Static Flow Analysis for Hybrid and
Native Android Applications

Claudio Rizzo

Submitted in fulfillment for the degree of
Doctor of Philosophy

Department of Computer Science
Royal Holloway, University of London

ROYAL

HOLLOWAY

Declaration of Authorship

I, Claudio Rizzo, hereby declare that this thesis and the work presented in
it is entirely my own. Where I have consulted the work of others, this is

always clearly stated.

Claudio Rizzo,
November 25, 2020

Acknowledgments

I wish to express my gratitude to my supervisors Johannes Kinder and
Lorenzo Cavallaro. This thesis would not have been possible without your
constant support and mentorship. I also want to thank you for always
believing in my abilities and keeping me sane when tough situations pre-
sented themselves.

I am grateful for the REID scholarship from Royal Holloway and the
financial support it provided during my Ph.D.

I wish to thank my lab mates, who supported me during this entire jour-
ney. I enjoyed all our fruitful scientific discussions and all the cheerful mo-
ments on and off-campus. In particular, I want to thank Duncan Mitchell
and Emanuele Uliana for proofreading my thesis and always being there
when I needed it. To Blake Loring and James Patrick-Evans, your help and
support were crucial for the outcome of my work. To Roberto Jordaney,
for a great time spent together in and out of the university.

I had some of the most exciting time playing CTFs with my team. I
want to thank all of you for the challenges we solved together and for the
time spent learning new technical skills. To Giovanni Cherubin, for coo-
setting up the CTF team in the first place and the cheerful times we had
inside and outside the campus. To Feargus Pendlebury, for all the binary
exploits we wrote together and the time spent on research work. To Giulio
De Pasquale for the good time spent together.

A very special thank you goes to you, Versha Prakash. Without you,

writing this thesis would not have been possible. Your love and support
kept me sane and gave me the strength to finish this journey. Thank you
for the faith you had in me all the amazing time we spent together.

A big thank you for gratitude goes to my family: my mum Maria Grazia,
my dad Raffaele and my sister Laura. This thesis and all my achievements
would not have been possible without your constant support throughout

the years. I am grateful for your faith in me and infinite support.

Abstract

Android applications consist of different components, interacting with
each other, developed in different programming languages. While Java
is at the core of an Android app, it may require to interact with the web
or perform low-level Operating System (OS) operations. For example, An-
droid Webviews are in-app browsers that expose interfaces to the JavaScript
in the web page loaded to communicate with Java. Similarly, Android
supports native code components that Java invokes via the Java Native In-
terface (JNI) framework. The ways of interaction of these components may
introduce new security concerns the analyses need to address. Unfortu-
nately, work so far has not addressed these mechanisms, compromising
on precision and leaving potential security-critical bugs undiscovered.

In this thesis, we propose new techniques to enable existing analyses
to consider the multi-language nature of an Android application. First,
we focus on Android Webviews. To this end, we developed BabelView,
a tool that uses information flow analysis to assess the security of Web-
views. Our idea is that we can make reasoning about JavaScript semantics
unnecessary by instrumenting the application with a model of possible at-
tacker behavior — the BabelView. We evaluated our approach on a sample
of 25,000 apps from the Google Play Store, finding 10,808 potential vul-
nerabilities in 4,997 apps, having over 3 billion installations worldwide.
We manually validated BabelView on a sample of 50 apps and estimated

our fully automated analysis achieves a precision of 81% at a recall of 89%.

Second, we focus on enabling analyses for Android native code. We cre-
ated a new framework, JniFuzzer, which enables fuzzing for Android JNIs.
We used JniFuzzer on real-world Android apps, finding potential vulner-
abilities that we report as case studies. We then developed TaintSaviour,
a Proof of Concept (PoC) tool which uses a black-box approach to gen-
erate summaries for JNIs. We implemented TaintSaviour as a plug-in of
JniFuzzer, and we present a preliminary evaluation showing that our ap-

proach is viable and practical.

Contents

1

Introduction 17
1.1 Challenges for the Analysis of Hybrid Android Apps 20
1.1.1 Challenges for Cross-language Taint Analysis 20
1.1.2 Challenges for the Analysis of Android Webviews . . 21
1.1.3 Challenges for the Analysis of Android Native Code 22
1.2 Goalsand Overview 24
1.3 ThesisContribution 27
Background 29
2.1 Android Framework 29
211 AndroidOverview 29
2.1.2 Android App Packaging 31
2.1.3 Android Mobile Applications 33
2.2 Android Webviews, 34
221 DefineaWebview 35
222 EnablingJavaScript. 36
223 WebView and Same Origin Policy 39
2.2.4 Attacks on Android Webviews 40
2.3 Android Native Components 44
2.3.1 Java Native Interface: Overview 44
2.3.2 Referencing And Accessing Java Objects 48
2.3.3 Array and String Management 49

Contents

10

234 Exception Management
2.4 Program Analysis Techniques
241 Information Flow Analysis: Taint Analysis
242 FuzzTesting
243 Performance Metrics
2.5 Android Static Analysis
2.5.1 Android Reversing Tools
2.5.2 Android Taint Analysis Tools: Flowdroid

Information Flow Analysis on Webviews: BabelView

3.1 Data-flow Analysis for Hybrid Android Applications
3.1.1 The Problem of JavaScript Interfaces
3.1.2 AttackerModel
3.1.3 Instrumenting for Data-flow
3.1.4 Preserving Semantics

3.2 BabelViewInternals.
3.2.1 Phase 1: Interface Extraction and Webview Pairing .
3.2.2 Phase 2: BabelView Generation
3.2.3 Phase 3: Instrumentation
3.24 Phase 4: FlowDroid Data-flow Analysis
3.25 Phase 5: Analysis Consolidation

33 RelatedWork
3.3.1 Webview: Attacks and Vulnerabilities
3.3.2 Webview AccessControl
3.3.3 Instrumentation-based Modeling

3.4 Limitation and Discussion
3.4.1 Avoiding Instrumentation
3.4.2 Analysis Limitations
3.43 Attack Feasibility
3.44 Mitigating Potential Vulnerabilities

Contents

4 BabelView Evaluation

4.1 Play Store Large Scale Analysis
411 Methodology
412 Applicability,
413 Alarms Triggered
414 Manual Validation
415 Feasibility Analysis
41.6 Correlationof Alarms

42 CaseStudies
421 MABMobile Banking
422 SwingAid o oo L
423 AdsLibraryInMobi

4.3 Work Outcome and Discussion

5 JniFuzzer: Fuzzing Android Java Native Interfaces

51 JniFuzzero L.
51.1 Mocking The JNI Environment
5.1.2 Function Pointer Extraction
51.3 Execute Target Native Method
52 A distributed Fuzzing Framework

5.3 Fuzzing Android JNI: Evaluation of Case Studies

531 Methodology
53.2 AnalysisResults
54 RelatedWork
5.5 Limitations and Future Work

5.6 Work Outcome and Discussion

6 TaintSaviour

6.1 Data-flow Analysis for Android JNI
6.1.1 The Need for Android JNI Summaries

11

Contents

6.1.2 Input/Output Dependency Analysis. 131

6.1.3 A Black-box Approach 132

6.2 Implementation 136
6.2.1 Phase 1: Getting Values for the Inputs 137

6.2.2 Phase 2: Execution and Output Monitoring 137

6.23 TheHooksSystem 138

6.24 Phase 3: Summary Generation 139

6.3 Testing and Preliminary Evaluation. 142
6.3.1 Models for Mathematics Functions 142

6.3.2 Native Code Sources and Sinks 147

6.3.3 FlowDroid and TaintSaviour 151

6.3.4 Case Study On App from Google Play Store 156

6.4 RelatedWork, 159
6.4.1 Method Summary Approaches 159

6.4.2 Android Native Components 160

6.5 Limitations and Future Work 161
6.6 Work Outcome and Discussion 163
7 Conclusion 165

12

List of Figures

1.1
1.2

2.1
2.2
2.3
24

3.1
3.2
3.3
34
3.5

4.1
4.2

51
52
5.3
5.4

6.1
6.2

APK as a multi-languageapp. 18
Challenges and solutions. 25
Android OS softwarestack 30
APK Structure. 32
JNItypes hierarchy 48
Context insensitive analysis” control-flow graph. 54
JavaScripttoJavaFlow. L. 69
JavatoJavaScriptFlow. 70
BabelView Approach. 74
BabelView Phases. 75
TaintWrapper Intent Flow 82
Processed Apps Breakdown 94
Correlation matrix of alarms. 102
JniFuzzer Design Diagram 109
Distributed JniFuzzer Framework 116
Apk View of JniFuzzer 118
Flow View of JniFuzzer 118
Flow through JNI. 131
TaintSaviour system overview. 136

13

List of Figures

6.3 Fuzzing Strategies for acos
6.4 Fuzzing Strategies for cos .
6.5 JNI Taint Propagation Cases

14

List of Tables

21

4.1
4.2
4.3

51
52

6.1

6.2
6.3
6.4
6.5

Primitive Types Mapping 47
Number of Apps per BabelView’s Alarm Category. 96
Per Alarm Manual Validation Confusion Matrix. 99
Per App Manual Validation Confusion Matrix. 100
JniFuzzer’s Job Description by Attribute 117
JniFuzzer’s AnalysisResults 121

Execution trace of nativeSink execution. A dependency

shows between paramy and sink;, indicating a possible flow.141

Math library function signatures. 143
TaintSaviour Models for Native Methods 154
FlowDroid Different Strategies Runs 155
FlowDroid with and without TaintSavior Summary of ic . . 159

15

Introduction

Android is an operating system (OS) for mobile devices developed by
Google. It allows users to run graphical applications, called apps. Apps
are collections of different components interacting with each other. These
components serve multiple scopes, from performing low-level OS opera-
tions to interacting with the web. Therefore, the programming languages
used to build them vary accordingly. For example, consider Figure 1.1.
The core of an Android app consists of Java code. However, native and
web apps have segments written in C/C++ and HTML/JavaScript, re-
spectively. Moreover, framework methods are stubs that the OS dynami-
cally loads at runtime.

To assess the security of an app in this multi-language setting is hard.
Static taint analysis, a data-flow analysis to track sensitive information
flow of a program (detailed in Section 2.4), has been proven effective at
evaluating the security of Android apps [1, 2, 3, 4, 5, 6]. For example, one
can use taint analysis to detect privacy leaks, a threat that most of the An-
droid malware poses [7, 8, 9]. Similarly, taint analysis can detect whether
untrusted input reaches a sensitive method, threatening the security of of
the app.

However, state-of-the-art taint analysis tools only focus on a single lan-
guage (Java for Android apps). This is a problem because the analyzer has
no visibility of large parts of the program. Security issues may depend on

17

1 Introduction

JNI

Native @ WebView
Libraries
ibraries

Framework JavaScript

APls % interfaces

Android Framework
Java/C++

Figure 1.1: APK as a multi-language app. Android apps consist of several compo-
nent written in different languages — e.g., C/C++ (JNIs) and JavaScript
(Webviews).

how different language components interact. For example, the Android
WebView class (detailed in Section 2.2) provides interfaces enabling an ap-
plication to communicate with the web. Failing to consider them may
leave potential security issues undiscovered. For instance, a banking app
could provide access to account details when loading the bank’s website
in a Webview, or it could relay access to contacts to fill in payee details.
Similarly, Android apps can use native code (detailed in Section 2.3) to ex-
ecute performance-critical functionalities. Again, security issues can lurk
in native code. For instance, memory corruption bugs can be introduced,
leading to vulnerabilities such as buffer overflow. An analysis aware of
these different language components (i.e., hybrid analysis) is then benefi-
cial for exposing new security issues otherwise missed.

An hybrid analysis can also benefit malware detection, as malware au-

thors persistently take advantage of the hybrid nature of Android appli-

18

cations, hiding their malicious behavior in those components ignore by
analyses. For example, a study in 2017 showed a consistent increase in
the use of native code as a means to include and hide malicious behav-
iors [10]. This trend has more recently been confirmed by another study,
which highlights how nowadays applications pervasively use native code
to evade analysis [11]. The authors showed how certain malware imple-
ments exploits that aim at obtaining root access on the device. The major-
ity of these exploits are written in native code.

Native code is not the only vector. Android hybrid applications can hide
malicious behavior in the web component [12, 13, 14, 15]. For example,
apparently benign and legitimate apps may lead the user to click malicious
links embedded into advertisements.

Security is not the only domain that would benefit from a hybrid anal-
ysis. Different approaches have been developed over the years to au-
tomatically test Android applications while maximizing code coverage
and bug discovery [16, 17, 18, 19, 20]. These approaches rely on different
techniques, including static and dynamic analysis and machine learning.
However, none of them fully consider the hybrid nature of Android ap-
plications, and for example, they fail at targeting native code. Having an
hybrid analysis would enhance the quality of the results, exposing new
and undiscovered bugs.

In this thesis, we propose new approaches to enable hybrid taint anal-
ysis and to assess the security of Android apps. First, we investigate the
security threats concerning Android Webviews. To this end, we devel-
oped BabelView, a tool that models the interaction between Java and HTM-
L/JavaScript. BabelView enables existing taint analyses to consider the
bridge across the two different languages.

Second, we consider a new approach to analyzing native code. In par-
ticular, we developed JniFuzzer, a tool capable of isolating and dynami-

cally testing the security of native code interfaces. We successfully used

19

1 Introduction

JniFuzzer to discover bugs with security implications (Section 5.3). We
then built on top of JniFuzzer and developed TaintSaviour, a tool that uses
a dynamic black-box approach to generate summaries for native meth-
ods. These summaries can then be reused by other taint analyses, enabling
them to work across Java and C/C++.

Together, BabelView, JniFuzzer and TaintSaviour allow to expose poten-
tial bugs and vulnerabilities and possibly detect malicious behaviours in

components that have traditionally been invisible to analysis.

1.1 Challenges for the Analysis of Hybrid Android
Apps

In this section, we outline the most relevant challenges to our work. We
divide them into three categories, namely:

1. Challenges for cross-language taint analysis (Section 1.1.1),
2. Challenges for Android Webview analysis (Section 1.1.2),

3. Challenges for Android native code analysis (Section 1.1.3).

1.1.1 Challenges for Cross-language Taint Analysis

Enabling Taint Analysis. Taint Analysis is effective at finding sensitive
information leaks. It keeps tracks of sensitive data within a program,
but tracking across languages is hard. There are two main strategies to
work around this problem. In the first one, the analysis switches context
and translates its current state from a language to another. In the second
one, the analysis uses summaries of the method interfaced with the other
language. Both cases are challenging for different reasons. A full con-

text switch requires two different taint tracker engines, one per language.

20

1.1 Challenges for the Analysis of Hybrid Android Apps

When the taint reaches an interface method, the analysis must translate
it for the new language and continue the analysis in the new context —
e.g., passing from Java to JavaScript would require an engine that under-
stand both languages” semantic. On the other hand, summaries genera-
tion needs to produce sound and meaningful summaries, which must be
understood by the specific taint tracker. Moreover, the generation could,
once more, require a taint analysis on the other language.

1.1.2 Challenges for the Analysis of Android Webviews

Android Webviews enable Android apps to render web pages. Analyses
of apps with a Webview need to consider the mechanisms the app has
to interact with HTML and JavaScript. In the following paragraphs, we

present some of the challenges relevant to our work.

JavaScript. Webviews are full-fledged in-app web browsers, and as such,
they render HTML and JavaScript to the end-user. An analysis aimed at
assessing their security needs to consider JavaScript. JavaScript is a highly
dynamic and asynchronous language and, therefore, is complex and ex-
pensive to analyze. For example, JavaScript’s object model allows to create
and delete object properties at runtime, increasing the analysis computa-
tion time and making it unpractical [21]. Additionally, most JavaScript
applications rely on large libraries and frameworks, which in turn are
written in a combination of JavaScript and native code [22]. In the con-
text of Android Webview apps, JavaScript highly interacts with the Java
counterpart. This interaction is crucial for thorough security analysis, but
it comes with the challenge of finding solutions that integrate JavaScript
analysis with Java. Indeed, this is not an easy task, as one needs to model
the means by how the two languages interact and propagate information.
Furthermore, a Webview may dynamically and remotely load JavaScript

21

1 Introduction

which therefore is not available for an analysis unless the app is running.

Threat Modeling. Webviews inherit all the threats that come from brows-
ing the web. Moreover, the Java/JavaScript interaction mechanisms open
up brand new scenarios of attacks (detailed in Section 2.2.4). For example,
a Cross-Site Scripting (XSS) attack can be more powerful, as it can exploit
the interfaces exposed by Webviews for the web. Therefore, performing an
accurate threat modeling is hard, as we need to consider different factors

specific to a certain app’s layer.

Identifying Vulnerabilities. Taint analysis is not enough. There is a need
to analyze the information flow results and deduce potential vulnerabil-
ities out of them. This task is challenging as we may need to perform
further inter-procedural analyses. For example, Android uses the same
API to perform different functions (e.g., phone calls, email, calendar, etc.).
The parameters provided dictate what task to perform. Therefore, these
parameters need further investigation to understand what the API’s func-
tionality.

Multiple Webviews. Android apps can have multiple instances of Web-
views. Therefore, the analysis of the custom hybrid interfaces must con-
sider the Webview defining them. Maintaining a sound analysis, while
keeping precision, is challenging. The analysis must at least consider dif-
ferent types of hierarchy of Webviews and associate them with the respec-

tive custom interfaces in order to be meaningful.

1.1.3 Challenges for the Analysis of Android Native Code

Android apps can use native code (C/C++) to perform computational in-

tensive operation. A thorough analysis needs to consider the mechanisms

22

1.1 Challenges for the Analysis of Hybrid Android Apps

apps have to invoke native code from Java and vice versa. In the follow-
ing paragraphs, we outline some of the related challenges most relevant

to our work on native code.

Underlining Native Framework. Android apps using native code do so
via the Java Native Interface Framework (JNI, detailed in Section 2.3). This
framework provides APIs to design interfaces acting as bridges between
Java and native code. Therefore, a challenge when considering this sort of
apps is to model how the underlying framework works. An analysis on
such hybrid apps must be aware of how Java and Native code communi-
cate, meaning we need to create abstraction on top of the two languages.
Due to the differences between them, this is a challenging task. We will

detail some of the challenges involved in the next paragraphs.

Methods Isolation. One way to assess the security of code is to execute
the target program with random inputs to trigger unusual behaviors (i.e.,
fuzzing, detailed in Section 2.4). In Android apps, it is challenging to tar-
get the execution of a native interface. Approaches exploring the app’s Ul
may never trigger native code, while directly executing the native method

lacks the execution context.

Input Generation. When testing a program, a challenge is how to gen-
erate a meaningful input that exercises the program as much as possible.
Moreover, native methods support a wide range of types, including com-

plex structures to resemble Java Objects and Strings.
Lack of Source Code. Our goalis to analyze third party apps. Therefore,

we cannot rely on source code. This deficit poses a serious challenge for
the analysis of native code, as we enter the realm of binary analysis.

23

1 Introduction

1.2 Goals and Overview

In this thesis, we propose new techniques for assessing the security of An-
droid apps. The core of our work focuses on making existing analyses
aware of the different programming languages present in a single app.
We consider two categories: Android web apps using Webviews and apps
using native code. To this end, we developed three different tools. In Fig-
ure 1.2, we list all the challenges discussed earlier (Section 1.1) and relate
them to the respective tool. We cover each tool in a separate chapter of this

thesis.

BabelView. As we discuss in Section 2.2, Android Webviews are power-
ful in-app browsers which bring about new security threats. For example,
they allow developers to define custom JavaScript interfaces — i.e., bridges
used via the loaded web content to use app and device specific function-
alities. These bridges can poke holes into the browser sandbox, enlarging
the attack surface in case malicious web content has loaded. With Ba-
belView, our goal is to evaluate the impact of a possible attack against
Webviews with respect to the JavaScript interfaces that they expose to the
web. Differently from previous work, we do not flag all interfaces as dan-
gerous, instead we rely on static analysis to understand their nature and
provide meaningful feedback focusing on the most dangerous cases. To
analyze these interfaces is challenging as they are only ever accessed by
the JavaScript part of the application. Our key idea is that we can and
should avoid reasoning about JavaScript, as it is hard to analyze. To this
end, we model a general attack behavior that over-approximates the pos-
sible information flow semantics of an attack and embeds its logic in a spe-
cially crafted Webview, the BabelView. We then instrument the BabelView
into the target app, replacing its Webviews and its descendants with Ba-

belView, which simulates an arbitrary execution of the JavaScript inter-

24

1.2 Goals and Overview

JavaScript

Threat Modelling

BabelView J

{
(
(Identify Vulnerability
{

Multiple WebViews

[Enabling Taint Analysis

TaintSaviour J

Lack of Source Code

Methods Isolation

Input Generation

Native Framework

M Y

JniFuzzer J

Tools Developed for this thesis

Figure 1.2: Challenges and solutions. Challenges for analysis of Android multi-
language apps and proposed solutions.

25

1 Introduction

faces. Because an app can have many Webviews, we generate a Babel View
for each different type of Webview and bind all JavaScript interfaces, re-
spectively. Subsequent taint analyses can now reason on the JavaScript
interface detecting information flows in their context. BabelView further
refines the taint analysis results projecting them to a potential vulnerabil-
ity and its impact. We support our approach by a large scale experimental
evaluation, presented in Chapter 4, which sheds light on the state of Web-

views security in Android.

JniFuzzer. Static analysis of binary code is hard, so unsurprisingly there
is no usable framework for analyzing Android native code. Our goal is to
ease the effort to analyze native code and provide a tool that can expose
security bugs lurking in native code. To this end, in Chapter 5, we present
JniFuzzer, a native code analysis framework, based on fuzzing, that breaks
the status-quo of Android apps’ native code analysis. JniFuzzer effectively
models the Android native framework and isolates and executes each of
the native interfaces inside an Android app. JniFuzzer does not require
the app’s source code, and it can be easily extended as a plugin system
to support different analyses. Moreover, we designed JniFuzzer to sup-
port state-of-art fuzzing tools in its analysis, such as AFL [23]. As we will
show in Chapter 5, we successfully used JniFuzzer to discover real bugs

in Android apps.

TaintSaviour. Android loads certain framework code at run time. More-
over, frameworks such as JNI invoke interface implemented in native code,
posing a major challenge to static taint analysis. As a result, native code is
usually excluded by the these analyses, preventing the discovery of possi-
ble bugs or malicious behaviors. In this thesis, our goal is to provide viable
solutions to enable taint analysis to reason about native code. In Chapter 6,

we present TaintSaviour, a tool aimed at solving these kind of problems.

26

1.3 Thesis Contribution

TaintSaviour uses a black-box approach to generate summaries of meth-
ods, which we can reuse to instruct taint analysis on how to proceed when
encountering one of the summarized methods. We built TaintSaviour as a
plugin for JniFuzzer and used it to generate summaries for JNI methods.
We support the validity of our approach with a preliminary experimental

evaluation, showing that TaintSaviour can be practically used.

1.3 Thesis Contribution

As a summary, this thesis makes the following contributions to the state
of the art:

* We provide a solution to enable static taint analysis to include JavaScript
interfaces in Webviews in the analysis. We implemented this so-
lution in BabelView, a tool assessing the security of Android Web-

views, which is available as open source! (Chapter 3).

* We analyzed 25,000 applications from the Google Play Store to eval-
uate our approach and surveyed the current state of Webview secu-
rity in Android. Our analysis reports 10,808 potential vulnerabilities
in 4,997 apps, which together are reported to have more than 3 bil-
lion installations. We validated the results on a random sample of
50 applications and estimate the precision to be 81% with a recall of

89%, confirming the practical viability of our approach (Chapter 4).

¢ We implemented JniFuzzer, the first Android fuzzing framework to
directly target applications” native libraries and JNIs and we make
it available open source?. The JniFuzzer framework supports plu-

gins, enabling analysts to implement custom analyses. Finally, we

https://github.com/ClaudioRizzo/BabelView
https://github.com/ClaudioRizzo/JniFuzzerFramework

27

https://github.com/ClaudioRizzo/BabelView
https://github.com/ClaudioRizzo/JniFuzzerFramework

1 Introduction

present an initial exploratory evaluation, demonstrating how this
framework can be used to detect real-world bugs and vulnerabili-
ties in Android apps (Chapter 5).

¢ We introduce a new black-box approach to generate method sum-
maries. These summaries can then be reused to improve the com-
pleteness of current static taint analysis tools. We implement this ap-
proach in TaintSaviour, a Proof of Concept (PoC) tool that we used
for our preliminary experimental evaluation, showing that our ap-
proach is viable in practice (Chapter 6).

Chapter 3 and Chapter 4 of this thesis have been published as [24] (Ba-
belView: Evaluating the Impact of Code Injection Attacks in Mobile We-
bviews. In: Bailey M., Holz T., Stamatogiannakis M., Ioannidis S. (eds)
Research in Attacks, Intrusions, and Defenses. RAID 2018. Lecture Notes
in Computer Science, vol 11050. Springer, Cham).

28

Background

This chapter provides the necessary information to understand the re-
mainder of the thesis. First, in Section 2.1, we provide an introduction
of Android. In Section 2.2, we explore Android Webviews. In Section 2.3,
we then detail how native code is used in Android. In Section 2.4, we pro-
vide a general description of program analysis techniques relevant to the
thesis. Finally, in Section 2.5, we discuss static analysis in the the Android

scenario, discussing existing tools relevant to this thesis.

2.1 Android Framework

In this section, we provide a brief introduction to Android. In Section 2.1.1,
we provide an overview of the Android Operative System. In Section 2.1.2,
we describe the format of an Android app and finally, in Section 2.1.3, we

describe its main software components.

2.1.1 Android Overview

Android is an open-source OS based on the Linux kernel and developed
to work for several devices, and, in particular, on mobile phones. As we
show in Figure 2.1, the Android stack consists of multiple layers.

At the bottom, we have the Linux kernel, which is the foundation of the

29

2 Background

System Apps

Calendar Camera

Java APl Framework

Managers
Content Providers
Activity Location Package Notification

View System Resource Telephony Window

Native C/C++ Libraries

Webkit OpenMAX AL Android Runtime (ART)

Media Framework OpenGL ES .. Core Libraries

Hardware Abstraction Layer (HAL)

Bluetooth Camera Sensors

Linux Kernel

Drivers

Binder (IPC) Display

Bluetooth Camera

Shared Memory

Power Management

Image from https://developer.android.com/guide/platform

30 Figure 2.1: Android OS software stack.

https://developer.android.com/guide/platform

2.1 Android Framework

OS. The Linux kernel is very well known and therefore device manufac-
turers can easily integrate their hardware with Android.

On top of the kernel, we find the Hardware Abstraction Layer (HAL).
This layer provides interfaces that expose hardware capabilities to higher
levels. The HAL consists of different modules, which implement an in-
terface for a specific hardware component (e.g., camera, Bluetooth, etc.).
Upon a framework API call to access the specific hardware, Android loads
the library module for that component.

The next layer consists of Android Runtime (ART) and Native Code li-
braries. ART is the Android runtime environment since version 5.0 (API
level 21). Android applications are compiled into DEX, a bytecode for-
mat designed for Android that is optimized for minimal memory foot-
print. The ART environment converts the DEX bytecode into machine
code, which then executes. Before Android version 5.0, Dalvik was the
Android runtime. One of the main improvements of ART over Dalvik is
ART’s support for ahead-of-time compilation, which improves execution
performances.

The native code libraries sit next to ART. Many core Android systems
components build on native code and therefore require C/C++ libraries.
Moreover, Android provides Java framework APIs to expose the function-
ality of some of these native libraries to apps.

On top of ART and native libraries, we find the Java API Framework.
The entire feature set of the Android OS is available through Java API. For
example, all Android apps in the app layer are developed using this set of
APIs.

2.1.2 Android App Packaging

Android apps come in the Android App Packaging (APK) format. You can
think of an APK as a ZIP file containing all the relevant resources an app

31

2 Background

APK
[META-INF] [resources.arsc] [libs] [assets] [res
N N
N N
N N
classes.dex AndroidManifest.xml

Figure 2.2: APK structure. This figure shows the main components inside an APK.

requires to run on a device. In Figure 2.2, we show the APK’s structure.

Android Manifest. The Android manifest file presents essential informa-
tion about the application that the Android system must have beforehand
to run the app. For example, the manifest contains the app package name,
which serves as the application’s unique identifier. It describes the app’s
components (e.g., Activities, services, etc.) and specifies the app’s permis-
sions. For a more detailed explanation of the AndroidManifest, we refer
to the official documentation [25].

Lib Folder. The 1ib folder contains any native libraries that developers
used for their apps. Each library serves different Industry Standard Archi-
tectures (ISA), and, therefore, the 1ib directory contains a sub-folder for
each different architecture supported. For example, a library compiled for
x86_64 is stored in the 1ibs/x86_64 folder. This folder is of particular in-
terest for us because, in these native libraries, we find the implementation
of the JNI methods (see Section 2.3 and Chapter 5).

Assets Folder. The assets folder contains the application assets. Con-

sider, for example, mobile web application. These apps combine web
technology with the Java API Framework of Android. They can load and

32

2.1 Android Framework

render HTML/JavaScript files, which they can find within the assets di-
rectory. We will further discuss mobile web applications, as we analyze
Android Webviews (see Section 2.2 and Chapter 3).

Res Folder. The res folder contains the app’s resources. These resources
vary from the app’s layouts (i.e., UI of part of the application) to images
and strings. The compiled version of these files is located in resources.

arsc.

DEX File. The DEX file is where the byte code of the application lies.

Android Runtime uses this file to run the app.

2.1.3 Android Mobile Applications

Mobile applications differ from desktop counterparts in that they have
multiple entry points. For example, if one opens an email app from the
home screen, a list of emails —i.e., the email app’s main view — will show.
However, if one starts the email app, say, from a social media app, the
entry point will be a view for typing an email.

The Android Activity is designed to support this paradigm. One can
think of an Activity as a specific screen displayed to the user. Activities
define a layout, determining where Ul components appear on the screen.
Every Activity must specify a layout to display content. Each layout can
be specified as an XML file in the res folder, or programmatically in the
Activity code.

To make an Activity more modular, Android provides fragments. A
fragment is a modular section of an Activity and has its own life cycle. For
example, multiple fragments can be combined in a single activity to build
a multi-pane UL Moreover, fragments can be reused in different Activities.

33

2 Background

Whether an application uses only Activities or Activities with fragments,
it ultimately displays views. A view is a Ul basic component and is re-
sponsible for drawing the UI and handling events. The Java API frame-
work of the Android OS provides several different views to use. For ex-
ample, webview, which we will further discuss in Section 2.2, is a subclass
of view that acts like a browser. Within the same activity of fragment, you
can have multiples views.

