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Abstract

The thesis consists of four chapters.

Chapter 1 contains an empirical study of high frequency Bitcoin data.

Bitcoin is the (�rst and) most important, in terms of market capitalization,

cryptocurrency. Given its recent inception there is still a little literature about

the statistical properties of this new type of �nancial asset. The chapter par-

tially �lls the gap analyzing a few basic stylized facts and some fundamental

microstructural variables such as order �ow and volume imbalance.

Chapter 2 introduces a statistical framework to model the intensity of

the counting process representing the number of buy (or sell) order arrivals

as additive functions of some covariates relative to the orders resting on the

order book. The procedure allows to test whether those functions are increas-

ing/convex and is suitable for high dimensional datasets. The methodology

can be useful in order to �ag �markets prone to be manipulated via high

frequency spoo�ng algorithms�.

Chapter 3 extends to (a certain class of) counting processes the main

results derived in Meinshausen (2013): the paper shows, for high dimensional

linear regressions, that imposing a positivity constraint on the regression co-

e�cients acts (under some circumstances) as a regularization technique com-

parable to the Lasso.

Chapter 4 suggests some possible extensions of the studies conducted in

the previous chapters.
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Introduction

Technological advancement has made it possible trading and recording �nan-

cial data in real time. These High Frequency Data (HFD) are an exceptional

source of information that allows to reconstruct the entire order �ow and the

underlying order book. Nevertheless, the statistical analysis of HFD poses

two major challenges. First, HFD usually means very large dataset: the

number of daily transactions can be greater than 100000. If on the one hand

such large amount of data allows more precise statistical estimations, on the

other hand, the computational cost of standard statistical techniques may be-

come an issue, therefore it could be necessary to design a suitable statistical

methodology. Second, unlike traditional low frequency �nancial time series,

data are not equally spaced in time: for example, how can returns be com-

puted? There are (at least) two ways to circumvent this di�culty and they,

of course, can be applied to other �nancial variables (not only returns). The

�rst possibility (clock time approach) is to �x a frequency then construct an

equally time spaced grid: if for a given time in the grid does exist a record

with the same timestamp then it is �lled out in the obvious way otherwise

the nearest predecessor is chosen. A complementary manner to cope with

non equally time spaced time series is to perform an event time study: in this

occasion the variable of interest is updated only when certain events have

happened.

In Chapter 1 both strategies are applied to analyze high frequency Bit-

coin data. Stylized facts are statistical qualitative properties common to a

broad type of �nancial markets and instruments revealed by several years of

empirical �nancial research. Bitcoin is a new type of �nancial asset, thus it

is relevant to ascertain whether standard stylized facts apply. The principal

outcome of the study is that returns, at short time scales, appear to be auto-

correlated. This does not align with standard stylized facts, yet other studies,

such as Zargar and Kumar (2019a), have reached the same conclusion.
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The second chapter is dedicated to spoo�ng: an illegal trading strategy

that makes pro�ts misleading other market participants about the true im-

balance between supply and demand in the order book. Typically, a spoo�ng

algorithm places a relatively small buy order on the best bid, and almost

contemporaneously it places a sequence of relatively large sell orders on the

ask side of the book. This action provides a snapshot of the demand and

supply schedule, where the market appears to be willing to sell. The reason

is that there are considerably more orders to sell than to buy. This will often

induce a trader (usually another algorithm) to place a sell order that crosses

the bid-ask spread. In consequence the small limit order placed by the spoof-

ing algorithm on the best bid will be �lled. Once this happens, the spoo�ng

algorithm will cancel all the large limit orders placed on the ask side of the

book. The game then repeats reversing the role of the two sides of the book:

a small resting order on the ask, and relatively large orders on the bid. The

whole procedure lasts less than one second and as a result the manipulator

gains the spread.

The core idea of the statistical methodology discussed in Chapter 2 is to

model the intensity of the counting process representing the number of buy (or

sell) arrivals as a function of some covariates, e.g., the volume imbalance, that

the manipulator can a�ect in order to create a �ctitious buying (or selling)

pressure: if these functions turn out to be increasing and convex the market is

considered �prone to be manipulated�. Essentially, the statistical framework is

a non-parametric one and allows to impose monotone and convex constraints

in addition to the obvious non negative constraint (the intensity of a counting

process is always non negative).

The empirical study in Chapter 2 reveals that crude oil futures could be

a pro�table market for a spoofer. Moreover, as a byproduct of the empirical

analysis, we observe that the non-negativity constraint on the intensity leads

to some form of regularization. Indeed, the intuition behind this phenomenon

can be found in results by Meinshausen (2013) for signed constrained linear

regression: the article shows that under appropriate circumstances, a non neg-

ative constraint is a regularization technique as powerful as the well known

Lasso and is easier to implement because it does not require the speci�cation

of any tuning parameter. Chapter 3 extends to counting processes the main

results of Meinshausen (2013), thus providing a theoretical justi�cation of

the empirical �ndings (of Chapter 2). In particular, two main technical as-
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sumptions (the same used in Meinshausen, 2013) are made: the Compatibility

Condition (borrowed from the Lasso literature) and the Positive Eigenvalue

Condition (introduced in Meinshausen, 2013).

The �nal chapter discusses possible generalizations and extensions of the

results obtained in the �rst three chapters.
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Chapter 1

The Information Content of

Bitcoins Order Book and Trades

Abstract. Cryptocurrencies are a new type of �nancial asset. Bitcoin is the

most important, in terms of market capitalization, cryptocurrency. Despite

the increasing interest in this new market both from investors and regulators

there is still a little literature about the empirical properties of the pair Bit-

coin/USD. This paper aims to shed some light in this respect. Unlike most

of the existing literature the study is based on high frequency Bitcoin data:

some fundamental stylized facts are analyzed both in clock time (at di�er-

ent time scales) and in event time. Additionally a few characteristics of the

volumes resting on the order book (ask/bid volume, volume imbalance, order

�ow) and of the market order arrivals are discussed.

1.1 Introduction

1.1.1 High Frequency Financial Econometrics

This paper analyzes high frequency Bitcoin data, therefore it belongs to the

realm of high frequency empirical studies. In this framework the dynam-

ics of the price process is described via a continuous time semimartingale.

One of the most relevant characteristic (see next subsection) of the Bitcoin

market is its large price movements: this raises a fundamental question in

high frequency �nancial econometrics, i.e., whether jumps should be included

in the price dynamics of the pair Bitcoin/USD (in other words, if the semi-

martingale representing the price process exhibits discontinuous trajectories).
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Indeed, according to Scaillet et al. (2018) the largest �uctuations in prices

are caused by the presence of jumps in the high frequency dynamics of the

fundamental price of Bitcoin. More explicitly, according to that paper, the

logarithm of the fundamental price at time t, say Bt, satis�es (except for a

drift term) the following stochastic di�erential equation:

dBt = σdWt + YtdJt (1.1)

whereWt is a Brownian motion, Jt is a jump counting process, Yt is the size of

the jump (at time t) and σ is the di�usion parameter. Detecting the presence

of jumps in the fundamental price of an asset is of paramount importance in

high frequency �nancial econometrics, e.g., to design a (�jump robust�) con-

sistent estimator for the volatility. In order to detect jumps di�erent testing

methodologies have been proposed: for a comparison of the tests available

in the literature see, e.g., Dumitru and Urga (2012) and Maneesoonthorn et

al. (2020). Scaillet et al. (2018) adopt the test introduced in Lee and Myk-

land (2012).There are at least two additional di�culties (common to high

frequency econometrics and in particular) when designing those tests: �rst,

(the logarithm of) the fundamental price B is contaminated by the microstuc-

ture noise, therefore it is observed a di�erent price B̃ rather than B. Second,

variables can only be measured at discrete times, say t0 < t1 < . . . < tN . As

a result the observed prices are B̃t0 , . . . , B̃tN and for i = 0, . . . , N

B̃ti = Bti + Uti (1.2)

where Uti is a random variable modelling the e�ect of the market microstruc-

ture noise such as bid-ask spread, tick size, transaction costs, etc., see e.g.,

Black (1986) for a general discussion of noise in �nancial markets and Chap-

ters 2 and 7 in Aït-Sahalia and Jacod (2014) for further technical details.

According to Maneesoonthorn et al. (2020) the test introduced in Lee and

Mykland (2012) (together with the one proposed in Aït-Sahalia et al., 2012)

is the best choice when �microstructure noise alone is thought to be present�.

In addition, the test continues to perform �well when microstructure is absent,

but only when the sampling frequency remains very high, the price jump size

is large and volatility jumps are absent�.

Another central issue in high frequency econometrics is that data are

not equally spaced in time: there are (at least) two possible approaches to
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study them. One is to form an equally spaced time grid (i.e., �x a sampling

frequency) and use the available data to �ll it out (clock time analysis), a

second possibility is to update the variable of interest only when an event

that changes it occurs, see, e.g., Chapter 3 in Hautsch (2012). In partic-

ular the �rst approach raises the question: what is the optimal sampling

frequency? To �x ideas consider the estimation of the quadratic variation

of the price process. There are two opposite tendencies: from one hand in-

creasing the sample frequency produces a more accurate estimator (given the

larger sample size) for the quadratic variation, on the other hand at very high

frequency the estimator is subject to the e�ect of the market microstructure

noise therefore it is biased. Aït-Sahalia et al. (2005) conclude that it is opti-

mal to sample �as often as possible provided one accounts for the presence of

the noise when designing the estimator�. In particular, Zhang et al. (2005)

estimate the integrated volatility combining two estimators: the �rst uses

all the data available, whereas the second is based on a 5 minute sampling.

More generally, several estimators for the quadratic variation have been de-

veloped: a comprehensive comparison between them is contained in Liu et al.

(2015). That study includes �jump-robust� estimators as well and concludes

that, overall, when the 5-minute realized volatility is the benchmark estima-

tor there is little evidence that more sophisticated estimators outperform it in

terms of estimation accuracy. If the 5-minute realized volatility is no longer

the benchmark and the best model is selected via the �model con�dence set�

(Hansen et al., 2011) the 5-minute realized volatility is outperformed by a few

estimators. Among them there are: 1-minute sub-sampled realized volatility,

1- and 5-second realized kernels (Barndor�-Nielsen et al., 2008) and 1- and

5-second multiscale realized variance (Zhang, 2006).

1.1.2 The Bitcoin Market: Salient Features

Unlike traditional currencies cryptocurrencies are not issued by a central

bank, instead they rely on a decentralized peer-to-peer network of users that

transact digital tokens among them. All these transactions are validated via

cryptographical protocols and are kept track of in a transparent database

that is accessible to every user, the so called blockchain. In order to maintain

such a public ledger an expensive computer network is needed: people who

make available their computing power are rewarded through a proportional
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amount of cryptocurrencies, in this way new money is issued (mining).

The �rst and most important digital currency is, in terms of market capi-

talization, Bitcoin. It was introduced in 2008 by an anonymous programmer

(or group of programmers) known as Satoshi Nakamoto. Since then it has ex-

perienced an increasing interest both from investors and regulators, yet there

is still a little literature about the empirical properties of such market. This

paper aims to shed some light in this respect.

From the existing literature two main abnormalities of Bitcoin returns

emerge. First they have tails heavier than usual stocks or �at currencies

across several time scales ranging from 1 minute to 1 day (Begu²i¢ et al.,

2018), this re�ects the fact that since its inception the Bitcoin market has

undergone several price bubbles culminating in just as many market crashes

(Gerlach et al., 2018). Nevertheless, the decay of the tails is fast enough so

that returns admit a �nite second moment (Begu²i¢ et al., 2018). The second

anomaly concerns the size of the volatility: it is six to seven times larger than

the G10 �at currencies (Osterrieder and Lorenz, 2017). A detailed study of

Bitcoin volatility is contained in Shaw (2017), see also Lahmiri et al. (2018).

1.1.3 Related Literature

One of the main focus of this article is the analysis of stylized facts. Stylized

facts are statistical qualitative properties common to a broad type of �nancial

markets and instruments revealed by several years of empirical �nancial re-

search (see Section 1.3). Many studies about the stylized facts of the Bitcoin

market are low or medium frequency studies: Urquhart (2016), Bariviera et

al. (2017), Caporale et al. (2018), Zhang et al. (2018a) and Zhang et al.

(2018b), Aggarwal (2019) recover some basic stylized facts such as negative

skewness, high kurtosis of returns (fat tails) and volatility clustering, yet they

do not con�rm the standard stylized fact according to which returns are not

correlated.

More recently, several high frequency studies have appeared. Sensoy

(2018), Zargar and Kumar (2019a), Zargar and Kumar (2019b), focus on

the e�ciency of the Bitcoin market: they use di�erent techniques to prove

its ine�ciency that can be exploited by intraday algorithmic traders (Fisher

et al., 2019). Nevertheless, Schnaubelt et al. (2019) do not �nd any signif-

icant autocorrelations of returns except for the �rst lag when the time scale
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is one minute long. Alvarez-Ramirez et al. (2018) conclude that the Bit-

coin market at di�erent time scales (day, hour, second) �exhibits periods of

e�ciency alternate with periods where the price dynamics are driven by anti-

persistence�. In the high frequency literature, there is a general agreement

about the volatility clustering phenomenon and the fact that the distribu-

tion of returns shows fat tail, whereas there are con�icting �ndings about the

skewness of returns: this statement is valid not only for the Bitcoin market

(cf., e.g., Eross et al., 2019, Zargar and Kumar, 2019a, Zargar and Kumar,

2019b, Schnaubelt et al., 2019) but it can be extended to the whole literature

about stylized facts for high frequency data (cf. Section 1.3). Eross et al.

(2019) �nd that returns (computed using a 5-min time grid) are negatively

skewed in years 2015, 2016, 2017 and positively skewed in 2014. According to

Zargar and Kumar (2019a), Zargar and Kumar (2019b) returns are positively

skewed at the shortest time scale analyzed (15-min) while they are negatively

skewed at any other time scale considered (30-min, 60-min, 120-min): their

data sample ranges from 21st Jan 2013 to 8th Jan 2018. The empirical study

in Schnaubelt et al. (2019), comprising data from 2 December 2017 to 12

October 2018, leads to the conclusion that �daily returns are slightly skewed

to the left, minutely returns are slightly skewed to the right�.

Schnaubelt et al. (2019) is the only paper in the literature containing a

(carefully) study of the order book of the Bitcoin market and reaches three

main conclusions: the order book is relatively shallow with quick rising liq-

uidity costs for larger volumes, many small trades occur, the limit orders

distribution extends far beyond the current mid price.

The intraday patterns of trading activity are investigated in Wang et al.

(2020a) and Eross et al. (2019): they analyze the Bitstamp exchange and �nd

that the market is mainly driven by european and north american investors.

More in details, �volume increases throughout the day and falls from around

2 pm until midnight, which is consistent with the intraday patterns found

in currency markets� (Eross et al., 2019). The distribution of the intraday

trading volume resembles a reversed V-shaped pattern (Wang et al., 2020a)

or an inverted U-shaped pattern (Eross et al., 2019). In addition, Eross et

al. (2019) �nd a positive correlation between volume and volatility and a

negative one between returns and volatility.

Feng et al. (2018), Lennart (2020) and Wang et al. (2020b) discuss in-

formed trading in the Bitcoin market. Feng et al. (2018) introduce a new
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indicator, tailored for cryptocurrencies, in order to detect information based

trades: using it they ��nd evidence of informed trading in the Bitcoin market

ahead of cryptocurrency-related negative Bitcoin market events, and ahead

of large positive events�. Lennart (2020) con�rms the presence of informed

traders and concludes also that �abnormal trading volume negatively corre-

lates with the degree of information asymmetry associated with transactions�.

Wang et al. (2020b) reach di�erent conclusions. In particular, they relate the

autocorrelation of daily returns to the presence of uniformed traders, while

informed traders are able to signi�cantly reduce the volatility during �bull

market� periods.

1.1.4 Contributions and Structure of the Paper

The contribution of the present analysis to the study of high frequency Bitcoin

data is threefold. First, unlike the existing literature that adopts solely a

clock time approach, we study the stylized facts listed above both in clock

time (for �ve di�erent time scales: 1 sec., 30 sec., 1 min., 5 min., 30 min.)

and in event time: while negative skewness of returns, fat tails in the returns

distribution and volatility clustering are strongly con�rmed, returns appear

to be autocorrelated at every time scale and for more than one lag. The same

conclusions hold true when the event time approach is adopted. Second,

it is one of the few studies, such as Schnaubelt et al. (2019), that deals

with the order book of the Bitcoin market: the analysis includes variables

directly linked to the orders resting on the order book such as bid-ask spread,

volume imbalance, order �ow. Third, it is the only study trying to quantify

the probability of informed trades via the novel methodology introduced in

Duarte et al. (2020) and analyzing the intraday trading volume using an

approach tailored for high frequency econometrics (counting process). In

particular, the traded volume is assumed to be proportional to the number

of trade arrivals (given the short time scale this is an acceptable assumption)

that is modelled via a counting process: the intensity of this counting process

is estimated in a non parametric way, therefore in order to avoid over�tting

the regularization technique introduced in Alaya et al. (2015) is adopted.

The rest of the paper is organized as follows. The next section presents the

data and the methodology adopted to investigate them. Section 3 and Section

4 are dedicated to the study of some stylized facts and statistical properties
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of volumes and (best) prices resting on the order book. The intraday volume

pro�le is studied in Section 5, while Section 6 investigates the probability of

informed trading.

1.2 Data and Their Treatment

1.2.1 Data Description and Data Cleaning

The analysis of Bitcoin market is conducted using a data sample ranging from

November 14, 2015 to December 31, 2016. The data were collected live via

the internet from the Bitstamp exchange1. Each record comprises twenty-

four �elds: timestamp, sign of trade, trade volume, trade price (to USD)

and the �rst �ve levels of quotes (to USD)/volumes size for both sides of the

order book (in total twenty observations). From each working day (Monday

to Friday) of this dataset we extract the records relative to the hours interval

8-18 (except in Section 1.5 where the whole time window 0-24 is considered):

in fact, from a brief study of the traded volume, this period of the day seems

the most active. Not all the collected data are reliable: days containing, in the

time window 8-18, less than 10000 observations are deleted from the dataset.

The �nal dataset comprises 276 days.

The Java script for collecting the data sometimes produced multiple records

with the same timestamp. Trade prices having the same timestamp are re-

duced to a single trade price through a weighted average (using the traded

volumes as weights). For the other variables (mid price, aggregate log vol-

ume and so on) we consider the latest value if multiple records have the same

timestamp.

Buy and sell trades are classi�ed using the tick rule: a trade is a buy

(sell) order if the trade price is greater (lower) than the mid price. The case

in which the trade price is equal to the mid price is very rare, in fact, this

event concerns 140 cases out of 48293, so we have classi�ed such trades simply

as buy trade.

1The data have been collected live using a Java script written by Graham Jones. I am
grateful to Alessio Sancetta for making the data available to me.
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1.2.2 Variables of Interest and Analysis Methodology

Traditional low frequency �nancial econometrics is based on sampling the

variables of interest at regular time intervals. High frequency �nancial data

analysis deals with non equally time spaced time series, so as a �rst step we

need to de�ne the time variable, i.e., we have to specify when to update a

given variable. The �rst possibility (clock time approach) is to �x a sampling

frequency, in our study 1 second, 30 seconds, 1 minute, 5 minutes, 30 min-

utes. Then, for each frequency, an equally time spaced grid is constructed.

If for a given time in the grid does not exist a record with the same times-

tamp then the nearest predecessor is chosen. This approach is carried out for

the following variables: trade price returns, mid price returns, aggregate log

volume, spread. This methodology reduces the impact of microstructure ef-

fects (overall at longer time scale), yet it ignores part of the information, i.e.,

the time duration between two consecutive updates. In order to model those

time durations Engle and Russell (1998) introduced the so called Autoregres-

sive Conditional Duration (ACD) model. Since that seminal paper numerous

generalizations of the ACD model have appeared in the literature, see, e.g.,

Bhogal and Ramanathan (2019), Pacurar (2008) for a review and Chapters

11, 12 in Hautsch (2012). On the one hand the use of non equally time spaced

data allows to gain more information, but on the other hand it makes more

challenging the statistical analysis. Consider, for example, the estimation of

the quadratic variation of the price process: in the general case, the adop-

tion of endogenous and non deterministic sampling makes more di�cult the

study of the asymptotic distribution of the realized volatility, indeed, neither

Gaussian approximations nor symmetry properties can be used (Fukasawa

and Rosenbaum, 2012). Fukasawa (2010a) studies the asymptotic behaviour

of the realized volatility when the sampling times are given by hitting times

of a regular time grid while Fukasawa (2010b) and Li at al. (2014) derive

central limit theorems in a more general setting (endogenous random sam-

pling) under di�erent technical assumptions. An alternative way to estimate

the integrated volatility of a jump-di�usion process with stochastic volatility

is introduced in Andersen et al. (2008): it is based on the theory of Brownian

passage times and is robust to market microstructure noise. This latter ap-

proach (price duration estimators) has been recently revisited and improved,

both in the parametric and nonparametric framework, in Hong et al. (2020):
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the simulations carried out by the authors show that the non-parametric price

duration estimators have the same accuracy as the best realized volatility

type estimators, while the parametric price duration estimator signi�cantly

outperforms all realized volatility type estimators.

We perform an event time study as well: in this occasion we update the

variable of interest only when certain events have happened. In the following

we specify for which variables this approach is meaningful and what is/are

the event/s that we take into account.

• Trade price returns. An event occurs if the current trade price is di�er-

ent from the previous trade price.

• Mid price returns. An event occurs if the current top ask (or bid) price

is di�erent from the previous ask (or bid) price.

• Log Ask Volumes. An event occurs for the ith level aggregate log ask

volume if one of the current ask volume up to the ith level is di�erent

from the corresponding previous ask volume up to the ith level.

• Volume imbalance. An event occurs, for the volume imbalance at level

i, if the current ith ask (or bid) volume, is di�erent from the previous

ask (or bid) volume at the same level.

Let us de�ne the variables listed above. Trade price returns (or changes)

Rtrade
t and mid price returns (or changes) Rmid

t at time t are given by:

Rtrade
t = Pt − Pt−1

Rmid
t = Mt −Mt−1

where: Mt, Pt are the mid price (the mid price at time t is given by the

arithmetic average between top bid and top ask quote) and the trade price

at time t respectively. Given i = 1, . . . , 5 the ith level aggregate log ask (or

bid) volume at time t is de�ned as log(X
(1)
t + . . .+X

(i)
t ) if X

(j)
t is the ask (or

bid) volume size at level j and time t. The volume imbalance at time t and

level k, k = 1, . . . , 5, is given by

bidSizet(k)− askSizet(k)

bidSizet(k) + askSizet(k)
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where bidSizet(k) (askSizet(k)) is the volume bid (ask) size at level k. Fi-

nally for the order �ow, we do not construct an arti�cial time grid nor con-

sider an event time approach. We compute the �ve minute order �ow. We

do so computing the signed volume over non-overlapping �ve minutes time

intervals, i.e., the order �ow after t minutes Ot (t ∈ {5, 10, . . .}) is given by

Ot =
∑

s∈Qt
Vs where Vs is the signed volume at time s (positive in case of

a buy trade, negative in the opposite case) and Qt is the set of timestamps

belonging to the time interval (t, t− 5].

