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Abstract

T2K is a long baseline neutrino oscillation experiment in Japan. It was designed to make
precise measurements of the parameters governing neutrino oscillations, and has been taking
data since 2011. A muon (anti-)neutrino beam is produced at the Japan Proton Accelerator
Research Complex (J-PARC), and is aimed towards the Super-Kamiokande (SK) detector
295 km away. In this analysis, Markov Chain Monte Carlo is used to fit the Monte Carlo
prediction to data from the near detector, ND280, which measures the neutrino flux and in-
teraction cross-sections before oscillation. The flux and interaction models are parametrised
using external data, T2K beam line monitoring measurements, and theoretical calculations
to set the prior values and uncertainties. Several updates have been made to the data sam-
ples, cross-section model, and fitting framework used for the 2020 oscillation analysis to
maximise the constraint on these systematics, and reduce the impact they have on oscil-
lation results. The near detector fit is crucial for T2K to make world-leading oscillation
parameter measurements. The analysis presented here uses ND280 data from T2K runs 2–9,
corresponding to 1.99×1021 protons on target (POT), to reduce the uncertainty on the SK
prediction from 12–14% to 2–3%. The reduction of systematic uncertainties in detectors for
future long baseline neutrino oscillation experiments is also investigated.
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1. Introduction

Sakharov proposed in 1967 [1] that the abundance of matter over anti-matter observed in

the Universe could be explained by interactions which meet three conditions. These are

that: baryon number is violated, such that a different number of baryons can be produced to

anti-baryons; C (charge) and CP (charge-parity) symmetries are violated, so that processes

producing more baryons aren’t compensated by processes producing more anti-baryons; and

the interactions occur outside of thermal equilibrium, so the net amount of generated baryons

isn’t cancelled out by the time reverse of the process.

CP violation was first observed in the quark sector in 1964 [2], but it is not sufficient

to alone explain the matter dominated Universe we observe. The PMNS mechanism for

neutrino oscillations allows a CP violating phase, δCP, which could be non-zero. It has been

shown that CP violation in leptons could produce the matter anti-matter imbalance through

leptogenesis [3].

T2K [4] is a long baseline neutrino oscillation experiment, originally designed to make

precision measurements of the oscillation parameters sin2θ23, ∆m2
32, and sin2θ13. However,

one of the main focuses is now on measuring δCP to determine if CP is violated in neutrino

oscillations, and if so by how much. As the datasets for both neutrinos and anti-neutrinos

increase, and with the prospect of future neutrino oscillation experiments such as Hyper-

Kamiokande [5] and DUNE [6] on the horizon, we will soon be able to determine the value

of δCP. However, with the increase in sample size the treatment of systematics becomes more

important. To achieve the required sensitivity, improvements to the neutrino interaction

model are required.

The T2K near detector prediction is fitted to data to reduce systematic uncertainties from

the cross-section, flux, and detector models used to build the MC prediction. This process

typically reduces the uncertainty on event rates at the far detector, Super-Kamiokande, from

∼15% to ∼5%, without which T2K would not be able to make world leading measurements

of oscillation parameters.

This thesis presents the results of the near detector fit for the 2020 oscillation analysis, as
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1. Introduction

well as describing the updates to the models and fitting framework since the last analysis.

Chapter 2 outlines the history of neutrino physics, from initial discovery to current open

questions. It also describes the theory of both neutrino interactions, particularly those

present in the T2K detectors, and neutrino oscillations.

The T2K experimental setup is detailed in Chapter 3, giving an overview of the beam-

line, the on-axis near detector INGRID, the off-axis ND280, and the far detector Super-

Kamiokande. The simulation used to predict measurements at each of the detectors is also

described.

The statistical treatment of data is discussed in Chapter 4. This work is a Bayesian

analysis, which uses Markov Chain Monte Carlo (MCMC) for fitting systematics to data.

The MCMC method, and Bayesian techniques for post-fit analysis and interpretation are

introduced here.

This is followed by a description of the near detector fit and inputs for the 2020 oscillation

analysis in Chapter 5. Various improvements were made to the cross-section, flux, and

detector models, as well as the fitting framework itself, since the previous analysis. The

implementation of these, and the potential impact on the fit are discussed here.

The results of the fit are described in Chapter 6. First the validations of the model and

fitting framework are shown, before the final results and impact at the far detector are pre-

sented. The impact of these results on the sensitivity to oscillation parameter measurements

is then studied.

In Chapter 7, the potential impact of a new technology for long baseline neutrino oscillation

experiment near detectors is discussed. Finally, this thesis concludes with a summary of the

results presented.

The three sets of systematics, flux, cross-section, and detector, were provided by working

groups within T2K. The beam group produced a covariance matrix of the flux systematics.

The Neutrino Interaction Working Group (NIWG) recommended the cross-section system-

atics. This was partly informed by the studies on the binding energy dial performed by the

author of this thesis, presented in Section 5.4.1.1. The ND280 Selection, Systematics and

Validations group recommended the detector systematics. I made correlated throws of these

systematics to produce a covariance matrix, and performed the studies on detector binnings

presented in Section 5.4.3.3.

The implementation of these systematics into the analysis framework, the ND280 fits,

validations, and postfit studies, were all my work. The joint near and far detector fits were

run in parallel by several members of the MaCh3 group, including me. I produced the
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comparisons of the joint fit results for fixing the binding energy, and using uniform binning,

presented in Section 6.8.1.
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2. Neutrino Physics

Neutrinos are spin-1/2, colourless, fermions with extremely small mass and zero electric

charge. They only interact via the weak and gravitational forces, allowing them to travel

great distances through matter without ever being affected by it, and so making them very

difficult to detect. This has made neutrinos one of the most elusive particles, despite being

one of the most abundant in the Universe.

This chapter gives an overview of the history of neutrino physics, from Wolfgang Pauli’s

‘desperate remedy’ of an undetectable particle, to the 2015 Nobel prize winning results

of SK [7] and SNO [8], as well as the relevant theory involved. Section 2.1 describes the

initial evidence of the existence of neutrinos, and the discovery of the different flavours. The

evidence of neutrino oscillations is presented in Section 2.2, separated by neutrino source.

The theory behind the oscillation mechanism is introduced in Section 2.3, along with a

discussion of the different interaction types relevant for long baseline neutrino oscillation

experiments. Finally, Section 2.4 gives an overview of the current experimental status of

neutrino oscillations, and the questions yet to be answered.

2.1. Neutrino Discovery

In 1933, using a magnetic spectrometer and a Geiger counter, Chadwick [9] measured a

continuous energy spectrum of e− from β decay. This appeared to violate the conservation

laws for energy, momentum, and spin. This is because, assuming a two-body process, the

emitted particle is carrying away the energy difference between the initial and final nuclear

states, which should be constant, as is the case for α and γ decays. However, the vast

majority of the emitted β particles measured had energies much lower than the expected

value, but none had energies higher.

Neils Bohr initially proposed a statistical formulation of the conservation laws, suggesting

individual decays could violate them as long as the overall average resulted in no net change.

However, the upper limit on the measured β energies, which was confirmed by Ellis and
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2. Neutrino Physics

Mott [10], contradicted this theory. If the conservation laws were invalid, any amount of

energy would be available in at least a small fraction of decays.

To attempt to resolve the problem, Pauli [11] proposed another, undetected, fermion

would need to also be produced by the decay, and that it would be light and have zero

electric charge. This would explain the observed spectrum as there was a fixed limit on

the available energy from the conservation laws, but the new particle would take a varying

fraction of it, with the β taking the rest. The β can therefore have a varied energy spectrum

up to the hard limit, as had been measured. Pauli originally called the new neutral particle

a ‘neutron’.

In 1932, Chadwick discovered a massive neutral particle in the nucleus of atoms, which

he also called a ‘neutron’. Initially, Pauli did not distinguish between the two namesake

particles. Two years later, Fermi devised a framework by which the light chargeless fermions

could account for the missing energy [12] in β decay, in which he coined the name ‘neutrino’

for them, meaning ‘the little neutral one’.

In this theory of β decay, Chadwick’s neutron could decay to a proton, emitting a β and

Pauli’s neutrino:

n→ p+ e− + ν. (2.1)

The neutrality and lightness of the neutrino meant they would be very difficult to detect,

and it was not until 1956 that the first experimental observation took place, by Reines and

Cowan [13]. Given the small chance of interaction, an extremely large flux of neutrinos was

required, and so it was only with the advent of nuclear reactors that detection became viable.

Two tanks of water sandwiched between three tanks of liquid scintillator containing 110

photomultiplier tubes (PMTs) were placed near the Savannah River Plant. It was predicted

that anti-neutrinos could interact with protons via inverse β decay:

ν̄ + p→ n+ e+. (2.2)

The tanks of water provided a large amount of target protons for the anti-neutrinos to

interact with, producing neutrons and positrons. Positron annihilation would then produce

two γ-rays, causing a flash in the scintillator liquid which could be detected by the PMTs.

The water was doped with 40 kg of CdCl2, so that the free neutron could be detected via

neutron capture:
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2.1. Neutrino Discovery

n+108Cd→109Cd∗ →109Cd + γ. (2.3)

The coincidence of a neutron capture 5 µs after a positron annihilation provided an un-

ambiguous signature of an anti-neutrino reaction. This was the first experimental evidence

of the existence of neutrinos.

A similar experiment by Ray Davis [14] in 1962 used a tank of chlorine doped water placed

near the Brookhaven nuclear reactor, to search for the interaction:

ν̄ +37Cl→ e− +37Ar. (2.4)

However, no excess of argon was detected. This along with the Reines and Cowan result

lead to the theory of lepton number conservation. This meant that anti-neutrinos could not

be produced from interactions involving leptons, and neutrinos could not be produced from

interactions involving anti-leptons.

In 1962, Ledermen, Schwartz, and Steinberger [15] explored the possibility of the existence

of two separate neutrino flavours. Protons were initially accelerated to 15 GeV, before being

impinged on a beryllium target. This produced many pions, which decayed into muons and

neutrinos:

π → µ+ νµ. (2.5)

A 13 m steel shield then stopped the muons and any surviving pions, leaving a beam

of neutrinos. A spark chamber was used to detect when these neutrinos interacted with

target aluminium sheets. An excess of muons compared to electrons was observed, showing

that neutrinos produced with a muon, produce another muon when they interact. This

proved that muon neutrinos were distinct from electron neutrinos. Measurements at CERN

confirmed this result in 1963 [16].

When the tau lepton was discovered in 1975, it was expected that there would be a

corresponding neutrino. However, as tau leptons have a half-life of only 300 fs, it is difficult

to use them to detect tau neutrinos. This, coupled with the fact that tau neutrinos are

extremely rare, meant that the first direct detection was not until 2000, at the DONUT

experiment [17]. Protons were accelerated to 800 GeV and impinged on 36 m of Tungsten.

This produced Ds mesons, which quickly decayed to tau anti-neutrinos and tau leptons, which

would then decay to produce a tau neutrino. A kink in the tau lepton’s path, detected with

nuclear emulsion, was used to identify the tau decay, and prove the existence of the tau

7



2. Neutrino Physics

Figure 2.1.: The cross-section for Z production as a function of energy. The red and green
lines show the prediction in the case of 2, 3, and 4 active neutrino flavours. The
data points are from a combination of the ALEPH, DELPHI, L3, and OPAL
experiments at LEP. Figure from [20].

neutrino.

The possibility of further active neutrino flavours has been ruled out by measurements of

Z decays at the LEP (Large Electron Postitron) collider and the Stanford Linear Acceler-

ator Center (SLAC) [18]. The width of the Z mass peak is the sum of the visible partial

width (from decays to leptons and hadrons), and the invisible partial width (assumed to be

from decays to Nν light neutrino species). Assuming each flavour contributes equally, Nν

was measured to equal 2.9840±0.0082. The results are shown in Figure 2.1, clearly most

consistent with the three active neutrinos case. This has been supported by measurements

of the expansion rate of the early Universe, which is consistent with Nν=3.04±0.18 [19].

However, this does not mean there cannot be further types of neutrino which do not

interact via the weak force and are therefore unable to couple to the Z boson, known as

sterile neutrinos. There are many experiments currently searching for sterile neutrinos,

though no firm evidence has yet been detected. Furthermore, there could be more heavy

neutrino flavours, which are just too massive to be produced in Z decays.
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2.2. Neutrino Oscillations Evidence

Neutrino oscillations are now well established, with many experiments measuring various

aspects of the phenomena in different regimes. This was not always the case, however.

In this section, the early evidence for oscillations of all flavours, and potential steriles, is

discussed for different neutrino sources.

2.2.1. Solar Neutrinos

Electron neutrinos are produced in the Sun by a number of different mechanisms. The largest

flux comes from the nuclear fusion of four Hydrogen atoms into a Helium (the pp chain):

4p→ 4He + 2e+ + 2νe. (2.6)

Figure 2.2.: Flux of solar neutrinos at Earth as a function of energy for different production
mechanisms, according to Bahcall’s solar model. Figure from [21].

However, the energy of the resulting neutrinos is below detection threshold for most ex-

periments. Other mechanisms produce higher energy neutrinos but with a lower flux, as

shown in Figure 2.2. Most solar neutrino experiments therefore measure the flux produced

through boron decay:

8
5B→ 8

4Be + e+ + νe. (2.7)
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2. Neutrino Physics

Ray Davis and John Bahcall devised an experiment to measure the flux of neutrinos pro-

duced via this mechanism in 1968 [22]. The design was similar to Davis’ previous experiment,

measuring the argon produced in the reaction in Equation 2.4 using a 380 m3 underground

tank of chlorine-based cleaning fluid (C2Cl4) in the Homestake Mine.

Bahcall calculated the predicted number of neutrinos from the Sun from the B decay chain

using the Standard Solar Model, as well as the number of argon nuclei they would produce

in the tank. However, consistently, only a third of the amount of neutrinos were detected

than had been expected. The discrepancy between the predicted and measured number of

neutrinos became known as The Solar Neutrino Problem.

Bruno Pontecorvo proposed a solution in 1968 [23], which involved neutrinos changing

flavour as they propagated through space. This phenomenon, known as neutrino oscillations,

was similar to the CKM [24] [25] formalism of quark mixing. Some of the electron neutrinos

produced in the Sun would therefore change flavour before reaching the Earth, causing the

flux deficits measured. However, this required neutrinos to have mass, which would be

a significant modification to the Standard Model of particle physics. The success of the

massless theory of the neutrino meant that this explanation initially did not gain much

support.

Instead, initial efforts focused on modifying the solar model so that the prediction fit

the data. The model depended on accurate knowledge of the pressure and temperature

inside the Sun’s core, and so it was thought that if the temperature was lower than had been

assumed in the prediction, then fewer neutrinos would be expected to be produced. However,

advances in helioseismology allowed improved measurements of the core temperature which

were consistent with the original value.

No modification to the solar model itself could accommodate the measured fluxes either.

The overall reduced flux required a lower core temperature, whereas the measured shape of

the energy distribution of the neutrinos required a higher temperature. This is because the

different nuclear processes producing different neutrino energies have different temperature

dependencies. Modifying the solar model in any way would always result in at least one of

these discrepancies increasing.

Pontecorvo’s resolution was still not widely accepted though. It was also suspected that

there was something wrong with the experimental setup, but later results were consistent

with the deficit.

In 1989, the Kamiokande experiment [26] measured the solar neutrino flux using a large

water Cherenkov detector. The electron recoil from elastic scattering was used to detect
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2.2. Neutrino Oscillations Evidence

electron neutrinos, but again measured a deficit to the predicted number.

The GALLEX [27] and SAGE [28] experiments in the early 1990s also used radiochemical

detection, but with Gallium to measure:

νe +71Ga→ e− +71Ge. (2.8)

This interaction had a lower energy threshold, allowing measurement of the flux from the

pp chain. Both experiments confirmed the discrepancy between prediction and measurement.

Despite the pp chain being better understood than B-8 decay, the results of these experi-

ments all relied upon the solar model and so were still not fully accepted.

The first solar-model independent measurement of the solar neutrino flux came from the

SNO experiment in 2002 [29]. SNO detected both the νe flux via charged-current interactions:

νe + d→ p+ p+ e−, (2.9)

and the total ν flux via neutral-current interactions:

να + d→ p+ n+ να, (2.10)

and:

να + e− → να + e−. (2.11)

The electron neutrino flux measured was consistent with the previous results, but the total

flavour independent flux was consistent with the predicted values, as shown in Figure 2.3.

This was strong evidence that electron neutrinos were changing flavour into muon and tau

neutrinos before they got to the Earth.

2.2.2. Atmospheric Neutrinos

Interactions between cosmic rays and nuclei in the Earth’s atmosphere produce neutrinos

via pion decay:

π+ → µ+ + νµ; µ+ → e+ + νe + ν̄µ (2.12)

π− → µ− + ν̄µ; µ− → e− + ν̄e + νµ (2.13)

Atmospheric neutrinos typically have a higher energy than solar neutrinos, with the flux
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2. Neutrino Physics

Figure 2.3.: The flux of µ + τ vs e 8B solar neutrinos measured at SNO. The dashed lines
show the total flux predicted by the BP2000 solar model [30]. The blue, red,
and green bands show the flux measured through NC, CC, and elastic scattering
reactions respectively. The intersect of the bands is at the bestfit values for φe
and φµτ , showing that the combined fluxes are consistent with the prediction.
Figure from [29].

peaking between 1-10 GeV.

Reines [31] first measured the atmospheric neutrino flux at the Kolar Gold Fields mines in

India in 1965. The measured ratio of νµ flux to νe flux was lower than had been predicted, a

result which was confirmed by the IMB [32] and Kamiokande [33] experiments. The deficit

was statistically convincing, but not significant enough to be considered compelling evi-

dence of neutrino flavour change. These results became known as the Atmospheric Neutrino

Anomaly.

The upgrade to the Kamiokande experiment, Super Kamiokande (SK), measured the flux

of atmospheric νµ as a function of incoming angle in 1998. The data was split into upwards-

going and downwards-going samples, allowing measurements at different distances from pro-

duction. Upward-going neutrinos would have to travel through the Earth before reaching

the detector, not just the distance from the atmosphere to the surface. In theory, since the

neutrinos are produced isotropically in the atmosphere, there should be the same amount of

upward-going and downward-going neutrinos. However, a large deficit in the ratio of νµ to

νe was observed in the upward sample, as shown in Figure 2.4.

The dependence of the number of νµ observed on the distance travelled could be explained
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2.2. Neutrino Oscillations Evidence

Figure 2.4.: The atmospheric neutrino flux as a function of angle from the first 414 days
of Super-Kamiokande data. The boxes represent the prediction, the crosses
represent the measured counts. Figure from [34].

in the context of neutrino flavour mixing. The upward-going neutrinos were changing flavour

as they propagated the longer distance through the Earth to the detector. The SK result

was strong evidence of νµ disappearance through oscillation.

2.2.3. Reactor Neutrinos

Reactor neutrinos have a similar energy flux to solar neutrinos, peaking between 1− 10 MeV.

Like atmospheric neutrinos, experiments for detecting reactor neutrinos can measure oscil-

lations across different baselines.

The KamLAND experiment [35] measured the ν̄µ flux from 55 nuclear power reactors across

Japan at a range of different distances, with a flux-weighted average baseline of 180 km.

This gave sensitivity to ∆m2
21. The number of ν̄µ detected was smaller than would be

expected if neutrinos could not change flavour, and the measured probability of oscillation

as a function of energy and distance was in agreement with Pontercorvo’s theory of neutrino

flavour mixing, as shown in Figure 2.5. This provided further evidence that neutrinos oscillate

while propagating through space.

There are several reactor experiments, RENO [37], Daya Bay [38], Double Chooz [39],

and its predecessor Chooz [40], with a shorter baseline of ∼1 km, sensitive to θ13. Chooz

initially set an upper limit on sin2θ13, before the others measured a large sin2θ13, which

allows long baseline neutrino oscillation experiments to observe νe appearance. They have
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Figure 2.5.: Ratio of the KamLAND measured flux to expectation for no-oscillation as a
function of L0/E where L0 is the flux-weighted average baseline (L0 = 180 km).
The blue histogram and curve show the expectation asuming PMNS oscillation
parameters. Figure from [36].

all also measured an excess of neutrinos at Eν ∼5 MeV compared to prediction, as shown in

Figure 2.6. This could be due to poor flux modelling, or the existence of sterile neutrinos.

2.2.4. Accelerator Neutrinos

More recently, accelerators have been used to produce beams of neutrinos to study oscilla-

tions. This offers more control over the energies and baselines involved. Most long baseline

(∼100 km) accelerator experiments have two detectors, to measure the beam before and

after oscillation. K2K [42], a long baseline (250 km) experiment in Japan, was the first to

measure oscillations in such a way, using a beam of predominantly νµ. MINOS [43] also

observed νµ disappearance consistent with the K2K result, with an even longer baseline

(735 km). νe appearance in a νµ beam was discovered by the next generation experiments

T2K and NOνA [44]. ντ appearance in a νµ beam was first observed by the OPERA [45]

experiment in 2010, with a 730 km baseline.

Short baseline (∼1 km) accelerator experiments are used to search for sterile neutrino

oscillations, as well as measuring neutrino cross-sections. LSND [46] measured oscillation

parameters in contradiction to other experiments in 2001, hinting at the existence of a sterile

neutrino. However, subsequent experiments such as KARMEN [47] in 2001, ICARUS [48] in
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Figure 2.6.: Ratio of measured to expected ν̄e flux as a function of energy for Daya Bay and
RENO (left) and Double Chooz (right). Figure from [41].

2004, and MiniBooNE [49]1 in 2007 did not agree with the LSND result. Currently there is

no convincing evidence of the existence of any extra neutrino flavours.

2.3. Oscillation Theory

In this section, the theory of the mechanism behind neutrino oscillations and the interaction

channels used to detect them are described. Firstly, the probabilities for a neutrino to

oscillate are derived. The implications of the CP violating phase are then briefly discussed,

before an overview of interactions within long baseline neutrino oscillation experiments is

presented.

2.3.1. Oscillation Mechanism

Neutrinos are produced in charged current weak interactions, and therefore are produced in

a definite flavour state: electron, muon or tau. This is defined by the massive lepton they

are produced with, conserving lepton number in the interaction. The existence of flavour

mixing is a direct consequence of neutrinos having mass. If neutrinos are not massless, there

exists some set of mass eigenstates, each with definite mass mi. There is no reason that

1Later MiniBooNE results were more compatible with LSND [50], though both are still considered contro-
versial.
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these should be equal to the flavour eigenstates, but as they both form a complete set the

flavour states are each a linear combination of the mass states:

|να〉 =
∑
i

U*
αi |νi〉 . (2.14)

Similarly, the mass states are each superpositions of the flavour states:

|νi〉 =
∑
α

Uαi |να〉 , (2.15)

where Roman subscripts are used to denote mass states, and Greek subscripts are used to

refer to flavour states.

The lepton mixing matrix, U, relates the two sets of states in the PMNS (Pontecorvo-

Maki-Nakagawa-Sakata) formalism of neutrino oscillations [51]. If this were the identity

matrix, the sets of eigenstates would be identical and neutrinos would not change flavour,

but the experimental evidence described in Section 2.2 shows this is not the case. The PMNS

matrix is often expressed in the form:

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3.

 (2.16)

Each element, Uαi, corresponds to the amplitude of the mass eigenstate i within the

flavour eigenstate α. The flavour contents are shown in Figure 2.7, according to current

best measurements. The left hand side is for the normal mass hierarchy, where m2
3 > m2

2,

whereas the right handside is for the inverted mass hierarchy, where m2
2 > m2

3. It is known

that m2
2 > m2

1 from measurements of neutrino oscillations in matter in the Sun, but the

nature of the mass hierarchy is not known beyond this. As the atmospheric and reactor

mass-splittings are measured through neutrino oscillations in a near-vacuum, which only

depend on the absolute values, the signs of ∆m2
32 and ∆m2

31 are not yet known.

The propagation of the mass eigenstates can be described by solutions to the plane wave

equation:

|νi(t)〉 = e−i(Eit−p̄i·x̄i) |νi(0)〉 , (2.17)

where t is time of propagation, Ei is the energy of the mass eigenstate i, p̄i is the momen-

tum, and x̄i is the position. |νi(0)〉 is the initial state of the mass eigenstate.

In the lab frame:
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Figure 2.7.: The flavour content and mass differences of the three mass eigenstates, for both
the normal and inverted hierarchys. Figure from [52].

pi · xi = |pi|L, (2.18)

where L is the distance travelled.

In the ultrarelativistic limit: |pi| = pi � mi, so:

pi · xi = EL, (2.19)

and the energy can be approximated as:

Ei =
√
p2
i +m2

i ≈ pi +
m2
i

2pi
≈ E +

m2
i

2E
, (2.20)

where E is the total energy of the neutrino. Therefore, taking the natural units, c = 1,

t = L:

Eit ≈ L(
m2
i

2E
+ E), (2.21)

and so Equation 2.17 can be written as:

|νi(t)〉 = e−i
m2
i L

2E |νi(0)〉 . (2.22)
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The different mass eigenstates therefore propagate differently as they have different masses.

Equation 2.15 can be interpreted as the probability of a mass eigenstate i interaction pro-

ducing a charged lepton α, as the fraction of flavour α in eigenstate νi can be calculated

as |U*
αi|. Although produced in a definite flavour state, as a neutrino travels away from

its source the mass states become out of phase. The resulting interference means that the

neutrino’s wavefunction evolves to contain components from all three flavour states. The

amplitude for a neutrino initially having flavour α, being detected as having flavour β after

propagating a certain distance is:

A(να → νβ) =
∑
i

∑
j

〈νj|Uβje−i
m2
i

2E U*
αi |νi〉 . (2.23)

As charged leptons in the standard model only couple to neutrinos of the same flavour:

δαβ = 〈να|νβ〉

= 〈
∑
i

U*
αiνi|

∑
j

U*
βjνj〉

=
∑
i,j

UαiU
*
βj 〈νi|νj〉

=
∑
i

UαiU
*
βj,

(2.24)

where δαβ is the Kronecker delta. The probability of a neutrino oscillating from flavour α

to β is then found to be:

P (να → νβ) = |A(να → νβ)|2

= δαβ − 4Σi>jR(U?
αiUβiUαjU

?
βj) sin2(

∆m2
ijL

4E
)

+ (−)2Σi>jI(U?
αiUβiUαjU

?
βj) sin2(

∆m2
ijL

4E
),

(2.25)

where ∆m2
i,j is the difference in mass of mass eigenstates i and j, and the negative sign is

for anti-neutrinos.

The PMNS matrix is often parametrised as three matrices in terms of three mixing angles,

θ12, θ13, θ23, and a CP-violating phase, δCP:
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U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0

−s13e
iδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 ,

(2.26)

where cij = cosθij and sij = sinθij. There are two extra complex phases which are only

non-zero if neutrinos are Majorana particles [53]. Even if this is the case, they would be

extremely difficult to measure experimentally, and they do not affect oscillation probabilities,

so are not considered here.

This form of the unitary matrix is often used as it makes it easier to interpret the oscillation

parameters, as they are separated by the different types of experiment in which they can be

measured.

The first matrix contains terms only in θ23, the mixing angle involved in most atmospheric

neutrino oscillations. If νe are neglected, and atmospheric oscillations are considered as a

two flavour process νµ → ντ , then θatm ≈ θ23.

The second matrix contains terms only in θ13, the mixing angle involved in most reactor

neutrino oscillations, and the CP-violating phase, δCP. If δCP 6= 0, neutrinos oscillate dif-

ferently to anti-neutrinos: να → νβ 6= ν̄α → ν̄β. However, when multiplied out δCP only

appears in terms with other angles, and so can only be measured if these are all non-zero.

This parametrisation of U emphasises the dependence on θ13, as it is the smallest angle and

was the last to be measured.

The third matrix contains terms only in θ12, the mixing angle involved in most solar

neutrino oscillations. If ντ are neglected, and solar oscillations are considered as a two

flavour process νe → νµ, then θsol ≈ θ12.

This has all assumed the neutrinos have been propagating through a vacuum. In most

circumstances, the neutrinos actually travel through matter, and so interactions with the

medium must be accounted for. In the Earth, there are two types of interactions which

can occur. These are charged current scattering of νe off an electron, and neutral current

scattering of any flavour of neutrino off an electron, neutron, or proton. The neutral current

scattering is flavour independent and so does not affect oscillation probabilities. The charged

couple scattering however, only occurs for νe, and so needs to be considered in oscillation

calculations. The effect increases with distance through matter travelled, and the electron
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density of the medium. The full treatment of how this process affects oscillations is known

as the MSW effect [54], but is beyond the scope of this thesis.

As the Earth is made predominantly of matter rather than anti-matter, the MSW effect

has a different impact for neutrinos than it does for anti-neutrinos. This produces an effect

that mimics CP violation, causing να → νβ 6= ν̄α → ν̄β, and so careful treatment is required

for measurements of δCP. At T2K, the average matter density between the near and far

detectors of 2.6 g/cm3 [55] has very little effect on the oscillation probabilities, but the

matter effects are fully taken into account nonetheless.

