Pearl, 2009). Its main advocate,
Judea Pearl, popularized the notion (Pearl and Mackenzie, 2018) that observational
data alone cannot provide in itself a way to distinguish the causal direction of an ob-
served correlation. Data must be complemented by information on the mechanism
of its production to be used for inference. While it is outside of the scope of this the-
sis to discuss any further the topic of causality and the controversy that surrounds
it, it is important to note that a causal model holds the promise of lessening the de-
pendence on the i.i.d. assumption that the current statistical “inductivist” approach
suffer from.

Exchangeability

The variables z1, . . . , zN are exchangeable if for every permutation τ of the integers
1, . . . , N,

Pr (z1, . . . , zn) = Pr
(
zτ(1), . . . , zτ(n)

)
that is, the variables w1, . . . , wN , where wi = zτ(i), have the same joint probability
distribution as z1, . . . , zN .

Exchangeability is effectively a property of the probability measure over the N
random variables. To put it informally, the value of the probability measure does not
depend on the order of its arguments.
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It is straightforward to prove that i.i.d. variables are also exchangeable (the joint
distribution is the product of N identical univariate distributions, hence the order is
irrelevant).

The converse, however, is not true. An example of a sequence of RVs that is
exchangeable but not independent is illustrated in the next subsection.

2.3.1 Polya’s urn

As an example of a sequence of RV that is not i.i.d. but is exchangeable, consider the
following case (adapted from (Lauritzen, 2007)), called Polya’s urn. It’s a variation
on the setting of sampling with replacement.

Consider an urn with b black balls and w white balls. Draw a ball at random and
note its colour (this is the realization of RV Xi). Replace the ball together with a balls
of the same colour. Repeat the procedure n times.

Let’s consider the joint probability Pr (X1, . . . , Xn) with an example first.
Pr (X1 = white, X2 = black, X3 = black, X4 = white) is the product of:

• w
w+b for draw 1

• b
w+b+a for draw 2

• b+a
w+b+2a for draw 3

• w+a
w+b+3a for draw 4

We can see that the denominator in Pr (X1, . . . , Xn) does not depend on the outcomes
at the various draws. It is w + b + na, where n is the number of draws, whereas the
numerator is of the form

Ä
1 + ∏r−1

i=0 (w + ia)
ä Ä

1 + ∏s−1
j=0 (b + ja)

ä
, where r and s are

the counts of occurrences of white ball draws and black ball draws, respectively.
The joint probability is thus a function only of r and s (and their sum n) and the
order of the outcomes of the draws is irrelevant. The latter is indeed the defining
property of exchangeable sequences.

We can also show that the RVs in the sequence are not independent.

Pr (X1 = white, X2 = black) = Pr (X1 = white) · Pr
(
X2 = black | X1 = white

)
=

w
w + b

b
w + b + a

(2.3)

Pr (X1 = white) =
w

w + b
(2.4)

Pr (X2 = black) = Pr (X1 = white) · Pr
(
X2 = black | X1 = white

)
+ Pr (X1 = black) · Pr

(
X2 = black | X1 = black

)
=

w
w + b

b
w + b + a

+
b

w + b
b + a

w + b + a

=
b

w + b

(2.5)

and we can see that Pr (X1 = white, X2 = black) 6= Pr (X1 = white) · Pr (X2 = black)
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2.4 Conformal Predictors

At the root of Conformal Prediction, we have the notion of Non Conformity Measure
(NCM). The NCM expresses how dissimilar (or non-conform) an example appears to
be with respect to a collection of examples. The NCM is the elementary tool we will
use to assess randomness. Note that the NCM is not defined by the CP framework.
The NCM is left to the user to define. It is meant to be defined so that its values are
larger, the more out-of-place the example appears. Figure 2.1 illustrates the intuitive
notion of Non Conformity2.

FIGURE 2.1: An illustration of Non Conformity. The round markers represent the col-
lection of examples, where the colours red, green, blue correspond to the
labels. The square markers represents test examples. The test example at
the right (green square) does not look out of place, so a good Non Confor-
mity measure would assign a (relatively) low value to it, whereas the blue
square in the middle of the red cluster at bottom left would have a high
NCM. The case of the red marker at the top left is not as definite as those
of the previous examples. The NCM would take an intermediate value.

The randomness of an example is then assessed by using the NCM in relative
terms, rather than using its absolute value. To judge the randomness of an example,
we determine the proportion of the examples in the collection that have a larger
NCM than the example in hand. Low values of this proportion mean that it is rare
to find examples that look more out-of-place, whereas high values signify that the
majority of the examples would look more out-of-place.

The region prediction for a test object (of which we do not know the actual label)
is built by the following procedure. For each possible value of the label, we con-
struct a hypothetical example, made up of the test object and that hypothetical label
(thereby forming a hypothetical completion), and we assess the randomness of these
hypothetical completions. Only the labels for which the corresponding hypothetical
completion exhibits a degree of randomness relative to the training set (measured as

2CPs can be formulated equally well in terms of a Conformity Measure. The reason for using a
possibly less intuitive Non Conformity measure are explained in Section 2.4.9
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proportion of the training set with larger NCM) higher than the chosen significance
level are included in the region prediction.

A key result proved in (Vovk, Gammerman, and Shafer, 2005, Theorem 8.1) es-
tablishes that, provided that data is exchangeable, a region predictor computed us-
ing this rule has an error rate that reflects the significance level (barring statistical
fluctuation).

2.4.1 Formal definition

A rigorously formal definition of CP has inevitably to take into account a number of
technicalities. Here, we will attempt to strike a balance between clarity and formal-
ity.

We will specify CP with reference to on-line mode as defined in Algorithm 1
because it is in this mode that the theoretical results are stated and proved in the
literature, but it is possible to extend it in some sense also to the batch case.

Algorithm 1: On-line protocol
Data: Sequence of examples: z1 = (x1, y1), z2 = (x2, y2), . . .
Result: Prediction sets: Γε,1, Γε,2, . . .

Cumulative error counts: Errε,1, Errε,2, . . .
1 Err0 = 0 ;
2 for i = 1, 2, . . . do
3 Nature presents xi ;
4 Predictor outputs Γε,i ;
5 Nature reveals yi ;

6 erri =

®
1 if yi /∈ Γε,i

0 otherwise
;

7 Errε,i = Errε,i−1 + erri ;
8 end

Let’s assume that the training set is made up of a sequence of ` examples
zi := (xi, yi) ∈ Z = X× Y and x`+1 is a test object taken from the same exchangeable
distribution as the training examples.

We will use the notion of bag or multi-set. A bag of size ` ∈ N is a collection of `
elements some of which may be identical; a bag differs from a set in that repetition
is allowed. We will indicate a bag with the following notation *z1, . . . , z`+. The set of
all possible bags of k elements from a set Z will be denoted as Z(k) (note the brackets
around the exponent).

We call Non-Conformity Measure (NCM) a real-valued measurable function
A(z; *z1, . . . , zk+), A : Z× Z(k) → R. The notation may seem strange, but it distin-
guishes clearly between the collection of examples *z1, . . . , zk+ and the example z for
which we want to measure the non-conformity with respect to the collection. Also,
the use of a bag emphasizes that the order of the elements is irrelevant. Let’s call αi
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the NCM of zi according to:

αi = A((xi, yi), *z1, . . . , z`, z`+1 + / * (xi, yi)+) i = 1, . . . , `+ 1 (2.6)

.
Given these NCM values, it is possible to compute for a test example (x`+1, ȳ`+1)

with hypothetical label ȳ`+1 a p-value defined as:

pȳ :=
|{i = 1, . . . , `+ 1 : αi ≥ α`+1}|

`+ 1
(2.7)

In words, the p-value of a hypothetical completion (x`+1, ȳ`+1) is the fraction of
the elements in the training bag augmented with the hypothetical completion itself
whose NCM is greater than or equal to the NCM of the hypothetical completion3.

The prediction region Γε for a test object x`+1 for a chosen significance level ε ∈
[0, 1] is the set of labels for which the p-value exceeds the significance level:

Γε(x) := {y | py > ε} (2.8)

It is customary to use the term confidence for the quantity 1− ε.
We say that an error occurs when the region prediction Γε does not contain the

actual label, i.e. yi /∈ Γε. We will refer to the count of the errors up to and including
step n as Errε,n.

As stated in previous sections, it is possible to state validity guarantees for CPs.
With the definition of p-value in Eq. 2.7, it can be proved that the CP has a conserva-
tive asymptotic validity property is that the rate of errors converges almost surely4 to
a value that is less than or equal to the significance level, i.e.

lim
n→∞

Errε,n

n
≤ ε a.s. (2.9)

To achieve exact validity, eq. 2.7 must be modified so that ties (i.e. the occurrences
of multiple αi equal to α`+1) are broken with a element of randomness.

pȳ :=
|{i = 1, . . . , `+ 1 : αi > α`+1}|+ τ|{i = 1, . . . , `+ 1 : αi = α`+1}|

`+ 1
(2.10)

where τ ∼ U[0, 1], i.e. τ is an RV uniformly distributed on [0, 1] (this RV is to be
“drawn” independently for each test object). With this more complex definition of p-
value (referred to as smoothed p-value), it can be proved that the asymptotic validity
becomes exact, i.e.

lim
n→∞

Errε,n

n
= ε a.s. (2.11)

3An equivalent formulation might have used the bag unchanged and simply added one at the
numerator. This formulation however will become preferable when we introduce the smoothed con-
formal predictor.

4The ‘almost surely’ qualification is a technicality that can be informally explained as the fact that
the probability of encountering a sequence of examples such that the assert is not verified is vanishing
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The validity property can be formally proved as a consequence of the following
key theorem (Gammerman and Vovk, 2007, Theorem 1)

Theorem 1. Suppose the examples (x1, y1), (x2, y2), . . . are generated independently from
the same probability distribution.
For any smoothed Conformal Predictor working in the on-line prediction protocol and any
significance level ε ∈ [0, 1], the Random Variables err1, err2, . . . are independent and take
value 1 with probability ε

Both conservative and exact validity guarantees as stated above in Eq. 2.9
and 2.11 are asymptotic and it may be argued that they may not be relevant in
any finite-sample regime that we may encounter in practice. There exists also a
finite-sample guarantee (Vovk, Gammerman, and Shafer, 2005, p.27), which can be
derived by applying Hoeffding’s inequality:

∀n > 0, ∀δ > 0 P

ï
Errε,n

n
≥ (ε + δ)

ò
≤ e−2nδ2

(2.12)

In words, this finite-sample guarantee states that for any choice of δ > 0, the prob-
ability that the actual observed error rate exceeds the targeted ε by δ is bounded by
e−2nδ2

.

2.4.2 Some comments

The definition of CP in the previous section appears to suggest that a prediction re-
gion for a test object is computed by examining as many cases as possible values
of the label. Obviously, this would be infeasible for regression problems because in
that setting the label can take infinitely many values. However, for some definitions
of NCMs, it turns out that it is possible to compute (theoretically exact) prediction
regions in a finite number of steps. Two observations are relevant here: (a) there is a
finite number of possible values that the p-value can take and (b) what we need to
compute is really what values of the label correspond to a given p-value. The for-
mer is a direct consequence of the definition itself of CP p-value. The latter is a direct
consequence of the definition of prediction region as the set of labels for which the
p-value is greater than the significance level. For some choices of NCM, the relation-
ship between p-values and hypothetical labels can be computed in a finite number of
steps. One such example is the Ridge Regression Confidence Machine (Nouretdinov,
Melluish, and Vovk, 2001).

The prediction regions Γε(x) can contain any subset of the label space Y, includ-
ing the entire label space Y and the empty set. The latter happens when there is no
label ȳ`+1 that would create with the test object x`+1 an example whose conformity
(with the respect to the examples in the bag) would be sufficient to be included in the
prediction. One way to interpret this is that the object is an anomaly5, in that no label

5One should keep in mind that, as discussed later in Section 2.4.9, the p-values for the correct labels
are distributed uniformly. So, empty prediction sets could occur also, with probability that depends
on the significance level, when the object is not an anomaly.
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assignment would “seem right”. An empty prediction is automatically counted as a
prediction error.

It has to be noted that conservative validity, in the sense of a guarantee that the
predictions will exhibit an error rate that does not exceed the chosen significance
level ε, can be banally obtained by predicting always the entire set Y as Γε(x). Of
course, such predictions would be totally uninformative and completely useless. In
fact we want the prediction regions Γε(x) to be as small as possible (without being
empty)6.

Developing further this line of thought, we can identify two main desiderata in
set prediction:

• Validity: the error rate corresponds to the chosen significance level.

• Efficiency: the prediction sets are as small as possible

There is obviously a trade-off in general between these two goals, as making the
prediction sets smaller makes missing the correct label more likely. By using CPs,
one can take advantage of the fact that validity is guaranteed, so that all efforts can
be focused solely on improving efficiency7.

Validity is guaranteed, regardless of the choice of NCM. Even if the NCM is a
constant or, say, a random number, the smoothed CP exhibits exact validity. But the
predictions are uninformative. It is the efficiency that is determined by the NCM. A
Non-Conformity Measure can be in principle extracted from any Machine Learning
(ML) algorithm, which is then referred to as the underlying ML method. Although
there is no universal method to derive an NCM, a default choice is:

A((x, y), *z1, . . . , zk+) := ∆(y, f (x)) (2.13)

where f : X → Y′ is the prediction rule learned on (z1, . . . , zk) and ∆ : Y× Y′ → R

is a measure of dissimilarity between a label and a prediction. Specific examples are
provided further on in Chapter 3. Note also that any monotone transformation of
an NCM produces the CP that outputs the same predictions as the original CP (by
looking at Eq. 2.7 the p-values are exactly the same).

2.4.3 Ideal CP efficiency

As we have seen, CPs have by construction a validity property, so what distinguishes
them (as long as the i.i.d. assumption is met) is the distribution of the size of the pre-
diction sets. Here we will focus on a measure of locality of such distribution, namely
the average, although other choices are possible. We will speak of the efficiency of a
CP and we will relate it to the average set size in the sense that the smaller the

6We argue that empty prediction sets are not desirable in the specific case in which we are dealing
with objects that have a label and we want to have a prediction that identifies that label. In other
scenarios, empty prediction sets might convey a useful result.

7This echoes a direction advocated in (Tukey, 1986)
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average prediction set size, the higher the efficiency. In (Vovk et al., 2016) various
measures of CP efficiency are proposed, but here we will restrict our attention to the
average prediction set size, which in the paper is referred to as N criterion. In this
section, we discuss the lower bounds for the average prediction set size for a binary
set-valued predictor that guarantees validity.

Oracle

Let’s assume that we can avail ourselves of the services of an Oracle that gives the
correct classification for any object. Our constraint is to emit set predictions that do
not contain the correct label with relative frequency ε, where ε is the significance
level. The strategy that minimizes the average set size is to output the correct label
suggested by the Oracle with relative frequency 1− ε and an empty set with relative
frequency ε. We therefore achieve an average set size of 1− ε.

Bayes classifier

In any non-trivial practical case, we cannot expect to have ideal accuracy. Even
with a Bayes Classifier (Hastie, Tibshirani, and Friedman, 2009, page 21), we can
only hope to achieve an error rate 0 ≤ r ≤ 0.5, which depends on the conditional
probability P(y | x) of the label given the object. We now adapt the strategy of the
Oracle case to the case of a Bayes Classifier.

Let’s consider first the case r = ε. In this case, if we output prediction sets
containing only the label predicted by the Bayes classifier, we achieve the target
rate. This is the choice that leads to the smallest average size of the prediction sets.
Let’s assume that we could achieve the same result by producing a mix of uncertain
sets (containing both labels), and empty sets. The relative frequency of empty sets
would have to be r (obviously, because errors occur only for empty sets). So the
relative frequency of uncertain predictions would be 1− r. The expectation of the
prediction set size is then E[s] = 2(1 − r). For r < 0.5 the expectation is strictly
greater than 1. It is greater than the size of the prediction sets containing only the
label predicted by the Bayes classifier.

Let’s now examine the two other cases, namely ε > r and ε < r.
Without loss of generality, let’s assume that we have N test objects. We aim to

produce N(1− ε) correct predictions and Nε errors. We denote with Np the number
of single-label prediction sets, Nu the number of the uncertain predictions, Ne the
number of empty sets (with Np + Nu + Ne = N). The average of the prediction set
sizes is:

s̄ =
0 · Ne + 1 · Np + 2 · Nu

N
When ε > r, we are targeting a rate of errors larger than the one that the classifier

produces. The average will be minimised if we produce the correct predictions with
as few test objects as possible, so on the basis of the previous case, we will output a
fraction of the predictions as single label prediction sets. These will contribute error
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at a rate r. So, we have:

Nε = Npr + Ne

Nu = 0

This results in
Np = N

1− ε

1− r
It is then straightforward to see that

s̄ =
1− ε

1− r

When ε < r, we are targeting a rate of errors lower than the one that the classifier
produces. We will have to inject some correct predictions by means of uncertain
predictions. We need to ensure that there are Nε errors. These will arise from the
single label predictions at a rate of r. We have:

Npr = Nε

Ne = 0

With straightforward algebraic manipulation, we obtain:

s̄ = 2− ε

r

2.4.4 Comparison of set-valued predictors

When evaluating the performance of different set-valued predictors (irrespective of
whether they are Conformal Predictors or other types), it is essential to keep in mind
that there is a trade-off between validity and efficiency. Efficiency should not be eval-
uated in isolation and the same applies to validity. It may happen that a predictor
achieves higher efficiency simply by predicting excessively tight label sets which
miss the error target and result in a deviation from validity. Figure 2.3 illustrates the
validity and efficiency for some of the CP combination methods discussed in Chap-
ters 5 and 6. CP do have a validity property, but the guarantee hinges on the data
being i.i.d. and in practice there are reasons for this minimal of requirements to be
violated. In the domain of chemoinformatics, for example, the problem of predict-
ing biological activity of chemical compounds (discussed in Chapter 3) presents in
practice this problem: the compounds that are submitted for predictions at time T
are not chosen independently from the compounds for which measurements of their
biological activity were available at that time T (i.e. the training set). In fact, medic-
inal chemists tend to explore variations of previously considered chemicals, often
adding or removing functional groups, in the hope of obtaining a drug with all the
required safety, metabolic, and potency properties.
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FIGURE 2.2: Lower bounds for the average set size. The solid line shows the mini-
mum set size when classifications come from an Oracle. The dashed lines
show three cases where classification are given with different error rates
r, namely 0.1, 0.3, 0.5. The case of r = 0.5 is, of course, the worst case. For
a (randomized or smoothed) CP, it is for instance what happens when the
NCMs are all the same.

Conformal Predictors bring a principled approach to the probabilistic prediction
paradigm advocated in (Gneiting, Balabdaoui, and Raftery, 2007) in the slight differ-
ent context of predictive distributions and with different nomenclature: “maximiz-
ing the sharpness [...] subject to calibration”. In that paper, calibration corresponds
mutatis mutandis to validity and sharpness to efficiency. In principle, CPs allow to
pursue just that: they guarantee validity and make it possible to concentrate the
efforts on obtaining smaller prediction sets.

In terms of evaluating different set-valued prediction methods, however, it can
be argued that the optimal trade-off between validity and efficiency depends on
the specific application. It is quite possible that method A be preferable to method
B despite having worse validity deviation, if its efficiency is markedly better. The
choice should in general be driven by a loss function that captures the cost of errors
(when the actual value outside the predicted set or interval) and of hedging (the
undesirability of multiple values as prediction).

2.4.5 Transductive and Inductive CP

CP as described in previous section is referred to as Transductive. The term origi-
nates from an idea put forward in (Vapnik, 1995, p.293).

Vapnik refers to the conventional approach to Statistical Learning as Induction:
on the basis of a training set, a model is obtained (once for all) and then (Deduction)
used to make predictions on any given test object. Deduction is viewed as a form of
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FIGURE 2.3: Efficiency and Validity. This figure shows validity plots and efficiency
plots (average prediction set sizes) for some of the CP combination meth-
ods discussed in Chapters 5 and 6. In particular this set of charts refers
to a case in which the NCMs of the two base CP exhibited negative cor-
relation. This created deviations from validity in the simpler methods,
which relied on statistical independence of the underlying ML methods.
This example also serves to illustrate the connections between validity
and efficiency. Some methods may appear more efficient than others, but
they achieve that at the expense of validity. Vice versa, some methods
may achieve lower error rates but do so outputting larger prediction sets.
This is the case of the green trace, which, for low values of the target error
rate, has fewer errors than targeted, but has on average larger predictions
sets (see middle row and bottom row). In this example, the best predictor
would seem to be the red trace, as it is valid (within statistical fluctuation)
and has the smallest average prediction sets.
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FIGURE 2.4: Induction, Deduction, and Transduction. The conventional approach
seeks a model that predicts well for all possible values; in other words,
it tries to solve a the problem of estimating a function. Transduction aims
at creating a model that predicts well at the points of interest; it tries to
estimate values of a function, not the function.

inference that moves from general to particular. The model sought by Induction is
of general applicability. Induction can be viewed as a form of inference that moves
particular to general. Vapnik observed that we may be solving a more complex
problem than warranted. We do not necessarily want a model that performs well
for every possible test object. What we want is an accurate prediction for a specific
test object (or a finite number of test objects). Vapnik summed up the rationale for
transduction as: “If you are limited to a restricted amount of information, do not solve
a particular problem by solving a more general problem”. Consequently, given a test
object, we should seek directly the specific prediction, without the intermediate step
of solving the likely more difficult problem of finding a model that is accurate in
general, just to apply it on the specific case of interest. Transduction proposes a form
of inference that moves from particular to particular. In practical terms, the idea is
therefore to exploit the knowledge of the test object during training.

Indeed, the definition of the NCM in Eq. 2.6 prescribes that the test object should
become part of the bag which represents the training set. In Transductive CP, given
a hypothetical completion (x`+1, ȳ`+1, the underlying ML model is retrained ` + 1
times to compute each αi. For each i = 1, . . . , ` + 1, the underlying ML is trained
from scratch on *z1, . . . , z`, z`+1 + /(xi, yi)), that is, a training set in which the i-th ex-
ample has been removed. So, for one test object, the underlying ML model is trained
|Y| · (`+ 1) times. In practice, the resulting computational cost becomes prohibitive
for all but the simplest practical applications.

A different form of CP has been proposed (Papadopoulos et al., 2002) which pre-
scribes a different way of computing the NCM and retains the validity property. This
different form is referred to as Inductive CP or, by some authors (see, for instance,
(Lei et al., 2018)), as Split CP.

As illustrated schematically in Figure 2.5, the training set is partitioned into two
sets, called proper training set and calibration set8. The proper training set is used
to train the underlying ML method. The training of the underlying ML method

8It could be argued that Inductive CPs require more data because they need a calibration set in
addition to a proper training set. While intuitively justifiable, there is no theoretical result (as far as
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FIGURE 2.5: A schematic representation of Inductive CP

is performed once only. The same fitted model is used to compute the αi for the
examples of the calibration set and for the α`+1 on the hypothetical examples formed
by trying out in turn every possible label.

Assuming that the first m examples constitute the calibration set and the remain-
ing k = ` − m examples the proper training set, the αi can be formally expressed
as:

αi = A((xi, yi), *z1, . . . , zk+) i = 1, . . . , m

αm+1 = A((x`+1, y`+1), *z1, . . . , zk+)

The (smoothed) p-value for a hypothesis y`+1 = ȳ about the label of test object
x`+1 is defined as follows:

pȳ =
|{i = 1, . . . , m + 1 : αi > αm+1}|+ τ|{i = 1, . . . , m + 1 : αi = αm+1}|

m + 1

It is interesting to note that, for Inductive CP, the assumption of exchangeability
is required only for the calibration set and the test set. The validity property is in
fact independent of the proper training set, which can then be chosen at will. In fact,
it can also be observed that there is no inherent reason for the NCM to have to be
learned on a proper training set. It can be chosen at will, possibly based on some a
priori knowledge, as long as it satisfies the requirements stated in Section 2.4.1.

the author was able to ascertain) that prescribes the partition into calibration and training set. Cross-
conformal predictors (Vovk, 2015) can mitigate this issue but the averaging that is recommended in the
paper results in loss of validity.
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2.4.6 Label-conditional (Mondrian) CP

Finally, the validity property as stated above guarantees an error rate over all possi-
ble label values, not on per-label value basis. The latter can be achieved with a vari-
ant of CP, called label-conditional CP (or also Mondrian9 CP). The label-conditional CP
is one form of conditional CPs, which are discussed in more general terms in (Vovk,
2013). The only change is in the calculation of the p-value: we restrict the αi only to
those that are associated with examples with the same label as the hypothetical label
that we are assigning at the test object. So, the p-value for a hypothesis y`+1 = ȳ
about the label of test object x`+1 is defined as follows:

p(ȳ) =
|{i = 1, . . . , (m + 1) : yi = ȳ, αi ≥ αm+1}|

|{i = 1, . . . , (m + 1) : yi = ȳ}| (2.14)

The property of label-conditional validity is essential in practice when the CP is ap-
plied to an “imbalanced” data set, that is, a data set in which the proportions of
labels are significantly different. Empirically, one can observe that with the plain va-
lidity property, the overall error rates tend within statistical fluctuation to the chosen
significance level, but the minority class(es) are disproportionally affected by errors
(see, for instance, (Löfström et al., 2015)). This property ensures that, even for the
minority class, the long-term error rate will tend to the chosen significance level.

2.4.7 An example on synthetic data

In this section, we will walk through an example of Transductive CP on a binary
classification problem using k Nearest Neighbours as the underlying ML method.
A synthetic training data set is generated so that the examples form two roughly
semicircular interlocking clouds of points in the plane (commonly referred to as
“moons”), as illustrated in Figure 2.6.

The NCM is chosen as:

α :=
∑(k)

j 6=i:yj=yi
d(xj, xi)

∑(k)
j 6=i:yj 6=yi

d(xj, xi)

where by ∑(k) we denote the sum of only the k smallest terms. In this example, k
was set to 3. So, given a training set *z1, . . . , z`+ and a hypothetical test example
z`+1, the i-th α (with i = 1, . . . , ` = 1) is calculated by removing zi from the bag
*z1, . . . , z`+1+ and calculating the ratio between the sum of the distances of the k = 3
closest examples with the same label as zi and the sum of the k = 3 closest examples
with a different label than zi.

9Conditional CPs are formally defined by introducing a notion of taxonomy on the space of the
examples, on the basis of which the training set (or the calibration set in the Inductive CP case) is
partitioned into categories. The graphical representation of this partitioning on bivariate examples
gives rise to images that can remind one of the distinctive style associated with the Dutch-French artist
Piet Mondrian.
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FIGURE 2.6: A synthetic data set (moons) for the binary classification example. For
the test object represented by the black cross at coordinates (0.8,0.25), the
p-values are p0 = 0.5622 and p1 = 0.00995. If we chose ε = 0.01, the
prediction set would be {0}, label 1 being rejected because p1 < 0.01.

For any test point there are four possibilities as to the prediction:

Prediction set

p0 ≤ ε, p1 ≤ ε ∅
p0 > ε, p1 ≤ ε {0}
p0 ≤ ε, p1 > ε {1}
p0 > ε, p1 > ε {0, 1}

Figure 2.7 shows the predictions for every every test object in a rectangular re-
gion, using a different colour for each of the four possible outcomes listed above.
As the target error rate ε is reduced, the areas where the CP makes single predic-
tions shrink. The CP outputs more uncertain predictions as it cannot reject at that
significance level any of the labels.

One basic technique to assess the performance of classification models is to use
a confusion matrix, i.e. a form of contingency table in which rows correspond to
the actual labels of test examples, columns to the predicted labels, and the cells (i, j)
contain the counts of examples of label i predicted as j.

In the case of CP, the confusion matrix takes a slightly different form than usual
as a consequence of the different nature of the predictions, which are sets rather
than single values. Considering only the binary classification case, for each actual
label, we may be interested in how many examples were correctly predicted (with
the prediction set containing only the correct label), how many examples were in-
correctly predicted (that is, the prediction set contains only the incorrect label) how
many examples were predicted inconclusively (that is, the prediction set contains
both labels), and finally how many examples were given an empty prediction set.
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FIGURE 2.7: Each plot shows the prediction sets at a given significance level for a grid
of test points. The color at each point codes whether the prediction set
for the test object at that point is empty (dark blue), contains only label
0 (light blue), contains only label 1 (green), or contains both labels and
hence is an uncertain prediction (yellow). The plots correspond to de-
creasing significance levels, starting from the top to the bottom. For sig-
nificance level ε = 0.10, a narrow blue area, where the prediction set is
empty, divides the domains where the prediction set contains one label.
The blue area corresponds to objects for which whichever label assign-
ment resulted in (hypothetical) examples that looked too non-conform for
the chosen significance level. As the significance level is decreased (i.e. we
demand a lower error rate) the blue areas shrink and eventually yellow
areas (where the prediction sets contain both labels) take their place. The
eventual prevalence of the yellow areas arises because the label hypothe-
ses can no longer be rejected at such low significance levels.
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TABLE 2.1: Example of CP predictions for various values of the significance level
ε. The error rate is reported next to the significance level ε to facilitate
the verification of the validity property. By the comparison of the two
columns, one can confirm that the validity property does hold, within sta-
tistical fluctuation. The entries of the confusion matrices are presented (ar-
ranged linearly) in the central group of 8 columns. The test data set had
1200 class 0 examples and 400 class 1 examples.

ε
Error
rate

Uncer-
tain

fraction

1
pred

1

1
pred

0

0
pred

0

0
pred

1

1
pred
∅

0
pred
∅

1
pred
{0, 1}

0
pred
{0, 1}

1
error
rate

0
error
rate

0.05 0.056 0.011 329 62 1163 28 0 0 9 9 0.155 0.023
0.10 0.111 0.000 310 33 1113 9 57 78 0 0 0.225 0.072
0.15 0.165 0.000 294 15 1042 1 91 157 0 0 0.265 0.132
0.20 0.204 0.000 281 8 992 0 111 208 0 0 0.297 0.173
0.25 0.251 0.000 259 4 939 0 137 261 0 0 0.352 0.217
0.50 0.497 0.000 109 0 695 0 291 505 0 0 0.728 0.421
0.75 0.744 0.000 27 0 383 0 373 817 0 0 0.932 0.681
0.80 0.783 0.000 21 0 326 0 379 874 0 0 0.948 0.728
0.85 0.829 0.000 14 0 259 0 386 941 0 0 0.965 0.784
0.90 0.892 0.000 7 0 166 0 393 1034 0 0 0.983 0.862
0.95 0.943 0.000 1 0 91 0 399 1109 0 0 0.998 0.924

A summary of the predictions for different significance levels is shown in Ta-
ble 2.1. The error rate is within statistical fluctuation of the significance level, consis-
tently with the validity property of CP. The data set in this example is imbalanced,
with one third of the examples of class 1 and the remaining two thirds of class 0.

