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Abstract 

New field data demonstrate that during the Late Ordovician (Hirnantian) glaciation, an ice sheet 

expanding northwestwards over the Anti-Atlas range reached into the southern Meseta of 

northern Morocco. Its growth to a glacial maximum position resulted in extensive subglacial 

erosion and deformation including the development of soft-sediment striated surfaces and 

streamlined subglacial bedforms preserved between the High Atlas of Marrakech and Rehamna. 

These features imply that this ice mass extended >200 km further than previously thought, and 

increase its size by at least c.190, 000 km2 (comparable in area to the UK). Correlation between a 

measured section in the High Atlas of Marrakech and that of the southern Meseta identifies 

sedimentary evolution within an ice-contact system common to both. These findings imply that 

the West African Craton and northern Morocco were in full glaciological communication during 

the latest Ordovician. Palaeogeographic reconstruction shows that beyond the ice sheet, south and 

southeastward palaeoslopes persisted on the shelf. A palaeohigh beyond the main ice sheet was a 

major source for sand, feeding delta systems that grew along the shelf as far as the shelf break. 

This palaeohigh probably formed as a result of rift shoulder uplift and supported a satellite ice 
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mass. In the eastern Meseta, a thick (350 m) underflow-dominated deep marine fan was fed both 

from this shelf delta system and from glaciogenic debris derived from the main ice sheet. The 

occurrence of this unexpected deep marine area in northern Morocco implies that continued 

northward advance of the ice sheet was hampered by a dramatic break in bathymetry. Two 

depositional units are recognised across the Meseta, containing four distinct sedimentary cycles, 

each recognised as a glacioeustatic response to the waxing and waning of ice masses elsewhere in 

West Gondwana. 
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1. Introduction 

During the latest Ordovician glaciation, an ice sheet grew and decayed over West Gondwana in 

<1 Myr (Brenchley et al., 1994). During the Hirnantian (Destombes et al., 1985), a stage coeval 

with the elongata and following oulebsiri chitinozoan biozones (Bourahrouh et al., 2004), this 

glacier covered the main part of northern and western Africa (e.g. Beuf et al., 1971; Deynoux, 

1985; Ghienne, 2003). The ice was complex and dynamic and characterised by migrating ice 

fronts during successive phases of ice advance and recession (Ghienne, 2003). The number of 

glacial cycles preserved in West Gondwana is controversial and varies between 2 and 5; see 

additional reviews in Rust (1981), Sutcliffe et al. (2000, 2001) and Le Heron et al. (2005). 

The record of Hirnantian ice sheet growth is largely preserved in the form of 

glaciotectonic deformation structures within unconsolidated glacial sediments. They include 

complex subglacial shear zones, decametre-scale sediment diapirs, load-structures and pluri-

kilometric composite thrust and fold systems (Beuf et al., 1971; Biju-Duval, 1974; Ghienne, 

2003; Deynoux and Ghienne, 2004; Le Heron et al., 2005). Phases of ice-sheet decay were 
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accompanied by the incision of c. 100-200 m deep, 2-5 km wide anastomosing tunnel valleys 

from Mauritania to Libya (Ghienne and Deynoux, 1998; Ghienne et al., 2003; Hirst et al., 2002; 

Le Heron et al., 2004). It is clear that repeated cannibalisation of these areas during successive 

phases of glaciation has made reconstructing a proximal-distal shelf profile somewhat difficult. 

In Morocco (Fig. 1), Destombes (1968) showed that the ice sheet grew over the Tindouf 

Basin as far as the Anti-Atlas in the south of the country. Extension further northward, over the 

Southern Atlas Thrust and into the Meseta (Moroccan Hercynides) has never been demonstrated, 

partly because the tectonic relationship between the Meseta and the West Gondwana cratonic 

shelf remains highly controversial. It is debated whether these areas were in full 

palaeogeographic communication (e.g. Piqué and Michard, 1989; Paris et al., 1995; Sutcliffe et 

al., 2001). Solving these palaeogeographic problems will provide constraints on both the 

maximum size of the Late Ordovican ice sheet and the reconstruction of the Hercynides. 

This paper attempts to define the late Ordovician ice maximum in Morocco, and presents 

sedimentological evidence that the Moroccan Hercynides (Meseta) were connected to the West 

Gondwana cratonic shelf during the Lower Palaeozoic. The late Ordovician glacial record in 

Morocco is unique in that it is one of the only regions in North Africa where the ancient glacial 

maximum can be determined at outcrop and not from unpublished well data (c.f. Beuf et al., 

1971). In addition, in a manner analogous to the analysis of Pleistocene glaciated shelves, it is the 

first attempt to describe, at a basin scale, the architectural linkage between proglacial shallow 

shelf through shelf edge to slope systems and the direct response of these systems to this 

polyphased glaciation. 

 

2. Regional geological setting 

Throughout the Phanerozoic, central parts of North Africa were characterised by tectonic stability 
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with only relatively minor, intraplate deformation (Selley, 1997). In contrast, the evolution of the 

West Gondwana margin (e.g. Spain, Turkey, Morocco) was complex and characterised by phases 

of rifting, basin development, inversion and orogenesis during the Phanerozoic (e.g. Piqué and 

Michard, 1989; Piqué, 2001). 

From north to south, four distinct tectonostratigraphic domains are recognised in 

Morocco, namely the Rif, Meseta, High Atlas and Anti-Atlas (Piqué, 2001) (Fig. 1). The Meseta 

comprises a belt of Hercynian deformation that runs between the alpine Rif and High Atlas 

domains (Piqué and Michard, 1989). In the south of the country, a major structural discontinuity 

(the Tizi N’ Test fault and its associated splay) separate the High Atlas from the Anti-Atlas 

domain, which comprises a large antiform corresponding to a thick-skinned inversion belt related 

to the Hercynian uplift of the Precambrian basement of the West African craton (Fabre, 1971; 

Soulaimani, 1998; Caritg et al., 2004) (Fig. 1). 

Some regional palaeogeographic reconstructions have shown northern Morocco as an 

allochthonous terrane (e.g. Sutcliffe et al., 2001; Monod et al., 2003), despite its Lower 

Palaeozoic stratigraphic similarity with the Anti-Atlas (Destombes, 1971; Destombes et al., 

1985), and the common NE-SW striking Hercynian grain that these regions share (Piqué and 

Michard, 1989). Intense controversy remains, and compromise models depicting rift margins 

have also been developed. Extensive Cambrian graben formation in the western part of Meseta  

(Bernardin et al., 1988; El Attari et al., 1997) and in the western High Atlas  (Cornée et al., 1987) 

was mirrored in the Anti-Atlas (Piqué et al., 1990, Piqué et al., 1995), lending support for failed 

rifting in NW Africa during the earliest Palaeozoic. For the Late Ordovician, sedimentary models 

show a large NE-SW oriented trough or basinal depression in the Meseta (Hamoumi, 1988; 

Khoukhi and Hamoumi, 2001) subsequently amplified during the Devonian (Piqué, 2001). In 

addition, during the mid-late Ordovician, around 455-445 Ma, a thermal event (Clauer et al., 
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1995) is identified and the eruption of Silurian alkali basalts occurred in the coastal (north-

western) Meseta (El Kamel et al., 1998). These data lead Stampfli and Borel (2002) to interpret a 

renewed phase of rifting by the beginning of the Silurian. 

A clear evaluation of the tectonic setting of the northern Morocco is vital for the 

reconstruction of Late Ordovician ice sheets because it could reasonably be expected to have had 

a controlling influence on the distribution of grounded ice. If northern Morocco was an 

allochthonous terrane, evidence for late Ordovician grounded ice sheets should not be present. 

Conversely, evidence for the presence of ice sheets could present a strong case for its 

palaeogeographic continuity with Gondwana. 

 

3. Structural evolution 

In northern Morocco, upper Ordovician rocks crop out within large but disconnected Lower 

Palaeozoic inliers (Fig. 1). During the course of this study, data were collected from the Tazzeka 

Massif (Middle Atlas, eastern Meseta), the coastal Meseta, from three major Palaeozoic massifs 

(Massif Central, Rehamna, and Jbilet areas), and from the High Atlas of Marrakech (central High 

Atlas) (Fig. 1). The inliers were significantly deformed during the Hercynian Orogeny (Devonian 

to Carboniferous), which is partly concealed by post-orogenic Mesozoic cover. The Meseta was 

then subject to Alpine tectonism (Piqué and Michard, 1989; Piqué et al., 1993). Therefore, a brief 

synopsis of its Hercynian tectonic history is necessary to explain the present distribution of 

Lower Palaeozoic inliers. 

