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Abstract

The goal of this work is to investigate the e�ects of time out of the labor market

for childcare on women's lifecycle wage growth. We develop a dynamic lifecycle model

of human capital, fertility, and labor supply for women. We estimate by indirect infer-

ence using importance sampling and formalize the use of this procedure. The results

indicate a modest e�ect of fertility-induced non-employment spells on human capital

accumulation. The di�erence in human capital among prime age women would be ap-

proximately 2.4% higher at its peak if the relationship between fertility and working

were eliminated, and 4.7% higher if the relationship between marriage and fertility was

also eliminated.
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1 Introduction

The main goal of this work is to understand the relationship between female human

capital accumulation and fertility. It is well known that women have a less steep wage

pro�le than men. Presumably some of this di�erence is due to the fact that women take

time out of the labor market during pregnancy and for childcare. We quantify the importance

of this e�ect on human capital accumulation. Speci�cally, we estimate a Markov model and

then simulate the di�erence in wage growth under the counterfactual that women no longer

take time out of the labor market for children and marriage. We �nd that at its peak,

human capital would be 2.4% higher if the fertility e�ect were eliminated and 4.7% higher if

the marriage e�ect was also eliminated. While these e�ects are substantial, they are small

compared to the raw di�erence in wages between men and women. This leaves plenty of

scope for other channels such as discrimination in the form of glass ceilings.

A second goal of the study is to formalize the use of importance sampling to estimate

indirect inference models. We develop a general version of indirect inference and an estimator

using importance sampling. We show that this method produces consistent estimates and

derive the standard errors for this promising new technique.

The basic empirical motivation can be seen in Figure 1. We run a regression of log wages

on dummy variables for years of potential experience and individual �xed e�ects for white

men and white women using the Survey of Income and Program Participation (SIPP). The

predicted pro�les are plotted, normalizing log wages at entry to zero. Two things can be seen

from the �gure. First, as has been previously established,1 wages increase more quickly for

men than for women at the beginning of the lifecycle.2 Second, while wages diverge in the

middle, they eventually converge towards the end of the lifecycle. One possible explanation

for this pattern is fertility - when women have children they often leave the labor market and

then re-enter as their children age. This could cause wage growth to slow during childrearing

and then pick up again after re-entry.

The �gure raises a fundamental question in labor economics: what leads to curvature

in wage growth? Relatedly, why does wage growth slow more quickly for men than for

women? If the curvature is driven by actual experience then one might expect this gender

pattern. When women re-enter the labor force they have less actual experience than men

1See e.g. Gladden and Taber (2000) among a large literature.
2This di�erence is smaller than what Gladden and Taber (2000) �nd for the NLSY though the samples

are directly comparable and the SIPP covers a later period.
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Figure 1: Male and Female Log Wage Pro�les
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and thus their wages will grow faster. This is consistent with the wage growth of women with

potential experience over 20 years being faster than the wage growth of men. In contrast, if it

is potential experience or age that is driving the curvature, then women who re-enter would

not see faster wage growth. Our empirical speci�cation below allows for both possibilities

and measures their quantitative importance.

The model is estimated using indirect inference which is an increasingly common way

to estimate complex econometric models. Similar to simulated method of moments, it is a

computationally simple technique since it relies on unconditional simulations of the model

to obtain structural estimates. However, one of the main practical problems with indirect

inference is the computational di�culty of optimizing the objective function when the struc-

tural model contains discrete choices (see, e.g., Magnac, Robin, and Visser, 1995, An and

Liu, 2000, or Nagypál, 2007). In this case, a step function arises because a small change

in structural parameters causes a jump in the metric of distance between the two sets of

auxiliary model parameter estimates. A non-smooth objective function precludes the use of

gradient-based numerical optimization methods which can often lead to much faster conver-

gence.

In this paper, we explain how the problem of non-smoothness can be solved using Monte
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Carlo importance sampling (see e.g. Kloek and van Dijk, 1978, or Kloek and van Dijk, 1978)

in a general class of indirect inference models. We smooth the objective function by making

use of importance sampling weights in estimation of the auxiliary model on simulated data.

The denominator of the weight is the likelihood contribution of each observation in the sim-

ulated sample, at an initial trial vector of structural parameters. The denominator remains

�xed during minimum distance iterations. The numerator of the weight is the likelihood con-

tribution at the updated trial vector of parameters. The importance sampling weights can

be formed with either the exact likelihood of the structural model or a simulated likelihood

in case the former is di�cult to construct. We show that this alternative technique which is

explained in the context of simulated method of moments by Gourieroux and Monfort (1996)

and Ackerberg (2009) can be extended to indirect inference to yield structural parameter

estimates that are consistent. While this extension is straight forward, in our view it is a very

useful approach which should be more widely applied in estimation by indirect inference.

The rest of this paper is organized as follows. In the next section, we brie�y discuss the

two relevant literatures. In Section 3, the Markov lifecycle model is presented. In Section 4,

we show formally how to incorporate importance sampling into indirect inference. Section

5 presents the data. Section 6 discusses how to implement the procedure in the current

context. Section 7 presents the empirical results. Section 8 concludes.

2 Background and Previous Work

2.1 Female Wage Growth

There is a large literature on male-female wage di�erentials. This study di�ers from the

vast majority of previous work in this area because we focus on wage growth rather than

wage levels.

Hill (1979) was one of the �rst to examine the e�ect of motherhood on wage levels. She

initially �nds a 7 percent motherhood-wage penalty for white women, but after controlling

for productivity characteristics it nearly disappears. She concludes that �the number of

children is a good proxy variable for di�erential work history and labor force attachment

for white women� (p. 591). We use this idea for identi�cation in our model. Becker (1985)

suggests that a part of the wage gap observed between single and married mothers arises

from the choice by married mothers to work in less intensive and more convenient jobs (p.

S54). Korenman and Neumark (1992) �nd no signi�cant e�ect on wages of having a �rst
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child, but large e�ects from the second child (between a 10 and 20 percent penalty).

Waldfogel's (1998a, 1998b) �ndings suggest a motherhood wage penalty of 4.6 percent

for the �rst child and 12.6 percent for two or more children. She also �nds that women who

have access to family leave upon childbirth are more likely to return to their pre-childbirth

employer and, consequently, receive a wage boost that partially o�sets the motherhood wage

penalty (75 percent of the wage penalty is eliminated). Anderson, Binder, and Krause (2002)

�nd no evidence (in a panel framework) that reduced work e�ort is at the root of the wage

gap. They estimate the wage gap to be 3 percent for mothers with one child and 6 percent

for mothers of two or more children. They posit that the wage gap is largely caused by high

costs of �exible work schedules for women holding medium o�ce jobs with standard work

hours.

Adda, Dustmann, and Stevens (2017) formulate and estimate a dynamic structural model

of female labor supply, marriage and fertility choices and use it decompose the career costs

of children into several di�erent components. Using data from Germany, they �nd that

roughly three quarters of the 35% reduction in lifetime income derives from foregone earnings

while out of the labor force. The remainder is due to lower wages while working, less work

experience and depreciation of skills. In addition, Adda, Dustmann, and Stevens (2017) �nd

that skill depreciation rates are higher in mid-career and di�er across occupations.

Loughran and Zissimopoulos (2007) concentrate on the e�ect of marriage and fertility

on the wage growth of men and women. Fixed-e�ects regressions show that not only does

marriage reduce female wage levels, but it also reduces female wage growth by four percentage

points. A �rst birth lowers female wages by between two and three percentage points but

does not a�ect wage growth for males or females.