Putting all this together, Equation 2.25 can therefore be written for the T2K detection

channels, νµ (ν̄µ) disappearance and νe (ν̄e) appearance, as:

P (νµ → νµ) ≈ 1− 4 cos2θ13 sin2 θ23 (1− cos2θ13 sin2θ23) sin2 ∆m2
32L

4E
, (2.27)

and

P (νµ → νe) ≈ sin2θ23 sin22θ13 sin2 ∆m2
31L

4E

+ sin2θ23 sin2θ23 sin2θ13 cosθ13 sin
∆m2

21L

4E
sin

∆m2
31L

4E

× (cos
∆m2

32L

4E
cosδCP − (+) sin

∆m2
32L

4E
sinδCP).

(2.28)

Here, the positive sign in brackets is for anti-neutrinos. The neutrino and anti-neutrino

disappearance probabilities in Equation 2.27 are identical, whereas the appearance proba-

bilities in Equation 2.28 have opposing signs for the third term, allowing CP violation to be

measured if δCP 6= 0.

In these probabilities, the matter effect terms have been neglected as they are small, and

the solar oscillation terms (involving ∆m2
21) have been neglected as T2K is not sensitive to

these processes. They are however, taken into account in all oscillation calculations in T2K

analyses.

Equations 2.27 and 2.28 show that the probability for oscillation is dependent on the

mass splittings rather than the absolute values of the masses. This is perhaps unsurprising,

as it is the differences in the mass eigenstates that cause oscillations. Neutrino oscillation

experiments can therefore only measure the difference between the masses, and not the values

themselves. However, if all neutrino states were massless the mass differences would also be

zero. The evidence of neutrino oscillations outlined in Section 2.1 is therefore evidence that

at least two of the three mass eigenstates have non-zero mass.

As well as the oscillation parameters, the probability is also dependent on the experimental
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parameters L and E. Therefore, by measuring the probability for oscillation at a known

baseline and energy, the oscillation parameters can be determined. Using non-natural units:

∆mij
L

4E
= ∆m2

ij (eV2)
1.27L (km)

E (GeV)
, (2.29)

meaning with a 295 km baseline and 0.6 GeV beam, T2K is sensitive to ∆mij & 10−3eV2.

This has all assumed that there are only three flavours of neutrino, in line with the

measured values of the Z0 decay width [18,19]. However, there could exist sterile neutrinos,

briefly discussed at the end of Section 2.1. In this case, the mixing matrix would need to be

modified to accommodate oscillations involving these new neutrinos, and further mass states

may be required.

2.3.2. CP Violation

In 1967, Sakharov proposed three conditions that would be required for an interaction to

produce different amounts of matter and anti-matter [1]. These were:

• Baryon Number Violation: For a process to produce an unequal number of baryons

and anti-baryons, there must be a net non-zero baryon number.

• C and CP Violation: Processes producing a net amount of baryons must not be

balanced by processes producing a net amount of anti-baryons.

• Departure from Thermal Equilibrium: In thermal equilibrium, CPT symmetry

would cause the time reversal of baryon producing interactions to balance the net

amount.

The abundance of matter over anti-matter observed in the Universe therefore suggests

that CP violating interactions must have occurred. These have been observed in the quark

sector [2], but not by a sufficient amount to completely explain the asymmetry.

Equation 2.28 shows that neutrino oscillations could violate CP symmetry, if δCP is non-

zero. Theories of leptogenesis propose that an abundance of leptons over anti-leptons in the

Universe can be converted to a net number of baryons through sphaleron processes [56].

Leptogenesis models [57] [58] suggest that CP violation in the neutrino sector could be

sufficient to explain the baryon asymmetry in the Universe.
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2.3.3. Neutrino Interactions in Long Baseline Oscillation Experiments

To detect neutrino oscillations, it is inherently vital that the flavour composition of a flux

of neutrinos is carefully analysed. As the the number of neutrinos measured is a convolu-

tion of the flux, cross-section, detector efficiency, and oscillation probability, it is important

each of these components is well understood to make an accurate measurement. Due to

their low interaction rate and subsequent lack of data, neutrino cross-sections contribute

significantly to the total uncertainty, and this is only going to become more pronounced

with increased statistical power for oscillation experiments. It is therefore essential to study

neutrino interactions for precision measurements of oscillations to be made.

Equation 2.28 tells us that the probability of oscillation is dependent on the mixing angles,

mass splittings, distance travelled, and energy of the neutrino. The baseline length and

energy are experimental variables which can be chosen. The length is a fixed, known quantity

for accelerator based neutrino experiments, but it is not feasible to produce a mono-energetic

source of neutrinos, and so the energy spectrum for each flavour is used. The probability

of oscillation is measured from the number of neutrinos of each flavour before and after

oscillation. The oscillation parameters can then be calculated from the measured (P (να →
νβ)) and experimental (L and E) variables.

As neutrinos cannot be detected directly, the number of neutrinos is inferred from the

secondary particles produced when they interact. This requires a thorough understanding

of all the interactions that could take place. If the cross-section for a flavour is not known

accurately, the number of neutrinos of that flavour, and hence the oscillation probability,

will be determined incorrectly.

The energy spectrum is reconstructed from a set of observables in a detector. To do this,

the kinematics of the event must be well understood, otherwise the energy spectrum will be

distorted, and hence the oscillation parameters incorrectly calculated. Understanding these

kinematics is highly dependent on accurately identifying the type of interaction.

As neutrinos are electrically neutral and colourless, they can only interact via the weak

force. We divide these interactions into two types: Charged Current (CC), mediated by the

W± boson, and Neutral Current (NC), mediated by the Z0 boson.

The Feynman diagram for an example of an NC interaction, NC electron elastic scattering,

is shown on the left hand side of Figure 2.8. A neutrino interacts with an electron, causing

it to recoil, which can be detected. However, as this process could occur for any flavour of

neutrino, detecting it is not useful for determining the flavour composition of a neutrino flux.
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νανα

e−e− e−

W±

νe

e−νe

Z0

Figure 2.8.: Feynman diagrams for NC electron elastic scattering (left) and CC elastic scat-
tering (right). The NC interaction can occur for any neutrino flavour α = e, µ, τ ,
whereas the CC interaction can only occur for an incoming νe.

For this reason, NC interactions are not useful for oscillation measurements.

The Feynman diagram for CC elastic scattering is shown on the right hand side of Figure

2.8. Here, the only neutrino flavour this is possible for is νe, and so a measurement of this

process does tell us about the flavour composition of the neutrino flux. These events are

therefore selected to be part of oscillation analyses. However, the experimental signature

is identical to that of NC scattering, which could be any flavour. In this way, NC electron

elastic scattering forms an irreducible background to CC elastic scattering events. These

arguments can be extended to all NC and CC interactions: NC interactions produce charged

leptons with flavour uncorrelated to the incoming neutrino, whereas CC interactions produce

charged leptons which match the flavour of the incoming neutrino, and so can be used to

determine if a neutrino has oscillated. The NC event rate is therefore simulated in the MC

and used in the predicted event rates.

At T2K energies, there are three main types of interaction, but with a range of complex

nuclear effects involved. At low energies, <1 GeV, quasi-elastic (QE) -like scattering dom-

inates, but nucleon-nucleon correlations and the distribution of nucleons within a nucleus

need to be accounted for. QE events are called as such as the kinematics are similar to

electron scattering, as the transfer of energy, Q2, is small. At intermediate energies, around

∼1 GeV, resonance production (RES) becomes important, where the nucleon is excited into

a baryonic resonance, before decaying. At higher energies, deep inelastic scattering (DIS)

dominates, with parton distribution functions becoming important. Feynman diagrams for

these three processes are shown in Figure 2.9, and their cross-sections for neutrinos (rather
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Figure 2.9.: Feynman diagram for CCQE (left), CC RES (center), and CC DIS (right) in-
teractions.

than anti-neutrinos) as a function of energy are shown in Figure 2.10. The transitions

between these energy regimes are currently poorly modelled [59].

The T2K neutrino beam peaks at 0.6 GeV, and so CCQE events dominate. CCQE in-

teractions are well understood, and well constrained by data. Furthermore, as the they

are two-body processes, and assuming the initial nucleon is at rest, the incoming neutrino

energy, Erec, can be reconstructed from the final state lepton’s momentum and angle:

Erec =
m2
p − (mn − Eb)2 +m2

µ + 2(mn − Eb)Eµ

2(mn − Eb − Eµ + pµ cos θµ)
, (2.30)

where mp is the mass of the proton, mn is the mass of the neutron, Eb is the binding

energy of the neutron, and mµ, Eµ, pµ and cosθµ are the mass, energy, momentum, and

angle of the final state lepton.

Equation 2.30 shows that accurate neutrino energy reconstruction depends on having an

accurate value of the binding energy. The binding energy itself is the energy required for

the incoming neutrino to release a nucleon from the target nucleus. This manifests itself as

missing energy in the interaction. If an incorrect value for Eb is used in the reconstruction, an

incorrect value of Erec will be obtained, biasing the measurement of oscillation parameters.

As the average binding energy per nucleon is not well constrained by external data, this is

one of the dominant systematic uncertainties in previous T2K oscillation analyses.

The assumption that the initial state nucleon is at rest, is also not strictly true, particu-

larly for low Q2 events. Nucleons are constantly moving around, and the initial momentum

distribution within a nucleus is not well modelled. This causes an uncertainty in the recon-

struction of the neutrino energy.
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Figure 2.10.: Breakdown of the CC νµ cross-section for QE, RES, and DIS interactions, along
with data from various experiments. Figure from [60].

As described in Section 5.2, T2K samples data by event topology as seen by the detector,

whereby CCQE events are selected as CC 0π. There is a large background of CCQE-like

events, which are also selected as CC 0π. These can be events with a pion(s) in the final state

which is not detected, misreconstructed, or is absorbed before detection. Another contribu-

tion to this background comes from events where a neutrino interacts with a correlated pair

of nucleons, known as 2p2h (two-particle-two-hole). An example 2p2h Feynman diagram is

shown in Figure 2.11. This also leaves a 0π final state, meaning it is vitally important these

interactions are well modelled. Equation 2.30 only applies for true CCQE events, so if 2p2h

events are mistaken for CCQE, the neutrino energy will be incorrectly reconstructed, biasing

the oscillation results.

The most dominant interaction type producing a 1π final state is CC RES. These interac-

tions are not as well understood as CCQE, and as they are three-body processes the neutrino

energy reconstruction is not as simple. If the pion produced is below detection threshold,

the event will be classed as CC 0π, forming an irreducible background to CCQE events.

Coherent (COH) π production events, where the incoming neutrino interacts with an en-

tire nucleus leaving it in the same final state as it was initially, also produce a 1π final state,

as shown in Figure 2.12. Events on nuclei are less understood than events on nucleons, but

a target of purely free neutrons would be impossible to construct in practice, and interac-
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να lα

N ′1

N ′2

π

N2

N1
W±

Figure 2.11.: Feynman diagram for a 2p2h interaction. As they both produce 0π final states,
these events form a background to CCQE interactions.

να lα

W±

AA

π±

Figure 2.12.: Feynman diagram for a CC COH π production interaction.

tions on Hydrogen nuclei (purely protons) are only available to anti-neutrinos, which have a

lower cross-section2. Nuclei targets are therefore used, and so coherent scattering events are

inevitable.

As the energy increases, a larger Q2 becomes available, and so inelastic events become

accessible. In CC DIS interactions, the incoming neutrino scatters off an individual con-

stituent quark rather than a nucleon or nucleus. As the hit quark recoils, the nucleon

containing it fragments, producing multiple πs. These events are a significant fraction of the

CC Nπ (N>1) samples.

Final state interactions (FSI) can cause events to be miss-classified. The particles produced

2In fact, neutrino events on free electrons are even better understood than on free nucleons. However,
the cross-sections for these interactions are much lower, and constructing a pure electron target is as
infeasible as for neutrons.
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in the event can interact with other nucleons as they propagate out of the nucleus. This

can alter their momentum and direction significantly. The multiplicity of outgoing particles

can also be changed, as they can be absorbed before leaving the nucleus, or produce more

particles through collisions. FSI can therefore cause the particles leaving the nucleus to be

different to those produced in the original interaction.

Although FSI doesn’t generally affect the final state lepton, it can still have a big impact

on oscillation results. For example, if the π produced in a CC RES event is absorbed before

being detected, the event could be classified as CCQE. Equation 2.30 would then not be

valid, and Eν would not be reconstructed correctly.

2.4. Current Experimental Status

The current generation long baseline accelerator experiments, T2K and NOνA, are measur-

ing the accelerator oscillation parameters to greater precision, as well as trying to determine

δCP and the mass hierarchy. The short baseline neutrino oscillation experiments, such as

MicroBooNE [61] and ICARUS, are searching for sterile neutrinos, and trying to resolve

tensions with the LSND result. These form the Short Baseline Neutrino (SBN) program at

Fermilab [62], along with the SBN near and far detectors, due to come online in 2020. The

main aim of the SBN program is to unambiguously confirm or disprove previous anomalous

measurements, as well as performing detailed studies of neutrino-nucleus interactions at the

GeV energy scale.

The solar oscillation parameters are well constrained, but Borexino [63], is measuring

neutrinos produced via the 8B, 7Be, pep, and pp processes. SNO+ [64] will aim to confirm

these results as well as performing detailed studies of the MSW effect.

The current atmospheric neutrino oscillation experiments, such as IceCube [65], ANTARES

[66], and SK, are measuring the atmospheric parameters to increased precision, as well as

studying specific zenith angles, and therefore baselines, to investigate the MSW effect.

The current reactor neutrino experiments, such as RENO, Double Chooz, Daya Bay, and

KamLAND, are measuring sinθ13 with increasing precision. They are also searching for ster-

iles and trying to resolve tensions between the measured and predicted flux at Eν ∼5 MeV.

DANSS [67], NEOS [68], PROSPECT [69], STEREO [70] and SoLiδ [71] are all very short

baseline reactor experiments (L ∼10 m), and have each confirmed the 5 MeV excess. How-

ever, currently none have found significant evidence of a sterile neutrino.

Many solar, atmospheric, reactor, and accelerator neutrino experiments have been per-
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Mass sinθ23 Value
Parameter Hierarchy Octant

∆m2
21 - - (7.5 ± 0.18) x 10−5 eV2

sin2θ12 - - 0.307+0.013
−0.012

∆m2
32 NH - (2.444± 0.034) x 10−3 eV2

IH - (−2.55± 0.04) x 10−3 eV2

sin2θ23 NH Lower 0.542+0.019
−0.022

Upper 0.512+0.019
−0.022

IH - 0.536+0.023
−0028

sin2θ13 - - 2.18± 0.07 x 10−2

δCP NH Upper 1.37+0.18
−0.17 rad

Table 2.1.: Current best measurements of oscillation parameters. Values from [72].

formed over many years, with the aim of measuring the key oscillation parameters to an

increasing level of accuracy and precision. The Particle Data Group determine the current

world-leading measurements of each of the parameters [72]. These are shown in Table 2.1.

The best measurement of the solar parameters are from a global fit of solar and KamLAND

data, using a constraint on θ13 from reactor and accelerator experiments for ∆m2
21.

The atmospheric parameters are best measured using a fit of T2K, SK, NOνA, MINOS,

and IceCube data. These depend on the mass hierarchy, and the θ23 octant.

A fit of data by reactor experiments Daya Bay, RENO, and Double Chooz is the most

precise measurement of θ13. The best measurement of δCP comes from a fit of T2K, SK, and

NOνA data. The T2K and SK results assume the normal hierarchy, and use a constraint

on θ13 from reactor experiments. The NOνA result assumes the normal hierarchy and the

upper θ23 octant (sin2θ23 > 0.5).

2.4.1. Open Questions

For several decades now, neutrino experiments have been uncovering more and more infor-

mation about neutrinos, and their interactions. However, there are still several fundamental

unknowns.

As mentioned in Section 2.4, current data suggests that δCP is non-zero. However, more

data is needed to unambiguously conclude this, and if so, what its value actually is, and if

it corresponds to sufficient CP violation to account for the matter – anti-matter asymmetry
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we see in the Universe today. The next generation accelerator experiments, DUNE and HK,

aim to obtain precise measurements of δCP.

The ordering of mass states is also still unknown. Although we know m2
2 > m2

1, we don’t

know if m2
3 is higher or lower than the other two. Being such a fundamental property

of neutrinos, not knowing the mass hierarchy limits our ability to measure many aspects

of neutrino physics. Determining the hierarchy would allow more precise measurements

of the other oscillation parameters, as well as having a big impact on our understanding

of Supernovae. This is one of the aims of future accelerator experiments DUNE and HK,

future atmospheric experiments SNO+ and IceCube, as well as the future reactor experiment

JUNO [73].

Furthermore, the absolute scale of the masses are not known. Although we can measure

the square of the mass differences, this tells us nothing about the actual values of the masses.

As well as this, the nature of the neutrino masses is unknown. Neutrinos could have Dirac

masses, like all other fermions, or could have Majorana masses, meaning they are their own

anti-particle. Knowing if neutrinos are Majorana or Dirac particles is very important for

understanding the origin of small neutrino masses. Future neutrinoless double beta decay

experiments, MAJORANA [74], nEXO [75], KamLAND-Zen [76], and SNO+ will be able to

test the Majorana nature of neutrinos if the mass hierarchy is determined.

Finally, it is not known if the three flavours of neutrino that have already been detected

are the only that exist. If there are more, it is not known how many more there are, and

how their masses compare to the active flavours. If proved to exist, sterile neutrinos could

even be the elusive Dark Matter we infer exists in the Universe, but don’t currently know

what it is [77]. The SNB program will improve constraints on sterile neutrinos.

2.5. Summary

This chapter has presented an overview of the history and theory of neutrino physics. Since

the neutrino was first theorised in 1930, and first detected in 1956, many experiments have

measured many of its properties, including the 2015 Nobel prize winning detection of neutrino

oscillations. Three flavours have been discovered, and measurements of the Z decay width,

along with cosmological constraints, show that any other flavours would have to be sterile.

Neutrino oscillations have been detected from a variety of different sources: solar, at-

mospheric, accelerator, and reactor. The parameters governing these oscillations are being

measured with increasing precision, and T2K is now trying to determine the value of the
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CP violating phase, which could explain the baryon asymmetry we observe in the Universe

today.

The probability of a neutrino oscillating from one flavour to another depends on the

distance travelled and the neutrino energy. The T2K beam energy and baseline is tuned to

maximise the probability of oscillation. At T2K energies, there are three main CC interaction

types: CCQE, CC Res, and CC DIS. CCQE is the best understood of these, and is the

target signal interaction mode. However, the other CC modes, along with NC events, form

a background to these interactions. It is therefore important to understand all their cross-

sections, and final state interactions, to make accurate oscillation measurements.

There are still many unknowns within neutrino physics. The mixing angles and mass

differences are being measured with increasing precision, but the absolute masses and mass

hierarchy have not yet been determined. As well as this, anomalies in low energy flux

measurements hint at the possibility of the existence of sterile neutrinos, but there is currently

no concrete evidence that this is the cause yet.
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3. The T2K Experiment

Figure 3.1.: The T2K experiment: Neutrinos are produced on the east coast of Japan, and
are measured 280 m upstream by the near detectors, and 295 km away at the
far detector, SK. Figure from [78].

T2K is a long baseline neutrino oscillation experiment in Japan, which has been taking data

since 2010. It was designed to precisely measure sin2θ13 by observing the appearance of (anti)-

electron neutrinos in a (anti)-muon neutrino beam, and sin22θ23 and ∆m2
23 by observing

muon neutrino disappearance. In 2014, T2K first detected electron-neutrino appearance [79].

NOνA found consistent results in 2016 [80]. Since data taking began, T2K has made world

leading measurements of sin2θ13, sin22θ23 and ∆m2
23. The current main aims of T2K focus

on excluding possible values of δCP and determining the neutrino mass ordering.

In this chapter, the three main components of the experiment, the neutrino production

beamline, the near detector suite, and the far detector, SK, are introduced. A schematic

diagram of this setup is shown in Figure 3.1. The beam is produced on the east coast of

Japan, at the Japanese Proton Accelerator Research Complex (J-PARC), and is described

in Section 3.1. The near detector (ND) suite is located 280 m upstream of the beam source,

where the ND280 and INGRID detectors measure the flux, cross-section, and direction of

the beam. This is described in Section 3.2. Then, 295 km away in the west of Japan, the

Super-Kamiokande water Cerenkov detector measures interactions after oscillation, and is

described in Section 3.3.

At the ND suite, there are a number of different neutrino detectors. T2K was the first
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experiment to use the off-axis technique, whereby SK and ND280 are located 2.5o away from

the axis of the beam. This focuses the energy distribution of the beam into a narrower peak,

as described in Section 3.2. This technique requires an accurate measurement of the beam

direction, which is performed by a second, on-axis detector, INGRID.

As well as ND280 and INGRID, there are also detectors at the ND suite that are not

directly used in the T2K oscillation analysis. The NINJA [81] experiment is designed to

accurately measure the neutrino cross-section on water using nuclear emulsion techniques.

The WAGASCI [82] and Baby MIND [83] experiments are designed to measure and constrain

non-cancelling systematic uncertainties arising from the fact that ND280 and SK have differ-

ent target materials. These will not be discussed any further, as data from these experiments

is not used in this analysis.

3.1. Beamline

The neutrino beamline at J-PARC [84] was newly constructed for the T2K experiment, and

is fed by a system of three accelerator facilities: a linear accelerator (LINAC), a rapid cycling

proton synchrotron (RCS), and the main ring synchrotron (MR). The accelerator complex

is shown in Figure 3.2. H− ions are first accelerated to 400 MeV by the LINAC, before being

converted to H+ ions by charge stripping foils as they are injected into the RCS. Here, they

are further accelerated to 3 GeV in 25 Hz cycles, with two bunches per cycle.

Approximately 5% of the bunches are injected into the MR, where they are accelerated to

30 GeV. The rest are supplied to other experiments at J-PARC. The MR holds eight bunches

each of ∼3×1014 protons. The beam is extracted from the MR by a set of five kicker magnets,

which deflect the beam toward the neutrino beamline. The extraction happens in spills of

eight proton bunches, separated by 560 ns. The spill cycle is ∼0.5 Hz, and a single spill

has a total duration of approximately 5 µs. A GPS system is used to link the timing of the

information of the spills to the neutrino detector triggers, allowing better discrimination of

backgrounds from the beam signal.

3.1.1. Neutrino Beamline

The neutrino beamline consists of two sections, the primary and secondary beamlines. These

are shown in Figure 3.3. In the primary beamline, the proton beam is deflected towards the

secondary beamline. It is vital the profile, position, intensity, and beam loss are known to

be able to produce the stable and consistent neutrino beam required. Beam monitors in the
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Figure 3.2.: The J-PARC accelerator complex, with the three main accelerators labelled.
Figure from [85].

primary beamline perform these measurements.

The secondary beamline contains the proton target station, decay volume, and beam dump

and muon monitor. This is shown in Figure 3.4. The proton target station, contains the

graphite target, an optical transition radiation monitor (OTR), and the magnetic focussing

horns. The protons are impinged on the target, producing secondary muons, pions, and

kaons. The target is a 91.4 cm long graphite rod with a diameter of 2.6 cm. Helium gas is

used to cool the target, to offset the heating effect of the beam. It is surrounded by a 2 mm

thick graphite sleeve and a 0.3 mm titanium casing.

The target station sits within the first of the focusing horns. This collects the secondary

mesons, and they are then focused by the second and third horns. In each horn, a toroidal

magnetic field is produced by coaxial conductors. The strength of the field reduces with 1/r

where r is the distance from the beam axis. The horns operate at 250 kA (1.7 T), which

increases the neutrino flux at SK by a factor of 16 compared to 0 kA.

The current in the horns can be reversed to focus either positive or negatively charged

mesons. The right sign particles are focused onto the beamline, while the wrong sign particles

are deflected away. The current required to focus positive mesons is referred to as forward

horn current (FHC), and the current required to focus negative sign particles is referred to
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Figure 3.3.: The T2K neutrino beamline. Figure from [86].

as reverse horn current (RHC).

The focused mesons then travel down the 96 m long steel tunnel decay volume. Here,

neutrinos are produced via the following decay processes:

π+ → µ+ + νµ

K+ → µ+ + νµ

(3.1)

in FHC, and:

π− → µ− + ν̄µ

K− → µ− + ν̄µ

(3.2)

in RHC.

There is also a small contribution of νe and ν̄e from decays such as:

µ+ → e+ + νe + ν̄µ

K+ → π0 + e+ + νe

(3.3)

in FHC, and:

µ− → e− + ν̄e + νµ

K− → π0 + e− + ν̄e

(3.4)

in RHC.
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Figure 3.4.: Side view of the secondary beamline, showing the target station and focusing
horns, decay volume, and beam dump. Figure from [86].

In each mode, there is some contamination of the wrong sign neutrino due to imperfect

horn focusing, and the µ decays in Equations 3.3 and 3.4, as shown in Figure 3.5. As this

is a larger effect for RHC mode, and as anti-neutrinos have a much smaller cross-section

than neutrinos, there are many more neutrino interactions in RHC mode than anti-neutrino

interactions in FHC mode.

After the decay channel, there is a beam dump made up of 3.17 m of graphite and 2.4 m

of iron. This stops all surviving mesons, and all muons below 5 GeV. Neutrinos and higher

momentum muons reach the muon monitor (MUMON) beyond the beam dump. The MU-

MON consists of two independent detectors: Si PIN photodiodes, and ion chambers. These

measure the muon profile on a bunch by bunch basis, which is a reliable measure of the

beam direction and intensity as the majority of neutrinos in the beam are produced with a

muon in a two-body decay. The MUMON measures the beam direction to an accuracy of

0.25 mrad, and the beam intensity to a precision of 3% [88].

It’s not possible to count the total number of neutrinos produced in the beam, so the

number of protons impinged on the target (POT) is used as a metric for the data collected

by T2K. The total accumulated POT and beam power have been increasing since data

taking began in 2010, as shown in Figure 3.6. Near detector data from runs 2–9 is used in

this analysis.
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(a) FHC Mode (b) RHC Mode

Figure 3.5.: Prediction of ND280 event rate broken down by neutrino species. Figure from
[87].

3.1.2. Off Axis Technique

Because neutrinos are produced in a two-body decay, and so some fraction of energy is taken

by the second decay product, it is not possible to produce a mono-energetic beam. The

oscillation probability depends on the neutrino energy, and so more accurate measurements

of oscillation parameters can be made using a neutrino beam with a narrower spread of

energies. The neutrino energy is given by [90]:

Eν =
m2
π −m2

µ

2(Eπ − pπcosθπν)
. (3.5)

Figure 3.7 shows Eν as a function of Eπ for different values of θπν . The Eν distribution is

flatter for larger θπν , and so Eν has a weaker dependence on Eπ. At higher angles a narrower

range of Eν can therefore be produced from a wider range of Eπ. This effect is highlighted in

Figure 3.8, showing the predicted neutrino fluxes on and off-axis. A narrower beam spread is

produced at 2.5o, but with a lower overall rate (the y-axis is normalised). The beam energy

and off-axis angle are chosen such that the neutrino energy peaks at ∼0.6 GeV, to maximise

the probability of oscillation at the far detector by aligning the beam peak with the first

oscillation dip. Going off-axis also reduces the wrong sign contamination in the beam.
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Figure 3.6.: The total accumulated POT and beam power at T2K for runs 2–10. Figure
from [89].

3.1.3. The Neutrino Flux Simulation

A data-driven Monte-Carlo (MC) set is produced from beamline simulation to model the

neutrino flux. The FLUKA2008 [93] software package was used to simulate 30 GeV proton

interactions within the target. Measurements from the NA61/SHINE [94] experiment, which

measures interactions of 30 GeV protons in a replica of the T2K target, are used to tune the

simulation. The components of the beamline are modelled with the GEANT-4 [95] based

JNUBEAM [96] software, and secondary interactions and interactions between particles

which exit the target with the surrounding area are simulated with the GCALOR package

[97]. Secondary particles are tracked until they decay to neutrinos, fall below the energy

threshold to decay to neutrinos, or are absorbed in the beam dump. The predicted neutrino

energy distributions for FHC mode are shown in Figure 3.5.

3.2. Near Detectors

The beam is first measured by two near detectors, ND280 and INGRID, 280 m away from

the source. At this short distance, the probability of oscillation is negligible and so the

unoscillated beam can be measured. The locations of the two detectors within the near

detector suite are shown in Figure 3.9.
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Figure 3.7.: Energy of neutrinos produced in two-body decay as a function of pion energy,
for a variety of different off-axis angles. Figure from [91].
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Figure 3.8.: Effect of off-axis angle on the predicted neutrino flux, normalised to arbitrary
units, along with the oscillation and survival probabilities of νe and νµ respec-
tively. Figure from [92].
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Beam
center

Figure 3.9.: The T2K near detector suite, 280 m from the beam source. Figure from [98].

3.2.1. INGRID

The INGRID detector is located on the beam axis, and is designed to measure the beam

profile and direction. From this, the beam angle at ND280 and SK can be determined to

within 0.2 mrad, and the beam center to within 5 cm. Neutrino event rates are also measured

to within 2%. These measurements are in good agreement with results from MUMON, as

shown in Figure 3.10. A precise determination of the beam direction is necessary as a 1 mrad

uncertainty corresponds to a 2-3% uncertainty on the beam energy.

INGRID achieves this precision by using 16 identical modules made of interleaved iron

and scintillator. These are arranged in a 10 × 10 m cross shape centered on the primary

proton beamline axis, with two modules off-axis outside the cross, as shown in Figure 3.11.

