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Research Highlights 

 Adolescents explored more than adults in a patch foraging paradigm.  

 This heightened exploration in adolescents is more optimal. 

 Heightened exploration in adolescence can confer benefits in the explore/exploit 

trade-off. 
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Abstract 

Adolescence is a period of heightened exploration relative to adulthood and childhood. This 

predisposition has been linked with negative behaviours related to risk-taking, including 

dangerous driving, substance misuse and risky sexual practices. However, recent models have 

argued that adolescents’ heightened exploration serves a functional purpose within the lifespan, 

allowing adolescents to develop experiential knowledge of their surroundings. Yet, there is 

limited evidence that heightened exploration in adolescence is associated with positive 

outcomes. To address this, the present pre-registered study utilised a foraging paradigm with a 

sample of adolescents aged 16-17 (N=68) and of adults aged 21 and above (N=69). Participants 

completed a patch foraging task, which required them to choose between exploiting a known 

resource which gradually yields fewer rewards, and exploring a novel, unknown resource with 

a fresh distribution of rewards. Findings demonstrated that adolescents explored more than 

adults, which – in the context of the current task – represented more optimal patch foraging 

behaviour. These findings indicate that adolescents’ heightened exploration can be beneficial, 

as they were able to effectively navigate unknown environments and accrue rewards more 

successfully than adults. This provides evidence that heightened exploration in adolescence, 

relative to adulthood, can lead to positive outcomes and contributes to our understanding of the 

role increased novelty-seeking plays at this point in the lifespan. 
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ACCEPTED MANUSCRIPT: PATCH FORAGING IN ADOLESCENCE 

 4 

Are Adolescents More Optimal Decision-Makers in Novel Environments? Examining 

the Benefits of Heightened Exploration in a Patch Foraging Paradigm 

Introduction 

Adolescence is a period of heightened exploration of novel scenarios compared to 

childhood and adulthood (Spear, 2000; Steinberg, 2008). Adolescents’ predisposition for 

novelty-seeking has typically been associated with negative outcomes in this population, such 

as increased rates of substance misuse, delinquency and injury (e.g. Arnett, 2002; Eaton et al., 

2012; Moffitt, 2018). However, exploring novel opportunities is not exclusively associated 

with negative outcomes. For example, by trying out a new restaurant one can discover a new 

favourite meal, but this also involves exploring a possibility with unknown outcomes. Recent 

models have proposed that heightened exploration in adolescence, relative to adulthood and 

childhood, plays a functional role in development and is beneficial at this point in the lifespan 

(Romer, Reyna & Satterthwaite, 2017). The present study will examine whether adolescents’ 

novelty-seeking can in fact produce more optimal navigation of novel environments. 

While much of the literature has focussed on negative outcomes resulting from 

adolescents’ decision-making, more recent research has considered positive outcomes that 

arise from novelty-seeking. Indeed, a proposed ‘imbalance’ between sensation-seeking and 

inhibitory control that occurs during adolescence (Casey, Getz & Galvan, 2008; Shulman et 

al., 2016; Steinberg, 2008) has been linked to ‘positive’ forms of risk taking, or forms that 

promote socially valued goals (Duell & Steinberg, 2019). For example, defending a peer who 

is being victimized can put an adolescent at risk of negative outcomes, but is also a positive, 

prosocial behaviour. Such acts of ‘prosocial risk taking’ recruit similar reward networks to 

those implicated in non-social forms of risk taking and demonstrate how neurobiological 

developments during this period can lead to positive behavioural outcomes (Do et al., 2017). 



ACCEPTED MANUSCRIPT: PATCH FORAGING IN ADOLESCENCE 

 5 

Consistent with this, a recent study found that higher levels of sensation-seeking in adolescence 

predicted both positive and negative forms of risk taking equally (Patterson et al., 2019), 

suggesting that features of adolescent decision-making are not exclusively unfavourable.  

The Lifespan Wisdom Model (Romer et al., 2017) builds on this by suggesting that 

adolescents’ heightened novelty-seeking serves a functional role in development. As 

adolescence is a period marked by achieving autonomy from caregivers (Ellis et al., 2012), the 

Lifespan Wisdom Model proposes that adolescents’ heightened predisposition for novelty-

seeking, relative to other age groups, provides them with opportunities to gain experiential 

knowledge of their surroundings (Murty, Calabro & Luna, 2016). However, it is argued that a 

subset of adolescents do not adequately integrate their experience to inform future decisions 

and – as a result – persistently engage in risky behaviour. These adolescents are characterised 

by high levels of impulsivity, which drives them to seek immediate reward despite experience 

with negative outcomes associated with an action (e.g. persistent substance misuse; Khurana 

et al., 2015). Risk taking driven by impulsivity therefore does not support adolescents to gain 

experiential knowledge of their surroundings but is driven by a desire for short term rewards. 

For the majority of adolescents, however, exploration and novelty-seeking arguably support 

the transition from childhood dependence to adult independence. 