In the Meseta, pre-Hercynian deformation is locally intense but probably had little 

influence on the distribution of upper Ordovician rocks. Caledonian folding and metamorphism 

occurred at its northern margin in the Sehoul zone (Piqué et al., 1993), and was followed by the 

emplacement of small granitoids at 430 ± 2 Ma (El Hassani et al., 1991). In contrast, Hercynian 
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deformation, associated with the closure of the Proto-Tethys in the “middle” Palaeozoic and 

collision of Gondwana with Laurussia (Badalini et al., 2002) was severe. This orogeny was the 

primary control on the distribution of upper Ordovician strata (Piqué and Michard, 1989). 

Deformation was polyphased and heterogeneous, propagating westward during the Devonian to 

the Carboniferous. On the basis of the timing of Hercynian deformation (Piqué and Michard, 

1989; Laville et al., 1991), two major tectonic zones can be distinguished within Lower 

Palaeozoic basement of the High Atlas and Meseta. 

Zone 1 includes the eastern Massif Central, the eastern Jbilet, Tazzeka Massif, as well as 

those outcrops in the eastern Meseta not considered here (Midelt, Debdou, Mekam). Deformation 

in this zone was characterised by an early phase of westward-directed folding and/or thrusting, 

during the late Devonian to late Visean (Eovariscan, Breton or Sudete phases: Allary et al., 1976; 

Hoepffner, 1987; Bouabdelli, 1989). This deformation resulted in significant stratigraphic 

repetition of the Cambro-Ordovician succession, most clearly demonstrated in the western 

Tazzeka Massif (Hoepffner, 1987), but also in the eastern Massif Central, eastern Jbilet and Ait 

Tamlil (Jenny et al., 1983; Bouabdelli, 1989; Bamoumem, 1987; El Houicha, 1994). Zone 1 was 

then affected by transtension, whereby a basin bounded by NE-SW trending dextral faults, 

accompanied by andesitic volcanism, formed at the western margin of the Eastern Meseta 

(Bouabdelli, 1989). Renewed compression formed syn-sedimentary and gravitational nappes in 

Ordovician to Devonian rocks (Allary et al., 1972; Huvelin, 1977; Hollard et al., 1977; Jenny et 

al., 1983; Bouabdelli, 1989), thrust west or northwest during the late Visean-Namurian 

(Bouabdelli, 1989). 

Zone 2 lacks Eovariscan structures and deformation was restricted to the late 

Carboniferous. The western part of this zone, including the extreme west of the Massif Central, 

western Rehamna, western Jbilet and Isk N’Tazzoult in the High Atlas of Marrakech, was weakly 
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deformed, except at its eastern extremity near the NE-SW oriented Western Meseta Shear Zone 

(Piqué et al., 1980). Deformation in this zone is characterised by upright, pluri-kilometric open 

folds associated with nearly vertical wrench faults or reverse faults (El Attari, 2001), variously 

dipping shear zones and syn- to late kinematic granites (Piqué, 1979; Lagarde and Michard, 

1986). In the westernmost Massif Central, the fold structures consist of NE-SW oriented 

anticlinoria cored by Lower Palaeozoic strata, whereas southward, in the central Rehamna, 

central Jbilet and High Atlas of Marrakech, NNE-SSW striking thrusts formed during 3-4 phases 

of deformation (Piqué and Michard, 1989). This was followed by extension and gravity collapse 

in the Rehamna (Aghzer, 1994; Razin et al., 2001; Baudin et al., 2001), western High Atlas 

(Cornée, 1989), and probably in the western Massif Central (Baudin et al., 2001). Within this 

zone, the relative absence of deformation in the Lower Palaeozoic block of the High Atlas of 

Marrakech compares to the Anti Atlas against which it is juxtaposed (Piqué and Michard, 1989). 

Structurally, it is thus considered to belong to the Anti Atlas domain (Ouanaimi and Petit, 1992). 

Despite the overall intensity of deformation, the consistent orientation of metamorphic 

isograds, cleavage, and thrust faults between the Coastal Meseta, Massif Central, Rehamna and 

Jbilet massifs implies that the Lower Palaeozoic inliers are, at a regional scale, mainly 

autochthonous (Piqué and Michard, 1989). However, it should be emphasised that regional 

thrusting involving the basement may result in an underestimation of the pre-tectonic distances 

between the localities described in this paper (particularly in the Jbilet; Huvelin, 1977). These 

problems must be borne in mind during palaeogeographic reconstruction. 

Following the Hercynian orogeny, a period of WSW-ENE oriented crustal extension 

ensued with the onset of mid-Atlantic rifting in the Triassic (Piqué et al., 2002). Rift basins were 

infilled from the early Liassic, then inverted by transpressional deformation during the middle 

Jurassic. This deformation was then overprinted during the Atlas Orogeny in the Cenozoic (Piqué 
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et al., 2002). These post-Hercynian deformation events did not influence the distribution of 

Lower Palaeozoic inliers (Piqué and Michard, 1989).  

 

4. Late Ordovician glaciation in northern Morocco 

Hirnantian (syn-glacial) strata are generally devoid of macrofossils in northern Morocco. 

However, Ashgill fauna are identified in the underlying strata (Razin et al., 2001 and references 

therein) and lowermost Silurian graptolite-bearing shale is generally found above the syn-glacial 

strata (Destombes and Willefert, 1988) (Table 1). This shale is thus a useful lithostratigraphic 

guide, and thus correlation with the syn-glacial Upper Second Bani Formation of the Anti-Atlas 

is thus readily facilitated (Table 1; Destombes et al., 1985). Formal formation names have thus 

far only been given to the syn-glacial succession in the Rehamna, Massif Central and Tazzeka 

sections in northern Morocco (Table 1). In the Massif Central, transitional uppermost 

Ordovician-lowermost Silurian beds (persculptus? and ascensus-acuminatus biozones, 

determination by P. Storch, Prague) have been found by us directly above the glacially-related 

succession. Similar fauna have been found in the Jbilet (Destombes and Willefert, 1988), 

suggesting that syn-glacial sedimentation ended before the Silurian in the Meseta. 

Below, a detailed stratigraphic description and interpretation of the Rehamna inlier is 

provided. Because this locality contains the best evidence for the presence of Hirnantian ice 

sheets, together with a readily interpretable stratigraphy, it is thus used as a benchmark section 

for the rest of the paper, in which basin-scale stratigraphic architecture is evaluated from outcrops 

in the High Atlas of Marrakech, Jbilet, Massif Central, Coastal Meseta and Tazzeka inliers (Fig. 

1). These data allow palaeogeographic changes over >400 km to be assessed. A correlation 

scheme is presented, the maximum extent of ice sheets determined, and the temporal relationship 

between syn-glacial rocks in each inlier is evaluated. All directional data (palaeocurrents, ice 
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flows) has been corrected for tectonic tilt. 

 

4.1. Rehamna 

In the Rehamna Massif, upper Ordovician pre-glacial strata form the El Mechach Formation, syn-

glacial strata form the Goulibet Formation, and those of the Silurian belong to the El Mesrane 

Formation (according to the ongoing regional geological mapping programme, P. Razin, pers. 

comm.). Exposures were studied near the village of Amar Ben Nouti, beneath the Jbel Kharrou, 

c. 25 km east of the town of Skour des Rehamna. Here, the Goulibet Formation is vertical to 

overturned and crops out along ridges that mark the crests of stacked, westward-transported and 

refolded thrust sheets (Hoepffner, 1974). Pre-glacial sediments are characterised by poorly 

exposed, green-weathering interstratified siltstone and fine-grained sandstone (storm-dominated 

deposits) of at least 400 m in thickness. 

 

4.1.1. Description 

Syn-glacial strata are divisible into two units that are bounded by a zone of soft-sediment 

deformation. Both units are characterised by 20-25 m thick fining-then-coarsening up motifs 

(Fig. 2 B). 

Unit 1 rests unconformably on the pre-glacial storm-dominated succession. Its lowermost 

strata comprise channel fills (up to 6 m thick), showing crudely developed cross-stratification, 

and fining up from coarse to medium-grained sandstone. The latter passes upward into silty 

shales, containing one isolated bioclastic (Lingula-bearing) bed. These are overlain by a 

coarsening-upward motif, characterised by the progressive appearance in laminated mudrock of 

tabular, 5-15 cm thick, well bedded, current-rippled sandstone beds with occasional load casts. A 

sharp-based, coarse-grained sandstone bed (20-40 cm thick), and overlying thick-bedded (20-40 
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cm), fine-to-medium grained, climbing-rippled sandstone with southward directed palaeocurrents 

forms the upper part of unit 1 in the study section. The latter sediments are involved in the zone 

of soft-sediment deformation. However, laterally, a more complete record has been preserved 

(Fig. 3). Above the rippled sandstones, a several metre-thick mudstone succession is cut by thick 

channelised sandstone bodies with pervasive parallel lamination or trough cross-strata. They are 

in turn capped/ truncated by a distinctive sandy diamictite corresponding to the base of unit 2 

(Figs. 3, 4 A-C). 