Our study focuses on two kinds of statistical properties of the time se-

ries involved: linear dependence and their distributions, in particular we are

interested in establishing their departure from normality. To assess linear

dependence we use the Ljung-Box test with 10 lags, while normality is ascer-

tained through the Jarque-Bera test.

1.3 Stylized Facts

More than �fty years of empirical �nancial research have revealed the ex-

istence of some statistical qualitative properties common to a broad type

of �nancial markets and instruments, such properties are known under the

name of stylized facts. For a general review of these stylized facts and the

econometric techniques usually employed see Cont (2001) and Pagan (1996),

inter alia. In the framework of high frequency econometrics Guillaume et al.

(1997) focus on the analysis of intraday stylized facts relative to foreign ex-

change markets (cf. also Chapter 5 in Gençay et al., 2001), whereas Caporin

et al. (2015) is dedicated to the study of precious metals. Chakraborti et al.

(2011) discuss also some empirical facts relative to the limit order book. The

following stylized facts are an excerpt from those listed in Cont (2001): they

coincide with those listed in Caporin2 et al. (2015) and appear also in Guil-

laume et al. (1997) and Chakraborti et al. (2011) except for the asymmetry

of returns.

• Absence of autocorrelations: Returns are uncorrelated except for

the �rst time lag at the highest frequencies.

2Actually Caporin et al. (2015) �nd out that the asymmetry can be positive or negative,
whereas we assume that �asymmetry� stands for negative asymmetry. Notice also that in
the FX markets �asymmetry� does not seem to be a stylized facts (cf., Guillaume et al.,
1997 and the footnote on page 224 in Cont, 2001).
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Figure 1.1: Histograms relative to trade price returns. Left: 30 sec. frequency.
Right: 30 min. frequency. Even from an eye inspection the distributions do
not resemble a normal one.

• Fat tails: The kurtosis of the unconditional distribution of returns

is higher than a normal distribution, that is extreme events are more

frequent than would be expected under a normal distribution.

• Asymmetry: The unconditional distribution of returns has negative

skewness, that is extreme negative returns are more frequent than ex-

treme positive returns: this is another evidence against normality as-

sumption of the distribution of returns.

• Aggregated normality: Increasing the time scale over which returns

are calculated, the distribution of returns resembles a normal one.

• Volatility clustering: Volatility of returns exhibits a positive auto-

correlation, this means that a large absolute return tends to be followed

by another large absolute return.

The rest of the section is dedicated to the analysis of the stylized facts listed

above both for trade price returns and mid price returns.

1.3.1 Trade Price Returns

Figures 1.1 and Figure 1.2 represent Bitcoin returns. Table 1.1 summarizes

the stylized facts discussed above. The skewness is negative at every time

scale, the tails are heavier than the normal distribution and the Jarque-Bera

test con�rms the non normality. Figure 1.3 displays the autocorrelation func-

tion relative to two di�erent frequencies (1 sec. and 30 min.), the bands
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represent the signi�cance level at 5%. Roll's model may explain the �rst or-

der dependence of returns. According to that model the observed price at

time t, say Pt, is given by

Pt = P ∗t +
s

2
It

where P ∗t is the fundamental price at time t, s is the bid-ask spread and It are

i.i.d. random variables indicating whether the transaction is buyer initiated

or seller initiated, more explicitly

It =

1 with probability 0.5 (buyer initiated)

−1 with probability 0.5 (seller initiated).

It can be shown that the correlation between two consecutive price changes is

negative (cf. Chapter 3 in Campbell et al., 1997 for an intuitive explanation

or Chapter 6 in de Jong and Rindi, 2009 for a more thoroughly discussion).

Nevertheless Roll's model cannot justify any higher order linear correlation

displayed by the time series: the autocorrelations are not strong but note that

the p-value of Ljung-Box test (10 lags) is less than 1%. This phenomenon

seems to be con�rmed by other empirical studies (inter alia Zargar and Ku-

mar, 2019a, Zargar and Kumar, 2019b, Sensoy, 2018, Caporale et al., 2018,

Barivieria et al., 2017 and Urquhart, 2016) and it could be due to the preva-

lence of retail traders in the market (cf., e.g., Wang, 2020b). Volatility clus-

tering is apparent from Figure 1.4. The persistence of the autocorrelations

(of squared returns) strongly depends on the length of the time scale: from

a detailed analysis emerges that if the time scale is 30 sec. then the autocor-

relation is signi�cant (5% level) even for more than 2000 lags, instead if the

time scale is 30 min. the signi�cant lags are about 200. Additional plots are

contained in Appendix 1.8.
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Figure 1.2: Trade price returns at di�erent time scales. Increasing the time
scale returns tend to be larger (in absolute value).

Time scale Skewness Kurtosis p-val J-B test p-val L-B test
1 sec. -0.3714 368.2615 < 0.01 < 0.01
30 sec. -0.2724 29.3286 < 0.01 < 0.01
1 min. -0.2682 19.7957 < 0.01 < 0.01
5 min. -0.6159 24.1563 < 0.01 < 0.01
30 min. -0.9759 29.0751 < 0.01 < 0.01

Table 1.1: Skewness, kurtosis, p-value of Jarque-Bera test, p-value of Ljung-
Box test relative to trade price returns. Returns are negatively skewed (es-
pecially at low frequency), display fat tails, appear to be autocorrelated and
not normal at each time scale.
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Figure 1.3: ACF of trade price returns at di�erent time scales. Horizontal
lines indicate the 95% con�dence interval. Increasing the time scale the num-
ber of signi�cant lags decreases because the e�ect of the microstructure noise
vanishes.

Figure 1.4: ACF of squared trade price returns at di�erent time scales: 30
sec. (left) and 30 min. (right). Horizontal lines indicate the 95% con�dence
interval. Volatility clustering is apparent. In addition, increasing the time
scale the number of signi�cant lags decreases.

As discussed in Section 1.2.2 it is meaningful to consider trade returns in

event time: the relative time series is shown in Figure 1.5, its distribution

does not resemble a normal one (see the histogram in the same �gure). In

fact, although skewness is close to zero, kurtosis is large (about 11) and the

p-value of the Jarque-Bera test is less than 1%. First order autocorrelation is

evident. Higher autocorrelations are also signi�cant at 5% level, but appear

to be weak: in the best case, about �ve times weaker than the �rst order

autocorrelation (the p-value of the Ljung-Box test is less than 1%). Squared

returns are strongly autocorrelated: see Figure 1.5. We can conclude that the

results in event time are similar to those in clock time.
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Figure 1.5: Trade returns in event time. From top left to bottom right: plot,
histogram, ACF (of returns) and ACF of squared returns. Horizontal lines
indicate the 95% con�dence interval. Non normality and autocorrelation of
returns are apparent as well as volatility clustering.

1.3.2 Mid Price Returns

The analysis conducted in the previous subsection can be repeated using

the mid prices instead of the trade prices. Skewness and kurtosis of returns

appear signi�cantly larger in absolute value (at any time scale) than the trade

price case, and a fortiori the hypothesis of normality is always rejected (see

Table 1.2). At short time scales the autocorrelations of mid price returns is

more persistent than that of trade price returns. However, the persistency

decreases at longer time scales (cf. Figure 1.8 and the graphs contained in

Appendix 1.8) nevertheless the p-value of the Ljung-Box test is less than 1%.

Volatility clustering is apparent, see Figure 1.9.
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Time scale Skewness Kurtosis p-val J-B p-val L-B
1 sec. -8.6849 1.5872e+03 < 0.01 < 0.01
30 sec. -3.0086 127.9161 < 0.01 < 0.01
1 min. -2.8356 104.0600 < 0.01 < 0.01
5 min. -1.5861 55.7517 < 0.01 < 0.01
30 min. -3.0660 76.2204 < 0.01 < 0.01

Table 1.2: Mid price returns: skewness, kurtosis, p-values of Jarque-Bera
(p-val J-B) and Ljung-Box (p-val L-B) tests. Returns are negatively skewed,
display fat tails, appear to be autocorrelated and not normal at each time
scale.

Figure 1.6: Mid price histograms. Left: 30 sec. frequency. Right: 30 min.
frequency. Even from an eye inspection the distributions do not resemble a
normal one.

Figure 1.7: Mid price returns at di�erent time scales. Increasing the time
scale returns tend to be larger (in absolute value).
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Figure 1.8: Mid price returns: ACF at di�erent time scales. Horizontal lines
indicate the 95% con�dence interval. Increasing the time scale the number
of signi�cant lags decreases because the e�ect of the microstructure noise
vanishes.

Figure 1.9: Mid price squared returns: ACF at di�erent frequencies (left:
30 sec., right: 30 min.). Horizontal lines indicate the 95% con�dence inter-
val.Volatility clustering is apparent. In addition, increasing the time scale the
number of signi�cant lags decreases.

As for the trade prices we can carry out a statistical analysis similar

to that above in event time (see Section 1.2.2). Figure 1.10 resumes our

�ndings: non normality (skewness is negative and close to zero, large kurtosis

and the p-value of Jarque-Bera test is less than 1%), p-value of Ljung Box

test (relative to returns) is less than 1% (the �rst order autocorrelation is

particularly signi�cant, instead at higher lags the correlations appear very

weak yet signi�cant). Finally, once again the volatility clustering is strongly

con�rmed.
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Figure 1.10: Mid price returns in event time. From top left: returns, ACF
of returns, ACF of squared returns, histogram. Horizontal lines indicate the
95% con�dence interval. Non normality and autocorrelation of returns are
apparent as well as volatility clustering.

1.4 Additional Features of the Order Book

In this section we collect some statistical properties of the volumes and quotes

resting on the order book.

1.4.1 Log Ask and Bid Sizes

As discussed in Section 1.2.2 log-volumes have been studied at di�erent fre-

quencies (30 sec., 1 min., 5 min., 30 min.) and aggregated over �ve levels.

Aggregating volumes produces higher positive autocorrelations at any fre-

quency and smoother histograms that are leptokurtic. Hence the Jarque

Bera test strongly rejects the hypothesis of normality (all the p-values are

less than 1%) independently on how many levels are aggregated and the time

scale considered. Figure 1.11 , Figure 1.13 and Figure 1.12 are an excerpt of
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the analysis, further graphs can be found in Appendix 1.8. A similar study is

possible considering event time instead of clock time. Again aggregating vol-

umes over more levels strengthen the autocorrelations at every lag analyzed,

additionally it has a regularizing e�ect on the distribution: aggregating �ve

levels the shape of the distribution becomes smoother, nevertheless the Jar-

que Bera test has p-value less than 1%. The ACF and PACF plots in Figure

1.13 and 1.14 suggest an ARMA dynamics for the log volumes.

Figure 1.11: Log ask volume histograms at di�erent time scales (and for
di�erent number of aggregated levels). Left: �rst level (30 sec.). Right: �ve
levels aggregated (30 sec.). Aggregating volumes and lengthening time scales
produces �smoother histograms�.

Figure 1.12: Five levels aggregate ask volumes at two di�erent time scales:
60 sec. (left) and 30 min. (right). Volumes resting on the order book display
a mean reverting behaviour.
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Figure 1.13: (Bottom) Top: Log ask volume (P)ACF. Left: �rst level. Right:
�ve levels aggregated. The time scale is 30 sec.. Horizontal lines indicate
the 95% con�dence interval. The plots show that the volumes resting on the
order book are strongly serially correlated especially when di�erent levels are
aggregated.
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Figure 1.14: Log ask volumes in event time. From top left to bottom right:
histogram relative to the �rst level, histogram relative to �ve levels aggre-
gated, ACF relative to the �rst level, ACF relative to the �ve levels aggre-
gated. Horizontal lines indicate the 95% con�dence interval. The �ndings are
similar to the clock time study: aggregating volumes and lengthening time
scales produces higher positive autocorrelations and smoother histograms. In
addition, the volumes resting on the order book appear to be strongly serially
correlated especially when di�erent levels are aggregated.

Repeating the same analysis above, both in clock time and in event time,

for the other side of the order book (i.e., the bid side) produces results of

identically nature, thus we omit them.

1.4.2 Order Flow

Order �ow is an important microstructural variable in market movement fore-

casting (Cont et al., 2014). Figure 1.15 displays the distribution of the �ve-

minute order �ow and its ACF function: the distribution is peaked around

zero, the ACF diagram reveals signi�cant autocorrelatios for di�erent lags.

Figure 1.16 shows the correlation between order �ow and trade price returns

calculated using a 5 min. time scale: order �ow is not linearly correlated with
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future returns.

Figure 1.15: Order �ow: histogram and ACF. Horizontal lines indicate the
95% con�dence interval. The plots show that the distribution of the order
�ow is not normal and the order �ow is not serially correlated.

Figure 1.16: Cross correlation function between order �ow and trade price
returns calculated using a 5 min. time scale. Horizontal lines indicate the
95% con�dence interval. Order �ow does not seem to be useful in order to
predict future returns.

1.4.3 Volume Imbalance

Volume imbalance is another fundamental variable in market movement fore-

casting as showed in Sancetta (2018) and Cartea et al. (2018). We study

the volume imbalance relative to all the �rst �ve levels of the order book in

event time (for a de�nition see Section 1.2.2): Figure 1.17 summarizes the

results. Both the ACF diagram and the histogram distribution do not seem

to be substantially a�ected by the level, so we report the �ndings concerning
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just two levels. The autocorrelations are positive and persistent and the dis-

tribution appears to be far di�erent from a normal one, in particular there

are peaks around the extreme values (plus and minus one).

Figure 1.17: Volume imbalance. Top: ACFs relative to the �rst and �fth level,
respectively. Horizontal lines indicate the 95% con�dence interval. Bottom:
histograms relative to the �rst and �fth level. The two top �gures show that
the volume imbalance is strongly serially correlated. In addition, the spikes,
in the histograms, at -1 and +1 suggest that the distribution is a mixture of
continuous and discrete random variables.

1.4.4 Spread

In this �nal subsection we address the study of the spread, i.e., the di�er-

ence between best ask price and best bid price. Figure 1.18 summarizes the

empirical �ndings showing the spread and its autocorrelation diagram. The

Ljung-Box test has always p-value less than 1%, thus the hypothesis of no

autocorrelation is rejected.
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Figure 1.18: Spread and its ACF. Horizontal lines indicate the 95% con�dence
interval. The spread displays a mean reverting behaviour and it appears to
be strongly serially correlated.

1.5 Trading Volume Estimation

The goal of this section is to model the intraday trading volume. For US

equities the typical daily trading volume curve is U shaped with spikes cor-

responding to the market open and close: we do not observe this shape, yet

jumps in the trading activity are clearly present. We want to capture these

jumps but, at the same time, we aim at regularizing the trading volume curve.

Each day is divided into K = 288 intervals, i.e., each interval spans a period

of time �ve minutes long. Figure 1.19 represents the average number of trade

arrivals during the 24 hours of the day over the 276 days.

Figure 1.19: Average number of trade arrivals in the Bitcoin market during
the 24 hours. Horizontal axis: hour of the day (GMT). Vertical axis: number
of trades. The pattern does not resemble a U-shaped or M-shaped curve
typically found in the literature: this is not completely unexpected given
that the Bitcoin market, unlike traditional markets, is open 24/7.
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Let v the K−dimensional vector having as ith entry the average number of

trade arrivals over the m days during the time interval (5×(i− 1) minutes,

5 × i minutes]. Then we look for a vector x that minimize the following

function (‖·‖ denotes the euclidean norm)

1

2
‖x− v‖2 + µ

K∑
i=1

|xi+1 − xi| (1.3)

i.e., a total variation penalty term is added to a quadratic type contrast

function. The scope of the latter term is to get a vector �close� to v while the

former term promotes the sparsity of the �rst di�erences of the coe�cients

(i.e., they tend to be locally constant): the role of the parameter µ > 0

is to control the trade o� between �t and sparsity. This type of penalty

term has been applied to the multiple change-point problem, cf., e.g., Alaya

et al. (2015) and is a generalized version of the Lasso, the so called fused

estimator (cf., e.g., Tibshirani and Taylor, 2011). Even if we do not impose a

nonnegativity constraint we get nonnegative estimators for the vector v: this

justi�es the choice. In lieu of minimizing (1.3) we solve its dual formulation,

cf. Equation (13) in Tibshirani and Taylor (2011). First, it is required to

solve the following constrained quadratic problem

max
‖z‖∞≤µ

(
1

2
‖R′z‖2 − z′Rv

)
(1.4)

where R′ (z′, respectively) is the transpose matrix (vector, respectively) of R

(z, respectively) and

Rij =


−1 if j = i, i = 1, 2, . . . , K − 1

1 if j = i+ 1, i = 1, 2, . . . , K − 1

0 otherwise.

If ẑ solves (1.4), then x̂, i.e., the minimizer of (1.3), is given by

x̂ = v −R′ẑ.

We perform the optimization using di�erent values of the parameter µ : to

choose the �right� regularized model we adopt the Akaike Information Criteria

48



(AIC). AIC is given by:

AIC =
2× (Number of jumps)

K
+ log

(
‖x− v‖2

K

)

where the number of jumps is equal to cardinality of the set {i ≥ 1 :|xi+1 −
xi| > 10−12}3. Table 1.3 summarizes the results obtained for di�erent values

of µ: according to the AIC the best model has 102 jumps and corresponds to

µ = 0.5. Figure 1.20 represents the vector x̂ relative to di�erent values of the

parameter µ : when µ increases the number of jumps decreases.

µ AIC Number of jumps
0.5 -1.557 102
1 -1.2883 68
1.5 -1.2936 48
2 -1.2993 42
2.5 -1.3006 41
3 -1.2856 41
5 -1.2328 37

Table 1.3: AIC and number of jumps relative to di�erent values of the pa-
rameter µ. A jump occurs whenever |xi − xi−1| > 10−12. As µ increase the
number of jumps decreases and the AIC increases.

The top left plot in Figure 1.20 helps identify jumps in the trading activity:

in particular the peak, reached at 16 GMT, is followed by a signi�cant slow

down. That time almost coincides with the closing time of the London Stock

Exchange (16:30 GMT). More in details, from 10:30 GMT to 13 GMT there

is a steeply increase in the trading activity, then during the period 13-16

GMT there is a stable and high trading activity: the peak is reached at 16

GMT, thereafter the traded volume gradually declines. The trading activity

is concentrated during the hours in which the European and USA markets

are opened: this may indicate that the Bitstamp exchange trading activity is

mostly driven by European and USA traders.

3The results do not change if we de�ne the number of jumps as the cardinality of the
set {i ≥ 1 :|xi+1 − xi| > 10−5}.
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Figure 1.20: Estimated intensity relative to di�erent values of the parameter
µ. From top left to bottom right: µ = 0.5, 1, 1.5, 2. Horizontal axis: hour of
the day (GMT). Vertical axis: number of trades per unit of time. Increasing
µ the graph is clearly smoother. The AIC criteria selects the top left plot.

1.6 Probability of Informed Trading

Market microstructure dynamics could be driven by informed trades. The

PIN (Probability of Informed Trading) model was introduced in Easley et

al. (1997) to compute, in illiquid markets, the probability that a trade is

information based. As pointed out in Duarte and Young (2009) that model

is unable to match some empirical �ndings, notably the positive correlation

between buys and sells and their large variance. Duarte et al. (2020), in

order to overcome those drawbacks, put forwards a few alternative models: we

shall analyze the Bitcoin market via the GPIN (Generalized PIN) model. The

GPIN allows to estimate the Conditional Probability of an Information Event

at day t (CPIE(t)), i.e., the conditional probability of private-information

arrival given the data observed on day t. Figure 1.22 contains the graph

of the daily closing Bitcoin price and Figure 1.21 shows the �ltered CPIE,
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i.e., the moving average of the CPIE based on a 20 days time window. An

eye inspection of the two plots reveals that a surge in prices is followed by a

decline in the CPIE. This could be due to a herd behavior: high prices attract

uniformed (retail) traders that follow the upward trend.

Figure 1.21: Filtered CPIE. The �ltered CPIE is the moving average of
the CPIE based on a 20-day time window. Horizontal axis: days. Vertical
axis: �ltered CPIE. Since mid March 2016 the probability that a trade is
informed-type oscillates around 0.5.

Figure 1.22: Bitcoin daily closing price. Horizontal axis: day. Vertical axis:
closing price. The graphs suggests an exponential growth for the Bitcoin
price.

1.7 Conclusions

The study con�rmed the validity, for the Bitcoin market, of some well known

stylized facts common to mature �nancial markets (negative skewness, fat

tails and volatility clustering of returns) except for the e�cient market hy-

pothesis: returns appear to be autocorrelated at every time scale analyzed,

51



i.e., 1 sec, 30 sec, 1 min, 5 min, 30 min. The same conclusion is reached by sev-

eral other papers in the literature. The study of the information based trades

via the Generalized Probability of Informed Trading (GPIN) model supports

the idea that high prices attract retail traders that act as �noise traders�: this

could be one of the cause of the not perfect e�ciency of the market. In ad-

dition, it is in line with the conclusion of Petukhina et al. (2019), according

to them �the digital realm of cryptocurrencies has yet to be conquered by

the machines and is still �rmly in the hands of free-time-/holiday-traders or

could be even driven by respective start-up's�. The paper also analyzed some

other variables related to the orders resting on the order book. They display

some typical features of high frequency data such as strong serial correlation,

long memory (ask and bid volumes, bid-ask spread) and distributions that

are mixture of continuous and discrete random variables (volume imbalance).

Finally, the trading volume pro�le does not resemble a classic pattern and

suggests that the trading activity in the Bitstamp exchange is mainly driven

by European and USA investors.
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1.8 Appendix: Additional Graphs and Plots

In this section we collect further graphs and plots.

1.8.1 Trade Returns Plots

Figure 1.23: Trade price returns at di�erent time scales. Increasing the time
scale returns tend to be larger (in absolute value).
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Figure 1.24: ACF of trade price returns at di�erent time scales. Horizon-
tal lines indicate the 95% con�dence interval. Increasing the time scale the
number of signi�cant lags decreases.
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Figure 1.25: ACF of squared trade price returns at di�erent time scales.
Horizontal lines indicate the 95% con�dence interval. Volatility clustering is
apparent at every time scale.
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1.8.2 Mid price returns plots

Figure 1.26: Mid price returns at di�erent time scales. Increasing the time
scale returns tend to be larger (in absolute value).
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Figure 1.27: Mid price returns: ACF at di�erent time scales. Horizontal lines
indicate the 95% con�dence interval. At every time scale returns appear to
be autocorrelated.
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Figure 1.28: Mid price squared returns: ACF at di�erent frequencies. Hor-
izontal lines indicate the 95% con�dence interval. Volatility clustering is
apparent at every time scale.