An Android mobile app consists of a set of Activities and fragments
which act as containers for view components. Activity, fragments, and
views, all sit at the Java API framework layer and therefore interact with
the OS via the Java API. However, certain APIs are interfaces to execute
functionality outside the Java API framework layer. For example, this is
the case for Webviews (Section 2.2) and JNIs (Section 2.3).

2.2 Android Webviews

Webviews are customized in-app browsers. Their powerful mechanisms
for interaction between the application Java code and the rendered web
content make them valuable resources to develop portable and perfor-
mant mobile applications. In the Android ecosystem, WebView is a sub-
class of View (i.e., the basic block for a UI component) that can be used to
display web pages as part of an Android Activity layout [26].

In this section, we provide an in-depth overview of how Webviews
can be implemented in an Android application. In Section 2.2.1, we de-
scribe how WebView can be defined and inflated! into the application
view. In Section 2.2.2, we provide an overview on how JavaScript can

be enabled and used within WebView, describing the security impact it

'In the Android ecosystem, to inflate means to insert a specific component, e.g., a Web-
view, into a layout.

34

NGk W -

2.2 Android Webviews

<android. support.constraint.ConstraintLayout
/>
<WebView
android:id="@+id/webview"
android:layout_width="match_parent"
android:layout_height="match_parent"/>
</android. support.constraint.ConstraintLayout>

Listing 2.2.1: Declaring WebView in XML

brings about. In Section 2.2.3, we discuss the Same Origin Policy (SOP)
with respect to Webviews and, finally, in Section 2.2.4, we describe some
of the attacks that can occur on WebView.

2.2.1 Define a Webview

As any other View, WebView can be added dynamically in an application
activity, or statically as part of the activity’s XML layout file.

Adding a WebView dynamically happens directly in the Act ivity code
as part of the onCreate life cycle method. A WebView is first instantiated
and then added to the activity view. The following is an example of how

this can be achieved:

WebView mWebView = new WebView (this);

setContentView (mWebView) ;

The static alternative requires the activity layout XLM file to include
a WebView. Consider as an example the XML in Listing 2.2.1, which de-
fines the main activity layout. Here, WebView is declared as a child of
its container ConstraintLayout. Since WebView is a subclass of the
more general class AbsoluteLayout (which in turn extends ViewGroup
and View), it inherits all the style attributes these classes have. They can

35

2 Background

be used by adding them as XML attributes. Notice that an ID needs to be
specified to later look up the WebView. Once this process of declaration
and styling is completed, the resulting layout needs to be inflated and the
Webview retrieved. Again, this happens in the onCreate method by set-

ting the view content:

super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity_main);

WebView mWebView = (WebView) findViewById(R.id.webview);

Differently from the dynamic case, here the WebView constructor is se-
lected at run time by the Android framework depending on the layout
and style attributes that have been defined [27, 28].

Custom Webviews are also supported. Developers who wish to create
custom Webviews can do so by declaring a class inheriting from WebView.
This gives developers more flexibility as they can override various call-
backs as required. Once declared, the custom Webview can be inflated
with one of the two methods described above. However, extra care needs
to be taken when using the static approach. Developers need to include
the proper constructors that will be used by the layout inflater to render
and instantiate the Webview. For more detail, we refer the reader to a
comprehensive tutorial on the Android Developers documentation [29].

Once the WebView has been instantiated, web pages can be loaded with
the 1oadurl APIL

2.2.2 Enabling JavaScript

When a WebView object is created, it obtains a default set of settings. All
these settings are wrapped in the WebViewSettings class and can be
obtained by invoking get Settings method of WebView.

36

2.2 Android Webviews

By default, only plain HTML can be rendered and no JavaScript is al-

lowed. However, JavaScript is required for any non-trivial application.

WebViewSettings mSettings = mWebView.getSettings();
mSettings.setJavaScriptEnabled (true) ;

In the hybrid application context, JavaScript is not only used for common
web tasks, it is key for interaction between the application native code (i.e.,
Java) and the web content in both directions.

Java code can execute arbitrary JavaScript code in the Webview by pass-
ing a URL with the “javascript :” pseudo-protocol to the 1oadurl method
of a Webview instance. Any code passed in this way is executed in the con-
text of the current page, as if it were typed into a stand-alone browser’s
address bar. For the other direction, to let the JavaScript code in the Web-
view call Java methods, the Webview allows developers to create custom
interfaces. Any methods of an object (the interface object) tagged with the
@JavascriptInterface annotationz, passed tothe addJavascriptInterface
API of webView, are exported to the global JavaScript name-space in the
Webview. Developers make wide use of interface methods in different
ways. For instance, consider Listing 2.2.2; in Line 1 and Line 2, the inter-
face object Jsutils is instantiated and then added to mwebview. In this
interface object, two interface methods, getLocation and notify are de-
fined at Line 12 and Line 17. The first method can be used by JavaScript
loaded in mwebview to query the location of the phone. this is a common
use case: web pages cannot directly access the phone’s internal resources.
The second method is instead used to notify mwebview with a certain mes-
sage: developers often implement callbacks mechanisms due to the asyn-

2The QJavascript Interface annotation was introduced in API level 17 to address
a security vulnerability that allowed attackers to execute arbitrary code via the Java
reflection API [30].

37

2 Background

JSUtils jsUtils = new JSUtils (mWebView) ;
mWebView.addJavascriptInterface (jsUtils);

public class JSUtils {
private WebView webView;

public JSUtils (WebView webView) {
this.webView = webView;

}

@QJavascriptInterface
public String getLocation () {
return getLocationAsString();

}

@QJavascriptInterface
public void notify (String message) {
pushToWebView (message) ;

}

Listing 2.2.2: JSUtils Interface Object

38

2.2 Android Webviews

chronous nature of JavaScript. These callbacks are passed as arguments
for interface methods such as notify, where pushToWebview at Line 18
make use of 1oadurl to run JavaScript in mwebView.

Enabling JavaScript exposes the Webview to XSS and JavaScript injec-
tions via Man In The Middle (MITM). As we shall see in Section 2.2.4,
the impact of such attacks is wider for hybrid applications than it is for a

common web app.

2.2.3 WebView and Same Origin Policy

Pages loaded in a Webview must follow the Same Origin Policy [31]. Same
Origin Policy is a mechanism that restricts Javascript running within a
page to access resources outside this page origin. The origin of a page is
defined as the triplet composed of the scheme, the host and the port of its
URL. Consider for example a page loaded from http://example.com.
If Javascript in this page tries to load content from https:///example.
com, the SOP will stop this from happening as the schemes don’t match
and, therefore, the origin is different. Unfortunately, SOP is not always
enough to ensure user security. For example, when a Webview loads a
page from the file system, its Javascript has virtually access to the whole
file system, as it will be from the same origin. This behavior might expose
the user to different attacks if the application is not properly designed.

Two different Webviews cannot directly interact with each other and
one cannot execute JavaScript within the other. You can think of them
as two different tabs in a web browser. However, by poorly designed
JavaScript interfaces, this behavior can be altered, resulting in dangerous
attacks that can bypass SOP.

In Section 2.2.4, we will discuss the details of some of these attacks.

39

http://example.com
https:///example.com
https:///example.com

2 Background

2.2.4 Attacks on Android Webviews

Webviews introduce new security threats, which change the security land-
scape of mobile web browsers. The interface methods (see Section 2.2.2)
poke holes into the browser sandbox and they can result in Same Origin
Policy (SOP) violations. As a result, there is a wide range of possible at-
tacks that can be carried on Webviews [13, 32, 33, 34, 35, 36, 37, 38, 39].

Abusing JavaScript Interfaces. The Webview’s JavaScript interface mech-
anism enforces a policy specifying which Java methods are available from
the JavaScript context. Developers of hybrid apps are left to decide which
functionality to expose in an interface that is more security-critical than
it appears. As an example, recall the Jsutils interface object we saw
in Listing 2.2.2. Its get Locat ion method allows JavaScript running within
miWebView to query the phone’s current location®. This seems reasonable
if one assumes that the application is self-contained and the web content
is trusted. Unfortunately, this is not always the case: for example, an at-
tacker could forge a URL and trick users to load it in the Webview, stealing
their location.

Another vector of injection is through iframes, which are embedded
containers running an external web application. For example, ads often
use iframes to display their content. If the Webview has an interface
object available, then any child of the loaded page can access its interface
methods, including JavaScript running within the iframe. In our example
scenario, a malicious advertisement would be able to read the user loca-

tion.

3We assume that ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION are
granted

40

O XU WN -

2.2 Android Webviews

@JavascriptInterface

public void cacheData (String key, String data) {
doStore (key, data);

}

@JavascriptInterface

public String getCacheData (String key) {
return getData (key);

}

Listing 2.2.3: JSUtils Interface Object - Extension

Attacks from Frame Confusion. A more convoluted attack scenario in-
volving iframes is known as frame confusion [13]. As we mentioned
in Section 2.2.2, one common use case for interface methods is to function
as callbacks. This is exactly the purpose of notify in JSutils. Suppose
a page is composed of a web page (main frame), which contains some
iframes (child frames). If a child frame invokes notify, we would ex-
pect it to run in the child frame context. Instead, the JavaScript runs in
the main frame, introducing a channel among the frames. For instance,
notify pushes JavaScript coming from the Webview back into the Web-
view. If this is not resilient to JavaScript injection, frame confusion can
occur. Malicious code from child frames can be used in this manner to

control the main frame, in the manner of XSS.

Same Origin Policy Violations. Consider now Listing 2.2.3, which ex-
tends Jsutils with cacheData and getCacheData, two (generic) meth-
ods that the web page can use to cache data for improved performance.
The issue here is that once the data is out of the Webview, it is no longer
protected by the browser sandbox SOP. Any page inside the Webview can
use those interface methods to read and modify that data, bypassing SOP.

41

2 Background

TLS Errors. The Android Software Development Kit (SDK) provides mech-
anisms that developers can use to protect Webviews. Webviews fully sup-
port TLS and therefore HTTPS. If an error happens during the TLS hand-
shake, the Webview drops the connection, always treating the error as fa-
tal (even non-fatal ones, e.g., expired certificates). However, developers
can customize this behavior and easily introduce mistakes. A common
one is to bypass certificate validation by blindly accepting all possible cer-
tificates. In other cases, developers do accept invalid certificates (e.g., a
certificate valid for example.com only, while connecting to google.com).

Before Android 9.0 was released in August 2018, HTTPS was not en-
force by default, opening to mixed content vulnerabilities (i.e., a mix of
HTTP and HTTPS traffic) and SLL-stripping attacks. From Android 9.0
HTTPS is enforced [40]. While this limits the scope for errors, the problem
is still there. Developers often wekean their applications security by copy
pasting vulenerable network policies from the Web or adopting libraries
forcing them to downgrade their security [41].

Origin Validation Threats. Another threat comes from lack of origin val-
idation on the resources loaded in a Webview. For example, consider a sit-
uation where an XSS triggers an HTTP request to, say, http: //evil.com.
If the Webview does not specify a whitelist of safe origins for the down-
loaded content, the malicious website is loaded. Android Webviews pro-
vides two APIs that can mitigate that scenario: houldInterceptRequest
and shouldOverrideUrlLoading. The first API allows developers to con-
trol each resource accessed by the web page, while the second one only
allows for URLs validation.

Lack of Input Validation. Webviews can access local resources with some

restrictions, which vary depending on the choice of API. Developers can
change Webviews default permissions by means of certain APIs. The main

42

2.2 Android Webviews

ones are as follows:

e setAllowContentAccess True by default, it allows the Webview to ac-

cess content providers.

e setAllowFileAccess True by default, it allows the Webview to load lo-
cal files from the file system using the file:/// schema.

o setAllowFileAccessFromFileURLs False by default since API 16 (True
for older APIs). This setting allows JavaScript from local HTML

pages (loaded with file: ///) to access resources in the file system.

o setAllowUniversal AccessFromFileURLs False by default since API 16
(True for older API). This setting allows local JavaScript to access

resources from any origin.

Granting Webviews unrestricted access to resources is not necessarily a
problem. However, care must be taken to avoid private data leaks. Con-
sider the following code as an example:

mWebView.loadUrl ("file:///android_assets/www/users/"+

getUserName ()) ;

Here, the username is user-controlled and therefore an untrusted user can
manipulate it. For example, if the user name is a string like "../../
storage/emulated/0/Pictures/pic000.jpg", then the malicious user
would be able to load and possibly exfiltrate the image pic000. jpg. This
scenario is possible because of the lack of user input validation.

Conclusion. Itiseasy for a developer to erroneously assume the JavaScript
interface to be a trusted internal interface shared only between the Java
and JavaScript portions of the same app. In reality, it is more akin to a
public AP, considering the relative ease with which malicious JavaScript

code can make its way into a Webview (Section 3.1.2). Therefore, care must

43

2 Background

be taken to restrict the interface as much as possible and to secure the de-
livery of web content into the Webview. In Chapter 3, we provide a way
for developers and app store maintainers to detect applications with inse-
cure interfaces susceptible to abuse; our study in Chapter 4 confirms that

this is a widespread phenomenon.

2.3 Android Native Components

Android provides the Native Development Kit (NDK) [42], a set of tools
that allow developers to write C and C++ code in their applications, pro-
viding platform libraries that can be used to access the physical layers of
the device. We call code written with the NDK native code. Native code
has many uses, for example, performance requirements for computation-
ally intense applications (e.g., graphics rendering or physics simulation)
or design requirements for integrating bundled third-party code (e.g., ad-
vertising).

In this section, we provide an overview of how developers can include
and use native code into their applications. In Section 2.3.1, we introduce
the JNI framework. In Section 2.3.2, we discuss how variables are accessed
and referenced between Java and native code. In Section 2.3.3, we detail
how strings and arrays are managed. Finally, in Section 2.3.4, we describe

how the JNI framework deals with Java exceptions.

2.3.1 Java Native Interface: Overview

The Java Native Interface [43] acts as a bridge between code that runs in
a Java Virtual Machine (JVM) and compiled code written in another pro-
gramming language, such as C or C++. Importantly, the JNI does not im-
pose any restriction on the implementation of the underlying JVM. This
enables JVM vendors to add support for the JNI with support for the JNI

44

[—

— OO0 ONOULEkE WN -

2.3 Android Native Components

package example;
public class MyActivity extends Activity {

public native int nativeM(int);
static {

System.loadLibrary ("libnative.so")
}

public int getSum(int a, int b) {return a+b;}

Listing 2.3.1: Loading Native Methods

without affecting any other part of their JVM. Android itself comes with
its implementation of the JNI, which is part of the ART [44].

JNI functions are available to native code, and are used to access JVM
features and are available through an interface pointer, a pointer to an array
of function pointers. This organization is similar to a C++ virtual function
table and comes with the benefit that the JNI name-space is separate from
the native code. Each native method receives a pointer to the JNI inter-
face pointer as an argument. The JVM passes the same pointer to native
methods within the same Java thread.

Native methods are packaged as part of a shared library which must be
loaded by the application. Consider Listing 2.3.1; System.loadLibrary
(Line 7) is used to load a platform-specific native library, where the native
method nativeM is defined. Developers can choose whether all native
methods are contained in a single library; the JVM keeps an internal refer-
ence of all loaded libraries for this situation.

Native methods are resolved by the dynamic linker, or they can be reg-
istered by the programmer by calling the JNI function RegisterNatives.

The dynamic linker resolves native methods based on their names. For

45

N

— O O 0O Ul kW

[a—

2 Background

static JNINativeMethod methods[] = {
{"getMessage", " ()Ljava/lang/String", (wvoidx)
NativeMessage}l,

}i

JNIEXPORT Jjint JNI_OnLoad(JavaVM* vm, wvoid* reserved) ({
JIJNIEnvx env = ...;

jclass my_clazz = env->FindClass ("example.MyActivity");
env->RegisterNatives (myclazz, methods, 1);

Listing 2.3.2: Statically Linked Native Methods

example, nativeM is mapped to Java_example_MyActivity_nativeM.
It consists of a concatenation of the prefix Java_, a fully qualified class
name, and a method name.

This approach is simple, but leads to verbose native method names and
fails if the underlying operating system does not support dynamic linking
(not the case for Android). To overcome this, developers can statically link
each Java native method to a chosen function pointer via RegisterNatives

Consider Listing 2.3.2, which implements the JNI_OnLoad callback,
which is triggered when the native library is being loaded. In this call-
back, developers can use RegisterNatives (Line 9) to register an ar-
ray of ININat iveMethod, whose signature is found in myclazz(Line 1).
Each JNINativeMethod is composed of the Java name of the interface,
parameters and return types, and a function pointer to the native imple-
mentation. The function pointer must point to a function with a compati-
ble signature.

Each native method has the JNI interface pointer as the first parame-
ter, which is of type JNIEnv. The second argument depends on whether

the native method is static or not. If static, the argument is a reference to

46

2.3 Android Native Components

Java Type Native Type Size

boolean jboolean unsigned 8 bits
byte joyte signed 8 bits
char jchar unsigned 16 bits
short jshort signed 16 bit

int jint signed 32 bits
long jlong signed 64 bits
float jfloat 32 bits

double jdouble 64 bits

void void N/A

Table 2.1: Primitive Types Mapping. Java types mapped to native code types.

its Java class. Otherwise, it is a reference to the instantiated object. The
remaining parameters correspond to the regular Java method arguments.
The result of a native method call is passed back to the caller via its re-
turned value.

To enable this mechanism, Java types need to be matched to their re-
spective native types. For primitive types, the JNI framework redefines all
native code primitive types as j<primitive_type> (see Table 2.1). Sev-
eral reference types are also included by JNI. They correspond to all dif-
ferent kinds of Java objects and have a similar hierarchical organization.
This hierarchy and the mapping to Java types can be seen in Figure 2.3.
jobject is the most general type and is mapped to any Java object —i.e.,
java.lang.Object. jstring, jclass, jarray and jthrowable are all
subclasses of jobject; these map to the obvious Java types. Moreover,
the arrays are further extended to support specific types, including arrays
of Object and arrays of primitive types.

47

2 Background

jobject

java.lang.Object
objects (All)

frhowabe
Arrays

java.lang.Class
objects

java.lang.String java.lang. Throwable|
objects objects

Figure 2.3: NI types hierarchy. This figure show the JNI type system which maps

Java type to C/C++ types. In each block, we show the native type at
the top and the Java respective at the bottom.

2.3.2 Referencing And Accessing Java Objects

While primitive types (e.g., integer, chars, etc.) are copied between Java
and native code, complex Java objects are passed by reference. The [VM
keeps track of all the objects passed to native code and prevents them from
being garbage collected. Similarly, native code has ways to inform the JVM
that an object is no longer needed (e.g., with DeleteLocalRef). There
are two types of references used by native code: local and global. Local
references to an object are valid for the duration of the native method,
and will be garbage collected once the method returns. In contrast, global
references are valid until explicitly freed.

All objects passed to native methods are local references, as well as all
Java object returned by JNI functions. Local references are stored in reg-
istries by the JVM, which maps them to their respective Java object, pre-
venting the object from being garbage collected. The JVM creates a registry
for each transition of control from Java to native code and all the object
passed to the native method are added to it.

48

N =

I

2.3 Android Native Components

jclass my_clazz = env->GetObjectClass (obj);

jmethodID getSumID = env->GetMethodID (my_clazz, "getSum", "
(I)II");

jint result = env->CallIntMethod(obj, getSumID, 42, 10);

Listing 2.3.3: Statically Linked Native Methods

The JNI provides a set of API functions to access global and local refer-
ences. This ensures that the implementation of native methods is not af-
fected by the underlining JVM. These functions can be used by native code
for both accessing fields and invoking methods of Java objects. For exam-
ple, to invoke the method getsSum in Listing 2.3.1 from a native method,
this can be accomplished by code similar to that provided in Listing 2.3.3.
Here, ob1 is a reference to an instance of MyActivity. It is used to obtain
its class definition, which is then used to lookup a jmethod1D. This ID
and obj are finally used to invoke get sum and obtain the result. This may
differ depending on whether the method is a static or an instance method.
In the former case, there would not be any need for an instance reference.
In the case of instance methods, ob j can be obtained in different ways de-
pending on the situation. A full description of JNI functions is found in
the documentation [45].

2.3.3 Array and String Management

Accessing objects through opaque references via JNI functions brings about
higher overheads compared to directly accessing C/C++ data structures.
While this is usually tolerable for general common objects, the overhead
is unacceptable for large objects such as strings and arrays. For example,
calling a function to access each element of an array in a for loop, is inef-

ficient. The JNI framework solves this problem with pinning, i.e., enabling

49

2 Background

native methods to ask the JVM to pin the content of the array to directly
address it.

The drawback of this approach is that the garbage collector must sup-
port pinning and that the JVM must layout arrays contiguously in mem-
ory. The JNI framework adopts a compromise that helps to overcome both
these problems. First, a set of functions is provided to allow copying be-
tween a Java array and a memory buffer. Second, functions are given for
retrieving a pinned version of the array element. However, it depends on
the JVM implementation whether these functions copy the content of the
array. If the garbage collector supports pinning and the layout of the array
is as expected by the native method, then no copy operation is performed.
Otherwise, the array is copied to the heap and a pointer to it, is returned.
Finally, the JNI interface provides functions to inform the JVM that the
array elements are no longer needed by the native method.

As arrays of characters, strings are dealt with pinning. However, strings
are encoded in particular formats. The JNI specification uses modified
UTF -8 [46] strings, which are the same as those used by the JVM. Modified
UTF -8 strings are encoded so that they never contain null bytes. However,
all Unicode characters can be represented, including U+0000, allowing
such strings to be processed by traditionally null-terminated string func-
tions. Notice that certain characters are encoded using two or more bytes.
For example, U+0000 is encoded as \xc0\x80.

The JNI interface provides many API functions to manage strings [45].
For example, to create a new Java string, one can use NewStringUTF or
NewString functions. The difference is that the first one creates a string
from a modified UTF-8 characters buffer. Instead, the second creates a
new string starting from a Unicode characters buffer. The two orthogo-
nal functions are Get StringUTFChars and GetStringChars. They can be
used to obtain a buffer of characters from a Java string. There are more

APIs that one can use. All of them have a version for Unicode and modi-

50

2.4 Program Analysis Techniques

fied UTF-8 characters.

2.3.4 Exception Management

The JNI framework allows for the handling and generation of custom ex-
ceptions [47]. JNI functions report errors in different ways. The most com-
mon is to return an error code and throw a Java exception. In this scenario,
one needs to first check for the error code and then call Except ionOccurred

to obtain the exception object containing details of the error. However,
there are cases where it is not possible to check for an error code. For
example, when the JNI function returns a result from a Java method invo-
cation or a JNI function that throws ArrayIndexOutOfBoundsException

or ArrayStoreException. Developers must call ExceptionOccurred,
ExceptionCheck and similar APIs to check for possible exceptions that
occurred during the execution of the Java method.

To handle an exception, developers have two possibilities. First, they
can decide to handle the exception directly in native code. In this case,
they must check for the exception, clear it (e.g., using ExceptionClear
) and then handle it. Alternatively, one can propagate the exception to
Java code and handle it there. To do so, the native code needs to return
after an exception has occurred. The JVM then propagates the unhandled
exception back to the Java method that invoked the native method causing
the error.

2.4 Program Analysis Techniques

In this section, we provide an overview of program analysis techniques
most relevant to this thesis. Program analysis is the science of automati-
cally analyzing a computer program to determine properties of that pro-
gram (e.g., correctness, robustness or safety). We begin with Section 2.4.1,

51

—

6]]

2 Background

String path = getHttpVariable ("path"); // path is tainted
String urlO "http://example.com/0/"+path; // path —-> url0

string urll = "http://example.com/1/"+path; // path -> urll
urll = "http://example.com/1/default" // urll loses taint
loadUrl (url0Q); // information flow detected

loadUrl (urll); // no information flow

Listing 2.4.1: Taint Analysis Example.

where we discuss taint analysis, a static analysis technique. In Section 2.4.2,
we describe the technique of fuzzing and finally, in Section 2.4.3 we dis-

cuss metrics to evaluate the performance of an analysis.

2.4.1 Information Flow Analysis: Taint Analysis

Taint analysis is a data-flow analysis, which tracks sensitive information
flows within a program. For this thesis, we only consider inter-procedural
taint analysis. We define an information flow as the transfer of informa-
tion gathered from a source to a sink method. Source and sinks are de-
fined by the analyst and they usually are chosen as sensitive APIs that
retrieve and use sensitive data, respectively. For example, consider the
code in Listing 2.4.1. This code uses getHttpVariable to get the value
of an HTTP variable, which is user controlled (Line 1), and assign it to
path. Two URLs, based on path, are then created (Line 2 and Line 3) and
loaded via loadurl. If an analyst were interested in whether a user can
control loaded URLs, 10adurl would be a source and getHttpvariable
a sink. In this scenario, a taint analysis would report a tainted (i.e., sen-
sitive) information flow from the source getHttpvariable (Line 1) to the
sink 1oadurl (Line 5). The user controlled variable, path, is tainted and
used to create ur10, which is then used to load a URL. A sensitive infor-

52

1
2
3

2.4 Program Analysis Techniques

String x = "foo";
sink (x) ;
x = source();

Listing 2.4.2: Flow Sensitivity Example

mation is therefore detected. In contrast, no information flow involving
urll is found, as it url1 is assigned a constant value, independent from
the user input.

Taint analyses rely on point-to analyses [48] to determine information
on the value of pointer variables. This analysis can have different and
custom levels of sensitivities, which determine the analysis precision. For
an object-oriented language, and relevant to this thesis, the most common

are flow, context, object, and field-sensitive.

Flow-sensitivity. A flow-sensitive analysis considers the order of execu-
tion of the program statements. Consider, for example, the code in List-
ing 2.4.2. A flow-sensitive analysis keeps full precision of the snippet, as
it understands that the call to sink happens before the one to source. On
the other hand, a flow-insensitive analysis would, erroneously, report an

information flow.

Context-sensitivity. One challenge for inter-procedural analysis is that
the behavior of each procedure depends on the context in which it is called.
For example, consider Listing 2.4.3. The procedure convert is invoked at
two different call sites: Line 7 and Line 8. The string s1 is first tainted,
in Line 5, and then used as an argument of convert at Line 7. The string
s2, is not tainted and is passed to convert at Line 8. A tainted and an
untainted upper case string are returned, respectively. Finally, only the
untainted variable reaches the sink in Line 9.

53

—_

S OO NONU = WN

—_

2 Background

String convert (String low) B0 | gl = source()

{

return low.toUpperCase();

} B1 s2 = new String()

void example () { »*
String sl = source(); [e -] [
String s2 = new String(); -

B5
String cl = convert(sl);

String c2 = convert (s2);
sink (c2);

}

B3

1 = ret
l low = s2 l
convert(low):
gt: low.toUpperCase()
a B4

Listing 2.4.3: Context sensitivity
example. Figure 2.4: Extended control-flow
graph of Listing 2.4.3

A context-insensitive analysis does not consider the calling context and
treats each call and return statement as “goto” operations. This analysis
uses an extended control-flow graph, as the one we show in Figure 2.4
for Listing 2.4.3. Block B4 is the function convert. Block B2 contains the
call site at Line 7; it sets the parameter 1ow to s1 and jumps to the begin-
ning of convert, at B4. Similarly, B3, which is reached from the end of
convert (block B4), contains the call site at Line 8. In this case, we take
the return value from convert and assign it to c1. We then set the param-
eter 1ow to s2 and call convert again, by jumping to B4. Finally, block B5
represents the return from the second call and the final invocation of sink.

If we treat this graph as if it were a single procedure, we would conclude
that coming into B4, 1ow can both be tainted or not, but we do not know for
sure. Therefore, the return value (ret) can be both tainted or not. In order
to preserve soundness, the analysis assumes the return value to always be
tainted if there is at least a tainted value that reaches the call site. In this
example, s1 is tainted, and reaches the call site in Line 7 (block B2), which
causes the return value in block B4 to be tainted. Therefore, c2 in B5 is

54

B~ W N -

2.4 Program Analysis Techniques

A a = new A();
taint (a);

a = new A();
sink (a);

Listing 2.4.4: Object Sensitivity Example

wrongly tainted causing the false positive in Line 9.

On the other hand, a context-sensitive analysis overcomes this limita-
tion by separating the results for each calling context. Therefore, it can
understand that c1 is tainted while c2 is not.

Object-sensitivity. An object-sensitive analysis distinguishes between dif-
ferent instances of objects of the same type. For example, consider List-
ing 2.4.4. We instantiate a, a new variable holding a reference to an object
of type a (Line 1), which we then taint (Line 2). Following the taint opera-
tion, we reassign a to a new instance of the same type 2 (Line 3) and pass it
to a sink (Line 4). An object-sensitive analysis distinguishes between dif-
ferent instances of A and therefore does not report any information flow.
On the other hand, a non-object-sensitive analysis only knows that an ob-
ject of type A is tainted and therefore assumes that a is tainted at the sink,

introducing a false positive (Line 4).

Field-sensitivity. In an object-oriented language, such as Java, classes
can specify different attributes or fields. Every field can, in turn, be a
complex object with more attributes, and so on recursively.The initial ob-
ject from where the recursion begins is known as the base object. A taint
analysis must consider this structure when it propagates a taint. A con-
servative approach would always taint the base objects as a whole, even
when only one of the fields was tainted. Instead, a field-sensitive anal-
ysis distinguishes different fields of the same objects. Consider the code

55

= W N =

2 Background

A a = new A(); 1 A a = new A();

A al = new A(); 2 A al = new A();

a.fldl = source(); 3 a.fldl.subfl = source();

sink (a.f1d2) 4 sink(a.fldl.subf2)

Listing 2.4.5: Field Sensitivity Listing 2.4.6: Field Sensitivity
Example (1) Example (2)

in Listing 2.4.5.

Without the field sensitivity, the analysis lumps all the fields together.
In particular, the whole base object a is tainted. The analysis will falsely
report Line 4 as flow to the sink. Conversely, a field-sensitive analysis
distinguishes different fields of the same object. This prevents the false
positive as now only a.f1dl is tainted and not a as a whole. In this ex-
ample, there is only one level of depth when accessing a fields. However,
deeper nesting occur. For example, in Listing 2.4.6, the analysis needs to
consider at least two levels of depth, or a false positive occurs in Line 4.
To keep track of multiple dereferences, and therefore, to retain precision,
one needs an abstraction that can capture the base object plus a sequence
of field. This abstraction is called an access path. An access path of length
zero taints the whole base object, while an access path of length N, consid-
ers fields up to the N-th field. If the sequence of accessed fields is greater
than N, then the whole base object is tainted. For Listing 2.4.6, an access
path of two would prevent the false positive.