Daniel, Lacuesta, and Rodríguez-Planas (2013) estimate �xed-e�ects regressions on Span-

ish data to explore the e�ects of childbirth on female wages. The results indicate that, com-

pared to childless women, �mothers to be� experience earnings increases of up to 6 percentage

points prior to a �rst-birth. The earnings advantage is then wiped out. It takes another

nine years on average for a mother's earnings to return to pre-birth relative levels (relative

to childless women). Roughly half of the earnings loss upon becoming a mother is due to

less accumulated work experience, as mothers switch to part-time work or take a leave of

absence.

Weiss and Gronau (1981) provides a human capital model showing why wage growth

might be lower for women. Polachek (1981) presents a model and evidence that women

4



choose occupations with lower depreciation of human capital. Like us, Light and Ureta

(1995) use a more complicated model for experience. They take advantage of the NLSY79

and the long histories. Baum (2002) looks directly at the e�ect of work interruptions on

wages for women. Wilde, Batchelder, and Ellwood (2010) emphasize the di�erence between

low and high skilled workers in the impact of childbearing.

In addition to Adda, Dustmann, and Stevens (2017) discussed above, our work is related

to structural models of fertility, labor supply and wages such as Mo�tt (1984), Hotz and

Miller (1988), Eckstein and Wolpin (1989), Heckman and Walker (1990), Van Der Klaauw

(1996), Altug and Miller (1998), Francesconi (2002) Sheran (2007), Keane andWolpin (2010),

Gayle, Hincapie, and Miller (2018), and Blundell, Costa Dias, Meghir, and Shaw (2016).

While we are not explicitly structural, our approach is similar. None of these papers focus

on the precise question about fertility and wage growth that we do.

There is also a large literature on the motherhood penalty. Additional papers to the ones

discussed above include Waldfogel (1997), Lundberg and Rose (2000), Budig and England

(2001), Anderson, Binder, and Krause (2003), Gangl and Zie�e (2009), and Pal andWaldfogel

(2014).

2.2 Indirect Inference and Importance Sampling

Indirect inference has become a very important tool for estimation of complex econometric

models. Key papers are Smith (1990, 1993) and Gourieroux, Monfort, and Renault (1993).

The econometrics is discussed in detail in Gourieroux and Monfort (1996). The basic idea

is to estimate auxiliary parameters from the data and match them to the model as we

discuss in detail in the next section. The main problem with indirect inference that we

address in this paper is one in which the mapping between the underlying parameters and

simulated auxiliary parameters is not smooth, which complicates estimation and inference.

We show how to use importance weight sampling to smooth the objective function. An

alternative approach to importance sampling and smoothing is the method of generalized

indirect inference (GII) proposed by Bruins et al. 2018. As it will be easier to discuss that

paper after introducing our notation, we defer a detailed discussion of GII until Section 4.3.

Importance sampling has a long history. The use of importance sampling with Monte

Carlo to simulate expectations goes back at least to Kloek and van Dijk (1978). It has been

used for smoothing objective functions in simulated maximum likelihood (see Keane and

Sauer, 2010, for discussion). It was discussed by McFadden (1989) as a way to smooth his
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simulated method of moments approach. A particularly relevant paper is Ackerberg (2009)

which we discuss in in Section 4.3 after introducing our notation. Our main methodological

contribution is to extend the importance sampling methodology to a general class of indirect

inference models as well as providing some particular examples. Lee (2012), Han (2016), and

Fu and Gregory (2019) have applied this approach based on earlier versions of this paper.

3 The Markov Model for Women's Work, Marriage, and

Fertility Patterns over the Lifecycle

The model is a continuous time Markov model in which women transition between several

states. Individuals can move into and out of work and into and out of marriage. They also

potentially give birth to children which in�uences other variables. Human capital increases

while individuals work and falls when they don't. The state variables are

Sit ≡{t, Lit,Mit, Hit, Kit, {A1it, .., AKitit};Ei, νi} (1)

where t is time since labor market entry (i.e. potential experience), Lit is a dummy variable

for having a job, Mit is a dummy variable for being currently married, Hit is human capital,

Kit is the number of children, and Ajit is the age of each child. The last two variables in

(1) do not change over time. The �rst is education Ei, which is observed in the data, and

the second is unobserved heterogeneity νi. The latter is a two dimensional normal random

variable, with one dimension loosely anchored to wages and the other to labor supply.

Our model starts at the point a woman �nishes school and we assume they are unmarried

with no children. They may have a job, which is determined by a logistic function of (Ei, vi).

The transitions are governed by �ve di�erent hazard rates; the hazard rate for job arrival

amongst the non-employed, λJ (Sit), the hazard rate for job destruction (leading to non-

employment), λN (Sit), the rate of marriage formation, λM (Sit), for divorce, λD1 (Sit) , and
�nally for birth of children, λK (Sit). With some probability women drop out of the labor

market precisely at the time of having children which is speci�ed as a logistic function of

(Ei, vi). The ages of both the woman and her children increase with time. Human capital

evolves deterministically as a function of the state variables as described below.

All �ve hazard rates take the basic form,

log
(
λR (Sit)

)
= XR

it (Sit)′ βR0 (2)

for R ∈ {J,N,M,D,K} where XR
it is a vector of covariates that are functions of the un-

derlying state variables (observable and unobservable). Not all hazards depend on all of
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the state variables, rather there is a di�erent subset speci�ed for each outcome. The exact

speci�cations are shown in Table 3a. We discretize the continuous state variables in (2).

The human capital accumulation function allows for curvature of the pro�le either through

age t, or human capital Hit using a log-linear functional form. Speci�cally, for workers, hu-

man capital accumulates according to

Ḣ =a (Sit)
(
H̄i −Hit

)
e−µit (3)

where H̄i is the maximum level of human capital (and Ḣ = ∂H/∂t). H̄i is allowed to

vary across people depending on their education using a log-linear functional form. In this

speci�cation, as Hit approaches H̄i, human capital accumulation slows. The other force that

allows for human capital accumulation to slow down is the potential experience term e−µit

(where µi varies with education). As discussed above, the distinction between the two is

very important for mothers who take time out of the labor force. With a long spell out of

the labor force to care for children, at the time of re-entry these mothers will have relatively

high t but relatively low Hit. So if the �rst e�ect is important, mothers should see large

wage growth upon re-entering, but for the second, they will not. This intuition is key for

distinguishing between these explanations in the data. The key auxiliary parameter is the

coe�cient on women with children over the age of 18 in the wage growth regression. We put

high weight on this parameter to make sure the model �ts it very well. We also parameterize

log (a (Sit)) to be linear in the state variables. Note that unlike the classic Mincer model,

our speci�cation does not allow human capital to fall for older women (when they work).

This is consistent with the data (see Figure 1).

When women do not work their human capital depreciates according to the formula,

Ḣ =− δH (4)

where δ is a single parameter.3

Finally, wages depend on human capital as well as some of the other state variables,

log (Wit) =Xit (Sit)′ γ +Hit + εit. (5)

Since Hit is an element of Sit, the notation is general enough that we could have incorporated
it into Xit (Sit)′ γ. It is shown explicitly in (5) only to clarify that its scale is determined by

the wage equation since it is restricted to have a coe�cient equal to 1. We also assume that

εit is i.i.d. standard normally distributed with mean zero and variance σ2
ε .

3In a previous version, δ was allowed to be a log linear function of the state variables, but we did not �nd
strong predictors in the data.
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4 Indirect Inference with Importance Sampling Weights

4.1 Basic Setup for Indirect Inference

Our framework is very similar to Chapter 4 in Gourieroux and Monfort (1996) but we

focus on a narrower (though still large) set of problems for which the importance weight

sampling approach is natural. We also focus on the cross section/panel data versions rather

than the time series version. We explicitly derive the asymptotic properties using importance

weights. The basic properties are quite similar.