58



1.8.3 Log Volumes Plots

Figure 1.29: Log ask volume histograms at di�erent time scales and number
of aggregated levels. From top left to bottom right: �rst level (5 min.), �ve
levels aggregated (5 min.), �rst level (30 min.), �ve levels aggregated (30
min.). Aggregating volumes and lengthening time scales produces �smoother
histograms�.
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Figure 1.30: Log ask volume ACF for di�erent time scales and number of
aggregated levels. Top: 5 min.. Bottom: 30 min.. Horizontal lines indicate
the 95% con�dence interval. The volumes resting on the order book appear
to be strongly serially correlated especially when more levels are aggregated.
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Chapter 2

Estimation of an Order Book

Based Intensity Model: How

Prone is a Market to

Manipulation?

Abstract. We model the intensity of trade arrivals to understand how elec-

tronic markets could be manipulated by high frequency algorithms. We relate

trade arrivals to the impact of various order book events, such as buy and sell

pressure, spread, etc. We adopt a stochastic intensity model. The intensity

of trade arrivals is driven by a baseline intensity and additive functions of

the covariates, which we call impact functions. If the impact functions for

certain order book events satisfy conditions such as monotonicity, a spoof-

ing algorithm could be successfully implemented. Such an algorithm would

place �ctitious resting orders to distort the view of demand and supply. The

analysis requires the introduction of a statistical framework suitable for high

frequency data with sample sizes in the order of possibly hundreds of million

or billion data points.We apply our methodology to the study of the crude

oil futures that trade on the Chicago Mercantile Exchange. We can conclude

that, in our sample period, such futures contract could be manipulated under

certain circumstances that we are able to identify.
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2.1 Introduction 1

Market manipulation is not uncommon in electronic markets. To �x ideas,

consider the illegal practice of spoo�ng. Typically, a spoo�ng algorithm

places a relatively small buy order on the best bid, and almost contempo-

raneously it places a sequence of relatively large sell orders on the ask side

of the book. This action provides a snapshot of the demand and supply

schedule, where the market appears to be willing to sell. The reason is

that there are considerably more orders to sell than to buy. This will of-

ten induce a trader (usually another algorithm) to place a sell order that

crosses the bid-ask spread. In consequence the small limit order placed by

the spoo�ng algorithm on the best bid will be �lled. Once this happens,

the spoo�ng algorithm will cancel all the large limit orders placed on the

ask side of the book. The game then repeats reversing the role of the two

sides of the book: a small resting order on the ask, and relatively large or-

ders on the bid. The �nal result is that the manipulator gains the spread.

Examples of this practice can be found in the 3 July 2013 Final Notice

given to Michael Coscia by the Financial Conduct Authority (URL:https:

//www.fca.org.uk/publication/final-notices/coscia.pdf).

High frequency trading strategies rely on order book features. In the

above spoo�ng example, the volume imbalance between bid and ask quanti-

ties appears to be crucial. In fact, the literature has found that volume im-

balances and other order book variables have an impact on price movements

and trade arrivals at very short term horizons (Cont et al., 2014, Sancetta,

2018). MacKenzie (2017) reports anonymous interviews with ex algorithmic

traders of the market maker Automated Trading Desk. These interviews con-

�rm the importance of order book imbalances for price movement. Hence, a

market manipulator can place �ctitious orders (i.e., orders that will be soon

canceled) with the purpose of modifying the view of demand and supply to

mislead other traders.

A practical implementation of spoo�ng needs to account for other quanti-

ties such as bid-ask spread and quoted sizes (cf. page 2 point 9 in the Financial

Conduct Authority document mentioned above). Despite these intricacies, re-

cent cases in the press (Singh Sarao, Michael Coscia) have clearly shown that

high frequency market manipulation is possible. The regulator, in order to

1This chapter is co-authored with Alessio Sancetta.
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detect spoo�ng practices, may �rst have to �nd whether the market has some

statistical characteristics that makes it particularly prone to be manipulated.

Our model aims to capture one of this characteristic, i.e., the relationship

between market orders and some (easily manipulatable) covariates.

For example, consider the case of manipulation with the purpose of �ll-

ing a resting order on the ask (i.e., sell at the ask price). We would want

the intensity of buy orders to increase relatively to sell orders. The market

manipulator would act so to make this possible. To understand how this can

be done, we need a model quantifying the relation between the number of

trade arrivals and order book variables (e.g., volume imbalance and spread).

The variables are the ones that an algorithm could distort with the aim to

trade advantageously. Because of irregularly spaced time series data, it is

natural to adopt a stochastic intensity counting processes model (Bauwens

and Hautsch, 2009). Our intensity model is driven by a baseline process times

additive functions of the covariates. We call these functions impact functions

and one of the main goal of the paper is to estimate these functions.

2.1.1 Goals and Contribution

We analyze transaction and order book data for crude oil futures over a

period of six months during liquid hours. We estimate the shape of the

impact functions of market covariates of buy and sell trades. We �nd that

the variables that have most impact on buy and sell trade arrivals are the

ones that can be most easily manipulated by a trader. These variables are

predominantly the quoted volume imbalances on the �rst few levels of the

order book. The degree of top of book imbalances seem to dictate the urgency

of aggressive orders by uninformed traders. This result suggests that spoo�ng

does require a certain degree of risk as orders on top of book need to be

manipulated. Attempting to manipulate the market by placing orders deeper

in the book is not as e�ective. Orders deeper in the book are less likely to be

�lled, hence they are less risky when trying to manipulate the market.

Our empirical conclusions rely on an a methodology to model and esti-

mate the intensity of trade arrivals as a function of market covariates. The

estimation procedure can be used with large datasets. Our approach allows us

to impose constraints on the impact functions using quadratic programming.

Moreover, we observe that our non-negativity constraint on the intensity and
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the impact functions leads to some form of �shrinkage�. In particular, we

estimate each impact function by a Bernstein polynomial and observe that

most of the coe�cients are zero due to the non-negativity constraint. This is

what we mean by "shrinkage", and it does not require to explicitly employ

a penalty on the coe�cients. The intuition behind this phenomenon can be

found in results in Chapter 3.

We represent the impact functions using Bernstein polynomials. We cast

our estimation problem as a quadratic optimization problem with linear con-

straints. The estimation procedure allows us to deal with a large number of

time series observations. For example in our empirical application we have

approximately 46 million event updates. In order to recast our problem into

a quadratic programming problem, we use a two step procedure, where in the

�rst step the unknown baseline intensity is estimated.

Given the large sample size, to compare two competing estimators we

can use the predictive sequential (prequential) log-likelihood (Dawid, 1984)

or sample splitting (cf. Cox, 1975 and see also Section 2.2.2 for details).

The derived test statistic is a martingale version of the Diebold-Mariano

test statistic (Diebold and Mariano 1995), and it is asymptotically standard

normal under the null of equal predictive performance.

As a byproduct, our use of Bernstein polynomials easily lends itself to

estimation under linear restrictions to test monotonicity and convexity. As

intuitively obvious, the use of constraints is useful when the estimation er-

ror dominates the approximation error. For example this is the case when

considering recursive estimation with a rolling window to reduce bias. Then,

the use of constraints reduces the higher estimation error resulting from the

use of a smaller sample. This is substantiated by simulation results that are

reported in the supplementary material.

Monotone and convex regression estimation and testing is a well estab-

lished problem in statistics and often relies on splines (e.g., Ramsay, 1988,

Meyer, 2008, Wang and Meyer, 2011, and references therein). This is an im-

portant problem in econometrics (e.g., Yatchew and Bos, 1997, Yatchew and

Härdle, 2006). Unlike this literature, we do face some challenges due to the

use of high frequency data and a continuous time model whose likelihood is

not linear in the parameters. Our two step procedure allows us to impose

constraints in a seamlessly way. Note that constraints are always needed to

impose non-negativity of the intensity. Our methodology can be used with
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splines, but we found Bernstein polynomials easier to implement. Our simula-

tions also report results using B-splines and we could not �nd any substantial

improvement.

Finally, our focus is on predictive ability rather than consistency toward

a true value. This is relevant if the goal is to manipulate the market in a

pro�table way. Nevertheless, we provide a concise heuristic explanation on

why our procedure should be consistent under suitable regularity conditions

(Section 2.4). We prefer an outline of the method of proof, as the tools to

lend rigor to the arguments would not be new, but would require lengthy

technical proofs.

2.1.2 Outline of the Paper

The paper is organized as follows. Section 2.2 introduces the stochastic inten-

sity model for buy (sell) orders. There we describe the estimation methodol-

ogy and the testing approach. Section 2.3 analyzes a high frequency dataset

for crude oil futures. Section 2.4 provides a justi�cation of our methodology

via asymptotic arguments. Section 2.5 reports a set of numerical experiments

to show that the asymptotic arguments hold in �nite sample. The numer-

ical experiments also compare the use of Bernstein polynomials to splines.

Concluding remarks are in Section 2.6.

Supplementary material, in the form of an Appendix, collects further de-

tails about the testing procedure, the numerical experiments and the empir-

ical study. Finally, the methodology discussed in the main part of the paper

is applied to the Bitcoin market to assess its manipulability.

This paper also comes with companion code that can be downloaded from

the following URL https://github.com/asancetta/IntensityEstimation.

The code contains MATLAB functions to carry out the constrained estima-

tion procedure proposed in this paper as well as an example of work�ow to

analyze datasets using our methodology.

2.2 The Model and its Estimation

Suppose that (N (t))t≥0 is the number of trade arrivals. For the sake of def-

initeness, consider buy trades. Let (X(t))t≥0 be a left-continuous stationary

process representing K covariates. The counting process admits a stochastic

65



intensity λ0 such that

λ0 (t) = h0 (t) g0 (X (t)) , (2.1)

where h0 is a baseline intensity (a stationary predictable process) and g0 is a

continuous additive function

g0(x1, . . . , xk) =
K∑
k=1

g0,k (xk) . (2.2)

We choose additivity as a compromise between �exibility and ease of interpre-

tation of each covariate's impact. Notice that if K > 1 the model is identi�ed

up to a location shift. The intensity in (2.1) means that a.s.

lim
s↓0

E(N(t+ s)−N(t)|Ft) = lim
s↓0

Pr (N (t+ s)−N (t) = 1|Ft) = λ0 (t) (2.3)

where we can assume that Ft is the σ-algebra generated by (N (s) , X (s))s≤t.

Λ will denote the compensator of the counting process N , i.e., Λ (t) = Λ((0, t])

=
∫ t

0
λ0 (s) ds.

Hence, the counting process quanti�es the magnitude of the trading ac-

tivity, i.e., it counts the number of buy arrival orders instant by instant. It is

in�uenced by a background noise (the baseline process h0) and by a number of

variables such as volume imbalance and spread. Exact de�nition of these vari-

ables shall be given in due course. At time t, these variables are represented

by the K-dimensional variable X (t), and the impact that the kth variable

has on the intensity is quanti�ed by g0,k. Next, we consider estimation of the

model.

2.2.1 Estimation

By additivity of the model, there is no loss of generality in taking K = 1.

This is to reduce the notational burden in favor of clarity of exposition.

We represent g0 (x) in terms of a Bernstein polynomial of order J on [0, 1].

This means that g0 (x) =
∑J

j=0 ajBj (x), where Bj (x) :=
(
J
j

)
xj(1 − x)J−j

and the coe�cients aj are scalars. In consequence, the variables need to be

mapped into [0, 1], see Section 2.7.5 in the Appendix for a discussion. In
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general, for arbitrary but continuous g0 (x) on [0, 1], we have that

g0 (x) = lim
J→∞

J∑
j=0

g0

(
j

J

)
Bj (x) , (2.4)

where the equality holds under the uniform norm (Lorentz, 1986, Theorem

1.1.1).

The Loss Function

The sample size is large, hence particular attention has to be paid to com-

putational aspects. To begin we replace the maximum likelihood estimator

with a quadratic contrast function estimator. We follow a two step proce-

dure. First h0 is estimated (we shall discuss possible functional forms for h0

in Section 2.2.1). Second we estimate the impact function g0 using quadratic

programming. We then iterate the procedure. In Section 2.4.2 we argue that

this should minimize the full log-likelihood, under regularity conditions.

Suppose that hT is a good estimator for h0. To �nd an estimate of g0, say

gT , we minimize the contrast function

RT (a, hT ) := −2

∫ T

0

∑J
j=0 ajBj(X(t))

hT (t)
dN (t) +

∫ T

0

( J∑
j=0

ajBj(X(t))
)2
dt

(2.5)

with respect to (w.r.t.) {aj ≥ 0 : j = 0, 1, 2..., J}. Section 2.4 justi�es this

procedure. From (2.4), we can see that the constraint naturally ensures non-

negativity of the intensity.

De�ne the ith jump time ofN by Ti := inf {s > 0 : N (s) ≥ i}, with T0 = 0.

The covariates update at random event times possibly di�erent from the

Ti's. As a rule of thumb for order book covariates, the number of updates

tends to be about 10 times more frequent than the number of trade updates.

Let {tj : j = 1, 2, ...} be the times at which there is an update either in the

counting process or the covariates. Note that N (t) = N (Ti) for t ∈ [Ti, Ti+1)

(right continuous) and X (t) = X (tj−1) for t ∈ (tj−1, tj] (left continuous).

Suppose that we observe the process until time T = Tn and that in this

period there are m event updates, i.e., 0 = T0 = t0 < t1 < t2 < ... < tm = Tn.
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Then, (2.5) becomes

−2
n∑
l=1

∑J
j=0 ajBj (X (Tl))

hT (Tl)
+

m∑
i=1

(
J∑
j=0

ajBj (X (ti−1))

)2

(ti − ti−1) .

The goal is to estimate the coe�cients a0, a1, ..., aJ subject to positivity con-

straints and possibly additional constraints.

From now on, let a be the vector of coe�cients (a0, a1, ..., aJ)′, where the

prime symbol ′ stands for transpose. In matrix notation, the previous display

becomes

−2a′Φ′Γ + a′Φ′ΣΦa. (2.6)

Here, Φ has (i, j) entry Bj (X (ti)), Γ is a vector with ith entry 1/hT (Tl) if

ti = Tl for some l (i.e., if ti is a jump time of N) and zero otherwise; Σ is a

diagonal matrix with (i, i)th entry (ti − ti−1).

When a new observation is collected, we only need to update Φ′Γ and

Φ′ΣΦ, which are relatively low dimensional matrices ((J + 1) × 1 and (J +

1)× (J + 1), respectively). When we have K > 1 covariates, the changes are

conceptually trivial, and the dimensions of Φ′Γ and Φ′ΣΦ becomeK(J+1)×1

and K(J + 1)×K(J + 1), respectively.

The Constraints

For expository reasons, we still consider K = 1. We need to ensure that g0

is positive if we do not want negative intensity. From (2.4) it is su�cient

that the entries in the vector of coe�cients a are positive. In certain cir-

cumstances, we may also wish g0 (x) to be increasing. In this case, by the

properties of Bernstein polynomials, we require the entries in a to satisfy

aj−1 ≤ aj for all j's, as a su�cient condition for monotonicity. Similarly, a

convexity restriction can be imposed by requiring the second di�erence of a

to be positive, i.e., (aj+1 − aj)− (aj − aj−1) ≥ 0 for all j's. (See Section 2.7.1

in the Appendix, for details.) Mutatis mutandis, this is the same approach

used for spline regression under shape constraints.

From the above remarks we deduce that we can solve the following mini-

mization problem

min
a∈RJ+1

−2a′Φ′Γ + a′Φ′ΣΦa s.t. Ca ≥ 0
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for a matrix C suitably chosen to impose restrictions such as non-negativity,

monotonicity and/or convexity.

The linear restrictions, to impose for example monotonicity, are su�cient

but not necessary. They only become necessary in the limit as the order

of polynomial J → ∞. This latter set up is less feasible, as computational

constraints require J relatively small. When using rolling window estimators

with relatively small window sample, the noise level becomes high enough to

make the distinction between necessary and su�cient practically irrelevant.

The Baseline Intensity and Feasible Two Step Estimation

The simplest case of baseline intensity is the standard exponential hazard

function h0 (t) = 1. A more realistic choice is

h0 (t) = c0 +

∫
(0,t)

e−β0(t−s)dN (s) = c0 +
∑

j≥0:Tj<t

e−β0(t−Tj) (2.7)

where β0 > 1 and c0 > 0. This is proportional to a Hawkes process. A

model similar to (2.1) with (2.7) as baseline intensity has been considered

in Sancetta (2018). From Theorem 1 in Brémaud and Massoulié (1996) we

can deduce that the process is stationary if Eg0 (X (t)) /β0 < 1. The Hawkes

process is not always easy to estimate because of the possible presence of local

maxima in the likelihood (Ogata and Akaike, 1982, for early mentions). In

fact, amongst other reasons, alternative procedures to likelihood estimation

have been proposed (e.g., Da Fonseca and Zaatour, 2014, Kirchner, 2017).

However we shall use Hawkes process in Section 2.3 because of its relatively

good �t to the data.

In Section 2.3 and in the simulations in the Appendix (Section 2.7.2), we

consider the Weibull hazard function because of its �exibility and simplic-

ity of estimation, as opposed to the Hawkes process. In this case h0 (t) =

β0 (t− Ti)β0−1 for β0 > 0 when t ∈ (Ti, Ti+1]. Recall that Ti is the time of the

ith trade. When g0 = γ0, where γ0 is a constant, this corresponds to durations

being distributed as a Weibull random variable:

Λ ((Ti, Ti+1]) =

∫
(Ti,Ti+1]

h0 (t) γ0dt = γ0 (Ti+1 − Ti)β0 .

Then, by standard time change, Λ ((Ti, Ti+1]) is an exponential random vari-
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able with mean one. In consequence, 1−exp
{
−γ0 (Ti+1 − Ti)β0

}
is uniformly

distributed and we deduce that the durations are distributed as Weibull ran-

dom variables. We suggest to estimate the baseline intensity �rst supposing

that g0 = γ0 and maximizing the log-likelihood. We then use the estimator

for h0 in the estimation of g0 in (2.5). The procedure can then be iterated

until convergence. The details are in Algorithm 2.1.

Algorithm 2.1 Intensity Estimation

Start with g
(0)
T (X (t)) = γ an unknown constant. For each v = 1, 2, ..., �nd

the minimizer of −
∫ T

0
ln
(
h (t) g

(v−1)
T (X (t))

)
dN (t)+

∫ T
0
h (t) g

(v−1)
T (X (t)) dt

w.r.t. h and denote it by h
(v)
T . When v = 1 we shall also minimize w.r.t. γ > 0.

Minimize (2.6) w.r.t. a ∈ A ⊆ [0, a]K where a is some �nite positive constant
and A is de�ned by the linear constraints (see Section 2.2.1). De�ne the

minimizer by a
(v)
T so that g

(v)
T (X (t)) =

∑J
j=0 a

(v)
T,jBj (X (t)) is the estimator

for g0 (X (t)).

Stop when h
(v)
T (t) g

(v)
T (X (t)) converges.

We may stop at v = 1 and still obtain reasonable results when h0 and g0

satisfy a certain orthogonality condition. In this case, we can estimate the

baseline intensity using the durations only. In fact, the log-likelihood of N ,

at the true parameter λ0 = h0g0, is

LT (λ0) :=

∫ T

0

ln (h0 (t) g0(X(t))) dN (t)−
∫ T

0

h0 (t) g0 (X(t)) dt (2.8)

(Ogata, 1978). If the following orthogonality condition holds

1

T

∫ T

0

h0 (t) g0 (X (t)) dt ' 1

T

∫ T

0

h0 (t) dt
1

T

∫ T

0

g0 (X (t)) dt

then,

LT (λ0)

T
' cT +

1

T

∫ T

0

ln (h0 (t)) dN (t)− 1

T

∫ T

0

g0(X(t))dt
1

T

∫ T

0

h0 (t) dt,

where cT := T−1
∫ T

0
ln (g0 (X(t))) dN (t) does not depend on h0. Hence, esti-

mation of h0 is approximately independent from estimation of g0. In practice,

this does not seem the case, and we require a few iterations.
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2.2.2 Testing the Performance of Competing Models

Let λ(1) and λ(2) be two competing models for the intensity. Our aim is to

assess which model is closest to the true one. For large datasets (millions of

observations), it is natural to recast the inference problem within a predictive

sequential (prequential) framework. We assess the value of the two models

only on the basis of how the forecasts that they generate agree with the out-

comes of the the point process N (e.g., Dawid, 1984, Dawid and Vovk, 1999).

This is particularly suited for our purposes, as computational constraints can

force us to rely on approximations.

In this framework at the beginning of each day i we re-estimate the model

using data up to the (i − 1)th day. The estimator for λ(k) (k = 1, 2 ) using

all the data until the (i− 1)th day is denoted by λ̂
(k)
i−1 and estimated using

Algorithm 1, as described in Section 2.2.1. We use a hat instead of a subscript

T to avoid notational oddities. This estimator is evaluated on data on the ith-

day. For two competing estimators of the intensity we form the prequential

log likelihood for the ith day:

L
(k)
i =

Ni∑
s=Ni−1+1

[
ln(λ̂

(k)
i−1(Ts))−

∫ Ts

Ts−1

λ̂
(k)
i−1(t)dt

]
where Ni is the number of jump times of the counting process until the ithday.

The prequential loglikelihood is given by L
(k)
T =

∑I
i=1 L

(k)
i when we have a

sample of I trading days so that T = TNI
(do not confuse L

(k)
T with L

(k)
i ).

We suppose that on day 1 we have an estimator λ̂
(k)
0 (λ̂

(k)
i−1 with i = 1) based

on previous observations. The prequential loglikelihood ratio is L
(1)
T − L

(2)
T .

Taking into account its asymptotic behaviour, we are able to design a test.

Let qα be the α quantile of the standard normal distribution, e.g., q0.95 ' 1.64.

At the (1− α) % signi�cance level, reject model 2 in favor of model 1 if

L
(1)
T − L

(2)
T√

T σ̂2
T

≥ qα (2.9)

where

σ̂2
T =

1

T

I∑
i=1

Ni∑
s=Ni−1

[
ln
(
λ̂

(1)
i−1(Ts)/λ̂

(2)
i−1(Ts))

]2
. (2.10)

To facilitate the graphical analysis of our results, in the empirical version we

split the sample into two parts, the �rst is used to estimate the parameters,
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the second to test. Mutatis mutandis, this is a one period version of the

methodology described above. Sample splitting has a long tradition in statis-

tics and econometrics (inter alia, Cox, 1975, for an early reference, Yatchew,

1992, for testing restrictions in regression models). In this case, λ̂
(k)
0 (·) is

estimated in the �rst part of the sample (the estimation sample), and it is

used throughout in the validation sample (0, T ].

