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Abstract
This thesis describes the investigation into the fabrication technology and op-

eration of quantum dots (QD) formed in single and double quantum wells in the

application to spectral sensitive terahertz sensors. For detection of terahertz radia-

tion we probe charge excitations of QDs caused by the absorption of the terahertz

photons by sensitive electrometers, the Point Contact (PC) or the metallic Single

Electron Transistor (SET). Single photon sensitivity is achieved using a device with

the QD formed in a single quantum well. Devices based on double quantum wells

would have advantages in tuning of the resonance spectral line. I report the progress

in the development of this sensor. A simplified model of the operation of the QD

sensor is discussed.
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1 Inception
The detection of terahertz radiation has been used for space observations for many

years, such as being used for detecting the composition of stars during their forma-

tion.1 However, the exploitation of terahertz radiation imaging in a more commercial

environment has long been overlooked. Terahertz radiation itself is an ideal candi-

date for security detection and imaging due to its ability to penetrate most common

materials, with the notable exceptions of sheet metal and water. The terahertz range

from 0.1-10 THz can incorporate detection of many materials including explosive

materials and illegal substances. Indeed short wavelength terahertz radiation, to-

wards infrared, has been utilised in imaging equipment using heterodyne systems,2

however these are not systems that can detect specific chemical signatures, i.e. per-

form spectroscopy.

Due to the intrinsic property of most common materials to emit terahertz radia-

tion due to molecular vibration and similar processes, it is not unfeasible to recognise

the possibility of the passive detection of substances and even imaging.

Currently the majority of passive terahertz detectors are in the form of broad

bandwidth superconducting bolometers which, if specific frequency detection is

needed, require a series of filters, making it inconvenient for chemical signature

detection and also requiring cryogenic cooling to achieve Tc for superconductivity.

Bolometers are wide bandwidth detectors as they measure an increase in tempera-

ture.3 Currently superconducting hot electron bolometers have the highest reported

sensitivity with a gain bandwidth of 6 GHz,4 however this is far from single photon

detection.5

The TeraEye6 project takes a different route in terahertz detection, namely through

the use of a quantum dot (QD) as a sensor for the detection of specific frequencies of

terahertz photons. The use of a QD as a terahertz photon detector was first suggested

practically in 1998.7 As many chemical compounds, such as explosive compounds,

have specific frequency signatures in the terahertz region, as can be seen in table 1.1

and figure 1.1, a tuneable terahertz detector in the form of a QD would have many

applications in security, such as for airport passenger and baggage screening, with

the added benefit of being passive. Unlike similar previous detectors, the sensor

1
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being developed here requires no magnetic field.

Figure 1.1: Graph illustrating THz signatures of some common explosive materials.8

Table 1.1: Absorption peak positions of several common explosives and drugs. Wavenumber
conversion: 33.3 cm−1

≈ 1 THz.9

Material Feature band centre position frequency (THz)
Explosive

Semtex-H 0.72, 1.29, 1.73, 1.88, 2.15, 2.45, 2.57
PE4 0.72, 1.29, 1.73, 1.94, 2.21, 2.48, 2.69
RDX/C4 0.72, 1.26, 1.73
PETNa 1.73, 2.51
PETNb 2.01
HMXa 1.58, 1.91, 2.21, 2.57
HMXb 1.84
TNTa 1.44, 1.91
TNTb 1.7
TNT 5.6, 8.2, 9.1, 9.9
NH4NO3 4, 7

Drugs
Methamphetamine 1.2, 1.7-1.8
MDMA 1.4, 1.8
Lactose α-monohydrate 0.54, 1.20, 1.38, 1.82, 2.54, 2.87, 3.29
Icing sugar 1.44, 1.61, 1.82, 2.24, 2.57, 2.84, 3.44
Co-codamol 1.85, 2.09, 2.93
Aspirin, soluble 1.38, 3.26
Aspirin, tablets 1.4, 2.24
Acetaminophen 6.5
Terfenadine 3.2
Naproxen sodium 5.2, 6.5

aSamples formed as pellets using spectrographic-grade polyethylene.
bSamples in the form of compressed pellets. All materials are water free.

This project utilises QDs as terahertz detectors at a temperature range of 0.3 K

to 4.2 K depending on which read-out method is being used. As the QD absorbs a

photon it causes an electron to be excited out of the QD. This change in charge is

then detected by one of two possible read-out methods: Point Contact (PC) readout

and Single Electron Transistor (SET) readout. With the development of cryogen-free

2
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coolers,10 the commercial possibility of QD tuneable terahertz detector is more than

viable. As part of the TeraEye project this thesis will discuss the fabrication, testing

and analysis of such terahertz detectors and further potential developments.

The first part of the project consists of fabricating QDs coupled to PCs and

SETs. PCs have relatively lax fabrication demands compared to the demands of SET

fabrication. Such fabrication utilises shadow evaporation techniques and highly

precise alignment. The QD is formed on a mesa, which is defined in the focal point

of a planar metallic antenna with a 1.5 mm span, designed to operate at a frequency

range of 0.2-2 THz. The mesa itself is formed from an acid-etched two dimensional

electron gas (2DEG) hetrostructure. A discussion regarding fabrication can be found

in section three.

The second part involves the low temperature measurements and analysis of the

QD-SET and QD-PC sensors. Different hetrostructures, with different 2DEGs com-

posed of GaAs/AlGaAs, have different electron mobilities and effective electron/hole

masses depending on the material and lattice structure, as defined by the growth of

the material. It was shown that the sensors with PCs are potentially the more real-

istic option for commercial use than those with SETs. Further discussion regarding

testing and analysis can be found in sections five and six.

The final part is to build upon the above two sections by developing similar sensor

systems, but using stacked coupled QDs, formed from a bilayer 2DEG hetrostructure.

It is from this that more sensitive and potentially more ”tuneable” sensors can be

formed.

3



2 Literature Review

2.1 Existing Methods of Terahertz Radiation Detection

As previously described there are currently many different methods of THz radi-

ation detection. The low temperature detectors which are particularly exploited

in the space research community are semiconductor bolometers, superconducting

bolometers and heterodyne mixers. One should mention also thermopile11 and the

pyroelectric detector,12 which have since been superseded due to their low sensitiv-

ity. For spectral analysis a THz time domain spectroscopy systems are used. Recently

the QD detectors emerged, which allows a spectral detection of THz radiation with

single photon sensitivity.13

2.1.1 Bolometers

The main forerunner of terahertz detection technology, which currently are widely

used are the bolometers. Bolometers measure the energy of incident electromagnetic

radiation. They operate as thermal detectors, where part of the bolometer, the

absorber, changes in temperature due to the incident radiation. This temperature

change is then detected by a sensor, such as an electrical resistance thermometer.14

Current bolometers can be divided into two groups of superconducting bolometer

and semiconductor bolometer. Recently there have been developments in cold and

hot electron micro-bolometers.15, 16, 17

In superconducting bolometers a thin film of superconductor material is de-

posited on a substrate such as sapphire. The operation is based on the principle

of the superconducting transition edge,18 where the device operates due to the re-

sistance of the superconductor being a sensitive function of the temperature. This

is achieved by biasing the device close to the point of the superconducting transi-

tion. The low impedance of such a device makes the device operation complicated,

requiring the device to be operated in an AC bridge with lock-in detection. The

device also requires a feedback setup connected to a heating device connected to the

sample/sample holder. This setup can achieve a noise equivalent power (NEP) of

v 10−15 W
√

Hz
at 1.27K. The device has applications mainly in space research, but due

4
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to its complexity is rarely used in widespread application. Further improvements on

such a device have been done. Adding an antenna to the microbolometer19 causes

the coupling between the incident radiation and the sensor to increase and therefore

extend the operational frequency range. With these differences an NEPv 10−14 W
√

Hz

has been achieved but at an increased operational temperature of 4.2K, however it

was noted that with an improvement in the read out noise, the NEP could be further

brought down to NEPv 10−15 W
√

Hz
at 4.2K.19

Current transition edge bolometers stay at the transition point using electrother-

mal feedback and also are voltage biased to improve performance. These two mod-

ifications have shown, along with the use of a SQUID amplifier, that it is possible to

achieve an NEPv 3.3 × 10−17 W
√

Hz
.20

Kinetic inductance variance of a device can also be used as a transition edge

bolometer, where the kinetic inductance variance is a function of temperature. In su-

perconductors a higher temperature results in more quasiparticle excitations, mean-

ing an acceleration of the Cooper pairs. This leads to a relation of the inductance be-

ing proportional to the square of the temperature dependent penetration depth. The-

oretically NEPv 4 × 10−17 W
√

Hz
can be achieved,21 however, only an NEPv 10−11 W

√
Hz

was reported.22

Conventional bolometers use superconducting material where the electrons and

phonons are in equilibrium. However, in a system where this is not true, a Hot-

electron photodetector/bolometer (HEP/HEB) can be formed.23 This is achieved by

making the phonon-electron energy relaxation time large due to the design of the

detector. As electronic excitations have very short relaxation times this makes HEPs

very fast and sensitive detectors compared to standard bolometers.

Transition edge HEPs based on a thin film of niobium can achieve a response

time of 4.5 ns and an NEP of v 3 × 10−13 W
√

Hz
, making them less sensitive compared

to semiconductor bolometers but with a much lower response time and display a

constant sensitivity from the microwave range to the ultraviolet range.24 In more

recent developments a decreased resonance time of 30ps with an NEP of v 10−12 W
√

Hz

was achieved when using ultra thin NbN films.25

Photon induced hot spot detectors have displayed detection of 0.8µm photons

5
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at rates of 10 GHz with a quantum efficiency of approximately 0.2 and dark count

(intrinsic) of 0.001s−1, leading to an infrared region NEP of v 5.5×10−20 W
√

Hz
. In these

detectors the absorption of single photons causes a hot spot in a superconducting

bridge which is kept below the critical temperature. With the device biased, the hot

spot caused by the single electron causes the critical current to be exceeded in lateral

regions to the hot spot, causing a non superconducting barrier to be formed. This

causes a voltage spike or pulse across the device, which can then be detected. The

hot spot then cools due to electrons diffusing out of the hot spot and then scattering

with phonons, so the device is ready to detect a photon again. The switching time

between a detected state and a non detected state is of the order of 30ps.26 It does seem

however that the range of sensitivity can not be expanded out of the infrared region.

This is due to the operating conditions of such a device, which is ν � 2∆
h v 1THz

where ν is the operating frequency and ∆ is the superconducting band gap.

Superconducting-insulator-normal (SIN) junctions can also be utilised as bolome-

ters by utilising the normal metal part as an absorber. NEPs of v 3 × 10−18 W
√

Hz
have

been shown.27 Andreev reflections of electrons at the normal-superconducting bar-

rier traps energy in the normal metal, and with the weak phonon-electron coupling

at operational temperatures of approximately 100mK, a large temperature change is

detectable in the absorber. This temperature change manifests itself as a changed

I-V characteristic of the junction.

As the SIN junction could also cool the electrons in the normal metal it has led to

the development of cold electron bolometers with potential NEPs of 10−19 W
√

Hz
.17

One of the highest sensitivity detectors are semiconductor bolometers, used for

processes such as Fourier transform spectroscopy, as well as astronomy techniques.28

Heavily doped germanium and silicon are widely used to form semiconductor

bolometers. Conduction is found to be propagated by variable range hopping.29

This is due to the materials being doped close to the metal-insulator transition point.

This then gives a resistance to temperature relation of Log(R) v 1
√

T
. Semiconduc-

tor materials are used for both the thermometry part and the absorption part in

microchip bolometers, but due to this the absorption of wavelengths towards the

microwave region begins to reduce, forcing the use of the larger microchips to in-
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crease the desirable detectable bandwidth. One way around this is to use different

compounds for the substrate, absorber and thermometer parts, such as using a ger-

manium thermometer, sapphire substrate and a bismuth film absorber, or a diamond

substrate with a nichrome thin film absorber. The best bolometers achieve NEPs of

v 2.5 × 10−17 W
√

Hz
at 0.1K compared to a room temperature NEP v 3 × 10−10 W

√
Hz

.
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2.1.2 Time-Domain Spectroscopy

Terahertz Time-Domain spectroscopy (TDS) is a broadband spectroscopic technique

with a typical frequency bandwidth of 500Ghz centred on 1-2 THz. It is an active

technique, meaning THz radiation is radiated onto the sample. It is non contacting

method. Information from reflected or transmitted radiation is be collected for

analysis. Unlike regular Fourier transform spectroscopy, which is sensitive to only

amplitude, time-domain spectroscopy is sensitive to both amplitude and phase.

TDS has several advantages including non contact spectroscopy as already men-

tioned, large spectral bandwidth in the THz region and coherent measurements

which allows both real and optical components of a signal to be measured, such

as the index of refraction and the dielectric constant. The large spectral band-

width allows many frequency signatures to be detected, where other system, such as

bolometers which require a series of filters to isolate a frequency, may be limited to a

much smaller range. Due to the large bandwidth of the TDS technique, this results

in a small coherence length, giving a large spatial resolution.

However, TDS is limited by a few factors, such as the pulse laser required is still

a specialist and costly piece of equipment and are often low powered. Samples also

need to be in situ and require active THz radiation to be incident on the sample,

unlike the passive QD terahertz detector.

An example of a TDS system is shown in figure 2.1. The emitter consists of a

single semiconductor crystal which has had a two part antenna fabricated onto it.

The antenna then has a large electric field put across it by applying a potential to

opposing sides of the antenna. Infrared laser pulses of approximately 10-200fs are

directed into the centre of the antenna onto the crystal causing electron hole pairs to

be formed, which are then accelerated due to the applied electric field. The changing

in dipole moment causes a spread of THz frequencies to be produced, which can then

be focused and scanned along the sample.30 Many different types of semiconductor

and crystals can be used to produce the THz pulse, the most used being ZnTe.31

Using different setups one can produce different THz pulses, covering a range of

0.05-4 THz.32
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The principle piece of equipment in the TDS system is the laser. For TDS to be

of significant sensitivity, at least a femtosecond pulse laser needs to be used. The

laser produces the required pulse train, with the pulses repeating in the order of

100MHz and the pulse lengths being 100fs or less. The emitted pulse train is then

split into two separate beams, with one used to gate the detector and the other used

to generate the THz signal. Using this approach, the radiation is coherent so E(t) can

be measured directly, so both amplitude and phase information are measured.

Figure 2.1: Schematic illustration of the equipment setup for a TDS system.33

A delay line on the transmitter side is used to vary the time at which the THz

signal reaches the sample to be probed. It is assumed that the pulses are identical,

this allows several measurements to be taken at different delay times, so a picture

can be built up of the electric field interacting with and without the sample as a

function of time, allowing a time dependent electric field trace to be built up, as

shown in figure 2.2. This is further improved by taking multiple measurements at

each given delay time as to improve the signal-to-noise ratio.34

On the right in figure 2.2, we can see the Fourier transform spectrum of the

initial time domain measurement. This technique will only be valid however if the

pulse train is not generated on a time scale similar to that of the measurement. This

leads to TDS measurements requiring a large number of data points. The minimum

acquisition time, tmin for such measurements can be calculated using

tmin = N × ∆t (2.1)

where ∆t is the time spacing between pulses and N is the total number of electric
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field measurements performed on the sample.

Figure 2.2: The left figure shows a THz time-domain measurement of air. The dotted line
indicates the intensity envelope. Right image shows the subsequent FT spectrum, with
arrows indicating the absorption lines found in water. The relative phase of the signal can
be seen in the inset as a function of frequency.34
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2.1.3 Heterodyning

Heterodyning is the technique of mixing two closely spaced frequencies to produce

two further signals which are the sum and difference of the original signals. It is

a well established technique having been used for over 80 years. The concept of

its use, is to down shift the frequency of interest to a frequency that is much easier

to detect, which why it is an appropriate technique for THz detection. If one of

the first signals is known then the second may be identified. The basic principle of

heterodyning is based on the following trigonometric identity

sinθ sinϕ =
1
2

cos(θ − ϕ) −
1
2

cos(θ + ϕ) (2.2)

This identify can then be used to mix two sine wave signals sin(2π f1t) and sin(2π f2t)

to produce the following

sin(2π f1t) sin(2π f2t) =
1
2

cos[2π( f1 − f2)t] −
1
2

cos[2π( f1 + f2)t] (2.3)

Heterodyning has the advantage of being able to detect very weak narrow band

signals, where direct detection and amplification or pre amplification followed by

detection would add too much electronic noise. This would cause the signal to

become lost unless unacceptably long integration times are used. As the integration

time required to isolate a given frequency increases as the square of the equivalent

system noise, it would require that all sources of electronic noise are minimised.

Currently direct electronic amplification of signals above 150GHz is difficult to im-

possible,35 so currently heterodyning is favoured for this regime. The mixing is

accomplished by using a non-linear rectifying element, such as a diode, fast bolome-

ter, tunnel junction or even a superconducting tunnel junction.

Signals of interest are typically mixed with a local signal produced by an oscillator

at a closely spaced frequency. By down shifting the signal with a heterodyning mixer,

the signal can be easily amplified and detected with minimal additional noise. This

allows the signal to be easily filtered if required or even down shifted a second or

possibly a third time, ready for easy detection. The bandwidth and quality of the
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down mixed signal is highly dependent on reference signal provided for mixing.

High quality sources, such as a quantum cascade laser often phase locked via a

harmonic mixer are usually used. Assuming a narrow bandwidth reference signal

and the output signal is filtered, then thermal noise and undesired signals can be

avoided in the detection part of the system. Signal bandwidth filtering is regularly

used so that the total RF bandwidth is only a few hundred kHz, which when working

in the THz spectrum means the bandwidth becomes one part in 107. This can give

very high signal to noise ratios of 100dB or more, making heterodyning systems very

favoured for detection of low power astronomical signals. However for broader

bandwidth detection, continuous spectroscopy or imaging, direct detection, such

as with semiconductor sensors, is preferred, although these often need cryogenic

cooling to reduce noise. Heterodyning imaging systems have now been developed.

However these systems often require active illumination of the target object.36, 37, 38

Room temperature heterodyning systems based on mixing components such as

Schottky diodes have the further advantage having a very wide range of signal

power detection sensitivity, ranging from picowatts to tens milliwatts, a dynamic

range of 1010, with the detected current/voltage remaining linear throughout the

detector.

As THz radiation is so heavily absorbed by the surrounding environment, a

large range makes calibration simpler. Particularly in imaging applications, the large

range proves advantageous when imaging objects that have a very large differential

contrast. Utilising the heterodyning technique, magnitude and phase information

is also preserved and it lends itself nicely to spectroscopy due to the system being

immune from other signals outside of the designated bandwidth.

Heterodyning techniques, utilising silicon field effect transistors have been re-

ported to achieve an NEP of 300 pW
√

Hz
36 at 0.65THz for imaging. NEPs as low as

4 pW
√

Hz
at 639GHz have also been reported for Schottky diodes.39 Terahertz radar has

recently come to commercial fruition with the instillation and use of Terahertz radar

body scanners at airports for security, such as systems developed by ThruVision and

spectroscopy and imaging systems for science, as developed by companies such as

TeraView.
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2.2 A Quantum Dot Terahertz Detector

The sensors being developed as part of this project operate by forming a QD from a

2DEG formed within a GaAs/AlGaAs heterostructure. The QD is charge excited by

absorption of THz photons. The excitation is then read out either by Point Contact

(PC) or Single Electron Transistor (SET). The description of how they are made can

be found in section 3 and their operation in section 5. These sensors draw on many

aspects of nanophysics, including quantum well formation in heterostructures, SET

theory and single electronics in OD systems as well as THz optics.

2.2.1 Single Electron Transistors (SET)

This section will introduce the fundamentals of single electronics and the associated

theory and will briefly touch on second-order effects. These will lead specifically

to the single electronics as is used in the electron transport in PCs, SETs and will

eventually lead onto to electron transport in QDs. The specifics of electron transport

in QDs are outlined in section 2.2.3.

2.2.1.1 Orthodox Single Electron Theory

The following section will describe Orthodox Electron Theory from the thermo-

dynamical, Gibbs free energy treatment per tunnel event. A electrostatic energy

treatment, producing the same conclusions, but specific to QDs will be presented in

section 2.2.3.

We may consider a closed system consisting of only capacitors, tunnel junctions

and voltage sources, where the total amount of internal energy, Einternal, is conserved.

