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Abstract

This paper derives consistency results for estimation in the �nite direct sum of reproducing

kernel Hilbert spaces (RKHS) for dependent data. The link between penalized and constrained

estimation is established. We consider the relation between topological equivalent norms for direct

sums of RKHS. These norms have di�erent implications for estimation. Estimation in a ball of

the RKHS de�ned by these norms essentially results in estimation with a ridge and Lasso penalty,

respectively. A greedy algorithm for the solution of the hesitation problem under these two norms

is discussed for general loss functions.
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1 Introduction

This paper studies estimation of additive models in reproducing kernel Hilbert spaces (RKHS) when

the data are dependent and there is possibly no true model. Instead of a true model, the target is the

minimizer of a population objective function. For the sake of de�niteness suppose that we want to

estimate the number of event arrivals Y in the next one minute, conditioning on a vector of covariates

X known at the start of the interval. We decide to minimize the negative log-likelihood for Poisson

arrivals with conditional intensity exp {µ (X)} for some function µ. For observation i, the negative

loglikelihood is proportional to

exp {µ (Xi)} − Yiµ (Xi) . (1)

To avoid the curse of dimensionality, we choose µ to lie in the space HK where each element can be

written as

µ (Xi) =

K∑
k=1

f (k)
(
X

(k)
i

)
(2)

where X
(k)
i denotes the kth element in the K-dimensional covariate Xi, and the univariate functions

f (k) ∈ H where H is a RKHS, possibly in�nite dimensional, k = 1, 2, ...,K. The notation implies that

HK =
⊕K

k=1H is the direct sum of RKHS. The target parameter is the minimizer of the expectation

of (1) with respect to µ in HK (B), the ball of radius B in HK centered at zero. This is the constrained

population parameter. The sample constrained estimator is the minimizer in HK (B) of the sample

mean of (1). We also consider the penalized sample estimator, which is an alternative to the constrained

estimator. In this case, the target parameter is the minimizer of the expectation of (1) with respect to

µ in HK , the unconstrained population parameter. This latter target may not lie in HK (B) for any

B <∞.
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A RKHS can be generated by the measure of a Gaussian process (Li and Linde, 1999, for precise

de�nitions). Results on the small probability of Gaussian processes (Li and Linde, 1999) provide an

estimate of the metric entropy of the RKHS. This estimate can then be used in a well known maximal

inequality for beta mixing random variables (Doukhan et al., 1995). This provides the control of the

estimator and allows us to derive convergence rates under mixing assumptions. While the literature

provides the tools, the existing proof for consistency of estimators in RKHS needs to be modi�ed

in order to derive convergence rates. We also provide consistency under the uniform norm using

complementary weak assumptions including only stationarity and ergodicity of the data. We study

both the penalized and the constrained estimation problem. The penalized estimation problem is

usually referred to as estimation using support vector machines (Christmann and Steinwart, 2007).

On the other hand estimation in a ball of �xed radius under the RKHS norm is traditionally referred

as estimation in RKHS (Mendelson, 2002). By duality, there is a link between the penalized and

constrained estimation, and we provide details of this relation. We consider the linear functional

de�ning the �rst order condition in the estimation problem, and show its convergence to a Gaussian

process. We then consider two di�erent norms in order to de�ne either the constraint or the penalty

and discuss the variable selection and shrinkage properties of both for the estimation of additive

models. One norm is the standard norm for the direct sum of RHKS. Estimation in a ball de�ned

under such norm is equivalent to estimation with a ridge penalty. The second is the `1 norm of the

individual RKHS norms and estimation under such norm mimics Lasso. The estimation results are

obtained allowing for estimators that are asymptotic minimizers of the objective function rather than

exact ones. Hence, we provide an algorithm that can solve the estimation problem for either norms

in O
(
n2ε−1

)
time, where ε is the resulting error of the algorithm and n is the sample size. Hence,

relatively to other algorithms it is less resource e�cient. Nevertheless, the algorithm is simple to

implement, does not rely on a randomly selected subset of inputs (Rasmussen and Williams, 2006,

Ch.8), and provides a solution to the constrained estimator without assuming sparseness. For such

algorithm we derive convergence rates.

1.1 Relation to the Literature

Estimation in RKHS has been addressed in many places in the literature (see the monographs of

Wahba, 1990, and Steinwart and Christmann, 2008). Inference is usually con�ned to consistency

(Mendelson, 2002, Christmann and Steinwart, 2007), though there are exceptions (Hable, 2012, in the

frequentist framework). Estimation of additive models has been extensively studied by various authors

using di�erent techniques (Buja et al., 1989, Mammen et al., 1999, Meier et al., 2009, Christmann and

Hable, 2012). The last reference considers estimation in RKHS. These references, including the present

paper, focus on the case where the number of additive components is �xed. Recently, Suzuki and

Sugiyama (2013), Lv et al. (2018) and Suzuki (2018) have considered penalized estimation in RKHS

when the number of additive components can diverge to in�nity, also allowing for di�erent penalties.

Estimation in RKHS under dependence has been the subject of study of some researchers (inter

alia, Steinwart et al., 2009a, 2009b, Hang and Steinwart, 2014, 2017). These references bound the

di�erence between the expected risk evaluated at the sample and population parameters. Optimal

rates have also been derived under rather technical conditions. However, this is not su�cient to derive
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sharp convergence rates under say the L2 norm. In this case, on top of a concentration inequality,

the argument requires a chaining argument to explicitly bound the local behaviour of the centered

empirical risk when the parameter space is uncountable (van der Vaart and Wellner, 2000, Ch.3.2).

The assumptions and estimation results presented here are not overall directly comparable to the

reviewed results. This paper adds to this existing literature as the focus is on consistency of the

estimator under di�erent norms, and on convergence rates for the L2 norm. In particular, Theorem

1 shows consistency of the estimator under the uniform norm under the sole condition of stationarity

and ergodicity of the data. Theorem 2 uses mixing conditions to show consistency under the RKHS

norm. Theorem 3 derives convergence rates under the L2 norm using mixing conditions. In Theorem

4 we also show a weak convergence result that complements the one of Hable (2012).

For relatively large sample sizes (e.g. greater than 10,000) estimation in RKHS can be challenging.

For example, for the regression problem under the square error loss, estimation would require inversion

of a high dimensional matrix whose size grows with the sample size. Computational aspects in RKHS

have received a lot of attention in the literature, though mostly for the regression problem under the

square error loss (Lázaro-Gredilla et al., 2010, Banerjee et al., 2013, and references therein). Here we

discuss a greedy algorithm, which is simple to implement and is not restricted to the regression problem

(Jaggi, 2013, Sancetta, 2016). Greedy algorithms have been applied by various authors (Smola and

Bartlett, 2001, Nair et al., 2002, and references therein). The algorithm discussed herein allows us to

solve the constrained estimation problem for general loss functions, and for this algorithm we derive

convergence rates in Theorem 5.

1.2 Outline

The plan for the paper is as follows. Section 2.2 reviews some basics of RKHS, and Section 2.3 de�nes

the estimation problem. Section 2.4 contains the consistency and weak convergence results. Section 3

discusses the conditions used to derive the asymptotic results and introduces an alternative constraint.

The algorithms for computational implementation under either of these constraints can be found in

Section 4. The proofs are in Section 5.

2 The Inference Problem

2.1 Problem Setup

The explanatory variable X(k) takes values in X , a compact subset of a separable Banach space

(k = 1, 2, ...,K). The most basic example of X is [0, 1]. The vector covariate X =
(
X(1), ..., X(K)

)
takes values in the Cartesian product XK , e.g., [0, 1]

K
. The dependent variable takes values in Y

usually R. Let Z = (Y,X) and this takes values in Z = Y × XK . If no dependent variable Y can

be de�ned, as for unsupervised learning, or certain likelihood estimators, we set Z = X. Let P be

the law of Z, and use linear functional notation: for any f : Z → R, Pf =
´
Z f (z) dP (z). Let

Pn = 1
n

∑n
i=1 δZi , where δZi is the point mass at Zi, implying that Pnf = 1

n

∑n
i=1 f (Zi) is the sample

mean of f (Z). For p ∈ [1,∞], let |·|p be the Lp norm (w.r.t. the measure P ): for f : Z → R,
|f |p = (P |f |p)1/p

, with the obvious modi�cation to sup norm when p =∞.

4



We let HK be a vector space of real valued functions on XK , equipped with a norm |·|HK . The loss
function is de�ned as L : Z×R→ R. We are interested in the case where the second argument is µ (x),

i.e. L (z, µ (x)) with µ ∈ HK . Therefore, to keep notation compact, let `µ (Z) = L (Z, µ (X)). For the

special case of the square error loss we would have `µ (z) = L (z, µ (x)) = |y − µ (x)|2 (z = (y, x)). The

use of `µ makes it more natural to use linear functional notation so that Pn`µ is the empirical risk at

µ.