As discussed in Section 2.4.6, when the data set is imbalanced, the validity guar-
antee of CP does not apply to each class separately. Indeed, one can observe that in
Table 2.1 the error rate for class 1 is markedly greater than the significance level. To
remedy this, one can use label-conditional CP. In Table 2.2, label-conditional CP is
applied to the same training and test data as in Table 2.1. The resulting error rate for
class 0 and error rate for class 1 are both close to the significance level, as graphically
illustrated in Figure 2.8

2.4.8 Confidence and Credibility

Restricting now our attention to classification problems, in some cases, it may be de-
sirable to focus the hedged forecast on a single value referred to as point prediction,
rather than a set or an interval. The most straightforward choice is to take the label
that is associated with the largest p-value10. The hedging of the prediction can then
be expressed by complementing the point prediction with quantities that character-
ize the uncertainty. For example, (Saunders, Gammerman, and Vovk, 1999; Gam-
merman and Vovk, 2007) recommend using confidence and credibility. Confidence is
defined as:

sup {1− ε : |Γε| ≤ 1}
10This is not necessarily equivalent to taking the highest scoring label according to the underlying

ML method. In the case of Mondrian CP, for instance, the p-value for label ȳ is calculated with respect
to the calibration set examples with label ȳ
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TABLE 2.2: Example of label-conditional CP predictions for various values of the sig-
nificance level ε. This uses the same data set (in fact, the same αi) as Fig-
ure 2.1, but computes the p-values using the label-conditional method of
Eq. 2.14. The validity property holds at the level of each label, as the two
rightmost columns show.

ε
Error
rate

Uncer-
tain

fraction

1
pred

1

1
pred

0

0
pred

0

0
pred

1

1
pred
∅

0
pred
∅

1
pred
{0, 1}

0
pred
{0, 1}

1
error
rate

0
error
rate

0.05 0.043 0.094 359 11 1021 58 0 0 30 121 0.028 0.048
0.10 0.106 0.000 364 19 1067 72 17 61 0 0 0.090 0.111
0.15 0.160 0.000 335 9 1009 35 56 156 0 0 0.163 0.159
0.20 0.222 0.000 308 4 937 8 88 255 0 0 0.230 0.219
0.25 0.284 0.000 291 2 855 1 107 344 0 0 0.273 0.287
0.50 0.507 0.000 225 0 564 0 175 636 0 0 0.438 0.530
0.75 0.719 0.000 123 0 326 0 277 874 0 0 0.693 0.728
0.80 0.768 0.000 84 0 287 0 316 913 0 0 0.790 0.761
0.85 0.830 0.000 69 0 203 0 331 997 0 0 0.828 0.831
0.90 0.893 0.000 44 0 127 0 356 1073 0 0 0.890 0.894
0.95 0.958 0.000 16 0 52 0 384 1148 0 0 0.960 0.957

FIGURE 2.8: Label-conditional validity. The plot on the left shows that the plain CP
exhibits validity overall (green line), but deviates significantly from it
on the minority class. This issues does not occur in the plot on the right,
where label-conditional CP is used.
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that is, the largest “confidence” (in sense defined in section 2.4.1) for which the pre-
diction set contains only one label. It can be computed as 1− second largest py.
Credibility is:

inf {ε : |Γε| = 0}

which can also be expressed more simply as the largest p-value.
It has to be noted that there are no theoretical guarantees on these two quantities.

2.4.9 CP and Statistical Hypothesis Testing

The framework of CP can be interpreted as an application of the methods of “tra-
ditional” Statistical Hypothesis Testing (SHT) to Machine Learning. Indeed the p-
value can be viewed as the probability of drawing from the same distribution F that
generated the training set an example that is as or more contrary to the hypothesis
of randomness than the one in hand. The prediction set for an object x`+1 is then
formed by all the labels ȳ for which the Null Hypothesis that the (hypothetical) ex-
ample (x`+1, ȳ) comes from F cannot be rejected at the chosen significance level ε.
The NCM plays the role of test statistic, i.e. of a value that is larger the more con-
trary to the Null Hypothesis a sample is. This explains why, instead of a Conformity
Measure, the possibly less straightforward notion of Non Conformity Measure is
used in defining CP.

Given the p-value defined with Eq. 2.10 can be viewed as cognate of the p-value
in SHT, one may be warned that it then carries the baggage of controversy of the lat-
ter. While virtually ubiquitous, the notion is often misused to an extent that some sci-
entific journals have explicit editorial guidelines that reject out-of-hand manuscript
that only provide p-values without further information. Also, every few years open
letters are signed by groups of scientists and statisticians — see for instance (Ben-
jamin et al., 2017) — advocating the deprecation of p-values for confirming a scien-
tific hypothesis or, at the very least, the use of tighter thresholds.

Some of the shortcoming of SHT p-values are perhaps not so relevant in this spe-
cific application. One main source of issues with the notion of p-value can perhaps
be traced to the fact that the p-value can very easily be misinterpreted as the poste-
rior probability of the Null Hypothesis. This pitfall is so widespread and insidious
that some authors (for example, (Sellke, Bayarri, and Berger, 2001)) refer to it as the
“p-value fallacy”.

To illustrate the issue in an informal empirical way, Figure 2.9 shows a typical
histogram of the p-values produced by a Mondrian Inductive CP that uses a rela-
tively accurate NCM. The histogram counts separately the examples of class 0 and
class 1 whose p0 falls in each one of the bins [0, 0.1], . . . , [0.9, 1]. One can observe that
the examples of class 0 have p0 values that are, within reason, uniformly distributed.
This is indeed the manifestation of the p-value validity property: under the Null Hy-
pothesis H0, if one rejects H0 for p < ε with ε ∈ [0, 1], the (Type I) error rate is going
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FIGURE 2.9: Histogram of p-values. Test examples are binned by their p0. In each
bin, class 0 examples and class 1 examples are counted separately. The
p-values are taken from the example discussed in detail later in sec-
tion 2.4.7. The data set is imbalanced: there were 1200 class 0 examples
and 400 class 1 examples.

to be ε in the long run. The p0 for the class 1 examples presents instead a distri-
bution that appears to peak sharply at 0. This reflects the fact that the hypothetical
assignment of the label 0 to those test objects results in an example so incompatible
with the training set (their NCM is higher than most of the training set) that only
a small percentage of the examples in the training set is judged more non-conform.
The (posterior) probability of the Null Hypothesis (here, that the assignment of label
0 to the test object in hand creates an example that comes from the same distribution
as the training set) can be empirically estimated roughly in each bin as the ratio of
the label 0 examples to the total number of examples in the bin.

So, in the [0, 0.1] bin there are 367 examples from class 1 and 87 for class 0. So we
may empirically estimate that the probability of a test object being class 0 conditional
on p0 ∈ [0, 0.1] is 87

87+367 =≈ 0.19.
This should illustrate very clearly the different nature of the two concepts, p-

value and conditional probability of the H0. The former has to do with the guar-
antee on the incorrect rejections of the Null Hypothesis. The latter depends on two
factors: (a) the quality of the NCM and (b) the imbalance of data set. When the NCM
discriminates less accurately the conformity of an example, the p-values for the “cor-
rect” hypothesis will still tend to be uniformly distributed, but the p-values for the
“incorrect” hypothesis tend to concentrate less around zero. The conditional prob-
ability of H0 as estimated by the ratio of the examples in each bin discussed above
will then vary (for the same value of the p-value). The ratio will also vary with the
prevalence of one class over the other.

(Vovk, 1993) and (Sellke, Bayarri, and Berger, 2001) later have shown that it is
possible under relatively reasonable assumptions to calibrate a p-value into some
valid measure of empirical evidence. (Sellke, Bayarri, and Berger, 2001) derive a
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FIGURE 2.10: p-value calibration.

lower bound for the Bayes factor11 for H0 against H̄0 or a frequentist probability of
error. The lower bound for the Bayes factor is:

B(p) =

−e p log(p) p < 1/e

1 p ≥ 1/e

and also a lower bound on the conditional probability of rejecting incorrectly H0:

α(p) =
Ä

1 + (−e p log(p))−1
ä−1

Figure 2.10 depicts the bounds as a function of p. The main assumption behind this
derivation is that the p-values under the H̄0 follow a Beta(ξ, 1) distribution i.e. with
density ξ pξ−1 where 0 < ξ ≤ 1

2.5 Survey

We conclude this introduction to Conformal Predictors with a survey of the field.
Rather than providing a long list of bibliographic references which could be easily
gleaned from a query on general-purpose search engine or on a specialised academic
site (e.g. ResearchGate), we attempt here to provide a reasoned overview of themes
and publications.

11By Bayes factor (Jeffreys, 1998, sec. 5)we denote

K =

Pr(H0|D)
Pr(H̄0|D)

Pr(H0)
Pr(H̄0)

=
Pr(D|H0)
Pr(D|H̄0)

This is also known as likelihood ratio. The odds of H0 to H̄0 can be obtained by multiplying the Bayes
factor by the ratio of the priors Pr(D|H0)

Pr(D|H̄0) . A Bayes factor of 1 indicates that the data supports equally H0

and H1; the actual odds in that case corresponds to those determined by the priors.
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Conformal Prediction can be viewed as part of the long tradition of nonparamet-
ric estimation (Wasserman, 2010a; Tsybakov, 2008). The reference text is the mono-
graph “Algorithmic Learning in a Random World” published in 2005 (Vovk, Gam-
merman, and Shafer, 2005), which presents in a coherent whole the fundamental the-
oretical results gradually established by the authors in the previous decade. Among
the papers that followed, (Gammerman and Vovk, 2007) summarized succinctly the
key aspects of CP and was complemented by a very interesting discussion in which
leading scholars provided their perspectives. In more recent times, (Balasubrama-
nian, Ho, and Vovk, 2014) collected contributions from key researchers in the field
and provided a thorough overview of the state-of-the-art as of 2015 for both CP the-
ory and CP applications. To avoid repetitions of material and references covered in
that book, this section will focus on the developments that occurred after 2014.

An increasing number of academic groups around the world appear to be in-
volved in research on CP. The one with the longest tradition is arguably the Centre
for Reliable Machine Learning12, at Royal Holloway, University of London, where
the founders of the field of Conformal Prediction, Prof. Alexander Gammerman and
Prof. Vladimir Vovk, continue to lead the investigations, opening new avenues, such
as the Conformal Predictive Distributions (Vovk et al., 2019). A significant body
of research with acknowledged connections to CP have been made by scholars at
Carnegie-Mellon University, often in collaboration with researchers from the Uni-
versity of Chicago and Stanford University. The focus is more on the batch mode
(as opposed to the online mode) of operation and on regression. Among the many
contributions, we highlight a method to “conformalize” the LASSO (Lei, 2019), a
method to compensate for a form of deviation at test time from the i.i.d. assumption
(namely, covariate shift) (Tibshirani et al., 2019), a way to exploit CP to make deep
learning image classifiers more robust (Hechtlinger, Póczos, and Wasserman, 2018),
a modification of Cross Conformal Predictors (Barber et al., 2019), a method to apply
CP to quantile regression algorithms13 algorithms (Romano, Patterson, and Candès,
2019) and investigations on the limits of distribution-free inference(Barber, 2020).

Another prolific group of researchers operates in Sweden, gravitating around
the KTH Royal Institute of Technology in Stockholm, the Stockholm University, the
Jönköping University, Uppsala University, and the University of Borås, often in con-
nection with the Discovery Science department of the pharmaceutical company As-
traZeneca. Restricting our survey to the last 5 years, the studies that communiity
contributed focus on combination of CP (Linusson et al., 2017; Linusson, Johansson,
and Boström, 2019), on the use of random forests as underlying ML method (Jo-
hansson et al., 2018; Johansson et al., 2019b; Vasiloudis, de Francisci Morales, and
Boström, 2019), on interpretable conformal regression (Johansson et al., 2019a), and
on several applications listed further down.

12https://cml.rhul.ac.uk/, known as Computer Learning Research Centre (CLRC) up to 2019
13quantile regression refers to conditional quantile functions, where quantile function appear to be

another name for predictive distribution

https://cml.rhul.ac.uk/
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Other centres of intense research activity include Fredrik University in Cyprus
(under the guidance of Harris Papdopoulos) and Maastricht University in the
Netherlands (Evgueni Smirnov). It is also surprising how many papers appear from
disparate research institutions.

The main forum for the CP researchers is the yearly Symposium on “Confor-
mal and Probabilistic Prediction with Applications” (COPA) which started in 2012.
The papers presented at the symposium are published as Proceedings of Machine
Learning Research14. The latest at the time of writing is PMLR Vol. 128 (COPA2020),
whereas for earlier editions see for instance (Gammerman et al., 2016). CP has also
been the focus of conferences, such as the 2015 “DST-EPSRC Indo-UK Workshop
on Conformal Prediction and Applications” in Hyderabad and the 2015 “Statistical
Learning and Data Sciences” Symposium in Egham, UK.

A number of journals have featured special issues on CP. These include: Annals
of Mathematics and Artificial Intelligence (Papadopoulos, Vovk, and Gammerman,
2015; Gammerman and Vovk, 2017), Journal of Cheminformatics (Spjuth, 2018), Ma-
chine Learning (Gammerman et al., 2019b), Neurocomputing (Gammerman et al.,
2019a), Pattern Recognition (to be published in 2020).

In recent years, CP has seen a plethora of applications. A large number of those
can be grouped under the banner of life sciences. CP has been applied in neu-
ropsychology to predict the progress of Alzheimer’s Disease (Pereira et al., 2017;
Pereira et al., 2018; Pereira et al., 2020), in a biomedical setting to predict lung can-
cer survival (Qaddoum, 2020) or breast cancer survivability (Alnemer, Rajab, and
Aljarah, 2016) or detecting seizures (Eliades and Papadopoulos, 2018) or detecting
lung cancer using a electronic nose (Zhan et al., 2020) in ecology to predict aquatic
toxicity (Svensson and Norinder, 2020) but perhaps the lion’s share of applications
is in chemoinformatics (Spjuth, 2018) and, more specifically, drug discovery (Ek-
lund et al., 2015; Ahlberg et al., 2017; Cortés-Ciriano and Bender, 2021; Bosc et al.,
2019) and development, where CP is used in high-throughput screening (Toccaceli,
Nouretdinov, and Gammerman, 2016; Svensson, Norinder, and Bender, 2017a; Sun
et al., 2017a; Svensson et al., 2018a; Ahmed et al., 2018; Svensson et al., 2018b), tox-
icity studies (Svensson, Norinder, and Bender, 2017b; Ji et al., 2018; Morger et al.,
2020), animal testing alternatives (Forreryd et al., 2018), proteochemometric stud-
ies (Cortés-Ciriano, Bender, and Malliavin, 2015).

There are in addition a variety of applications in surprisingly disparate fields,
including nuclear fusion (Shabbir et al., 2015; Moreno et al., 2016), identification
of maggots in forensics (Beyramysoltan et al., 2020), malware detection (Cherubin
et al., 2015; Dash et al., 2016; Zhi et al., 2017), fairness in the justice system (Ro-
mano et al., 2019), classification of Chinese liquors using RAMAN spectra (Gu et
al., 2019), recommender systems (Kagita et al., 2017; Ayyaz, Qamar, and Nawaz,
2018; Himabindu, Padmanabhan, and Pujari, 2018; Morsomme and Smirnov, 2019),

14http://proceedings.mlr.press/

http://proceedings.mlr.press/
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detection of anomalous trajectories (Laxhammar and Falkman, 2015), classifica-
tion of herbal medicines with an electronic nose (Zhan et al., 2018), predictive
maintenance (Nouretdinov et al., 2019) and predictive monitoring of Hybrid Au-
tomata15 (Bortolussi et al., 2019).

Applications of CP are not confined to research settings. Several companies are
known to employ CP techniques in software that is used in “production” systems.
Among them are AstraZeneca in Sweden, Janssen in Belgium, and Centrica in the
UK.

15Hybrid Automata can be seen mathematical descriptions of devices that combine digital logic
with analog processes (e.g. a cardiac pacemaker). They can be described as a finite state machine with
a finite set of continuous variables, possibly governed by a system of differential equations.
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Chapter 3

Application of CP to Compound
Activity Prediction
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3.1 Application to Compound Activity Prediction

To evaluate the performance of CP for Compound Activity Prediction in a real-
istic scenario, we sourced the data sets from a public-domain repository of High
Throughput assays, PubChem BioAssay (Kim et al., 2019).

The data sets on PubChem identify a compound with its CID (a unique com-
pound identifier that can be used to access the chemical data of the compound in
another PubChem database) and provide the result of the assay as Active/Inactive
as well as providing the actual measurements on which the result was derived, e.g.
viability (percentage of cells alive) of the sample after exposure to the compound.

To apply machine learning techniques to this problem, the compounds must be
described in terms of a number of numerical attributes. There are several approaches
to do this. The approach that was followed in this study is to compute signature
descriptors (Faulon, Visco, and Pophale, 2003). Each signature corresponds a given
labelled subgraph in the molecule graph, with subgraphs limited to those with a
given depth. In this exercise the signatures had at most height 31. The signature
descriptor for a molecule consists of the signatures present in the molecule along
with their counts, i.e. the number of times the labelled subgraph of a signature occur
in the graph of the molecule. An example of the signature descriptor for ascorbic
acid (also known as vitamin C) is provided in Figure 3.1, Table 3.1, and Table 3.2.

FIGURE 3.1: Chemical structure of l-ascorbic acid, commonly known as vitamin C.
Consistently with convention in organic chemistry, carbon atoms and
hydrogen atoms are not indicated as their presence can be easily inferred
(carbon atoms are at every unlabelled vertex, hydrogen atoms are present
wherever needed to saturate the valence of an atom). The numbering of
the atoms in in this example is arbitrary.

To create a data set from a number of compounds, all the signatures in all com-
pounds are first enumerated and the set of all signatures is obtained. Each unique
signature corresponds to one attribute, hence one dimension of the data set. To build
the matrix of training examples, each signature in the set is attributed (arbitrarily) a
column index and each compound a row index. Each cell of the matrix contains the

1The signature descriptors and other types of descriptors (e.g. circular descriptors) can be computed
with the CDK Java package or any of its adaptations such as the RCDK package for the R statistical
software.



3.1. Application to Compound Activity Prediction 39

TABLE 3.1: Signatures for ascorbic acid.
For every “heavy” atom (i.e. every non-hydrogen atom), a labelled Di-
rected Acyclic graph of given depth is computed and a string-based rep-
resentation is provided. For instance, the string at row 7 and column 1 rep-
resents the DAG of depth 1 from atom 7, i.e. a carbon atom with a bond
to a carbon atom, a double bond to another carbon atom and a bond to an
oxygen atom.

0 1 2 3

1 [O] [O]([C]) [O]([C]([C]=[C])) [O]([C]([C]([C][O])=[C]([C][O])))
2 [C] [C]([C]=[C][O]) [C]([C]([C][O])=[C]([C][O])[O]) [C](=[C]([C](=[O][O,0])[O])[C]([C]([C][O])[O,0...
3 [C] [C]([C][C][O]) [C]([C]([C][O])[C](=[C][O])[O]([C])) [C]([C]([C]([O])[O])[C](=[C]([C,0][O])[O])[O](...
4 [O] [O]([C][C]) [O]([C]([C][C])[C]([C]=[O])) [O]([C]([C](=[C,0][O])=[O])[C]([C]([C][O])[C,0...
5 [C] [C]([C][O]=[O]) [C]([C](=[C][O])=[O][O]([C])) [C]([C](=[C]([C,0][O])[O])=[O][O]([C,0]([C])))
6 [O] [O](=[C]) [O](=[C]([C][O])) [O](=[C]([C](=[C][O])[O]([C])))
7 [C] [C]([C]=[C][O]) [C](=[C]([C][O])[C]([O]=[O])[O]) [C]([C](=[O][O]([C,0]))=[C]([C,0]([C])[O])[O])
8 [O] [O]([C]) [O]([C]([C]=[C])) [O]([C](=[C]([C][O])[C]([O]=[O])))
9 [C] [C]([C][C][O]) [C]([C]([O])[C]([C][O])[O]) [C]([C]([O])[C]([C](=[C][O])[O]([C]))[O])
10 [O] [O]([C]) [O]([C]([C][C])) [O]([C]([C]([O])[C]([C][O])))
11 [C] [C]([C][O]) [C]([C]([C][O])[O]) [C]([C]([C]([C][O])[O])[O])
12 [O] [O]([C]) [O]([C]([C])) [O]([C]([C]([C][O])))

TABLE 3.2: Signature descriptor for ascorbic acid.
Each signature is used as a feature (a dimension); the number of occur-
rences is the value of the feature.

Counts Signature

6 [C]
6 [O]
4 [O]([C])
2 [C]([C]=[C][O])
2 [C]([C][C][O])
2 [O]([C]([C]=[C]))
1 [C](=[C]([C](=[O][O,0])[O])[C]([C]([C][O])[O,0])[O])
1 [C](=[C]([C][O])[C]([O]=[O])[O])
1 [C]([C](=[C]([C,0][O])[O])=[O][O]([C,0]([C])))
1 [C]([C](=[C][O])=[O][O]([C]))
1 [C]([C](=[O][O]([C,0]))=[C]([C,0]([C])[O])[O])
1 [C]([C]([C]([C][O])[O])[O])
1 [C]([C]([C]([O])[O])[C](=[C]([C,0][O])[O])[O]([C,0](=[O])))
1 [C]([C]([C][O])=[C]([C][O])[O])
1 [C]([C]([C][O])[C](=[C][O])[O]([C]))
1 [C]([C]([C][O])[O])
1 [C]([C]([O])[C]([C](=[C][O])[O]([C]))[O])
1 [C]([C]([O])[C]([C][O])[O])
1 [C]([C][O])
1 [C]([C][O]=[O])
1 [O](=[C]([C](=[C][O])[O]([C])))
1 [O](=[C]([C][O]))
1 [O](=[C])
1 [O]([C](=[C]([C][O])[C]([O]=[O])))
1 [O]([C]([C](=[C,0][O])=[O])[C]([C]([C][O])[C,0]([O])))
1 [O]([C]([C]([C][O])))
1 [O]([C]([C]([C][O])=[C]([C][O])))
1 [O]([C]([C]([O])[C]([C][O])))
1 [O]([C]([C]))
1 [O]([C]([C][C]))
1 [O]([C]([C][C])[C]([C]=[O]))
1 [O]([C][C])
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count of the occurrences of the signature corresponding to the column in the com-
pound corresponding to the row. The resulting matrix can be very large but it is also
highly sparse, as detailed further on (see Tab. 3.5).
In summary, the problem of Compound Activity Prediction is framed here as a clas-
sification problem where the examples are pairs of

• a label y taking values in Y = {−1,+1}

• an object described by a vector of non-negative integers (x1, . . . , xk) ∈ Nk
0,

where k is the number of all the signatures encountered in the data set and
xi is the count of occurrences in the given compound of the i-th signature

and we are interested in predicting the label of a test object given its vector of de-
scriptor counts.

As a final introductory consideration, it is important to mention that compound
activity prediction is a hard ML problem. The data sets can have several hundred
thousand examples (compounds for which a measurement is available), but only
a tiny minority (as low as 0.1%) exhibits activity. Each compound is described by
a large, sparse set of features (each compound generally possesses only a fraction
(30-300) of the total number of features, which could be a few hundred thousand).
More importantly, biological data is inherently noisy and often censored (values are
clipped to a fixed range) because of experimental limitations. Measurements could
also come from different laboratories with different procedures and consequently
different error distributions. As a result, the predictive performance is very often
not as good as for many other common ML applications. As a reference, (Sturm et
al., 2020) seems to consider ROC AUC 2 greater than 0.7 or F1-score 3 greater than
0.4 as a good result.

3.1.1 Underlying algorithms

As a first step in the study, we set out to extract relevant non-conformity measures
from different underlying algorithms: Support Vector Machines (SVM) (Cortes and
Vapnik, 1995), Nearest Neighbours, Naïve Bayes. The Non Conformity Measures
for each of the three underlying algorithms are listed in Tab. 3.3.

There are a number of considerations arising from the application of each of these
algorithms to Compound Activity Prediction.

SVM. The usage of SVM in this domain poses a number of challenges. First of
all, the number of training examples was large enough to create a problem for our
computational resources. The scaling of SVM (or kernel methods in general) to large
data sets is indeed an active research area (Bottou et al., 2007; Chang, 2011; You et

2Receiver Operating Characteristic Area Under Curve
3The F1-score is the harmonic mean of Precision and Recall
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TABLE 3.3: The Non Conformity Measures for the three underlying algorithms

Underlying
Non Conformity
Measure αi

Comment

SVM −yid(xi)
(signed) distance from sepa-
rating hyperplane

kNN
∑(k)

j 6=i:yj=yi
d(xj, xi)

∑(k)
j 6=i:yj 6=yi

d(xj, xi)

here the summation is on the
k smallest values of d(xj, xi)

Naïve Bayes −log p(yi = c|xi)
p is the posterior probability
estimated by Naïve Bayes

al., 2015), especially in the case of non-linear kernels4. We turned our attention to a
simple approach proposed by V.Vapnik in (Graf et al., 2005), called Cascade SVM.

The sizes of the training sets considered here are too large to be handled comfort-
ably by generally available SVM implementations, such as libsvm (Chang and Lin,
2011). The approach we follow could be construed as a form of training set editing.
Vapnik proved formally that it is possible to decompose the training into an n-ary
tree of SVM trainings. The first layer of SVMs is trained on training sets obtained as
a partition of the overall training set. Each SVM in the first layer outputs its set of
support vectors (SVs) which is generally smaller than the training set. In the second
layer, each SVM takes as training set the merging of n of the SVs sets found in the
first layer. Each layer requires fewer SVMs. The process is repeated until a layer
requires only one SVM. The set of SVs emerging from the last layer is not necessarily
the same that would be obtained by training on the whole set (but it is often a good
approximation). If one wants to obtain that set, the whole training tree should be
executed again, but this time the SVs obtained at the last layer would be merged
into each of the initial training blocks. A new set of SVs would then be obtained at
the end of the tree of SVMs. If this new set is the same as the one in the previous
iteration, this is the desired set. If not, the process is repeated once more. In (Graf
et al., 2005) it was proved that the process converges and that it converges to the
same set of SVs that one would obtain by training on the whole training set in one
go.

To give an intuitive justification, the fundamental observation is that the SVM
decision function is entirely defined just by the Support Vectors. It is as if these
examples contained all the information necessary for the classification. Moreover, if
we had a training set composed only of the SVs, we would have obtained the same

4In the case of linear SVM, it is possible to tackle the formulation of the quadratic optimization
problem at the heart of the SVM in the primal and solve it with techniques such as Stochastic Gradient
Descent or L-BFGS, which lend themselves well to being distributed across an array of computational
nodes.



42 Chapter 3. Application of CP to Compound Activity Prediction

decision function. So, one might as well remove the non-SVs altogether from the
training set.

In experiments discussed here, we followed a simplified approach. Instead of a
tree of SVMs, we opted for a linear arrangement as shown in Fig.3.2.

FIGURE 3.2: Linear Cascade SVM
At each step, the set of Support Vectors from the previous stage is merged
with a block of training examples from the partition of the original train-
ing set. This is used as training set for an SVM, whose SVs are then fed to
the next stage.

While we have no theoretical support for this semi-online variant of the Cascade
SVM, the method appears to work satisfactorily in practice on the data sets we used.

The class imbalance was addressed with the use of per-class weighting of the C
hyperparameter, which results in a different penalization of the margin violations.
The per-class weight was set inversely proportional to the class representation in the
training set.

Another problem is the choice of an appropriate kernel. While we appreciated
the computational advantages of linear SVM, we also believed that it was not nec-
essarily the best choice for the specific problem. It can easily be observed that the
nature of the representation of the training objects (as discrete features) warranted
approaches similar to those used in Information Retrieval, where objects are de-
scribed in terms of occurrences of patterns (bags of words). The topic of similarity
searching in chemistry is an active one and there are many alternative proposals (see
(Monev, 2004)). We used as a kernel a notion called Tanimoto similarity5. The Tani-
moto similarity extends the well-known Jaccard coefficient in the sense that whereas

5See (Gartner, 2008) for a proof that Tanimoto Similarity is a kernel.
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the Jaccard coefficient considers only presence or absence of a pattern, the Tanimoto
similarity takes into account the counts of the occurrences.

To explore further the benefits of non-linear kernels, we also tried out a kernel
consisting of the composition the Tanimoto similarity with Gaussian RBF.

Tab. 3.4 provides the definitions of the kernels used in this study.

TABLE 3.4: SVM Kernels Definitions (where A = (a1, . . . , ad), B = (b1, . . . , bd) are two
objects, each described by a vector of d counts) )

Tanimoto Coefficient T(A, B) = ∑d
i=1 min(ai ,bi)

∑d
i=1(ai+bi)−∑d

i=1 min(ai ,bi)

Tanimoto with Gaussian RBF TG(A, B) = e−
|T(A,A)+T(B,B)−2T(A,B)|

γ

Naïve Bayes.

Naïve Bayes and more specifically Multinomial Naïve Bayes are widely regarded
as effective classifiers when features are discrete (for instance, in text classifica-
tion), despite their relative simplicity. This made Multinomial Naïve Bayes a natural
choice for the problem at issue here. The probabilities were estimated using additive
smoothing to avoid the problem of zero probabilities.

Nearest Neighbours

We chose Nearest Neighbours because of its good performance in a wide variety of
domains. In principle, the performance of Nearest Neighbours could be severely
affected by the high-dimensionality of the training set (Tab. 3.5 shows how in one
of the data sets used in this study the number of attributes exceeds by ≈ 20% the
number of examples), but in our experiments the “curse of dimensionality” did not
manifest itself.

