
Computing exact solutions of consensus halving and the
Borsuk-Ulam theorem∗

Argyrios Deligkas† John Fearnley‡ Themistoklis Melissourgos§

Paul G. Spirakis¶‖

Abstract
We study the problem of finding an exact solution to the Consensus Halving problem. While

recent work has shown that the approximate version of this problem is PPA-complete [29, 30], we
show that the exact version is much harder. Specifically, finding a solution with n agents and n cuts
is FIXP-hard, and deciding whether there exists a solution with fewer than n cuts is ETR-complete.

Along the way, we define a new complexity class, called BU, which captures all problems that can be
reduced to solving an instance of the Borsuk-Ulam problem exactly. We show that FIXP ⊆ BU ⊆ TFETR
and that LinearBU = PPA, where LinearBU is the subclass of BU in which the Borsuk-Ulam instance
is specified by a linear arithmetic circuit.

∗A preliminary version of this paper appeared in the Proceedings of the 46th International Colloquium on Automata,
Languages and Programming (ICALP 2019) [23].

†Royal Holloway University of London, UK. Email: argyrios.deligkas@rhul.ac.uk
‡University of Liverpool, UK. Email: john.fearnley@liverpool.ac.uk
§Technical University of Munich, Germany. Email: themistoklis.melissourgos@tum.de
¶Department of Computer Science, University of Liverpool, UK. Email: p.spirakis@liv.ac.uk
‖Computer Engineering and Informatics Department, University of Patras, Greece.

1

Contents
1 Introduction 3

1.1 Contribution . 3
1.2 Related work . 4

2 Preliminaries 4
2.1 Arithmetic circuits and reductions between real-valued search problems 4
2.2 The Consensus Halving problem . 5

3 The Class BU 6
3.1 LinearBU . 7

4 Containment Results for Consensus Halving 9
4.1 (n, n)-Consensus Halving is in BU and LinearBU = PPA 9
4.2 (n, k)-Consensus Halving is in ETR . 11

5 Hardness Results for Consensus Halving 12
5.1 Embedding a circuit in a Consensus Halving instance: an outline 13

5.1.1 Special circuit . 13
5.1.2 The reduction to Consensus Halving . 13

5.2 (n, n)-Consensus Halving is FIXP-hard . 15
5.3 (n, n− 1)-Consensus Halving is ETR-complete . 15

6 Proof of Lemma 10 17
6.1 Special circuit to Consensus Halving instance . 17
6.2 One-to-two correspondence of circuit values to CH cuts 19

6.2.1 Circuit values to cuts . 19
6.2.2 Cuts to circuit values . 21
6.2.3 Valuation functions to circuits . 21

7 Proof of Theorem 11 23
7.1 Expressing the game as a circuit without division gates 23
7.2 A circuit with gates whose inputs/outputs are in [0, 1] . 24
7.3 The (n, n)-Consensus Halving instance . 26

8 Proof of Lemma 15 26

9 Proof of Theorem 16 27

10 Conclusion and Open Problems 29

2

1 Introduction
Dividing resources among agents in a fair manner is among the most fundamental problems in multi-
agent systems [19]. Cake cutting [7, 9, 8, 18], and rent division [17, 34, 26] are prominent examples of
problems that lie in this category. At their core, each of these problems has a desired solution whose
existence is usually proved via a theorem from algebraic topology such as Brouwer’s fixed point theorem,
Sperner’s lemma, or Kakutani’s fixed point theorem.

In this work we focus on a fair-division problem called Consensus Halving: an object A represented
by [0, 1] is to be divided into two halves A+ and A−, so that n agents agree that A+ and A− have the
same value. Provided the agents have bounded and continuous valuations over A, this can always be
achieved using at most n cuts, and this fact can be proved via the Borsuk-Ulam theorem from algebraic
topology [45]. The necklace splitting and ham-sandwich problems are two other examples of fair-division
problems for which the existence of a solution can be proved via the Borsuk-Ulam theorem [5, 6, 39].

Recent work has further refined the complexity status of approximate Consensus Halving, in which
we seek a division of the object so that every agent agrees that the values of A+ and A− differ by at most
ε. Since the problem always has a solution, it lies in TFNP, which is the class of function problems in NP
that always have a solution. More recent work has shown that the problem is PPA-complete [29], even
for ε that is inverse-polynomial in n [30]. The problem of deciding whether there exists an approximate
solution with k-cuts when k < n is NP-complete [28]. These results are particularly notable, because they
identify Consensus Halving as one of the first natural PPA-complete problems.

While previous work has focused on approximate solutions to the problem, in this work we study
the complexity of solving the problem exactly. For problems in the complexity class PPAD, which is a
subclass of both TFNP and PPA, prior work has found that there is a sharp contrast between exact and
approximate solutions. For example, the Brouwer fixed point theorem is the theorem from algebraic
topology that underpins PPAD. Finding an approximate Brouwer fixed point is PPAD-complete [39], but
finding an exact Brouwer fixed point is complete for (and the defining problem of) a complexity class
called FIXP [27].

It is believed that FIXP is significantly harder than PPAD. While PPAD ⊆ TFNP ⊆ FNP, there is
significant doubt about whether FIXP ⊆ FNP. One reason for this is that there are Brouwer instances for
which all solutions are irrational. This is not particularly relevant when we seek an approximate solution,
but is a major difficulty when we seek an exact solution. For example, in the PosSLP problem, a division
free arithmetic circuit with operations +,−, ∗, inputs 0 and 1 and a designated output gate are given,
and we are asked to decide whether the integer at the output of the circuit is positive. This fundamental
problem is not known to lie in NP, and can be reduced to the problem of finding an approximation
of 3-player Nash equilibrium [27]. Due to the aforementioned paper, the later problem reduces to the
problem of finding an exact Brouwer fixed point, which provides evidence that FIXP may be significantly
harder than FNP.

1.1 Contribution
In this work we study the complexity of solving the Consensus Halving problem exactly. In our formula-
tion of the problem, the valuation function of the agents is presented as an arbitrary arithmetic circuit,
and the task is to cut A such that all agents agree that A+ and A− have exactly the same valuation.
We study two problems. The (n, n)-Consensus Halving problem asks us to find an exact solution for
n-agents using at most n-cuts, while the (n, k)-Consensus Halving problem asks us to decide whether
there exists an exact solution for n-agents using at most k-cuts, where k < n.

Our results for (n, n)-Consensus Halving are intertwined with a new complexity class that we call
BU. This class consists of all problems that can be reduced in polynomial time to the problem of finding
a solution of the Borsuk-Ulam problem. We show that (n, n)-Consensus Halving lies in BU, and is
FIXP hard. The hardness for FIXP implies that the exact variant of Consensus Halving is significantly
harder than the approximate variant: while the approximate problem is PPA-complete, the exact variant
is unlikely to be in FNP.

We show that (n, k)-Consensus Halving is ETR-complete. The complexity class ETR consists of
all decision problems that can be formulated in the existential theory of the reals. It is known that
NP ⊆ ETR ⊆ PSPACE [20], and it is generally believed that ETR is distinct from the other two classes.
So, our result again shows that the exact version of the problem seems to be much harder than the

3

approximate version, which is NP-complete [28].
Just as FIXP can be thought of as the exact analogue of PPAD, we believe that BU is the exact analogue

of PPA, and we provide some evidence to justify this. It has been shown that LinearFIXP = PPAD [27],
which is the version of the class in which arithmetic circuits are restricted to produce piecewise linear
functions (FIXP allows circuits to compute piecewise polynomials). We likewise define LinearBU, which
consists of all problems that can be reduced to a solution of a Borsuk-Ulam problem using a piecewise
linear function, and we show that LinearBU = PPA.

The containment LinearBU ⊆ PPA can be proved using similar techniques to the proof that
LinearFIXP ⊆ PPAD. However, the proof that PPA ⊆ LinearBU utilises our BU containment result
for Consensus Halving. In particular, when the input to Consensus Halving is a piecewise linear func-
tion, our containment result shows that the problem actually lies in LinearBU. The PPA-hardness results
for Consensus Halving show that piecewise-linear-Consensus Halving is PPA-hard, which completes the
containment [29, 30].

Let us present a roadmap of this work. In Section 2 we give formal definitions for the notions and
models that are used throughout the paper. In Section 3 we introduce the complexity class BU and its
linear version LinearBU, and show that LinearBU ⊆ PPA. Then, in Section 4 we focus on the Consensus
Halving problem and show containment results for variations of it. Following this, in Section 5 the most
challenging set of this paper’s results is presented, namely hardness of the Consensus Halving variations
in already known complexity classes. Finally, the most technical parts of the paper are presented in
Sections 6, 7, 8, 9.

1.2 Related work
Although for a long period there were a few results about PPA, recently there has been a flourish of PPA-
completeness results. The first PPA-completeness result was given by [33] who showed PPA-completeness
of the Sperner problem for a non-orientable 3-dimensional space. In [31] this result was strengthened
for a non-orientable and locally 2-dimensional space. In [4], 2-dimensional Tucker was shown to be
PPA-complete; this result was used in [29, 30] to prove PPA-completeness for approximate Consensus
Halving. In [24] PPA-completeness was proven for a special version of Tucker and for problems of the
form “given a discrete fixed point in a non-orientable space, find another one”. Finally, in [25] it was
shown that octahedral Tucker is PPA-complete. In [37], a subclass of 2DLinearFIXP ⊆ FIXP that consists
of 2-dimensional fixed-point problems was studied, and it was proven that 2DLinearFIXP = PPAD.

A large number of problems are now known to be ETR-complete: geometric intersection problems [36,
41], graph-drawing problems [1, 11, 21, 42], matrix factorization problems [43, 44], the Art Gallery
problem [2], and deciding the existence of constrained (symmetric) Nash equilibria in (symmetric) normal
form games with at least three players [12, 13, 14, 15, 32, 10].

2 Preliminaries
2.1 Arithmetic circuits and reductions between real-valued search problems
An arithmetic circuit is a representation of a continuous function f : Rn → Rm. The circuit is defined
by a pair (V, T), where V is a set of nodes and T is a set of gates. There are n nodes in V that are
designated to be input nodes, and m nodes in V that are designated to be output nodes. When a value
x ∈ Rn is presented at the input nodes, the circuit computes values for all other nodes v ∈ V , which we
will denote as x[v]. The values of x[v] for the m output nodes determine the value of f(x) ∈ Rm.

Every node in V , other than the input nodes, is required to be the output of exactly one gate in
T . Each gate g ∈ T enforces an arithmetic constraint on its output node, based on the values of
some other node in the circuit. Cycles are not allowed in these constraints. We allow the operations
{ζ,+,−, ∗ζ, ∗,max,min}, which correspond to the gates shown in Table 1. Note that every gate computes
a continuous function over its inputs, and thus any function f that is represented by an arithmetic circuit
of this form is also continuous.

We study two types of circuits in this work. General arithmetic circuits are allowed to use
any of the gates that we have defined above. Linear arithmetic circuits allow only the operations
{ζ,+,−, ∗ζ,max,min}, and the ∗ operation (multiplication of two variables) is disallowed. Observe that
a linear arithmetic circuit computes a continuous, piecewise linear function.

4

Gate Constraint
Gζ(ζ, vout) x[vout] = ζ, where ζ ∈ Q
G+(vin1, vin2, vout) x[vout] = x[vin1] + x[vin2]
G−(vin1, vin2, vout) x[vout] = x[vin1]− x[vin2]
G∗ζ(ζ, vin, vout) x[vout] = x[vin1] · ζ, where ζ ∈ Q
G∗(vin1, vin2, vout) x[vout] = x[vin1] · x[vin2]
Gmax(vin1, vin2, vout) x[vout] = max{x[vin1], x[vin2]}
Gmin(vin1, vin2, vout) x[vout] = min{x[vin1], x[vin2]}

Table 1: The types of gates and their constraints.

In this work we do not deal with the usual discrete search problems, but instead we study continuous
problems whose solutions are exact, and involve representation of real numbers. However, the computa-
tion model on which we work is still the discrete Turing machine model and not a computation model
over the reals like the BSS machine [16]. For this reason, when we consider reductions from a problem P
to a problem Q with real-valued solutions, we have to be restricted to functions f , g with certain prop-
erties, that transform instances of P to instances of Q and solutions of Q to solutions of P respectively.
In particular, f and g should be polynomial time computable, and g has to map efficiently (discrete)
solutions of Q back to (discrete) solutions of P , for the corresponding discrete versions of P and Q.

In the proof of Theorem 6 we analytically present what function g is allowed to do. For both the
cases where the input to problem P is a set of (a) general circuits (which represent functions whose
roots are possibly irrational numbers) or (b) linear circuits (where roots are rational), g is implemented
by a polynomial size arithmetic circuit with an additional type of gate G>. This is a comparison gate
with a single input which outputs 1 if the input is positive and 0 otherwise. We highlight that the extra
gate type implements a discontinuous function, but this does not matter since the comparison gate is
only used for function g, and not for f . Note that our reductions use more powerful functions than the
“SL-reductions” used by Etessami and Yannakakis in [27], but nevertheless computable in polynomial
time.

2.2 The Consensus Halving problem
In the Consensus Halving problem there is an object A that is represented by the [0, 1] line segment,
and there are n agents. We wish to divide A into two (not necessarily contiguous) pieces such that every
agent agrees that the two pieces have equal value. Simmons and Su [45] have shown that, provided the
agents have bounded and continuous valuations over A, then we can find a solution to this problem using
at most n cuts.