When a tunnelling event occurs, any decrease in electrostatic energy, U, must there-

fore be due to thermal energy, Qthermal such that

Einternal = U + Qthermal (2.4)

Within this closed system the extensive variables, which scale with the size of the

system are the entropy, S, and node the charges of the capacitors and tunnel junctions,

such that the total differential of the internal energy can be considered

13
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dEinternal =

N∑
i=1

∂Einternal

∂qi
dqi +

∂Einternal

∂S
dS (2.5)

Using standard thermodynamic considerations, the temperature can then be defined

as the partial derivative of Einternal

T =
∂Einternal

∂S
(2.6)

Similarly the node voltage at a given node may be defined as

νi =
∂Einternal

∂qi
=
∂U
∂qi

(2.7)

We may now construct the differential total internal energy as

dEinternal =

N∑
i=1

νidqi + TdS

= vTdq + TdS (2.8)

We may also construct the Helmholtz free energy as we have already stated that

during a tunnel event the internal energy is conserved, therefore making dEinternal = 0

and we may assume the event to be carried out at a constant temperature so dT = 0

also. Therefore we can state

FH = Einternal − TS (2.9)

and

dFH = dEinternal − TdS − SdT

= 0 + vTdq − SdT (2.10)

We can see that as long as the temperature remains constant, any changes in the

Helmholtz free energy will be equal to the changes in the electrostatic energy of the

system

∆FH = ∆U =

∫
vTdq (2.11)
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This has taken into account the charge sources. When taking into account the voltage

sources also, we may use the Gibbs free energy, such that

F = FH − vv
Tqv

= U + Qthermal − TS −W (2.12)

We define W as the work done by all voltage sources, and can be expressed as the

total power integrated over time, where V(t)andI(t) are the voltage and current of

each respective source

W =
∑

sources

∫
V(t)I(t)dt (2.13)

We may also conclude that the total differential Gibbs free energy is

dF = dU − SdT − dW (2.14)

and at constant temperature, this becomes

dF = dU − dW (2.15)

So we can see that at constant temperature, the change in energy due to an electron

tunnelling across a junction is only dependent on the voltages of the sources that

the electron is tunnelling to and from, which can be said to be the energy required

to tunnel from state i to the final state f . This idea is replicated in the electrostatic

consideration of such a system.

As we have now calculated the energy required to tunnel from state i to state f

and that it is proportional to the voltage difference between the states, we may now

calculate the transmission rate or tunnel rate between said states. First we define the

change in free energy as the difference between the free energy before the electron

tunnels and after it has tunnelled. So it can be seen that a transition from one state

to another state with lower energy will give a negative free energy change

∆F = F f − Fi (2.16)
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Using Fermi’s golden rule and knowing the change in free energy, the tunnel rate

may be expressed as

Γ(∆F) =
2π
~
|Ti f |

2δ(Ei − E f − ∆F) (2.17)

where |Ti f | is the transmission coefficient from state i with momentum ki to state f

with momentum k f for a given tunnel event. We may now sum over all k states to

calculate the total rate from occupied to non occupied states. To do this we must

know the probability of unoccupied/empty states which an electron may tunnel too.

We do this using the Fermi-Dirac distribution f (E), which describes the probability

of finding an occupied state at a given energy level. Therefore the probability of an

empty state is 1 − f (E).

f (E) =
1

1 + e(E−E f )/(kbT)
(2.18)

So we may use

1 − f (E) = f (−E)

=
1

1 + e(−E+E f )/(kbT)
(2.19)

We may also approximate that the variation in the tunnel transmission coefficients

are negligeable, and consider it instead to be a constant. With these considerations

we may now rewrite equation 2.17 as

Γ(∆F) =
2π
~
|T|2

∑
i

∑
f

f (Ei)(1 − f (E f ))δ(Ei − E f − ∆F) (2.20)

We can replace the sums over momentum to integrals over energy by knowing the

number of electron states in a small energy interval of dE and using the density of

states D(E), integrating between conduction band and infinity of the initial state side,

Ec,i and between the conduction band and infinity of the final state side Ec, f
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Γ(∆F) =
2π
~
|T|2

∫
∞

Ec,i

dEi

∫
∞

Ec, f

dE f Di(Ei)D f (E f ) f (Ei)(1 − f (E f ))δ(Ei − E f − ∆F) (2.21)

It can be seen that the product of the two fermi distributions at lower temperatures

will form a rectangular window containing the states centered around -0.5eV with a

width of approximately −1eV = EF f − EFi = ∆F. As this window is where the main

contribution of the rate comes from, we can approximate that the density of states

to be constant and using the delta function, we may remove one of the integrals,

leaving us

Γ(∆F) =
2π
~
|T|2DiD f

∫
∞

Ec

f (E)(1 − f (E − ∆F))dE (2.22)

where EC is the higher of the two conduction bands. We may now use the concept

of tunnel resistance, because tunnel junctions are essentially ohmic conductors still.

Tunnel resistance is defined as

RT =
~

2π|T|2DiD f
(2.23)

This now allows us to simplify further to give

Γ(∆F) =
1

Rte2

∫
∞

Ec

f (E)(1 − f (E − ∆F))dE (2.24)

We can make the further assumption that the Fermi level will be within the conduc-

tion band, this allows us to change the limits of integration to Ec to −∞. This allows

us to solve the above rate equation, giving

Γ(∆F) =
∆F

e2RT(e∆F/(kBT)T − 1)
(2.25)

which can be seen to have the following solutions at zero temperature

Γ(∆F) =

 0 ∆F ≥ 0

−∆F
e2RT

∆F < 0
(2.26)
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So as can be seen and would be expected, transport only occurs when the change in

free energy is negative, or as was earlier stated, the starting energy state is higher

than that of the finishing state. This will be shown for the electrostatic case also.

The model has made a number of assumptions however. These include the energy

spacing between levels is smaller than that of the thermal energy, therefore making

the energy spectrum essentially continuous. It also assumes that the time for an

electron to tunnel is essentially instantaneous, or at least much smaller than the time

between each tunnel event.

It is also assumed that the electron states on the island are localised and well

defined, i.e. an electron is either on the island or it is not. This is only achieved

by the resistance of the tunnel junction being sufficiently high enough as to isolate

the electrons from the surrounding environment. Taking into account qualitative

quantum mechanical arguments we can calculate this minimum resistance required.

If we describe the number of electrons, N, in the system as being an average number,

〈N〉, then coulomb blockade will require the following condition to be satisfied.

|N − 〈N〉|2 � 1 (2.27)

To therefore calculate the minimum value of resistance which the barriers would need

to be we first consider the energy uncertainty of an electron and the characteristic

charge time fluctuation of a capacitor

∆E∆t > h (2.28)

∆t ' RTC (2.29)

where C is the capacitance and RT the resistance of the tunnel junction. Taking the

energy gap associated with a single electron as

∆E =
e2

C
(2.30)

and combining this with equation 2.28 and 2.29, we may write

RT >
h
e2 = 25813Ω (2.31)
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This therefore defines the minimum resistance that tunnel junctions need to be to

follow the principles of single electron charging.
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2.2.1.2 Coulomb Blockade

As is discussed in section 2.2.3, coulomb blockade occurs when the energy level of

the tunnel barrier is greater than that of starting and finishing energy levels.

The free energy change of a junction with charge Q, only taking into account

electrostatic energy, when a tunnelling event occurs where the charge will change

by ±e

∆F =
(Q ± e)2

2C
−

Q2

2C
=

e2

2C

(
1 ±

2Q
e

)
(2.32)

We can see therefore that as the charge reaches e
2 the change in free energy becomes

less than zero, and therefore it becomes energetically favourable for the electron to

tunnel as can be seen in figure 2.3.

Figure 2.3: Change in free energy due to energetically favourable tunnelling of an electron
once the island charge, Q, exceeds e/2.

We can therefore see that the system continually charges the system at a constant

rate of Idt = dQ until the junction charge reaches e
2 , at which point the electron will

tunnel and the junction charge will return to −e
2 and the charging will continue again.

This must mean there is a periodic rate, as can be seen in figure 2.4, at which the

electrons tunnel, which will be equal to
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fSET =
I
e

(2.33)

Figure 2.4: Periodic charge oscillations due to energetically favourable tunnelling events.

When two junctions are in series, a tunnel event in the first one may affect the

outcome of a tunnel event in the second. The potential of an uncharged island where

the first junction has a capacitance of C1 and at potential Vb and the second junction

has a capacitance of C2 and is grounded is Vb, so the potential of the island is

Visland =
VbC1

C1 + C2
(2.34)

As Vb is increased, the Coulomb blockade will be overcome to allow a tunnelling

event causing the potential off the island to increase by e/(C1 + C2). This increase

may then be enough to overcome the potential of the second junction allowing a

second tunnelling event to occur, and as the second tunnel event will decrease the

potential on the island, it may allow a tunnel even in the first junction to occur. This

is a demonstration of space corelated tunnelling.
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2.2.1.3 Superconducting Tunnel Junctions

One of the fundamental differences between the superconducting and non supercon-

ducting tunnel junctions is the difference in the formulation of the density of states.

Unlike the density of states in a normal material as discussed in sections 2.2.2 and

2.2.3. As the density of states is part of the tunnel rate equation, it therefore directly

effects the system. Unlike normal materials, the density of sates cannot be consid-

ered constant, as for materials such as semiconductors and superconductors, as seen

in figure 2.5 where the density of states can be zero, the correct energy dependence

of density of states needs to be accounted for.

Figure 2.5: Density of states for superconductors illustrating the band gap which is of the
order 1 meV.

This density of states for the superconductor, where D0 is the DOS a the Fermi level,

can be described as

Dsuper(E) =


D0

|E−EF|

((E−EF)2−∆2)
1
2

|E − EF| > ∆

0 |E − EF| ≤ ∆

(2.35)

Quasiparticle tunnelling may also occur in superconducting junctions. This is where

individual electrons tunnel across the barrier opposed to the standard cooper pair

in a superconductor, due to it being favourable in terms of energy states. Although

quasiparticles are individual electrons, they still follow the density of states of cooper

paris, as given in equation 2.35. Orthodox theory still applies, however this density

of states must be substituted instead.

22



2.2. A Quantum Dot Terahertz Detector R. Davis

2.2.1.3.1 Coherent and Incoherent Cooper Pair Tunnelling

Coherent tunnel is free of dissipation and the electrode coupling can be described

using the Josephson energy, −EJ
2 . We may define the Josephson energy using the

critical current Ic, as

EJ =
h

RT∆2e2 =
~Ic

2e
(2.36)

As the process is coherent, we must take into account that there may be many

different possible tunnel events that could lead to a given charge configuration

amongst the electrodes and islands. Given a reference state, we therefore need to

uniquely identify how much charge has been transferred for any given possible

transition, which we denote as Q̄. A Hamiltonian for such a system can then be

devised40, denoting a unique charge state as |Q̄〉

H0 =
∑
|Q̄〉

FQ̄|Q̄〉〈Q̄| −
EJ

2

∑
±2e

|Q̄ ± 2e〉〈Q̄|

 (2.37)

where |Q̄〉 denotes all relevant charge states and where |Q̄ ± 2e〉 denotes all of such

states that can be reached by Cooper pairs. If there are more states than there are

states that Cooper pairs may reach, i.e. states that differ by ±e rather than ±2e, then

the remaining states may only be reached by quasiparticles.

As to include quasiparticle transport in the system described in the Hamiltonian

2.37, we use first order perturbation theory to perturb the Hamiltonian, H = H0 +HT.

Using this perturbation and by diagonalising the Hamiltonian, it can be shown that

without current dissipation, a DC voltage will produce an AC supercurrent. How-

ever, if there is some form of current dissipation, such as quasi particle tunnelling,

then a DC current may flow, therefore causing transitions between different eigen-

states. By combing the perturbed and non perturbed systems of quasiparticle tun-

nelling. It can be shown that the rate at which tunnelling between states due to

quasiparticles is41

Γi→ f =
1
e

I(∆Fi f )

e∆Fi f /kBT
− 1

∣∣∣∣∣∣∣∣
∑

Q̄

〈Ψ f |Q̄ ± e〉〈Q̄|Ψi〉

∣∣∣∣∣∣∣∣
2

(2.38)

23



2.2. A Quantum Dot Terahertz Detector R. Davis

where ∆Fi f is the change in free energy due to a quasiparticle tunnel event from

states i→ f .

Alternatively, if the phase coherence between the two electrons that make up a

Cooper pair becomes destroyed, due to an external EM field for example, then it can

be shown that the tunnel rate is42

Γincoherent =
π
2~

E2
J P2e(∆F2e) (2.39)

where P2e is the probability that an electron will exchange energy with its environ-

ment and ∆F2e is the change ion free energy for transferring two electrons.
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2.2.1.3.2 Superconducting Single Electron Transistors (SETs)

The most utilised outcome of single electron theory is the Single Electron Transistor

(SET), first fabricated and investigated in 1987.43, 44 There are three types of SET,

defined by how the gate is coupled to the central island. These are the Resistive-SET

(R-SET), Resistive and Capacitive-SET (RC-SET) and the Capacitive-SET (C-SET).

This project utilises exclusively the C-SET and as such will provide information on

the C-SET and not the other two. The C-SET configuration can be seen in figure 2.6.

The bias across the junctions between the central island, V0 can be defined as

Figure 2.6: Circuit illustration of a C-SET.

V1 − V0 =
V1(C2 + Cg) − V2C2 − VgCg + ne − q0

C1 + C2 + Cg
(2.40)

V0 − V2 =
V1C1 − V2(C1 + Cg) + VgCg − ne + q0

C1 + C2 + Cg
(2.41)

where q0 is the existing (if any) noninteger offset charge and n the number of excess

electrons on the island. This allows to calculate the change in free energy when

tunnelling events occur left to right (+) and right to left (-) in each junction. For the

first junction the change in free energy can be

∆F+ = e
(

e
2(C1 + C2 + Cg)

+ (V1 − V0)
)

(2.42)

∆F− = e
(

e
2(C1 + C2 + Cg)

− (V1 − V0)
)

(2.43)

and similarly for the second junction, the change in free energy can be
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∆F+ = e
(

e
2(C1 + C2 + Cg)

+ (V0 − V2)
)

(2.44)

∆F− = e
(

e
2(C1 + C2 + Cg)

− (V0 − V2)
)

(2.45)

By assuming operation at 0K, where a free energy change can only be negative, we

can set the above equations to zero and device 4 linear conditions. These conditions

when plotted give the stability domains for where an SET may operate. As can be

seen from the equations, the structure of these boundaries are dependent on many

things including biasing, capacitances and existing charges, are variables that can be

dependable on the fabrication of the SET. The equations we obtain by carrying this

out for each junction (1 and 2) are

1+
−e(n + 1

2 ) + q0 = (V1 − Vg)Cg + (V1 − V2)C2 (2.46)

1− e(n − 1
2 ) − q0 = (Vg − V1)Cg + (V2 − V1)C2 (2.47)

2+ e(n − 1
2 ) − q0 = (Vg − V2)Cg + (V1 − V2)C1 (2.48)

2− −e(n + 1
2 ) + q0 = (V2 − Vg)Cg + (V2 − V1)C1 (2.49)

These are well established equations in their general form. When plotted we can

obtain the recognisable diamond shaped stability domains of an SET, as can be seen

in figure 2.7.

By slicing along the axis of the stability plot, we can obtain I − Vb and I − Vg

curves detailing the characteristics of the SET.

The I − Vb characteristic for an SET slices through only one stable domain and

is well established, as can be seen in figure 2.8. This is the well established IV

characteristic of an SET. As can be been, for large bias linear behaviour is displayed.

However the slope just after the coulomb blockade threshold, e/2(C1 + C2 + Cg), is

different. At small bias, but still slightly larger than the threshold, two possible and

equally likely tunnel events can occur, where an electron can either enter the island

through the first junction or leave the island through the second junction, therefore

allowing two simultaneous conduction channels (assuming the capacitances of each
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Figure 2.7: SET Stability domains, represented by shaded areas.

junction are equal). This has the effect of two resistors in parallel. As half the

bias decreases across the first junction and similar across the second, this gives

effective junction resistances of 2R1 and 2R2. The total resistance being the parallel

combination of both of these. This demonstrates the space correlated tunnelling

across the junctions, as once an electron enters the island it will quickly leave as it

charges the island and therefore will increase its tunnel rate, therefore showing that

one junction will quickly compensate for the other.

From figure 2.8, we may also calculate the charging energy of the superconduct-

ing SET directly using

VSP =
4∆ + 2Eg

e
(2.50)

where VSP the change in voltage along the Coulomb blockade region, 2∆ is the

superconducting band gap of the material and Eg is the charging energy of the SET.

The superconducting band gap and charging energy are doubled as we take into

account two tunnel junctions. In the case of aluminium, the superconducting band

gap at 0K is approximately 3.4 × 10−4eV.

When we take a slice across the remaining axis in figure 2.7, we slice through
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Figure 2.8: Idealised I-V curve for an C-SET. This assumes that the junctions are identical,
thus R1 = R2 and C1 = C2.

many stable regions at different junction bias. This slice clearly displays the coulomb

blockade oscillations with period e/Cg as already discussed. This can be seen in figure

2.9.

Figure 2.9: Idealised Coulomb blockade oscillations of a SET at different bias. This assumes
that the junctions are identical, thus R1 = R2 and C1 = C2.

Experimentally, a current response map can be taken which will include all these

regions, as can be seen in figure 2.10.
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Figure 2.10: SET Current response map as a function of bias voltage and gate charge. The
diamond stability regions can be clearly seen as well as the characteristic SET I-V curve. The
small pits/rises that can be seen on the plane are quasi particle points.45
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2.2.2 Two Dimensional Electron Gases (2DEG)

This section will outline and explain the fundamentals of a two dimension electron

gas (2DEG) formed in single and double quantum wells. High mobility 2DEGs are

used in many electronic devices today. Typically high electron mobility transistor

have a triangle quantum well with the metallic gate on top of the semiconductor as

can been seen in figure 2.11. One can control concentration of electrons in 2DEG,

and thus affecting conductance of the channel, by changing the gate voltage.

Figure 2.11: Figure illustrating the energy bands of a basic high electron mobility transistor,
and how a 2DEG forms in the triangular quantum well.

2.2.2.1 Structure and Formation

The 2DEG in a semiconductor is created by band gap engineering. Precise layers

of different composition materials (and therefore different conduction and valence

band energies) with similar lattice constants are grown on top of each other. A

popular material to grow heterostructures with is GaAs/AlGaAs, which, by varying

concentrations of AlGaAs in the form of AlxGa1−xAs, atomic layers can be engineered

from AlAs to GaAs. Both materials of which have similar lattice constants, allowing

layers of different parameters to be grown on top of another without the problem

of stressing. Heterostructures are usually grown with chemical vapour deposition

(CVD) or molecular beam epitaxy (MBE).

As can be seen from figure 2.12 the energy band gap of the structure varies with

depth. Thus quantum wells of particular depth and width can be formed and are

called compositional quantum wells. With the addition of doping, these wells can

then be filled with excess electrons thus forming a 2DEG. An example of such a

structure, which was used for fabrication in this project, can be seen in figure 2.12.
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Figure 2.12: Bottom graph illustrates the conduction band energy at 0K of the stacked
GaAs/AlGaAs 2DEG heterostructure used for fabrication. The red arrows indicate the lo-
cations of delta doping. The repeating periods between 300nm and 500nm are used as
buffering to restrict current in the z-direction. Energy bands are shifted to GaAs = 0eV. Top
graph illustrates the corresponding Al fraction as a function of depth.

2.2.2.2 Ideal Two Dimensional Electron Gas

Unlike free electrons, which can move in all directions, the electrons in 2DEGs are

confined in the z direction and free in the x and y directions, thus the energy of an

electron in a 2DEG is

E =
~2

2m∗
(k2

x + k2
y) (2.51)

where k2
x and k2

y are the wave vectors in the x and y direction of a given electron

and m∗ the effective mass. Therefore the number of states in k-space of dimensions

dk = dkxdky, taking into account a factor of 2 for electron spin degeneracy is

g(k) =
2

(2π)2 (2.52)

By substituting for polar coordinates, where k = (k2
x + k2

y)1/2, we can show
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g(k)dk =
2

(2π)2 dk =
1
π

kdk (2.53)

The density of states can now be expressed in terms of energy using equation (2.51);

1
π

kdk =
1
π

k
dk
dE

dE =
m
π~2 dE (2.54)

Thus giving us the density of states as below, showing that it is a constant.

g(E) =
m
π~2 (2.55)

2.2.2.3 Real Quantum Wells

Electrons in a quantum well may be treated using the effective-mass approximation.