3.1.2 Tools and Computational Resources

The choice of the tools for these experiments was influenced primarily by the ex-
ploratory nature of this work. For this reason, programming languages and devel-
opment environments were chosen for their ability to support interactivity and rapid
prototyping, rather than optimal CPU utilization and memory efficiency.

The language adopted was Python 3.4 and the majority of programming was
done using Jupyter Notebooks with the IPython kernel. The overall format turned
out to be very effective for capturing results (and for their future reproducibility).
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Several third-party libraries were used. Numerical processing and data manage-
ment were performed with the help of numpy/scipy and pandas. SVM and other
machine learning algorithms were provided by the scikit-learn(Pedregosa et al.,
2011) package. Sections of Python code (e.g. the Tanimoto similarity) that were iden-
tified through profiling as critical for performance were re-implemented in Cython,
a subset/dialect of Python that allows code to be compiled (via an intermediate C
representation) rather than being interpreted. The computations were run initially
on a local server (8 cores with 32GB of RAM, running OpenSuSE) and in later stages
on a supercomputer (the IT4I Salomon cluster located in Ostrava, Czech Repub-
lic).The Salomon cluster is based on the SGI® ICE™ X system and comprises 1008
computational nodes (plus a number of login nodes), each with 24 cores (2 × 12-
core Intel Xeon E5-2680v3 2.5GHz processors) and 128GB RAM, connected via high-
speed 7D Enhanced hypercube InfiniBand FDR and Ethernet networks. Rated at
1,457.7 TFLOPS, at the time of its launch it ranked 14th in Europe6.

Parallelization and computation distribution was accomplished with the help
of the ipyparallel(Bussonnier, 2018) package, which is a high-level framework
for the coordination of remote execution of Python functions on a generic collec-
tion of nodes (cores or separate servers). It provides a convenient environment
for distributed computing which is well integrated with IPython and Jupyter and
has a learning curve that is not as steep as that of alternative frameworks com-
mon in High Performance Computing (OpenMPI, for example), which offers a de-
gree of fine-grained control that was not required in this application. In particular,
ipyparallel, in addition to allowing the start-up and shut-down of a cluster com-
prising a controller and a number of engines where the actual processing (each is
a separate process running a Python interpreter) is performed via integration with
the job scheduling infrastructure present on Salomon (PBS, Portable Batch System),
took care of the details such as data serialization/deserialization and transfer, load
balancing, job tracking, exception propagation, etc. thereby hiding much of the com-
plexity of parallelization. One key characteristic of ipyparallel is that, while it
provides primitives for map() and reduce(), it does not constrain the choice to
those two, leaving the implementer free to select the most appropriate parallel pro-
gramming design patterns for the specific problem (see (McCool, Reinders, and
Robison, 2012) for a reference on the subject).

In this work, parallelization was exploited to speed up the computation of the
Gram matrix or of the decision function for the SVMs or the matrix of distances for
kNN. In either case, the overall task was partitioned in smaller chunks that were
then assigned to engines, which would then asynchronously return the result. Also,
parallelization was used for SVM cross-validation, but at a coarser granularity, i.e.
one engine per SVM training with a parameter. Data transfers were minimized by
making use of shared memory where possible and appropriate. A key speed-up was

6in the latest top500.org global list of supercomputers (November 2020) it ranks at number 460.
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achieved by using pre-computed kernels (computed once only) when performing
Cross-Validation with respect to the regularization parameter C.

3.1.3 Results

To assess the relative merits of the different underlying algorithms, we applied In-
ductive Mondrian Conformal Predictors on the PubChem data set AID8277. The
extraction of signature descriptors from the molecular structures were kindly per-
formed on our behalf by Lars Carlsson and Ernst Ahlberg-Helgee at AstraZeneca.
The characteristics of the resulting data set are listed in Tab. 3.5.

TABLE 3.5: Characteristics of the AID827 data set

Total number of examples 138,287
Number of features 165,786 High dimensionality
Number of non-zero entries 7,711,571
Density of the data set 0.034% High sparsity
Active compounds 1,658 High imbalance (1.2%)
Inactive compounds 136,629
Unique set of signatures 137,901 Low degeneracy

The test was articulated in 20 cycles of training and evaluation. In each cycle, a
test set of 10,000 examples was extracted at random. The remaining examples were
split randomly into a proper training set of 100,000 examples and a calibration set
with the balance of the examples (28,387).

During the SVM training, 5-fold stratified Cross Validation was performed at
every stage of the Cascade to select an optimal value for the hyperparameter C.
Also, per-class weights were assigned to cater for the high class imbalance in the
data, so that a higher penalization was applied to violators in the less represented
class.

In Multinomial Naïve Bayes too, Cross Validation was used to choose an optimal
value for the smoothing parameter.

The results are listed in Tab. 3.6, which presents the classification arising from
the region predictor for ε = 0.01. The numbers are averages over the 20 cycles of
training and testing.

Note that a compound is classified as Active (resp. Inactive) if and only if Active
(resp. Inactive) is the only label in the prediction set. When both labels are in the
prediction, the prediction is considered Uncertain.

It has to be noted at this stage that there does not seem to be an established
consensus on what the best performance criteria are in the domain of Compound
Activity Prediction (see for instance (Jain and Nicholls, 2008)), although Precision

7Available at https://pubchem.ncbi.nlm.nih.gov/bioassay/827 – Last accessed January
3, 2021

https://pubchem.ncbi.nlm.nih.gov/bioassay/827
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TABLE 3.6: CP results for AID827 with significance ε = 0.01. All results are averages
over 20 runs, using the same test sets of 10,000 objects across the differ-
ent underlying algorithms. “Active pred Active” is the (average) count of
actually Active test examples that were predicted Active by Conformal
Prediction. Uncertain predictions occur when both labels are output by the
region predictor. Empty predictions occur when both labels can be rejected
at the chosen significance level. For the specific significance level chosen
here, there were never empty predictions.

Underlying
Active

pred
Active

Inactive
pred

Active

Inactive
pred

Inactive

Active
pred

Inactive
Empty

pred

Uncer-
tain

Naïve Bayes 38.20 104.30 183.30 1.10 0 9673.10
3NN 43.95 100.55 361.55 0.80 0 9493.15
Cascade SVM:
- linear 34.20 99.00 591.85 1.20 0 9273.75
- RBF kernel 47.20 101.80 1126.75 1.80 0 8722.45
- Tanimoto kernel 48.45 97.65 986.85 0.80 0 8866.25
- Tanimoto-RBF kernel 47.65 94.10 1044.90 0.95 0 8812.40

(fraction of actual Actives among compounds predicted as Active) and Recall (frac-
tion of all the Active compounds that are among those predicted as Active) seem
to be generally relevant. In addition, it is worth pointing out that these (and many
others) criteria of performance should be considered as generalisations of classical
performance criteria since they include dependence of the results on the required
confidence level.

TABLE 3.7: CP results for AID827 using SVM with Tanimoto+RBF kernel for differ-
ent significance levels. The “Active Error Rate” is the ratio of “Active pred
Inactive” to the total number of Active test examples. The “Inactive Error
Rate” is the ratio of “Inactive predicted Active” to the total number of Inac-
tive test examples.

Signifi-
cance

Active
pred

Active

Inactive
pred

Active

Inactive
pred

Inactive

Active
pred

Inactive
Empty

pred

Uncer-
tain

Active
Error
Rate

Inactive
Error
Rate

1% 47.65 94.10 1044.90 0.95 0.0 8812.40 0.82% 0.95%
5% 67.20 490.40 3091.75 5.20 0.0 6345.45 4.52% 4.96%

10% 76.15 999.25 4703.75 10.60 0.0 4210.25 9.22% 10.11%
15% 82.10 1484.85 6021.80 17.30 0.0 2393.95 15.04% 15.02%
20% 86.55 1982.25 6928.95 22.80 0.0 979.45 19.83% 20.05%

At the shown significance level of ε = 0.01, 34% of the compounds predicted
as active by Inductive Mondrian Conformal Prediction using Tanimoto composed
with Gaussian RBF were actually Active compared to a prevalence of Actives in the
data set of just 1.2%. At the same time, the Recall was ≈ 41% (ratio of Actives in the
prediction to total Actives in the test set). Note that this is for a specific value of ε. In
Section 3.1.5 we will discuss how a different trade-off between Precision and Recall



3.1. Application to Compound Activity Prediction 47

can chosen by varying ε8.
We selected Cascade SVM with Tanimoto+RBF as the most promising underlying

algorithm on the basis of the combination of its high Recall (for Actives) and high
Precision (for Actives), assuming that the intended application is indeed to output a
selection of compounds that has a high prevalence of Active compounds.

Note that in Tab. 3.6 the values similar to ones of confusion matrix are calculated
only for certain predictions. In this representation, the concrete meaning of the prop-
erty of class-based validity can be clearly illustrated as in Tab. 3.7: the two rightmost
columns report the prediction error rate for each label, where by prediction error
we mean the occurrence of “the actual label not being in the predictions set”. When
there are no Empty predictions, the Active Error rate is the ratio of the number of
“Active predicted Inactive” to the number of Active examples in the test set (which
was 115 on average).

Fig. 3.3 shows the test objects according to the base-10 logarithm of their pactive

and pinactive. The dashed lines represent the thresholds for p-value set at 0.01, i.e.
the significance value ε used in Tab. 3.6. The two dashed lines partition the plane
in 4 regions, corresponding to the region prediction being Active (pactive > ε and
pinactive ≤ ε), Inactive (pactive ≤ ε and pinactive > ε), Empty (pactive ≤ ε and pinactive ≤
ε), Uncertain (pactive > ε and pinactive > ε).

As suggested in Sec. 2.4.8, it is also possible to use the CP p-values to emit single-
valued predictions. In this scheme, the prediction is the label with the highest p-
value and it is complemented by confidence and credibility.

It can be argued that Conformal Prediction provides, in addition to the validity
guarantees, a more informative output than the mere score produced by the underly-
ing algorithm. We have seen that, in the binary classification case we’re considering,
the CP framework provides two p-values, one for the Active hypothesis and one for
the Inactive hypothesis. Where the conventional interpretation of the score of Ac-
tive vs. Inactive, with CP we obtain a estimate of how consistent with the training
set each hypothesis is. Instead of framing the prediction as a choice between Active
or Inactive, we are presented with the support for each label and this can provide
more insight. Suppose, for instance, that a probabilistic predictor output the same
probability for both labels and that, correspondingly, the CP might output the same
p-value. While on the basis of the probabilistic prediction we would consider the
two possibilities entirely equivalent, the CP output can reveal more: if both p-values
are high, we could conclude that both labels are compatible with the training data,
but if p-values are low, we would have an indication that both are hardly in line
with the training data. This distinction is not possible by looking just at the output
of conventional probabilistic predictors.

8In principle, the control of the trade-off can be achieved in scoring classifiers by varying the de-
cision threshold. By using ε, the CP approach follows arguably a more principled approach, where ε
has a definite statistical meaning.
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FIGURE 3.3: Test objects plotted by the base-10 log of their their pactive and pinactive.
Note that many test objects are overlapping. Note that some of the exam-
ples may have identical p-values, so for example 1135 objects predicted as
"Inactives" are presented as 4 points on this plot.

3.1.4 Application to different data sets

The previous section examined different underlying ML algorithms and obtained
a variety of performance results, which seemed to suggest that SVM using Tan-
imoto+RBF kernel provides the best results. In this section, we apply Mondrian
ICP with SVM with Tanimoto+RBF to different data sets to gain some insight on
the range of performance that can be expected from this technique when applied
to chemoinformatics data sets. Again, we are indebted to Lars Carlsson and Ernst
Ahlberg-Helgee for assisting us in the choice of appropriate PubChem data sets and
for extracting the signature descriptors for us. The main characteristics of the data
sets are reported in Tab. 3.8.

In line with the previous set of experiments, we performed 20 iterations of train-
ing and testing, each with a different random partitioning of the overall data set into
training and test sets. In each cycle, a test set of 10,000 examples was hold out and
the rest was split between calibration set (≈ 30, 000) and proper training set. The
results, averaged over the 20 iterations, are reported in Tab. 3.9 for significance level
ε = 0.01. It can be observed that the proportion of errors (i.e. ‘Inactive pred Ac-
tive’,‘Active pred Inactive’, and ‘Empty preds’) is close to 1% for all data sets in line
with the theory, whereas the proportion of correct, unambiguous predictions varies
markedly.
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TABLE 3.8: Data sets and their characteristics. Density refers to the percentage of non-
zero entries in the full matrix of ‘Number of Compounds × Number of
Features’ elements

Data
Set

Assay Description
Number of

Compounds

Number
of

Features

Actives
(%)

Density
(%)

827

High Throughput Screen to
Identify Compounds that
Suppress the Growth of Cells
with a Deletion of the PTEN
Tumor Suppressor.

138,287 165,786 1.2% 0.034%

1461

qHTS Assay for Antagonists
of the Neuropeptide S Recep-
tor: cAMP Signal Transduc-
tion.

208,069 211,474 1.11% 0.026%

1974

Fluorescence polarization-
based counterscreen for
RBBP9 inhibitors: primary
biochemical high throughput
screening assay to identify
inhibitors of the oxidoreduc-
tase glutathione S-transferase
omega 1(GSTO1).

302,310 237,837 1.05% 0.024%

2553

High throughput screening
of inhibitors of transient re-
ceptor potential cation chan-
nel C6 (TRPC6)

305,308 236,508 1.06% 0.024%

2716

Luminescence Microor-
ganism Primary HTS to
Identify Inhibitors of the
SUMOylation Pathway Us-
ing a Temperature Sensitive
Growth Reversal Mutant
Mot1-301

298,996 237,811 1.02% 0.024%
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TABLE 3.9: Results of the application of Mondrian ICP with ε = 0.01 using SVM with
Tanimoto+RBF as underlying. Test set size: 10,000

DataSet
Active

pred
Active

Inactive
pred

Active

Inactive
pred

Inactive

Active
pred

Inactive
Empty
preds

Uncertain

827 47.65 94.10 1044.90 0.95 0 8812.40
1461 29.45 101.30 1891.10 1.20 0 7976.95
1974 62.50 97.40 880.85 1.00 0 8958.25
2553 34.00 101.00 337.90 1.00 0 9526.10
2716 3.55 98.20 97.00 1.00 0 9800.25

3.1.5 Mondrian ICP with different εactive and εinactive

When applying class-conditional Mondrian ICP, there is no constraint to use the
same significance ε for the two labels. There may be an advantage in allowing dif-
ferent “error” rates for the two labels given that the focus might be in identifying
Actives rather than Inactives.

This allows to vary relative importance of the two kinds of errors. The validity
of Mondrian machines implies that, for binary classification, the expected number
of certain (i.e. just one label in the prediction set) predictions that turn out to be
incorrect predictions is bounded by εact for (true) actives and by εinact for (true) non-
actives. It is interesting to study the effect of varying the significance level on the
precision and recall (within single-valued predictions).

Fig. 3.4 shows the trade-off between Precision and Recall that results from vary-
ing εinact. For very low values of the significance ε, a large number of test examples
have pact > εact as well as pinact > εinact. For these test examples, we have an ‘Uncer-
tain’ prediction. As we increase εinact, fewer examples have a pinact larger than εinact.
So ‘Inactive’ is not chosen any longer as a label for those examples. If they happen
to have a pact > εact, they switch from ’Uncertain’ to being predicted as ‘Active’ (in
the other case, they would become ‘Empty’ predictions).

3.2 Ranking of compounds by p-value

The p-value produced by a CP offers another way to rank test objects. In the case at
hand, one might want to rank test compounds by how likely they are to exhibit the
biological activity of interest. When using a scoring classifier as underlying model,
one might observe that, if we denote the score by s (assuming higher score values
are associated with higher probability of the object belonging to the Active class) the
ordering will be the same when sorting by descending s as by descending pactive.
The calculation of the p-value can in fact be seen as a isotonic mapping, i.e. a map-
ping that does not change the order, discounting ties. However, the p-values can
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FIGURE 3.4: Trade-off between Precision and Recall by varying εinact — Data set
AID827, with SVM with Tanimoto+RBF

convey an element of information that the bare scores do not provide. The validity
property of class-conditional CP ensures that the objects with pactive > ε contain a
fraction 1− ε of all the actives in the test set (barring, as usual, statistical fluctua-
tion). An example of the ranking that can be obtained in this way is illustrated in
Table 3.10. The table lists the 20 compounds that were assigned the largest pactive

values in one of the runs for data set 827. In this example, if we choose ε = 0.90,
we would select the top 18 compounds. Among these 18 compounds, we would
expect to find a fraction 1− 0.90 = 0.10 of all the actives in the test set. Given that
the test set had 10,000 objects and that it was sampled from a data set with 1.2% of
active compounds (see Table 3.8), among the 18 compounds we should see 12 active
ones. In this specific instance, there are only 10, which is arguably within statistical
fluctuation. In summary, the use of ranking by p-value can be of help in deciding
which (and how many) compounds to test in order to find a chosen proportion of
active compounds within a given library.

3.3 Conclusions

This chapter illustrated a methodology for applying conformal prediction to data
sets from the chemoinformatics domain, characterized by large volumes, high im-
balance, and sparseness. First, we verified the class-conditional validity guarantee of
Mondrian Inductive Conformal Predictors using different underlying methods such
as Nearest Neighbours, Naïve Bayes, and SVM with various kernels. In particular,
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TABLE 3.10: The 20 candidate compounds (out of a held-out test set of 10,000) with the
largest pactive values, from one of the runs for the data set AID827. Bold
face denotes those compounds that are actually Active. The compound ID
is just the index in the pre-processed data set and not the PubChem ID.

Ranking Compound ID pactive

1 108198 0.997067
2 103948 0.988270
3 62772 0.988270
4 129143 0.982405
5 108632 0.961877
6 138051 0.961877
7 108920 0.941349
8 108877 0.938416
9 108783 0.932551

10 107957 0.932551
11 5413 0.926686
12 4334 0.923754
13 138177 0.923754
14 71538 0.914956
15 54806 0.914956
16 16925 0.903226
17 108026 0.903226
18 108584 0.900293
19 107943 0.894428
20 108032 0.894428

we proposed a variation of the SVM method, namely Linear CascadeSVM, which
overcomes the scalability limits of SVM at the cost of providing an approximate
solution. The method appeared nonetheless to achieve the best efficiency in com-
parison to the other methods, when the Tanimoto+RBF kernel was used. The same
method was then used in the application of MICP to a few other chemoinformatics
sets to explore the range of performance that could be expected of the conformal ap-
proach in this particular domain. A discussion of the additional insight that can be
gained from the p-values compared to bare scores concluded the chapter. As a final
note, we would like to mention that the results presented here convinced the two
pharmaceutical partners in the ExCAPE project (see Section 5.3) to integrate CP in
their operational prediction systems. The improved quality of the predictions trans-
lated into savings (fewer lab tests) quantified in the range of tens of thousands of
Euros (personal communication).
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4.1 Probabilistic Prediction

The previous chapters described Conformal Prediction and discussed some results
of its application to BioAssay data. This chapter introduces Multi-probabilistic pre-
diction, also referred to as Venn prediction.

In this section, we present the main concepts and their rationale. The reader is
referred to the many publications for all the details. The treatment in this chapter
follows (Vovk, Gammerman, and Shafer, 2005, Ch. 6).

As observed in Section 2.4.9, the p-value answers a different question from the
one that is generally posed. What one is usually intuitively interested in is the prob-
ability of the label of a given test object taking a certain value. The pȳ output by
CP for a test object x`+1 is instead the probability of drawing, from the same distri-
bution as the calibration set, one example that is as or more contrary to hypothesis
of randomness than (x`+1, ȳ). Figure 2.9 illustrates in an empirical way the concep-
tual difference between p-value and the conditional probability of the label given
the object. The latter is the subject of Probabilistic Prediction.

In this work Probabilistic prediction refers to the the task of producing a proba-
bility distribution over the label space Y for a given test object xn+1 on the basis of
a training set (x1, y1), . . . , (xn, yn). In particular, we seek valid estimates of the actual
probability distribution Pr(Y|X): in this specific context, we consider probabilistic
prediction valid is they perform well in statistical tests against the actual labels of
the test examples.

In (Vovk, Gammerman, and Shafer, 2005) it is claimed that, under the assump-
tion that the training set contains no repeated object, there cannot be a valid proba-
bility predictor. Venn predictors provide a way to circumvent this negative result.

4.1.1 Venn Predictors

It is perhaps fair to say that the more conventional and established methods for prob-
abilistic prediction follow a parametric and possibly Bayesian approach. Such meth-
ods hinge on assumptions on the form of distribution and/or posit a prior distribu-
tion probability, which gets revised on the basis of the observations. By contrast, the
approach followed by Venn Prediction is entirely non-parametric. Either approach
has advantages and limitations. On one hand, Bayesian and parametric methods
are particularly suited when the data generating mechanisms are known intimately
enough for the assumptions to be justified. When the assumptions are warranted,
such methods can produce accurate results with relatively small volumes of data. On
the other hand, non-parametric methods seem to be more appropriate when data is
abundant, but little can be reliably assumed on the form of the data distribution.

The concepts behind Venn Prediction can be traced all the way back to the foun-
dations of the frequentist school, which views probability as the limit of a relative
frequency. The practical application of this apparently elementary prescription leads
very quickly to a difficulty, which is referred to as the reference class problem. John
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Venn [1834–1923] was a logician and philosopher who, in addition to introducing the
diagram that bears his name, is also credited for formulating explicitly and studying
the issue (Venn, 1866, p.175). The “reference class” designates the class with respect
to which we compute the relative frequency, which we then take as estimate of the
probability. In his original treatment of the subject, Venn used the example of es-
timating the probability that John Smith, an Englishman, will die within one year.
One estimate might simply to take the fraction of Englishmen that will die within a
year, based on historical statistics. But John Smith is also a farmer, so we may get
a more precise estimate by considering the fraction of English farmers that will die
within a year. We are then told that he’s also 30 years of age, so we could restrict
further the reference class, and so forth. It is immediately evident that we cannot
go on indefinitely as we would end up restricting the reference class to John Smith
himself. There is therefore a trade-off between making the estimate specific and hav-
ing a reference class with enough elements for the relative frequency to be a useful
estimate of the probability. When we refine the reference class, we can only choose
a finite number of attributes and this, in turn, creates the problem of selecting the
most relevant ones.

Venn Prediction has three distinctive characteristics:

1. it clearly isolates the reference class problem within a notion of taxonomy to
be defined as appropriate, by which the training set is partitioned into cate-
gories containing observations that can be considered similar for the purpose
of computing probabilities as relative frequencies.

2. For each test object, it outputs a set of probability distributions, as opposed to
one probability distribution.

3. It has a special form of a calibration property that applies for any choice of the
taxonomy (under minimal conditions)

The taxonomy in item 1 above can be implemented by means of a ML algorithm,
which would define an equivalence relation on a data set in a way that would min-
imize an appropriate loss function, thereby providing a principled way to tackle
the reference class problem. Item 2 may be surprising and confusing and is in-
troduced to avoid the technical issue of the impossibility of a valid probabilistic
predictor mentioned at the end of the previous section. The Venn Predictor is a
multi-probabilistic predictor and outputs as many probability distributions as pos-
sible label values. Each probability distribution provides the probability for each
label. In (Vovk, Gammerman, and Shafer, 2005) it is proved that the Venn Predictor
has a calibration property (by which the predicted probabilities correspond to the
relative frequencies) that holds if one could choose the “right” distribution for each
test object in turn.
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4.1.2 Formal definition

In this section, we define the Venn predictors in general terms. We will restrict the
scope to the case of classification, i.e.

• a training set made of ` examples (xi, yi) ∈ Z, where xi is an object generally
represented as a vector of d attributes and yi ∈ Y is a label taking a finite number
k of values, say Y := {c1, . . . , ck}.

• a test set made of objects x`+1, x`+2, . . . , whose labels we are asked to predict.

Venn taxonomy: A measurable function that assigns to each n ∈ {2, 3, . . . } and each
sequence (z1, . . . , zn) ∈ Zn an equivalence relation ∼ on {1, . . . , n} which is
equivariant in the sense that, for each n and each permutation π of {1, . . . , n},

(
i ∼ j | z1, . . . , zn

)
⇒
(
π(i) ∼ π(j) | zπ(1), . . . , zπ(n)

)
The Venn taxonomy induces equivalence classes which we can define as:

A
(

j | z1, . . . , zn
)

:=
{

i ∈ {1, . . . , n} |
(
i ∼ j | z1, . . . , zn

)}
Intuitively, the equivalence classes of the taxonomy group objects that we con-
sider sufficiently similar for the purposes of prediction. For instance, they
could correspond to intervals of the value of the decision function, when using
an SVM.

Venn predictor: Given a training sequence (z1, . . . , z`) and a test object x`+1, the
Venn predictor associated with a given Venn taxonomy outputs the probabili-
ties pi,j as its prediction for x`+1’s label, where

pi,j =

∣∣{k ∈ A(`+ 1 | z1, . . . , z`, (x`+1, ci)) | yi = cj
}∣∣

|A(`+ 1 | z1, . . . , z`, (x`+1, ci)|
(4.1)

for i, j ∈ {1, . . . , p}

In words, pi,j is the fraction of the examples with label cj (including a hypothet-
ical example made by assuming label ci for the test object x`+1) in the same equiva-
lence class as the completion (x`+1, ci). The approach described above can be viewed
as transductive in the sense that we recompute the taxonomy from scratch for every
test example (which implies retraining the underlying ML on which basis the spe-
cific taxonomy is defined). Figure 4.1 illustrates the case of Venn Predictor defined
using a taxonomy inspired by the Nearest Neighbour algorithm.

The transductive approach is computationally infeasible in all but the simplest
cases. However, similarly to what was discussed for Conformal Prediction, it is
possible to have an inductive mode of operation with the same theoretical guarantees,
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0 1 2 3 4 5 6 7 8

0 0.6470 0.2941 0.0000 0.0588 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.5625 0.3750 0.0000 0.0625 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.5625 0.3125 0.0625 0.0625 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.5625 0.3125 0.0000 0.1250 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.5625 0.3125 0.0000 0.0625 0.0625 0.0000 0.0000 0.0000 0.0000
5 0.5625 0.3125 0.0000 0.0625 0.0000 0.0625 0.0000 0.0000 0.0000
6 0.5625 0.3125 0.0000 0.0625 0.0000 0.0000 0.0625 0.0000 0.0000
7 0.5625 0.3125 0.0000 0.0625 0.0000 0.0000 0.0000 0.0625 0.0000
8 0.5625 0.3125 0.0000 0.0625 0.0000 0.0000 0.0000 0.0000 0.0625

FIGURE 4.1: Example of Venn Predictor on synthetic data. The data set is made up of
points in the plane belonging each to one of 9 classes (indicated by color).
The examples are generated as a mixture of 9 bivariate Gaussians, one per
class, with centers arranged on the {−1, 0, 1} × {−1, 0, 1} grid. The Venn
Predictor uses the following rule to establish a taxonomy: “two examples
are assigned to the same category if their nearest neighbours have the
same label”. The table shows the Venn Predictor output for a test object at
(−1,−1).
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at the cost of larger training data sets. We will discuss it in the context of Venn-
ABERS predictors (Vovk, Petej, and Fedorova, 2015).

We have introduced Venn Predictors in a generic way. The rest of the thesis will
be restricted to the case of binary classification, as this is the setting in which it will
be applied to chemoinformatics problems.

We will use p0 and p1 to denote the probability that the label y of the test example
be 1, but under two different hypotheses, namely y = 0 and y = 1.

4.1.3 Validity of Venn Predictors

Let’s say that a random variable P taking values in [0, 1] is calibrated for a random
variable Y taking values in {0, 1} if

∀p ∈ [0, 1] E(Y | P) = P almost surely (4.2)

Intuitively, P is the prediction made by a probabilistic predictor for Y, and cali-
bration means that the probabilistic predictor gets the probabilities right, at least on
average, for each value of the prediction. We then say that the probabilistic predictor
is calibrated1.

Note that this is one special type of statistical test. Calibration is a less stringent
property than validity (as defined at the end of Section 4.1) as it requires only that
the condition in Equation 4.2 be satisfied. It can be proved that if training set and
test set are i.i.d., the Venn Predictor is well calibrated in the sense that there exists an
“oracle” that would choose between p0 and p1 for every test object so that the output
probability would be calibrated.

One may wonder how to make use of a multi-probabilistic calibrator, especially
one in which at each “turn” one of the two predicted probabilities is calibrated but
we do not know which one. In fact, the difference between p1 and p0 conveys some
useful information. If p1 differs significantly from p0, it means that for that test object
the estimates are so uncertain that it suffices to change the label of one observation
(in this case, the hypothetical observation) to affect significantly the prediction of the
probability.

Finally, it is important to observe that calibration is certainly desirable, but it is
not the only property that useful probabilistic predictions must exhibit. If we were
asked to predict with what probability it will rain tomorrow, we could simply re-
spond with the long-term “climatological” average probability of rain. It would
certainly be a calibrated prediction2, but it would hardly be regarded as a good pre-
diction. It is easy to convince oneself that if we were to offer bets on the basis of the
climatological odds, we would lose money against adversaries who incorporated
slightly more specific information into their probability estimates. This suggests

1The word ‘calibrated’ in the present context has a specific meaning that bears no relation to that of
Section 2.4.5 where we define a “calibration set”.

2barring, that is, climate change. . .
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that useful predictions need to be specific as well as calibrated. Venn Predictors of-
fer a theoretically-backed framework in which we no longer have to worry about
calibration; we can focus only on making predictions more specific.