Suppose that for both competing models we compute

1

NTI

I∑
i=1

Ni∑
s=Ni−1+1

∫ Ts

Ts−1

λ̂
(k)
i−1(t)dt = λ̄(k). (2.11)

Under stationarity and ergodicity, λ̄(k) converges to a constant: in fact, the

display in (2.11) is equal to the time average of the (predictable) intensityλ̂
(k)
i−1

divided by the average counts NTI/TI . By the de�nition of ergodicity and sta-

tionarity the numerator and denominator converge to a constant (Lemma 2,

Ogata, 1978). We can scale our intensities by λ̄(k) so that the �rst �out of

sample� moment of
∫ Ts
Ts−1

λ̂
(k)
i−1(t)/λ̄(k)dt is one. This ensures that both models

match the theoretical �rst moment of the true intensity measure Λ ((Ti, Ti+1])

(see Section 2.2.1). This standardization has the advantage of removing the

e�ect of the �rst moment in the model comparison. We can think of this

to be equivalent to removing the e�ect of the intercept in a regression con-

text. Then, we can just de�ne L
(k)
i =

∑Ni

s=Ni−1+1 ln(λ̂
(k)
i−1(Ts)/λ̄

(k)) and use

λ̂
(k)
i−1(Ts)/λ̄

(k) instead of λ̂
(k)
i−1(Ts) in the calculation of the variance. We shall

use this approach in the empirical results, as our main interest is not in the

scaling of the intensity. However, this did not have a substantive impact in

the results. In our simulations, we did not use this scaling or equivalently, we

set λ̄(k) = 1.

2.3 Spoo�ng the Crude Oil Futures Market

We consider high frequency data on the crude oil front month futures traded

on the CME (CME ticker CL). The sample period is from 01/May/2013 to

30/Sept/2013 each day from 13:30 to 18:00 GMT. The time interval for each

day is based on liquidity considerations. We use a proprietary data set that

comprises of all market trades and book updates. The data were collected by

a proprietary trading group, in a server collocated in the Aurora data center in

72



Chicago. The messages were time stamped at the nanosecond resolution. The

trades were accurately classi�ed as buy or sell. Moreover, in busy times, when

many trades are executed, CME might not send the resulting book update for

some time as there is a limit in the size of each packet being sent through the

network. For this reason, if a trade arrives and the book is not updated, we

construct an imputed book. Again this operation is admissible (was carried

out in live trading) and avoids any bias due to lack of synchronicity. Finally,

we also subtract 400 microseconds from trade times in order to account for

some delay on the side of CME when sending trade messages as opposed to

order book messages. All these operations were chosen to match closely both

trading and latency and were based on empirical analysis of network data. We

do so to avoid the risk of asynchronicity and consequently spurious relations.

To summarize, the data processing and variables construction is the same as

in live trading to ensure that we do not �peep into the future�.

A few days are missing in our data set. In total, we have complete data

for 94 trading days. The total number of updates in the data set is in excess

of 46 million. The number of trade events (both buy and sell) is about 3.4

million. For our best model we have 7 covariates and a Bernstein polynomial

of order 8 (i.e., 9 basis functions for each covariate for a total of 63). This

means a data matrix that has 46 million rows and 63 columns, i.e., almost 3

billion data entries. Our estimation procedure had no problems to deal with

such problem in RAM, and was rather fast (in the order of minutes to parse

data, a day at the time, and estimate a model).

We model the intensity for buy and sell trades separately using the model

in (2.1). We consider two speci�cations for the baseline intensity h0 in the

�rst estimation step. In particular, we estimate a Weibull hazard function

and a Hawkes process. We test which model is best suited to our data sample.

We then produce a graphical plot of the impact functions for the best model.

Heuristically, this allows us to see how the market could be manipulated.

2.3.1 The Model

We estimate (2.1) with Weibull and Hawkes baseline intensities (see Section

2.2.1). We consider g0 modelled by a second and an eight order Bernstein

polynomial (i.e., J = 2, 8 in (2.5)). We use Algorithm 2.1 for the estimation.

The covariates are reported in Table 2.1. Details regarding the calculations
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of the variables are in Section 2.7.5 in the Appendix. Here, we just give an

overview. We apply exponential moving average (EWMA) �lters to some of

the covariates. The EWMA of a variable X (ti) with smoothing parameter α

is

EWMA (X (ti)) = αEWMA (X (ti−1)) + (1− α)X (ti) (2.12)

where EWMA (X (t1)) = X (t1). Here, t1 is the time of the �rst update in

the variable X at the start of each day. EWMA's are computed for each

day. Note that the covariates update at discrete times that are di�erent from

the trade updates Tj's which have also been adjusted by 400 microseconds

as mentioned above. We then sample the data at times that are the union

of each covariate update and the times Ti. To ensure that the covariates are

predictable, we make them left continuous by lagging them after sampling at

times that are the union of all the observed updates.

All variables are mapped linearly into [0, 1], except for spread and dura-

tions that are �rst capped and then linearly mapped in [0, 1]. The top of

book volume imbalance volImb, is de�ned as

volImb =
bidSize− askSize
bidSize+ askSize

(2.13)

where bidSize is the bid size (quantity) at the best bid, and similarly for

askSize. This variable takes values in [−1, 1]. We map it to [0, 1] by stan-

dard linear transformation: multiply by two and subtract one. The trade

imbalance is computed from the EWMA of the signed traded volume every

time there is a trade. We then divide it by the EWMA of the unsigned

volumes. The EWMA's parameter is α = 0.98 for both denominator and

numerator. Durations are in seconds with nanosecond decimals, capped to

one second. They are then passed to EWMA �lters with parameter α = 0.98

and 0.90. The spread is capped to 4 ticks and standardized by 4. Hence,

the minimum value it can take (excluding choice prices) is 0.25. After the

application of EWMA's �lters, our additive model (2.1-2.2) has 7 covariates.
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Table 2.1: Covariates used for estimation. The column �Smoothing� reports
the smoothing parameter used if an EWMA had been applied to the original
variable.

Variables Short Name Smoothing
Volume Imbalance Level 1 VolImb1
Volume Imbalance Level 2 VolImb2
Volume Imbalance Level 3 VolImb3

Spread Spread
Trade Imbalance TrdImb98 α = 0.98

Durations Dur98 Dur90 α = 0.98 and 0.90

2.3.2 Comparison of the Models withWeibull and Hawkes

Baseline Intensities

In this section, we have three main goals. First, we want to verify the extent

of non-linearity in the impact functions. We test a low (J = 2) versus a high

(J = 8) complexity model. Second, we want to verify whether a Weibull

baseline intensity is an acceptable substitute to a Hawkes baseline intensity.

In this respect, we are not just interested in whether we reject a Weibull in

favour of a Hawkes intensity, but also to what extent the resulting estimators

for g0 may di�er. A Weibull baseline intensity is easier and faster to estimate.

Hence there needs to be a clear gain to justify the use of a Hawkes baseline

intensity. Third, and most important, we want to understand the shape of

the impact functions to see by visual inspection whether the crude oil futures

market could be manipulated, at least during the sample period we consider.

We compute Λ ((Ti−1, Ti]) =
∫

(Ti−1,Ti]
h0 (t) g0 (X (t)) dt for i = 1, 2, ..., n,

where h0 and g0 are replaced by their estimators. As mentioned previously,

here n is in the order of 3.4 million observations. If the estimate �ts the data

well, the data sequence

1− exp {−Λ ((Ti−1, Ti])} (2.14)

i = 1, 2, ..., n forms a sequence of independent identically distributed (i.i.d.)

uniform random variables in [0, 1] (Brémaud, 1981, Ch.II, Theorem 16). Fig-

ure 2.1 shows the qq-plot of the estimated transformed data sequences that

use the Weibull baseline intensity and the Hawkes baseline intensity with an
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Figure 2.1: Plot of Uniform Transform of the Estimated Time Changed Data
for Buy Trades for Hawkes and Weibull intensities. The closer are the quan-
tiles of the sample to the theoretical uniform ones (the solid line) the better
is the �t. The model with Weibull baseline intensity appears to be a better
�t to the data.

eight order Bernstein polynomial estimator of g0. The model with Weibull

baseline intensity appears to be a better �t to the data.

We also analyzed the autocorrelation function for the same data sequence.

Both sequences showed some autocorrelation, but the Hawkes model fared

better than the Weibull baseline intensity, in this respect (see Section 2.7.6

in the Appendix for the actual plot).

Estimation of the Impact Functions

We estimate the models using a second order polynomial with Weibull (B2W)

and Hawkes (B2H) baseline intensities. We compare to more complex models

that use an eight order polynomial with Weibull (B8W) and Hawkes (B8H)

baseline intensities. We have a total of 4 competing models. Their relative

merits are assessed by the test procedure described in Section 2.2.2. To this

end, the sample was split into two parts. The �rst 67% of the sample was

used for the estimation of the four intensities. The last 33% was used to

compute the test statistic. Results are reported in Table 2.2.
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Table 2.2: Test of Model Performance. The test statistic (t-stat) is as in (2.9)
after standardization of the intensity by (2.11). The columns identify the
null hypothesis as described in Section 2.2.2. For example, B8W-B2W is the
null that B8W and B2W perform the same, versus an alternative that B8W
performs better than B2W. B8W (B8H, respectively) performs better than
B2W (B2H, respectively) and B8H performs better than B8W.

B8W-B2W B8H-B2H B8H-B8W
Buy Sell Buy Sell Buy Sell

t-stat 563.98 589.55 5215.4 5139.5 10270 10108
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Given the size of the data set, an 8th order Bernstein polynomial can be

estimated with reasonable degree of accuracy (in terms of estimation error)

and there is no need to impose a constraint beyond non-negativity for this

case. When we impose non-negativity, we note that even though the total

number of parameters to estimate is equal to 63, only approximately 30% are

non zero. This is essentially irrespective of which baseline intensity we use.

This is consistent with our remarks about sign constraint in Section 2.1.1.

The test overwhelmingly favours B8H, the intensity with Hawkes baseline

intensity and g0 modelled by an eight order Bernstein polynomial. To gauge

the impact of the variables, Figure 2.2 plots the estimated impact functions of

V olImb1, V olImb2, V olImb3 and Spread for B8H. We are interested in the

functional form of these impact functions because the related covariates are

the ones that can be distorted by a market manipulator in order to trigger

a trade. Note that our transformation of the spread induces an arti�cial

increase in the impact function at zero. However, the transformation of the

spread results in Spread taking values in {0.25, 0.5, 0.75, 1} only. At �rst

sight, it is surprising that a higher spread leads to higher intensity. However,

a higher spread can result from a series of correlated aggressive trades that

deplete liquidity on ones side of the book. This would be associated to a

higher intensity. Moreover, a higher spread may induce a market participant

with high urgency of trading to trade. This is because a high spread may

reduce the probability to get �lled sitting on the order book. In consequence,

a participant with high urgency would just cross the book. Finally, note that

liquidity providers keep the spread directly proportional to volatility. Periods

of high volatility are periods with high trading activity.

To make di�erent models comparable, the vector of coe�cients in gT have
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been scaled to have unit Euclidean norm. In the Appendix we provide the

complete set of results for all the impact functions using the Hawkes and

Weibull intensities and we show that results appear visually similar despite

the test results in Table 2.2.

2.3.3 Implications for Market Manipulation

Heuristically, the empirical results suggest that under the right conditions,

a trader could have manipulated the crude oil futures markets placing pro-

gressively large orders on the top of book. This could have been done as

follows. Suppose that the objective is to sell at the ask rather than at the

bid, in order to gain half of the spread. To do so, we need a relatively active

period (small durations) where there is possibly a negative trade imbalance

(recall TrdImb98 is mapped to [0, 1] so TrdImb98 close to zero means a neg-

ative trade imbalance). Possibly the spread is greater than a tick; a tick is

the minimum spread size which in the plot corresponds to 0.25. Moreover we

want the volume quoted on the ask to be relatively thin. From Figure 2.2 (see

also Figure 2.4 in the Appendix), we can see that in this case, the intensity

of a buy order is relatively high. We can make the intensity even higher,

by placing a relatively large order on the top of book bid and a small order

on the top of book ask. This creates a positive volume imbalance. Given

that the spread is wider than a tick, we can step inside the spread and place

another relatively large order on the new top of book bid and/or a relatively

small order on top of best ask. The latter ensures that we are top of book on

the ask. In consequence of these actions, we have generated large VolImb1

and VolImb2 under particularly favorable conditions, i.e., a high intensity for

buy trades. In consequence, our small order on the ask side should be �lled

despite the fact that we have also placed larger orders on the bid size.

Such procedure can be easily implemented by a trading algorithm. Simi-

larly, an algorithm can easily monitor trades that occur under these favorable

circumstances and �ag them as suspicious.

78



Figure 2.2: B8H Manipulable Impact Functions for Buy Trades. The es-
timated impact functions from B8H (the unconstrained 8th order Bernstein
estimator with Hawkes baseline intensity) are plotted for VolImb1, VolImb2,
VolImb3, Spread. These variables are easy to manipulate. As expected, the
impact functions, for the volume imbalance, are increasing in the interval
[0.5, 1] (this interval corresponds to a positive volume imbalance).
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2.4 Justi�cation for the Estimation and Testing

Procedure

In this section we justify the inferential methodology discussed in the previ-

ous sections. The intensity λ0 (t) = λ0 (t, ω) is a continuous time stochastic

process, i.e., a function of two variables t ≥ 0 and ω ∈ Ω where (Ω,B, P )

is a probability space and for each t, λ0 (t, ·) is measurable on Ω. Similarly

h0 (t) = h0 (t, ω) and X (t) = X (t, ω). The covariate process X and the base-

line intensity are adapted stationary ergodic processes. All the quantities are

supposed to be left continuous with right hand limits. For ease of notation,

we may freely switch between λ0 (t) and h0 (t) g0 (X (t)) and compactly write

λ0 = h0g0. To make the notation simpler and more readable, we shall write

Ph0g0 to mean
∫

Ω
h0 (0, ω) g0 (X (0, ω)) dP (ω) and similarly for other quan-

tities. Both the set of positive functions and the set of monotonic/convex

(or concave) functions form a convex set therefore we view g as an element

in the closure of a convex subset C of the Hilbert space L2
(

[0, 1]K
)
. This

framework is coherent with the hypotheses of the following classical result

(see e.g., Corollary 3.23 in Brezis, 2011)

Theorem 2.1. Let (E, 〈·, ·〉E) be a Hilbert space and let A ⊂ E be a nonempty,

closed, convex subset of E. Let φ : A → (−∞,+∞] be a convex lower semi-

continuous function such that φ 6≡ +∞ and

lim
x∈A,‖x‖E→∞

φ (x) =∞

if A is unbounded (‖e‖2
E := 〈e, e〉 for every elements e ∈E). Then φ achieves

its minimum on A, i.e., there exists some x0 ∈ A such that

φ (x0) = inf
x∈A

φ (x) .

Remark 2.1. Note that the closure of a convex set is a convex set.

We suppose that the true parameter g0 belongs to the closure of C (λ0 =

h0g0) so that the model for g0 is not misspeci�ed.
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2.4.1 The Quadratic Risk Functional

We justify the procedure used to estimate g0. Assume that the intensity is

uniformly bounded away from zero. For any �xed h0 we can de�ne the fol-

lowing functional g 7→ P (g−g0)2 on C. A straightforward computation shows

that this functional is strictly convex and its unique minimum is reached at

g = g0. Expanding the square and neglecting the term Pg2
0 we get a functional

having the same two properties (strict convexity and minimum at the same

point), that is g 7→ R(g, h0) := −2Pgg0 + Pg2. In practice P is unknown,

and we consider the sample counterpart

− 2

T

∫ T

0

g(X(t))g0(X(t))dt+
1

T

∫ T

0

g2(X(t))dt.

Given that λ0 = h0g0 is the compensator of dN , we have that the limit of the

above display is equal to (cf. Equation (3.4) in Ogata, 1978)

lim
T→∞

(
− 2

T

∫ T

0

g(X(t))

λ0(t)
g0(X(t))dN(t) +

1

T

∫ T

0

g2 (X (t)) dt

)
= lim

T→∞

(
− 2

T

∫ T

0

g (X(t))

h0(t)
dN (t) +

1

T

∫ T

0

g2 (X (t)) dt

)
almost surely. By ergodicity (Ogata, 1978, Lemma 2) the above display is

equal to R(g, h0) almost surely. Hence we have that

− 2

T

∫ T

0

g(X(t))

h0 (X(t))
dN(t) +

1

T

∫ T

0

g2(X(t))dt→ R(g, h0) (2.15)

almost surely. This is the motivation for estimating g0, minimizing the ob-

jective function (2.5). Next we provide some heuristic justi�cation for the

procedure when h0 needs to be estimated.

2.4.2 The Two-Step Procedure

We heuristically show that, asymptotically, the �rst order optimality con-

dition w.r.t. the parameter g is the same regardless of whether we adopt

the log-likelihood or the quadratic objective function de�ned in (2.15). This

means that the minimization procedure described in Algorithm 1 should pro-

vide asymptotically consistent results under regularity conditions.
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First we show that the negative log-likelihood ratio − [LT (λ)− LT (λ0)]

is asymptotically quadratic for λ = hg. Recall that LT (λ) is as in (2.8), and

λ0 as in (2.1). The maximizer of LT (λ) is the same as the minimizer of the

negative log-likelihood ratio − [LT (λ)− LT (λ0)], this is why we focus on the

latter. Note that

− [LT (λ)− LT (λ0)] = − 1

T

∫ T

0

ln

(
λ(t)

λ0(t)

)
dN(t) +

1

T

∫ T

0

(λ(t)− λ0(t)) dt

' − 1

T

∫ T

0

ln

(
λ(t)

λ0(t)

)
λ0(t)dt+

1

T

∫ T

0

(λ(t)− λ0(t))

λ0(t)
λ0(t)dt.

By the approximation ln (1 + x) ' x − x2/2 for x > −1, applied to x =

(λ(t)/λ0(t))− 1, the above display is approximately equal to

1

2T

∫ T

0

(λ(t)− λ0(t))2

λ2
0(t)

λ0(t)dt ' 1

2
P

[
(λ− λ0)2

λ0

]
(2.16)

where the r.h.s. follows by ergodicity of the point process. We explicitly

write λ = hg. The �rst order condition for a minimum of (2.16) w.r.t. g ∈ C,
satis�es the variational inequality

P

[
(hg − λ0)

h

λ0

v

]
≥ 0

for any v = v (X (0, ω)) such that v + g0 ∈ C. Denote by RT (g, h) the term

obtained from the l.h.s. of (2.15) replacing h0 with h. By ergodicity,

RT (g, h) ' − 2

T

∫ T

0

g(X(t))

h(t)
λ0(t)dt+

1

T

∫ T

0

g2(X(t))dt

' P
(
−2

g

h
λ0 + g2

)
.

The �rst order condition for a minimum w.r.t. g ∈ C satis�es the variational
inequality

P

[
−1

h
λ0s+ gs

]
≥ 0

for any s = s (X (0, ω)) such that s + g0 ∈ C. The above display can be

rewritten as

P
[
(hg − λ0)

s

h

]
≥ 0.
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If g0 is inside C (not on the boundary) and eventually h→ h0, the variational

inequalities become equalities and hold not just for v + g0, s+ g0 ∈ C but for
arbitrary continuous bounded functions v and s including the case h

λ0
v = s

h
.

Suppose that h (t) is a continuous function of the time from the last jump, i.e.,

t−Ti when t ∈ (Ti, Ti+1]. Then, we have that, asymptotically, whether we use

the log-likelihood or the contrast function RT , the �rst order conditions imply

that g satis�es P [(hg − λ0) ρ] = 0 for any ρ = ρ (ω,X (0, ω)) continuous in

both arguments (e.g., set ρ = s/h or ρ = hv/ (h0g0)).

To conclude the heuristic justi�cation of the estimation procedure it suf-

�ces to rely on standard results about the convergence of the Gauss-Siedel

method, e.g., Theorem 1 in Mammen et al. (1999).

2.4.3 Comparing Two Intensity Estimators

For ease of notation, we consider the sample split procedure. The result also

applies to the intensity that is recursively estimated. All that we need is a

measurable intensity that is bounded away from zero and in�nity. De�ne the

predictable part of the log-likelihood L
(k)
T as

H
(k)
T :=

∫ T

0

ln λ̂
(j)
0 (t) dΛ (t)−

∫ T

0

λ̂
(j)
0 (t) dt.

Here λ̂
(k)
0 is estimated on a sample up to time 0 (see the end of Section 2.2.2).

Recall that Λ (t) is the compensator of N (t). De�ne the predictable part of

the log-likelihood ratio as

εT := H
(1)
T −H

(2)
T . (2.17)

Under the null hypothesis, we suppose that εT = op

(√
T
)
. Loosely speaking,

the intensities λ̂
(1)
0 and λ̂

(2)
0 give similar predictions asymptotically, i.e., the

predictable part of the log-likelihood ratio diverges at a rate slower than
√
T .

The following can be used to justify (2.9).

Theorem 2.2. Suppose that the λ̂
(j)
0 s are bounded away from zero and in-

�nity. If σ̂2
T in (2.10) converges in probability to a strictly positive constant,

and εT = op

(√
T
)
, then,
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L
(1)
T − L

(2)
T√

T σ̂2
T

→ Z (2.18)

in distribution where Z is a standard normal random variable.

Proof. Using the de�nition of εT we have that

L
(1)
T − L

(2)
T√

T σ̂2
T

=

∫ T
0

(ln(λ̂
(1)
0 )− ln(λ̂

(2)
0 ))dM(t)√

T σ̂2
T

+
εT√
T σ̂2

T

where M is the martingale given by M(t) = N(t) − Λ(t). Given that the

intensities λ̂
(k)
0 are bounded away from zero and in�nity by hypothesis, the

same holds true for their logarithm. Hence, we can follow the proof of Propo-

sition 1 in Sancetta (2018) to bound the �rst term on the right hand side of

the display. Given that εT = op

(√
T
)
, we apply Slutsky Theorem to deduce

the convergence in distribution of the left hand side of the above display.

2.5 Numerical Experiments

In the previous section we have provided a heuristic justi�cation of the sta-

tistical methodology introduced in Section 2.2: in the present section we use

simulations to further validate it. We compare the true known parameters

to their estimators and the estimated level of signi�cance of the test to its

theoretical one.