The clast-poor, red-brown, sandy diamictite is widespread and traceable over several 

kilometres. It is intimately associated with the zone of soft-sediment deformation affecting up to 

15 m of sediment. Detailed sections (Fig. 3) reveal that this deformation zone contains from base 

to top: 1) chaotic and north to northwestward-verging, decametre-scale folds affecting the 

underlying sandstones, 2) soft-sediment striae preserved along intrastratal detachments within the 

diamictite (Fig. 4 C), and 3) downward-tapering sedimentary dykes, penetrating the diamictite 

and sourced from an overlying coarse-grained rippled sandstone (Fig. 4 B). This sandstone, of 

several decimetres thickness, contains a pervasive shear fabric (Fig. 4 D) and locally rests 

angularly on the diamictite, which is undeformed. 

Above the deformation zone and associated sediments, the lower half of unit 2 differs 

from that of unit 1 in the importance of poorly sorted sediments (clast-poor, muddy to sandy 

diamictites), punctuated by minor sand-filled channels. The middle to upper coarsening-upward 

part comprises from base to top 1) laminated very fine-grained sandstones, 2) thin and tabular-

bedded sandstones with occasional ball-and-pillow structures, load casts and flute casts in the 

lower beds, hummocky cross-stratification in the upper beds, 3) a sharp-based, crudely cross-

stratified, coarse- to very coarse-grained sandstone bed, 4) fine-grained pure-quartz sandstone 

beds, bearing south-eastward dipping sigmoidal cross-beds with cyclic thickness variations (Fig. 
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4 E). The latter are capped by a final bioturbated horizon. The contact with the overlying Silurian 

shale is tectonic.  

 

4.1.2. Interpretation 

The key point in the Rehamna section is the preservation of a restricted zone of soft-sediment 

deformation. In a manner consistent with similar deformation structures in the late Ordovician 

record of Libya (Le Heron et al., 2005), the folded zone is interpreted as a suite of gravitational 

deformation structures induced by the weight and/or shear of an overriding ice sheet. The 

truncation of these folds by the distinctive red-brown diamictite and the occurrence of a soft-

sediment striated surface (Deynoux and Ghienne, 2004) add further credence to this 

interpretation. The structures thus formed within a subglacial shear zone (Hart and Boulton, 

1991; Van der Wateren et al. 2000). Downward-injection of sedimentary dykes is not unusual in 

subglacial settings (e.g. Hyam et al., 1997). In the Rehamna, a mechanism involving ice sheet-

induced intrusion of the dykes is favoured by a) their downward tapering nature and b) the 

position of the source bed above them. The pervasive shear fabric in the coarse-grained topmost 

bed suggests a glacial outwash deposit directly overridden by flowing ice. Therefore, its upper 

surface probably formed at the ice-sediment interface. 

The presence of a subglacial deformation zone in the Rehamna implies that sediment 

supply and depositional facies are at least partly related to the waxing and waning of this ice mass 

in the Meseta. These structures reflect a glacial erosion surface (GES). This provides guidelines 

for the interpretation of the sedimentary record in the Rehamna. 

The sharp-based and coarse-grained lithofacies at the base of unit 1 are interpreted as an 

ice-proximal outwash deposit, in the form of glaciofluvial or glaciomarine bars on the formerly 

storm-dominated shelf. They imply a first significant ice advance, with well-developed fining-up 
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of overlying sediments indicating rapid retreat. The concentration of Lingula at a discrete interval 

above these sediments could correspond to opportunist colonization within the marine setting of 

an interglacial. Above, the succession of rippled sandstone beds with finer-grained interbeds, 

sharp-based coarse-grained sandstone beds and overlying climbing rippled lithofacies 

corresponds to regressive-transgressive fluctuation reflected successively by shoreface, fluvial 

and tidal flat deposits. A glacio-eustatic cycle is inferred for these deposits since they bear no 

evidence of glacially fed depositional environments. Therefore, mudstones that cap these 

sediments were probably deposited during renewed interglacial conditions. Overlying rocks of 

the uppermost part of unit 1 were thus deformed during a second, significant glacial advance. The 

lower part of unit 2 is considered to reflect 1) erosion and deposition of high-energy sandstones 

reflecting ice-proximal outwash deposits, 2) diamictite deposition (either glaciomarine or 

subglacial?), 3) subglacial deformation and glacio-fluvial deposition. The overlying clast-poor, 

muddy to sandy diamictites and sand-filled channels reflects glaciomarine sedimentation in an 

underflow-fed submarine outwash fan system during ice sheet recession. 

Overlying shoreface sediments, punctuated first by turbiditic (load and flute casts) and 

then storm (Hummocky cross-stratification) events, may have been deposited in a prodelta 

setting. As in the upper part of unit 1, the succession of shoreface deposits, a thin fluvial horizon 

and overlying well developed, tidally bundled, migrating bedforms (Nio and Yang, 1991) reflects 

an additional regressive-transgressive fluctuation. The tidal sediments may represent 

transgressive facies below the overlying Silurian shales. However, comparison between the upper 

part of unit 2 with that of unit 1 identifies a further glacio-eustatic cycle operational prior to post-

glacial flooding in the earliest Silurian. 

 

4.1.3. Regional implications 
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Vergence of fold structures in the subglacial deformation zone indicate a top to the north sense of 

shear, indicating the growth of ice sheets from ice centres in the Anti-Atlas and further southward 

(Algeria, Mauritania). The presence of this subglacial deformation zone in the Rehamna implies 

that the Hirnantian glaciers extended into the Meseta at least 200 km over the Southern Atlas 

Thrust. 

Depositional units correspond to two first-order glacial cycles (e.g. Sutcliffe et al., 2000), 

each of them subdivided into two second-order cycles. Thus, event stratigraphy identifies four 

sedimentary cycles in total, each potentially controlled by regional advance and retreat cycles of 

the Hirnantian ice sheet (Ghienne, 2003). In each unit, the first (lower) second-order cycle 

records ice-proximal to subglacial deposition, and subsequent retreat following a major ice sheet 

advance into the basin. In contrast, the second (upper) second-order cycle only records a glacio-

eustatic fluctuation, lacking any evidence for even local glaciers in the basin. An alternative is 

that the uppermost cycle in each unit was driven by glacioisostacy (isostatic rebound) following 

glacial retreat as suggested by Sutcliffe et al. (2000) elsewhere in North Africa. However, this 

explanation is not considered appropriate because no evidence of uplift, hardground development 

or erosion is preserved at the base of these cycles in Rehamna. These conclusions are fully 

supported by the record of the Hirnantian glaciation in the other Palaeozoic inliers of Northern 

Morocco. 

 

4.2. High Atlas of Marrakech 

Exposures at Isk N' Tazzoult, 2.5 km west of the Tizi N' Tichka pass (Fig. 1), occur in a Lower 

Palaeozoic inlier that preserves a thick succession of Cambrian to Silurian strata (Ouanaimi, 

1989, 1998). This locality belongs to the Anti-Atlas tectonostratigraphic domain rather than to the 

Meseta (Allary et al., 1972; Ouanaimi and Petit, 1992). Therefore, comparison between upper 
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Ordovician deposits in this locality with those in the Meseta will yield affirmative data on the 

palaeo-tectonic relationship of these two regions. 

 

4.2.1. Sedimentary succession 

The syn-glacial strata rest with sharp disconformity upon pre-glacial, bioturbated, storm-

dominated fine-grained deposits. Large (100 m wide) crosscutting channels (Fig. 5), filled with 

sand-grade sediment are interstratified with heterolithic lithofacies including well-stratified shale, 

siltstone, and fine sandstone or massive sandy clast-poor diamictite. Although complex lateral 

and vertical substitutions occur between these lithofacies, the basal part of the succession 

comprises coarse-grained sand-filled channels (Fig. 2A, 17-25 m) overlain sharply by sandy 

diamictite that bears large (1-5 m) ball and pillow structures (Fig. 2A, 25-37 m). The diamictite is 

capped by a well bedded, coarsening and thickening upward rippled siltstone and sandstone 

succession, with bioturbation (Fig. 2A, 37-43 m), passing upward into shale (Fig. 2A, 45 m). 