Exploration is an effortful process requiring cognitive control (Daw, O’Doherty, 

Dayan, Seymour & Dolan, 2006; Otto, Skatova, Madlon-Kay & Daw, 2014). Recently, it has 

been suggested that adolescents are more motivated than other age groups to employ cognitive 

control to explore novel scenarios in order to acquire information about their surroundings (Do, 

Sharp & Telzer, 2019). Consistent with this, compared to adults, adolescents explore uncertain 

outcomes in conditions of ambiguity where probabilistic information is unknown, but not in 

conditions of risk where this information is explicit (Tymula et al., 2012; van den Bos & 

Hertwig, 2017). According to the Lifespan Wisdom Model, adolescents’ ambiguity tolerance 
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is due to the information that can be learned through sampling the unknown probabilities in 

these options (Romer et al., 2017). However, previous studies that have investigated ambiguity 

tolerance in adolescence have predominantly employed economic choice tasks (van den Bos 

& Hertwig, 2017), which are restricted in their ability to measure exploration, as feedback does 

not have utility for later trials (Garrett & Daw, 2020). Furthermore, parameters measuring 

ambiguity tolerance are currently unable to distinguish whether this tolerance is driven by 

optimism that the lottery will yield a reward or by a motivation to learn the probability structure 

underlying the ambiguous option (Tymula et al., 2012). Therefore, there is limited evidence 

that adolescents’ heightened ambiguity tolerance reflects an information gathering exercise.  

The emphasis on exploration in the Lifespan Wisdom Model is noteworthy as 

exploration is utilised across species to maximise adaptive outcomes, such as those that support 

the health, development and safety of an organism (Ellis et al., 2012). For example, a number 

of animal species, including humans, utilise exploration to forage for resources such as food 

and mates (Cohen & Todd, 2018; Marques, Li, Schaak, Robson & Li, 2019). Indeed, human 

beings have spent the bulk of their evolutionary history in patch foraging economies (Smith, 

1983; Venkataraman, Kraft, Dominy & Endicott, 2017). Patch foraging therefore exemplifies 

the significance of exploration in human decision-making. Deciding when to engage in 

exploration requires evaluating the trade-off between exploiting a known patch of land with 

gradually diminishing returns, and exploring a novel patch with a fresh distribution of supplies 

(i.e. the explore/exploit trade off; Stephen & Krebs, 1986). In order to maximise rewards and 

minimise energy costs, the decision-maker must learn when the opportunity cost of exploiting 

rewards from the current resource exceeds the opportunity cost of exploring a novel resource 

– at which point exploration is rational (Charnov, 1976).  

Yet, recent lab-based studies have found that human adults are not optimal patch 

foragers (Constantino & Daw, 2015; Lenow et al., 2017; Le Heron et al., 2020). Constantino 
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and Daw (2015) developed an apple picking patch foraging paradigm, requiring adults to 

maximise the number of apples collected from trees. Their paradigm had four ‘environments’ 

containing patches of different qualities. The authors predicted that participants would adjust 

their foraging behaviour according to the richness of the respective environments to maximise 

rewards. Consistent with this, Constantino and Daw (2015) found that participants altered their 

leaving threshold according to the quality of the environments. However, throughout their task 

Constantino and Daw (2015) observed that participants consistently overexploited, staying 

with individual patches for longer than the optimal foraging strategy would dictate. Using a 

computational modelling approach, the authors demonstrated that overexploiting was 

explained by a parameter capturing participants’ risk sensitivity, resulting in too much value 

being placed on the immediate rewards that could be exploited. Thus, despite the adaptive 

pressures to maximise reward while foraging, human adults do not explore optimally in patch 

foraging paradigms. 

Two prominent theories have been developed to explain human exploration strategies. 

The first of these suggests that exploration is a stochastic process, driven by introducing 

randomness into decision-making that leads the agent to divert from the most rewarding option 

known to them (Daw et al., 2006). In an environment with changing reward contingencies, this 

strategy can accelerate the rate at which the decision-maker learns of changes in the structure 

of the environment (Gershman, 2018). The second, directed exploration, proposes that the 

decision-maker selects options to gain information about the underlying reward distribution of 

the environment, which increases the subjective value of the uncertain option in an 

‘information bonus’ (Gershman, 2018; Wilson et al., 2014). The use of directed exploration 

emerges in adolescence, but is only utilised when exploration is consistent with the more 

rewarding option (Somerville et al., 2017). In cases where there is conflict between an option 

that has a higher reward value and another that has a higher information value, adolescents 
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preferred the high reward option, whereas adults preferred the high information option 

(Somerville et al., 2017). This finding is consistent with evidence that, compared to other age 

groups, adolescents prefer immediate rewards in favour of delayed ones (van den Bos et al., 

2015). However, Somerville and colleagues (2017) also found that the use of random 

exploration did not change with development and overall, there were no developmental 

differences in task performance as measured by the number of points earned in the task. These 

findings are consistent with an emerging body of research has demonstrated that increasingly 

complex model-based exploration strategies develop in late adolescence (Dubois et al., 2020; 

Jepma et al., 2020; Xia et al., 2020), though these may be tempered by adolescents’ preference 

for immediate reward relative to adults (Somerville et al., 2017).  

To date, research has demonstrated that adolescents explore options with unknown 

information more than adults and children do. However, there is limited evidence that 

heightened exploration of novel scenarios in adolescence is associated with more optimal 

outcomes compared to other age groups. Here, we investigate exploration/exploitation trade-

offs in adolescents and adults in an ecologically valid paradigm, patch foraging. Unlike other 

paradigms, patch foraging performance has been computationally defined across humans and 

other animal species such that performance can be compared to an objective behavioural 

optimum.  While research has demonstrated that adolescents prefer to exploit the option that 

yields an immediate reward in an explore/exploit paradigm (Somerville et al., 2017), an 

alternative body of work has suggested that adolescents are motivated to explore novel 

scenarios more than adults (Do et al., 2019; Romer et al., 2017; Steinberg, 2008). As such, we 

predicted that 1) there will be a difference in foraging behaviour between adolescents and 

adults, measured by the point at which they leave patches to explore new ones.  