Each module consists of nine iron sheets and 11 tracking scintillator planes, as shown in

Fiugre 3.12. Each scintillator plane contains 24 horizontal and 24 vertical bars of plastic

scintillator. These bars are threaded with a wavelength shifting (WLS) fibre, which collects

photons emitted in the plastic scintillator during energy deposition. The WLS fibres trans-
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Figure 3.10.: INGRID and MUMON measurements of the beam direction and event rate for
runs 1–10. Figure from [99].

Figure 3.11.: The horizontal, vertical, and off-axis modules of the INGRID detector. Figure
from [78].
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Figure 3.12.: The composition of an INGRID module. Figure from [78].

port photons to multi-pixel photon counters (MPPCs) at the end of each bar, and shift the

spectrum of the light to the optimal region for MPPC readout. The MPPCs each contain

several hundred avalanche photodiodes with a gain 1×106, which convert photons into an

electrical signal. This signal is readout by a set of Trip-T front-end electronics boards [78],

each of which is connected to 48 MPPCs. The backend electronics are made up of readout

merger modules (RMM), which read data from the detector, and clock modules, which send

trigger signals and ensure all components of the detector are synchronised.

The layered structure of each module is surrounded by scintillator planes to veto interac-

tions occurring outside the fiducial volume. The total fiducial mass of iron in each module

is 7.1 t, sufficient such that at nominal beam intensity, there are enough neutrino events to

measure the beam direction on a day-by-day basis.

There is another 17th module, with a slightly different composition to the others. This

module, known as the proton module, consists of only scintillator planes, but in smaller

bars to give a finer granularity. It is designed to detect muons and protons from CCQE

interactions on carbon in the plastic, to improve the MC simulation of the beamline and

neutrino interactions. The proton module is located at the center of the cross, and like the

other modules, is surrounded by veto planes. Figure 3.13 shows its composition.

3.2.2. ND280

The off-axis near detector, ND280, is designed to detect particles produced in neutrino

interactions, to determine the event rate of various interaction modes and measure the un-

oscillated flux and energy of the beam in the direction of SK. This constrains systematic
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Figure 3.13.: The composition of the proton module in the INGRID detector. Figure from
[78].

uncertainties allowing more accurate prediction of the event rates at the far detector. ND280

also measures neutrino interaction cross-sections at the 1 GeV energy scale.

As shown in Figure 3.14, ND280 consists of several sub-detectors. The tracker region

contains two time projection chambers (TPCs) between three fine-grained detectors (FGDs).

The FGDs provide a target for neutrinos, and track particles close to the interaction vertex.

The TPCs identify and measure the momentum of particles, particularly muons, which are

produced in the event and leave the FGD the interaction vertex is in. The FGDs and TPCs

are described in more detail in Sections 3.2.2.1 and 3.2.2.2.

Upstream of the tracker, the π0 detector (P0D) detects NC events on water, the same

target as in the far detector. This is described in Section 3.2.2.3. Both the tracker region

and P0D are surrounded by electromagnetic calorimeters (ECals). The ECals are designed

to measure the energy of photons produced in the inner detectors and reconstruct π0 tracks

from the FGDs. They are described in more detail in Section 3.2.2.4.

The whole detector sits within the UA1 magnet which produces a 0.2 T magnetic field.

This allows accurate charge and momentum measurements in the TPCs. The magnet yoke

is interleaved with scintillator, the side muon range detector (SMRD). This measures high

angle muons exiting the detector, cosmic ray muons entering the detector, and interactions in

the magnet and surrounding area. The magnet and SMRD are described in Section 3.2.2.5.

The same MPPCs used in INGRID are also used throughout ND280. These were chosen,
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3.2. Near Detectors

Figure 3.14.: Exploded view of ND280, showing its sub-detectors. Figure from [78].

rather than the more common photomultiplier tubes (PMTs), as they can be used within a

magnetic field.

3.2.2.1. The Fine-Grained Detectors

The FGDs provide the primary target for neutrino interactions in ND280. They are designed

to be able to measure particles which don’t exit themselves and enter a TPC. To achieve

this, they are completely active, allowing them to measure vertex activity and short range

tracks such as those from recoil protons. Short ranged particles tend to have low momentum

and deposit lots of energy per track length, and so the FGDs need to be able to detect

charged particles with fine granular resolution, to distinguish between tracks and determine

their direction.

The FGDs are also used as a cosmic trigger for stopping pions, which allows the identifi-

cation and reconstruction of subsequent Michel electrons. They are also used for measure-

ments of the time-of-flight (TOF) of tracks to differentiate between forward-going positive

and backward-going negative particles. As well as this, the FGDs have the best timing reso-

lution of all the sub-detectors, and are used as the base for reconstructing tracks which pass

through more than one sub-detector.

The two FGDs both contain 1.1 t of target mass, and consist of layers of scintillator bars.

Each layer is 186.4 × 186.4 × 2.02 cm, and contains 192 bars in the horizontal direction and
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192 bars in the vertical direction. The bars are covered in a reflective coating containing

TiO2, and each are 0.96 × 0.96 × 186.4 cm. A WLS fibre runs down the centre of each bar

to an MPPC at the end. The other end is mirrored by a vacuum deposition of aluminium.

The most upstream FGD (FGD1) is composed of 15 scintillator planes. The second FGD

(FGD2) has seven scintillator planes separated by layers of hollow corrugated polycarbonate

sheets. These are filled with water, providing a water-scintillator hybrid target. The FGDs

therefore measure interactions on CH in the scintillator, which is a common target in external

neutrino scattering experiments, and H2O, the far detector target. Nuclear effects cannot be

accurately extrapolated between target nuclei, and so it useful to be able measure interaction

rates on water at ND280.

The resolution and track length in the FGDs is too low to use dE/dx to identify particles

which don’t enter the TPCs, so the combination of integrated deposited energy and track

length is used. These quantities are compared to values from simulations of different particles,

as shown in Figure 3.15, allowing protons to be distinguished from other charged particles.

In particular, accurately distinguishing protons and pions which stop in the FGDs is vital

for correctly identifying the interaction type. Figure 3.15 shows data from both the neutrino

beam, and cosmic trigger. The neutrino beam data contains particles identifiable as protons,

muons, and pions, whereas the cosmic trigger data only contains particles identifiable as

muons and pions, as would be expected.

3.2.2.2. The Time Projection Chambers

The three TPCs are located either side of each FGD, and provide high resolution tracking

for both forward-going and backward-going particles. The majority of the particle identifica-

tion and momentum measurements at ND280 take place inside them. The multiplicity and

direction of tracks can be easily determined, as the TPCs detect events in three dimensions.

The momentum of particles can be measured from the bending of tracks in the TPCs due

to the magnetic field.

The construction of the three TPCs is identical. They consist of two concentric boxes, as

shown in Figure 3.16. The inner box is filled with a drift gas consisting of an Ar:CF4:C4H10

mixture at 95:3:2. The walls of the inner box form the field cage. The outer box walls are

held at ground voltage, and the outer box is filled with CO2, to provide electrical insulation

between the boxes.

The inner box contains the cathode, and the walls parallel to the cathode have a copper

pattern, designed to produce a uniform electric field in the module, aligned with the magnetic
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(a) Neutrino beam data

(b) Cosmic trigger data

Figure 3.15.: Integrated deposited energy as a function of range for particles stopping in
FGD1. The scatter plot shows data while the curves show the MC predictions
for protons, muons, and pions. Figures from [100].

Figure 3.16.: Schematic diagram of a TPC module. Figure from [78].

45



3. The T2K Experiment

Figure 3.17.: Energy loss as a function of momentum for particles in one TPC. The scatter
plot shows data while the curves show the theoretical predictions for protons,
electrons, muons, and pions. Figure from [101].

field. The TPC modules are made of non-magnetic materials as not to interfere with the

field from the magnet.

When a charged particle passes through a TPC module, ionisation electrons are produced,

which drift away from the cathode to readout planes on the walls of the inner box. Here,

the electrons are multiplied and detected by micromegas detectors. The time and position

of the electron signals at the readout planes give a 3D image of the particle track.

Particle identification is performed in the TPCs using, as in the FGDs, dE/dx. This

is shown in Figure 3.17, as a function of momentum, for different particles. The dE/dx

resolution is 7.8±0.2%, allowing electrons and muons to be distinguished.

3.2.2.3. The π0 Detector

The P0D was designed to primarily measure the cross-section of the neutral current inter-

action νµ + N → νµ + N + π0 + X on water. This is one of the major backgrounds to νe

appearance at the far detector, and so it is necessary to measure and constrain it.

The P0D is located upstream of the FGDs and TPCs. It consists of alternating layers

of scintillator bars, brass and lead sheets, and water target bags, as shown in Figure 3.18.

There are 40 modules, each made up of two triangular scintillator bars. The first layer

contains 134 vertical bars, and the second 126 horizontal bars. Each bar contains a WLS

fibre which is read out by an MPPC. The horizontal and vertical bars are 234 and 220 cm

46



3.2. Near Detectors

Figure 3.18.: A schematic diagram of the side on view of the P0D. Figure from [78].

long respectively.

The water bags can be emptied, allowing measurements of the cross-section on H2O by

subtraction. The target mass is 16.1 t with water in the bags, and 13.3 t without water.

The lead and brass sheets produce electron showers which can be detected, from photons

emitted in π0 decays.

3.2.2.4. The Electromagnetic Calorimeter

The primary purpose of the ECals is to tag and reconstruct π0s from the FGD, TPC, and

P0D, by measuring the energy and direction of photon showers. It is also used to distinguish

between pions and muons by shower shape. The ECal’s near hermetic coverage of the inner

detectors allows full reconstruction of events, and they also provide complimentary particle

identification to the TPCs.

There are three sections of the ECal: the downstream ECal (DsECal) located after the

last TPC, the barrel ECal surrounding the FGDs and TPCs, and the P0D ECal surrounding

the P0D. These are shown in Figure 3.14. The barrel and downstream ECals are tracking

calorimeters which reconstruct electromagentic showers, particularly those from high-angle

particles from the TPC. The P0D ECal is designed to tag energy escaping from the P0D
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and distinguish photons from muons, as the P0D reconstructs showers itself.

Each ECal module consists of alternating layers of scintillator bars and lead sheets. The

bars are 40 × 10 mm, and contain a WLS fibre which is read out by an MPPC. The lead

sheets are 1.75 mm thick.

The downstream ECal has 34 layers of scintillator, corresponding to 11 electron radiation

lengths. Alternate layers are orientated perpendicularly to each other. This gives two ‘views’,

which can be combined to create 3D reconstructed tracks. The downstream ECal is 2300 ×
2300 × 500 mm, and its total target mass is 4.80 t.

The six modules of the barrel ECal have 31 layers of scintillator, corresponding to 10

electron radiation lengths. These also alternate orientations similarly to the downstream

ECal. The side barrel ECal modules are 4140 × 2500 × 462 mm, and their total target

masses are 9.21 t. The top and bottom barrel ECals are 4140 × 1676 × 462 mm, and their

total target masses are 6.62 t.

The six modules of the P0D ECal have only six layers of scintillator, each parallel to the

beam. These are interspersed with 4 mm thick lead sheets. The side P0D ECal modules are

2898 × 2454 × 155 mm, and their target masses are 2.64 t. The top and bottom P0D ECal

modules are 1584 × 2454 × 155 mm, and their target masses are 1.5 t.

3.2.2.5. The UA1 Magnet and Side Muon Range Detector

The TPC, FGD, P0D, and ECal all sit within the UA1 [102] magnet, which provides a 0.2 T

magnetic field. This allows the TPCs to measure the momentum of charged particles with

a resolution of 10%, and determine their sign, which identifies if the interaction involved

a neutrino or anti-neutrino. The magnet consists of water-cooled aluminium coils, which

produce the field. The coils are supported by the return yoke, which is made up of 16 C-

shaped iron elements. The internal volume of the magnet is 7.0 × 3.5 × 3.6 m, and the

external volume is 7.6 × 5.6 × 6.1 m.

The nominal current is 2.7 kA, and this is monitored regularly to accurately calculate the

field. This reduces the uncertainty on momentum measurements in the TPC. The uncertainty

on the field measurement is 2×10−4 T.

Air gaps in the return yoke hold the modules of the SMRD. These are used to track

high angle muons and measure their momentum, as well as providing a cosmic trigger. The

SMRD consists of 192 horizontal and 248 vertical plastic scintillator modules. The horizontal

modules are 9 × 686 × 955 mm, and the vertical modules are 9 × 892 × 955 mm. The

scintillator modules contain a WLS fibre which is read out by an MPPC.
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3.2.2.6. The Data Acquisition System

The ND280 data acquisition (DAQ) system triggers the readout of information from each of

the sub-detectors, as well as the storage of recorded data. The same system is used for both

ND280 and INGRID.

There are three trigger requirements during physics runs: the beam trigger, when a beam

spill occurs; the Trip-T cosmic trigger, when hits are seen on the opposite sides of the

outer detectors (top and bottom SMRD, left and right SMRD, or P0D and downstream

ECal) outside the beam window; and the FGD cosmic trigger, when hits are seen in both

FGDs outside the beam window. These initiate a fixed time window during which data is

recorded. Data is acquired from front-end electronic boards via optical Gigabit links, and

event fragments from the sub-detectors are merged and logged.

3.2.3. Near Detector Simulation

The ND280 and INGRID geometries and the paths of final-state particles from neutrino

interactions are simulated in GEANT-4. The neutrino interactions themselves are simulated

using NEUT [103], an interaction generator written for the Super-Kamiokande and T2K

experiments.

A custom software package, ElecSim, is used to simulate the response of the detector and

electronics to energy deposited by particles that have propagated through the detectors. This

involves simulating the light emitted from the energy deposition, the transport of that light

through the bar and down the WLS fibres, and the subsequent response of the MPPCs. For

the TPCs, ElecSim simulates the electron drift and response of the micromegas detectors.

3.3. Super-Kamiokande

The far detector, Super-Kamiokande, is a water Cherenkov detector located 295 km west

of the near detector suite, in the Kamioka mine inside Mt. Ikenoyama. The mine provides

1 km of rock (or 2.7 km equivalent of water), shielding the detector from cosmic ray muons

below 1.3 TeV, significantly reducing background rates. The detector is filled with 50 kt of

pure water (25 kt fiducial volume), and, like ND280, lies 2.5o off-axis. Figure 3.19 shows the

detector within the mine.

Super-Kamiokande has been searching for proton decay and measuring solar and atmo-

spheric neutrino oscillations since 1996, and has been a far detector for a long baseline

accelerator neutrino oscillation experiment since 1999, initially for K2K and now for T2K.
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Figure 3.19.: The Super-Kamiokande detector within the Kamioka mine. Figure from [78].

Although it has undergone several updates during this period, the long running operation

mean its behaviour is well understood. The atmospheric and cosmic ray muon data provide

calibration samples completely separate from the T2K analysis, for which the simulated MC

matches data to the percent level.

The detector is divided into the inner (ID) and outer (OD) detectors by a 55 cm cylindrical

stainless steel and tyvek framework. The OD is 40.2 m in height with a radius of 35.8 m. It

surrounds the ID with 2 m of water, serving as a shield from interactions in the surrounding

rock. An active veto for cosmic ray muons is provided by 1885 outward-facing 20 cm PMTs.

Despite the fairly sparse PMT coverage, the veto has an efficiency of almost 100%. The

beam timing window can be used to identify interactions in the OD from beam neutrinos.

The ID is 36.2 m in height with a radius of 33.8 m. It contains 11,129 inward-facing

50 cm PMTs, each with a combined quantum and collection efficiency of 20%, and a timing

resolution of ∼2 ns. The PMT coverage of the ID is 40%, which gives enough spatial

resolution to sufficiently reconstruct the paths of particles produced in neutrino interactions

inside the tank.

When charged particles travel through a medium of refractive index n at a velocity vp

larger than the speed of light in the medium, vγ = c/n, Cherenkov radiation is emitted in a

cone with opening angle θc = arcos 1
n·v/c , along the direction of the particle’s path. In water,

this is ∼42o. Neutrino interactions in the SK tank produce charged particles which, if above

an energy threshold, can be detected by the emitted Cherenkov light. Photons from the

cone form a ring shape on the walls of the tank, where they are detected by the PMTs.

This pattern, along with the hit timing, can be used to reconstruct the interaction vertex
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(a) Muon neutrino event. (b) Electron neutrino event.

Figure 3.20.: SK ID event display, showing the Cherenkov ring PMT hits for a a) muon, and
b) electron neutrino event. Figures from [78].

position, and the charge, momentum and direction of the produced particle.

CCQE interactions are the primary channels used to measure νµ disappearance and νe

appearance at T2K. Discounting final state interactions, these events produce a charged

lepton and a proton. The measured momentum and direction of the lepton can be used

to reconstruct the neutrino energy, using Equation 2.30, but it is also vital for the lepton

flavour to be determined, as this corresponds to the incoming neutrino flavour.

Discrimination between electrons and muons is achieved by separating Cherenkov rings by

shape. As electrons are relatively light, they scatter off particles in the water and so travel

a more convoluted path to the PMTs. At the T2K beam energies, they will also induce

electromagnetic showers. Both of these phenomena cause the Cherenkov light to form a

superposition of overlapping rings at the wall of the ID. This results in a fuzzy ring being

seen in the PMTs.

Conversely muons, due to their relatively large mass, travel through the water without

scattering, and so produce a sharp, clear Cherenkov ring. Examples of electron and muon

Cherenkov rings detected at SK are shown in Figure 3.20.

An algorithm [104] is used to distinguish between fuzzy and sharp rings with high efficiency.

The probability of a muon neutrino event being misidentified as an electron neutrino event

is 0.7%. The number of each different neutrino species events is used to calculate neutrino

oscillation parameters in the full T2K oscillation analysis. However, as Super-Kamiokande

does not have a magnetic field, it is not able to differentiate between neutrino and anti-
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neutrino interactions. The neutrino and anti-neutrino content of the beam is therefore

needed to be measured accurately at ND280. In this analysis, only data from ND280 is

used, to constrain systematic uncertainties.

3.3.1. Far Detector Simulation

Neutrino interactions in the SK tank are modelled by the NEUT event generator. The

simulation of produced particles through the detector is done using the GEANT-3 [105]

based SKDETSIM software [106]. As with the beam production, hadronic interactions are

simulated with the GCALOR package.

3.4. Summary

This chapter has presented an overview of the T2K experimental setup. A system of three

accelerators produce 30 GeV H+ ions. These are impinged on a graphite target, producing

muons, pions, and kaons, which are focused by magnetic horns. Right sign particles are

focused onto the beamline, while wrong sign particles are deflected away. The focused mesons

then decay to primarily muons and muon neutrinos. A beam dump stops all surviving mesons

and muons, leaving a directed beam of muon neutrinos.

The near detectors are located 280 m downstream of the source, to measure the unoscillated

neutrino beam. The on-axis INGRID precisely measures the beam profile and direction. It

comprises of iron and scintillator modules, arranged in a 10 × 10 m cross shape centred on

the proton beamline axis.

ND280 sits 2.5o off-axis to measure a narrower neutrino energy peak. It is designed to

determine the event rate of various interaction modes, and measure the flux and energy

of the beam before oscillation to constrain systematics. The tracker region consists of two

FGDs, which provide the neutrino target, interleaved with three TPCs, which measure the

momentum of outgoing particles.

Upstream of the tracker region, the P0D detects NC events on water, providing an im-

portant constraint on the cross-section of one of the major backgrounds at SK. Both the

tracker region and P0D are surrounded by the ECals, which measure the energy of photons

produced in the inner detectors.

The whole detector sits within the UA1 magnet, allowing charge and momentum mea-

surements in the TPCs. The SMRD modules sit within the magnet yoke, and measure high

angle muons exiting the detector.
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The same MPCCs are used throughout INGRID and ND280 to convert photons into an

electric signal. The two near detectors also share a common DAQ system, for triggering the

readout and storage of data from each sub-detector. Interactions are generated using NEUT,

and the detector geometries are simulated in GEANT-4.

Super-Kamiokande measures the flavour composition of the beam after oscillation, and

is located 295 km away from the source of the beam, 2.5o off-axis, and 1 km underground.

It consists of a 50 kt tank of pure water, and ∼11,000 PMTs which detect the Cherenkov

radiation from leptons produced in neutrino interactions within the tank. Electrons and

muons are distinguished by the shape of the Cherenkov rings seen by the PMTs, allowing

the flux of electron and muon neutrinos to be measured separately. Neutrino interactions at

SK are also generated in NEUT, and the detector geometry is simulated using GEANT-3.

Using the constraint on systematic uncertainties provided by the near detector, oscillation

parameters can be extracted from the measurement of the beam at SK.

53





4. Statistical Treatment

The number of events measured at the far detector is a convolution of the cross-section,

flux, detector efficiency, and probability of oscillation. As discussed in Section 2, neutrino

interactions are rare and so the cross-section, flux, and detector models all have large sys-

tematic uncertainties. The parameters of these models have similar effects as the oscillation

parameters being calculated; a change in a single nuisance parameter mimics a change in

oscillation parameters in terms of the effect on the kinematic distributions measured.

The aim of the near detector fit is to constrain the cross-section, flux, and detector sys-

tematics before oscillation, allowing more precise measurements of the oscillation parameters

at SK. However, as there are several hundred nuisance parameters, fitting them all requires

careful statistical treatment.

This analysis invokes a Bayesian approach, using the Markov Chain Monte-Carlo (MCMC)

method to fit systematic parameters to data. This produces an N -dimensional posterior

probability distribution, where N is the number of fit parameters. Post-fit central values and

uncertainties are extracted from this distribution by marginalising over all other parameters,

one by one. The near detector-only fit in this analysis is used to validate the model and

fitting framework, before full joint near and far detector fits can be run.

This chapter describes the statistical treatment in the fit. The general approach to de-

termining parameter values in Bayesian statistics is discussed in Section 4.1. Monte-Carlo

methods are introduced in Section 4.2, and the theory behind MCMC is presented in Section

4.3. The methods used to estimate parameter values and assess the model’s ability to fit the

data are outlined in Section 4.4.

4.1. Bayesian Inference and the T2K Likelihood

In Bayesian statistics, a hypothesis is tested by combining prior information with the likeli-

hood of a dataset. The aim of all Bayesian analyses is to model the probability of both the

data and model parameters, to produce a posterior probability distribution P (θ̄|D), where
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θ̄ represents the model parameters, and D represents the data. From this, the post-fit pa-

rameter values and uncertainties can be extracted using the methods described in Section

4.4.1. The posterior probability distribution is related to the joint probability distribution,

P (D, θ̄) = P (D|θ̄) P (θ̄), using Bayes’ Theorem:

P (θ̄|D) =
P (D|θ̄)P (θ̄)∫
P (D|θ̄)P (θ̄)dθ̄

. (4.1)

P (D|θ̄) is the probability of measuring the data D given the set of model parameter values

θ̄. This is calculated by comparing the number of data events in each bin to the number of

events in the Monte Carlo prediction using the given set of model parameters. The Poisson

likelihood for a single bin is given by:

LBin =
λ(θ̄)ne−λ

n!
/
n(θ̄)ne−n

n!
(4.2)

where n is the number of observed data events in the bin, and λ(θ̄) is the number of

predicted MC events for model θ̄ in the bin. The total sample contribution to the log-

likelihood is therefore given by:

− logLSample =
∑
Bins

[λ(θ̄)− n+ n log
n

λ(θ̄)
]. (4.3)

This is then modified to include the MC statistical uncertainty, which accounts for the

fact that there was not an infinite amount of MC generated. An additional penalty is added

to the original sample likelihood, and a scaling factor, β, is applied to λ(θ̄):

− logLSample =
∑
Bins

[βλ(θ̄)− n+ n log
n

βλ(θ̄)
+

(β − 1)2

2σ2
β

]. (4.4)

Fitting a new parameter, β, for each bin would introduce ∼3000 new fit parameters,

meaning the total number of parameters would be too high to feasibly fit. Instead, it is

assumed β follows a Gaussian distribution for each. By minimising − logL with respect to

β, β can be calculated analytically for each bin by solving:

β2 + (λσ2
β − 1)β − nσ2

β = 0, (4.5)

where σβ is the fractional uncertainty on the MC in a given bin. Equations 4.4 and 4.5

are derived in [107].

P (θ̄) contains the prior knowledge of the model parameters, which is driven by previous
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and external measurements. This is calculated as either a Gaussian or flat1 uncertainty for

each parameter, along with inter-parameter correlations:

− logLSystematic =
∑

Systematics

1

2
[(θi − µi)(V)−1

ij (θj − µj)], (4.6)

where θi is the value of parameter i with central value µi, and V is the covariance matrix

describing the relation between parameters i and j with Vij. In this analysis, the systematics

are grouped by three covariance matrices from the beam flux, cross-section, and ND280

detector models.

The joint probability distribution is therefore given by:

P (D|θ̄)P (θ̄) =
∏
Ltotal =

∏
(LSample × LSystematic), (4.7)

and so:

−logLTotal =
∑
Bins

[λ(θ̄)−n+n log
n

λ(θ̄)
+

(β − 1)2

2σ2
β

]+
∑

Systematics

1

2
[(θi−µi)(V)−1

ij (θj−µj)]. (4.8)

The integral in Equation 4.1 is often not analytically solvable in practice, and so Monte-

Carlo methods are required to sample from the posterior to produce a distribution propor-

tional to the posterior probability distribution up to a normalisation constant.

4.2. Monte Carlo Methods

Monte Carlo simulation can be used to estimate mathematical functions and mimic the

operations of complex systems with random sampling and statistical modelling. They provide

a solution to the problem of high dimensionality and non-analytically solvable integrals by

sampling distributions with a random walk through a given parameter space. Properties

of the distribution such as parameter values and integrals can then be approximated from

properties of the samples. This is often a much easier process than directly evaluating an

integral, and so these methods are used in many fields from climate science, to economics,

to computational biology.

The simplest approach for performing an integral is to throw a random point in a region

of known volume that encompasses the target region. The reliance on random numbers is

1Strictly speaking flat uncertainties are actually ‘top hat’ functions with hard cut-offs. These either repre-
sent physical boundaries for the parameter, or are capped at 0 and an arbitrary large number.
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where the name ‘MC methods’ emanates from, referring to the famous casino in Monaco.

The fraction of throws within the target region is multiplied by the known volume, to get an

approximation of the target volume. The results are not an exact solution, and are dependent

on the random throws sufficiently sampling the distribution. From the law of large numbers,

the accuracy of this approximation improves with the number of points thrown.

This method is powerful as the full shape of the distribution does not need to be known to

perform the calculation, just whether a point is inside or outside the target region. Evaluating

a function at a single point is far easier than computing a full integral. However, this simple

method can be very inefficient and require a large amount of throws to converge on the

solution. If the area is not well chosen, substantial computing time is wasted evaluating

points outside the target region which never contribute to the integral. Slow convergence is

one of the main drawbacks of MC methods. Several techniques, such as MCMC, have been

developed to minimise the unnecessary computation by using a semi-random walk through

the parameter space.

4.3. Markov Chain Monte Carlo

A Markov chain is produced by any algorithm that generates a new point, xi which only

depends on the previous generated point, xi−1. The process is truly Markovian if predictions

about future steps in the chain can be made by only knowing the current state, just as well

as by knowing the whole history of the chain.

If a Markov chain gradually ‘forgets’ its initial state as more steps are added, it is said to

converge. This means the initial state converges to a unique stationary distribution, such

that the distribution is independent of the step number. Once convergence has been reached,

all ensuing steps are samples from the stationary distribution.

The aim of MCMC methods is to produce a Markov chain with the posterior distribution

P (θ̄|D) as its stationary distribution. The chain steps through N dimensional space, where

N is the number of model parameters. A single point in the chain then represents a set of

values, one for each parameter, and is defined by a vector x̄.

This way, the choosing of points at which to evaluate the distribution is done much more

efficiently than just random sampling. The individual steps have a density proportional

to the target distribution as the Markov chain performs a semi-random walk through the

parameter space, and so less time is wasted sampling areas of low probability. The stationary

distribution is only an approximation to the desired posterior, but more closely matches it
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as more steps are added.

MCMC methods are dependent on producing a Markov chain that converges. To reach

convergence, it is necessary that three conditions are met:

• Irreducibility: From any initial state, there is non-zero probability of reaching any

other state. This prevents the chain getting stuck in local minima.

• Aperiodicity: The chain must not be periodic. This means the chain never gets stuck

in a loop between the same states.

• Recurrence: All subsequent steps sample from the same stationary distribution once

it has been reached. This means once staionarity has been achieved, adding more steps

gives a more accurate approximation to the target distribution.

Any Markov chain which satisfies each of these criteria is ergodic, and will eventually

converge. The total number of steps needed for convergence however differs from chain to

chain. The procedures for testing convergence are described in Section 4.3.3.

Once a Markov chain has been produced which has the posterior distribution P (θ̄|D) as

its stationary distribution, has met the three criteria, and has reached convergence, it can

be used to estimate the model parameters θ̄. The main difficulty comes from constructing

a chain with the correct stationary distribution. In this analysis, this is achieved using the

Metropolis-Hastings Algorithm.