In this work we consider instances of Consensus Halving where the valuations of the agents are
presented as arithmetic circuits. Each agent has a valuation function fi : [0, 1]→ R, but it is technically
more convenient if they give us a representation of the integral of this function. So for each agent i, we are
given an arithmetic circuit computing Fi : [0, 1]→ R where for all x ∈ [0, 1] we have Fi(x) =

∫ x
0 f(y) dy.

Then, the value of any particular segment of [a, b] to agent i can be computed as Fi(b)− Fi(a).
A solution to Consensus Halving is given by a k-cut of the object A, which is defined by a vector of

cut-points (t1, t2, . . . , tk) ∈ [0, 1]k, where t1 ≤ · · · ≤ tk. The cut-points ti split A into up to k + 1 pieces.
Note that they may in fact split A into fewer than k + 1 pieces in the case where two cut-points ti = tj
overlap. We define Xi to be the i-th piece of A, meaning that Xi = [ti−1, ti] for all i ∈ [k+ 1], where we
set t0 := 0 and tk+1 := 1.

In a Consensus Halving solution the object A is divided into two “super-pieces” A+ and A− formed
by the k + 1 pieces induced by the k-cut. Each piece is assigned a sign “+′′ or “−′′ and all of the pieces
with positive sign consist super-piece A+ while the rest consist A−. For each agent i, we denote the value
A+ as Fi(A+) :=

∑
[a,b]∈A+

(Fi(b)− Fi(a)), and we define Fi(A−) analogously. The k-cut is a solution
to the Consensus Halving problem if Fi(A+) = Fi(A−) for all agents i. Without loss of generality we
can consider only solutions of Consensus Halving where the signs of the pieces are alternating. That is
because in any solution that has two consecutive pieces of same sign, the cut that separates them can
be removed and transferred at the right end of A, taking value 1, and the two pieces can be merged

5

into a single one. Throughout the paper we implicitly consider this definition of a solution. Notice that
the solutions come in symmetric pairs, where the cuts are at the exact same points, and the signs are
opposite.

We define two computational problems. Simmons and Su [45] have proved that there always exists a
solution using at most n-cuts, and our first problem is to find that solution.

(n, n)-Consensus Halving

Input: For every agent i ∈ [n], an arithmetic circuit Fi computing the integral of agent i’s
valuation function.
Task: Find an n-cut for A such that Fi(A+) = Fi(A−), for every agent i ∈ [n].

For k < n a solution to the problem may or may not exist. So we define the following decision variant
of the problem.

(n, k)-Consensus Halving

Input: For every agent i ∈ [n], an arithmetic circuit Fi computing the integral of agent i’s
valuation function.
Task: Decide whether there exists a k-cut for A such that Fi(A+) = Fi(A−), for every agent
i ∈ [n].

For either of these two problems, if all of the inputs are represented by linear arithmetic circuits,
then we refer to the problem as Linear Consensus Halving. We note that the known hardness
results [28, 29] for Consensus Halving fall into this class. Specifically, those results produce valuations
that are piecewise constant, and so the integral of these functions is piecewise linear, and these functions
can be written down as linear arithmetic circuits [38].

3 The Class BU
The Borsuk-Ulam theorem states that every continuous function from the surface of an (d+1)-dimensional
sphere to the d-dimensional Euclidean space maps at least one pair of antipodal points to the same point.

Theorem 1 (Borsuk-Ulam). Let f : Sd → Rd be a continuous function, where Sd is a (d+1)-dimensional
sphere. Then, there exists an x ∈ Sd such that f(x) = f(−x).

This theorem actually works for any domain D that is an antipode-preserving homeomorphism of
Sd, where by “antipode-preserving” we mean that for every x ∈ D we have that −x ∈ D. In this work,
we choose Sd to be the sphere in d+ 1 dimensions with respect to L1 norm:

Sd :=
{
x | x = (x1, x2, . . . , xd+1),

d+1∑
i=1
|xi| = 1

}
.

We define the Borsuk-Ulam problem as follows.
Borsuk-Ulam

Input: A continuous function f : Rd+1 → Rd presented as an arithmetic circuit.
Task: Find an x ∈ Sd such that f(x) = f(−x).

Note that we cannot constrain an arithmetic circuit to only take inputs from the domain Sd, so we
instead put the constraint that x ∈ Sd onto the solution.

The complexity class BU is defined as follows.

Definition 2 (BU). The complexity class BU consists of all search problems that can be reduced to
Borsuk-Ulam in polynomial time under a reduction of the type described in Section 2.1.

6

3.1 LinearBU
When the input to a Borsuk-Ulam instance is a linear arithmetic circuit, then we call the problem
Linear-Borsuk-Ulam, and we define the class LinearBU as follows.

Definition 3 (LinearBU). The complexity class LinearBU consists of all search problems that can be
reduced to Linear-Borsuk-Ulam in polynomial time.

We will show that LinearBU = PPA. The proof that LinearBU ⊆ PPA is similar to the proof that
Etessami and Yannakakis used to show that LinearFIXP ⊆ PPAD [27], while the fact that PPA ⊆ LinearBU
will follow from our results on Consensus Halving in Section 4.

To prove LinearBU ⊆ PPA we will reduce to the approximate Borsuk-Ulam problem. It is well known
that the Borsuk-Ulam theorem can be proved via Tucker’s lemma, and Papadimitriou noted that this
implies that finding an approximate solution to a Borsuk-Ulam problem lies in PPA [39]. This is indeed
correct, but the proof provided in [39] is for a slightly different problem1. Since our results will depend
on this fact, we provide our own definition and self-contained proof here. We define the approximate
Borsuk-Ulam problem as follows.

ε-Borsuk-Ulam

Input: A continuous function f : Rd+1 → Rd presented as an arithmetic circuit, along with two
constants ε, λ ∈ R.
Task: Find one of the following.

1. A point x ∈ Sd such that ‖f(x)− f(−x)‖∞ ≤ ε.

2. Two points x, y ∈ Sd such that ‖f(x)− f(y)‖∞ > λ · ‖x− y‖∞.

The first type of solution is an approximate solution to the Borsuk-Ulam problem, while the second
type of solution consists of any two points that witness that the function is not λ-Lipschitz continuous
in the L∞-norm. The second type of solution is necessary, because an arithmetic circuit is capable,
through repeated squaring, of computing doubly-exponentially large numbers, and the reduction to
Tucker may not be able to find an approximate solution for such circuits. Note however that later
in Lemma 5 we reduce Linear-Borsuk-Ulam to ε-Borsuk-Ulam, where the former has as input a
linear arithmetic circuit and therefore Lipschitzness in the ε-Borsuk-Ulam we reduce to is guaranteed.
In other words, for the purposes of this section it would suffice to assume Lipschitzness of the input
function of ε-Borsuk-Ulam, but here we state a more general version of the problem and show that it
is also included in PPA. We now re-prove the result of Papadimitriou in the following lemma.

Lemma 4 ([39]). ε-Borsuk-Ulam is in PPA.

Proof. This proof is essentially identical to the one given by Papadimitriou, but various minor changes
must be made due to the fact that our input is an arithmetic circuit, and our domain is the L1-sphere.
His proof works by reducing to the Tucker problem. In this problem we have a antipodally symmetric
triangulation of Sd with set of vertices V , and a labelling function L : V → {−1, 1,−2, 2, . . . ,−d, d}
that satisfies L(v) = −L(−v) for all v ∈ V . The task is to find two adjacent vertices v and u such that
L(v) = −L(u), whose existence is guaranteed via Tucker’s lemma. Papadimitriou’s containment proof
goes via the hypercube, but in [28] it is pointed out that this problem also lies in PPA when the domain
is the L1-sphere Sd.

To reduce the ε-Borsuk-Ulam problem for (f, ε, λ) to Tucker, we choose an arbitrary triangulation
of Sn such that the distance between any two adjacent vertices is at most ε/λ. Let g(x) = f(x)−f(−x).
To determine the label of a vertex v ∈ V , first find the coordinate i that maximises |g(v)i| breaking ties
arbitrarily, and then set L(v) = i if g(v)i > 0 and L(v) = −i otherwise.

Tucker’s lemma will give us two adjacent vertices v and u satisfying L(v) = −L(u), and we must
translate this to a solution to ε-Borsuk-Ulam. If ‖g(u) − g(v)‖∞ > λ · ‖u − v‖∞, then we have a

1The problem used in [39] presents the function as a polynomial-time Turing machine rather than an arithmetic circuit,
and the Lipschitzness of the function is guaranteed by constraining the values that it can take.

7

violation of Lipschitz continuity. Otherwise, we have

‖g(u)− g(v)‖∞ ≤ λ · ‖u− v‖∞
≤ λ · ε

λ
≤ ε

Let i = L(v). Note that by definition we have that |g(v)j | ≤ |g(v)i| for all j, that |g(u)j | ≤ |g(u)i| for
all j, and that that g(u)i and g(v)i have opposite signs. These three facts, along with the fact that
‖g(u) − g(v)‖∞ ≤ ε imply that |g(v)j | ≤ ε for all j. Hence we can conclude that ‖f(v) − f(−v)‖∞ ≤ ε
meaning that v is a solution to ε-Borsuk-Ulam.

To show that LinearBU ⊆ PPA we will provide a polynomial-time reduction from
Linear-Borsuk-Ulam to ε-Borsuk-Ulam. To do this, we follow closely the technique used by Etes-
sami and Yannakakis to show that LinearFIXP ⊆ PPAD [27]. The idea is to make a single call to
ε-Borsuk-Ulam to find an approximate solution to the problem for a suitably small ε, and to then
round to an exact solution by solving a linear program. To build the LP, we depend on the fact that we
have access to the linear arithmetic circuit that represents f .

Lemma 5. Linear-Borsuk-Ulam is in PPA.

Proof. Suppose that we have a function f that is represented as a linear arithmetic circuit. We will
provide a polynomial-time reduction to ε-Borsuk-Ulam.

The first step is to argue that, for all ε > 0, we can make a single call to ε-Borsuk-Ulam in order
to find an ε-approximate solution to the problem. The only technicality here is that we must choose λ
so as to ensure that no violations of λ-Lipschitzness in the L∞-norm can be produced as a solution.

Fortunately, every linear arithmetic circuit computes a λ-Lipschitz function where the bit-length of
λ is polynomial in the size of the circuit. Moreover, an upper bound on λ can easily be computed by
inspecting the circuit.

• An input to the circuit has a Lipschitz constant of 1.

• A + gate operating on two gates with Lipschitz constants x and y has a Lipschitz constant of at
most x+ y.

• A ∗ζ gate operating on a gate with Lipschitz constant x has a Lipschitz constant of at most |ζ| · x.

• A max or min gate operating on two gates with Lipschitz constants x and y has a Lipschitz constant
of at most max(x, y).

The Lipschitz constant for the circuit in the L∞-norm is then the maximum of the Lipschitz constants
of the output nodes of the circuit. So, for any given ε > 0 that can be represented in polynomially many
bits, we can make a single call to ε-Borsuk-Ulam, in order to find an ε-approximate solution to the
Borsuk-Ulam problem.

The second step is to choose an appropriate value for ε so that the approximate solution can be
rounded to an exact solution using an LP. Let g(x) = f(x) − f(−x). Note that g(x) can also be
computed by a linear arithmetic circuit, and that g(x) = 0 if and only if f(x) = f(−x).

We closely follow the approach of Etessami and Yannakakis [27]. They use the fact that the function
computed by a linear arithmetic circuit is piecewise-linear, and defined by (potentially exponentially
many) hyperplanes. They give an algorithm that, given a point p in the domain of the circuit, computes
in polynomial time the linear function (which represents the hyperplane) that defines the output of the
circuit for p. Furthermore, they show that the following can be produced in polynomial time from the
representation of the circuit and from p.

• A system of linear constraints Ax ≤ b such that a point x satisfies the constraints only if the linear
function (which represents the hyperplane) that defines the output of the circuit for p also defines
the output of the circuit for x.

• A linear formula Cx+C ′ that determines the output of the circuit for all points that satisfy Ax ≤ b.

8

To choose ε, the following procedure is used. Let n be the number of inputs to g, and let m be an upper
bound on the bit-size of the solution of any linear system with n + 1 equations where the coefficients
are drawn from the hyperplanes that define the function computed by g. This can be computed in
polynomial time from the description of the circuit, and m will have polynomial size in relation to the
description of the circuit. We choose ε < 1/2m.

We make one call to ε-Borsuk-Ulam to find a point p ∈ Sn such that ‖f(p)−f(−p)‖∞ ≤ ε, meaning
that ‖g(p)‖∞ ≤ ε. The final step is to round this to an exact solution of Borsuk-Ulam. To do this,
we can modify the linear program used by Etessami and Yannakakis [27]. We apply the operations
given above to the circuit g and the point p to obtain the system of constraints Ax ≤ b and the formula
Cx+ C ′ for the hyperplane defining the output of g for p. We then solve the following linear program.
The variables of the LP are a vector x of length n, and a scalar z. The goal is to minimize z subject to:

Ax ≤ b
(Cx)i + C ′i ≤ z for i = 1, . . . , n

−((Cx)i + C ′i) ≤ z for i = 1, . . . , n
xi ≥ 0 for each i with pi ≥ 0
xi ≤ 0 for each i with pi < 0

n∑
i=1
|xi| = 1 (see below regarding |xi|)

The first constraint ensures that we remain on the same cell as the one defining the output of g for p.
The second and third constraints ensure that ‖g(x)‖∞ ≤ z. The fourth and fifth constraints ensure that
xi has the same sign as pi, while the sixth constraint ensures that x lies on the surface Sn. Note that
the |xi| operation in the sixth constraint is not a problem, since the fourth and fifth constraints mean
that we know the sign of xi up front, and so we just need to add either xi or −xi to the sum. All of the
above implies that that x is a z-approximate solution of Borsuk-Ulam for f .