2.2 Basic Facts about Reproducing Kernel Hilbert Spaces

Recall that a real RKHS H on some set X is a Hilbert space where the evaluation functional ex which

associates f with f (x) is a bounded linear functional: f (x) = exf , f ∈ H (Wahba, 1990, p.2). A

RKHS of bounded functions is uniquely generated by a centered Gaussian measure with covariance C

(Li and Linde, 1999) and C is usually called the (reproducing) kernel of H. We consider covariance

functions with representation

C (s, t) =

∞∑
v=1

λ2
vϕv (s)ϕv (t) , (3)

for linearly independent functions ϕv : X → R and coe�cients λv such that
∑∞
v=1 λ

2
vϕ

2
v (s) <∞. Here,

linear independent means that if there is a sequence of real numbers (fv)v≥1 such that
∑∞
v=1 f

2
v /λ

2
v <∞

and
∑∞
v=1 fvϕv (s) = 0 for all s ∈ X , then fv = 0 for all v ≥ 1. The coe�cients λ2

v would be the

eigenvalues of (3) if the functions ϕv were orthonormal, but this is not implied by the above de�nition

of linear independence. The RKHS H is the completion of the set of functions representable as

f (x) =
∑∞
v=1 fvϕv (x) for real valued coe�cients fv as above. Equivalently, f (x) =

∑∞
j=1 αjC (sj , x),

for coe�cients sj in X and real valued coe�cients αj satisfying
∑∞
j=1 αiαjC (si, sj) < ∞. Moreover,

for C in (3),
∞∑
j=1

αjC (sj , x) =

∞∑
v=1

 ∞∑
j=1

αjλ
2
vϕv (sj)

ϕv (x) =

∞∑
v=1

fvϕv (x) (4)

by obvious de�nition of the coe�cients fv. The change of summation is possible by the aforementioned

restrictions on the coe�cients λv and functions ϕv. The inner product inH is denoted by 〈·, ·〉H and sat-

is�es f (x) = 〈f, C (x, ·)〉H. This implies the reproducing kernel property C (s, t) = 〈C (s, ·) , C (t, ·)〉H.
Therefore, the square of the RKHS norm is de�ned in the two following equivalent ways

|f |2H =

∞∑
v=1

f2
v

λ2
v

=

∞∑
i,j=1

αiαjC (si, sj) . (5)

Throughout, the unit ball of H will be denoted by H (1) := {f ∈ H : |f |H ≤ 1}.
The additive RKHS is generated by the Gaussian measure with covariance function CHK (s, t) =∑K
k=1 C

(
s(k), t(k)

)
, where C is as in (3), and s(k) is the kth element in s ∈ XK . The RKHS of

additive functions is denoted by HK , which is the set of functions as in (2) such that f (k) ∈ H and∑K
k=1

∣∣f (k)
∣∣2
Hk

< ∞. For such functions, the inner product is 〈f, g〉HK =
∑K
k=1

〈
f (k), g(k)

〉
Hk

. The

norm |·|HK on HK is the one induced by the inner product. For notational simplicity we have set the

individual RKHS to be the same.

Within this scenario, the spaceHK restricts functions to be additive, where these additive functions
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in H can be multivariate functions.

Example 1 Suppose that K = 1 and X = [0, 1]
d
(d > 1) (only one additive function, which is

multivariate). Let C (s, t) = exp
{
−a
∑
j |sj − tj |

2
}

where sj is the jth element in s ∈ [0, 1]
d
, and

a > 0. Then, the RKHS H is dense in the space of continuous bounded functions on [0, 1]
d
(e.g.,

Christmann and Steinwart, 2007). A (kernel) C with such property is called universal.

The framework also covers the case of functional data because X is a compact subset of a Banach

space. Most problems of interest where the unknown parameter µ is a smooth function are covered by

the current scenario.

2.3 Estimation

Estimation will be considered for models in HK (B) :=
{
f ∈ HK : |f |HK ≤ B

}
, where B < ∞ is a

�xed constant. The goal is to �nd

µn = arg inf
µ∈HK(B)

Pn`µ, (6)

i.e. the minimizer with respect to µ ∈ HK (B) of the loss function Pn`µ.

Example 2 Let `µ (z) = |y − µ (x)|2 so that

Pn`µ =
1

n

n∑
i=1

`µ (Zi) =
1

n

n∑
i=1

|Yi − µ (Xi)|2 .

By duality, we can also use Pn`µ + ρB,n |µ|2HK with sample dependent Lagrange multiplier ρB,n such

that the solution is in HK (B).

For the square error loss the solution is just a ridge regression estimator with (random) ridge

parameter ρB,n ≥ 0. Interest is not restricted to least square problems.

The Representer Theorem (Steinwart and Christmann, 2008, Theorem 5.8) says that the solution

to the penalized problem takes the form µn (x) =
∑n
i=1 αiC (Xi, x) for real valued coe�cients αi. Even

if HK is in�nite dimensional, µn lies in a �nite dimensional space.

The target constrained population estimator is

µB = arg inf
µ∈HK(B)

P`µ. (7)

We shall show that this minimizer always exists and is unique, under regularity conditions on the loss,

because HK (B) is closed. The unconstrained population estimator is the minimizer of

µ0 = arg inf
µ∈HK

P`µ. (8)

This quantity is not necessarily well de�ned in the sense that we can have that |µ0|HK =∞.

In what follows we assume K to be a bounded integer. In consequence, the asymptotic results for

the estimator µn hold irrespective of the value of K and we could take K = 1. However, there are
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practical di�erences regarding estimation between the case K > 1 and K = 1. These are discussed in

Sections 3.2 and 4.

2.4 Asymptotic Analysis

Throughout the paper, . means that the l.h.s. is bounded by an absolute constant times the r.h.s..

We use Big-O, little-o notation and add a subscript P when the relation holds in probability. We

recall the de�nition of beta mixing. Suppose that (Zi)i∈Z is a strictly stationary sequence of random

variables and let σ (Zi : i ≤ 0), σ (Zi : i ≥ k) be the sigma algebra generated by (Zi)i≤0 and (Zi)i≥k,

respectively, for integer k. For any k ≥ 1, the beta mixing coe�cient β (k) for (Zi)i∈Z is

β (k) := E sup
A∈σ(Zi:i≥k)

|Pr (A|σ (Zi : i ≤ 0))− Pr (A)|

(Doukhan, 1995, for an equivalent de�nition). We now introduce the following technical conditions.

Condition 1 The set H is a RKHS on a compact subset of a separable Banach space X , with contin-

uous uniformly bounded kernel C admitting an expansion (3), where λ2
v . v−2η with exponent η > 1/2

and with linearly independent continuous functions ϕv : X → R, uniformly bounded, uniformly in

v ≥ 1.

Recall the de�nition of the loss L (z, t) in Section 2. Let B̄ := cKB where cK := maxs∈XK
√
CHK (s, s).

De�ne ∆k (z) := max|t|≤B̄
∣∣∂kL (z, t) /∂tk

∣∣ for k = 0, 1, 2, . . . if the derivative exists. Attention is re-

stricted to loss functions satisfying the following.

Condition 2 The loss L (z, t) is non-negative, twice continuously di�erentiable for real t in an open set

containing
[
−B̄, B̄

]
, and infz,t d

2L (z, t) /dt2 > 0 for z ∈ Z and t ∈
[
−B̄, B̄

]
. Moreover, P (∆0 + ∆p

1 + ∆p
2) <

∞ for some p > 2.

The following dependence condition will be used.

Condition 3 The sequence (Zi)i∈Z (Zi = (Yi, Xi)) is strictly stationary with beta mixing coe�cients

β (i) satisfying β (i) . i−β0 with β0 > r/ (r − 2) for some r > 2, for all i ≥ 1.

Remarks on the conditions, including examples regarding the beta mixing condition can be found

in Section 3.1. Throughout, we may omit the quali�er strictly when mentioning stationarity.

Consistency. This section shows the consistency of the constrained estimator. We also provide

details regarding the relation between constrained, and penalized estimators and convergence rates.

The usual penalized estimator is de�ned as

µn,ρ = arg inf
µ∈HK

Pn`µ + ρ |µ|2HK (9)

for ρ ≥ 0. As mentioned in Example 2, suitable choice of ρ leads to the constrained estimator. In

particular, we can choose the largest ρ such that µn,p still lies in HK (B) so that µn,p = µn with the

r.h.s. as in (6). The results we shall show will remain true if the empirical minimizers are replaced with
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approximate minimizer. In particular, for some εn → 0 in some mode of convergence to be speci�ed

by the application, we can consider any µn satisfying

Pn`µn = inf
µ∈HK(B)

Pn`µ + εn (10)

and any µn,ρ satisfying

Pn`µn,ρ + ρ |µn,ρ|HK = inf
µ∈HK

{Pn`µ + ρ |µ|HK}+ ρεn. (11)

At �rst we show that the constrained estimator is consistent under the minimal condition of station-

arity and ergodicity: strictly stationary processes whose invariant sets are trivial (Kallenberg, 1997,

Ch.9).

Theorem 1 Consider the problem in (6) with �xed B < ∞. Suppose Condition 1, Condition 2 with

p = 1, and that the random variables (Zi)i∈Z are stationary and ergodic. Then, |µn − µB |∞ = o (1)

almost surely, where the population minimizer µB in (7) is unique up to an L2 equivalence. The result

continues to hold for any µn satisfying (10) with εn = o (1) almost surely.

We now derive stronger results for the penalized estimator (9) under relatively stronger conditions.

Throughout, int
(
HK (B)

)
will denote the interior of HK (B).

Theorem 2 Suppose Condition 1 with η > 1, and Conditions 2, and 3 with p ≥ r.

1. If µ0 ∈ HK (B), there is a random ρ = ρB,n such that ρn1/2 = OP (1), and µn,ρ = µn (µn and

µn,ρ as in (6) and (9)).

2. Consider possibly random ρ = ρn such that ρ → 0 and ρn1/2 → ∞ in probability. Suppose that

there is a �nite B such that µ0 ∈ int
(
HK (B)

)
. Then, |µn,ρ − µ0|HK → 0 in probability, and in

consequence |µn,ρ|HK < B with probability going to one.

3. If HK is in�nite dimensional and µ0 ∈ HK , then there is a ρ = ρn such that ρ → 0, ρn1/2 →
c < ∞, and |µn,ρ − µ0|∞ → 0 in probability, but |µn,ρ − µ0|HK does not converge to zero in

probability.

4. All the above statements also hold if µn and µn,ρ in (6) and (9) are approximate minimizers as

in (10) and (11), respectively with εn = oP (1).