2.4.2 Fuzz Testing

Fuzz testing, or simply fuzzing, is a dynamic technique to analyze com-
puter programs [49] by repeatedly executing a program with invalid, un-
expected, or random inputs. The execution is then monitored for crashes,
memory leaks, or built-in exceptions. This can expose coding flaws that

56

2.4 Program Analysis Techniques

can potentially lead to security vulnerabilities. For this analysis to be ef-
fective, the generated inputs need to be semi-valid, i.e., able to pass the
parser, but invalid to trigger corner cases and program exceptions. From a
security perspective, fuzz testing can be successfully used to find serious
software vulnerabilities (e.g., buffer overflows, memory leaks, etc.).

Tools for fuzz testing are called fuzzers. There are three main categories
of fuzzers: black-box, white-box, and gray-box fuzzers. Black-box fuzzers
are designed to work with no knowledge of the internals of the program
under test. Their goal, given a specification for a program, is to find in-
puts which cause the program behavior to violate that specification. These
specifications describe, for example, the structure of input or output (such
as, their types, or simply memory safety). Because there is no knowledge
of the program internals, to be exhaustive, this approach needs to try ev-
ery possible input condition as a test case. Even if possible in principle, it
is almost always unachievable in practice.

White-box fuzzers have a systematic knowledge of the program code.
They combine this information with information gathered by executing
the program. These fuzzers leverage code knowledge to find information
about the input to use with other fuzzing strategies. This usually consists
of a preliminary static analysis aimed at enhancing the effectiveness of
fuzzing.

Other white-box fuzzing approaches are based on dynamic symbolic
execution [50], a variation of symbolic execution [51]. The program is ex-
ecuted with a well-formed input and, during its execution, constraints on
inputs are collected from conditional statements. These constraints can
then be negated and solved with a constraint solver, generating new in-
puts that exercise new control-flows in the program.

Similar to black-box fuzzing, white-box fuzzing cannot always exhaus-
tively test a program. The main problem is that exploring all the possible

executions (i.e., different runs of the program) can be unfeasible. There

57

2 Background

can be a number of different paths, leading to path explosions and pre-
venting the analysis from ever terminating. Moreover, compared to the
black-box fuzzers, white-box ones suffer from a higher overhead. This
is because their implementations often require dynamic instrumentation
and Satisfiability Modulo Theories (SMT) solving.

Gray-box fuzzers are a middle ground. They obtain some information
on the internals of the program under test. Unlike white-box fuzzers, gray-
box fuzzers do not reason on the whole program semantics. Instead, they
leverage light static analysis and/or program execution to gather knowl-
edge of the program. For example, they may lightly instrument the code
to obtain information on code coverage. This can prove very effective in
deciding how to generate inputs, as the fuzzer can avoid to generate in-
puts leading to already explored paths. One of the most successful fuzzers
in this category is the American Fuzzy Lop (AFL) [23].

Fuzzing has been successfully used to find vulnerabilities on Android
applications [52, 53, 17, 54, 19, 16, 18, 55]. These fuzzers aim is to navigate
an application UI as comprehensively as possible, to trigger as many un-
expected behaviors as possible. There are two approaches to stimulate a
UL random and non-random. The random approach simply generates a
random series of Ul events [55]. Fuzzers of this kind belong to the black-
box category, as no knowledge of the application internals is known. On
the other hand, non-random approaches need a certain amount of knowl-
edge of the application internals. These fuzzers usually fall in white and
gray-box categories.

In this thesis, we use fuzzing (Chapter 5) to dynamically generate mod-
els for native components of Android applications (Chapter 6). Due to its
simplicity, we adopt a black-box approach. This comes with some advan-

tages:

1. We can directly target the native component, without stimulating the

58

2.4 Program Analysis Techniques

UL

2. We avoid to perform binary analysis, which a white- or gray-approach

requires.

2.4.3 Performance Metrics

As we saw in the previous sections, analysis techniques might be incor-
rect. For example, we discussed how different levels of sensitivity for taint
analysis impact the quality of the results and how different fuzz testing
techniques are more effective than others at discovering bugs. Therefore,
an analysis is meaningless if it is not accompanied by an evaluation of its
performance.

To place an evaluation into context, we must define the two classes of
positive and negative outcomes. In this thesis, we apply fuzzing and taint
analysis with the goal of finding potential security vulnerabilities and,

therefore, define these two classes as follow:

Definition 1 (Positive Class). Code paths that results in a potential secu-

rity vulnerability.

Definition 2 (Negative Class). Code paths that do not results in a potential

security vulnerability.

Notice that these definitions are not conventional to classic program
analysis where the analysis aims to verify the correctness of a program.

We then evaluate a tool based on its ability to correctly detect all positive
cases and correctly reject the negative ones. To this end we can introduce

the following definitions:

Definition 3 (True Positive (TP) and True Neative (TN)). We define as TP
all the cases belonging to the Positive Class that the were correctly re-
ported. As dual, we define TN as all the cases belonging to to the Negative

Class that were correctly not reported.

59

2 Background

Definition 4 (True Negative (TN) and False Negative (FN)). We define
as TN all the cases belonging to the Negative Class that were correctly
rejected. As dual, we define as FN all the cases belonging to the Negative
Class that were wrongly rejected.

We can then define the following two metrics to evaluate our analysis:

Definition 5 (Precision). The percentage of the positive reported results
that are actually true:

P
pP= 2.1
TP +FP @1)
Definition 6 (Recall). The percentage of positive results that are actually
being reported.
TP
AN 22

The perfect analysis would maximize both precision and recall, ideally
having them equals to 1. Unfortunately, it is not possible to achieve the
perfect result and compromises need to take place. For example, a secu-
rity bug discovery tool implementing static analysis techniques presents
an higher number of FPs as opposed to a tool implementing a dynamic
approach.

Static analyses often perform over-approximations to include all possi-
ble cases at the cost of including spurious ones. However, they also per-
form under-approximations in certain cases. For example, certain part of
the code might be left out the analysis (e.g., native code in Android).

In contrast, dynamic analysis techniques take the opposite approach.
At the extreme, they only ever report a result if they can validate it and be
sure of its validity. However, the validation step is expensive and under-
approximations are needed. This results in analyses with virtually no FPs
but with an higher number of FNs.

The natural question to ask is then whether you should optimize an

analysis to achieve higher precision or higher recall? The answer is that it

60

2.5 Android Static Analysis

depends on a case to case bases and it comes down to how dangerous is a
FP as opposed to a FN. For example, consider the scenario where we want
to deploy a security program analysis in the life cycle of a large applica-
tion. In this case it is critical to minimize the number of FPs. Even 1% of
FPs scaled on billions line of code is high. In fact, the result analysts are
not necessarily experts in the security domain and in the best case scenario
they would seek help, while in the worst they might entirely disregard the
analysis and introduce a security flaw.

Consider now the scenario where we want to use the tool to perform
penetration testing of a specific application. In this case the analyst is a
security expert and would not require any extra help to understand the
result of the analysis. Therefore, having more FPs would be tolerable as it
would enable us to increase recall and expand the search scope.

As a final example, imagine a firm dealing with sensitive data needs to
install new software and wants to be sure that software is not malware. In
this scenario, a FN could have a catastrophic impact as opposed to a FP.
Therefore, that firm would probably go for an approach that would reduce
the number of FNs, accepting a higher number of FPs.

In this thesis, we present different tools mainly targeted to an expert do-
main. However, there is room for our techniques to applied in a different

context.

2.5 Android Static Analysis

In this section, we discuss the status of Android static analysis. In Sec-
tion 2.5.1, we introduce the existing tools that can be used to carry out
reversing of Android application. In particular, we discuss Soot [56, 57],
which is the base framework for our analysis in Chapter 3. We then con-

clude in Section 2.5.2 with a discussion on Android taint analysis. Here,

61

2 Background

we focus our attention on Flowdroid [3], a taint analysis tool for Android

that we adopt as part of our analysis in Chapter 3.

2.5.1 Android Reversing Tools

Among the many Android reversing tools available, in this thesis we use
Soot [56, 57]. Initially, Soot was born as a Java compiler and then it evolved
into a static analysis framework and transformation tool for Java and An-
droid applications.

Soot transforms Java byte-code into an intermediate representation, Jim-
ple. While Java applications are natively supported, Android support
came later with Dexpler [58], a decompiler that converts Dalvik byte-code
to Jimple. Jimple (Java sSIMPLE) consists of only 15 instructions and it is
a stack-less and three addresses representation of the byte-code. Methods
in Jimple consists of a body and a list of local variables. The body of a
method is effectively a graph of statements that represents the behavior of
the method.

The Soot framework has been extended by the community across the
years and it implements various analyses [59]. For example, it can recon-
struct an application’s call graph, perform data flow and point-to analyses,
etc. Moreover, one can use soot to automate the instrumentation of appli-
cations byte-code. Different research tools base their analysis on Soot, in-
cluding Flowdroid [3] a state-of-the-art taint analysis engine for Android
applications.

Soot is not the only existing tool/framework to reverse Android appli-
cations. For example, Androguard [60] is a python tool that allows to an-
alyze and reconstruct the call graph of Android applications. However,
Androguard does not provide an out of the box instrumentation. More
tools exists that transform Dalvik byte-code to an intermediate represen-
tation and vice-versa. For example, Dex2Jar [61] uses the Jasmin [62] dis-

62

2.5 Android Static Analysis

assembler to transform Dalvik to Java byte-code, which is then suitable
for loading by a Java runtime system. Dex2Jar can be used to disassemble
and re-assemble an Android applications and, therefore, one can use it for
instrumentation. Another tool is apktools [63], which uses Smali [64] as
an intermediate representation. Likewise, one can use apktools to instru-
ment an Android app. However, differently from Soot, these tools lack of
modules to automate the instrumentation process and to perform known
static analyses.

In this thesis, we decided to use soot as framework for our analyses.
The main reason for this choice is that Soot enable us to automate the in-
strumentation process. Moreover, we feel that the large open source com-
munity and support is an advantage as it can speedup the development
process.

By using soot we inherit its limitations. For example, recent research [58]
shows that Soot intermediate representation is not always the most accu-
rate when compared to other tools, such as apktools. These inaccuracies
can alter the semantic of the re-assembled application, introducing impre-
cisions in the final analysis. As we discuss in Chapter 4, we use Soot to
instrument an Android application. However, in our evaluation Chapter 4

we did not experience imprecision due to Soot re-assembling process.

2.5.2 Android Taint Analysis Tools: Flowdroid

Performing data-flow analysis on Android applications presents with its
own set of challenges [65, 66].

1. Android applications lack a clear entry point. Instead, they have
several entry points which are called by the framework at runtime.
This is usually mitigated by inspecting all the possible entries and
constructing separate call graphs for each of them.

63

2 Background

2. Android’s components (e.g., Activities, Services, etc.) have their life
cycle. Indeed, each of them implements certain life cycle methods
that are invoked by the framework at runtime. This has to be mod-
eled.

3. User and system events are all handled through a callback system.
A callback can be triggered at any time, making it hard for static

analysis to exhaustively model the system.

4. Android allows inter-component communication (ICC). Similarly to
callbacks, ICC methods are processed by the system at runtime. This
hinders static analyzers, so we must rely on heuristics.

On top of this, Android applications are Java-based, inheriting all the chal-
lenges of the analysis of Java Programs e.g., reflection, multi-threading,
exceptions, etc. Different work has been carried on the topic, resulting in
a number of tools that aim at performing data-flow analysis on Android
application [67, 4, 3, 2, 6]. These tools are tuned toward different aspects,
compromising on others.

In this thesis, we decided to build upon FlowDroid [3] to find potential
vulnerabilities in Android Webviews (Chapter 3). Flowdroid is a context-,
flow-, field- and object-sensitive taint analysis tool for Android applica-
tions which is built on top of Soot and Dexpler. Flowdroid, precisely mod-
els the Android life-cycle and can handle data propagating via callbacks.
Moreover, it provides models for most of the underlying Android frame-
work methods and adopts a conservative strategy where these model are
not present. This strategy taints all the parameters and return values of
methods that are invoked with at least one tainted parameter. The tool
has limited support to Java reflection, considering only reflective calls with
constant string arguments. Also, recent versions of Flowdroid have sup-
port for implicit flows. Finally, the tool handles exception taking advan-

64

2.5 Android Static Analysis

tage of the underlying Soot framework. While Flowdroid alone cannot
handle ICCs, IccTA [1] has been developed as a Flowdroid extension (often
referred as Flowdroid+IccTA) which enable ICC analysis. Unfortunately,
neither of Flowdroid and Flowdroid+IccTA can handle native code, intro-
ducing possible inaccuracies.

A recent benchmark [65] shows how Flowdroid is among the highest
accuracy tool. Its closest competitor is Amandroid [4]. While there is not
one single “best tool”, Flowdroid is reported to have the average lowest
execution time. This is confirmed in the benchmark, where Flowdroid
seems to be the best option for large scale evaluations. These result is
also confirmed in other evaluation [68], where Flowdroid+IccTA was the
fastest and the highest accurate tool on the benchmark.

Our choice of using Flowdroid is not only based on its performance.
One key advantage of using this tool is that it is actively maintained and
improved and it is supported by the same community of Soot. This is not
necessarily the case for the competing tools. For example in certain cases
(e.g., DidFail [67]), they do not even run on newer applications. There are
three main benefits of choosing FlowDroid: (i) thanks to the community
support, we could reduce the development time of our analyses, (ii) we
are reassured that bugs in the tool will be addressed and fixed, resulting
in our analysis to be improved and (iii) FlowDroid is easy to integrate in

our analysis as it is based on the same framework, Soot.

65

Information Flow Analysis on
Webviews: BabelView

As we largely discussed in Section 2.2, Webviews are customizable in-app
web browsers that expose their users to new security threats. In 2015,
85% of the apps on Google’s Play Store contained a Webview [69]. Their
popularity led to the development of cross-platform frameworks, such
as Apache Cordova, which allow apps to written entirely in HTML and
JavaScript. Even otherwise, apps not based on any specific framework of-
ten embed Webviews for displaying login screens or additional web con-
tent.

Unfortunately, Webviews bring new security threats (Section 2.2.4). One
of the main security concerns for Webviews is their ability to intentionally
poke holes in the browser sandbox. This functionality enables JavaScript
web code to access app- and device-specific features via a JavaScript inter-
face.

Understanding the implications of the JavaScript interface is necessary
to assess the overall security of an app. When designing these interfaces,
developers think of the functionalities required by their trusted JavaScript.
However, there are several ways an attacker can inject malicious code into
the Webview [70, 69] and, therefore, access the interfaces.

Concerns about the security of the exposed interfaces were raised in pre-
vious work [39, 71, 72]. However, not all the interfaces are dangerous or
offer meaningful control to the attacker. Therefore, we focus on assessing

67

3 Information Flow Analysis on Webviews: BabelView

the risk posed by every single interface, focusing on the most dangerous
cases, and providing meaningful feedback to developers.

We rely on static analysis to evaluate the potential impact of an attack
against Webviews, concerning the nature of the JavaScript interfaces. Our
key idea is that we can instrument an app with a model of potential at-
tacker behavior that over-approximates the possible information flow se-
mantics of an attack. In particular, we instrument the target app and re-
place its Webviews (and its descendant) with a specially crafted BabelView,
a Webview that arbitrarily interacts with the JavaScript interfaces. A sub-
sequent taint analysis on the instrumented app then yields new flows
made possible by the attacker model.

Instrumenting the target application allows us to build on existing ma-
ture tools for Android flow analysis. This design makes our approach
particularly robust, which is important on a quickly changing platform
such as Android. In addition, since the BabelView over-approximates
JavaScript interactions, we inherit any soundness guarantees offered by
the flow analysis used.

In the remainder of this chapter, we detail our approach (Section 3.1)
and the BabelView implementation (Section 3.2). Finally, in Section 3.3,
we discuss work related to ours and conclude, in Section 3.4, discussing
BabelView’s limitations and applications. We leave the evaluation of Ba-
belView to Chapter 4.

3.1 Data-flow Analysis for Hybrid Android
Applications

In this section, we set the scene for our work on Android Webviews. We
start by explaining the problematic concerning data-flow analysis for An-

droid JavaScript interfaces (Section 3.1.1). We then outline our attacker

68

3.1 Data-flow Analysis for Hybrid Android Applications

public class JSUtils {

1
@JavascriptInterface
4 3 public void cacheData(String key, String data){
<script type="text/javascript"> /////;y//' doStore(key, data);4
var s = js_source(); J—ﬁ 6 }
JSUtils.cacheData(s.name, s.data); - 7
8

}

2
3

B WN

</script>

9
10 doStore(key, data){
11 sink(key, data); #5
12}

Figure 3.1: JavaScript to Java Flow. A variable is tainted in JavaScript (on the left)
and reaches a sink in Java (on the right).

model (Section 3.1.2), which enables us to avoid reasoning on the JavaScript
codebase (Section 3.1.3 and Section 3.1.4).

3.1.1 The Problem of JavaScript Interfaces

JavaScript interfaces are only invoked by the JavaScript loaded within the
Webview. Performing data-flow analysis without considering the apps’
web component leads the analysis to miss all information related to the
JavaScript interfaces. There are two cases of interest:

1. A source in JavaScript reaches a sink into Java via a JavaScript inter-
face.

2. A source in Java reaches a sink to JavaScript via a JavaScript inter-
face.

JavaScript to Java Consider Figure 3.1, where Jsutils is the same in-
terface object we previously introduced in Listing 2.2.2 and Listing 2.2.3.
In the JavaScript snippet, the interface cacheData is invoked with inputs
coming from a source. This information flows to the dostore method and
eventually to the Java sink. A data-flow analysis unaware of the JavaScript
would miss the flow.

69

3 Information Flow Analysis on Webviews: BabelView

1 public class JSUtils {
2 bo000
3y @JavascriptInterface

. . 43 public void getlocation(){
<script type="text/javascript"> / return getlocationAsString();

1 5
2 var 1 = JSUtils.getLocation();’ 6 } g
3 sink(L); . 7 : 2
4 </script> 5 8 } :
9 v
10 String getlLocationAsString(){
11 return source(); 1
12 }

Figure 3.2: Java to JavaScript Flow. A variable is tainted in Java (on the right) and
reaches a sink in JavaScript (on the left).

Java to JavaScript Consider Figure 3.2 as an example, where Jsutils

is the same interface object we previously introduced in Listing 2.2.2
and Listing 2.2.3. The JavaScript code invokes the JavaScript interface
getLocation (Line 2 of JavaScript snippet), getting the user location from
Java. Since this information comes from a source method (Line 11), we
have a flow. Unfortunately, excluding JavaScript from the analysis would
fail to find this flow.

The analysis of Java interface objects comes with the burden of analyz-
ing JavaScript. However, we show that we can relax this constraint by con-
sidering an appropriate attacker model. We introduce this attacker model
in Section Section 3.1.2 and, in Section 3.1.3, we detail how we can avoid
analyzing JavaScript code.

3.1.2 Attacker Model

Our overall goal is to identify vulnerabilities in Android applications. Our
insight is that injection vulnerabilities are difficult to avoid with current
mainstream web technologies. For example, Android web applications
are susceptible site-specific XSS attacks [72, 39, 33]. While these attacks se-
riously compromise users safety, their severity and impact might increase

if JavaScript interfaces are available. Malicious JavaScript can exploit these

70

3.1 Data-flow Analysis for Hybrid Android Applications

interfaces to gain capabilities that would have not had otherwise. For ex-
ample, it could access the phone location if there was an interface with
that functionality.

Other possible injection vulnerabilities exist. Any standalone browser
that allows loading content via insecure HTTP has this vulnerability (while
calling this a “vulnerability” may be controversial, it clearly has security
implications and has led to an increasing adoption of HTTPS by default).
The ubiquity of advertisement libraries in Android apps further increases
the likelihood of foreign JavaScript code gaining access to JavaScript inter-
faces.

Following this insight, we aim to pinpoint the risk of using a Webview
embedded in an app. To this end, we assess the degrees of freedom an at-
tacker gains from injecting code into a Webview with a JavaScript inter-
face, which determines the potential impact of an injection attack.

For our analysis, we consider an attacker model consisting of arbitrary
code injection into the HTML page or referenced scripts loaded in the Web-
view. To abuse the JavaScript interface, the attacker then only requires the
names of the interface methods, which can be obtained through reverse-
engineering. Note that even a MITM attack becomes more powerful with
access to the JavaScript interface: the interface can allow the attacker to
manipulate and retrieve application and device data that would not nor-
mally be visible to the adversary. For instance, consider a remote access
application with an interface method getProperty (key), which retrieves
the value mapped to a key in the application’s properties. Without access-
ing the interface, an attacker may only ever observe calls to getProperty
with, say, the keys "favorites" and "compression™, but the attacker
would be free to also use the function to retrieve the value for the key
"orivateKey".

Adopting this attacker model help us to evaluate the BabelView find-

ings. While our analysis is capable of flagging dangerous JavaScript inter-

71

3 Information Flow Analysis on Webviews: BabelView

faces, it is not always possible for an attack to target them. By adopting a
MITM attacker model, we can automate the process of injecting JavaScript
into insecure connections and evaluate the feasibility of an injection (Sec-
tion 4.1.5). Adopting a different attacker model, such as one base on XSS,
this task would have been harder as we would require to analyze all the

possible web contented that a WebView could load.

3.1.3 Instrumenting for Data-flow

Our approach is based on static information-flow (or taint) analysis. We
aim to find potentially dangerous information flows from injected JavaScript
into sensitive parts of the Java-based app and vice-versa. At first glance,
this appears to require expensive cross-language static analysis, as recently
proposed for hybrid apps [73, 74]. However, we can avoid analyzing
JavaScript code because our attacker model assumes that all JavaScript
code is controlled by the attacker. Therefore, we want to model the ac-
tions performed by any possible JavaScript code, and not that of developer-
provided code that is supposed to execute in the Webview.

To this end, we perform information flow analysis on the application in-
strumented with a representation of the attacker model in Java, such that
the result is an over-approximation of all possible actions of the attacker
(we discuss alternative solutions in Section 3.4). We replace the Android
WebvView class (and custom sub-classes) with a BabelView, a Webview that
simulates an attacker specific to the app’s JavaScript interfaces. We then
apply a flow-, field-, and object-sensitive taint analysis [3] to detect in-
formation flows that read or write potentially sensitive information as a
result of an injection attack.

The BabelView provides tainted input sources to all possible sequences
of interface methods and connects their return values to sinks, as shown
in Algorithm 1. Here, source () and sink () are stubs that refer to sources

72

3.1 Data-flow Analysis for Hybrid Android Applications

Algorithm 1: Information flow attacker model

1 while true do

2 choose iface € JS-interfaces;

3 result « iface(source(), source(), ...);
4 sink(result)

and sinks of the underlying taint analysis. The non-deterministic enumer-
ation of sequences of interface method invocations is necessary since we
employ a flow-sensitive taint analysis. This way, our model also covers
situations where the information flow depends on a specific ordering of
methods; for instance, consider the following modification to get Location
in Jsutils:

String location;

@QJavascriptInterface
public void getLocationAsString() {
this.location = locationToString();

}
@JavascriptInterface
public String getLocation() {

return this.location;

}

Here, a call to getLocationAsString must precede any invocation of
getLocation to cause a leak of sensitive information (the user location).
The flow-sensitive analysis correctly distinguishes different orders of in-
vocation, which helps to reduce false positives. In the BabelView, the loop
in Algorithm 1 coupled with non-deterministic choice forces the analysis
to join abstract states and over-approximate the result of all possible invo-
cation orders. We do this to avoid enumerating all the invocations.

Figure 3.3 illustrates our approach. We annotate certain methods in the

73

3 Information Flow Analysis on Webviews: BabelView

Android API
Sources ‘ Sinks

l L7

T)
1

(0]
[JS Interfaces /j §
/ BabelView) g
[1 | -
[Sources I Sinks]

Figure 3.3: BabelView Approach. BabelView models flows between the attacker
and sensitive sources and sinks in the Android API that cross the
JavaScript interface.

Android API as sources and sinks (Section 3.2.4), which may be accessed
by methods in the JavaScript interface. The BabelView includes both a
source passing data into the interface methods and a sink receiving their
return values to allow detecting flows both from and to JavaScript. The
source corresponds to any data injected by the attacker, and the sink to
any method an attacker could use to exfiltrate information, e.g., a simple

web request.

3.1.4 Preserving Semantics

Our instrumentation eliminates the requirement to perform a cross-language
taint analysis and moves all reasoning into the Java domain. However, we
must make sure that, apart from the attacker model, the instrumentation
preserves the original application’s information flow semantics. In par-
ticular, we need to integrate the execution of the attacker model into the
model of Android’s application life cycle used as the basis of the taint anal-
ysis [3]. We solve this by overriding the methods used to load web content
into the Webview (such as loadurl () and loadData ()) and modifying
them to also call our attacker model (Algorithm 1). This is the earliest

74

3.2 BabelView Internals

BabelView Instrumentation

Phase 1: ghase % and 3‘;
| Interface Analysis eneration an
: Instrumentation

Phase 5:
Analysis

Refinement

i

Phase 4:
Flow Analysis g

Figure 3.4: BabelView Phases. In Phase 1, a preliminary static analysis is per-
formed. In Phase 2 BabelView is generated and then instrumented
into the target app in Phase 3. In Phase 4 a taint analysis on the result-
ing app is performed and in Phase 5 the results are analyzed.

point at which the Webview can schedule the execution of any injected
JavaScript code. The BabelView thus acts as a proxy simulating the effects
of malicious JavaScript injected into loaded web content.

As the BabelView interacts only with the JavaScript interface methods,
it does not affect the application’s static information flow semantics in any
other way than an actual JavaScript injection would. Obviously, this is
not necessarily true for other semantics: for example, the instrumented
application would likely crash if it were executed on an emulator or real

device.

3.2 BabelView Internals

In this section, we present our implementation of BabelView. Figure 3.5
provides an high level overview: in Phase 1 (Section 3.2.1), we perform a
static analysis to retrieve all interface object and methods, and associate
them to the respective Webviews. In Phase 2 (Section 3.2.2), we generate
the BabelView, and, in Phase 3 (Section 3.2.3), we instrument the target
application with it. In Phase 4 (Section 3.2.4), we run the taint analysis on

75

—

3 Information Flow Analysis on Webviews: BabelView

WebView mWebView = new WebView (this);
mWebView.addJavaScriptInterface (new JSUtils (mWebView), "
Android") ;

Listing 3.2.1: Adding Interface Object to WebView

the resulting application and, finally, in Phase 5 (Section 3.2.5), we analyze
the results for flows involving the BabelView.

We implemented our static analysis and instrumentation using the Soot
framework [56]; our taint analysis relies on FlowDroid [3]. Overall, Ba-
belView adds about 6,000 LoC to both platforms.

3.2.1 Phase 1: Interface Extraction and Webview Pairing

As the first step of our analysis, we statically analyze the target application
to gather information about its Webviews and JavaScript interfaces. We
are interested in mapping each Webview class with the class of interface
objects added to them.

Using Soot, we can generate the application call graph and precisely
resolve callers and callees. We iterate through all classes and methods,
identifying all calls to addJavascriptInterface, from where we then ex-
tract Webviews that will hold interface objects. We illustrate our approach
on the code in Listing 3.2.1. The interface object Jsutils (recall List-
ing 2.2.2) is added to miebview. We process the call and extract the type
of miebVview from the base object and the type of the interface object from
the parameters. We then create a mapping between them. Continuing on
the example, we would derive the following:

WebView — JSUtils :: [getLocation, notify]

where JsUtils holds a reference to all the methods annotated with the

76

O XU WN -

3.2 BabelView Internals

public class JSUtilsFile extends JSUtils{
public JSUtils (WebView webView) {
super (webView) ;

}

@JavascritpInterface
public void writeToFile (String fileName, String content) {

}
}

WebView mWebView = new WebView (this);
mWebView.addJavaScriptInterface (new JSUtils (mWebView), "
Android") ;

Listing 3.2.2: Interface Hierarchy

@JavascriptInterface annotation.

Hierarchical JavaScript Interface Object JavaScript Interface Objects are
classes in the Java domain. As such, they can have a custom hierarchy,
which persists in the JavaScript domain. Consider Listing 3.2.2, where
instead of Jsutils, we add to mWebView its subclass JsutilsFile. The

analysis as described in Section 3.2.1 would generate the following map-

ping:

WebView — JSUtilsFile :: [writeToFile]

However, in the JavaScript domain, one can invoke all the annotated JavaScript

interfaces. Moreover, one can also invoke the ones defined in the inter-
face object’s super-classes. Therefore, our analysis must also include these
methods, or our final result will be missing these JavaScript interfaces.
To this end, our analysis examines the hierarchy of each interface object

extracted. It collects all the exposed interfaces for the current object and

77

IOl WD

3 Information Flow Analysis on Webviews: BabelView

public class MyWebView extends WebView {...}

void initInterface (WebView aWebView, JSUtils JjsBridge) {
aWebView.addJAvascriptInterface (jsBridge, "Android");
}

MyWebView mWebView = new MyWebView (this);
initInterface (mWebView, new JSUtilsFile (mWebView)) ;

Listing 3.2.3: Polymorphic Webview and Interface Object

all its super-classes. For the example in Listing 3.2.2, our analysis would
also consider part of JsutilsFile all the exported interfaces defined in
JSUtils:

WebView — JSUtilsFile :: [getLocation, notify, writeToFile]

Handling Polymorphism To prevent result loss, our analysis must also
consider polymorphism. Consider, for example, Listing 3.2.3. The code is
adding an instance of JSUtilsFile to mWebView, which is an instance of
MyWebView. However, it happens via a framework method, initIntrerface
, where the invocation of addJavascriptInterface takes place (Line 4).
Our analysis would locate this calling place and would consider aWebview
as of type webview and jsUtilsBridge as of type Jsutils. Two prob-
lems follow:

1. The paired Webview is of type webview, causing our instrumenta-
tion to fail to instrument MyWebView (Line 7)

2. The extracted interface object would miss some annotated interfaces
(e.g., writeToFile)

For the Webview, we must process all descendants of its declared class

to include the types of all possible instances. For awebview, this means

78

3.2 BabelView Internals

we must instrument all descendants (including anonymous classes) of

WebView, i.e., WebView and MyWebView. Similarly, we are interested in the

real type of aBridge. Again, we must iterate over all sub-classes of its

declared type Jsutils to ensure capturing the bridge added at runtime.