We assume that the econometrician observes (Yi, Xi) for sample i = 1, ...N . The obser-

vations are i.i.d. and both Xi and Yi are potentially large dimensional (Kx and Ky). Xi

is exogenous in the sense that it is determined outside the model and is i.i.d. coming from

underlying distribution Ξ0.

The data generating process is

Yi ≡ y(Xi, ui; θ) (6)

where ui is an i.i.d. vector error term with distribution

Ψ(ui; θ). (7)

Both Ψ and y are known up to parameter θ ∈ Θ ⊂ <Kθ , where the true value is θ0. This

notation is general enough to represent a complicated system with lagged dependent variables

and/or equilibrium conditions, but we assume it can be written in reduced form y.4

To apply indirect inference, assume the auxiliary model is

β̂ = argmin
β

F

(
1

N

N∑
i=1

g(Xi, Yi, β), β

)
(8)

where β ∈ B ⊂ RKβ . The functions in (8) are g : RKx ×RKy ×B → RKg and F : RKg+Kβ →
R. We de�ne the population value of β̂ to be β0 ≡ argminβF (E [g(Xi, Yi, β)] , β). These

functions are general enough to incorporate many estimators. Simulated Method of Moments

is a special case in which the auxiliary parameters are moments: β̂ = 1
N

∑N
i=1 g(Xi, Yi). It can

also capture much richer auxiliary parameters. For example, it would be maximum likelihood

when g is the negative of the log-likelihood function and F is be the identity function, i.e.

F (x) = x. It can also incorporate a Generalized Method of Moments type estimator in which

4One can think of y as the function used by the computer code that produces simulated data given Xi, ui,
and the parameter value θ. If there are multiple equilibria the code must have some condition for choosing
between them. The same mechanism would be incorporated into y.
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g is the moments such that E [g(Xi, Yi, β)] = 0 and F is the function F (g, β) = g′Wg where

W is some weighting matrix. This can incorporate OLS, IV, di�erence-in-di�erences, and

regression discontinuity. We could also use it to represent a quantile or quantile regression.

To see the idea of indirect inference in this context let Ξ be a potential distribution of

Xi, then the data generation process is known up to (Ξ, θ) . De�ne the population functions

G(θ, β) ≡
ˆ ˆ

g(x, y(x, u; θ), β)dΨ (u; θ) dΞ0(x) (9)

and what Gourieroux, Montfort and Renault (1993) refer to as the binding function in our

case is

B(θ) =argmin
β

F (G(θ, β), β) . (10)

Note that B(θ0) = β0. Identi�cation and estimation of Ξ0 is straight forward since Xi is

observable, so we mostly abstract from it. Essentially what one needs for point identi�cation

of θ is that B(θ0) is invertible so that knowledge of β0 is su�cient for knowledge of θ. In that

case, since the model is known up to parameter θ, the function B(θ) is identi�ed. Thus, we

could just invert B (θ0) to identify θ0.

In practice we typically do not have a closed form for B. Instead, we use simulation

estimators in order to approximate B(θ). A typical approach is to generate H di�erent

simulated samples each with size S. For each observation we draw uhs(θ) randomly from the

distribution Ψ and calculate Xhs from the empirical distribution of Xi.
5 We then de�ne

B̃B(θ) ≡ 1

H

H∑
h=1

argmin
β

F

(
1

S

S∑
s=1

g(Xhs, y(Xhs, uhs(θ); θ); β), β

)
(11)

and choose

θ̂ = argmin
θ

(
B̃B(θ)− β̂

)′
Ω
(
B̃B(θ)− β̂

)
(12)

where Ω is a weighting matrix. We refer to this as the base approach which is why we use

the subscript B.

4.2 Using Importance Sampling Weights

A major problem with the base approach is that often some components of the dependent

variable vector, Yhs(θ) is discrete so that a small change in the parameters leads to jumps

5There are di�erent ways to obtain Xhs. One possibility is to take S = N and all of the Xi that we see in
the data, that is choose Xhs = Xs. Alternatively we could draw randomly from the empirical distribution
of Xi. What is crucial is that the distribution we use converges to Ξ0.
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in y(Xhs, uhs; θ). This causes the objective function to be discontinuous. In principle, with

enough simulations we could make this as smooth as we would like, but in practice this can

make minimizing the objective function very time consuming. For example, we attempted

to estimate our model with 1,580,000 simulations. This was still not su�ciently smooth to

use gradient methods or obtain reliable standard errors. Using importance sampling weights

smooths the objective function and worked very well for us in practice.6 This problem has

been found in other indirect inference cases as well.7

Before describing the method, we introduce notation for a key component of the analysis:

Υhs. This is essentially a superset of the data including additional components such as

unobserved heterogeneity and state variables. The empirical economist typically does not

get to observe its sample analogue, but since it can be simulated, Υhs is something on which

the empiricist can condition. In a typical problem there are multiple ways to choose Υhs

and �nding the best one will be computationally very important. This is essentially what

Ackerberg (2009) discusses as a �change in variables.�8

The data generating process for Yi (y(·) in equation 6) is augmented to include the

intermediate variable Υi and is expressed as

Υi =υ(Xi, ui; θ) (13)

Yi =yΥ (Υi, Xi; θ)

where both functions are known up to parameter θ. While the distinction between Υi and

Yi may seem arbitrary at this point, its usefulness will become clear in the examples below.

Let `(·;Xi, θ) be the likelihood function for Υi. The key for this to work well is that ` and

yΥ should be di�erentiable in θ and that ` should be easy to compute.

Our importance weighting estimator is the following: Obtain the values of Xhs from the

empirical distribution of Xi. Generate Υhs ex-ante without regards to θ using some data

generating function leading to likelihood `0(Υhs;Xhs). This typically involve simulating

using a pre-chosen parameter θ∗ which results in `0(Υhs;Xhs) = `(Υhs;Xhs, θ
∗), but this is

not necessary.

6The Bruins et al. (2018) is another approach to smoothing. We describe the di�erences with that
method in Section 4.3

7For example, for the model in Taber and Vejlin (2020), the authors could not �nd a number of simulations
that was large enough to allow the use of gradient methods and small enough to be computationally feasible.
The authors of Lee (2012), Han (2016), and Fu and Gregory (2019) experienced similar problems.

8He denotes it by u(Xi, εi, θ) rather than Υi.
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Fixing the values of (Υhs, Xhs) we use

B̃I(θ) ≡
1

H

H∑
h=1

argmin
β

F

(
1

S

S∑
s=1

`(Υhs;Xhs, θ)

`0(Υhs;Xhs)
g (Xhs, yΥ (Υhs, Xhs; θ) ; β) , β

)
(14)

and choose

θ̂ = argmin
θ

(
B̃I(θ)− β̂

)′
Ω
(
B̃I(θ)− β̂

)
. (15)

To understand the basic intuition of the approach, suppose that Υhs has a continuous

distribution and ignore the X ′s. Let Es denote the expected value from the simulation.

Since in the simulation Υhs was drawn from the density `0,

Es

[
`(Υhs; θ)

`0(Υhs)
g (Xhs, yΥ (Υhs; θ) ; β)

]
=

ˆ
`(Υhs; θ)

`0(Υhs)
g (Xhs, yΥ (Υhs; θ) ; β) `0(Υhs)dΥhs (16)

=

ˆ
g (Xhs, yΥ (Υhs; θ) ; β) `(Υhs; θ)dΥhs

=G(θ, β).

We approximate this integral using a Monte Carlo procedure where Υhs is drawn from the

distribution `0(Υhs), i.e.,

1

S

S∑
s=1

`(Υhs; θ)

`0(Υhs)
g (yΥ (Υhs; θ) ; β) ≈ G(θ, β). (17)

This gives us a consistent estimate of G(θ, β) as S gets large. Critically, as long as `(Υhs; θ)

and yΥ (Υhs; θ) are smooth functions of θ, this approximation is a smooth function of θ.