To examine individual differences that contribute to foraging strategies, we also 

measured impulsivity and risk sensitivity. Impulsive traits are associated with a preference for 
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immediate rather than delayed rewards (Khurana et al., 2015) and the prevalence of these traits 

varies across adult and adolescent populations (Chamorro et al., 2012; Romer, 2010). In a patch 

foraging context, we predict that heightened impulsivity will be associated with a greater 

tendency to select the option that yields an immediate reward, which is to exploit the current 

patch. As such, we predicted that 2) higher levels of impulsivity will predict greater 

exploitation of patches. Finally, as overexploiting has been explained by a parameter capturing 

risk sensitivity, we predicted that 3) participants with higher levels of risk sensitivity will 

exploit individual patches to a greater degree. 

Methods 

Design 

The present study utilised a 2x2x2 mixed factorial design: Age (between-subject: 

adolescents, adults) x Depletion rate (within-subject: fast vs. slow patch depletion rate) x 

Travel time (within-subject: short vs. long travel time). Depletion rate and travel time variables 

are explained in greater detail in the Patch Foraging section below.  

Participants 

Pilot: Seven participants were recruited for an initial pilot study: three adolescents aged 

between 16-18 (M = 17, SD = 1) and four adults aged between 24-26 (M = 24.66, SD = 1.15). 

Participants were recruited from a convenience sample who had previously expressed interest 

in research participation.  

Main study: A total of 138 participants were recruited in the main study based on an a 

priori power calculation (alpha = 0.05, power = 0.8, Cohen’s f effect size = 0.25) using 

G*Power 3.1 (Faul, Erdfelder, Lang & Buchner, 2007). Adolescent participants were aged 16-

17, to capture the period in which novelty-seeking peaks (Romer, 2010). Sixty-eight 

adolescents were recruited in total, with a mean age of 16.57 (SD = 0.53, 77% female). The 
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adult sample consisted of individuals aged 21 and above, as this is the period by which 

cognitive control is thought to have plateaued (Andrews-Hanna et al., 2011). During analysis, 

it emerged that one participant was not in this age bracket, so this person was subsequently 

excluded. As such, the final adult sample was comprised of 69 participants aged between 21-

50 with a mean age of 30.77 (SD = 7.96, 46% female). The study was approved by the Ethics 

Committee at the authors’ institution. 

Task 

Patch Foraging: The patch foraging task was adapted from a similar paradigm used in 

previous lab-based studies (Constantino & Daw, 2015; Lenow et al., 2017). The goal for 

participants was to collect as many apples as possible over the duration of the study. Patches 

that were available to forage were represented as single trees; on each trial participants could 

choose to stay and exploit a given patch (tree), or could leave to explore a new patch with a 

fresh distribution of apples. Exploiting a single patch would yield gradually diminishing 

rewards over time, such that the longer participants stayed with each patch, the fewer rewards 

they received from each exploit decision. When participants chose to exploit, they were 

presented with the number of apples they had collected on that harvest, alongside their 

cumulative score. Exploit decisions were scripted such that these would take three seconds 

including the decision phase and reward phase (i.e. when participants received the apples from 

harvesting). To ensure that faster reaction times did not permit participants to collect more 

apples within the time limit, the presentation of the reward phase was determined based on how 

quickly participants responded. For example, a participant who responded in 1.3 seconds would 

be presented with their score for 1.7 seconds. Participants were given up to two seconds to 

decide, after which they received a timeout message. Timeout trials were subsequently 

excluded from further analysis. If participants chose to explore, they would wait for a block-
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specific interval to elapse before arriving at a new patch, which had a fresh distribution of 

rewards available (see Figure 1). 

 

Figure 1: Schematic outline of the patch foraging paradigm 

There were four unique environments in the present study, corresponding to four 

blocks. Participants completed the environments in counterbalanced order, to control for order 

effects. Parameters of the environments were manipulated to create environments that were 

either richer, yielding a higher average number of rewards over time, or poorer, yielding a 

lower average of rewards. Notably, participants did not know the features of each environment 

prior to encountering that block, requiring them to learn the state of each environment to 

maximise their average reward intake.  

The two parameters that were manipulated in the present study were the rate at which 

rewards depleted in a single patch and the length of time it took to travel to a new patch. 

Depletion rate was manipulated such that the rate at which the apples diminished on each 

successive harvest was either fast or slow. As in Constantino and Daw (2015), the depletion 
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rate applied after each exploit decision was randomly drawn from a Gaussian distribution. In 

environments with a fast depletion rate, the rewards from the previous harvest were multiplied 

by a figure drawn from a distribution with a mean of 0.88 (SD = 0.07). In environments with a 

slow depletion rate, the mean of the distribution was 0.94 (SD = 0.07). To ensure that applying 

the depletion rate in this way did not lead to an increase in apples, the depletion rate was set to 

a maximum of 1, meaning the distribution of the depletion rate was negatively skewed. In 

environments where the depletion rate was slow, participants experienced a greater number of 

harvests with rich yields. As such, participants could accumulate a greater average number of 

rewards per unit of time compared to environments with a fast depletion rate.  

The second parameter that was manipulated was the time it took to travel to a new patch 

if participants chose to explore. In environments with shorter travel times between patches, 

there is less cost in time (and thus resources) for the forager, meaning they can afford to explore 

more often to maximise average reward intake. However, in patches with longer travel times, 

there is a greater expenditure of time and resources. As such, given long travel times the forager 

should spend longer with each individual patch before they explore a new one.  