However, since addJavascriptInterface is of the unconstrained type

Object, this could potentially include all classes. Therefore, we restrict pro-
cessing to just those sub-classes that contain at least one @ JavascriptInterface
annotation. As a result, we obtain a superset of all interface objects that

can be added by this method, i.e., JSUtils and JsuUtilsFile:

WebView — {JSUtilsFile :: [getLocation, notify, writeToFile],
JSUtils :: [getLocation, notify]}

MyWebView — {JSUtilsFile :: [getLocation, notify, writeToFile],
JSUtils :: [getLocation, notifyl}

3.2.2 Phase 2: BabelView Generation

We generate a BabelView class for each Webview in the mapping. Fol-
lowing up on the example in Listing 3.2.3, in Listing 3.2.4, we provide the
resulting BabelView for the Webview mwebview of type MyWebview. We
will use it as a reference through the section for our explanation.

Each BabelView defines a subclass of its Webview (MywWebview in this
case) and overrides all its parent’s constructors so that it can be used as a
drop-in replacement. The interface objects are class attributes, which we
utilize to invoke the JavaScript interfaces. We initialize these attributes in
the addJavaScriptInterface method, which we override to extract the
reference from its first parameter (Line 10).

To implement the attacker model, the BabelView needs to override all
methods that load external resources and could thus be susceptible to

JavaScript injection. In particular, we override 1oadurl, postUrl, loadData

79

NG WD -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

3 Information Flow Analysis on Webviews: BabelView

public class BabelView extends MyWebView ({
private JSUtilsFile 1ifO0;

public void BabelView (Context ctx){ super (ctx);
// All other constructor of WebView are here

public void addJavaScriptInterface (Object obj,

}

}

name) {
super.addJavaScriptInterface (obj, name);
if (obj instanceof JSUtilsFile) {
this.if0 = (JSUtilsFile) obj;

public void loadUrl (String url) {
super.loadUrl (url);

while (True) {

switch (random()) {

}

}

}

case 1:
ifO0.writeToFile (source());
break;

case 2:
leak (1f0.getLocation());
break;

case 3:
ifO0.notify (source());

public void leak(){ // stub method }
public Object source() { return new Object ();

}

}

}

String

80

Listing 3.2.4: BabelView Example

3.2 BabelView Internals

, and loadDataWithBaseURL. In the example, we show the implementa-
tion of 1oadUrl (Line 14). We invoke its super implementation followed
by an implementation of the attacker model in Algorithm 1 (Line 16 to
Line 26). Here, the switch case emulates a random pick of JavaScript in-
terface to execute. Depending on the signature of the interface, we leak
its return value. Similarly, we provide tainted inputs. To this end, the Ba-
belView is equipped with two stub methods, leak (Line 29), and source
(Line 30), representing a tainted sink and a tainted input, respectively.

3.2.3 Phase 3: Instrumentation

We instrument the application to replace its Webviews with our gener-
ated BabelView instances. The instrumentation is case-dependent on how
the Webview is instantiated (see Section 2.2). If it is created via an ordi-
nary constructor call, that constructor is replaced with the corresponding
constructor of its BabelView class. If the Webview is created via the Activ-
ity XML layout, our instrumentation searches for calls to findviewById
, which the app uses to obtain the Webview instance (e.g., to add the
JavaScript interface to it). To identify the calls to findviewById return-
ing a Webview, our instrumentation identifies explicit casts to a Webview
class. Because we do not parse the XML layout itself, we arbitrarily choose
one of the constructors of the BabelView. While this could potentially be
a source of false positives or negatives, it would require a highly specific
and unconventional design of the Webview class that we never seen dur-

ing our evaluation in Chapter 4.

3.2.4 Phase 4: FlowDroid Data-flow Analysis

We perform a static information flow analysis on the instrumented appli-
cation to identify information flows involving the attacker model. Since

our approach relies on instrumenting the application under analysis, it

81

3 Information Flow Analysis on Webviews: BabelView

1 @JavaScriptInterface
2 public void makeCall(String numb {

3 doCall(number)s— / Start

4}

private void doCall(String number) {

2 Intent i = new Intent(Intent|.ACTION_CALL);

3 5 .setData(Uri.parse(number)); // taints i

4 ctx.startActivity(i);

En
Sink

Figure 3.5: TaintWrapper Intent Flow. The method Uri.parse is called with
number, which is tainted. Because Uri.parse is part of the Tain-
tWrapper, its return value is also taint. Similarly, setData is modeled
in the TaintWrapper causing the intent i to be tainted. A flow is then
detected to startActivity.

is agnostic to the specific flow analysis. We decided to rely on the open
source implementation of FlowDroid [3], inheriting its context-, flow-, field-
, and object-sensitivity, as well as its life cycle-awareness. Sources and
sinks are selected corresponding to sensitive information sources and de-
vice functions, modified from the set provided by SuSi [75]. We further
include the sources and sinks used in the BabelView classes. The informa-
tion flow analysis abstracts the semantics of Android framework methods.
FlowDroid uses a simple modeling system (the TaintWrapper), where any
method can either (i) be a source, (ii) be a sink, (iii) taint its object if any
argument is tainted and return a tainted value if its object is tainted, (iv)
clear taint from its object, (v) ignore any taint in its arguments or its object.
We extended the TaintWrapper with several models that were relevant for
the types of vulnerabilities we were interested in, e.g., to precisely capture
the creation of Intents from tainted URIs.

Finally, information flows indicating that sensitive functionality is ex-
posed via the JavaScript interface are identified, triggering an alarm show-
ing a potential vulnerability. An alarm consists of a detected dangerous
information flow enhanced with its semantics. For instance, consider the
flow in Figure 3.5, where the JavaScript interface makeCall is used to per-
form phone calls. The variable number comes from the BabelView source
and, therefore, it is tainted. The flow goes to doCcall, where an Intent

82

3.2 BabelView Internals

is created. After the intent creation, number flows to Uri.parse whose
return value is an input of the intent setData. These two methods are
from the android framework and, therefore, we include them into Flow-
Droid TaintWrapper. The intent i is then tainted and flows to the sink
startActivity, indicating that an attacker can perform calls on behalf of

the user.

3.2.5 Phase 5: Analysis Consolidation

We consolidate the data-flow analysis by further analyzing preferences

and intents.

Preferences Taint analysis cannot distinguish between individual key-
value pairs in a map. Preferences are a commonly used map type in An-
droid apps that often store sensitive information as a key-value pair. After
the information flow analysis, we consolidate our results by statically de-
riving values of keys for access to preferences. Our definition of sources
and sinks allows to identify both flows from and to the preferences

Given two flows, one inserting and the other retrieving values from
Preferences, we are interested in understanding whether (i) the value
is of the same type and (ii) the access key is the same. If these conditions
are met, we have identified a potential leak via Preferences. To determine
the key values, we modeled stringBuilder and implemented an intra-
procedural constant propagation and folding for strings. Finally, if an in-
terface method allows web content to interact with a preferences object,
BabelView reports all keys used to access it, since preferences can be used
to store sensitive values. This allows us to inspect flows to or from prefer-
ences entries, even if these values are not dependent on a specific source in
the Android API. We match key names against a list of suspicious entries,

which can highlight potential leaks of sensitive app-specific information

83

3 Information Flow Analysis on Webviews: BabelView

(Section 4.2.2). In the same manner, we also highlight suspiciously named

interface methods.

Intents Flow analysis can detect situations where Intent creation depends
on tainted input. However, it tells nothing about the type of the Intent
created, as this depends on specific parameters, e.g, those provided to its
setAction method. For interpreting results, it is important, however, to
know the action of an Intent that can be controlled by an attacker.

For any flow that reaches the startActivity sink, we perform an inter-
procedural backward dependency analysis to the point of the initialization
of the Intent. If the Intent action is not set within the constructor, we
perform a forward analysis from the constructor to find calls to setAction

on the Intent object. The analysis may fail where actions are defined
within intent filters (XML definitions) or through other built-in methods.
As an example, consider Figure 3.5. From the sink startActivity, our In-
tent analysis would backtrack to the Intent creation. The Intent construc-
tor creates an intent with the Intent . ACTION_CALL parameter. Therefore,
we conclude that an attacker can make phone calls. To increase precision
in our inter-procedural analysis, we ensure that the call-stack is consistent
with an invocation through the interface method; i.e., the interface method

that triggered the flow must be reachable.

3.3 Related Work

We now review work on vulnerabilities and attacks against Webview (Sec-
tion 3.3.1), discuss related work on policies and access control (Section 3.3.2),
and contrast with work on instrumentation-based modeling (Section 3.3.3).

84

3.3 Related Work

3.3.1 Webview: Attacks and Vulnerabilities

Webview vulnerabilities have been widely studied [13, 76, 37, 71, 69, 72].
Luoetal., give a detailed overview of several classes of attacks against We-
bviews [13], providing a basis for our work. Neugschwandtner et al. [37],
were the first to highlight the magnitude of the problem. In their analy-
sis, they categorize as vulnerable all applications implementing JavaScript
interfaces and misusing TLS (or not using it at all). For further precision,
they analyzed permissions and discovered that 76% of vulnerable applica-
tions requested privacy critical permissions. While this is a sign of poorly
designed applications, the impact of an injection exploit very much de-
pends on the JavaScript interfaces, motivating the work of this thesis.

A step forward toward this was made by Bifocals [71], a static analysis
tool able to identify and evaluate vulnerabilities in Webviews. Bifocals
looks for potential Webview vulnerabilities (using JavaScript interfaces
and loading third party web pages) and then performs an impact anal-
ysis on the JavaScript interfaces. In particular, it analyzes whether these
methods reach code requiring security-relevant permissions. However,
JavaScript interfaces can pose an (application-specific) risk without mak-
ing use of permissions. At the same time, not all JavaScript interfaces that
make use of permissions are dangerous: for example, an interface method
might use the phone’s IMEI to perform an operation but not return it to
the caller.

The means by which malicious code can be injected into the Webview
have been discussed in previous work [39, 33]. Having to interact with
many forms of entities, HTML5-based hybrid applications expose a broader
surface of attack, introducing new vectors of injection for cross-site-scripting
attacks [33]. While these attacks require the user to directly visit the mali-
cious page within the Webview, Web-to-Application injection attacks (W2AI)
rely on intent hyperlinks to render the payload simply by clinking a link in

85

3 Information Flow Analysis on Webviews: BabelView

the default browser [39]. Both discuss the threat behind JavaScript inter-
faces, but stop their analysis at the moment where the malicious payload
is loaded, without analyzing the implication of the attacker executing the
JavaScript interfaces.

A large scale study on mobile web applications and their vulnerabilities
was presented by Mutchler et al. [69], but did not study the nature of the
exposed JavaScript interfaces. Li et al. [38], studied a new category of fish-
ing attacks called Cross-App WebView infection. This new type of attacks
exploits the possibility of issuing navigation requests from one app’s We-
bview to another via Intent deep linking and other URL schemata. This
can trigger a chain of requests to a set of infected apps.

Most closely related to our work is the concurrently developed BridgeScope [35],
a tool to assess JavaScript interfaces based on a custom static analysis. Sim-
ilar to our work, BridgeScope allows to detect potential flows to and from
interface methods. BridgeScope uses a custom flow analysis, whereas
our approach intentionally allows to reuse state-of-art flow analysis tools.
While BridgeScope’s flow analysis performs well on benchmarks, there
appears to be no specific treatment of Map-like objects such as Preferences
of Bundle.

In recent work, Yang et al. [36], have combined the information of a
deep static analysis with a selective symbolic execution to actively ex-
ploit event handlers in Android hybrid applications. In OSV-Hunter [34],
they introduce a new approach to detect Origin Stripping Vulnerabilities.
These type of vulnerabilities persist when upon invocation of window.
postMessage, it is not possible to distinguish the identity of the message
sender or even safely obtain the source origin. This is inherently true for
Hybrid applications, where developers often rely on JavaScript interfaces

to fill the gap between web and the native platform.

86

3.3 Related Work

3.3.2 Webview Access Control

There have been several proposals to bring origin-based access control to
Webviews [77, 78, 79, 80, 81]. Shehab et al. [79] proposed a framework
that modifies Cordova, enabling developers to build and enforce a page-
based plugin access policy. In this way, depending on the page loaded, it
will or will not have the permission to use exposed Cordova plugins (i.e.,
JavaScript interfaces).

Georgiev et al. presented NoFrank [77], a system to extend origin-based
access control to local resources outside the web browser. In particular,
the application developer whitelists origins that are then allowed to access
device’s resources. However, once an origin is white-listed, it can access
any resource exposed. Jin et al. [80] propose a fine-granular solution in a
system that allows developers to assign different permissions to different
frames in the Webview.

Tuncay et al. [78], increase granularity further in their Draco system.
Draco defines a policy language that developers can use to design access
control policies on different channels, i.e., the interface object, the event
handlers and the HTML5 API. Another framework allowing developers
to define security policies is HybridGuard [81]. Differently from Draco,
HybridGuard has been entirely developed in JavaScript, making it plat-
form independent and easy to deploy on different platform and hybrid
development framework. Both Draco and HybridGuard could provide an
interesting solution to the problem of securing an interface BabelView is

rising an alarm for, without unduly restricting its functionality.

3.3.3 Instrumentation-based Modeling

Synthesizing code to trigger specific function interfaces is not a new prob-
lem and traces back to generating verification harnesses, e.g., for software
model checking [82, 83]. On Android, FlowDroid [3] uses a model that

87

3 Information Flow Analysis on Webviews: BabelView

invokes callbacks in a “dummy main” method, taking into account the
life cycle of Android activities. While the problems share some similar-
ity, JavaScript interfaces and Webviews are inherently varied and app-
specific. Therefore, we require a static analysis and cannot rely on fixed
signatures. Furthermore, because our model represents an attacker in-
stead of a well-defined system, calls can appear out of context anytime
web content can be loaded in the Webview, i.e., after a 1oadurl-like method.

3.4 Limitation and Discussion

This section starts with a discussion of the benefit of Babel View instrumen-
tation (Section 3.4.1). We then present the limitation of BabelView core
(Section 3.4.2) and feasibility (Section 3.4.3) analyses. We then conclude
discussing how to mitigate the potential vulnerabilities that BabelView
finds (Section 3.4.4).

3.4.1 Avoiding Instrumentation

In principle, we could avoid instrumenting the application by summariz-
ing interface methods with an inter-procedural taint analysis. However,
to achieve the same precision, the analysis would have to be computation-
ally expensive: on method entry, any reachable field in any reachable ob-
ject (not just arguments of the interface method) would have to be treated
as carrying individual taint. On method exit, the effects on all reachable
fields would have to stored, before resolving the effects among all interface
method summaries. Our instrumentation-based approach not only avoids
this cost, but also allows us to factor out flow analysis into a separate tool,
a design choice that improves robustness and maintainability.

88

3.4 Limitation and Discussion

3.4.2 Analysis Limitations

Our system, together with the underlying flow analysis, is subject to com-
mon limitations of static analysis and hence can fail to detect Webviews
and interfaces instantiated via native code, reflection, or dynamic code
loading. In principle, this currently allows a developer intent on doing so
to hide sensitive JavaScript APIs. However, we focus on benign software
and vulnerabilities that are honest mistakes rather than planted backdoors.
Still, we note that Babel View would automatically benefit from future flow
analyses that may counteract evasion techniques.

A potential source of false positives is that BabelView does not distin-
guish Webview instances of the same type and will conservatively join
the JavaScript interfaces of all instances. Furthermore, our analysis loses
precision when reporting indirect leaks via Preferences or Bundle. As
mentioned in Section 3.2.4, we connect sensitive flows into the applica-
tion preferences with flows from the preferences to the instrumented sink
method in BabelView. While this is sound and will conservatively cap-
ture any information leaks via preferences, it is not taking into account
any temporal dependencies between storing and retrieving the value. A
different treatment of this would be a potential source of false negatives,

since preferences persist across application restarts.

3.4.3 Attack Feasibility

In our feasibility analysis, we actively try to inject JavaScript code into a
Webview, aiming at identifying whether the reported interface object is
present in the Webview. The presence of the interface object means that
all its interface methods are available to use, including the one BabelView
reported. However, we do not actively invoke these methods and thus we

cannot be sure of their exploitability.

89

3 Information Flow Analysis on Webviews: BabelView

3.4.4 Mitigating Potential Vulnerabilities

To avoid giving potential attackers control over sensitive data and func-
tionality, developers can follow a set of design principles. First of all, We-
bview contents should be exclusively loaded via a secure channel. Sec-
ond, as mentioned in the Android developer documentation, Webviews
should only load trusted contents. External links have to be opened with
the default browser. For also protecting against malicious ads or cross-site-
scripting attacks, JavaScript interfaces should offer an absolute minimum
of functionality and avoid arguments as far as possible. Finally, recent
work also introduced novel mechanisms to enforce policies on hybrid ap-
plications (see Section 3.3.2).

90

BabelView Evaluation

In this chapter, we present our evaluation of BabelView. In Section 4.1,
we show the results we obtained in our large scale analysis of the An-
droid Play Store. We then conclude with Section 4.2, where we show some
interesting case studies and how BabelView could help to find real vulner-
abilities.

Unfortunately, we were unable to conduct a direct comparison with
BridgeScope [35], the work most closely related to ours. Despite helpful
communication, the authors were ultimately unable to share neither their
experimental data nor their implementation with us. In the spirit of open

data, we make all our code and data available!.

4.1 Play Store Large Scale Analysis

In this Section we present the results of our study of vulnerabilities in
Android applications. Below, we explain our methodology (Section 4.1.1)
and ask the following research questions to evaluate our approach:

1. Can BabelView successfully process real-world applications? We
conduct a study on a randomly selected set of applications from the

Mttps://github.com/ClaudioRizzo/BabelView

91

https://github.com/ClaudioRizzo/BabelView

4 BabelView Evaluation

AndroZoo [84] dataset and provide a breakdown of all results (Sec-
tion 4.1.2).

2. What are the precision and recall of our analysis? We manually
validate a random sample of apps, estimating overall precision and
recall (Section 4.1.4).

We also shed light on the current state of Webview security on Android

with the following questions:

3. How frequent are different types of alarms? We report results per
alarm, which provides an insight into the prevalence of potential

vulnerabilities (Section 4.1.3).

4. Are there types of potential vulnerabilities that are likely to occur
in combination? We compute the correlation between alarms raised
by our analysis and analyze our findings (Section 4.1.6).

4.1.1 Methodology

We obtained our dataset from AndroZoo [84], using the list of applications
available on July 22-nd, 2016, when it contained about 4.4 million samples.
We downloaded a random subset of 209,069 apps, and then filtered our
dataset for applications containing a Webview, a call to addJavascriptInterface
, and granting permission to access the Internet. As a result, we obtained
62,674 total applications. Finally, from the obtained sample, we randomly
extracted 25,000 applications found in the Google Play Store, which we
used for our analysis.

We ran BabelView on five servers: one 32-core with 250GB of RAM and
four 16-core with 125GB of RAM. Each application took on average 180
seconds to complete. The high precision of FlowDroid’s information flow

analysis can lead to long processing time in the order of hours. Moreover,

92

4.1 Play Store Large Scale Analysis

BabelView instrumentation exposes new paths for the subsequent flow
analysis which, therefore, might take longer to complete. For our analysis
to be practical we then had to set a time limit. Given enough time, having
an higher limit would increase the accurancy of our results as, in principle,
we would be able to analyse more applications. However, for a large scale
evaluation with limited resources, this would have required an impractical
long time. Therefore, we performed preliminary experiments to tune the
time limit of our analysis. In this process, we found that apps taking longer
than 15 minutes would often go over an hour.

A positive effect of our instrumentation-based approach is that we ben-
efit from improvements in the underlining flow analysis. Indeed, over the
duration of this project, we saw a noticeable accuracy enhancement from
the constant improvements on FlowDroid.

Each application underwent three main phases: (i) BabelView instru-
mentation, (ii) FlowDroid analysis on the instrumented app and (iii) anal-
ysis of the resulting flows to identify suspect flows and raise alarms. On
the reported applications, we performed a feasibility analysis. We searched
the app for plainhttp:// URLs and assess the resilience of the app against
injection attacks.

4.1.2 Applicability

We summarize the outcome of running our tool chain in Figure 4.1. Run-
ning our tool chain on the 25,000 target applications resulted in 1,286 gen-
eral errors and 3,837 flow analysis timeouts. The remaining 19,877 apps
were successfully analyzed and we obtained the following breakdown:
832 applications had no interface objects at all or no interface methods in
case the target API was version 17 or above; 14,048 applications had no
flows involving our attacker model; and 4,997 were reported as danger-

ous, i.e., containing flows due to the attacker behavior. This amounts to a

93

4 BabelView Evaluation

25,000
Processed apps
Crashes
1,286
Timeouts
No Apps Completed
interface objects
Apps with
nterface methods
BabelView

positive apps

4,997

14,048

BabelView negative apps

Figure 4.1: Processed Apps Breakdown. Breakdown of processed applications and
analysis results.

94

4.1 Play Store Large Scale Analysis

rate of 26.2%. We investigated the reasons for the crashes, and most hap-
pened either due to unexpected byte code that Soot fails to handle or while
FlowDroid’s taint analysis was computing callbacks.

Among applications with interface objects, we also considered those tar-
geting outdated versions of the Android API, since this is still a common
occurrence [85, 86, 87]. When using Webviews prior to API 17, any app
is trivially vulnerable to an arbitrary code execution disclosed in 20132
Despite targeting an old API version, if compiled with a newer Android
SDK, these applications can still use the @JavascriptInterface anno-
tation. While the annotation itself does not provide extra security, these
apps may target newer APIs in future releases [32].

4.1.3 Alarms Triggered

We successfully used BabelView to examine 19,877 applications. We found
that 4,997 of them triggered an alarm (i.e., our analysis reported a poten-
tial vulnerability), meaning that the interface methods could be exploited
by foreign JavaScript from injection or advertisement. Table 4.1 shows a
breakdown of all the alarms we observed in our analysis. Among the most
common alarms, we observed the possibility of writing to the File System
(Write File), capability to start new applications (Start App), violation of
the Same Origin Policy (Frame Confusion) and the possibility of exploit-
ing the old reflection attack due to Android API prior to v17.

Writing File capabilities show the developers’ need for storing app-external
data usually coming from an app-dedicated server. We also observed that
many applications implement advertising libraries which need to open a
new application, usually Google Play Store, to allow the user to download

or visualize some information. Unfortunately, the package name of the

*https:/ /labs.mwrinfosecurity.com/blog/webview-addjavascriptinterface-remote-
code-execution/

95

4 BabelView Evaluation

Alarm #Apps | Alarm #Apps | Alarm #Apps
Open File 385 | Write File 1,444 | Read File 593
TM Leaks 39 | Pref. TM Leaks 4 | Pref. Connectivity 4
Leaks
SQL-lite Leaks 136 SQL-lite Query 438 Pref. SQL-lite Leaks 11
GPS Leaks 43 | Pref. GPS Leaks 1 Directly Send SMS 6
Directly Make Calls 19 Call via Intent 314 Email/SMS via In- 778
tent
Take Picture 7 | Download Photo 317 | Play Video/Audio 378
Edit Calendar 357 | Post to Social 293 | Start App 1,321
API prior to 17 1,039 Unknown Intent 1,107 Frame Confusion 1,039
Fetch Class 85 Fetch Constructor 0 Constructor init 13
Fetch Method 85 Method Parameter 622

Table 4.1: Number of Apps per BabelView's Alarm Category. Pref. stands for indirect
leaks via a Preference object; TM stands for Telephony Manager.

application to open is given as input to an interface method, enabling a
possible attacker to control which app to start. Same-Origin-Policy viola-
tions are also very common: this is the case when a 10adur1 is invoked
with input from the interface methods, controlling what is loaded in to a
frame. As described by Luo et al. [13], JavaScript executing in an iframe
runs in the context of the main frame, violating the SOP.

Many applications still target an API version prior to 17 [85, 86, 87],
often due to backward compatibility or simply due to confusion in declar-
ing the SDK version. Other alarms involve the possibility to prompt the
user with an email or a text message to send, directly sending an SMS or
performing a phone call; prompting the user with the call dialer; post-
ing content to social network; interacting with the calendar by creating or
editing an event; playing videos or audio; leaking sensitive information
like the device ID or phone numbers (i.e., TM Leaks), GPS position, SQL
information, etc.

Finally, we shed light on the possible use of Java Reflection inside in-
terface methods. Fetch Class, Fetch Constructor, Constructor init, Fetch
Method and Method Parameter are all signs that an attacker controls input

96

4.1 Play Store Large Scale Analysis

used to execute methods via Java reflection. Although these are rare sit-
uations and often hard to exploit, they are extremely high reward for an at-
tacker as they can potentially allow to circumvent the @ JavascriptInterface

annotation, leading to arbitrary code execution. We manually analyzed
some applications presenting these alarms and in some cases an attacker
could take control of a method and its parameters, leading to remote code
execution.

4.1.4 Manual Validation

We used manual validation to estimate the accuracy of our analysis. In
particular, we sampled and manually analyzed (i.e., reversed and decom-
piled) 50 applications. We evaluated two aspects:

1. How accurate is BabelView with respect to each individual alarm it

raises?

2. Does BabelView function as an effective alarm system for hybrid
apps?

We reviewed all the alarms? for each app and we established whether an
alarm was correctly triggered or correctly not triggered. To this end, we
looked at BabelView’s output and reversed the respective application to
validate the results. BabelView’s output consists of a json where the keys
represent the alarms, and the values are boolean indicating whether an
alarm has occurred. For example, consider the json in Listing 4.1.1. Each
alarm, apart from “Intent Control”, can either be 1 or 0. In the former case,
BabelView raised an alarm for the alarm represented in the corresponding
key. The latter case suggests that no alarms were reported. For the “Intent
Control” alarm, the analysis is more fine grained, telling the user what

3We recall that an alarm consists of a flow enhanced with its semantic, see 3.2.4

97

O 0 N O G o W N -

NN N N RN N DN DN PR 2R s e el e)
N & G &= WO N P © 0 00 N & G & W N —~ O

4 BabelView Evaluation

—~

"Preferences DB Query Exec": O,

"Pref DB Leak": O,

"Pref TM Leak": O,

"Pref Connectivity Leaks": 0O,

"Pref Location Leaks": O,

"SQL-1lite Leaks": O,

"TM Leaks": 0O,

"Connectivity Leaks": O,

"Location Leaks": O,

"SQL-1lite Query Exec": O,

"Intent Control": |
"android.intent.action.VIEW"

1,

"File Opening": 1,

"File Writing": 1,

"File Reading": 1,

"Send SMS": O,

"Open Socket": O,

"Reflection": O,

"Frame Confusion": 1,

"Fetch Class": 0O,

"Fetch method": O,

"Constructor Instance": 1,
"Method Parameter": O,
"Fetch Constructor": 0

98

Listing 4.1.1: BabelView Output

4.1 Play Store Large Scale Analysis

Expected
Positive | Negative
Positive | 42 10
R
eported Negative | 5 1,494

Table 4.2: Manual Validation Confusion Matrix Per Alarm Base.

kind of intent action can be triggered via the interface. In the validation
process, we checked each one of these alarms to be accurate with respect
to what we saw in the decompiled code of the application under analysis.

We present a confusion matrix of our manual validation in Table 4.2.
Among all alarms triggered for the 50 applications, we observed 42 TPs
(True Positives), 10 FPs (False Positives), 1,494 TNs (True Negatives) and 5
FNs (False Negatives). From this, we can compute a precision of 81% and
a recall of 89% for our analysis.

The results obtained are in line with our expectations. Our instrumenta-
tion does not alter the semantics of applications other than adding a model
of attack behavior. Therefore, our precision depends on the underlining
flow analysis. However, more false positives could be introduced due to
the object-insensitivity of our instrumentation—i.e., we distinguish types
but not instances of Webviews. Similarly, a very low false negative rate
is common for data flow analysis; however, FNs are still possible, mainly
due to incomplete Android framework.

To evaluate BabelView on a per-app basis, we consider a true positive
the case where an app contains at least one potential vulnerability and
at least one alarm is raised. True negatives and false positives/negatives
follow accordingly. In Table 4.3, we report our results. We observed 19
TPs, 2 FPs, 29 TNs, and 0 FNs, which yields a precision of 90% and a recall
of 100%. This suggest that BabelView performs well as an alarm system
for potentially dangerous applications. Even if individual alarms can be
false positives, the correlation of dangerous interfaces appears to leads

99

4 BabelView Evaluation

Expected
Positive | Negative
Positive | 19 2
R
eported Negative | 0 29

Table 4.3: Manual Validation Confusion Matrix Per App Base.

to highlighted apps being problematic with high probability. The false
negatives that are present when taken per vulnerability disappear when

analyzed on a per app basis.

4.1.5 Feasibility Analysis

To better understand the feasibility of exploiting potential vulnerabilities
highlighted by BabelView, we measured the difficulty of performing an
injection attack. To this end we use a three-step process: (i) we check the
application for TLS misuse using MalloDroid [70]; (ii) we search for hard-
coded URLs beginning with http://, suggesting that web content could
be loaded via an insecure channel; and (iii) we actively injected JavaScript
code into Webviews.

MalloDroid reported 61.5% of applications using TLS insecurely and
98.7% of apps were found hard-coding HTTP URLs. In order to actively
inject JavaScript, we stimulated each reported application with 100 Mon-
key* events and actively intercepted the connection (using Bettercap®), try-
ing to execute a JavaScript payload. Moreover, we set up our own certifi-
cate authority and also tried SSL strip attacks. The goal of the injection
was to determine whether the reported interface methods were present
in the Webview. To this end, we generated JavaScript code checking for

the presence of the interface objects reported by the BabelView analysis.

*https://developer.android.com/studio/test/monkey.html
Shttps://www.bettercap.org

100

https://developer.android.com/studio/test/monkey.html
https://www.bettercap.org

4.2 Case Studies

We were able to inject JavaScript in 1,275 applications and in 482 cases we

confirmed the presence of the vulnerable interface object.

4.1.6 Correlation of Alarms

We were interested in finding correlations among the alarm categories we
identified. This does not only account for common patterns of functional-
ity, but also identifies single alarms that taken together could increase the
attack capabilities, e.g., combining opening and writing of a file results in
writing of arbitrary files.

We can see in the correlation matrix in Figure 4.2 that alarms involving
related functionality tend to be positively correlated (in red). For example,
opening and writing a file; SQL queries and leaks; and operations involv-
ing intents such as call via intent, send email, edit calendar, play video,
post to social, and download pictures. While some correlations are evi-
dent, some appear incidental, such as intent calls and playing of videos.
Based on manual inspection (see Section 4.2), we found that these cat-
egories of alarms often appear together in apps using common libraries,
eg., for advertisements.