4.3.1. The Metropolis Hastings Algorithm

The Metropolis Hastings algorithm was first developed by N. Metropolis for symmetric

proposal distributions in 1953 [108], and was generalised to the asymmetric case by W.

K. Hastings in 1970 [109]. It can be used to construct a Markov Chain that satisfies the

regularity conditions, and therefore has a stationary distribution. A semi-random walk

is directed through the parameter space, such that steps are distributed according to the

posterior probability distribution. The algorithm consists of the following method:

1. Initialisation: Each parameter is set to its initial value.

2. Proposal: A new value is proposed for every parameter, according to the proposal

function described in Section 4.3.2.
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3. Acceptance: The MC is reweighted to the new set of parameters and the test statistic

calculated. The acceptance probability, α, is given for the (n+ 1)th step by:

α = min[1, logLn+1 − logLn]. (4.9)

A random number is thrown from a uniform distribution in the range [0,1]. If this is

≥ α the step is accepted. Otherwise the step is rejected, and the parameters are set

back to the previous values.

4. Repeat: Steps 2 to 3 are repeated N times.

Steps with an improved likelihood are therefore always accepted. Steps to points with

a lower posterior probability are less likely to be accepted, but crucially don’t have a non-

zero acceptance probability to prevent the chain from getting stuck in local minima. In

this way, the algorithm builds a distribution of points in the parameter space, with more

points in regions of higher posterior probability and fewer points in regions of lower posterior

probability. If the parameter space has been sufficiently explored, the density of points in

the final chain is therefore proportional to the posterior probability distribution.

4.3.2. Step Proposal

The Metropolis Hastings algorithm ensures that the Markov Chain will always have a sta-

tionary distribution regardless of the form of the proposal function. However, it does not

ensure that the chain will converge to the stationary distribution quickly. As only steps after

convergence are used to sample the posterior probability distribution, results are obtained

more efficiently if convergence is reached sooner.

In this analysis the form of the proposal function is a multivariate Gaussian. The central

values are the parameter values at the current step, and the widths are the prior uncertainties

multiplied by a scaling factor. The value of the scaling factor can be varied for different

parameters, and the values used are tuned with respect to the criteria discussed in Section

4.3.3.

Correlations in the prior uncertainties are included in the proposal function. If this were

not the case, steps would be likely go into regions which had low prior probability by contra-

vening the correlations. These steps would then be very likely to be rejected, and so conver-

gence would not be reached efficiently. Including the correlations in the proposal function
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encourages the algorithm to step into regions of higher posterior probability, increasing the

likelihood of steps being accepted.

4.3.3. Chain Diagnostics

The number of steps to run in the Markov Chain is a predetermined value which can be

varied. The choice is usually a trade-off of requiring a small number of steps to reduce the

computational expense and obtain results in a reasonable time, while still ensuring the chain

has converged and sufficiently sampled the parameter space.

The width of the Gaussian proposal functions, known as the step sizes, can be tuned to

encourage faster convergence, and so reduce the total number of steps needed. This is again

a trade-off; it is important to thoroughly sample all regions, while not stepping out of areas

of high posterior probability too often. One index which can be used to test the tuning of

the Markov Chain is the acceptance rate of proposed steps. The recommended optimum

acceptance rate is 0.23 [110], though this is for chains of lower dimension than those used in

this analysis.

The acceptance rate alone, however, is not a good gauge of how well the step sizes are

tuned. There are a number of other tools with which convergence is tested after a fit,

alongside the acceptance rate. The autocorrelation for each parameter is the correlation

between the parameter values at different steps. For points k steps apart in the chain,

referred to as a lag of k, the autocorrelation, a, is given by:

a =
ΣN−k
i=1 (Xi − X̄)(Xi+k − X̄)

ΣN
i=1(Xi − X̄)2

, (4.10)

where Xi is the parameter value for the ith step, X̄ is the mean parameter value in the

chain, and N is the total number of steps. The autocorrelation for a single flux parameter

is shown in Figure 4.1 for a number of different step sizes. Increasing the step size causes

the autocorrelation to reduce quicker, though this would decrease the acceptance rate. In

general, in this analysis the aim was for the autocorrelation of each parameter to reach < 0.2

at a lag of 10, 000.

The trace of the parameter is the plot of its value at each step in the chain. This is used

to ensure good mixing has been achieved, and so the parameter space is well explored. The

trace of a low energy flux parameter is shown in Figure 4.2 for different step sizes. This

shows how decreasing the step size, affects how the chain samples different regions of the

posterior distribution.

Finally, batched means are also used to test the chain has converged. These are the mean
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Figure 4.1.: The autocorrelation function for a low energy flux parameter, at different values
for the scaling applied to the step size.

of a given parameter over smaller consecutive subsets of steps. Once converged, these should

be fairly constant, as shown in Figure 4.3 for a low energy flux parameter. In the second

half of the chain, the batched means are within ∼2%. If the mean was varying drastically

between batches, or if there were regions of consistent bias beyond statistical fluctuation, it

would suggest the stationary distribution had not been reached.

In this analysis, the general method used for step size tuning was to individually alter

the width of the proposal function for each individual cross-section parameter until the

autocorrelations were similar for all parameters. Then a further global scaling was applied to

achieve the desired acceptance rate. Step size tuning, however, is not an exact science. When

trying to reduce one parameter’s autocorrelation, another parameter’s could unexpectedly

increase due to high dimensional correlations. One could always endeavour to further reduce

autocorrelations, but once a reasonable set of tunings was found with good mixing, fairly

consistent autocorrelations, and an acceptance rate close to the optimal value, no further

time was spent trying to tune further.

Even with a well tuned Markov Chain, it is still desirable to run for as many steps as
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(a) Step Size Scale: 0.03 (b) Step Size Scale: 0.04

(c) Step Size Scale: 0.075 (d) Step Size Scale: 0.10

Figure 4.2.: The traces for a low energy flux parameter for different scalings of the step size.
The red lines show the mean for the second half of the chain.
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Figure 4.4.: The trace of the first 50,000 steps of high energy flux parameter, showing the
initial burn-in phase before reaching the stationary distribution.

possible, to ensure good coverage. In this analysis, six chains of 800,000 steps were run in

parallel and then merged. However, not all steps are used in the final results. As the initial

values of parameters in the chain are not necessarily in a region of high posterior probability,

there is a ‘burn-in’ period before the chain reaches its stationary distribution.

The batched means and traces for individual parameters can be used to monitor the

number of steps in the burn-in. Figure 4.3 shows the means initially being lower than the

final converged values, and Figure 4.4 shows the parameter value starting lower than it’s

final value, but quickly converging after 10,000 steps and then exploring the surrounding

region.

The trace of the systematic and sample contributions to the log-likelihood are also a

good measure of when the burn-in period has finished. These are shown in Figure 4.5, for

six merged chains each with 600,000 steps. The negative log-likelihoods converge once the

stationary distribution has been reached after ∼20,000 steps.

In general, a large amount of steps from the start of the chain should be rejected, to ensure

convergence has been reached for all the steps used. In this analysis, the first 1/4 of steps

of all chains are conservatively cut out as burn-in.
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(a) Sample contribution (b) Cross-section penalty contribution

(c) Flux penalty contribution (d) Detector penalty contribution

Figure 4.5.: Trace of the different contributions to the LLH for 6 merged chains each of
600,000 steps in total. The LLHs all converge within ∼20,000 steps, though
150,000 are rejected as burn-in to ensure the stationary distribution has been
reached.

4.4. Postfit Treatment

In this analysis, the full ∼700 dimensional posterior distribution is the final result which

is propagated to the detector. However, interpreting the results for validations before joint

fits is not feasible in this high a number of dimensions. Therefore information needs to be

removed to be able to intuitively understand the results.

4.4.1. Parameter Value Extraction

Interpreting individual parameter behaviour is achieved by marginalising over all parameters

but one, one by one. This is equivalent to integrating the posterior distribution over all

parameters but a single parameter of interest. For a parameter θi of model θ̄, the marginalised

posterior given data, D, is given by:

P (θ|D) =

∫
P (θ̄′, θi|D)dθ̄′, (4.11)
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Figure 4.6.: The 1-dimensional marginalised distribution for two fit parameters, showing the
different methods of parameter extraction. The red lines show the prior central
values, the gold lines show the fitted Gaussian distributions, and the black lines
show the highest posterior density point.

where θ̄′ is the parameter space over all model parameters but θi.

Figure 4.6 shows the resulting 1-dimensional projections for two individual fit parameters.

This is equivalent to the parameter value at each step in the Markov Chain after burn-in.

Central values and uncertainties for each parameter are extracted by three different methods.

Firstly, the arithmetic mean and RMS of the histogram are calculated and used as the postfit

parameter value and error. Secondly, the highest posterior density, or mode, of the histogram

is taken as the central value. The number of events in each bin is summed outwards from the

mode to obtain an asymmetric uncertainty. Finally, a Gaussian is fitted to the histogram

and its mean and width are taken as the central value and uncertainty.

For a Gaussian distribution these three methods are equivalent, as shown in Figure 4.6a.

However, non-Gaussian distributions and parameter correlations can lead to non-intuitive

results when marginalised over, moving the region of high probability in the marginal pos-

terior distribution. This is an expected, true effect, which does not indicate any bias in the

fit. The three extracted values are compared to each other, with any differences highlight-

ing non-Gaussian behaviour, as shown in Figure 4.6b. Non-Gaussianity is not necessarily

concerning, but should be understood and considered when interpreting other parameter

results.
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(a) Two highly correlated beam parameters. (b) Two less correlated interaction parameters.

Figure 4.7.: The 2-dimensional marginalised distributions for two pairs of fit parameters.

None of the three extraction methods are incorrect, but none of them contain the whole

true result either. Only the full ∼700 dimensional distribution contains all the information

of the final fit result. As this is what is propagated to SK, differences between the extracted

1D values is not an issue in itself.

The postfit values are also compared to those from the other T2K near detector fitting

groups for validation. As the other group finds the single set of parameter values to minimise

the test statistic, some differences are expected from marginalisation over non-Gaussian and

correlated distributions. However, large discrepancies could indicate differences between the

implementation of the fit in the two groups.

4.4.2. Postfit Covariance

A similar process is used to calculate the postfit covariance between parameters. All pa-

rameters are marginalised over but two, and this is repeated until each combination of two

parameters have been projected onto. Figure 4.7 shows this for two pairs of parameters.

This is equivalent to the values of each parameter at each step of the Markov Chain post

burn-in. The covariance between the two parameters of interest is calculated from the arith-

metic width of the distribution. This is the only method used to extract the covariance, as

no shape is assumed for the 2-dimensional posterior.

Although reducing each of these 2-dimensional marginal posteriors to a single number

removes information, the covariances are only used for comparisons with the other near

detector fitting group and to highlight unexpected strong intra-parameter correlations. The

full ∼700 dimensional posterior distribution is all that is propagated to the far detector
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analysis.

4.4.3. Posterior Predictions

Once the fit has finished, the results are used to produce the posterior predictive distri-

butions with the final fitted parameters. However, as discussed in the previous sections,

just marginalising over all but one parameter, one by one, removes significant information

from the full posterior. Although this is useful for intuitively interpreting the fit, removing

information is not necessary for producing postfit event distributions. The method used in

this analysis is as follows:

• Draw 2000 post burn-in steps from the Markov Chain

• For each draw, reweight the MC to the set of parameter values for that step. For each

fit bin in each sample, this gives 2000 different number of events

• Fit a Gaussian to the distribution of number of events from all draws in each fit bin

• For each bin in each sample, the mean and width of the fitted Gaussian become the

central value and uncertainty for the posterior prediction

In this way, a predictive distribution representative of the draws from the stationary

distribution is produced. The comparison of this prediction to the data can be used to

see if the model has enough freedom to closely reproduce the data through reweighting.

Furthermore, plotting the log-likelihood (LLH) contribution from the posterior prediction to

data for each bin in each sample highlights which regions are affecting the LLH calculation

the most. It is desired that bins containing the most bins would be having the largest impact

on the fit, and when this is not the case it should be fully understood why other regions are

having unexpected significance. However, more involved methods are needed to truly test

how well the model has been fit to the data.

4.4.4. Goodness of Fit

In this analysis, the distribution of fitted model parameters to data is found. However,

this only determines how best to describe the data using the implemented model. If the

model does not agree well with the data misleading results can be produced. It is therefore

important to be able to assess the goodness of fit for the final result.

As well as comparing the posterior predictive distributions to data, a Bayesian p-value

is calculated to see how well the model fits the data. This is done in accordance with the
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methods outlined in [111–113]. The 2000 draws used to produce the posterior predictions

are used:

• For each fit bin in each sample, the bin contents in the posterior prediction is fluctuated

by drawing a random number from a Poisson distribution with a mean equal to the

original bin content

• Calculate the LLH between the fluctuated prediction and the prediction

• For each draw:

– Reweight the MC to the set of parameter values for that step

– Calculate the LLH between the data and the draw

– For each fit bin in each sample, the bin contents for the draw is fluctuated by

drawing a random number from a Poisson distribution with a mean equal to the

original bin content

– Calculate the LLH between the fluctuated draw and the draw

The LLHs are calculated using Equation 4.8. The Bayesian p-value is then calculated in

two different ways:

p =
N(−2LLHData,Draw < −2LLHDrawFluc,Draw)

NTotal

, (4.12)

and

p =
N(−2LLHData,Draw < −2LLHPredF luc,Pred)

NTotal

, (4.13)

where N(−2LLHData,Draw < −2LLHDrawFluc,Draw is the number of draws for which the

negative LLH is smaller for the data given the draw than for the fluctuation of the draw

given the draw, N(−2LLHData,Draw < −2LLHPredF luc,Pred) is the number of draws for which

the negative LLH is smaller for the data given the draw than for the posterior prediction

given the fluctuated posterior prediction, and NTotal is the total number of draws. The first

method gives a measure of how likely we would be to have observed the data we did, or

something more extreme, compared to random fluctuations of the model, if the fitted model

describes nature. If the selected draws are representative of the posterior distribution, the

second method should produce similar p-values to the first.

The p-values can be calculated by plotting the 2-dimensional histograms of

−2LLHData,Draw vs −2LLHDrawFluc,Draw and −2LLHData,Draw vs −2LLHPredF luc,Pred and
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calculating the proportion of steps below the line y = x. This is done for each sample

individually, and as a total sum for all samples using the LLH contribution from every fit

bin.

Neither method of calculating the p-value is individually correct or incorrect, and neither

should be interpreted as a binary measure of whether the model can or cannot describe the

data. The p-values presented here should therefore not be taken as a single validation of the

fit, but used along with final marginalised distribution to interpret the full results. Given

that a significant amount of information has to be removed from the full ∼700 dimensional

posterior for it to be intuitively understood, using a measure of goodness of fit alongside the

marginalised distributions is useful for extracting the full picture of the fit.

Generally a higher p-value is desirable and indicates a better fit to data, but there is

no single threshold for which a higher p-value can be determined acceptable for all analy-

ses. There are also deficiencies in this method of calculating the p-value which should be

considered when evaluating the goodness of fit. The detector systematics are not varied

individually, but instead grouped together and parametrised by their joint effect on event

rates in merged fit bins, as described in Section 5.4.3. As these underlying systematics are

non-Gaussian, throwing using these merged bins does not necessarily describe the true distri-

bution of these systematics. This could cause the p-value to be lower than would otherwise

be measured.

Furthermore, this Bayesian p-value is not the same as a ’traditional’ p-value. Here, the

p-value answers a very specific question: if the experiment was ran again, how likely is it

that data consistent with the post-fit model would be observed? This is, by construction,

a stringent test. As SK has much lower statistics than ND280, if this p-value is low it does

not necessarily mean that the extrapolation of the near detector result to the far detector is

invalid, but the individual p-values for each sample can highlight regions of phase space for

which the postfit model is less compatible with the data.

The other near detector fitting group at T2K also produce a p-value, using the method

described in [114]. This is a strictly frequentist construction, calculated using throws of

the systematics from their priors, giving an indication of how well the prior model can fit

the data. As well as this, this p-value uses throws of the underlying detector systematics,

rather than the effective bin-by-bin normalisations, giving more accurate variations. The

frequentist p-value answers a different question to the Bayesian version: using information

on the systematics before the fit is run, how likely is the observed data? The two p-values

are therefore not expected to give the same results. For this analysis, the frequentist p-value
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is used to determine if an acceptable goodness of fit has been achieved, as it uses the correct

detector systematics implementation, while the Bayesian p-value is used to inspect the fit

result in more detail and determine for which samples and regions of phase space the fit

performs well for.

4.5. Summary

This chapter has presented an overview of the statistical methods used in this analysis.

Bayesian statistics are invoked, combining prior information with the likelihood of a sample,

to find the set of parameter values which best describe the data.

Markov Chain Monte Carlo is used to fit the systematic uncertainties to data. The

Metropolis-Hastings algorithm is used to produce a Markov Chain with a density of points

proportional to the posterior probability distribution.

Extensive diagnostics are performed on the Markov Chain to ensure the stationary distri-

bution has been reached. These include step-size tuning and inspecting the autocorrelations,

batched means, parameter traces, and burn-in.

Postfit parameter values and uncertainties are extracted from the Markov Chain by three

different methods. The first step is to marginalise over all but one parameter, one by one.

The arithmetic mean, mode, and mean of a fitted Gaussian to the resulting 1D distribution

can then all be used as the parameter’s postfit result. The methods can produce different

results if the distribution is non-Gaussian, but as the full ∼ 700 dimensional distribution

is propagated to the far-detector, this is not problematic. The extracted single parameter

values are only used for validating the fit and comparing to the other near detector fitting

group. Postfit correlation matrices are also produced by marginalising over all but two

parameters, for each combination of a pair of parameters.

Posterior predictions are produced by drawing 2000 steps from the Markov Chain and

fitting Gaussians to the number of events in each bin, showing the pµ–cosθµ distributions

the postfit model produces.

Finally, the goodness of fit is calculated in two separate ways from random draws of the

Markov Chain. These are not equivalent to a traditional frequentist p-value, and should not

be interpreted as a single binary measure of whether the model can or cannot describe the

data. Rather, they are used to determine for which regions of phase space the fit performs

well.
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5.1. Motivation

The aim of the near detector fit is to constrain systematic uncertainties such that accurate

oscillation parameter measurements can be made at SK. The number of neutrinos measured

at the far detector, is a convolution of the beam flux, cross-section, detector efficiency, and

the probability of oscillation:

N
νβ
SK = φναSK · σνβ · ε

νβ
SK · PPMNS(να → νβ), (5.1)

where N
νβ
SK is the number of neutrinos of flavour β, φναSK is the flux of neutrinos of flavour

α at SK without oscillation, σνβ is the interaction cross-section for neutrinos of flavour β at

SK, ε
νβ
SK is the detector efficiency of SK for neutrinos of flavour β, and PPMNS(να → νβ) is

the probability that a neutrino produced as flavour α oscillates to flavour β before reaching

SK.

There are degeneracies between the flux, cross-section, and detector efficiency models, and

the PMNS parameters. A change in one of the nuisance parameters mimics the effect of a

change in one of the parameters of interest. Therefore it is crucial to constrain the model

parameters as much as possible. This is done using near detector data, where the number of

neutrinos is measured before oscillation and so the nuisance parameters can be disentangled

from the oscillation parameters. The near detector samples also have more data than the

SK samples, and using them to constrain nuisance parameters decreases the uncertainty on

the predicted event rate at SK from ∼15% to ∼5%. Figure 5.1 shows the SK prediction for

the 2018 oscillation analysis with and without the near detector constraint. The uncertainty

bands are much narrower when using near detector data in the prediction, showing the

significance of the near detector on the full fit. Without the near detector constraint, T2K

would not be able to make the world leading oscillation measurements it does.

The parametrised models of the beam, cross-section, and near detector detector efficiencies

used in the near detector fit are produced by different groups within T2K. The beam group
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Figure 5.1.: The predicted event rate at SK, with and without the near detector fit constraint
from the 2018 oscillation analysis. Using near detector data to reduce systemat-
ics narrows the uncertainty on the prediction, allowing more precise oscillation
measurements to be made. Figure from [114].

uses data from beamline monitors and the on-axis INGRID to provide the beam flux model,

the Systematics, Selections, and Validations (SSV) group provide a model of ND280 detector

systematics, and the Neutrino Interactions Working Group (NIWG) provide the interaction

model. For the full joint near and far detector fits, the T2K-SK group provides the SK

detector model and selections. The parameters of these models affect the log-likelihood in

the fit through Equation 4.6.

The MCMC analysis presented in this thesis is performed in the MaCh3 (Markov Chain

for a 3 Flavour Oscillation Analysis) fitting framework. MaCh3 is one of two groups that

fit near detector data at T2K. The BANFF (Beam And ND280 Flux Extrapolation Task

Force) also perform near detector fits, but use MINUIT [115] to find the global minimum

of the likelihood by gradient descent, in contrast to MaCh3’s use of MCMC to sample

the probability distribution discussed in Section 4.3. The BANFF postfit covariance is

propagated to two of the three far detector fitting groups at T2K. This has the disadvantage

of assuming that the systematics are Gaussian. MaCh3, by doing joint near and far detector

fits, does not assume any shape on the systematics. However, to validate the model and

fitting framework, near-detector-only fits are compared with the BANFF.
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In this section, the various inputs to the fit are described. The selections and samples

used are detailed in Section 5.2, and studies of how they are binned are presented in Section

5.3. The models providing systematic uncertainties are discussed in Section 5.4, and prefit

corrections to the MC are described in Section 5.5, before the data used is outlined in Section

5.6.

5.2. Selections

The ND280 selections include both neutrino and anti-neutrino, and FGD1 and FGD2 inter-

actions. Data is then divided by the topology of events, as observed by the detector. The

aim of the selections are to group events in such a way that the underlying interaction mode

can be identified so that systematics can be applied correctly. They allow us to translate as

accurately as possible between what we see in the detector, such as an event with no outgoing

pion tracks, to the actual physics of the event, such as a CCQE neutrino interaction. The

selection criteria is optimised to select CC-inclusive interactions which originate in FGD1 or

FGD2, and contain one reconstructed muon track of negative charge crossing the following

TPC.

Events occurring inside FGD1 and FGD2 are separated as they will undergo a different

reconstruction procedure, and be affected by different systematics. This is because of the

water layers interleaving the plastic scintillators inside of FGD2, which are not present in

FGD1. There therefore can be events on oxygen inside FGD2 but not FGD1. This means

having separate FGD2 selections can isolate the constraint on systematics affecting events

on oxygen, which is important as the far detector is filled with water. As well as this, the

geometry of events in the two FGDs is different. Events in FGD1 can leave forward-going

tracks which pass through FGD2 and both TPC 2 and 3, whereas events in FGD2 can only

leave forward-going tracks in TPC 3.

Events are separated by whether the beam was in FHC or RHC mode as neutrino and

anti-neutrino events will be affected by different systematics. For RHC, there are separate

selections for wrong sign neutrino events. This is not the case for FHC, as the anti-neutrino

cross-section on matter is so much smaller than for neutrinos. As the far detector is not

magnetised, it is important to constrain systematics affecting neutrino and anti-neutrino

interactions differently at the near detector, and so the separation of these selections is

required.

The separation of events by topology allows more accurate identification of the interaction
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mode. In this analysis, events are divided into three topological groups: CC 0π, CC 1π,

and CC Other. For each FGD there are nine samples, three topologies for each of the three

neutrino signs, and so there eighteen near detector samples in total. These samples are

binned in the momentum and angle of the final state lepton, as these kinematic variables

can be measured with good resolution in ND280. The sample and bin are all the information

for a single data event that is used to compare to the MC.

The initial reconstruction of events is performed using an algorithm that fits clusters of

hits in each TPC, and then adds hits in the upstream FGD to form a TPC-FGD track.

The algorithm is described in more detail in [116]. The specific criteria used to define each

selection are detailed in the following section.

5.2.1. FHC νµ

The FHC νµ selections are designed to initially produce a sample of CC-inclusive interactions

which occur in FGD1 or FGD2, and contain one reconstructed muon track of negative charge

crossing the following TPC. It is also required that events pass quality cuts and that the

highest momentum negative track (HMNT) is identified as a muon. The following cuts define

the sample:

• Data Quality: The event must occur within bunch time windows of the neutrino

beam, and belong to a spill which is entirely flagged as having good global ND280 data

quality. Two events occurring within the same spill but different bunches are treated

as independent events to avoid pile-up.

• Total Multiplicity: There must be at least one reconstructed track crossing the TPC

in the event, otherwise there is not enough information to classify the event.

• Quality and Fiducial Volume: There must be at least one track reconstructed inside

the FGD1 or FGD2 fiducial volume, as this is where the most accurate reconstruction

occurs. There must also be at least one track with segments within at least one FGD

and at least one TPC. The fiducial volume of the FGDs are defined as:

|x| < 874.51 mm; |y| < 929.51 mm; 136.875 < z < 446.955 mm, (5.2)

for FGD1, and:

|x| < 874.51 mm; |y| < 929.51 mm; 1481.45 < z < 1807.05 mm, (5.3)
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for FGD2. Cuts on x and y also reject events with a vertex within five bars of the edge

of the FGD module, and cuts in z reject events in the first module of each FGD. Short

tracks with fewer than 19 clusters are also rejected as the reconstruction in the TPC

is less reliable.

• Upstream Background Veto: Reconstruction failures can cause a muon that started

further upstream to produce a track starting in the fiducial volume of one of the FGDs.

Events with the second highest momentum track starting at least 150 mm upstream

of the muon candidate are rejected to exclude such events. As well as this, events in

FGD2 are rejected if a secondary track starts in the fiducial volume of FGD1.

• Broken Track: Events can be misreconstructed such that a single muon candidate

track originating in the fiducial volume of one of the FGDs is broken into two compo-

nents, one track only in the FGD and one that starts in the last layers of the FGD and

passes through the TPC. The second track is therefore identified as a muon candidate.

To cut these events, events with the muon candidate starting within 425 mm of the

upstream edge of the FGD are rejected if there is also at least one FGD only track.

• Muon PID: Events with the HMNT crossing a TPC, starting inside the fiducial

volume of an FGD, and identified as a negative particle, are potential muon candidates.

The particle identification (PID) is then determined using the dE/dx measured in the

TPCs. The energy deposited in the TPC is compared to the amount that would be

expected if the particle were a muon, electron, pion or proton, which are shown for

positive particles in Figure 3.17. The likelihood for particle type i is calculated by:

Li =
e−Pull

2
i∑

l e
Pull2l

, (5.4)

where l = µ, π, e, p, and the Pull is given by:

Pulli =
dE/dxmeasured − dE/dxexpected,i

σ(dE/dxmeasured − dE/dxexpected,i)
. (5.5)

Electrons are rejecting by requiring:

Lµ + Lπ
1− LP

> 0.8, (5.6)

for tracks with p < 500 MeV/c. Protons and pions are cut by requiring:
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(a) FGD1 pµ (b) FGD1 cosθµ

(c) FGD2 pµ (d) FGD2 cosθµ

Figure 5.2.: Efficiency of the FGD1 and FGD2 FHC νµ CC-inclusive samples, as a function
of pµ and cosθµ. Figures from [116].

Lµ > 0.05. (5.7)

The efficiency of the FGD1 and FGD2 FHC νµ CC-inclusive samples are shown in Figure

5.2. This is defined as the number of selected CC interactions divided by the total number

of simulated interactions in the FGD fiducial volume. The efficiencies are higher at larger

pµ and cosθµ. There is also a small peak at lower cosθµ for FGD2.

This CC-inclusive selection is then divided by π multiplicity, which depends on the iden-

tification of pions. This is done in the TPCs and FGDs:

• Secondary Track: A secondary track separate from the muon candidate must be

present in the event. Events with no other track can’t have a reconstructed pion, so

cannot be treated as CC 1π or Other.

• Bunch Matching: The secondary track must be in the same time bunch as the muon

candidate track. This cut rejects secondary tracks which are likely not from the same
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event.

• Track Start Matching: The secondary track must originate from the fiducial volume

of the same FGD as the muon candidate track. Secondary tracks starting in a different

detector are likely not from the same interaction so are rejected.

• TPC Matching: If the secondary and muon candidate tracks start in FGD1, the

secondary track must also enter TPC 2. If the secondary and muon candidate tracks

start in FGD2, the secondary track must also enter TPC 3. This cut ensures the

secondary track is forward-going and long enough to be reconstructed.

• TPC Quality: There must be at least 18 clusters in the TPC. This cut ensures the

track is large enough to be accurately reconstructed.

• Pion PID: The number of charged pions is determined by the number of secondary

tracks with PID determined in the TPC corresponding to a pion. For positive tracks,

the pion, positron and proton hypotheses are tested. For negative tracks, only the pion

and electron hypotheses are tested. The pulls for each hypothesis are calculated and

electrons are rejected by requiring:

Lµ + Lπ
1− LP

> 0.8, (5.8)

for tracks with p < 500 MeV/c. Muons and protons are then rejected by requiring:

Lπ > 0.3. (5.9)

The number of neutral pions is determined from the presence of positrons and electrons

produced in their decay.

There are two methods by which information from an FGD can be used to identify

if a particle with momentum too low or angle too high to enter a TPC is a pion.

However, this can only be done for charged pions as electrons and positrons are not

reconstructed.