We must now argue that the solution sets z = 0. First we note that the LP has a solution, because
the point (p, ε) is feasible, and the LP is not unbounded since z cannot be less than zero due to the
second and third constraints. So let (x∗, z∗) be an optimal solution. This solution lies at the intersection
of n + 1 linear constraints defined by rationals drawn from the circuit representing g, and so it follows
that z∗ is a rational of bit length at most m. Since 0 ≤ z∗ ≤ ε < 1/2m, it follows that z∗ = 0, and thus
x∗ is an exact solution to Borsuk-Ulam for f .

4 Containment Results for Consensus Halving
4.1 (n, n)-Consensus Halving is in BU and LinearBU = PPA
We show that (n, n)-Consensus Halving is contained in BU. Simmons and Su [45] show the existence
of an n-cut solution to the Consensus Halving problem by applying the Borsuk-Ulam theorem, and we
follow their approach in this reduction. However, we must show that the approach can be implemented
using arithmetic circuits. We take care in the reduction to avoid G∗ gates, and so if the inputs to the
problem are all linear arithmetic circuits, then our reduction will produce a Linear-Borsuk-Ulam
instance. Hence, we also show that (n, n)-Linear Consensus Halving is in LinearBU.

Theorem 6. The following two containments hold.

• (n, n)-Consensus Halving is in BU.

• (n, n)-Linear Consensus Halving is in LinearBU.

Proof. Let us first summarise the approach used by Simmons and Su [45]. Given valuation functions
Fi for the n agents, they construct a Borsuk-Ulam instance given by a function b : Sn → Rn. Each
point (x1, x2, . . . , xn+1) ∈ Sn can be interpreted as an n-cut of [0, 1], where |xi| gives the width of the
ith piece, and the sign of xi indicates whether the ith piece should belong in A+ or A−. They then
define b(x)i = Fi(A+) for each agent i. The fact that −x flips the sign of each piece, but not the width,

9

implies that b(−x)i = Fi(A−). Hence, any point that satisfies b(x) = b(−x) has the property that
Fi(A+) = Fi(A−) for all agents i, and so is a solution to Consensus Halving.

Our task is to implement this reduction using arithmetic circuits and construct in polynomial time
a Borsuk-Ulam instance from a (n, n)-Consensus Halving instance. Suppose that we are given
arithmetic circuits Fi implementing the integral of each agent’s valuation function. We show how to map
each Fi to a function b(x)i = Fi(A+) computable via a linear arithmetic circuit, where x ∈ Sn, i.e. a
Borsuk-Ulam instance. The tricky part of this, is that for each agent i we must include the j-th piece
in the sum if and only if xj is positive. Then we show how to map a solution x back to a solution of
(n, n)-Consensus Halving.

We begin by observing that the operation of |x| can be implemented via a linear arithmetic circuit.
Specifically, via the following construction:

|x| := max(x, 0) + max(−x, 0).

Hence, we can implement |x| using only gates Gmax, G+, and Gζ . Then, we define t0 := 0, and for each
j in the range 1 ≤ j ≤ n+ 1, define:

tj := tj−1 + |xj |. (1)

The value of tj gives the end of the j-th piece, and note that tn+1 = 1. Next, for each j in the range
1 ≤ j ≤ n+ 1 we define:

pj := max(xj , 0).

Note that pj is xj whenever xj is positive, and zero otherwise. Finally, for 1 ≤ j ≤ n+ 1 define:

qj := Fi(tj−1 + pj)− Fi(tj−1).

Using the reasoning above, we can see that qj is agent i’s valuation for piece j whenever xj is positive,
and zero otherwise. So we can define

b(x)i =
n+1∑
j=1

qj ,

implying that b(x)i = Fi(A+), as required.
Finally, we need to map a solution x of Borsuk-Ulam to a pair of (n, n)-Consensus Halving

solutions, i.e. a vector of cut-points (t1, t2, . . . , tn). Recall that the cut points correspond to a pair of
symmetric solutions where, in each, the signs of the resulting pieces are alternating (by definition) and
the two solutions have opposite signs.

Let the input to (n, n)-Consensus Halving be a general circuit with gates
Gζ , G+, G−, G∗ζ , G∗, Gmax, Gmin, or a linear circuit, where gate G∗ is disallowed. From a solu-
tion of Borsuk-Ulam we map back to a solution of (n, n)-Consensus Halving by constructing a
circuit in which we allow the use of an extra comparison gate G>. This gate takes an input vin and
outputs 1 if vin > 0 and 0 otherwise. One can see that the function this gate implements is discontinuous
only for vin = 0, contrary to the rest of the gates that implement continuous functions. This fact,
however, does not affect the validity of the reduction (see also Section 2.1). Whether a mapping can
be constructed without the use of G>, or in general, with using only gates that implement continuous
functions is left as an open problem.

We denote the operation this gate implements in the following way: {x}> := 1, if x > 0, and
{x}> := 0, otherwise. This circuit computes the n-cut that is a solution to (n, n)-Consensus Halving.
Given a solution of Borsuk-Ulam, i.e. a vector (x1, x2, . . . , xn+1) ∈ Sn, we construct a circuit that has
two stages: (i) first it shifts all xj = 0 to position n+ 1 of the vector, (ii) then for every two consecutive
xj ’s it merges them if they have the same sign, thus resulting to a vector x with coordinates of alternating
sign and consecutive zeros at the rightmost positions. One should note that merging a pair of consecutive
coordinates of x that have the same sign, and transferring all coordinates of value zero at the rightmost
position of x while maintaining the order of the rest of the coordinates, does not affect the Consensus
Halving solution. That is because by such operations, the positive and negative intervals remain the
same; only cuts between two consecutive pieces or cuts that are more than one on the same position are
transferred to position 1 of the interval [0, 1]. In other words, the positive and negative valuations Fi(A+)
and Fi(A−) remain the same after such operations since the positive and negative intervals remain at

10

the same positions on [0, 1]. What we want is to bring the Consensus Halving solution into the form of
a valid (n, n)-Consensus Halving solution, i.e. an n-cut whose pieces have alternating signs.

For the implementation of checking whether a coordinate xj is zero and shifting it one position to
the right, we make the following construction:

xj = ({xj}> + {−xj}>) ∗ xj + (1− {xj}> − {−xj}>) ∗ xj+1,

xj+1 = ({xj}> + {−xj}>) ∗ xj+1 + (1− {xj}> − {−xj}>) ∗ xj .

Therefore, to move a zero (if it exists) to the rightmost position of x we need to implement the above
two functions for every j ∈ [n] in increasing order, meaning that after we implement the circuit for the
pair x1, x2 we then implement x2, x3 and so on until xn, xn+1. To implement stage (i) we have to iterate
this procedure n times, since in the worst case there will be n coordinates with value zero in x. Note
that for stage (i) we need no more than O(n2) gates.

Now in our vector, starting from the left, there are consecutive non-zero values and after them
consecutive zero values. What remains to be done is to implement stage (ii), i.e. to merge pairs of
consecutive coordinates with the same sign. To do that for a pair xj , xj+1, we make the following
construction:

xj = xj + {xj ∗ xj+1}> ∗ xj+1,

xj+1 = (1− {xj ∗ xj+1}>) ∗ xj+1.

Therefore, either there will be no change in the values of xj and xj+1 if they are of opposite sign, or
xj becomes xj + xj+1 and xj+1 becomes zero. In the latter case we will have introduced a zero to the
vector. That is why right after the above construction for some j ∈ [n] we implement a shifting of the
(possibly introduced) zero to the rightmost position of x using the aforementioned procedure of stage
(i). We do this for every j ∈ [n] in an increasing order. Note that for stage (ii) we need no more than
O(n2) gates.

After implementing the aforementioned two stages, the resulting vector x = (x1, x2, . . . , xn+1), start-
ing from the left, has coordinates of alternating sign and at its rightmost positions it has zeros. Finally,
we compute the n-cut (t1, t2, . . . , tn) in a straight-forward way using equation (1), where we initialize
t0 := 0. Also, always tn+1 = 1 and it is discarded. Note that for the above constructions no more than
O(n2) gates were needed in total. Since the pieces of these cuts have alternating sign, this is a valid
solution to (n, n)-Consensus Halving and the proof is complete.

Theorem 6 also implies that PPA ⊆ LinearBU, thereby completing the proof that PPA = LinearBU.
Specifically, Filos-Ratsikas and Goldberg have shown that approximate-(n, n)-Consensus Halving is
PPA-complete, and their valuation functions are piecewise constant [29]. Therefore, the integrals of
these functions are piecewise linear, and so their approximate-(n, n)-Consensus Halving instances
can be reduced to (n, n)-Linear Consensus Halving. Hence (n, n)-Linear Consensus Halving is
PPA-hard, which along with Lemma 5 implies the following corollary.
Corollary 7. PPA = LinearBU.

4.2 (n, k)-Consensus Halving is in ETR
The existential theory of the reals consists of all true existentially quantified formulae using the connec-
tives {∧,∨,¬} over polynomials compared with the operators {<,≤,=,≥, >}. The complexity class ETR
captures all problems that can be reduced in polynomial time to the existential theory of the reals.

We prove that (n, k)-Consensus Halving is in ETR. The reduction simply encodes the arithmetic
circuits using ETR formulas, and then constrains Fi(A+) = Fi(A−) for every agent i.
Theorem 8. (n, k)-Consensus Halving is in ETR.

Proof. The first step is to argue that an arithmetic circuit can be implemented as an ETR formula. Let
(V, T) be the arithmetic circuit. For every vertex v ∈ V we introduce a new variable xv. For every
gate g ∈ T we introduce a constraint. For the gates in the set {Gζ , G+, G−, G∗ζ , G∗} the constraints
simply implement the gate directly, eg., for a gate G+(vin1, vin2, vout) we use the constraint x[vout] =
x[vin1] + x[vin2]. For a gate Gmax(vin1, vin2, vout) we use the formula(

(x[vout] = x[vin1]) ∧ (x[vin1] ≥ x[vin2])
)
∨
(
(x[vout] = x[vin2]) ∧ (x[vin2] ≥ x[vin1])

)
,

11

and likewise for a gate Gmin(vin1, vin2, vout) we use the formula(
(x[vout] = x[vin1]) ∧ (x[vin1] ≤ x[vin2])

)
∨
(
(x[vout] = x[vin2]) ∧ (x[vin2] ≤ x[vin1])

)
.

Taking the conjunction C of the constraints for each of the gates yields an ETR formula that implements
the circuit.

Now we perform the reduction from Consensus Halving to the existential theory of the reals. Suppose
that we have been given, for each agent i, an arithmetic circuit Fi implementing the integral of agent i’s
valuation function. We have already shown in the proof of Theorem 6 that, given a description of a k-cut
given as a point in Sk, we can create a circuit implementing Fi(A+) and a circuit implementing Fi(A−)
for each agent i. We also argued in that proof that

∑k+1
j=1 |xj | can be implemented as an arithmetic

circuit. Our ETR formula is as follows.

∃x ·

(
n∧
i=1

Fi(A+) = Fi(A−)
)
∧ C ∧

k+1∑
j=1
|xj | = 1

 .

The first set of constraints ensure that x is a solution to the Consensus Halving problem, the second one
implements as showed above the max and min operations that are not allowed in an ETR formula, and
the final constraint ensures that x ∈ Sn.

Using the same technique, we can also reduce Borsuk-Ulam to an ETR formula. In this case, we get
an ETR formula that always has a solution. Let us define here the class FETR (Function ETR) which
contains all search problems whose corresponding decision version lies in ETR. We also define the class
TFETR (Total Function ETR) as the subclass of FETR which contains the search problems whose decision
version outputs always “yes”. As ETR is the analogue of NP, FETR and TFETR are the analogues of FNP
and TFNP respectively in the Blum-Shub-Smale computation model [16].

Theorem 9. BU ⊆ TFETR.

Proof. The proof is essentially identical to the proof of Theorem 8, and the only difference is that instead
of starting with a Consensus Halving instance, we start with an arbitrary arithmetic circuit representing
the function f : Sd → Rd, for which we wish to find a point x satisfying f(x) = f(−x). We implement
the arithmetic circuit in the same way as in Theorem 8, and our ETR formula is:

∃x ·

(
d∧
i=1

fi(x) = fi(−x)
)
∧ C ∧

d+1∑
j=1
|xj | = 1

 ,

where C is the conjunction of the constraints that implement max and min gates.

5 Hardness Results for Consensus Halving
In this section we give an overview of our hardness results for Consensus Halving. Full proofs will
be given in subsequent sections. We prove that (n, n)-Consensus Halving is FIXP-hard and that
(n, n− 1)-Consensus Halving is ETR-hard. These two reductions share a common step of embedding
an arithmetic circuit into a Consensus Halving instance. So we first describe this step, and then move on
to proving the two individual hardness results. An outline of the embedding step is described in Section
5.1, which concludes to Lemma 10. The detailed proof of that lemma is presented in Section 6.