4.2 Case Studies

In this section, we present some interesting case studies, proving that Ba-
belView can expose real vulnerabilities. We start discussing a banking
application, which exposes dangerous JavaScript interfaces (Section 4.2.1.
We then show how we could exploit a sports app’s JavaScript interface to
leak the username and password of a user (Section 4.2.2). We finally con-
clude presenting our evaluation of the JavaScript interfaces exported by a
commonly used Ads library (Section 4.2.3).

101

4 BabelView Evaluation

Pref DB Leak]
SQL-lite Query Exec F []
SQL-lite Leaks I
File Writing B
File Opening "
Location Leaks [|
Pref Location Leaks 03
Pref TM Leak [l |)
Send SMS |
TM Leaks - 0.2
[|
H

Pref Connectivity Leaks
Take Picture
Start New App N |

Direct Call [|
Call via Intent
Send Email or SMS Intent
Edit Calendar
Play Video or Audio
Post to Social
Save/Download Picture
Fetch Class
Constructor Instance
Fetch method
Method Parameter
Frame Confusion

Reflection
File Reading N L
Uknown Intent | B
= e — — =
X PP YK YV eTEE T LRSS PF
QX ©-=-=® © Q COS3gOUYVTV U0 ceyrn=Y
JWoeoEcooavood EE2c3oB0cu2YgTE
T R B OJals+eccoanplV €5 g o<
D>T58 IS ToII2EBEEOInRYRUE293E
) ccZCs >V lognmsotslemgce B
0Ogo OcorF o Foztscs0C%Peo = “oox
e 53=2 0808, nF3SYER5>=Y 00 RBRECEcfOx o3
VO LUT2R/R® Y sotf=02ghol oo =8
&0 LOOA 08 ®sO0scOc Ho9o® F
R ISRe) Q@ F oowsag YLocE =
£ =2 e s 238858 °
! Y
| o} 5 g 2 O o ouw
(e} e (&) —_ = c =
n o w o () (e}
‘@ ° s v
o [}
wn

Figure 4.2: Correlation matrix of alarms. Red blocks indicate high correlation while
blue one low correlation.

102

4.2 Case Studies

4.2.1 MAB Mobile Banking

The JavaScript interface of this hybrid application exports several sensitive
methods. The information flow analysis with BabelView flagged it as sus-
ceptible to SQL-lite query execution, SQL-lite leaks, file writing, telephony
manager leaks, and intent control. We manually reverse-engineered this
application and were able to confirm all the alarm arise. In particular, an
exploit against the JavaScript interface would not only allow an attacker
to place calls to arbitrary numbers and write into the file system, but also
to leak messages and initiate payments. The following are some of the
interface methods exposed by the application (we expand callPhone for

illustration):

@QJavascriptInterface
public void callPhone (String num)
{
Intent i = new Intent("android.intent.action.CALL", Uri
.fromParts ("tel", num, null));

startActivity (i) ;

public String payFriend(...) { ... }
public String payBill(...) { ... }
public String listInbox(...) { ... }

We could not actively confirm the exploitability of the application in a
test run, since (apart from legal reasons) the interface becomes available
only after authenticating. However, from our manual analysis it is appar-
ent that the web content displayed in the Webview is dynamically loaded.

103

4 BabelView Evaluation

4.2.2 SwingAid

Among our results, we found a game application (“SwingAid Level up
Golf”) that uses several Webviews and JavaScript interfaces leading to
different alarms: SQL-lite leaks via preferences, frame confusion, and tele-
phony manager Leaks. Moreover, we discovered the value loginPwd among
preferences keys accessible from a JavaScript interface. We were able to
manually confirm all alarms as true positives. Interface methods accessi-
ble when creating an account creation within the game include get AccountEmail
, getPhoneNumber, and getUserPwd. We successfully performed a man-
in-the-middle attack and injected JavaScript to access all three methods.
The account e-email and phone number are accessible immediately upon
attempting to create an account. The password is stored in a local database,
cached in the preferences and accessible with the loginPwd key. When the
user visits the account creation page a second time, the password can be
stolen via the interface method.

The underlying problem is twofold and representative for many Web-
view vulnerabilities: first, the Webview loads data via an insecure chan-
nel, and second, the JavaScript interface makes sensitive data available (a
plaintext password). Even if the password would otherwise not be sent
via the insecure channel, a JavaScript injection attack is able to retrieve it
through the interface and extract it directly. Since our discovery, all issues

have been resolved in a newer version of the application (version 2.6).

4.2.3 Ads Library InMobi

During the evaluation, we discovered an advertising library, used by 353
of 4,997 applications, which implements a Webview exposing many sen-
sitive interface methods. In particular, a successful JavaScript injection
would allow an attacker to perform different actions, including download-
ing/saving of pictures, sending email or SMS by manipulating Intents,

104

4.3 Work Outcome and Discussion

playing audio or videos on the victim’s phone, opening new applications,
creating calendar events, and posting to social networks.

Another library, used by 1,507 applications, allows an attacker to start
new applications on the phone, controlling the Intent extras provided to
the Activity.

4.3 Work Outcome and Discussion

With BabelView, we introduced a new solution for the taint analysis of hy-
brid applications (Section 1.2). Specifically to the Webviews scene, one
of the biggest challenges is the presence of web code (i.e., HTML and
JavaScript), which is notoriously hard to analyze (Section 1.1.2). With our
approach we successfully tackled this challenge by switching our focus on
a generic threat model. With this approach we could effectively enable
taint analysis for Android Webviews’ JavaScript interfaces. However, our
key goal was to perform a security analysis and evaluate the impact of an
attack against these interfaces (Section 1.1.2). BabelView tackles this prob-
lem by classifying flows based on their semantic. Moreover, in the con-
solidation phase (Section 3.2.5), BabelView provides a more fine grained
output on the nature of intents and preferences flows.

With this evaluation we proved that BabelView works in practice, and
we shed light on the current state of WebView security in the Android echo
system. The results shows that there is still confusion on how to safely in-
tegrate WebViews in Android applications. In fact, there are still instances
where developers assume JavaScript interfaces as internal methods and
they fail to understand the risks involved in exposing them. The prob-
lem can be even more severe if commonly used libraries implement po-
tentially vulnerable WebViews. In our correlation analysis (Section 4.1.6),

we showed and discussed how the alarm raised can be part of common

105

4 BabelView Evaluation

libraries.

In our evaluation, we also found interesting case studies (Section 4.2),
which showed once more the severity of the problem. While we could
not provide a working exploit for all the case studies we showed, there is
no doubt that the exposed interface can pose a threat to the end user if a
JavaScript injection is successful. In all cases, we followed a responsible
disclosure process. We did get in touch with the developers of the adver-
tisement library. However, we reached a dead end and eventually could
not get back any answer. For the game and the mobile banking cases, we
saw that, in both cases, the authors updated their applications. We re-run
BabelView on them and found out that in both cases the problems were
resolved.

106

JniFuzzer: Fuzzing Android Java
Native Interfaces

One of the biggest obstacles for the analysis of Android apps is Android’s
support for native components written in C and C++ to perform CPU-
intensive tasks. Developers widely use this feature: over one-third of apps
on Google Play include native code. Different libraries have been devel-
oped (e.g., advertisement libraries [88]), increasing the likelihood that ex-
ploits crafted against one app will be transferable to another app sharing
the same vulnerability [89]. Given this wide adoption of native code and
the risks associated with it, it is necessary to include native components in
security analysis.

There is no defined limit to the size native code can assume within an
Android application. The guideline on the official Android documenta-
tion [90] suggests that developer keeps the number of native code inter-
faces to a low number and to minimize marshalling of resurces across the
native layer. However, these are only suggestions and developers are ul-
timately in charge of these aspects. In our experiments, we observed both
applications with standalone and self contained native interfaces and with
interfaces wrapping larger libraries. In both cases, external native library
can be used, increasing the scope of analyses that would need to model
these libraries.

The analysis of native code for Android apps is still challenging. The

engineering overhead when building analyses for native code is remark-

107

5 JniFuzzer: Fuzzing Android Java Native Interfaces

able, and not surprisingly, it is hard to reuse existing approaches to cover
native components. For example, fuzzing (Section 2.4.2) has been success-
fully deployed for Android, from stimulating the UI [53, 55, 16, 19, 91, 54,
17, 20] to testing Intents [92, 93], and exposing vulnerabilities in Internet of
Things (IoT) devices[52]. However, these tools rely on analyses not sup-
porting native code, resulting in the inability to exhaustively test native
code.

In this chapter, we propose JniFuzzer, a novel fuzz-testing framework
targeted at Android apps’ native components. To the best of our knowl-
edge, there is no other work to directly enabling fuzzing for Java Native
Interfaces. We designed JniFuzzer to be practical and extensible, and to
support different analyses on native code. To this end, we implemented
JniFuzzer as a plugin system, where new analyses can be easily integrated.
In particular, in Section 5.1, we describe the implementation of the compo-
nents at the core of JniFuzzer. In Section 5.2, we illustrate how we scaled
and distributed our framework to support multiple and parallel analyses.
In Section 5.3, we show how JniFuzzer can be successfully used on real
world application. In Section 5.4, we discuss work related to ours. We
then discuss limitations and future work in Section 5.5, and finally con-

clude with a discussion on the work outcomes in Section 5.6.

5.1 JniFuzzer

With JniFuzzer, our goal is to fuzz native methods. Our insight is that
we do not need to stimulate the user interface, but we directly extract a
function pointer to the fuzzing target.

In this section, we detail the implementation of JniFuzzer. In Section 5.1.1,
we show how JniFuzzer creates mocks for the NI Environment. In Sec-

tion 5.1.2, we describe how JniFuzzer extracts a function pointer to the

108

5.1 JniFuzzer

Jni Mocks
Extractor Executo
" : fn_ptr(x, y, ...) :
Static : :
e Extractor : Report
‘]
signature Dynamic : Plugins

Extractor

Error

Figure 5.1: JniFuzzer Design Diagram. Given a signature and a library, the ex-
tractor extracts a function pointer of the target method. The function
pointer is then executed with inputs generated by a fuzzer.

native method and, finally, in Section 5.1.3, we discuss how this pointer is
executed.

5.1.1 Mocking The JNI Environment

We ultimately need to execute the target native method and therefore we
must recreate a valid running environment. Recall, from Section 2.3.1,
each native method receives a pointer to JNIEnv, which contains an inter-
face pointer, which in turn, points to an array of function pointers. Then,
we must recreate an instance of JNIEnv and mock all the functions ex-
ported and used by the native method.

The jni.h header defines approximately 240 functions!. In principle,
one should mock all these functions to have a fully functional tool. Un-
fortunately, this would require a considerable effort given our limited re-

sources. However, we note that one does not necessarily need to provide

"http://hg.openidk. java.net/jdk8/jdk8/jdk/file/687£d7c7986d/src/

share/javavm/export/jni.h

109

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/javavm/export/jni.h
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/javavm/export/jni.h

1

5 JniFuzzer: Fuzzing Android Java Native Interfaces

void GetMockedEnv (JNIEnv *xenv) {
JNIEnv #my_env = (JNIEnv %) malloc (sizeof (JNIEnv)),;
JNINativeInterface *env_funcs = (JIJNINativeInterface x)
malloc (sizeof (JNINativeInterface));

env_funcs->RegisterNatives = RegisterNatives_Mock;
env_funcs->FindClass = FindClass_Mock;
env_funcs->NewStringUTF = NewStringUTF_Mock;
env_funcs—->GetStringUTFChars = GetStringUTFChars_Mock;

my_env->functions = env_funcs;
*env = my_env;

Listing 5.1.1: Mocking the JNI Environment.

a mock for each of these functions. In fact, it is unlikely that an application
uses more than a few of them. Therefore, we adopted an incremental and
iterative approach to mock the functions more relevant to our analysis. We
achieved this by reversing a few applications in our dataset and see what
functions they were using. We started mocking these functions at first and
then use our prototype on other applications and see where it failed. From
there we iteratively mocked more functions.
To illustrate how we recreate a valid JNIEnv, consider GetMockedEnv
in Listing 5.1.1. Here, we first allocate memory for a JNIEnvx and a
JNINativeInterfacex. Thelatter is the interface pointer, which is pointed
to by the former. We recreate a custom implementation of all the functions
pointed by the interface pointer, and finally, we let the JNIEnv point to it.
Effectively, we hook each relevant API, overriding its behavior. Further-
more, certain methods require an instance of Javavmx to run. Javavms has
the same interface pointer structure as JNIEnv+ and therefore we follow a
similar approach to mock it.

To support basic string operation, we also mocked functions that we

110

5.1 JniFuzzer

class JString : public _jstring
{

private:

char *buff_;

int size_;

public:
JString (char xstr);
JString () ;

char xgetString();
int GetSize();

Listing 5.1.2:]String Mock Header

considered relevant such as (but not limited to) NewSt ringUTF and Get St ringUTFChars

. Since strings are a complex type (jstring in jni.h), we also provide
a mock implementation of it (Listing 5.1.2). In particular, we define the
Jstring class as a subclass of jstring. Finally, JString wraps a fixed
size buffer of chars that can be accessed via a getter.

As we mentioned, we do not provide a full mock of jni.h. How-
ever, our prototype provides enough mocks to show its effectiveness (Sec-
tion 5.3).

5.1.2 Function Pointer Extraction

As discussed in Section 2.3.1, there are two ways by which developers can

register native methods. In the first scenario, Java signatures are matched

on the native side. Consider a native method example .MyActivity.nativeM

(int x) with return type int. This corresponds to the following C++ sig-
nature: intJava_example_MyActivity_nativeM (JNIEnv =, jobject,
int). Provided a signature in Java format, we parse and translate it into

its native equivalent. The native signature can be used to extract a pointer

111

N

— O O 0O Ul kW

[a—

5 JniFuzzer: Fuzzing Android Java Native Interfaces

static JNINativeMethod methods[] = {
{"getMessage", " ()Ljava/lang/String", (wvoidx)
NativeMessage}l,

}i

JNIEXPORT Jjint JNI_OnLoad(JavaVM* vm, wvoid* reserved) ({
JIJNIEnvx env = ...;

jclass my_clazz = env->FindClass ("example.MyActivity");
env->RegisterNatives (myclazz, methods, 1);

Listing 5.1.3: Statically Linked Native Methods

from the native libraries in the APK.

Unfortunately, this approach does not work when developers statically
map each JNI signature. They can do so by overriding JNI_OnLoad and
calling the RegisterNatives AP, registering an array of ININat iveMethod.
Recall from Section 2.3.1 that ININat iveMethod is a structure containing
the name of the method to bind as declared in Java, its (partial) signature,
and a function pointer to the respective C/C++ implementation. Con-
sider Listing 2.3.2, which we report in Listing 5.1.3 for ease of reference.
Our goal is to extract Nat iveMessage. To this end, we provide a mock
implementation of RegisterNatives, which iterates through the array
of ININativeMethod and saves them into a list we control. We then trig-
ger its execution by invoking JNI_OnLoad. First, we lookup its symbol
across the native libraries and extract a function pointer to it. Second, we

generate valid inputs and execute it.

112

5.2 A distributed Fuzzing Framework

5.1.3 Execute Target Native Method

The goal of the executor is to invoke the native method, providing a valid

input to it. To do so, it follows these steps:
1. It obtains a valid function pointer from the extractor.
2. It reads the input generated by a fuzzer.
3. It converts and passes the input to the native method.

We implemented the executor as an abstract class, enabling analysts to
develop their analyses as plugins. Consider Listing 5.1.4; here, we show
the header and a pseudo implementation of the base executor class. In
particular, the abstract method ReadFuzzerInput must implement the
logic to read the input, which is processed by the other abstract method
Execute to run the native method. Finally, Run is a method implemented
in the base class, which starts the execution chain. Consider now List-
ing 5.1.5, showing a pseudo implementation of a simple fuzzing strategy
plugin. In this example, we implement ReadFuzzerInput to read from
stdin. In Execute, we partition the input, convert it to respect the signa-
ture as provided in parameter_types, and finally, we execute the native
method. Please note that the plugin should not need to implement Run, as
its implementation is given in the base executor class. The advantage of
this implementation is that we can use any fuzzer, as soon as it writes to

stdin. In our prototype, we use AFL [23].

5.2 A distributed Fuzzing Framework

One of the gap in Android analysis is the lack of native code support.
Existing tools either ignore it or require a great effort to function. With
JniFuzzer, we introduced a new approach to effectively and specifically

113

NGk W -

(o]

10

11
12
13
14
15
16
17

18
19

20
21
22
23

5 JniFuzzer: Fuzzing Android Java Native Interfaces

// Header
class Executor {
public:
Executor () ;
virtual charx ReadFuzzerInput() = 0;
virtual bool Execute (JNINativeMethod method,
std::vector<std::string>
parameter_types,
JNIEnv* env,
char* input) = 0;

void Run (std::stringé& signature, std::vector<std::

string>& libraries);
}i

// Iimplementation pseudo code
void Executor::run(std::string& signature,
std::vector<std::string>& libraries) {

JNINativeMethod method = extractSignatureOrThrow (
signature, method);

std::vector<std::string> parameter_types =
GetParameterTypes() ;

char+ buff = readFuzzerInput ();
execute (method, parameter_types, buff);

Listing 5.1.4: Executor Interface

114

OO XSO WN -

—_

T S o e gy
Gl WON =

16
17
18

19

5.2 A distributed Fuzzing Framework

// header
class SimpleExecutor : public Executor { ... }

// implementation
charx SimpleExecutor::readFuzzerInput () {
return stdin.read();

bool SimpleExecutor::execute (JNINativeMethod method,
std::vector<std::string>
parameter_types,
JNIEnvx env,
char* input) {

voidx parameters[parameter_types.size()];
for (int i1=0; i<parameter_types.size(); i++) {
parameters[i] = GetAndConvertNextArg (&input,

parameter_types[i]);

call (parameter_types.size (), method.fnPtr, env, NULL,
parameters) ;

Listing 5.1.5: Simple Fuzzing Strategy.

115

5 JniFuzzer: Fuzzing Android Java Native Interfaces

Client Android

Emulators

Workers

-1
— _0l2¢
— 1 @

Figure 5.2: Distributed JniFuzzer Framework. An analyst initiate an analysis that a
pool of workers concurrently perform.

fuzz Android Java native interface. We also wanted a tool that is easy to
use and extend and developed a distributed version of JniFuzzer.

There are several benefits of having a distributed framework. For ex-
ample, we successfully executed multiple parallel analysis across different
servers. More importantly, such a framework could be deployed to help
analysts and researchers to run analyses on Android applications without
the burden of setting up their local environments. Furthermore, this could
become a central repository of analyses to consult when needed.

In Figure 5.2 we show the main components of the JniFuzzer frame-
work. The client instantiates a request for fuzzing to the webserver. The
webserver processes and pushes it to the database, which acts as a pool of

116

5.2 A distributed Fuzzing Framework

Attribute | Description

signature The signature of the native method to test.

apk_id The id of the APK to extract the native method from.

timeout Length of the analysis.

isa The architecture for which the native library is compiled.

status It indicates whether the job is available, in progress or completed.
node Which node (server) is performing the analysis.

result_path | Path where to find the result.

Table 5.1: Job Description by Attribute

jobs. A pool of workers concurrently processes each available job, deliv-
ering it to a controlled pool of Android emulators. The emulators execute
the analysis, whose results are then retrieved and stored by the workers
and, finally, delivered to the user by the webserver.

In this section, we describe the details of the main components of Fig-
ure 5.2. We start describing the role of the database and the design of a
job. We then describe the role of the client and of the webserver. Finally,

we describe the functioning of the workers.

Database and Job Description. While we also use the database to store
the framework users’ credential, its purpose is to act as a pool of jobs.
Each job contains the necessary information for the workers to execute an
analysis. In Table 5.1, we provide a detailed description of the relevant

sections of a job.

Client and Webserver. Analysts, who wish to use JniFuzzer, can test a
native method via a web client. One can select the application to be ana-
lyzed, download it and visualize a summary of it (Figure 5.3). Moreover,
one can tag an interesting APK and leave notes on it. The flow tab can be

used to list all the flows that a taint analysis reported. If a method in the

117

5 JniFuzzer: Fuzzing Android Java Native Interfaces

TAINT -)
+ SAVIOUR +
GOODEYE ®000
GOODEYE 58 4 2

Figure 5.3: Apk View. An analyst can download and visualize a summary of a
select application.

#1 Source <java.net.HttpURLConnection: java.io.InputStream getinputStream()> -> Sink <com.eoeAndroid.CFarmcale2100.CFarmcale2100: int
ExpandFile(byte[],byte[],int,int,int)>

Source to Sink

$r5 = virtualinvoke $r4.<java.net.HttpURLConnection: java.io.InputStream getInputStream()>()

$i3 = virtualinvoke $r5.<java.io.InputStream: int read(byte[])>($rl

$il = $il + $i3

return $il

virtualinvoke $r@.<com.eoeAndroid.CFarmcale2160.CFarmcale2100: void ExpandData(int,int)>($i3, $i2

$il = staticinvoke <com.eoeAndroid.CFarmcale2100.CFarmcale2100: int ExpandFile(byte[],byte[],int,int,int)>($r2, $r4, 1, 0, $il)

Figure 5.4: Flow View. An analyst can visualize a taint analysis and select native
flow to fuzz.

flow happens to be native, the Ul highlights it, and the analyst is given the
possibility to start a fuzzing session on it (Figure 5.4). When the fuzzing
session is over, the user is notified and given the possibility to download
the results.

All the requests are initialized by the client and directed to the web-
server which exposes a set of REST APIs.

Workers and Emulators. The analysis ultimately happens on an Android
emulator, which is controlled by a worker. We designed our framework
as a distributed pool of workers. Each worker controls several emulators
and lives on different nodes. Workers concurrently look up available jobs,

which execute in the first available and compatible emulator for as long as

118

5.3 Fuzzing Android JNI: Evaluation of Case Studies

specified by the timeout.

The analysis proceeds as follow. First, the worker creates the analysis
environment, which consists of JniFuzzer, the native library along with
the signature of the native method to test, and the fuzzer. In our imple-
mentation, we use AFL as our fuzzer?. Once the environment is deployed,
the worker is ready to instruct AFL to fuzz JniFuzzer. Because of the lack
of source code, we use AFL in dummy mode —i.e., AFL does not instru-
ment the target function. In this settings, AFL has no information on the
shape of the fuzzed method, and generates completely random inputs en-
tirely based on the provided seeds. The worker is responsible for gener-
ating these seeds. They change according to the type of parameter of the
tested method. For example, if the parameter is an integer, we generate
at least three seeds consisting of zero, a positive and a negative random
number, so that AFL generates input in those intervals. We recall that Jni-
Fuzzer wraps the execution of the native method under test, forwarding
AFL generated inputs to it. At this point, the analysis continues for a spec-
ified timeout. When this timeout occurs, the analysis is over. The worker
extracts the results from the emulator, stores them in the file system and
maps them to the database. Finally, the job is marked as completed, and
the analyst is notified.

5.3 Fuzzing Android JNI: Evaluation of Case Studies

In this section, we present our evaluation of JniFuzzer. We first detail our
methodology (Section 5.3.1) and then we discuss how we used JniFuzzer

to find potential vulnerabilities in real world applications (Section 5.3.2).

2We followed the stepsinhttps://github.com/ele7enxxh/android-afl to have
an Android working version of AFL.

119

https://github.com/ele7enxxh/android-afl

5 JniFuzzer: Fuzzing Android Java Native Interfaces

5.3.1 Methodology

We obtained our data set from AndroZoo [84], selecting APKSs observed in
the Google Play store in 2017. We then selected applications with at least
one native method —i.e., applications containing at least on native library.
This resulted in a data set of 29,547.

We then selected which JNI functions to fuzz. The most interesting na-
tive methods are those reachable by external inputs from Java. Indeed,
finding a bug in a native method has a higher impact if it can be triggered
by a normal user. To this end, we performed a data flow analysis using
FlowDroid and looking for flows to the JNI functions from user/external
input sources. Note that JniFuzzer works independently from the data
flow analysis, which is only used to retrieve interesting targets to fuzz.
This step resulted in 4,171 APKs.

We ran JniFuzzer on different Android emulators, depending on the ISA
of the library. Each emulator was running Android Marshmallow with 2
CPUs and 2GB of RAM. The emulators were deployed on two servers: one
32-core with 250GB of RAM and one 16-core with 125GB of RAM.

Our prototype does not implement the whole jni.h header and cannot
handle native methods which uses an API that we did not mock. Cur-
rently, we only provide support for basic primitive types and partial sup-
port for strings. Unfortunately, this limits the number native methods that
we can currently test. Neverthless, we were able to test 69 native meth-
ods: 68 with integer-only signatures and 1 with an integer-string signa-
ture. These native methods were found across a total of 34 applications®
(See Table 5.2 for a breakdown).

*Not all the native method of each application were fuzzed, but only those one that our
framework could handle.

120

5.3 Fuzzing Android JNI: Evaluation of Case Studies

#Native Method Fuzzed | #Apk Analysed | #Fuzzing Timeout | #Crashes
69 | 34 | 30 mins |3

Table 5.2: We report the raw numbers of our analysis. We could successfully anal-
yse a total of 69 native methods we found in 34 different APKs. Each
native method was fuzzed for 30 minutes and 3 of them crashed.

5.3.2 Analysis Results

We report the results of our analysis in Table 5.2. We successfully analysed
69 native methods from 32 different applications. We successfully fuzzed
each native method for 30 minutes. In these 30 minutes, we could verify a
total of 3 crashes. We then closely examined each crashed native method.
First, we downloaded the analysis report. This report contains all the AFL
information about the crash, as well as a copy of the native library con-
taining the method being fuzzed. We then used a reverse engineering tool
(e.g., IDA or Ghidra) to look at the decompiled source code of the library
and we inspected the tested native method. In all cases we confirmed the
presence of a potential bug with security implication.

In the following paragraphs, we provide a detailed overview of our
findings.

Underconstrained Read. You can find the code of this native method
in Listing 5.3.1. The problem of this function can be seen in Line 6. Here
input is used as an index for jobArr. However, there are no checks on
the boundary that can be indexed, exposing this native method to a bug
which can result in a security vulnerability. In particular, by controlling
input, an attacker can explore the program memory space looking for
valid pointers. Providing input so that buf and buf [4] are valid pointers,
result is set to the value of buf[4] at index 416. The result is finally

returned, potentially containing sensitive values.

121

Gk WN =

5 JniFuzzer: Fuzzing Android Java Native Interfaces

int ff_getRawRate (JNIEnv xenv, jobj job, int input) {
int result;
_DWORD #buf;

doInfo ("=== ff_ getRawRate");
buf = &jobArr[542 % input];
if (buf[4])

result = x(bufl[4]+ 416);
else

result = 0;

return result;

Listing 5.3.1: Arbitrary Read

int ff_setStdRate (JNIEnv *xenv, jobJj job, int inl, int in2) {
doInfo ("=== ff_ setStdRate");
JjobArr[542 % inl + 8] = in2;
return 0;

Listing 5.3.2: Arbitrary Write

Arbitrary Write. Consider the native method in Listing 5.3.2. Here the
bug is in Line 3, where jobArr is accessed without any check. In this case,
an attacker can use inl to select a memory area and write in2 to it. This
has security implications as a malicious user could take control over the

program execution.

Arbitrary Read. Another bug allowing reading arbitrary memory loca-
tions is shown in Listing 5.3.3. This JNI method is part of a calendar li-
brary and it is used to get the number of days in a specified month. The
days are stored in solarcal, which maps the month to its number of days.
The bug is in Line 12, where solarcal is accessed with an unconstrained

122

1

5.3 Fuzzing Android JNI: Evaluation of Case Studies

int GetMonthDay (JNIEnv *env, Jjobj Jjob, int year, int month)
{
int result;
int leap;

if (year == 1582 && month == 10)
return 20;

leap = getleap(inl);
if (month ==)
result = leap + 28;
else
result = solarcal[month - 1];
return result;

}

Listing 5.3.3: Arbitrary Read 2

index month. This effectively enables a memory leak, which could have
security implications.

We further investigate to see if we were able to trigger the bug directly
from the Android application. We manually reversed the APK and with
the help of our previous flow analysis, we identified the call site for this method.
We verified that there is a check preventing month to be greater than 12.

However, developers forgot to check for negative indices.

Buffer Overflow. Listing 5.3.4 shows another interesting bug. The bug
is spread across multiple lines (Line 6, Line 10 and Line 14). Again, the
buffers are accessed without checking the boundaries. In particular, con-
trolling in2, an attacker can read arbitrary memory locations. Moreover,
note that st rcpy is used to copy the bytes at index in2 of another buffer
into buf. This could lead to a buffer overflow. For instance, consider Line 14;
if YearBornStrl[in2] is a controlled memory location, buf can be over-

flown leading to stack-based buffer overflow.

123

5 JniFuzzer: Fuzzing Android Java Native Interfaces

jstring LunarStr (JNIEnv *env, jobj Jjob, int inl, int in2) {
char+ buf[0x14];
if (inl) {

switch (inl) {
case 1:
strcpy (buf, YearBornStr2[in2]);
break;
case 33:
strcpy (buf, KingList[in2]);
break;
}
} else {

strcpy (buf, YearBornStrl[inZ2]);
}

return env->NewStringUTF (env, buf);

}

Listing 5.3.4: Buffer Overflow

Discussion and Future Work. In this evaluation, we showed that Jni-
Fuzzer can successfully find potential vulnerabilities in real world appli-
cations. However, JniFuzzer cannot automatically verify that the vulnera-
bilities are exploitable from Java (Section 5.5).

An interesting research direction consists of filling the gap between na-
tive code and Java. In particular, it would be valuable to explore whether
the native method can be executed from Java with the input received from

the fuzzer.

5.4 Related Work

There have been numerous applications of fuzz testing the Android OS
and Android apps. AppsPlayground [54] fuzzes Android apps via intelli-
gent GUI exploration. IntentFuzzer [92] and DroidFuzzer [93] specifically

124

5.5 Limitations and Future Work

target intents and intent-filters, respectively. Buzzer [94] targets the Binder
protocol to find vulnerabilities in Android system services. While IoT-
Fuzzer [52] aims to find memory corruption vulnerabilities in IoT devices,
it relies on protocol information extracted from the devices” companion
Android apps. Fuzzing tools that are guided intelligently rely on infor-
mation from other analysis tools — e.g, IntentFuzzer relies on FlowDroid
while AppsPlayground and IoTFuzzer rely on TaintDroid. While some
of the tools above will detect faults emanating from native components,
they are likely to ignore important paths that flow through native compo-
nents due to incomplete information from the tools they are built on. We
compliment these approaches by specifically testing native components,

ensuring that no important libraries are missed.