– FGD Reconstruction: Secondary tracks in the FGD that don’t start in the

fiducial volume of the same FGD as the HMNT, or that aren’t fully contained

within the FGD, are rejected. Tracks that pass this cut and are in the same time

bunch as the muon candidate are considered as pion candidates. The deposited

energy in the FGD is then used to discriminate charged pions from protons.
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– Michel Electron: Lower momentum pions which don’t produce a track in an

FGD can be identified from the Michel electron produced from the muon produced

in the pion decay. To be identified as the delayed signal from a Michel electron,

the hit cluster must have at least seven hits in FGD1 or six hits in FGD2, and be

outside the beam bunch window1.

The number of pions identified by the TPC PID, Michel electron tagging, and FGD PID

is then used to split the CC-inclusive selection into CC 0π, CC 1π and CC Other:

• CC 0π: Contains events with no identified charged pions, electrons or positrons using

TPC PID, no Michel electrons or charged pions in either FGD, and one negative muon

candidate.

• CC 1π: Contains events where the sum of the number of positive pions identified in a

TPC and the number of Michel electrons is one. For events with no Michel electrons

the sum of positive pions in any TPC or FGD is one. Events with a negative pion,

electron, or positron reconstructed in a TPC are rejected. It is also required there is

one negative muon candidate.

• CC Other: Contains all events in the CC-inclusive selection that do not fall into the

CC 0π or CC 1π sample. These are events with one negative muon candidate and either

one or more reconstructed negative pions, one or more neutral pions reconstructed as

electrons or positrons, or more than one positive pion reconstructed using TPC and

FGD information.

5.2.2. RHC ν̄µ

The RHC ν̄µ selections are designed to initially produce a sample of CC-inclusive interactions

which occur in FGD1 or FGD2, similarly as for the FHC νµ samples. However, events must

contain one reconstructed muon track of positive charge crossing the following TPC. The

selection criteria are similar as those for the FHC νµ samples, but have extra cuts to account

for the larger wrong sign background due to neutrinos having a larger cross-section on matter

than anti-neutrinos:

• HMT: The background of ν events producing a π+ misidentified as a µ+ are reduced by

requiring that the highest momentum positive track (HMPT) is the highest momentum

track (HMT) in the event.

1The muon has a 2.19 µs decay time, causing the delay in the Michel electron signal
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• Upstream Background Veto: This cut is more stringent for the RHC ν̄µ samples

than for FHC νµ. Events with tracks entering the fiducial volume of FGD1 from the

upstream edge or coming from the P0D or magnet are rejected.

• Muon PID: PID is performed using the energy deposited in the TPC and calculating

the likelihood for different particle hypotheses, in the same way as for FHC νµ sam-

ples. However, there are different requirements on the likelihoods for a positive muon

candidate to be confirmed. Electrons are rejected by requiring:

Lµ + Lπ
1− LP

> 0.9, (5.10)

for tracks with p < 500 MeV/c. Protons and pions are then rejected by requiring:

Lµ > 0.1. (5.11)

The efficiency of the FGD1 and FGD2 RHC ν̄µ CC-inclusive samples are shown in Figure

5.2. The efficiencies are higher at larger pµ and cosθµ.

The pion identification is performed in the same way as for FHC νµ, and the CC-inclusive

sample is again split into CC 0π, CC 1π and CC Other.

5.2.3. RHC νµ

In RHC mode, there are still a significant number of ν events due to the larger ν cross-

section, and so a selection of these events is made. The same cuts as for the FHC νµ and

RHC ν̄µ are applied, but with the following exceptions:

• HMT: It is required that the HMNT in the event is the HMT.

• Upstream Background Veto: As for the RHC ν̄µ samples, events with tracks en-

tering the fiducial volume of FGD1 from the upstream edge or coming from the P0D

or magnet are rejected.

• Muon PID: PID is performed in the same way as for the previous samples, using

the energy deposited in the TPC and calculating the likelihood for different particle

hypotheses. However, there are different requirements on the likelihoods for a negative

muon candidate to be confirmed. Electrons are rejected by requiring:

Lµ + Lπ
1− LP

> 0.7, (5.12)
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(a) FGD1 pµ (b) FGD1 cosθµ

(c) FGD2 pµ (d) FGD2 cosθµ

Figure 5.3.: Efficiency of the FGD1 and FGD2 RHC ν̄µ CC-inclusive samples, as a function
of pµ and cosθµ. Figures from [117].

for tracks with p < 500 MeV/c. Protons and pions are then rejected by requiring:

Lµ > 0.1. (5.13)

The efficiency of the FGD1 and FGD2 RHC νµ CC-inclusive samples are shown in Figure

5.4. The efficiencies are higher at larger pµ and cosθµ.

5.2.4. Updating to RHC Multi π Samples

In previous analyses, the RHC CC-inclusive samples were divided by track, rather than π

multiplicity, into CC 1-Track and CC N -Track. Before the 2020 analysis, there were much

fewer RHC data events than FHC, and so the RHC samples could not be divided into so

many sub-samples. In moving to RHC multi-π, the FHC selection criteria was unchanged,

and the RHC selections only changed in the likelihood cuts for rejecting the proton and pion

hypotheses in muon identification:
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(a) FGD1 pµ (b) FGD1 cosθµ

(c) FGD2 pµ (d) FGD2 cosθµ

Figure 5.4.: Efficiency of the FGD1 and FGD2 RHC νµ CC-inclusive samples, as a function
of pµ and cosθµ. Figures from [117].

0.1 < Lµ < 0.7. (5.14)

The upper bound was designed to reject low momentum wrong sign muons in RHC events,

which could be misreconstructed as positive tracks.

The previous RHC sample splitting proceeded by selecting events with one positive muon

and no charged or neutral pions in the CC 1-Track sample, and selecting all other CC-

inclusive events in the CC N -Track sample. Validations of the updating of the fitting frame-

work to accommodate the RHC multi-π samples are presented in Appendix J.

5.3. Binning

ND280 events are binned in the reconstructed momentum and angle of the outgoing lepton.

The choice of binning is a trade-off of having coarse enough bins to have enough events in

each to reduce the statistical error, while being fine enough to have good resolution in the
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peak regions. In general, the aim is to have >20 raw MC events in every bin, which is

approximately equivalent to having ∼1-2 data events. Achieving this using uniform rectan-

gular binning can result in bins outside the region of interest containing the largest amount

of events, and contributing the most to the sample log-likelihood. Figure 5.5 shows this effect

in the FHC CC 0π and CC 1π sample binnings used for the 2017 oscillation analysis. These

plots only show up to 5000 MeV to show the peak regions more clearly. The full binning

used here was the same for FGD1 and FGD2, and is as follows:

• FHC νµ CC 0π:

pµ (MeV/c): 0, 200, 300, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950,

1000, 1050, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 2000, 2500, 3000, 5000,

30000.

cos θµ: -1, 0.5, 0.6, 0.7, 0.76, 0.78, 0.8, 0.83, 0.85, 0.88, 0.89, 0.9, 0.91, 0.92, 0.925,

0.93, 0.935, 0.94, 0.945, 0.95, 0.955, 0.96, 0.965, 0.97, 0.975, 0.98, 0.985, 0.99, 0.995, 1.

• FHC νµ CC 1π:

pµ (MeV/c): 0, 300, 350, 400, 500, 600, 650, 700, 750, 800, 900, 1000, 1100, 1200,

1500, 2000, 3000, 5000, 30000.

cos θµ: -1, 0.6, 0.7, 0.8, 0.85, 0.88, 0.9, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99,

0.995, 1.

• FHC νµ CC Other:

pµ (MeV/c): 0, 300, 400, 500, 600, 650, 700, 750, 800, 900, 1000, 1100, 1250, 1500,

1750, 2000, 3000, 5000, 30000.

cos θµ: -1, 0.6, 0.7, 0.76, 0.8, 0.85, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96,

0.97, 0.98, 0.99, 0.995, 1.

• RHC ν̄µ CC 0π:

pµ (MeV/c): 0, 300, 400, 500, 550, 600, 650, 700, 750, 800, 900, 1000, 1100, 1200,

1500, 2000, 4000, 30000.

cos θµ: -1, 0.6, 0.7, 0.8, 0.85, 0.9, 0.92, 0.93, 0.94, 0.95, 0.96, 0.965, 0.97, 0.975, 0.98,

0.985, 0.99, 0.995, 1.

• RHC ν̄µ CC 1π:

pµ (MeV/c): 0, 500, 700, 900, 1300, 2500, 30000.

cos θµ: -1, 0.7, 0.8, 0.9, 0.94, 0.96, 0.98, 0.99, 1.
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(a) FGD1 FHC νµ 0π
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(b) FGD1 FHC νµ 1π

Figure 5.5.: Uniform rectangular binning of the FGD1 CC 0π and FGD1 CC 1π MC samples
for T2K runs 2–8.

• RHC ν̄µ CC Other: pµ (MeV/c): 0, 600, 800, 1000, 1250, 1500, 2000, 4000, 30000.

cos θµ: -1, 0.7, 0.8, 0.85, 0.9, 0.93, 0.95, 0.97, 0.98, 0.99, 1.

• RHC νµ CC 0π:

pµ (MeV/c): 0, 300, 500, 700, 800, 900, 1250, 1500, 2000, 4000, 30000.

cos θµ: -1, 0.7, 0.8, 0.85, 0.88, 0.9, 0.92, 0.94, 0.96, 0.97, 0.98, 0.99, 1.

• RHC νµ CC 1π:

pµ (MeV/c): 0, 600, 800, 1500, 30000.

cos θµ: -1, 0.7, 0.8, 0.86, 0.9, 0.94, 0.96, 0.97, 0.98, 0.99, 1.

• RHC νµ CC Other:

pµ (MeV/c): 0, 600, 1000, 1250, 2000, 4000, 30000.

cos θµ: -1, 0.7, 0.8, 0.86, 0.9, 0.93, 0.95, 0.97, 0.99, 1.

For example, in the FGD1 CC 0π sample, the bins at low angle, (< 0.6), and low mo-

mentum, (∼500 MeV), the bins span a large angle range (-1.0 - 0.6). Having such large bins

causes them to contain a large amount of events. However, if they were divided to only span

a smaller range of angles, the bins at the same angle but higher momentum would also be

divided. As these regions are much more sparsely populated, splitting them further would

result in there being insufficient number of events in those bins. The same is true for the

high angle bins at higher momentum. These bins cover a large momentum range and are well

populated; there are a relatively large amount of events with high momentum forward-going

muons. Splitting these bins though would mean the backward-going bins at the same high
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momentum would not be large enough and so would be too sparsely populated. This effect

becomes more significant with the addition of more data.

5.3.1. Non-Uniform Rectangular Binning Studies

For the 2020 analysis, the MaCh3 near detector framework was updated to be able to use

non-uniform rectangular binning2. This means the bins can now be any arbitrary shape,

including the original uniform rectangular binning which can still be used for validations of

the changes to the fitting framework, and cross-group checks with the other near detector

fitter which did not move to non-uniform rectangular binning.

The following algorithm was used to define a non-uniform but still rectangular binning for

each sample, without having to have the same binning for FGD1 and FGD2:

• The bin edges on the cosθµ axis are hard coded and constant, guided by the previous

binning, keeping the bins rectangular. The reasons for this are discussed later in this

section.

• For each cosθµ row, scroll across from 30 GeV down 0 GeV in 100 MeV steps.

• Once 50 unscaled MC events are reached, start a new bin.

• If the last bin in a row (the lowest momentum bin) has <20 unscaled MC events, merge

with the previous bin. Scroll through this merged bin in 5 MeV steps and split once

half the events in the bin are reached.

The algorithm was tuned using data and MC from runs 2–6. The aim of this process was

to produce as uniform a distribution of events across the bins as possible. This was not

always possible, as regions of high density would require bins so small that they go below

the resolution of the detector. The hard coded cosθ bin edges and momentum step sizes

of 100 MeV were driven by this minimum bin size limit. The resolutions are calculated by

plotting the reconstructed vs true kinematic variables, as shown in Figure 5.6, and taking

the RMS at different slices of the 2D Gaussian. These RMSs, shown in Figures 5.7, give a

gauge of the detector resolution, and so the minimum bin width for each variable in different

regions.

For momentum, the RMS is fairly constant at approximately 100 MeV, for a momentum

>1000 MeV. It then reduces linearly between 1000 and 400 MeV, before levelling off at

approximately 60 MeV below 300 MeV. Similarly, for the angle, the RMS is constant at

approximately 0.08 below 0.96. It then reduces linearly up to a cosθµ of 1.0. However, given

2Mechanically, this meant using ROOT [118] TH2Poly objects instead of TH2Ds.
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Figure 5.6.: True vs reconstructed lepton kinematic variables of CC-inclusive MC events from
T2K runs 2–8.

there would be a large uncertainty on the gradient for each variable’s RMS, rather than

varying the minimum bin size to trace out the change in RMS as closely as possible, it was

safer to have a constant minimum size for all regions. This was chosen to be 0.01 cosθµ in

angle, and 100 MeV in momentum to be sure they are above the resolution in all regions.

Furthermore, as the cosθµ systematics are better controlled than for pµ, and for aiding

the simplicity of optimising the binning algorithm, the bins were kept constant in cosθµ.

Although these bins are conservatively large in regions with the most data, studies in reducing

the bin sizes showed diminishing returns in improvements to sensitivity.

The distribution of events binned by the scheme produced using the algorithm for the

FGD1 CC 0π and CC 1π samples are shown in Figure 5.8. Full templates of the binning

for each sample are shown in Appendix B. Particularly for the FHC νµ and RHC ν̄µ CC 0π

samples, the bins containing the largest amount of events are in the peak regions at high

angle and ∼500 MeV. However, what is of more importance is the significant reduction in

ranges of the z axis scales compared to the uniform binning. For example, the non-uniform

binning for the RHC ν̄µ CC 0π samples may not look like the most aesthetic representation

of distributions, but the bin with the most events contains less than double the amount of

the bin with the least. For the uniform binning, the bin with the most events contains ∼250

times more than the amount in the bin with the least events. Reducing this range prevents
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Figure 5.7.: The RMS of the true vs reconstructed lepton kinematic variables for CC-inclusive
MC events from T2K runs 2–8, at different values of the true variables.
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Figure 5.8.: Non-uniform rectangular binning of the FGD1 CC 0π and FGD1 CC 1π MC
samples for T2K runs 2–8.

bins outside the peak contributing more to the LLH than the region of interest.

Using non-uniform binning significantly improves the sensitivity of the fit to changes in

parameter values. This is evident in the log-likelihood scans shown in Figure 5.9 for two se-

lected interaction and flux parameters. A single parameter is set to different values while all

others are kept at nominal, and the sample contribution to the LLH between the reweighted

MC and nominal MC is calculated for each parameter value. The LLH scan process, and

the parameters themselves, are described in more detail in Section 6.2 and Section 5.4 re-

spectively.

The narrower likelihood distributions show that by using the non-uniform binning, moving

a parameter further away from the nominal value will be less favoured than by using uniform

binning. The ratio panel shows that the improvement is fairly constant across the range of

the scan.
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Figure 5.9.: Comparison of LLH scans using uniform and non-uniform rectangular fit binning,
for two selected interaction and beam parameters.

Further studies could be undergone to develop a non-rectangular fit binning. For instance,

given the underlying distribution of events, using bins of constant Q2 in the pµ–cosθµ space

may allow a better representation of events. However, given that the bin sizes are already

close to the resolution of the detector, and that several iterations of non-uniform rectangular

binning showed diminishing returns on improvements in sensitivity, this was not investigated

for this analysis.
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5.4. Systematics

The purpose of the near detector fit is to constrain systematic uncertainties so that accurate

oscillation measurements can be made at the far detector. It is therefore vital that these

systematics are understood.

In the near detector analysis, there are three sources of systematic uncertainties:

• Interaction: Systematics from uncertainties on neutrino interaction cross-sections.

• Flux: Systematics from uncertainties on the neutrino beam flux.

• Detector: Systematics from uncertainties on the ND280 detector response and re-

construction.

The models of these three groups of systematics are parametrised, and each enter the fit

through a covariance matrix. As a parameter is pulled from its prior value, a penalty is

added to the likelihood, as shown in Equation 4.6. For systematics that are known to be

constrained from external data, the likelihood penalty takes the form of a Gaussian. If there

is no, or conflicting, data about a systematic, the likelihood penalty is just a constant. This

is referred to as a ‘flat’ prior uncertainty.

5.4.1. Interaction

The MC prediction is produced using the NEUT 5.4.0 generator [103], as discussed in Section

3.2.3. The model for each interaction mode is therefore based on the models implemented

in NEUT, with several modifications to tune to external data and additional theoretical

calculations.

The uncertainties of these models are applied to the interaction modes they correspond

to on an event by event basis. They are each parametrised as either shape or normalisation

uncertainties. For normalisation parameters, the weight applied to the event is just the value

of the parameter. However, for shape parameters, the weight applied at different values of

the parameter depends on the kinematic variables of the event. Splines3 are used to translate

from a change in parameter to a change in weight. These are produced by evaluating the

change in weight for an event at evenly spaced values of the parameter, and interpolating

between them.

The parametrisation for each interaction mode proceeds using the following models:

3The ROOT TSpline3 class is used here.
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• CC Quasi-Elastic:

The nominal MC is generated using a Spectral Function (SF) nuclear model from [119].

There is one splined parameter, MQE
A , for the axial mass in the dipole form factor. It’s

prior is informed by bubble chamber data [120].

There are also eight normalisation parameters applied, for different bins in Q2. The

lowest five have width 0.05 GeV2, from 0.00 GeV2 up to 0.25 GeV2. The highest three

span the ranges from 0.25-0.50 GeV2, 0.50-1.00 GeV2, and > 1.00 GeV2. Their prior

central values and uncertainties are tuned by MINERνA [121] data.

The neutrino energy of CCQE events is calculated using Equation 2.30, which is highly

dependent on having an accurate value of the binding energy of the target nuclei. Four

parameters are used to fit the binding energies (for target 12C/16O and ν/ν̄). These

are neither shape nor normalisation parameters, and are described in more detail in

Section 5.4.1.1.

• 2-particle-2-hole:

2p2h interactions are generated in NEUT using the Nieves model [122]. Two shape

parameters apply to 2p2h interactions, one for events on 12C and one for events on

16O. At one extreme the distribution of energy and momentum transfer is entirely non-

pionless-∆-decay-like in accordance with the Nieves model, and at the other extreme

tit is entirely pionless-∆-decay-like, in accordance with the Martini model [123]. These

two shape parameters have a 30% correlation.

There are additional shape parameters, to account for differences in the energy de-

pendence of 2p2h interactions. At one extreme the shape is entirely consistent with

the Nieves model, and at the other it is consistent with the Martini model. There

are four of these parameters in total: ν/ν̄ and high/low Eν . However, studies showed

these could not be constrained using near detector data alone, so are fixed in near

detector only fits. For the joint near and far detector fits in the oscillation analysis,

the parameters are free in the fit.

Three normalisations are also applied, one for ν events, one for ν̄, and one for 12C→16O

scaling. The latter is applied to events on 16O multiplicatively with the other normal-

isations.

• CC Resonance:

The Rein-Sehgal model [124] is used to describe resonant π production in NEUT.

Splines are used to parametrise the resonance axial mass, MRes
A , the normalisation of
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5. The Near Detector Fit Setup

the axial form factor, CA
5 , and the size of the I = 1/2 non-resonant background to

I = 3/2 resonant π production. The prior central values and uncertainties are tuned

using bubble chamber data [125]. There is a prior anti-correlation of 83% between

MRes
A and CA

5 , 1% between MRes
A and I = 1/2, and 31% between CA

5 and I = 1/2. In

the joint near and far detector fits, the I = 1/2 parameter is split into two, one for

anti-neutrino events with pπ < 200 MeV, and one for all other I = 1/2 non-resonant

background events. In the near detector only fit, the low pπ parameter is not fit, and

the other I = 1/2 parameter applies to all I = 1/2 non-resonant background events.

• CC Coherent Scattering:

The Rein-Seghal model [126] is used to describe coherent scattering events. However,

measurements at MINERνA show a 30% difference in cross-section from this model.

Two normalisation parameters are fit, one for CC events on 12C and one for CC events

on 16O, each with a 30% prior uncertainty to account for this discrepancy. These are

100% correlated.

• CC Deep Inelastic Scattering and Multi-π:

The CC DIS and multi-π cross-section is calculated from ‘Structure Functions’ of

the nucleus, which themselves are constructed using ‘Parton Distribution Functions’

(PDFs). The PDFs describe the probability of finding a quark with a given fraction of

the nucleon momentum inside the nucleon. In NEUT, these are constructed using the

GRV98 [127] model with corrections from Bodek and Yang [128]. Two shape param-

eters are applied, one for DIS and one for multi-π events, to account for uncertainty

in the reliability of these corrections. One extreme corresponds to fully applying the

corrections, and the other corresponds to not applying them at all.

Another shape parameter is applied to multi-π events, to account for differences in

the π multiplicity models in different generators. If the π multiplicity model changes,

this directly alters the multi-π cross-section (as it is required multi-π events contain

≥ 2 πs). At one extreme, the multi-π cross-section is entirely reweighted to the AGKY

model [129] which has a smooth transition between low and high W 2 parametrisations,

and at the other extreme it is entirely the nominal custom model in NEUT which has

a hard cut-off between high and low W 2 parametrisations.

Two normalisation parameters are applied to CC DIS and multi-π events, one for ν and

one for ν̄ interactions. This is to account for a difference between the high energy CC-

inclusive cross-sections in NEUT and the PDG world average. The prior uncertainty
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5.4. Systematics

is 3.5% for ν and 6.5% for ν̄.

• CC Miscellaneous:

A normalisation parameter with 100% uncertainty is applied to CC 1K, 1η, and 1γ

events.

• CC Inclusive:

Two normalisations are applied to CC interactions with 0.4 < Eν < 0.6 GeV, one for

ν and one for ν̄ events. This is to account for the fact that the relative effect of the

Coulomb corrections, described in Section 5.5, is smaller at higher momentum. The

uncertainties on these systematics are 2% and 1% for ν and ν̄ respectively, and they

are 100% correlated.

• Neutral Current:

As for CC Coherent scattering, NC scattering events receive a normalisation with 30%

uncertainty. NC 1γ interactions are modelled with the Rein-Sehgal CC Res model.

The cross-section is half the value calculated with more recent models [130], and so the

prior weight applied is 2.0. As there is no external data to constrain the cross-section,

the prior uncertainty is 100% of the nominal weight.

NC π production is simulated using the same Rein-Sehgal model as for CC π produc-

tion, and the same parameters are applied: CA
5 , MRes

A and I = 1/2.

NC DIS, multi-π, 1η, and 1K are grouped together and receive the same normalisation

parameter (NC Other), with a 30% uncertainty. In the full joint analysis, separate NC

Other parameters are applied to near and far detector events. These parameters are

uncorrelated.

• Electron (Anti-)Neutrino:

As all the other systematic uncertainties are determined for νµ or ν̄µ interactions, a

normalisation is applied to all νe and ν̄e events. This is to account for any unmodelled

effects which affect νe/ν̄e events but not νµ/ν̄µ. As these processes may be different

for neutrinos and anti-neutrinos, there are two normalisations, one for νe and one for

ν̄e. The prior uncertainty is 2.8% and the two parameters are 50% anti-correlated, as

calculated in [131].

• Final State Interactions:

The propagation of πs produced in neutrino interactions is simulated as a cascade

implementation of the model described in [132]. There are five shape parameters
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Figure 5.10.: The cross-section correlation matrix.

representing the probability of different interactions at each step in the cascade. The

five types of final state interaction parametrised are quasi-elastic scattering (at low

and high energy), π production, π absorption, and charge exchange. The prior central

values and uncertainties are tuned to π-nucleon scattering data [133].

When nucleon final state interactions produce πs, the πs are propagated with the above

systematics. However, nucleon final state interactions are not accounted for in the MC.

A summary of the interaction parameters is shown in Table 5.1. The full prefit cross-

section correlation matrix is shown in Figure 5.10, showing the central values, uncertainties,

and correlations of the parameters described in this section.

5.4.1.1. Binding Energy

Energy is required to remove a nucleon from a nucleus, to overcome the nucleus force holding

the nucleus together. This binding energy can be measured in electron scattering experi-
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5.4. Systematics

Parameter Events
Prior (Nominal)
Central Value

Prior
Uncertainty

Prior
Shape Type

MQE
A CCQE 1.03 (1.21) GeV 0.06 GeV Gaus Shape

2p2h Norm ν 2p2h, ν 1.0 1.0 Flat Norm.
2p2h Norm ν̄ 2p2h, ν̄ 1.0 1.0 Flat Norm.

2p2h Norm 12C to 16O 2p2h on 16O 1.0 0.2 Gaus Norm.
2p2h Shape 12C 2p2h on 12C 1.0 3.0 Gaus Shape
2p2h Shape 16O 2p2h on16O 1.0 3.0 Gaus Shape

2p2h E dep low E ν - - - - -
2p2h E dep high E ν - - - - -
2p2h E dep low E ν̄ - - - - -
2p2h E dep high E ν̄ - - - - -

Q2 0 CCQE; 0.0 < Q2 < 0.05 GeV2 0.495 (1.0) 1.0 Flat Norm.
Q2 1 CCQE; 0.05 < Q2 < 0.10 GeV2 0.695 (1.0) 1.0 Flat Norm.
Q2 2 CCQE; 0.1 < Q2 < 0.15 GeV2 0.78 (1.0) 1.0 Flat Norm.
Q2 3 CCQE; 0.15 < Q2 < 0.2 GeV2 0.89 (1.0) 1.0 Flat Norm.
Q2 4 CCQE; 0.2 < Q2 < 0.25 GeV2 0.93 (1.0) 1.0 Flat Norm.
Q2 5 CCQE; 0.25 < Q2 < 0.5 GeV2 1.0 0.11 Gaus Norm.
Q2 6 CCQE; 0.5 < Q2 < 1.0 GeV2 1.0 0.18 Gaus Norm.
Q2 7 CCQE; Q2 < 1.0 GeV2 1.0 0.40 Gaus Norm.
Ebν C CCQE on 12C; Eν < 4 GeV; ν 27 (25) MeV 6 MeV Gaus pµ Shift
Ebν̄ C CCQE on 12C; Eν < 4 GeV; ν̄ 25 MeV 6 MeV Gaus pµ Shift
Ebν O CCQE on 16O; Eν < 4 GeV; ν 31 (27) MeV 6 MeV Gaus pµ Shift
Ebν̄ O CCQE on 16O; Eν < 4 GeV; ν̄ 27 MeV 6 MeV Gaus pµ Shift
MRES

A CC Res, NC π0, NC π± 1.07 (0.95) GeV 0.15 GeV Gaus Shape
CA

5 CC Res, NC π0, NC π± 0.96 (1.01) 0.15 Gaus Shape
I1/2 non-res CC Res, NC π0, NC π± 0.96 (1.30) 0.40 Gaus Shape

I1/2 non-res low pπ - - - - -
CC norm ν CC; 0.4 < Eν < 0.6 GeV; ν 1.0 0.02 Gaus Norm.
CC norm ν̄ CC; 0.4 < Eν < 0.6 GeV; ν̄ 1.0 0.01 Gaus Norm.
CC νe/νµ CC; νe 1.0 0.028 Gaus Norm.
CC ν̄e/ν̄µ CC; ν̄e 1.0 0.028 Gaus Norm.

CC BY DIS CC DIS; W < 4.0 GeV 1.0 1.0 Gaus Shape
CC BY multi-π CC multi-π; 1.6 < W < 2.0 GeV 1.0 1.0 Gaus Shape
CC AGKY mult CC multi-π; 1.6 < W < 2.0 GeV 1.0 1.0 Gaus Shape

CC misc CC1γ, CC1K, CC1η 1.0 1.0 Gaus Norm.
CC DIS, multi-π norm ν CC DIS, CC multi-π, ν 1.0 0.035 Gaus Norm.
CC DIS, multi-π norm ν̄ CC DIS, CC multi-π, ν̄ 1.0 0.065 Gaus Norm.

CC coh12C CC Coherent on 12C 1.0 0.3 Gaus Norm.
CC coh 16O CC Coherent on 16O 1.0 0.3 Gaus Norm.

NC coh NC Coherent 1.0 0.3 Gaus Norm.
NC 1γ NC 1γ 1.0 1.0 Gaus Norm.

NC other near NC DIS, multi-π, 1K, 1η 1.0 0.3 Gaus Norm.
NC other far - - - - -
π FSI QE CC Res, NC π0, NC π± 1.069 0.313 Gaus Shape

π FSI QE high E CC Res, NC π0, NC π± 1.824 0.859 Gaus Shape
π FSI Abs CC Res, NC π0, NC π± 1.002 1.102 Gaus Shape
π FSI Prod CC Res, NC π0, NC π± 1.404 0.432 Gaus Shape
π FSI CX CC Res, NC π0, NC π± 0.697 0.305 Gaus Shape

Table 5.1.: The interaction parameters used in this analysis.
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Figure 5.11.: Removal energy (‘E’) at different values of the initial nucleon momentum (‘k’)
for the ground state in the SF model. Figure from [120].

ments, but is not precisely known.