4.2 Venn-ABERS Predictors

Many binary classifiers compute a numerical value, a decision function value, and
emit a bare prediction by comparing such value to an appropriate threshold. Some
of these methods claim to yield directly a probability estimate, but in fact this is
true only under stringent assumptions; in practice, deviation from calibration are
observed. Venn-ABERS Predictors (VAP) are a form of Venn Predictors that can be
used to transform the score that a binary classifier outputs into a calibrated proba-
bility estimate under the usual, minimal i.i.d. assumption. VAP automatically op-
timizes (in a sense that will be defined shortly) the choice of taxonomy. Let’s as-
sume that s(x) : X → R is the scoring function learned by a scoring classifier on
a set (x1, y1), . . . , (x`, y`) where the labels yi take values in {0, 1}. The isotonic cal-
ibrator3 g for ((s(x1), y1), (s(x2), y2), . . . , (s(x`), y`)) is the non-decreasing function on
s(x1), s(x2), . . . , s(x`) that maximizes the likelihood

∏
i=1,2,...,`

li

where:

li =

g(s(xi)) if yi = 1

1− g(s(xi)) if yi = 0

Let s0(x) be the scoring function for (z1, z2, . . . , z`, (x, 0)), s1(x) be the scoring func-
tion for (z1, z2, . . . , z`, (x, 1)), g0(x) be the isotonic calibrator for

((s0(x1), y1), (s0(x2), y2), . . . , (s0(x`), y`), (s0(x), 0))

and g1(x) be the isotonic calibrator for

((s1(x1), y1), (s1(x2), y2), . . . , (s1(x`), y`), (s1(x), 1))

.
The Venn-ABERS predictor outputs a multi-probabilistic prediction (p0, p1),

where p0 = g0(s0(x)) and p1 = g1(s1(x)). It is customary to refer to p0 and p1 as lower
and upper probability and indeed, in the case of Inductive VAP (Section 4.2.2), it is
claimed (Vovk, Petej, and Fedorova, 2015, Section 2) that it is always the case that
p0 < p1.

3Monotonic: “one ordering”, either Isotonic (“order-preserving”) or Antitonic (“against the order”)
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4.2.1 Observations

The definition of VAP may appear a bit disorientating. There is no mention of a
taxonomy, which Section 4.1.2 put at the heart of Venn Predictors. It is not immediate
to see the equivalence classes over which we compute the predicted probabilities as
relative frequencies, according to Equation 4.1. This section provides some element
of clarification and justification.

The key theoretical results on which VAP rests are in (Ayer et al., 1955) and
in (Barlow and Brunk, 1972). The “ABERS” in Venn-ABERS is an acronym obtained
from the names of the authors of the former paper.

The first key theoretical basis is that the isotonic calibrator defined in the previ-
ous section can be computed as Isotonic Regression (IR) on (s(x1), y1), . . . , (s(x`), y`)).

A general definition of Isotonic Regression problem is to find the values gi that:

minimize
`

∑
i=1

(gi − yi)2

subject to gi ≤ gj when i � j

where y1, . . . , y` are given and � is a partial ordering on {1, . . . , `}.
In our case, the gi = g(s(xi)) and the partial ordering � corresponds to the or-

dering on s(xi). While strictly speaking the Isotonic Regression is defined only on
the s(xi), taking some liberty we can view it as a piecewise constant function of s.
Figure 4.2 shows an example of Isotonic Regression.

FIGURE 4.2: Isotonic Regression. An example of IR on a simple data set.

It turns out that the equivalences classes of the Venn Predictor are the intervals
over which the IR is constant. The value of the IR is indeed the fraction of examples
with label y = 1 among all the examples with score s() in that interval.
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4.2.2 Inductive VAP

The definition of VAP in the previous paragraphs requires that the underlying ML
be re-trained and the scores as well as the IR be recalculated for each possible la-
bel value and for each test object. The resulting computational cost would become
unaffordable even for relatively small data sets.

It is possible to reduce significantly the computational cost by adopting an in-
ductive approach, similar in a broad sense to the procedure described for Inductive
Conformal Predictors in Chapter 2.

The overall training set is split into a proper training set, which is used to train
the underlying machine learning algorithm which produces scores, and a calibration
set, which is used to “train” the isotonic calibrator which transforms scores into
probability estimates.

The training of the underlying machine learning algorithm is performed only
once, but the isotonic regression is still recalculated (ex novo) for each test object
and for each possible value of the label.

4.2.3 Cross IVAP

A potential disadvantage of Inductive VAP is that, by separating a calibration set
from the overall training set, it reduces the size of the set used for training the un-
derlying algorithm. It may be of benefit to use a scheme inspired by cross-validation
in which the overall training set is split into K sets; IVAP is then applied K times,
each time using one of these sets K as calibration set and the rest as proper training
set. The resulting K IVAPs can then be combined in a way that will become clearer
in the next section.

4.2.4 Making probability predictions out of multi-probability ones

While there is a value in having multi-probability predictions, it is generally more
intuitive to deal with a single-valued probability prediction. One way to construct a
probability prediction from a multi-probability prediction is to derive the value that
minimizes the regret4 under a given loss function.

It is possible to prove (see (Vovk, 2012, Section 4)) that under log-loss function
the minimax probabilistic prediction is:

p =
p1

1− p0 + p1

Note that p is calculated as if 1− p0 and p1 were the unnormalized probabilities of
y = 0 and y = 1, respectively.

4by regret, we denote the loss suffered by making a given choice instead of the best available option
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If, instead of the log-loss function, we consider the square loss function (also
known as Brier loss), the minimax probabilistic prediction is:

p = p̄ + (p1 − p0)
Å

1
2
− p̄
ã

where p̄ := (p0 + p1)/2.
In the case of Cross VAP, the K multi-probabilistic predictions can be combined

in a minimax way with respect to log-loss with:

p =
GM

(
p1
)

GM
(
1− p0

)
+ GM

(
p1
)

where GM() stands for geometric mean over the K values (see (Vovk, Petej, and
Fedorova, 2015, Section 4) for the proof).

4.2.5 Fast Venn-ABERS

While it reduces the computational load significantly (compared to the original
“transductive” formulation), Inductive Venn-ABERS prediction still remains too
complex to scale to large data sets, the recalculation of the Isotonic Regression for
every label value and for every test object being the main limiting factor. (Vovk,
Petej, and Fedorova, 2015) found, from a detailed analysis of the algorithm used to
compute the IR and of the particular way in which it used in the Venn-ABERS appli-
cation, that it was possible to come up with a new algorithm that produces exactly
the same results, but requires one initial pre-calculation (O(` log `)) and then requires
for the actual evaluation of the probability of each test object only a very efficient
look-up (O(log `)). An illustration of the Venn-ABERS calibration on synthetic data
sets is provided in Fig. 4.3.

FIGURE 4.3: Multi-probabilistic predictions for two synthetic data sets. The blue dots
represent the data, which can take values 0 or 1. The data sets were cre-
ated so that the desired calibrator is a linear function in the left pane and
a sigmoid in the right. This was by generating random variates from a
uniform distribution between 0 and 1 and comparing them with a linear
function (left pane) and a sigmoid (right pane). The Venn-ABERS pre-
dictors reconstruct the desired calibrator within an error inherent in the
statistical fluctuation of the sample.
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Tab. 4.1 gives an indication of the performance, on synthetic data sets, of a pure
Python/Numpy implementation running on one core of a general-purpose server.
(Implementing it in C/C++ is likely to reduce the quoted times by factor of 10 or
more).

TABLE 4.1: Execution times of the pre-calculation and evaluation of the Fast Venn-
ABERS IR. The number of examples quoted refers to the size of the calibra-
tion set as well as the test set.

Number of examples
CPU time for

Pre-calculation
on calibration set

CPU time for
Evaluation on

test set
10,000 3.62s <0.01s

100,000 15.7s 0.01s
1,000,000 153s 0.13s

This enabled us to apply Venn-ABERS prediction to large data sets (hundreds of
thousands of examples) without particular requirements in terms of computational
resources.

4.3 Application of Venn-ABERS Prediction to BioAssay Data

We applied VAP to the same AID827 data set used in the previous chapter for the
CP studies.

To recap the salient points, each tested compound is described by a variable num-
ber of signature descriptors (Faulon, Visco, and Pophale, 2003) derived from the chem-
ical structure of the compounds itself. Each signature corresponds to the number of
occurrences of a given labelled subgraph in the molecule graph. The resulting data
set can be viewed as a relatively sparse matrix of attributes (the signatures on the
columns) and examples (the compounds on the rows).

Total number of examples = 138,287
Number of features = 165,786
Number of non-zero entries = 7,711,571
Density of the data set = 0.00034
Active compounds = 1,658 (1.2%)
Inactive compounds = 136,629
Unique set of signatures = 137,901

We reused the same values of the decision function calculated in that context for
the calibration set and test set for the Inductive Conformal Prediction. As a side note,
Fig. 4.4 shows the distribution of such values, with two separate histograms one
for Active examples and the other Inactive Examples. The distribution for Active
examples looks distinctly bimodal.
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FIGURE 4.4: Distribution of Decision Function values on the calibration data set. Note
the different y scale

.

The calibration set has 28,000 examples and the test set comprises 10,000 objects.
Running the Fast Venn-ABERS predictors on these sets took a total time 4.84s (of
course, this excludes the time to calculate the scores, given that we reused them, as
explained above).

One illustration of the multi-probabilistic results is provided in Figure 4.5 which
shows the cumulative sums of p0, of p1, and of the label as we sweep the test set.

FIGURE 4.5: Cumulative sum of p0, p1, and of the label
.

It is perhaps useful to note that one might expect that as a consequence of the
calibration property of the multiprobabilistic predictor, the black trace representing
the counts of Active test examples should be eventually between the green and red
traces. In fact, no such guarantee can be inferred from the calibration property.
To see this, let’s consider an idealized case in which we have a probabilistic predictor
always emits the same probability, namely the relative frequency of Actives in the
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overall population, i.e. 1.2%. Such a predictor, while not very useful, is calibrated
according to the definition stated in equation (4.2).
If we were to draw an analogous picture to Figure 4.5, instead of the green and red
traces, we would draw just one trace, a straight line with slope 0.012 represented
here in blue. The cumulative count of test examples of the Active class (the black
trace) would weave its irregular path in the vicinity of the blue trace. The left plot
in Figure 4.6 shows a few instances of the “path” of the counts. For each value k of
the x-axis, the cumulative count of test examples can be considered a realization of
a Binomial distribution of parameters p = 0.012 and n = k. The variance of the Bi-
nomial is np(1− p). Note that the variance grows with n. Based on this observation,
we can now appreciate that the paths will tend to diverge from the mean. The right
plot in Figure 4.6 shows, for every value of x, the interval on the y-axis in which a
path will be with probability 0.5. The size of the interval grows as

√
n for n → +∞

(consider, for instance, the Gaussian approximation of the Binomial).
Note that this interval has nothing to do with lower and upper probability. It is a
manifestation of the variability inherent in sampling.

FIGURE 4.6: Cumulative sum of the label in an idealized case. The left plot shows 10
realizations (paths) of the cumulative sum of a Bernoulli variable. On the
right, the shaded area is where 50% of the paths are expected to be.

We can now try to map these observations on Figure 4.5. The black trace corresponds
to one of the possible instances represented in the left plot in Figure 4.6, whereas ei-
ther one of the red and green traces corresponds to the blue line in the right plot in
Figure 4.6. In fact, the calibration guarantee is for a specific but a priori unknown
choice of the points on the green and red traces. It is the ensuing line, which we
could view as an appropriate "hybrid" of the red and green lines, that corresponds
to the blue line. Based on the previous discussion, we can appreciate that the actual
path of the counts will tend to diverge with respect to this "hybrid" line. We can also
convince ourselves that there is no reason to expect that the actual count will eventu-
ally be between the cumulative sums of lower and upper probabilities. The interval
between these two cumulative sums has nothing to do with the phenomenon of the
divergence of the actual count discussed earlier. That interval has to do with the
sensitivity of the probabilistic predictions, that is, how much the isotonic regression
changes (at the test point) when one varies the hypothetical label.
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Getting now back to the main discussion, Fig. 4.7 has a plot of the “calibrators”
g0(s) and g1(s) between the min and max of the decision function on the calibration
set. The plot presents some aspects worth commenting. One interesting feature
is the widening gap between g0(s) and g1(s) for s > 0.5. The gap between g0(s)
and g1(s) could be taken as an indication of the uncertainty of the estimate of the
probability. In fact, the gap expresses the sensitivity of the probability estimate to the
hypothetical label assigned to the test object. It is only in this narrow sense that we
can view the gap as uncertainty of the prediction. Intuitively, the sensitivity depends
on the number of calibration examples that are in the same element of the Venn
taxonomy as the test object. The Isotonic Regression identifies intervals over which
the value of the regression is the average of the labels of the calibration examples in
that interval. These intervals are the classes in the Venn taxonomy. When the label of
the test object is changed, the average of the interval in which the test object falls will
change more markedly the fewer the calibration examples in the interval (note that
the change of the label can also change the interval itself). It could be argued that
the uncertainty should be higher for probability predictions around 0.5 rather than
at the two extremes 0 and 1. In reality, as just discussed, the uncertainty at a value s
of the score is not determined by the value of the probability prediction itself, but by
its sensitivity to changing the label of an object with score s. In the case of Figure 4.7,
the data set had only 1.2% of examples belonging to the Active class. Figure 4.4
shows the histograms for the Active and the Inactive examples separately and with
different scales (because otherwise the Inactives would have hardly registered). The
chart supports the view that the gap between lower and upper probabilities at score
s is inversely related to the “density” (in a broad sense) of calibration examples with
score s.

FIGURE 4.7: Calibrators g0(s) and g1(s)
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4.3.1 Comparison with Platt scaling

We set out to compare the relative merits of Platt scaling and Venn-ABERS predic-
tors. We used the implementation of Platt scaling available as part of the Python
sklearn package.

Fig. 4.8 shows the “calibrators” arising from the two methods (for one of 20 runs).
In order to have a more meaningful comparison, we computed the log-loss with

FIGURE 4.8: Comparison between Platt scaling and Venn-ABERS (combined according
to minimax log-loss).

either method on the test set of each of the 20 runs. The resulting boxplots are shown
in Fig. 4.9. The median is the same (VA is better by the tiniest of margins) and, if
anything, Platt’s method exhibits a bit more variance.

Given the difference between the two calibrators apparent in Fig. 4.8, one might
have expected a difference also in the log-loss.

Imbalance plays a role in this apparent paradox. For values of the Decision Func-
tion (DF) less than -0.7, there is very little difference between the two calibrators.
Consider that ≈ 95% of the test samples happen to have a DF< −0.7. For those test
samples the difference between Platt scaling probabilities and Venn-ABERS proba-
bilities is going to be negligible.

It is questionable if the loss is “symmetrical” in our application, i.e. if the errors
in predicting high probability have the same consequences and should be attributed
the same cost as the errors of the same entity for low probabilities.
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FIGURE 4.9: Log-loss on test sets, over 20 runs
.

One way to have an asymmetric log-loss is to assign different weights to the loss
on Actives and on Inactives.

AsymmLogLoss = −Cactyi log pi − Cinact(1− yi) log(1− pi) (4.3)

with Cact, Cinact > 0 and possibly Cact + Cinact = 1.
This has some consequences. One issue with this approach is that this formulation
of asymmetric log-loss is not a proper loss function. A proper loss function L(p, y)
is such that the expectation Ey∼B(q)L(p, y) is maximized (resp. minimized) when
p = q. Log-loss as well as Brier loss are proper loss functions (Schervish, 1989). A
proper scoring function is desirable because it keeps forecasters honest, in the sense
that it rewards probabilistic predictions that reflect the actual probabilities (Winkler
et al., 1996, Section 2). In general, if a proper loss function is of the form L(y, p) =

yL1(1− p) + (1− y)L0(p) with L0(p) and L1(p) monotone decreasing functions, the
weighted loss function L(y, p) = cyL1(1− p) + (1− c)(1− y)L0(p) is in general no
longer proper. A second issue is that the multi-probabilistic combination function
for log loss discussed in Section 4.2.4 would have to be modified to account for the
weighting. The combination is obtained in (Vovk, 2012, Section 4) by equating the
regret in using the combined value p instead of the correct values (p0 when the label
is 0 and p1 when the label is 1). Using the same approach, the equation that the
combined p must satisfy is:

−Cact log p + Cact log p1 = −Cinact log(1− p) + Cinact log(1− p0)
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This equation does not appear to admit a general closed-form solution for p. This
creates obvious practical problems in the principled application of the asymmetrical
log-loss.

In any case, notwithstanding the potential theoretical issues of an improper loss
function, we believe that there is insight to be gained by using an asymmetrical log
loss. It is useful to consider for instance only the contribution to log loss given by
the cases in which the actual label is ‘Active’ (which equates to setting Cact = 1 and
Cinact = 0 in equation(4.3)). It is important to remind ourselves that the ‘Active’
class represents a small minority and in the symmetrical log-loss any performance
difference that might occur on that class would be diluted by the performance on the
much more prevalent ‘Inactive’ class. Figure 4.10 shows that there is a more visible
advantage, albeit still tiny and possibly not statistically significant, for Venn-ABERS
over Platt scaling.

FIGURE 4.10: Asymmetric Log-loss on test sets, over 20 runs
.

4.4 Comparison between Conformal and Probabilistic re-
sults

Both Conformal and Probabilistic Predictors allow the user to rank the compounds
for the purposes of screening. The two rankings are based on conceptually different
ideas. The p-value of Conformal Prediction expresses the probability of encounter-
ing an Active compound that would appear as or more nonconform (among Active
compounds) than the test object. The value output by the Probabilistic Prediction
expresses the probability that the compound is Active (in the sense that if one keeps
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taking compounds for which the predicted probability is 0.8, then one will find in
the long term that 80% of such compounds are actually active).

Tab. 4.2 shows the 20 compounds (out of a test set of 10,000) that are ranked high-
est by Conformal Prediction and by Venn-ABERS Prediction. The compounds are
identified by an ordinal that has no specific meaning outside of the specific data set
we were supplied. The single probability was obtained from the multi-probabilistic
prediction using the method discussed earlier for log-loss regret minimization.

Although the ranking may appear quite different at first glance, it is remarkably
similar. The similarity is somewhat obscured by the fact that the p-values appear to
have a finer granularity than the probabilities (there are more compounds sharing
probabilities than sharing p-values). The rankings appear very similar if we con-
sider that the probability ranking is arbitrary when the compounds have the same
probability.

TABLE 4.2: The 20 candidate compounds (out of a test set of 10,000) that are ranked
highest, according to Conformal Prediction and to Venn-ABERS Prediction.
The Active compounds are in bold.

Ranking best compounds
by p-value

p value best compounds
by prob

prob

0 108198 0.868 108198 0.800
1 103948 0.798 129143 0.697
2 62772 0.774 62772 0.697
3 129143 0.716 103948 0.697
4 138051 0.663 138051 0.695
5 108632 0.663 108632 0.695
6 107957 0.584 108877 0.683
7 108920 0.584 108920 0.683
8 108877 0.584 107957 0.651
9 108783 0.578 108783 0.651
10 5413 0.557 5413 0.647
11 138177 0.551 54806 0.611
12 4334 0.537 16925 0.611
13 71538 0.513 108032 0.611
14 54806 0.513 108026 0.611
15 16925 0.493 4334 0.611
16 108584 0.490 71538 0.611
17 108026 0.490 138177 0.611
18 107943 0.478 107943 0.611
19 108032 0.475 108584 0.611

4.5 Summary and Conclusions

In this chapter we introduced Probabilistic Prediction and highlighted its concep-
tual differences with Conformal Prediction. We presented the notion of validity for
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a probabilistic predictor and introduced Venn Predictors, multi-probabilistic predic-
tors for which it is possible to prove the validity property. We then turned to Venn-
ABERS predictors, which are Venn Predictors that calibrate classification scores into
probabilities. Finally, we applied a fast method of computing Venn-ABERS probabil-
ities to a bioassay data set and compared and contrasted its results with Platt scaling
and Conformal Predictors.

Venn-ABERS predictors can improve on Platt scaling, in particular when the
functional dependency of probabilities to scores departs significantly from a sig-
moid. Their computational cost is perfectly affordable even on large data set sizes.

As a closing remark, we would like to point out that the qualities of the predic-
tions produced by VAP are recognized also by independent industry researchers not
only in pharmaceutical research (Mervin et al., 2020), but also in the agrochemical
research5.

5A researcher from an agrochemical industry research centre based in the UK contacted us for per-
mission to use our code available at https://github.com/ptocca/VennABERS— and also subse-
quently found a minor bug!

https://github.com/ptocca/VennABERS
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5.1 Introduction

This chapter and the next one present some research results about the combination
of Conformal Predictors. The motivation for combining arises naturally from the
intuition that CPs with different underlying algorithms can complement each other,
not only making the predictor more robust but also improving its performance in a
synergistic way. In this study, we restrict our attention to methods that compute a
combined p-value as a function of the p-values computed by base conformal predic-
tors for a given test object. The advantage of combining p-values is that it solves
in a principled way a potential complication that comes into play when ensembling
scoring algorithms. The scores produced by different algorithms are expressed in
different scales and with different laws. By applying Conformal Prediction, the out-
put of the scoring classifier or any other ML method for which we can come up with
a meaningful Non Conformity Measure is transformed into a p-value. In this way,
the output of each base algorithm is expressed not only in the same [0, 1] range, but
also with same meaning and properties (e.g. Theorem 1 in Section 2.4.1) across ML
methods. The problem of combination is therefore reduced to the problem of de-
termining the optimal way of combining p-values. The following sections in this
chapter explore combination methods whose implementations could be scaled to
large data sets. Some results will be shown using chemoinformatics data sets from
the ExCAPE project. The next chapter presents instead a method that has potentially
optimal properties, but is computationally more demanding. Consequently, rather
than the large data sets of this chapter, we use synthetic data sets of a manageble
size. Also, the use of synthetic data set makes it possible to evaluate the methods
under different levels of correlation among p-values.

5.2 Combination of p-values

The study of the problem of combining p-values to obtain a single test for a common
hypothesis has a long history, originating very soon after the framework of statis-
tical hypothesis testing was established (Fisher, 1932). A survey can be found in
(Loughin, 2004). In its more general form, the problem raised a lot of attention for
its application to meta-analysis, where the results of a number of independent stud-
ies, generally with different sample sizes and different procedures, are combined.
The various methods that have been proposed over the years have tried to cater for
the different ways in which the evidence manifests itself. In particular, some meth-
ods allow for weighting, thereby assigning more importance to some p-values (for
instance, in the case of meta-analyses, those corresponding to studies with larger
samples sizes). More importantly, each method is associated with a different shape
of the rejection region (the portion of the k-dimensional space of the k p-values be-
ing combined for which the combined test of significance would reject the null hy-
pothesis under a chosen significance level ε). The shape reflects the different way
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in which evidence of different strength is incorporated into the aggregated p-value.
It has been observed (see, for example, (Loughin, 2004, Section 3)) that there is no
single combination method that outperforms all others in all applications. The com-
bination of p-values from different Conformal predictors on the same test object is a
very special form of the general problem outlined above.

A method for the combination of Conformal Predictors should aim to:

• Preserve validity: for the output of the combination method to be a Conformal
Predictor, this is a necessary property.

• Improve efficiency: smaller prediction sets must result from a desirable
method of combination.

In practice, one is interested in the two desiderata above if the resulting p-values
are to be used to obtain prediction sets. There are domains of application where the
p-values can be used in other ways. An example which will be developed further
in the section 5.4.4 is in the context of Drug Discovery: the p-values can be used to
rank candidate compounds (see (Toccaceli, Nouretdinov, and Gammerman, 2017))
in terms of the confidence in their activity (or lack of confidence in their inactiv-
ity), so that an informed decision can be made as to which candidate compounds to
choose for a new batch of screenings.

There are two key observations that apply to p-values computed by Mondrian
Inductive Conformal Predictors (MICP):

1. The p-values from the same Conformal Predictor for the various test objects do not
necessarily follow the uniform distribution. The p-values in Statistical Hypothesis
Testing are uniformly distributed by construction if the null hypothesis is true.
Similarly, when one examines the MICP p-values for a set of test objects, it
is apparent that only those for which the hypothetical label assignment is the
correct one are uniformly distributed. The p-values for the objects for which
the hypothetical label assignment is incorrect tend to have values towards 0.

2. The p-values from different Conformal Predictors for the same test object are not inde-
pendent. One has to expect that, when testing the same hypothesis with differ-
ent methods on the same object, the results will exhibit some degree of corre-
lation. In other applications of p-value combination, the issue may be less of
a concern. For instance, in meta-analyses of clinical trials, it is arguable that
there is less correlation because the trials are not reusing the same patients in
the same groups. However, the one considered is certainly not the only con-
text in which dependent p-values are encountered and the issue has attracted
some attention by statisticians (Pesarin, 2001; Brown, 1975; Alves and Yu, 2014;
Poole et al., 2016).
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5.2.1 Methods from “traditional” Statistical Hypothesis Testing

As outlined in (Loughin, 2004), the field of Statistical Hypothesis Testing has ap-
proached the problem of p-value combination as soon as the notion of p-value
started to establish itself in the statistical community. One can identify, broadly
speaking, two classes of p-value combination methods: quantile methods and order-
statistic methods.

Order-statistic methods (Davidov, 2011) are mentioned here for completeness.
Given k p-values coming from k experiments, the combining function is based on
the order of the p-values. For instance, a combination method might simply consist
in taking the smallest of the p-values; another method might take the second small-
est, another the arithmetic average, another the maximum and so forth. Intuitively,
a combination method that takes the smallest p-value “believes” the outcome that
is most improbable under the Null Hypothesis, whereas a methods that takes the
largest p-value would be stricter, in that it would take the outcome that is less con-
trary to the Null Hypothesis. In general, such methods appear to be inadequate for
Conformal Predictors, because they result in the loss of validity.

On the other hand, quantile methods can satisfy this requirement. The quantile
methods can be generally constructed by transforming the p-values using a func-
tion chosen as the inverse of a Cumulative Distribution Function (CDF) of a conve-
nient distribution. The choice of the distribution is in principle arbitrary, but it is
convenient to constrain it to those distributions for which the CDF of the sampling
distribution of the sum of Random Variables (RVs) can be expressed with closed
formulas or can be calculated with little computational effort (it has been noted (Za-
ykin et al., 2007) that “nowadays any form of CDF can be used with the aid of simple
Monte Carlo evaluation”). Let’s assume that D is a distribution with support [a, b]
and with invertible CDF FX(t) : [a, b] → [0, 1]. A quantile method would trans-
form the p-values pi (now considered Random Variables) into Random Variables
Ti = F−1

X (pi). By construction, these Ti are distributed according to D. If we call
FT1+T2+···+Tk (t) the CDF of the sum of k D-distributed RVs, the combined p-value is
obtained as pcomb = FT1+T2+···+Tk (t1 + t2 + · · · + tk). It is easy to see that Pcomb is
uniformly distributed, based on elementary property that will be proved in a later
section

Here we consider one quantile method, namely Fisher’s method (also known
as chi-square method), although other quantile methods exist, such as Stouffer’s
method (Stouffer et al., 1949) (also known as z-transform test).

5.2.2 Fisher’s method

Fisher’s method (Fisher, 1932; Fisher, 1948) is among the earliest p-value combi-
nation methods. It relies on the key observation that if p1, p2, . . . , pk are each the
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realization of a uniformly distributed random variable,

hi = −2 log pi with i = 1, . . . , k

is a random variable that follows a chi-squared distribution with 2 degrees of free-
dom.

The sum of k independent random variables each following a chi-squared distri-
bution with 2 degrees of freedom is itself chi-squared distributed with 2k degrees of
freedom, that is:

h = −2
k

∑
i=1

log pi

is a random variable that follows a chi-squared distribution with 2k.
The combined p-value is:

p = P

®
y ≤ −2

k

∑
i=1

log pi

´
where y is a random variable following a chi-square distribution with 2k d.f. The
integral required for calculating the probability above has a very simple closed form:

t
k−1

∑
i=0

(− log t)i

i!

where t = (p1 × p1 × · · · × pk).
Interestingly, the formula above also arises as the probability of the product of

independent uniform random variables (Zaykin et al., 2002). Fisher’s method also
exhibits a form of asymptotic optimality “among essentially all methods of combin-
ing independent tests” (Littell and Folks, 1973).

5.2.3 Validity Recovery

None of the methods discussed so far guarantees validity. Fisher’s method guaran-
tees valid p-values but only under the assumption of independence. The resulting
combined p-value will exhibit a deviation from the uniform distribution that will be
more pronounced the stronger the dependence among p-values. In our specific set-
ting, the p-values are obtained by applying CP with different underlying algorithms
on the same test object. It is therefore to be expected that the p-values will exhibit
a substantial degree of correlation. Figure 5.1 illustrates the effect of correlation on
combination.

The problem is well-known and there have been many attempts to introduce cor-
rections based on some measure of the correlation or of the dependence. We propose
a very simple calibration method1, based on the following well-known elementary

1To avoid misunderstandings with previous occurrences of ‘calibration” or “calibrated”, let us clar-
ify that in the present context “calibration” is to be understood as a transformation that ensures that a
variable is uniformly distributed.
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FIGURE 5.1: Deviation from validity when combining with Fisher’s method. The four
histograms at the top show the counts of p-values over 20 equally sized
bins between 0 and 1 from one of the runs of real-world example dis-
cussed later. In each bin, the bars refer to the combined CP (the leftmost
bar, in light blue) and three base CPs. The p-values pȳ of test objects with
label ȳ (i.e. same label as the one for which we are computing the p-value)
should be uniformly distributed, whereas they should be concentrated
towards 0 for test examples with other labels. The uniform distribution
is essential for the validity property. We should observe a uniform dis-
tribution for the upper right and lower left histograms. The correlation
between p-values for the same object caused Fisher’s method to deviate
from uniformity. The Pearson correlation ranged between 0.44 and 0.77
for p0 and between 0.36 and 0.78 for p1. The effects on validity are shown
in the bottom plot. The blue line should be overlapping the dashed line.
The light blue line (whose y-axis is on the right) shows the difference be-
tween blue line and the dashed line.
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result.
Given a random variable X and its CDF FX(t) ≡ P [X ≤ t] which we will as-

sume invertible (but slightly less restrictive assumptions are possible), the random
variable Y ≡ FX(X) follows the Uniform distribution.