Then, in Section 5.2 we present a polynomial-time reduction from the FIXP-complete problem of
computing a Nash equilibrium in a d-player strategic form game to the problem of computing a (n, n)-
Consensus Halving solution. Finally, in Section 5.3, after proving ETR-completeness for an auxil-
iary problem, we reduce from it to the (n, n − 1)-Consensus Halving problem. The implied ETR-
hardness of the latter problem, together with its ETR-membership by Theorem 8 proves the required
ETR-completeness.

12

Special Gate Constraint Ranges
G()2(vin, vout) x[vout] = (x[vin])2 x[vin] ∈ [0, 1]
G

[0,1]
∗2 (vin, vout) x[vout] = x[vin] · 2 x[vin] ∈ [0, 1/2]

G
[0,1]
− (vin1, vin2, vout) x[vout] = max{x[vin1]− x[vin2], 0} x[vin1], x[vin2] ∈ [0, 1]

Table 2: The special types of gates, their constraints and ranges of input.

5.1 Embedding a circuit in a Consensus Halving instance: an outline
Our approach is inspired by [28], who provided a reduction from ε-GCircuit [22, 40] to approximate
Consensus Halving. However, our construction deviates significantly from theirs due to several reasons.

Firstly, the reduction in [28] works only for approximate Consensus Halving. Specifically, some
valuations used in that construction have the form of 1/ε, where ε is the approximation guarantee, so
the construction is not well-defined when ε = 0 as it is in our case. Many of the gate gadgets used in [28]
cannot be used due to this issue, including the max gate, which is crucially used in that construction to
ensure that intermediate values do not get too large. We provide our own implementations of the broken
gates. Our gate gadgets only work when the inputs and outputs lie in the range [0, 1], and so we must
carefully construct circuits for which this is always the case. The second major difference is that the
reduction in [28] does not provide any method of multiplying two variables, which is needed in our case.
We construct a gadget to do this, based on a more primitive gadget for squaring a single variable.

5.1.1 Special circuit

Our reduction from an arithmetic circuit to Consensus Halving will use a very particular subset of gates.
Specifically, we will not use Gmin, Gmax, or G∗, and we will restrict G∗ζ so that ζ must lie in (0, 1]. We
do however introduce three new gates, shown in Table 2. The gate G()2 squares its input, the gate G[0,1]

∗2

multiplies its input by two, but requires that the input be in [0, 1/2], and the gate G[0,1]
− is a special

minus gate that takes as inputs a, b ∈ [0, 1] and outputs max{a− b, 0}.
We note that Gmin, Gmax, and G∗ can be implemented in terms of our new gates according to the

following identities.

max{a, b} = a+ b

2 + |a− b|2 = a

2 + b

2 + 1
2 max{a− b, 0}+ 1

2 max{b− a, 0},

min{a, b} = a+ b

2 − |a− b|2 = a

2 + b

2 −
1
2 max{a− b, 0} − 1

2 max{b− a, 0},

a · b = 2
[(

a

2 + b

2

)2
−

((a
2

)2
+
(
b

2

)2
)]

.

Also, a very important requirement of the special circuit is that both inputs of any G+ gate are in
[0, 1/2]. To make sure of that, we downscale the inputs before reaching the gate, and upscale the output,
using the fact that a+ b = (a/2 + b/2) · 2.

5.1.2 The reduction to Consensus Halving

The reduction follows the general outline of the reduction given in [28]. The construction is quite involved,
and so we focus on the high-level picture here.

Each gate is implemented by 4 agents, namely ad,mid, cen, ex in the Consensus Halving instance.
The values computed by the gates are encoded by the positions of the cuts that are required in order
to satisfy these agents. Agent ad performs the exact mathematical operation of the gate, and feeds
the outcome in mid, who “trims” it in accordance with the gate’s actual operation. Then mid feeds
her outcome to cen and ex, who make a copy of mid’s correct value of the gate, with “negative” and
“positive” labels respectively. This value with the appropriate label will be input to other gates.

The most important agents are the ones that perform the mathematical operation of each gate, i.e.
agents ad. Figure 1 shows the part of the valuation functions of these agents that perform the operation.
Each figure shows a valuation function for one of the agents, meaning that the blue regions represent

13

Valuation function

1 if t ∈ [vaout,l + ζ − 1
2, v

a
out,l + ζ + 1

2]

0 otherwise

1 if t ∈ v+in

0 otherwise

1/ζ if t ∈ [vaout,l, v
a
out,l + ζ]

2(t− v+in,l) if t ∈ v+in

0 otherwise

1 if t ∈ vaout

1 if t ∈ [v+in2,l, v
+
in2,l +

1
2]

0 otherwise

1 if t ∈ vaout

1 if t ∈ [v+in1,l, v
+
in1,l +

1
2]

Gπ(t)

1 if t ∈ [v+in,l, v
+
in,l +

1
2]

0 otherwise

1/2 if t ∈ vaout

1 if t ∈ v−in2

0 otherwise

1 if t ∈ [vaout,l − 1, vaout,r]

1 if t ∈ v+in1
1

vaout

vaoutv+in

vaoutv+in2v+in1

vaoutv+in

v+in

vaoutv−in2v+in1

vaout

1

1

ζ

ζ

11 1

1 1 1

1

2

1

Gate

Gζ

G∗ζ

G+

G()2

G
[0,1]
∗2

1
2

1
2

1
2

1
2

1
2

1
2

1
ζ

G
[0,1]
−

Figure 1: Gates and their corresponding functions Gπ(t).

14

portions of the object that the agent desires. The agent’s valuation for any particular interval is the
integral of this function over that interval.

To understand the high-level picture of the construction, let us look at the construction for G∗ζ . The
precise valuation functions of the agents in the construction (see (2)) ensure that there is exactly one
input cut in the region v+

in. The leftmost piece due to that cut in that region will belong to A+, while
the rightmost will belong to A−. It is also ensured that there is exactly one output cut in the region
vaout, and that the first piece in that region will belong to A− and the second will belong to A+.

Suppose that gate gi in the circuit is of type G∗ζ and we want to implement it through a
Consensus Halving instance. If we treat v+

in and vaout in Figure 1 as representing [0, 1], then agent
adi will take as input a cut at point x ∈ v+

in. In order to be satisfied, adi will impose a cut at point
y ∈ vaout, such that Fi(A+) = Fi(A−), where: Fi(A+) = x + (ζ − y)/ζ and Fi(A−) = (1 − x) + y/ζ.
Simple algebraic manipulation can be used to show that adi is satisfied only when y = ζ · x, as required.

We show that the same property holds for each of the gates in Figure 1. Two notable constructions
are for the gates G()2 and G[0,1]

− . For the gate G()2 the valuation function of agent ad is non-constant,
which is needed to implement the non-linear squaring function. For the gate G[0,1]

− , note that the output
region vaout only covers half of the possible output space. The idea is that if the result of x[vin1]−x[vin2]
is negative, then the output cut will lie before the output region, which will be interpreted as a zero
output by agents mid, cen, ex in the construction. On the other hand, if the result is positive, the result
will lie in the usual output range, and will be interpreted as a positive number. An example where
x[vin1] = 1/4 and x[vin2] = 3/4 is shown in Figure 2.

Ultimately, this allows us to construct a Consensus Halving instance that implements this circuit.
This means that for any x ∈ [0, 1]n, we can encode x as a set of cuts, which then force cuts to be made
at each gate gadget that encode the correct output for that gate.

Lemma 10. Suppose that we are given an arithmetic circuit with the following properties.

• The circuit uses the gates Gζ , G+, G∗ζ , G()2 , G
[0,1]
− , G

[0,1]
∗2 .

• Every Gζ and G∗ζ has ζ ∈ Q ∩ (0, 1].

• For every input x ∈ [0, 1]n, all intermediate values computed by the circuit lie in [0, 1].

We can construct a Consensus Halving instance that implements this circuit.

The proof of this lemma is presented in Section 6.

5.2 (n, n)-Consensus Halving is FIXP-hard
We show that (n, n)-Consensus Halving is FIXP-hard by reducing from the problem of finding a Nash
equilibrium in a d-player game, which is known to be FIXP-complete [27]. As shown in [27], this problem
can be reduced to the Brouwer fixed point problem: given an arithmetic circuit computing a function
F : [0, 1]n → [0, 1]n, find a point x ∈ [0, 1]n such that F (x) = x. In a similar way to [28], we take this
circuit and embed it into a Consensus Halving instance, with the outputs looped back to the inputs.
Since Lemma 10 implies that our implementation of the circuit is correct, this means that any solution
to the Consensus Halving problem must encode a point x satisfying F (x) = x.

One difficulty is that we must ensure that the arithmetic circuit that we build falls into the class
permitted by Lemma 10. To do this, we carefully analyse the circuits produced in [27], and we modify
them so that all of the preconditions of Lemma 10 hold. This gives us the following result.

Theorem 11. (n, n)-Consensus Halving is FIXP-hard.

The proof of this theorem is presented in Section 7. Theorem 11, together with Theorem 6 give the
following corollary.

Corollary 12. FIXP ⊆ BU.

5.3 (n, n− 1)-Consensus Halving is ETR-complete
We will show the ETR-hardness of (n, n−1)-Consensus Halving by reducing from the following problem
Conjuction[0,1], which we prove it is ETR-complete.

15

v+j v−k vai vmi v−i v+i· · · · · ·

adi

midi

ceni

exi

Figure 2: An example where the computation at the output vout := vi of a G
[0,1]
− gate with inputs

vin1 := vj and vin2 := vk is simulated by the Consensus Halving instance. Here x[vj] = 1/4 and
x[vk] = 3/4, hence x[vi] = 0. The information about the values of the inputs is encoded by the cuts (red
lines) in intervals v+

j , and v−k imposed by agents exj and cenk respectively. The blue and green shapes
depict the area below the valuation function of each of the 4 agents. The pink regions have label “+”
while the yellow have label “−”. Agent adi performs the subtraction, by demanding that she is satisfied,
and places a cut 1/10 to the left of the left endpoint of interval vai . Then agent midi gets satisfied by
placing a cut at exactly the left endpoint of interval vmi , thus encoding the value 0 which is the correct
output value of the gate. Finally, agents ceni, exi copy this value by enforcing similar cuts at the left
endpoints of intervals v−i and v+

i respectively. The encoded values in the latter two intervals are the
“negative” and “positive” version of x[vi].

16

Definition 13 (Conjuction[0,1]). Let p1, . . . , pk : [0, 1]n → R be a family of polynomials, where each
one of them is given as a sum of monomials with integer coefficients. Conjuction[0,1] asks whether the
polynomials have a common zero.

Then, we reduce the above problem to the following one.

Definition 14 (Feasible, Feasible[0,1]). Let p(x1, . . . , xm) be a polynomial. Feasible asks whether
there exists a point (x1, . . . , xm) ∈ Rm that satisfies p(x1, . . . , xm) = 0. Feasible[0,1] asks whether there
exists a point (x1, . . . , xm) ∈ [0, 1]m that satisfies p(x1, . . . , xm) = 0.

The idea is to turn the polynomial into a circuit, and then embed that circuit into a Consensus
Halving instance using Lemma 10. As before, the main difficulty is ensuring that the preconditions
of Lemma 10 are satisfied. To do this, we must ensure that the inputs to the circuit take values in
[0, 1], which is not the case if we reduce directly from Feasible. Instead, we first consider the problem
Feasible[0,1], in which x is constrained to lie in [0, 1]n rather than Rn, and we show the following result.

Lemma 15. Feasible[0,1] is ETR-complete even for a polynomial of maximum sum of variable exponents
in each monomial equal to 4.

The proof of that lemma is presented in Section 8. Consequently, via a polynomial-time reduction
from Feasible[0,1] to (n, n− 1)-Consensus Halving and Theorem 8, we prove the following result.

Theorem 16. (n, n− 1)-Consensus Halving is ETR-complete.

The proof of the above theorem is presented in Section 9.

6 Proof of Lemma 10
In this section, the detailed construction of a Consensus Halving instance from an arbitrary given
special circuit is presented. A special circuit is an arithmetic circuit with the properties described
in the statement of Lemma 10 (see Section 5.1.1 for a detailed definition). After the construction, a
correspondence of circuit to Consensus Halving solutions is proven, which completes the proof of the
lemma.

6.1 Special circuit to Consensus Halving instance
Consider a circuit H = (V, T) that uses gates in {Gζ , G+, G∗ζ , G()2 , G

[0,1]
− , G

[0,1]
∗2 }, with ζ ∈ Q ∩ (0, 1],

each gate’s inputs/output are in [0, 1], and both inputs of G+ are in [0, 1/2]. The constraints of the
special gates G()2 , G

[0,1]
− , G

[0,1]
∗2 are shown in Table 2.

In general, the input of H is a N -dimensional vector x ∈ [0, 1]N is given by N nodes with in-degree
0 and out-degree 1, called input-nodes. Also, in general, the output of H is a M -dimensional vector
x′ ∈ [0, 1]M (the dimension of the circuit’s output is of no importance here). Moreover, it could be the
case that H is cyclic, meaning that it has no input and no output, but here we will consider the general
case. Without loss of generality, let the rest of the nodes be of in-degree 1 and out-degree 1, located right
after each gate’s output. By “right after” we mean that if a gate’s output has a branching, the node is
placed before the branching. Suppose that the total number of nodes in H is r := N + |T | = poly(N),
since by definition H has polynomial size.