The wavefunction as described by the Bloch theorem can be written as

φk(r) ≈ φ(r)uk(r) (2.56)

where uk(r) is the Bloch function, which describes the rapidly varying crystal part of

the wavefunction due to a periodic potential and φ(r) is the envelope (plane) wave

function, which describes the part of the wavefunction that varies slowly on the

atomic scale. The envelope function follows an equation similar to the Schrödinger

equation and for GaAs quantum well has the form

[
−
~2

2m∗
∇

2 + V(r)
]
φ(r) = Eφ(r) (2.57)

where V does not include the crystal potential, but does include the effect of all

external potentials and potential changes due to conduction band edge, and E is

measured from the conduction band edge. The crystal potential is instead included

using an effective mass, which as such, changes the mass of the electron in the

equation from me to m∗. In the case of GaAs the effective mass approximately equals

to m∗ = 0.067me.

When one represents the compositional wells as the infinite ideal square wells,

it can be shown that there are plane wave solutions for the Schrödinger equation in
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the x and y direction. The z direction is separated out, as it is assumed motion in

this direction is restricted. Therefore φ(z) can obey the one-dimensional Schrödinger

equation for a particle in an infinite square well. This has the well know solution

En =
~2π2n2

2m∗d2 (2.58)

where d is the width of the well and n = 1, 2, 3.... Therefore the total energy of the

electron in the well consists of the sum of the kinetic energy in the x-y plane, equation

(2.51). This leads to

E = En +
~2

2m∗
(k2

x + k2
y) (2.59)

It can be seen already that there are a few differences between the electron gas

in the quantum well and that of an ideal 2DEG. There can be several different

quantised energies En, meaning several possible states in the z-direction and the

electron wavefunctions have a finite spread in the z-direction. The E-k dispersion

relation is therefore a generalisation, with the parabolic dispersion relation as defined

by equation 2.51 being a specific case. Instead the dispersion relation as defined by

equation 2.59, where E0 is defined using equation 2.58 with n = 1, can be see in figure

2.13.

Figure 2.13: E-K dispersion relation for an infinite square well.

It can be seen that at position A, where E < E0 there are no states present. When

the energy falls in the range E0 < E < 4E0 as is shown at position B, the density of

states (DOS) is the same as a perfect 2DEG, as described by equation 2.55. For the
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range 4E0 < E < 9E0, position C, the DOS is 2 × g0 and for energies 9E0 < E < 16E0,

position D, the DOS is 3 × g0, and so on.

The DOS per unit volume can be found by dividing g(E), which is the DOS per

unit area, by d, the width of the well. This gives us a 3D DOS for the infinite square

well, as can be seen in figure 2.14.

Figure 2.14: Showing the DOS for the infinite square well. Dotted line is the DOS for the 3D
system for comparison.
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2.2.2.4 Carrier Concentration and Mobility

Two predominant properties of 2DEGs, as with regular semiconductors, are the

carrier concentration and carrier mobility. When taking into account minority and

majority characters, i.e. the electrons and holes in the material, it can be shown that

in an intrinsic n-type material, where the majority carrier is the electron, that the

carrier concentration is:

n = Ce−(Eg−E f )/kbT (2.60)

Where n is the carrier concentration, Eg is the energy gap, E f the Fermi energy, kb the

Boltzmann constant, T the temperature and C is a constant.

However, this relation does not hold true for dopped semiconductors. The carrier

concentration can be found using the Hall Effect.46 The hall field, εH is proportional

to the strength of the magnetic field Bz and the current density in the x direction, Jx

and RH which is the Hall Coefficient:

εH = RH JxBz (2.61)

It can also be shown when taking into equilibrium forces acting particles in the

semiconductor that:

εH = Bzv (2.62)

where v is the velocity of the electron. Given equation 2.62 and Jx = Nve that the

Hall Coefficient is equal to:

RH =
εH

JxBz
=

Bzv
NevBz

=
1

Ne
(2.63)

where N is the bulk carrier concentration.

The carrier concentration can also be found using the Shubnikov-de Haas effect47

ns =
e/ch
∆( 1

H )
(2.64)
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where ns is the sheet carrier concentration (the concentration of the two dimensional

cross section of the device), c the speed of light, h planks constant and ∆( 1
H ) is the

change in the inverse applied magnetic field. In this equation, the units are in CGS.

The mobility of the semiconductor is defined as a quantity relating the drift

velocity of charge carriers to the applied electric field. The mobility of a charge

carrier can be defined as

vd = µE (2.65)

where vd is the drift velocity of the charge carrier, µ the mobility of the charge carrier

and E is the applied electric field. It is related to the conductivity of semiconductors

by

σ =| e | (nµe + pµh) (2.66)

where n and p are the concentration of electrons and holes respectively, and µe and

µh are the mobility’s of electrons and holes respectively. In the case of a 2DEG, where

only electrons are present, this can be re written as

σ =| e | nµe (2.67)

Given that

ρ =
1
σ

=
RWD

L
(2.68)

where R is the resistance, and W, D and L are the width, depth and length of the

sample respectively, and the sheet resistance is

Rsh =
RW

L
(2.69)

we can obtain the following expression for the mobility

µ =
1

Rshdne
(2.70)
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When taken that ns = nd, we can obtain this final equation for the mobility

µ =
1

Rshnse
(2.71)
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2.2.2.5 Plasma Oscillations

2DEGs, similar to metals, have free electrons that move within the semiconductor

structure. It can sustain a plasma oscillations (also known as Langmuir waves),

where the electron density can rapidly change and oscillate. The quantization of this

process leads to the quasiparticle known as the plasmon.48 If a plasma of electrons,

about a periodic lattice of positive ions, is shifted slightly with respect to the positive

ions, then a Coulomb force will be produced to restore the electron plasma to the

original position. At low temperatures it can be shown that the frequency at which

the plasma charge density oscillates is equal to:

ωpe =

√
nee2

mεo
(2.72)

where ne is the electron density, e is the electric charge, m is the effective mass of the

electron, and εo is the permittivity of free space.49 The energy of individual plasmons

in the free electron model, which is used to describe infinite homogenous 2D electron

system, can be estimated using equation (2.72) and the relation E = h f to give

Ep = ~

√
nee2

mεo
(2.73)

The dispersion relation however is the more commonly used term to describe

the plasma system, in the case of a 2DEG layer it is well known to be50

ω2
p =

e2N
m∗ε0ε̄

k (2.74)

where k is the wave vector of the plasma wave, ωp is the frequency of the plasma

wave, N is the areal electron density and ε̄ is the effective dielectric function.

This function can take a few forms depending on the geometry of the sample in

question. For example, when a 2DEG layer separates two semi-infinite layers with

a dielectric constant of ε1 and ε2, the effective dielectric function can be taken to be

ε̄ =
ε1 + ε2

2
(2.75)

In the case where we may imagine an insulator, with dielectric ε2 and thickness d, is
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superimposed onto the 2DEG layer, which inturn is on the surface of a semi-infinite

substrate with dielectric constant ε1, the dielectric function would take the form of

ε̄ =
1
2

(
ε1 + ε2

1 + ε2 tanh(kd)
ε2 + tanh(kd)

)
(2.76)

However when the 2DEG layer has a conductive gated region located at a distance,

d, away from it, this will effect the frequency dispersion of the plasma waves within

the 2DEG. Assuming the gate is infinite and perfectly conductive at a distance, d

away from the infinite plane of 2DEG, then the dispersion relation becomes51

ω2
p =

e2N
m∗ε0[ε1 + ε2 coth(kd)]

k (2.77)

where ε2 is the dielectric constant of the insulator between the conductive gate and

the 2DEG. If the conductive gate is close enough to the 2DEG, so that kd � 1, then

equations 2.77 becomes

ωp =

√
e2Nd

m∗ε0ε2
k (2.78)

Assuming we define the phase velocity as s = ω
k , we can see that the phase velocity

of the plasma waves are independent of the frequency. Using the gradual cannel

approximations, the areal electron density within a gated region of the channel can

be found using a version of the parallel plate capacitance

N =
ε0ε2

ed
(Ug −Uth) (2.79)

where Ug is the gate voltage and Uth is the voltage required to deplete the channel. By

substituting equation 2.79 into equation 2.78, the plasma frequency takes a simplified

form

ωp = sk (2.80)

where s =

√
e(Ug−Uth)

m∗ . Using the gated FET approximation, which assumes identical

boundaries due to the gate, the frequency of plasma oscillations can be approximated

to the simple formula52
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ωn =
πs

Le f f
n (n = 1, 2, 3, ...) (2.81)

where Le f f = L + 2d and d is the distance between the 2DEG layer and the gate. The

above equation with the standard parameters of a semiconductor heterostructures

results in plasmon frequencies in the terahertz range.

It has been found that resonant absorption of terahertz radiation within a 2DEG is

caused due to the excitations of plasma oscillations under a gated region. The gated

region causes fields from the incoming radiation to become scattered into the 2DEG,

causing the excitation of plasma oscillations. The incoming radiation, assuming a

plane wave, does not tend to directly excite oscillations in the 2DEG due to the

momentum conservation law, where the photon and plasmon wave vectors would

need to match. It was also noted that if the gate is to far away from the 2DEG layer,

the resultant scattered fields that reach the 2DEG are to weak to excite any plasma

oscillations, there the plasmon-photon interaction is weak. Similarly if the gate is too

close, the gate will screen the plasma oscillations, again resulting in weak plasmon

interaction. Once a resonant plasma oscillation has been established in the 2DEG,

the resultant plasmons have strong leakage into non-gated regions of the 2DEG,

allowing non gated regions to be excited by a neighboring gated region.51 These

excitation can then either be absorbed by a metal, eventually disperse, or decay by a

process of handing over the excess energy in the form of an electron.
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2.2.2.6 Tunnelling Conductance and Extensions to Double 2DEGs

As with single 2DEGs, double 2DEGs are grown using precise band gap engineering

in heterostructures to form super latices and quantum wells, using the same types of

growing techniques as described above. They exhibit many of the same properties as

individual 2DEGs, however their interaction with each other may also be modelled.

It was originally predicted that the conduction in the z direction in single 2DEGs

would produce unusual properties, such as negative differential resistance53, mean-

ing the greater the applied voltage in the z direction, the lower the current would

become. This was then later proved in a GaAs/AlGaAs heterostructure super lat-

tice.54

Figure 2.15: 2DEG I-V characteristic showing negative differential resistance.

Due to the negative differential resistance, oscillations in tunnelling can be ob-

served, with the phenomena of resonant tunnelling also be observed. This resonant

tunnelling gives rise to many interesting applications, such as Gunn Diodes, logic

and memory circuits55 and applications to SETs.56 It can be shown that structures

with negative differential resistance can present charge oscillations if we consider

the following

I = G(V)V (2.82)

where G is conductance and V, voltage. From this we may define

dI
dt

= υd

(
V

dG
dV

+ G
)

dV
dz

(2.83)
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where υd is the drift velocity of the electrons. Using Poisson’s equation we then

define how the electronic charge behaves. Using

E(z) = −
dV
dz

=
q
ε

Ns(z) (2.84)

where Ns(z) is a bounded area of electron density at positon z, q the charge and ε the

permittivity of the material. If we define the following

ω(z) ≡

√
υd

(
V

dG
dV

+ G
)

Ns(z)
ε

(2.85)

we can then see that the charge follows a similar law to that of a harmonic oscillator

d2q
dt2 + ω(z)2q = 0 (2.86)

It can be seen that in this format, that equation 2.85 is a frequency dispersion

relation. It can be seen that when in the negative differential resistance regime that

it would become an imaginary number for dG
dV < −G

V . It can therefore be interpreted

that charge builds at a specific rate when in the negative differential regime, where

the charge spike travels along the sample and decays.

In a double 2DEG system, we can consider two coupled quantum wells or a triple

barrier system, the centre barrier being the separation between the two quantum

wells. The overlap of the two quantum wells wavefunctions and associated eigen-

states is therefore dependent on the thickness of the middle barrier, energy splittings

such as this has been observed using resonant tunnelling spectroscopy.57 The two

wells can also be capacitively coupled, as governed by coulombs law, or have direct

coulomb interactions between the neighbouring electrons via the Coulomb gap.57

The wavefunction coupling and interactions between the two quantum wells can

be understood by understanding how the individual wavefunctions overlap. The

wavefunctions can be shifted by applying a bias to one of the QWs, causing the

quantum well potential to be deformed and causing the wavefunction to shift. This

is particularly enhanced in non-symmetric quantum wells, where the wavefunctions

become distorted as they overlap neighbouring wavefunctions via the intermediate
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barrier. In the case of non-symmetric wells the biasing of one or both quantum

wells can allow possible separate wavefunctions of different orders of both wells to

become more strongly coupled.

Predominately the modeling of the resonant tunnelling across a triple barrier

or between two quantum wells, is done using the Wigner and Landauer models.

These models only consider the direction of electrons in the z direction, i.e. the

tunnelling current between the potential barriers. The Wigner approach is used to

find the current density and starts with using a variable effective mass Hamiltonian

and includes a double well potential.58, 59 It is a favoured approach as it is very

similar to that of the Boltzmann distribution function.60 The full derivation to the

final expression is not included here, as it is not within the scope of this project,

however for completeness it can be found in appendix A. The final expression for

current density using the Wigner approach is found to be

J(Z) = e
∫
∞

−∞

dk
2π
~k

m(Z)
f (Z, k) (2.87)

The Landauer function can be used to obtain the current between the external elec-

trodes attached to a triple barrier system. It is formed by defining the standard

definition of average current. The full derivation can be found in appendix B. The

resulting current can be found, where ISTT is known as the standard tunnelling

theory current, to be

ISTT =
emAKT
2π2~3

∫
dεT(ε)F(ε) (2.88)

where T(ε) is the tunnelling probability and F(ε) is the electron equilibrium distri-

bution.
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2.2.2.7 Plasma Excitation Interaction in Double Quantum Well Systems

As well as plasmon interaction in a SQW, there are considerable manifestations

of plasmon interactions between layers in a DQW system, where the tunnelling

coupling is special modulated, i.e. the construction of the QWs affects the strength

of coupling. In such system, there are two extreme regimes of either purely coulomb

coupling61 and purely tunnel coupling,62, 63 with the majority of systems being a

mix of both.

In coulomb coupling, as well as the standard interactions between charged par-

ticles, producing coulomb interaction, there are two types of plasma excitations,

optical and acoustical.61 The optical plasmon excitation presents itself as an in-

phase density oscillation in the two layers, with a non-linear dispersion relation of

the form ofω ∼ k1/2. The acoustical plasmon presents itself as an out of phase density

fluctuation with a linear dispersion relation of the form ω ∼ k.

For the acoustic mode, similarly charged carriers oscillate out of phase, or op-

positely charged carriers oscillate in phase, resulting in the characteristic linear dis-

persion. When similarly charged carriers oscillate in phase, or oppositely charged

carriers oscillate out of phase, the so-called optic plasmon mode results. A represen-

tation of the two plasmons can be seen in figure2.16.61

Figure 2.16: Representation of an acoustical and optical plasmon with wave vector q. The ar-
rows represent the contribution to the electric field, causing either accumulation or depletion
of electrons.61

When considering the interaction between layers, as well as the coulomb inter-

action and intralayer kinetic energies, we must also consider a gap in between the

common quantum subbands in the two layers, adding to the energy landscape. It has

been shown that a symmetrical system, where both QW have the same dimensions

and carriers concentrations, there are two plasma modes and in non-symmetrical
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system, there are three. The general solution64 to finding the number of modes with

in a system, assumes there are always three modes, with the acoustical plasmon,

which is the out of phase density fluctuation in the two lowest quantum subbands,

being Landau damped in the symmetrical state unless the following condition is met

(
1 −

n2

n1

) [
1 +

a
2D′(0)

]2

< 1 (2.89)

where a is the effective Bohr radius, n1 and n2 are the electron densities in the

symmetrical/antisymmetrical quantum subbands and

D′(0) =
dD
dk

∣∣∣∣∣
k=0

(2.90)

where

D(k) = I1111I2222 − I2
1122 (2.91)

and

Ii jkl =< ψi(z)ψ j(z)| exp[−k|z − z′|]|ψk(z′)ψl(z′) > (2.92)

where Ii jkl is a fourth rank tensor where i, j, k, l = 1 or 2 which indicates the 2DEG

layer index and where ψ1,2(z) are the symmetrical/antisymmetrical electron wave

function envelopes. I therefore describes the resultant wavefunction envelope due

to the interaction between the wavefunctions of the two 2DEG layers. From this, no

limitations on the number of plasmon’s are imposed due to symmetry of the wave-

functions, and the symmetry only affects the properties/behaviour of the plasmon’s.

It has been shown that varying the spatial symmetry changes the nature of the

acoustical plasmon and the intersubband plasmon, which is considered to be a

density fluctuation relating to the excitation from the lowest subband to the next.65

In the symmetrical system, the intersubband plasmon, like the acoustical plasmon,

demonstrates a positive linear dispersion. It can be seen to be as an out of phase

density fluctuation in the opposite layers, that actually dominates over the electron

motion in the transverses directions of each layer at t/vFk < 1, where vF is the Fermi
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velocity, t is the symmetric/antisymmetric tunnelling gap energy. vFk describes the

intralayer kinetic energy.

We can define the intersubband plasmon in the symmetrical system as a tunnel

plasmon, as the intersubband plasmon in the antisymmetrical state does not have

a linear dispersion, but a square dispersion. So by changing the bilayer system

symmetry a tunnel plasmon will change to an intersubband plasmon and also, an

acoustical plasmon will appear.

In a weakly tunnel coupled system, it has been shown that the dispersion relation

of the tunnel plasmon at vFk > t has a positive dispersion relation with a slope very

close to that obtained by classical electrodynamics for an acoustical plamson in two

electron sheets, given by66

ω2(q) =
2πe2k
ε∞m∗

(N1 + N2)

1
2
−

1
2

√
1 −

4N1N2

(N1 + N2)
(1 − e−2kd)

 (2.93)

where N1 and N2 are the electron densities in the separate layers and d is the distance

between layers. Equation 2.93 can be used to show how the nature of such a system

can lead to terahertz detection when a DQW QD sensor is realised. By assuming the

wavevector, k, to be approximately equal to the inverse diameter of the QDs, k = 1
2rQD

,

and with the radius of the QDs studied here being approximately 0.5 × 10−6m, this

gives a value of k = 1×106. Using values of N1 = 3.2×1015m−2 and N2 = 4.4×1015m−2

also, we obtain a dispersion frequency of 0.6THz.

The symmetry of the layers, relating to the confining potential may be defined

by

δ =
N1 −N2

N1 + N2
(2.94)

where N1 and N2 in this case are the are the ionized donor densities. These are not

directly measurable however. In the antisymmetric state, where the wavefunctions

of the two lowest subbands are confined in separate layers, see figure 2.17, we may

assume N1,2 ≈ n1,2. As we can find the electron densities of the layers, we may then

extrapolate what δ will be. By depleting individual wells near this limit, we may

find δ as function of depletion power and extrapolate to δ = 0, where it has been
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experimentally found that at δ = 0, the intersubband energy, (Ω), has a minimal

value and is equal to the tunnelling gap as is expected.66

Figure 2.17: Antisymmetric plasma excitation state of a DQW heterostructure. The antisym-
metric state is caused by depleting one well more than the other. In this case we may assume
that the electron densities are approximately equal to the ionized donor densities. We see
here how the two lowest subbands are distorted due to the concentrations in each QW. This
will cause a tunnel plasmon to become a intersubband plasmon, with an acoustical plasmon
appearing also.

As the layers become more asymmetric and δ increases, the intersubband energy

becomes defined by the electric fields within each layer and the dimensions of the

layers. By further increasing δ by depleting one well, Ω will increase, and the tunnel

plasmon to convert to an intersubband plasmon, with energy defined by Ω.
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2.2.3 Quantum Dots (QD)

When electrons are confined in all three dimensions, a Quantum Dot (QD) can be

formed, which if the confinement distance is smaller than the mean free path of

the electron, is a zero dimensional device. Quantum dots are usually formed with

in a semiconductor material, such as an AlGaAs hetrostructure, via a confinement

technique which may include physically reducing the dimensions of a given area,

or using a potential to confine a given area.67 This will usual be done within a 2DEG

layer, as described in section 2.2.2, as this removes the need for confinement in the

z-direction. Quantum dots are typical in the order of 100nm in size.68

2.2.3.1 Formation of Quantum Dots

Isolated QDs can be formed in two different types of configuration, these are the lat-

eral QD as can be seen in figure 2.18 and the stacked, or vertical QD, as can be seen

in figure 2.19. QD dots originally emerged with the improvement in heterostructure

growth technology, as described in section 2.2.2. At first, vertical quantum dots were

formed by etching pillars using e-beam technology into semiconductor heterostruc-

tures. By analysing the IV characteristic of such devices, it revealed a structure that

was attributed to resonant tunnelling through quantum states, due to the lateral

confinement.69

Figure 2.18: Schematic illustration of a lateral QD that has been coupled with tunnel junctions
to a source and drain, and capacitively coupled to a gate.