Coarse-grained sand-filled channels with scattered boulder-sized clasts (Fig. 6 A) (Fig. 2A, 45-65 

m) cut down into these sediments. These sediments, which show flute casts, tool marks and 

conglomerate lenses at their base, are reworked up section into a soft-sediment deformation zone 

comprising large, polished, streamlined bedforms (Fig. 6 B) with superimposed hairpin structures 

(Fig. 6C) (Fig. 2A, 65 m). This zone, which is sealed by a thin and discontinuous diamictite 

horizon, is in turn overlain by a thin coarsening-then-fining upward succession with lenticular 

coarse-grained sandstone beds in the middle part (Fig. 2A, 66-70 m). The topmost part of the 

succession comprises finely laminated siltstone and black shale (the so-called Silurian shale), 

which attains at least 30 m thick. Rare lonestones occur within the lowermost part of this shale. 

The large channels were cut and filled in a high energy setting, most probably in a sub- or 

proglacial environment during the rapid release of glacial meltwater (e.g. by “jökulhlaup” 
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outburst floods). The heterolithic lithofacies variably indicate suspension settling (shale), traction 

(well bedded siltstone and fine sandstone) and slurry/mass-flow processes (diamictites). 

Bioturbation implies colonisation of the substrate by opportunistic fauna in environments far 

from the glacial sediment input points. Polished streamlined bedforms result from glacial fluting, 

and hairpin structures resemble spindle flutes found on Pleistocene deglaciated surfaces (e.g. Kor 

et al., 1991). These structures, interpreted as subglacial bedforms and attributed to a grounded ice 

sheet, indicate a subglacial deformation zone in the upper part of the succession in the High Atlas 

of Marrakech. 

 

4.2.2. Event stratigraphy and correlation 

The following sequence of events is interpreted from the syn-glacial succession: 1) incision of 

channels into pre-glacial substrate and deposition of ice proximal lithofacies, 2) glacial retreat 

(diamictite fining up to non-glacial mudrock), 3) a distinct regressive-transgressive cycle remote 

from an ice front, 4) following a second phase of channel incision, truncation of ice proximal 

lithofacies by a GES, 5) glacial retreat (thin diamictite drape), 6) a regressive-transgressive cycle 

deposited under a glaciomarine influence (channels with coarse-grained sand fill, occasional 

dropstones). Comparison to the Rehamna section suggests that most of the succession belongs to 

unit 1 in the High Atlas (below the major subglacial surface); topmost sediments, bearing the 

uppermost glacially related facies, therefore correspond to unit 2. As in other parts of northwest 

Africa such as the Taoudeni Basin (Underwood et al., 1998; Paris et al., 1998), these sediments 

are transitional into postglacial (probably late Hirnantian and earliest Silurian) shale with no 

hiatus inferred. 

 

4.3. Jbilet 
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Lying between the High Atlas and the Rehamna (Fig. 1), the Jbilet inlier probably occupied an 

intermediate palaeogeographic position. Like the Rehamna, it consists of westward-directed 

imbricate thrust slices (Huvelin, 1977). Recognition of syn-glacial deposits includes the 

disappearance of the ubiquitous bioturbation present in pre-glacial mudrocks, or the sudden 

appearance of diamictites. Uppermost sandstones of the succession have yielded a terminal 

Ordovician graptolite fauna (persculptus biozone, Destombes and Willefert, 1988). 

Syn-glacial deposits attain >160 m thickness and comprise structureless, homogeneous, 

unstratified clast-poor sandy diamictites. Two poorly defined coarsening-up cycles are 

recognised, the lower of which is punctuated by >10 m wide, sandstone-filled channels (Fig. 7), 

whilst the upper one is capped by current rippled and cross-bedded (northeastward-directed 

palaeocurrents) siltstones and fine-grained sandstones. 

The homogeneity and thickness of the sandy diamictites implies that the Jbilet lay close to 

an ice front during deposition. Their unstratified nature, coarsening-up profile and interruption by 

channelised sandstone implies the rapid progradation of a thick, subaqueous diamicton fan whose 

poorly expressed foresets were dominated by glaciogenic debris flows and topsets by tractive 

processes, rather than an ice-rafting mechanism. 

 

4.4. Massif Central 

Detailed study was undertaken in the western part of the Massif Central at Mchmech El Diab, 10 

km SE of the village of Ezziligha (Fig. 2 C) and additional outcrops were examined in the central, 

northern and eastern Massif Central. A synthetic overview is given below. Syn-glacial strata of 

the mud-dominated Ould Akra (early-late Ashgill) and overlying sand-dominated Ezzhiliga 

formations (late Ashgill), are overlain by shales of the lower Silurian Sidi M’Bellej Formation 

(Baudin et al., 2001; Chèvremont et al., 2001; Razin et al., 2001).  
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4.4.1. Sedimentary succession 

The lower contact of the syn-glacial strata (upper Ould Akra Formation) is placed at the first 

appearance of clast-poor muddy diamictites above bioturbated siltstones and fine-grained, current 

rippled to hummocky cross-stratified sandstones. Diamictites, either massive or crudely stratified, 

make up the lower part of unit 1 (Fig. 8 A). These become thicker and coarser-grained up section 

at Mchmech El Diab (Fig. 2 C, 3-40 m), but in the eastern Massif Central (Khenifra area) fine 

upwards. Lonestones are pebble to cobble-sized, and comprise quartzite or sandstone (Fig. 8 B). 

Discontinuous, cross-stratified sandstone horizons are locally interstratified within the 

diamictites. Above, sand-dominated lithofacies (Ezzhiliga Formation) are widespread and 

traceable over the whole Massif Central (Figs. 8 C-E, Fig. 2 C, 40-85 m). Locally, they rest on 

the underlying diamictites with a sharp and loaded contact. This sandstone comprises two 

conspicuous coarsening and thickening upward motifs, comprising moderately to well sorted, 

fine to coarse-grained sandstone (Fig. 8 E). Wave ripples and rare amalgamated hummocky 

cross-stratification (HCS) occurs in the lowermost sandstone beds of the lower thickening 

upward motifs with metre-scale megaripples becoming more common upwards. The sharp 

surface bounding the two thickening upward motifs is regionally developed dividing unit 1 from 

unit 2 (Figs. 2 C, 8 E). Poorly exposed sediments at the base of unit 2 comprise interstratified 

siltstones and fine-grained sandstones. Its upper part compares closely to that of unit 1, but 

characterised by more abundant climbing ripple cross-stratification (Fig. 2 C). At Mchmech El 

Diab, a green siltstone unit, several metres thick, caps the sandstone (Ezzhiliga Formation) and 

fines up into graptolite-bearing shale with a thin, ferruginous horizon. In the eastern Massif 

Central, graptolite-bearing shale directly overlies the sandstone. 

Fluid escape structures are locally abundant in the sandstone lithofacies (Razin et al., 
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2001). However, no deformation structures related to soft-sediment subglacial deformation were 

found. Regionally, the sand-dominated Ezzhiliga Formation tends to be finer grained and thinner 

southward and eastward, an observation consistent with south-eastward directed palaeocurrents in 

rippled or cross-stratified facies. 

HCS-bearing and current rippled sandstones in the latest pre-glacial deposits imply storm-

deposition in a dominantly lower shoreface setting. The diamictites are interpreted as 

glaciomarine facies, deposited from glaciogenic debris flows with gravity re-sedimentation. 

However, their variable motif (variably coarsening and fining up depending on the locality), 

coarse granulometry and sharp upper contact with the overlying sandstones suggest that they do 

not belong to the lower part of a coarsening-upward succession to which the Ezzhiliga Formation 

forms the upper part. The two regionally extensive overlying coarsening and thickening up motifs 

comprising relatively well-sorted sandstones formed through efficient mud winnowing on delta 

mouth bars. The predominance of the sharp to irregular-based sandstone beds implies low 

accommodation and extensive, high-energy re-distribution. Storms contributed to mouth bar 

reworking, as evidenced by HCS, but the predominance of cross strata highlights the importance 

of traction currents upsection. The sharp surface separating the two motifs is interpreted as a 

major abandonment surface. A second phase of delta mouth bar build-out is interpreted on the 

basis of a renewed coarsening-up profile following abandonment of the former delta and the 

occurrence of similar lithofacies to those in the lower part of the Ezzhiliga Formation. The 

overlying green siltstones most probably represent prodelta deposits, grading up into shale 

reflecting offshore conditions. As siltstones and then shale overly abruptly delta sandstones, a 

rapid backstepping of the delta system is envisaged.  