If the node vi ∈ V for i ∈ [r] is at the output of gate gi we will call it the output-node of gi (otherwise
it will be an input-node). For an example see Figure 3.

Consider the node vi, the output-node of gate gi. vi corresponds to 4 Consensus Halving agents,
named adi, midi, ceni and exi. Player adi (Latin for “to”) represents the incoming edge to node vi and
agent exi (Latin for “from”) the outgoing edge from vi, while both midi and ceni represent an edge at
the middle (center) of node vi that connects its input and output. The number of agents created in H
is n := 4r. The domain of the valuation functions of the agents is [0, 12r]. Furthermore, this interval is
split to r blocks, with the i-th block being [bi, bi+1], where bi := 12(i− 1), i ∈ [r].

According to the definition of the Consensus Halving problem, the domain of the valuation func-
tions of the agents is [0, 1]. Although the domain of the valuation functions of the Consensus Halving
instance that we reduce to is [0, 12r], this is just for convenience of presentation. In fact, by scaling

17

G+

G∗1
2

G()2

v

g

Figure 3: A node in series with the output of an addition gate. v is the output-node of g.

down each block to length 1/(12r) (divide by 12r), the domain becomes [0, 1] and the correctness of the
reduction is preserved.

Let us define the function borderi(t), t ∈ [0, 12r] for each node vi, i ∈ [r]. The idea for this function
is from [28]. If vi is the output-node of gate type G∗ζ , then

borderi(t) =
{

4, t ∈ [bi, bi + 1] ∪ [bi + 1 + ζ, bi + 2 + ζ]
0, otherwise

If vi is the output-node of any gate type other than G∗ζ , then

borderi(t) =
{

4, t ∈ [bi, bi + 1] ∪ [bi + 2, bi + 3]
0, otherwise

and also:
• vai := [bi + 1, bi + 2] := [vai,l, vai,r]

• vmi := [bi + 4, bi + 5] := [vmi,l, vmi,r]

• v−i := [bi + 7, bi + 8] := [v−i,l, v
−
i,r]

• v+
i := [bi + 10, bi + 11] := [v+

i,l, v
+
i,r]

• Gπ(t) is the function corresponding to gate of type Gπ ∈ {Gζ , G∗ζ , G+, G()2 , G
[0,1]
− , G

[0,1]
∗2 } (see

Figure 1).
The valuation functions of the agents adi, midi, ceni and exi corresponding to node vi are,

adi(t) =
{
borderi(t) +Gπ(t), if vi is the output-node of gate type Gπ
borderi(t), if vi is input-node (input of H).

(2)

midi(t) =


4, t ∈ [bi + 3, bi + 4] ∪ [bi + 5, bi + 6]
1, t ∈ vai ∪ vmi
0, otherwise

ceni(t) =


4, t ∈ [bi + 6, bi + 7] ∪ [bi + 8, bi + 9]
1, t ∈ vmi ∪ v

−
i

0, otherwise

exi(t) =


4, t ∈ [bi + 9, bi + 10] ∪ [bi + 11, bi + 12]
1, t ∈ v−i ∪ v

+
i

0, otherwise

18

The intuition for the synergy of the 4 agents is the following: Take as a given that in a solution of
the created Consensus Halving instance with at most n cuts, a cut is placed only (almost always2) in
the intervals vai , vmi , v−i , v+

i for every i ∈ [r]. Since the length of each of those intervals is 1, each such
cut encodes a number in [0, 1]. Consider vi, the output-node of gate gi with inputs vj , vk. Think of the
agents adi, midi, ceni, exi as being sequential, meaning that each of them “computes” a value via a cut
in vai , vmi , v−i or v+

i respectively, and feeds it in the next agent. In particular, agent adi takes as input
the values (in the form of cuts) that nodes vj , vk give her, and computes the exact operation that gi
prescribes (e.g. if gi is type G[0,1]

− , adi performs subtraction of the input values without capping at 0,
see Figure 2). Then adi feeds this value in midi via creating a cut in vai , and midi computes the actual
value in [0, 1] that gi should output (e.g. if gi is type G[0,1]

− , in this step midi caps the value at 0), and
feeds it in ceni via creating a cut in vmi . This correct value should be exported for further use from other
gates to which vi is input, but depending on these gates, the positive or negative of that value might
be needed (by “positive” and “negative” we mean the label, not the actual sign of the value). That is
why a negative version of this value is produced by ceni and a positive by exi, via a cut in v−i and v+

i

respectively. A negative(resp. positive) value is one encoded by a cut that defines an interval at its left
which is negative(resp positive). Moreover, for every input-node vj we arbitrarily consider adj to encode
a negative value, therefore, since (by the structure of the Consensus Halving instance) the labels of
the values induced by the 4 agents are alternating, the agents midi, ceni, exi encode a positive, negative,
and positive value, respectively.

6.2 One-to-two correspondence of circuit values to Consensus Halving cuts
Here we show that a solution of the special circuit maps to one pair of Consensus Halving solu-
tions (since the solutions come by definition in pairs of opposite signs of pieces), and any pair of
Consensus Halving solutions maps to exactly one solution of the special circuit.

Let us define the functions zi(x), i ∈ [r] that depend on the input vector x ∈ [0, 1]N , and compute the
value of each node vi of the arithmetic circuitH. Let us also, without loss of generality, set (z1, . . . , zN) :=
(x1, . . . , xN). First, we will show that for every tuple (z1(x), . . . , zr(x)) of values that satisfyH, a solution
in the constructed Consensus Halving instance with n agents and n cuts (n := 4r) encodes the same
values via its cuts. We will then show that for every solution of the Consensus Halving instance with
n agents and n cuts, the cuts correspond to a unique tuple (z1, . . . , zr) that satisfies H.

In the sequel, we call a cut t negative(resp. positive) if the interval that it defines at its left has
negative(resp. positive) label. Also, in the following subsections, the analysis is done for the case where
the resulting Consensus Halving solution has its leftmost interval being negative. However, there is
one more solution symmetric to this, in which the leftmost interval is positive. In any solution we remind
that the intervals are of alternating signs (see definition of a Consensus Halving solution in Section
2.2). We omit the analysis of the solution where the leftmost interval is positive since it is identical to
the presented one.

6.2.1 Circuit values to cuts

Suppose the tuple (z∗1 , . . . , z∗r) satisfies H. We will show that from this solution we can create a
Consensus Halving solution with n := 4r cuts, i.e. all of the agents are satisfied. Consider node
vi of H. Let us translate the values z∗i , i ∈ [r] into cuts as follows:

• If gi’s type is one of Gζ , G∗ζ , G+, G()2 , G
[0,1]
∗2 or vi is an input-node.

– Place a cut at t = vai,l + z∗i ,
– Place a cut at t = vmi,l + z∗i ,
– Place a cut at t = v−i,l + z∗i ,
– Place a cut at t = v+

i,l + z∗i .

• If gi’s type is G[0,1]
− , i.e. gi = max{gj − gk, 0}, and z∗j ≥ z∗k.

2With the only exception being a cut before va
i when gate gi is G

[0,1]
− and its result is negative. See Figure 2 for an

example.

19

– Place a cut at t = vai,l + z∗i ,
– Place a cut at t = vmi,l + z∗i ,
– Place a cut at t = v−i,l + z∗i ,
– Place a cut at t = v+

i,l + z∗i .

• If gi’s type is G[0,1]
− , i.e. gi = max{gj − gk, 0}, and z∗j < z∗k

– Place a cut at t = vai,l − (z∗k − z∗j)/5,
– Place a cut at t = vmi,l + z∗i ,
– Place a cut at t = v−i,l + z∗i ,
– Place a cut at t = v+

i,l + z∗i .

By construction of the valuation functions of the agents, these cuts are placed one after the other,
where there is one cut in each of the intervals vai , vmi , v−i , v+

i in that order, and each such sequence
of four cuts is in an increasing order of i. By definition, any solution of Consensus Halving has
alternating signs of the resulting pieces, and, as mentioned earlier, each solution comes with another
symmetric solution with the same cuts and opposite signs of pieces. The analysis here is shown for the
solution where the leftmost piece is negative, and we omit the analysis of the symmetric solution since
it is identical.

Let us now prove that for every i ∈ [r], the adi agent is satisfied.

Gζ : This gate has no input. Consider its output z∗i = ζ and its output-node vi. By our constructed
n-cut, a cut is placed at t = vai,l + ζ. Since the valuation function of adi is symmetric around vai,l + ζ (see
aforementioned equation (2) that describes the valuation functions), the total valuation is cut exactly in
half (see Figure 1), therefore agent adi is satisfied.

G∗ζ : Consider its input z∗j , output z∗i = ζ · z∗j and its output-node vi. By our constructed n-cut, a
positive cut is placed at t = v+

j,l+z∗j and a negative cut is placed at t = vai,l+z∗i . Agent adi is satisfied since
her positive valuation equals her negative one. In particular, z∗j ·1+(ζ−z∗i)· 1ζ+1·4 = (1−z∗j)·1+1·4+z∗i · 1ζ
is true.

G+ : Consider its inputs z∗j , z∗k, its output z∗i = z∗j + z∗k and its output-node vi. By our constructed
n-cut, a positive cut is placed at t = v+

j,l+z∗j , another positive cut is placed at t = v+
k,l+z∗k and a negative

cut is placed at t = vai,l + z∗i . Agent adi is satisfied since her positive valuation equals her negative one.
In particular, z∗j · 1 + z∗k · 1 + (1− z∗i) · 1 + 1 · 4 = (1/2− z∗j) · 1 + (1/2− z∗k) · 1 + 1 · 4 + z∗i · 1 is true.

G()2 : Consider its input z∗j , output z∗i = (z∗j)2 and its output-node vi. By our constructed n-cut, a
positive cut is placed at t = v+

j,l+z∗j and a negative cut is placed at t = vai,l+z∗i . Agent adi is satisfied since
her positive valuation equals her negative one. In particular, (z∗j)2+(1−z∗i)·1+1·4 = (1−(z∗j)2)+1·4+z∗i ·1
is true.

G[0,1]
∗2 : Consider its input z∗j , output z∗i = 2 · z∗j and its output-node vi. By our constructed n-cut,

a positive cut is placed at t = v+
j,l + z∗j and a negative cut is placed at t = vai,l + z∗i . Agent adi is

satisfied since her positive valuation equals her negative one. In particular, z∗j · 1 + (1− z∗i) · 1
2 + 1 · 4 =

(1/2− z∗j) · 1 + 1 · 4 + z∗i · 1
2 is true.

G[0,1]
− : Consider its inputs z∗j , z∗k, its output z∗i = max{z∗j − z∗k, 0} and its output-node vi. By our

constructed n-cut,

• if z∗j ≥ z∗k, then z∗i = z∗j − z∗k. By our constructed n-cut, a positive cut is placed at t = v+
j,l + z∗j ,

a negative cut is placed at t = v−k,l + z∗k and another negative cut is placed at t = vai,l + z∗i . Agent
adi is satisfied since her positive valuation equals her negative one. In particular, z∗j · 1 + (1− z∗k) ·
1 + (1− z∗i) · 1 + 1 · 4 = (1− z∗j) · 1 + z∗k · 1 + 1 · (1 + 4) + z∗i · 1 is true.

20

• if z∗j < z∗k, then z∗i = 0. By our constructed n-cut, a positive cut is placed at t = v+
j,l + z∗j , a

negative cut is placed at t = v−k,l + z∗k and another negative cut is placed at t = vai,l − (z∗k − z∗j)/5.
Agent adi is satisfied since her positive valuation equals her negative one. In particular, z∗j · 1 +
(1− z∗k) · 1 + z∗k−z

∗
j

5 · (1 + 4) + 1 · 1 + 1 · 4 = (1− z∗j) · 1 + z∗k · 1 + (1− z∗k−z
∗
j

5) · (1 + 4) is true.

We will now prove that in our constructed n-cut, the agents midi, ceni, exi are also satisfied. If gi is
not a G[0,1]

− gate, let us prove that midi is satisfied. In our n-cut there is a negative cut at t = vai,l + z∗i
and a positive one at t = vmi,l+z∗i . Agent midi is satisfied since her negative valuation equals her positive
one. In particular, z∗i · 1 + (1− z∗i) · 1 + 1 · 4 = (1− z∗i) · 1 + 1 · 4 + z∗i · 1 is true.

If gi is a G[0,1]
− gate, let us prove that midi is satisfied.

• if z∗j ≥ z∗k, then a negative cut is placed at t = vai,l + z∗i , and a positive cut is placed at t =
vmi,l + z∗i . Agent midi is satisfied since her negative valuation equals her positive one. In particular,
z∗i · 1 + (1− z∗i) · 1 + 1 · 4 = (1− z∗i) · 1 + 1 · 4 + z∗i · 1 is true.

• if z∗j < z∗k, then a negative cut is placed at t = vai,l − (z∗k − z∗j)/5 and a positive cut is placed at
t = vmi,l. Agent midi is satisfied since her negative valuation equals her positive one. In particular,
z∗k−z

∗
j

5 · 0 + 1 · 1 + 1 · 4 = 1 · 1 + 1 · 4 + 0 · 1 is true.