We have multiple goals in mind. 1. We verify that our estimator ap-

proaches the true value as the sample size increases. 2. We show under what

circumstances the use of an additional constraint such as monotonicity can

improve the estimation relative to the unconstrained estimator. 3. We com-

pare our estimation results using Bernstein polynomials to the more classical

spline smoothing estimator. 4. We estimate the size and power of the test

procedure in Section 2.2.2.

Model simulation. We consider four di�erent models for the intensity λ0,

namely λ0(t) = g0(X(t))h0(t), where g0(x) = 1, x+0.1, x2 +0.1,−x3 +x+0.5;

h0 is proportional to the Weibull hazard function and in particular we set β0 as

de�ned in Section 2.2.1 equal to one, i.e., h0 = 1. However, in the estimation

β0 is unknown and need to be estimated.
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To simplify the framework, we consider a one dimensional covariate X (t)

such that X (t) = X (Ti−1) for t ∈ (Ti−1, Ti] where Ti it the time of the

ith jump of the counting process N . The sample period is [−S, T ] where

S = T−(n−1) and T = Tn. We split the sample into estimation sample [−S, 0]

and test sample (0, T ] and consider n = 100, 1000, 10000. The X (Ti−1)'s are

independent identically distributed uniform random variables in [0, 1]. We

shall refer to the number of jump points n as the sample size.

Recall that Λ((Ti, Ti+1]) is an exponential random variable with mean one.

Given the assumptions made above, we have that

Λ((Ti, Ti+1]) =

∫ Ti+1

Ti

g0(X(t))h0(t)dt = g0(X(Ti))(Ti+1 − Ti).

Then, the (i+ 1)th duration can be simulated from a exponential distribution

with parameter g0(X (Ti)). We use 1000 simulations, and for each simulation,

the simulated sample is {(Ti, X (Ti−1)) : i = − (n− 1) ,− (n− 2) , ..., n}.

Model estimation and test. We use sample split and estimate the model

on the �rst n/2 observations. We do so as we focus on assessing the testing

procedure. We use the procedure in Algorithm 1 in Section 2.2.1 to estimate

the model from
{

(Ti, X (Ti−1)) : i = − (n− 1) ,−(n− 2), . . . 0
}
. The number

of iterations is �ve. We correctly suppose a Weibull baseline intensity. We

use a Bernstein basis of order J = 5, 10, 20 for estimation of g0 in the second

step. For comparison we also estimate g0 in the second step using B-splines

of degree three with 4, 8, 16 knot points.

The unconstrained estimator is denoted by ĝ(uncon) and estimated on

[−S, 0] (we avoid a subscript to avoid notational oddities). Note that we

always impose the non-negativity constraint even for this estimator. We de-

note by ĝ(con) the estimator based on convex increasing constraints estimated

on [−S, 0]. The simulated models for g0 do satisfy this constraint except for

the case g0 (x) = −x3 + x + 0.5. Hence, ĝ(con) will be biased in this case. In

this case the null that the true g0 satis�es the constraints is false. This will

allow us to evaluate the power of the test.

On the second half of the sample, we carry out a test for the null H0 : g0 is

convex and increasing, against an unconstrained alternative. We use Theorem

2.2 to construct the t-statistic and the critical values.
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2.5.1 Test and Model Fit

To assess the sample �t, we approximate the integrated mean square error. To

evaluate the �nite sample performance of the test procedure in Section 2.2.2

we compute the frequency of rejections of the null. In particular, we compute

the following quantities which we shall refer to throughout this section.

T1: the frequency of rejections of the the null hypothesis according to the

rule (2.9) with q0.95, where model 1 is the unconstrained and model 2 is the

constrained: reject the null if the unconstrained model performs better. We

use a 5% level of signi�cance, hence q0.95.

Recall the de�nition of εT in (2.17). Here, we want to test that εT/T ≤
0 under the null. In fact, if the constrained model performs better than

the unconstrained εT/T < 0. If we use Theorem 2.2, this makes the test

undersized: the probability of rejecting the null is lower than the nominal

level. Hence, in a simulation, we cannot use T1 to assess a Type I error,

unless the unconstrained and the constrained model are equally good. This

is unlikely and it would defeat the point of imposing a constraint in order to

improve �t. To ensure that εT = o
(√

T
)
as in Theorem 2.2, we compute an

alternative to T1.

T2: the frequency of rejections of the the null hypothesis according to the

rule [
L

(uncon)
T − L(con)

T

]
− ε̂T√

T σ̂2
T

≥ q0.95,

where ε̂T is the Monte Carlo estimate of (2.17). This is as T1 once we subtract

ε̂T from the loglikelihood ratio. Hence, this allows us to study the the size of

the test under the null that both models are equally good.

In summary, T1 is useful to compute the power of the test, i.e., the prob-

ability of rejecting the null when it is false. On the other hand to verify

whether the normal approximation is acceptable when εT = 0, we focus on

T2. We also need to verify that when the constraint holds (εT/T < 0), T1 is

undersized.

MSECon: the Monte Carlo approximation of

E

 1

n

0∑
i=−(n−1)

(
g0(X(Ti−1))− ĝ(con)(X(Ti−1))

)2


which is the mean square error of the constrained estimator.
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MSEUncon: same as MSECon but using ĝ(uncon) instead of ĝ(con).

StdCon: the standard deviation of the errors of the constrained estima-

tors. Note that we use 1000 simulations, so the standard errors are obtained

dividing by (approx.) 31.6.

StdUncon: the standard deviation of the errors of the unconstrained esti-

mators.

Tables 2.3 and 2.4 report an excerpt for our largest n = 10000, which is

still very small given the sample sizes we deal with in empirical work. These

results are for the higher dimensional models using Bernstein and splines

basis. The two cases are comparable: the dimension of the Bernstein basis is

21 whereas the dimension of the vector space generated by the B-spline is 19.

Table 2.3: Bernstein Basis. Twentieth degree, n=10000. All the functions,
except the fourth, satisfy the constraints. As expected, the mean square error
and its standard deviation is smaller for the constrained estimator in the �rst
three cases, whereas, in the fourth case the unconstrained estimator performs
better (in terms of mean square error and its standard deviation). In addition,
we expect T2 (T1, respectively) to be close to 0.05 (0.95, respectively) for the
�rst three function (the fourth function, respectively).

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 1e-03 0.047 2.144e-04 0.0013 2.9831e-04 0.0024

x+ 0.1 1e-10 0.038 1.6899e-04 6.1285e-04 3.6829e-04 0.0016
x2 + 0.1 0.003 0.047 2.0363e-04 4.5414e-04 5.1982e-04 0.0015

−x3 + x+ 0.5 1 0.055 0.0131 6.454e-04 0.0136 8.9886e-04

Table 2.4: B-Spline. Third degree, sixteen knot points, n=10000. As ex-
pected, the mean square error and its standard deviation is smaller for the
constrained estimator in the �rst three cases, whereas, in the fourth case
the unconstrained estimator performs better (in terms of mean square error
and its standard deviation). In addition, we expect T2 (T1, respectively) to
be close to 0.05 (0.95, respectively) for the �rst three function (the fourth
function, respectively).

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 1e-10 0.044 2.4886e-04 0.002 5.453e-04 0.0032

x+ 0.1 1e-10 0.053 2.1047e-04 9.0067e-04 6.8835e-04 0.0021
x2 + 0.1 1e-03 0.047 2.6141e-04 6.3981e-04 8.635e-04 0.019

−x3 + x+ 0.5 1 0.043 0.0131 0.001 0.0137 0.0014

The results show that imposing the constraint, when this is true, does

improve the �t. However, as expected, the ratio MSEUncon/MSECon does
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decrease as we increase the sample size. This means that the marginal bene-

�t is decreasing, but still positive. Depending on the instrument, the sample

size n = 10000 could be equivalent to a day of trading. Hence, if we were

to use a one day rolling window estimator, imposing the constraint could be

advantageous. On the other hand, when carrying out our empirical estima-

tion, where the sample size was �ve months, we found out that imposing a

constraint is not advantageous. In this case, the sample size was in the order

of millions of observations. In the empirical study, an additive eight order

Bernstein polynomial with 7 covariates corresponds to the estimation of 63

linear coe�cients. With millions of observations these can be estimated with

high degree of precision .

From Tables 2.3 and 2.4 we see that (when the true model is the con-

strained one) the constrained model performs better, which implies that

εT/T < 0. In consequence, looking at T1, we observe that the test is un-

dersized. To assess whether the normal approximation is good we verify that

T2 has the right size, which appears to be the case. When the unconstrained

model performs better, we also observe that the test has power going to one,

i.e., T1 has probability going to one.

The results in Tables 2.3 and 2.4 suggest that the Bernstein and spline

estimators have similar performance. In fact, the corresponding errors, their

standard deviations, T1 and T2 tend to have similar order of magnitude in

both cases (additional comparison are contained in Section 2.7.2: they further

validate the similarity between Bernstein and spline estimators). Neverthe-

less, estimation via Bernstein polynomials is simpler to implement. Hence,

these results support our choice of Bernstein polynomials in a high frequency

context.

The full set of results from our simulations are reported in Section 2.7.2.

From these, we conclude that di�erences between Bernstein polynomials and

splines are marginal. Of course, we could have used a spline basis instead of

Bernstein polynomials throughout the paper with no additional conceptual

di�culty.

2.6 Concluding Remarks

This paper investigates the relationship between the intensity of trade arrivals

and covariates that an algorithmic trader can manipulate. Our empirical
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study provide a relatively detailed picture of the relationships between order

arrivals and order book quantities such as order book volume imbalances.

The empirical results suggest that the crude oil futures could be manipulated

using a practice called spoo�ng.

The statistical analysis is conducted via a counting process whose inten-

sity is the product of a baseline intensity and an additive function of order

book related covariates. In the analysis of high frequency data sets, particular

attention has to be paid towards computational aspects because the sample

size can be very large (in the order of hundreds of million observations). In

particular, in our case, a direct optimization of the maximum log-likelihood of

the counting process considered, would be computationally unfeasible. There-

fore, we propose a statistical methodology suitable for large datasets. The

estimation approach uses a two step procedure and solved a quadratic pro-

gramming problem under linear constraints in the second step. The nature of

the constraints exploits the properties of Bernstein polynomials that we use

in the de�nition of our model.

We also report results from simulation experiments. These simulations

show that using a Bernstein bases is comparable to the more classical ap-

proach that relies on splines, though the former is simpler to implement. The

simulations con�rm that imposing the non-negativity constraint has an im-

plicit shrinkage e�ect. In our empirical analysis we found that about 70%

of the coe�cient were zero out of 63 in the case of the eight order Bernstein

polynomial with 7 additive covariates. The simulations also show that for rela-

tively small sample sizes (e.g., thousands of jump observations, corresponding

say to a day of trading) the imposition of additional correct constraints such

as monotonicity can be bene�cial. If we were to consider interactions between

variables rather than a purely additive model, the number of coe�cients, even

for an eight order polynomial would grow substantially. This would make the

use of functional constraints useful even for smaller sample sizes (e.g., weeks

of trading).

Finally, the paper comes with companion code that can be used for esti-

mation of the model: it can be found at https://github.com/asancetta/

IntensityEstimation.

90



2.7 Appendix

2.7.1 Functional Restrictions via Bernstein Polynomials

We still consider the case K = 1 for expository simplicity. Given a function

g de�ned on [0, 1] its Bernstein polynomial of order J (a positive integer) is

the polynomial

J∑
j=0

g

(
j

J

)(
J

j

)
xj(1− x)J−j.

In our case the function g is represented by the impact function g0. We

approximate g0 using a Bernstein polynomial PJ

PJ(x) =
J∑
j=0

aj

(
J

j

)
xj(1− x)J−j (2.19)

where the aj's are the coe�cients to be estimated. Some functional con-

straints are simple to implement via Bernstein polynomials: they result in

linear constraints on the coe�cients aj.

1. Non-negativity. It is clear that each summand of (2.19) is equal or

greater than zero (for x ∈ [0, 1]) if aj ≥ 0 for each j. This implies

PJ(x) ≥ 0 for all x ∈ [0, 1].

2. Monotonicity. By Equation 1.4(1) in Lorentz (1986) we obtain

dPJ(x)

dx
= J

J−1∑
j=0

(aj+1 − aj)
(
J − 1

j

)
xj(1− x)J−1−j (2.20)

From equation (2.20) to obtain an increasing function, it is su�cient

but not necessary to impose the restriction aj+1 ≥ aj for all j's.

3. Convexity. Equation 1.4(2) in Lorentz (1986) says that

d2PJ(x)

dx2
= J(J − 1)

J−2∑
j=0

(aj+2 − 2aj+1 + aj)

(
J − 2

j

)
xj(1− x)J−2−j

The above display implies that aj+2 − 2aj+1 + aj ≥ 0 for all j's is

su�cient to ensure convexity of PJ .
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2.7.2 Additional Numerical Results

Bernstein Results

We report the additional results from the numerical experiments obtained

using Bernstein polynomials. We can draw two conclusions. First, increasing

the sample size the results get closer to the expected ones independently of

the degree of the polynomial. Second, increasing solely the degree of the

polynomial does not lead to better results, for example, the errors relative to

the estimators in Table 2.7 are smaller and more precise than those in Table

2.10.

Table 2.5: Bernstein Basis. Fifth degree, n=100. As expected, the mean
square error and its standard deviation is smaller for the constrained esti-
mator in the �rst three cases and T2 is close to 0.05. Contrary to what we
expect, in the fourth case the constrained estimator performs better than the
unconstrained one and T1 is not close to 0.95. This is due to the fact that
the size of the sample n is not large enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.01 0.042 0.023 0.0597 0.0242 0.0954

x+ 0.1 0.034 0.048 0.0182 0.0288 0.0304 0.0561
x2 + 0.1 0.036 0.052 0.0143 0.0187 0.029 0.0413

−x3 + x+ 0.5 0.079 0.06 0.0249 0.0323 0.0326 0.0438

Table 2.6: Bernstein Basis. Fifth degree, n=1000. As expected, the mean
square error and its standard deviation is smaller for the constrained estimator
in the �rst three cases and T2 is close to 0.05. In addition, as we expect, in the
fourth case the unconstrained estimator performs better than the constrained
one (in terms of mean square error and its standard deviation) but T1 is not
close to 0.95. This is due to the fact that the size of the sample n is not large
enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.009 0.052 0.0019 0.0057 0.0016 0.0087

x+ 0.1 0.018 0.055 0.0014 0.0027 0.0019 0.0053
x2 + 0.1 0.012 0.042 0.0013 0.0019 0.0025 0.0043

−x3 + x+ 0.5 0.661 0.058 0.0141 0.003 0.0158 0.0038
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Table 2.7: Bernstein Basis. Fifth degree, n=10000. As expected, the mean
square error and its standard deviation is smaller for the constrained esti-
mator in the �rst three cases, whereas, in the fourth case the unconstrained
estimator performs better (in terms of mean square error and its standard
deviation). In addition, we expect T2 (T1, respectively) to be close to 0.05
(0.95, respectively) for the �rst three function (the fourth function, respec-
tively).

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.008 0.054 1.7886e-04 6.0831e-04 1.3892e-04 9.1482e-04

x+ 0.1 0.013 0.043 1.2996e-04 2.9221e-04 1.7084e-04 5.9315e-04
x2 + 0.1 0.028 0.055 1.4506e-04 1.3702e-04 2.8116e-04 4.4202e-04

−x3 + x+ 0.5 1 0.049 0.0131 3.0959e-04 0.0137 3.6772e-04

Table 2.8: Bernstein Basis. Tenth degree, n=100. As expected, the mean
square error and its standard deviation is smaller for the constrained esti-
mator in the �rst three cases and T2 is close to 0.05. Contrary to what we
expect, in the fourth case the constrained estimator performs better than the
unconstrained one and T1 is not close to 0.95. This is due to the fact that
the size of the sample n is not large enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.04 0.047 0.0314 0.099 0.0533 0.1936

x+ 0.1 0.021 0.056 0.0272 0.05 0.0635 0.1244
x2 + 0.1 0.011 0.049 0.0215 0.0329 0.0567 0.0933

−x3 + x+ 0.5 0.04 0.059 0.0266 0.0485 0.0382 0.0816

Table 2.9: Bernstein Basis. Tenth degree, n=1000. As expected, the mean
square error and its standard deviation is smaller for the constrained estimator
in the �rst three cases and T2 is close to 0.05. In addition, as we expect, in the
fourth case the unconstrained estimator performs better than the constrained
one (in terms of mean square error and its standard deviation) but T1 is not
close to 0.95. This is due to the fact that the size of the sample n is not large
enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.007 0.047 0.002 0.0081 0.0022 0.0134

x+ 0.1 0.008 0.047 0.0016 0.0038 0.0028 0.0088
x2 + 0.1 0.009 0.046 0.0017 0.003 0.004 0.0086

−x3 + x+ 0.5 0.578 0.065 0.014 0.0041 0.0156 0.0054
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Table 2.10: Bernstein Basis. Tenth degree, n=10000. As expected, the mean
square error and its standard deviation is smaller for the constrained esti-
mator in the �rst three cases, whereas, in the fourth case the unconstrained
estimator performs better (in terms of mean square error and its standard
deviation). In addition, we expect T2 (T1, respectively) to be close to 0.05
(0.95, respectively) for the �rst three function (the fourth function, respec-
tively).

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.07 0.063 1.9856e-04 9.2454e-04 1.9172e-04 0.0015

x+ 0.1 0.006 0.052 1.4666e-04 4.2783e-04 2.4697e-04 0.001
x2 + 0.1 0.005 0.046 1.8283e-04 3.2006e-04 4.2241e-04 9.5181e-04

−x3 + x+ 0.5 1 0.063 0.0131 4.6612e-04 0.0136 6.1307e-04

Table 2.11: Bernstein Basis. Twentieth degree, n=100. As expected, the
mean square error and its standard deviation is smaller for the constrained
estimator in the �rst three cases and T2 is close to 0.05. Contrary to what
we expect, in the fourth case the constrained estimator performs better than
the unconstrained one and T1 is not close to 0.95. This is due to the fact
that the size of the sample n is not large enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.002 0.058 0.0377 0.1681 0.0937 0.4477

x+ 0.1 0.007 0.059 0.0335 0.0749 0.1114 0.2333
x2 + 0.1 0.003 0.046 0.0341 0.0605 0.1288 0.2335

−x3 + x+ 0.5 0.015 0.05 0.0276 0.0769 0.0457 0.1614

Table 2.12: Bernstein Basis. Twentieth degree, n=1000. As expected, the
mean square error and its standard deviation is smaller for the constrained
estimator in the �rst three cases and T2 is close to 0.05. In addition, as
we expect, in the fourth case the unconstrained estimator performs better
than the constrained one (in terms of mean square error and its standard
deviation) but T1 is not close to 0.95. This is due to the fact that the size of
the sample n is not large enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 1e-03 0.056 0.0023 0.012 0.0035 0.0221

x+ 0.1 0.004 0.046 0.002 0.0057 0.0048 0.0149
x2 + 0.1 0.005 0.063 0.002 0.0042 0.0058 0.0136

−x3 + x+ 0.5 0.451 0.051 0.014 0.0058 0.0157 0.0081

Spline Results

We report the additional results from the numerical experiments obtained

using spline bases. We can draw two conclusions. First, increasing the sample
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size the results get closer to the expected ones independently of the dimension

of the linear space generated by the B-spline. Second, increasing solely the

degree of the polynomial and the knot points of the B-spline does not lead to

better results as Table 2.15 and Table 2.18 show.

Table 2.13: B-Spline. Third degree, four knot points, n=100. As expected,
the mean square error and its standard deviation is smaller for the constrained
estimator in the �rst three cases and T2 is close to 0.05. Contrary to what
we expect, in the fourth case the constrained estimator performs better than
the unconstrained one and T1 is not close to 0.95. This is due to the fact
that the size of the sample n is not large enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.006 0.057 0.0331 0.1079 0.0665 0.2403

x+ 0.1 0.013 0.054 0.0279 0.484 0.0776 0.1308
x2 + 0.1 0.016 0.046 0.0267 0.039 0.0826 0.122

−x3 + x+ 0.5 0.043 0.048 0.0264 0.0493 0.0389 0.0878

Table 2.14: B-Spline. Third degree, four knot points, n=1000. As expected,
the mean square error and its standard deviation is smaller for the constrained
estimator in the �rst three cases and T2 is close to 0.05. In addition, as we
expect, in the fourth case the unconstrained estimator performs better than
the constrained one (in terms of mean square error and its standard deviation)
but T1 is not close to 0.95. This is due to the fact that the size of the sample
n is not large enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.008 0.068 0.0022 0.0076 0.0029 0.0117

x+ 0.1 0.016 0.057 0.0018 0.0036 0.0035 0.0074
x2 + 0.1 0.009 0.053 0.0018 0.0026 0.0045 0.0069

−x3 + x+ 0.5 0.63 0.061 0.0141 0.0038 0.0157 0.0049

Table 2.15: B-Spline. Third degree, four knot points, n=10000. As ex-
pected, the mean square error and its standard deviation is smaller for the
constrained estimator in the �rst three cases, whereas, in the fourth case
the unconstrained estimator performs better (in terms of mean square error
and its standard deviation). In addition, we expect T2 (T1, respectively) to
be close to 0.05 (0.95, respectively) for the �rst three function (the fourth
function, respectively).

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.005 0.058 2.0733e-04 7.1834e-04 2.5127e-04 0.0011

x+ 0.1 0.01 0.054 1.6066e-04 3.4213e-04 3.122e-04 7.2144e-04
x2 + 0.1 0.022 0.048 1.8928e-04 2.5057e-04 4.3684e-04 6.3876e-04

−x3 + x+ 0.5 1 0.05 0.0131 3.6278e-04 0.0136 4.4564e-04
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Table 2.16: B-Spline. Third degree, eight knot points, n=100. As expected,
the mean square error and its standard deviation is smaller for the constrained
estimator in the �rst three cases and T2 is close to 0.05. Contrary to what
we expect, in the fourth case the constrained estimator performs better than
the unconstrained one and T1 is not close to 0.95. This is due to the fact
that the size ofof the sample n is not large enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.003 0.054 0.0565 0.2305 0.2164 0.4054

x+ 0.1 0.004 0.051 0.0537 0.1071 0.2416 0.4054
x2 + 0.1 0.002 0.045 0.0655 0.1025 0.3493 0.5014

−x3 + x+ 0.5 0.008 0.052 0.0388 0.1122 0.1265 0.3531

Table 2.17: B-Spline. Third degree, eight knot points, n=1000. As expected,
the mean square error and its standard deviation is smaller for the constrained
estimator in the �rst three cases and T2 is close to 0.05. In addition, as we
expect, in the fourth case the unconstrained estimator performs better than
the constrained one (in terms of mean square error and its standard deviation)
but T1 is not close to 0.95. This is due to the fact that the size of the sample
n is not large enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.003 0.051 0.0025 0.012 0.0046 0.0208

x+ 0.1 0.003 0.048 0.0022 0.0058 0.0057 0.0139
x2 + 0.1 0.004 0.048 0.0023 0.0042 0.0073 0.0129

−x3 + x+ 0.5 0.488 0.057 0.0141 0.0061 0.0158 0.0085

Table 2.18: B-Spline. Third degree, eight knot points, n=10000. As ex-
pected, the mean square error and its standard deviation is smaller for the
constrained estimator in the �rst three cases, whereas, in the fourth case
the unconstrained estimator performs better (in terms of mean square error
and its standard deviation). In addition, we expect T2 (T1, respectively) to
be close to 0.05 (0.95, respectively) for the �rst three function (the fourth
function, respectively).