Point 1 establishes the connection between the constrained estimator µn in (6) and the penalized

estimator µn,ρ in (9). To establish the connection, we need µ0 = µB . In this case, it is worth noting that

whether HK is �nite or in�nite dimensional, the estimator µn is equivalent to a penalized estimator

with penalty parameter ρ going to zero relatively fast, as n goes to in�nity. In particular, we rule out

ρn1/2 →∞. The condition ρn1/2 = OP (1) only ensures consistency under the uniform norm, but not

consistency under the RKHS norm |·|HK (Points 2-3). Consistency under the RKHS norm requires ρ

going to in�nity slowly enough. In this case, the constrained and penalized estimator are not the same.

In particular, the constrained estimator is not necessarily consistent under the RKHS norm (Point 3).

When HK is in�nite dimensional, this happens because µn lies at the boundary of HK (B).

We now focus on rates of convergence under the L2 norm.
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Theorem 3 Suppose Condition 1 with η > 1, and Conditions 2, 3 with p > r. Consider µn in (6).

We have that |µn − µB |2 = OP
(
s−1
n

)
where sn = n

γ
2 ( 2η−1

2η+(γ−1) ) and γ := r
2(r−1)

(
p−1
p

)
. The result also

holds true for any µn satisfying (10) with εn = OP
(
s−2
n

)
. Moreover, if µ0 ∈ int

(
HK (B)

)
, we also

have that |µn − µ0|2 = OP
(
min

{
s−1
n , n−1/4

})
.

As usual for RKHS estimators, the convergence rate does not depend on the dimension of X . This
is because, the restriction to HK (B) implicitly imposes regularity conditions. To see what we mean,

take K = 1 and X = [0, 1]
d
as in Example 1. As d increases the functions will have to be more regular

in order to be in H (B). Because of additivity, the bounds only depend linearly on K, but this is not

made explicit, as K is bounded.

The term γ ∈ (0, 1) is a penalty for dependence and the fact that the �rst derivative of the loss

function is not bounded. Such derivative allow us to link the loss function to µ. When the dependence

is arbitrarily weak and ∆1 has a �nite p moment for any p, we can essentially take γ = 1 (r → 2 and

p → ∞). Then, the rate of convergence is n−
2η−1
4η . To put this rate of convergence into perspective,

recall that the best rate of convergence of nonparametric estimators for V di�erentiable functions is

n−V/(2V+d) where d is the dimension of X as in Example 1 (Stone, 1982). Let us consider a univariate

case for ease of comparison. In Example 4 in Section 3 we shall recall that the Sobolev space of

functions on X = [0, 1] with V square integrable weak derivatives is a RKHS with a covariance kernel

admitting the expansion (3) with λv . v−V . For example, when V = 2, the optimal rate would be

n−2/5. On the other hand we can see that s−1
n = n−3/8 when γ → 1, in Theorem 3.

Weak Convergence. We shall only consider the constrained estimator µn. To ease notation, for

any arbitrary, but �xed real valued functions g and g′ on Z de�ne P1,j (g, g′) = Eg (Z1) g′ (Z1+j). For

suitable g and g′, the quantity
∑
j∈Z P1,j (g, g′) will be used as short notation for sums of population

covariances.

Theorem 4 Suppose Condition 1 with η > 1, and Conditions 2, and 3 with p ≥ r. If µ0 ∈
int
(
HK (B)

)
, then

√
nPn∂`µ0

h→ G (h) , h ∈ HK (1)

weakly, where
{
G (h) : h ∈ HK (1)

}
is a mean zero Gaussian process with covariance function

EG (h)G (h′) =
∑
j∈Z

P1,j (∂`µ0
h, ∂`µ0

h′)

for any h, h′ ∈ HK (1).

In addition to the above, also suppose that |∆3|p < ∞ (in Condition 2) and that |µn − µ0|2 =

oP

(
n−

1
4 ( p

p−1 )
)
. If µn ∈ HK (B) satis�es (10) with εn = oP

(
n−1

)
, and suph∈HK(1) Pn∂`µnh =

oP
(
n−1/2

)
, then,

√
nP∂2`µ0

(µn − µ0)h =
√
nPn∂`µ0

h+ oP (1) , h ∈ HK (1) .

We can use Theorem 3 to verify the condition on |µn − µ0|2. The second statement in Theorem 4

cannot be established for the penalized estimator with penalty satisfying ρ→ 0 such that ρn1/2 →∞.
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This is because in the �rst order conditions, the contribution from the penalty is non-negligible. The

restriction suph∈HK(1) Pn∂`µnh = op
(
n−1/2

)
holds for �nite dimensional models as long as µ0 ∈

int
(
HK (B)

)
. For in�nite dimensional models this is no longer true as the constraint is eventually

binding even if µ0 ∈ int
(
HK (B)

)
(µn lies at the boundary of HK (B) when the sample size is large

enough). Then, it can be shown that the oP
(
n−1/2

)
term has to be replaced with OP

(
n−1/2

)
(Lemma

8, in the Appendix). The asymptotic distribution of the estimator is immediately derived if HK (B)

is �nite dimensional.

Example 3 Consider the rescaled square error loss so that ∂2`µ0 = 1. De�ning ν = limn
√
n (µn − µ0),

Theorem 4 gives

G (h) = Pνh,

in distribution, where G is as in Theorem 4 as long as µ0 ∈ int
(
HK (B)

)
. The distribution of ν is

then given by the solution to the above display when HK (B) is �nite dimensional.

In the in�nite dimensional case, Hable (2012) has shown that
√
n (µn,ρ (x)− µ0,ρ (x)) converges to

a Gaussian process whose covariance function would require the solution of some Fredholm equation of

the second type. Here, µn,ρ is as in (9), while we use µ0,ρ to denote its population version. The penalty

ρ = ρn needs to satisfy
√
n (ρn − ρ0) = oP (1) for some �xed constant ρ0 > 0. When µ0 ∈ int

(
HK (B)

)
,

we have µ0 = arg minµ∈H P`µ. Hence, there is no ρ0 > 0 such that µ0 = µ0,ρ0 . When the penalty

does not go to zero, the approximation error is non-negligible, e.g. for the square loss the estimator is

biased.

Theorem 4 requires µ0 ∈ int
(
HK (B)

)
. The distribution of the estimator when µ0 lies on the

boundary of HK (B) is not standard (Geyer, 1994, for the �nite dimensional case) and is implicitly

de�ned as the solution of a stochastic quadratic programming problem, similar to Example 3.

3 Discussion

3.1 Remarks on Conditions

The minimal decay condition for the coe�cients λv is λv . v−η with η > 1/2 as this is essentially

required for
∑∞
v=1 λ

2
vϕ

2
v (s) <∞ for any s ∈ X . Mendelson (2002) derives consistency of the empirical

risk under this minimal condition in the i.i.d. case, but does not give convergence rates. Theorem 1

gives consistency under the uniform norm under this same minimal condition allowing for dependence.

Theorems 2 and 3 show convergence under the RKHS norm, and derive L2 convergence rates for η > 1.

This stronger condition on η is not necessarily restrictive in practice. The covariance in Example 1

satis�es Condition 1 with exponentially decaying coe�cients λv (Rasmussen and Williams, 2006, Ch.

4.3.1). Other covariance kernels satisfy this condition.

Example 4 Suppose that HK is an additive space of univariate functions, where each univariate

function is an element in the Sobolev Hilbert space of index V on [0, 1], i.e. functions with V

square integrable weak derivatives. Then, CHK (s, t) =
∑K
k=1 C

(
s(k), t(k)

)
where C

(
s(k), t(k)

)
=∑V−1

v=1

(
s(k)t(k)

)v
/ (v!)

2
+HV

(
s(k), t(k)

)
and where HV is the covariance function of the (V − 1)-fold

10



integrated Brownian motion. In particular,

HV (·, ·) =

ˆ 1

0

GV (·, u)GV (·, u) du with GV (r, u) := max

{
(r − u)

V−1

(V − 1)!
, 0

}
,

where r, u ∈ [0, 1] (Wahba, 1990, p.7-8). Then, the covariance C admits an expansion as in (3) with

λv . v−η where η = V (Ritter et al., 1995, Corollary 2, and 523-524).

When the coe�cients λ2
v are the eigenvalues of C, the restriction on their decay rate is usually

referred to as spectral assumption and 2η > 1 has been assumed by other authors to bound the

covering numbers of subsets of H (Steinwart et al., 2009, Suzuki and Sugiyama, 2013, Lv et al., 2018,

Suzuki, 2018).

It is not di�cult to see that many loss functions (or negative log-likelihoods) of interest satisfy

Condition 2, using the fact that |µ|∞ is bounded (square error loss, logistic, negative log-likelihood

of Poisson, etc.). Nevertheless, interesting loss functions such as absolute deviation for conditional

median estimation do not satisfy Condition 2. The extension to such loss functions requires arguments

that are speci�c to the problem together with additional restrictions to compensate for the lack of

smoothness. In the interest of space, this shall not be discussed here.

Condition 3 is a common dependence condition. Essentially, this condition is satis�ed by any model

that can be written as a Markov chain with smooth conditional distribution (Doukhan, 1995, for a

review; Basrak et al., 2002, for GARCH). Models with innovations that do not have a smooth density

function may not be covered (Bradley, 1986, Example 6.2).

Example 5 (Regression) Suppose that Yi =
∑K
k=1 f

(k)
(
X

(k)
i

)
+ εi, where the sequence of random

variable (εi)i∈Z and (Xi)i∈Z are independent of each other. By independence, the mixing coe�cients

of (Yi, Xi)i∈Z are bounded by the sum of the mixing coe�cients of (εi)i∈Z and (Xi)i∈Z (Bradley,

1986, Theorem 3.2). Suppose that the variables εi and Xi are positive recurrent Markov chains with

innovations with continuous conditional density function. Under additional mild regularity conditions,

Condition 3 is satis�ed with geometric mixing rates (Doukhan, 1995, section 2.4.0.1). Examples include

GARCH and ARMA processes, as discussed in the aforementioned references.