This can be proved by showing that the CDF of Y is the identity function, i.e.
FY(y) = y, along the following lines:

FY(y) ≡ P
[
Y ≤ y

]
= P

[
FX(X) ≤ y

]
= P

î
X ≤ F−1

X (y)
ó
= FX

Ä
F−1

X (y)
ä
= y

A similar approach has already been described in (Balasubramanian,
Chakraborty, and Panchanathan, 2015) but when empirically evaluated in (Linus-
son et al., 2017) appeared to show limited effectiveness.

The method we propose consists in re-calibrating the combined p-value obtained
with any of the methods above by using the CDF of the combined p-values. An
estimate of such CDF can be obtained from the Empirical Cumulative Distribution
Function (ECDF) observed on a Re-calibration Set (any set drawn from the same
distribution, with the exclusion of the training set and the test set).

FIGURE 5.2: On the left, the plot is the histogram of about 40,000 variates of an arbi-
trary illustrative distribution q(x) with values between 0 and 1. On the
right, the plot shows the Empirical Cumulative Distribution Function
ECDF(x) obtained on the basis of the variates.

To clarify the procedure, we list in Algorithm 2 the steps involved in the compu-
tation of the ECDF-based re-calibration.

Algorithm 2: ECDF-based p-value re-calibration
Data:

Re-calibration set R := {(xi, yi)} from a partition of the training set
p-values p(ȳ)

cal,i for hypothetical label ȳ for examples (xi, yi) ∈ R

p-values p(ȳ)
raw,j for the test objects for hypothetical label ȳ

Result: calibrated p-values p̂(ȳ)
j for hypothetical label ȳ

1 Select p-values only of examples with y = ȳ: Pȳ := {p(ȳ)
cal,i : yi = ȳ} ;

2 Compute ECDF FP(p) of p-values p ∈ Pȳ ;
3 Apply ECDF to uncalibrated (test) p-values: p̂j = FP(praw,j);
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FIGURE 5.3: On the left, the plot shows the histogram of about 40,000 variates drawn
from the same distribution q(x) shown already in Figure 5.2. The right
plot shows the histogram of the values y = ECDF(x) obtained by apply-
ing the function ECDF(x) shown in Figure 5.2 on the ≈ 40, 000 variates of
the left plot.

Algorithm 2 makes it clear that when re-calibrating p-values for a label ȳ, the re-
calibration set should contain the p-values of the re-calibration examples with label
ȳ, because these p-values are supposed to be uniformly distributed.

Figures 5.2 and 5.3 illustrate how the ECDF-based re-calibration operates on
variates from an example distribution. To recapitulate, we have shown that if
by combining p-values with some arbitrary method we obtain p-values that are
no longer valid, it is possible — provided we have some training data that we
can use as recalibration data — to map them into p-value that exhibit the desired
uniform distribution. One reviewer noticed that the ECDF-based re-calibration can
be viewed as an application of CP in the special case in which the NCM is actually
based on the combined p-value. In the next section, we propose a combination
algorithm that indeed does not aim to produce valid p-values. The validity property
will be recovered by applying the method described in this section to the output of
the combination method.

5.2.4 Learning to combine

In the methods discussed so far, the combined p-value is a function only of the p-
values from the individual CPs. The combination function does not take into ac-
count the object to which the p-value refers. Intuitively, it seems legitimate to won-
der whether there are gains to be made by making the combination a function also
of the object. Indeed, it may be argued that different underlying algorithms, espe-
cially when they are intrinsically different, might exhibit differences in relative per-
formance on different objects: algorithm 1 might perform generally better than algo-
rithms 2 and 3 in a certain region of the object space, whereas algorithm 2 might be
better than the others in another region, and so on. The combination function could
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be learned by means of an appropriate ML method. Although the idea of learn-
ing the combination function is not new — see (Balasubramanian, Chakraborty, and
Panchanathan, 2015) — we believe that the approach we propose is novel.

Before setting up the learning problem, it may be useful to discuss what the ideal
p-value combination should look like. Ultimately, the objective is to obtain a CP that
outputs p-values for class c that are:

(a) uniformly distributed for objects belonging to the c class

(b) 0 for objects belonging to other classes.

In any practical application, the latter objective is really to obtain p-values as close
to 0 as possible for objects belonging to the other classes. A CP that outputs such p-
values would exhibit validity and maximum efficiency (where we define efficiency
as the average size of the region prediction).

With these objectives in mind, we can formulate the problem of CP combination
as the problem of predicting, given an object, which of the k base CPs will provide
the p-value that best approximates requirements (a) and (b). In fact, a soft version
of this formulation (as opposed to the ‘hard’ decision) might seek the weights with
which to combine the individual CP predictions to best approximate requirements
(a) and (b).

One possible setting of the problem is to use Logistic Regression with a training
set constructed in the following manner. Suppose we have a set of objects xi, labels
yi, and p-values pact,i,j and pinact,i,j. We will refer to this as combination training set.
We use this to create a combiner training set, which is specific to the class c for which
we are creating a combiner.
Let’s consider the combiner for pActive. For every example (xi, yi) in the combination
training set, the combiner training set has k examples (xi, 1), . . . , (xi, k), i.e. one for
each of the k base CPs. Note that in this combiner training set, the labels correspond
to the base CPs. Each of these k examples that we create for each object xi, is as-
signed a weight wi,j (with j = 1, . . . , k). The value of the weight wi,j is calculated as a
function of the label yi and of p-value pact,i. It is intended to express the desirability
of following base CP j for predicting the p-value pact for object xi. Note that the com-
biner training set is k times as big as the combination training set and that there are
as many combiner training sets as possible labels (in the case we are discussing here,
this number is 2, ‘Active’ and ‘Inactive’). The predictions output by multinomial LR
trained on the combiner training set for a test object x`+1 are k class “probabilities”
q`+1,j. Similarly to what stated for the weights, these “probabilities” are supposed
to express numerically the desirability of following base CP j for object x`+1. The
p-value for object x`+1 can be obtained by taking the p-value of the base CP with
largest predicted “probability” (which we refer to as hard method) or by convex
combination of base p-values using the probabilities as coefficients (soft method). It
should be noted that this approach offers no guarantees that the resulting p-values
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will be valid. Consequently, this combination method should be followed by the
validity recovery discussed in Section 5.2.3.

It is evident that the success of this approach hinges on how we compute the
weights wi,j. We considered 2 different ways which are discussed next, but many
more schemes are possible.

Before we discuss the ways of computing the weights, we hope to provide an
element of further clarification in Figure 5.4 which shows an example of the appli-
cation of the approach to a synthetic data set. In this admittedly contrived data set,
the LR-based combiner manages to assign probabilities to each CPs that result in a
combined CP with the best properties of each base CP (compare Figures 5.4c and
5.4d with Figure 5.4f.

Method 1: weighted

In this method the weight is higher for lower p-values when the example is not
active and higher for higher p-values when the example is active (in the case of
setting value of the pinactive combiner, it would be the other way round).

wi,j =


1−pact,i,j

∑k
j=1(1−pact,i,j)

when y = inact

pi

∑k
j=1 pact,i,j

when y = act
(5.1)

The weights are also normalized so that the weights for the same object add to
1. Also, per-class weighting is applied to compensate for imbalance. Specifically, the
examples of the Active class are weighted by NInactive/(NInactive + NActive) and those
of the Inactive class by NActive/(NInactive + NActive). One issue with this method is
that, while it may seem desirable to favour base CPs that produce higher p-values for
Active examples, this does not appear to go in the direction of meeting requirement
(a).

Method 2: reduced

The ‘reduced’ method addresses the potential issue mentioned at the end of the pre-
vious paragraph by simply not including examples in the combiner training set if
they have the Active (correct) label. In this way, we do not induce the combiner to
favour higher p-values for Active examples.

wi,j =


1−pact,i,j

∑k
j=1(1−pact,i,j)

when y = inact

0 when y = act
(5.2)

The examples that are assigned weight 0 can be discarded from the combiner
training set. This is quite advantageous as it reduces the size of the training set,
which is otherwise k as big as the combination set.
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(A) (B)

(C)

(D)

(E)

(F)

FIGURE 5.4: Figure 5.4a shows the synthetic data set, made up of three pairs of con-
centric circles, the inner containing positive examples and the outer neg-
ative examples. Three separate CPs are obtained by using three separate
SVCs (polynomial kernel of degree 2) as underlying algorithms. Each
SVC is trained on only one of the three clusters. The decision function for
each of the SVCs is plotted in Figure 5.4b, with yellow denoting positive
values and purple negative values. The lower bottom panel in Figure 5.4b
refers to an SVC that was trained on the entire data set. Figures 5.4c and
5.4d show p0 and p1 from each of three CPs on a test set from the same
distribution as the overall training set. Purple corresponds to low values,
green to intermediate, and yellow to high values. In Figure 5.4e the color
(coral, light blue, grey) corresponds to the CP with largest probability pre-
dicted by the LR combiner in that point. Finally, in 5.4f the values of p0
and p1 shown with the same color coding as in figures 5.4c and 5.4d.
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5.3 An application: ExCAPE

In the sections that follow, we are going to present some results of the application of
the combination methods to a real-world problem, which the authors encountered
during their participation to a EU project called ExCAPE (Exascale for Compound
Activity Prediction Engines) for the prediction of the activity of chemical compounds
towards biological targets of interest.

Any advances in the ability to predict correctly such activity are of extreme in-
terest to the pharmaceutical industry, as this can reduce substantially the number of
lab assays required to identify new active compounds, thereby resulting directly in
lower costs and a competitive advantage in the ability to innovate. While one could
argue that this is not significantly novel as computer-aided drug discovery has been
around for at least 30 years, the “Exascale” qualification in the name of the project
alludes to one distinguishing feature of this research effort. ExCAPE explores meth-
ods that can be parallelized extensively, towards the goal of exploiting efficiently
Exascale High Performance Computing (HPC) platforms, i.e. computing platforms
capable of an aggregated 1018 FLOPS (Floating Point Operations per Second). This
level of scalability is rapidly becoming relevant as it is expected that Exascale sys-
tems will become available in the 2020 timeframe2.

5.3.1 Multiple Compound Activity Predictions

The specific problem tackled by ExCAPE is to predict the activity of a large num-
ber of compounds (several hundred thousands of compounds) towards a number
of targets of interest (less than a thousand). The biological activity is known only
for a fraction of the compound-target combinations. The challenge is to predict the
activity in the large proportion of unknown compound-target cases. Different ML
approaches are being pursued concurrently and separate heterogeneous models are
being developed, namely Multi-task Deep Neural Networks and Bayesian Matrix
Factorization. This created the need for a way to combine the predictions of these
models (and possibly others) into one final set of predictions. Conformal Predic-
tors can address this need by offering a solid framework for calibrating predictions
expressed in different scales into p-values and then enabling their advantageous
combination with the techniques described in this Chapter.

5.3.2 Chemoinformatics Data Sets

The data set used in the experiments in this Chapter was extracted from the lat-
est version of the reference data base of the project, called ExCAPEDB (Sun et al.,
2017b). The specific target, identified as IDH1, which was chosen because it’s the

2Just for reference, at the time of start of the project (September 2015), the top500.org site was
reporting that the most powerful supercomputer is the Sunway TaihuLight at the National Super-
computing Center in Wuxi, China, rated at ≈ 0.093× 1018 FLOPS, i.e. about 1/11 of what would be
considered Exascale.
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one with the largest number of tested compounds. The characteristics of the data
set are reported in Table 5.1. The compounds are represented by means of features
that capture structural properties of the molecule. From the standpoint of Machine
Learning, chemoinformatics data sets can present the following challenges:

• Sparsity: the design matrix (the matrix that has a column for each feature and
a row for each object) is often extremely sparse. In the case of the IDH1 data
set, the fraction of non-zero entries is 0.01

• Imbalance: the prevalence of active compounds is often very small, 1% or less.

TABLE 5.1: Key statistics of the IDH1 data set. The lower part refers to the data sets
used in each of the 50 runs.

Total number of examples = 468,798
Number of features = 639,253
Number of non-zero entries = 31,523,836
Density of the data set = 0.0001
Active compounds = 2,194 (1.3%)

Proper training set size = 200,000
Calibration set size = 100,000
Test objects = 168,798

The three algorithms selected for this investigation are: linear SVC, Gradient
Boosted Trees, and k Nearest Neighbours. The choice was driven by the intuition
that ML algorithms based on inherently different approaches might have comple-
mentary strengths and weaknesses that a combination method could exploit to its
advantage. Other choices might have been equally valid: for example, the same ker-
nel method with different kernels, or the same regularized algorithm with different
values of the regularization parameter, or distance-based algorithms with different
types of distances.

5.4 Results and Discussion

5.4.1 Experimental setup

The experiments were primarily run on the computing facilities offered by the
IT4Innovation National Supercomputing Center, Ostrava, Czech Republic. The Cen-
ter operates two clusters, Anselm and Salomon, with 209 nodes and 1008 nodes re-
spectively. The nodes are powerful servers, each equipped in case of Anselm with
16 cores (2 Intel Sandy Bridge E5-2665, 2.4 GHz) and 64 GB of RAM, and in the case
of Salomon with 24 cores (2 Intel Xeon E5-2680v3, 2.5 GHz) and 132 GB of RAM.

The software was developed in Python, in large part using Jupyter Note-
books (Kluyver et al., 2016). The scikit-learn (Varoquaux et al., 2015) package
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provided implementations for linear SVC, Gradient Boosted Trees and k Nearest
Neighbours, whereas the preparation and handling of the data and of the results was
carried out using the numpy (Walt, Colbert, and Varoquaux, 2011), scipy (Jones,
Oliphant, Peterson, et al., 2001), and pandas (McKinney, 2010) packages. The
distribution of the computation over the nodes obtained for a job relied on the
distributed (Dask Development Team, 2016) package, which allows Python func-
tions (or more in general Directed Acyclic Graphs (DAGs) of Python functions) to be
submitted to a central “scheduler” for execution on a distributed cluster of workers.

Guaranteeing a full utilization of the nodes proved less straightforward than an-
ticipated. Despite the computation consisting of fundamentally independent runs
(a case of what is referred to as ‘embarrassing parallelism’), it turned out that differ-
ent algorithms had different CPU usage profiles and memory usage profiles, so the
parameters governing the distribution (e.g. number of workers per node, maximum
number of outstanding remote calls) had to be carefully tuned to avoid bottlenecks
or memory overloads, especially on the node hosting the scheduler. The practical
difficulty was compounded by the unexpected level of congestion on the Salomon
and Anselm clusters, which meant that the number of nodes requested often had to
be scaled back (all the way down to 6 or 8) to have a chance to be allowed to run.

The execution times for the LR-based Combination were dominated by the train-
ing times for the higher values of the regularization parameter C. For values larger
than 1000, training time would be in the order of tens of minutes, whereas it would
be of order of seconds for small values of C (heavy regularization). On a 16-node
cluster on Anselm, one 10-fold CV over a range of 25 logarithmically-spaced values
from 10−6 to 106 required ≈ 1 hour.

5.4.2 Results

The original IDH1 data set was used to obtain 50 partitions into training, calibration,
and testing sets. The training set size was chosen as 200,000 and the calibration set
size as 100,000, leaving 168,798 examples for the test set. The splits were stratified,
i.e. each set has the same proportion of the two classes as in the overall set. Linear
SVC, Gradient Boosted Trees, and k Nearest Neighbour models were trained for
each of the 50 splits and scores were obtained for the calibration and testing sets.
Parameter optimization for was performed once for each of the algorithms. In all
cases the reference metric was the F1 score. The potentially suboptimal performance
deriving from a single setting of the parameters was not deemed to be a problem: the
focus of the investigation is indeed on the combination of the Conformal Predictors,
rather than on their individual quality. In fact, the variability of performance across
splits might add a useful element of diversity in the relative merit of the predictors.

After obtaining p-values via Inductive Mondrian (Class-conditional) Conformal
Predictors for each underlying algorithm using the NCM detailed in Table 5.2, we
turned to the combination of p-values.
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TABLE 5.2: The Non Conformity Measures for the three underlying algorithms

Underlying
Non Conformity
Measure αi

Comment

SVM −yi f (xi)
where f (xi) is the SVM deci-
sion function

kNN
∑(k)

j 6=i:yj=yi
d(xj, xi)

∑(k)
j 6=i:yj 6=yi

d(xj, xi)

where d(xi, xj) is the (Eu-
clidean) distance; the sum-
mation is on the k smallest
values of d(xj, xi)

XGB −yi p(yi = +1|xi)
p(yi = +1|xi) is the proba-
bility of Activity estimated by
the classifier

The application of the passive methods was obviously straightforward, whereas
the LR-based combination required the majority of effort. For each of the runs, the
LR classifier was obtained with a parameter optimization via 10-fold cross valida-
tion over 13 logarithmically-spaced values from 10−4 to 102. The calibration set (i.e.
the set used for the Inductive CP) was also used as combination training set, from
which the two combiner training sets (one for the combination of pactive and one for
the combination of pinactive) were derived. Note that, as explained in sec. 5.2.4, the
combiner training sets are k = 3 times as large the combination set, hence their size
is as large as 300,000.

The performance of the combined CP is examined on confusion matrices and
ranking. The confusion matrix for CP region prediction is slightly different from
the usual one for traditional classifiers as, in addition to a breakdown into correct
and incorrect precise predictions, it includes a count of the empty predictions and
a count of the uncertain predictions (the uncertain predictions occur when the re-
gion predictor contains more than one label). The metrics for CP confusion matrices
include Precision and Recall. For reference, the definitions used in this study are
summarized in Table 5.3. In order to have just one metric, we combine Precision and
Recall into the F1 score, which is their harmonic mean and is a special case of the Fβ

score, where β controls the “preference” of Precision vs. Recall.
The ranking performance is evaluated in terms of precision-at-k and average

precision. The latter provides an overall view of how high in the ranking the ex-
amples belonging to the Positive class (here, the Active compounds) were placed.
The precision-at-k offers an assessment of the ranking that is more focused on the
top, which in many applications is what matters most. Precision-at-k is simply the
fraction of Positive labels in the top k objects in the ranking. If, for instance, in a
drug discovery setting only the top k compounds are chosen for actual lab testing,
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then it is arguable that average precision is not relevant and we want to select the
method that places the largest fraction of Actives in the top k. However, the situation
might be different if the intended use is for test prioritization, in which case average
precision might be relevant.

TABLE 5.3: Performance metrics used in this study

Metric Definition Comment

precision Pr =
|PP ∩ TP|
|PP|

fraction of Positives
among objects predicted
as Positive

recall Re =
|PP ∩ TP|
|TP|

fraction of all Positives in-
cluded in the objects pre-
dicted as Positive

F1 score F1 = 2
Pr · Re

Pr + Re
Harmonic mean of Preci-
sion and Recall

precision-at-k Pr@k =
|PPk ∩ TP|
|PPk|

fraction of Positives in the
top k ranked objects

average
precision

AP =
1
m

m

∑
j=1

Pr@k j

average over each Posi-
tive of the precision-at-k j
where k j is its position in
the ranking

TP: True Positive, PP: Predicted Positive,
PPk: Predicted Positive within the k top ranked objects,
m: number of Positives, k j: ranking position of j-th Positive

Finally, statistical significance of the results is estimated. We use a non-
parametric statistical test on paired observations, namely the Wilcoxon signed-
rank test (Wilcoxon, 1945; Hollander and Wolfe, 1999). The null hypothesis of the
Wilcoxon signed-rank test is that the distribution of the differences between ele-
ments of pairs is symmetrical around 0. However, in its basic form, the test does not
apply to variables with discrete values such as counts but only to variables with con-
tinuous values, the reason being that the test was not designed to deal (a) with no dif-
ferences in a pair and (b) with ties among the differences (occurrences of pairs with
the same difference in absolute value). Variants have been proposed (by Wilcoxon
himself, who suggested to disregard the observation pairs with no difference, and
in (Pratt, 1959), who suggested a way to account for those) but the distribution of
the statistic would change.



5.4. Results and Discussion 89

5.4.3 Region predictions

For the sake of brevity, we show only the counts for significance levels ε = 0.01
(Table 5.4a) and ε = 0.05 (Table 5.4b). We also report the error rate to provide a view
on the validity deviation. If one compares error rates with and without it, ECDF-
based calibration can be seen recovering validity very effectively.

TABLE 5.4: Confusion matrices for significance levels ε = 0.01 (5.4a) and ε = 0.05
(5.4b). Abbreviations: ApA - Active predicted Active, ApI - Active pre-
dicted Inactive, IpI - Inactive predicted Inactive, IpA - Inactive predicted
Active. ApA, ApI, IpI, IpA refer to precise predictions, i.e cases in which
the region prediction contained only one label; Empty refers to cases in
which the prediction set was empty (both label could not be rejected); Un-
certain refer to cases in which the region prediction contained more than
one label. The Error rate allows to check whether the validity property is
met. The Errors are the sum of ApI, IpI, and Empty. The number of test
examples was 168,798. The values are averages over 50 runs.

(A)

Method ApA ApI IpI IpA Empty Uncertain Error rate

SVC 598.06 22.58 17937.00 1648.08 0.00 148592.28 0.010
XGB 570.70 21.66 27929.04 1650.92 0.00 138625.68 0.010
kNN 339.12 20.64 24188.68 1666.54 0.00 142583.02 0.010

min 774.96 53.20 37467.94 3709.34 31.96 126760.60 0.022
max 217.02 1.52 9725.14 197.46 0.00 158656.86 0.001
mean 275.26 2.70 14459.18 314.64 0.00 153746.22 0.002
Fisher 941.06 83.00 50909.08 5542.32 0.06 111322.48 0.033
min ECDF 575.94 24.54 28212.10 1650.78 5.72 138328.92 0.010
max ECDF 468.72 20.98 27002.12 1645.46 0.00 139660.72 0.010
mean ECDF 515.78 21.38 28742.84 1656.98 0.00 137861.02 0.010
Fisher ECDF 626.96 22.86 30613.02 1655.20 0.00 135879.96 0.010

weighted soft 271.76 2.68 14572.52 306.80 0.00 153644.24 0.002
weighted hard 425.08 35.18 30855.70 874.06 0.66 136607.32 0.005
reduced soft 277.80 2.76 14587.00 317.54 0.00 153612.90 0.002
reduced hard 610.14 40.16 32519.74 2118.96 10.60 133498.40 0.013
weighted soft ECDF 524.30 37.86 35798.94 1753.50 0.00 130683.40 0.011
weighted hard ECDF 586.96 244.88 79351.32 2219.30 16.50 86379.04 0.015
reduced soft ECDF 525.06 21.70 28889.20 1658.02 0.00 137704.02 0.010
reduced hard ECDF 553.22 24.12 27090.12 1654.58 4.20 139471.76 0.010

(B)

Method ApA ApI IpI IpA Empty Uncertain Error rate

SVC 1010.18 113.14 49788.14 8289.18 0.00 109597.36 0.050
XGB 992.04 109.82 55721.40 8286.66 0.00 103688.08 0.050
kNN 565.78 113.52 41779.04 8331.98 0.00 118007.68 0.050

min 1241.68 227.66 78018.16 16985.82 1650.70 70673.98 0.112
max 376.12 11.04 21675.18 840.58 0.00 145895.08 0.005
mean 531.12 27.92 31459.82 1795.16 0.00 134983.98 0.011
Fisher 1245.82 219.96 80820.78 15273.98 39.72 71197.74 0.092
min ECDF 998.04 110.14 52696.74 8100.72 215.38 106676.98 0.050
max ECDF 808.86 109.64 54665.34 8302.60 0.00 104911.56 0.050
mean ECDF 931.06 111.38 57696.06 8304.92 0.00 101754.58 0.050
Fisher ECDF 1054.82 114.66 59150.94 8294.36 0.72 100182.50 0.050

weighted soft 514.94 29.44 32349.68 1663.24 0.00 134240.70 0.010
weighted hard 694.66 172.30 66184.62 3776.18 51.72 97918.52 0.024
reduced soft 552.04 29.68 32329.56 1879.60 0.00 134007.12 0.011
reduced hard 1033.40 182.10 68065.44 10130.12 693.76 88693.18 0.065
weighted soft ECDF 934.64 195.72 77314.34 8692.52 0.00 81660.78 0.053
weighted hard ECDF 931.30 558.70 120985.68 9018.64 688.02 36615.66 0.061
reduced soft ECDF 969.38 111.82 58102.40 8304.52 0.00 101309.88 0.050
reduced hard ECDF 965.92 110.10 52332.94 8057.56 256.86 107074.62 0.050

The overall view of the strengths and weaknesses of the various methods across
different significance levels is captured in Table 5.5, where we show the values of
the F1 scores for the Active class as well as for the Inactive class. The interpretation
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TABLE 5.5: F1 score for precise predictions for various significance levels (averages
over 50 runs). The best values are highlighted in bold.

F1 for the Active class F1 for the Inactive class
epsilon 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15

SVC 0.269 0.176 0.122 0.096 0.193 0.459 0.617 0.716
XGB 0.258 0.173 0.121 0.096 0.287 0.501 0.645 0.736
kNN 0.161 0.102 0.077 0.066 0.253 0.401 0.510 0.593

min 0.232 0.122 0.091 0.085 0.367 0.637 0.745 0.771
max 0.166 0.220 0.209 0.177 0.110 0.230 0.334 0.429
mean 0.198 0.235 0.187 0.142 0.159 0.317 0.477 0.603
Fisher 0.217 0.133 0.102 0.087 0.468 0.653 0.742 0.793
min ECDF 0.261 0.177 0.128 0.106 0.289 0.480 0.613 0.693
max ECDF 0.218 0.143 0.106 0.088 0.279 0.493 0.630 0.711
mean ECDF 0.236 0.163 0.120 0.097 0.294 0.514 0.656 0.743
Fisher ECDF 0.280 0.183 0.127 0.100 0.310 0.523 0.658 0.743

weighted soft 0.196 0.235 0.192 0.148 0.161 0.325 0.496 0.634
weighted hard 0.240 0.212 0.169 0.140 0.312 0.567 0.712 0.794
reduced soft 0.199 0.239 0.190 0.141 0.161 0.325 0.495 0.630
reduced hard 0.248 0.155 0.114 0.099 0.326 0.578 0.710 0.773
weighted soft ECDF 0.235 0.158 0.116 0.094 0.353 0.633 0.782 0.856
weighted hard ECDF 0.237 0.155 0.126 0.134 0.643 0.839 0.897 0.896
reduced soft ECDF 0.240 0.169 0.123 0.099 0.295 0.517 0.661 0.749
reduced hard ECDF 0.251 0.172 0.125 0.104 0.279 0.477 0.610 0.692

of the results is not straightforward. In the case of the Active class, there is no single
method that outperforms consistently all the others in terms of the F1 score. It is de-
batable whether non-valid methods should be considered, but they were reported
to let the reader get a sense of how the ECDF-based re-calibration affects te perfor-
mance. Among the simpler valid methods, “Fisher ECDF” improves over any base
CP. To determine the statistical significance of the evidence against or in support
of the equivalence of method A and method B, we computed the Wilcoxon statistic
on the 50 pairs of observations, where one value in the pair comes from method A
and the other from method B, both calculated on the same training/test dataset split
which was constructed with the procedure described in Section 5.4.2. The statistical
significance the Wilcoxon test attributes is at least at the level of p < 1.3 · 10−5. On
the other hand, the LR-based combination methods fail to improve over the base
CPs, especially in their valid variant.
In the case of the Inactive class, however, the “Weighted Hard ECDF-calibrated”
method exhibits very good performance, with also “Weighted Soft ECDF-calibrated”
scoring very high. The Wilcoxon test confirms the statistical significance: the hy-
pothesis of no difference between “Weighted Hard ECDF-calibrated” and “Fisher”
(the closest competitor among the simpler methods) is rejected at the level of p <

8 · 10−10.
One reviewer observed that, strictly speaking, one should account for the fact that
multiple comparisons are performed here. One standard technique is to apply the
Bonferroni correction (Wasserman, 2010b, Section 10.7): a threshold of α/k ensures
that that the chance of at least one false Null Hypothesis rejection is less than or
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equal to α when k tests are performed. In our case, k = 21 so for a statistical sig-
nificance level of 5%, we should consider a threshold of 0.05/21 = 2.38 · 10−3. The
p-values mentioned above are well below this threshold.

As a final note, the difference in performance of LR-based methods between the
two classes requires further investigation. One possibility is that per-class weighting
mentioned in sec. 5.2.4 did not adequately compensate for the class imbalance.

5.4.4 Rankings

The second perspective under which we study the possible merits of CP combina-
tion is in terms of ranking. The test objects can be ranked according to their p-values
in search of those that are most likely to be Active. In particular, we rank compounds
by lowest pinactive, i.e. by strength of the evidence against the Inactive hypothesis. We
also rank compounds by highest pactive, although this may appear not to be justifi-
able within the framework of Statistical Hypothesis Testing. In fact, this appears
empirically to provide good results. One justification might be that by ranking by
highest p-value we are indeed ranking objects by how likely it would be to pick –
from a set drawn from the same distribution as the training set and calibration set –
an example that would be more contrary to the hypothesis of randomness.

The comparison of the ranking quality of the various methods is reported in
Table 5.6, where we provide precision-at-k (we chose k = 10, 25, 50, 100, 200) and
average precision. Note that, since the ECDF-based re-calibration is a monotone
mapping, it does not affect the ranking, so there is no need to have separate cases
for it. We report ranking precision for the Actives but not for the Inactives. Given
the high imbalance (98.7% of the examples are Inactive), all methods managed to
achieve the maximum score of 1 for all the 5 levels of Precision-at-k when ranking
for inactivity. The Average Precision was also very high, exceeding 0.995 in all cases.

For the more challenging task of ranking for activity, the results indicate that
combination in general improves significantly the precision across the board, com-
pared to the base CPs. As a side note, it is surprising to see the kNN CP, which
appeared to perform worse than SVC and XGB CPs in region prediction, achieve
markedly higher precision-at-k (although the advantage disappeared for Average
Precision).