For the agents ceni and exi, since their valuation functions are the same as midi shifted to the right, it
is easy to see that the n-cut we provide forces them to have positive valuation equal to their negative
one.

6.2.2 Cuts to circuit values

Now suppose that the tuple (t∗1, . . . , t∗n) with 0 ≤ t∗1 ≤ · · · ≤ t∗n ≤ 12r, represents an n-cut (n := 4r) that
is a solution of the constructed Consensus Halving instance with n agents, where w.l.o.g. the first 4N
cuts correspond to the N input-nodes. We will show that from this solution we can construct a tuple
(z1, . . . , zr) that satisfies the circuit H. Again, note that solutions of Consensus Halving come in
pairs, where the two solutions have the same cuts but opposite signs of pieces. We will only analyse the
solution where the leftmost interval has negative sign and omit the symmetric case with positive leftmost
interval since the analysis is identical and both Consensus Halving solutions map to the same circuit
solution.

Consider node vi which is the output-node of gate gi or it is an input-node. Observe that the valuation
function of each of adi,midi, ceni and exi has more than half of her total valuation inside the interval
[bi, bi + 3], [bi + 3, bi + 6], [bi + 6, bi + 9] and [bi + 9, bi + 12] respectively. This means that in a solution,
each of them has to have at least one cut in her corresponding aforementioned interval. But since these
intervals are not overlapping for all n agents, and we need to have at most n cuts, exactly one cut has
to be placed by each agent in her corresponding interval.

Consider now the first 4N cuts that correspond to the input-nodes. As it is apparent from the
definition of these nodes’ valuation functions, each agent of adi,midi, ceni, exi for i ∈ [N] has to place
her single cut in the interval vai , vmi , v−i , v+

i respectively. Given the latter fact, the definition of valuation
functions for non input-node agents dictates that there will always be a cut in v+

i for every i ∈ [r]. Since
0 ≤ t∗1 ≤ · · · ≤ t∗n ≤ 12r, the sequential nature of our agents indicates that the cut t∗4i, i.e. with index
4 · i, is found in interval v+

i . Now, let us translate the position of the cut t∗4i, i ∈ [r] into the value
zi = t∗4i − v

+
i,l. By a similar argument as that of the previous paragraph showing that the adi agents are

satisfied, it is easy to see that, by the aforementioned translation, the created tuple (z1, . . . , zr) satisfies
circuit H.

6.2.3 Valuation functions to circuits

In the Consensus Halving instances we construct, we have described the valuation functions of the
agents mathematically. However, in a Consensus Halving instance the input is an arithmetic circuit,
therefore we have to turn each valuation function of each agent j ∈ [n] into its integral, and subsequently
into an arithmetic circuit. Here we describe a method to do that.

21

The valuation functions we construct in our reduction (see Section 6.1) are piecewise polynomial
functions of a single variable and their degree is at most 1, with k pieces where k is constant. There-
fore, their integrals, which are the input of the Consensus Halving problem (captured by arithmetic
circuits), are piecewise polynomial functions (with the same pieces) with degree at most 2. Consider the
valuation function f of an arbitrary player. Let the pieces of f be [p0, p1), [p1, p2), . . . , [pk−1, pk] where
p0 = 0 and pk = 1 and denote P1, P2, . . . , Pk the above pieces respectively. Let us also denote by fPs

the polynomial in interval Ps, s ∈ {1, 2, . . . , k}. In particular, f can be defined as

f(t) =


fP1(t) , t ∈ [p0, p1)
fP2(t) , t ∈ [p1, p2)
...
fPk (t) , t ∈ [pk−1, pk],

(3)

and according to the valuation functions used in the reduction (see Section 6.1), for any given piece Ps
there are two kinds of possible functions

(a) fPs(t) = cs, where cs ≥ 0 is a constant, or

(b) fPs(t) = 2 · (t− ps−1).

(The latter comes from the valuation function of an ad agent that corresponds to an output node of a
G()2 gate.)

We would like to find a formula for the integral of f(t), denoted F (t), and we also require that F (t) is
computable by an arithmetic circuit, so that it is a proper input (together with the other agents’ integrals
of valuation functions) to the Consensus Halving instance. For each piece Ps we will construct an
integral, denoted by FPs(t), such that each such integral will be computable by an arithmetic circuit,
and so that it will be F (t) =

∑
s∈{1,2,...,k} F

Ps(t). First, let us construct the function Ds(t) using the
domain Ps of fPs(t):

Ds(t) := min {max {t, ps−1} , ps} ,

which takes values

Ds(t) =


ps−1, t < ps−1

t, t ∈ [ps−1, ps]
ps, t > ps.

Now, for function fPs(t) of case (a), we construct its integral:

FPs(t) := cs · (Ds(t)− ps−1) ,

which takes values

FPs(t) =


0, t < ps−1

cs · (t− ps−1) , t ∈ [ps−1, ps]
cs · (ps − ps−1) , t > ps.

Similarly, for function fPs(t) of case (b), we also construct its integral:

FPs(t) := (Ds(t)− ps−1)2
,

which takes values

FPs(t) =


0, t < ps−1

(t− ps−1)2
, t ∈ [ps−1, ps]

(ps − ps−1)2
, t > ps.

22

Finally, for the agent with valuation function f(t), the corresponding function computable by the
arithmetic circuit that is input to the Consensus Halving problem is:

F (t) :=
∑

s∈{1,2,...,k}

FPs(t).

For the integral function F (t) indeed it holds that F (t) =
∫ t

0 f(x) dx as required. That is because, by
the way we defined each FPs(t), for any t ∈ Ps∗ it is

F (t) =
∑

s∈{1,2,...,k}

FPs(t) =
∑

s∈{1,2,...,s∗−1}

FPs(t) + FP
∗
s (t) +

∑
s∈{s∗+1,...,k}

0

=
∑

s∈{1,2,...,s∗−1}

∫
Ps

fPs(x) dx+
∫ t

ps∗−1

fP
∗
s (x) dx

=
∑

s∈{1,2,...,s∗−1}

∫ ps

ps−1

f(x) dx+
∫ t

ps∗−1

f(x) dx

=
∫ t

0
f(x) dx

For each player with some valuation function f as defined above, we can compute the functions FPs ,
s ∈ [k] by using gates Gζ , G∗ζ , G−, G∗, Gmin, Gmax. Then F (t) can be computed by using G+ gates.
The arithmetic circuits that compute the functions F (t) (one for each agent j ∈ [n]) constitute a proper
Consensus Halving instance. This completes the proof of Lemma 10.

7 Proof of Theorem 11
In this section we give a detailed proof of Theorem 11 which states that (n, n)-Consensus Halving
is FIXP-hard. This is accomplished by finding a polynomial-time reduction from the FIXP-complete
problem of computing a “d-player Nash equilibrium” to the (n, n)-Consensus Halving problem. Using
the machinery of [27], the FIXP-complete problem is first expressed as a circuit with particular properties,
which is then embedded into a (n, n)-Consensus Halving instance using Lemma 10. We prove that
all of these steps can be executed in polynomial time.

In particular, in [27] it is shown that the problem of finding a Nash equilibrium of a d-player normal
form game with d ≥ 3 (“d-player Nash equilibrium” problem) is FIXP-complete. Given an instance of
this problem, we will construct a polynomial-time reduction to (n, n)-Consensus Halving. We will
start from an arbitrary instance of “d-player Nash equilibrium” and, according to it, design a circuit
using only the gates Gζ , G+, G−, G∗, Gmax, Gmin with ζ ∈ Q. This step is done by a straightforward
application of the procedure described in the proofs of Lemma 4.5 and Lemma 4.6 in [27]. This circuit
computes a function whose fixed points correspond precisely to the Nash equilibria of the initial game.
Then, we create an equivalent circuit by “breaking down” the initial gates to some more suitable ones
(by introducing “special gates”, see Table 2), whose inputs and outputs are guaranteed to be in [0, 1].
From this, we will create a cyclic circuit, introduce Consensus Halving players on the “wires” of the
circuit, and show that a Consensus Halving solution with at most as many cuts as the number of players
in this instance can be efficiently translated back to a Nash equilibrium of the initial game.

7.1 Expressing the game as a circuit without division gates
Here, given an arbitrary d-player game, we will employ a function presented in [27] whose fixed points are
precisely the Nash equilibria of that game. Consider a given instance I of the “d-player Nash equilibrium”
problem, i.e. a d-player normal form game where each player i has a set Si of pure strategies. We will use
the following notation similar to the one in [27]: Ni := |Si|, N :=

∑d
i Ni and vi is the payoff function of

player i with domain DI := ×di=1∆Ni , where ∆Ni is the unit (Ni− 1)-simplex. Define the mixed strategy
profile x := (x11, . . . , x1N1 , x21, . . . , x2N2 , . . . , xd1, . . . , xdNd

) to be a N -dimensional vector with the entry
xij being the probability that player i ∈ [d] plays pure strategy j ∈ Si. Also, v(x) is an N -dimensional
vector with entries indexed as in x, with vij(x) := vi(j, x−i), the latter being the expected payoff of

23

player i when she plays the pure strategy j ∈ Si against the partial profile x−i of the rest of the players.
The payoff function of each player is normalized by scaling in [0, 1/N] so that the Nash equilibria of the
game are precisely the same. Thus, vij(x) ∈ [0, 1/N]. Finally, let h(x) := x+ v(x).

Now, define for each player i the function fi,x(t) :=
∑
j∈Si

max(hij(x)− t, 0) with parameter x. This
function is defined in R and it is continuous, piecewise linear, strictly decreasing with values from 0 to
+∞, thus there is a unique value ti ∈ R such that fi,x(ti) = 1. The required function whose set of fixed
points is identical to the set of Nash equilibria of instance I is GI(x)ij := max(hij(x)− ti, 0) for i ∈ [d],
j ∈ Si. The function GI takes as input the n-dimensional vector x and outputs an N -dimensional vector
GI(x) with entries defined as above. By definition of GI and choice of ti, it is

∑
j∈Si

GI(x)ij = 1 for
every i ∈ [d], and therefore GI is a mapping of the domain DI to itself.

Lemma 17 (LEMMA 4.5, [27]). The fixed points of the function GI are precisely the Nash equilibria of
the game I.

In fact, the structure of function GI allows for it to be efficiently constructed using only the required
types of gates.

Lemma 18 (LEMMA 4.6, [27]). We can construct in polynomial time a circuit with basis
{+,−, ∗,max,min} (no division) and rational constants that computes the function GI .

For the proofs of the above lemmata the reader is referred to the indicated work by Etessami and
Yannakakis.

In the proof of the latter lemma in [27] it is shown how to construct an arithmetic circuit CI that
computes the function GI using only gates of type Gζ , G+, G−, G∗, Gmax, Gmin, where ζ ∈ Q. The
construction of CI is the following: Compute the function y = h(x) = x+v(x) using only G+, G∗ type of
gates, allowed by the definition of v(x). Vector y has d sub-vectors, where yi = (yi1, yi2, . . . , yiNi

). Then,
each yi is sorted using a sorting network Zi thus creating a vector zi = (zi1, zi2, . . . , ziNi

) with sorted
entries zi1 ≥ zi2 ≥ · · · ≥ ziNi

; sorting networks can be implemented in arithmetic circuits using only gates
Gmax, Gmin (for more see e.g. [35]). Using zij ’s the function ti := maxl∈[Ni]

{
(1/l) ∗

((∑l
j=1 zij

)
− 1
)}

is computed and the final output of the whole circuit is

x′ij := max{yij − ti, 0} for each i ∈ [d], j ∈ Si. (4)

7.2 A circuit with gates whose inputs/outputs are in [0, 1]
One can easily observe that some of the gates of circuit CI may have inputs and outputs outside of [0, 1].
For example, the G+ gate that computes yij = xij + v(x)ij can be 2 and the arguments of Gmax in ti
can be negative. We will transform this circuit into an equivalent one that guarantees its gates’ inputs
and outputs to be in [0, 1], using only gates Gζ , G+, G

[0,1]
− , G∗, G

[0,1]
∗2 , Gmax, Gmin, where ζ ∈ Q ∩ (0, 1].

In particular, instead of constructing the circuit CI as described in the previous paragraph, we will
construct an equivalent one, called C ′I , whose input and output are the same as that of CI , namely
xij and x′ij , i ∈ [d], j ∈ [Ni] respectively, but its gates have inputs/outputs in [0, 1]. We do this by
manipulating the formula for the required function GI under computation, by suitably scaling up or
down the input values of each gate, using additional gates Gζ , G+, G

[0,1]
− , G∗.

We construct C ′I as follows: First, we compute the vector p := h(x)/2 = x ∗ 1
2 + v(x) ∗ 1

2 using
only G+, G∗ gates. Note that xij , vij(x), pij ∈ [0, 1], ∀i ∈ [d], j ∈ Si (recall that the payoff function is
normalized in [0, 1]). Then, we sort each of the sub-vectors pi, i ∈ [d] via a sorting network Qi that can
be constructed using Gmax and Gmin gates, thus computing the sorted vectors qi = (qi1, qi2, . . . , qiNi

)
with sorted entries qi1 ≥ qi2 ≥ · · · ≥ qiNi

. Now, for every i ∈ [d] and l ∈ [Ni] we compute the following
sub-function

t′′il := 1
2 ∗

1
l
∗

l∑
j=1

qij + 1
2 −

1
4 ∗

1
l
,

by using l+1 G+ gates, 3 G+ gates and 1 G[0,1]
− gate, where the subtraction gate is the last to take place.