With 2DEGs as the starting point, lateral QDs were fabricated using metallic

gates to isolate a region within the 2DEG, as done in this project, forming tunnel

barrier or quantum wires using negatively applied voltages.
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Figure 2.19: Schematic illustration of a vertical QD that has been coupled with tunnel
junctions to a source and drain. This may also be constructed to include a gate as in figure
2.18

These systems often show ballistic electron transport, as the mobility of electrons

in some of the highest reported cases in a 2DEG can be in the order of 1000m2V−1s−1 67

which equates to a mean free path of the order 100µm.67 Also the Fermi electron

wavelength within 2DEGs, which have typical carrier densities of ns = 1−5x1015m−2,

are approximately

λF =

(
2π
nd

) 1
2

∼ 80 − 30nm (2.95)

which is approximately 100 times larger than that of metals. Quantum confinement

can also be demonstrated in such devices, with the manifestation of quantised con-

ductance steps in wires and dots due to the comparable wavelength of the electron

to the device.70

Devices can also be fabricated to dimensions where quantum confinement be-

comes apparent and quantized conductions steps in such structures as quantum

wires and point contacts in two dimensions has been shown.71 Quantum confine-

ment in varying gate geometry’s has presented a broad scope of transport phenom-

ena, such as coherent resonant transmission through a quantum dot72 and quantum

dot array73. Experiments such as these have been performed with barrier conduc-

tances less than e2/h, where the effects of charge quantisation are significant and at

greater barrier conductances, where its effect is less noticeable.

Single electron charging of ”accidental quantum dots” was first shown in nar-

row wires with unintentional impurities along the wire, forming these unplanned
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quantum dots.74 The conductance of the wire was much less than e2/h. This led to

the discovery of a periodic oscillation in the conductance as a function of the voltage

of a coupled gate. It had been shown that the quantum dots formed along the wire

due to the impurities in it, were charging by single electrons at a time.75

Figure 2.20: SEM image of QD system studied in this project.

The lateral quantum dot has been studied the most out of the possible configu-

rations. This is usually defined using negatively biased metallic gates. An image of

such a device studied in this project can be seen in figure2.20. The tunnel barriers

between the QD and surrounding 2DEG are defined by applying a negative voltage

to the metal gate. This system also has a point contact coupled to the QD. The scheme

of the device is shown in figure 2.21. Although the gate dimension is of the order

1.4 µ m, the size of the dot its self is slightly smaller because of depletion region

produced by the negatively biased gate.

Figure 2.21: Schematic illustration of single QD system used in single QW system that was
developed.13
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2.2.3.2 Properties of Quantum Dots

This section will discuss the principle properties of QDs that are regularly probed;

the quantum energy level spacing and the charging energy. It is important that the

local thermal energy, U = kbT, be less than the energy level spacing and charging

energy, otherwise they will be thermally screened out.

Electrons with in a QD reside in 0D energy states, taking on a delta function

like appearances, as shown in figure 2.22. The 2D energy levels are shown for

comparison.

Figure 2.22: Illustration of 0D densities of states versus energy level. Dashed line represents
2D DOS for comparison.

It can be seen that density of states within a QD follow a delta-function like

pattern. The energy gap spacing between the levels can be estimated using

∆E =
~2

m∗R2 (2.96)

where GaAs m∗ ≈ 0.067me. As described in section 3.1, the approximate circular

diameter of the gates used to isolate the quantum dots in this project is 1.4µm. It can

be approximated that the QD would be of the order 1µm in diameter, or R ≈ 500nm.

From equation 2.96, it can be estimated that the energy level spacing of such a dot

to be ∆E = 0.004meV. However, as described in section 4, the lowest temperature

obtainable for this experiment is of the order 250mK, which equates to a thermal

energy of 0.022meV. This therefore means that any effects from the energy level

spacing will be screened out due to thermal noise. The remainder of this section will
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focus on the charging energy.

The charging energy can be quickly estimated using the known equation for a

capacitor

e2

C
=

e2

8εrε0R
(2.97)

where for GaAs εr = 13. Using our initial estimate of R = 500nm we can see the

upper limit for the charging energy is e2

C = 0.346meV, which is well above that of

the thermal energy. This however is the upper limit, as it is not taking into account

other capacitances, such as the surrounding 2DEG and gates.

The main electron transport regime through is via coulomb blockade, which at

low temperatures is the predominant regime. This system may be considered as a

single electron transistor with a simplified schematic as shown in figure 2.18.

When you consider the direction of transport through a quantum dot, the process

can be broken down into a number of different steps. First we have the higher

electrochemical potential of the source, with states filled to this level, the dot with

a number of filled/vacant sates that may or may not equal this electro chemical

potential and the drain, which will have a lower electrochemical potential than the

source and states also filled to that level. The barriers between the the source-QD

and QD-drain can be considered tunnel barriers. This arrangement can be seen in

figure 2.23. The drain and source electrochemical potentials, µLe f t and µRight, are

related to the applied voltage via

Vsd =
µLe f t − µRight

e
(2.98)

showing voltage steps are quanta’s of e. The QD has states filled to the highest solid

line, or µDot(N). The addition of an electron would raise the highest potential from

µDot(N) to µDot(N +1) or the first dashed line. µDot(N) thus by definition is the energy

required to add an extra electron to the QD. It is defined as

µDot(N) = U(N) −U(N − 1) (2.99)

where U(N) is the ground state energy of a QD containing N electrons at 0K. As can
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be seen in figure 2.23, no states on the QD match µLe f t, so no electrons may enter the

QD and coulomb blockade is observed.

Figure 2.23: Illustration of the potential energy setup in a standard lateral QD.

Transport occurs (ignoring other non related tunnelling events) when an available

energy level on the QD is equal to or less than that of µLe f t and where µRight is less

than both. This allows an electron to enter the QD and increase µDot(N) to µDot(N+1).

The electron will then leave the QD and the energy level will return to µDot(N). The

energy levels of the QD can be adjusted by applying a potential to the QD gate,

represented as ϕN. This can be seen in figure 2.24

Figure 2.24: Representation of how electron transport may occur through a QD, resulting in
the number of electrons on the QD switching from N→ N+1→ N→ N+1...

To define the value of U(N), first several assumptions must be made. These are

that the quantum levels of the dot are independent of the umber of electrons present

in the QD. We assume there is a capacitance between the dot and surrounding

environment and that this is independent of the number of electrons on the present

on the QD, as the the dot is much larger than the screening length, so no electric

fields can exist in the QD it self. This allows us to simplify the QD electronically

to something equivalent of figure 2.25, where tunnel barriers are presented as a

resistor and capacitor in parallel. We can see that the total capacitance is simply
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C = CL + CR + ΣCg, with a charging energy of

e2

C
=

e2

CL + CR + ΣCg
(2.100)

Figure 2.25: Electronic representation of a simple lateral QD design.

This linear model where eVsd << ∆E and e2

C has been shown to lead to a electrochem-

ical potential for N electrons on a QD as76

µDot(N) = EN +
(N −N0 −

1
2 )e2

C
− e

Cg

C
Vg (2.101)

where N0 is the number of electrons present on QD at Vg = 0 and the single particle

state energy level EN, which is the energy level for the Nth electron, is measured

from the bottom of the conduction band. It can be seen that equation 2.101 can take

the following form

µDot(N) = µch(N) + eϕN (2.102)

where we can see that the total electrochemical energy is the sum of the chemical

energy (EN) and the electrostatic energy. The electrostatic potential can be seen to

made of two parts, these being the last two terms of equation 2.101. The middle can

be seen to be discrete and the last term is continuous with Vg, so at fixed or zero gate

voltage, the number of electrons on the QD, i.e. N, is the largest integer value that

will satisfy the condition

µRight u µLe f t > µDot(N) (2.103)
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The change in the electrochemical potential at zero gate voltage, when the number

of electrons on the QD changes by one, can also be calculated. Using equation 2.101

the addition energy can be defined. It can be shown that a large energy is needed

for both large energy splittings and small capacitances

µDot(N + 1) − µDot(N) = (EN+1 +
((N + 1) −N0 −

1
2 )e2

C
) − (EN +

(N −N0 −
1
2 )e2

C
)

= (EN+1 − EN) + ((N + 1) −N)
e2

C

= ∆E +
e2

C
(2.104)

At low energy, i.e. below µDot(N), the energy levels spacings, ∆E, are only single

particle energy levels and the excitation energies of the QD with a constant number

of electrons, N.

Coulomb blockade occurs with a non-zero addition energy where the (N + 1)

electron cannot enter the dot as the resulting µDot(N + 1) is larger than the reservoir

potentials µLe f t and µRight, i.e. µDot(N) < µLe f t, µRight < µDot(N + 1). This can be seen

in figure 2.23. As illustrated in figure 2.24 the coulomb blockade can be removed by

applying a potential to the QD gate, effectively shifting the available charging energy

level, µDot(N + 1), into a spacing between µLe f t and µRight, where µLe f t > µDot(N + 1)

allowing an electron to enter the QD. The increase in gate voltage causes the electro

static energy to increase, which can be described as

eϕ(N + 1) − eϕ(N) =
e2

C
(2.105)

and can be seen in figure 2.24. However, as can be seen now, µDot(N + 1) > µRight,

so the electron now leaves the QD, causing the electrochemical potential to return

to the initial value of µDot(N). This allows the cycle of an electron to enter and leave

the QD as depicted in figure 2.24 which leads to conduction oscillations from zero

during Coulomb blockade and non zero, as the gate voltage is swept.

From figure 2.26, we can notice several important observations. We can see that as

a conductance maximum is reached, N increases to N + 1, while the electrochemical
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Figure 2.26: Comparison of conduction, number of electrons, electrochemical potential and
electrostatic potential compared to gate voltage.67

potential moves by a value of ∆E + e2

C and the electrostatic potential moves by a

corresponding value of e2

C . As can be seen from the graphs, we can therefore write

µDot(N,Vg) = µDot(N + 1,Vg + ∆V) (2.106)

coupled with equation 2.101, an expression relating the change in gate voltage to the

conduction oscillations may be written as76

∆VG =
C

eCg

(
∆E +

e2

C

)
(2.107)

As can be seen, when ∆E is not applicable, for example due to high thermal en-

ergy, the relation becomes the standard periodic relation for single electron charging

∆Vg =
e

Cg
(2.108)

When ∆E is applicable, the oscillations are not completely periodic. This can be

explained due to spin degenerate states, where N and N + 1 can be considered
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different spin of up and down electrons within the same state.

Having established the transport theory we are now able to define three main

temperature regimes, at which different forms of transport may occur. Where the

thermal energy is greater than the charging energy, no charge discreetness can be

observed. In this regime the conductance of the system is independent of the number

of electrons on the QD and is simply the sum of the ohmic resistances of the two

barriers between the QD and the reservoirs, i.e. Ω∞ = ΩLe f t + ΩRight, where G∞ =

1
ΩHighTemp

.

The next regime is where the charging energy is less than the energy level spacing

which inturn is much less than the thermal excitation energy. This is the quantum

Coulomb blockade regime.77 This regime does not exist in the current experimental

setup, so will not be discussed further.

The final regime, which is the most applicable here, is where the charging energy

is greater than the thermal excitation energy, but the thermal excitation energy is

greater than the energy level spacing. This gives the classical or metallic Coulomb

blockade which is regularly described with orthodox Coulomb blockade theory78,

which can be used to calculate predicated conduction oscillations. The line shape of

individual conductance peaks are given by the following expression79

G
G∞

=

δ
kBT

2 sinh
(
δ

kBT

) ≈ 1
2

cosh−2
(

δ
2.5kBT

)
(2.109)

where

δ = e
Cg

C
|Vg,res − Vg| (2.110)

where Vg,res is the gate voltage at resonance. With equation 2.108, this allows the

capacitance of the whole system to be found. The width of the peaks will remain

linear as long as the thermal excitation energy is much less than that of the charging

energy

Other techniques to probe the properties of QDs also exists, such as far infrared

spectrscopy on QD arrays, which produces particular information, other than that

produced by transport measurements, on plasma modes of the system.80 Capaci-
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tance measurements and spectroscopy however produce nearly identical informa-

tion as transport measurements, in both arrays81 and single dots.82
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3 Sample Nanofabrication
Fabrication of each chip, which contains up to 25 samples depending on chip size,

was carried out at Royal Holloway’s Center for Nanophysics and Nanofabrication.

Given other users also require the use of the facilities on a day to day basis, each

chip would take between one and two weeks to fabricate.

There are a total of ten stages of fabrication depending on substrate type, seven

of which require lithography and then either acid etching or evaporation. One stage

involving annealing. These seven above stages have an inherent success rate of

approximately 90% per stage making the total operational success rate per sample at

approximately 53%. The remaining two stages are relatively straightforward, these

include substrate preparation and insulating layer coating.

The yield per fabrication stage increases by defining certain parameters more

and more accurately with each attempt. Many issues were encountered with the

annealing and the SET formation stage, but it is believed that these issues have been

identified and on the whole, overcome.

The ten stages of fabrication were as follows: Substrate Preparation and clean-

ing, mesa formation, AuGe ohmic contact pads, Au log-period antenna formation,

insulating layer coating, top log-period antenna formation, Au point contacts and

gate formation and SET formation.

Stages of fabrication details, inherent problems with each stage and solutions

are described in the following sections. It is worth noting at this point that fabrica-

tion parameters are heavily dependent on the equipment set up used and may not

necessarily work for different equipment in different facilities.

3.1 Design

The design used for both the Single Quantum Well (SQW) and Double Quantum

Well (DQW) detectors was the same. The Only difference being the etching depths

required and the annealing times. The design was produced in Nanomaker. The

Nanomaker software was also used to drive an SEM for any e-beam lithography.

Figure 3.1 shows the design used. The left image shows the whole design, in this
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Figure 3.1: Schematic of Log period Antenna and zoomed in center displaying SETs and
gates.

case illustrating mainly the antenna. The antenna is a circular log-period antenna

design, with diameter 2 mm, this is active in the 0.2-2THz range, which is the region

we are interested in. The antenna focuses the incoming radiation towards it center,

where the QD are formed. The antenna is fabricated directly onto the surface of

the AlGaAs/GaAs semiconductor. The antenna is made of 150nm of gold on top of

10nm of titanium.

The right hand image displays the components of the sensors centred in the

antenna in a 85µm diameter space. The dark gold components correspond to the

center parts of the log-period antenna. The pink layer indicates the mesa that is

etched into the semiconductor substrate, and the dark purple layer indicated the

fine mesa. The bright gold paths indicate the gold gates used to isolate the QDs and

used as point contacts where needed. Along with these are three cross structures,

used to align the aluminium pathways which are the SETs. These are fabricated

directly above the QDs and within the gold QDs.

The mesa is initially defined as 10µm in width. This is then etched to define two

different widths, 6µm and 2.5µm. The gold gates are approximately 1µm across and

form QDs of a similar size. QD gates and PC gates are separated by approximately

300nm. The overall SET structures are approximately 500nm wide when formed and

have an overlap/oxide area of 0.1 × 0.1µm2. A more detailed representation of the

two designs of QD gates and SETs formed in them can be see in figure 3.2.

The samples were fabricated on SQW or DQW AlGaAs/GaAs heterostructures.
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Figure 3.2: Design schematic of the QD gates and SETs used on sample. The red structures
indicate the QD gates and PC structures. The blue structures represent the SETs.

The SQW substrates had the 2DEG layer located approximately 100nm below the

surface, and the DQW substrate had 2DEGs located approximately at 100nm and

260nm as can be seen in figure 2.12 in section 2.2.2.1. The single quantum well het-

erostructure, which was supplied by Tokyo University has an electron concentration

of n = 1.6 × 1011cm−2 and mobility of µ ∼ 6 × 105cm/Vs measured at 4.2K.83 The

DQW was supplied by Tokyo University, courtesy of Xpert Semiconductor, had the

following values when measured at 4.2K; the top 2DEG has an electron concentration

of n = 3.2 × 1011cm−2 and mobility of µ ∼ 11 × 104cm/Vs. The bottom 2DEG has an

electron concentration of n = 4.4 × 1011cm−2 and mobility of µ ∼ 12.8 × 104cm/Vs.84

3.2 Substrate Preparation and Cleaning

Depending on the size of wafer available the substrate was cut using a diamond

tipped etcher to the required size. Samples were usually made in batches with 9,

16 or 25 structures a sample, with samples measuring between 7mm2 and 15mm2.

Samples were then thoroughly cleaned with acetone in an ultrasonic bath, 1165

Microposit remover in an ultrasonic bath and finally rinsed in isopropanol and

dried in nitrogen gas. Cleaning times were dependent on the quality of the surface.

Times of approximately five minutes were regularly used however.

Some problems arose at this stage where it could be seen that the sample was

particularly hydrophobic making resist spinning near impossible. This was later

found to be due to an organic surface layer. In some cases this was removable using
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a light oxygen plasma etch, however, this is undesirable with a 2DEG being only

100nm down in the both heterostructures.

3.3 Fabrication of Mesa Pattern with Optical Lithography

Positive photoresist, S1813, was spun to a thickness of approximately 1.1µm on the

sample. It was then baked at 90◦C for five minutes. Using a UV optical contact

aligner (200W, Intensity of 10 mW/cm2 and wavelength 405nm ±6%), a mask image

of the mesa was then exposed onto the resist for 15 seconds. Samples were then

developed in MF319 developer for 50 seconds and washed in de-ionised water.

This resist image on the samples acts as a mask for acid etching. Etching times are

dependent on the wafer used to start with but take between eight and ten minutes.

H3PO4:H2O2:H2O (ratio. 4:1:90) was used to etch the material away. First, however,

the height gap between substrate and resist was measured using a profiler. Acid

etching was done in short bursts of time, with profiling in between, to achieve the

correct etch depth. Etch depths of 90-100nm or 285-300nm were achieved. Wet

etching was used rather than plasma to avoid damaging the 2DEG layer(s).

Care was needed when developing the samples, prolonged development weak-

ened the resist, which would then allow the acid to etch under the pattern, damaging

the mesa. An example of a the patterned reist and a correctly formed final etched

mesa can be seen in figure 3.3.

Figure 3.3: Left image showing resist pattern used as a mask for acid etching of substrate.
A formed mesa can be seen in the right hand picture. The narrowest part of the mesa that
be seen is 10µm wide.
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3.4 Fabrication of Ohmic AuGe Contacts

For good conductivity from the mesa extremities to the structure built on top, an

Gold Germanium (AuGe) layer was first deposited, which was later annealed. The

layer was formed using photolithography. An undercut layer of LOR-5B was first

spun to a thickness of 0.3µm and baked for five minutes at 150◦C. A top mask layer

of S1813 was then spun on top to a thickness of 1.1µm and baked for five minutes at

90◦C.

The resist was then exposed for 15 seconds in UV light (200W, Intensity of 10

mW/cm2 and wavelength 405nm ±6%) with the desired mask pattern in an aligner.

The exposed design was then developed in MF319 developer for 20 seconds. How-

ever pattern development was first checked after 15 seconds to ensure correct devel-

opment. Samples are subsequently washed in de-ionised water. An extra process

was then carried out; Samples are submerged in 10% HCl solution for 12 seconds

for two reasons: cleaning of the surface and bond breaking of the surface layer of

the mesa to allow better adhesion to the evaporated layer. A developed sample can

be seen on the left in figure 3.4.

Evaporation is carried out at a pressure of approximately 5 × 10−6torr. An adhe-

sion layer of Nickel Chromium (NiCr), 99.9% purity, was first evaporated to a 5nm

thickness, followed by a AuGe, 99.95 % purity, layer of 200nm. Both evaporations

were carried out with no break in vacuum. This was to avoid bad contact-forming

with the NiCr layer after being exposed to atmospheric pressure. Lift-off was then

carried out using MR1165 at 60◦C for 20 minutes to an hour as needed.

To complete this stage and ensure good electrical contact with the mesa, the

sample was annealed to aid diffusion of the Ge into the mesa layer. Annealing

was carried out in an argon atmosphere at a pressure of approximately 2 × 10−5torr.

Samples were placed on a calibrated tungsten boat. A current of 27A corresponding

to a temperature of 400 − 450◦C, was passed through the boat for one minute and

45 seconds. A custom built annealing boat was calibrated and used for the process,

further information can be found in appendix C. A successfully annealed sample

can be seen on the right in figure 3.4. Careful temperature control was found to
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be needed, as too low a temperature would not cause the Ge to diffuse into the

substrate correctly, and too high a temperature would cause the Ge to become too

diffuse, and/or the sample could become ”baked”.