LR-based combination, in particular in its “soft” variant, appears to be on a par
with the simpler methods. While a simple visual inspection of Table 5.6 might sug-
gest a tiny advantage for the ”Weighted Soft, highest p1” variant, the Wilcoxon test
applied to the corresponding precision values for “Fisher, lowest p0” and “weighted
soft, highest p1” reveals that any differences are of no statistical significance (p >>

0.05).
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TABLE 5.6: Ranking precision for Actives expressed in terms of precision-at-k, for k =
10, 25, 50, 100, 200 and in terms of Average Precision. Best values in each
column are highlighted in bold

CP type Ranked by k=10 k=25 k=50 k=100 k=200 Avg prec

SVC Lowest p0 0.652 0.647 0.638 0.618 0.580 0.180
Highest p1 0.632 0.648 0.636 0.617 0.579 0.180

XGB Lowest p0 0.614 0.580 0.578 0.545 0.509 0.165
Highest p1 0.604 0.601 0.575 0.547 0.511 0.165

kNN Lowest p0 0.698 0.703 0.691 0.657 0.603 0.106
Highest p1 0.720 0.714 0.690 0.656 0.603 0.106

min Lowest p0 0.644 0.653 0.652 0.623 0.583 0.177
Highest p1 0.754 0.749 0.719 0.687 0.627 0.168

max Lowest p0 0.752 0.752 0.718 0.684 0.627 0.152
Highest p1 0.616 0.656 0.648 0.613 0.574 0.156

mean Lowest p0 0.758 0.759 0.717 0.688 0.632 0.171
Highest p1 0.756 0.754 0.719 0.688 0.636 0.195

Fisher Lowest p0 0.754 0.746 0.719 0.685 0.636 0.200
Highest p1 0.764 0.756 0.718 0.688 0.635 0.189

weighted soft Lowest p0 0.764 0.756 0.718 0.689 0.631 0.170
Highest p1 0.760 0.754 0.722 0.692 0.636 0.200

weighted hard Lowest p0 0.694 0.699 0.675 0.636 0.587 0.165
Highest p1 0.656 0.688 0.678 0.647 0.605 0.180

reduced soft Lowest p0 0.756 0.756 0.716 0.691 0.631 0.176
Highest p1 0.768 0.753 0.717 0.689 0.633 0.190

reduced hard Lowest p0 0.650 0.646 0.626 0.599 0.558 0.166
Highest p1 0.710 0.714 0.681 0.645 0.595 0.165

5.4.5 Considerations and future directions

The LR-based p-value combination can be of benefit when the different base CPs
exhibit different relative performance in regions of the object space that can be well
separated by the combination classifier. It may be the case that the separation of
the domains can be performed effectively with a function space of lower complex-
ity than the ones that are required for the predictions themselves. In our example,
the limited gains, if any, of the LR-based combination may be ascribed to a highly
non-linear (hyper)surface of separation of the various domains, which the linear
LR could not resolve. A future direction of research might be to incorporate non-
linearity in the Classifier used for combination (for instance, with Kernel Logistic
Regression). Another form of non-linearity to be experimented with is in the assign-
ment of weights to the examples of the combiner training set, which eq. 5.1 and 5.2
set as linear function of the base CP p-values.

A further line of enquiry might be in approaching combination of CPs as a
learning-to-rank problem, for which there is already a large body of research given
its commercially valuable applications in Information retrieval (e.g. search engines).
The p-value can in fact be interpreted as expressing a fractional rank (the p-value
is the fraction of calibration set examples that are less conform than than hypothet-
ical test example, so one can view this as the rank by non-conformity). With this
approach, the combination would occur at the level of the NCM αi.
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Finally, on perhaps a more speculative note, combination opens new opportuni-
ties to assemble ML algorithms into classifiers capable of more complex tasks. We
can envisage, for instance, a number of underlying algorithms with differing learn-
ing abilities providing predictions to a combiner which assesses their relative perfor-
mance in the various regions of the problem space and learns how to best combine
the individual predictions in a particular area. Underlying algorithms might be al-
together different as in the real-world case discussed here or they might just have
different level of regularization (to adapt to regions with different levels of noise) or
they could be just trained each on a separate cluster of the overall data set, as in the
synthetic data example, where their combination resolves regions of the data sets
that one algorithm of the same class could not separate.

5.5 Conclusions

In this chapter we have discussed scalable methods for combining Conformal Pre-
dictors. The objective of CP combination was to improve efficiency, while preserving
validity. We have applied established p-value combination methods from Statistical
Hypothesis Testing as well as a novel method which in which the rule with which
p-values are combined depends also on the object and is learned on a training set.
Since all methods, in principle, impair validity, we have suggested a method to re-
cover it with the use of a calibration set. A comparison of the methods was carried
out on a challenging real-world chemoinformatics data set. Three base CPs were
obtained as Inductive Mondrian CP with three different underlying ML algorithms
on a strongly imbalanced data set (1.3% Active vs. 98.7% Inactive) with a total of al-
most half a million examples and over half a million features. The performance was
assessed both in terms of region predictions and of ranking. We showed that combi-
nation methods such as Fisher’s provide a statistically significant improvement over
the individual CPs. In terms of precise predictions, ML-based combination methods
showed no advantage for the Active class, but brought about significant improve-
ments for the Inactive class; in terms of ranking, they improved on the base CPs, but
not on the simpler combination methods.
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6.1 Introduction

In this chapter, we continue the investigation of CP combination methods started in
the previous chapter, but, rather than evaluating performance directly on real-world
data sets, we take a step back and conduct our study on a suitable synthetic data
set. The main motivation for this choice is to control the statistical characteristics of
p-values that we combine. In particular this will allow us to explore the effects of
correlation among the p-values of the base CPs. This characterization of this effect
is an important aspect because different methods are bound to behave differently in
the face of correlation. We have to leave the convenience of the assumption of p-
value independence and take stock of the fact that p-values from different base CPs
for same object are going to exhibit some degree of correlation.

As in the previous chapter, the objective of the combination of Conformal Pre-
dictors is to increase efficiency, while preserving validity. In other words, we aim at
reducing the average size of the prediction sets, while minimising any deviations of
the error rate from the chosen significance level. We will restrict our scope to binary
CPs, although the methods can be extended to more than two labels. In the context
of binary classification, the maximisation of the efficiency corresponds to the min-
imisation of the occurrence of uncertain predictions (i.e. prediction sets that contain
more than one label). For clarity, the setting for the CP combination is as follows:
there are d CPs (which we will refer to as base CPs) and correspondingly d p-values
p(1), . . . , p(d) for a given label assignment to a test object. We are seeking a function
f (p(1), . . . , p(d)) that computes a p-value that results in a valid and efficient CP, ideally
for any joint distribution P(p(1), . . . , p(d)).

6.1.1 Merging functions

The first requirement for the combination method is that validity be preserved. In
the previous chapter, we applied some elementary combination rules, which re-
sulted in a combined value that in general no longer enjoyed the validity property
and therefore was a p-value just in name. It turns out that conservative validity
can be achieved with simple changes to those elementary rules. A comprehensive
analysis of a family of combination methods that ensure validity without requiring
assumptions on the independence of the p-values can be found in (Vovk and Wang,
2012). Table 6.1 lists some of methods discussed in the study, namely minimum,
maximum, arithmetic average, geometric average. The charts in the left column
in Figure 6.1 illustrate the cumulative distribution of the p-values arising from the
combination functions and the merging functions (assuming independence of the
base CPs). For the combined CP to preserve the validity property, the distribution of
the combined p-values must remain uniform. Consequently, in the charts the traces
should follow the dashed diagonal; if the trace is below the diagonal, the predictors
are conservative (i.e. leading to fewer incorrect predictions than what the signifi-
cance level allows for) and vice versa. The charts in the left column show that the
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merging functions would result in conservative CPs when the base CP are indepen-
dent. While the absence of independence requirements bestows a wide applicability
to the methods, this universal validity guarantee appears to come at the expense of
efficiency.

TABLE 6.1: Some merging functions. These are special cases of the more general merg-
ing functions listed in Table 1 of (Vovk and Wang, 2012). The merging
function for the Minimum is also known as Bonferroni method.

Combination function Merging function

Arithmetic average parith_avg =
1
d

d

∑
i=1

p(i) 2 · parith_avg

Geometric average pgeom_avg =

Ç
d

∏
i=1

p(i)

å 1
d

e · pgeom_avg

Min pmin = min(p(1), . . . , p(d)) d · pmin

Max pmax = max(p(1), . . . , p(d)) pmax

6.2 When the distribution is known

In Section 5.2.3 we observed that if we denote by FX(x) the (continuous) cumula-
tive distribution of a random variable X, the random variable FX(X) is uniformly
distributed.

FX(x) = P {X ≤ x} ⇒ FX(X) ∼ U[0, 1] (6.1)

We calibrated a combination of p-values by using its ECDF in place of cumulative
distribution. This method has two advantages: (a) it allows complete freedom in the
choice of the law used to combine p-values, (b) it can account for the dependence in
the base p-values. These advantages, however, come at the cost of having to dedicate
part of the training set to the estimation of the ECDF.

Here instead we note that the cumulative distribution of a function of uniformly
distributed RVs can be expressed in closed form in several interesting cases, in par-
ticular under the somewhat restrictive assumption of independence. Indeed, the
distributions of minimum, maximum, arithmetic average and geometric average of
d independent uniformly distributed RVs are known and are presented in Table 6.2.
We can obtain a valid CP combination by combining the p-values and then applying
the distribution function. We refer to this class of methods as CDF-calibrated. Fig-
ure 6.1 shows the actual error rate vs. significance level for the four methods. The
plots confirm that the p-values combined as prescribed above result in valid CPs
(within statistical fluctuation). The effect of dependence between p-values will be
discussed in section 6.8.1
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FIGURE 6.1: Comparison of validity of combination methods. Each plot shows the
CDF of the combined p-value, when the base p-values are independent
and uniformly distributed on [0, 1]. For the combined CP to be exactly
valid, the trace should be the (0, 0)-(1, 1) diagonal, indicated here with a
dashed line. The left column shows the straightforward methods along
with the merging variant that ensures (conservative) validity. The right
column shows the CDF-calibrated versions.
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TABLE 6.2: Some combination functions with known CDFs

Combination function CDF Comment

Arithmetic average (sum)
1
n!

btc

∑
k=0

(−1)k
Ç

d
k

å
(t− k)d Irwin-Hall distribution

Geometric average (product) t
d−1

∑
i=0

(− log t)i

i!
Fisher formula(Fisher, 1948)

Min betainc() Beta(d, 1)

Max betainc() Beta(1,d)

6.3 Adaptive methods

The methods listed in Table 6.2 can be viewed as a priori methods, in the sense that
the law with which the p-values are combined does not depend on the observed
data. In this section we discuss a class of methods that adapt to the statistics of the
observed data, albeit at the cost of having to set aside a fraction of the available
observations for this purpose, thereby reducing the size of the training set for the
underlying ML algorithms.

6.3.1 Multivariate ECDF

As stated in point (b) in the previous section, the ECDF calibration allows to recover
validity after combining p-values with an arbitrary law. We illustrate this point fur-
ther with an adaptive combination method, i.e. one in which the combination law
varies with the observed data. The method we propose here combines p-values by
computing the value of multivariate joint distribution of the p-values and then cali-
brates it to a U[0, 1] with the ECDF calibration discussed in section 6.2.
More formally, given RVs X1, . . . , Xd, the joint CDF is:

FX1,...,Xd (x1, . . . , xd) = P {X1 ≤ x1, . . . , Xd ≤ xd}

The combination method discussed in this section can be expressed as:

pmecd f = FP(1), ... P(d)(p(1), . . . p(d)) (6.2)

To perform the ECDF calibration, one must fit pmecd f on a calibration set so that an
ECDF of the pmecd f can be computed. Then, the combined p-value is

pcomb = FPmecd f (pmecd f ) (6.3)
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Note that the calibration step above is needed to recover validity because the
CDF property stated in eq. 6.1 for the univariate case does not hold in the multi-
variate case. That is, if X(1), . . . X(d) are independent uniformly distributed RVs,
FX(1), ... X(d)(X(1), . . . X(d)) is not distributed according to U[0, 1] 1

Such CDF is unknown, but we can estimate it by computing the Multivariate
ECDF on calibration data.

F`cal (x
(1), . . . , x(d)) =

1
`cal

`cal

∑
i=1

d

∏
k=1

θ(x(k) − x(k)
i )

6.4 Combination via Neyman-Pearson Lemma

The Neyman-Pearson Lemma (Neyman and Pearson, 1933) is a result in Statistical
Hypothesis Testing on which basis it is possible to define a test statistic and a thresh-
old so that the resulting significance test has Uniform Maximum Power (UMP).
Here, power is defined as the probability to reject correctly the Null Hypothesis H0.

This can be applied to CP by noticing that when we calculate, say, p0, we assume
as Null Hypothesis that the label is 0 and compute a p-value for the test object under
this assumption. The p0 can be interpreted as the probability of drawing from the
same set as the calibration set an example that is as or more contrary to the hypoth-
esis of randomness as the hypothetical test example.

The Neyman-Pearson Lemma (NPL) is particularly relevant to CP combination
because it can optimise efficiency (i.e. results in smaller prediction sets). To see this,
consider that with higher power one rejects more often H0 when indeed it should
be rejected. Consider also that the prediction set contains all the hypothetical label
assignments that could not be rejected at the chosen significance level (as it contains
all the labels y for which py > ε). This means that the high the power of test, the
less likely it will be that the prediction set contain incorrect labels. Not also that, in
so for as validity is satisfied, the rate at which the correct label is in the prediction
set is equal to the significance level. This approach to combination was discussed in
(Toccaceli, 2019), but similar observations for CP in general appeared independently
in (Sadinle, Lei, and Wasserman, 2019).

The NPL is based on the notion of likelihood (Fisher, 1932). For reference, we
quote the definition of likelihood from (Edwards, 1984, Page 9): “The likelihood,
L(H|R), of the hypothesis H given data R, and a specific model, is proportional
to P(R|H), the constant of proportionality being arbitrary”. The choice of defining
likelihood up to an arbitrary constant (a constant, as Edwards points out, only within
“any one application involving the same data and probability model”) emphasizes
that the notion makes sense not so much in itself but rather in comparison. Indeed,
the Neyman-Pearson Lemma uses the ratio of likelihood of two hypotheses as test
statistic.

1The distribution of FX(1), ... X(d) (X(1), . . . X(d)) is referred to as Kendall distribution function (Genest
and Rivest, 2001).
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6.4.1 Statement of the Neyman-Pearson Lemma

Let’s denote with x the data observed. Given a simple hypothesis H, we indicate
with L(H | x) the likelihood. The most powerful test between two simple hypothe-
ses H0 and H1 is the one that uses as test statistic the likelihood ratio:

Λ(x) :=
L(H0 | x)
L(H1 | x)

(6.4)

and as threshold the value η that satisfies

ε = P
[
Λ(X) ≤ η | H0

]
(6.5)

where ε is the significance level.

6.4.2 Application to Combination of Conformal Predictors

As stated previously, we restrict our scope to binary Conformal Predictors. Let’s
assume that we have k separate CPs, each using some different underlying ML al-
gorithm, producing for a test object the k p-values p(1)

ȳ , . . . , p(k)
ȳ for the hypothetical

label assignment y = ȳ.
The k p-values are what was denoted as x in the statement of the NPL. The H0

hypothesis is y = ȳ and the H1 hypothesis is y 6= ȳ.
Hence L(H0 | x) = P

î
p(1)

ȳ , . . . , p(k)
ȳ

∣∣∣ y = ȳ
ó

and L(H1 | x) = P
î

p(1)
ȳ , . . . , p(k)

ȳ

∣∣∣ y 6= ȳ
ó
.

The likelihood ratio Λ(p(1)
ȳ , . . . , p(k)

ȳ ) can be then computed as:

Λ(p(1)
ȳ , . . . , p(k)

ȳ ) =
P
î

p(1)
ȳ , . . . , p(k)

ȳ

∣∣∣ y = ȳ
ó

P
î

p(1)
ȳ , . . . , p(k)

ȳ

∣∣∣ y 6= ȳ
ó (6.6)

If we denote by FΛ(λ) the (cumulative) distribution function of Λ(ȳ(1), . . . , p(k)
ȳ ) given

H0, the p-value for the combination is then obtained as:

p(NP)
ȳ = FΛ(Λ(p(1)

ȳ , . . . , p(k)
ȳ )) (6.7)

To justify the last equation, consider that eq. 6.5 can be expressed also as ε = FΛ(η).
In principle, there is no need to compute explicitly η. An alternative way of inter-
preting eq. 6.5 is saying is that the hypothesis should be rejected when the value of
cumulative distribution function for the hypothetical example is less than or equal to
ε. By computing p(NP)

ȳ according to eq. 6.7 we achieve precisely that. This procedure
is performed twice, once for each possible value of the label of the test object.

The probabilities P
î

p(1)
ȳ , . . . , p(k)

ȳ

∣∣∣ y = ȳ
ó

and P
î

p(1)
ȳ , . . . , p(k)

ȳ

∣∣∣ y 6= ȳ
ó

are to be es-
timated using a calibration set extracted from the overall training set. In fact, it is
possible to estimate directly the ratio rather than the individual probabilities sepa-
rately and then take their ratio.
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6.5 Implementation of Neyman-Pearson Combination

The method just described promises optimal efficiency, with no assumptions on the
absence of correlation or even dependence among CPs. In principle, this method
should outperform any other combination method, at least in terms of efficiency.
However, the method revolves around the ratio of the likelihoods under the null
and under the alternative hypothesis.
The estimation of a density, let alone a density ratio (Sugiyama, Suzuki, and
Kanamori, 2012), is an ill-posed problem. The reader is referred to (Vapnik and
Izmailov, 2015b, Section 3.1) for further discussion of this important fact. The diffi-
culty of this estimation is further compounded by its multivariate nature. It is there-
fore important to investigate the question of how the method actually performs in
practice, especially when only limited amounts of noisy data are available. The per-
formance of the methods chosen for the estimation of the density ratio is critical for
this method to realise its full potential.

Two approaches are described below, namely Naïve Neyman-Pearson and V-
Matrix.

6.5.1 Naïve Neyman-Pearson

To apply the method described in section 6.4.2, one needs to compute the likelihood
L(H1|x), that is, the density P

[
X|H1

]
evaluated at x. In particular, we are looking

for the likelihood for the joint event of p1, p2, . . . , pk.
To make the estimation more tractable, one approach is to make the naïve as-

sumption that the p-values are independent (this is analogous to the independence
assumption made in Naïve Bayes). So the density of the joint event can be calculated
as the product of the densities of each of the simple events.

Consequently, a method that we refer to here as Naïve Neyman-Pearson obtains
first an estimate of the (marginal) density of each of the p-values and then simply
calculates the likelihood for the joint event as product of those densities. If we as-
sume that the pȳ are computed by a valid CP, they are uniformly distributed so the
likelihoodL(θ0|p) for each of the k p-value is 1. So, the NPL statistic can be expressed
as:

Λ(X) =
1

k
∏
i=1

f1(pi)
where X = (P1, P2, . . . , Pk)

To obtain the combined p-value, we start from recalling that the threshold η is
chosen so that the significance level ε is:

ε = P
[
Λ(X) ≤ η|H0

]
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We can therefore transform the statistic value λ into a p-value by applying to it the
CDF of the NPL statistic evaluated conditional on H0.

pcomb = CDFH0(λ)

where
CDFH0(λ) = P

[
Λ(X) ≤ λ |H0

]
Note that this ensures that the p-value for the Null Hypothesis be uniformly dis-
tributed. One obvious limitation of this approach is that it is hardly ever the case
that the p-values of the base CPs are independent.

6.5.2 V-Matrix

To account fully for an arbitrary dependence between p-values one has to attempt
to estimate the multivariate joint density ratio. Density estimation is central to sta-
tistical inference and the problem has been studied for decades, resulting in a va-
riety of methods. A rigorous approach was proposed first in (Vapnik, 1995), and
then in (Vapnik, Braga, and Izmailov, 2015) and (Vapnik and Izmailov, 2015a). The
version of the method considered here is referred to as V-Matrix method and is de-
scribed in (Vapnik and Izmailov, 2015b). We will recap just the key points here and
refer the reader to papers just cited for the full derivation and all the attendant de-
tails.

Direct Constructive Setting

Let’s consider first the problem of density estimation. Let’s assume that we are given
` d-dimensional samples xi = (x(1)

i , . . . , x(d)
i ) from a (cumulative) distribution F(x).

We are seeking a density f (x) such that:∫ x

−∞
f (t)dt = F(x)

The distribution F(x) is unknown, but from the samples we can compute the empir-
ical cumulative distribution

F`(x(1), . . . , x(d)) =
1
`

`

∑
i=1

d

∏
k=1

θ(x(k) − x(k)
i )

where θ(x) denotes the step function. A key result in Vapnik-Chervonenkis the-
ory (Vapnik and Izmailov, 2015b, Equation 4) guarantees that the uniform conver-
gence of F`(x) to F(x) as `→ ∞ is fast:

P

ï
sup

x
|F`(x)− F(x)| ≥ ε

ò
≤ exp

Ä
−
Ä

ε2`− log `
ää

]
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In other words, the cumulative distribution function can be estimated from a lim-
ited amount of samples with a relatively small error. The direct constructive setting
consists in estimating the density f () as solution of the integral equation using the
approximation given by empirical distribution function F`(x) in place of the actual
but unknown F(x).

Density Ratio

In the case of the density ratio estimation, we are given `num d-dimensional samples
xi = (x(1)

i , . . . , x(d)
i ) from a (cumulative) distribution Fnum(x) and `den d-dimensional

samples xi = (x(1)
i , . . . , x(d)

i ) from a (cumulative) distribution Fden(x). We are seeking
a density r(x) such that: ∫ x

−∞
r(t) dFden(t) = Fnum(x) (6.8)

Analogously to the density estimation case above, we estimate r(x) by solving the in-
tegral equation after replacing Fnum(x) and Fden(x) with their empirical counterparts,
F`num (x) and F`den (x)

Solution via regularization method

The integral equations arising from the direct constructive setting are ill-posed, in
the sense that their solutions are not stable: informally stated, small changes to the
right-hand side can result in significant changes to the solution. In the case of the
density ratio problem, the difficulty is compounded by the fact that not only the
right-side, but the left side are approximately defined. Problems of this nature are
called stochastic ill-posed problems.

The method proposed in (Vapnik, 1995, Chapter 7) is to seek the function r(x)
that minimizes the sum of the L2 distance (in a chosen metric space E) between
F`num () and the left-hand side of eq. 6.8 and a regularization term. The solution is
sought in a Reproducing Kernel Hilbert Space of kernel K(·, ·) and has the form:

f (x) =
`

∑
i=1

αiK(Xi, x) = ATK(x) (6.9)

where A = (α1, . . . , α`den )T and K(x) is a vector of K(Xi, x), i = 1, . . . , `den.
The functional to minimize is expressed as:

ATKVKA− 2
Å
`den

`num

ã
ATKV∗1`num + γATKA (6.10)

where K is the (`den × `den) matrix with elements K(Xi, Xj), i, j = 1, . . . , `den and V
and V∗ are matrices that reflect the geometry of the observed data. In addition,
the solution should take non-negative values and should integrate to 1. These two
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constraints are expressed in terms of the observed data as:

KA ≥ 0`den (6.11)

1
`den

ATKV∗1`num = 1 (6.12)

V-Matrix

The (`den × `den) V matrix and (`num × `den) V∗ matrix mentioned in eq. 6.10 have
elements

Vi,j =
∫

θ(x− Xi)θ(x− Xj)σ(x)dµ(x). (6.13)

where σ(x) and µ(x) are respectively a weighting function and a measure that arise
in the definition of distance in the metric space E. σ(x) and µ(x) allow to craft the def-
inition of distance to suit the specific statistical inference problem. With the choice
of σ(x) = 1 and µ the uniform measure, assuming that data belongs to the upper-
bounded interval [−∞, u],

Vi,j =
d

∏
k=1

Ä
u−max

¶
X(k)

i , X(k)
j

©ä
(6.14)

6.6 Experiments with synthetic data

In (Heard and Rubin-Delanchy, 2018), the Neyman-Pearson Lemma is used in com-
bination with the common assumption that the distribution of p-value under the
alternative hypothesis is of the form Beta(a, b) with a ∈ (0, 1] and b ∈ [1,+∞). In
particular, the paper claims that Fisher’s method is the most powerful when the al-
ternative hypothesis p ∼ Beta(0.5, 1). One wonders how warranted this common
Beta(a, b) assumption is (see also (Sellke, Bayarri, and Berger, 2001)), in particular
in the specific context of Conformal Predictors. On a purely intuitive basis, it is
not outside the realm of possibility that there may be some deeper relationship be-
tween the distribution of CP p-values, which can be seen as rank transformed scores,
and the order statistics of the uniform distribution which indeed happen to be Beta-
distributed random variables. However, in the present study it was felt that it would
be more realistic to generate p-values computing them via CP on appropriate distri-
butions of NCMs, rather than generating them from arbitrary distributions.

6.6.1 A realistic model of NCMs

The NCMs can in principle be obtained from a very wide variety of ML algorithms.
One can model the distribution of NCMs as a mixture of two distributions, one for
NCMs for examples of one class and the other for the NCMs of the other class. Fig-
ure 6.2 shows an example of the histogram of the distribution that arise in a real-life
case. Of course, markedly different distributions can arise from different methods,
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FIGURE 6.2: Example of score distribution from a real-life dataset. These scores were
obtained as SVC decision function values. The SVC was trained to clas-
sify a dataset containing 28x28 images of handwritten “5” and “8” digits
from the well-known MNIST dataset.

but the example suggests that it might be relevant to study the case in which the
scores for the two classes are distributed as two Gaussians.

Throughout the rest of the Chapter, we assume that the NCMs are derived from
the scores simply by a monotone transformation, e.g. changing the sign, as needed.

In Figure 6.3 four main cases are identified. In all four cases, the Gaussian dis-
tributions have mean -1 and +1. What differs is variance, which reflects the relative
uncertainty of the prediction for each class. The four cases allow us to study the
effect of larger and asymmetric overlaps.

6.7 The distribution of p-values under the Alternative Hy-
pothesis

The distribution of p-values under the Null Hypothesis is uniform by construction.
The distribution of p-values under the Alternative Hypothesis is determined by the
distribution of the Nonconformity Measure. If we denote as P0(α) the CDF of alphas
under H0 and p1(α) the PDF for the NCM under H1, the p-values can be viewed as
Random Variables obtained as:

P [α0 ≥ α1] = 1− P0(A1)

where A1 is a random variable whose realisations are the NCM α1 under the Alter-
native Hypothesis H1.
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FIGURE 6.3: Cases of NCM distributions. The dashed lines correspond to H0 and the
solid lines to H1. The cases at the extreme left and extreme right assume
that the underlying method had the same uncertainty in classifying test
examples of either label. The cases differ in the amount of “overlap”. The
plots in the middle refer to cases in which the classifier had more uncer-
tainty for the Null Hypothesis label (blue) and less uncertainty for the
Null Hypothesis label (red)

case σ0 σ1 PDF of p-values under H1

green 1 1 exp
Ä
−2
√

2 InvErfc(2− 2x)− 2
ä

blue 2 1 2 exp
Ä
−3 InvErfc2(2− 2x)− 4

√
2 InvErfc(2− 2x)− 2

ä
red 1 2 1

2 exp
Ä

1
4

Ä
3 InvErfc2(2− 2x)− 2

√
2 InvErfc(2− 2x)− 2

ää
black 2 2 exp

Ä√
2 (− InvErfc(2− 2x))− 1

2

ä
FIGURE 6.4: The PDF of the p-values under H1. InvErfc() is the inverse com-

plementary error function. The complementary error function is
Erfc(x) = 2√

π

∫ +∞
x e−t2

dt.
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For the four cases shown in Figure 6.3 it is possible to express in closed form the
PDF of the p-values under the Alternative Hypothesis. The equations are given in
the table in Figure 6.42.

It is interesting to observe that while the black and green traces could be in qual-
itative agreement with the common assumption mentioned earlier in section that
the Alternative Hypothesis p-values follow some form of Beta distribution, the blue
and the red traces show a different behaviour. But it could be argued that the verti-
cal asymptote at p = 1 for the red trace and the behaviour near p = 0 for the blue
line have to do with the possibly unrealistic long tails of the wider Gaussian. Both
occurrences can be explained by the fact that for sufficiently small and sufficiently
large the PDF of the Gaussian of larger variance has larger values than that of the
Gaussian of lower variance.

6.8 Experimental results

The CP combination methods discussed in the previous sections were applied to
two base CPs, denoted here with CPa and CPb. Calibration sets and test sets had
both 5,000 examples, with the two classes being represented in equal proportions.
(Obviously, there is no proper training set as the NCMs are “simulated”).

The code was entirely written in Python with the help of Jupyter Notebooks,
using numpy, scipy, numba and scikit-learn. The V-Matrix implementation
used the cvxopt package for the solution of the Quadratic Programming problem.

We assumed that in each CP the NCMs for examples of the two labels could
be distributed in the one of four possible cases discussed in the previous section,
namely:

• σ2
0 = 1, σ2

1 = 1

• σ2
0 = 1, σ2

1 = 4

• σ2
0 = 4, σ2

1 = 1

• σ2
0 = 4, σ2

1 = 4

The total number of pairings of cases, discounting symmetries, is (n+1)n
2 = 5·4

2 = 10.
For each of these pairings, we then used 3 different settings of correlation between
the NCMs of CPa and CPb. We generated NCM sets with covariance 0 (in fact, they
were not only uncorrelated, but independent), covariance 0.8, and covariance -0.8.
Figure 6.5 illustrates the NCMs and the resulting p-values for the 3 different covari-
ance values in the case with σ0 = 2, σ1 = 2. From the NCMs, p-values for the test
objects were computed according to the MICP framework. The p-values were then
used to compute the prediction sets and the results, in turn, were summarised into
confusion matrices, which provide counts of correct, incorrect, empty, and uncertain

2The symbolic expressions were computed using Mathematica®.
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FIGURE 6.5: Example of NCM sets with same variance, but different covariance. The
top row shows the NCMs, the bottom row the resulting MICP p-values
p0. The y-axis refers to CP a and the x-axis to CP b. The red crosses corre-
spond to the data points with label 1 and the green dots to the data points
with label 0. Note the variance and covariance referred to here are those
of each component of the Gaussian mixture, i.e. between the NCMs for set
a and set b for label 0 and the NCMs for set a and set b for label 1.

predictions. To assess validity, the confusion matrices were computed for different
significance levels, namely 0.01, 0.05, 0.1, 0.2.