5.5 Limitations and Future Work

In this section, we present the limitations of JniFuzzer and we discuss pos-

sible future direction to our line of work.

Stateful JNI Functions. In some cases, executing a JNI method in isola-
tion is ineffective. For example, some method may return early with an
error code if certain data structures are not correctly initialized. Here, Jni-
Fuzzer will fail to explore other paths. A potential solution is to extract
a backward slice from the application call graph starting at the target JNI
method. One can then execute the Java method contained in that slice, in
an attempt to simulate a realistic execution flow. This execution should
result in the correct context being present during the fuzzing of the target
method.

125

5 JniFuzzer: Fuzzing Android Java Native Interfaces

Trigger Bugs From Application Level. While JniFuzzer can effectively
find bugs in JNI methods, we are not able to exhaustively confirm whether
a crash can be triggered from the Java environment. We rely on a prelimi-
nary flow analysis to highlight flows sinking to the tested method, which
suggest that a bug could be triggered from external input. However, this
is not sufficient as taint analysis can introduce false positives.

A future direction for this research is to extend JniFuzzer to automati-
cally trigger the crash in the application whenever possible. To this end,
one can use a combination of symbolic execution and program slicing,
similar to Intellidroid [95], to confirm that the generated input can reach
the JNI method.

JNI Environment Models. JNIexposes APIs viaa JNIEnv object. Success-
ful execution of a JNI function requires mocking these APIs as thoroughly
as possible. Android implementation of JNI comes as part of the Android
Runtime. Therefore, the mocks need to be as close as possible to the origi-
nal implementation. Currently, our PoC implementation of JniFuzzer only
supports simple interactions with JNIEnv, which prevents us from finding
bugs involving heavy use of INIEnv APlIs.

To build on our work, one could extend JniFuzzer’s mocked environ-
ment by automatically generating stubs from the API implementations in

the Android source code.

Fuzzing Limitation. Due to lack of source code, we are forced to adopt a
black-box approach which prohibits us from taking advantage of powerful
gray-box fuzzers such as AFL [23]. In fact, we could not use AFL's QEMU
mode as we were running our analysis on Android emulators. JniFuzzer
currently integrates AFL in “dummy mode” —i.e., generating random in-
puts without guidance. Future extensions could mitigate this limitation

implementing the same approach as afl-dyninst [96], where binary instru-

126

5.6 Work Outcome and Discussion

mentation is used to instruct AFL. This would enable gray-box fuzzing
which would increase code coverage.

While a gray-box approach might be more effective at exposing danger-
ous bugs, a blackbox one might be more appropriate for certain use cases,
such as dependency analysis. In fact, in this scenario, rather than applying
a gray-box fuzzing approach, one might as well use proper static analysis
dependance determination with data flow analysis. However, these tech-
niques are heavyweight as opposed to the simplicity of a blackbox fuzzer.
Moreover, we note that JNI methods are typically small and, therefore, a
simple blackbox strategy might be enough to show data dependency. We
further explore the idea of detecting data dependency in Chapter 6.

Another limitation is that JniFuzzer only supports a limited set of types,
i.e., primitive numerical types and strings. Supporting more generic types,
such as objects, is challenging, but could be complemented along the lines
of Darko Marinov’s tool Korat [97].

5.6 Work Outcome and Discussion

The analysis of native code is still one of the biggest challenges for the
analysis of Android applications (Section 1.1.3). The goal of JniFuzzer was
to provide a tool that could ease the effort of analyzing native code and
expose security bug lurking in there (Section 1.2). We developed a new
approach that directly targets Android JNI, applying a black-box fuzzing
strategy to methodically exercise JNI functions (Section 5.1). One of the ad-
vantages of a black-box is that JniFuzzer does not require the application
source code, which is usually not available to the analyst (Section 1.1.3).
Another challenge was to provide an easy to use tool that is effective in
practice. To this end, we developed a whole framework around JniFuzzer

that provides an easy to use interface for the tool (Section 5.2). Not only

127

5 JniFuzzer: Fuzzing Android Java Native Interfaces

this provides an easy to use interface, but it reduce the time of the analysis.

While JniFuzzer is still a proof of concept, we could assess its efficacy in
our evaluation (Section 5.3). JniFuzzer found 3 possible security bugs in
3 different applications, that we could easily analyze and verify thanks to
the web interface. While JniFuzzer is still a work in progress, we think that
can give room to further researchers to refine the approach and extend it
as we discuss in Section 5.5.

128

TaintSaviour

Existing state-of-the-art taint trackers have limited to no support for na-
tive code. The native interfaces present a blind spot for taint trackers, who
are unaware of how to propagate the taint upon the invocation of these in-
terfaces. The underlying problem is that these tools only reason about one
language, Java, and the interfaces reference code written in C/C++. This
problem is similar to that of dynamically loaded code, where the analysis
cannot proceed because that code is not included in the app.

Recent research has focused on solutions to this challenge. Artz S. and
Bodden E., developed StubDroid [98], a system based on taint analysis
to automatically generate summaries for Android framework methods.
Unfortunately, the underlying taint analysis does not consider the native
code, which is once more left out. An approach developed independently
and at the same time as ours, which targets JNI directly, is JN-SAF [99].
JN-SAF uses symbolic execution to generate summaries of native library
methods inheriting all its limitations, and failing to model larger libraries.

In contrast to previous works, we propose a new dynamic approach
to generate summaries for Android JNI methods. To this end, we imple-
mented TaintSaviour, proof of concept built on JniFuzzer that uses black-
box fuzzing of methods to produce a summary. We then support our
idea with a preliminary evaluation, showing that TaintSaviour can work
in practice.

129

6 TaintSaviour

This chapter is organized as follows. In Section 6.1, we start introduc-
ing our approach. In Section 6.2, we detail TaintSaviour’s implementation
and, in Section 6.3, we present our preliminary evaluation of TaintSaviour.
In Section 6.4, we then discuss work related to ours and, in Section 6.5, we
discuss limitations of TaintSaviour and future directions for this research.

Finally, we conclude with a discussion of the work outcome in Section 6.6.

6.1 Data-flow Analysis for Android JNI

In this section we introduce our approach to summary generation for An-
droid JNI. We first introduce the problem we are trying to solve (Sec-
tion 6.1.1). We then describe techniques to discover Input/Output depen-
dencies of a program (Section 6.1.2) and we conclude detailing the core of
our approach (Section 6.1.3).

6.1.1 The Need for Android JNI Summaries

Android JNIs are defined as stubs in Java and then implemented in the
C/C++ counterpart. An APK with native code includes a shared library
containing JNIs implementation. A data-flow analysis needs to have the
capability to switch context between Java and C/C++ or it would miss rel-
evant flows. For example, consider Figure 6.1. The variable x gets tainted
on Line 5 of the Java snippet. It flows to the native method £, which re-
turns it unmodified. This return value finally reaches the sink in Line 7.
A data-flow analysis only operating on Java would miss the flow, as it
has no information on how the taint should propagate in the native code.
Therefore, a taint-tracker needs a model instructing it what to do with the

taint.

130

6.1 Data-flow Analysis for Android JNI

1 public native f(int x0, int x1); 1 extern C JINIEXPORT jint

2 aoa 2

3 public onCreate(...){ 3 JINICALL

4 3 4 Java_com_example_f(jint x0, jint x1){-4
5 1<1‘nt x = source(); 2/; if(x0 == 42) retw
6 int res = fWelse return x1;

7 sink(res); 7} 5

8 } 6

Figure 6.1: Flow through JNI. A variable is tainted in the Java snippet (on the left)
and propagates to native code (on the right). The same variable is then
return back to Java, where it ends up in a sink.

6.1.2 Input/Output Dependency Analysis

Understanding the relationships between input and output variables of a
program can be done in different ways [100]. One way relies on manual
analysis. In this scenario, an analyst needs to read the program documen-
tation or ask the program developers for insight. Unfortunately, this does
not scale and any manual approach inevitably reduces the effectiveness of
the analysis.

It is possible to derive Input/Output dependencies automatically. In
particular, a mix of static and dynamic analysis approaches can be used.

Static Approaches. Static approaches construct a program dependency
graph to determine which inputs influence a program output for each in-
put [101, 102]. Their advantage is that they can exhaustively retrieve all
the dependencies. However, they generally over-approximate the depen-

dencies, introducing false positives.

Dynamic Approaches. White-box dynamic approaches can execute the
program and maintain traces from which Input/Output relationships can
be derived [103, 104]. When the source code is not available, black-box
fuzzing approaches can determine Input/Output relationships by varying

only a single input at a time and observing changes in the output. The ad-

131

6 TaintSaviour

vantage of dynamic analysis is that the relationships found are real. How-
ever, it is generally unfeasible to find all of them as exhaustively testing all
plausible inputs is not possible.

6.1.3 A Black-box Approach

Our final goal is to generate summaries of methods that data-flow analysis
can use to enhance its precision. Differently from other works [98, 99], our
approach consists of executing the target method and using Input/Out-
put dependencies to model taint propagation. If we see a method as a
black-box routine, by observing how the inputs affect the outputs, we can
decide whether and how to remove or propagate a taint. We assume pure
functions and we introduce the following definitions:

Definition 7. We define the pure function f : [* — O* as a deterministic

function, where I* is the input space and O* the output space.

Definition 8 (input). We define input as the vector I = (ig,i1,...,1n) of
variables that may affect a method execution. This includes anything that
the method has access to (e.g., global variables, file system, etc.).

Definition 9 (output). We define output of a pure function f : I* — O*
as the vector O = (0o, 01,...,0m) of outcomes a given method produces
given an input. This includes anything that the method can modify (e.g.,

global variables, file system, etc.).

Definition 10 (Dependency). Given a pure function f : I* — O* and two

inputs, I = (io,...,}j,...,in) and I’ = (ig, ..., 1,...,1}) both € I*, such

that i, = i; for z # j, and ij # 1], then Jk such that if:
f(I) = (00y ...y 0Ky oy O) AF(I') = (0gy ..., 01y ..y 05) A Ok # Of

then we say that oy depends on i;.

132

6.1 Data-flow Analysis for Android JNI

We recognize four relevant scenarios:
1. Taint Propagation: the taint propagates from an input to an output.
2. Taint Killing: the taint stops propagating through the code.
3. Native Code Sink: a sink is found in native code.

4. Native Code Source: a source is found in native code.

Taint Propagation. Consider the following example:

int sum(int x, int y) {
return x+y;

}

Here, the input I is composed of x and y, while the output O of the re-
turn value (r) of the method. If we execute the method whilst fuzzing
the input and we observe the output, we can see there is a dependency
between them. Indeed, if we fix y and fuzz x, we see that x keeps chang-
ing, suggesting v depends on it. Similarly, varying y and fixing x yields
a dependency between y and r. Therefore, we can derive the following

summary, where T(x) means that x is tainted:

This summary replaces sum entirely with respect to the semantics of taint
propagation. An analysis can then query the summary to know how to
propagate the taint.

Taint Killing. Consider the following example:

int sum(int x, int y) {

133

6 TaintSaviour

x = 42;
return x+y;

}

In this case, one of the inputs, x, is overridden by a constant. Therefore, if
we fix the value of the other input, y, and fuzz x, the output is never going
to change. The input y and the output are dependent, hence we can derive
the following summary:

Tx)=>r
T(y) = T(r)

In the first rule, x is tainted implies that r is not, effectively killing the taint.

Native Code Sink. There can be situations where a sink lies in native
code. Consider the following code:
int sum(x, y) {

log(x);

return x+y;

}

This code uses the function 1og to log the value of x. If x is tainted and 1og
is a sink, then we should be able to detect a flow. We can still use our black-
box approach for these situations. Indeed, if we consider the sink 1og as
part of the outputs, we can see if the input affects it. We can achieve this
by monitoring calls to this function, looking for any dependency between
the inputs and any parameter of that function. For instance, the input
consists of x and y and the output of the return value (r) and the sink
log (skp). Tracing the execution of sum, we observe that variation of x
reflects consistent variations of how log is invoked. We can then observe
a dependency, meaning a flow is found. Therefore, the following model

can be derived, where Flow(x, m) means that there is a flow from x to the

134

6.1 Data-flow Analysis for Android JNI

sink m:

T(x) = Flow(x, sko)
T(x) = T(r)
T(y) = T(r)

In this case, tainting x has two effects. A flow to log is detected, and the

taint propagates to the returning value.

Native Code Source. In this case, we consider taints generated within
the native code. For example, examine the following code:
int sum(x, y) {

z = source () ;

return x+y+z;

}

The variable z comes from a source. Therefore, we expect the return value
to be tainted if z is tainted. Considering the source method as one of the in-
puts (sto) for the black-box analysis, we can see if it affects any output. In
particular, we can hook source and override it to produce random values
that we control. In the example, we can see that by fixing x and y, dif-
ferent results produced by source reflect in dependency with the output.
Therefore, we can deduce the following model:

sto = T(r)
T(x) = T(r)
T(y) = T(r)

Here, the first rule generates a taint if a dependency is found between

source and the returning value.

135

6 TaintSaviour

Summaries Generator

Generate

Inputs Execution . Outputs | Summmaries

i return value Summaries

arameters
) P Generator
1 42 :
312 100 <
Executor
' Summaries

/|
/|
i : ~|

Sources’ Sinks’

hooks hooks

Figure 6.2: TaintSaviour system overview. In Phase 1, the inputs are read and con-
verted from a fuzzer. In Phase 2, the native method is executed and
the output are monitored. Finally, in Phase 3, a summary is generated.

6.2 Implementation

We built TaintSaviour as a plugin for JniFuzzer (see Chapter 5). As shown
in Figure 6.2, TaintSaviour works in three different phases:

1. Phase 1, read the fuzzing value and convert it to fit the inputs.

2. Phase 2, execute the native method, monitor the outputs, and gener-
ate an Input/Output trace.

3. Phase 3, generate a summary based on the Input/Output trace.

In this section, we illustrate the implementation of these phases. In Sec-
tion 6.2.1, we discuss how TaintSaviour reads the fuzzer generated values
and uses them to fuzz the respective input (Phase 1). In Section 6.2.2, we
detail how TaintSaviour executes the native method and monitors the out-
puts (Phase 2). In Section 6.2.3, we further detail our hooking system and

136

6.2 Implementation

how we use it to detect sources and sinks. Finally, in Section 6.2.4, we

describe how TaintSaviour generates the summary.

6.2.1 Phase 1: Getting Values for the Inputs

TaintSaviour is a plugin of JniFuzzer and therefore it inherits its modu-
larity benefits, enabling us to implement different fuzzing strategies. To
fuzz numerical methods, we developed two strategies that generate val-
ues from a normal and uniform distribution. To handle types other than
numerical (e.g., strings), we rely on AFL [23].

TaintSaviour reads values from a fuzzer and converts and delivers them
to the chosen input. The fuzzer serializes the values as a byte stream,
which TaintSaviour reads and converts to the type of the input being tested.
Consider, for example, a fuzzer that generates integer numbers and an in-
teger input. Being aware of the native method signature, TaintSaviour
reads the byte stream and uses a function (e.g., atoi) to convert it to the
proper type. Finally, we log the converted input as part of the Input/Out-
put trace. Currently, TaintSaviour supports numerical primitive types and

strings.

6.2.2 Phase 2: Execution and Output Monitoring

While TaintSaviour relies on JniFuzzer to execute the native methods, it
needs to select the input to test and map it to each output. TaintSaviour
assigns a key index to each input and output, and fuzzes the inputs, one
by one, for a given time, while fixing the value for the other. During this
process, TaintSaviour monitors the values of each output, matching them
with the fuzzed input and generating a trace. A trace consists of a vector
where at index zero, we store the index of the fuzzed input and at index
i+ 1, we store the values of the iy, input or output. For example, consider

the following native method, where puts is a sink:

137

6 TaintSaviour

jint log_native (jstring str) {
puts (str);
return 1;

}

In this case, the input consists of the method parameter while the output

of the return value and the sink. A possible trace looks like:
[fuzzedingex, Str, retyqiue, puts] — [0, HelloWorld, 1, HelloWorld]

The result of this phase is a list of traces that TaintSaviour then uses to

generate a summary.

6.2.3 The Hooks System

TaintSaviour’s summaries consider sources and sinks in native code. We
treat sources and sinks as part of the input and output, respectively. To
summarize native methods with sinks, we monitor the sink definitions,
observing if the currently fuzzed input shows a dependency with the pa-
rameters, or any other inputs of the sink. We treat sources in an orthogonal
way. We modify their behavior by integrating the fuzzer’s produced val-
ues into their outputs, for example, modifying their return values.

To observe and modify source and sink methods, we developed a hook-
ing system. We use library preloading to load a library containing the
hooked functions. In the following two paragraphs, we show two exam-
ples of a source and a sink hook.

Source Hooks. A source hook modifies the outputs of the source method
to be random while respecting its contract. For example, consider the ex-
ample in Listing 6.2.1, where we show a C-like pseudo-code for the source
get_sensitive_integer. The first step of the hook is to get a reference
to the real implementation of the source (Line 4). As we mentioned earlier,

138

B~ W -

— O O 0N oGl

[—

6.2 Implementation

static int (*real_get_sensitive_integer) (int) = NULL;

int get_sensitive_integer (int wvalue) {
real_get_sensitive_integer = auto get_real ("
get_sensitive_integer");

if (isInputFuzzed("get_sensitive_integer")) {
return getfuzzerValue();

}

return real_get_sensitive_integer (value);

}

Listing 6.2.1: Source Hook Example.

we treat sources as if they were part of the input. Therefore, we need to
check if the source is the input currently being fuzzed (Line 6). If it is, we
then override its return value with the value from the fuzzer. Otherwise,

we call the original implementation (Line 10).

Sink Hooks. A sink is part of the output in TaintSaviour analysis. A
sink hook observes how the sink parameters (or any other input) vary un-
der TaintSaviour execution. For example, consider Listing 6.2.2, where we
show a hook for the sink puts from libc. In this example, we are inter-
ested in the sink parameter message (the only input of the puts function).
First, the hook obtains the index key of the currently fuzzed input (Line 6).
Second, we log a trace, for the input index, with message as one of the out-

puts (Line 7). Finally, we invoke the real implementation of puts (Line 9).

6.2.4 Phase 3: Summary Generation

TaintSaviour uses the Input/Output traces to generate summaries for data-

flow analysis. Our goal is to find dependencies between input and output

139

SOOI U k= WN -

—_

= W N =

6 TaintSaviour

static int (xreal_puts) (const char xmessage) = NULL;

int puts (const char xmessage) {
real_puts = auto get_real ("puts");

int input_index = getFuzzedIndex();
log_trace (input_index, message)

return real_puts (message) ;

}

Listing 6.2.2: Sink Hook Example.

jint nativeSink (jstring value) {
puts (value); // sink
return 1;

}

Listing 6.2.3: Native method with sink.

and provide rules for taint propagation, generation and suppression. We
parse the traces, look for a dependency (recall from Definition 10) and pro-
duce a JSON summary. A dependency implies that given an input and an
output, there are at least two distinct values of the input resulting in two
distinct values of the output. Consider, for example, the native method
in Listing 6.2.3. Suppose puts is a sink, this method’s input and output
are respectively: I = (paramp) and O = (ret,, sink;), where param, is
the value parameter of nativeSink, ret, is the return value, the constant
1, and sink; is the method puts. In Table 6.1, where we report part of an
execution trace for this method. Since there are at least two different val-
ues for the input paramy, leading to different values for the output sink;,
we have a dependency between them. On the other hand, there is no de-

pendency between paramg and ret,. Because sink; is a sink, the resulting

140

N O GO Ww N

6.2 Implementation

int nativeSink (String param_0)
Inputs Outputs
paramy ret, | sink;
durhfied495jd94fj | 1 durhfied495jd94fj
durhfied49+jd94fj | 1 durhfied49+jd94fj
durhfied493Zd94fj | 1 durhfied493Zd94fj

du 1 du
durh 1 durh

Table 6.1: Execution trace of nativeSink execution. A dependency shows be-
tween paramg and sink;, indicating a possible flow.

{
"int nativeSink (String param_0)": [{
"input": "param 0",
"output": "sink_1",
"flow": true
H
}
Listing 6.2.4: JSON Model for nativeSink
model is:

T(paramy) = Flow(paramy, sinky)

This summary corresponds to the JSON in Listing 6.2.4. Each JSON entry
is a model for a specific signature, which is used as a key to access the
model. The signature entry consists of a list of Input/Output dependen-
cies. If the boolean f1low is true, it means that a flow is found, which is the
case for nativeSink.

141

6 TaintSaviour

6.3 Testing and Preliminary Evaluation

In this section, we show preliminary results that demonstrate that TaintSaviour’s
approach is viable in practice. We start by showing and discussing how
TaintSaviour can be used to model the math library from 1ibc (Section 6.3.1).

We then provide a preliminary evaluation of how our hook system works

to model sources and sinks in native code (Section 6.3.2). We then integrate
TaintSaviour with FlowDroid and discuss how the former can improve the
results of the latter (Section 6.3.3). We finally show a case study of how we

use TaintSaviour to model a JNI method of an app from the Google Play

Store (Section 6.3.4).

6.3.1 Models for Mathematics Functions

In this section, we show how TaintSaviour can be used to generate models
for the standard math library math.n.
We ask the following research questions:

1. Does our approach work in principle? We conduct a preliminary
evaluation and consider stateless Input/Output functions. We verify

that our system generates meaningful summaries in this scenario.

2. How do the results vary depending on the distribution of the input?
We use different fuzzing strategies and compare the results.

Methodology. To test functions in the Math library in the context of JNI,
we developed an Android application, wrapping math functions with na-
tive methods. We also introduce a new function, const, that given an inte-
ger always returns the same constant value. We report the signatures in Ta-
ble 6.2. Apart from const, all functions in Table 6.2 have Input/Output

dependency. Therefore, we expect TaintSaviour to generate summaries

142

6.3 Testing and Preliminary Evaluation

Name | Return Type ‘ Parameter Types H Name ‘ Return Type ‘ Parameter Types

acos double double asin double double
atan double double atan2 double double, double
cos double double cosh double double
sin double double sinh double double
tanh double double exp double double
log double double loglO | double double
sgrt double double fmod double double, double
floor | double double const double double

Table 6.2: Math library function signatures.

that propagate a taint for all the function with a dependency and that kill
a taint for const.

We fuzz each function for 60 seconds using three input generation strate-
gies: normal distribution, uniform distribution, and AFL [23]. We per-
formed our analysis on a pool of x86_64 Android emulators, running An-
droid Marshmallow (android-23 API) with 1,024MBytes of RAM.

Input from a Normal Distribution. We generated inputs following a nor-
mal distribution with mean 0 and standard deviation 2. We chose these pa-
rameters to increase the probability of producing decimal numbers, both
positive and negative, with values closer to 0 more likely to be generated.
TaintSaviour could find all the expected dependencies and determined
const’s return value to be input-independent.

Input from a Uniform Distribution. We generated inputs following a uni-
form distribution between -1,000 and 1,000. With this experiment, our goal
was to evaluate whether TaintSaviour can detect the expected dependen-
cies in a larger dataset. Once more, TaintSaviour generated the expected

summaries.

143

6 TaintSaviour

AFL-generated Input. For this experiment, we used AFL to generate the
inputs. Our goal was to evaluate whether we can reuse state-of-the-art
fuzzing strategies. TaintSaviour met the expectations in this scenario as

well.

Discussion. In this evaluation, we used the math.h library, extended
with eonst, as ground truth, showing that our approach is, in principle,
effective. We expected to find a dependency for every function but const.
We enumerated all inputs and outputs, respectively parameters and re-
turn values. As expected, the only summary without dependencies (i.e.,
the taint does not propagate) is the one for const. Every other summary,
instead, showed a dependency —i.e., at least two different inputs are gen-
erating two different and consistent outputs. Precisely, if one parameter
is tainted, then the return value is tainted too. This result showed that
TaintSaviour could generate proper summaries, proving our approach is
worth exploring further.

Although all the input generation strategies proved successful at find-
ing Input/Output dependencies, we noticed a performance discrepancy.
For instance, two of the functions we modeled are acos (Figure 6.3) and
cos (Figure 6.4). First, consider acos; the domain of this function is de-
fined in the interval of (—1,1). Amongst the three strategies, the normal
input distribution is, not surprisingly, the best fit (Figure 6.3a). Indeed,
the generated values concentrate around the distribution means which,
in our case, was zero. The uniform distribution proved to be the worst
choice (Figure 6.3c). The values spread on a larger interval and therefore,
they are less representative. AFL comes in the middle (Figure 6.3b); the
inputs gather around the zero, but the more we get closer to the bound-
aries, the more they scatter. This result happens because of the seed choice
for AFL. AFL starts generating values around those seeds. In our case,

we had zero, negative, and positive floating-point values (falling out of

144

6.3 Testing and Preliminary Evaluation

00
100 075 -05 025 000 025 05 075 100

(a) acos normal distribution.

Qo0 075 -0 025 000 025 05 075 100

(¢) acos uniform distribution.

00 ‘
100 075 050 025 000 025 050 075 100

(b) acos AFL.

100 -075 -050 -025 000 025 080 075 100

(d) acos function plot.

Figure 6.3: Fuzzing Strategies for acos. Fit of the acos function with input gener-

ated with normal, uniform and ALF strategies.

145

6 TaintSaviour

"e
]
PR

.
.
0s0 os0 i
B 1
. . - . [i
025, . 025 L l' L .
- . -
. :
om o .. :
. « * °
. : . .
HEA
os0 os0 :
Y
.- . '-n
100 100 ® . L] & . .
B I B B B T B S)

(a) cos normal distribution. (b) cos AFL.

B 10
:: | DR s 3
o7 s M ors
! s de e be . 1
oo ¢ B% g Y e o, { 050
3 R H e L
T 1 : St oz
. .
w ot ¥ s 8, - 000
L PR] HI
. . 0 : * -025
028 j . tet - s
[§f ¢
. H
050 .) H i 3 pe 1 050
H
.
075 s ! 3 14 075
M .
™ ? v ™
I T T B Y o s 0 5 0 s w1 2

(c) cos uniform distribution. (d) cos function plot.

Figure 6.4: Fuzzing Strategies for cos. Fit of the cos function with input generated
with normal, uniform and ALF strategies.

146

6.3 Testing and Preliminary Evaluation

the boundaries). Second, consider cos; this function is defined in R. The
normal distribution does fit the function in a specific interval but it fails to
explore more (Figure 6.5a). By contrast, the uniform distribution proved
to be the best choice, as it could explore a wider interval (Figure 6.5¢c). AFL
comes, again, in the middle (Figure 6.5b).

Which strategy to choose depends on the specific case. If nothing at all
is known about the function to test, or it deals with non-numerical inputs,
then AFL is the best option. On the other hand, if the input is numerical
and there is knowledge of the boundaries of the function, a uniform or
normal strategy can be preferred. If the function domain is defined within
a finite interval, then a normal distribution strategy should be used, while
if the domain is relatively large (e.g., (—oc0, +00)), a uniform distribution

is the best option.

6.3.2 Native Code Sources and Sinks

In this section, we show how TaintSaviour can generate models where
sources and sinks are in native code. To this end, we ask the following

research questions:

1. Can we use our approach to propagate taints generated in native
code?

2. Can we use our approach to model taints reaching native code sinks?

Methodology. We developed an Android application and implemented
twonative methods, nativeSource and nat iveSink, introducing a source
and a sink, in native code, respectively. In Listing 6.3.1 and Listing 6.3.2,
we show their implementation; in this example, we selected put s as a sink
and rand as a source. We used TaintSaviour to model those methods and

verified the summaries were meaningful.

147

—_ =
— OOV NONU R WN -

[
W N

O XOIN Uk WN -

—_
o]

11
12
13

6 TaintSaviour

void log_message (char xmsg) {
puts (msqg) ;
}

extern C JNIEXPORT jint
JNICALL
Java_com_example_nativeSink (JNIEnv =xenv,
jobject thiz,
jstring str) {
char *msg = env->GetStringUTFChars(str, false);
log_message (msqg) ;
return 1;

}

Listing 6.3.1: Native Code Sink Method

int source() {
return rand()

}

extern C JNIEXPORT jint
JNICALL
Java_com_example_nativeSource (INIEnv =*env,
jobject thiz,
Jjint value) {
printf ("received %d", value);
return source();

}

Listing 6.3.2: Native Code Source Method

148

6.3 Testing and Preliminary Evaluation

We fuzz the two methods for 60 seconds each, using AFL [23] to gen-
erate inputs. We performed our analysis on an x86_64 Android emula-
tor, running Android Marshmallow (android-23 API) with 1,024MBytes
of RAM.

Native Code Sink. For this experiment, the input and output were re-
spectively:

[={paramy}

O = {ret,, sink;}

where, paramy is the parameter str of nativeSink, ret, is the return
value, and sink; is puts (Listing 6.3.1). The results show a dependency
between paramy and sink;, meaning that if paramy is tainted then there
is a sink to puts in native code. However, there is no taint propagating
from the return value, as its value does not depend on any inputs. The

resulting summary is as follows:

T(paramy) = Flow(paramy, sinky)

Native Code Source. In this experiment, we wanted to verify whether
TaintSaviour could summarize native methods generating a taint. The in-
put and output were as follow:

[={paramy, sourcey}

O ={ret,}

Here param, is the parameter value of nativeSource, ret, is the return-
ing value, and sourcey is source —i.e., the defined source (Listing 6.3.2).
We found a dependency between sourcey and ret,, meaning that the de-

149

6 TaintSaviour

fined source affects the method’s return value. The return value and paramy
do not depend on each other, which TaintSaviour correctly infers by not

propagating the taint.

Discussion. The results confirmed that our approach is effective for mod-
eling situations where a native method generates a taint, or where it con-
tains a sink. As we previously mentioned, the underlying fuzzing strategy
has an impact on the accuracy of the approach. In particular, we are only
able to model dependencies reachable with our inputs in the given amount
of time.

The time variable has an important role when fuzzing. Fuzzing the
same function for 10 minutes can give different results that fuzzing the
same function for, say, an hour. In fact, the longer we fuzz a function, the
more likely we are to find a dependency, if any exists. Clearly, time is not
the only variable, and the diversity of the input generated by the fuzzer
have an impact as well. As we discussed earlier (Section 6.3.1), the gener-
ated input has an effect on how much output can be explored. However,
we are not interested in modeling the exact shape of the function we are
testing. Instead, our goal is to find input output dependencies, which is
an easier problem to solve. To find a dependency, it is enough to observe
one variation of output given different inputs and there is no need to find
all the instances where this variation occurs.