First, note that standard indirect inference is a special case. To avoid jumps in the objec-

tive function, researchers typically draw the random variables that determine outcomes �rst

and then �x these values throughout the estimation process. For example, if the distribution

of an underlying random variable uhs does not depend on θ, one would draw the uhs once,

at the beginning of the estimation procedure, and we would choose Υhs = uhs. In this case,

`(Υhs;Xhs, θ) = `0(Υhs;Xhs), so the ratio of the likelihoods would just be one and this would

be the standard estimator. When uhs does depend on parameters, typically one would draw

underlying random variables that do not depend on θ and write uhs as a parametric function

of those underlying variables. We discuss this point below.

The key improvement of this approach relative to the base model is that if we choose Υhs

in the appropriate way, yΥ (Υhs, Xhs; θ) and thus B̃I(θ) will be continuous and di�erentiable

functions of θ. This makes both estimation and formation of standard errors much easier.

To keep our results general enough to cover the base case, in our formal results we do not

impose that yΥ (Υhs, Xhs; θ) is continuous.
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In our supplementary Appendix A in Sauer and Taber (2021) we show consistency and

asymptotic normality. The asymptotic variance is[
∂B(θ0)′

∂θ
Ω
∂B(θ0)

∂θ′

]−1
∂B(θ0)′

∂θ
ΩF−1

ββ V F
−1
ββ Ω∂B(θ0)

∂θ

[
∂B(θ0)′

∂θ
Ω
∂B(θ0)

∂θ′

]−1

(18)

where Fββ ≡ d2F (G(θ0,β0),β0)
dβdβ′

. V is the variance of
([

1
H

∑H
h=1 ϑ̃hi

]
− ϑi

)
. In addition,

ϑi ≡
(
∂G (β0)

∂β

∂2F (G (β0) , β0)

∂G∂G′
+
∂2F (G (β0) , β0)

∂β∂G′

)
(g (Xi, Yi, β0)−G (β0)) (19)

+

(
∂g (Xi, Yi, β0)

∂β
− ∂G (β0)

∂β

)
∂F (G (β0) , β0)

∂G

ϑ̃hi ≡
(
∂G (β0)

∂β′
∂F (G (β0) , β0)

∂G∂G′
+
∂F (G (β0) , β0)

∂β∂G′

)
(g̃hi (β0)−G (β0)) (20)

+

(
∂g̃hi (β0)

∂β
− ∂G (β0)

∂β

)
∂F (G (β0) , β0)

∂G
.

4.3 Relationship with Other Work

Gourieroux and Monfort (1996) present a very general indirect inference framework in

Chapter 4. They consider a broader de�nition of the auxiliary estimator than equation (8),

which can be written in notation similar to ours as

β̂ = argmax
β

F (Y,X, β) (21)

where X and Y are matrices of the exogenous and endogenous data. They derive some

general properties of the estimator. Our estimator is a special case (though it still includes

a large set of auxiliary models) that makes clear where importance sampling enters. We

derive the asymptotic properties for our case. Gourieroux and Monfort (1996) also discuss

importance sampling for an array of estimators, but not explicitly for the indirect inference

estimator.

The main di�erence between our estimator and Ackerberg (2009) is that we consider a

more general estimator. The method of simulated moments is a special case of our model

when the auxiliary model is a moment of the data, i.e.,

β̂ =
1

N

N∑
i=1

g(Yi, Xi). (22)

The main point of Ackerberg (2009) is to emphasize an additional advantage of indirect

inference (other than smoothness). Using our notation, evaluating y(Xi, ui; θ) can be time

12



consuming as it might involve solving a dynamic programming problem or for equilibrium.

If one can �nd an appropriate change of variables, Υi, the problem can be simpli�ed. If we

can write yΥ(Υi, Xi; θ) in such a way that it does not depend on θ then one does not need to

re-solve the model when one does a function evaluation. In our Markov model, calculating

yΥ is not di�cult so we have not taken advantage of this feature.

Generalized indirect inference (GII) proposed by Bruins et al. 2018 is an alternative

method to smooth the objective function. We brie�y, and loosely, introduce GII with our

notation. They consider a case in which outcomes are discrete so we can write the outcome

for simulation h and s as y(Xhs, uhs; θ) = (y0(Xhs, uhs; θ), ..., yT (Xhs, uhs; θ)) with

yt(Xhs, uhs; θ) = argmax
j∈0,...,J−1

{vjt (Xhs, uhs; θ)} (23)

where j is a discrete option chosen from the set {0, ..., J−1} and vj is a utility function. The
discontinuity in the objective function comes from the jump in the value that maximizes it.

They de�ne a smooth function of latent utilities g(·; θ) such that ỹt (Xhs, uhs; θ, λ) ≡
g (v0t (Xhs, uhs; θ) , ..., vJ−1t (Xhs, uhs; θ) ;λ) converges to yt(Xhs, uhs; θ) as the smoothing pa-

rameter λ goes to zero. GII substitutes ỹt (Xhs, uhs; θ, λ) for yt(Xhs, uhs; θ) in computation

of B̃G (θ) (which can then be used analogously to B̃B (θ) and B̃I (θ)). Thus, the objective

function is smooth and B̃G (θ) converges to β0 as λ goes to zero and N goes to in�nity,

with H and T �xed. The g (·) Bruins et al. (2018) used in their Monte Carlo experiments

is the logistic-kernel. The main di�erences between the two approaches is that importance

weighting involves calculating and weighting by the likelihood function while GII depends

on the choice of the smoothing parameter.

GII is not suited for our Markov model for two reasons. The �rst is that the Markov

model is in continuous time rather than discrete time. The second is that our model of

human capital, which is crucial to the analysis, depends on the full labor market history up

to that point. Jumps in previous labor supply lead to jumps in human capital and we do not

see a computationally feasible way to use GII to smooth human capital accumulation. Bruins

et al. (2018) does discuss how to handle a lagged dependent variable within the context of

GII. They employ the same smoothing function that applies to the contemporaneous choice

in the Monte Carlo experiments and obtain good results. However, they do not discuss how

one would go about smoothing a function of the history of lagged dependent variables as

with accumulated capital accumulation. Altonji et al. (2013) use a version of GII that does

use the history, but their approach will not work for a continuous state variable like human

capital.
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4.4 Logit Model

In order to demonstrate the method of indirect inference with importance sampling, we

explain how to use it to estimate a logit model using a linear probability model as the

auxiliary model. Of course, one would never need to estimate a simple logit model using

this technique but it provides a good illustration of the method in a simple case. The true

model is

Pr(Yi = 1 | Xi) =Λ(X ′iθ0) (24)

where Λ denotes the logit c.d.f..

The auxiliary model is a linear probability model. This can be put into our notation by

taking F to be the identity function and choosing

g(Xi, Yi; β) = (Yi −X ′iβ)
2
. (25)

The simulated data is generated in the following way:

1. Choose Xhs by drawing randomly from the empirical distribution of Xi
9

2. Choose some initial logit value θ∗

3. Simulate Yhs so that

Yhs =

{
1 with probability Λ (X ′hsθ

∗)

0 with probability 1− Λ (X ′hsθ
∗)
.

In this simple case choose Υhs = Yhs.

For this model, note that

`(Υhs;Xhs, θ)

`0(Υhs;Xhs)
=

Λ (X ′hsθ)
Yhs (1− Λ (X ′hsθ))

(1−Yhs)

Λ (X ′hsθ
∗)Yhs (1− Λ (X ′hsθ

∗))(1−Yhs)
(26)

so

B̃I (θ) =
1

H

H∑
h=1

argminβF

(
1

S

S∑
s=1

`(Υhs;Xhs, θ)

`0(Υhs;Xhs)
g(Xhs, Yhs; β̂), β̂

)
(27)

=
1

H

H∑
h=1

argminβ
1

S

S∑
s=1

`(Υhs;Xhs, θ)

`0(Υhs;Xhs)

(
Yhs −X ′hsB(β̂)

)2

=
1

H

H∑
h=1

(
S∑
s=1

`(Υhs;Xhs, θ)

`0(Υhs;Xhs)
XhsX

′
hs

)−1( S∑
s=1

`(Υhs;Xhs, θ)

`0(Υhs;Xhs)
XhsYhs

)
.