Example 6 (Classi�cation) Suppose that Yi ∈ {−1, 1}. A classi�cation model based on the regressors

Xi can be generated via the random utility model

Y ∗i = µ (Xi) + εi

where Yi = sign (Y ∗i ). The sigma algebra generated by {Yi : i ∈ A} for any subset A of the integers is

contained in the sigma algebra generated by {Y ∗i : i ∈ A}. Hence, for errors εi and covariates Xi as

in Example 5, the data are beta mixing with geometric mixing rate.

Example 7 (Functional Data) In Example 5 let Xi and εi be continuous random functions from

[0, 1] to R. Suppose that there is a �nite positive integer R such that Xi =
∑R
r=1 θrU

(r)
i gr, where for

r = 1, 2, ..., R, gr : [0, 1]→ R is continuous, θr is a scalar, and U
(r) :=

(
U

(r)
i

)
i∈Z

is independent across

r. Also suppose that U (r) is strictly stationary and beta mixing r = 1, 2, ..., R. Then, the beta mixing

11



coe�cients of (Xi)i∈Z are bounded by the sum of the mixing coe�cients of
(
U

(r)
i

)
i∈Z

, r = 1, 2, ..., R.

With the same conditions imposed on (εi)i∈Z independent of (Xi)i∈Z, we can cover the problem of

regression using (�nite dimensional) functional data.

We conclude summarising the implications of the above remarks. When estimation is in a Sobolev

space of functions on [0, 1], Condition 1 does not impose any restriction as we can take V = η in

Example 4 and Theorem 1 applies. However, in Theorems 2, 3 and 4, we further require that η > 1.

Given that V is an integer, we need to restrict the scope to functions with two square integrable

derivatives (Sobolev spaces of index 2) if we want to use our results on consistency under the RKHS

norm or derive convergence rates under the L2 norm. These remarks are independent of Conditions

2 and 3. The two latter conditions have an e�ect on the convergence rates. As discussed, common

models of interest satisfy Condition 3 with geometric rates. In such cases, we can take r in Condition

3 arbitrarily close to 2. Using this in Theorem 3, it becomes clear that higher convergence rates are

achieved if the loss function is smooth and has moments of high order, i.e. p→∞ in Condition 2. In

the context of the square error loss of Example 2, we would require the target variable Yi to have a

moment generating function in order to satisfy Condition 2 with p arbitrarily large.

3.2 Alternative Constraints

As an alternative to the norm |·|HK , de�ne the norm |f |LK :=
∑K
k=1

∣∣f (k)
∣∣
H. Estimation in LK (B) :={

f ∈ HK : |f |LK ≤ B
}
is also of interest for variable screening. The following lists some details about

the two di�erent constraints.

Lemma 1 Suppose an additive kernel CHK as in Section 2.2 and K > 1. The following hold.

1. |·|HK and |·|LK are norms on HK .
2. We have the inclusion

K−1/2HK (1) ⊂ LK (1) ⊂ HK (1) .

3. For any B > 0, HK (B) and LK (B) are convex sets.

4. Let c := maxs∈X
√
C (s, s). If µ ∈ HK (B), then, supµ∈HK(B) |µ|p ≤ c

√
KB for any p ∈ [1,∞],

while supµ∈LK(B) |µ|p ≤ cB.

By the inclusion in Lemma 1, all the results derived for HK (B) also apply to LK
(
K1/2B

)
. In this

case, we still need to suppose that µ0 ∈ int
(
HK (B)

)
. Both norms are of interest. When interest lies

in variable screening, estimation in LK (B) inherits the properties of the l1 norm, as for Lasso. The

estimation algorithms discussed in Section 4 cover estimation in both subsets of HK .

4 Computation Algorithm

As mentioned in Section 1.1, estimation in an RKHS poses computational di�culties when the sample

size n is large. Simpli�cations are possible when the covariance CHK admits a series expansion as in

(3).
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Estimation for functions in LK(B) rather than in HK(B) is even more challenging because the

norm |·|LK is not everywhere di�erentiable. In the case of the square error loss, estimation in LK (B)

resembles Lasso, while estimation in HK (B) resembles ridge regression.

A greedy algorithm can be used to solve both problems. In virtue of Lemma 1 and the fact that

estimation in HK (B) has been considered extensively, only estimation in LK (B) will be address in

details. The minor changes required for estimation in HK (B) will be discussed in Section 4.2.

4.1 Estimation in LK (B)

Estimation of µn in LK (B) is carried out according to the following Frank-Wolfe algorithm. Let

f
(s(m))
m be the solution to

min
k≤K

min
f(k)∈H(1)

Pn∂`Fm−1
f (k). (12)

Here, F0 = 0, Fm = (1− τm)Fm−1 + cmf
(s(m))
m , and cm = Bτm, where τm is the solution to the line

search

min
τ∈[0,1]

Pn`
(

(1− τ)Fm−1 + τBf (s(m))
m

)
, (13)

writing ` (µ) instead of `µ for typographical reasons. Details on how to solve (12) will be given

in Section 4.1.1; the line search in (12) is elementary. The algorithm produces a set of functions{
f

(s(j))
j : j = 1, 2, ...,m

}
and coe�cients {cj : j = 1, 2, ...,m}. Note that s (j) ∈ {1, 2, ...,K} identi�es

which of the K additive functions will be selected at the jth iteration.

To map the results of the algorithm into functions with representation in HK , one uses simple

algebraic manipulations. A simpler variant of the algorithm sets τm = 1/m. In this case, the solution

at the mth iteration, takes the particularly simple form Fm =
∑m
j=1

B
mf

(s(j))
j (Sancetta, 2016) and the

kth additive function can be written as f̃ (k) = B
m

∑
j≤m:s(j)=k f

(s(j))
j .

To avoid cumbersome notation, the dependence on the sample size n has been suppressed in the

quantities de�ned in the algorithm. The algorithm can �nd a solution with arbitrary precision as the

number of iterations m increases.

Theorem 5 For Fm derived from the above algorithm,

Pn`Fm ≤ inf
µ∈LK(B)

Pn`µ + εm

where,

εm .


B2 sup|t|≤B Pnd

2L(·,t)/dt2

m if τm = 2
m+2 or line search in (13)

B2 sup|t|≤B[Pnd2L(·,t)/dt2] ln(1+m)

m if τm = 1
m

.

For the sake of clarity, recall that Pnd
2L (·, t) /dt2 = 1

n

∑n
i=1 d

2L (Zi, t) /dt
2.

4.1.1 Solving for the Additive Functions

The solution to (12) is found by minimizing the Lagrangian

Pn∂`Fm−1
f (k) + ρ

∣∣∣f (k)
∣∣∣2
H
. (14)
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Let Φ(k)
(
x(k)

)
= C

(
·, x(k)

)
be the canonical feature map (Lemma 4.19 in Steinwart and Christmann,

2008); Φ(k) has image in H and the superscript k is only used to stress that it corresponds to the

kth additive component. The �rst derivative w.r.t. f (k) is Pn∂`Fm−1
Φ(k) + 2ρf (k), using the fact that

f (k)
(
x(k)

)
=
〈
f (k),Φ(k)

(
x(k)

)〉
H, by the reproducing kernel property. Then, the solution is

f (k) = − 1

2ρ
Pn∂`Fm−1Φ(k),

where ρ is such that
∣∣f (k)

∣∣2
H = 1. If Pn∂`Fm−1

Φ(k) = 0, set ρ = 1. Explicitly, using the properties of

RKHS (see (5)) ∣∣∣f (k)
∣∣∣2
H

=
1

(2ρ)
2

n∑
i,j=1

∂`Fm−1 (Zi)

n

∂`Fm−1 (Zj)

n
C
(
X

(k)
i , X

(k)
j

)
which is trivially solved for ρ. With this choice of ρ, the constraint

∣∣f (k)
∣∣
H ≤ 1 is satis�ed for all

integer k ≤ K, and the algorithm, simply selects k such that Pn∂`Fm−1f
(k) is minimized.

The above calculations together with Theorem 5 imply the following, which for simplicity, is stated

using the update τm = m−1 instead of the line search.

Theorem 6 Let ρj be the Lagrange multiplier estimated at the jth iteration of the algorithm in (12)

with τm = m−1 instead of the line search (13). Then,

µn = lim
m→∞

m∑
j=1

(
− B

2mρj

)
Pn∂`Fj−1

Φ(s(j)),

is the solution of the constrained estimation problem in LK (B).

4.2 The Algorithm for Estimation in HK (B)

When estimation is constrained in HK (B), the algorithm has to be modi�ed. Let Φ (x) = CHK (·, x)

be the canonical feature map of HK (do not confuse Φ with Φ(k) in the previous section). Then, (12)

is replaced by

min
f∈HK(1)

Pn∂`Fm−1f,

and we denote by fm ∈ HK (B) the solution at the mth iteration. This solution can be found replacing

the minimization of (14) with minimization of Pn∂`Fm−1
f + ρ |f |2HK . The solution is then fm =

− 1
2ρPn∂`Fm−1Φ where ρ is chosen to satisfy the constraint |f |2HK ≤ 1 (Steinwart and Christmann,

2008, Corollary 5.11). No other change in the algorithm is necessary and the details are left to the

reader.

4.3 Numerical Illustration

To gauge the rate at which the algorithm converges to a solution, we consider a numerical illustration

using the SARCOS data set (http://www.gaussianprocess.org/gpml/data/), which comprises a

sample of 44484 observations with 21 input variables and a continuous response variable. We stan-

dardize the variables by their Euclidean norm, use the square error loss and the Gaussian covariance
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kernel of Example 1 with d = 21 and a−1 = 0.75. Hence for this example, the kernel is not addi-

tive. Given that the kernel is universal, we shall be able to interpolate the data if B is chosen large

enough: we choose B = 1000. The aim is not to �nd a good statistical estimator, but to evaluate the

computational algorithm. Figure 1, plots the R2 as a function of the number of iterations m. After

approximately 20 iterations, the algorithm starts to �t the data better than a constant, and after

about 80-90 iterations the R2 is very close to one: R2 = 99.55%. However, the number of operations

per iteration is O
(
n2
)
(Rasmussen and Williams, 2006, Ch.8, for a comparison of methods).