Two dependent variables were calculated from the patch foraging task. The first was 

leaving threshold, i.e. the smallest reward (number of apples) that signalled to the participant 

the current patch had less value than exploring a novel patch (thus a high leaving threshold 

meant the participant left the patch earlier). The leaving threshold was operationalised as the 

average of the previous two rewards participants had observed in that patch prior to leaving, to 

provide an upper and lower bound estimate of participants’ leaving threshold. We also included 

a second dependent variable, which was deviation from the optimal leaving policy. This was 

calculated through subtracting participants’ actual leaving thresholds from the previously 

determined optimal leaving threshold in that environment (see Marginal Value Theorem 

below). As such, positive figures indicate participants overexploited the patch, whereas 
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negative figures indicate participants underexploited that patch. This provided a measure of the 

degree to which participants deviated from the optimal foraging strategy. 

Marginal Value Theorem: Optimal patch foraging behaviour is explained by an 

equation called Marginal Value Theorem (MVT), developed by Charnov (1976). This rule 

states that the forager should leave their current patch when the reward expected from the next 

exploit decision falls below the average reward experienced in that environment. To predict 

the value of exploiting the current patch, the forager should multiply the last known state of 

the tree (si) by the block-specific depletion rate (his value is compared against the average 

reward rate per second (p), which is multiplied by the time taken to harvest the patch in seconds 

(h). If the expected value of exploiting the current patch (si falls below the value of ph, 

the forager should explore the next patch. As our paradigm utilised discrete, rather than 

continuous trials, we utilised the MVT equation developed by Constantino and Daw (2015) to 

model foraging behaviour. Simplified, the equation states that the decision-maker should leave 

their current patch when the following inequality is satisfied:  

 𝑘𝑠𝑖 < 𝑝ℎ (1) 

The MVT equation demonstrates that the optimal foraging strategy follows a leaving 

threshold rule (see Constantino & Daw, 2015, for a full proof of the MVT equation as it relates 

to this task). In order to estimate the optimum threshold for the parameters in each environment 

used in the current study, a simulation of the task was built in R (R Core Team, 2018). For each 

environment, the simulation was set to run with a leaving threshold from 1-10 in increments of 

0.001. This produced 9001 simulations per environment and a total of 36,004 simulations for 

all four environments. The total score accrued using each of these leaving thresholds was then 

calculated, which was subsequently divided by the units of time to empirically demonstrate 

that the optimum leaving threshold for each environment followed the predictions of MVT (see 
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Supplementary Material). For each environment, we ran each simulation ten times and 

averaged the optimum leaving threshold across these simulations to account for stochasticity 

in the rewards accumulated due to the probabilistic nature of the depletion rate and initial 

richness of patches. For a list of features of each environment, see Table 1. 

Table 1: Parameters and optimal leaving thresholds of the four environments in the patch foraging task 

 Environment 1: 

fast depletion, 

short travel 

Environment 2: 

slow depletion, 

short travel 

Environment 3: 

fast depletion, 

long travel 

Environment 4: 

slow depletion, 

long travel 

Depletion rate 

(M, SD)  

0.88, 0.07 0.94, 0.07 0.88, 0.07 0.94, 0.07 

Travel time (s) 6 6 12 12 

Optimal leaving 

threshold – i.e. 

leave when the 

expected 

number of 

apples is lower 

than this 

6.46 7.04 5.07 5.90 

MVT also provides an explanation for changes to the optimum leaving threshold 

between environments that are richer or poorer quality. Environments with greater richness 

raise the value that must be expected from exploiting the current patch to make it more time-

valuable than exploring a new resource-rich patch. For example, environments that have slower 

depleting patches will take longer to reach the environmental average compared to fast 

depleting patches (Gabay & Apps, 2020). Consequently, in patches with a slower depletion 
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rate, participants receive a higher yield of rewards for the time they invest in individual patches. 

This raises the average reward rate (p), which, when entered into the MVT equation (1), signals 

a high leaving threshold. In fast depleting patches, participants receive a lower yield of rewards 

for the same time investment in patches, decreasing the average reward rate and signalling a 

lower leaving threshold. Following this rule, participants should remain for longer in 

environments with a slow depletion rate and should also have a higher leaving threshold 

compared to environments with a fast depletion rate (Gabay & Apps, 2020). 

Similarly, in environments with shorter travel times between patches, the average 

rewards accumulated are higher, as less time is required to reach novel patches with a fresh 

distribution of rewards. This subsequently raises the average reward rate (p) in environments 

with short travel times compared to long between-patch travel times. Therefore, the leaving 

threshold signalling when the forager should explore is higher when travel time between 

patches is shorter (Marshall, Carter, Ashford Rowcliffe & Cowlishaw, 2013). The predictions 

of MVT across different quality environments have been mathematically and empirically 

evidenced across a range of human and animal studies, providing a robust account of optimal 

foraging behaviour (Bettinger & Grote, 2016; Charnov, 1976; Stephen & Krebs, 1986) 

Questionnaire Measures 

Demographic Measures: Participants were asked to report the following demographic 

variables: age, gender (male or female), ethnicity and socioeconomic status. Ethnicity options 

were based on recommendations from the UK Office for National Statistics (Office for 

National Statistics, 2009). Participants that did not fall into one of these categories were asked 

to report their ethnicity in a text-entry box. Adolescents’ socioeconomic status was 

approximated with a measure of parental education, with options ranging from no formal 
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qualifications to university degree (Steinberg et al., 2018). Adults’ socioeconomic status was 

measured by their own highest level of education, comprised of the same options.  