As stated in Section 6.1, the objective considered in this Chapter is to improve
efficiency, while preserving validity. So, the analysis that follows will focus on these
two properties. The results for the 10× 3× 4 = 120 cases (each repeated 25 times)
are summarized in Tables 6.3, 6.4, 6.5, 6.6. In Figure 6.6 we show one representative
case out of the 120.
In the charts, the entries are grouped as follows:

base predictors: The base CPs, identified as “a” and “b”

reference: the theoretical optimal methods under the assumption of indepen-
dence, listed as “Naive Neyman-Pearson Ideal”

basic methods: arithmetic average, geometric average, maximum, minimum

merging functions: methods discussed in sec. 6.1.1 which guarantee (conserva-
tive) validity

CDF calibrated methods: arithmetic average (CDF), geometric average (CDF),
maximum (CDF), minimum (CDF)

ECDF calibrated methods: arithmetic average (ECDF), geometric average
(ECDF), maximum (ECDF), minimum (ECDF)
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adaptive methods: Multivariate ECDF, Naive Neyman-Pearson (histogram), V-
Matrix

An orange background is applied to the groups as a visual reminder of their sig-
nificant deviations from validity. Table 6.3 reports the average fraction of uncer-
tain predictions (inversely related to efficiency) for one value of significance level,
namely ε = 0.05. In Tables 6.4,6.5,6.6, we present the rankings in terms of efficiency,
averaged over the 25 repetitions, and disaggregated by significance level, correla-
tion, and variances, respectively. Also, in these tables we removed the methods that
deviate significantly from validity so that the ranking is fairer.

6.8.1 Findings

The analysis of the results confirms the observations made earlier while describing
the methods. More specifically, taking Figure 6.6 as a representative case, we can in
fact see that

1. all the basic methods (arithmetic average, geometric average, maximum, min-
imum) exhibit deviation from validity, i.e. in the top plot, their error rate av-
erages are far from the horizontal dashed green line which corresponds to the
significance level.

2. the merging functions are extremely conservative, perhaps with the exception
of Bonferroni for low value of significance level.

3. The CDF calibrated methods are indeed valid when the base predictors are
independent, but exhibit different forms of deviation in the presence of corre-
lation.

4. ECDF calibrated methods exhibit small deviation form validity also in the
presence of correlation.

The basic methods and the merging functions will not be discussed further as their
deviation from exact validity defeats the purpose of CP combination considered in
this study.

Turning now our attention to efficiency, the results shown in Tables 6.3, 6.4,6.5,6.6
support the following findings:

1. In the case of positive correlation, there is not much efficiency improvement
in combining (refer to Table 6.3) This may be intuitively justified by observing
that if the p-value are strongly correlated, they convey the same information.
Bringing this to an extreme, we would not expect to see any improvement by
combining a CP with itself. Conversely, negative correlation offers the best
opportunities for efficiency gains.

2. The accuracy and robustness of density ratio estimation is critical to the success
of the application of the Neyman-Pearson method. When a simple method
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such as histogram is used, the N-P method often fails to improve CP efficiency.
The improvements require the use of a more accurate and robust method such
V-Matrix.

3. The superiority of V-Matrix method fails to manifest itself fully for very low
values of the significance level (refer to Figure 6.4). This is indicative of inaccu-
racy in the low end of the prediction range (i.e. for values close to 0). This may
be overcome with a better choice of kernel. In this study, the Gaussian RBF
kernel was chosen after some experiments with Polynomial and INK-Spline
Kernel failed to provide encouraging results. It is possible that a kernel on a
[0,1] support and with a better suited functional form might perform better.

4. The Multivariate ECDF method performs well and it is competitive with re-
spect to V-Matrix. This is particularly interesting given the simplicity of the
method and the absence of any parameters that need optimisation (the V-
Matrix method has a regularisation parameter and, possibly, also a kernel pa-
rameter).

Table 6.3 shows the fraction of uncertain predictions for each method at significance
level ε = 0.05 under the different scenarios.

6.9 Future directions

Several aspects of this study in this chapter could be developed further. First of all,
we applied the combination methods only to 2 base CPs. It would be worthwhile to
investigate how the performance varies when more than 2 CPs are combined. The
likelihood ratio estimation, which is critical for the Neyman-Pearson method, be-
comes more challenging when more p-values are combined. It would be interesting
to determine whether the difficulties in estimating it cancel the advantages that the
Neyman-Pearson method theoretically guarantees. Also, a natural application of the
combination techniques is in Cross-Conformal Predictors (Vovk, 2015), so it would
be interesting to study how the methods perform in that context. More in general, a
comparison should carried out on real-world data sets and a variety of underlying
ML methods to gain a better understanding of their merits and limitations.

6.10 Conclusions

We propose to use a combination method based on the Neyman-Pearson Lemma,
to achieve the CP combination objective of improving efficiency while preserving
exact validity, at the cost of using part of the training set for calibration purposes.
The critical component of the method is density ratio estimation and we showed
on a realistic synthetic data set that an accurate and robust method such V-Matrix
can be used successfully. We also showed that other approximate methods exist that
provide, with much less complexity, only slightly inferior results.
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FIGURE 6.6: Boxplots for the error rate and for the fraction of uncertain predictions
for one “representative” scenario. In top chart, which refers to error rate,
the methods in the shaded areas show significant validity deviations
(compare with dashed green line, which corresponds to the significance
level). In the bottom chart, which refers to the fraction of uncertain pre-
dictions, we can see that NP V-Matrix outperform all the other methods.
(The green line is the median rate for “Naïve NP” which we take here as
reference.)
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TABLE 6.3: Fraction of uncertain predictions for significance level ε = 0.05. There
are 10 scenarios in terms of the variances of the NCMs for the two labels
and the 2 CPs. In the headings the two number for σ2 are the variances for
the NCMs for examples with label “0” and for examples with label “1”.
In each such scenario, different levels of correlations (-0.8, 0, +0.8) were
injected between corresponding NCMs. The reported values are averages
over 25 runs. The lower the fraction, the higher the CP efficiency.

σ2
a =(1.0,1.0), σ2

b =(1.0,1.0) σ2
a =(1.0,1.0), σ2

b =(1.0,4.0) σ2
a =(1.0,1.0), σ2

b =(4.0,1.0) σ2
a =(1.0,1.0), σ2

b =(4.0,4.0) σ2
a =(1.0,4.0), σ2

b =(1.0,4.0)

-0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800

a 0.313 0.310 0.313 0.313 0.309 0.312 0.310 0.312 0.309 0.303 0.315 0.316 0.617 0.617 0.611
b 0.312 0.315 0.313 0.615 0.616 0.613 0.616 0.617 0.611 0.690 0.692 0.692 0.618 0.615 0.617
Naive NP Ideal 0.000 0.067 0.271 0.026 0.148 0.264 0.025 0.149 0.269 0.091 0.230 0.332 0.227 0.301 0.339
Arithmetic Mean 0.521 0.463 0.351 0.779 0.685 0.599 0.776 0.688 0.599 0.805 0.744 0.687 0.818 0.787 0.725
Geometric Mean 0.080 0.248 0.303 0.405 0.407 0.418 0.407 0.406 0.415 0.470 0.482 0.490 0.633 0.617 0.593
Maximum 0.704 0.591 0.433 0.846 0.783 0.720 0.845 0.784 0.719 0.886 0.831 0.780 0.853 0.830 0.779
Minimum 0.018 0.094 0.192 0.168 0.193 0.224 0.168 0.194 0.219 0.188 0.216 0.244 0.451 0.436 0.471
Arithmetic Merge 0.777 0.638 0.507 0.861 0.809 0.745 0.861 0.810 0.743 0.918 0.865 0.812 0.860 0.841 0.809
Geometric Merge 0.502 0.506 0.522 0.680 0.641 0.623 0.680 0.640 0.623 0.786 0.746 0.721 0.735 0.735 0.728
Bonferroni 0.092 0.214 0.344 0.306 0.328 0.363 0.303 0.328 0.357 0.347 0.371 0.409 0.558 0.560 0.583
Arithmetic (CDF) 0.131 0.112 0.024 0.277 0.257 0.175 0.280 0.257 0.176 0.407 0.362 0.303 0.544 0.445 0.354
Geometric (CDF) 0.007 0.095 0.147 0.184 0.226 0.241 0.183 0.226 0.242 0.244 0.276 0.297 0.547 0.467 0.435
Max (CDF) 0.215 0.170 0.038 0.385 0.320 0.199 0.390 0.320 0.206 0.479 0.424 0.351 0.535 0.451 0.313
Min (CDF) 0.090 0.210 0.338 0.301 0.323 0.359 0.300 0.324 0.355 0.338 0.368 0.404 0.557 0.559 0.580
Arithmetic (ECDF) 0.014 0.110 0.269 0.087 0.255 0.391 0.086 0.252 0.401 0.205 0.357 0.464 0.271 0.443 0.525
Geometric (ECDF) 0.000 0.095 0.270 0.082 0.222 0.334 0.081 0.225 0.345 0.158 0.273 0.374 0.469 0.465 0.504
Max (ECDF) 0.065 0.169 0.282 0.202 0.314 0.451 0.201 0.317 0.460 0.316 0.422 0.504 0.361 0.443 0.494
Min (ECDF) 0.090 0.208 0.288 0.305 0.322 0.322 0.303 0.324 0.327 0.344 0.369 0.390 0.558 0.555 0.559
Multivariate ECDF 0.000 0.090 0.267 0.024 0.216 0.314 0.025 0.221 0.325 0.109 0.266 0.368 0.409 0.456 0.493
Naive NP (histo) 0.479 0.533 0.630 0.533 0.576 0.675 0.528 0.574 0.684 0.133 0.453 0.361 0.665 0.613 0.499
NP V-Matrix 0.004 0.078 0.267 0.014 0.170 0.281 0.012 0.174 0.283 0.109 0.239 0.312 0.230 0.380 0.341

σ2
a =(1.0,4.0), σ2

b =(4.0,1.0) σ2
a =(1.0,4.0), σ2

b =(4.0,4.0) σ2
a =(4.0,1.0), σ2

b =(4.0,1.0) σ2
a =(4.0,1.0), σ2

b =(4.0,4.0) σ2
a =(4.0,4.0), σ2

b =(4.0,4.0)

-0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800

a 0.612 0.616 0.615 0.612 0.616 0.616 0.615 0.615 0.616 0.617 0.617 0.615 0.691 0.692 0.689
b 0.618 0.617 0.616 0.694 0.694 0.689 0.618 0.613 0.615 0.692 0.690 0.691 0.690 0.693 0.691
Naive NP Ideal 0.196 0.283 0.343 0.333 0.404 0.456 0.227 0.296 0.340 0.329 0.405 0.455 0.471 0.544 0.587
Arithmetic Mean 0.905 0.846 0.779 0.892 0.854 0.809 0.814 0.789 0.725 0.890 0.853 0.811 0.915 0.887 0.853
Geometric Mean 0.518 0.502 0.493 0.673 0.650 0.632 0.634 0.619 0.592 0.671 0.651 0.634 0.780 0.759 0.739
Maximum 0.971 0.941 0.907 0.935 0.911 0.880 0.850 0.831 0.781 0.934 0.911 0.881 0.952 0.931 0.906
Minimum 0.318 0.324 0.334 0.420 0.429 0.441 0.452 0.436 0.472 0.426 0.427 0.443 0.470 0.480 0.487
Arithmetic Merge 0.981 0.954 0.922 0.946 0.927 0.902 0.858 0.842 0.809 0.946 0.927 0.903 0.969 0.952 0.930
Geometric Merge 0.681 0.664 0.649 0.817 0.801 0.790 0.736 0.735 0.726 0.816 0.801 0.786 0.941 0.919 0.902
Bonferroni 0.446 0.445 0.446 0.571 0.574 0.583 0.559 0.560 0.580 0.573 0.574 0.586 0.650 0.655 0.662
Arithmetic (CDF) 0.427 0.373 0.305 0.554 0.495 0.438 0.554 0.449 0.357 0.551 0.495 0.438 0.612 0.570 0.524
Geometric (CDF) 0.376 0.365 0.353 0.503 0.482 0.470 0.553 0.471 0.434 0.508 0.484 0.472 0.577 0.565 0.554
Max (CDF) 0.530 0.452 0.362 0.596 0.533 0.460 0.539 0.452 0.313 0.591 0.534 0.457 0.642 0.601 0.548
Min (CDF) 0.444 0.442 0.445 0.566 0.570 0.579 0.557 0.555 0.579 0.566 0.571 0.583 0.647 0.651 0.659
Arithmetic (ECDF) 0.218 0.369 0.484 0.392 0.492 0.557 0.272 0.445 0.522 0.392 0.490 0.556 0.508 0.568 0.602
Geometric (ECDF) 0.299 0.361 0.410 0.437 0.484 0.524 0.477 0.469 0.510 0.437 0.480 0.517 0.517 0.562 0.598
Max (ECDF) 0.323 0.449 0.562 0.452 0.526 0.580 0.358 0.452 0.495 0.457 0.529 0.575 0.560 0.596 0.622
Min (ECDF) 0.442 0.442 0.433 0.569 0.565 0.574 0.560 0.556 0.560 0.570 0.572 0.572 0.647 0.649 0.655
Multivariate ECDF 0.257 0.358 0.414 0.400 0.473 0.522 0.409 0.467 0.487 0.400 0.481 0.517 0.493 0.556 0.598
Naive NP (histo) 0.252 0.644 0.671 0.640 0.452 0.494 0.667 0.612 0.724 0.373 0.438 0.493 0.488 0.552 0.595
NP V-Matrix 0.249 0.320 0.346 0.396 0.442 0.453 0.203 0.376 0.330 0.399 0.434 0.451 0.484 0.547 0.592

TABLE 6.4: Average rank of the method when sorted by efficiency, as a function of
significance level ε. Apart from the ε = 0.01 case at the left, NP V-Matrix is
consistently the best after the Naïve NP Ideal.

0.010 0.050 0.100 0.150 0.200

Naive NP Ideal 1.433 1.400 1.400 1.167 1.000
Arithmetic (ECDF) 5.467 4.900 4.600 4.567 5.167
Geometric (ECDF) 4.100 4.733 4.767 4.500 3.700
Max (ECDF) 6.933 6.233 6.400 6.833 7.200
Min (ECDF) 5.800 6.933 7.200 7.300 7.233
Multivariate ECDF 2.100 3.733 4.000 4.267 4.000
Naive NP (histo) 6.733 6.100 5.600 5.033 4.500
NP V-Matrix 3.433 1.967 2.033 2.333 3.200
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TABLE 6.5: Average rank of the method when sorted by efficiency, as a function of
correlation. NP V-Matrix is consistently the best after the Naïve NP Ideal.

-0.800 0.000 0.800

Naive NP Ideal 1.280 1.020 1.540
Arithmetic (ECDF) 4.660 4.880 5.280
Geometric (ECDF) 4.440 4.340 4.300
Max (ECDF) 6.740 6.760 6.660
Min (ECDF) 7.320 7.000 6.360
Multivariate ECDF 3.160 3.520 4.180
Naive NP (histo) 5.320 5.780 5.680
NP V-Matrix 3.080 2.700 2.000

TABLE 6.6: Average rank of the method when sorted by efficiency, for the various sce-
narios of σa and σb. With the exception of the two case at the left, NP V-
Matrix is consistently the best after the Naïve NP Ideal.

(1.0,1.0),
(1.0,1.0)

(1.0,1.0),
(1.0,4.0)

(1.0,1.0),
(4.0,1.0)

(1.0,1.0),
(4.0,4.0)

(1.0,4.0),
(1.0,4.0)

(1.0,4.0),
(4.0,1.0)

(1.0,4.0),
(4.0,4.0)

(4.0,1.0),
(4.0,1.0)

(4.0,1.0),
(4.0,4.0)

(4.0,4.0),
(4.0,4.0)

Naive NP Ideal 1.467 1.333 1.200 1.333 1.400 1.000 1.200 1.533 1.200 1.133
Arithmetic (ECDF) 5.067 5.467 5.400 6.000 4.533 4.400 4.667 4.400 5.000 4.467
Geometric (ECDF) 2.667 3.533 3.533 3.933 5.267 4.533 4.933 4.867 5.067 5.267
Max (ECDF) 6.867 7.000 7.000 7.600 5.400 6.800 7.133 5.200 7.200 7.000
Min (ECDF) 7.000 6.067 6.067 6.667 6.867 6.467 7.400 6.800 7.600 8.000
Multivariate ECDF 2.867 2.667 2.800 3.133 4.000 3.933 4.200 3.800 4.600 4.200
Naive NP (histo) 6.333 7.000 7.133 4.267 6.800 6.133 4.400 7.800 3.067 3.000
NP V-Matrix 3.733 2.933 2.867 3.067 1.733 2.733 2.067 1.600 2.267 2.933
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7.1 Introduction

This chapter introduces a recent development in the probabilistic prediction of a con-
tinuous variable that takes advantage of the CP framework and the validity guaran-
tees that it brings about.

In this chapter, we introduce the notion of Predictive Distribution in a frequen-
tist framework and present Conformal Predictive Distributions (Vovk et al., 2019),
a Machine Learning approach that computes estimates of probability distributions
of a continuous variable without relying on prior assumptions on the mathematical
form of the distributions. The method produces probability distributions for which
it is possible to prove a statistical validity property (also known as guaranteed cover-
age), which ensures that the estimated probability corresponds to relative frequency.
The only assumption is that the test data is sampled from the same (unknown) dis-
tribution as the training data.

7.1.1 Outline

Sections 7.2 and 7.3 delimit the setting and frame the problem of predictive dis-
tribution. Section 7.4 introduces formally the framework of Conformal Predictive
Distributions following very closely (Vovk et al., 2019; Vovk et al., 2018) and in sec-
tion 7.6 we will apply it to problems of prediction in a drug development setting.
The method performance will be evaluated not only with the usual metrics for point
predictions (such as R2), but also with respect to probabilistic properties, such as
validity and sharpness.

7.2 Generalities

Let’s start by introducing our basic setting for the prediction problem. We have a
training set consisting of n observations zi = (xi, yi) ∈ X× Y = X×R, i = 1, . . . , n.
Each observation zi = (xi, yi), i = 1, . . . , n + 1, consists of two components, namely
the object xi belonging to a space X that we call the object space and the label yi that
belongs to a space Y that we call the label space. In the problem we are going to dis-
cuss, each of the xi can be for instance a vector of reals or integers, encoding physic-
ochemical properties or structural properties of a compound (as already discussed
in Section 3.1), whereas the label correspond to the value of an assay of interest (e.g.
a pharmacokinetic property such as hPPB, human Plasma Protein Binding) for the
compound. The prediction problem is, given a test object xn+1, to predict its label
yn+1. Here we are interested in the case of regression, where the label space is the
real line, Y = R. In particular we are interested in the problem of probability fore-
casting, so our prediction takes the form of a probability distribution on the label
space Y.
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7.3 Predictive Distributions

We assume that all the observations (in the training set as well as in the test set)
are generated independently by a fixed but unknown distribution. In other words,
the data is independent and identically distributed (i.i.d.) and no other assumption
is made on the nature of the distribution. In particular, we do not assume that the
distribution belongs to a family of which we want to estimate the parameters.

Intuitively, for every choice of training set z1, . . . , zn and for every test object
xn+1, we seek an estimate of the Cumulative Distribution Function of the label, i.e. a
function Q() such that:

Pr(yn+1 < y) = Q(z1, . . . , zn, xn+1, y) (7.1)

We can reformulate the equation above in terms of a validity property for predictive
distributions.
Chosen a significance level ε ∈ [0, 1], we can define a prediction interval
Γε(z1, . . . , zn, xn+1) (i.e. function of the training set and the test object) as:

Γε(z1, . . . , zn, xn+1) :=
{

y ∈ Y :
ε

2
< Q(z1, . . . , zn, xn+1, y) < 1− ε

2

}
(7.2)

In words, the predicted interval contains the values of y for which
Q(z1, . . . , zn, xn+1, y) falls in a strip centred on 1

2 with width 1 − ε and is just
one possible definition of the interval. In fact, any strip of width 1− ε would do.
Figure 7.1 illustrates how the PD establishes relationships between intervals of y
and their probabilities. The validity property of predictive distributions can then be

FIGURE 7.1: Example of Predictive Distribution. The chart shows a fictitious
Q(z1, . . . , zn, xn+1, y) and illustrates the construction of Γε(z1, . . . , zn, xn+1)
defined by Eq. 7.2, assuming ε = 0.8.

stated as:
Pr
(
yn+1 /∈ Γε(z1, . . . , zn, xn+1)

)
= ε (7.3)

In words, the validity property is a guarantee that the probability of the actual label
yn+1 being in the prediction interval Γε is indeed ε. In practical terms, this means that
given a test set of size m and for any choice of the significance level ε, if we compute
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the Γε(xi) for each test object xi, we will see that the actual labels yi are in Γε(xi) with
relative frequency approaching ε. This reformulation of Equation 7.1 highlights the
close connection between Predictive Distributions and Conformal Regression.

The formal definition of the predictive distributions that we are going to use here
can be best understood if one recalls the property of CDF stated in Section 5.2.3, i.e.
given a random variable X and its CDF FX(t) ≡ P [X ≤ t] which we will assume
continuous, the random variable Y ≡ FX(X) follows the Uniform distribution.

A function Q : Zn+1 × [0, 1]→ [0, 1] is a randomized predictive system (RPS) if:

R1a For each training sequence (z1, . . . , zn) ∈ Zn and each test object xn+1 ∈ X, the
function Q(z1, . . . , zn, (xn+1, y), τ) is monotonically increasing in both y and τ.

R1b For each training sequence (z1, . . . , zn) ∈ Zn and each test object xn+1 ∈ X,

lim
y→−∞

Q(z1, . . . , zn, (xn+1, y), 0) = 0,

lim
y→+∞

Q(z1, . . . , zn, (xn+1, y), 1) = 1.

R2 For any probability measure P on Z, Q(z1, . . . , zn, zn+1, τ) ∼ U when
(z1, . . . , zn+1, τ) ∼ Pn+1 ×U.

where U = U[0, 1] be the uniform probability distribution on the interval [0, 1].

7.4 Conformal predictive distributions

This section describes how Predictive distributions can be obtained with a variant of
Conformal Prediction.

Conformalized least square regression and kernel ridge regression have been
studied by Burnaev and Nazarov (Burnaev and Nazarov, 2017) in the form of pre-
diction intervals and was extended by (Vovk et al., 2019) to predictive distributions.
Because of some technical subtleties, the formal definition of predictive distribution
relies on a less intuitive property, rather than the validity guarantee stated in the
previous section.

A conformity measure is a measurable function A : Zn+1 → R that is invariant
with respect to permutations of the first n observations. A natural definition is

A(z1, . . . , zn+1) := yn+1 − ŷn+1, (7.4)

ŷn+1 being the prediction for yn+1 computed from xn+1 and z1, . . . , zn+1 as training
sequence.
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The Conformal Predictive Distribution (or more formally the Conformal Trans-
ducer) determined by a conformity measure A is defined as

Q(z1, . . . , zn, (xn+1, y), τ) :=
1

n + 1

Ä∣∣∣{i = 1, . . . , n + 1 | α
y
i < α

y
n+1

}∣∣∣
+ τ

∣∣∣{i = 1, . . . , n + 1 | α
y
i = α

y
n+1

}∣∣∣ä, (7.5)

where (z1, . . . , zn) ∈ Zn is a training sequence, xn+1 ∈ X is a test object, and for each
y ∈ R the corresponding conformity scores α

y
i are defined by

α
y
i := A(z1, . . . , zi−1, zi+1, . . . , zn, (xn+1, y), zi), i = 1, . . . , n,

α
y
n+1 := A(z1, . . . , zn, (xn+1, y)).

(7.6)

Figure 7.2 shows a hypothetical CPD. Note that, while the randomization ele-
ment might seem confusing, in practice it can be ignored. The 1

n+1 width of the
bands becomes negligible for any reasonably sized training set (also considering the
errors inherent in the data sets).

FIGURE 7.2: Example of Conformal Predictive Distribution. The CPD can be infor-
mally viewed as a “thick” discrete CDF. The CPD appears to be made of
up to n + 1 horizontal strips, each with width 1

n+1 (or a multiple of it, in
case of ties α

y
i == α

y
`+1) because of the random element introduced with

the RV τ.

A conformal predictive system (CPS) is a function which is both a conformal trans-
ducer and a randomized predictive system. A conformal predictive distribution (CPD)
is a function output by a conformal predictive system Q for a test object xn+1.

7.4.1 Additional requirement

The equations in the previous sections are almost indistinguishable from those used
in Transductive Conformal Regression (CR). There is, however, an important dif-
ference between CR and CPD: in CPD not all equivariant functions are acceptable
Conformity Measures. For the resulting Q() to have the properties of CDF, the con-
formity measure must be such that:

• α
y
n+1 − α

y
i is a monotonically increasing function of y ∈ R
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• lim
y→−∞

(αy
n+1 − α

y
i ) = −∞

• lim
y→+∞

(αy
n+1 − α

y
i ) = +∞

A simple example for which the properties above hold is the conformity measure
y− ŷn+1 where ŷn+1 is the estimate obtained with K nearest neighbours regression,
as shown in (Vovk et al., 2019, Section 2.2).

7.5 Kernel Ridge Regression Prediction Machine

The form of CPD that we applied to chemoinformatics data is the Kernel Ridge Re-
gression Prediction Machine (KRRPM); it is the conformal transducer determined by
a conformity measure computed using Kernel Ridge Regression (KRR). KRR seemed
a particularly appropriate regression algorithm because it is a regularized method
(which allows to control the “complexity” of the regression model and therefore
combat overfitting) and can handle non-linearity (through the use of a kernel). KR-
RPM is described in (Vovk et al., 2018) and we refer the reader to that paper for all
the details. We will just mention two points. First, to ensure that the additional re-
quirements stated in section 7.4.1 are met, one cannot use as Conformity Measure the
residual shown in (7.4) but has to turn to the so-called studentized residual, which
takes into account the leverage of an object. Second, the algorithm admits an ex-
plicit form which also allows to perform a substantial amount of calculations once
only, thereby mitigating the computational burden otherwise typical of transductive
methods.

7.5.1 Advantages and Limitations of KRRPM

The key distinguishing feature of CPDs in general and KRRPM in particular is that
the predictive distributions can take any form and are not constrained to belong to
a given family of distributions (all too often Gaussian). It seems natural to view
this as advantageous, especially in those cases in which there is scant evidence to
support the application of the Central Limit Theorem, which generally is taken as
justification for the use of Gaussian distributions. It is remarkable that CPDs allow
this freedom, while achieving, at the same, validity, without requiring more than
i.i.d training and test data. We should however keep in mind the limitations of the
methods, some of which are pointed out in Section 7 of (Vovk et al., 2019). While it is
true that KRRPM inherits the flexibility of Kernel Ridge Regression that comes from
regularization and the use of nonlinear kernels, the distributions for the test objects
are effectively computed on data sets that differ only by one observation, that is
the hypothetical example consisting of the test object with the hypothetical label.
Because of this, it is surmised that there will not be much of a difference among the
predictive distributions for different test objects. This was discussed in the paper
just mentioned on a simple data set, but our experience in high-dimensional settings
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(see Figure 7.3) seems to suggest that lack of specificity is not as as bad as intimated,
although it can be argued that the PDs appear to be stretched and shifted copies of
one another. What is perhaps more troubling is the realization that this undesirable
lack of specificity would become more pronounced as the size of the training set is
increased (because changing one observation would affect the prediction relatively
less). The paper just cited suggests what some practitioners call “local models”,
which consists in training models that are specific to the test objects. Instead of
trying to create one model that applies to the entirety of a huge multidimensional
space, the idea is to training a model on a set of training examples that are close in
some sense to the test object.

FIGURE 7.3: Some real-world Predictive Distributions. Predictive Distributions for
20 test objects, obtained with a KRRPM with Laplace kernel on a data
set of 1000 training examples. The shape is very similar, but a few have
markedly different slope and location. The black dots are the actual label
values.

A recent further development of CPD is in the direction of universally consistent
CPDs and Conformal Calibrators, which can theoretically output PDs that are object-
conditional.

7.6 Application to Drug Development

In this section we provide some examples of the application of KRRPM to the pre-
diction of pharmacokinetic and physicochemical properties. The objectives of this
study were not so much to validate the KRRPM method in itself, but to evaluate its
suitability to the kind of prediction tasks prevalent in drug development. In par-
ticular, KRRPM was compared against the existing prediction system in use at As-
traZeneca (AZ). To get a meaningful comparison, four endpoints were chosen from
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the repository of assay measurements at the company. We are grateful to Ioana Opri-
siu in Gothenburg and Avid Afzal in Cambridge for assisting us in this choice and
for preparing the data sets. The names of the endpoints and the characteristics of the
data sets are shown in Table 7.1. The aim of the choice of targets was to cover a vari-
ety of domains (i.e. include pharmacokinetic as well as physicochemical properties),
of data set sizes (from relative small to large number of compounds in the training
set), and of predictive difficulty.

The numerical features for each compound in the data set were obtained by
computing the signature descriptors (Faulon, Visco, and Pophale, 2003) of the com-
pounds. The resulting training sets have a very large number of features (of the
order of hundred of thousands), but they are also very sparse.

7.6.1 Implementation details

The KRRPM algorithm was implemented in Python, using the numpy and sklearn

packages. The code was run on one node of the AZ high-performance computing
platform, which was equipped with 132GB RAM and a 32-core server-grade proces-
sor. The scalability of the implementation was limited by the memory requirements,
which are dominated by the n-by-n kernel matrix (which is generally a dense matrix)
and other temporary matrices of the same size. In fact, it was possible to achieve a
maximum training set size of 80,000 observations, only after implementing a cus-
tom version of the RBF kernel in Cython and rewriting the code so that temporary
copies of the large matrices were avoided when performing the linear algebra cal-
culations. The KRRPM algorithm as set out in (Vovk et al., 2018) requires a matrix
inversion. This was performed in a memory efficient way using BLAS/LAPACK
functions to implement the Cholesky method for symmetric matrices. In addition,
the matrix-by-vector multiplication was implemented in-place as well (with an ad-
ditional O(n) requirement). This resulted in only 2 copies of the n-by-n matrix being
needed. Given that the memory requirement for a 80,000-by-80,000 square matrix of
floating numbers in double precision is 51.2GB, it was possible to accommodate the
two copies within the nominal 132GB RAM available on a node. The execution time
to train on 80,000 compounds and predict 5,000 was 1hr 35min.