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.005 0.06 2.2823e-04 0.0011 3.8331e-04 0.0018

x+ 0.1 0.002 0.04 1.8449e-04 5.2338e-04 4.5687e-04 0.0012
x2 + 0.1 0.006 0.042 2.2186e-04 3.8424e-04 5.9165 0.0011

−x3 + x+ 0.5 1 0.054 0.0131 5.7877e-04 0.0136 7.573e-04
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Table 2.19: B-Spline. Third degree, sixteen knot points, n=100. As expected,
the mean square error and its standard deviation is smaller for the constrained
estimator in the �rst three cases and T2 is close to 0.05. Contrary to what
we expect, in the fourth case the constrained estimator performs better than
the unconstrained one and T1 is not close to 0.95. This is due to the fact
that the size of the sample n is not large enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 0.002 0.06 0.1514 0.6742 1.0666 3.1967

x+ 0.1 0.003 0.059 0.1797 0.4708 1.2568 2.661
x2 + 0.1 0.002 0.035 0.2354 0.4011 1.8995 2.8712

−x3 + x+ 0.5 0.002 0.046 0.0992 0.3813 0.7054 2.0683

Table 2.20: B-Spline. Third degree, sixteen knot points, n=1000. As ex-
pected, the mean square error and its standard deviation is smaller for the
constrained estimator in the �rst three cases and T2 is close to 0.05. In ad-
dition, as we expect in the fourth case the unconstrained estimator performs
better than the constrained one (in terms of mean square error) but T1 is
not close to 0.95. This is due to the fact that the size of the sample n is not
large enough.

g0 T1 T2 MSECon MSEUncon StdCon StdUncon
1 1e-10 0.04 0.0028 0.0213 0.0076 0.0388

x+ 0.1 1e-10 0.059 0.0028 0.0104 0.011 0.0278
x2 + 0.1 1e-10 0.045 0.0026 0.0069 0.0106 0.0231

−x3 + x+ 0.5 0.18 0.04 0.0141 0.011 0.0158 0.0167

2.7.3 Shrinkage E�ect of Non-negativity Constraint

In order to support the second point discussed at the beginning of this section

we estimate the intensity function λ0(t) = h0(t)g0(X(t)), where h0 and g0 are

as previously de�ned. We us a tenth degree Bernstein polynomial and 1000

simulations. The simulations are conducted as in Section 2.5.1, but we only

impose the non negativity of the estimator for g0. For each simulation, we

compute the fraction of zero coe�cients of the Bernstein polynomial estima-

tor. Table 2.21 reports the mean and standard deviation from the simulations.

The shrinkage e�ect is apparent, and decreases with the sample, as expected.

Remarkably, no penalty is used in the estimation.
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Table 2.21: Frequency of Estimated Coe�cients Equal to Zero. The fre-
quency is computed from counting the estimated coe�cients equal to zeros
and dividing by 11. A tenth degree Bernstein polynomial requires estimation
of 11 coe�cients. The table reports the mean and the standard deviation over
1000 simulations. Increasing the sample size n the shrinkage e�ect decreases.
The results are uniform respect to g0.

n g0 Mean Std
100 1 0.40 0.88
100 x+ 0.1 0.40 0.88
100 x2 + 0.1 0.41 0.86
100 −x3 + x+ 0.5 0.39 0.87
1000 1 0.26 0.76
1000 x+ 0.1 0.25 0.79
1000 x2 + 0.1 0.27 0.78
1000 −x3 + x+ 0.5 0.25 0.76
1000 1 0.17 0.65
10000 x+ 0.1 0.16 0.64
10000 x2 + 0.1 0.18 0.64
10000 −x3 + x+ 0.5 0.16 0.65

2.7.4 The Role of the Number of Iterations in the Algo-

rithm

We estimate the model using Algorithm 2.1 with one and �ve iterations.

Moreover, to ensure that the estimator does actually fare better than the

best constant intensity, we compute the Monte Carlo approximation of

E

inf
γ>0

(
1

n

0∑
i=−(n−1)

(
g0(Xi)− γ

)2) . (2.21)

This is the mean square error for the best constant intensity. Table 2.22

reports the results. Recall that g0 (x) = −x3 + x + 0.5 does not satisfy the

monotonicity and convexity constraint imposed on ĝ(con).
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Table 2.22: Error Ratios. MSECon and MSEUncon relative to (2.21) for
one and �ve iterations of Algorithm 2.1. A number below one indicates an
improvement over (2.21). The order of the polynomial is 10. Increasing the
number of iterations the �t improves especially when g0 is increasing and
convex.

n g0 Iterations: 1 Iterations: 5
MSECon MSEUnc MSECon MSEUnc

100 x+ 0.1 0.52 0.87 0.30 0.57
100 x2 + 0.1 0.57 0.77 0.25 0.39
100 −x3 + x+ 0.5 1.87 3.57 1.87 3.45
1000 x+ 0.1 0.23 0.27 0.02 0.05
1000 x2 + 0.1 0.29 0.32 0.02 0.03
1000 −x3 + x+ 0.5 1.02 0.31 1.02 0.29
10000 x+ 0.1 0.21 0.21 0.00 0.01
10000 x2 + 0.1 0.27 0.27 0.00 0.00
10000 −x3 + x+ 0.5 0.96 0.04 0.96 0.03

The results con�rm that as the number of iterations increase, the �t does

improve and we do fare better than the best possible constant estimator.

2.7.5 Additional Details for Section 2.3

The variable TrdImb98 is computed as follows. Let

TrdImb98 (ti) :=


EWMA(signedTradedV olume(ti))

EWMA(tradedV olume(ti))
if ti is a trade update

TrdImb98 (ti−1) otherwise

where the EWMA's are as in (2.12) with parameter α = 0.98. Both signed

traded volumes and traded volumes are updated only when a trade is re-

ported. The EWMA is computed and updated only at these event times.

When using trade variables as covariates, we do not adjust their timestamp

by 400 microseconds in order to ensure that they can only be used once re-

ceived, as in live trading. Note that if ti is not an update for the trade

imbalance, we just report the last available value of the trade imbalance. A

similar approach is applied to the durations.

The duration variables are in nanosecond resolution with nanoseconds

as decimals. Hence to map durations in [0, 1] we cap them to one second

maximum.

We compute the spread in ticks and cap it to 4 ticks. We also force the

spread to take the minimum value of one tick. This is because there are
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no tradable choice prices, i.e., spread equal to zero is not a tradable event.

We then map this spread into [0, 1] dividing it by 4. In consequence, the

transformed spread variable only takes values in {0.25, .5, 0.75, 1}.

2.7.6 Plots

In this subsection we collect the plots of the ACF of Buy Trades Model, the

impact functions of non manipulable covariates (relative both to the Weibull

and Hawkes baseline intensities) and the impact functions of manipulable

covariates relative to the Weibull baseline intensity.
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Figure 2.3: Autocorrelation Function (ACF) of (2.14) for Buy Trades Model.
The top panel is the ACF for the model with Weibull baseline intensity.
The bottom panel is the ACF for the model with Hawkes baseline intensity.
For both models, the estimator for g0 is based on a second order Bernstein
polynomial. The model with Hawkes baseline intensity �ts the data better
than the model with Weibull baseline intensity: even if for both models the
�rst 20 lags are signi�cant, the autocorrelations of the model with Hawkes
baseline intensity appear to be much smaller.
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Figure 2.4: B8H Non-Manipulable Impact Functions for Buy Trades. The
estimated impact functions from B8H (the unconstrained 8th order Bernstein
estimator with Hawkes baseline intensity) are plotted for TrdImb98, Dur98,
Dur90. These variables are not easy to manipulate: in fact, the corresponding
impact functions are not increasing.
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Figure 2.5: B8W Manipulable Impact Functions for Buy Trades. The esti-
mated impact functions from B8W (the unconstrained 8th order Bernstein
estimator with Weibull baseline intensity) are plotted for VolImb1, VolImb2,
VolImb3, Spread. These variables are relatively easy to manipulate. As ex-
pected, the impact functions, for the volume imbalance, are increasing in the
interval [0.5, 1] (this interval corresponds to a positive volume imbalance).
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Figure 2.6: B8W Non-Manipulable Impact Functions for Buy Trades. The
estimated impact functions from B8W (the unconstrained 8th order Bernstein
estimator with Weibull baseline intensity) are plotted for TrdImb98, Dur98,
Dur90. These variables are not easy to manipulate: in fact, the corresponding
impact functions are not increasing.
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2.7.7 Spoo�ng the Bitcoin Market

As of now the Bitcoin market is a non regulated market. This could be one

of the main reason to attract manipulators. In this section we assess the

possibility to manipulate the Bitcoin market via the methodology introduced

in the main body of this paper.

As for the empirical study relative to crude oil futures in order to estimate

the intensity, only the �rst 67% of the sample is used while the remaining

33% of the sample is used to assess which model best �ts the data. Figure

2.7 represents the impact functions obtained imposing no constraint (except

the non negativity), whereas Figure 2.8 shows the impact functions obtained

imposing (in addition to a non negativity constraint) a convex and increasing

(volume imbalance variables) or decreasing constraint (spread variable).

Variable Unconstrained Model 1 Model 2 Model 3 Model 4
VI (First Level) - C and I C and I C and I C and I
VI (Second Level) - - C and I C and I C and I
VI(Third Level) - - - C and I C and I

Spread - - - - C and D

Table 2.23: Competing models: constraints imposed. All the models impose a
non negativity constraint in addition to those indicated in the table. Legend:
VI=Volume Imbalance, C=Convex, I=Increasing, D=Decreasing.

It is also possible to constraint some variables and not all the four covari-

ates: Table 2.23 lists the competing models. To choose the one that best �t
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the data the model con�dence set is used (Hansen et al., 2011) as reviewed

in Algorithm 2.2. In the end the algorithm comes up with a (set of) model(s)

that, asymptotically, contain the �best� model with probability at least 1−α.

Algorithm 2.2 Model con�dence set

Step 0. Set M =M0 :={Unconstrained model, Model 1, Model 2, Model 3,
Model 4} and a level of con�dence α, e.g., we set α = 0.05.
Step 1. Test, via the rule δM, the null hypothesis H0,M, i.e., all the models
inM are �equally good�, at level α.
Step 2. If H0,M is accepted then stop: every model in M is �equally good�
andM is the model con�dence set (at level α). Otherwise, if H0,M is rejected
at level α, use an elimination rule eM to eliminate the �worst� model(s) EM,
from the setM and repeat the procedure from Step 1 settingM :=M\EM.

To implement it we need to detail the test δM and the elimination rule

eM. Let us start discussing δM. To begin we specify the loss function that

allows to measure the �goodness� of a given model. We adopt the opposite

of the loglikelihood function, e.g., if λ̂U is the unconstrained estimator of the

intensity its loss LU is given by

LU := −
∫ T

0

log
(
λ̂U (s)

)
dN (s) +

∫ T

0

λ̂U (s) ds. (2.22)

Following Hansen et al. (2011) in order to check whether a set of models are all

�equally good� we design a multiple test procedure. For example the initial

test comprises �ve hypotheses, i.e., in order to accept the null hypothesis

H0,M0 that the �ve models perform equally good we compare the loss of the

�rst model with the average loss of the �ve models, the loss of the second

model with the average loss of the �ve models and so on. The test statistics

used to make these comparisons are given by the standardized di�erence of

the losses relative to the two competing models, e.g., if the two competing

models are the unconstrained and the �averaged �ve models� we have the

following test statistics

LU − L̄√√√√∫ T
0

(
log

(
λ̂U (s)

(λ̂U (s)λ̂(1)(s)λ̂(2)(s)λ̂(3)(s)λ̂(4)(s))
1
5

))2

dN (s)

(2.23)

where λ̂(1), . . . , λ̂(4) are the estimators of the intensity relative to Model 1, ...,

Model 4, respectively and L̄ := 1
5

(∑4
i=1 Li + LU

)
, Li is de�ned as in Equation
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(2.22) replacing λ̂U with λ̂(i). The above display is asymptotically distributed

as a standard normal variable (Sancetta, 2018). As said above being the test

a multiple test the Holm procedure is adopted, see pages 350-351 in Lehmann

and Romano (2005).

The elimination rule eM is quite straightforward: eliminate fromM the

model(s) EM having the worst t-statistics, i.e., the highest value of (2.23).

In our case the procedure sequentially eliminates the following model:

Model 4, Model 3, Model 2, Model 1. Thus the surviving model, i.e., the

�best� model according to our loss function, is the Unconstrained Model with

(asymptotic) probability 95%. This shows that the impact of these variables

is highly nonlinear. It is also surprising that a higher spread leads to higher

intensity. However, a higher spread can result from a series of correlated

aggressive trades that deplete liquidity on ones side of the book. This would

be associated to a higher intensity.
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Figure 2.7: From top left to bottom right. Unconstrained impact functions
relative to: spread, �rst level volume imbalance, second level volume imbal-
ance, third level volume imbalance. In each case the Bernstein polynomial
has degree 8. The estimators have been obtained using 67% of the data. The
functions appear to be increasing in the interval [0.5, 1] (that corresponds to a
positive volume imbalance) even without imposing a monotonicity constraint.
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Figure 2.8: From top left to bottom right. Constrained impact functions rel-
ative to: spread, �rst level volume imbalance, second level volume imbalance,
third level volume imbalance. All the function are constrained to be convex
and non negative. In addition, the spread is constrained to be decreasing
while the volume imbalances are constrained to be increasing. In each case
the Bernstein polynomial has degree 8. The estimators have been obtained
using 67% of the data.
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Chapter 3

Estimation of a High Dimensional

Counting Process Without

Penalty

Abstract. Regularization techniques play a central role in high dimensional

statistics. It has recently been shown that, under certain circumstances, a

sign constraint is a regularization technique as e�ective as the more traditional

Lasso approach: these results are derived in the framework of Gaussian re-

gressions. The empirical study and the simulations conducted in Chapter 2

suggest similar results for (a certain class of) counting processes. This paper

aims to provide a theoretical justi�cation of those empirical �ndings.

3.1 Introduction

The analysis of high dimensional data has made it necessary the introduction

of new statistical techniques. Among them regularization techniques have

played a central role. In fact, in high dimensional statistics the number of

predictors can be larger than the sample size. To �x ideas, consider the linear

regression

Y = Xβ∗ + ε (3.1)

such that Y is a n×1 real vector, X a n×p dimensional real valued matrix, ε

are i.i.d. centered Gaussian random variables and p > n. This last assumption

prevent us from using the standard OLS, instead di�erent alternatives have

been proposed over the last decades, such as ridge regression, non negative

112



Garrote, Lasso (and its variants). Every regularization technique relies on

a sparsity assumption: β∗, i.e., the true parameter, is supported on the set

S := {β∗j 6= 0} such that |S| = s < n (|S| denotes the cardinality of the set

S). One of the most successful regularization techniques was introduced in

Tibshirani (1996), i.e., the Lasso. It consists in �nding β̂Lasso (its uniqueness

is discussed in Tibshirani, 2013) such that

||Y −Xβ̂Lasso||2 + γ||β̂Lasso||1

is minimized, where: || · || is the usual euclidean norm, || · ||1 is the `1 norm

and γ > 0 is a tuning parameter to be appropriately chosen. The role of the

parameter γ is to control the trade-o� between the �t of the estimator and

its sparsity. Under the so called Restricted Eigenvalue Condition it can be

shown (cf. Bickel et al., 2009) an error bound of the type s log(p)/n.

Meinshausen (2013) showed that if it is known, a priori, that all the entries

of the parameter β∗ in (3.1) are non negative and a Positivity Eigenvalue

Condition is ful�lled then the Non Negative Least Square (NNLS) performs

as good as the Lasso (the paper proves an error bound of the type s2 log(p)/n),

yet it is simpler to implement because it does not require to specify any tuning

parameter. Practically speaking, the NNLS estimator β̂ solves the following

convex minimization problem

min
β≥0
||Y −Xβ||2.

Slawsky and Hein (2013) is a more comprehensive study and obtain similar re-

sults for several norms relying on di�erent technical assumptions (notice that

in Slawsky and Hein, 2013, the Positivity Eigenvalue Condition is called Self-

Regularizing Property). The empirical study and simulations carried out in

Chapter 2 suggest a similar result for counting processes. Counting processes

are continuous time stochastic processes with nondecreasing, càdlàg trajec-

tories taking values in the set of non negative integers. They are constant

between two consecutive events and jump one unit at each event time. The

use of counting processes (and more in general of point processes) in high

frequency �nancial modelling was pioneered by the Nobel laureate Robert

Engle (Engle, 2000, notice that in that paper the meaning of the word �high

frequency� is not the same as the usual usage nowadays. Instead �ultra high
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frequency� is what corresponds to the intraday data). Since then, they have

acquired an increasing popularity in the literature, see e.g., Bacry et al. (2015)

for a survey focusing on Hawkes processes, Bauwens and Hautsch (2009) and

Hautsch (2012) for an extensive treatment of the econometric applications of

point processes. A possible way to characterize a counting process is via its

intensity: intuitively speaking the intensity of a counting process at time t is

the instantaneous rate of occurrence of events conditional to the past history,

i.e., the probability that the process will increase (of one unit) during the

time interval (t, t + dt] conditional to the past history and divided by dt. It

can also be thought as the expected number of events during the time interval

(t, t+ dt] conditional to the past history and divided by dt.

Essentially, the model considered in Chapter 2 is a (generalization of a)

counting process N whose intensity process has the following form

λ∗(t) = X(t)′b∗ (3.2)

where X is a time dependent (column) vector of covariates and X ′ is its

transpose. In that chapter N counts the number of buy or sell trade arrivals

and the covariates are some relevant microstructural variables, e.g., volume

imbalance, spread. The intensity is a positive stochastic process and assuming

that the covariates are non negative processes it is natural to look for an

estimator of the parameter b∗ constrained to be nonnegative: the scope of

the present paper is to theoretically justify the regularization property of

that constraint. More in detail, if the true intensity is given by (3.2) then the

estimator, say b̂, introduced in Chapter 2 (see Section 2.4.1) reads

arg min
b≥0

(
−2

∫ T

0

X (t)′ bdN (t) +

∫ T

0

(
X (t)′ b

)2
dt

)
.

We are able to derive the following fundamental estimates:

∥∥∥b̂− b∗∥∥∥
1

= OP

(√
s5 log (K)

T

)

and
1

T

(
b̂− b∗

)′ ∫ T

0

X (t)X (t)′ dt
(
b̂− b∗

)
= OP

(
s4 log (K)

T

)
for T → ∞. These bounds are not entirely dissimilar to those obtained in

the Gaussian regression problem (Meinshausen, 2013). The main di�erence

114



between the existing literature and the present framework is that, being the

error term a �generalized poissonian martingale�, the proofs rely on expo-

nential inequalities for counting processes (cf. Chapter 2 in Nishiyama, 1998)

rather than to classical exponential inequalities for gaussian random variables.

The paper is structured as follows. The next section contains the descrip-

tion of the model together with the technical assumptions necessary to state

the two main results: the �rst is about the consistency of the estimator of b∗

and its rate of convergence, while the second one concerns the convergence

of the prediction error (Section 3.4 is dedicated to their proofs). The subse-

quent section is dedicated to the discussion of the results of the simulations

conducted.

3.2 Assumptions and Results

3.2.1 General assumptions

Let K > 1 an integer and T > 0 an arbitrary time horizon. We consider

the following model. N(t) is a counting process1 with jump times 0 = T0 <

T1 < . . . < Tn = T . We assume that the compensator2 of N (t) is an absolute

continuous function: λ∗(t) denotes its derivative, the so called intensity (of

the counting process N). The intensity is given by (3.2)

λ∗(t) = X(t)′b∗

where the column vector b∗ ∈ RK is the (true) parameter to be estimated

which entries are non negative, i.e., b∗ ≥ 0 (here and in the sequel such types

of inequalities have to be understood elementwise). To simplify the results

we also assume that ‖b∗‖∞ ≤ 1 (‖·‖p is the usual `p norm for p ∈ [0,∞])

though this is not a necessary condition. M (t) := N (t) −
∫ t

0
λ∗ (s) ds is the

martingale corresponding to the counting process. We make the following

Assumption 3.1. (Model Assumption) X is a K−dimensional (column

vector) adapted, ergodic, càglàd stochastic process taking values in [0, 1]K .

1Here and in the sequel we tacitly assume that we have de�ned an underlying stochastic

basis
(

Ω, P, (Ft)0≤t≤T

)
whose �ltration Ft satis�es the so called �usual assumptions�.

2The compensator of a general counting process N (t) is an increasing predictable
stochastic process, say Λ (t) , such that N (t) − Λ (t) is a martingale. Its existence is
guaranteed by Doob-Meyer theorem.
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3.2.2 Regularity assumptions

We assume that

Assumption 3.2. (Eigenvalues Assumption) Let σT the smallest eigenvalue

and σ̄T the largest eigenvalue of the matrix 1
T

∫ T
0
XS (t)XS (t)′ dt. Then

1

σT
= OP (1) σ̄T = OP (1) (3.3)

as T →∞.

We introduce the two main technical assumptions of the papers: the Com-

patibility Condition and the Positive Eigenvalue Condition (Meinshausen,

2013). To this end we introduce the following notation. Let S the set of

non-zero entries of b∗, i.e., S = {i : b∗i > 0}, N := Sc = {i : b∗i = 0} and
s = |S|. Note that N denotes both the counting process and a set of indexes.

For a generic vector a ∈ RK we denote by aS ∈ RK (a0S ∈ Rs, respectively)

the vector having the same entries of a except in the set Sc: in this set aS

(a0S, respectively) is equal to zero (not de�ned because it has dimension s).

Similarly, we can de�ne aN and a0N . XS is the s−dimensional subvector of

X obtained by removing from X all the entries with index not belonging to

the set S.