9As discussed above, sampling could be with or without replacement. Of course, if it is done without
replacement and the simulation sample is larger than the original one, one would have to replenish it after
running through the full sample.
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Clearly this is just H weighted regressions with weights `(Υhs;Xhs,θ)
`0(Υhs;Xhs)

. Also, since the weight is

di�erentiable in θ, so is B̃I (θ) .

To see why this gives a consistent estimate note that

1

S

S∑
s=1

`(Υhs;Xhs, θ)

`0(Υhs;Xhs)
XhsX

′
hs

p→
S→∞

E

(
`(Υhs;Xhs, θ)

`0(Υhs;Xhs)
XhsX

′
hs

)
(28)

=E

(
XhsX

′
hsE

[
YhsΛ (X ′hsθ) + (1− Yhs) (1− Λ (X ′hsθ))

YhsΛ (X ′hsθ
∗) + (1− Yhs) (1− Λ (X ′hsθ

∗))
| Xhs

])
=E

(
XhsX

′
hs

[
Λ (X ′hsθ)

Λ (X ′hsθ
∗)

Λ (X ′hsθ
∗) +

(1− Λ (X ′hsθ))

(1− Λ (X ′hsθ
∗))

(1− Λ (X ′hsθ
∗))

])
=E (XiX

′
i)

and at the true value θ = θ0

1

S

S∑
s=1

`(Υhs;Xhs, θ0)

`0(Υhs;Xhs)
XhsYhs

p→
S→∞

E

(
XhsE

[
Yhs

YhsΛ (X ′hsθ0) + (1− Yhs) (1− Λ (X ′hsθ0))

YhsΛ (X ′hsθ
∗) + (1− Yhs) (1− Λ (X ′hsθ

∗))
| Xhs

])
(29)

= E

(
Xhs

[
Λ (X ′hsθ0)

Λ (X ′hsθ
∗)

Λ (X ′hsθ
∗)

])
= E(XiYi).

Thus, the simulator yields a consistent estimate as S grows (i.e. plim(B(θ0) = β0).

4.5 Discrete Time Markov Model and Monte Carlo Results

In this second illustration of the technique, the model is a discrete time Markov model

of dit which is binary (0 or 1). Everyone begins with di0 = 0. Then the transition model is

Pr(dit+1 = 1 | Xi, dit = 0) =Λ (X ′iθ0 + ui0) (30)

Pr(dit+1 = 1 | Xi, dit = 1) =Λ (X ′iθ1 + ui1)

where the distribution of ui = (ui0, ui1) is G(·; θ3).

We don't observe people throughout the lifecycle and de�ne Fi as the �rst period in

which we observe data for individual i and Li as the last period. Thus, for each individual

we observe (Xi, diFi , ..., diLi) .

Note that because of the initial conditions problem and the unobserved heterogeneity,

the likelihood of the data is computationally intensive when F1i is large. To economize on

notation let

% (dt, dt+1; θ,Xi, u) ≡ Λ (X ′iθdt + udt)
dt+1 (1− Λ (X ′iθdt + uidt))

1−dt+1 . (31)
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The the likelihood function of the data would beˆ 1∑
d1=0

...

1∑
dFi−1=0

% (0, d1; θ,Xi, ui) % (d1, d2; θ,Xi, ui)× ....× % (dFi−1, diFi ; θ,Xi, ui)× (32)

% (diFi , diFi+1; θ,Xi, ui)× ...× % (diLi−1, diLi ; θ,Xi, ui) dG (ui; θ3) .

Here we can simplify the likelihood used in the importance weights substantially by choosing

Υhs = (Xhs, uhs,dhs1, ..., dhsLhs) for simulation hs. Then we no longer need to integrate when

computing the likelihood function,

%(Υhs;Xhs, θ) = % (0, dhs1; θ,Xhs, uhs) % (dhs1, dhs2; θ,Xhs, uhs)×....×% (dhsLhs−1, dhsLhs ; θ,Xhs, uhs)

(33)

To get a sense of the performance di�erence between di�erent methods, we used a simple

version of this model as the basis of a Monte Carlo study. We specify a Markov model with

no unobserved heterogeneity, Fi = 2 and Li = 3. As an auxiliary model, we consider three

regressions (linear probability models): di2i on Xi (initial condition) and a linear probability

model of di3 on Xi conditional on the two di�erent values of di2. For each run, we consider

the same auxiliary model but simulate it in three di�erent ways: the base model, the GII

procedure, and by importance weighting (i.e. B̃B (θ) , B̃G (θ) , and B̃I (θ)). We also consider

two di�erent estimators: a gradient based estimator (LFGBS) and Nelder-Mead from the

Optim package in Julia. We tried two di�erent dimensions of Xi: 5 and 15 (which results

in 12 and 32 parameters with two set of parameters and intercepts) where the Xi are drawn

from a joint normal distribution. The parameters θ are uniformly distributed. We also used

3 di�erent simulation sizes: 20,000, 100,000, and 500,000 for all cases with H = 1.

The results are presented in Table 1. For each case, we present 3 summary statistics:

the mean squared error, the computation time (relative to using Nelder-Mead in the base

model), and the mean of the minimized objective function. Despite the simplicity of the

model, for a Monte Carlo study it takes a fair amount of time to estimate the base model

with 1 iteration of the six di�erent estimators taking roughly 24 hours on an Amazon AMD

processor when we use 500,000 simulations.

Comparing the base estimator with importance weighting, one can see the advantages.

First, notice that even with 500,0000 simulations the gradient based estimator does not

work as it does not �nd the minimum of the function consistently. However, the impor-

tance weighting estimator works very well. Comparing the indirect inference estimator to

the simplex estimated standard estimator, both perform well in terms of mean squared er-

ror though the gradient indirect inference estimator performs slightly better in some cases.
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Table 1
Monte Carlo Results of Di�erent Approaches

Markov Model
(500 Monte Carlo Iterations in all Cases)

Standard Ind. Infer. Generalized
Ind. Infer Importance Weights Ind. Infer.

Simplex Gradient Simplex Gradient Simplex Gradient
5 Covariates, 20,000 Simulated Individuals

Mean Squard Error 0.0076 0.1544 0.0073 0.0073 0.0076 0.0076
Average Time 1.0000 0.0384 0.8122 0.2149 0.5649 0.9332
Objective×100 0.0144 1.332 0.0175 0.0175 0.0143 0.0143

5 Covariates, 100,000 Simulated Individuals
Mean Squard Error 0.0016 0.152 0.0016 0.0016 0.0016 0.0016

Average Time 1.0000 0.0966 0.7684 0.1927 0.5694 0.8590
Objective 0.0031 1.2145 0.0036 0.0036 0.0032 0.0032

5 Covariates, 500,000 Simulated Individuals
Mean Squard Error 0.0004 0.1095 0.0004 0.0004 0.0004 0.0004

Average Time 1.0000 1.4961 1.0773 0.2495 0.7556 1.0494
Objective 0.0009 0.8153 0.0009 0.0009 0.0009 0.0009

25 Covariates, 20,000 Simulated Individuals
Mean Squard Error 0.6376 2.1482 0.1564 0.1567 0.1741 0.1749

Average Time 1.0000 0.0153 2.1253 0.0242 1.3869 0.0499
Objective 2.7592 3.3255 0.0972 0.0972 0.0509 0.0509

25 Covariates, 100,000 Simulated Individuals
Mean Squard Error 0.1178 0.8163 0.0283 0.0283 0.0281 0.0282

Average Time 1.0000 0.0337 1.1810 0.0088 0.7428 0.0175
Objective 0.2591 2.7680 0.0215 0.0215 0.0154 0.0154

25 Covariates, 500,000 Simulated Individuals
Mean Squard Error 0.0077 0.7641 0.0064 0.0064 0.0058 0.0058

Average Time 1.0000 0.1751 1.4627 0.0105 0.8522 0.0152
Objective 0.0070 2.4191 0.0053 0.0053 0.0046 0.0046

The most important result is that indirect inference/gradient is much faster than the base/

simplex method - roughly �ve times faster with 12 parameters and 100 times faster with 52

parameters (in the 100,000 and 500,000 simulation cases).