We also use the test sample from the same dataset to evaluate the out of sample R2 as we vary B.

The sample size of the test sample is 4489 observations. To distinguish it from this, we call estimation

sample the one with 44484 observations used to estimate the function. The estimation algorithm is

used with m = 100. Given the estimated function, we compute the standardized mean square error

(SMSE) on the test sample. This is just the mean square error divided by the variance of the target

variable in the test sample. The out of sample R2 is one minus the SMSE. We also use cross-validation

(CV) to �nd an estimate of the generalization error. This is useful to choose B. In particular CV

is computed randomly sampling without replacement 67% of the estimation sample and using the

remaining 33% to evaluate the error. To reduce dependence on the random split, this procedure is

repeated 5 times to �nd an estimate of the out of sample mean square error. We can then compute

the cross-validated SMSE and R2 from this quantity. With such large sample size, we �nd that we can

choose B relatively large and CV would have led to relatively good performance (Table 1).

Figure 1: Estimation Algorithm R2 as Function of Number of Iterations. The R2 is computed for
each iteration m of the estimation algorithm. Negative R2 have been set to zero.

4.4 Selection of B and Variable Screening

The parameter B uniquely identi�es the Lagrange multiplier ρB,n in the penalized version of the opti-

mization problem (6) (see Example 2). If the loss is non-negative, we have that |µn|2HK ≤ ρ−1
B,nPn`µB
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Table 1: Test Sample Results. Out of sample and cross-validated R2 (R2
oos and R

2
CV ) are reported as

a function of B. The values of B are chosen to be multiples of the variance of the target variable on
the estimation sample.

B 108.04 216.07 432.15 864.29 1728.58 3457.17 6914.33
R2
oos -0.0811 0.6805 0.9884 0.9866 0.9964 0.8043 0.7670

R2
CV -0.2343 0.4323 0.7430 0.7735 0.7635 0.5869 0.5299

(Steinwart and Christmann, 2008, Section 5.1). The exact same argument holds for LK (B) in place of

HK (B). When the constraint µ ∈ LK (B) is considered, the solution via the greedy algorithm allows

us to keep track of the iterations at which selected variables are included. Variables included at the

early stage of the algorithm will be clearly included even when B is increased. Hence, exploration for

the purpose of feature selection (using the constraint µ ∈ LK (B)) can be carried out using a large B

to reduce the computational burden.

Selection of B is usually based on cross-validation or penalized estimation, where the penalty

estimates the �degrees of freedom�.

5 Proofs

Recall that `µ (Z) = L (Z, µ (X)) and ∂k`µ (Z) = ∂kL (Z, t) /∂tk
∣∣
t=µ(X)

, k ≥ 1. Condition 2 implies

Fréchet di�erentiability of P`µ and P∂`µ (as functions of µ, from L∞ to R) at µ ∈ HK in the direction

of h ∈ HK . The derivative can be weakened to µ and h elements in L∞, the space of uniformly

bounded function. It can be shown that these two derivatives are P∂`µh and P∂2`µhh, respectively.

For this purpose, we view P`µ as a map from the set of uniformly bounded functions on XK - to be

denoted by `∞
(
XK

)
- to R. The details can be derived following the steps in the proof of Lemma 2.21

in Steinwart and Christmann (2008) or the proof of Lemma A.4 in Hable (2012). The application of

those proofs to the current scenario, essentially requires that the loss function L (Z, t) is di�erentiable

w.r.t. real t, and that µ is uniformly bounded, together with integrability of ∆k, k = 0, 1, 2, as in

Condition 2. It will also be necessary to take the Fréchet derivative of Pn`µ and Pn∂`µh conditioning

on the sample data. By Condition 2 this will also hold because ∆0, and ∆1 are �nite. This will also

allow us to apply Taylor's Theorem in Banach spaces. These derivatives will be used in the proofs.

Moreover, for notational simplicity, we shall tacitly suppose that supx∈XK
√
CHK (x, x) = 1 so that

h ∈ HK (B) implies that |h|∞ ≤ B for any B > 0.

5.1 Complexity and Gaussian Approximation

The reader can skip this section and refer to it when needed. Recall that the ε-covering number of a

set F under the Lp norm, denoted by N
(
ε,F , |·|p

)
, is the minimum number of balls of Lp radius ε

needed to cover F . The entropy is the logarithm of the covering number. The ε-bracketing number of

the set F under the Lp norm is the minimum number of ε-brackets under the Lp norm needed to cover

F . Given two functions fL ≤ fU such that |fL − fU |p ≤ ε, an Lp ε-bracket [fL, fU ] is the set of all

functions f ∈ F such that fL ≤ f ≤ fU . Denote the Lp ε-bracketing number of F by N[]

(
ε,F , |·|p

)
.

Under the uniform norm, N (ε,F , |·|∞) = N[] (ε,F , |·|∞) and this will be tacitly used in what follows.
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In this section, let (G (x))x∈X be a centered Gaussian process on X with covariance C as in (3). In

what follows we refer to Li and Linde (1999) for details. The space H is generated by the measure of

the Gaussian process (G (x))x∈X with covariance function C. In particular, G (x) =
∑∞
v=1 λvξvϕv (x),

where the (ξv)v≥1 is a sequence of i.i.d. standard normal random variables, and the equality holds in

distribution. For any positive integer V , the l-approximation number lV (G, |·|∞) (Li and Linde, 1999,

p. 1560) is bounded above by
(
E
∣∣∑

v>V λvξvϕv
∣∣2
∞

)1/2

. Under Condition 1, we deduce that

lV (G, |·|∞) .
∑
v>V

λv . V −(η−1). (15)

There is a link between the lV (G, |·|∞) approximation number of the centered Gaussian process G

with covariance C and the L∞ ε-entropy of the class of functions H (1). These quantities are related

by − ln Pr (|G|∞ < ε), which is determined by the small ball probability of G under the uniform norm.

Entropy bounds. We have the following bound on the ε-entropy of H (1) under the uniform norm

|·|∞.

Lemma 2 Under Condition 1, lnN (ε,H (1) , |·|∞) . ε−2/(2η−1).

Proof. As previously remarked, the space H (1) is generated by the law of the Gaussian process G

with covariance function C. For any integer V <∞, the l-approximation number of G, lV (G, |·|∞) is

bounded as in (15). Proposition 4.1 in Li and Linde (1999) says that in this case − ln Pr (|G|∞ < ε) .

ε−1/(η−1). Moreover, Theorem 1.2 in Li and Linde (1999) links the small ball probability to the entropy

of the RKHS, and in this case, it gives the estimate lnN (ε,H (1) , |·|∞) . ε−2/(2η−1).

Lemma 3 Under Condition 1,

lnN
(
ε,HK (B) , |·|∞

)
. K (B/ε)

2/(2η−1)
.

Proof. If µ ∈ HK (B), then µ (x) =
∑K
k=1 f

(k)
(
x(k)

)
for some f (k) ∈ H (B). Hence, the cov-

ering numbers of
{
µ ∈ HK (B)

}
are bounded by the product of the covering numbers of the sets

Fk :=
{
f (k) ∈ H (B)

}
, k = 1, 2, ...,K. By Lemma 2, the ε-covering number of each Fk is given

by exp
{

(B/ε)
2/(2η−1)

}
. The statement of the lemma follows by taking logs and summing over

k = 1, 2, ...,K.

We link the entropy of H (1) under the uniform norm to the entropy with bracketing of `µh.

Lemma 4 Suppose Condition 1 holds. For the set F :=
{
∂`µh : µ ∈ HK (B) , h ∈ HK (1)

}
, for any

p ∈ [1,∞] satisfying Condition 2, the Lp ε-entropy with bracketing is

lnN[]

(
ε,F , |·|p

)
. K (B/ε)

2/(2η−1)
.

The same exact result holds for F :=
{
`µ : µ ∈ HK (B)

}
under Condition 2.

Proof. In the interest of conciseness, we only prove the result for

F :=
{
∂`µh : µ ∈ HK (B) , h ∈ HK (1)

}
.
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To this end, note that by Condition 2 and the triangle inequality,

|∂`µh− ∂`µ′h′| ≤ |∂`µ − ∂`µ′ | sup
h∈HK(1)

|h|+ sup
µ∈HK(B)

|∂`µ| |h− h′| .

By Condition 2, |∂`µ (z)| ≤ ∆1 (z), and |∂`µ (z)− ∂`µ′ (z)| ≤ ∆2 (z) |µ (x)− µ′ (x)|, and P (∆p
1 + ∆p

2) <

∞. By Lemma 1, |h|∞ ≤ 1. By these remarks, the previous display is bounded by by a constant mul-

tiple of

∆2 |µ− µ′|∞ + ∆1 |h− h′|∞ .

Theorem 2.7.11 in van der Vaart and Wellner (2000) says that the Lp ε-bracketing number of class of

functions satisfying the above Lipschitz kind of condition is bounded by the L∞ ε′-covering number of

HK (B)×HK (1) with ε′ = ε/
[
2 (P |∆1 + ∆2|p)

1/p
]
. Using Lemma 3, the statement of the lemma is

deduced because the product of the covering numbers is the sum of the entropies.

Convergence to a Gaussian process and maximal inequality. The following will be used in

the proof of Theorem 4.

Lemma 5 Under Condition 1 with η > 1, and Conditions 2, and 3, with p ≥ r,

√
n (Pn − P ) ∂`µh→ G (∂`µ, h)

weakly, where G (∂`µ, h) is a mean zero Gaussian process indexed by (∂`µ, h) ∈
{
∂`µ : µ ∈ HK (B)

}
×

HK (1), with a.s. continuous sample paths and covariance function

EG (∂`µ, h)G (∂`µ′ , h
′) =

∑
j∈Z

P1,j (∂`µh, ∂`µh
′) .