One should observe that since
∑Ni

j=1 xij = 1 and
∑Ni

j=1 vij(x) ≤ 1 (by definition of payoff function in

24

[0, 1/N]), it is
∑Ni

j=1 qij ≤
1
2 · (1 + 1) = 1, therefore none of the individual computations of t′′il is outside

[0, 1]. Moreover, in the subtraction, the value of the subtrahend is at most the value of the minuend so
the subtraction is precise (not capped at 0).

Now, for each i ∈ [d] we compute the sub-function

t′′i := max
l∈[Ni]

{t′′il},

by using Ni − 1 Gmax gates, and consequently compute

t′i :=
(
t′′i −

1
2

)
∗ 2,

by using one G[0,1]
− and one special G[0,1]

∗2 gate where the computations happen from left to right. Note
that t′′i ≥ 1/2, therefore the subtraction is precise (not capped at 0). Also, note that, by definition of
t′′il, it is t′′i ≤ 1, therefore t′′i − 1/2 ≤ 1/2 and the output of the G[0,1]

∗2 gate of t′i is in [0, 1]. Finally, the
output of the circuit C ′I is computed by

x′ij := max{pij − t′i, 0} ∗ 2, for each i ∈ [d], j ∈ Si, (5)

using one G[0,1]
− and one special G[0,1]

∗2 gate.

Lemma 19. Circuit C ′I is equivalent to CI , i.e. it computes the function GI .

Proof. We will show that for every i ∈ [d], j ∈ Si, the value xij of (5) is the same as that of (4), i.e.
the output of the circuits C ′I and CI is the exact same. Using the formulas for t′′il, t′′i and t′i, we can
re-write algebraically xij by substituting the circuit’s operations with the regular mathematical ones,
i.e. G+, G

[0,1]
− , G

[0,1]
∗2 , G∗, Gmax, Gmin translate to +,−, ·2, ·,max,min respectively. Observe that this is

possible since the G[0,1]
− gate, excluding the one in (5), actually performs subtraction without capping

the output to 0. Thus, starting from (5) we have

x′ij = max{pij − t′i, 0} · 2
= max{2 · pij − 2 · t′i, 0}

= max
{
yij − 4 ·

(
t′′i −

1
2

)
, 0
}

(yij from construction of CI)

= max
{
yij − 4 ·

(
max
l∈[Ni]

{t′′il} −
1
2

)
, 0
}

= max

yij − 4 ·

max
l∈[Ni]

 1
2l ·

 l∑
j=1

qij

+ 1
2 −

1
4l

− 1
2

 , 0


= max

yij − 4 · max
l∈[Ni]

 1
2l ·

 l∑
j=1

qij

− 1
4l

 , 0


= max

yij − max
l∈[Ni]

1
l
·

 l∑
j=1

2 · qij

− 1
l

 , 0


= max

yij − max
l∈[Ni]

1
l
·

 l∑
j=1

zij

− 1

 , 0

 (zij from construction of CI)

= max {yij − ti, 0} (ti from construction of CI),

which is by definition equal to the output x′ij of (4).

The circuit C ′I we constructed that computes the function GI uses gates of type in the set
{Gζ , G+, G∗, Gmax, Gmin, G

[0,1]
− , G

[0,1]
∗2 }, where ζ ∈ Q ∩ (0, 1].

25

7.3 The (n, n)-Consensus Halving instance
At this point we are ready to construct the (n, n)-Consensus Halving instance. The final circuit C ′I
computes the function GI , where GI : DI → DI , whose fixed points are precisely the Nash equilibria of
the initial instance I of the d-player game, due to Lemma 17. The output of C ′I is the N -dimensional
vector x′ with entries x′ij computed from (5). Let us close the circuit by connecting the output x′ij with
the input xij for every i ∈ [d], j ∈ Si. This new circuit, called CoI , is cyclic, meaning that it has no input
and no output.

The cyclic circuit CoI (like C ′I) uses only gates in {Gζ , G+, G∗, Gmax, Gmin, G
[0,1]
− , G

[0,1]
∗2 }, where ζ ∈

Q ∩ (0, 1]. In Section 5.1 we describe how to turn such circuits into Consensus Halving instances.
Suppose that CoI uses l gates. Then, by the procedure of Section 5.1 let us turn CoI into a special circuit
Co
′

I with r = linear(l) gates which uses only the required gates by Lemma 10. Finally, still following
that procedure, let us turn Co′I into a Consensus Halving instance with n := 4r agents.

We can now prove Theorem 11.

Proof. In Section 6 it was proven that a solution to the above (n, n)-Consensus Halving instance, i.e.
a solution with n cuts, in linear time can be translated back to a tuple z∗ := (z∗1 , z∗2 , . . . , z∗r) of satisfying
values for the nodes of Co′I . Recall that Co′I was created by another cyclic equivalent circuit CoI which
was also created by merging the input and output nodes of an acyclic circuit C ′I .

Let us denote by v1, v2, . . . , vN and v′1, v′2, . . . , v′N the input and output nodes respectively of C ′I and
denote by V1, V2, . . . , VN the merged nodes in CoI and Co′I . Let us denote by x∗ := (x∗1, x∗2, . . . , x∗N) the
N entries of z∗ that correspond to the values of nodes (V1, V2, . . . , VN). Since the procedure in Section
5.1 which turns CoI into Co′I preserves the computation of the values of V1, V2, . . . , VN , it follows that
x∗ satisfies CoI . Consequently, if the values x∗ are copied as values of both input (v1, v2, . . . , vN) and
output (v′1, v′2, . . . , v′N) nodes of C ′I then C ′I is satisfied, since these nodes of C ′I compute the same values
as those that V1, V2, . . . , VN compute in CoI .

As it was shown in Lemma 19, the output of C ′I computes the same output as CI , which computes
the function GI . Thus, for x∗ it holds that GI(x∗) = x∗, i.e. it is a fixed point of GI . Recall now
that the fixed points of GI are precisely the Nash equilibria of instance I of the initial “d-player Nash
equilibrium” problem. Since, due to [27], “d-player Nash equilibrium” is FIXP-complete, it follows that
(n, n)-Consensus Halving is FIXP-hard.

8 Proof of Lemma 15
Let us define the constrained version of ETR, denoted ETR[0,1], where the polynomials are over [0, 1]n.
It is easy to see that ETR[0,1] ⊆ ETR; an arbitrary ETR[0,1] instance ∃(X1, . . . , Xm) ∈ [0, 1]m · Φ,
where Φ is the ETR[0,1] formula, can be written as the following ETR instance ∃(X1, . . . , Xm) ∈
Rm · Φ

∧m
i=1 ((Xi ≥ 0) ∧ (Xi ≤ 1)).

Lemma 3.9 of [42] proves that the problem of deciding whether a family of polynomials pi : Rn →
R, i ∈ [k] has a common root in the n-dimensional unit-ball (with center 0n and radius 1) is ETR-
complete. Furthermore, this holds even when all pi’s have maximum sum of variable exponents in each
monomial equal to 2. Since the n-dimensional unit-ball is inscribed in the n-dimensional unit-cube, the
aforementioned result implies that Conjuction[0,1] is ETR-hard, therefore ETR ⊆ ETR[0,1]. Consequently,
we get the following.

Theorem 20. ETR[0,1] = ETR.

Now we will prove that Feasible[0,1] is ETR-hard by reducing Conjuction[0,1] to it. We do this
by a standard way of turning a conjunction of polynomials into a single polynomial, so that all zeros
of the conjunction are exactly the same as the zeros of the single polynomial. Consider an instance of
Conjuction[0,1]. Let us define the function q = (p1)2 + (p2)2 + · · · + (pk)2, which has again domain
[0, 1]n. The instance of Feasible[0,1] with function q has exactly the same solutions as these of the
Conjuction[0,1] instance. Therefore Feasible[0,1] is ETR-complete, even when q has maximum sum of
variable exponents in each monomial equal to 4.

26

9 Proof of Theorem 16
As we show in Theorem 8, (n, k)-Consensus Halving is in ETR. In this section we prove that (n, n−1)-
Consensus Halving is ETR-hard, implying that it is complete for ETR. This complements the results
of [28], where it was established that (n, n− 1)-Consensus Halving is NP-hard even when a solution is
required to be 1/poly(n)-approximately correct, i.e. it allows |Fi(A+) − Fi(A−)| ≤ ε for every agent i,
where ε = 1/poly(n).

We present a polynomial-time reduction from the ETR-complete problem Feasible[0,1] to (n, n− 1)-
Consensus Halving. Suppose we are asked to decide an arbitrary instance of Feasible[0,1], i.e. the
existential sentence (

∃X ∈ [0, 1]N
)

(p(X) = 0), (6)

where X := (X1, . . . , XN) ∈ [0, 1]N and p, is a polynomial function of X1, . . . , XN written in the standard
form (a sum of monomials with integer coefficients). Consider the integer coefficients C1, . . . , Cl of p,
where the number of terms of the polynomial is l. We consider all of the coefficients to be positive, where
some of them may be preceded by a “+” or a “−”. Also, let us normalize the coefficients and create new
ones c1, . . . , cl, where

cj := Cj
l · Cmax

, j ∈ [l],

where Cmax := maxj Cj . Note that our new polynomial q(X) which uses the new coefficients has exactly
the same roots as p(X). Also, note that cj ∈ (0, 1

l] for every j ∈ [l], a fact that will play an important
role at the last steps of our reduction.

Now, let us split polynomial q into two polynomials q1 and q2, such that

q(X) := q1(X)− q2(X),

and both q1 and q2 are sums of positive terms; l1 and l2 terms of q1 and q2 respectively, where l = l1 + l2.
In particular,

q1(X) :=
l1∑
j=1

rj(X),

q2(X) :=
l2∑

j=l1+1
rj(X),

where rj(X) := cj ·X
d1j

1 · · · · ·XdNj

N is the term j ∈ [l] and dij is the exponent of variable Xi, i ∈ [N], in
the j-th term. Eventually, the existential sentence, equivalent to (6), that we ask to decide is(

∃X ∈ [0, 1]N
)

(q1(X) = q2(X)).

Let us construct the algebraic circuit that takes as input the tuple X and computes the value of
q1(X). This circuit needs only to use gates in {Gζ , G+, G∗ζ , G∗, G()2}, where ζ ∈ Q∩ (0, 1]. To see why,
observe that since every Xi ∈ [0, 1], i ∈ [N], any multiplication between them by a G∗ gate is done
properly (the gate’s inputs/output are in [0, 1]), and obviously the same holds for G()2 . Also, note that
due to our downscaled coefficients cj , it is cj ≤ 1/2 for every j, and also

l1∑
j=1

rj(X) ≤ l1/l ≤ 1. (7)

Therefore, we guarantee that any of the l1 − 1 additions of the terms rj of q1 by a G+ gate is done
properly, (inputs in [0, 1/2] and output in [0, 1]). Similarly, we construct a circuit that computes q2.

At this point we are ready to prove Theorem 16.

Proof. Let us construct a (n, n − 1)-Consensus Halving instance, where n is to be defined later. In
Section 5.1 we have shown how to construct an equivalent circuit to the one that computes q1, q2, called
“special circuit”, that

27

G+

q1

G+

q2

vr−1 vr

Figure 4: The last two nodes of the special circuit.

• uses only gates Gζ , G+, G∗ζ , G()2 , G
[0,1]
− , G

[0,1]
∗2 ,

• every Gζ and G∗ζ has ζ ∈ Q ∩ (0, 1],

• for every input x ∈ [0, 1]N , all intermediate values computed by the circuit lie in [0, 1].

For the constraints of the above types of gates, see Tables 1, 2.
Let the number of gates in that special circuit be r := poly(N). Consider the last two nodes of the

special circuit whose outgoing edges are q1 and q2 respectively. Without loss of generality, we name them
vr−1 and vr (see Figure 4).

By Lemma 10 and the construction described in its proof (Section 6), we embed the special circuit
in a Consensus Halving instance. This instance now consists of 4r agents, since to each node i ∈ [r]
correspond 4 agents: adi,midi, ceni and exi with valuation functions described by (2).

According to the embedding described in Section 6, a tuple (z∗1 , . . . , z∗r) of values that satisfies the
special circuit, corresponds to a (4r, 4r)-Consensus Halving solution, i.e. a tuple (t∗1, . . . , t∗4r) with
0 ≤ t∗1 ≤ · · · ≤ t∗4r ≤ 12r, of the Consensus Halving instance we constructed, and vice versa. As
shown in detail in Section 6, every value z∗i in a solution can be translated to 4 cuts t∗4i−3, t

∗
4i−2, t

∗
4i−1, t

∗
4i

in the Consensus Halving solution by the transformation in Section 6.2.1. Conversely, a 4-tuple
(t∗4i−3, t

∗
4i−2, t

∗
4i−1, t

∗
4i) of cuts in a Consensus Halving solution can be translated to a single value z∗i

by the simple transformation z∗i = t∗4i − v
+
i,l in Section 6.2.2.