For the Generalized Indirect Inference model, since calculating the optimal smoothing

parameter is time consuming we only do it once for each model (i.e. 6 times for the covari-

ate/simulations speci�cation). We do not follow precisely Bruins et al. 2018 but something

very close that �ts our approach and seemed to work well. While GII sees less time savings

in the smaller model it is also much faster and converges better than the simplex method in

the base model.
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Given that this is only one speci�cation, and also a very simple model, we cannot come to

general conclusions in the comparison between the importance weighting procedure and GII.

However, it is clear that for large problems there are substantial computational advantages

to estimating with a smoothed model and using a gradient based method.

5 Data and Auxiliary Model

We use data from the Survey of Income and Program Participation (SIPP). Alternative

data sets we could have used are the National Longitudinal Survey of Youth 1979 (NSLY79)

as well as the older National Longitudinal Surveys of Young Women and Mature Women

(NLSW). We would not argue that SIPP clearly dominates the NLSY79, but rather there

are tradeo�s between the two datasets and the vast majority of previous work discussed

above has focused on the NLSY79 or NLSW. The advantage of the NLSY79 is it is a much

longer panel, but the disadvantage is that it contains a small number of individuals (at most

around 6,000 women which gets smaller over time due to attrition from the survey).

The SIPP is a very large data set with short panels - we use observations from almost

100,000 di�erent women. The challenge with the SIPP is that one does not observe the full

lifecycle pro�le for each woman. One must piece together the panel data for di�erent people

at di�erent ages. This requires an econometric model, and we use our Markov model of work,

fertility and marriage. Estimating such a model by maximum likelihood is extremely di�cult

given the severe initial conditions problem. Indirect inference is a feasible alternative.

We estimate the model using the last four panels of the Survey of Income and Program

Participation 1996, 2001, 2004, and 2008.10 This survey interviews individuals every four

months and we only use data from the survey month. The sample includes white women

who are 18 years or older and have at most 35 years of potential experience. Table 2

presents summary statistics of the main variables used in the analysis. Details of the data

are discussed in supplementary Appendix B ( Sauer and Taber, 2021).

The auxiliary model is constructed using the following auxiliary parameters (the full

description along with their empirical values is in Supplementarly Appendix C, Sauer and

Taber, 2021):

� Regression of log wages on potential experience dummies and state variables with

individual �xed e�ects
10We do not use earlier years because the nature of the survey changed around 1996. These later panels

are substantially longer than the previous ones.
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Table 2
Summary Statistics
White Women 18-65

Survey of Income and Program Participation

Variable Mean Standard Deviation
Potential Experience 18.028 10.021
Employed 0.728 0.445
log(Wage) 2.642 0.589
Education 13.529 2.412
Currently Married 0.604 0.489
Currently Not Married and Divorced 0.164 0.37
Number Children < 18 0.958 1.168
Number Children < 7 0.344 0.677
Number of Children 1.546 1.353
Any Children 0.717 0.451
Age Youngest 8.147 8.679
Age Di�erence Oldest/Youngest 5.699 4.038
Had Baby 0.009 0.094
Number of Cells 726484
Number of Women 97354

� Within and between variance of the error term from the previous regression

� Regression of estimated wage �xed e�ect on education

� Linear probability regression of working on potential experience dummies and state

variables with individual �xed e�ects

� Between variance of the error term from the previous regression

� Regression of wage �xed e�ect on work �xed e�ect

� Linear probability regressions of whether a woman is currently married/currently un-

married and divorced from second wave of survey on potential experience dummies

� Linear probability regressions of whether an unmarried woman gets married/becomes

unmarried between waves, on potential experience dummies and state variables

� Fraction of mothers who are married at childbirth

� Regression of having a child on one year lagged work status wages of mothers who

work (with other covariates)
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� Age di�erence between youngest and oldest child

� Linear probability regression of any children/two children/number of kids, on potential

experience dummies and state variables

� Linear probability regression of working in one wave conditional on working in the

previous wave, on potential experience dummies, state variables, and work �xed e�ect

� Fraction of mothers who work in interview before giving birth

� Regression of wage gains between periods for women who are employed between periods

� Change in log wages for women with non-employment spells divided by di�erence in

potential experience dummies.

The key parameters are the e�ects of the number of children on various outcomes and

can be seen in the �data� part of the tables and �gures. Most surprisingly, in the �xed e�ects

wage regression (Supplementary Appendix Table C1, Sauer and Taber, 2021), there is no

evidence of a children penalty relative to many of the papers cited previously. This is in

large part because this is a very short panel. We also �nd that having young children is

an important determinant of working in the �xed e�ect regression shown in Supplementary

Appendix Table C2 (Sauer and Taber, 2021), but it goes away as the children age. We also

include age 7 in this regression but it is statistically and economically insigni�cant - the

coe�cient is -.0044. For this reason, in the model we impose that only children less than

seven in�uence labor supply decisions. There are also substantial e�ects of marriage on labor

supply in this �xed e�ect regression.

Another key parameter is children over 18 in the wage growth regression. This variable is

the key to identi�cation of experience versus age e�ects. This is a proxy for actual experience

since we know women who have more children have less experience (making use of the Markov

model in the sense that it tells us how much less experience). The coe�cient is interacted

with education. The results are in Supplementary Appendix Table C7 (Sauer and Taber,

2021). The e�ect at 12 years of school is positive (and for college even larger) indicating

that women at the same age who have had more children have faster wage growth. This is

evidence that actual experience matters for the curvature. The magnitude of this e�ect will

dictate the magnitude of the actual experience e�ect in the model.

We included other children variables in the log wage growth equation but did not �nd

signi�cant results so we do not include them here, and do not incorporate motherhood
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directly into the human capital production function.

6 Implementation of Approach in Practice

To formally describe Υhs for our model, some new notation is introduced. First, since

we take H = 1 in practice, we abstract from including h in the subscripts. Let Nw
s be the

number of work transitions and the dates (in terms of actual experience) of these transitions

be τws1, ..., τ
w
sNw

s
. Let Ls0 be labor force status upon labor market entry. Given Ls0, we can

keep track of the state so we know the direction of the transition. Similarly for marriage, let

Nm
s be the number of marriage transitions and τms1 , ..., τ

m
sNm

s
be their dates. Analogously, let

Nk
s be the number of children and τ ks1, ..., τ

k
sNk

s
the dates when the children were born. Note

that knowledge of the dates when children were born and labor force transitions also tells

us if women stopped working right after childbirth. Finally, we write the measurement term

on wages as εst = σεεst where εst is standard normal. Let εs be the vector of these objects

for the periods in which the wage is observed by the econometrician. Then we take our Υs

to be

Υs =
{
Ls0, τ

w
s1, ..., τ

w
sNw

s
, τms1 , ..., τ

m
sNm

s
, τ ks1, ..., τ

k
sNk

s
, νs, εs

}
(34)

What is crucial for our approach is that the likelihood function `(Υs | Xs; θ) is smooth as a

function of θ and the rest of the variables used to produce the auxiliary model are smooth

in θ after conditioning on Υs.