Pubertal Development: The Pubertal Status scale (Carskadon & Acebo, 1993) is a 

measure of adolescents’ pubertal development. As development is subject to individual 

differences, this measure provides information about an individual’s development that is 

distinct from chronological age. The scale is comprised of five questions which ask whether 

particular developmental milestones, such as their physical growth, are underway or complete. 

The individuals’ pubertal development is calculated as a mean of their scores on the scale. The 

mean scores range from 1-4 with higher values denoting more highly developed individuals. 

Behavioural Inhibition and Behavioural Activation: The BIS/BAS (Carver & White, 

1994) is a combination of 20 items capturing behavioural inhibition scores (BIS) and 

behavioural approach scores (BAS). Higher average scores on the BIS subscale (ranging from 

1-4) denote higher sensitivity towards non-rewarding or unpleasant stimuli, for example: “I 

worry about making mistakes”. The BAS is divided into three subscales measuring drive, fun 

seeking and reward responsiveness. Higher average scores on the BAS subscales (ranging from 

1-4 per subscale) indicate participants’ responsiveness to rewarding stimuli, for example: 

“When I get something I want, I feel excited and energized”. Together, these items measure 

participants’ responsiveness to rewarding or aversive stimuli and predict risk sensitivity across 

development (Urošević, Collins, Muetzel, Lim, & Luciana 2012). The reliability of the 

subscales ranged from acceptable to good (α = .66-.81).  

Impulsivity: The Barratt-11 (Patton, Standford & Barratt, 1995) measures the degree to 

which the individual acts impulsively. The scale is comprised of 30 items, each presented on a 

Likert scale ranging from 1-4. The items capture the degree to which individuals act without 

thinking, or do not engage in self-regulation. The individual’s impulsivity is calculated as their 
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mean score on the items in the scale. Mean scores range from 1-4, with higher values indicating 

greater impulsivity. The scale demonstrated good reliability (α = .82).  

Procedure 

Participants were invited in groups to an IT suite where they were provided with either 

a laptop or desktop computer. Participants were briefed as to the aims of the study and provided 

with the opportunity to ask questions. Following this, participants were asked to complete a 

consent form, demographic information, and were provided with task instructions that 

specified participants should only focus on their own screen. Participants were informed that 

they would be awarded a gift card for taking part that would be loaded with a base reward of 

£4. They were also informed that a bonus of up to £3 could be earned, which was determined 

by the number of points they accumulated during the task. As such, they should aim to collect 

as many apples as possible throughout the task. All incentives were transparent, and no 

deception was used. The average amount awarded to participants was £5.62. The task was run 

on Gorilla.sc, an online platform for running behavioural experiments (Anwyl-Irvine, 

Massonnie, Flitton, Kirkham & Evershed, 2019).  

Participants completed a practice task, which used different parameters to the main task. 

After the practice, participants completed each of the four unique patch foraging environments. 

Each environment was scripted to last for 7 minutes, which was determined based on previous 

research (Lenow et al., 2017). Once participants completed each environment, they were 

directed to a screen explaining that they were now in a new environment, which might have 

different properties to the one they had just completed. After the task ended, participants 

completed the BIS/BAS, the Barratt-11 and, for adolescent participants only, the Pubertal 

Status Scale. Participants were then provided with their final score and debriefed as to the aims 

of the study. 
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Results 

Confirmatory Analyses 

Analyses were conducted in R v3.5.1 and JASP v0.10.2 (JASP Team, 2019). Results 

of the pilot study indicated that participants’ behaviour was qualitatively consistent with the 

predictions of MVT. Descriptive statistics indicated that participants adjusted their leaving 

threshold according to the different qualities of the environment, which was considered 

adequate support to run the main study. 

 Results of the main analyses demonstrated that across the different quality 

environments, adolescents consistently explored more compared to adults. A mixed 2 (age 

group: adolescents vs adults) x 2 (patch depletion rate: fast vs slow) x 2 (travel time: short vs 

long) ANOVA demonstrated a main effect of age on the leaving threshold F(1, 122) = 13.56, p < 

.001, η2 = .10, BF10 = 2.117e-7. Compared to adults, adolescents had a higher average leaving 

threshold, meaning the number of apples required to stay at a patch was higher and thus they 

explored more often. Across the four environments, adolescents’ mean leaving threshold was 

5.82 (SD = 1.79) apples, whereas adults’ mean leaving threshold was 4.78 (SD = 1.66) apples 

(see Figure 2). Furthermore, results of this analysis revealed a main effect of travel time F(1, 

122) = 15.57, p < .001, η2 = .01, BF10 = 6.985e-7. This suggests that participants explored more 

in environments where travel times between patches was short compared to environments when 

travelling between patches incurred a greater time cost, consistent with a rational foraging 

strategy. Further, there was a main effect of changes to the depletion rate between environments 

F(1,122) = 32.28, p < .001 η2 = .01, BF10 = 2.936e-5. In environments where the patch depletion 

rate was fast participants had a lower leaving threshold, whereas in environments where the 

patch depletion was slow, participants had a higher leaving threshold, which is consistent with 

optimal foraging behaviour. However, there was an interaction between age group and patch 
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depletion rate F(1,122) = 6.13, p = .015 η2 = .002, BF10 = 0.002. Post hoc tests using the 

Bonferroni correction demonstrated that there was not a significant difference between 

adolescents’ leaving thresholds in the fast depletion conditions compared to the slow depletion 

conditions (pbonf = .172). However, there was a significant difference between adults’ leaving 

thresholds in the slow depletion conditions compared to the fast depletion conditions (pbonf < 

.001). These findings indicate that adults were more responsive to changes in the depletion rate 

compared to adolescents and adjusted their leaving thresholds accordingly. As this was an 

ordinal interaction, it was still valid to interpret the main effects of this model. Results of the 

ANOVA revealed no interaction effect between travel time and depletion rate F(1,122) = 0.91, p 

= .343, age group and travel time F(1,122) = 1.149e-9, p = .991, nor between age group, depletion 

rate and travel time F(1,122) = 1.26, p = .264.  