Proof. The proof shall use the main result in Doukhan et al. (1995). Let F :=
{
∂`µh : µ ∈ HK (B) , h ∈ HK (1)

}
.

The elements in F have �nite Lr norm because P |∂`µ|p ≤ P∆p
1 by Condition 2, and |h|∞ ≤ 1 by

Lemma 1. The entropy integral in Doukhan et al. (1995, Theorem 1, eq. 2.10) is implied by

ˆ 1

0

√
lnN[] (ε,F , |·|r)dε <∞, (16)

and β (i) . i−β0 with β0 > r/ (r − 2) and r > 2 as in Condition 3 (see their discussion on page 405

to relate the Lr norm to their norm). When (16) holds, Theorem 1 in Doukhan et al. (1995) shows

that the empirical process indexed in F converges weakly to the Gaussian one given in the statement

of the present lemma. By Lemma 4, (16) holds because η > 1.

The following is a corollary to Theorem 2 in Doukhan et al. (1995) and is used in the proof of

Theorems 2 and 3.

Lemma 6 Suppose Condition 3 and let r be as de�ned there. Let F is a class of real valued measurable

functions such that |f |r ≤ δ for any f ∈ F and,
´ δ

0

√
lnN[] (ε,F , |·|r)dε . δα, for some α ∈ (0, 1]. Let
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F be a function such that |f | ≤ F , for any f ∈ F , and PF p <∞ for some p ≥ r. Then, we have that

√
nE sup

f∈F
|(Pn − P ) f | . δα +

√
n
(
δ2α−2n−1

) r
2(r−1)

p−1
p

for any δ such that δ−1 . n1/(2(1−α)).

Proof. We shall follow similar arguments to the ones in the proof of Theorem 3 in Doukhan et

al. (1995). Let FM :=
{
f1{F≤M} : f ∈ F

}
for a constant M > 0, where 1{·} is the indicator function:

one if the argument is true and zero otherwise. Clearly,

√
nE sup

f∈F
|(Pn − P ) f | ≤

√
nE sup

f∈FM
|(Pn − P ) f |+ 2

√
nPF1{F>M} =: I + II. (17)

Under the conditions of the lemma, Theorem 2 in Doukhan et al. (1995) says that

I . δα +
Mqδ2α−2

n1/2
+
√
nMβ (q) (18)

for arbitrary q ≥ 1. Set an ε ∈ (0, 1) to be chosen in due course, and set q = β−1 (ε) where β−1 (·) is
the inverse of β (b·c) where b·c is the integer part of its argument. Then, β−1 (ε) is the smallest integer

q such that β (q) ≤ ε. To balance the last two terms in (18) we can set
√
nε � qδ2α−2n−1/2, where �

means that the l.h.s. is bounded above and below by constants times the r.h.s.. Let Q : [0, 1] → R
be the quantile function of F , i.e. Q (u) := inf {x > 0 : Pr (F > x) ≤ u}. Then, set M = Q (ε).

Therefore, I . δα+
√
nQ (ε) ε. Now, from the proof of Lemma 4 in Doukhan et al. (1995) we have that

PF1{F>M} ≤
´ ε

0
Q (ε) dε and given that F has a �nite p moment we have that Q (ε) . ε−1/p. By these

remarks, we can deduce that II . 2
√
nε

p−1
p . Using the upper bound for Q (ε) in I, we also deduce that

I + II . δα +
√
nε

p−1
p . By Condition 3, q . ε−

r−2
r , so that ε �

(
δ2α−2n−1

) r
2(r−1) and in consequence

that (17) is bounded above by δα +
√
n
(
δ2α−2n−1

) r
2(r−1)

p−1
p . Note that the speci�c choice of ε also

guarantees that ε ∈ (0, 1) as long as δ−1 . n1/(2(1−α)) as stated in the lemma, and this concludes its

proof.

When the data is i.i.d. (take r ↓ 2 in Condition 3) and F bounded (take p → ∞) the above

inequality becomes the usual inequality obtained for i.i.d. data (van der Vaart and Wellner, 2000,

Lemma 3.4.4).

5.2 Proof of Theorem 1

We shall apply Corollary 3.2.3 in van der Vaart and Wellner (2000) replacing their in probability

result with almost sure convergence (a.s.). The result requires an identi�cation condition and uniform

convergence of the empirical loss function. By Taylor's Theorem in Banach spaces,

P`µ −P`µB = P∂`µB (µ− µB) +
1

2
P∂2`µt (µ− µB)

2
(19)

for µt = µ + t (µB − µ) with some t ∈ [0, 1] and arbitrary µ ∈ HK (B). The variational inequality

P∂`µB (µ− µB) ≥ 0 holds by de�nition of µB and the fact that µ ∈ HK (B). Therefore, the previous

display implies that P`µ−P`µB & P (µ− µB)
2
because P∂2`µt (µ− ν)

2 & P (µ− ν)
2 ≥ 0 by Condition
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2. The right hand most inequality holds with equality if and only if µ = µB in L2. This shows

identi�ability of the estimator.

We show that supµ∈HK(B) |(Pn − P ) `µ| → 0 a.s., which then implies |µn − µ0|2 → 0 a.s.. For any

�xed µ, |(Pn − P ) `µ| → 0 a.s., by the ergodic theorem, because P |`µ| < ∞ by Condition 2. Hence,

it is su�cient to show that
{
`µ : µ ∈ HK (B)

}
has �nite ε-bracketing number under the L1 norm (see

the proof of Theorem 2.4.1 in van der Vaart and Wellner, 2000). This is the case by Lemma 4. We

have shown that |µn − µB |2 → 0 a.s.. To turn the L2 convergence into uniform, note that HK (B) is

compact under the uniform norm and functions in HK (B) are continuous and de�ned on a compact

domain XK . In consequence, any convergent sequence in HK (B) converges uniformly.

Above, we have shown that the population loss function is convex and coercive. Moreover, HK (B)

is a closed convex set, as HK is a Hilbert space. Hence, the population minimizer µB exists and is

unique up to an L2 equivalence class.

5.3 Proof of Theorem 2

We prove Points 1 to 3. The validity of the results when using asymptotic minimizers is in Section 5.7.

The following lemma puts together crucial results for estimation in RKHS (Steinwart and Christ-

mann, 2008, Theorems 5.9 and 5.17 for a proof). The cited results make use of the de�nition of

integrable Nemitski loss of �nite order p (Steinwart and Christmann, 2008, Def. 2.16). However,

under Condition 2, the proofs of those results still hold.

Lemma 7 Under Condition 2,

|µ0,ρ − µn,ρ|HK ≤
1

ρ

∣∣P∂`µ0,ρ
Φ− Pn∂`µ0,ρ

Φ
∣∣
HK , (20)

where Φ (x) = CHK (·, x) is the canonical feature map. Moreover, if µ0,ρ is bounded for ρ → 0, then

|µ0,ρ − µ0|HK → 0.

We apply Lemma 7 and the results in Section 5.1 to derive the following.

Lemma 8 Suppose Condition 1 with η > 1, and Conditions 2 and 3 with p ≥ r, and µ0 ∈ HK . The
following statements hold.

1. There is a �nite B such that |µ0ρ|HK ≤ |µ0|HK < B for any ρ ≥ 0.

2. If µ0 ∈ int
(
HK (B)

)
, we have that |µn,ρ − µ0,ρ|2HK = OP

(
ρ−2n−1

)
, and |µn,ρ|HK < B eventually

in probability for any ρ→ 0 such that ρn1/2 →∞.

3. There is a ρ = OP
(
n−1/2

)
such that |µn,ρ|HK ≤ B and

sup
h∈HK(1)

Pn∂`µn,ρh = OP

(
n−1/2B

)
.

Proof. Given that K is �nite and the kernel is additive, there is no loss in restricting attention to

K = 1 in order to reduce the notational burden. Given that µ0 ∈ HK , there is a �nite B such that

µ0 ∈ int
(
HK (B)

)
(this proves Point 1 in the lemma). By this remark, it follows that, uniformly in
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ρ ≥ 0, there is an ε > 0 such that |µ0,ρ|HK ≤ B − ε. We shall need a bound for the r.h.s. of (20). By

(3), the canonical feature map can be written as Φ (x) =
∑∞
v=1 λ

2
vϕv (·)ϕv (x). This implies that,

(Pn − P ) ∂`µ0,ρΦ (x) =

∞∑
v=1

[
λ2
v (Pn − P ) ∂`µ0,ρϕv

]
ϕv (x) .

By Lemma 7, (5), and the above,

∣∣(Pn − P ) ∂`µ0,ρ
Φ
∣∣2
HK =

∞∑
v=1

[
λ2
v (Pn − P ) ∂`µ0,ρ

ϕv
]2

λ2
v

=

∞∑
v=1

λ2
v

[
(Pn − P ) ∂`µ0,ρ

ϕv
]2
.

In consequence of the above display, by the triangle inequality,

|µ0,ρ − µn,ρ|HK ≤ 1

ρ

[ ∞∑
v=1

λ2
v

∣∣(Pn − P ) ∂`µ0,ρ
ϕv
∣∣2]1/2

≤ 1

ρ

∞∑
v=1

λv
∣∣(Pn − P ) ∂`µ0,ρ

ϕv
∣∣ .

Using the maximal inequality in the �rst display on page 410 of Doukhan et al. (1995) we deduce that

E sup
µ∈HK(B)

∣∣√n (Pn − P ) ∂`µϕv
∣∣ ≤ c1 (21)

for some �nite constant c1, for any v ≥ 1, because the entropy integral (16) is �nite in virtue of Lemma

4 and ϕv is uniformly bounded, uniformly in v ≥ 1. De�ne

Ln :=

∞∑
v=1

λv sup
µ∈HK(B)

∣∣√n (Pn − P ) ∂`µ0,ρ
ϕv
∣∣ .