Note that the labor market, marriage, and birth transitions are perfectly pinned down

by Υs, but human capital and thus wages is not. The reason is that conditional on the

work transitions, human capital is a smooth function of the parameters so there is no reason

to include human capital as part of Υs. Note as well that we could have included the εst

in Υs rather than εst. In the former case, the importance weights would change with σε,

parameterizing it with εst instead, they do not. Our experience is that the procedure works

better in the latter case for reasons which are discussed below.

Writing the likelihood in terms of Υhs simpli�es its computation over the likelihood of

the underlying data for two reasons: integrating over unobserved heterogeneity and solving

the initial conditionsl problem. In this case, the di�cult integration problem arises due to

the initial conditions problem. Unobserved heterogeneity by itself is not that computation-

ally di�cult because the measurement error εs is i.i.d. over periods, and νs is only a two

dimensional and permanent object. It is important to point out that there are many other
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models for which the initial conditions problem might not exist, but integrating over the

distribution of unobservables would be much more complicated making maximum likelihood

computationally infeasible. For example, we could relax the i.i.d assumption on εi, allow

νi to evolve, or include an additional transitory error term that a�ects human capital accu-

mulation each period, as in Fan, Seshadri, and Taber (2019). In our empirical problem the

main di�culty with maximum likelihood is the initial conditions problem, but the general

approach is useful for a much broader set of applications.

In practice, since the model is complicated, if the estimation procedure runs long enough

so that the parameters change substantially, the likelihood can get very small for many

observations. As a result, the weight `(Υhs;Xhs, θ)/`0(Υhs;Xhs) becomes approximately

zero for a large number of the observations. In theory, there is no problem with this, as if S

is large enough, the law of large numbers still works. However, as a practical matter, one is

using e�ectively a much smaller sample to approximate the auxiliary moments. Note as well

that if one simulates the model using parameter value θ0 then `0(Υhs;Xhs) = `(Υhs;Xhs, θ0),

so if we simulate at this parameter value, the weights are all equal to one. Putting these

together, it is useful for this method to occasionally re-simulate the model with intervening

estimates.

After experimenting with di�erent approaches, we settled on the following iterative pro-

cedure. Start with some initial value and then:

� Let θ̂j−1 be the last estimated value of the parameter (or initial value when j = 1)

� Simulate the model with estimate θ̂j−1 and let `(Υs;Xs, θ̂j−1) be the likelihood of this

simulated data with this parameter

� Use a Newton method and to minimize the distance between the auxiliary and simu-

lated parameters (
B̃I(θ)− β̂

)′
Ω
(
B̃I(θ)− β̂

)
(35)

with at most 100 Newton steps where

B̃I(θ) = argminβF

(
1

S

S∑
s=1

`(Υs;Xs, θ)

`(Υs;Xs, θ̂j−1)
g (Xs, yΥ (Υs, Xs; θ) ; β) , β

)
(36)

and Ω is a diagonal weighting matrix

� Let the parameter that minimizes this be θ̂j.

� Repeat this procedure until the �t stops improving

22



Once �t stops improving, we switch to a simplex method without importance weighting. We

use our current best guess of θ as a starting value and then choose our estimate to minimize

the unweighted objective function(
B̃B(θ)− β̂

)′
Ω
(
B̃B(θ)− β̂

)
(37)

where B̃B(θ) is the base simulator de�ned in equation (11).

The reason for the �nal step with the simplex method is that if we stopped at iteration

j the parameter estimate is θ̂j but the model that simulated the data for that estimator

was θ̂j−1. This means that for counterfactuals, if we just simulate from θ̂j we will not get

exactly the same simulation as our �nal estimates. Using the standard method in the �nal

step guarantees that the �t of the data from our �nal estimates comes from θ̂j alone. As a

practical matter this �nal stage did not lead to a substantial change in the parameter values

but was time consuming.

The weights for the parameters of the auxiliary model were chosen in a somewhat ad

hoc manner. We chose a diagonal weighting matrix Ω where for most auxiliary parameters

we divided by the variance of the estimated parameter. The problem with this default

approach, or more generally e�cient weighting, is that it does not put the proper weight on

the moments we are most interested in �tting. For example, most of our regression models

contain a full set of potential experience dummy variables which gives 35 parameters, but

there are only a few variables related to fertility (the �xed e�ect wage regression has a single

one). This means that the statistical criterion will put much more weight on �tting the

experience pro�le because this is 35 parameters rather than fertility which is only 1. We

adjust for this by overweighting the fertility parameters. While ad hoc, we think it provides

a better objective function than a pure statistical one. The precise scales are presented in

Supplementary Appendix C (Sauer and Taber, 2021).

7 Empirical Results

In the model, not all state variables a�ect all outcomes. The speci�cation was chosen

in order to �t the data in as parsimonious a way as possible and is motivated by patterns

found in the data. In Tables 3a-3d we present the estimated parameters of the model. The

parameters themselves are more easily understood through simulations rather than on an

individual basis. For this reason, we do not o�er a detailed discussion of them. Most of the

parameters have the signs one would expect.
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Table 3a
Model Estimates: Hazard Estimates

Get Get Find Leave Have
Covariate Married Divorced Job Job Kid
Education -0.002 -0.076 0.252 -0.204 -0.114

(0.024) (0.134) (0.013) (0.016) (0.024)
ν1 -0.021 -0.124 -0.023

(0.057) (0.115) 0.059)
ν2 -0.035 0.827 2.024 -1.406 0.099

(0.067) (0.323) (0.075) (0.072) (0.134)
Married -0.633 0.100 2.416

(0.084) (0.078) (0.159)
Number of Kids < 18 0.018

(0.332)
Number of Kids < 7 -0.334 0.298

(0.043) (0.047)
Working -1.393

( 0.253)
Number of Kids=1 -0.221

(0.197)
Number of Kids=2 -1.885

(0.219)
Number of Kids>2 -5.396

(1.719)
Number of Kids× Education -0.144

(0.609)
Age Youngest 0.006

(0.015)
Potential Experience ≤ 5 -2.107 -3.450 1.761 -1.347 -1.372

(0.047) (0.591) (0.124) (0.137) ( 0.184)
5 ≤ Potential Experience ≤ 10 -1.828 -3.621 2.406 -0.913 -1.984

(0.100) (0.699) (0.122) (0.126) (0.222)
10 ≤ Potential Experience ≤ 15 -2.810 -3.552 1.673 -0.934 -2.835

(0.388) (0.763) (0.143) (0.129) (0.260)
15 ≤ Potential Experience ≤ 20 -2.921 -3.497 1.180 -0.910 -3.073

(0.403) (0.800) (0.132) (0.140) (0.334)
20 ≤ Potential Experience ≤ 25 -3.634 -4.515 0.653 -1.441 -4.434

(0.845) (0.984) (0.189) (0.196) (0.884)
25 ≤ Potential Experience ≤ 30 -3.623 -4.534 0.606 -1.169 -4.446

(0.957) (0.987) (0.168) (0.172) (0.901)
Potential Experience > 30 -3.550 -4.523 0.279 -1.101 -4.452

(1.034) (1.158) (0.218) (0.229) (1.342)
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Table 3b
Model Estimates: Work Probability

After Birth
Covariate Initial of Child
Intercept -1.954 1.650

(0.651) (0.680)
Education 0.113 0.088

(0.260) (0.263)
ν2 0.073 0.010

(0.461) (0.738)

Table 3c
Model Estimates: Human Capital and Wages

Covariate a λ H̄ Wages
Intercept -3.161 -19.182 0.214

(0.303) (0.005) (0.141)
Education 0.428 -2.604 -0.054 0.034

(0.088) (0.005) (0.036) (0.015)
ν1 0.422

(0.008)
Married -0.387 0.016

(0.247) (0.005)
Number of Kids < 18 0.009

(0.004)
Number of Kids < 7 0.003

(0.004)

Table 3d
Model Estimates: Additional Parameters

δ 0.060
(0.020)

σε 0.290
(0.023)

ρ12 0.938
(0.004)

The �t of the model is presented in Supplemental Appendix Tables C1-C7 and Figure

C1-C5 (Sauer and Taber, 2021). One can see in the tables that with only a few exceptions,

the �t is excellent. We also attempt to �t the lifecycle pro�le of working, wages, marriage
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and children. Given the coarseness of the model, the relationship between hazard rates and

potential experience does not �t perfectly, but in general the overall lifecycle patterns are �t

very well.