For this experiment, and in the time give, the AFL strategy was enough
and we could model everything. We showed that TaintSaviour works and
successfully summarizes microbenchmarks. However, as we discussed,
there might be cases where the fuzzer fails at exposing dependency. For
example, if a dependency is never triggered, TaintSavior would cause a
subsequent taint analysis to potentially have a false negative, as it would
fail to propagate the taint. Moreover, we considered stateless and deter-

ministic functions. This assumption is realistic in the case we are able to

150

6.3 Testing and Preliminary Evaluation

enumerate all possible input and output variables. In the specific, the state
of a function could be either modeled as an input or an output, and so can
the source of non determinism. However, this is currently a limitation of

our implementation as we discuss in Section 6.5.

6.3.3 FlowDroid and TaintSaviour

In this section, we evaluate how TaintSaviour models can integrate with
state-of-art taint trackers. We chose FlowDroid [3], as it is open-source and

widely used. For this evaluation, we explore the following:
¢ Our models enable native code taint propagation.
¢ TaintSaviour removes taints when required, avoiding false positives.
¢ Our models identify sources in native code.

¢ Our models identify sinks in native code.

Methodology. We implemented an Android application to test all those
use cases. Consider Listing 6.3.3; nativeSink and nativeSource are the
same native methods from Listing 6.3.1 and Listing 6.3.1 . We introduced
two more native methods, mirrorStringand killTaint. The former has
an Input/Output dependency, while the latter does not. Moreover, the
resulting Activity has a source (javasource) and a sink (sink) method
that we use for our testing purposes. We have four different situations to

test:

1. We invoke mirrorString with a tainted value and we send the exe-

cution result to the sink stub.

2. We invoke killTaint with a tainted value and we send the execu-

tion result to the sink stub.

151

OO XIS T = WN -

—_ =
—_

12
13
14
15
16
17
18
19
20
21
22

6 TaintSaviour

protected void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);
NativeMethods nm = new NativeMethods () ;

// Test taint propagation

String sensitive = javaSource();

String mirror = nm.mirrorString(sensitive);
sink (mirror) ;

// Test taint is suppressed

String sensitivel = javaSource();

String killed = nm.mirrorKillString(sensitive);
sink (killed) ;

// Test we have a source from native code

Integer sensitive2 = nm.sourcelInNativeCodeTest (42);

sink (sensitive2.toString());

// Test we have a sink in native code
nm.sinkInNativeCodeTest (javaSource());

Listing 6.3.3: Native Code Source Method

152

6.3 Testing and Preliminary Evaluation

Java Native .
Q Java Native
\(U mirrOrStM‘ng(*‘.) @O
(70\'+ Qﬁ‘ m‘irrorStr"\mg(*‘.)
PX +
% s,
f+ O/Fr
M .
o
(a) Flow_1 Native taint propagation. (b) Kill Native taint killed.

Java Native,

Java Native
A é nativeSink () f :..
V/QM

(¢) Flow_2 Native source. (d) Flow_3 Native sink.

o
S,
@

+

Figure 6.5: NI Taint Propagation Cases. We identified four main scenarios: (i) the
taint progrates via native code, (ii) the taint is killed in native code,
(iii) the taint is generated in native code, and (iv) there is a sink in
native code.

3. We invoke nativeSource and send its result to the sink stub.
4. We invoke nativeSink with values from our source stub.

The resulting application contains three distinct flows and one interrupted
flow as shown in Figure 6.5. We used TaintSaviour to model each native
method involved and report them in Table 6.3. We then modified Flow-
Droid to support JNI models and ran three flow-analysis with the follow-

ing configurations:
1. Default FlowDroid configuration.

2. FlowDroid extended with an over-approximating model for native
methods — i.e., if a native method is invoked with tainted values,

153

6 TaintSaviour

Native Method | Inputs | Outputs | Model

mirrorString | paramg ret, T(paramg) = T(rety)

()
killTaint paramg rety T(paramg) = ret,
nativeSource | paramg,sourcey | rety T(sourceg) V sourceg = T(rety)
nativeSink paramg rety, sinkg | T(paramg) = Flow(paramyg, sinkg)

Table 6.3: TaintSaviour Models for Native Methods. With param; we intend the iy,
parameter, while ret, is the return value of the method. sourcey is the
method source in Listing 6.3.2 and sinkg is puts from libc in List-
ing 6.3.1

then always taint the return value (Conservative).

3. FlowDroid extended with TaintSaviour models support.

In its default configuration, FlowDroid uses StubDroid [98] summaries
(see Section 6.4) and a set of taint wrappers. FlowDroid uses the EasyTain-
tWrapper when there is no summary. This wrapper contains a list of meth-
ods for which their return values and base objects are tainted if they are
invoked with tainted values. We developed the conservative taint wrap-
per as an extension of the EasyTaintWrapper.

Results. We ran the three experiments and compared the results. We re-
port the results in Table 6.4. To analyze the results, consider Figure 6.5.
FlowDroid alone did not find any leaks. FlowDroid with the conservative
taint wrapper found one flow out of three and introduced a false posi-
tive due to the inability of detecting when a taint is killed in native code.
Finally, FlowDroid with TaintSaviour’s summaries successfully found all

the expected leaks.

Discussion. The result of this experiment has confirmed that our ap-
proach is a viable solution to enhance the data-flow analysis of Android
native applications. With TaintSaviour’s summaries, FlowDroid found all

the native flows, without introducing any false positives.

154

6.3 Testing and Preliminary Evaluation

FlowDroid Config. ‘ TP/FP ‘ FN ‘ Description

Default 0/0 3 By default, FlowDroid cannot find
any leaks involving native code.

Conservative 1/1 2 1 out of 3 leaks are found and 1
false positive is introduced.

TaintSaviour 3/0 0 All and only the expected leaks are
found.

Table 6.4: FlowDroid Different Strategies Runs. Results of running FlowDroid with
three different strategies. In the microbenchmark, we expect to find a
total of 3 flows.

Not surprisingly, FlowDroid, with its default configuration could not
detect any flow. FlowDroid does its analysis on the Android application
Dalvik code —i.e., it considers only Java located in the APK. Therefore, it
needs taint wrapppers to propagate taints where the code is not available
at the Dalvik level, which is the case for native methods.

As expected, the conservative wrapper found the taint propagation flow.
However, it has no information regarding the native method behavior,
leading to the false-positive in our evaluation. The lack of information
about the native method behavior also prevents this approach from con-
sidering sources and sinks in native code. A workaround would be to add
all native methods as sources and sinks but this would drastically increase
the number of false positives in the results.

In contrast, our approach proved more effective. The Input/Output
dependencies behind TaintSaviour’s models provide enough information
about the method behavior. This information is then reused to instruct the
data-flow analysis. In particular, TaintSaviour’s models inform the taint
tracker of what happens to the inputs and outputs of the native method,

resulting in a more precise analysis.

155

6 TaintSaviour

6.3.4 Case Study On App from Google Play Store

In this section, we show how TaintSaviour works on a real application
we found on Google Play Store. The goal is to show that our approach
can scale beyond microbenchmarks. In this evaluation, we explore the

following:
¢ TaintSaviour enables taint propagation in real-world apps.

¢ We compare the result of taint analysis with and without TaintSaviour

summaries.

Methodology. For this experiment, we reused the same dataset we col-
lected for JniFuzzer (see Section 5.3). It consists of 29,547 apps containing
at least one native method from the Google Play Store. We performed a
taint analysis and selected apps showing a flow to a JNI method. This
resulted in 4,171 apps.

We narrowed down this set further, looking for an interesting applica-
tion to show case. In a first step, we ran a context-sensitive taint analysis
using Flowdroid extended with the conservative model for native meth-
ods —i.e,, if a native method is invoked with tainted values, then always
taint the return value; see Section 6.3.3. This step allowed us to iden-
tify applications with a potential flow going through native code. No-
tice that, a flow reported with this conservative taint wrapper is an over-
approximation and therefore could be a false positive. We then imported
this result into JniFuzzer framework. The framework allowed us to visu-
alize the flow and browse through the dataset.

We finally found a diving application, MultiDeco v4.0.4. From JniFuzzer
framework, we saw that a native method ! was part of a potential flow in-

volving the device id. We found this application to be interesting and we

l<com.*.x.Settings: java.lang.String ic(java.lang.String)>

156

N

O 0 N O O oW

11

6.3 Testing and Preliminary Evaluation

"<com.x*.x.Settings: java.lang.String ic(java.lang.

String)>": [{
"input": "param_ 0",
"output": "strcpy",
"flow": true
oA
"input": "param_ 0",
"output": "ret_value",

"flow": false

}H]

Listing 6.3.4: JSON Model for ic

verified that our PoC could work without any problem (see Section 6.5).
We then summarized that native method and looked for sinks to strcpy.
To this end, we ran TaintSaviour on a ARM android emulator running An-
droid Marshmallow with 2CPUs and 2GB of RAM. First, we verified that
our summaries were valid by manually reversing the native library byte-
code, confirming the quality of our model. We then used FlowDroid [3] for

a taint analysis, with and without our model, and compared the results.

Resulting Model. We ran TaintSaviour on the selected native method,
retrieving the summary in Listing 6.3.4. The summary yields 2 depen-
dencies. The first one is between ic’s parameter and strcpy, suggesting
an information flow to strcpy. The second dependency taints the return
values, as it depends on ic’s parameter.

We reversed the app’s native library to validate the summary. In List-
ing 6.3.5, we show a simplified version of the retrieved code. This code
uses the parameter imei to retrieve an installation code. At Line 5, it
is converted to a buffer, which is then copied to a global IMET variable

157

O X IONUTT = W

6 TaintSaviour

Jjstring ..._ic (JNIEnv <env, Jjobject obj, jstring imei) {
char *my_buf;
int len = env->GetStringUTFLength (imei);

my_buf = env->GetStringUTFChars (imei) ;

strcpy (&IMEI, my_buf);
const char *installcode = mic(&IMEI) ;

if (result) {
return env->NewStringUTF (installcode);

}

return result;

Listing 6.3.5: Reversed code of ic

(Line 7). Based on IMET, an installation code is then calculated (Line 8)
and returned to Java as a jstring.

We could verify the two dependencies reported in the summary for
ic. The return value is calculated based on the method parameter and,
therefore, they are dependent. Similarly, imei is directly used in strcpy

(Line 7), generating a sensitive information flow.

Taint Analysis. For this experiment, we ran two taint analyses: one using
FlowDroid’s default configuration and the other with our summary. We
report the result in Table 6.5. With TaintSaviour’s summary, FlowDroid
found two more sensitive information flows. One was from the source
getDeviceId to the sink strcpy. The other one was from the source
getDevicelId to the sink startActivityForResults. We inspected the
app’s Dalvik and verified that this extra flow is due to a taint propagating
via ic’s return value.

This experiment has shown that the TaintSavior approach is practical

158

6.4 Related Work

FlowDroid Config. | Result | Description
Default 2 distinct flows | FlowDroid found 2 flows.
TaintSaviour 4 distinct flows | We found the same leak as the

default configuration plus an
extra one from getDeviceId
to startActivityForResults
and a flow from getDeviceId
to strcpy.

Table 6.5: Result of using FlowDroid with and without TaintSaviour summary of
ic.

and can work on real apps. However, our implementation is still a proof
of concept.

6.4 Related Work

In this section we discuss related work to TaintSaviour. First, we explore
different approaches for generating method summaries (Section 6.4.1) and

finally, we present related work on Android native components (Section 6.4.2)

6.4.1 Method Summary Approaches

The IFDS framework provides a model and a uniform and polynomial
solution for data-flow problems [105]. The authors designed a dynamic-
programming algorithm, which reuses low-level method summaries to
improve efficiency.

Naeem and Lhotak [106] presented a way to generate summaries, which
however, are only meant to summarize aliases. Zuhu et al. [107] use a tech-
nique to automatically infer libraries” specifications based on the analysis
of the client program. They infer the smallest set of must-not-flow re-

159

6 TaintSaviour

quirements on library functions that are sufficient to ensure that the client
program is free from leaks. However, as they state, they require an oracle
to verify the generated specification, as the library code is not considered
at all.

Rountev et. al. [108] presented a way to summarize methods of a library.
First, they perform a data-flow analysis of the library. Second, they remove
redundant information from the flow-analysis results.

One recent work that fully automates summary generation is StubDroid [98].
StubDroid uses FlowDroid for preliminary data-flow analysis on the li-
brary bytecode, using the results to generate the summaries. The data-
flow analysis starts from each public method of the library, considering
different data sources (e.g., parameters, static fields, this object, etc.). Ac-
cesses to these access paths determine the conditions for taints propaga-
tion. Finally, StubDroid serializes the summaries as XML files, one per
class, enabling a client to load summaries on demand —i.e., when a library
method is invoked. Unfortunately, one of the limitations of StubDroid is
the lack of support for native code call. To this end, the authors provided
manual summaries. This solution is, of course, not sustainable if there are
many native invocations in the library, let alone if the application uses JNI.
TaintSaviour is specifically designed to work on native code and therefore
it could be used as a complementary of StubDroid. Furthermore, Stub-
Droid’s design focuses on Object-Oriented languages (i.e., Java for An-
droid). In contrast, our Input/Output approach provides an abstraction

layer above the programming language.

6.4.2 Android Native Components

The primary focus of prior work has been to sandbox native code to limit
the risk of malicious code hidden there [109, 110, 111]. Alfonso et al. [112]
performed a large-scale measurement across Google Play to estimate the

160

6.5 Limitations and Future Work

risk posed by native code in Android apps and used this information to
automatically generate native code sand-boxing policy. None of the ma-
jor Android static analysis tools support native code invocation: Flow-
Droid [3], IccTA [1], Amandroid [4], or CHEX [5]; nor does TaintDroid [113],
a dynamic taint tracker.

Closest to our work is JN-SAF [99], which uses static analysis and sym-
bolic execution to generate a model of the JNI framework. JN-SAF is com-
posed of two parts: JavaDroid, built on Amandroid and NativeDroid, built
on angr [114], a symbolic execution engine. NativeDroid generates JNI
method summaries using symbolic execution of native libraries. JN-SAF
inherits the limitations of symbolic execution: path and state explosion
during analysis of larger binaries. Additionally, as a static framework, JN-
SAF cannot handle libraries that use obfuscation techniques such as string
encryption and dynamic code loading, which do not hinder our dynamic,
black-box approach. We see the summaries generated by JniFuzzer as be-
ing complimentary to the NativeDroid component of JN-SAF.

6.5 Limitations and Future Work

Stateful Methods. The black-box approach described in Section 6.1.3 works
under the assumption that methods are side-effect free and that we can ex-
haustively enumerate all the inputs and outputs of a method. However,
without any knowledge of the method internals, we cannot always know
the input, or the output shape. Consider the code in Listing 6.5.1 as an ex-
ample. The method getAndUpdate returns the current value of the class
variable state and updates its value with the one of the parameter x. The
actual return value of getAndUpdate depends on the current execution
state and vary accordingly.

TaintSaviour is not aware of the internal state and would fail to sum-

161

IO UG WD

6 TaintSaviour

class Stateful {
int state = 0;
public int getAndUpdate (int x) {
int tmp = state;
this.state = x;
return tmp;
}
}

Listing 6.5.1: Stateful function dependency

marize getAndUpdate reporting no dependencies. When fuzzing the tar-
get method, TaintSaviour restarts the target method resetting its internal
state. Therefore, in the example the only ever explored value for the out-
put would be zero.

Similarly, TaintSaviour cannot say anything about the variable state.
In fact, it has a direct dependency from the input x, which cannot be de-
tected. Therefore a taint propagation through this global variable cannot
be properly summarized.

A possible solution to this problem would be to consider global vari-
ables as inputs and outputs. In the example, considering state as one of
the input to fuzz would show a dependency with the return value. Sim-
ilarly, when state is considered an output, we would observe a depen-

dency with the parameter x, resulting in state to be tainted.

Fuzzing and Technical Limitations. TaintSaviour’s analysis uses fuzzing
to discover dependencies. Fuzzing is known to be keen to false negatives
i.e., it can miss dependencies even when they do exist. This problem goes
back to the one of exploring all execution paths of a program (Section 2.4).
If a dependency is hidden in a path the fuzzer cannot reach then that de-
pendency is missed.

Another limitation of TaintSaviour is the inability to fuzz inputs other

162

6.6 Work Outcome and Discussion

than numerical primitive types and strings. Java Native Interfaces support
more complex types, including a C representation of Java Objects, pointers
and arrays. How to generate this sort of inputs is challenging and itself an
open problem.

We implemented TaintSaviour as a proof of concept and, as such, there
are technical limitations. First, TaintSaviour is limited by the JNI environ-
ment mocks supported by JniFuzzer. A fully functional implementation
would require to implement the entire jni.h header, providing meaning-
ful mocks for the exported API. This task requires a noticeable engineering
effort, which is out of the scope of this work.

6.6 Work Outcome and Discussion

Taint analysis of Android applications suffers from the presence of native
code (Section 1.1.3). In fact, native code is for the most part ignored intro-
ducing a considerable gab in the analysis. With TaintSaviour, our goal was
to fill this gab and provide a solution to this problem.

With TaintSaviour we introduced a new approach, based on black-box
fuzzing, which aims at creating summaries of Android JNIs (Chapter 6).
TaintSaviour summaries enable an analysis to identify flows through na-
tive code, as well as flows generating and ending there. We implemented
TaintSaviour as a plugin for JniFuzzer framework, which helped us over-
coming the technical challenges present when analyzing native code.

While TaintSaviour is still a proof of concept, we successfully carried
out a preliminary evaluation (Section 6.3). We could show that TaintSav-
ior is practical and that it effectively helps in exposing flows from, to and
through native code. To this end, we could found a case study where the
device identifier was propagating through JNI. TaintSavior summary en-

abled a taint analysis to detect this flow, which would otherwise go miss-

163

6 TaintSaviour

ing.

While the idea of creating summaries for methods is not new to taint
analysis, TaintSaviour is the first approach that uses a dynamic input/out-
put dependency analysis to identify flows propagation. We believe that
our research has the potential to scale up and open new avenue of research

for the analysis of Android native code (Section 6.5).

164

Conclusion

Android applications are a complex compound of different languages.
Their support for web technology and native code poses a serious chal-
lenge to their analysis. In fact, most analysis ignore this hybrid nature,
effectively introducing gaps in their results. In this thesis, we presented
novel techniques to assess the security of Android applications in the light
of their hybrid nature.

We began exploring Android Webviews and their strong interaction
with the web. In particular, we studied how JavaScript interfaces are used
and how they can become a threat to the final user if misused. This prob-
lem was not new to literature and existing research showed how JavaScript
interface can be dangerous if improperly used [69, 39, 71, 13]. While these
study acknowledged the risks involved in using JavaScript interfaces, they
were not exploring what is the actual damage that an attack could cause if
successful. We believed that this was a noticeable gap and, for this reason,
we developed BabelView (Chapter 3). With BabelView, we enhance cur-
rent static analysis techniques to consider JavaScript interfaces. Consider-
ing the hybrid web component in our analysis enabled us to understand
what JavaScript interfaces were actually doing and, therefore, we could
assess their security in a more granular way. In fact, not all these inter-
faces are dangerous and labeling an application as dangerous just because

it uses JavaScript interfaces is a lax over-approximation.

165

7 Conclusion

BabelView is not the only work that pointed out this gap in the state of
the art. More work has been carried out on Webviews at the same time Ba-
belView was being developed and afterwards [35, 74, 34, 36, 38]. Because
our work and all the work that followed, it is now clearer the importance
of having analysis that can tackle the web component of Android applica-
tions. With BabelView, we showed the state of Webview security, finding
10,808 potential vulnerabilities in 4,997 (Chapter 4).

After Webviews, we switch our focus on another hybrid component of
Android applications: native code. Native code is currently one of the
most challenging aspects to consider when performing an analysis. This
resulted in tools that marginally consider or totally ignore native code,
which is often listed as a limitation of the analysis.

Performing an analysis that considers native codes comes with different
challenges. First, there is the hybrid component. Android applications
are mainly written in Java and analyses are principally tuned for it. It not
trivial to implement a tool that can model the interaction among Java and
native code. Second, to analyze native code one needs to enter the realm
of binary analysis, which is notoriously complex (source code is a luxury
that in most cases is not available). Moreover, the fast changing Android
echo-system pose yet another challenge, resulting in tools that are now
outdated and unusable because the lack of maintenance and support.

Our wok on native code aims at filling this gap. We wanted to pro-
vide an easy to use framework that can be extended to support native
code analysis. We also wanted to provide a new approach that could in-
tegrate with existing state-of-art tools to enable native code analysis. To
this end we first developed JniFuzzer framewrok (Chapter 5). JniFuzzer
uses a black-box fuzzing strategy that directly targets Android native code
(JNI). One advantage of JniFuzzer is that it not tight to a specific Android
version. Moreover, we implemented it in an extensible way, enabling fu-

ture researcher to developed their analysis within the framework. We suc-

166

cessfully used JniFuzzer on real world applications and could find some
potential security issues in their native libraries (Section 5.3).

One interesting research question opened by JniFuzzer is whether a bug
found in native code could be triggered from the application level (i.e.,
Java). As we discussed in Section 5.5, the presence of a security bug in
native code does not necessarily means that the application is vulnerable.
It would be interesting to explore techniques to propagate inputs from a
source to the native method. If then there are ways for the input to be
the same as the one produced by the fuzzer, we could conclude that the
application is indeed vulnerable.

Secondly, we focused on how we could extend existing taint-analysis
approaches to consider native code. To this end, we extended JniFuzzer
and developed a novel approach, TaintSaviour (Chapter 6), which adopt
a black-box fuzzing approach to create summaries for Andorid JNIL These
summaries can then be reused by existing taint analysis to include native
code. We tested and preliminary evaluated TaintSaviour and we could
show that this approach is practical and works on real applications (Sec-
tion 6.3).

TaintSaviour is not the only approach that aims at creating summaries of
methods. For example, one noticeable work in the field is StubDroid [98].
StubDroid as well enhance taint analysis with models of methods that
would be unexplored otherwise. However, its implementation cannot
deal with native code. We see TaintSaviour as a complimentary of Stub-
Droid. Wiring both the approaches to taint analysis, would bring about
the advantages of both, i.e., analysis of Android framework and native
code.

We were not the only one interested in filling the gaps for Android na-
tive code analysis. While we were developing TaintSaviour, JN-SAF was
published [99]. The final goal of this research is to enable taint propaga-

tion across JNI functions. TaintSaviour has a similar goal. However, the

167

7 Conclusion

approach we took is orthogonal to JN-SAF one. While they use heavy
handed techniques, such as symbolic execution, to model native code,
TaintSaviour uses a black-box fuzzing approach, which is far less com-
putationally expensive. Unfortunately, we were not able to carry out a
comparison among the two approaches. The lack of time and resources
prevented us from having a fair confrontation, which we left for future
work.

One of the biggest outcome of our research, and more generally of the
research in our field, is to raise the awareness of security in the broader
field of compute science and engineering. We have already seen the good
impact of it. For example, security is now consider one of the big compo-
nents in the life cycle of applications. Continuous integration (CI) chain
more often include static analysis techniques as a mean of discovery secu-
rity bugs before they are released to the public. Tool such as BabelView or
JniFuzzer could be taken further and deployed in such context. For exam-
ple, an Android web developers might benefit from finding out that their
Webviews use dangerous JavaScript interfaces. In fact, BabelView could
deployed as a plugin for Android integrated development environments.
Also, its report could be tuned to block certain patterns to even go in the
production branch without a further review. Similarly, JniFuzzer could
be executed as a step in the application CI, potentially preventing bugs to
arise later in production.

168

169

Acronyms

AFL American Fuzzy Lop.
APK Android Pakcage.

ART Android RunTime.
GUI Graphical User Interface.

HAL Hardware Abstraction Layer.
HTTP HyperText Transfer Protocol.

HTTPS HyperText Transfer Protocol Secure.

ICC Inter Component Communication.

IFDS Interprocedural Finite Distributive Subset problem.

lIoT Internet of Things.

ISA Instruction Set Architecture.

JNI Java Native Interface.

JVM Java Virtual Machine.

LCM Least Common Multiple.

171

Acronyms

MITM Man in The Middle.
NDK Native Development Kit.
OS Operating System.

PoC Proof of Concept.

SDK Software Development Kit.
SMT Satisfiability Modulo Theories.
SOP Same Origin Policy.

SSL Secure Sockets Layer.
TLS Transport Layer Security.
Ul User Interface.

XML Extensible Markup Language.

XSS Cross Site Scripting.

172

Bibliography

(1]

(5]

L. Li, A. Bartel, T. E Bissyandé, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. D. McDaniel, “IccTA: De-

tecting Inter-Component Privacy Leaks in Android Apps,” in Int.
Conf. Softw. Eng. ICSE. {IEEE} Computer Society, 2015, pp. 280-291.

W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “An-
droid taint flow analysis for app sets,” Tech. Rep. June, 2014.
[Online]. Available: http://www.cs.cmu.edu/~wklieber/papers/
soap2014-didfail.pdf

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le
Traon, D. Octeau, and P. McDaniel, “FLOWDROID: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for An-
droid apps,” in ACM SIGPLAN Conf. Program. Lang. Des. Implemen-
tation, PLDI, vol. 49, no. 6. ACM, 2014, pp. 259-269.

E. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise
and general inter-component data flow analysis framework
for security vetting of Android apps,” in Proc. ACM Conf.
Comput. Commun. Secur. CCS. New York, New York, USA:
ACM Press, 2014, pp. 1329-1341. [Online]. Available: http:
//dl.acm.org/ citation.cfm?doid=2660267.2660357

L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: statically vetting

173

http://www.cs.cmu.edu/~wklieber/papers/soap2014-didfail.pdf
http://www.cs.cmu.edu/~wklieber/papers/soap2014-didfail.pdf
http://dl.acm.org/citation.cfm?doid=2660267.2660357
http://dl.acm.org/citation.cfm?doid=2660267.2660357

Bibliography

[6]

[7]

[8]

[9]

[10]

[11]

[12]

174

Android apps for component hijacking vulnerabilities,” in {ACM}
Conf. Comput. Commun. Secur. ACM, 2012, pp. 229-240.

M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and
M. Rinard, “Information-Flow Analysis of Android Applications in
DroidSafe,” in 22nd Annu. Netw. Distrib. Syst. Secur. Symp. NDSS,
2015. [Online]. Available: http://dx.doi.org/10.14722/ndss.2015.
23089

A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A Survey
of Mobile Malware in the Wild,” in SPSM’11, Proc. 1st ACM Work.
Secur. Priv. Smartphones Mob. Devices, Co-located with CCS, 2011.

[Online]. Available: www.cs.berkeley.edu/~daw /malware.html

Y. Feng, S. Anand, 1. Dillig, and A. Aiken, “Apposcopy: Semantics-
Based Detection of Android Malware through Static Analysis *,”
in Proc. 22nd {ACM} SIGSOFT Int. Symp. Found. Softw. Eng., 2014.
[Online]. Available: http:/ /dx.doi.org/10.1145/2635868.2635869

J. Qiu, S. Nepal, W. Luo, L. Pan, Y. Tai,]. Zhang, and Y. Xiang, “Data-
Driven Android Malware Intelligence: A Survey,” in Mach. Learn.
Cyber Secur. - Second Int. Conf. ML4CS, vol. 11806 LNCS. Springer
Verlag, 2019, pp. 183-202.

K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of android malware and android analysis techniques,”
ACM Computing Surveys, vol. 49, no. 4, jan 2017.

G. Suarez-Tangil and G. Stringhini, “Eight Years of Rider Measure-
ment in the Android Malware Ecosystem,” IEEE Transactions on De-
pendable and Secure Computing, pp. 1-1, mar 2020.

V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. Riley,
“Are these Ads Safe: Detecting Hidden Attacks through the

http://dx.doi.org/10.14722/ndss.2015.23089
http://dx.doi.org/10.14722/ndss.2015.23089
www.cs.berkeley.edu/~daw/malware.html
http://dx.doi.org/10.1145/2635868.2635869

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

Mobile App-Web Interfaces,” 2016. [Online]. Available: http:
//dx.doi.org/10.14722 /ndss.2016.23234

T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on WebView in
the Android system,” in Twenty-Seventh Annu. Comput. Secur. Appl.
Conf. ACSAC, 2011, pp. 343-352.

V. Moonsamy, M. Alazab, and L. Batten, “Towards an understand-
ing of the impact of advertising on data leaks,” Tech. Rep. 3, 2012.

S. Son, G. Daehyeok, K. Kaist, and V. Shmatikov, “What Mobile
Ads Know About Mobile Users,” 2016. [Online]. Available:
http://dx.doi.org/10.14722 /ndss.2016.23407

C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and
W. Zou, “Smartdroid: An automatic system for revealing ui-based
trigger conditions in android applications,” in Proc. Second ACM
Work. Secur. Priv. smartphones Mob. devices. New York, New
York, USA: ACM Press, 2012, pp. 93-104. [Online]. Available:
http:/ /dl.acm.org/ citation.cfm?doid=2381934.2381950

W. Choi, G. Necula, and K. Sen, “Guided GUI testing of
Android apps with minimal restart and approximate learning,”
in Proc. 2013 ACM SIGPLAN Int. Conf. Object Oriented Program.
Syst. Lang. Appl. OOPSLA, vol. 48, no. 10. New York, New
York, USA: ACM Press, 2013, pp. 623-639. [Online]. Available:
http:/ /dl.acm.org/ citation.cfm?doid=2509136.2509552

T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of Android apps,” in Proc. 2013 ACM SIGPLAN
Int. Conf. Object Oriented Program. Syst. Lang. Appl. OOPSLA, vol. 48,
no. 10. New York, New York, USA: ACM Press, 2013, pp. 641-660.