Figure 2: Plot of the mean leaving threshold for adolescents and adults for Environment 1 (fast depletion and 

short travel), Environment 2 (slow depletion and short travel), Environment 3 (fast depletion and long travel) 
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and Environment 4 (slow depletion and long travel). Green bars indicate the optimal leaving value for that 

environment. 

 Although adolescents’ leaving threshold was higher than adults’, this does not confirm 

that their behaviour was more optimal. To address this, we conducted a mixed 2x2x2 ANOVA 

using average deviation from the optimum leaving threshold as the dependent variable. Results 

demonstrated a main effect of age on deviation from the optimum F(1, 122) = 13.56, p < .001 η2 

= .08, BF10 = 1.324e-27, with adolescents’ behaviour closer to the optimum leaving threshold 

compared to adults’. There was a main effect of travel time on deviation from the optimum 

F(1,122) = 135.43, p < .001, η2 = .06, BF10 = 2.472e-4, with participants being closer to the 

optimum leaving threshold in the long travel time environments. In addition, there was a main 

effect of depletion rate on deviation from the optimum F(1,122) = 23.76, p < .001, η2 = .01, BF10 

= 6.426e-28. Participants were closer to the optimum leaving threshold in environments with 

a fast depletion rate compared to environments with a slow depletion rate. There was also a 

significant interaction effect between depletion and age group F(1,122) = 6.13, p = .015, η2 = 

.002, BF10 = 4.393e-26. Post hoc tests using the Bonferroni correction demonstrated that adults’ 

deviation from the optimum did not change significantly between fast and slow depleting 

environments (pbonf = .508), whereas adolescents were significantly less optimal in slow 

depleting environments compared to fast depleting environments (pbonf  < 001). As adolescents 

did not adjust their leaving threshold to the same extent as adults in response to changes to the 

depletion rate, they exhibited greater suboptimality in the slow depletion environments 

compared to the fast depletion environments. However, there were no interactions between 

travel time and depletion rate F(1,122) = 0.36, p = .552, travel time and age group F(1,122) = 

1.149e-4, p = .991, nor travel time, depletion rate and age group F(1,122) = 1.26, p = .264 (see 

Table 2).  
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Consistent with these findings, adolescents accumulated a higher average number of 

apples in each environment (M = 650.82, SD = 99.50) compared to adults (M = 626.71, SD = 

95.05). However, this difference was not statistically significant as demonstrated by a mixed 

ANOVA F(1, 130) = 1.04, p = .310, though the Bayes factor demonstrated extreme evidence for 

the alternative hypothesis (i.e. that adolescents accumulated a higher average number of 

rewards compared to adults) BF10 = 4.342e-86. This inconsistency could be attributed to the 

probabilistic nature of the reward schedule. Consistent with MVT, there was a main effect of 

depletion rate F(1,130) = 216.27, p < .001, BF10 = 2.280e-67 and travel time F(1,130) = 443.62, p 

< .001, BF10 = 9.617e-39, with participants accumulating a higher number of rewards in richer 

environments compared to poorer environments (see Table 2). In addition, there was an 

interaction effect between travel time and depletion rate F(1,130) = 13.72, p < .001, BF10 = 0.027,  

but no interaction between depletion rate and age group  F(1, 130) = 3.26, p = .073, travel time 

and age group F(1, 130) = 0.02, p = .890, nor depletion rate, travel time and age group F(1, 130) = 

0.75, p = .389. 

Table 2: Mean (SD) of participants’ deviation from the optimum and number of apples accumulated in each 

environment 

 Adolescent 

deviation from 

the optimum 

Adult 

deviation 

from the 

optimum 

Adolescent 

number of 

apples 

accumulated 

Adult number 

of apples 

accumulated 

Environment 1 0.66 (1.98) 1.80 (1.89) 675.01 

(105.35) 

652.36 (110.64) 

Environment 2 0.85 (1.72) 1.99 (1.76) 724.60 

(135.12) 

711.77 (108.73) 
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Environment 3 -0.46 (1.85) 0.78 (1.95) 588.77 (91.59) 529.94 (76.45) 

Environment 4 0.23 (1.82) 1.00 (1.74) 633.13 

(113.16) 

629.25 (105.12) 

Total 0.30 (1.84 1.37 (1.84) 650.82 (99.50) 626.71 (95.05) 

To examine whether patch foraging behaviour was predicted by any of the disposition 

measures, we conducted a linear regression. When the BAS subscales, the BIS and the Barratt-

11 were all entered as predictors of participants’ deviation from the optimum threshold, the 

model was not significant F(5,132) = 1.05, p = .393, R2 = 0.04, nor were any individual predictors 

significant (ps > .05). Following this, a second regression model was conducted with the 

addition of interaction terms to account for the interaction between age group and the 

disposition measures. Consistent with our previous analysis, none of the predictors were 

significant and we did not find evidence of an interaction effect between participants’ age group 

and any of the disposition measures (ps > .05). 