Let us now introduce a (4r+1)-st additional agent, named finis (from the Latin word for “end”) who
does not correspond to any node. The valuation function of this agent is non-zero only in the intervals
v+
r−1 and v−r and, in particular is the following,

finis(t) =
{

1, t ∈ v+
r−1 ∪ v−r

0, otherwise.
(8)

Eventually, the number of agents in the embedding is n := 4r + 1.
We will show that the answer to the arbitrary Feasible[0,1] instance (6) is “yes”, if and only if the

answer to the (n, n − 1) − Consensus Halving problem is “yes”, i.e. there exists a (n − 1)-cut that
satisfies n agents.

Suppose that there exists a solution X∗ := (X∗1 , . . . , X∗N) ∈ [0, 1]N of (6), which equivalently means
that q1(X∗) = q2(X∗). Then, by the correct construction of our special circuit (following the procedure
in Section 5.1) which uses r gates and computes q1 and q2, there is a tuple z∗ := (z∗1 , . . . , z∗r) that satisfies
it. Let, without loss of generality, (z∗1 , . . . , z∗N) := (X∗1 , . . . , X∗N). Then it holds that q1(z∗1 , . . . , z∗N) =
q2(z∗1 , . . . , z∗N), therefore z∗r−1 = z∗r .

According to the aforementioned translation to cuts, in the Consensus Halving instance there will
be a cut t∗4(r−1) = v+

r−1,l + z∗r−1 in interval v+
r−1 (i.e. a positive cut), and another one in t∗4r−1 = v−r,l + z∗r

in interval v−r (i.e. a negative cut). From the valuation function (8) of agent finis, we can see that her
positive total valuation equals her negative total valuation, since z∗r−1 ·1+(1−z∗r) ·1 = (1−z∗r−1) ·1+z∗r ·1

28

holds from z∗r−1 = z∗r . Therefore finis is satisfied. Also, the agents adi,midi, ceni, exi for all i ∈ [r] are
satisfied as argued in Section 6, and the answer to (n, n− 1)−Consensus Halving is “yes”, since we
have 4r + 1 agents satisfied by 4r cuts.

Suppose now that there exists a 4r-cut (t∗1, . . . , t∗4r) with 0 ≤ t∗1 ≤ · · · ≤ t∗4r ≤ 12r that is a solution
of the (n, n− 1)-Consensus Halving instance we constructed, where n := 4r+ 1. As argued in Section
6, if the adi,midi, ceni, exi agents for i ∈ [r] are satisfied then each of ceni, exi agents imposes a cut
in interval v−i and v+

i respectively. The cuts in intervals v+
i , for all i ∈ [r] can be translated back

to values z∗i , which successfully compute the values of the circuit, i.e. they satisfy the circuit. There
are also two interesting cuts t∗4(r−1) and t∗4r−1 imposed by exr−1 and cenr respectively which satisfy
agent finis. Since this agent is satisfied with no additional cut, it holds that z∗r−1 · 1 + (1 − z∗r) · 1 =
(1−z∗r−1) ·1+z∗r ·1, or equivalently z∗r−1 = z∗r . Since z∗r−1 and z∗r correspond to the value of the circuit at
q1 and q2 respectively, for the circuit’s inputs (z∗1 , . . . , z∗N) it holds that q1(z∗1 , . . . , z∗N) = q2(z∗1 , . . . , z∗N).
Equivalently, q(z∗1 , . . . , z∗N) = 0, and equivalently p(z∗1 , . . . , z∗N) = 0. Therefore, we have found values
that satisfy (6), and the answer to Feasible[0,1] is “yes”.

10 Conclusion and Open Problems
In this work we studied the complexity of exact computation of a solution to Consensus Halving. We
introduced the class BU which captures all problems that are polynomial-time reducible to the Borsuk-
Ulam problem. We showed that the complexity of (n, n)-Consensus Halving is lower bounded by FIXP
and upper bounded by BU. A tight result on the complexity of (n, n)-Consensus Halving is the major
open problem that remains. We believe that the problem is BU-complete. Such a result would establish
BU as a complexity class that has a complete natural problem. We also believe that the best candidates
of BU-complete problems are function problems whose solution existence is provable by the Borsuk-Ulam
theorem, but not known to be provable by any weaker one, for example, Brouwer’s Fixed Point theorem.
One such is the Ham Sandwich problem [46] whose complexity is still unresolved: given n compact sets
in Rn, find an (n− 1)-dimensional hyperplane that bisects all of them.

Our result that LinearBU = PPA is analogous to the result of [27] which shows that LinearFIXP =
PPAD. In [37], the classes kD-LinearFIXP, k ≥ 1 are implicitly defined as the subclasses of FIXP which
contain all problems that can be described by LinearFIXP circuits with k inputs. It was shown in
[37] that 2D-LinearFIXP = PPAD, which uncovered a sharp dichotomy on the complexity of LinearFIXP
problems; 1D − LinearFIXP ⊆ P (by [3]) while kD-LinearFIXP = PPAD for k ≥ 2. An interesting open
problem is to consider the analogue of these classes in LinearBU, namely kD-LinearBU, and study the
complexity of the problem depending on values of k.

References
[1] Zachary Abel, Erik D Demaine, Martin L Demaine, Sarah Eisenstat, Jayson Lynch, and Tao B

Schardl. Who needs crossings? Hardness of plane graph rigidity. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 51. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[2] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is ETR-
complete. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 65–73. ACM, 2018.

[3] Bharat Adsul, Jugal Garg, Ruta Mehta, and Milind A. Sohoni. Rank-1 bimatrix games: a homeo-
morphism and a polynomial time algorithm. In Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 195–204, 2011.

[4] James Aisenberg, Maria Luisa Bonet, and Sam Buss. 2-D Tucker is PPA complete. Electronic
Colloquium on Computational Complexity (ECCC), 22:163, 2015.

[5] Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987.

[6] Noga Alon and Douglas B West. The Borsuk-Ulam theorem and bisection of necklaces. Proceedings
of the American Mathematical Society, 98(4):623–628, 1986.

29

[7] Georgios Amanatidis, George Christodoulou, John Fearnley, Evangelos Markakis, Christos-
Alexandros Psomas, and Eftychia Vakaliou. An improved envy-free cake cutting protocol for four
agents. In International Symposium on Algorithmic Game Theory, pages 87–99. Springer, 2018.

[8] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol for any
number of agents. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 416–427. IEEE, 2016.

[9] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol for four
agents. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages
454–464. ACM, 2016.

[10] Marie Louisa Tølbøll Berthelsen and Kristoffer Arnsfelt Hansen. On the computational complexity of
decision problems about multi-player Nash equilibria. In Dimitris Fotakis and Evangelos Markakis,
editors, Algorithmic Game Theory - 12th International Symposium, SAGT 2019, Athens, Greece,
September 30 - October 3, 2019, Proceedings, volume 11801 of Lecture Notes in Computer Science,
pages 153–167. Springer, 2019.

[11] Daniel Bienstock. Some provably hard crossing number problems. Discrete & Computational Ge-
ometry, 6(3):443–459, 1991.

[12] Vittorio Bilò and Marios Mavronicolas. The complexity of decision problems about Nash equilibria
in win-lose games. In Proc. of SAGT, pages 37–48, 2012.

[13] Vittorio Bilò and Marios Mavronicolas. Complexity of rational and irrational Nash equilibria. Theory
of Computing Systems, 54(3):491–527, 2014.

[14] Vittorio Bilò and Marios Mavronicolas. A catalog of EXISTS-R-complete decision problems about
Nash equilibria in multi-player games. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 47, 2016.

[15] Vittorio Bilò and Marios Mavronicolas. Existential-R-complete decision problems about symmetric
Nash equilibria in symmetric multi-player games. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 66, 2017.

[16] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math.
Soc. (N.S.), 21(1):1–46, 07 1989.

[17] Steven J Brams and D Marc Kilgour. Competitive fair division. Journal of Political Economy,
109(2):418–443, 2001.

[18] Steven J Brams and Alan D Taylor. An envy-free cake division protocol. The American Mathematical
Monthly, 102(1):9–18, 1995.

[19] Steven J Brams and Alan D Taylor. Fair Division: From cake-cutting to dispute resolution. Cam-
bridge University Press, 1996.

[20] John Canny. Some algebraic and geometric computations in PSPACE. In Proc. of STOC, pages
460–467, New York, NY, USA, 1988. ACM.

[21] Jean Cardinal and Udo Hoffmann. Recognition and complexity of point visibility graphs. Discrete
& Computational Geometry, 57(1):164–178, 2017.

[22] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
Nash equilibria. Journal of the ACM (JACM), 56(3):14, 2009.

[23] Argyrios Deligkas, John Fearnley, Themistoklis Melissourgos, and Paul G. Spirakis. Computing
exact solutions of consensus halving and the Borsuk-Ulam theorem. In 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece., pages
138:1–138:14, 2019.

30

[24] Xiaotie Deng, Jack R Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and Zeying Xu. Understanding
PPA-completeness. In Proceedings of the 31st Conference on Computational Complexity, page 23.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[25] Xiaotie Deng, Zhe Feng, and Rucha Kulkarni. Octahedral Tucker is PPA-complete. In Electronic
Colloquium on Computational Complexity Report TR17-118, 2017.

[26] Francis Edward Su. Rental harmony: Sperner’s lemma in fair division. The American mathematical
monthly, 106(10):930–942, 1999.

[27] Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and other fixed
points. SIAM Journal on Computing, 39(6):2531–2597, 2010.

[28] Aris Filos-Ratsikas, Søren Kristoffer Stiil Frederiksen, Paul W. Goldberg, and Jie Zhang. Hardness
results for consensus-halving. In 43rd International Symposium on Mathematical Foundations of
Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, pages 24:1–24:16, 2018.

[29] Aris Filos-Ratsikas and Paul W. Goldberg. Consensus halving is PPA-complete. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 51–64, 2018.

[30] Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and bisecting ham
sandwiches. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, pages 638–649, New York, NY, USA, 2019. ACM.

[31] Katalin Friedl, Gábor Ivanyos, Miklos Santha, and Yves F Verhoeven. Locally 2-dimensional Sperner
problems complete for the polynomial parity argument classes. In Italian Conference on Algorithms
and Complexity, pages 380–391. Springer, 2006.

[32] Jugal Garg, Ruta Mehta, Vijay V Vazirani, and Sadra Yazdanbod. ETR-completeness for deci-
sion versions of multi-player (symmetric) Nash equilibria. ACM Transactions on Economics and
Computation (TEAC), 6(1):1, 2018.

[33] Michelangelo Grigni. A Sperner lemma complete for PPA. Information Processing Letters, 77(5-
6):255–259, 2001.

[34] Claus-Jochen Haake, Matthias G Raith, and Francis Edward Su. Bidding for envy-freeness: A
procedural approach to n-player fair-division problems. Social Choice and Welfare, 19(4):723–749,
2002.

[35] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and Searching.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

[36] Jiri Matousek. Intersection graphs of segments and EXISTS-R. arXiv preprint arXiv:1406.2636,
2014.

[37] Ruta Mehta. Constant rank bimatrix games are PPAD-hard. In Symposium on Theory of Comput-
ing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 545–554, 2014.

[38] Sergei Ovchinnikov. Max-min representation of piecewise linear functions. Beiträge zur Algebra und
Geometrie, 43(1):297–302, 2002.

[39] Christos H Papadimitriou. On the complexity of the parity argument and other inefficient proofs of
existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.

[40] Aviad Rubinstein. Inapproximability of Nash equilibrium. SIAM Journal on Computing, 47(3):917–
959, 2018.

[41] Marcus Schaefer. Complexity of some geometric and topological problems. In International Sym-
posium on Graph Drawing, pages 334–344. Springer, 2009.

[42] Marcus Schaefer. Realizability of graphs and linkages. In Thirty Essays on Geometric Graph Theory,
pages 461–482. Springer, 2013.

31

[43] Yaroslav Shitov. A universality theorem for nonnegative matrix factorizations. arXiv preprint
arXiv:1606.09068, 2016.

[44] Yaroslav Shitov. The complexity of positive semidefinite matrix factorization. SIAM Journal on
Optimization, 27(3):1898–1909, 2017.

[45] Forest W. Simmons and Francis Edward Su. Consensus-halving via theorems of Borsuk-Ulam and
Tucker. Mathematical Social Sciences, 45(1):15–25, 2003.

[46] Arthur H. Stone and John W. Tukey. Generalized "sandwich" theorems. Duke Math. J., 9(2):356–
359, 06 1942.

32

	Introduction
	Contribution
	Related work

	Preliminaries
	Arithmetic circuits and reductions between real-valued search problems
	The Consensus Halving problem

	The Class BU
	LinearBU

	Containment Results for Consensus Halving
	(n, n)-Consensus Halving is in BU and LinearBU = PPA
	(n,k)-Consensus Halving is in ETR

	Hardness Results for Consensus Halving
	Embedding a circuit in a Consensus Halving instance: an outline
	Special circuit
	The reduction to Consensus Halving

	(n,n)-Consensus Halving is FIXP-hard
	(n,n-1)-Consensus Halving is ETR-complete

	Proof of Lemma 10
	Special circuit to Consensus Halving instance
	One-to-two correspondence of circuit values to CH cuts
	Circuit values to cuts
	Cuts to circuit values
	Valuation functions to circuits

	Proof of Theorem 11
	Expressing the game as a circuit without division gates
	A circuit with gates whose inputs/outputs are in [0,1]
	The (n,n)-Consensus Halving instance

	Proof of Lemma 15
	Proof of Theorem 16
	Conclusion and Open Problems