175

http://dx.doi.org/10.14722/ndss.2016.23234
http://dx.doi.org/10.14722/ndss.2016.23234
http://dx.doi.org/10.14722/ndss.2016.23407
http://dl.acm.org/citation.cfm?doid=2381934.2381950
http://dl.acm.org/citation.cfm?doid=2509136.2509552

Bibliography

[19]

[20]

[21]

[22]

[23]

[24]

[25]

176

[Online]. Available: http://dl.acm.org/citation.cfm?doid=2509136.
2509549

D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and
A. M. Memon, “MobiGUITAR: Automated Model-Based Testing
of Mobile Apps,” IEEE Softw., vol. 32, no. 5, pp. 53-59, sep
2015. [Online]. Available: https://ieeexplore.ieee.org/document/
6786194/

W. Choi, K. Sen, G. Necula, and W. Wang, “DetReduce: Minimizing
Android GUI test suites for regression testing,” in Proc. - Int.
Conf. Softw. Eng., vol. 2018-Janua, 2018. [Online]. Available:
https:/ /doi.org/10.1145/3180155.3180173

M. Sridharan, J. Dolby, S. Chandra, M. Schéfer, and F. Tip, “LNCS
7313 - Correlation Tracking for Points-To Analysis of JavaScript,”
Tech. Rep., 2012. [Online]. Available: http:/ /jquery.com

M. Madsen, B. Livshits, and M. Fanning, “Practical static analy-
sis of JavaScript applications in the presence of frameworks and li-
braries,” in 2013 9th Jt. Meet. Eur. Softw. Eng. Conf. ACM SIGSOFT
Symp. Found. Softw. Eng. ESEC/FSE 2013 - Proc., 2013, pp. 499-509.

M. Zalewski, “Technical whitepaper for afl-fuzz,”
\url{http:/ /lcamtuf.coredump.cx/afl/technical_details.txt}, 2014.

C. Rizzo, L. Cavallaro, and J. Kinder, “BabelView: Evaluating the
impact of code injection attacks in mobile webviews,” in RAID 2018
Res. Attacks, Intrusions, Defenses, vol. 11050 LNCS. Springer Verlag,
2018, pp. 25-46.

“App Manifest Overview | Android Developers.” [On-
line]. Available: https://developer.android.com/guide/topics/
manifest/manifest-intro (Accessed 2019-11-29).

http://dl.acm.org/citation.cfm?doid=2509136.2509549
http://dl.acm.org/citation.cfm?doid=2509136.2509549
https://ieeexplore.ieee.org/document/6786194/
https://ieeexplore.ieee.org/document/6786194/
https://doi.org/10.1145/3180155.3180173
http://jquery.com
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro

Bibliography

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Android, “Building Web Apps in WebView,” 2016. [Online]. Avail-
able: http://developer.android.com/guide/webapps/webview.
html (Accessed 2019-09-03).

Google, “WebView | Android Developers,” 2012. [Online]. Avail-
able: https://developer.android.com/reference/android /webkit/
WebView.html#WebView (android.content.Context) (Accessed 2019-
05-17).

Google, “View | Android Developers.” [Online]. Avail-
able: https://developer.android.com/reference/android/view /
View.html (Accessed 2019-09-03).

Google, “Custom View Components | Android Developers.”
[Online]. Available: https:/ /developer.android.com/guide/topics/
ui/custom-components (Accessed 2019-05-17).

MWR Infosecurity = Labs, = “WebView addJavascriptinter-
face Remote Code Execution,” pp. 1-6, 2013. [Online].
Available: https:/ /labs.mwrinfosecurity.com/blog/2013/09/
24 /webview-addjavascriptinterface-remote-code-execution/
%5Cnhttps:/ /archive.is/KxtXb (Accessed 2019-05-20).

A. Barth, “The Web Origin Concept.” [Online]. Available: https:
/ /tools.ietf.org/html/rfc6454 (Accessed 2020-06-06).

D. R. Thomas, A. R. Beresford, T. Coudray, T. Sutcliffe, and A. Tay-
lor, “The lifetime of android API vulnerabilities: Case study on the
JavaScript-to-Java interface,” in Secur. Protoc. XXIII - 23rd Int. Work.,
vol. 9379. Springer, 2015, pp. 126-138.

X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on HTML5-based mobile apps: Characterization, detection

177

http://developer.android.com/guide/webapps/webview.html
http://developer.android.com/guide/webapps/webview.html
https://developer.android.com/reference/android/webkit/WebView.html#WebView(android.content.Context)
https://developer.android.com/reference/android/webkit/WebView.html#WebView(android.content.Context)
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/guide/topics/ui/custom-components
https://developer.android.com/guide/topics/ui/custom-components
https://labs.mwrinfosecurity.com/blog/2013/09/24/webview-addjavascriptinterface-remote-code-execution/%5Cnhttps://archive.is/KxtXb
https://labs.mwrinfosecurity.com/blog/2013/09/24/webview-addjavascriptinterface-remote-code-execution/%5Cnhttps://archive.is/KxtXb
https://labs.mwrinfosecurity.com/blog/2013/09/24/webview-addjavascriptinterface-remote-code-execution/%5Cnhttps://archive.is/KxtXb
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454

Bibliography

[34]

[35]

[36]

[37]

[38]

[39]

[40]

178

and mitigation,” in Proc. ACM Conf. Comput. Commun. Secur. CCS.
ACM, 2014, pp. 66-77.

G. Yang, J]. Huang, G. Gu, and A. Mendoza, “Study and Mitigation
of Origin Stripping Vulnerabilities in Hybrid-postMessage Enabled
Mobile Applications,” in Proc. - IEEE Symp. Secur. Priv., vol. 2018-
May, 2018, pp. 742-755.

G. Yang, A. Mendoza, J. Zhang, and G. Gu, “Precisely and Scal-
ably Vetting JavaScript Bridge in Android Hybrid Apps,” in Res. At-
tacks, Intrusions, Defenses - 20th Int. Symp. RAID, vol. 10453 LNCS.
Springer, 2017, pp. 143-166.

G. Yang, J. Huang, and G. Gu, “Automated Generation of Event-
Oriented Exploits in Android Hybrid Apps,” in Annu. Netw. Distrib.
Syst. Secur. Symp., 2018.

M. Neugschwandtner, M. Lindorfer, and C. Platzer, “A View to a
Kill: WebView Exploitation,” in USENIX Work. Large-Scale Exploit.
Emergent Threat., 2013.

T. Li, X. Wang, M. Zha, K. Chen, X. FE. Wang, L. Xing, X. Bai,
N. Zhang, and X. Han, “Unleashing thewalking dead: Understand-
ing cross-app remote infections on mobilewebviews,” in Proc. ACM
Conf. Comput. Commun. Secur. CCS, 2017, pp. 829-844.

B. Hassanshahi, Y. Jia, R. H. Yap, P. Saxena, and Z. Liang, “Web-to-
application injection attacks on android: Characterization and de-

tection,” in Comput. Secur. 20th Eur. Symp. Res. Comput. Secur. ES-
ORICS, vol. 9327. Springer, 2015, pp. 577-598.

“Android Enterprise Security White Paper,” Tech. Rep., 2018.

Bibliography

[41]

[42]

[43]

[44]

[45]

[46]

[47]

A. Possemato and Y. Fratantonio, “Towards HTTPS Everywhere
on Android: We Are Not There Yet Towards HTTPS Everywhere
on Android: We Are Not There Yet,” in Proceedings of the 29th
USENIX Security Symposium is sponsored by USENIX., 2020, pp.
343-360. [Online]. Available: https:/ /www.usenix.org/conference/

usenixsecurity20 / presentation / possemato

H. Guihot and H. Guihot, “Getting Started With the NDK,” pp.
33-71, 2012. [Online]. Available: https://developer.android.com/
ndk/guides (Accessed 2019-07-29).

Oracle, “JNI APIs and Developer Guides.” [Online]. Avail-
able: https://docs.oracle.com/javase/8/docs/technotes/guides/
jni/ (Accessed 2019-07-25).

Google, “runtime/jni - platform/art - Git at Google.” [On-
line]. Available: https://android.googlesource.com/platform/art/
+/refs/heads/master/runtime/jni/ (Accessed 2019-07-30).

Oracle, “JNI Functions.” [Online]. Available: https:
/ /docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/
functions.html#wp16656 (Accessed 2019-07-31).

Oracle, “TNI Modified UTEF-8.” [Online]. Avail-
able: https://docs.oracle.com/javase/8/docs/technotes/guides/
jni/spec/types.html#modified_utf_8_strings (Accessed 2019-07-
31).

Oracle, “TNI | Exceptions.” [Online]. Avail-
able: https://docs.oracle.com/javase/8/docs/technotes/guides/
jni/spec/design.html#java_exceptions (Accessed 2019-08-08).

179

https://www.usenix.org/conference/usenixsecurity20/presentation/possemato
https://www.usenix.org/conference/usenixsecurity20/presentation/possemato
https://developer.android.com/ndk/guides
https://developer.android.com/ndk/guides
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://android.googlesource.com/platform/art/+/refs/heads/master/runtime/jni/
https://android.googlesource.com/platform/art/+/refs/heads/master/runtime/jni/
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16656
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16656
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16656
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/types.html#modified_utf_8_strings
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/types.html#modified_utf_8_strings
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/design.html#java_exceptions
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/design.html#java_exceptions

Bibliography

[48]

[49]

[50]

[51]

[52]

[53]

[54]

180

Y. Smaragdakis and G. Balatsouras, “Pointer Analysis,” Found.
Trends® Program. Lang., vol. 2, no. 1, pp. 1-69, 2015. [Online]. Avail-
able: http:/ /www.nowpublishers.com/article /Details /PGL-014

V. J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. .
Schwartz, and M. Woo, “The Art, Science, and Engineering
of Fuzzing: A Survey,” Tech. Rep., 2018. [Online]. Available:
http://arxiv.org/abs/1812.00140

P. Godefroid, “Software Model Checking Improving Security
of a Billion Computers,” in Model Checking Software, 16th
Int. SPIN Work., 2009, pp. 1-1. [Online]. Available: https:
/ / patricegodefroid.github.io/public_psfiles /ndss2008.pdf

J. C. King, “Symbolic Execution and Program Testing,” Commun.
ACM, vol. 19, no. 7, pp. 385-394, jul 1976. [Online]. Available:
http:/ /portal.acm.org/ citation.cfm?doid=360248.360252

J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang, “loTFuzzer: Discovering Mem-
ory Corruptions in IoT Through App-based Fuzzing,” in 25th Annu.
Netw. Distrib. Syst. Secur. Symp. NDSS. The Internet Society, 2018.

H. Shahriar, S. North, and E. Mawangi, “Testing of memory leak
in android applications,” in Proc. - 2014 IEEE 15th Int. Symp.
High-Assurance Syst. Eng. HASE 2014. 1EEE, jan 2014, pp. 176—
183. [Online]. Available: http://ieeexplore.ieee.org/document/
6754603/

V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: Automatic
security analysis of smartphone applications,” in CODASPY 2013
- Proc. 3rd ACM Conf. Data Appl. Secur. Priv. New York, New

http://www.nowpublishers.com/article/Details/PGL-014
http://arxiv.org/abs/1812.00140
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
http://portal.acm.org/citation.cfm?doid=360248.360252
http://ieeexplore.ieee.org/document/6754603/
http://ieeexplore.ieee.org/document/6754603/

Bibliography

[55]

[56]

[57]

[58]

[59]

[60]

York, USA: ACM Press, 2013, pp. 209-220. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2435349.2435379

Google, “Ul/ Application Exerciser Monkey |
Android Developers,” 2019. [Online]. Avail-
able: https://developer.android.com/studio/test/monkey.html%
OAhttps:/ /developer.android.com/studio/test/monkey (Accessed
2019-09-03).

R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sun-
daresan, “Soot - a Java bytecode optimization framework,” in Proc.
Conf. Cent. Adv. Stud. Collab. Res., 1999, p. 13.

P. Lam, E. Bodden, O. Lhotdk, and L. Hendren, “The Soot
framework for Java program analysis: a retrospective,” Tech. Rep.
[Online]. Available: https://svn.sable.mcgill.ca/wiki/

A. Bartel, J. Klein, and M. Monperrus, “Dexpler: Converting
android dalvik bytecode to jimple for static analysis with soot,”
in Proceedings of the ACM SIGPLAN International Workshop on State
of the Art in Java Program Analysis, SOAP 2012. New York,
New York, USA: ACM Press, 2012, pp. 27-38. [Online]. Available:
http:/ /dl.acm.org/ citation.cfm?doid=2259051.2259056

S. S. Einarsson, J. Dam, and N. Brics, “A Survivor’s Guide to Java

Program Analysis with Soot”Arni,” Tech. Rep.

“androguard/androguard: Reverse engineering, Malware and
goodware analysis of Android applications ... and more (ninja !).”
[Online]. Available: https://github.com/androguard/androguard
(Accessed 2020-07-09).

181

http://dl.acm.org/citation.cfm?doid=2435349.2435379
https://developer.android.com/studio/test/monkey.html%0Ahttps://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey.html%0Ahttps://developer.android.com/studio/test/monkey
https://svn.sable.mcgill.ca/wiki/
http://dl.acm.org/citation.cfm?doid=2259051.2259056
https://github.com/androguard/androguard

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

182

“dex2jar: Tools to work with android .dex and java .class
files.” [Online]. Available: https://github.com/pxb1988/dex2jar
(Accessed 2020-07-10).

“Jasmin Home Page.” [Online]. Available: http:/ /jasmin.
sourceforge.net/ (Accessed 2020-07-10).

“Apktool - A tool for reverse engineering 3rd party, closed, binary
Android apps.” [Online]. Available: https:/ /ibotpeaches.github.io/
Apktool/ (Accessed 2020-07-10).

“JesusFreke/smali: smali/baksmali.” [Online]. Available: https:
/ / github.com/JesusFreke/smali (Accessed 2020-07-10).

E. Pauck, E. Bodden, and H. Wehrheim, “Do android taint analysis
tools keep their promises?” in ESEC/FSE 2018 - Proc. 2018 26th ACM
Jt. Meet. Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. New York,
New York, USA: ACM Press, 2018, pp. 331-341. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3236024.3236029

L. Li, T. E Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, “Static analysis of android apps:
A systematic literature review,” Inf. Softw. Technol., vol. 88, pp.
67-95, aug 2017. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0950584917302987

“DidFail.” [Online]. Available: https://resources.sei.cmu.edu/
library /asset-view.cfm?assetID=508078 (Accessed 2020-07-09).

L. Qiu, Y. Wang, and]. Rubin, “Analyzing the Analyzers:
FlowDroid /IccTA, AmanDroid, and DroidSafe,” 2018. [Online].
Available: https:/ /doi.org/10.1145/3213846.3213873

https://github.com/pxb1988/dex2jar
http://jasmin.sourceforge.net/
http://jasmin.sourceforge.net/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
http://dl.acm.org/citation.cfm?doid=3236024.3236029
https://www.sciencedirect.com/science/article/pii/S0950584917302987
https://www.sciencedirect.com/science/article/pii/S0950584917302987
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=508078
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=508078
https://doi.org/10.1145/3213846.3213873

Bibliography

[69]

[70]

[71]

[72]

[73]

[74]

[75]

A. Doupé, P. Mutchler,]J. Mitchell, C. Kruegel, and G. Vigna,
“A Large-Scale Study of Mobile Web App Security CTFs for
Education View project A Large-Scale Study of Mobile Web
App Security,” in Proc. IEEE Symp. Secur. Priv. Work. (SPW),
Mob. Secur. Technol. IEEE, 2015. [Online]. Available: https:
/ /www.researchgate.net/publication /278724743

S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgartner,
and B. Freisleben, “Why Eve and Mallory love Android: An
analysis of Android SSL (in)security,” in Proc. ACM Conf.
Comput. Commun. Secur. CCS, 2012, pp. 50-61. [Online]. Available:
http:/ /android-ssl.org/s/3

E. Chin and D. Wagner, “Bifocals: Analyzing webview vulnerabil-
ities in android applications,” in Inf. Secur. Appl. - 14th Int. Work.
WISA, vol. 8267 LNCS. = Springer, 2014, pp. 138-159.

A. B. Bhavani, “Cross-site Scripting Attacks on Android WebView,”
CoRR, vol. abs/1304.7, 2013. [Online]. Available: http:/ /arxiv.org/
abs/1304.7451

A. D. Brucker and M. Herzberg, “On the static analysis of hybrid
mobile apps: A report on the state of Apache Cordova nation,”
in Eng. Secur. Softw. Syst. - 8th Int. Symp. ESSoS 2016, vol. 9639.
Springer, 2016, pp. 72-88.

S. Lee, J. Dolby, and S. Ryu, “HybriDroid: Static analysis framework
for android hybrid applications,” in ASE 2016 - Proc. 31st IEEE/ACM
Int. Conf. Autom. Softw. Eng. ACM, 2016, pp. 250-261.

S. Rasthofer, S. Arzt, and E. Bodden, “A Machine-learning Approach
for Classifying and Categorizing Android Sources and Sinks,” in
Annu. Netw. Distrib. Syst. Secur. Symp. The Internet Society, 2014.

183

https://www.researchgate.net/publication/278724743
https://www.researchgate.net/publication/278724743
http://android-ssl.org/s/3
http://arxiv.org/abs/1304.7451
http://arxiv.org/abs/1304.7451

Bibliography

[76]

[77]

[78]

[79]

[80]

[81]

[82]

184

T. Luo, X. Jin, A. Ananthanarayanan, and W. Du, “Touchjacking
attacks on Web in Android, iOS, and Windows Phone,” in Found.
Pract. Secur. - 5th Int. Symp. FPS, vol. 7743 LNCS. Springer, 2013,
pp. 227-243.

M. Georgiev, S. Jana, and V. Shmatikov, “Breaking and Fixing
Origin-Based Access Control in Hybrid Web/Mobile Application
Frameworks,” in Annu. Netw. Distrib. Syst. Secur. Symp., 2014.

G. S. Tuncay, S. Demetriou, and C. A. Gunter, “Draco: A
system for uniform and fine-grained access control for web
code on Android,” in Proc. ACM Conf. Comput. Commun. Secur.
CCS, vol. 24-28-Octo, 2016, pp. 104-115. [Online]. Available:
https:/ /dl.acm.org/citation.cfm?doid=2976749.2978322

M. Shehab and A. Aljarrah, “Reducing attack surface on cordova-
based hybrid mobile apps,” in MobileDeLi 2014 - Proc. 2nd Int. Work.
Mob. Dev. Lifecycle, Part SPLASH 2014. ACM, 2014, pp. 1-8.

X. Jin, L. Wang, T. Luo, and W. Du, “Fine-grained access control for
HTML5-based mobile applications in android,” in Inf. Secur. 16th Int.
Conf. ISC, vol. 7807, 2015, pp. 309-318.

P. H. Phung, A. Mohanty, R. Rachapalli, and M. Sridhar, “Hybrid-
Guard: A principal-based permission and fine-grained policy en-
forcement framework for web-based mobile applications,” in Proc. -
2017 IEEE Symp. Secur. Priv. Work. SPW 2017, vol. 2017-Decem, 2017,
pp- 147-156.

T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGar-
vey, B. Ondrusek, S. K. Rajamani, and A. Ustuner, “Thorough static
analysis of device drivers,” in Proc. 2006 EuroSys Conf. ACM, 2006,
pp- 73-85.

https://dl.acm.org/citation.cfm?doid=2976749.2978322

Bibliography

[83]

[84]

[85]

[86]

[87]

[88]

[89]

J. Kinder and H. Veith, “Precise static analysis of untrusted driver
binaries,” in Proc. 10th Int. Conf. Form. Methods Comput. Des. FMCAD,
2010, pp- 43-50.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo: Col-
lecting millions of Android apps for the research community,” in
Proc. - 13th Work. Conf. Min. Softw. Repos. MSR 2016. ACM, 2016,
pp- 468—471.

P. Mutchler, Y. Safaei, A. Doupe, and J. Mitchell, “Target Fragmenta-
tion in Android Apps,” in Proc. - 2016 IEEE Symp. Secur. Priv. Work.
SPW 2016. 1EEE, 2016, pp. 204-213.

D. Wu, X. Liu, J. Xu, D. Lo, and D. Gao, “Measuring the declared
SDK versions and their consistency with API calls in android apps,”
in Wirel. Algorithms, Syst. Appl. - 12th Int. Conf. WASA, vol. 10251
LNCS, 2017, pp. 678-690.

D. R. Thomas, A. R. Beresford, and A. Rice, “Security metrics for
the android ecosystem,” in SPSM 2015 - Proc. 5th Annu. ACM CCS
Work. Secur. Priv. Smartphones Mob. Devices, co-located with CCS 2015.
ACM, 2015, pp. 87-98.

E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, and A. D.
Keromytis, “NaClDroid: Native Code Isolation for Android Appli-
cations,” in Comput. Secur. - ESORICS 2016 - 21st Eur. Symp. Res.
Comput. Secur., ser. Lecture Notes in Computer Science, vol. 9878.
Springer, 2016, pp. 422-439.

A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, “The
Attack of the Clones: A Study of the Impact of Shared Code on Vul-
nerability Patching,” in {IEEE} Symp. Secur. Priv. {IEEE} Computer
Society, 2015, pp. 692-708.

185

Bibliography

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

186

Google, “JNI tips | Android NDK | Android Develop-
ers,” 2020. [Online]. Available: https://developer.android.com/
training/articles/perf-jni (Accessed 2020-09-26).

A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse
engineering of graphical user interfaces for testing,” in Proc. - Work.
Conf. Reverse Eng. WCRE, vol. 2003-Janua. IEEE Computer Society,
2003, pp. 260-269.

R. Sasnauskas and]J. Regehr, “Intent fuzzer: Crafting intents of
death,” in WODA+PERTEA 2014 Jt. 12th Int. Work. Dyn. Anal. Work.
Softw. Syst. Perform. Testing, Debugging, Anal. - Proc. Association for
Computing Machinery, Inc, jul 2014, pp. 1-5.

H. Ye, S. Cheng, L. Zhang, and F. Jiang, “DroidFuzzer: Fuzzing
the Android apps with intent-filter tag,” in 11th Int. Conf. Adv. Mob.
Comput. &Multimedia, MoMM, 2013, pp. 68-74.

C. Cao, N. Gao, P. Liu, and J. Xiang, “Towards analyzing the in-
put validation vulnerabilities associated with android system ser-
vices,” in Proc. 31st Annu. Comput. Secur. Appl. Conf., vol. 7-11-
Decem. ACM, 2015, pp. 361-370.

M. Y. Wong and D. Lie, “IntelliDroid: A Targeted Input Generator
for the Dynamic Analysis of Android Malware,” in Annu. Netw. Dis-
trib. Syst. Secur. Symp., 2016.

“moflow /afl-dyninst at master - Cisco-Talos/moflow.” [Online].
Available: https:/ /github.com/Cisco-Talos/moflow /tree/master/
afl-dyninst (Accessed 2019-11-25).

A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid, “Korat: A

tool for generating structurally complex test inputs,” in 29th Inter-

https://developer.android.com/training/articles/perf-jni
https://developer.android.com/training/articles/perf-jni
https://github.com/Cisco-Talos/moflow/tree/master/afl-dyninst
https://github.com/Cisco-Talos/moflow/tree/master/afl-dyninst

Bibliography

[98]

[99]

[100]

[101]

[102]

[103]

national Conference on Software Engineering (ICSE’07), May 2007, pp.
771-774.

S. Arzt and E. Bodden, “StubDroid: Automatic inference of precise
data-flow summaries for the android framework,” in Proc. - Int.
Conf. Softw. Eng. ICSE, vol. 14-22-May. ACM, 2016, pp. 725-735.
[Online]. Available: http://dx.doi.org/10.1145/2884781.2884816

E. Wei, X. Lin, X. Ou, T. Chen, and X. Zhang, “JN-SAF: Precise and
efficient NDK/JNI-aware inter-language static analysis framework
for security vetting of android applications with native code,” in
Proc. ACM Conf. Comput. Commun. Secur. CCS. New York, New
York, USA: ACM Press, 2018, pp. 1137-1150. [Online]. Available:
http:/ /dl.acm.org/citation.cfm?doid=3243734.3243835

P. J. Schroeder and B. Korel, “Black-box test reduction using input-
output analysis,” in Proc. ACM SIGSOFT 2000 Int. Symp. Softw. Test.
Anal., 2000, pp. 173-177.

B. Korel, “The program dependence graph in static program
testing,” Inf. Process. Lett., vol. 24, no. 2, pp. 103-108, jan 1987.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
0020019087901025

J. Ferrante, K. J. Ottenstein, and]. D. Warren, “The program depen-
dence graph and its use in optimization,” in Int. Symp. Program., vol.
167 LNCS, 1984, pp. 125-132. [Online]. Available: https://www.cs.
utexas.edu/~pingali/CS395T /2009fa/ papers/ferrante87.pdf

H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in
Proc. ACM SIGPLAN Conf. Program. Lang. Des. Implement., vol.
20-22-June, no. 6. New York, New York, USA: ACM Press, 1990,

187

http://dx.doi.org/10.1145/2884781.2884816
http://dl.acm.org/citation.cfm?doid=3243734.3243835
https://linkinghub.elsevier.com/retrieve/pii/0020019087901025
https://linkinghub.elsevier.com/retrieve/pii/0020019087901025
https://www.cs.utexas.edu/~pingali/CS395T/2009fa/papers/ferrante87.pdf
https://www.cs.utexas.edu/~pingali/CS395T/2009fa/papers/ferrante87.pdf

Bibliography

[104]

[105]

[106]

[107]

[108]

[109]

[110]

188

pp- 246-256. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=93542.93576

S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing
Using Dependence Graphs,” Tech. Rep. 7, 1988. [Online]. Avail-
able: http://cist.buct.edu.cn/staff/zheng/COMP544-PA /papers/
10.1.1.50.4405.pdf

T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Conf. Rec. Annu. ACM Symp.
Princ. Program. Lang. POPL. ACM, 1995, pp. 49-61.

N. A. Naeem and O. Lhoték, “Faster alias set analysis using sum-
maries,” in Compil. Constr. - 20th Int. Conf. CC, vol. 6601 LNCS, 2011,
pp- 82-103.

H. Zhu, T. Dillig, and I. Dillig, “Automated inference of library spec-
ifications for source-sink property verification,” in Program. Lang.
Syst. - 11th Asian Symp. APLAS, vol. 8301 LNCS, 2013, pp. 290-306.

A. Rountev, M. Sharp, and G. Xu, “IDE dataflow analysis in the pres-

ence of large object-oriented libraries,” in ompiler Constr. 17th Int.
Conf. CC, vol. 4959 LNCS, 2008, pp. 53-68.

A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge:
Splitting Applications into Reduced-Privilege Compartments,” in
5th USENIX Symp. Networked Syst. Des. Implementation, NSDI.
{USENIX} Association, 2008, pp. 309-322.

M. Sun and G. Tan, “NativeGuard: protecting android applications
from third-party native libraries,” in 7th ACM Conf. Secur. Priv. Wirel.
Mob. Networks, WiSec’14. ACM, 2014, pp. 165-176.

http://portal.acm.org/citation.cfm?doid=93542.93576
http://portal.acm.org/citation.cfm?doid=93542.93576
http://cist.buct.edu.cn/staff/zheng/COMP544-PA/papers/10.1.1.50.4405.pdf
http://cist.buct.edu.cn/staff/zheng/COMP544-PA/papers/10.1.1.50.4405.pdf

Bibliography

[111]

[112]

[113]

[114]

J. Siefers, G. Tan, and G. Morrisett, “Robusta: taming the native
beast of the JVM,” in {ACM/} Conf. Comput. Commun. Secur. CCS.
ACM, 2010, pp. 201-211.

V. M. Afonso, P. L. de Geus, A. Bianchi, Y. Fratantonio, C. Kruegel,
G. Vigna, A. Doupé, and M. Polino, “Going Native: Using a Large-
Scale Analysis of Android Apps to Create a Practical Native-Code
Sandboxing Policy,” in 23rd Annu. Netw. Distrib. Syst. Secur. Symp.
NDSS. San Diego, California, USA: The Internet Society, 2016.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. D. McDaniel,
and A. Sheth, “TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones,” in 9th USENIX
Symp. Oper. Syst. Des. Implementation, OSDI. {USENIX} Association,
2010, pp. 393—-407.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kriigel, and G. Vigna,
“SOK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in {IEEE} Symp. Secur. Priv. {IEEE} Computer Society,
2016, pp. 138-157.

189

	Introduction
	Challenges for the Analysis of Hybrid Android Apps
	Challenges for Cross-language Taint Analysis
	Challenges for the Analysis of Android Webviews
	Challenges for the Analysis of Android Native Code

	Goals and Overview
	Thesis Contribution

	Background
	Android Framework
	Android Overview
	Android App Packaging
	Android Mobile Applications

	Android Webviews
	Define a Webview
	Enabling JavaScript
	WebView and Same Origin Policy
	Attacks on Android Webviews

	Android Native Components
	Java Native Interface: Overview
	Referencing And Accessing Java Objects
	Array and String Management
	Exception Management

	Program Analysis Techniques
	Information Flow Analysis: Taint Analysis
	Fuzz Testing
	Performance Metrics

	Android Static Analysis
	Android Reversing Tools
	Android Taint Analysis Tools: Flowdroid

	Information Flow Analysis on Webviews: BabelView
	Data-flow Analysis for Hybrid Android Applications
	The Problem of JavaScript Interfaces
	Attacker Model
	Instrumenting for Data-flow
	Preserving Semantics

	BabelView Internals
	Phase 1: Interface Extraction and Webview Pairing
	Phase 2: BabelView Generation
	Phase 3: Instrumentation
	Phase 4: FlowDroid Data-flow Analysis
	Phase 5: Analysis Consolidation

	Related Work
	Webview: Attacks and Vulnerabilities
	Webview Access Control
	Instrumentation-based Modeling

	Limitation and Discussion
	Avoiding Instrumentation
	Analysis Limitations
	Attack Feasibility
	Mitigating Potential Vulnerabilities

	BabelView Evaluation
	Play Store Large Scale Analysis
	Methodology
	Applicability
	Alarms Triggered
	Manual Validation
	Feasibility Analysis
	Correlation of Alarms

	Case Studies
	MAB Mobile Banking
	SwingAid
	Ads Library InMobi

	Work Outcome and Discussion

	JniFuzzer: Fuzzing Android Java Native Interfaces
	JniFuzzer
	Mocking The JNI Environment
	Function Pointer Extraction
	Execute Target Native Method

	A distributed Fuzzing Framework
	Fuzzing Android JNI: Evaluation of Case Studies
	Methodology
	Analysis Results

	Related Work
	Limitations and Future Work
	Work Outcome and Discussion

	TaintSaviour
	Data-flow Analysis for Android JNI
	The Need for Android JNI Summaries
	Input/Output Dependency Analysis
	A Black-box Approach

	Implementation
	Phase 1: Getting Values for the Inputs
	Phase 2: Execution and Output Monitoring
	The Hooks System
	Phase 3: Summary Generation

	Testing and Preliminary Evaluation
	Models for Mathematics Functions
	Native Code Sources and Sinks
	FlowDroid and TaintSaviour
	Case Study On App from Google Play Store

	Related Work
	Method Summary Approaches
	Android Native Components

	Limitations and Future Work
	Work Outcome and Discussion

	Conclusion