The uncertainty on the binding energy was the largest individual systematic in the pre-

vious oscillation analysis. It contributed 3.7% to the uncertainty on the predicted relative

number of electron neutrino and electron anti-neutrino candidates at SK (with no decay

electrons) [134]. Studies of simulated datasets also showed that the uncertainty had a sig-

nificant impact on the credible intervals of the measured oscillation parameters [135]. This

indicated that the old cross-section model parametrisation could not account for changes to

the binding energy, instead misattributing them to the flux and 2p2h model parameters. To

reduce its impact, a new treatment of the uncertainty was implemented for this analysis.

In the SF nuclear model, there isn’t a single nuclear binding energy systematic uncertainty.

Instead, external data is used to inform distributions of the nuclear binding energy and initial

nucleon momentum, which contain peaks corresponding to the nuclear shell structure. The

peaks are shown for different initial nucleon momentum for the ground state in Figure 5.11.

Ideally, there would be systematic parameters for the height, width, and position of each

of the peaks for each target nucleus. However, this was not feasible to implement on the

time scale of this analysis. Instead, a global uncertainty of 6 MeV is applied to the removal

energy in the SF nuclear model.

These binding energy systematics are implemented as neither shape nor normalisation

parameters in the T2K oscillation analysis. Instead, the offset to the removal energy is

propagated to a change in the pµ–cosθµ distributions by directly shifting pµ. It has been
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shown that changes in the removal energy do not cause significant changes in the distribution

of θµ [120].

The SF model used was constrained using data from ee′, p experiments, which only applies

to initial state protons, and therefore anti-neutrino CCQE interactions. The spectral function

of initial state neutrons in neutrino CCQE interactions can not be constrained in the same

way. The offset between the SF and Relativistic Mean-Field model predictions [136] for

neutrons is ∼4 MeV for oxygen and ∼2 MeV for carbon.

There are therefore four binding energy parameters applied to CCQE events: for 12C/16O

and ν/ν̄. The ν̄ parameters have a prior central value of 25 MeV for 12C, and 27 MeV for 16O.

The central value of the ν parameters are offset from their ν̄ counterparts by 2 and 4 MeV

for 12C and 16O respectively. The parameters are correlated with each other as follows:

• Ebν O: 70% with Ebν̄ O, 77.77% with Ebν C, 65.27% with Ebν̄ C

• Ebν̄ O: 70% with Ebν O, 65.27% with Ebν C, 77.77% with Ebν̄ C

• Ebν C: 77.77% with Ebν O, 65.27% with Ebν̄ O, 70% with Ebν̄ C

• Ebν̄ O: 65.27% with Ebν C, 77.77% with Ebν̄ O, 70% with Ebν C

These values are derived in [120].

The effect of the Ebν C parameter on the FGD1 FHC CC0π sample is shown in Figure

5.12. Here, the parameter is set to ±1σ while all other parameters are kept at nominal, and

the ratio to the nominal MC is taken. As the binding energy parameter is increased, the

final state lepton momentum is decreased. This is seen in the increase in number of events

at lower momentum in Figure 5.12a. The opposite effect is seen for decreasing the binding

energy parameter in Figure 5.12b.

To validate the implementation of this new type of parameter, Asimov fits [137] (where the

nominal MC is fitted to itself) with binding energy included were run. The Asimov fitting

process is described in more detail in Section 6.4. The 1D posterior distributions for each of

the 4 four parameters are shown in Figure 5.13, with a fitted Gaussian distribution. These

validations were performed using the uniform binning described in Appendix B. As expected,

the postfit values are close to the nominal values, and the distributions are approximately

Gaussian.

However, for fits to data the posteriors contain many discontinuities as shown in Figure

5.14. This is not seen for other parameters. When reweighting, either by spline or nor-

malisation, the change in the log-likelihood is continuous. As the parameter varies, the
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Figure 5.12.: Ratio of the FGD1 FHC CC 0π sample with Ebν C parameter set to ±1σ to
the nominal MC.

EB_dial_C_nu rel. nom
8− 6− 4− 2− 0 2 4 6 8 10 12

S
te

ps

0

50

100

150

200

250

310×

 = 2.15σ = 2.10, µ
PDF

 = 1.69σ = 2.07, µ
Gauss

 = 2.40 (+1.80-1.80)σ = 2.10, µ
HPD

x = 2.00
Input

(a) Ebν C

EB_dial_C_nubar rel. nom
8− 6− 4− 2− 0 2 4 6 8 10 12 14

S
te

ps

0

20

40

60

80

100

120

140

160

310×

 = 3.33σ = 0.20, µ
PDF

 = 3.04σ = 0.19, µ
Gauss

 = 3.56 (+3.21-3.21)σ = 0.16, µ
HPD

x = 0.00
Input

(b) Ebν̄ C

EB_dial_O_nu rel. nom
8− 6− 4− 2− 0 2 4 6 8 10 12 14

S
te

ps

0

20

40

60

80

100

120

140

160

180
310×

 = 3.08σ = 4.23, µ
PDF

 = 2.77σ = 4.25, µ
Gauss

 = 3.47 (+2.78-3.13)σ = 4.05, µ
HPD

x = 4.00
Input

(c) Ebν O

EB_dial_O_nubar rel. nom
8− 6− 4− 2− 0 2 4 6 8 10 12 14

S
te

ps

0

20

40

60

80

100

120

310×

 = 3.82σ = 0.31, µ
PDF

 = 3.71σ = 0.24, µ
Gauss

 = 4.28 (+3.92-3.92)σ = 0.17, µ
HPD

x = 0.00
Input

(d) Ebν̄ O

Figure 5.13.: Posterior distributions for the binding energy parameters from an Asimov fit.
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Figure 5.14.: Posterior distributions for the binding energy parameters from a data fit.

change in the penalty contribution, and the change in the number of events in each bin, and

therefore the sample contribution, are both smooth. However, for this direct shift in lepton

momentum, the sample contribution to the likelihood only changes if an event crosses a bin

boundary. There are therefore threshold values of each parameter where several events cross

boundaries and cause discontinuous changes in the log-likelihood.

To show this is what causes the discontinuities, a fluctuated version of the nominal MC

was produced. This was done by setting the number of events in each bin to be a random

number from a Poisson distribution, with a mean equal to the nominal bin content. This

ensured the number of events in each bin was an integer. The fluctuated MC was fitted to the

nominal MC, and the posterior distributions for the Eb parameters are shown in Figure 5.15.

The fact that these are non-Gaussian and discontinuous, despite them being continuous and

Gaussian in the regular Asimov fit, shows that the effect is caused by the discrete shifts to

integer events.

Furthermore, Figure 5.15 also shows the Eb distributions for a fluctuated Asimov fit using
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Figure 5.15.: Posterior distributions for the binding energy parameters from fits to fluctuated
Asimov data using uniform and non-uniform rectangular fit binnings.

the non-rectangular binning described in Section 5.3.1. The peaks in the distributions,

caused by the shifting of discrete events across bin boundaries, move positions between the

two fits. This shows the location of the peaks in Eb is very dependent on the binning. This is

much more of a significant effect for Eb, as the parametrisation directly shifts events rather

than reweighting them. Changes in the likelihood therefore only occur when the events cross

bin boundaries, and so the parameter is sensitive to where those boundaries are. Different

binnings can therefore produce different fit results.

As the BANFF fit uses a gradient descent, the discontinuities in the binding energy pa-

rameter likelihoods can prevent the fit from converging. To avoid this, rather than directly

shift the outgoing lepton momentum of events the BANFF use an effective reweighting. This

aims to smoothly replicate the shifting of events by increasing and decreasing the events in

a continuous manner. Template distributions were produced for each sample for a number

of knot points for each parameter. Bin-by-bin splines were then produced by interpolating
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Figure 5.16.: Comparison of log-likelihood scans for the two near detector analysis. The
good, but not perfect, agreement shows that the effective bin-by-bin reweighting
the BANFF use will closely, but not perfectly, replicate the effect of the event-
by-event direct shifts used in MaCh3.

between the number of events in each bin at different knot values. This process is described

in more detail in [138].

Figure 5.16 shows log-likelihood scans for the binding energy parameters in both the

MaCh3 and BANFF frameworks. For the BANFF fit, these are smoother, but they closely

trace the MaCh3 distributions. This is the intended behaviour of the splines: to smooth over

discontinuities while retaining the overall shape. However, the fact that there is not perfect

agreement shows that the spline process cannot completely represent the direct momentum

shifts. The implementation of the binding energy uncertainty used in MaCh3 is therefore a

more accurate method.

The treatment of the binding energy is one of the main differences between the two near

detector fitters, and one of the main advantages of this analysis over the BANFF.

In previous analyses, the binding energy systematic was applied as a shape parameter.
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The change in removal energy was propagated to a change in the pµ–cosθµ distributions by

reweighting events. However, this method broke down at extreme values of the kinematic

variables as changes in the removal energy could change the allowed phase space in unphysical

ways. With this implementation, the removal energy was one of the dominant uncertainties

in the T2K oscillation analysis. With the direct lepton momentum shift, the removal energy

is now a sub-dominant systematic uncertainty, as shown in Section 6.8.3. The treatment

of the binding energy is therefore also one of the main improvements made of this analysis

compared to previous T2K near detector fits.

This is the first time a systematic of this type has been implemented in a T2K analysis.

Now that the framework is in place to accommodate such parameters, more systematics

could directly shift event kinematics in the future, as discussed in more detail in Section

5.4.3.3. This work could therefore pave the way for improvements to subsequent analyses.

In summary, the new treatment of the binding energy gives a more accurate implemen-

tation of the systematic, significantly reduces the uncertainty, and shows that fitting direct

shifts to events is a viable method of applying new parameters in the future.

5.4.2. Flux

The flux systematics are determined using the simulation described in Section 3.1.3. New

data is used to regularly update and improve the modelling. This comes from external ex-

periments such as NA61/SHINE [94], the T2K beam monitors, and the on-axis near detector

INGRID. This analysis is the first to use flux systematics developed from simulation tuned

to data from a full T2K target replica, and not just a thinner replica version.

There are six sources of flux uncertainty:

• Alignment of the proton beam with the target.

• Number of protons on target.

• Interactions of protons and produced hadrons with the target.

• Alignment of the target with the focusing horns.

• The horn current and produced magnetic field.

• Modelling of materials in the target and decay volume.

The fractional sizes of the different sources of ND280 flux systematic are shown in Figure

5.17, for different neutrino signs. The hadron production contribution dominates, and the
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total uncertainty is ∼10% around the beam peak energy at 600 MeV. The proton beam

alignment becomes more significant around 1 GeV. The black dotted line shows the total

flux uncertainty using the previous version of the model. This also used the full replica

target tuning; the improvement comes from using the latest FLUKA [93] release. Similar

results are seen for the SK flux uncertainties, shown in Figure 5.18.

The flux uncertainty model is parametrised as 100 true neutrino energy bin normalisations,

split by neutrino species, horn current mode, and detector. The binnings are as follows:

• ND280 + SK, FHC νµ + RHC ν̄µ:

Etrue
ν : 0, 0.4, 0.5, 0.6, 0.7, 1, 1.5, 2.5, 3.5, 5, 7, 30

• ND280 + SK, FHC ν̄µ + RHC νµ:

Etrue
ν : 0, 0.7, 1, 1.5, 2.5, 30

• ND280 + SK, FHC νe + RHC ν̄e:

Etrue
ν : 0, 0.5, 0.7, 0.8, 1.5, 2.5, 4, 30

• ND280 + SK, FHC ν̄e + RHC νe:

Etrue
ν : 0, 2.5, 30

In total there are 100 flux parameters, 50 for ND280 and 50 for SK. The SK flux system-

atics are used in the near detector fit because of their high correlations with their ND280

counterparts. All flux systematics have a prior central value of 1.0, and Gaussian prior

uncertainty with width equal to the standard deviation in the fractional covariance matrix,

shown in Figure 5.19 for the ND280 FHC νµ parameters. There are larger prefit correlations

for parameters with similar energies, particularly at higher energies. The full flux covariance

matrix for all samples is shown in Appendix C.

5.4.3. Detector

The detector systematics are outlined in this section. Firstly, the physical underlying uncer-

tainties are described in Section 5.4.3.1. The application of these systematics, by studying

their impact on adjacent fit bins, is discussed in Section 5.4.3.2, along with a brief inves-

tigation into the validity of the assumptions used in this method. The algorithm used to

determine the detector binning is defined in Section 5.4.3.3, and the results of fits using

different detector binnings are then compared in Section 5.4.3.4, before the final covariance

matrices are presented in Section 5.4.3.5. Finally, potential improvements to the treatment

of detector systematics for future analyses are discussed in Section 5.4.3.6.
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Figure 5.17.: Relative sizes of the sources of uncertainties in the ND280 flux parameters.
“13av7.1” (black solid line) is the version used in this analysis, and is compared
with the previous version, “13v6” (dotted line). Figures from [139].
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Figure 5.19.: The flux covariance matrix for the ND280 FHC νµ parameters.

5.4.3.1. Underlying Systematics

The ND280 detector systematics are modelled using bin normalisation parameters. The

underlying systematics are initially varied to see the change to the number of events in each

pµ–cosθµ bin. These systematics are divided into 17 groups:

• TPC Field Distortions: The magnetic field applied in ND280 is not perfectly uni-

form, and so there are field distortions in the TPCs. These are measured by calibration

lasers with the magnet both on and off.

• TPC Momentum Scale: The uncertainty in the magnetic field causes an uncertainty

in the measured momentum within the TPC. Four hall probes within ND280 provide

scaling factors applied to the field strength on the MC.

• TPC Momentum Resolution: There is a discrepancy between the MC and data

momentum resolutions in the TPCs, which is not well understood. To account for this,

MC TPC tracks are smeared so that the resolution matches that of data.

• TPC PID: The pulls between the measured and predicted energy loss is used to
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identify particles in the TPC, as discussed in Section 3.2.2.2. The difference between

the mean MC and data pulls is applied as a systematic uncertainty on the TPC PID.

• TPC Cluster Efficiency: There are differences between the reconstruction of clusters

of hits in the data and MC. An uncertainty is applied, correlated between horizontal

and vertical clusters to account for this. It is calculated using control samples of both

beam and cosmic trigger events.

• TPC Tracking Efficiency: The efficiency of the TPC reconstruction algorithm suc-

cessfully merging hits into tracks is measured for control samples of both beam and

cosmic trigger events. The difference between the efficiencies obtained for data and

MC is applied as a systematic.

• TPC Charge ID Efficiency: There are two sources of uncertainty in the TPC charge

identification: the efficiency of the initial TPC charge being correct, and the probability

of the TPC charge sign being reversed in the overall charge identification. The TPC

Charge ID uncertainty is applied as the probability of the overall charge being different

from the TPC reconstructed charge.

• TPC-FGD Matching Efficiency: The efficiency of matching FGD and TPC tracks

was calculated using a control sample of events with a high angle with respect to the

neutrino beam, that passed through at least two TPCs. The difference in the efficiency

found for data and MC is applied as a systematic.

• FGD PID: The pulls between the measured and predicted energy loss is used to

identify particles in the FGD, as discussed in Section 3.2.2.1. The difference between

the mean MC and data pulls is applied as a systematic uncertainty on the FGD PID.

• FGD Time of Flight: For tracks passing through FGD1 and FGD2, the hit times

in each FGD are used to determine the direction of the track. The uncertainty on the

time of flight can therefore affect which FGD the event was reconstructed as having

occurred in. Analysis, rather than control, samples were used to measure the time of

flight for data and MC events. All reconstructed time of flights are smeared with the

discrepancy as an uncertainty.

• FGD Hybrid Tracking Efficiency: The efficiency of reconstructing FGD-only

tracks in the presence of FGD-TPC matched tracks is calculated for a sample set

of GEANT-4 generated stopping protons and pions in a control sample of events with

either one reconstructed track entering the TPC, or two tracks which both enter the
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TPC. The difference between the efficiencies for data and MC is applied as a systematic

uncertainty.

• Michel Electron Efficiency: The efficiency of detecting Michel electrons depends on

the probability of the electron producing enough hits in the FGD to pass the selection

cut, and the purity of the cut itself. The efficiency was measured for a control sample

of cosmic trigger events, and was defined as the probability to detect a Michel electron

that was expected from the presence of a stopped muon in the FGD.

• Out of Fiducial Volume (OOFV) Background: Events outside the fiducial vol-

ume can be misreconstructed as being being inside the fiducial volume. These could

be events that occurred in the first two layers of FGD1, the first layer of FGD2, or in

one of the other sub-detectors. The background rate was calculated for beam trigger

events, and the discrepancy between the measurement for data and MC is applied as

a systematic uncertainty.

• Sand Muon Background: Interactions from beam neutrinos can occur in the sand

outside the near detector pit but look similar to events in the FGDs, forming a back-

ground rate. The rate from a dedicated simulation is compared to data to calculate

the associated uncertainty.

• Pile-Up: Out-of-fiducial volume events being coincident with in-fiducial volume CC-

inclusive events in the FGDs can lead to CC-inclusive events being rejected by the

external veto cut described in Section 5.2. The difference in number of events per

bunch in the data and MC is applied as systematic uncertainty to account for this

effect.

• Pion Secondary Interactions (SI): Pions produced by neutrino interactions at

ND280 can interact within the detector. This causes pion detection inefficiencies. An

uncertainty is applied to account for this effect, calculated from the difference between

pion SI cross-sections measured in data and MC.

• FGD Mass: The uncertainty on the FGD masses affects the number of target nuclei,

and so can change the total event rate. Differences between the measured and simulated

FGD masses are applied as a systematic uncertainty.

Each of these systematics is applied in one of three different ways:
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Systematic Source Type Prior Shape

B Field Distortions Observable Flat

TPC Momentum Scale Observable Gaussian

TPC Momentum Resolution Observable Gaussian

TPC PID Observable Gaussian

TPC Cluster Efficiency Efficiency-Like Gaussian

TPC Tracking Efficiency Efficiency-Like Gaussian

TPC Charge ID Efficiency Efficiency-Like Gaussian

TPC-FGD Matching Efficiency Efficiency-Like Gaussian

FGD PID Observable Gaussian

FGD ToF Observable Gaussian

FGD Hybrid Tracking Efficiency Efficiency-Like Gaussian

Michel Electron Efficiency Efficiency-Like Gaussian

OOFV Background Normalisation Gaussian

Sand Muon Background Normalisation Gaussian

Pile-Up Normalisation Gaussian

Pion Secondary Interactions Normalisation Gaussian

FGD Mass Normalisation Gaussian

Table 5.2.: ND280 detector systematics, and their propagation type and prior uncertainty
shape.

• Observable Variable Systematic: These are smearings that are applied to recon-

structed variables. The selection algorithm is then rerun, and so smeared events can

change their topology, selection, and which track the lepton candidate is.

• Efficiency-Like Systematics: These are uncertainties on detection and reconstruc-

tion efficiencies, which are applied as weights to the event after selection.

• Normalisation Systematics: These are overall normalisation changes applied di-

rectly to events to scale rates up or down.

The type of each of the 17 systematics is shown in Table 5.2, along with whether they

have a Gaussian or flat prior uncertainty.

5.4.3.2. Applying the Detector Systematics

In theory, the systematics described above could be applied on an event by event basis

and fitted individually. However, this is not computationally feasible on the timescales
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Figure 5.20.: Distribution of number of events in selected Gaussian distributed bins after
2000 throws of all detector systematics. The red and green lines show Gaussians
fitted with and without the MC statistical uncertainty included, and the dotted
black line shows the nominal number of events.

required for the oscillation analysis. Instead, each systematic is varied 2000 times and the

MC reweighted. This gives a distribution of 2000 number of events for each pµ–cosθµ bin.

The mean and width of a Gaussian fitted to each of these distributions becomes the prior

central value and uncertainty for a normalisation parameter applying to that bin. However,

the number of fit bins is large, and so to reduce the number of fit parameters, adjacent bins

with similar responses to the systematic variations are merged, so the detector binning is

coarser than the fit binning. Studies of different detector binnings are presented in Section

5.4.3.3.

This process assumes the shape of the underlying systematics are Gaussian. This is the

case for the majority of bins, four of which are shown in Figure 5.20. In previous analyses,

the MC statistics uncertainty was included in the ND280 detector covariance instead of as

an extra term in the log-likelihood calculation, and so a Gaussian fitted to the distribution

of number of events in each bin with and without the MC stats uncertainty are shown.

However, several bins exhibit non-Gaussian behaviour, as shown in Figure 5.21.

To investigate which of the underlying detector systematics is causing the non-Gaussianity,

each was switched off one-by-one and the variations repeated. It was found that when all
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Figure 5.21.: Distribution of number of events in selected non-Gaussian distributed bins after
2000 throws of all detector systematics. The red and green lines show Gaussians
fitted with and without the MC statistical uncertainty included, and the dotted
black line shows the nominal number of events.

systematics but the Pion SI are left on, the distributions in the misbehaving bins are more

Gaussian. These are shown in Figure 5.22. This suggests that the pion SI is the only one of

the detector systematics with a significantly non-Gaussian distribution. As the effect only

manifests in a small number of bins, it is not too concerning for this analysis.

5.4.3.3. Detector Binning Algorithm

The choice of detector binning is a trade-off of having as close to the fit binning as possible

to obtain more accurate results, without introducing too many parameters to feasibly fit. To

investigate the effect of merging detector bins, detector covariances with different binnings

were produced. The binnings were produced by requiring different criteria to merge adja-

cent bins. These criteria were based on the number of events in a bin before applying the

detector systematics, the change in the number of events by applying the systematics, and

the difference between the covariance of bins. These correspond to merging bins with few

events, bins where the effect of the systematics are small, and bins with similar response to

the systematics respectively. The exact criteria for merging bins used were:
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Figure 5.22.: Distribution of number of events in selected bins after 2000 throws of all detec-
tor systematics but the pion SI. The red and green lines show Gaussians fitted
with and without the MC statistical uncertainty included, and the dotted black
line shows the nominal number of events.

• < 1 event in a bin, or < 1 event change from applying the systematics, or < 10%

difference in covariance between bins. This produced 179 merged bins.

• < 1 event in a bin, or < 1 event change from applying the systematics, or < 5%

difference in covariance between bins. This produced 574 merged bins.

• < 1 event in a bin, or < 0.5 event change from applying the systematics, or < 5%

difference in covariance between bins. This produced 1347 merged bins.

A covariance using the fit binning as the detector binning was also produced. As in these

studies the fit binning used was the uniform-rectangular set defined in Appendix B, this

corresponded to 4238 bins.

5.4.3.4. Detector Binning Fits

Fits were run using each of the four detector covariances, using an intermediate cross-section

model including parts of the 2017 analysis parametrisation described in [140], and parts of

the 2020 analysis parametrisation described in Section 5.4.1. To avoid tuning the detector

binning on data, fake data was produced by setting the cross-section parameters to their
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best fit values from the 2017 analysis and reweighting the runs 2–6 nominal MC. The MC

was then fitted to this fake data.

The result of the fits are shown in Figure 5.23 for the ND280 FHC flux parameters, Figure

5.24 for the cross-section parameters, and Appendix A for all parameters. Although there

are several differences between the postfit parameter values, there is no consistent trend of

having more bins being closer to the fit binning result, and they are all consistent within

uncertainties. Although the 179 fit bin fit is often the most different from the 4238 (fit

binning) detector bin fit.
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Figure 5.23.: ND280 FHC flux parameters for fake data fits using different detector binnings.
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Figure 5.24.: Interaction parameters for fake data fits using different detector binnings.

Furthermore, when the postfit chains are used to produce posterior predictive distributions

at the far detector, there is very little difference seen, as shown in Figure 5.25. This suggests

that there are several regions of minima in the ∼700 dimensional parameter space which

correspond to the same result at SK.
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Figure 5.25.: SK posterior predictive distributions from near detector fits using different
binnings for the detector covariance.
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5.4.3.5. Detector Systematics Covariance Matrices

As the far detector prediction was robust to the different detector bin mergings, and previous

analyses have shown that having ∼600 detector parameters does not cause any issues with

fit convergence4, the 574 bin detector covariance was chosen as the optimum bin merging to

use in this analysis.

The binning is as follows:

• FHC νµ CC 0π:

pµ (MeV/c): 0., 300., 1000., 1250., 1500., 2000., 3000., 5000., 30000.

cosθµ: -1.0, 0.6, 0.8, 0.85, 0.9, 0.92, 0.98, 0.99, 1.0

• FHC νµ CC 1π:

p µ (MeV/c): 0., 300., 400., 700., 800., 1000., 1500., 2000., 5000., 30000.

cosθµ: -1.0, 0.6, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98, 0.99, 1.0

• FHC νµ CC Other:

pµ (MeV/c): 0., 300., 400., 700., 800., 900., 1250., 2000., 3000., 5000., 30000.

cosθµ: -1.0, 0.6, 0.8, 0.85, 0.9, 0.92, 0.96, 0.98, 0.99, 1.0

• RHC ν̄µ CC 0π:

pµ (MeV/c): 0., 300., 2000., 4000., 30000.

cosθµ: -1., 0.6, 0.8, 0.9, 0.96, 1.

• RHC ν̄µ CC 1π:

pµ (MeV/c): 0., 500., 30000.

cosθµ: -1, 0.7, 1.

• RHC ν̄µ CC Other:

pµ (MeV/c): 0., 600., 800., 30000.

cosθµ: -1., 0.7, 0.95, 0.97, 1.

• RHC νµ CC 0π:

pµ (MeV/c): 0., 300., 1500., 30000.

cosθµ: -1., 0.7, 1.

• RHC νµ CC 1π:

pµ (MeV/c): 0., 600., 800., 30000.

cosθµ: -1, 0.7, 1.

4For the 2017 analysis, 556 detector bins were used.
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• RHC νµ CC Other:

pµ (MeV/c): 0., 600., 30000.

cosθµ: -1., 0.7, 1.

In this analysis, another detector covariance was also used for separate fits ran in parallel

with the 574 detector bin fits. These fits used the full non-uniform fit binning as the detector

binning. As the MC statistics uncertainty was taken out of the detector covariance for this

analysis, reducing the terms in the diagonal of the covariance, the number of fit parameters

can be reduced using principal component analysis, as discussed in Section 5.4.3.6. This could

then allow the full fit binning detector covariance to be used in joint near and far detector

fits, which was not previously possible as it would introduce too many fit parameters. This

was not done for this analysis, but the full fit detector covariances are used in parallel near

detector fits (which can accommodate more fit parameters) to study the potential impact.

The 574 binned detector covariance is shown for the FGD1 CC 0π sample in Figure 5.26.

For each momentum range, the bins correspond to the angle ranges, in increasing order,

defined above for the 574 merged bins. Bins with similar angles are strongly correlated with

each other, and this correlation increases with angle, particularly for bins which apply to the

same momentum range. There is a slight anti-correlation between the highest angle bins,

and some of the lower angle bins. Bins with similar momentum ranges are also more strongly

correlated to each other than bins corresponding to higher or lower momentum.

The two full detector covariances used are shown in Appendix C, showing similar patterns

for all samples.

5.4.3.6. Future Detector Systematics Improvements

The treatment of the detector systematics is the weakest point of this analysis. It is currently

not computationally feasible to include each uncertainty directly in the fit, but it is also not

possible to include ∼4000 detector parameters by using the same fit binning for the detector

bins. Therefore a compromise is needed, and this is achieved with the bin merging process.

Although the results in Section 5.4.3.4 show that the analysis is fairly robust to different

binnings, the studies in Section 5.4.3.3 show that the underlying assumption that the shapes

of all the systematics are Gaussian is not strictly true.

In future analyses, this could be overcome by directly applying each underlying systematic

individually, rather than by using the overall bin normalisations. The implementation of the

binding energy parameter, described in Section 5.4.1.1, shows that fitting systematics which

directly shift the kinematic variables of events is possible within the MaCh3 framework.
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5. The Near Detector Fit Setup

Figure 5.26.: The ND280 detector covariance matrix with 574 merged bins for the FGD1 CC
0π sample, produced using runs 2–9 MC. Bins are ordered in increasing angle
ranges for each momentum range. The full matrix for all samples is shown in
Appendix C.

This technique could be used particularly for the detector uncertainties that are applied as

Observable Variable systematics. These already smear reconstructed variables to produce the

normalisation parameters which are then fitted, so it would be natural to directly modify the

appropriate variable in the fit. This would allow each detector systematic to be fit without

assuming the underlying shapes are all Gaussian.

On a shorter time-scale, the treatment of the detector systematics can be improved by

using Principal Component Analysis (PCA) to only fit a certain amount of parameters

without having to merge detector bins. PCA produces N fit parameters (where N is the full

amount of fit bins), but in principle component basis where each parameter is orthogonal.

The parameters can then be cut by the size of their corresponding eigenvalue, to reduce the

total number to a more feasible amount.

With this method, the bin merging is avoided, allowing the systematics to more accurately
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apply to the correct events, while the number of fit parameters is kept to a manageable

number. This is feasible now that the MC statistics uncertainty is no longer included in

the detector covariance, reducing the diagonal term in the matrix. Studies have already

begun on how many principle components can be cut without an excessive impact on the fit

result [138], though this work did not converge in time for this analysis.