 

4.4.2. Event stratigraphy and correlation 
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Compared with the High Atlas and Rehamna domains, the sedimentary record in the Massif 

Central is correlated in the following way: diamictites (uppermost Ould Akra Formation) are 

correlative to the first ice-proximal deposits (Fig. 2). Coarsening-upwards sand-dominated motifs 

(delta mouth bars) most likely represent proximal counterparts of the two regressive-

transgressive, glacio-eustatically driven second order cycles (Fig. 2). Under this model, the 

subglacial erosion surface (GES) identified in the High Atlas and Rehamna domains, probably 

synchronous with a major sea-level fall, corresponds to the abandonment surface between the two 

delta systems. The ferruginous horizon in graptolite-bearing shale above the delta should thus be 

correlated with the postglacial maximum flooding surface within Silurian hot shales elsewhere on 

the Gondwana platform (Lüning et al, 2000). 

 

4.5. Coastal Meseta 

Syn-glacial strata of Ben Slimane (Oued Nfifkh), which await formal stratigraphic recognition, 

are affected by 3-4 stages of Hercynian deformation, and large-scale conjugate faulting (El Attari, 

2001). They comprise two well-defined coarsening and thickening upward motifs, overlain by a 

diamictite succession (Fig. 2 D). The lower motif (unit 1) comprises mudstones with thin current-

rippled sandstones (>30 m) overlain by coarsening-up, well-sorted, siltstone to medium-grained 

sandstone that bears eastward-directed, decametre-scale cross-beds and linguoid ripples. A 

decimetre-thick, erosionally based pebbly conglomerate caps this succession (Fig. 2 D). The 

upper coarsening upward motif (unit 2) sharply overlies the lower one and comprises an identical, 

coarsening-up lithofacies evolution capped by a second conglomerate. In contrast with the Massif 

Central, topmost deposits are abruptly overlain by 10 m of clast-poor sandy diamictites, passing 

transitionally into graptolite-bearing shale (Fig. 2 D). No striated surfaces or other glaciotectonic 

structures are preserved in this area. 
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The coarsening-up motifs and progressive upward appearance of large bedforms implies 

two phases of deltaic progradation. The sharp surface bounding the two motifs is interpreted as 

an abandonment surface prior to a renewed phase of build-out. The thin, sharp-based pebble beds 

capping each unit suggests scour on the upper surface of the mouth bar, potentially by fluvial 

processes. These data would imply that the delta topsets were extremely thin and characterised by 

bypass rather than deposition. However, a 20 m thick succession of pebbly sandstone with large-

scale cross-bedding occurs northward (40 km west of Settat, Sutcliffe et al., 2001) and may 

suggest a thickening of the pebbly facies, either locally (channel, incised valley ?) or regionally 

(in a more proximal setting). Textural characteristics of the overlying diamictite suggest direct 

glacial derivation. The two successive coarsening-up motifs in both the Coastal Meseta and 

Massif Central are clearly correlative. Reasons for the occurrence of a diamictite in the upper 

synglacial succession are discussed below.  

 

4.6. Eastern Meseta 

In the Tazzeka Massif, pre-glacial strata (Tehar El Brehl Formation), syn-glacial strata 

(Tifarouine Formation) and the overlying Silurian shales crop out immediately south of the Rif in 

a 15 km radius of Tahala, with the best exposure at Zerarda (Fig. 9) (Destombes et al., 1985, 

Khoukhi, 1993; Khoukhi and Hamoumi, 2001). These exposures are presently located c.200 km 

north-east of those in the Massif Central (Fig. 1) but prior to Hercynian deformation may have 

been more distant during the Ordovician. 

 

4.6.1. Sedimentary succession 

Pre-glacial rocks mainly comprise rhythmically bedded, bioturbated, silty shale and siltstone. In 

the upper levels of pre-glacial strata, within which Ashgill palynomorphs have been identified 
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(determination F. Paris, Rennes), fine-grained lithofacies interbedded with current-rippled 

sandstone beds prevail. Bioturbation becomes more subtle upward. The first stratigraphic 

occurrence of syn-glacial strata is considered to be defined by a sharp-based sandstone bed with 

flute casts (Fig. 9; 25 m).  

Syn-glacial strata are organised into two well-defined stratigraphic units (Figs. 9, 10), 

traceable over 20 km. Subordinate smaller-scale coarsening-up cycles on two smaller orders of 

magnitude are also expressed (Fig. 11 A). Syn-glacial strata are made up of extremely well-

differentiated shale, siltstone, sandstone and rare clast-poor, sandy diamictite. Each coarsening-

up cycle attains 100-150 m thick, with an unexpected total section thickness (approaching 350 m; 

Figs. 9, 10). The diamictite facies are preserved intermittently in unit 1 (attaining several metres 

thick at c. 70m, Fig. 9) but rare in unit 2. 

Two types of fine- to medium-grained sandstone lithofacies co-occur with mudstone, 

namely 1) thin, isolated, SE-directed current-rippled horizons that predominate at the base of 

each unit and 2) well-defined, structureless, sometimes graded, crudely horizontally laminated or 

rippled tabular beds prevailing mid-way up each unit (Fig. 11 A). These latter sandstone beds 

occur toward the top of metre-scale coarsening-up motifs (Fig. 11 A). They are sharp-based, 

irregular, or channelised with S to SE-directed (and rarely NW-directed) flute casts or small 

channels occasionally filled by coarse-grained sandstone. Aside from centimetre-scale load casts 

at the base of these beds, no soft-sediment deformation occurs in the Tazzeka Massif. 

The upper part of both units comprises stacked, erosionally based, horizontally laminated 

sandstone beds, forming amalgamated packages up to 10 m in thickness (Figs. 9, 10). They rest 

directly on clast-poor muddy diamictite. At the top of unit 1 (135-170 m, Fig. 9), they are coarse-

grained and contain abundant sheet dewatering structures. Metre-scale flute-like structures of 

consistent long-axis orientation toward the SE (Figs. 11 B-D) containing gravel lags are overlain 
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by a single fining upward sandstone bed, 40-80 cm thick, with a wave-rippled top. A sharp 

contact with overlying shale and sandstone occurs.  

Sandstones capping unit 2 are fine-to medium (and rarely coarse) grained (320-375 m, 

Fig. 9). Diffuse horizontal lamination and small flute casts occur. The transition into Silurian 

shale and well bedded phtanite is sharp and tectonic. Scattered quartz grains (< 1 mm) are 

preserved in the lowermost exposures of shale below phtanitic beds. 

 

4.6.2. Interpretation 

Together, the lithofacies described above characterise the cyclic progradation of a turbiditic deep 

marine fan (e.g. Stow and Mayall, 2000). Significant water depths during deposition are indicated 

by the great (and presently compacted) thickness of these sediments, by the absence of angular 

unconformities supporting continuous sedimentation and by the almost total absence of wave- or 

storm-induced sedimentary facies. 

The three main types of sandstone lithofacies i.e. isolated and current rippled, the tabular 

beds within mudrock, and the amalgamated, stacked examples, are interpreted to belong to distal, 

medial and proximal portions of the fan system respectively. The first lithofacies were probably 

deposited by distal, low-density turbidity currents; the SE-oriented palaeocurrents obtained from 

these rocks thus provide a palaeoslope indicator. The second and third sandstone lithofacies are 

interpreted as sandy gravity flows, with the diffuse, horizontal lamination within the 

amalgamated sandstone beds testifying to non-Newtonian rheology, internal shearing, and to the 

emplacement of stacked debris flows (Shanmugam, 2000). The emplacement of these last flows 

as discrete “event beds” is supported by the frequent occurrence of fluted and gravely surfaces 

within these strata. Their lateral extent over at least 20 km, together with their position at the top 

of the first-order coarsening up cycles, indicates that they occupied an extensive upper part of this 
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fan system. The surface with large-scale flutes is thought to reflect high-energy underflows, 

possibly linked with abrupt meltwater discharge during jökulhlaup glacial outburst events (e.g. 

Carrivick et al., 2004). A rapid end to sand sedimentation above this surface implies avulsion of 

the depositional lobe. 

 

4.6.3. Event stratigraphy and correlation 

Syn-glacial rocks in the Tazzeka Massif are notable for their significantly greater thickness (350 

m) than anywhere else in the Meseta and, in common with the Massif Central and Coastal Meseta 

areas, the absence of glacially-related soft-sediment deformation structures. These observations 

suggest high sediment accommodation within a basin untouched by an ice sheet. Four cycles 

corresponding to coarsening and thickening upward succession bounded by diamictite horizons 

are recognized (Fig. 9). The proposed correlation, developed further below, suggests that these 

four cycles reflect the four glacial cycles identified in the Rehamna and High Atlas domains, the 

major glacial advance being reflected by the coarse-grained lithofacies of the upper third of unit 1 

and its conspicuous fluted erosion surface.  