Figure 3.4: Left image is of the AuGe pattern formed by the developed resist. Right pattern
is of the pads after the annealing process.

Some difficulties occurred at the annealing and evaporating stages. With the

annealing special care had to be taken to ensure the whole sample was in contact with

the boat and not hanging over the edge, as to ensure isotropic annealing. Slightly

extra current, over 29A, also caused the boat to become too hot causing excessive

annealing in the samples. The amount of AuGe was varied until the correct amount

needed to reach the 2DEG layers was found. NiCr was also found to be an aider in

the ohmic contact formation.

Errors in evaporation were purely mechanical in error, such as the NiCr source

running out of material. If this occurred and the sample needed to be exposed

to the atmosphere before the entire process was finished another smaller layer of

NiCr (10nm) would need to be evaporated before AuGe (or further AuGe) could

be evaporated onto the sample. This correction technique did not work every time

however.

Further issues occurred during the processing of the DQW. As the bottom layer

was much deeper than the with the SQW case, it was originally thought that a

longer annealing time may be required. This however turned out to be detrimental

to the sample, as the Ge appeared to become to dispersed within the semiconductor

substrate. It was later found that a thicker layer of AuGe aided ohmic contact

formation. Occasionally thickness in the order of 250nm were used successfully.

In future development, the use of a dedicated annealing oven would be of a great

advantage.
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After annealing, the resistance across the mesa was measured using a probe

station to ensure proper ohmic connection. For the SQW heterostructures, mesa

resistance in the order of 500 − 5000Ω was expected. For the DQW heterostructures

mesa resistance in the order of 5000 − 50000Ω was expected. If unsure further test

was carried out. The Sample would have its mesa resistance taken while in liquid

nitrogen at 77K. In some cases it was found that the above resistances were found,

but when cooled to below 4K the conduction channel became frozen out and zero

conduction across the mesa occurred. This was due to insufficient/failed annealing

causing improper ohmic contacts to be formed. Testing at 77K became a good

indication of whether a sample would work at below 4K.

A possible improvement in the ohmic contact formation for the DQW substrate

is illustrated in figure 3.5. Here we can see the pad at each end of the mesa is divided

into two areas. One area would then be etched down to below the first 2DEG, but

still above the second. Individual channels would then be etched into the pads to a

depth below the 2DEGs. Material would then be evaporated onto the whole pad to

a thickness that would avoid shorting between the separate areas, as indicated in the

figure. After annealing, material would have a direct ohmic contact with the 2DEGs,

while also maintaining individual control of each 2DEG. The annealing process may

also require less time and heat, therefore avoiding damage to the 2DEGs. This would

however add extra fabrication steps to the overall process, and require the fabrication

of a new photolithography mask.

One other anomaly that presented it self while developing the ohmic contacts,

was leakage on non mesa annealed pads. The photomask used required that some

non-mesa pads had to have AuGe deposited, and annealed. This did cause problems

later on in testing with leakage between the mesa and pads that were connected to

a gate or SET. This can be rectified by changing the photomask to having only the

mesa pads annealed.
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Figure 3.5: Potential AuGe Ohmic pad formation. Top two images indicate which area of
the pad will be used for the ohmic contact formation. Middle image indicates how each pad
is divided into two separate areas. Bottom images shows a transverse view of a pad. This
indicates how the substrate is etched and how the AuGe (grey shading) will be deposited
the substrate.

3.5 Metallisation with Planar Log-Periodic Antenna

The next stage of photolithography was carried out to form the final Au antenna

structure at the centre of which the QD, gates and SETs will be formed.

A layer of LOR-5B was spun to a thickness of 0.3µm and baked at 150◦C for five

minutes, followed by a layer of S1813 spun to a thickness of 1.1µm and then baked

at 90◦C for five minutes. The desired mask structure was exposed onto the resist

for 15 seconds in UV light (200W, Intensity of 10 mW/cm2 and wavelength 405nm

±6%) in an optical aligner. The sample was subsequently developed in MF319

developer for 45 seconds. The sample was first checked at ten seconds to ensure

correct development. The sample was then washed in de-ionised water.

Evaporation was carried out at a pressure of 3×10−6torr. Two evaporations were
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carried out in the same process. First an adhesion layer of 15nm Titanium, 99.99%

purity, (Ti) was evaporated followed by an Au layer, 99.999% purity, of 110nm. Lift-

off was then carried out using MR1165 at 60◦C for between 20 minutes to one hour

as needed. Titanium was used, as during evaporation it adsorbs surrounding gas,

know as a ”Titanium Flash”, bringing the pressure down allowing better quality

films to be formed.

Figure 3.6: Successfully formed Au log period antenna.

A successfully formed log-period antenna can be seen in figure 3.6. No problems

were encountered at this stage.

3.6 Fabrication of Mesa Pattern with Electron-beam Lithog-

raphy

The mesa was wet etched further forming a fine mesa from which the QDs would

be formed with the QD gates. This was achieved by forming a mask using resist

allowing the acid to only etch the desired sections.

4% PMMA was spun to a thickness of 1.8µm on the sample and then baked at

170◦C for ten minutes. Lithography was done using electron beam technology at

a dosage of 225µC/cm2. The pattern was developed using H2O:IPA (7:93) for 20

seconds and rinsed in IPA.

The mesa was etched through the mask using H3PO4:H2O2:H2O (4:1:90) until a
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depth of 80-100nm or 285-300nm was achieved. This was done by first placing a

small scratch on the sample in a non desired area. This scratch was then profiled

and the depth measured. The scratch should go through the resist to the substrate

so when introduced to the acid it can be used as a gauge of how deep the etch

has occurred. The sample was etched in the acid for 30 seconds at a time. Once

the desired depth was achieved the resist was removed by washing the sample in

acetone at 50◦C. Etch times of up to nine minutes were used. Figure 3.7 shows the

resist pattern before etching and the resulting fine mesa when completed. Note the

width of the finished mesa being slightly smaller than that of the resist pattern, this

is due to the acid etching horizontally across as well and down.

Figure 3.7: Left image is of the resist pattern formed using e-beam lithography prior to acid
etching. The right image is of the mesa etched and resist removed.

Many problems arose at this stage with the etching. On numerous occasions it

appeared that the mesa was not etching at all, or at least inconsistently. To try and

add consistency, the acid used was stored in a fridge at a fixed temperature, 7oC,

and each time the acid was required, a fresh batch was used. This was thought to be

mainly due to either the substrate or remaining resist. As an initial etch would have

already been successful from forming the mesa, it was narrowed down to remaining

resist. However, coupled to this issue, there was the problem of profiling the scratch.

As it was difficult to get a perfectly uniform scratch, the position at which the scratch

was profiled was very important, otherwise inconsistent recorded depths occurred.

This was overcome by forming the scratch near an alignment mark, such as an

alignment cross.

It was also later thought, that the etching times changed each time, due to a

layer of oxide forming between etches. This causes the acid to take longer etching

the oxide away first, before etching the mesa itself. This was overcome by carefully
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adjusting the etching times as needed.

For deeper etches, such as in the DQW case, it was noted that the substrate did

not etch straight down normal to the surface. It was found that depending on the

crystal orientation on the substrate, the substrate would taper either outwards or

inwards as it etched downwards. This issue was overcome by adjusting the pattern

spacing of the fine mesa to obtain the desired results. The taper also ended up being

an advantage, as it allowed the Au gates and Al SETs to have a slope, rather than a

vertical step from the substrate to the top of the mesa. Although the polyimide also

helped spline out such contours.

The final difficulty that presented itself at this stage was the non isotropic etching

across the chip. The centre of the chip would etch faster than the edges of the chip,

this was not something that was easily overcome and a tolerance of etch depth of

between 80-100nm or 285-300nm was acceptable.

3.7 Insulated Layer Coating

An insulating layer of T-11 from Sci Brewer Inc. polyimide was used which had

a permittivity of ε ∼ 3. The sample was first washed in Bond Brewer APX-K1 for

one minute. This is used to break surface bonds enabling good adhesion for the

polyimide layer. The polyimide was spun onto the sample at 6000rpm achieving a

thickness of approximately 200nm. This was baked at a temperature of 170◦C for

10 minutes. A 1.1µm layer of photo resist S1813 was then spun on top and backed

at 90◦C for five minutes. The S1813 was exposed to UV light (200W, Intensity of

10 mW/cm2 and wavelength 405nm ±6%) using the same pattern as the Au planar

circular log-period antenna with an aligner. MF319 was then used to develop the

resist for 40 seconds, followed by a 30 second rinse in water. The polyimide was

etched away leaving the desired shape through the photoresist pattern. This was

done using a plasma etch of 100% O2 for five to eight minutes.

As well as adding an insulating layer, the polyimide had the advantage of splining

out any large steps on the sample, essentially smoothing the surface of the substrate,

ready for the Au gates and Al SETs.
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A few concerns occurred at this stage with achieving the correct alignment of the

polyimide with the already present structure. This was overcome through practise.

Figure 3.8 shows a sample successfully coated in polyimide.

Figure 3.8: Sample successfully coated in polyimide. Note the very small misalignment
between the gold paths and polyimide coating. This discretion however does not cause any
significant issues.

The sample was then baked for a further ten minutes at 230◦C to cure the poly-

imide. If this process was not done, problems with the polyimide being dissolved

by acetone or 1165 in later steps were encountered.

3.8 Top Layer Metallisation

Some conduction problems were encountered with the gold and aluminium paths

connecting to the log period antenna properly. It was thought that this may be caused

due to the polyimide not being completely removed, however further plasma etching

was wanted to be avoided. To overcome this and ensure a good ohmic connection,

another log period antenna was deposited on top of the polyimide.

The same process and parameters as described in section 3.5 was used.

3.9 Fabrication of Metal Gates with Electron-beam Lithogra-

phy

The QD gates and point contacts were formed using electron beam lithography. Both

structures are formed simultaneously in the evaporation stage.

A layer of copolymer 6% was spun to a thickness of 0.5µm and baked at 160◦C

for ten minutes, followed by a layer of 2% PMMA spun to a thickness of 0.25µm and

then baked at 160◦C for ten minutes. Lithography was done using electron E-beam
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technology at a dosage of 225µC/cm2. The pattern was developed using Tol:IPA (1:5)

for 15 seconds and then ECA:Eth(1:5) for 15 seconds and rinsed in IPA.

A 20nm Ti, 99.99% purity sticking layer was then evaporated and a 130nm of

gold, 99.999% purity, was then evaporated onto the developed sample, evaporation

pressure used was 5 × 10−7torr. Acetone was used for lift-off to dissolve the resist

at 60◦C. The sample could only be placed in the acetone for three minutes as the

acetone would start to attack the polyimide layer after this time. Examples if well

formed QD gates and PC gates can be seen in figure 3.9.

Figure 3.9: Examples of well formed QD and PC gates. Note the slight over development in
right hand example. This however does not effect operation of the sensor. Examples shown
are from two different samples. A connection between two paths can be seen in the top right
of the left image. This was done to ensure conduction from photolithography pathways to
the e-beam pathways.

Very few problems occurred at this stage. Only on one or two occasions did

lift-off fail. If lift-off was not clean, a full 2 litre, 70 watt, 40KHz ultrasonic bath at

room temperature was used as necessary to careful remove any reminding material.

3.10 Fabrication of Al Single Electron Transistors

Single Electron Transistors (SETs) were formed using e-beam lithography and shadow

evaporation techniques utilising a self aligning pattern, as is shown in figure 3.2.

A layer of copolymer 14% was spun to a thickness of 0.7µm and baked at 160◦C

for ten minutes, followed by a layer of 2% PMMA spun to a thickness of 0.25µm and

then baked at 160◦C for ten minutes. Lithography was done using electron e-beam

technology at a dosage of 225µC/cm2. The pattern was developed using Tol:IPA

(1:5) for ten seconds and then ECA:Eth (1:5) for 40 seconds and rinsed in IPA. Times

were varied is required to obtain the desired development. Reasons for change in

time included length of time between the sample being exposed and developed and
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slightly varying developer concentrations.

Aluminium, 99.999% purity, evaporation was carried out at pressure of approx-

imately 3x10−6torr. A collimator and shadow evaporation techniques were used to

form the SET structures. The first evaporation angle used was 13◦ from the normal

and 35nm of aluminium was deposited.

The next stage was to oxidise the aluminium in preparation of forming the

tunnel junctions. Oxidation occurred in a 100% (excluding trace gasses) oxygen

environment at a pressure of 30 mtorr for eight minutes.

The final evaporation was then carried out at −13◦ from the normal with 35nm of

aluminium deposited. Acetone at 60◦C was used for lift. As before the sample could

only be placed in the acetone for no more than three minutes so as not to dissolve

the polyimide. Examples of the developed resist pattern and finished SETs can be

seen in figure

Figure 3.10: Top pictures show developed SET and SET pathways. Bottom pictures show
final finished sample with properly formed SETs.

Numerous problems occurred at this stage, mainly to do with the oxidation time

and pressures. Although different samples may be treated exactly the same, different

resistance tunnel junctions were recorded. The resistances varied dramatically, from

basically being short circuited to infinity. It is believed that this variation in pressure

occurs due to time taken to stabilise the pressure of incoming oxygen gas, which

required manual adjustment.
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3.11 Preliminary Testing

Once fabrication was completed, preliminary resistance measurements of the mesa,

Au pathways and SETs at room temperature were done on a probe station. Extra care

with handling and static discharge now the SETs had been formed. Mesa resistance

were confirmed to match those recorded in section 3.4. The resistance across the

shorting pad noted in figure 3.9 is measured to ensure ohmic contact between the

larger antenna structure and the Au and Al pathways, and a value in the order of

100 − 1000Ω is expected.

The normal resistance of the SETs at room temperature was also recorded. High

resistance SETs were considered to have a vale in the order of hundreds of kilohms

and low resistance SETs were considered to have a normal resistance in the order

of tens of kilohms. Many SETs were found to be short circuited or have infinite

resistance however, indicating the oxidating process in section 3.10 had failed. It

was found that the lower the resistance (while still being properly formed) gave a

lower charging energy of the SET as was expected.

3.12 Sample Package Mounting

When it was believed that a working sample had been produced, it was then attached

to a 16 pin chip package using silver conducting adhesive. The sample was then

connected to the legs of the chip package by bonding the sample to the package

pads. 25µm aluminium wire was used with a wedge bonder to complete this task.

The wedge bonder uses both heat and ultrasonic pulse to attach the wire to the pads.

Careful selection of the power and duration of the ultrasonic pulse was required,

as if it was too strong, it may rip the Au antenna pads off the sample. A finished

sample can be seen in figure 3.11.
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Figure 3.11: Completed and mounted sample. The silver conducting adhesive can be seen
under the chip in the centre of the package. The aluminium bonding wires are also visible.
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4 Experimental Techniques
This section will outline the techniques used for refrigeration and measurement of

the fabricated devices. Devices fabricated were measured in a 0.3K Heliox 4He/3He

system and measurements were taken using a custom built amplifier coupled with

a LabView controlled computer measurement system incorporating a lock-in ampli-

fier. For operation with the point contacts, temperatures as high as 1.5K can be used.

For accurate and successful SET operation, temperatures bellow the superconduct-

ing transition temperature of aluminium of 1.175K needed to have been used. To

improve operation though, lower temperatures in the area of 0.3K were used.

4.1 Low Temperature Techniques at 0.3-4.2K.

Temperatures around 4K can easily be achieved with liquid 4He as a direct refrig-

erant, which can then be pumped as to achieve evaporative cooling. Achieving

temperatures below 1K however requires 3He cooling.

This is accomplished by first liquifying the 3He in the sample space with 4He

cooling methods via a 1K pot. The 3He is then pumped using a zeolite sorb. The sorb

is first heated to 40K to remove any absorbed gas and allow it to become liquified.

Upon cooling, the 3He is adsorbed to the surface of the sorb, causing evaporative

cooling to occur, which allows temperatures of 0.3K to be achieved. A schematic of

the full system can be seen in figure 4.1.

Figure 4.1: 3He/4He Heliox cryostat schematic.85

The sub 1K cooling techniques utilising 3He used here can be described using the
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Clausius-Clapeyron86, 87 equation

dp
dT

=
L

T∆V
(4.1)

where p is the pressure, T the temperature, ∆V the change in volume during the

phases transition and L the latent heat of evaporation per mole. V can be substituted

however using the ideal gas equation, equation 4.2, leading to equation 4.3.

Pv = nRT (4.2)

Where P is the pressure, v the volume, n the amount of substance in moles, R the gas

constant and T is the temperature, to give

dp
dT

=
L

RT2 p (4.3)

Assuming that the heat leak L is constant, we can integrate the equation to obtain

the following solution

p(T) = p0e
−L
RT (4.4)

Where we can see that the temperature achievable by reducing the pressure, or

pumping the system, is dependent on the heat leak as one would expect. As such

the lowest possible temperature that can be achieved occurs when the cooling power

equals the heat leak. As the latent heat values of 3He and 4He differ, the difference in

vapour pressure also is different, with 3He having a vapour pressure approximately

1000 times larger at 0.5K. This means that through pumping alone, using 4He can

achieve temperature of approximately 1K and using 3He can achieve temperatures

of approximately 0.25-0.30K. Hence the use of a two stage system, using the 4He to

condense the 3He first.

The system outlined in figure 4.1 can achieve temperatures of approximately

0.25K in approximately one to two hours from loading using the loading chamber

and probe. The probe enters the sample space where 3He is condensed by 4He from

the surrounding bath and 1K pot. The 3He is then pumped using the sorb, which
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can continue pumping the 3He before becoming saturated and requiring heating for

approximately 45 minutes. This gives a hold time of approximately 50 hours. The

cryostat is also fitted with a four tesla magnet, which was used for Hall resistance

measurements of the 2DEGs. The probe is also fitted with a black body emitter (a

2.5KΩ surface mount resistor) and a light pipe, for either transmitting or emitting

terahertz radiation onto the sample. If the black body emitter is being used, the hold

time is decreased to the thermal excitation to the sample space caused by the emitter

from heating.

When the sorb becomes saturated, it is heated to 45◦C for 45 minutes to liberate

the adsorbed 3He from the zeolite crystals. This is then caught in the helium dump

vessel ready for re-condensing. The 3He system is a sealed system, so very little 3He

is lost due to normal operation.

In the system used here, the sample space is reached via a probe, which is used

to save loading times. Samples may be loaded in approximately 5 hours, opposed

to 2-3 days if heating up and cooling down the whole system. The probe itself

has isolation plates between the sample holder and the rest of the probe, as to

avoid thermal contact with the outside world. It does however have 16 x 0.15mm

constantan wires and a 2mm steel light pipe leading to the sample space which

would have introduced an extra thermal load. Approximately half way along the

probe, in a thermally insulated area and optically connected to the light pipe, is a

metal cup section in which we situate our terahertz emitting sources. The emitters

used produce a black body radiation. A full description of the optical system can be

found in section 4.2.

The emitter was placed 50cm away from the sample and behind several insulated

baffles, and a light pipe was used to transmit the radiation. The sample space itself

is in direct thermal contact to the cold plate at the bottom of the 3He space, which is

also where the temperature sensor for the system is mounted. It was noted that only

on experiments where the emitter was placed actually in the sample space next to the

sample itself that the temperature would then change. This leads us to believe that

the temperature reading given by the temperature sensor is indeed a good reading

of the temperature of the sample.
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In alternate setups, two extra 0.15mm wires have been thread down the light

pipe to the sample space, and used to connect to a black body emitter in much closer

proximity than using the light pipe setup. This setup however does increase the

base temperature dramatically, although point contact operation is still possible.
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4.2 Terahertz Emitter and Optical System

A simplified view of the light pipe setup in the cryostat used can be seen in figure

4.2.

Figure 4.2: Schematic layout of light pipe used to produce and transmit terahertz radiation
to samples with in the cryostat used.

As can be seen, a 2.9KΩ resistor was used as a black body source within a 6mm

diameter cylindrical enclosure. The 2mm diameter, 50cm long light pipe acts as a

large wavelength cut off, a black polyethene filter is used to remove the infrared

element of the black body radiation while the silicon filter removes all the shorter

wavelengths of radiation. This can be seen in figures 4.3 and 4.4. There is a notable

absorption band starting at approximately 3-4THz in silicon, however as the sensors

are designed to operate in the 0.2-2THz region, this does not cause a problem in

operation.