The �rst issue of main interest is the determinants of the curvature of human capital,

which is important for understanding the shape of female wage growth. Recall that our

baseline model is

Ḣ =a (Sit)
(
H̄i −Hit

)
e−µit, (38)

where curvature can come from two di�erent sources. The �rst source is from the term(
H̄ −Hit

)
which leads to human capital slowing down as it approaches H̄. The second

source is from the µi term which leads to human capital slowing down as workers age. The

former is analogous to curvature due to �actual experience� while the latter is analogous to

curvature due to �potential experience.� As mentioned previously, we believe this di�erence

is identi�ed by the coe�cient on �kids greater than 18� and its interaction with education

in the wage growth regression. One can see from Supplementary Appendix Table C7 (Sauer

and Taber, 2021) that these are matched well.11

To better understand this distinction, we graph two alternative versions of the human

capital production function:

Baseline : Ḣ =ā
(
H̄i −Hit

)
e−µ̄t

Model A : Ḣ =āA
(
H̄ −Hit

)
Model B: Ḣ =āBe−µ̄t

for married women with the average amount of education (13.5 years of education). Since the

point of this exercise is to explore curvature rather than rate of wage growth, āA and āB are

calibrated to values that keep human capital growth in the �rst ten years the same as in the

base case. The �rst model eliminates the age e�ect through µ while the second eliminates the

curvature in the human capital production function. Figure 2 presents the results in which

Model A is labeled �No Age E�ect,� and Model B is labeled �No Direct Human Capital.�

Note that the distinction between the Baseline and Model A is barely visible while Model B

is distinctly di�erent. Clearly µi is largely irrelevant and the curvature derives from human

capital accumulation.

11Note that the standard errors on these parameters are large but partly because the level and interaction
with education are collinear. The p-value on the joint test that both are zero is 0.002.
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Figure 2: Curvature in Human Capital
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Next we turn to the main aim of this paper and simulate a model in which the relationship

between fertility and work is relaxed to see how that a�ects human capital accumulation.

That is, we compare our baseline model to a counterfactual in which children at home have

no e�ect on working. Speci�cally, the e�ect of �Number of Kids < 7� on �nding a job and

leaving a job are set to zero (see Table 3a) and the probability of leaving the work force

immediately upon having a child is also set to zero (Table 3b). We also �nd large e�ects

of marriage on labor supply (Table 3a) so we also consider a counterfactual in which we

eliminate this e�ect. Our third counterfactual eliminates both the marriage and fertility

e�ects.

The direct e�ects on labor supply are presented in in Figure 3. First, examining the

fertility e�ects, one can see that eliminating these would lead to a a considerable increase in

labor force participation during the prime child-bearing years that dissipates as women age.

The di�erence peaks at around 10 years of potential experience at a level of roughly 10%.

In our view, this is a substantial e�ect, but it is not enormous. This is not that surprising

based on the raw data.12 Many women stop working while they have young children, but

12One can see in the �xed e�ect work regression in Table C2 (Sauer and Taber, 2021) that the coe�cients
on young children are of a similar magnitude.
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most do not. The marriage pattern is (not surprisingly) quite di�erent over the lifecycle. It

is substantially smaller early in the lifecycle, but persists much longer.

Figure 3: Labor Supply Counterfactual
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We next examine the e�ect of these labor supply e�ects on human capital accumulation.

These simulations are not analogous to those in Figure 1, as to be in the actual wage

regression, a woman needs to be working. This means that the shape of the pro�le in Figure

1 depends not just on human capital accumulation but also on selection into who is working.

Since our counterfactual involves a change in working, there will be a selection e�ect that

will in�uence the pro�le. We can avoid this problem when we simulate the model because

we can simulate a counterfactual wage and a level of human capital for everyone - those

working and those not working. This is what we present.

Figure 4a presents a simulation of the level of human capital (Hit in our model) at

di�erent ages. The labels are analogous to the counterfactuals presented in Figure 3. One

can see that the loss in labor supply from fertility and marriage does suppress human capital

but it is relatively modest. To put this simulation in a more familiar context, we calculate

the di�erence in human capital between each of the three counterfactuals and the baseline

and plot it in Figure 4b. For the fertility counterfactual, the di�erence in wages peaks

around experience levels 10-20 at a di�erence of somewhat over .024. This suggests that, on
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Figure 4: Human Capital Counterfactual
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average, wages of women at these ages would be about two percent larger if there was no

e�ect of fertility on labor supply. Again, this is a non-trivial e�ect, but when compared to

the di�erence in log wages between men and women it is quite modest.13 When adding the

marriage e�ect as well, one gets more substantial e�ects of up to 4.7%. While these e�ects

go in the right direction, they are small relative to the wage growth di�erences between men

and women leaving room for other channels such as discrimination (perhaps in the form of

glass ceilings) to be important.

8 Conclusion

In this paper, a continuous time Markov model of female work, marriage, and fertility

is estimated using data from the Survey of Income and Program Participation. The model

provides a good �t of the data. Two di�erent types of counterfactuals are simulated with the

estimated parameters. The �rst seeks to understand whether the curvature in female wage

growth is determined primarily by curvature in the human capital accumulation function as

a function of previous human capital, or if it is primarily driven by age. The results strongly

suggest that curvature in the human capital production function is the driving force. The

second counterfactual attempts to uncover the extent to which dropping out of the labor

13The two percent motherhood wage penalty we �nd is greater than the near zero penalty found in Hill
(1979) and Korenman and Neumark (1992), but less than the penalty amongst mothers with two or more
children found in Waldfogel (1998a), Waldfogel (1998b), and Anderson, Binder, and Krause (2002). Our
estimate is similar in magnitude to the wage penalties for the �rst child found in Loughran and Zissimopoulos
(2007) and Miller (2011). Our other estimates are less directly comparable to previous �ndings but are
consistent with results in Adda, Dustmann, and Stevens (2017) and Braga (2013).
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force amongst females, for fertility or marriage related reasons, suppresses human capital

accumulation. Our �nding is that it does so to a modest extent. Wages among prime

age women would be approximately 2.4% higher if the relationship between fertility and

working were eliminated and up to an additional 4.7% higher if the marriage e�ect were also

eliminated.

The study also illustrates how to use importance sampling weights to smooth the objective

function for indirect inference with discrete endogenous variables. Our procedure requires

calculating the likelihood contribution for each observation in the sample at an initial trial

vector of structural parameters. This constitutes the denominator of the weight, which

remains �xed during minimum distance iterations. The numerator of the weight is the

likelihood contribution at the updated vector of trial parameters. At each iteration, the

likelihood ratio is the importance sampling weight used in estimation of the auxiliary model.

The importance sampling weights can be formed with either the exact likelihood of the

structural model or a simulated likelihood in case the former is di�cult to construct. Our

Monte Carlo study suggests potentially large gains in speed can be gained from smoothing

the objective function in such a way.
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