 

5. Hirnantian sedimentary systems in northern Morocco 

Our data demonstrate the presence of the late Ordovician ice sheet in the Meseta that reached as 

far north as the Rehamna Massif. Unequivocal evidence for subglacial deformation is restricted 

to the surface separating depositional units 1 and 2 (Figs. 2, 12). This surface formed during the 

third glacially-related cycle and is considered to reflect the maximum extent reached by the 

Gondwanan ice sheet during glaciation of Morocco (i.e. the glacial maximum). However, the 

coarse-grained and erosionally-based nature of sandstones at the base of unit 1 in both the 

Rehamna and High Atlas probably imply deposition during an earlier glacial advance prior to 
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advance of the ice sheet toward its ice maximum position. No direct evidence for subglacial 

erosion (e.g. soft sediment striation) was found in or above these channel deposits, but in the 

High Atlas, the abundance of sandy diamictites above them strongly suggests the presence of a 

nearby ice front. Therefore, these data imply two advances of the Gondwanan ice sheet into 

northern Morocco. 

This section investigates why the ice did not extend further north into the Massif Central 

or Coastal Meseta. It unravels complex stratal geometries (Fig. 12), proposing a 

palaeogeographic reconstruction (Fig. 13 A) and depositional model (Fig. 13 B). 

 

5.1. Regional correlation 

A correlation is proposed between the glacial record of four of the Palaeozoic inliers (High Atlas 

of Marrakech, Rehamna, Massif Central and Coastal Meseta), which are approximately aligned in 

a palaeogeographic profile (Figs. 2, 12 and 13 A). Four chronostratigraphic boundaries are 

identified; the first and third corresponding to glacial erosion surfaces (GES). 

Limited but consistent palaeocurrent data, palaeo-ice flow indicators and regional trends 

identify three palaeogeographic domains. The “ice-contact system” was characterised by a south-

north proximal-distal trend in glacially-related sedimentary systems identified in the Rehamna 

and High Atlas (Fig. 12, blue colour). The second, a “shelf-delta system”, shows that a north-

south (to NE-SW) proximal-distal trend persisted in the delta systems of the Massif Central and 

Coastal Meseta (Fig. 12, orange colour). Therefore, ice contact and shelf delta sediments were 

shed from different sources. The linkage and relationship between these systems is further 

investigated below. 

The Jbilet and Tazzeka inliers are more difficult to place on the High Atlas- Coastal 

Meseta profile because the former, comprising only glacially-derived material and lacking delta 
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deposits, is regarded as a distal glaciomarine equivalent of the High Atlas section (Fig. 13). The 

Tazzeka succession represents a third palaeogeographic domain (“deep-marine system”) and the 

buildout of a submarine fan in the eastern, deeper portion of the platform connected to and fed by 

both the shelf-delta and ice-contact systems (Fig. 13).  

Below, the linkage between ice-contact, shelf-delta and deep-marine systems is 

investigated, with emphasis on palaeogeographic setting at the glacial maximum (Fig. 13 A). 

 

5.2. Ice-Contact system 

At the glacial maximum, the upward transition from outwash facies (diamictites and large sand-

filled channels), into a conspicuous subglacial deformation zone, and finally distal glaciomarine 

facies (diamicton deltas?) is characteristic. These changes imply proximal proglacial deposition 

during ice-sheet advance, full glacial conditions, and rapid retreat of the grounded ice sheet. 

Lateral and vertical lithofacies substitution is common in the ice-contact system. However, since 

ice-contact systems are recognised in both the High Atlas and Rehamna sections, 

palaeogeographic linkage between these areas at the glacial maximum was likely. Sediment was 

probably transported onto the proglacial shelf by a combination of subglacial and proglacial 

channels (Fig. 13). The transition toward shelf delta systems is less certain because of the lack of 

continuous exposure between the Rehamna and Massif Central, but it is suggested that these 

systems interdigitated at their depositional termini (Fig. 12).  

 

5.3. Shelf-delta system 

The lack of subglacial soft-sediment deformation structures north of the Rehamna inlier suggests 

that syn-glacial sediments north of it were deposited in a paraglacial setting untouched by an ice 

sheet (Fig. 13 A). The growth of deltas in this area is consistent with earlier interpretations (e.g. 
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Khoukhi and Hamoumi, 2001; Baudin et al., 2001; Razin et al., 2001). The similarity in the 

vertical lithofacies successions in both the Massif Central and Coastal Meseta, and lateral extent 

of mouth bar sands over at least 100 km between them, implies delta formation over a vast, 

topographically subdued shelf area. Growth of these deltas during a significant phase of sea-level 

fall is supported by the sand-prone nature of mouth bar facies and evidence for their extensive 

reworking. Syn-glacial sediments of the Massif Central and Coastal Meseta compare to shelf 

margin deltas perched at or near a break in slope on the continental shelf (Porębski and Steel, 

2003). During glacio-eustatic sea level fall, bypassing of sediment onto the shelf edge is 

promoted, and sandy mouth-barred deltas offlap inner shelf sand and mud (Porębski and Steel, 

2003). Such a palaeogeographic position is supported by the lateral extent and tabular geometry 

of their mouth bar sands. Thin fluvial sediments (pebbly horizons) were deposited either as delta 

topsets or during late lowstand conditions. As tidal facies interpreted as transgressive deposits 

occur directly above the mouth bars, the second hypothesis is preferred. 

Shelf margin deltas probably merged landward (northward) into a network of fluvial 

channels (Fig. 13 B). The local occurrence of clast poor, sandy diamictites in the Coastal Meseta 

could suggest that at least some sediment was ice-derived from a local ice cap (see below). 

Basinward (southward), deltas merged into inner shelf environments (High Atlas, Rehamna) (Fig. 

12), dominated by storm deposition, with subordinate turbiditic deposition. 

At the glacial maximum, accommodation space was minimal. The disconformity 

separating the two coarsening-upward motifs in the Massif Central and Coastal Meseta is 

considered to be time-equivalent to subglacial erosion southward, forming as the ice advanced to 

its glacial maximum position (Fig. 12). It resulted in erosion of the mouth bar as a result of sea-

level fall during ice sheet expansion. At that time, the fluvial system would have connected 

directly with an underflow-dominated deep-marine system (Tazzeka domain). Whilst no canyon 
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systems were observed by us, probably as a result of their very limited lateral extent, they are 

likely to exist and probably formed an integral sediment pathway to the deep marine system (Fig. 

13 B). 

 

5.4. Deep-marine system 

During the late Quaternary glacial maximum, large trough-mouth fan-systems formed beyond the 

shelf break in the Barents Sea (e.g. Taylor et al., 2002). However, these deposits are a poor 

analogue to those of the Tazzeka Massif because they are built largely of unevolved glaciogenic 

debris flows. In contrast, Wilkes Land turbidite systems fed by palaeo-ice streams in Antarctica 

are a better analogue (e.g. Escutia et al., 2000). Whereas the main part of the Tazzeka succession 

represent deposition on distal to medial part of a deep marine fan, the stacked, amalgamated 

packages of sandstone towards the top of unit 1, interpreted as stacked debris flows, are best 

developed in the proximal part of the turbidite fan and imply heightened rates of sediment supply, 

sediment remobilisation, and fan-lobe growth in the deep basin. These conditions prevailed at the 

glacial maximum. 

Knowledge of the causes of sediment remobilisation is essential to understand the linkage 

between ice-contact, shallow and deep-marine settings. In modern settings, mobilisation of shelf-

margin sediments to the deep marine system occurs via mass-movement/slope instability (Stow 

and Johansson, 2000), “seafloor polishing” from wave and tide agitation (Armishaw et al., 2000; 

Stow and Mayall, 2000), or direct throughput by fluvial floods (Mutti et al., 1996, 1999). These 

processes generate gravity flows (Shanmugam, 2000). 

In the Tazzeka Massif, turbidites evolved downdip from mouth bar sands at the foot of a S 

to SE-ward slope from the Massif Central and Coastal Meseta. These conditions are thought to 

have persisted during the first, second and fourth glacially related cycles. It is thus suggested that 
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bypass wedges resulted from periodic instability of the shelf-margin delta mouth bars, in 

combination with direct throughput by fluvial floods. Distal glaciomarine facies were deposited 

during ice retreat episodes and correlative sea-level rise. 