Given that the coe�cients λv are summable by Condition 1 when η > 1, deduce from (21) that

(Ln)n≥1 is a tight random sequence. Using the above display, we have shown that (20) is bounded

by Ln/
(
ρn1/2

)
. This proves Point 2 in the lemma. For any �xed ε > 0, we can choose ρ = ρn :=

Ln/
(
εn1/2

)
so that |µ0,ρ − µn,ρ|HK ≤ ε. By the triangle inequality and the above calculations, deduce

that,

|µn,ρ|HK ≤ |µ0,ρ|HK + |µ0,ρ − µn,ρ|HK ≤ B

by the aforementioned choice of ρ. By tightness of Ln, deduce that ρn = Op
(
n−1/2

)
. Also, the �rst

order condition for the sample estimator µn,ρ reads

Pn∂`µn,ρh = −2ρ 〈µn,ρ, h〉HK ≤ 2ρ |µn,ρ|HK |h|HK (22)

for any h ∈ HK (1). In consequence, suph∈HK(1) Pn∂`µn,ρh ≤ 2ρ |µn,ρ|HK . These calculations prove

Point 3 in the lemma for some ρ = OP
(
n−1/2

)
.

We start the proof of the theorem.
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Proof of Point 1. The penalized objective function is increasing with ρ. In the Lagrangian formu-

lation of the constrained minimization, interest lies in �nding the smallest value of ρ such that the

constraint is still satis�ed. When ρ equals such smallest value ρB,n, we have µn = µn,ρ. From Point 3

in Lemma 8 deduce that ρB,n = OP
(
n−1/2

)
.

Proof of Point 2. Point 1 in Lemma 8 together with the last statement of Lemma 7 gives that

|µn,ρ − µ0|2HK = o (1). Then, Point 2 in Lemma 8 together with the triangle inequality complete the

proof.

Proof of Point 3. If HK is in�nite dimensional, the constraint is eventually binding for n large

enough, so that |µn|HK = B. Hence, if µ0 ∈ int
(
HK (B)

)
there is an ε > 0 such that |µ0|HK = B − ε.

By the triangle inequality, we deduce that |µn − µ0|2HK ≥ ε. This means that µn cannot converge

under the norm |·|HK .
The statement concerning approximate minimizers will be proved in Section 5.7.

5.4 Proof of Theorem 3

For reasons that will become clear, we show convergence rates for |µ− µB |rp/(p−r) where p and r are as
in the statement of the theorem. To this end, we verify the conditions of Theorem 3.2.5 van der Vaart

and Wellner (2000). De�ne Fδ :=
{

(`µ − `µB ) : |µ− µB |rp/(p−r) ≤ δ, µ ∈ HK (B)
}
. It is su�cient to

show that (i) P`µ−P`µB & |µ− µB |rp/(p−r), (ii)
√
nE supf∈Fδ |(Pn − P ) f | ≤ φn (δ), for any δ ∈ (0, 1),

where φn (δ) is a function that grows slower than δ2, and (iii) to �nd an increasing sequence sn such

that s2
nφn

(
s−1
n

)
.
√
n. Then, |µ− µB |rp/(p−r) = OP

(
s−1
n

)
. Note that δ can be taken less than one

because, by Theorem 1, the estimator is consistent in L∞ as soon as η > 1/2. The uniform bound for

elements in HK (B) implies that B(2/v)−1 |µ− µB |v ≤ |µ− µB |
2/v
2 for any v ∈ (2,∞). Therefore, the

arguments just below (19) verify (i). We now focus on (ii). By Holder inequality, P∆r
1 |µ− µB |

r ≤

(P∆p
1)
r/p
(
P |µ− µB |rp/(p−r)

)(p−r)/p
. Using the fact that |`µ − `µB | ≤ ∆1 |µ− µB |, we can conclude

that |f |r ≤ |∆1|p δ because f ∈ Fδ. We also deduce that ∆1B has �nite p moment, and is an envelope

function for Fδ. By Lemma 4, we have that
´ δ

0

√
lnN[] (ε,Fδ, |·|r)dε . δα with α = 2 (η − 1) / (2η − 1).

Hence, an application of Lemma 6 shows that φn (δ) . δα +
√
n
(
δ2α−2n−1

) r
2(r−1)

p−1
p as long as δ−1 .

n1/(2(1−α)). In verifying (iii), we see that this imposes the constraints sn . n1/(2(1−α)). Now, s2−α
n .

n1/2 implies that sn . n(2η−1)/4η, while s2
n

(
s2−2α
n n−1

) r
2(r−1)

p−1
p . 1 implies that sn . n

γ(2η−1)
4η+2(γ−1)

where γ = r
2(r−1)

p−1
p < 1. Hence, we have that sn . n

γ(2η−1)
4η+(γ−1) and by de�nition of α, we also see that

sn . n1/(2(1−α)) as required. This proves the �rst statement of the theorem. Lemma 9 in Section 5.7

shows that the result also holds for approximate minimizers. Finally, the proof in the last statement

of the theorem is deferred to Section 5.6.

5.5 Proof of Theorem 4

We introduce additional notation. Let l∞
(
HK

)
be the space of uniformly bounded functions on HK .

Let Ψ (µ) be the operator in l∞
(
HK

)
such that Ψ (µ)h = P∂`µh, h ∈ HK . When µ0 ∈ int

(
HK (B)

)
,

it holds that Ψ (µ0)h = 0, for any h ∈ HK (1). The empirical counterpart of Ψ (µ) is the operator
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Ψn (µ) such that Ψn (µ)h = Pn∂`µh. Finally, write Ψ̇µ0
(µ− µ0) for the Fréchet derivative of Ψ (µ) at

µ0 tangentially to (µ− µ0), where µ, µ0 ∈ HK (B). Then, Ψ̇µ0
is an operator from HK to l∞

(
HK

)
.

This same notation is used in van der Vaart and Wellner (2000, ch.3.3).

By the conditions of the theorem, µ0 ∈ int
(
HK (B)

)
, hence by the �rst order conditions, Ψ (µ0)h =

0 for any h ∈ HK (1). This remark and Lemma 5 prove the �rst part in the theorem. By this remark

again, and basic algebra,

√
nΨn (µn) =

√
nΨn (µ0) +

√
n [Ψ (µn)−Ψ (µ0)]

+
√
n [Ψn (µn)−Ψ (µn)]−

√
n [Ψn (µ0)−Ψ (µ0)] . (23)

To bound the last two terms, we verify that

sup
h∈HK(1)

√
n [(Ψn (µn)−Ψ (µn))− (Ψn (µ0)−Ψ (µ0))]h = oP (1) . (24)

This follows if (i)
√
n (Ψn (µ)−Ψ (µ))h , µ ∈ HK (B), h ∈ HK (1), converges weakly to a Gaussian

process with continuous sample paths, (ii) HK (B) is compact under the uniform norm, and (iii) µn

is consistent for µ0 in |·|∞. Point (i) is satis�ed by Lemma 5, which also controls the �rst term on

the r.h.s. of (23). Point (ii) is satis�ed by Lemma 3. Point (iii) is satis�ed by Theorem 1. Hence,

by continuity of the sample paths of the Gaussian process, as |µn − µ0|∞ → 0 in probability (using

Point iii), the above display holds true. We now control the second term on the r.h.s. of (23). For any

h ∈ HK (1),∣∣∣[Ψ (µn)−Ψ (µ0)]h− Ψ̇µ0
(µn − µ0)h

∣∣∣ ≤ sup
t∈(0,1)

∣∣∣P∂3`µ0+t(µn−µ0) (µn − µ0)
2
h
∣∣∣ (25)

using di�erentiability of the loss function and Taylor's theorem in Banach spaces. By the condition

that |∆3|p < ∞, and the fact that h is uniformly bounded, using Holder inequality, the r.h.s. is a

constant multiple of
∣∣∣(µ− µ0)

2
∣∣∣
p/(p−1)

. By Lemma 1, |µ− µ0|∞ ≤ 2B, so that
∣∣∣(µ− µ0)

2
∣∣∣
p/(p−1)

.

|µ− µ0|2(p−1)/p
2 . Hence, the r.h.s of (25) is oP

(
n−1/2

)
if |µ− µ0|2 = oP

(
n

1
4 ( p

p−1 )
)
, which is the case

by assumption. These calculations show that

√
n [Ψ (µn)−Ψ (µ0)] =

√
nΨ̇µ0 (µn − µ0) + oP (1) .

Inserting the above in (23), and using (24), we deduce that

√
nΨn (µn)−

√
nΨn (µ0) =

√
n (Ψ (µn)−Ψ (µ0)) + oP (1)

=
√
nΨ̇µ0

(µn − µ0) + oP (1) . (26)

By Lemma 5,
√
nΨn (µ0) = OP (1). For the moment, suppose that µn is the exact solution to the mini-

mization problem in (6). By Lemma 8, suph∈HK(1)

√
nΨn (µn)h = OP (1), so that suph∈HK(1)

√
nΨ̇µ0

(µn − µ0)h =

OP (1). Finally, if suph∈HK(1)

√
nΨn (µn)h = oP (1), (26) together with the previous displays imply

that − limn
√
n (Ψn (µ0)−Ψ (µ0)) = limn Ψ̇µ0

√
n (µn − µ0) in probability, where the l.h.s. has same

distribution as the Gaussian process G given in the statement of the theorem. It remains to show that
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if we use an approximate minimizer say νn to distinguish it here from µn in (6), the result still holds.

Lemma 9, in Section 5.7, shows that this is true, hence completing the proof of Theorem 4.