5.4.3.7. Detector Systematics Summary

In summary, there are 17 underlying detector systematics which are currently varied 2000

times and applied to the MC, to produce bin-by-bin normalisations. This process assumes

the shape of each parameter is Gaussian, which is not strictly true, particularly for the Pion

SI uncertainty, but this only affects a small number of bins. The bins are merged to reduce

the number of fit parameters, which reduces the accuracy with which the systematics are

applied to the correct events, but this is shown to not have a significant impact on the fit

results. In future analyses, the bin merging can be avoiding by using PCA to reduce the

number of parameters without reducing the number of detector bins. Ultimately, fitting each

uncertainty individually, and allowing them to directly shift event kinematics in a similar

way to the binding energy parameter will improve the treatment of the detector systematics.

5.5. Prefit Corrections and Scalings

A number of corrections and reweightings are applied to the MC prediction to account for

well understood discrepancies between MC and data. These ‘one-time’ weights are applied

before the fit, and are not varied in it.

• POT: A scaling is applied to every MC event to account for the fact that more

MC POT is produced for each run than data POT. The weight applied to each event

depends on the run, and is the ratio of the total data POT with good data quality flag

to MC POT in the run.

• Pile Up: The detector efficiency in data is lower than in MC because of the coin-

cidence between neutrino events and interactions involving sand muons. This needs

to be applied as MC neutrino interactions within the magnet are simulated separately

from sand muons. The correction applied depends on the run, and which FGD the

event occurred in.

• Detector: Precise control studies are used to inform corrections due to well known
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Target pµ+ Shift (MeV) pµ− Shift (MeV)

C +2.6 -3.6
O +3.3 -4.3

Table 5.3.: Momentum shifts applied to final state leptons in CC events.

hardware and reconstruction deficiencies in the TPC dE/dx and PID. These are applied

on an event by event basis, and are discussed in more detail in [116].

• Flux: A correction is made to the nominal neutrino flux for tunings to updated

replica target data. The value of the weight applied depends on the run and neutrino

energy.

• Coulomb: When the lepton produced in a CCQE neutrino interaction leaves the

nucleus, it is either electrostatically attracted to, or repulsed by, the nucleus, depending

on its charge. This increases or decreases the momentum of the lepton. To model this, a

shift in momentum is applied to CC events. The value of the shift is tuned to electron

scattering data [141], and depends on the target nucleus and sign of the lepton, as

shown in Table 5.3.

All of these one-time corrections, along with the systematics that vary in the fit (apart

from the Coulomb shifts and Eb parameters), are applied to the raw MC as multiplicative

weights on an event-by-event basis. This produces the nominal MC prediction which is

ultimately fitted to the data.

5.6. Data

T2K has been taking data in distinct run periods since 2010, in both FHC and RHC beam

mode. The beam power has been steadily increasing over this time, as shown in Figure 3.6.

MC is produced for each run period individually, so that run-by-run effects such as the

beam and detector configurations, and tunings to in-situ beam measurements, can be ac-

counted for.

Table 5.4 shows the amount of MC POT produced in each run, along with the amount

of data taken with good data quality flag (defined as POT collected with all sub-detectors
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Run Beam Mode Data POT (×1019) MC POT (×1019)

2a FHC 3.59 167.99
2w FHC 4.34 120.38

3 FHC 15.81 307.77

4a FHC 17.83 361.23
4w FHC 16.43 361.22

5 RHC 4.35 221.10

6 RHC 34.09 346.99

7 RHC 24.38 333.00

8a FHC 41.50 361.10
8w FHC 15.81 254.23

9 RHC 20.54 245.61

Total FHC 115.31 1933.89
RHC 83.36 1146.69

FHC+RHC 198.67 3080.59

Table 5.4.: Collected and generated POT for the run periods used in this analysis.

of ND280, and the data acquisition system, online). Over runs 2–9, the overall efficiency of

good data taking was ∼69%.

Significantly more MC is produced than data, with the weights and corrections described

in the previous sections bringing the MC prediction comparable to data.

Runs with an ‘a’ or ‘w’ suffix refer to whether the P0D was filled with air (a) or water (w)

during the run. These are separated, despite being part of the same global run, as the MC

production requires different geometries to be used for these two different configurations.

Runs without a suffix had a consistent P0D filling for the entire run. This was water for

runs 5, 7, and 9, and air for runs 3 and 6.

The most recent data taking period, run 10, finished in February 2020, but had not been

through the full processing in time for this analysis. Run 1 was not included as not all of

the sub-detectors of ND280 were online.

5.7. Summary

This chapter has presented an overview of the inputs to the fit and the fitting framework

itself. Prior to the near detector fit, the uncertainty on the predicted event rate at SK is

∼ 15%. Fitting the systematics at the near detector reduces this to ∼ 5%, without which,
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T2K would not be able to make the precise oscillation measurements it does.

There are two near detector analyses at T2K. The analysis presented in this thesis uses

MCMC methods to sample the probability distribution, while the other uses a gradient

descent method to find the global minimum.

ND280 data is divided into 18 samples depending on the topology of the event, the beam

mode, and which FGD the interaction took place in. These are designed to separate different

interaction modes so that systematic uncertainties can be applied accurately. This analysis

is the first to use the same topological samples for FHC and RHC data.

These selections are binned in pµ–cosθµ. In previous analyses, the use of uniform rectangu-

lar binning caused the bins with the highest number of events to be outside the peak region.

To avoid this, non-uniform rectangular bins are used in this analysis. An algorithm was

written and tuned to produce small enough bins in the peak region to have good resolution,

while still having sufficient events in the bins in sparse regions to reduce the statistical un-

certainty. The use of non-uniform binning is shown to improve the constraint on systematics

significantly.

There are three groups of systematics applied in the fit: cross-section, flux, and detector.

The cross-section systematics are provided by the Neutrino Interactions Working Group

(NIWG). One of the main improvements to the cross-section model since the last analysis is

in the treatment of the binding energy. A new type of parameter has been implemented into

the fit, which directly shifts the lepton momentum of an event to represent the uncertainty

in the binding energy. Many studies and validations of this parameter have been performed

as part of this thesis.

As the binding energy systematic produces discontinuities in the likelihood distribution,

it cannot be fitted as direct momentum shifts in the other near detector fitting framework,

and so bin by bin splined response functions are used instead. The non-uniform binning is

also only used in this analysis. These are the two main advantages of the analysis presented

in this thesis over the other near detector fitter.

The flux systematics are provided by the beam group in the form of a covariance matrix.

These consist of 100 different normalisations, binned by neutrino energy, species, beam mode,

and detector.

The detector systematics are provided by the ND280 Selection, Systematics, and Valida-

tions group. These are then varied 2000 times, and the effect on the number of events in each

bin used to form normalisation parameters. To reduce the total number of fit parameters,

bins with similar responses are merged. The fit is shown to be fairly robust to different bin
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mergings. However, in future analyses, using PCA to cut parameters without reducing the

number of bins will allow the systematics to be applied more accurately.

The process of throwing the detector systematics to produce normalisations assumes the

shape of all underlying systematics is Gaussian. This is shown to not be strictly true. In

future analyses, applying each underlying systematic individually will avoid this assumption.

The studies of the binding energy parameter show that uncertainties can be fitted as direct

shifts to event kinematics, and this could be a natural way of applying some of the detector

systematics in the future.
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6. 2020 Near Detector Fit Results

The results of the analysis are presented in this chapter, starting with the nominal MC

prediction and fit validations in Sections 6.1, 6.2, 6.3, and 6.4. The data fit is presented in

6.5, and the posterior predictive distributions and p-values are shown in 6.6. Results from

fits with different binnings are then compared in Section 6.7. Finally, the impact on the

sensitivity to oscillation parameters are shown in Section 6.8.

6.1. Nominal MC

The data, unweighted MC, and nominal MC event rates for each sample are shown in

Table 6.1. The CC 0π samples are consistently underestimated in the MC prediction by

∼15–20%, the CC 1π samples are overestimated by ∼5–10% for FHC ν and RHC ν, and

underestimated by ∼5% for RHC ν̄, and the CC Other samples are underestimated by ∼20–

30%. The differences to data are consistent across the FGDs to within ∼5%. Overall, the

MC prediction is 15% lower than the observed data.

The number of unweighted events for each interaction mode are shown in Table 6.2. CCQE

is the most common mode, making up ∼50% of all events.

The 2D nominal MC distributions for each sample are shown in Figure 6.1. The non-

uniform-rectangular binning defined in Appendix B is used to bin the samples for the main

results.

The projection of these distributions onto the pµ axis are shown in Figures 6.2, 6.3, and

6.4, along with the interaction mode breakdown and data.

The ratio of data to MC for fluctuates for the CC 0π and CC Other samples, but is

consistently >1. It is slightly increased at the peak momentum for FHC and RHC ν, and

decreased at the peak for RHC ν̄. The ratio for the CC 1π samples is more flat in momentum,

but shows a small fluctuation <1 at low momentum for FHC ν, and >1 for RHC ν and ν̄.

The behaviour is similar across the FGDs.

The FHC ν and RHC ν̄ CC 0π samples are dominated by the target interaction modes

CCQE and 2p2h. However, for RHC ν, there is a large contamination of CC 1π events. The
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Sample Raw MC Nominal MC Data Data/MC

FGD1 FHC ν CC 0π 524093 27951.1 33443 1.20
FGD1 FHC ν CC 1π 127176 8358.97 7713 0.92
FGD1 FHC ν CC Other 99730 7031.47 8026 1.14
FGD2 FHC ν CC 0π 521757 27556.2 33156 1.20
FGD2 FHC ν CC 1π 103305 6723.98 6281 0.93
FGD2 FHC ν CC Other 94164 6454.68 7700 1.19
FGD1 RHC ν̄ CC 0π 115456 7270.56 8388 1.15
FGD1 RHC ν̄ CC 1π 9272 694.32 698 1.01
FGD1 RHC ν̄ CC Other 16790 1286.78 1472 1.14
FGD2 RHC ν̄ CC 0π 112390 7036.71 8334 1.18
FGD2 RHC ν̄ CC 1π 8533 624.76 650 1.04
FGD2 RHC ν̄ CC Other 15616 1176.62 1335 1.18
FGD1 RHC ν CC 0π 41789 3035.85 3594 1.13
FGD1 RHC ν CC 1π 14304 1159.02 1111 0.96
FGD1 RHC ν CC Other 12733 1073.16 1344 1.25
FGD2 RHC ν CC 0π 41554 3013.01 3433 1.14
FGD2 RHC ν CC 1π 11472 930.64 926 1.00
FGD2 RHC ν CC Other 11954 1000.03 1245 1.24
Total 1882090 112378 128849 1.15

Table 6.1.: MC and data event rates for the ND280 samples.

Interaction Number of Events

CCQE 827104
2p2h 134298
CC 1π 462170
CC coherent 14065
CC multi-π 174069
CC DIS 185284
CC miscellaneous 26643
NC 1π0 3476
NC 1π± 15218
NC coherent 271
NC 1γ 11
NC Other 61334
Total 1903943

Table 6.2.: MC event rates broken down by interaction mode.

FHC ν and RHC ν̄ CC 1π samples are dominated by the target interaction modes CC 1π,

CC coherent, and CC multi-π, but for RHC ν, the 1π sample has a significant number of CC

DIS events. The CC Other samples are populated mainly by the target interaction modes

CC DIS, CC multi-π, and CC miscellaneous, but with a significant number CC 1π and CC

coherent events for FHC ν and RHC ν̄.

The projections onto the cosθµ axis are shown in Appendix D, along with the data and
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Figure 6.1.: pµ–cos θµ distributions for the nominal MC with non-uniform rectangular bin-
ning.
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Figure 6.2.: pµ projections of data and nominal MC broken down by interaction mode for
FHC selections.

interaction mode breakdown.

The ratio of data to MC for CC 0π and CC Other samples again fluctuates, but always

remains > 1. For the CC 1π samples, the ratio is more flat, but at high angle oscillates

between the MC over and underestimating the data. The behaviour is consistent across
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6.1. Nominal MC
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Figure 6.3.: pµ projections of data and nominal MC broken down by interaction mode for
RHC ν̄µ selections.

FGD1 and FGD2, showing that the strengths and weaknesses of the modelling are similar

for both FGDs.
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Figure 6.4.: pµ projections of data and nominal MC broken down by interaction mode for
RHC νµ selections.

6.2. Log-likelihood Scans

As described in Section 4.4.1, the marginalisation effects from extracting correlated and non-

Gaussian parameters from the full posterior distribution can cause the fit to appear biased.
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6.2. Log-likelihood Scans

A full Asimov fit alone, described in Section 6.4, is therefore not a good method of validating

the framework.

Log-likelihood scans are also run as part of the validations. The nominal MC is set as the

data, and each systematic parameter is varied one at a time to 150 equally spaced points

from -1σ to +1σ. At each step, the MC is reweighted and the total likelihood from all

contributions calculated. Only the diagonal terms of the covariance matrices are used for

the penalty contribution, as otherwise varying one parameter alone could invoke significant

penalties from correlations. The scans are therefore not a fully accurate measure of the

sensitivity of the fit to constrain each systematic, but a useful validation of the framework.

After each scan, the parameter is reset, and the next parameter in question varied. The

likelihood response is expected to be fairly Gaussian for each parameter, as the prior un-

certainty is either Gaussian or flat, and most parameters are expected to have a symmetric

effect on the number of events in individual bins. The minimum should be at the prior

central value of the parameter, and the log-likelihood here should be 0, as at this point the

reweighted MC is identical to the nominal MC. No variation of a single parameter should be

able to produce a set of distributions more similar to the nominal MC than itself.

The log-likelihood scans for four selected interaction parameters are shown in Figure 6.5.

As expected, the test statistic minimises to 0 at the prior central value of each parameter. The

penalty contribution to the log-likelihood dominates for the CC normalisation parameter,

due to the prior uncertainty being so small. Conversely, the 2p2h 12C to 16O normalisation

parameter has a weaker prior and therefore a larger contribution from the sample likelihood.

The likelihood for the 0.05 < Q2 < 0.10 GeV2 normalisation parameter is entirely dominated

by the sample contribution, as the prior is flat. The CC DIS and multi-π ν̄ normalisation

parameter has more balanced contributions from both the sample and penalty likelihoods.

The log-likelihood scans for four selected flux parameters are shown in Figure 6.6. The

test statistic again minimises to 0 at the prior central value of each parameter, as expected.

These parameters all have tight prior uncertainties, and so the penalty terms dominate the

likelihoods. For the SK flux parameters, there is no sample contribution to the likelihood.

This is expected as the SK flux parameters should have no effect on the ND280 samples

(apart from through the correlations with ND280 flux parameters, which are not included

in these scans).

The log-likelihood scans for four selected ND280 detector parameters are shown in Figure

6.7. As expected, the test statistics all minimise to 0 at the prior central value of each

parameter. The prior dominates for all regions of pµ–cosθµ in each sample. For the higher
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6. 2020 Near Detector Fit Results
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Figure 6.5.: Log-likelihood scans for selected interaction parameters. CC norm. ν has a tight
prior uncertainty that dominates the likelihood, whereas the low Q2 normalisa-
tions have a flat prior so the sample is the only contribution. The 2p2h 12C to
16O and CC DIS and multi-π normalisations have significant contributions from
both the sample and prior uncertainty.

statistic regions (eg. FGD1 FHC νµ CC 0π: 300–1000 MeV, 0.92–0.98), the overall constraint

is larger than for the lower statistic regions, (eg. FGD1 FHC νµ CC 1π: 5000–30000 MeV,

-1.0–0.6).

The sample, prior, and total log-likelihood distributions were compared with the other

near detector fitting group, and good agreement was found for all parameters.

6.3. Parameter Variations

As a further validation of the fitting framework and models, the parameters are again each

set to ±1σ, one by one, while all others are held at nominal. Instead of the change in

likelihood, here the effect on the event distributions in pµ–cosθµ is inspected.

One varied interaction parameter for each sample is shown in Figure 6.8. The combinations
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6.3. Parameter Variations
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Figure 6.6.: Log-likelihood scans for selected flux parameters.

of parameter and sample were selected such that the parameter controls interactions targeted

by the sample. The parameter is therefore expected to have a significant and well-understood

impact on the shown sample. The selection of parameter and sample was also made such

that no parameters are shown more than once. The parameter in question is set to +1σ

above its nominal value, and the ratio of the reweighted MC to the nominal MC is taken.

The 2p2h ν normalisation, Q2 normalisations, and MQE
A parameters all have a Q2 depen-

dence in the response of event distributions when set to +1σ. MQE
A and Q2 > 1.0 GeV2 have

a larger effect at high Q2, while the 0.00 < Q2 < 0.05 GeV2 controls the lower Q2 region, as

would be expected.

The π FSI, and 2p2h shape 12C parameters reduce the number of events in the shown

samples, despite being set higher than nominal. This is because they are spline parameters

not normalisation parameters, and so the weight applied can be lower for a higher parameter

value. The AGKY mult-π, CA
5 , MRES

A , BY DIS, BY mult-π, and I1/2 uncertainties are all

shape parameters which cause an increase in events in the samples shown when set to +1σ.
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Figure 6.7.: Log-likelihood scans for selected ND280 detector parameters.

The Eb
16O ν̄ parameter causes an increase in events at low momentum, and decrease at

higher momentum, as the events are directly shifted and not just reweighted.

The DIS normalisations, CC coh. 16O, and CC misc. normalisations all increase events

at high angle when set to +1σ. The DIS normalisations effect higher momentum events,

as would be expected as DIS interactions tend to involve higher energies. The CC misc.

parameter has a large impact despite only affecting a small number of events, because of its

large uncertainty. When it is set to +1σ it is therefore significantly higher than at nominal.

All the variations are causing changes to the event distributions in the regions each pa-

rameter would be expected to. The total number of events in each sample at each variation

was compared with the other near detector fitting group to verify that each parameter is

behaving in the same way in each framework. Good agreement was found for all parameters,

for all samples. For these cross-group validations, the uniform binnning defined in Appendix

B was used.
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Figure 6.8.: Ratio of each sample to nominal with one parameter set to +1σ. The selected
parameters shown all affect interactions which the sample they are shown for
target.
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6.4. Asimov Fit

The Asimov dataset1 is defined as the MC prediction with all systematic parameters set to

their nominal values [142]. For an Asimov fit, the nominal MC prediction is set to be the

‘data’, and is then fitted to itself. This is completely unphysical, as there can be a non-integer

number of ‘data’ events, but means there are no statistical fluctuations in the dataset, and

the expected result of the fit is known. Therefore any deviations from the expected result

indicate problems with the fitter. The results can also be used to obtain the maximum

sensitivity of the fit. The constraint on each parameter shows the reduction in systematic

uncertainties that would be achieved if the models perfectly described the true data. This

represents the maximum possible constraint, as the sample and parameter likelihoods are

each maximised for the same set of parameter values.

The results of the Asimov fit for the ND280 FHC flux parameters are shown in Figure

6.9. As described in Section 4, the fit does not find a single best-fit set of parameters, but

single parameter values are extracted from the posterior distribution by marginalising over

all but one parameter, one by one. Marginalisation effects, whereby marginalising over non-

Gaussian parameters shifts the highest posterior density for a given parameter, cause the

postfit parameter values to not exactly equal the nominal inputs, but the discrepancies are

small. The flux parameters with the largest discrepancies are those that apply to rarer events

at ND280, such as for high energies, and so are constrained mostly by the prior uncertainty

only.

As the ND280 samples all target νµ or ν̄µ, the νe and ν̄e parameters are mainly constrained

only by the prior, so the pre and post Asimov fit uncertainties are very similar. As there is

no wrong-sign FHC sample, there is also little constraint beyond the prior for FHC ν̄µ.

The constraint on the SK flux parameters comes entirely from the correlation with the

ND280 ones, and so the postfit values have the same behaviour, as shown in Appendix F,

along with the ND280 RHC flux parameters.

The results for the interaction parameters are shown in Figure 6.10. All parameters stay

close to their nominal values, as would be expected. There are several parameters which

show small deviations, but these are again parameters which are not well constrained, such

as NC 1γ, as there are few events of the relevant interaction mode at ND280. The 2p2h

energy dependence and low π momentum I1/2 parameters are not fitted at the near detector,

so aren’t shown here.

1Named after the Isaac Asimov short story, Franchise, in which an individual is chosen as the sole voter as
their views represent those of the whole population.
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Figure 6.9.: ND280 FHC flux parameters for the Asimov fit.

The uncertainty on the majority of parameters has been reduced by the fit. The parameters

which are not constrained are either due to there being a very small number of (or 0) events

affected by them in ND280 samples, such as NC Other SK (which only applies to SK events),

or there being a very strong prior uncertainty, such as the CC ν and ν̄, νe/νµ, and multi-π

and DIS normalisations.
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Figure 6.10.: Interaction parameters for the Asimov fit.
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6.4. Asimov Fit

Figure 6.11.: Asimov postfit correlation matrix for interaction parameters.

The postfit correlation matrix for the interaction parameters is shown in Figure 6.11, and

both the flux and interaction parameters together are shown in Appendix G. There are

strong correlations between uncertainties which control interactions with similar topologies,

such as the MQE
A , 2p2h, and Q2 parameters. These all affect different regions of Q2, but

also all correlate with the flux parameters, causing them to correlate with other. The CC

coherent parameters correlate with each other, and the CC 1π parameters. There are strong

internal correlations for the Eb, π FSI and single π production parameters. There are also

slight correlations between CCQE and CC 1π parameters, due to the contamination of CC

1π events in the CC 0π samples. The flux parameters have strong internal correlations

from their priors, and are anti-correlated with many interaction parameters, particularly

normalisations.
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6.5. Data Fit

6.5.1. Prior Predictions

Prior predictions are produced using a similar method to the posterior predictions described

in Section 4.4.3. However, instead of using draws from the Markov Chain, correlated throws

of the fit parameters are made. For the parameters with Gaussian priors, the throws are

from a Gaussian with the same central value and width as the prior. For the parameters with

flat priors, the throws are from a uniform distribution between physical bounds. For each

of 2000 throws, the nominal MC is reweighted to the thrown parameter values. Each bin in

each sample therefore has 2000 different number of events, from which the central value and

uncertainty is used to build the prediction in the same way as for the posterior predictions.

This method has the advantage of incorporating the prior uncertainties when inspecting

how well the nominal model fits the data, which just looking at the nominal MC does not

do. The prior prediction therefore gives a better gauge of how significant the discrepancies

between the unfitted model and the data are. The nominal MC and prior prediction are

not expected to be identical as they are constructed differently; the latter builds predictions

from the prior and then averages whereas the former just takes the prior at the central value,

but large discrepancies would be surprising.

The prior prediction can also be used to compare to the posterior predictive distributions,

to show how the fit has changed not just the shape of the predictions, but also the uncer-

tainties. The constraining of systematics by the fit is expected to reduce the uncertainties

on the prediction.

The pµ projections of the prior predictions for the FHC samples are shown in Figure 6.12.

The rest of the samples, and cosθµ distributions are shown in Apprendix E.

As expected from the comparisons of the nominal MC to data, the prior predictive

distributions underestimate the data significantly, particularly in the peak region around

pµ ∼600 MeV for the CC 0π and CC Other samples. For the CC 1π samples, there are

regions of significant overestimation. The levels of discrepancy are not concerning though,

if the prior model perfectly described the data with small uncertainties the fit would not be

needed. The prior predictions are compared to the posterior predictions in Table 6.3.
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Figure 6.12.: pµ projections of the prior predictive distributions and data for FHC νµ selec-
tions.
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6.5.2. Fit Results

The MC was then fitted to the real data. The postfit ND280 FHC flux parameter values

are shown in Figure 6.13. The full fit results are shown in Appendix F. For FHC νµ and νe,

there is a pull of ∼10% below 1 GeV. The pull decreases as the energy decreases, and falls

below nominal at higher energies. A similarly high pull is seen for the FHC ν̄µ and RHC νµ

parameters, and this is fairly constant in energy.

For FHC ν̄e and RHC νe, the pull is ∼8% for the high energy parameter, but the low

energy parameter is slightly closer to nominal. The RHC ν̄µ and ν̄e parameters are also

pulled significantly upwards, to ∼5–10% decreasing with energy.

Similar behaviour is seen for the ND280 and SK parameters, as would be expected due to

their prefit correlations.

Although many of the flux parameters are pulled significantly away from their prior central

values, and beyond the prefit ±1σ range, these results do not represent a strong bias in the

fit. As the flux parameters are so strongly correlated, a pull in one translates to many of

them moving in similar ways. The flux penalty contribution to the log-likelihood at each step

in the Markov Chain is shown in Figure 6.14. The stationary distribution is at -LLH≈50,

which for 100 flux parameters corresponds to ∼1 unit of χ2 per degree of freedom.

As seen in the Asimov fits, there is little constraint beyond the prior uncertainties for the

νe, ν̄e and FHC ν̄µ flux parameters.

The interaction parameters are shown in Figure 6.15. The MQE
A parameter is pulled above

its prior central value to much be closer to the nominal generated value (corresponding to

1.2 GeV2). The 2p2h normalisations are all consistent with the nominal value within the

postfit uncertainty. 2p2h shape 12C is the only 2p2h parameter pulled significantly away

from nominal, to ∼1.7, favouring the Martini model. This is not consistent with the 2p2h

shape 16O parameter, which is much closer to nominal.

The Q2 normalisations all sit slightly above their prior central values, favouring a smaller

suppression, and the shape of the increase in parameter value with increasing Q2 is similar

to the priors. The 0.25 < Q2 < 0.50 GeV2 parameter is the only Q2 normalisation pulled

significantly away from the prior.

The 1D distributions for the Eb parameters are shown in Figure 6.16. Although the

distributions are non-Gaussian, making it difficult to extract a single central value, the

arithmetic means are all within 1σ of the prior.

The MRES
A parameter is pulled down -2σ, of its prior uncertainty, while the other single
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Figure 6.13.: ND280 FHC flux parameters for the data fit.

π production parameters are all consistent with their nominal values. This could suggest

MRES
A is soaking up deficiencies in the single π production model.

There is tension between the BY corrections, with the BY DIS parameter being pulled to

the edge of its 100% prior uncertainty, and the BY mult-π parameter staying at its nominal

value. The CC misc. parameter is also pushed high, but has a large prior uncertainty. The
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Figure 6.14.: Flux penalty contribution to the log-likelihood at each step in the data fit.

other parameters targeting events in the CC Other samples are very consistent with their

prior central values. The CC coherent parameters are pulled down by ∼1σ.

The CC coherent, NC, and π FSI parameters are all within 1σ of their nominal values,

apart from NC Other ND280. This covers a number of different interaction types, and so a

more sophisticated treatment may be needed for future analyses.

The post-data-fit correlation matrix for the interaction parameters is shown in Figure 6.17,

and both the flux and interaction parameters together are shown in Appendix G. The overall

trends are similar to what was seen for the Asimov fit in Figure 6.11. The fluxes are strongly

internally correlated, and anti-correlated with interaction normalisations.

MQE
A correlates with the lowest Q2 normalisation, which decreases as Q2 increases, becom-

ing a strong anti-correlation for the higher Q2 parameters. This is expected as MQE
A affects

higher Q2 events, with the low Q2 anti-correlation likely due to the mutual correlation with

the flux parameters. MQE
A now also correlates highly with the Eb parameters more strongly

than in the Asimov fit.

The strength of the Eb correlations and anti-correlations has increased since the Asimov

fit. Eb is correlated with the low energy, and anti-correlated with the high energy flux

parameters. This is because as the Eb parameters increase, the number of low lepton mo-

mentum events increases as events shifts to lower momentum. This can be compensated by

low energy flux parameters decreasing, as lower energy neutrino events are likely to produce

lower momentum leptons, and so the anti-correlations arise. The opposite is true for higher
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Figure 6.15.: Interaction parameters for the data fit.
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Figure 6.16.: Posterior distributions for the binding energy parameters from the data fit.

energies, causing positive correlations.

There are strong correlations between the 2p2h and CC 1π parameters. This is likely due

to final state interactions in which a π is absorbed, causing CC 1π events to be detected

as CC 0π. The 2p2h shape parameters are more anti-correlated than for the Asimov fit.

2p2h shape 12C is still correlated with the Q2 normalisations, with increasing strength at

lower Q2, but this has decreased for 2p2h shape 16O. Both 2p2h shape parameters are less

anti-correlated with the fluxes than they were in the Asimov fit.

The MRES
A and C5

A parameters have a stronger anti-correlation with each other than in

the data fit, and both are now even more strongly correlated and anti-correlated with the

CC coh. parameters.

The Q2 normalisations, DIS and multi-π, and π FSI parameters all have internal cor-

relations and anti-correlations, with a slight increase in strength compared to the Asimov

fit.
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Figure 6.17.: Data postfit correlation matrix for interaction parameters.

6.6. Posterior Predictions

Posterior predictions are produced using the method described in Section 4.4.3. The pµ

projections of the posterior predictions for each sample are shown in Figures 6.18–6.20,

along with the prior predictions and data. The cosθµ projections are shown in Appendix H.

There is significant improvement in the agreement with data for the posterior predictions

compared to the prior predictions. Particularly in the momentum peak around pµ ∼600 MeV,

the prediction is closer to data. There are still regions of underestimation in the CC 0π and

CC Other samples, and overestimation in CC 1π samples, but these are less strong than for

the prior prediction. The error band is also reduced significantly for the posterior compared

to the prior for all samples, showing how the constraint on systematic uncertainties from the

fit has reduced the uncertainty in the prediction.