This deep-water area lay beyond both the shelf-delta and ice-contact systems (Fig. 13 A, 

B). It was the final repository for glacially derived sediments, sourced from the NNW advancing 

ice sheet that covered the Tindouf Basin (Destombes et al., 1985). The latter interpretation is 

supported by earlier work (Sutcliffe et al., 2001), raising the possibility that sediments in the 

deeper parts of the basin were derived from two sediment sources, one from the ice sheet, and the 

other from an upland area/ palaeohigh beyond the ice front (Fig. 12). Such a mixed sediment 

source is envisaged for the amalgamated sandstones at the top of unit 1 (deposited during the 

glacial maximum), both by their coarse-grained nature and their depositional processes (stacked 

debris flows, high-energy underflows). The dramatic increase in sediment thickness between the 

Massif Central/ Coastal Meseta and the Tazzeka Massif (Fig. 2, inset) may thus indicate the first 

description of a late Ordovician trough-mouth fan in North Africa, though further work is 

required to confirm this interpretation. 

 

6. Palaeogeographic Implications 

6.1. Gondwana ice-sheet extent 

The lateral extent of subglacial bedforms is a powerful means of constraining the dimensions of 

former ice sheets (e.g. Jansson and Glasser, 2005). The occurrence of subglacial deformation 

structures in the High Atlas of Marrakech and the Rehamna inliers extends the ice sheet at least 

200 km beyond the northernmost occurrences of striated surfaces reported by previous authors 

(Central Anti Atlas, Destombes, 1969; Hamoumi, 1988), or 150 km north of the most distal 

glaciotectonic folds and thrusts (Alnif, Sutcliffe et al., 2001) or glacial valleys (Destombes et al., 
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1985; Alvaro et al., 2004). Taking into account directional data in the Anti-Atlas, and assuming a 

lobate ice front geometry, similar to that of the late Pleistocene in Fennoscandia (e.g. Punkari, 

1997), then the ice covered a semi-elliptical area of at least 200 km X 400 km. The area of this 

hitherto unknown ice cover is approximately 0.2 million km2, of comparable size to the UK (Fig. 

13 A). 

The new data presented in this article give a lucid illustration of the palaeogeographic 

changes that occur at and beyond the terminus of an ancient ice sheet at its glacial maximum. 

Both the geometry of this ice front and the character of sediments debouched from it were 

probably closely dependant on the character of ice sheet flow and processes of erosion further up-

glacier, south into the Anti-Atlas of Morocco and the Algerian Sahara. Recent work on the 

Pleistocene glacial record has focussed on the location of palaeo-ice streams, fast-flowing 

corridors of ice up to hundreds of kilometres long and tens of kilometres wide (e.g. Stokes and 

Clark, 2001). Their description as the arteries of ice sheets reflects their phenomenal drainage 

capacity and ability to substantially modify their topographic profile and lateral extent (Bennett, 

2003). In the Anti-Atlas and the Tindouf Basin, isopach maps show 1) a pre-glacial depocentre 

dominated by clay-prone sediments that is centered over Central Anti-Atlas (Destombes et al., 

1985) and 2) a syn-glacial depocentre oriented SSE-NNW. As the axis of both the pre-glacial and 

synglacial depocentres are aligned, these may preferentially have been occupied by a palaeo-ice 

stream at the glacial maximum (Fig. 13 A). For these reasons a palaeo-ice stream is tentatively 

placed over the Anti-Atlas at the height of the glaciation (Fig. 13). New data are needed to 

support this hypothesis, which for the moment can only be regarded as speculative. 

 

6.2 Location of the Meseta relative to the West African Craton 

Close correlation between the High Atlas and Rehamna is extremely significant because, 
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structurally, the former area belongs to the West African Craton (Allary et al., 1972). Therefore, 

as the ice-sheet straddling the Meseta originated from the south, our data not only show the 

presence of ice in the Meseta (Rehamna) but demonstrate that it was in full palaeogeographic 

communication with the Anti-Atlas. These data imply that during the Late Ordovician, no large 

oceanic domain existed between the Meseta and Gondwana, supporting the conclusions of Piqué 

and Michard (1989). However, lateral displacement along the South Atlas Thrust may have 

occurred since the Ordovician, and the Late Ordovician location of the Meseta relative to the 

Anti-Atlas may have been shifted to some extent eastward or westward. 

 

6.3 Palaeohighs on the West Gondwana margin 

As discussed above, shelf margin deltas prograding S or SE-ward developed beyond the NW 

margin of the Gondwana ice-sheet. Deep marine systems occurred eastward in the Tazzeka 

domain, supporting the existence of an eastward deepening basin/ embayment between the Anti-

Atlas and the northern Meseta, as proposed by previous workers (Hamoumi, 1988; Khoukhi and 

Hamoumi, 2001). To the west and/or north of the Coastal Meseta lay an upland area (Fig. 13). 

Addition data to support the occurrence of such a palaeohigh includes Middle to Late Ordovician 

hiatus accompanied by magmatic activity (Charlot et al., 1973; El Hassani et al., 1991; El Kamel 

et al. 1998). In the Sehoul zone, Silurian strata lap directly onto deformed Cambrian strata that 

are intruded by Middle Ordovician granite (Piqué et al., 1993). In addition, in Nova Scotia, which 

was a part of the West Gondwana margin in the Late Ordovician (the Meguma zone; e.g. Schenk, 

1997), up to 10 km of volcanogenic deposits dated at 438+3/ -2 Ma were deposited on lower 

Ordovician clastics after a 60 Ma hiatus (MacDonald et al., 2001). The alkaline affinity of these 

rocks implies an intraplate rift (MacDonald et al., 2001) and of comparable geochemistry to 

rarely occurring ash horizons in the Coastal Meseta (El Kamel et al. 1998). It is possible that the 
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thermal event known in the Meseta (Clauer at al., 1995) could account for palaeohighs to the 

west of this area. Taken together, these observations suggest that upland areas in the westernmost 

and/ or northern Meseta might relate to rift shoulder uplift. However, the thickness of underflow 

deposits in the Tazzeka Massif aside, no evidence is found for a rift propagating directly into the 

Meseta is identified as suggested previously (e.g. Stampfli and Borel, 2002). Instead, the locus 

for rifting probably lay beyond the present-day Meseta. 

 

6.4 Satellite ice caps 

In the context of uplands beyond the ice sheet, the occurrence of relatively proximal glaciomarine 

deposits in the uppermost part of the Late Ordovician succession in the Coastal Meseta is 

noteworthy. Here, glaciogenic lithofacies were not deposited during the main part of the glaciation 

because glacio-eustatic sea-level fall exposed the shelf leading to the development of a fluvial 

network that fed the shelf margin deltas (see above). However, following melting of the Hirnantian 

ice sheet, high sea levels were restored and backstepping shorelines may have allowed a marine ice 

front to form from individual ice caps centred on upland area that were probably more stable and 

long-lived than the huge, low-lying Gondwana ice sheet. 

In Western Europe (Portugal, Spain, France), which lay at the fringes of Gondwana, 

widespread glaciomarine lithofacies are recognised (Robardet and Doré, 1988). To analyse these 

successions in detail is beyond the scope of this paper. However, the prevalence of sandy diamictite 

facies merits consideration because of their similarity to the topmost diamictites of the Coastal 

Meseta (Fig. 2). Earlier workers suggested glacier-ice or sea-ice rafting for the deposition of these 

rocks (Fortuin, 1984; Robardet and Doré, 1988). An alternative explanation could be the existence of 

several ice caps sited on upland areas during the Hirnantian. The recognition of widespread 
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subglacial structures in these areas is unlikely as glaciers would have populated palaeohighs, leaving 

no sedimentary record on the uplands. However, marine ice fronts imply that valley glaciers or 

glacial lobes reached sea level. Localised subglacial deformation may have been preserved, but while 

striated pavements have been reported by previous workers (Arbey and Tamain, 1971), later authors 

prefer a tectonic interpretation for these structures (Robardet and Doré, 1988). Nevertheless, the 

existence of small ice caps is also inferred from the Late Ordovician glacial record in Newfoundland, 

an area that was located at notably lower palaeolatitudes but corresponding to island arcs in the 

Iapetus Ocean (MacNiocall et al., 1997). 