5.6 Lower Bound on L2 Convergence Rates

We use the same notation as in (23) and rely on the arguments that followed that display. When

µ0 ∈ int
(
HK (B)

)
, we deduce that

√
n [Ψ (µn)−Ψ (µ0)]h = OP (1) for any h ∈ HK (1). We choose

h = (2B)
−1

(µn − µ0). By de�nition of Ψ (µ)h, using Taylor's theorem as in (19) and the notation

de�ned there,
√
n [Ψ (µn)−Ψ (µ0)] =

√
nP∂2`µt (µu − µ0)h. By Condition 2 and the speci�c choice of

h, the r.h.s. is lower bounded by a constant multiple of
√
nP (µu − µ)

2
. This implies that |µn − µ0|2 =

OP
(
n−1/4

)
. This bound veri�es the last statement of Theorem 3.

5.7 Asymptotic Minimizers

The following lemma collects results on asymptotic minimizers.

Lemma 9 Let (εn)n≥1 be an op (1) sequence. Suppose that νn satis�es Pn`νn = Pn`µn + εn, where µn

is as in (6). Also suppose that νn,ρ satis�es Pn`νn,ρ + ρ |νn,ρ|2HK = Pn`µn,ρ + ρ |µn,ρ|2HK + ρεn, where

µn,ρ is as in (9) and ρn1/2 →∞.

1. Under the conditions of Theorem 1, |µn − νn|∞ = o (1) almost surely if εn → 0 almost surely or

in probability if εn = oP (1).

2. Under Condition 2, |µn,ρ − νnρ|HK = εn in probability, and there is a �nite B such that |νn,ρ|HK ≤
B eventually in probability.

3. Under the conditions of Theorem 3, |µn − νn|2 = OP
(
s−1
n

)
if εn = OP

(
s−2
n

)
.

4. If εn = oP
(
n−1

)
, under the Conditions of Theorem 4, suph∈HK(1) |Ψn (µn)h−Ψn (νn)h| =

oP
(
n−1/2

)
.

Proof. We prove each statement separately.

Proof of Point 1. Consider the constrained estimator. For the uniform convergence, by assumption

we replace Pn`νn with Pn`µn with an error o (1) almost surely. Hence, the proof of Theorem 1 is not

altered and this implies Point 1 in the lemma.

Proof of Point 2. Consider the penalized estimator. To this end, follow the same steps in the

proof of 5.14 in Theorem 5.9 of Steinwart and Christmann (2008). Mutatis mutandis, the argument

in their second paragraph on page 174 gives

〈
νn,ρ − µn,ρ, Pn∂`µn,ρΦ + 2ρµn,ρ

〉
HK + ρ |µn,ρ − νn,ρ|HK

≤Pn`νn,ρ + ρ |νn,ρ|2HK −
(
Pn`µn,ρ + ρ |µn,ρ|2HK

)
.

Derivation of this display requires convexity of L (z, t) w.r.t. t, which is the case by Condition 2. By as-

sumption, the r.h.s. is ρεn. Note that µn,ρ is the exact minimizer of the penalized empirical risk. Hence,
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eq. (5.12) in Theorem 5.9 of Steinwart and Christmann (2008) says that µn,ρ = − (2ρ)
−1
Pn∂`µn,ρΦ

for any ρ > 0, implying that the inner product in the display is zero. By these remarks, we deduce

that the above display simpli�es to ρ |µn,ρ − νn,ρ|HK = ρεn. In consequence, |µn,ρ − νn,ρ|HK = oP (1)

so that by the triangle inequality, and Lemma 8, |νn,ρ|HK ≤ B eventually, in probability for some

B <∞.

Proof of Point 3. By Point 1 with εn = oP (1), we obtain consistency for νn. Once consistency

is ensured, the rates of convergence are not altered according to Theorem 3.2.5 of van der Vaart and

Wellner (2000) as long as εn = OP
(
s−2
n

)
where sn is as in Theorem 3. By the triangle inequality we

obtain the result.

Proof of Point 4. Conditioning on the data, by de�nition of µn, the variational inequality Pn∂`µn (νn − µn) ≥
0 holds because νn−µn is an element of the tangent cone of HK (B) at µn. Conditioning on the data,

by Taylor's theorem in Banach spaces, and the fact that infz∈Z,|t|≤B ∂
2L (z, t) > 0 by Condition 2, we

have that|Pn`νn − Pn`µn | & Pn (µn − νn)
2
. By the conditions of the lemma, and the previous inequal-

ity deduce that Pn (µn − νn)
2

= OP (εn). Now, conditioning on the data, by Fréchet di�erentiability,

|Ψn (µn)h−Ψn (νn)h| = |Pn∂`νn − Pn∂`µn |

≤ Pn

∣∣∣∣∣ sup
µ∈HK(B)

∂2`µ (νn − µn)h

∣∣∣∣∣ .
By Holder's inequality, and the fact that h ∈ HK (1) is bounded, the r.h.s. is bounded by a constant

multiple of Pn
∣∣∣∣∣ sup
µ∈HK(B)

∂2`µ

∣∣∣∣∣
2
1/2 [

Pn (νn − µn)
2
]1/2

.
[
Pn∆2

2

]1/2 [
Pn (νn − µn)

2
]1/2

.

By Condition 2, deduce that Pn∆2
2 = OP (1) so that, by the previous calculations, the r.h.s. is bounded

by a quantity OP

(
ε
1/2
n

)
= oP

(
n−1/2

)
under the conditions of the lemma.

The �rst two points in the lemma prove Point 4 in Theorem 2 and the last part of Theorem 1. The

third point proves the last statement in Theorem 3. The fourth point is used in the proof of Theorem

4 to show that for an asymptotic minimizer the �rst order condition remains oP
(
n−1/2

)
.

5.8 Proof of Theorem 5

Only here, for typographical reasons, write ` (µ) instead of `µ and similarly for ∂` (µ). Let

hm := arg min
h∈LK(B)

Pn∂` (Fm−1)h.

Note that by linearity, and the l1 constraint imposed by LK (B), the minimum is obtained by an

additive function with K − 1 additive components equal to zero and a non-zero one in H with norm
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|·|H equal to B, i.e. Bfs(m), where fs(m) ∈ H (1). De�ne,

D (Fm−1) := min
h∈LK(B)

Pn∂` (Fm−1) (h− Fm−1) ,

so that for any µ ∈ LK (B),

Pn` (µ)− Pn` (Fm−1) ≥ D (Fm−1) (27)

by convexity. For m ≥ 1, de�ne τ̃m = 2/ (m+ 2) if τm is chosen by line search, or τ̃m = τm if

τm = m−1. By convexity, again,

Pn` (Fm) = inf
τ∈[0,1]

Pn` (Fm−1 + τ (hm − Fm−1)) ≤ Pn` (Fm−1) + Pn∂` (Fm−1) (hm − Fm−1) τ̃m +
Q

2
τ̃2
m

where

Q := sup
h,F∈LK(B),τ∈[0,1]

2

τ2
[Pn` (F + τ (h− F ))− Pn` (F )− τPn∂` (F ) (h− F )] .

The above two displays together with the de�nition of D (Fm−1) = Pn∂` (Fm−1) (hm − Fm−1) imply

that for any µ ∈ LK (B),

Pn` (Fm) ≤ Pn` (Fm−1) + τ̃mD (Fm−1) +
Q

2
τ̃2
m

≤ Pn` (Fm−1) + τ̃m (Pn` (µ)− Pn` (Fm−1)) +
Q

2
τ2
m,

where the second inequality follows from (27). Subtracting Pn` (µ) on both sides and rearranging, we

have the following recursion

Pn` (Fm)− Pn` (µ) ≤ (1− τ̃m) (Pn` (Fm−1)− Pn` (µ)) +
Q

2
τ2
m.

The result is proved by bounding the above recursion for the two di�erent choices of τ̃m. When,

τ̃m = 2/ (m+ 1), the proof of Theorem 1 in Jaggi (2013) bounds the recursion by 2Q/ (m+ 2). If

ρm = m−1, then, Lemma 2 in Sancetta (2016) bounds the recursion by 4Q ln (1 +m) /m for any

m ≥ 1. It remains to bound Q. By Taylor expansion of ` (F + τ (h− F )) at τ = 0,

` (F + τ (h− F )) = ` (F ) + ∂` (F ) (h− F ) τ +
∂2` (F + t (h− F )) (h− F )

2
τ2

2

for some t ∈ [0, 1]. It follows that

Q ≤ max
t∈[0,1]

sup
h,F∈LK(B),τ∈[0,1]

Pn∂
2` (F + t (h− F )) (h− F )

2

≤ 4B2 sup
|t|<B

Pnd
2L (·, t) /dt2.

5.9 Proof of Lemma 1

Point 1 is obvious. By the relation between the l1 and l2 norms (derived using Minkowski and the

Cauchy-Schwarz inequality), |µ|HK ≤ |µ|LK ≤
√
K |µ|HK and this shows the inclusion in Point 2.
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Every Hilbert space is uniformly convex, hence the ball of radius B is a convex set, and this proves

Point 3. By the RKHS property f (k)
(
x(k)

)
=
〈
f (k), C

(
·, x(k)

)〉
H, for µ (x) =

∑K
k=1 f

(k)
(
x(k)

)
,

|µ (x)| =

∣∣∣∣∣
K∑
k=1

〈
f (k), C

(
·, x(k)

)〉
H

∣∣∣∣∣ .
When µ ∈ LK (B), by the Cauchy-Schwarz inequality and the RKHS property again, the display is

bounded by
K∑
k=1

∣∣∣f (k)
∣∣∣
H

∣∣∣C (·, x(k)
)∣∣∣
H

=

K∑
k=1

∣∣∣f (k)
∣∣∣
H

√
C
(
x(k), x(k)

)
≤ cB,

using the de�nition of LK (B) and the assumed bound on the kernel. The above two displays imply

that |µ|∞ ≤ cB. This shows the result for p = ∞. For any p ∈ [1,∞), use the trivial inequality

P |µ|p ≤ |µ|p∞ P
(
XK

)
= |µ|p∞. When µ ∈ HK (B), by Cauchy-Schwarz inequality it is simple to

deduce from the above two displays that |µ|∞ ≤ c
√
KB. These remarks prove Point 4.
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