• Compatibility Condition. Let L, φ > 0 two constants and S the index

set introduced above. We say that the (L, S)−Compatibility Condition

holds with φ if φ2
comp(L, S) ≥ φ, where

φ2
comp(L, S) := min

{
s
b′
∫ T

0
X (t)X (t)′ dtb

T ||b||21
: b ∈ R (L, S)

}
(3.4)

and R (L, S) := {b : ‖bN‖1 ≤ L ‖bS‖1}. Note that φ2
comp ≤ s. In fact, if

Σ̂ :=
∫ T

0
X (t)X (t)′ dt/T then

b′
∫ T

0
X (t)X (t)′ dtb

T ||b||21
=

1

||b||21

K∑
i,j=1

Σ̂ijbibj ≤
1

||b||21

K∑
i=1

|bi|
K∑
j=1

|bj| = 1

because Σ̂ij ≤ 1. The Compatibility Condition appears in the Lasso

literature and is the weakest assumption that guarantees its success, cf.

van de Geer and Bühlmann (2009).

• Positive Eigenvalue Condition. Let ν > 0 a constant. We say that the
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Positive Eigenvalue Condition holds with ν if φ2
pos ≥ ν, where

φ2
pos := min

{
b′
∫ T

0
X (t)X (t)′ dtb

T ||b||21
: min

k
bk ≥ 0

}
. (3.5)

Reasoning as in the point above we get φ2
pos ≤ 1. This condition has

been introduced in Meinshausen (2013) and Slawsky and Hein (2013)

(in the latter paper the Positivity Eigenvalue Condition is called Self-

Regularizing Property).

We shall discuss a couple of examples to clarify the concepts of Compati-

bility Condition and Positive Eigenvalue Condition (cf. van de Geer and

Bühlmann, 2009, Meinshausen, 2013, Slawsky and Hein, 2013 for more ad-

vanced examples).

Example 3.1. Assume that the least eigenvalue σ of the matrix 1
T

∫ T
0
X (t)

X (t)′ dt is strictly positive, i.e., σ > 0, and z is an eigenvector corresponding

to σ that belongs to R (L, S) for some L > 0 and S. If b ∈ R (L, S) then

‖b‖1 = ‖bS‖1 + ‖bN‖1 ≤ (1 + L) ‖bS‖1 ≤ (1 + L)
√
s ‖bS‖ .

In consequence

s

T

b′
∫ T

0
X (t)X (t)′ dtb

||b||21
≥ s

T

b′
∫ T

0
X (t)X (t)′ dtb

(1 + L)2 s ‖bS‖2

=
1

T

‖b‖2

‖bS‖2

b′
∫ T

0
X (t)X (t)′ dtb

‖b‖2

1

(1 + L)2

≥ 1

T

z′
∫ T

0
X (t)X (t)′ dtz

‖z‖2

1

(1 + L)2

=
σ

(1 + L)2 > 0.

The above display implies that the (L, S)−Compatibility Condition holds

with (every strictly positive real number less or equal to) σ

(1+L)2
. Con-

versely, if σ = 0 and ||zN ||1 ≤ L||zS||1 (z ≥ 0, respectively) then the

(L, S)−Compatibility Condition (the Positive Eigenvalue Condition, respec-

tively) cannot be ful�lled.

Example 3.2. (Meinshausen, 2013) If every entry of Σ̂ := 1
T

∫ T
0
X (t)X (t)′ dt

satis�es Σij ≥ ν > 0, then the Positive Eigenvalue Condition holds true. In
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fact,

b′Σ̂b

||b||21
=

K∑
i,j=1

Σ̂ijbibj
||b||21

≥ ν
(
∑K

i=1 bi)
2

||b||21
= ν > 0

for every b ≥ 0.

We are now able to make the following

Assumption 3.3. The Positive Eigenvalue Condition holds with ν > 0.

Assumption 3.4. The (L, S)−Compatibility Condition holds with φ > 0

for L = 3
ν
and with φ∞ > 0 for L = 0.

Note that, from Assumption 4, as ν gets closer to zero, i.e., the positive

eigenvalue condition is easier to be met, the compatibility condition has to

hold in a larger set, therefore it is more unlikely to be veri�ed.

3.2.3 Additional notation

The symbols . and & will be used to indicate inequality up to an absolute

constant. The acronyms lhs and rhs stand for left hand side and right hand

side, respectively.

We denote with b̂ a solution of the following convex minimization problem

min
b≥0

(
−2

∫ T

0

X (t)′ bdN (t) +

∫ T

0

(
X (t)′ b

)2
dt

)
. (3.6)

Note that a priori the solution of that problem can be not unique, nevertheless

if we require that it is sparse enough such a result holds (Bruckstein et al.,

2008).

The vector boracle is a solution of the following minimization problem

min
b≥0

(
−2

∫ T

0

X (t)′ bdN (t) +

∫ T

0

(
X (t)′ b

)2
dt

)
s.t. bN = 0. (3.7)

3.2.4 Main results

Now we can state the two main theorems of the paper. The �rst theorem is

a consistency result for the estimator b̂

Theorem 3.1. If Assumption 3.1, Assumption 3.2, Assumption 3.3, As-

sumption 3.4 hold true then

∥∥∥b̂− b∗∥∥∥
1

= OP

(√
s5 log (K)

T

)
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for T →∞.

The second result is an estimation of the prediction error.

Theorem 3.2. If Assumption 3.1, Assumption 3.2, Assumption 3.3, As-

sumption 3.4 hold true then

1

T

(
b̂− b∗

)′ ∫ T

0

X (t)X (t)′ dt
(
b̂− b∗

)
= OP

(
s4 log (K)

T

)
for T →∞.

Their proofs are in Section 3.4.

3.3 Numerical Examples

This section presents the simulations conducted in order to validate the theo-

retical results discussed above. In particular it is enlightened the role played

by the parameters k, s, n. We consider the estimation of two di�erent types

of intensity functions. In the �rst case the covariates are constant functions

between two consecutive jumps (linear design) while in the second case they

are linear combinations of indicator functions (localized basis).

Let us denote, as usual, by b̂ and b∗ the estimated parameter and the true

parameter, respectively. The goodness of �t of the estimators is measured

via four statistics (in parentheses the acronyms displayed in the subsequent

tables).

Relative Mean Square Error (MSE): it is the Monte Carlo approximation

of the norm l2 of the relative error, i.e.,
∥∥∥b∗ − b̂∥∥∥ / ‖b∗‖.

Norm one of the relative error (Norm1): it is the Monte Carlo approxi-

mation of the norm l1 of the relative error, i.e.,
∥∥∥b∗ − b̂∥∥∥

1
/ ‖b∗‖1.

Norm zero of the relative error (Norm0): it is the Monte Carlo approxi-

mation of the norm l0 of the relative error, i.e.,
∥∥∥b∗ − b̂∥∥∥

0
/ ‖b∗‖0 (‖·‖0 denotes

the l0 norm).

Missing active features (Type1): it is the number of the estimated coe�-

cients that are set to zero instead of being strictly positive. To have mean-

ingful results a generic entry of the vector b̂, say b̂k, is considered to be equal

to zero if b̂k < 10−4.

False Discovery (Type2): it is the number of the estimated coe�cients

that are strictly positive instead of being zero. To have meaningful results

119



a generic entry of the vector b̂, say b̂k, is considered to be equal to zero if

b̂k < 10−4.

To get the interarrival times (Ti − Ti−1)ni=1 of the counting process N the

classic time change theorem (cf. Brémaud, 1981, Chapter II, Theorem 16)

turns out to be crucial. It assures that the left side of the following display∫ Ti

Ti−1

λ (t) dt =

∫ Ti

Ti−1

X (t)′ b∗dt (3.8)

are i.i.d. exponential random variable with unitary parameter.

The results mentioned below are obtained running 500 simulations.

3.3.1 Linear Design

The true model is given by λ∗ (t) = b∗0 +
∑K

i=1Xk (t) b∗k where b
∗
k = 1 if k ≤ s

and 0 otherwise and b∗0 = 0.001. The number of active variables s will be

set to 1 or 11. The covariates Xk are assumed to be constant between two

consecutive jumps of the counting process N so that the jump times can be

easily obtained via (3.8) once we know the values of the covariates at each

jump time: they are generated as follows. An n−dimensional random sample

vector {Zj}nj=1 is generated from a K−multivariate normal distribution with

zero mean and covariance matrix Σij = ρ|i−j| (Toeplitz design) or Σ = I +

ρ(1K1′K − I) (equicorrelated design) where I is the K−dimensional identity

matrix, 1K is the K−dimensional column vector having all entries equal to

one and ρ a parameter to be �xed. The matrix Xk (Ti) is given by Xk (Ti) =

Φ
(
Zk
i

)
where Φ is the cdf of a standard normal random variable and Zk

i is the

kth−component of Zi. Note that, consequently, Xk (Ti) are uniform random

variable in [0, 1] .Tables 3.1, 3.2 and 3.3 show the results for n = 100 and

di�erent values of K, s, ρ. The vector b∗ is estimated via (3.6). As the ratio

K/n or s/n increases the errors (MSE, Norm1, Norm2, Type1, Type2) get

worse as we expect (the sample size n is �xed). In the uncorrelated case

(ρ = 0) the results are, in general, better than the equicorrelated case with

ρ = 0.9 or the Toeplitz design if the active covariate is just one, i.e., s = 1.

The reason is intuitively clear: when the covariates are uncorrelated, it is not

di�cult to �distinguish� them and in particular the only active covariate is

easily spotted. When the correlation (among the covariates) and the number

of active covariates increase within a cluster (as in the Toeplitz case) the
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results improve. However, an increase in correlation among all the variables

makes the variable selection problem harder.

(K, s, n) MSE Norm1 Norm0 Type1 Type2
(10, 1, 100) 0.0227

(0.0013)
0.1674
(0.0051)

2.6860
(0.0425)

0.9960
(0.0028)

1.6860
(0.0425)

(100, 1, 100) 0.0436
(0.0029)

0.2733
(0.0086)

4.5180
(0.0718)

1.0000
(0)

3.5180
(0.0718)

(100, 11, 100) 2.3729
(0.0331)

1.8203
(0.0108)

2.0000
(0.0109)

8.4540
(0.0568)

10.0000
(0.1088)

(1000, 1, 100) 0.0631
(0.0031)

0.3802
(0.0098)

6.3740
(0.1012)

1.0000
(0)

5.3740
(0.1012)

(1000, 11, 100) 2.7148
(0.0298)

2.2271
(0.0083)

2.6568
(0.0298)

10.4080
(0.0135)

16.5680
(0.1345)

Table 3.1: Equicorrelated matrix design with ρ = 0. Estimated standard
errors in parentheses. As the ratio K/n or s/n increases the errors (MSE,
Norm1, Norm2, Type1, Type2) get worse.

(K, s, n) MSE Norm1 Norm0 Type1 Type2
(10, 1, 100) 0.3170

(0.0172)
0.7186
(0.0236)

2.9300
(0.0571)

0.7140
(0.0216)

1.9300
(0.0571)

(100, 1, 100) 0.7423
(0.0212)

1.4001
(0.0257)

5.6700
(0.0870)

1.0700
(0.0246)

4.6700
(0.0870)

(100, 11, 100) 3.9346
(0.0653)

1.9290
(0.0084)

1.5350
(0.0078)

9.7380
(0.0432)

5.3500
(0.0785)

(1000, 1, 100) 0.9981
(0.0183)

1.7627
(0.0215)

7.8420
(0.1067)

1.4400
(0.0249)

6.8420
(0.1067)

(1000, 11, 100) 3.8268
(0.0579)

2.0865
(0.0071)

1.7934
(0.0100)

10.5920
(0.0268)

7.9340
(0.0996)

Table 3.2: Equicorrelated matrix design with ρ = 0.9. Estimated standard
errors in parentheses. As the ratio K/n or s/n increases the errors (MSE,
Norm1, Norm2, Type1, Type2) get worse as we expect. This set up makes
the predictions harder because the covariates are confounded.
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(K, s, n) MSE Norm1 Norm0 Type1 Type2
(10, 1, 100) 0.1011

(0.0085)
0.3498
(0.0142)

2.4360
(0.0450)

0.7620
(0.0191)

1.4360
(0.0450)

(100, 1, 100) 0.1090
(0.0075)

0.4134
(0.0140)

4.1740
(0.0691)

1.0000
(0)

3.1740
(0.0691)

(100, 11, 100) 2.5101
(0.0545)

1.4001
(0.0096)

1.3312
(0.0074)

6.9840
(0.0513)

3.3120
(0.0742)

(1000, 1, 100) 0.1266
(0.0093)

0.4870
(0.0154)

6.1760
(0.0980)

1.0060
(0.0035)

5.1760
(0.0980)

(1000, 11, 100) 2.4541
(0.0584)

1.5048
(0.0100)

1.6732
(0.0120)

7.3580
(0.0529)

6.7320
(0.1202)

Table 3.3: Toeplitz matrix design with ρ = 0.9. Estimated standard errors
in parentheses. As the ratio K/n or s/n increases the errors (MSE, Norm1,
Norm2, Type1, Type2) get worse as we expect. In this set up when the active
covariates are more than one, i.e., s = 11, the predictions can be even better
than the uncorrelated case.

3.3.2 Localized basis

The scenario discussed in this subsection is inspired by the multiple change

point problem for counting processes (Alaya et al., 2015). In econometric,

that framework can be used to detect spikes in the intraday volume curve

relative to, e.g., futures contracts (see also Section 1.5). Let T = K = 100

and s = 10. In this setup the true intensity is given by

λ∗ (t) = 1 + 10
T∑
i=1

1(i−1,i] (t) b∗i

where b∗i = 1 if i ≤ s and b∗i = 0 otherwise. The covariates are
{

1(k−1,k] (t)
}K−1

k=1

and
{

1[0,T ] (t)
}
. Notice that in order to include the intercept, i.e., the covari-

ate
{

1[0,T ] (t)
}
, and avoid multicollinearity the covariate

{
1(K−1,T (t)

}
has

not been included. This means that jumps occurring during the time interval

(K − 1, K] will not be detected.

Unlike the previous scenario now we consider m trading days, i.e., we

have m independent counting processes N j, j = 1, . . . ,m (they have the

same intensity λ∗). For each of them the relative jump times are, recursively,
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generated according to (3.8), i.e., T0 = 0 by de�nition and

Ti+1 =


Ti − ln(Ui+1)

11
if {Ti ≤ s}

⋂
Ui

11Ti − 10s− ln (Ui+1) if {Ti ≤ s}
⋂
Ui

Ti − ln (Ui+1) if {Ti > s}

for i ≥ 0, where Ui are i.i.d. uniform random variables in the interval [0, 1]

and Ui := {− ln (Ui+1) ≤ 11 (s− Ti)} . The number of jumps, in a given day,

is not �xed in advance, nevertheless the length of each day is T . To get the

estimator b̂ a slight generalization of the function (3.6) is minimized, that is

m

∫ T

0

λ (t)2 dt− 2
m∑
i=1

∫ T

0

λ (t) dN i (t)

where λ (t) =
∑K−1

k=1 1[k−1,k) (t) bk + 1[0,T ] (t) bK . Table 3.4 summarizes the

results: as m increases the MSE, Norm1, Norm0 and Type2 decrease and

at the same time they become more precise. Nevertheless, Type1, i.e., the

number of missing active features increases: this may be due to the low ratio

signal to noise. In other words, missing the detection of an active feature

does not degrade the error substantially.

m MSE Norm1 Norm0 Type1 Type2
100 0.0878

(0.0010)
0.3586
(0.0015)

5.0255
(0.0278)

4.9192
(0.2446)

49.1912
(1.9790)

1000 0.0834
(0.001)

0.3228
(0.0018)

3.8187
(0.0181)

6.3793
(0.2428)

37.375
(1.9644)

10000 0.0824
(0.001)

0.3188
(0.0019)

3.7318
(0.0125)

6.48475
(0.242)

36.524
(1.9579)

Table 3.4: Localized basis scenario. Estimated standard errors in parentheses.
As m increases MSE, Norm1, Norm0 and Type2 decrease.

3.4 Proofs

We start proving two lemmas that will be useful in the sequel. The �rst

one assures that
∫ T

0
XS (t)XS (t)′ dt is an invertible matrix (see the proof of

Lemma 2 in Meinshausen, 2012).

Lemma 3.1. Let assume that the (0, S)−Compatibility condition holds with

φ∞ > 0. Then the matrix
∫ T

0
XS (t)XS (t)′ dt admits inverse.
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Proof. From the compatibility condition we can write

b′
∫ T

0

X (t)X (t)′ dtb ≥ φ∞
T

s
‖b‖2

1

for every b ∈ RK such that bN = 0. This is equivalent to say that

b′0S

∫ T

0

XS (t)XS (t)′ dtb0S ≥ φ∞
T

s
‖b0S‖2

1

or for every b0S ∈ Rs \ {0Rs} (0Rs denotes the null vector of the space Rs)

b′0S
∫ T

0
XS (t)XS (t)′ dtb0S

‖b0S‖2 ≥
φ∞

T
s
‖b0S‖2

1

‖b0S‖2 ≥ φ∞T ‖b0S‖1

s ‖b0S‖∞
≥ φ∞T

s
> 0

(because ‖b0S‖2 ≤ ‖b0S‖∞ ‖b0S‖1) i.e., zero cannot be an eigenvalue of the

matrix
∫ T

0
XS (t) XS (t)′ dt.

The second lemma gives a bound for max1≤i≤K

∣∣∣∫ T0 Xi (t) dM (t)
∣∣∣ and is

crucial in order to prove the main theorems. Its proof is based on the following

two lemmas (cf. Lemma 2.1.1 and Lemma 2.1.2 in Nishiyama, 1998, Corollary

3.3(a) in Nishiyama, 1997 and also page 693 in Nishiyama, 2000 for a more

general statement).

Lemma 3.2. Let Z an R−valued, locally square integrable martingale such

that Z0 = 0 and that |∆Zt| ≤ a 3 for (every t and) a constant a ≥ 0, and τ

a bounded stopping time. Then, it holds that for every Γ > 0

P

(
sup
t∈[0,τ ]

|Zt| > ε, 〈Z,Z〉τ ≤ Γ

)
≤ 2 exp

(
− ε2

2 (aε+ Γ)

)
∀ε > 0

where 〈Z,Z〉 is the predictable quadratic variation of the process Z, i.e., the

compensator of the quadratic variation of Z.

Lemma 3.3. Let N ∈ N and let Z1, . . . , ZN be arbitrary R−valued random

variables. Assume that for a measurable set B and some constants a ≥ 0 and

Γ > 0

P (|Zi| > ε,B) ≤ 2 exp

(
− ε2

2 (aε+ Γ)

)
∀ε > 0,∀i = 1, . . . , N.

3∆Zt := Zt − Zt−, where Zt− := lims<t,s→t Zs.
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Then, it holds that

E

(
max

1≤i≤N
|Zi| 1B

)
. a log (1 +N) +

√
Γ log (1 +N) .

Now we can prove the announced result.

Lemma 3.4. If log(1+K)
T

→ 0 as T →∞ then it holds true

max
1≤i≤K

∣∣∣∣∫ T

0

Xi (t) dM (t)

∣∣∣∣ = OP

(√
sT log (1 +K)

)
(3.9)

as T →∞.

Proof. Thanks to Markov's inequality boundedness in probability is implied

by boundedness in norm L1. We prove that the lhs of (3.9) is bounded in

norm L1 : the proof is a consequence of Lemma 3.3.

Let B :=
{

max1≤i≤K

∣∣∣∫ T0 X2
i (t)λ∗ (t) dt

∣∣∣ ≤ Γ
}

with Γ > 0 a constant

that we will �x soon. Note that B =
⋃K
i=1

{∣∣∣∫ T0 X2
i (t)λ∗ (t) dt

∣∣∣ ≤ Γ
}
, i.e.,

B is �nite union of measurable sets (in fact, X2
i (t)λ (t) is predictable and, a

fortiori, progressive measurable), thus B itself is a measurable set. To apply

Lemma 3.3 we need to check the validity of the following display

P

({∣∣∣∣∫ T

0

Xi (t) dM (t)

∣∣∣∣ > ε

}⋂
B

)
≤ 2 exp

(
− ε2

2 (aε+ Γ)

)
for every i = 1, . . . , K, ε > 0 and appropriate constants a ≥ 0 and Γ > 0. We

claim that the above display holds true with a = 1 and Γ = Ts. To prove the

claim we rely on Lemma 3.2 with τ = T . Let check that the hypotheses of the

lemma are satis�ed. From the assumptions we have made
∫ t

0
Xi (s) dM (s) is

a locally square-integrable martingale (Xi is a bounded predictable process).

In addition,∫ t

t−
Xi (s) dM (s) ≤

∫ t

t−
Xi (s) dN (s) ≤ N (t)−N (t−) ≤ 1 (3.10)

(where N (t−) := lims<t,s→tN (s)) for every i = 1, . . . , K, because Xi takes

values in [0, 1] and also (‖b∗‖∞ ≤ 1 by assumption)

max
1≤i≤K

∣∣∣∣∫ T

0

X2
i (t)λ∗ (t) dt

∣∣∣∣ ≤ ∫ T

0

λ∗ (t) dt ≤ Ts ‖b∗‖∞ ≤ Ts. (3.11)
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The predictable quadratic variation of
∫ t

0
Xi (s) dM (s), i.e., the compensator

of the quadratic variation process, is given by
∫ t

0
X2
i (s)λ∗ (s) ds so that, tak-

ing into account (3.10) and (3.11), the hypotheses of Lemma 3.2 are met and

we have

P

({∣∣∣∣∫ T

0

Xi (t) dM (t)

∣∣∣∣ > ε

}⋂
B

)
≤ 2 exp

(
− ε2

2 (ε+ Ts)

)
.

The above display allows us to apply Lemma 3.3 obtaining

E
(

max
1≤i≤K

∣∣∣∣∫ T

0

Xi (t) dM (t)

∣∣∣∣ 1B) . log (1 +K) +
√
Ts log (1 +K) (3.12)

where 1B is the indicator function of the event B. Now, the assumption
log(1+K)

T
→ 0 as T →∞ implies the �rst inequality of the following display

log (1 +K) < T ≤ Ts (3.13)

for T large enough or, equivalently

√
log (1 +K) <

√
Ts (3.14)

for T large enough. Multiplying both members of (3.14) for
√

log (1 +K) we

obtain that the inequality (3.12) can be rewritten as

E
(

max
1≤i≤K

∣∣∣∣∫ T

0

Xi (t) dM (t)

∣∣∣∣ 1B) .
√
Ts log (1 +K). (3.15)

To conclude the proof notice that the event B occurs anyway, i.e., P (B) = 1,

so that

E
(

max
1≤i≤K

∣∣∣∣∫ T

0

Xi (t) dM (t)

∣∣∣∣ 1B) = E
(

max
1≤i≤K

∣∣∣∣∫ T

0

Xi (t) dM (t)

∣∣∣∣) .

Next we prove that boracle is a �good approximation� of b∗.