We define the Noise Equivalent Power (NEP) as

NEP =
Noise Voltage Per Unit

√
Bandwidth [V/

√
Hz]

Responsivity[V/W]
(4.5)

where

Responsivity[V/W] =
Photoresponse[V]

Power[W]
(4.6)
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Figure 4.3: Absorption spectra of silicon in the terahertz/infrared region of the electromag-
netic spectrum.88, 89
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Figure 4.4: Absorption spectra of black polyethene in the infrared region of the electromag-
netic spectrum.90

Where we can define the photoresponse in the experiment as the product of the peak

current through the PC under radiation and the PC resistance.

Photoresponse = IPhotosignalRPC[V] (4.7)

We may also express the noise voltage per unit root bandwidth as below. We assume

the measurement setup operates at 1000Hz.

Noise Voltage Per Unit
√

Bandwidth =
IDarkRPC
√

1000

V
√

Hz
(4.8)
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We may now define the NEP as follows by substituting equations 4.6 and 4.8 into

equation 4.5

NEP =
IDarkPower

IPhotosignal
√

1000

W
√

Hz
(4.9)

From experimental data, with the emitter operating at an electrical power of 3.6mW,

we have found a ratio for IDark
IPhotosignal

= 0.1, therefore our NEP can be defined as

NEP = 3.2 × 10−3Power
W
√

Hz
(4.10)

We now need to calculate the power that reaches the sample space in the terahertz

domain of 0.2-2THz. Power emitted by a black body in a given domain of ν0[cm−1]−

ν1[cm−1] can be found using Planck’s law

Power = SemK
∫ ν1

ν0

2πhc2ν3

ehcν/kT − 1
dν (4.11)

where Sem is the surface area of the resistor, K is the transmission coefficient of the

system and T is the temperature of the emitter. We also define ν0 and ν1 as follows

ν0 =
1

dlightpipe
=

1
0.2cm

= 5cm−1 (4.12)

and

ν1 =
f

c[cm/s]
=

2 × 1012

3 × 1010
= 67cm−1 (4.13)

We assume the resistor to be a cylinder, however only half of it faces towards the

light pipe, so we calculate the surface area of the resistor minus the ends and half

the area

Sem =
2πrl

2
= 1.8 × 10−1cm2 (4.14)

As the emitter is positioned very close to the entrance of the light pipe, we can

assume a planar wave entering the light pipe from the enclosure. To calculate K we

calculate the ratio of radiation incident on the light pipe to the emitted radiation. We
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do this by calculating the ratio of the area of the light pipe to the area of the enclosure

facing the light pipe

π(dLightpipe/2)2

π(dEnclosure/2)2 =
(2/2)2

(6/2)2 =
1
9

(4.15)

We also need to take into account the transmission through two Si filters. We assume

the refractive index of silicon in this wavelength range to be n = 3.42.89 We take the

transmission across the boundary between vacuum and Si to be

T = 1 −
(n − 1
n + 1

)2
= 0.70 (4.16)

and as there are two filters, there will be four boundaries, giving a total transmission

to be (0.70)4
∼ 0.24.

We also need to consider the attenuation of the light pipe itself. For a 2mm

stainless steel light pipe in the terahertz range, an attenuation of 5 − 10dB/m is

assumed.91 Taking the upper limit of 10dB/m therefore gives a total attenuation due

to the light pipe of ∼ 1
3 .

We must also consider the 4mm distance between the end of the light pipe and

the sample its self. As the light pipe is in such close approximately to the sample, a

plane wave may be assumed again. This means we can take the ratio of the area of

the sample to the area of the face of the light pipe to be the fraction of transmitted

radiation

π(0.5)2

π(1)2 =
1
4

(4.17)

We also estimate the mirrors illustrated in figure 4.2 to be not perfect, and com-

bined have a 90% efficiency.

We may now define K to be

K =
1
9
× (0.24) × (

1
3

) × (
1
4

) × (0.90) = 2 × 10−3 (4.18)

We may now define the power and NEP to be
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Power = SemK2πhc2
∫ 67

5

ν3

e1.44ν/T − 1
dν

= 1.35 × 10−15
∫ 67

5

ν3

e1.44ν/T − 1
dν (4.19)

NEP = 4.32 × 10−18
∫ 67

5

ν3

e1.44ν/T − 1
dν (4.20)

The last piece of information required is to know the temperature of the emitter

at the operating electrical power. A similar emitter (resistor) was measured in the

same enclosure. Its electrical power was varied and its temperature measured, as

can be seen in figure 4.5.
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Figure 4.5: Temperature dependence of a Speer resistor at given electrical powers.92

From this we can see at an operating of power of 3.6mW, which was the initial

power we first started using, we have an emitter temperature of 90K. This corre-

sponds to an incident power of 5.53 × 10−9W and an NEP of 1.77 × 10−11 W
Hz1/2 . The

maximum emitter power used was 34.4mW which equates to approximately 200K,

giving an incident power of 1.56 × 10−8W. The corresponding black body emitter

intensities at 90K and 200K can be seen in figure 4.6. Using the Wien’s displacement

law, we can find the ideal black body temperature for the frequency range corre-

sponding to 0.2-2THz to be 1.9-19K. However, as was found experimentally and

as can be seen in figure 4.6, the intensity produced by the emitter was too low to

produce sufficient incident power at the sensor to allow operation. Temperatures
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above 200K were not also possible due to the warming affect of the emitter on the

cryostat.

Figure 4.6: Top graph illustrates the black body spectrum using Planck’s Law at 90K and
200K. The bottom graph illustrates a zoomed in version, with the addition of Planck’s law
at 20K. The red dashed lines indicate the operating region of 02.-2THz.
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4.3 Measurement Techniques

A custom built amplifier was constructed and used for the testing and character-

isation of each part of a given terahertz sensor. They are mesa conductance, gate

voltage required for mesa conductance ”pinch off”, SET characterisation and pho-

toresponse. Depending the part being measured, a different measurement config-

uration was used: DC current measurement, the lock-in technique, and capacitive

measurements.

All data was recorded using custom written NI Labview software, and later anal-

ysed with further NI Labview software and programs such as Origin Lab Software.

4.3.1 Amplifier Design and Operation

Figure 4.7 shows the circuit design of the amplifier constructed. A voltage supply,

±Vb, is fed to the amplifier from a signal summator circuit and then goes through

a capacitor filter then a voltage divider, which reduces the voltage by a factor of 2,

20 or 200. This reduced voltage, ±Vo/2 then passes through a selection of biased

resistors, where the corresponding bias resistors for +Vb and −Vb are always the

same value. The I+/V+ and I-/V- connection can then connect to the sample in either

a two or four point measurement configuration, depending on the sample design.

Voltage Divider Bias Resisters

+Vb

-Vb

I+

I-

V+

V-

100K

1M

10M

100M

1G

10G

100K

1M

10M

100M

1G

10G

Figure 4.7: Amplifier design schematic as used in all measurements.

The voltage across the sample is simply measured directly using the instrumental
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amplifier GvV. The current measurement is done by measuring the symmetric bias

voltage using an instrumental amplifier and then subtracting it from the original

voltage VO as read out by −GvV This is done by recording the negative voltage Vo

and using it as an offset on the final instrumental amplifier. This calculation can be

seen below.

Vcurrent = GiVo − GiV = Gi((2RbI + V) − V) = Gi2RbI (4.21)

All connections up to the vacuum feed through connections on the probe are

BNC 50Ω ground shielded cables to ensure no RF interference or excessive noise

from external sources. Using this amplifier set up, currents in the nano-amp range

were routinely measured.

4.3.2 I-V Characterisation of Mesa and SETs

Visual and analytical characterisation was done for the mesa and SETs of each sample.

This was first done visually using an oscillating frequency bias to produce a I-V

curve on an oscilloscope to visually inspect the characterisation. This was done by

connecting the sample and corresponding structure (either SET or mesa) as described

in figure 4.8.

This was particularly useful in testing the conduction of the mesa as the tem-

perature of the sample was decreased. Poor annealing caused the mesa to stop

conducting at low temperatures due to poor ohmic con, and this was easily seen.

Figure 4.8: Equipment setup for I-V characterisation measurements.
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4.3.3 Measurement of Pinch Off Value

Devices are at their most sensitive to terahertz detection when the conducting mesa

channel has just been made non-conducting, or ”pinched off”. At this point, if an

electron is excited out of the QD into the channel, the channel will go from non-

conducting to conducting, which can then be detected.

This situation is setup using a point contact, which applies a negative electric

field at 90O to the conducting channel. To find the pinch off points of each device,

and therefore find its most sensitive area of operation, two dimensional scans were

taken, where the point contact and QD gate are biased inturn to form a map of where

the channel would and would not conduct.

For these measurements the equipment was set up as shown in figure 4.9.

Figure 4.9: Equipment setup for mesa pinch off characterisation.

Low resolution scans comprising of 100 data points for the QD gate and 200 data

points for the point contact were first used to find the area of interest. More high

resolution scans of 250 points for the QD gate and 1000 points for the point contact

were then taken, which would take approximately nine hours.

The two dimensional pinch of maps produced using this procedure, were invalu-

able in setting the device up ready for photoresponse measurements.
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4.3.4 Measurement of Photoresponce by Counting of QD Excitation Events

To do measurements of the QD switching events we used a Tektronix TDS 3032

oscilloscope. The oscilloscope had a fast trigger ability compared to the Keithley 2000

multimeters and the NI Multifunction I/O NI PXI-6030E. The sample was biased to a

point where the QD has just formed. The current across the SET was then recorded

by the oscilloscope. The time traces of SET current were measured.

The equipment was set up so that the oscilloscope would transfer the contents of

its memory buffer to the computer every time it became filled. The computer would

then join the individual buffer downloads together to form one continuos trace.

The computer simultaneously would adjust any gate bias or emitter powers over

time, as required. This allowed analysis of the switching events to be compared

to different gate bias and emitter powers. From this measurement we may find a

number of parameters, including number of switching events, integral count and

mean value of the current.

The number of switching events is purely the number of peaks measured above

a given threshold or ”cut off” value. The integral count is however a more accurate

measure of switching events. Rather than measuring peaks above a given threshold,

it measures the length of the current curve in time. Hence a peak would have a

longer length curve than a point on the graph that would not have a peak. The mean

value of the current is averaged over the time at a given applied gate voltage.

We attempt to distinguish between random switching events caused due to

thermal excitation and events caused by a photon excitation using these tools. We

would expect a larger counting rate for photoexcitation than for random thermal

events.
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4.3.5 Measurement of Photoresponce Using the Lock-In Method

Photoresponce measurements were taken using the lock-in technique. The experi-

mental setup can be seen in figure 4.12.

The lock in technique takes an AC reference input and a signal input that are both

at the same frequency and produces an amplified DC output. The amplifier ”locks-

in” to this known frequency and ignores all other frequencies, massively reducing

noise and other unwanted affects. Figure 4.10 illustrates the operation of the lock in

amplifier.

Figure 4.10: Lock-in Amplifier Operational Scheme.

The lock-in amplifier uses a phases sensitive detector (PSD) to demodulate the

mixed signals into a DC output. This DC output is however still a function of the

phases between the input and reference signals. This allows the lock in amplifier to

also act as a relative phase detector between signals.

As an AC voltmeter does not discriminate between different frequencies, when

the AC signal is demodulated, some of the demodulated noise components will also

find there way into the DC signal. The lock-in amplifier however locks into a specific

signal frequencies, so any noise found with in that frequency will be seen as an AC

fluctuation within in the DC output signal. This can then simply be removed using

a low pass filter.

The PSD operates by mixing the reference and input signal using the following

type of system to produce the desired output. Let the input signal Vin equal

Vin = A cos[ωt] (4.22)

where ω is the angular frequency. At the same time let the reference signal have the

same frequency and fixed phase shift θ
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Vre f = B cos[ωt + θ] (4.23)

the PSD then mixes these signals to produce the following output signal

VPSD = A cos[ωt]B cos[ωt + θ] =
1
2

AB cos[θ] +
1
2

AB cos[2ωt + θ] (4.24)

The amplitude of the reference signal is kept constant meaning the resulting

signal from the PSD is proportional to the amplitude of the input signal, proportional

to the phase between the input and reference signals and is modulated at twice the

reference frequency. The signal then passes through a narrow-band low pass filter,

which removes the oscillating 2ωt component, leaving the resultant DC signal.

A phase portrait illustrating the process, after the low pass filter, can be seen

in figure 4.11. As long as the noise has no phase/frequency relationship with the

frequency of the reference and input signal, in theory, all noise can be removed by

filters.

Figure 4.11: Lock-in Amplifier phase diagram representation.

In our experiments, the emitter was biased using an AC signal, with an offset

of half the amplitude, as to avoid using the second harmonic for demodulation.

This AC signal was generated using the signal generator, which also had a reference

signal of the same frequency, passed to the lock in amplifier. 13.333Hz was regularly

used as a frequency, as the odd number helped avoid any interference with a 50Hz

power supply.

As a signal generator a Yokogawa FG120 was used, see figure 4.12. Depending on

the measurement, two different voltage sources were used. For voltages below 10V
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the NI PXI-6722 8ch AO 13bit voltage source was used, due to its ease of use with

LabView programs. For larger voltages a Yokogawa 7651 DC source, controlled

by a GPIB interface was utilised. Voltage reading was done using Keithley 2000

Multimeters (GPIB Interface), however when extra inputs may have been needed the

NI PXI-6030E Multifunction I/O was also used. Three different Lock-In amplifiers

were used, these were the EG& G 5302 Lock-In Amplifier, PekinElmer 7265 DSP

Lock-In Amplifier and the PekinElmer 7280 DSP Lock-In Amplifier.

Figure 4.12: Equipment setup for photoresponse measurement.
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4.3.6 Capacitive Measurement

Throughout the experimentation, it became apparent that we required a reliable

method to check whether the 2DEGS that form the QDs in both the SQW and

DQW case were actually present and not damaged. It is believed that a number

of heterostructures used during testing, particularly for the DQW structures, were

damaged and did not contain a working 2DEG. It also became noted that in some

cases, applying to high a negative voltage to one of the QD or PC gates would cause

the opening of higher order conduction channels through the mesa. These channels

were then unable to be closed using a negatively biased gate. Only warming the

sample back up and cooling it back down would close these channels and allow

pinch off. It was suggested that UV light shinned on the sample may repopulate the

QWs, however our experimental setup did not allow this option.

So to test whether the 2DEG layers were working correctly it was found that

a sensitive capacitance measurement could be taken between a gate and the mesa

channel its self.93 As can be seen in figure 4.13, an oscillating voltage is applied to

one of split the gates on the sample. The mesa channel of the sample is connected

to a current amplifier and the other end of the mesa is left floating. The current

amplifier is then connected to a lock in amplifier which then demodulates the signal

at the applied frequency used on the cross gate. The amplitude of the oscillation

and the gain on the amplifier are adjusted to obtain the greatest signal. The voltage

offset of the gate is then swept into the negative range, essentially pinching off the

mesa. As the 2DEG layer becomes pinched off, the induced charge oscillations in the

mesa from the gate decrease, as the over all capacitance decrease, therefore allowing

us to easily identify at which voltage each 2DEG layer becomes pinched off and to

ultimately identify that a 2DEG layer is present.

The technique is sensitive enough that when the offset is swept in small enough

steps, both the top and bottom layers in a DQW heterostructure may be identified,

as can be seen in section 5.2. Although this technique was not used for the actual

experimental testing of how we wished the sample to operate, it did become a very

powerful tool in testing the presence of the 2DEG layer in some samples.
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Figure 4.13: Equipment setup for gate-2DEG capacitive measurement.

93



5 Experiments and Results
A THz radiation sensor in which the photon-induced ionisation state could be read

out using both a Point Contact (PC) and SET was studied. We compare the operation

of QD-PC and QD-SET devises of different designs. The QD-PC devises, where the

state QD is probed by the PC, concede in sensitivity to that with the SET, but gain the

advantages of higher operation temperature, 1.5K opposed to below 1K, and have

less demanding fabrication needs.

From this we went on to develop a device where two capacitively coupled QDs

are formed in the double quantum well heterostructure. We use both a PC and a

SET for read out of the QDs. Devices based on double quantum wells would have

advantages in tuning of the resonance spectral line. I report the progress in the

development of this sensor. A simplified model of the operation of the QD sensor is

also discussed.

The operational principal of the semiconductor THz sensor presented here is

similar to single photon counting using QDs in high magnetic field.5 It was demon-

strated that the absorption of THz radiation could resonantly excite magnetoplasma

oscillations, followed by a charge excitation of the QD.5 The QD was then probed

using a SET. The sensor demonstrated a high spectral resolution of ∼ 1% and single

photon sensitivity. A low temperature scanning terahertz microscope has now been

developed using this technology.94

The main limitations with the detector is the need for a high magnetic field, above

2T, and low temperatures below 0.3K. Introduction of a metallic SET allowed us to

remove the need for a magnetic field, however due to size and charging energy of

the metallic SET, operational temperatures below 1K are still needed. To ensure that

the SET would work above 1K, a SET with tunnel junctions of 0.03× 0.03µm2 would

need to be produced, as to obtain a charging energy, Ec = e2

C , greater than that of the

thermal energy, kbT. Currently this is a challenging fabrication task.95 One can lift

the operation temperature by utilising a point contact as sensitive electrometer. In

this device the QD charge state directly affects the conductance of the PC near its

pinch off point. I present data on operation of both SET-QD and PC-QD detectors.

The excitation of an electron out of the QD occurs in two stages. Plasma oscilla-
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tions in the vicinity of the QD are first excited, which then decays and inturn hands

over the energy to a single electron excitation. This electron then has the sufficient

energy to overcome the potential barriers of the QD. This is clearly demonstrated at

more negative gate potential, where the switching events due to thermal excitations

are completely suppressed.

5.1 Quantum Dot Sensors in Single Quantum Well Heterostruc-

tures

The devices were fabricated using a GaAs/AlGaAs heterostructure with a single

quantum well. A 2DEG approximately 100nm deep into the semiconductor, with an

electron mobility of µ ∼ 6 × 105cm/Vs and an electron density of n = 1.6 × 1011cm−2.

Two designs were fabricated and tested. The first design with PC and QD gates

utilises the PC and SET readout technique. The second design with two cross gates

utilises only the SET readout method. In both designs the QD is formed in an etched

mesa channel using a metallic gate(s). The SETs are fabricated directly above the

QDs allowing greater coupling to the QD, compared to lateral positioning, in each

design, see figure 5.1. The QD is positioned in the focal point of a log-periodic

antenna approximately 1.5 mm in diameter, designed to operate in the frequency

range of 0.2 and 2 THz. The experiments were carried out in a temperature range

from 0.3 K to 1.5 K.

As a THz source, we use filtered black body radiation emitted by a resistor heated

by a bias current. The resistor is placed 60 cm away from the sensor. The radiation is

guided to the experimental sample using a 2 mm stainless steel light pipe. The light

pipe cuts off wavelengths greater than 2 mm. Unwanted infrared radiation is filtered

off using a black polyethylene film and two silicon filters. It was estimated that the

transmission efficiency of the optical system is 2 × 10−3, at a dissipated electrical

power of 3.6mW corresponding to an emitted power of 2.77×10−6W in the 0.2-2THz

range. A full discussion on the optical system can be found in section 4.2.
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Figure 5.1: SEM micrograph of the sensors. Left: Design of the sensor with PC and QD
gates. Right: Design of the sensor with cross gates, Gate 1 and Gate 2.

5.1.1 QD Sensor with the PC and QD Gates Design

We start with operation of PC-QD sensor. We took scans varying the bias of both the

QD and PC gates as to establish a PC pinch off map, figure 5.2, as to ascertain in what

region the detector should be most sensitive. Ideal operation point is expected where

the QD is formed and the PC is pinched-off simultaneously. This happens where the

pinch off boundary is crossed by the dashed line. The latter is the boundary of QD

formation taken from the SET map in figure 5.3.

Figure 5.2: Conductance map of PC as a function of the QD and PC gate. Blue corresponds
to zero current and white to approximately 1 nA. The dashed line indicates the pinch off of
the QD (measured with SET).
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In figure 5.2 we can see four distinct areas. Area one indicates a formed QD

but with a closed PC. Zone two indicates an open QD and an open PC. Zone three

indicates a formed QD but open PC and zone four indicates a closed PC but open

QD.

An SET current map in coordinates of voltages applied to Vqd and Vpc can be

seen in figure 5.3. The boundary between different periods of the CB oscillations

indicates the formation of the QD. It is not vertical, indicating that the PC gate bias

also has an influence on the formation and shape of the QD.

Figure 5.3: SET current map as a function of applied voltage to both PC and QD gates. The
area with the short period CB oscillations is the region of the formed QD.