Exploratory Analyses 

As the gender split between the adult and adolescent sample was imbalanced, we first 

ran our model including gender as a covariate in a mixed 2x2x2 ANCOVA. Following this, we 

entered gender as an additional fixed factor into a 2x2x2x2 ANOVA to examine whether 

foraging performance differed as a main effect of gender. These analyses suggested gender did 

not appreciably affect the results, as foraging behaviour differed between age groups but not 

genders (see Supplementary Material).   

Discussion 

Adolescents Exhibit Heightened Exploration During Patch Foraging 



ACCEPTED MANUSCRIPT: PATCH FORAGING IN ADOLESCENCE 

 23 

Although risk and novelty-seeking during adolescence have often been associated with 

negative consequences, recent theories have proposed that these tendencies can in fact be 

beneficial. The present study utilised a realistic decision-making problem that is almost 

universal across animal species: patch foraging. Adolescents had higher leaving thresholds 

across all four patch foraging environments, which meant this group explored more than adults. 

This behaviour was also closer to the optimal foraging behaviour as defined computationally 

using MVT. In line with previous research (Constantino & Daw, 2015; Le Heron et al., 2020; 

Lenow et al., 2017), our results demonstrated that adults remained with individual patches for 

longer than the optimal strategy would dictate. These findings indicate that heightened 

exploration during adolescence can be beneficial when exploration is associated with 

rewarding outcomes, which can support this age group to gain experiential knowledge of their 

surroundings.  

The present findings extend upon the current patch foraging literature, which has 

previously demonstrated that human adults are suboptimal patch foragers (e.g. Le Heron et al., 

2020). Whilst multiple studies have shown that human adults overexploit patches, our findings 

indicate that adolescents did not demonstrate this pattern of overexploiting to the same degree 

as adults, meaning their behaviour was closer to the optimal patch foraging strategy.  

Adolescents’ predisposition for exploration has been attributed to the hyperactivity of 

the dopaminergic reward system, motivating this age group to seek novel sensations and 

experiences (van Leijenhorst et al., 2010). In the current patch foraging paradigm, new patches 

represented novel opportunities, as each tree was only visited once. Adolescents’ behaviour 

was therefore consistent with a pattern of heightened novelty-seeking relative to adult 

participants. Importantly, however, adolescents’ predisposition for exploration was not 

indiscriminate, as they adjusted their leaving thresholds according to changes in the inter-patch 

travel time between the different environments. While the difference was not statistically 
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significant, we also found that adolescents adjusted their leaving thresholds according to 

changes in the depletion rate. Adolescents’ suboptimality between conditions with fast and 

slow depletion rates was primarily driven by overexploiting in the richest quality environment 

(environment 2), which had the highest optimal leaving threshold. However, in environment 4, 

which also had a slow depletion rate, adolescents were close to the optimal leaving threshold. 

As such, the finding that adolescents did not adjust their behaviour to changes in the depletion 

rate could be due to the high leaving threshold required in the richest environment, rather than 

an insensitivity towards this change in the environment. 

Heightened novelty-seeking in the second decade of life has also been associated with 

the increased rates of risk behaviour observed in adolescence relative to other age groups 

(Steinberg, 2008). In the context of patch foraging, previous research has demonstrated that 

adults’ tendency to overexploit is explained by a parameter capturing risk sensitivity 

(Constantino & Daw, 2015). That adolescents explored more than adults could indicate that 

heightened levels of novelty-seeking were associated with diminished risk sensitivity in this 

age group, but this tolerance for risk led to more optimal outcomes compared to risk-averse 

adults. In contrast to recent research (Bach, Moutoussis, Bowler, Neuroscience in Psychiatry 

Network consortium & Dolan, 2020), we did not find gender differences in foraging behaviour 

in a developmental sample. The current study suggests that when exploration is associated with 

opportunity, adolescents’ propensity for heightened exploration can be beneficial. In scenarios 

where exploration can lead to negative outcomes (as in some behavioural tasks e.g. the Balloon 

Analogue Risk Task; Lejuez et al., 2002), the same predisposition for exploration can lead to 

suboptimal outcomes (Peper, Braams, Blankenstein, Bos & Crone, 2018). Taken together, 

these findings demonstrate how adolescents’ novelty-seeking can lead to both positive and 

negative outcomes for this age group (Patterson et al., 2019). 



ACCEPTED MANUSCRIPT: PATCH FORAGING IN ADOLESCENCE 

 25 

These findings build on evidence of developmental differences in ambiguity tolerance. 

Compared to other age groups, adolescents are more tolerant to variable outcomes and thus 

riskier choices where the probabilities involved in the decisions are unknown (van den Bos & 

Hertwig, 2017). In the present patch foraging paradigm, participants were not aware of the 

distribution of rewards in novel patches and therefore exploration required tolerance of an 

ambiguous outcome. Adolescents invested less time in the known option, instead choosing to 

explore the unknown, ambiguous opportunity. Through using a serial decision-making task, 

our findings contribute evidence that adolescents are more motivated than adults to explore 

ambiguous options and that this can lead to more optimal outcomes.  