Proposition 3.1. Let assume that the (0, S)−Compatibility Condition holds

with φ∞ > 0. Then

||b∗ − boracle||1 → 0 (3.16)

in probability as
√
s3/
√
T → 0 for T →∞.
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Proof. Let XS the matrix obtained selecting the columns of the matrix X

having support in S. De�ne b̂OLS as

b̂OLS := arg min
b∈Rs

{
−2

∫ T

0

XS (t)′ bdN (t) +

∫ T

0

(
XS (t)′ b

)2
dt

}

i.e., b̂OLS :=
(∫ T

0
XS (t)XS (t)′ dt

)−1 (∫ T
0
XS (t) dN (t)

)
(note that Lemma

3.1 guarantees that b̂OLS is well de�ned). Let λ̂OLS := XS (t)′ b̂OLS , then

λoracle := X (t)′ boracle minimizes the following functional

λ→
∣∣∣λ̂OLS − λ∣∣∣2

2
:=

∫ T

0

(
λ̂OLS (t)− λ (t)

)2

dt (3.17)

among the functions λ = X (t)′ b,where b ≥ 0 and bN = 0. In fact, we know,

by de�nition, that boracle minimizes −2
∫ T

0
X (t)′ bdN (t) +

∫ T
0

(
X (t)′ b

)2
dt

s.t. bN = 0 and b ≥ 0. This function coincides with (3.17) except for the two

terms
∫ T

0
λ̂OLS (t)2 dt, −2

∫ T
0
λ̂OLS (t)λ (t) dt. Nevertheless, the former term

is a constant while the latter is equal to

−2

∫ T

0

λ̂OLS (t)λ (t) dt = −2

∫ T

0

b′SXS (t)XS (t)′ b̂OLSdt−

2

∫ T

0

b′NXN (t)XS (t)′ b̂OLSdt

= −2

∫ T

0

b′SXS (t)XS (t)′ b̂OLSdt

= −2

∫ T

0

b′SXS (t)XS (t)′ dt[(∫ T

0

XS (t)XS (t)′ dt

)−1 ∫ T

0

XS (t) dN (t)

]

= −2

∫ T

0

XS (t)′ bSdN (t)

where in the �rst equality we have used the identity λ (t) = X (t)′ b =

XS (t) bS+XN (t) bN = XS (t) bS. The above display proves our claim. Thanks

to this property, being λ∗ a feasible vector, we have∣∣∣λ̂OLS − λoracle∣∣∣2
2
≤
∣∣∣λ̂OLS − λ∗∣∣∣2

2
. (3.18)

By the triangle inequality we deduce that
∣∣λoracle − λ∗∣∣

2
≤
∣∣∣λoracle − λ̂OLS∣∣∣

2
+

127



∣∣∣λ̂OLS − λ∗∣∣∣
2
and using (3.18) we get

∣∣λoracle − λ∗∣∣
2
≤ 2

∣∣∣λ̂OLS − λ∗∣∣∣
2
. (3.19)

We want to �nd a bound for the rhs of (3.19). Using the de�nition of b̂OLS

we obtain

b̂OLS =

(∫ T

0

XS (t)XS (t)′ dt

)−1 ∫ T

0

XS (t) dN (t)

=

(∫ T

0

XS (t)XS (t)′ dt

)−1 ∫ T

0

XS (t)
(
dM (t) +XS (t)′ b∗0Sdt

)
=

(∫ T

0

XS (t)XS (t)′ dt

)−1 ∫ T

0

XS (t) dM (t) + b∗0S

where b∗0S is the �unsparsi�ed� population parameter obtained by deleting the

zero entries in b∗ so that λ∗ (t) = XS (t)′ b∗0S. In consequence∣∣∣λ̂OLS − λ∗∣∣∣2
2

=
∣∣∣X ′S (b̂OLS − b∗0S)∣∣∣2

2

=

(∫ T

0

XS (t)′ dM (t)

)(∫ T

0

XS (t)XS (t)′ dt

)−1

(∫ T

0

XS (t) dM (t)

)
. (3.20)

Using the fact that the trace of a scalar is the scalar itself and the property

Trace (ABC) = Trace (BCA) for arbitrary matrices A,B,C, the rhs of the

above display can be rewritten as

Trace

((∫ T

0

XS (t)XS (t)′ dt

)−1(∫ T

0

XS (t) dM (t)

)(∫ T

0

XS (t)′ dM (t)

))
.

(3.21)

Denote
(

1
T

∫ T
0
XS (t)XS (t)′ dt

)−1

by AT and 1
T

∫ T
0
XS (t) dM (t)

∫ T
0
XS (t)′

dM (t) by BT . Then the Cauchy-Schwartz inequality applied to the above

display yields

Trace (ATBT ) ≤
√
Trace (A2

T )
√
Trace (B2

T ). (3.22)

Now we want to �nd a bound in probability for (3.22). We start consider-

ing the term Trace (A2
T ). The trace of a matrix is the sum of its distinct
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eigenvalues, thus

Trace
(
A2
T

)
≤ s

σ2
T

(3.23)

where σT is the smallest eigenvalue of the matrix 1
T

∫ T
0
XS (t)XS (t)′ dt and

using (3.3) √
Trace (A2

T ) = OP

(√
s
)

(3.24)

as T → ∞. Next we bound the second term on the rhs of (3.22), i.e.,√
Trace (B2

T ). By assumption X is an ergodic process so that, using the

ergodicity and the isometry property for counting martingales (Brémaud,

1981, Ch. III, Theorem 13) we get

lim
T→∞

(
1

T

∫ T

0

XS (t) dM (t)

∫ T

0

XS (t)′ dM (t)

)
=

lim
T→∞

E
(

1

T

∫ T

0

XS (t) dM (t)

∫ T

0

XS (t)′ dM (t)

)
=

lim
T→∞

E
(

1

T

∫ T

0

XS (t)XS (t)′ λ∗ (t) dt

)
=

lim
T→∞

(
1

T

∫ T

0

XS (t)XS (t)′ λ∗ (t) dt

)
almost surely. Thanks to the above display and the continuous mapping

theorem

Trace
(
B2
T

)
→ Trace

((
1

T

∫ T

0

XS (t)XS (t)′ λ∗ (t) dt

)2
)

almost surely for T →∞ and a fortiori

Trace
(
B2
T

)
= OP

(
Trace

((
1

T

∫ T

0

XS (t)XS (t)′ λ∗ (t) dt

)2
))

(3.25)

as T → ∞. The trace of a matrix is the sum of its distinct eigenvalues, in

consequence

Trace

((
1

T

∫ T

0

XS (t)XS (t)′ λ∗ (t) dt

)2
)
≤

Trace

((
1

T

∫ T

0

XS (t)XS (t)′ dt

)2

s2 ‖b∗‖2
∞

)
≤

σ̄2
T s

3
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where σ̄T is the largest eigenvalue of the matrix 1
T

∫ T
0
XS (t)XS (t)′ dt . Taking

into account (3.3) and the above display Equation (3.25) becomes

Trace
(
B2
T

)
= OP

(
s3
)
. (3.26)

Finally putting together (3.24) and (3.26) into (3.22) we obtain

Trace (ATBT ) = OP

(
s2
)
.

as T →∞. Substituting the above display into Equation (3.20) we get∣∣∣λ̂OLS − λ∗∣∣∣2
2

= OP

(
s2
)

(3.27)

as T → ∞. Since boracleN − b∗N = 0, using the compatibility condition with

φ2
comp(0, S) ≥ φ∞, we get

∣∣λoracle − λ∗∣∣2
2

=
(
boracle − b∗

)′ ∫ T

0

X (t)X (t)′ dt
(
boracle − b∗

)
≥ T

s
φ∞
∥∥boracle − b∗∥∥2

1
. (3.28)

Finally, putting together (3.19), (3.27) and (3.28) we conclude

∥∥boracle − b∗∥∥
1

= OP

(√
s3

T

)

for T →∞.

The next step is to prove that b̂ is �close� to boracle.

Proposition 3.2. Assume the Positive Eigenvalue Condition holds with ν >

0 and the
(

3
ν
, S
)
−Compatibility Condition holds with φ > 0. Then

||b̂− boracle||1 → 0 (3.29)

in probability as long as
√
s5 log (K)/

√
T → 0 (for T →∞).

Proof. By de�nition of b̂ the vector δb := b̂ − boracle solves the following
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minimization problemminw

(
−2
∫ T

0
X (t)′

(
boracle + w

)
dN (t) +

∫ T
0

(
X (t)′

(
boracle + w

))2
dt
)

s.t. w + boracle ≥ 0.

Being the null vector a feasible solution of the above problem it holds(
−2

∫ T

0

X (t)′
(
boracle + δb

)
dN (t) +

∫ T

0

(
X (t)′

(
boracle + δb

))2
dt

)
≤

(
−2

∫ T

0

X (t)′ boracledN (t) +

∫ T

0

(
X (t)′ boracle

)2
dt

)
and expanding the square

−2

∫ T

0

X (t)′
(
boracle + δb

)
dN (t) +

∫ T

0

((
X (t)′ boracle

)2
+
(
X (t)′ δb

)2
+

2X (t)′ boracleX (t)′ δb

)
dt ≤

(
−2

∫ T

0

X (t)′ boracledN (t) +

∫ T

0

(
X (t)′ boracle

)2
dt

)
i.e., simplifying

−2

∫ T

0

X (t)′ δbdN (t) +

∫ T

0

((
X (t)′ δb

)2
+ 2X (t)′ boracleX (t)′ δb

)
dt ≤ 0

or, equivalently, adding and subtracting 2
∫ T

0
X (t)′ δbX (t)′ b∗dt and rearrang-

ing the terms

∫ T

0

(
X (t)′ δb

)2
dt ≤ 2

∫ T

0

X (t)′ δbdM (t)

+2δb′
∫ T

0

X (t)X (t)′
(
b∗ − boracle

)
dt. (3.30)

We start analyzing the rhs of (3.30). For the �rst term, using Lemma 3.4, we
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have ∫ T

0

X (t)′ δbdM (t) =
K∑
i=1

∫ T

0

Xi (t) dM (t) dtδbi

≤ max
1≤i≤K

∣∣∣∣∫ T

0

Xi (t) dM (t) dt

∣∣∣∣ ‖δb‖1

= OP

(√
sT log (1 +K)

)
‖δb‖1 (3.31)

for T →∞, while the second term can be bounded as follows

∫ T

0

δb′X (t)X (t)′
(
b∗ − boracle

)
dt = T

K∑
i,j=1

δbiΣ̂ij

(
b∗j − boraclej

)
≤ T

K∑
i,j=1

|δbi|
∣∣b∗j − boraclej

∣∣
= T ‖δb‖1

∥∥b∗ − boracle∥∥
1

(3.32)

because T Σ̂ij =
∫ T

0
Xi (t)Xj (t) dt ≤ T .

Now we want to �nd a lower bound for the lhs of (3.30). Set M c :=

{k : δbk ≥ 0}, thus by de�nition M c ⊇ N and M ⊆ S (notice that M is a

set of indexes and not the martingale process). We distinguish two di�erent

scenarios.

Case I: In the �rst case it holds true ||δbMc ||1 ≥ 3
ν
||δbM ||1. Recalling that

T Σ̂ =
∫ T

0
X (t)X (t)′ dt, we have

δb′Σ̂δb = (δbM + δbMc)′ Σ̂ (δbM + δbMc)

= δb′M Σ̂δbM + δb′McΣ̂δbMc + 2δb′M Σ̂δbMc

=
∑
i,j∈M

δbiΣ̂ijδbj + δb′McΣ̂δbMc + 2
∑

i∈M,j∈Mc

δbiΣ̂ijδbj

≥ δb′McΣ̂δbMc − 2 ‖δbM‖1 ‖δbMc‖1 (3.33)

where the last inequality follows from the fact that Σ̂ij ≤ 1 and δbM ≤ 0.

More in details,
∑

i,j∈M δbiΣ̂ijδbj ≥ 0 and

∑
i∈M,j∈Mc

δbiΣ̂ijδbj ≥ −

∣∣∣∣∣ ∑
i∈M,j∈Mc

δbiΣ̂ijδbj

∣∣∣∣∣ ≥ − ∑
i∈M,j∈Mc

|δbi||δbj|.

Being δbMc ≥ 0 the Positive Eigenvalue Condition can be applied and using
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||δbMc||1 ≥ 3
ν
||δbM ||1 the inequality (3.33) becomes

δb′Σ̂δb ≥ ν ‖δbMc‖2
1 − 2

ν

3
‖δbMc‖2

1

=
ν

3
‖δbMc‖2

1

=
ν

3
(
1 + ν

3

)2

((
1 +

ν

3

)
‖δbMc‖1

)2

.

Thanks to the inequality ||δbMc||1 ≥ 3
ν
||δbM ||1 we get

δb′Σ̂δb ≥ ν

3
(
1 + ν

3

)2

((
1 +

ν

3

)
‖δbMc‖1

)2

& (‖δbMc‖1 + ‖δbM‖1)2 = ‖δb‖2
1 .

Using the above display, equations (3.30), (3.31), (3.32) and Proposition 3.1

we can conclude that ||δb||1 = OP

(√
s3 log(1+K)

T

)
for T →∞.

Case II: Otherwise it happens that ||δbM ||1 > ν
3
||δbMc||1, but N ⊆ M c

(that implies S ⊇M) thus

||δbN ||1 ≤ ||δbMc||1 ≤
3

ν
||δbM ||1 ≤

3

ν
||δbS||1.

This allows us to apply the Compatibility Condition, in fact, δb ∈ R( 3
ν
, S),

and conclude δb′Σ̂δb ≥ (φ/s)||δb||21. Using again (3.30), (3.31) and (3.32) we

have ||δb||1 = OP

(√
s5 log(1+K)

T

)
for T →∞.

So in both cases we get the claimed result: this completes the proof.

Putting together the results of the above propositions we get

Proof. (of Theorem 3.1). By triangle inequality we obtain∥∥∥b̂− b∗∥∥∥
1
≤
∥∥∥b̂− boracle∥∥∥

1
+
∥∥boracle − b∗∥∥

1

and using Proposition 3.1 and Proposition 3.2

∥∥∥b̂− b∗∥∥∥
1

= OP

(√
s3

T

)
+OP

(√
s5 log (1 +K)

T

)

= OP

(√
s5 log (1 +K)

T

)
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for T →∞.

Finally we derive a bound for the prediction error, i.e., Theorem 3.2.

Proof. (of Theorem 3.2). Putting (3.31), (3.32) in (3.30) we get (δb := b̂ −
boracle)

δb′
∫ T

0

X (t)X ′ (t) dtδb = OP

(√
sT log (1 +K) ‖δb‖1

)
+

OP

(
T ‖δb‖1

∥∥b∗ − boracle∥∥
1

)
for T →∞ and using the error bound in Proposition 3.1 and Proposition 3.2

δb′
∫ T

0

X (t)X ′ (t) dtδb = OP

(√
sT log (1 +K)×√

s5 log (1 +K)

T

)
+

OP

(
T

√
s5 log (1 +K)

T

√
s3

T

)

as T →∞. The above display implies (for T →∞)

1

T
δb′
∫ T

0

X (t)X ′ (t) dtδb = OP

(
s4 log (1 +K)

T

)
.

3.5 Conclusion

We extend to a particular class of counting processes the main �ndings of

Meinshausen (2013) that are tailored for Gaussian regressions. The inten-

sity of those counting process is a function of high dimensional variables (in

other words the number of the covariates can be larger than the sample size)

and is estimated minimizing a quadratic contrast functional. The natural

non-negativity constraint for the intensity estimator acts as a regularization

technique and together with the Positive Eigenvalue Condition and the Com-

patibility Condition allow us to prove a rate of convergence, both for the es-

timation error and the prediction error, not entirely dissimilar to the rate

provided by Lasso theory with no need to include a penalty term and tune

134



additional parameters. Further, the simulation study conducted con�rms the

shrinkage property of the non negative constraint under di�erent scenarios.
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Chapter 4

Conclusions and Further

Developments

4.1 Conclusions

The previous three chapters discuss a few central themes in high frequency

�nancial econometrics: empirical study of non equally time spaced time se-

ries, counting processes (to model �nancial variables such as traded volumes,

buy/sell trade arrivals) and their estimation in scenarios commonly encoun-

tered in high dimensional statistics, i.e., when the sample size is very large

(computational feasibility of the estimation procedure) and when the number

of observation is less than the number of features (regularization techniques).

Chapter 1 is dedicated to the empirical side of the subject. It contains

a statistical analysis of high frequency Bitcoin data: the study supports the

idea that the Bitcoin market is not a completely mature market yet. The

main �nding that leads to that conclusion is the autocorrelation of returns

even for relatively long time scale (30 minutes): indeed, many papers in the

literature sustain that also daily returns are autocorrelated (for a review cf.

Kyriazis, 2019). Nevertheless, it seems that the market, over the years, has

become more e�cient (Dro»d» et al., 2018, Kyriazis, 2019): this could be due

to the increasing interest in the Bitcoin market from institutional investors. In

addition to some other statistical proprieties of returns the chapter contains

a short analysis of the order book: the only article in the literature that

thoroughly studies the order book of the Bitcoin market is Schnaubelt et al.

(2019). Finally, a novel way to study intraday volumes is presented: volumes

136



are assumed proportional to the number of trade arrivals that are modeled via

a counting process (the intensity of this counting process is smoothed using

the fused Lasso). The approach can be useful for intraday trading volume

prediction.

High frequency �nance has also introduced new market manipulation

strategies: high frequency spoo�ng is one of them. According to Cartea et

al. (2020) �The literature on spoo�ng is scant�. The second chapter aims to

shed some lights on this particular type of market manipulation investigating

the fundamental mechanism of the strategy: trigger a buy (sell) market order

placing limit buy (sell) orders that create an upward (downward) price trend.

This mechanism is investigated via a counting process: computational issues

prevents its estimation maximizing the log-likelihood. Therefore, a novel sta-

tistical methodology is introduced. The major shortcoming of the proposed

methodology is that it is not rigorously justi�ed (however, see next section),

nevertheless heuristic arguments and simulations to support it are presented.

Finally, Chapter 3 explores the �high dimensional� set up. Over the last

decades the �high dimensional� paradigm in statistics, i.e., when the number

of the observed features is larger than the size of the sample, has acquired a

central role in statistics: what allows these models to be estimated is the so

called sparsity, i.e., just few of the numerous features really matter. These

relevant features are usually selected adding a penalty term to the contrast

function together with a parameter (to be calibrated) controlling the trade

o� between �t and sparsity: the framework presented in Chapter 3, i.e., a

counting process whose intensity is driven by many covariates, does not need

the inclusions of that term and simply relies on a non negativity constraint.

In other words, there is no need to choose any tuning parameter. The result is

quite interesting given that point processes are widely used in high frequency

econometrics and the non negativity constraint is a natural constraint for the

intensity of a generic counting process.

4.2 Further Developments

In the sequel we list some possible extensions of the study conducted in:

Chapter 1.

1. The statistical analysis can be broaden in (at least) three ways:
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• Produce a quantitative analysis for some variables already ana-

lyzed in a qualitative manner. For example, in the mainstream lit-

erature returns and volumes at the top of the order book �t a power

law distribution (Bouchaud et al., 2002, Potters and Bouchaud,

2003): it can be checked whether this is the case for Bitcoins as

well. Some �nancial quantities, such as bid-ask spread, display a

long memory behaviour: are they better described via fractional

models (or more sophisticated models, cf., Groÿ-KluÿMann and

Hautsch, 2013) rather than ARMA-type models? In addition, the

distribution of the volume imbalance resembles a mixture of con-

tinuous and discrete random variables. It could be interesting to

investigate which distribution is a good �t for the volume imbal-

ance.

• The order book can be studied in more detail, in particular its

shape (Potters and Bouchaud, 2003) and other features (of utmost

importance from a practical point of view) such as the resiliency

of the order book (Large, 2007). Moreover, a study of the virtual

price impact (Maslov and Mills, 2001) and of the liquidity (chapter

9 in Hautsch, 2012) can be added.

• According to part of �nancial econometrics literature the paths of

volatility are rougher than those of a Brownian motion (Gatheral

et al., 2018, Fukasawa et al., 2019): is that the case also for the Bit-

coin market? This could be interesting given the fact that recently

Bitcoin options have recently been issued and a correct model of

the volatility is crucial in order to price them. Indeed, there is a

recent paper about the topic (Takaishi, 2019).

2. According to Scaillet et al. (2018) the dynamics of the Bitcoin price

includes a jump term, it could be interesting to investigate whether

there are jumps in the volatility process as well (Jacod and Todorov,

2010).

3. If there were available high frequency data for other cryptocurrencies

(e.g., Litecoin) it could be interesting to:

• Test whether co-jumps occur (e.g., chapter 14 in Aït-Sahalia and

Jacod, 2014) and if they could lead to some pro�table trading
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strategy.

• Study multivariate stylized facts (Breymann et al. 2003).

Chapter 2.

1. The theoretical justi�cation given of the statistical methodology intro-

duced in the chapter is purely heuristic. Ideally, it should be trans-

formed into a rigorous one. This point is partially addressed in Muc-

ciante and Sancetta (2020) when the baseline intensity is that of a

Hawkes process and the functions g0,k in (2.2) are linear (notice also

that in Mucciante and Sancetta, 2020 a one-hot encoding approach is

adopted rather than Bernstein polynomials or splines).

2. In the current set up buy orders and sell orders are treated separately,

i.e., they are modeled via two di�erent counting processes. A more

realistic model should incorporate the dependence between them.

3. It could be interesting to extend the purely additive model (2.2) to the

case in which there are interactions between the covariates.

4. Cartea et al. (2020) study the optimal execution for a spoofer. In this

framework, the dynamics of the order book is crucial, therefore a more

realistic picture of it could be added to the basic one discussed in that

paper. In fact, e.g., if the order book depth is allowed to be stochas-

tic the optimal execution is qualitatively di�erent from the �standard

scenarios� discussed in the literature: see, e.g., Fruth et al. (2019) and

Ackermann et al. (2020).

Chapter 3.

1. While the �consistency� of the non negative least square estimator has

been proved it could be interesting to derive (in a high dimensional

set up) its asymptotic distribution, so that tests of signi�cance and

con�dence intervals can be constructed. Notice, for example, that in

the Lasso framework this is not trivial at all. In fact, the asymptotic

distribution of the Lasso estimator is not uniform therefore it cannot be

used to derive tests and the problem is approached via other strategies,

see, e.g., van de Geer et al. (2014).
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2. Other possible extensions of the non negative OLS could be the follow-

ing (separately or combining them):

• Replace the quadratic loss function with a more general convex loss

function. Indeed, there is a recent work (Koike and Tanoue, 2019)

about this possibility (it could also be extended to the �counting

process framework�).

• Consider a high dimensional Functional Data Analysis set up (Roche,

2019).

• Consider high dimensional time series type models (Basu and Michai-

lidis, 2015).
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