7.6.2 Methodology

The objective of the study was to characterize the applicability of Conformal Predic-
tive Distributions and specifically of KRRPM to prediction of candidate drug prop-
erties. In addition to the choice of suitable data sets already covered in Section 7.6,
the evaluation of the method posed a number of methodological challenges, namely
the preparation of training and test data, the choice of performance metrics, and the
parameter optimization strategy.



7.6. Application to Drug Development 123

Training and test sets

The primary objective of this investigation was to evaluate the methods under con-
ditions that reproduce as closely as possible the deployment conditions. We ac-
knowledged that the conventional shuffle-and-split partitioning of compounds into
training sets and test sets was far from adequate in this respect. Shuffle-and-split re-
sults in test and training sets that can be viewed as independent and identically dis-
tributed and, therefore, meeting the assumptions under which the conformal meth-
ods make their guarantees. However, the choice of which compounds to test at a
certain phase is definitely not random nor independent from the previous history.
It is the product of the judgement of medicinal chemists who take into account the
results obtained so far and explore just what they consider the more promising part
of the chemical space for the specific target in hand. Indeed, it is possible to detect
in all of the 4 data sets deviations from the i.i.d. assumption. In order to provide a
more realistic view, the data sets were split into training and test sets in a way that
preserved the temporal ordering of the compound data, without any element of ran-
domness. This recreated the operating conditions that the method would encounter
if deployed in the context of drug development processes. Of course, the prediction
impairments attributable to deviation from i.i.d. in the data can be lessened by re-
training periodically the models. A method to correct the models (avoiding a full
retraining) in the presence of covariate shift is suggested in (Tibshirani et al., 2019).

The procedure is illustrated in Figure 7.4 and the resulting training and test sets
are detailed in Table 7.2.

Target
Number
of com-
pounds

Number
of features “Density” Description

hERG 37,801 80,108 0.000876 human Ether-à-go-go-Related
Gene, cardiac toxicity

HLM 73,667 139,263 0.000514
Intrinsic Clearance (Clint) in

Human Liver Microsomes,
metabolic stability

hPPB 102,737 166,070 0.000431 human Plasma Protein Binding,
drug distribution

LogD 163,186 221,415 0.000315 Log of distribution coefficient (D),
hydrophilicity

TABLE 7.1: KRRPM Data sets stats. The “Density” column refers to the fraction of non-
zero features. This very low density is typical of structural descriptor such
the signature descriptors used in this study.

Evaluation criteria

The assessment of probabilistic forecasting remains largely an open and active re-
search topic. The performance was evaluated with respect to a panel of metrics.
In addition to metrics for conventional single-point predictions, we considered also
metrics for probabilistic predictions. The former are well established and widely
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FIGURE 7.4: Creation of test and training sets. Test sets span 180 days. Calling Tlast
the most recent date in the overall data set, the first test set is made up
of the compound measurements taken between Tlast − 3 ∗ 180days and
Tlast − 2 ∗ 180days and the corresponding training set is made up of the
compound measurements taken before Tlast − 3 ∗ 180days. In the diagram
the earliest compound would be at the left end and the most recent at the
right end. The random sampling is applied only when the training set
size is larger than the maximum that KRRPM can handle.
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Target Split Features Training
compounds

Training start
date

Training end
date

Test
compounds Test start date Test end date

hERG split_1 75543 35540 2004-07-30 2017-03-17 772 2017-03-18 2017-09-06
hERG split_2 77283 36312 2004-07-30 2017-09-06 682 2017-09-21 2018-03-16
hERG split_3 78646 36994 2004-07-30 2018-03-16 807 2018-03-22 2018-09-07
HLM split_1 122025 61601 2010-01-05 2018-04-06 4218 2018-04-08 2018-10-04
HLM split_2 127693 65819 2010-01-05 2018-10-04 3668 2018-10-09 2019-03-28
HLM split_3 133158 69487 2010-01-05 2019-03-28 4180 2019-04-03 2019-09-26
hPPB split_1 150762 90395 1997-08-04 2018-04-05 3832 2018-04-08 2018-10-04
hPPB split_2 155348 94227 1997-08-04 2018-10-04 4259 2018-10-10 2019-03-28
hPPB split_3 160598 98486 1997-08-04 2019-03-28 4251 2019-04-04 2019-09-26
LogD split_1 204836 147187 1988-02-26 2018-04-09 5348 2018-04-12 2018-10-09
LogD split_2 210040 152535 1988-02-26 2018-10-09 5302 2018-10-11 2019-04-04
LogD split_3 215758 157837 1988-02-26 2019-04-04 5349 2019-04-11 2019-10-01

TABLE 7.2: Splits of the data sets. From each of the four data sets (hERG, HLM, hPPB,
LogD), three splits were obtained so that the evaluation could be done on
more cases. To ensure realistic conditions, the splits were not created in
the conventional shuffle-and-split way, but as partitions that preserved the
temporal ordering of the observations. The conventional random sampling
creates training and test sets that are i.i.d. but do not reflect the actual con-
ditions in which the method will operate in a real deployment.

understood, whereas the latter are still more specialistic and often harder to inter-
pret intuitively. For example, the coefficient of determination R2 has a clear intuitive
interpretation as the fraction of variance that is explained by the single-point predic-
tions of the model, whereas even if we consider a very common metric as log loss,
we soon realize that does not have such a direct interpretation. Also, a metric as log
loss is a function only of the probability assigned to the value that actually occurred
and not of the entire predicted probability distribution. Log-loss or Brier loss are
metrics that apply to tasks in which predictions must assign probabilities to a set of
mutually exclusive discrete outcomes. They ignore, for instance, how concentrated
or dispersed the probability mass was. A number of other metrics and diagnostic
tools have been proposed. We considered the Probability Integral Transform (PIT)
and Continuous Ranked Probability Score (CRPS).

Probability Integral Transform (PIT) It can be used to assess validity. It con-
sists in evaluating the predictive distribution Fi() on the actual label yi. We
observed that if the predictions Fi(y) are ideal, Fi(yi) are variates from a U(0, 1)
distribution. In the literature (Gneiting, Balabdaoui, and Raftery, 2007), the
recommendation is to check that the histogram of the PIT should be as flat as
possible. It can be argued, perhaps, that a better method would be to check
that the ECDF of the PIT should be as close as possible to the (0,0)-(1,1) di-
agonal. One could as well use the Kolmogorov-Smirnov statistic to ascertain
deviation from uniformity.

Continuous Ranked Probability Score (CRPS) The CRPS evaluates the predic-
tive distribution in its entirety (see Figure 7.5). It can be viewed as the
quadratic measure of discrepancy between the forecast CDF F(y, x) and the
“ideal forecast CDF” given the scalar observation y.

CRPS(F, x, y) =
∫

R

[
F(t, x)− I(t ≥ y)

]2 dt
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where I() is the indicator function.

For a number of predictions, one takes the average:

CRPS(F) =
1
n

n

∑
i=1

CRPS(F, xi, yi)

The CRPS is affected by both deviations from validity (a property that de-
pends on the actual observations) and variations in sharpness (the concen-
tration of probability, which does not depend on the actual observations, but
only on the forecasts). Note that the CRPS has the unit of the label, so it is
highly inappropriate to average it across different data sets.

FIGURE 7.5: Continuous Ranked Probability Score. The CRPS is the integral of the
square of the difference (orange) between predictive distribution and
“ideal CDF”. Here the actual value for the label y was assumed to be 0

While useful, these recommended metrics are not straightforward to interpret and
in the author’s experience for the application discussed in this chapter some more
direct diagnostic tools were preferable, namely validity plot and interval boxplots.

Validity Plot Evaluates the actual coverage vs. the confidence. For all the confi-
dence values of interest (e.g. 0.1, 0.2, . . . , 0.9), one computes the intervals for
the objects in the validation set and then computes the relative frequency of
“interval contains actual label” event. The relative frequency should be close
to the confidence.

Interval Boxplots Provide a graphical representation of key descriptive statis-
tics. For all the confidence values of interest (e.g. 0.1, 0.2, . . . , 0.9), inspect the
boxplot showing median, interquartile range and outliers of the intervals of
the test objects for the given confidence.

These two diagnostic tools should be examined in connection because of the pres-
ence of trade-off between validity and sharpness already discussed, in a slightly dif-
ferent form, in Section 2.4.4. The property of validity that KRRPM possesses, while
beneficial, is not the only desirable property for probabilistic forecasting. To see this,
consider that one could provide a valid PD by outputting the same distribution for
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all test objects, namely the empirical distribution of the labels in the training set. It is
obvious that this would not be a useful prediction. We also want the prediction to be
specific. We want the prediction method to be able to take in account the features of a
test object and produce a prediction that assigns probability in a less dispersed way.
This would result for instance in narrower confidence intervals. We refer to meth-
ods producing narrower intervals for the same confidence as being more efficient.
In general, when evaluating probabilistic predictions from different methods, one is
faced with different mixes of degrees of validity and of efficiency. A dilemma arises
when a model appears to be more efficient (i.e. produces narrower intervals) than
another, but also exhibits worse validity (as the chance of the actual value being out-
side the interval, because narrower, increases). Unfortunately, as already observed
in Section 2.4.4, there does not seem to be a principled, accepted way to combine
in a single metric the trade-off between validity and efficiency. Conformal methods
distinguish themselves in that they guarantee validity (at least, under the proviso of
i.i.d. and within statistical fluctuation) and allow focusing only on improving effi-
ciency.

Parameter optimisation strategy

KRRPM presents parameters that require optimisation, namely the regularisation
parameter and, depending on the kernel, the kernel parameter. In our experiments,
we performed 3-way cross validated parameter search on a grid of parameters. Pa-
rameter optimisation was performed separately on each split.

7.6.3 Results

The KRRPM algorithm produces a predictive distribution (a cumulative distribu-
tion) in the form of a vector of increasing label values. Each value corresponds to a 1

n

step in the cumulative distribution. Figure 7.6 shows an example of the predictions
for the hERG endpoint for three compounds.

A probabilistic prediction in the form of cumulative probability has the advan-
tage of allowing a quick reading of the probability associated with an interval, as
already illustrated in Figure 7.1. The same information is much harder to obtain on
the graph of the probability density, because the probability is the definite integral
of the density over the interval of interest. On the other hand, the probability den-
sity chart has the main advantage of showing clearly the modes (the maxima of the
probability density), which are instead difficult to read on the cumulative probabil-
ity graph because of the notorious perceptual limitation in judging slopes. But it
can be argued that it is really the probability associated with an interval that carries
meaning and the values of density plot may be misleading. While it is possible to
estimate a probability density from the cumulative distribution, one has to keep in
mind the fact that it is an ill-posed problem as discussed in Section6.5.2.
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FIGURE 7.6: Predictive Distributions for the hERG target for three compounds. The
top chart shows the predictions produced with KRRPM for three com-
pounds. The bottom chart shows the corresponding density plots (which
in general require special techniques to be derived, but were obtained
here with numerical differentiation followed by smoothing with a spline).



7.6. Application to Drug Development 129

The predictive distributions may be the most informative type of probabilistic
prediction but they can be unwieldy and not immediately interpretable in a use-
ful manner, especially by non-experts. Indeed, since this study aimed at providing
prediction in a form that is immediately understandable by medicinal chemists, we
extracted numerical metrics that can be of more direct interpretation. The first form
of prediction we considered is a “point prediction” and for that we extracted the
median from the distribution, which we favored over the mode as it can be more
robustly computed from the PD. A point prediction carries little, if any, probabilis-
tic information, but it was provided nonetheless to enable comparisons with con-
ventional forms of prediction. The second form of estimates was that of conformal
prediction regions: after choosing a significance level ε, for each test object, a sub-
set of the label domain is computed. When the procedure is applied to a number
of test objects, conformal predictions guarantee that the actual value belongs to the
predicted interval a fraction 1− ε of the times (barring statistical fluctuation). The
third form of estimates takes in a sense the opposite approach: instead of fixing a
significance level ε and computing the corresponding intervals, it fixes an interval
width and computes the probability of the actual label falling in the interval. It has
to be noted that the CP validity guarantee does not imply a guarantee on this form
of prediction.

The three different forms of prediction require three different forms of evalua-
tion. The point predictions can be evaluated with any of the conventional metrics
for regression. In our case, the coefficient of determination R2 was used. Further in-
sight can be gained by examining the relationship between point prediction and ac-
tual value. For the second form of predictions, i.e. the prediction regions for a given
error rate, one should verify the validity of the predictions (which the method guar-
antees under the assumption of i.i.d.) and should assess the efficiency or sharpness
of the predictor, which can be measured in terms of the average size of the prediction
sets. Lastly, for the third form, one should evaluate the calibration of the predicted
probability, that is, whether the predicted probability reflects the (long-term) relative
frequency.

Figures 7.7 to 7.12 show the comparison of KRRPM versus CLAB, the existing
prediction system. CLAB uses proprietary software, but we were led to believe that
the algorithm that it uses is the one described in (Lapins et al., 2018). The comparison
was possible for only two of the four targets (namely, hERG and HLM), because
there were issues in running CLAB on the larger data sets of hPPB and LogD.

The 6 charts in each figure are organised by row: the top row deals with point
predictions, the middle row with fixed interval predictions, and the bottom row with
fixed error rate predictions.

The charts for the point predictions illustrate the trend of R2 (on the y-axis) as
more test objects are predicted (size of the test set on the x-axis). The test objects
are submitted to the model in the temporal order in which they were entered in
the assay repository. This gives an idea as to the variation in the performance of
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FIGURE 7.7: KRRPM vs. CLAB, hERG data set, split 1.

FIGURE 7.8: KRRPM vs. CLAB, hERG data set, split 2.
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FIGURE 7.9: KRRPM vs. CLAB, hERG data set, split 3.

FIGURE 7.10: KRRPM vs. CLAB, HLM data set, split 1.
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FIGURE 7.11: KRRPM vs. CLAB, HLM data set, split 2.

FIGURE 7.12: KRRPM vs. CLAB, HLM data set, split 3.
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predictive model over time. The right chart shows the relationship between point
predictions and actual values. Ideally the points should lie on the y = x line (dashed
line).

The middle row assesses the fixed-interval predictions. Calibration is the essen-
tial property. This is represented in the right chart, where the frequency of ”actual
value contained in interval” is plotted against the predicted “confidence”. Again,
ideally the trace should be along the y = x line (dashed line). In itself the calibra-
tion plot, however, does not convey all the relevant information. A deviation from
calibration matters in practice only if it happens for a large (or non-negligible, if one
wants to be stricter) proportion of cases. The left plot shows a normalized count of
the occurrences of values of predicted confidence.

The third row provides information from the perspective of the fixed-error per-
spective. Validity can be assessed with the left chart, where the relative frequency of
correct predictions is plotted against the chosen confidence. Any deviation in valid-
ity can be seen as deviation from the y = x line (dashed line). Different CPs should
all have validity under i.i.d. (but may exhibit different degrees of sensitivity to de-
viation from i.i.d.) so validity is not so much a distinguishing feature. What we are
seeking is in fact efficiency, i.e. as small prediction intervals as possible. The chart of
the right shows box plots of interval widths for various confidence.

The diagrams seem to support the following observations:

• Both methods achieve very low R2 (top left diagram). The relationship be-
tween measured and values and point predictions implied by the diagram in
the top right has different characteristics in the two methods: KRRPM tends
to exhibit lower variance than CLAB, but the average of CLAB predictions is
more accurate (albeit with more “noise”).

• In the fixed-interval case (middle row), KRRPM made probability predictions
with a smaller range of values than CLAB, but CLAB predictions appeared to
be badly calibrated (there are many cases of the actual probability of correct
prediction differing from the predicted probability).

• in the bottom row (fixed confidence case), KRRPM appeared to be deviate from
validity (left plots) slightly more than CLAB, possibly indicating a higher sen-
sitivity to deviations from i.i.d. in the test data. However, the plots on the right
clearly show that the intervals predicted by KRRPM are narrower and more
consistent, especially for high values of confidence.

Judging only on the basis of Figures 7.7 to 7.12, one might as well remain un-
convinced that the KKRPM does exhibit the validity property. We stated that the
deviation from validity is attributable to the departure from the i.i.d. assumption in
the test data. To provide an element of corroboration to our claim, Figure 7.13 shows
the results obtained when the training and test are sampled randomly (without re-
placement) from one of the data sets.
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FIGURE 7.13: KRRPM Validity on i.i.d. data. The validity plot was obtained by apply-
ing KRRPM on the training and test sets the HLM data set by sampling
without replacement. The difference with the analogous charts in Fig-
ures 7.7 to 7.12 is that in those charts the training-test split preserved
the temporal ordering. The validity is verified to a high degree (the blue
trace overlaps the dashed diagonal) when the data is randomly sampled.

7.7 Future directions and conclusions

Predictive distributions are the most informative form of probabilistic prediction.
From them it is straightforward to derive other ways of presenting probabilistic in-
formation, such as point prediction as well as prediction intervals, but the real po-
tential of PD is perhaps in their application in the field of decision-making (Vovk and
Bendtsen, 2018). Another active line of research addresses the potential limitations
alluded to in Section 7.5.1, by investigating methods designed to produce predic-
tions that are more specific (Vovk, 2019; Vovk et al., 2020). Finally, a natural avenue
of research might be to consider combination of predictive distibutions (from dif-
ferent algorithms, for the same object), using the techniques presented in Chapter 5
and 6. In summary, we showed that Conformal Predictive Distributions and in par-
ticular KRRPM can be successfully applied to chemoinformatics problems such as
the prediction of pharmacokinetic and physicochemical properties. To achieve that,
we implemented the method with a particular attention to using efficiently memory
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and CPU resources. We also presented the predictions under various perspectives,
highlighting the consequences of the violation of the i.i.d. assumption on validity
and efficiency of the predictions.
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Chapter 8

Conclusions
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This thesis has presented the results of the research on the application of con-
formal techniques. We covered the three main methods currently available, namely
Conformal Predictors, Venn Predictors, and Conformal Predictive Distributions. The
domain of application considered in this study is to chemoinformatics and in partic-
ular the prediction of biological activity (framed as a binary classification), as well
as of continuous pharmacokinetic or physicochemical properties. More specifically,
we believe we addressed the goals set out in the Outline (Section 1.1) as follows:

1. Conformal methods should cater for the peculiar characteristic of the data sets preva-
lent in chemoinformatics, namely size, imbalance, and sparseness.
We demonstrated the validity property of Conformal Predictors (Tables 3.7
and 3.9), the benefits of the Venn-ABERS predictors (Section 4.5), and the valid-
ity of Conformal Predictive Distributions (Section 7.7) on data sets with sizes
ranging from ≈80, 000 to ≈300, 000, imbalance of 1%, and the high sparseness
that derives from the use of structural descriptors. While the application to
chemoinformatics was not novel for CP, we believe that this is the case for
Venn-ABERS and Conformal Predictive Distributions.

2. Conformal methods should be applicable at scale.
We showed that it is possible to implement the conformal methods in an ef-
ficient and scalable way that allows to make effective use of the processing
power available in High Performance Computing systems as evidenced in Sec-
tion 3.1.2, Table 4.1, Section 5.4.1, and Section 7.6.1.

3. Conformal methods should take advantage of the benefits of ensembling.
We proposed various new methods for combining Conformal Predictors. We
described a way to learn a function that combines p-values and applied it to
a real-world data set (Section 5.4.2). We proposed a new combination method
with theoretical support that maximises prediction efficiency (i.e. prediction
sets as small as possible) while preserving validity and in Section 6.8.1 pro-
vided some evidence of its benefits on a realistic synthetic data set.
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Demos and Software

A.1 Software Libraries

During the course of the research, several pieces of software were developed. Im-
plementations of Inductive Conformal Predictors and Venn-ABERS Predictors were
specifically coded in the context of the ExCAPE project and were applied with suc-
cess to large chemoinformatics data sets (Toccaceli et al., 2015; Toccaceli et al., 2016;
Toccaceli et al., 2017). The code and documentation were included among the RHUL
deliverables of the project.

The implementation of the Venn-ABERS Predictors was also made publicly avail-
able on GitHub at https://github.com/ptocca/VennABERS and has been
used for applied research (Mervin et al., 2020) and in the agrochemical industry
(Marchese-Robinson 2020, personal communication).

The Mondrian Inductive CP implementation, although not packaged as a stand-
alone library, is available as part of the source code of the demos described in the
next section (stored in the repository https://github.com/ptocca/).

A library for Kernel Ridge Regression Predictive Machine was also developed in
the context with the collaboration with AstraZeneca. The source code will be made
available on GitHub as soon as permission is granted.

Finally, the author is proud to have contributed code (PR15049 in v.0.22.0, De-
cember 3, 2019) for a performance improvement to scikit-learn, possibly the
most popular open-source Python library for Machine Learning.

A.2 Demos

In addition, several demos were developed, mostly as Jupyter Notebooks, to illus-
trate some aspects of the predictors on concrete examples. The code for the demos is
publicly available on GitHub at https://github.com/ptocca. The demos can
be run on Binder (https:\mybinder.org), a site that hosts Jupyter Notebooks in
the cloud1. In this section, we present briefly each demo and the specific aspect that
each is meant to illustrate.

1Please note: launching a notebook on Binder can take a long time especially if the notebook has
not been run in a while. Binder rebuilds the entire run-time environment (a Docker container) unless
there is a cached copy for it. This can take several minutes.

https://github.com/ptocca/VennABERS
https://github.com/ptocca/
https://github.com/scikit-learn/scikit-learn/pull/15049
https://github.com/ptocca
https:\mybinder.org
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A.2.1 CP MNIST Demo

The demo at https://mybinder.org/v2/gh/ptocca/CP-MNIST-Demo/

master is a self-contained example of the application of Mondrian Inductive CP
on the well-known MNIST handwritten digit classification problem. The NCMs
are precomputed using a multiclass RBF SVM as underlying ML method, but the
CP itself is computed on-the-fly. The MNIST_CP.ipynb notebook displays all the
Python code that implements the demo, including the computation of the MICP.
Two interactive cells allow the user to experiment with the significance level. One
cell shows how the prediction set for a test object varies as the significance level is
changed and another displays the distribution of prediction set sizes over the test
objects for varying significance levels, as illustrated below.

A.2.2 CP Demo using TF.js

The demo at https://cml.rhul.ac.uk/people/ptocca/CPDemoTF/

CPDemoTF.html is an implementation of MICP in TF.js, i.e. Tensorflow for
JavaScript. This demo runs locally in the client browser and this makes it much
more responsive than the demos hosted remotely on Binder. The source code also
shows how to implement CP in JavaScript within the Tensorflow framework.

This demo does everything from scratch. It downloads the MNIST image set and
then trains a simple Convolutional Neural Network, which outputs scores for each
of the 10 possible labels. The scores are used to compute p-values and the predictions
sets, as usual. The page can take a few seconds to start because of the time required
for downloading the MNIST set and the (partial) training of the CNN, but one can
see the progress in a box on the left.

By dragging the slider in the middle one can vary the significance level and im-
mediately see the effects on the predictions (the numbers in yellow for each dis-
played handwritten digit). It is also possible to perform a few more epochs of train-
ing by pressing the “Train more” button. This will illustrate that the efficiency (the
average size of the prediction sets) improves. It is also possible to get a new test set
by pressing the “New test data” button.

https://mybinder.org/v2/gh/ptocca/CP-MNIST-Demo/master
https://mybinder.org/v2/gh/ptocca/CP-MNIST-Demo/master
https://cml.rhul.ac.uk/people/ptocca/CPDemoTF/CPDemoTF.html
https://cml.rhul.ac.uk/people/ptocca/CPDemoTF/CPDemoTF.html


A.2. Demos 141

A.2.3 CP using ResNet50 on Imagenet

The demo at https://mybinder.org/v2/gh/ptocca/ILSVRC2012_CP/

master?urlpath=%2Fapps%2FILSRVC_CP-Demo.ipynb applies MICP to the
infamous ImageNet data set (ILSVR2012 Challenge) using a pre-trained ResNet50
neural network. It shows the probabilistic predictions emitted by ResNet50 along-
side the prediction set emitted by CP. Some details are provided below, but also in
the tab “Notes” in the app itself.

The demo is instructive also in letting the viewer appreciate the issues with the
ImageNet data set itself. By exploring the test set, one realizes how debatable the
choice of images and labels is2. Inevitably, one ends up wondering what the image
classification task really tries to achieve here.

Notes

The user can choose an image out of a set of 2000 using a slider. The ImageNet la-
bel for the image is shown below the image itself. Another slider allows to choose
the significance level ε (i.e. the target error rate) which can vary from 0 to 1. Below
the sliders you can see two boxes containing the prediction set, one for ResNet50
and one for CP. It is also possible to choose between two forms of Non Conformity
Measures, referred to here as NegProb and Ratio, explained further below. The plot
shows the Empirical Cumulative Distribution Function (ECDF) of the Non Confor-
mity Measure for the label selected in the CP prediction set shown on the right (or

2The artist Trevor Poglen was particularly active in bringing to the fore the serious problems in the
ImageNet dataset, with his installations at the Barbican Centre in London (“From ‘Apple’ to ‘Anomaly’
”) and at the Fondazione Prada in Milan. Interestingly, the dataset is no longer available at its original
repository.

https://mybinder.org/v2/gh/ptocca/ILSVRC2012_CP/master?urlpath=%2Fapps%2FILSRVC_CP-Demo.ipynb
https://mybinder.org/v2/gh/ptocca/ILSVRC2012_CP/master?urlpath=%2Fapps%2FILSRVC_CP-Demo.ipynb
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the one with the largest p-value). The ECDF is calculated on the calibration examples
(plus hypothetical completion).

Predictions

CP outputs sets of labels, whereas the ResNet50 model outputs a distribution of
probability over the 1,000 possible labels defined for the ImageNet data set. In or-
der to have a similar form of prediction for the two methods, we built a prediction
set out of the ResNet50 probability distribution. Specifically, we want to build a
prediction set with a validity property, i.e. a set of labels such that, if the probability
estimates are calibrated (that is, if they correspond to long-term relative frequencies),
the actual label is contained in the set with the relative frequency equal to the chosen
confidence level 1− ε. To do that, we output the smallest set of labels whose total
probability (as estimated by ResNet50) exceeds 1− ε. For CP, we simply show the
prediction set for the chosen significance level. One should note that the ResNet50
sets constructed above are conservative, as the probability of hit equals or exceeds
the targeted confidence.

Calibration set and test set

The CP calibration set and the test set are a random partition of the ILSVRC2012 Val-
idation Set. The latter comprises 50,000 labelled images, evenly distributed over the
1,000 labels. For the purposes of this demo, the ILSVRC2012 Validation Set was par-
titioned into a calibration set with 48,000 images and test set with 2,000 images. The
partitioning was done with shuffling and stratification, ensuring that each category
has the same number of images.

NCMs

Two NCMs are used here. Of course, many other choices of NCMs are possible.<br>
Some definitions:

• Let ` denote the number of observations (images in this case) in the calibration
set and let’s use the index `+ 1 to denote a test object.

• Let {z1, . . . z`} the calibration set with observations zi = (xi, yi), where xi is a
224-by-224 image and y ∈ [1, 2, . . . , 1000]

• Let (p1, p2, . . . , p1000) the vector of 1,000 real numbers representing the proba-
bility distribution over the 1,000 labels estimated by ResNet50 for a test object
x`+1

• Let ȳ be a hypothetical label for the test object.
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NegProb

The NCM here referred to as NegProb is defined as:

A(x`+1, ȳ) = −pȳ

i.e. the probability estimated for the hypothetical label, with its sign changed.

Ratio

The NCM here referred to as Ratio is defined as:

A(x`+1, ȳ) =
maxy 6=ȳ py

pȳ

i.e. the ratio of the max probability estimated for labels other than the hypothetical
one to the probability estimated for the hypothetical label.

A.2.4 Venn-ABERS Demo

The Notebook at https://mybinder.org/v2/gh/ptocca/

VennABERS-demo/master?filepath=Venn-ABERS_Demo.ipynb illustrates
some finer points about the Venn-ABERS predictor. The demo has been used in a
tutorial at COPA2018. Among other things it has an interactive demonstration of

https://mybinder.org/v2/gh/ptocca/VennABERS-demo/master?filepath=Venn-ABERS_Demo.ipynb
https://mybinder.org/v2/gh/ptocca/VennABERS-demo/master?filepath=Venn-ABERS_Demo.ipynb
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how the taxonomies are created for every test object and for the two possible label
values, as illustrated in the screenshot below.

A.2.5 CP Combination Demo

The app at https://mybinder.org/v2/gh/ptocca/CP_Combination_

Demo/Dynamic_layout?filepath=%2Fapps%2FCP_Combination_Demo.

ipynb allows a user to experiment with the CP combination methods discussed
in Chapters 5 and 6 using a synthetic data set of NCMs for two hypothetical base
CPs A and B. The demo computes p-values from scores generated as variates of
Gaussian distributions with means -1 and +1 (for observations of class 0 and class 1,
respectively) and allows to vary the correlation between the two sets of scores (A
and B).

The demo shows the validity plots as well as the average size of prediction sets
for the various methods. The user can choose the size of the data sets, the vari-
ance and correlation of the scores, the initialization of the Pseudo-Random Number
Generator, the imbalance, and which combination methods to apply. Note that the
V-Matrix Neyman Pearson algorithm could be slow, in particular for larger data sets
(the servers offered by the free MyBinder service on which the demo runs are not
particularly powerful).

https://mybinder.org/v2/gh/ptocca/CP_Combination_Demo/Dynamic_layout?filepath=%2Fapps%2FCP_Combination_Demo.ipynb
https://mybinder.org/v2/gh/ptocca/CP_Combination_Demo/Dynamic_layout?filepath=%2Fapps%2FCP_Combination_Demo.ipynb
https://mybinder.org/v2/gh/ptocca/CP_Combination_Demo/Dynamic_layout?filepath=%2Fapps%2FCP_Combination_Demo.ipynb
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