The use of complex exploration strategies develops in later adolescence and remains 

into adulthood, which can support individuals to effectively navigate their environment (Jepma 

et al., 2020; Somerville et al., 2017). In contrast to our findings, previous work has 

demonstrated that adolescents prefer to exploit a known option for an immediate reward rather 

than explore a novel one to gain information about their surroundings (Somerville et al., 2017). 

However, in this study, adolescents only preferred the high reward option when this was 

incongruent with the high information option. Further work examining the development of 

explore/exploit strategies has found that adolescents explore more than is optimal, leading them 

to accrue fewer rewards than adults (Xia et al., 2020). In the present patch foraging paradigm, 

relative to adults’ performance, heightened levels of exploration were congruent with the high 

reward option, as this raised the average reward rate according to MVT.  

When examining the development of strategic exploration, previous research has 

demonstrated that directed exploration emerges in late adolescence and stabilises in adulthood, 

whereas random exploration is age-invariant (Somerville et al., 2017). Random exploration 

involves introducing stochasticity into one’s decisions, which can lead the agent to select the 

option perceived to have the lower reward (Gershman, 2018). While this exploration strategy 
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can be beneficial for uncovering information about the environment (Wilson et al., 2014), it is 

less precisely tuned to the structure of that environment (Somerville et al., 2017). The use of 

random exploration strategies in adolescence may have contributed to the finding that this age 

group adjusted their leaving threshold to a lesser extent in response to changes in the depletion 

rate, as their behaviour was influenced by a stochastic process that was less finely calibrated to 

the structure of the environments.  

Taken in context of previous studies, our findings highlight that adolescents’ reward 

seeking behaviour and heightened propensity for exploration can complement one another 

when exploration is associated with reward. This may afford adolescents opportunities that are 

forfeited by other age groups that are averse to uncertain outcomes (for example, trialling out 

for a new sports team or going to a summer camp). As such, our findings contribute to 

understanding when adolescents’ heightened exploration can lead to positive outcomes for this 

age group. 

The Benefits of Exploration in Adolescence 

Heightened exploration during adolescence supports this age group to gain experience 

of novel scenarios, which can be utilised to guide future decisions (Romer et al., 2017). At the 

onset of puberty, there is increased activation of the dopaminergic reward network (van 

Leijenhorst et al., 2010), which promotes novelty-seeking behaviour (Costa, Tran, Turchi & 

Averbeck, 2014). Further, adolescents are motivated to employ cognitive control resources to 

explore unknown scenarios that can yield information about the probability structure of their 

environment (Do et al., 2019). Consistent with this account, adolescents in the present study 

were motivated to seek out novel patches, which required the deployment of cognitive 

resources to engage in effortful exploration rather than choosing the comparatively less taxing 

option of exploiting the known option (Daw et al., 2006; Do et al., 2019; Otto et al., 2011). 
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According to the Lifespan Wisdom Model, this decision-making strategy is employed across 

adolescence to aid adolescents to learn about their surrounding environment (Romer et al., 

2017). The information gained through foraging is then subsequently exploited later in life 

(Mata, Wilke & Czienskowski, 2013). Findings from the present study support this account, as 

when adolescents were faced with an unknown environment, these participants were motivated 

to explore in order to effectively navigate this novel scenario compared to adults. Heightened 

exploration in adolescence may therefore be considered adaptive within the lifespan, as it 

supports the development of the individual’s experiential knowledge in unknown scenarios 

(Ellis et al., 2012).  

 There are limitations to the present study that are important to consider. This study only 

measured exploration in relation to positive reward feedback. Previous research has 

demonstrated that adolescents respond differently to positive and negative feedback 

(McCormick & Telzer, 2017). Future studies should consider whether adolescents are able to 

utilise optimal decision-making strategies when exploring novel scenarios to avoid negative 

outcomes, as well as acquire rewards. Further, the environmental parameters utilised in the 

present study were more suited to strategies that required higher levels of exploration rather 

than exploitation. As such, adolescents’ more optimal performance could be due to the 

structure of the environments rather than their ability to effectively navigate patches. However, 

we note that adolescents were more optimal in environments with fast depletion rates, where 

the optimal strategy is to explore less, suggesting this age group were better able to estimate 

the optimal leaving threshold when less exploration was required. Nevertheless, future research 

could consider designing environments with a wider range of environmental parameters to test 

whether adolescents retain their optimality in foraging scenarios that favour less exploration.    

 This study has implications for our understanding of the role of adolescence within the 

lifespan. Our findings indicate that exploration plays a key role at this developmental stage and 
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can support individuals to benefit from novel opportunities available to them. As such, priority 

should be given to facilitating adolescents’ exploration and providing them with the 

opportunity to learn in unfamiliar scenarios. The importance of allowing developmentally-

appropriate levels of exploration and learning are currently highlighted in safeguarding 

documents for young people (NHS England, 2015). Findings of the present study support these 

guidelines as adolescents require exposure to novel experiences in order to develop knowledge 

of their surroundings.  

 Overall, findings of the present study suggest that compared to adults, adolescents 

exhibit heightened rates of exploration in novel, unknown environments. Contributing to the 

patch foraging literature, we replicate findings that adults overexploit patches compared to the 

optimal foraging strategy. Our findings suggest that when exploration is associated with 

reward, adolescents’ heightened propensity for exploration and reward-driven behaviour can 

be beneficial, leading this age group to exhibit more optimal behaviour relative to adults. This 

strategy of novelty-seeking behaviour can allow this age group to benefit from novel 

opportunities and gain experience at the developmental stage where the individual transitions 

from childhood dependence to adult independence. 
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