 

7. Conclusions 

1. Firm evidence that the Moroccan Meseta was in palaeogeographic communication with 

the Anti-Atlas during the Late Ordovician is provided by the discovery of glaciogenic 

deposits north of the Southern Atlas Thrust. Correlation between the Rehamna and the 

High Atlas of Marrakech demonstrates that the Anti-Atlas and Meseta were subject to a 

mutual phase of glaciation during the glacial maximum; 

2. Evidence for the presence of former ice sheets includes soft-sediment striations, 

streamlined bedforms, downward-injected sedimentary dykes, shear zones and chaotic 

fold zones, capped, at least in the Rehamna inlier, by a distinctive diamictite. High-energy 

meltwater channels (jökulhlaup outburst channels) occur in the High Atlas; 

3. A palaeogeographic transect over >400 km recognises ice-contact, shelf-margin and deep-

marine proglacial depositional environments. The transition between these zones is not 

defined by a simple proximal-distal profile because an upland area persisted beyond the 

Coastal Meseta, potentially occupied by a satellite ice cap and possibly caused by rift-
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shoulder uplift; 

4. A deep marine system, represented by the Tazzeka Massif, lay in the eastern Meseta 

beyond the ice front. It was not overridden by an ice sheet as a result of the significant 

break in bathymetry that would have occurred in a north-eastward direction, and was 

probably fed from two sediment sources- namely the ice-contact and shelf-delta systems; 

5. Two depositional units contain the record of four glacioeustatic sea level variations, 

thought to relate to the waxing and waning of other parts of the Gondwana ice sheet. 
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Figure Captions: 

Figure 1. Location map of Morocco. Lower Palaeozoic inliers in the Meseta and High Atlas 

regions are shown in black, whereas those in the Anti-Atlas are shown in grey. Numbers indicate 

inliers examined during the course of this study. Contours are isopachs drawn for the pre-glacial 

upper Ordovician (Ashgill) Upper Ktaoua Formation in the Anti-Atlas (from Destombes et al., 

1985). These data give a good impression of topography on the pre-glacial substrate (axis of 

depositional trough is marked). Previous estimation of the late Ordovician glacial maximum in 

this region put the ice front in the Anti Atlas (stippled line; Destombes, 1968). Control data 

points in the Anti Atlas are the Zagora/ Tagounite areas (A) and the Erfoud area (B). 

 

Figure 2. Correlation panel between sedimentary logs for A) the High Atlas of Marrakech (Isk 

N’Tazzoult; GPS 31°18.299’N  07°20.729’W), B) Rehamna (Amar Ben Nouti; GPS 

32°25.577’N  07°31.072’W), C) Massif Central (Mchmech El Diab; 33°16.045’N  06°26.01’W) 

and D) Coastal Meseta (Oued Nfifkh; 33°33.703’N  07°11.474’W) areas. 

 

Figure 3. Detailed section of syn-glacial deposits in the Rehamna inlier, approximately 1 km 

north-west of the log shown in Fig. 2 B, to highlight stratigraphic position of soft-sediment 

deformation structures and their relationship to the distinctive red-brown diamictite. This section 

corresponds to the interval indicated on Fig. 2 B. 
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Figure 4. Glaciogenic facies at the top of unit 1 in the Rehamna inlier at Amar Ben Nouti (taken 

from one-kilometre radius centred on 32°25.577’N  07°31.072’W). A: Distinctive brown-red 

clast-poor sandy diamictite, preserving the counterpart to a pair of soft-sediment striae (C). B: 

Complex and irregular white sandstone dykes sourced from directly above the diamictite and 

intruded down into it. D: Detail of centimetre-scale shear zones developed within the white 

sandstone bed that sources the dykes. Together, the soft-sediment striae, downward-injected 

sedimentary dykes, and massive diamictite provide strong evidence of a subglacial erosion 

surface (GES) in the Rehamna; see text for details. E: Sigmoidal cross-bedding in tidal 

sandstones at the top of unit 2. 

 

Figure 5. Large-scale channel systems and soft-sediment deformation at Isk N’Tazzoult, High 

Atlas of Marrakech. Two glacial erosion surfaces (GES) can be recognised in this section. The 

subglacial bedforms (Fig. 6) occur along the second, higher, surface. Note chaotic internal 

organisation of lithofacies. Significant lateral facies variations occur over short distances. 

 

Figure 6. A: Large boulder of rippled sandstone within a pro- or subglacial channel at Isk 

N’Tazzoult, High Atlas of Marrakech. B: Polished drumlin-like bedform. C: Large “hairpin-like” 

structure on the polished surface of a folded drumlin. These structures are interpreted to have 

formed subglacially, with the last structure characteristic of the hydroplastic deformation of 

unconsolidated sediment. 

 

Figure 7: Large sandstone channels within clast-poor sandy diamictites at Larissa (31°56.194’N  

07°39.980’W), Jbilet inlier, constituting the thickest uninterrupted example of these facies (150 
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m) observed in Morocco. 

 

Figure 8: Syn-glacial lithofacies in the Massif Central. A: Diamictites in depositional unit 1 at 

Mchmech El Diab (see Fig. 2 C for GPS co-ordinates), showing interbedding of massive and 

thinly bedded variants of this lithofacies. B: Examples of lonestones within massive, clast-poor 

sandy diamictites considered to have been deposited by glaciogenic debris flows. C: Section view 

at Mchmech El Diab from poorly exposed diamictite to overlying sandstone. D (and E, close-up): 

Well defined subdivision of the Ezzhiliga Formation (top of depositional unit 1 to unit 2) into two 

coarsening-up motifs developed exclusively in sandstone at El Harcha. This subdivision and the 

sharp surface separating these motifs is developed widely in the Massif Central. The sharp 

contact between the Ezzhiliga Formation and underlying diamictite implies that the former does 

not simply cap a coarsening-upward unit. GPS co-ordinates for El Harcha: 33º30.830’N  

06º08.690’W. 

 

Figure 9: Measured section of latest Ordovician strata at Zerarda, Tazzeka Massif (Eastern 

Meseta; 34º 01. 545’N  04º20.148’W). As in other parts of the Meseta, two units are recognised. 

Numbers on the log correspond to major phases in the evolution of the Tazzeka fan, which are 

directly attributed to ice sheet waxing and waning on the shelf. Minor coarsening and fining-

upward motifs are probably autocyclic in nature. The package marked “GES” is thought to be 

coeval with glacial erosion next to the ice sheet, resulting from bypass of the shelf margin (see 

Fig. 13). 

 

Figure 10: Panoramic photograph of the logged Zerarda section showing generally high quality of 

exposure and stratigraphic continuity, annotated for direct comparison with Fig. 9. The 
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interpreted pre-glacial to syn-glacial transition is shown, together with transition of these rocks 

into lowermost Silurian shale. 

 

Figure 11: Sedimentary facies at Zerarda, Tazzeka Massif. A: Well-defined, sharp based 

sandstones interbedded with mudrocks form metre to tens of metre-scale coarsening upward 

motifs. These are probably due to allocyclic phases of fan lobe growth and abandonment. B: 

View looking down onto the top of unit 1, represented by an amalgamated package of sandstone 

(Fig. 9, 172 m). Clearly visible on this surface (illustrated in C) are large flutes. D: Close-up of 

these features, with hammer for scale, showing gravel lag in the central depressed part of a flute. 

 

Figure 12: Synthesis of stratigraphic architecture shown on correlation panel (Fig. 2), 

emphasising the occurrence of four glacially-related cycles in northern Morocco. The ice 

maximum is represented by the GES at the top of unit 1. 

 

Figure 13: A: Palaeogeographic reconstruction of the northwestern fringe of Africa during the 

late Ordovician glacial maximum, showing extension of the ice front across the Anti-Atlas and 

into the Moroccan Meseta. A shallow marine area, occupied by shelf margin deltas, occurred just 

in front of the ice sheet. Limited palaeocurrent data imply a palaeohigh towards the northwest, 

potentially an extension of Nova Scotian upland. These two sediment sources probably 

commingled in the deep basin, which received a thick succession of underflow deposits. B: Block 

diagram/ depositional model for northern Morocco at the late Ordovician glacial maximum. The 

linkage and inter-relationship of both the ice-contact and shelf delta environments and the deep 

marine system is emphasised in the text. 
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Table 1. Simplified stratigraphic comparison of formation names for pre-glacial, syn-glacial and 

post-glacial strata in Morocco. Formalised stratigraphies exist in the Anti Atlas (Destombes et al., 

1985), Massif Central (e.g. Razin et al., 2001) and Tazzeka Massif (Destombes et al., 1985; 

Khoukhi and Hamoumi, 2001). A stratigraphic scheme awaits formalisation in the Rehamna 

where an active mapping programme is currently underway (P. Razin, pers. comm.). An informal 

formation name (Douar-Zrahna formation) for syn-glacial strata was suggested for the Coastal 

Meseta region by Sutcliffe et al. (2001). No formalised stratigraphy exists for either the High 

Atlas of Marrakech or Jbilet regions. 
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