For QD-PC operation the PC channel is biased with a voltage of 0.25mV through

a 200KΩ resistor. The PC current is sensitive to the charge state of the QD at the

point of pinch off. In order to measure photoresponce we keep the bias constant for

the QD gate and scan the PC bias, while measuring the current across the channel,

as can bee seen by the dashed line in figure 5.4. Current drops to zero below the

pinch off voltage of ∼ −2.4V. The pinch-off boundary shifts when the THz photon

flux is applied, see blue line in figure 5.4. The photoresponce is then the difference

between the two curves of PC current.

We used the lock-in method to investigate the effect, by modulating the source

at 9Hz and recording the PC current demodulated at twice the frequency, see the
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Figure 5.4: Point contact dark current (dashed line) and point contact current when under
terahertz illumination (blue line). Also shown is the difference between these two data sets
(open circles) which is the photoresponce. QD gate voltage -1.06V.

orange line in figure 5.4. It can be seen that the maximum of the photoresponce

current is of the order of the PC current when completely open. One anomaly can

be seen at VPCG = −2.1V where there is a difference between the dark current and

point contact current under illumination, however this is not represented in the

photoresponce data. It was later found that this was a temporary artificial error

caused by a software error within the lock-in amplifier.

We further investigated the maximum photoresponce for a given power and

different QD gate bias voltages, as can be seen in figure 5.5. As a reference we

take a lock-in signal when the source is off, i.e the dark current signal. This signal is

believed to be caused due to random charge fluctuations in the channel as well as any

radiation that may be emitted from any components in the optical system, although

the latter is believed to be minimal. The lock-in amplifier is also sensitive to the

impedance at the input. As the gate voltage is biased it will effect the conductance

of the PC channel therefore significantly changing its impedance, this will then

be manifested as a contribution towards the dark current in the figure. The sign

and magnitude of the photoresponce at different QD and PC potentials near the

pinch off boundary follows the same pattern as the dark signal, solid line in figure

5.5. Small emitted powers of less than 3mW only produce a photoresponce in the

VQDG ∼ −0.97V region, but this is extended to VQDG ∼ −1.2V at higher powers
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and therefore greater photon flux. The signal to noise ratio also improves with a

more negative QD gate potential. It is believed that the photoresponce extends to a

more negative gate voltage at higher emitter power due to more energetic photons

reaching deeper states within the QW and exciting them out of the QD. These states

would have been unattainable to less energetic photons.

- 1 . 2 - 1 . 1 - 1 . 0 - 0 . 9 - 0 . 8 - 0 . 70 . 0

0 . 3

0 . 6

 

 
Ph

oto
res

po
nc

e (
nA

)

Q D  g a t e  ( V )
Figure 5.5: Photoresponce are a function VQDG for different emitter powers. No power (solid
line), 14mW (open squares) and 26mW (open circles).VPC = −2.3V.

We found that the photoresponce becomes saturated when an emitted power

exceeds 3mW. As the power of the emitter is increased and therefore the incident

flux, multiple excitations from the QD to the PC channel occur. With each excitation

a relaxation event will also occur restoring the QD to its original state. As more

simultaneous excitations happen, the relaxation rate will increase. Saturation of the

photoresponce is reached once the overall excitation rate and relaxation rate become

equal. Performance of the detector only slightly degrades as the temperatures in-

creases from 0.3K to 1.5K. This can be seen in figure 5.6. The photoresponce starts at

approximately 2.2mW. Below this value the incident flux is insufficient to be detected

once it has passed through the optical system due the quantum efficiency of the QD.

Also, below this power the black body spectrum emitted is not in the ideal region

for the detector to operate.

We can estimate the sensitivity of the PC to the charge excitation of the QD as
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Figure 5.6: Power dependence of the detected photoresponce, at VQDG = −1.01V at both
1.5K and 0.3K.

∂IPC

∂Q
=
∂IPC

∂Vg

1
CPC

QD

CQD−PC

CPC
Σ

(5.1)

where Vg is the PC gate voltage, IPC the current through the channel and CPC
QD is the

capacitance between the PC gate and the QD, CQD−PC is the capacitance between

the QD and PC, CPC
Σ

is the total capacitance of the PC. We calculate the maximum

values of ∂IPC
∂Q for a different QD gate bias in figure 5.2, see figure 5.7. The maximum

sensitivity is ∼ 4.1 × 106A/C.
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Figure 5.7: Point Contact charge sensitivity as a function of QD gate voltage. We can see a
maximum of approximately 4.1 × 106A/C.

We can estimate the minimum charge excitation of the QD, which can be regis-
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tered by the PC using the formula

∆Ie = Ne
∂IPC

∂Vg

1
CPC

QD

CQD−PC

CPC
Σ

(5.2)

where N is the number of electrons in the given excitation and ∆Ie is the current

noise of the measurement system. The current noise is ∼ 2pA in our system, which

when using equation 5.2 correspondes to approximately five electron excitations.

This would show that the PC is capable of detecting excitations of a few electrons.

In figure 5.2 streaks along the uneven pinch off boundary are seen. They decrease

with a temperature increase, but they can still be seen at 1.5 K. We believe that a small

dot is formed in the PC channel, which is in Coulomb blockade regime. The streaks

are a manifestation of the Coulomb blockade of tunnelling through this dot. We

estimated the size of this dot to be 200 nm. The presence of the Coulomb Blockade

Oscillations (CBOs) increase the maximum sensitivity of the sensor. But at the same

time the operation of the device becomes sensitive to fine tuning of the gate voltage.

It has also been noted that near the pinch off boundary, the temporal fluctuations

in the dark signal appear to be enhanced. The dark signal follows the pattern of

streaks near the pinch off boundary, reflecting the high sensitivity of the PC readout at

this point due to the large gradient of current, respective to the gate voltage, dI/dVg.

With all the gate potentials fixed, it is the charge state of the QD that determines the

conductance of the PC channel. Near the pinch off point where the barriers to the

QD are still of the order of the electrochemical potential of the surrounding 2DEG,

thermal energy induces charge fluctuations in the QD, leading to the large dark

current. This current then decreases with either lowering the potential barriers of

the QD, causing the 2DEG to become more strongly coupled to the 2DEG, or when

the barriers are increased, preventing the thermally induced fluctuations on the QD.

We continue with the operation of SET-QD detector. At the boundary where

the QD is becoming isolated from the 2DEG, ”switchings” of the SET current are

visible, caused by excitations of electrons in/from the QD. At this QD gate voltage

the potential barriers that form the QD are still of the same order in magnitude as

the electrochemical potential of the surrounding 2DEG, allowing thermal excitations
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of electrons to occur. Once the barriers are far greater than the surrounding elec-

trochemical potential, this effect is completely suppressed. The noticeable electron

excitations out of the QD only happen due to a THz photon absorption event.

Figure 5.8: SQW QD-PC SET switching count rate with emitter on and off. PC gate biased
to -2.3V. Measurement taken over 120 seconds. Emitter dissipation power 26mW.

Using the SET coupled to the QD-PC sensor, the electron excitations of the QD

was measured with both the emitter on and off, as can be seen in figure 5.8. The PC

voltage of -2.3V was found to give the largest signal response when an excitation

was detected. The measurement was taken over 120 seconds. It can be seen that

there is a clear increase in the excitation count rate when the emitter is switched on.

The coupling of the QD to the 2DEG reservoirs is controlled by biasing the QD

gate. As the (negative) bias is increased, then the tunnel junction resistances will

increase and the QD becomes de-coupled from the 2DEG reservoirs. Large period

CBOs of the SET are seen before the QD is de-coupled from the reservoirs, see figure

5.9. At this point a change in period and amplitude of the CBO happens due to the

emerging of extra capacitance between the SET and the QD gate. This is discussed

further below.

To finish analysis I discuss the electrostatic model of the system. The electronic

equivalent circuit of the system is shown in figure 5.10.

Before the QD becomes decoupled from the 2DEG, the effective capacitance

between the SET and QD gate is
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Figure 5.9: SET conductance. Point contact gate is biased to -2.1V. Change in period from
63mV to 4mV can be observed as the QD becomes isolated from surrounding 2DEG. Thermal
excitation of electrons out of the QD can be observed near the pinch off point. QD formation
and isolation from the reservoirs can be seen at approximately -0.97V.

Figure 5.10: A simplified electronic model of the device fabricated.

C1 =
CQD−SET + CSET

Σ

CQD−SET + CSET
Σ

+ CSET
QD

CSET
QD (5.3)

After the QD is isolated from the 2DEG, the effective capacitance between the SET

and QD gate becomes

C2 = C1 +
CQD

QD(CSET−QDCQD
Σ

+ CSET−QDCSET
Σ

+ CQD
Σ

CSET
Σ

)

CSET−QDCQD
Σ

+ CSET−QDCSET
Σ

+ CQD
Σ

CSET
Σ

+ CQD
QDCSET

Σ
+ CQD

QDCSET−QD
(5.4)
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One can estimate the capacitances using either estimation or experiment. One can

find capacitance between the QD and the SET using following equation

C = εrε0
A
d

(5.5)

where εr is the relative static permittivity of the material, ε0 is the electric constant

(ε0 ≈ 8.85410−12Fm−1), A is the area overlap and d is the distance between layers.

We assume a permittivity of 3 for polyimide materials96 and 12.85 for GaAs-like

structures.97 We then use an average of the εr for multiple materials. For example,

to calculate CQD−SET, where the SET is sits on a 200nm layer of polyimide, with

the QD being approximately 100nm below the surface in the AlGaAs substrate, we

take εr ≈ (12.85 + 3 + 3)/3 ≈ 6.3. For CQD−SET we take the area of the SET island,

1.08 × 10−15m2, to be the overlap area and the distance to be 300 × 10−9m. This gives

a capacitance of 2 × 10−19F.

In order to calculate CSET
PC , CPC

QD and CQD−PC we consider the device components as

flat co planar strips. This allows us to use the two parallel coplanar strips capacitance

model98

C = lεrε0
K(
√

1 − k2)
K(k)

(5.6)

where l is the length of the strip, K is the elliptical integral and k2 = k1k2. We define

ki = d
2wi+d where wi is the width of the strips, and d is the distance between them. From

this we can find CSET
PC = 5.3 × 10−18F, CPC

QD = 9.6 × 10−17F and CQD−PC = 5.2 × 10−17F.

We may also calculate the capacitance of the QD to the environment, CQD
Σ

, assuming

it is a flat metallic disc, using the following equation99

C = 8εrε0r (5.7)

where r is the radius of the disc. This gives a value of CQD
Σ

= 4.3 × 10−16F. Taking

the radius of the QD to be 475nm and knowing the electron concentration, we may

also estimate the number of electrons in the dot to be approximately 1100. CSET
QD was

determined using the change in period of the CBOs in figure 5.9, giving a value of
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CSET
QD = 7.0× 10−18F. CQD

QD was determined using computer simulation giving a value

of CQD
QD = 3.1× 10−17F and we found CPC

Σ
= 8.2× 10−16. CSET

Σ
was calculated from the

SET charging energy of 0.34meV, it gives a capacitance of CSET
Σ

= 2.4 × 10−16F.

The I-V characteristic of the SET used on the device can be seen in figure 5.11.

From the curve we find a normal resistance of Rn ≈ 740KΩ and the SET charging

energy of 0.34 meV.

-10 -5 0 5 10

35

40

45

50

55

60

65

 

 
C

ur
re

nt
 (n

A
)

Voltage (mV)

1/R =1.35x10-6 
R~ 740K

V=2.64x10-3

Figure 5.11: I-V Curve of the SET in QD-SET sensor measured at 0.3K.
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5.1.2 QD Sensor with the Cross Gate Design

A SET current map taken using the cross gate configuration can be seen in figure

5.12.

Figure 5.12: SET current map as a function of applied voltage to both gates 1 and 2 in the
cross gate design. Pinch off boundary is illustrated by the thick red line. The ”spikes” in the
map are believed to be random charge fluctuations.

Region (a) indicates both a QD and PC formed. Region (b) indicates an isolated

QD, but with one tunnel barrier continuously increasing, causing electrons to ”spill”

out of the QD. It is the continuos biasing of one of the gates that causes one of the

barriers to increase. Region (c) indicates a region where the QD is not formed.

By correctly biasing the gates, the QD can be put in a state where random

telegraph switching events can be observed, due to the gate potentials only being

just being large enough to isolate the QD. This allows thermally excited electrons

to enter and leave the QD. Beyond this point we would expect to see an increased

number of switching events when radiation is incident on the QD, as seen in figure

5.13.

When investigating this further, by looking at the region -0.194V to -0.199V, we

can see how count rate is indeed increased by a factor of two at approximately -

0.1955V compared to the dark rate count, as seen in figure 5.14. Significant peaks in

photoresponce are indicated with arrows.

Examples of the specific switching trace marked by arrows in figure 5.14 can be
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Figure 5.13: SET switching count rate with emitter on and off. One cross gate is fixed voltage,
0.451V. Measurement taken over 140 seconds. The power dissipated at emitter is ∼ 22mW.

- 0 . 1 9 9 - 0 . 1 9 8 - 0 . 1 9 7 - 0 . 1 9 6 - 0 . 1 9 5 - 0 . 1 9 4
0

5

1 0

1 5

2 0

2 5

3 0

-0.
19

64
V Lifetime (ms)Co

un
ts 

(s-1 )

C r o s s  G a t e  V o l t a g e  ( V )

 E m i t t e r  O f f
 E m i t t e r  O n

-0.
19

54
V

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

 

 

Figure 5.14: Zoomed in version of figure 5.13. Blue curve indicates a lifetime of excita-
tions in QD. The lifetime increases as cross gate voltage becomes more negative. Specific
photoresponce regions are marked at -0.1954V and -0.1964V.

seen in figure 5.15. The amplitude of switching events are approximately four times

larger than the background noise amplitude. The time traces of the SET current

show this clear increase in switching events under THz radiation, see figure 5.15.
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Figure 5.15: Example SET current switching traces. Traces correspond to cross gate voltages
of -0.1954V and -0.164V are shown.
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5.2 Double Quantum Well Quantum Dots

We use our standard designs in order to investigate the double quantum well system

(DQW). The only significant differences of the DQW system compared to the SQW

system was the design of heterostructure used. The energy band structure of the

heterostructure used can be seen in figure 2.12 in section 2.2.2.1. The first quantum

well is defined at a depth of approximately 100nm and has a reported electron

concentration of Ns = 3.2×1011cm−2 and a mobility ofµ = 11×104cm2/Vs. The second

quantum well is at a depth of approximately 260nm with a reported concentration

of Ns = 4.4 × 1011cm−2 and a mobility of µ = 12.8 × 104cm2/Vs. Further information

regarding the heterostructure can be found in section 3.1. We characterised the DQW

sample. The mesa resistance, 3.06kΩ, was linear in the range of ±5mV at 1.4K, giving

a sheet resistance of 383Ω.

Figure 5.16: Split gate design and image used for DQW testing.

Similar to the SQW samples the QD(s) is formed by negative bias of the QD

gate, causing the QD to become isolated in the etched mesa channel, as can be seen

in figure 5.16. The same THz source and optical system were used as in the SQW

samples. Experiments were conducted at temperatures between 0.3 K and 1.5 K.

Figure 5.17 shows the labelling scheme for the PC and QD gates used in the testing.

5.2.1 QD Sensor with the PC and QD Gates Design

We first began by studying the QD-PC sensor. The channel is biased with a voltage

of 1mV and negative voltage is applied to PC and QD gate. The corresponding pinch

off curve is shown in figure 5.18.

Although pinch off was achieved, it was not repeatable. It is thought that during

the pinch off, the higher order conduction channels in the substrate are opened,

circumnavigating the 2DEG layers. Due to higher order conduction channels being
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Figure 5.17: SEM picture of the devices made from DQW heterostructure.

Figure 5.18: Pinch off curve of the sensor with DQW. Overall pinch off is achieved at
approximately -7.16V.

opened when greater negative bias was applied, the channel could not be pinched

off. This is believed to occur due to conduction electrons being shifted in the z-

direction, due to the applied bias, from the known QWs to some unknown state(s)

which are deeper then the depth of the etch that was carried out. These conduction

channels could not then be closed again without warming the sample back up.

This prevented further photoresponce testing using the QD-PC sensor, as it was not

possible to produce a conductance map of the sample.

It was expected for the PC to form in the top QW. The QDs formed in the

neighbouring 2DEG layers are capacitively coupled to each other meaning they can

then be read out using the PC in the top 2DEG. No successful QD-PC with operational

SETs were produced.

The electrostatic equivalent circuit of the system is shown in figure 5.19. As

many dimensions and properties are the same in both the SQW and DQW case,
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some values will be very similar. We assume the relative permittivity of polyimide

as 3 and the heterostructure as 12.85. Using equation 5.5 we find CQD−SET = 2×10−19F

and CTQD−BQD = 4.2 × 10−16F.

Using equation 5.6 we find CSET
PC = 5.3 × 10−18F, CTQD

PC = 9.6 × 10−17F, CTQD−PC =

1.7 × 10−16F, CBQD−PC = 1.7 × 10−16F, CBQD
PC = 1.3 × 10−16F.

Using equation 5.7 we find CTQD
Σ

= 4.3 × 10−16F and assuming the bottom QD is

larger than the top, and has a radius of 550nm, we find CBQD
Σ

= 5 × 10−16F. With the

known electron concentrations, we can estimate the top QD to contain 2250 electrons

and the bottom QD to contain 4200.

We may find CSET
Σ

from the SET charging energy, 0.34meV, to be CSET
Σ

= 2.4 ×

10−16F. CTQD
QD and CBQD

QD were found using computer simulation. They are CTQD
QD =

7.0 × 10−18F and CBQD
QD = 2.8 × 10−17F. CBQD

QD being larger, as it was estimated that

the bottom QD would be in larger radius than the top. CPC
Σ

was also found to be

CPC
Σ
∼ 5.5 × 10−16F.

Figure 5.19: A simplified electronic model of the DQW device fabricated.

5.2.2 QD Sensor with the Cross Gate Design

To confirm that the gates were causing depletion in the desired area, therefore

allowing a QD to be formed, AC capacitive measurements were taken. The method

is described in section 4.3.6. Depletion curves from these measurements can be seen

in figure 5.20. An oscillating voltage of 150mV at 11kHz was applied to the gate,

while the constant bias voltage was swept between 0V and -3V in 0.5mV steps.

Depletion of the top QW can be observed in the region of -2V and -2.25V as can

be seen in figure 5.20. Curve G4(12) has two dips, the first dip at -0.7V is probably

an anomaly, as the current later recovered. Higher (negative) voltage was applied
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Figure 5.20: DQW capacitive measurement depletion curves. Curves are shifted in the Y
direction for ease of comparison.

to the gates to ascertain if depletion of the bottom QW could be achieved, as seen in

figure 5.21. The depletion of the second QW appears to occurs at approximately -5V.

Figure 5.21: High negative bias capacitive measurement depletion curve.

As already explained, once higher bias was used, the pinch off cannot be repeated

until the sample is heated up to room temperature, as shown by figure 5.22.

A 2D map of SET current using two cross gate, G3(11) and G3(3), can be seen

in figure 5.23. Red lines indicate areas of QD formation. As can be seen in the

graph, a change in CBO period can be observed, although it is very small. The

period in CBOs before pinch off corresponds to a capacitance between the SET and

the gate of 3.8 × 10−18F and after pinch off corresponds to 7.0 × 10−18F. From the

capacitive measurements, we can confirm that the top QD has become isolated from
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Figure 5.22: Failed capacitive measurement pinch of curve. Grey lines indicate regions
where pinch off was expected to be observed.

the surrounding 2DEG. The question remains unanswered about the bottom 2DEG.

We do not see any features in figure 5.23 indicating the depletion of bottom 2DEG.

It is believed that the bottom layer is not completely isolated.

Photoresponse measurements were then taken with the same sample. The SET

was biased to 0.65mV, as this was near a quasi-particle point and found to be the

area of greatest sensitivity, as can be seen in figure 5.28. The 2D map of SET current

with emitter set for 35mW and emitter off, is shown in figure 5.23. No noticeable

effect was detected by using the lock-in technique also.

We repeated the experiment, but we changed sweep direction: we fixed the

voltage at G3(11) gate and swept the G3(3) gate as shown in figure 5.24. The map

appears different to figure 5.23, fixed G3(11) has high capacitance to the SET, and the

CBO of the SET with respect to this gate is not resolved in the map due to large steps

used, see figure 5.27. No prominent photoresponce is detected. Some switching was

found on the boundary at VG3(11) = −2.706V.

Time traces of the SET current were taken with the emitter on and off, with a 30

second waiting time between traces. The data was analysed to find the mean current

amplitude, switching counts and integral counts as seen in figure 5.25.

The curve of integral counts is not affected by the threshold level used to cal-

culate counts. The inset of figure 5.25 shows the mean current amplitude. It is

approximately the same for both emitter on and off. No clear photoresponse has
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Figure 5.23: SET bias -0.65 mV. Average Peak maxima in top graph 0.399nA and 0.408nA in
bottom graph.

been detected.

Closer examination of the actual switching events, as can be seen in the example

in figure 5.26, shows that although a distinct signal can be seen over the random noise

telegraph switching, the signal to noise ratio of only 2:1. From experiments with

SQW heterostructure, a signal to noise ration of at least 4:1 is needed for operation

of the detector.

Figure 5.27 shows the CBOs caused by the individual neighbouring cross gates,

G3(3) and G3(11), to the SET, as shown in figure 5.16. The difference in capacitance

indicates a non symmetrical geometry of the gates with relation to the SET. From

this we were able to find CSET
QD = 5.3× 10−18F. A larger period CBO gives the effect of

reduced resolution in the 2D SET photocurrent map, as seen in figure 5.24.

Figure 5.28 shows the I-V characteristic of the SET. From the curve, we can find

a normal resistance of Rn ≈ 301KΩ and a charging energy of 0.34meV. Josephson

quasi particle peaks can be seen at −7.96 × 10−4V and 6.89 × 10−4V.
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Figure 5.24: DQW SET photoresponce measurement. SET bias -0.65 mV. Average Peak
maxima in top graph 0.850nA and 0.858nA in bottom graph.
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Figure 5.25: SET telegraph switching analysis. SET biased to -0.645mV. Scan taken over 120
seconds.
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Figure 5.26: Example switching trace of QD with emitter turned on.

Figure 5.27: Top: CBOs due to SET being swept with cross gate G3(11). Due to the larger
capacitance, it can be seen that this gate is physically closer to the SET than G3(3) below.
CBO period indicates a capacitance of 5.3× 10−18F. SET bias -0.525mV. Bottom: CBOs due to
SET being sweeped with cross gate G3(3). CBO period indicates a capacitance of 6.7×10−19F.
SET bias -0.525mV.
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Figure 5.28: I-V Curve of the SET in DQW QD-SET sensor, measured at 0.256K.
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6 Conclusions
In this section I make conclusions on the fabrication technology and experimental

results with both the SQW and DQW samples.

6.1 Summary of Fabrication Technology

Existing fabrication technology for the production of SQW sensors already existed.

Only minor adaptations to the existing process were required. The design was

altered slightly over the course of the project to enable easier fabrication.

The final designs are presented in section 3.1. The orientation of the gates and

SETs were adjusted to enable easier lift off. The fine mesa was adapted to be one long

channel, rather than individual fine channels for each individual QD site, allowing

greater flexibility of alignment. The SET pathways were also redesigned to so that

some may share a common pathway. This allowed the number of connections from

the sample to the chip package to be reduced from 20 to 16. This was of great use, as

it allowed operation of the whole sample, as the probe for the cryostat only allowed

the use of 16 pin chip packages.

In the SQW samples, only two aspects were permanently adjusted in the actual

fabrication. This was the second bake of the polyimide to harden and cure it further,

making it less susceptible to acetone dissolving it. The other fabrication change was

the use of a thicker layer of 6% copolymer for the undercut layer of the QD gates.

This allowed much easier lift off during this stage of fabrication.

The final part of fabrication, which always required the greatest fabrication de-

mand, was the formation of the SETs. Much research was required to find the

correct parameters of development time for both layers of resist, angle of evapo-

ration and aluminium deposition thickness. Many other factors affected this, such

as the instillation of a new needle valve on the evaporator, effectively changing all

the oxidising parameters. Finally however, evaporation angles of 13o, deposition

thickness of 35nm, and oxidising time of eight minutes at 30 mtorr with an oxygen

flow rate of 10cm3s−1 would produce SETs with a charging energy in the order of

0.2-0.4meV. The success rate of SET formation and operation would be in the order
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of approximately 60%. Care also had to be taken to avoid static discharge which

would destroy the SET. This was particularly noticed during the bonding process

and loading/unloading samples onto the probe. Extra care was also required in

grounding the SET before any alteration of measurement was performed.

The existing fabrication technology was adapted to cater for the development

of the DQW sensor. In general, all the existing fabrication techniques remained the

same. Two problems presented themselves however. It became apparent that there

was an issue with the ohmic connection between the SET pathways and external

gold antenna pads. A similar problem between the gate pathways and external gold

antenna pads also arose. It was also noted that on many occasions bad annealed

ohmic contacts had been formed to the 2DEG.

At an early stage, it was noted that the annealing parameters required for DQW

heterostructure would need to be different, due to an increased depth of the final

2DEG layer. A full discussion on this problem and potential solutions are presented

in section 3.4.

The final problem encountered with the DQW samples involved a problem with

the e-beam patterned pathways (SETs and Gates) ohmically connecting to the gold

pads of the antenna structure. It is thought that due to the increased etch depth of

the mesa, that the polyimide splined at greater angles between the surface of the

substrate and the fabricated structures. This would require longer than preferable

etching times in oxygen plasma. To overcome this problem, another gold antenna

pattern was deposited on top of the polyimide, guaranteeing ohmic connection. This

is further discussed in section 3.8.

6.2 Summary of Experimental Techniques

Experiments were performed in 0.3K Heliox 4He/3He single shot cryostat system.

The majority of experimentation was done at base temperature of 260-300 mK. The

system allowed 16×0.15 mm constantan wires for connection to the sample in the

sample space. The system also had fitted a 2mm steel light pipe leading to the sample

space to allow the transmission of radiation to the samples. This setup allowed base
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temperatures to be held for approximately 50 hours, and sample change time of

approximately one day. Until the design of the sample was modified as described

above, it was found that only having 16 signal lines to be inconvenient, as each

sample originally had 20 connection points. The system was very limiting on the

type of emitter used to produce the radiation, as the system only allowed a small

resistor/HTC stack to be used. Replacement/changing of the emitter also required the

probe to be removed from the cryostat. This could possibly be improved by installing

fibre optics to the sample space, rather than a light pipe, potentially allowing external

THz sources. It was later thought that the cables connecting to the emitter might

cause interference in the signal lines. To overcome this issue, RF lines were fitted to

the probe, and used to connect the emitter to the external power source, removing

any potential interference caused. Full operation of the system is described in section

4.1.

The emitter and optical system setup is described in section 4.2. It has been

estimated that while the maximum dissipated emitter power is 34.4mW, the incident

power onto the sample is 1.56 × 10−8W with an NEP of 1.77 × 10−11 W
Hz1/2 . The values

used are more likely to be over estimates however, as many of the parameters are

taken as approximations. When the emitter is being modulated, there will be a

delay time as it heats up until it reaches its maximum, therefore making our estimate

potentially idealised. A number of potential improvements could be introduced.

A new frequency specific emitter that operates at a greater power but at cooler

temperature, as not to heat up the sample space, could be used. As suggested above,

fibre optics could also be used to allow an external source. Further investigations

into improved mirrors and filters could also aid with the radiation transmission. It

also needs to be taken into account that these objects would also emit radiation in

their own right.

The amplifier design used proved to be very effective and robust in operation.

Signals with nanoamp accuracy were routinely measured. With the current setup

of the amplifier, few improvements would be required. Higher precision resistors

with exact ohmic values could be used for the amplifier gain circuitry, however,

this would only marginally improve the amplification accuracy. During the course
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of the experimentation, extra shielding was added to the amplifier box to ensure a

full Faraday cage around the circuitry, helping to reduce noise. The amplifiers used

within the circuitry are INA128 Precision, Low Power Instrumentation amplifiers.

It was experimented with changing these to AD8221 instrumentation amplifiers

as they have a lower noise and higher DC accuracy performance. AD8221 are

compatible with the existing circuitry. However attempts to change to the amplifier

were abandoned due to technical difficulties relating to the different footprint of the

two amplifier chip packages.

Five main measurement techniques were used throughout the project to obtain

the desired data. These were techniques used for measuring I-V characteristics,

mesa channel pinch off characterisation, the recording of QD telegraph type switch-

ing events, photoresponce measurements and finally capacitive measurements used

to confirm the presence and depletion points of 2DEGs. Throughout experimen-

tation these measurement techniques and setups have performed well. The main

issues encountered with these setups was identifying noise sources and ground

loops. This was rectified on an experiment by experiment basis by locating sources

of noise and grounding any points that were required to improve the signal to noise

ratio. Noises of source included poor grounding between the cryostat and mea-

surement system, in particular the amplifier, missing grounding points for certain

measurement equipment and noise introduced due to the power sources used. The

latter problem was rectified by using a dedicated filtered power supply. It was at-

tempted to have a single ground point to which all other grounds were connected

to avoid any grounding loops.
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6.3 Summary of Experimental Results

The following section will summarise the results obtained and conclusions drawn

from the SQW and DQW experiments.

6.3.1 Summary of Single Quantum Well Quantum Dot Results

Both a SQW QD-PC and QD-SET were realised, characterised and utilised for THz

photoresponce measurements. The 2DEG had an electron concentration and mobil-

ity of n = 1.6 × 1011cm−2 and µ ∼ 6 × 105cm/Vs respectively. It was approximately

100nm below the surface of the substrate. A QD was successfully isolated and

probed with both a SET system operating at 0.3K and a PC system operating at 1.5K.

The SET used was found to have a normal resistance of 740KΩ and a charging energy

of 0.34meV.

The system operates by the QD becoming charge excited due to a terahertz

photon absorption event. The photon causes plasmon excitation in the surrounding

2DEG, which then decay in the form of a hand over electron, causing the QD to

become excited. This excitation can then be detected by either the PC channel or

SET, which are both capacitively coupled to the QD.

A simplified capacitive electronic model of the system was presented and all

capacitances were found through a combination of experimental testing and calcu-

lations. The QD-SET system was found to have a sensitivity of 10−4 e
Hz−1/2 . Pho-

toresponce was found in both systems. Detectivity in the QD-PC was estimated as

4.1 × 106A/C. It was also shown that the response seems to plateau above 14mW

at the emitter. It was shown that photoresponse only slightly degraded when the

temperature is increased from 0.3-1.5K. It was demonstrated that although the QD-

SET system is more sensitive, the QD-PC system has advantages over it. Namely a

higher operational temperature, simpler operation and simpler fabrication demands,

making it the most promising system for further development. The QD-PC system

has since been developed further into an imaging system operating at a frequency

of 0.17THz while still maintaining single photon sensitivity, utilising multiplexing

circuitry to read out many QDs or pixels along a minimum number of wires.100
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We can see that when comparing the QD-PC and QD-SET sensors that the QD-SET

sensor has the advantage of having an order of magnitude greater charge sensitivity

than the QD-PC. However it should be noted that the PC acts in a planar geometry,

where the SET sits directly above the QD, allowing for a stronger capacitive coupling

and potentially better performance compared to the QD-PC. The QD-SET is limited

in operation to temperatures below 1K and has a more demanding fabrication. The

QD-PC does have the advantage of operating in a temperature of 1.5K and works

over a wider range of operational gate voltages.

To date no other system using QDs to detect terahertz radiation has been devised

that matches our systems single photon sensitivity and spectral resolution.

6.3.2 Summary of Double Quantum Well Quantum Dot Results

A DQW QD-SET sensor was realised and photoresponce measurements were taken.

This is the first type of sensor to utilise stacked QDs for terahertz photon detection,

although research has been carried out on the interaction between parallel 2DEGs,

their plasmon interactions and the potential to couple to radiation.65, 66

The first quantum well is found at a depth of approximately 100nm and has

a reported electron concentration of Ns = 3.2 × 1011cm−2 and a mobility of µ =

11×104cm2/Vs. The second quantum well is at a depth of approximately 260nm with

a reported concentration of Ns = 4.4×1011cm−2 and a mobility ofµ = 12.8×104cm2/Vs.

The SET used was found to have a normal resistance of approximately 301KΩ and a

charging energy of 0.34meV.

A simplified capacitive electronic model of the system was presented and all the

capacitance’s were found. Capacitive measurements of the 2DEG were performed to

confirm the presence of a 2DEG player and a pinch off point. From this information

we were able to operate the QD-SET. It was believed that a QD is formed in the top

layer 2DEG, but not fully formed in the bottom 2DEG. This is believed as a bias less

than that found required to pinch off both 2DEGs was used, but the voltage was

greater than that required to pinch off the top layer. This was done as it was found

that once both 2DEG layers were fully pinched off, the layers could not again be later

pinched off until the sample was brought back to room temperature, as discussed
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above. Photoresponce was not clearly found using photoresponce measurements

including the use of the lock-in technique. A signal to noise ratio of 2:1 was found,

but a minimum of 4:1 is needed for a successful detector.

It was not possible to realise a DQW QD-PC sensor, due to an inability to pinch off

the conducting mesa channel and therefore form a point contact for measurement.

The system operation is similar to that of the SQW structure also investigated.

The inclusion of the second 2DEG potentially allows stronger coupling to terahertz

radiation due to the plasmon interactions between the QWs as discussed in section

2.2.2.7. Future developments of the sensor would include deeper etch depths to

the mesa as to allow full pinch off as to avoid the QWs depleting into unknown

traps/wells. The inclusion of a back gate would also allow greater control of the

spatial symmetry of the two QWs, thus allowing greater control of the coupling

of incoming radiation to the plasma interactions of the two QWs, and potentially

allowing increased spectral sensitivity compared to the SQW sensor.
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A Current Density Derivation

using the Wigner Function
Below is the derivation of the current density based on the Wigner approach.101

Starting with the variable effective mass Hamiltonian

H(z) = −
~2

2m
d
dz

(
1

m(z)
d
dz

)
+ υ(z) (A.1)

where υ(z) is the double well potential. We then write the Liouville equation for the

density matrix as

∂ρ(z, z′)
∂t

=
i
~

(H(z) −H(z′))ρ(z, z′) (A.2)

with the density matrix defined as

ρ(z, z′) =
∑

i

PiΦi(z)φ∗i (z
′) (A.3)

whereφi(z) is the ith state wavefunction and Pi is the ith state occupation probability.

The following change of variables is then carried out

Z =
1
2

(z + z′) (A.4)

ξ = z − z′ (A.5)

This is done as to define the Wigner function as the Fourier transform of the density

matrix

f (Z, k) =

∫
∞

−∞

dξeikξρ(Z +
1
2
ξ,Z −

1
2
ξ) (A.6)

The partial differential equation for the Wigner function is then given by

∂ f
∂t

= −
~k
m
∂ f
∂z
−

1
~

∫
∞

−∞

dk′

2π
V(Z, k − k′) f (Z, k′) (A.7)

where we define V(X, k) as
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V(X, k) = 2
∫
∞

0
dξ sin(kξ)[υ(Z +

1
2
ξ) − υ(Z −

1
2
ξ)] (A.8)

The Wigner function and density matrix are then normalised. Also we define

n(Z) = ρ(Z,Z) =

∫
∞

−∞

dk
2π

f (Z, k) (A.9)

as to represent the electron density n(Z), so that f (Z, k) is solved self consistently and

coupled to the Poisson equation, giving

∂
∂Z

(
ε
∂φ

∂Z

)
= −e[Γ(Z) − n(Z)] (A.10)

where Γ is the impurity density and the potential φ(Z) is related to υ(Z) via

υ(Z) = −[Υe(Z) − Υe(0)] − e[φ(Z) − φ(0)] (A.11)

where Υe is the electron affinity in the semiconductor. The current density can then

be defined as

J(Z) = e
∫
∞

−∞

dk
2π
~k

m(Z)
f (Z, k) (A.12)
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B Current Derivation using the

Landauer Function
Below is the derivation of the current between the two electrodes in a triple barrier

system using the Landauer approach.101 Starting with the current defined as

~I = eTr(n~υ) =
eA

(2π)3

∑
σ

∫
d3kFσ(~k) ~υσ(~k) =

2eA
(2π)3

∫
d3kF(~k)~υ(~k) (B.1)

Where F(~k) is the Fermi distribution, ~υ(~k) the electron velocity and Tr is the trace of

the spin sum being carried out.

~υ(~k) =
1
~
~∇kε(k) (B.2)

We further define FA as the electron equilibrium distribution on the incident side,

A, of a sample and FB on the exiting side, B. From this we define the probability of

electron transmission to be

FA(1 − FB)T(~k) (B.3)

Where T(~k) is tunnelling probability. We can now substitute equations B.2 and B.3

into equation B.1 to obtain a current from point A to B

~IAB =
2eA

(2π)3~

∫
d3kTABFA(1 − FB)~∇kε(k) (B.4)

We must also consider any current flow B to A. A similar expression to the above can

be found for the current flowing from B to A. We therefore take the overall current

to be the net current from A to B

~I = ~IAB −~IBA =
2eA

(2π)3~

∫
d3kT(~k)[FA(~k) − FB(~k)]~∇kε(k) (B.5)

We now define

~k = k|| î + k⊥ ĵ (B.6)
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where k|| and k⊥ are the parallel and perpendicular components in a cylindrical

energy space. Further to this we may now write

d3k =
dSεdε

|~∇kε(k)|
(B.7)

where dSε = d2k|| and is the area of the cylindrical cap in k space, with the cylinders

length being dk⊥ = dε
~∇kε(k)

. Substituting equation B.6 and B.7 into equation B.5, and

define n̂υ(k||,k⊥) =
~∇kε(k)
|~∇kε(k)|

, we have

~I =
2eA

(2π)3~

∫
dSε

∫
dεT(k||, ε)[FA(k||, ε) − FB(k||, ε)]n̂υ(k||,k⊥) (B.8)

We now define Fi(k||, ε) as

Fi(k||, ε) =
1

1 + exp
(
εK
||
+ε−EFi+eφi

KT

) (B.9)

where εk|| =
(~k||)2

2m , ε =
(~k⊥)2

2m and φi is the bias voltage applied on side i of the sample

(i.e. either A or B). If we assume we can neglect the plane motion dependence of the

transmission, we may write

T(k||, ε)→ T(ε) (B.10)

We also consider the Fi in the same plane, so it may be evaluated by a two dimensional

integral

∫
dSε =

(2π)2

A
(B.11)

We may now define the Landauer function for the tunnelling current in the z direc-

tion, where we take n̂υ → ẑ, to be

ILF =
2eA
2π~

∫
T(ε)[FA(ε) − FB(ε)]dε (B.12)

Alternately if in equation B.8 we now change Fk||,ε, but retain the change of T(k||, ε),

we may now perform the integral using the identify
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∫
∞

0
dSε =

∫ 2π

0

∫
∞

0
k||dk||dθ =

2πm
~2

∫
∞

0
dε|| (B.13)

This results in

∫
∞

0
dSε[FA(k||, ε) − FB(k||, ε)] =

2πm
β~2 ln

(
1 + exp[−β(ε + eφA − EFA]
1 + exp[−β(ε + eφA − EFB]

)
=

2πm
β~2 F(ε)

(B.14)

where β = 1
KbT and F(ε) is known as the supply function.102 The final current, known

as the Standard Tunnelling Theory (STT) current in the z direction is

ISTT =
emAKT
2π2~3

∫
T(ε)F(ε)dε (B.15)
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C Annealing Boat Calibration
Annealing was done by heating the sample to be annealed using a thermal boat in

an inert argon environment within a thin film evaporator.

A custom flat thermal boat was designed and shaped from 0.125mm tungsten

sheet of 99.99% purity. The boat is of rectangular shape and has dimensions of 20mm

x 50mm.

Calibration was carried out by attaching a thermocouple to the boat within the

evaporator (Edwards 306A) and the following parameters used:

Initial Pressure: 2.2 × 10−5torr

Ar flow Rate: 11cm3/s

Pressure With Flow: 4.2 × 10−4torr

Time between readings: 30s

The following calibration graph was recorded:
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Figure C.1: Thermal boat annealing temperature calibration graph.
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D Glossary Of Terms
2DEG – Two Dimensional Gas.

CBO – Coulomb Blockade Oscillation.

CVD – Chemical Vapour Deposition.

DOS – Density Of States.

DQW – Double Quantum Well.

HEP/HEB – Hot Electron Photodetector/Hot Electron Bolometer.

QD – Quantum Dot.

MBE – Molecular Beam Epitaxy.

NEP – Noise Equivalent Power.

PC – Point Contact.

SET – Single Electron Transistor.

SIN – Superconductor-Insulator-Normal junction.

SQUID – Superconducting Quantum Interference Device.

SQW – Single Quantum Well.

TDS – Time Domain Spectroscopy.
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