This is confirmed by the reduction in -2LLH for the posterior prediction compared to for

the prior prediction, shown in Table 6.3. The uncertainties on the total event rate for all
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6. 2020 Near Detector Fit Results

samples is also reduced significantly. The fractional errors in Table 6.4 show the overall

ND280 event rate uncertainty has been reduced from 9.32% to 0.29% by the fit.

Event Rates -2LLHSample

Sample Data Prior Posterior Prior Posterior

FGD1 FHC ν CC 0π 33443 28912.3 ± 3049.9 33383.9 ± 161.6 1699.87 430.09
FGD1 FHC ν CC 1π 7713 8691.5 ± 1013.2 7914.6 ± 67.3 436.38 318.79
FGD1 FHC ν CC Other 8026 7343.3 ± 1004.0 7933.5 ± 71.4 519.01 292.16
FGD2 FHC ν CC 0π 33156 28461.0 ± 2998.9 33151.9 ± 166.2 1801.15 463.30
FGD2 FHC ν CC 1π 6281 6965.6 ± 791.5 6418.2 ± 57.0 411.05 312.24
FGD2 FHC ν CC Other 7700 6740.4 ± 893.0 7301.6 ± 69.0 541.39 376.69
FGD1 RHC ν̄ CC 0π 8388 7665.0 ± 872.3 8443.4 ± 70.7 506.12 229.49
FGD1 RHC ν̄ CC 1π 698 736.0 ± 94.2 679.0 ± 14.5 64.84 46.53
FGD1 RHC ν̄ CC Other 1472 1360.3 ± 179.1 1468.9 ± 23.6 116.38 94.88
FGD2 RHC ν̄ CC 0π 8334 7393.5 ± 816.7 8204.3 ± 68.2 522.58 206.31
FGD2 RHC ν̄ CC 1π 650 660.2 ± 84.1 638.4 ± 12.2 54.42 58.74
FGD2 RHC ν̄ CC Other 1335 1251.9 ± 164.9 1378.0 ± 19.8 120.95 84.06
FGD1 RHC ν CC 0π 3594 3175.4 ± 333.8 3575.8 ± 39.1 193.31 135.04
FGD1 RHC ν CC 1π 1111 1216.9 ± 144.7 1151.8 ± 14.6 65.29 54.46
FGD1 RHC ν CC Other 1344 1131.0 ± 153.9 1291.7 ± 17.3 95.29 87.45
FGD2 RHC ν CC 0π 3433 3151.3 ± 329.4 3522.0 ± 37.7 152.49 153.84
FGD2 RHC ν CC 1π 926 977.1 ± 116.8 916.7 ± 11.3 57.27 61.94
FGD2 RHC ν CC Other 1245 1058.5 ± 147.0 1190.8 ± 15.0 78.36 69.43
Total 128849 117237.9 ± 10925.7 128562.2 ± 378.2 7436.15 3475.44

Table 6.3.: Prior and posterior predictive event rates and log-likelihood to data.

δN/N(%)
Sample Prior Posterior

FGD1 FHC ν CC 0π 10.55 0.48
FGD1 FHC ν CC 1π 10.45 0.85
FGD1 FHC ν CC Other 13.67 0.90
FGD2 FHC ν CC 0π 10.54 0.50
FGD2 FHC ν CC 1π 11.36 0.88
FGD2 FHC ν CC Other 13.25 0.94
FGD1 RHC ν̄ CC 0π 11.38 0.84
FGD1 RHC ν̄ CC 1π 12.80 2.14
FGD1 RHC ν̄ CC Other 13.17 1.61
FGD2 RHC ν̄ CC 0π 11.05 0.83
FGD2 RHC ν̄ CC 1π 12.74 1.91
FGD2 RHC ν̄ CC Other 13.17 1.44
FGD1 RHC ν CC 0π 10.51 1.09
FGD1 RHC ν CC 1π 11.89 1.27
FGD1 RHC ν CC Other 13.61 1.34
FGD2 RHC ν CC 0π 10.45 1.07
FGD2 RHC ν CC 1π 11.95 1.23
FGD2 RHC ν CC Other 13.89 1.26
Total 9.32 0.29

Table 6.4.: Fractional uncertainties on the prior and posterior predictive event rates.
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Figure 6.18.: pµ projections of the prior and posterior predictive distributions and data for
FHC νµ selections.
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Figure 6.19.: pµ projections of the prior and posterior predictive distributions and data for
RHC ν̄µ selections.
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Figure 6.20.: pµ projections of the prior and posterior predictive distributions and data for
RHC νµ selections.
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6.6.1. Posterior Predictive p-values

Posterior predictive p-values were calculated using the methods described in Section 4.4.4.

As previously discussed, this Bayesian p-value measures how likely it would be for data

described by the postfit model to be observed if the experiment was repeated with the same

statistics. It is therefore a more stringent test than the traditional frequentist p-value.

Discouragingly, the total p-value is 0.00 for both Bayesian methods, as shown in Figure

6.21. The y = x line is shown in red, below which steps contribute to the p-value. This

is likely caused by throwing the detector systematics using the merged bins, despite the

underlying systematics having non-Gaussian shape, as shown in Section 5.4.3. Looking at

the contributions from each sample, the individual p-values are low for many samples, as

shown in Table 6.5.

All but one of the CC 0π samples have a p-value < 5%, and for FGD2 FHC ν and FGD1

RHC ν̄ the p-values = 0.0%. The CC 1π samples are generally higher, but are < 5% for both

FHC ν, and the FGD2 RHC ν̄ samples. For CC Other, only the FGD1 FHC ν, FGD2 RHC

ν̄ and FGD2 RHC ν samples have p-values > 0.05%. The p-values are not consistent across

FGD1 and 2, suggesting differences in how well the two are modelled. The CC Other samples

had the lowest p-value of the FHC selections in the previous oscillation analysis [114], and

this is now also the case for the RHC CC Other selections. The overall p-value was also 0.00

in the previous analysis.

As the total p-values are constructed from the sum of all the sample likelihoods, a high

likelihood for one sample can dominate the overall p-value. A low p-value for a single sample

can therefore drive the total p-value to be 0.0%. The total p-value should therefore not be

interpreted as an average across all samples, and so the final value of 0.0% does not mean

that the model is entirely unsuitable to fit to all the data, just that there is at least one

region of selections or kinematic phase space which is not well described by the posterior.

The two methods of calculating the p-value are consistent. Although they are not all

identical, they follow the same trends and are within 5% of each other for every sample.

This suggests the 2000 drawn steps describe the posterior distribution sufficiently.

To investigate the cause of the low p-values, the LLH contributions from each bin were

inspected for each sample, as shown in Figure 6.22. As would be expected there are more

regions with higher contribution in the samples with low p-values. For example, comparing

the FGD1 and FGD2 FHC ν CC Other samples, there is a very large contributions from an

individual bin in FGD2, which has a significantly lower p-value, which doesn’t appear for
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Figure 6.21.: Posterior predictive p-values from the data fit. The fraction of steps below the
line y = x, shown in red, is the p-value

FGD1.

However, it is difficult to identify any definitive trends which could explain all the low

goodness of fits. Comparing the CC 0π samples, the FGD1 and FGD2 RHC ν samples have

similarly uniform distributions, despite the p-value being much higher for FGD1. The FHC

ν and RHC ν̄ samples do all several high contributing bins though, in line with their lower

p-values.

For CC 1π, the distributions for the low p-value FHC ν samples both have large contribu-

tions from individual bins, but in different regions of pµ–cosθµ space. The RHC ν̄ samples

have similarly sporadic high contributing bins, despite the p-value for FGD1 being much

higher than for FGD2. The RHC ν log-likelihood distributions are more uniform, but there

are a few higher contributing bins in FGD2, despite the high p-value.

Comparing the CC Other samples, there is a single bin with a large contribution for FGD2

RHC ν̄ which does not appear for FGD1, despite FGD2 having the higher p-value. For RHC

ν, the p-value is much higher for FGD2, but the distributions are similarly uniform.

Overall, the high log-likelihoods aren’t coming from a consistent region in pµ–cosθµ. Al-

though there are individual bins with higher contributions, when considering so many fit bins

this is to be expected, and they are not all grouped together. The low p-values are therefore

not just driven by a single set of kinematic variables being badly modelled or reconstructed.

As discussed in Section 4.4.4, there is no definitive gauge for what does or does not

constitute an acceptable value for the goodness of fit. Furthermore, as the Bayesian p-

value measures how likely it would be that a repeat of the experiment would observe data

consistent with the postfit model, and as such is a more stringent test than a traditional
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p-value
Fluctuation Fluctuation

Sample of Draw of Prediction

FGD1 FHC ν CC 0π 0.005 0.004
FGD1 FHC ν CC 1π 0.042 0.042
FGD1 FHC ν CC Other 0.334 0.288
FGD2 FHC ν CC 0π 0.000 0.000
FGD2 FHC ν CC 1π 0.008 0.010
FGD2 FHC ν CC Other 0.000 0.001
FGD1 RHC ν̄ CC 0π 0.000 0.001
FGD1 RHC ν̄ CC 1π 0.268 0.236
FGD1 RHC ν̄ CC Other 0.001 0.004
FGD2 RHC ν̄ CC 0π 0.010 0.005
FGD2 RHC ν̄ CC 1π 0.010 0.003
FGD2 RHC ν̄ CC Other 0.050 0.051
FGD1 RHC ν CC 0π 0.246 0.213
FGD1 RHC ν CC 1π 0.500 0.516
FGD1 RHC ν CC Other 0.008 0.009
FGD2 RHC ν CC 0π 0.037 0.035
FGD2 RHC ν CC 1π 0.095 0.043
FGD2 RHC ν CC Other 0.097 0.077
Total 0.000 0.000

Table 6.5.: Posterior predictive p-values for each sample.

p-value, combined with the use of merged detector bins, the low p-values presented here do

not necessarily mean the fit results are invalid.

The frequentist p-value, calculated in the BANFF framework, was significantly higher,

at 0.74 [138]. This result does suggest that the data is consistent with the prior model,

and has increased since the last oscillation analysis [114]. As previously discussed, this

frequentist p-value is the more traditional interpretation of the goodness of fit, indicating

the compatibility of the model to fit the data, and the construction uses a more rigorous

treatment of the detector systematics. Therefore, as the frequentist p-value was high, and

the low Bayesian p-value was driven by the CC Other and RHC CC 0π samples rather than

being consistently 0.00, it can be concluded that an acceptable level of goodness of fit has

been achieved.

6.6.2. Propagating to SK

To see the effect of the near detector fit on the full oscillation analysis, posterior predictive

distributions at SK were produced. The same process is used as for the near detector pos-
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Figure 6.22.: Contributions to the sample log-likelihood from each fit bin.
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terior predictions, using 2000 draws from the near detector Markov Chain, but reweighting

the nominal MC for SK rather than ND280. Only the 50 SK flux parameters, and 36 in-

teraction parameters which apply to SK events (not parameters for 12C or ND280 only) are

propagated. Nominal values for the SK detector uncertainties, described in [143], and the

oscillation parameters in Table 6.6, are used to produce these predictions.

The prior predictive distributions were also produced, using the same method as for

ND280, but throwing the SK flux, SK detector, and interaction uncertainties, before reweight-

ing the SK MC.

The SK MC used corresponds to the same run periods as for ND280, but for a higher

POT as the detector was online for a larger proportion of these runs. The total data POT

is 1.966×1021 for FHC and 1.635×1021 for RHC.

The total prior and posterior event rates for each of the SK samples are shown in Table

6.7. The total number of events has been increased beyond the prior uncertainty for all

samples except 1Re 1d.e. This is expected given the nominal ND280 MC underestimated

the data. The uncertainties for all samples have been reduced significantly, as shown in

Table 6.8, and the overall event rate uncertainty has been reduced from 11.84% to 2.31% by

the near detector fit.

Parameter Value

sin2θ12 0.307
sin2θ23 0.528
sin2θ13 0.0218
∆m2

12 7.53×10−5 eV2

∆m2
23 2.509×10−5 eV2

δCP -1.601

Table 6.6.: Oscillation parameter values used to produce the SK posterior predictions.

Event Rates
Sample Prior Posterior

1Rµ 286.62 ± 38.24 347.67 ± 8.05
RHC 1Rµ 120.82 ± 14.61 134.81 ± 3.59
1Re 73.52 ± 9.96 95.49 ± 3.69
RHC 1Re 14.13 ± 1.76 16.17 ± 0.65
1Re 1d.e. 10.48 ± 2.34 8.89 ± 0.47
Total 505.56 ± 59.88 603.03 ± 13.96

Table 6.7.: Prior and posterior predictive SK event rates.
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δN/N(%)
Sample Prior Posterior

1Rµ 13.33 2.32
RHC 1Rµ 12.09 2.66
1Re 13.55 3.86
RHC 1Re 12.46 4.02
1Re 1d.e. 22.33 5.29
Total 11.84 2.31

Table 6.8.: Fractional uncertainties on the prior and posterior predictive SK event rates.

The prior and posterior distributions are shown in Figure 6.23. There is significant en-

hancement in the the 1Rµ samples at all energies for both FHC and RHC. For RHC, the

posterior prediction in the oscillation dip at Erec ∼0.6 GeV agrees with the prior. The de-

crease in depth of the dip in FHC will directly impact the measurement of ∆m2
32, but will

not affect sin2θ23 as the location of the dip in Erec is unmoved.

The 1Re samples are also consistent for FHC and RHC, both showing an enhancement of

∼1.5 at the peak energy, around Erec ∼0.6 GeV. Below the peak the posterior predictions

are within the uncertainty of the priors, whereas above the peak the enhancement is slightly

above the uncertainty for both samples. The posterior prediction is consistently within the

prior uncertainty for the 1Re 1d.e. sample, consistent with the nominal MC prediction for

the ND280 CC 1π samples being closer to data than for CC 0π and CC Other.

The error band on the prediction has been reduced for all samples across all energies,

particularly in the dip in the 1Rµ samples and peak in 1Re samples. This shows how the

near detector fit has significantly constrained the SK prediction.

6.7. Comparing Different Fit and Detector Binnings

Non-uniform fit binning was used for the fit in Section 6.5 to improve the sensitivity of the

analysis. To study the impact this has had, an additional fit was run using the uniform

binning defined in Appendix B. As well as this, the detector binning was updated to match

the non-uniform fit binning, instead of using merged-uniform rectangular bins. This has the

advantage of allowing the detector systematics to more accurately apply to the events they

should, but introduces a vast amount of additional fit parameters.

In total, three fits were run, including the main fit, to see the full effect of the binning
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Prior Predictive
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Figure 6.23.: Prior and posterior predictive SK distributions.158
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changes:

• Fit Binning: Uniform rectangular bins

Detector Binning: Merged-uniform rectangular bins

• Fit Binning: Non-uniform rectangular bins

Detector Binning: Merged-uniform rectangular bins

(This is the fit presented in Section 6.5)

• Fit Binning: Non-uniform rectangular bins

Detector Binning: Non-uniform rectangular fit bins

All other inputs, and the fitting framework itself, are identical for the three fits.

6.7.1. Nominal MC

The nominal MC pµ–cosθµ distributions, binned uniformly, are shown in Figure 6.24 for the

FGD1 and FGD2 FHC CC 0π samples. Comparing to the non-uniform binning in Figure

6.1, there is a less uniform distribution of events, with the bins with the largest number

of events being outside the peak. The overall range for each sample is drastically larger

compared to the non-uniform binning.

6.7.2. Asimov Fits

The nominal MC was initially fitted to itself, using both the merged-uniform and non-uniform

detector binnings. This served as a test of the potential sensitivity, as well as validating the

changes to framework to accommodate non-uniform fit and detector binning.

The results for the ND280 FHC flux parameters are shown in Figure 6.25, and the full

results are in Appendix F. As expected, the postfit parameter values are very close to the

prior central values. Marginalisation effects cause some small deviations from the exact prior,

but these are no larger than would be expected from what was seen in previous analyses.

The postfit uncertainties are approximately the same in all the fits, indicating similar levels

of sensitivity.

The interaction parameters are shown in Figure 6.26. The postfit values are again close to

the nominals for all parameters, with small differences between the fits from marginalisation

effects. The sizes of the uncertainties are similar for each of the fits.
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Figure 6.24.: Nominal MC distributions for the FGD1 and FGD2 CC 0π samples with uni-
form binning. All samples are shown in Appendix D.

6.7.3. Data Fits

The MC prediction was then fitted to the data using each binning, and compared to the

previous fit described in Section 6.5. The ND280 FHC flux and interaction parameter results

for all three fits are shown in Figures 6.27, and 6.28. The full results are shown in Appendix

F.

The flux parameters are mostly compatible between the three fits. Similar high pulls are

seen for each, particularly at low energy. The shape of the pulls in energy change slightly,

with the two non-uniform fit binning fits lying closer to each other than for the uniform-
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Prior

Uniform Fit Bins, 574 Det. Bins

Non-Uniform Fit Bins, 574 Det. Bins

Non-Uniform Fit and Det. Bins
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Figure 6.25.: Comparison of ND280 FHC flux parameters for the Asimov fits with different
fit and detector binnings.

binning. Only at very high energy for FHC νµ are the postfit values outside 1σ of each other,

but this region has fairly low statistics and has a very small impact on the SK prediction.

The interaction parameters show more differences. MQE
A is very consistent between the

fits, but the 2p2h normalisations are pushed higher for the two non-uniform binning fits.

161



6. 2020 Near Detector Fit Results

Prior

Uniform Fit Bins, 574 Det. Bins

Non-Uniform Fit Bins, 574 Det. Bins

Non-Uniform Fit and Det. Bins

Prior

Uniform Fit Bins, 574 Det. Bins

Non-Uniform Fit Bins, 574 Det. Bins

Non-Uniform Fit and Det. Bins

Q
E

A
M

ν
2p

2h
 n

or
m

 ν
2p

2h
 n

or
m

 O
16

C
/

12
2p

2h
 n

or
m

 

C
12

2p
2h

 s
ha

pe
 

O
16

2p
2h

 s
ha

pe
 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

V
ar

ia
tio

n 
re

l. 
no

m
.

πCC0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Q
E

A
M

ν
2p

2h
 n

or
m

 ν
2p

2h
 n

or
m

 O
16

C
/

12
2p

2h
 n

or
m

 

C
12

2p
2h

 s
ha

pe
 

O
16

2p
2h

 s
ha

pe
 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(a) CC 0π

 N
or

m
 0

2
Q

 N
or

m
 1

2
Q

 N
or

m
 2

2
Q

 N
or

m
 3

2
Q

 N
or

m
 4

2
Q

 N
or

m
 5

2
Q

 N
or

m
 6

2
Q

 N
or

m
 7

2
Q

E
B

 D
ia

l C
 N

u

E
B

 D
ia

l C
 N

ub
ar

E
B

 D
ia

l O
 N

u

E
B

 D
ia

l O
 N

ub
ar

V
ar

ia
tio

n 
re

l. 
no

m
. b and E2Q

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 N
or

m
 0

2
Q

 N
or

m
 1

2
Q

 N
or

m
 2

2
Q

 N
or

m
 3

2
Q

 N
or

m
 4

2
Q

 N
or

m
 5

2
Q

 N
or

m
 6

2
Q

 N
or

m
 7

2
Q

E
B

 D
ia

l C
 N

u

E
B

 D
ia

l C
 N

ub
ar

E
B

 D
ia

l O
 N

u

E
B

 D
ia

l O
 N

ub
ar

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(b) Q2 and Eb

A 5
C R
E

S
A

M

π
 L

ow
 p

1/
2

N
on

-r
es

 I

1/
2

N
on

-r
es

 I

ν
C

C
 N

or
m

 nu
C

C
 N

or
m

 

µν/ eν

µν/ eν

C
C

 B
Y

 D
IS π

C
C

 B
Y

 M
ul

ti 

π
C

C
 A

G
K

Y
 M

ul
ti 

C
C

 M
is

c ν
 n

or
m

 
π

C
C

 D
IS

/M

ν
 n

or
m

 
π

C
C

 D
IS

/M

C
12

C
C

 c
oh

. 

O
16

C
C

 c
oh

. 

V
ar

ia
tio

n 
re

l. 
no

m
.

, CC cohπ, CC DIS, CC Multi 
e

ν, πCC1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

A 5
C R
E

S
A

M

π
 L

ow
 p

1/
2

N
on

-r
es

 I

1/
2

N
on

-r
es

 I

ν
C

C
 N

or
m

 nu
C

C
 N

or
m

 

µν/ eν

µν/ eν

C
C

 B
Y

 D
IS π

C
C

 B
Y

 M
ul

ti 

π
C

C
 A

G
K

Y
 M

ul
ti 

C
C

 M
is

c ν
 n

or
m

 
π

C
C

 D
IS

/M

ν
 n

or
m

 
π

C
C

 D
IS

/M

C
12

C
C

 c
oh

. 

O
16

C
C

 c
oh

. 

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(c) CC 1π, νe, CC DIS, CC multi-π and CC Coh.

N
C

 c
oh

. γ
N

C
 1

N
C

 o
th

. N
D

28
0

N
C

 o
th

. S
K

V
ar

ia
tio

n 
re

l. 
no

m
.

NC

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
C

 c
oh

. γ
N

C
 1

N
C

 o
th

. N
D

28
0

N
C

 o
th

. S
K

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(d) NC

F
E

F
Q

E

F
E

F
Q

E
H

F
E

F
IN

E
L

F
E

F
A

B
S

F
E

F
C

X

V
ar

ia
tio

n 
re

l. 
no

m
.

Pion FSI

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
E

F
Q

E

F
E

F
Q

E
H

F
E

F
IN

E
L

F
E

F
A

B
S

F
E

F
C

X

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(e) π FSI

Figure 6.26.: Comparison of interaction parameters for the Asimov fits with different fit and
detector binnings.
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Figure 6.27.: Comparison of ND280 FHC flux parameters for the data fits with different fit
and detector binnings.

The 2p2h shape parameters show opposite behaviour, with 2p2h shape C being lower for the

two non-uniform binning fits, while 2p2h shape O is higher.

The Q2 normalisations are fairly consistent. At lower Q2, the non-uniform binned fits are

slightly closer to nominal, but the postfit values are within 1σ of each other for all three fits.
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Figure 6.28.: Comparison of interaction parameters for the data fits with different fit and
detector binnings.
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Figure 6.29.: Comparing the posterior distributions for the binding energy parameters from
the data fits with different binnings.

The 1D postfit distributions for the Eb parameters are shown in Figure 6.29. The un-

derlying distributions are extremely similar for the two non-uniform fit binning fits, but are

very different to the uniform binning fit. This shows that the change in fit binning causes

significant changes in the distribution. Comparing the two fits using the 574 merged detector

bins (shown in blue and black in Figure 6.29), the systematics applied are identical and all

that is changing is the fit binning, but the distributions are completely different, with a

different number of peaks, in different positions, and with different relative sizes.

Of the single π parameters, C5
A and I1/2 are lower for the non-uniform fits, but MRES

A

is higher. These differences are slightly larger than the postfit uncertainties. The DIS and

multi-π parameters are largely consistent, and the CC coh. parameters are closer to nominal

for the non-uniform binning fits.

NC 1γ is the only NC parameter to have any significant differences, but this is not sur-

prising as there are low statistics for this interaction. The π FSI parameters have some
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differences, but all are within the postfit uncertainties. The quasi-elastic, inelastic, and

absorption parameters are slightly closer to nominal for the non-uniform fits, but the quasi-

elastic higher energy and charge exchange parameters are pushed slightly further away.

Like the flux parameters, there is an overall trend of the postfit values for the two non-

uniform fit binnings being very similar. This suggests that the criteria used for the merging

of fit bins to produce the detector binning was appropriate, as the merging has not had a

large impact on the final results.

6.7.4. Posterior Predictions

The posterior predictive event rates for the three fits are shown in Table 6.9. For each sample,

the event rates and uncertainties are similar for each fit. The fractional uncertainties are

shown in Table 6.10, which are also very similar. The uncertainty on the event rate is slightly

smaller for having non-uniform fit and detector binnings for several samples, but not by very

much. There is a large reduction in -2LLH for the non-uniform fit binning, but this is mostly

due to the reduced number of bins.

The posterior predictive p-values for all three fits are shown in Table 6.11. Here, only

the values calculated using the fluctuated draws are shown. These are still low for several

samples, and the overall p-value for all fits is still 0.000.

However, several samples have a larger p-value for the non-uniform binning fits. The FGD1

FHC ν CC Other sample is 0.000 for the uniform binning, but is 0.334 with non-uniform fit

binning, and 0.530 for non-uniform fit and detector binning.

The CC 0π samples are largely unchanged by the different binnings. FGD1 RHC ν, is the

only 0π sample with a significant increase for using non-uniform binnings, but the uniform

binning p-value is still >5%.

The CC 1π samples see more differences, particularly for the non-uniform fit and detector

binnings fit. The RHC ν sample p-values are 0.011 and 0.019 for the uniform binning, but

increase to 0.716 and 0.286 for the non-uniform fit and detector binnings.

The CC Other samples are significantly higher for the non-uniform binning for FGD1 FHC

ν and FGD2 RHC ν̄, but are slightly lower for FGD1 RHC ν.

In general the largest differences in p-values occur for samples which already had a ‘good’

value, but there a several which are ∼0% for the uniform fits, but >5% for the non-uniform

fits. For the majority of samples, the non-uniform fit and detector binning produces a larger

p-value than the non-unform fit and uniform detector binning, despite the fit results being

very similar.
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C
C

1
π

923.0
±

11.1
916.7

±
11.3

912.2
±

11.0
56.28

61.94
56.98

F
G

D
2

R
H

C
ν

C
C

O
th

e
r

1190.7
±

15.9
1190.8

±
15.0

1194.8
±

15.5
53.13

69.43
66.24

T
o
ta

l
128510.3

±
367.5

128562.2
±

378.2
128580.1

±
371.1

4778.16
3475.44

3381.60

Table 6.9.: Posterior predictive event rates and log-likelihood to data for the non-uniform fit
binning fits.
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δN/N(%)
Uniform Fit Non-Uniform Fit, Non-Uniform Fit

Sample and Det. Bins Uniform Det. Bins and Det. Bins

FGD1 FHC ν CC 0π 0.49 0.48 0.49
FGD1 FHC ν CC 1π 0.81 0.85 0.85
FGD1 FHC ν CC Other 0.90 0.90 0.89
FGD2 FHC ν CC 0π 0.48 0.50 0.50
FGD2 FHC ν CC 1π 0.88 0.88 0.89
FGD2 FHC ν CC Other 0.89 0.94 0.86
FGD1 RHC ν̄ CC 0π 0.82 0.84 0.82
FGD1 RHC ν̄ CC 1π 1.98 2.14 1.59
FGD1 RHC ν̄ CC Other 1.57 1.61 1.46
FGD2 RHC ν̄ CC 0π 0.81 0.83 0.82
FGD2 RHC ν̄ CC 1π 1.78 1.91 1.68
FGD2 RHC ν̄ CC Other 1.43 1.44 1.36
FGD1 RHC ν CC 0π 1.05 1.09 1.05
FGD1 RHC ν CC 1π 1.27 1.27 1.28
FGD1 RHC ν CC Other 1.42 1.34 1.42
FGD2 RHC ν CC 0π 1.04 1.07 1.06
FGD2 RHC ν CC 1π 1.20 1.23 1.21
FGD2 RHC ν CC Other 1.34 1.26 1.30
Total 0.29 0.29 0.29

Table 6.10.: Fractional uncertainties on the posterior predictive event rates for fits with non-
uniform binnings.

The SK posterior predictive event rates are shown in Table 6.12. The 1Re 1d.e. sample is

the only sample for which the non-uniform fit and detector binning prediction is not higher

than the non-uniform fit and uniform detector binning prediction. However, the differences

are smaller than the uncertainty for all samples. The event rates for the two non-uniform

binning fits are within uncertainty of the event rates for the uniform binning fit for every

sample. The uncertainties on the SK posterior predictive event rates are shown in Table

6.13. The uncertainty on the overall rate, and most sample rates, is slightly smaller for the

uniform binning fit.

The posterior predictive distributions are shown in Figure 6.30. There is a general trend

of the non-uniform fit binning fits producing very similar predictions at SK to each other,

with more prominent differences to the prediction from the uniform fit binning, as was seen

in the postfit parameter values.

For the FHC 1Rµ sample, the height of the peak is slightly higher and is at a slightly lower

energy for the uniform fit binning. The dip is at the same energy in all three fits, but is

lower and wider for the uniform fit binning. At energies above the dip, the three predictions

are very consistent, with the non-uniform fit and detector binning prediction being a very

small amount higher. The differences in the RHC 1Rµ sample are very similar as for FHC

1Rµ, but the height and location of the peaks are identical in all three fits.
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p-value (Fluctuation of Draw)
Uniform Fit Non-Uniform Fit, Non-Uniform Fit

Sample and Det. Bins Uniform Det. Bins and Det. Bins

FGD1 FHC ν CC 0π 0.023 0.005 0.023
FGD1 FHC ν CC 1π 0.106 0.042 0.118
FGD1 FHC ν CC Other 0.000 0.334 0.530
FGD2 FHC ν CC 0π 0.041 0.000 0.000
FGD2 FHC ν CC 1π 0.026 0.008 0.004
FGD2 FHC ν CC Other 0.002 0.000 0.005
FGD1 RHC ν̄ CC 0π 0.000 0.000 0.004
FGD1 RHC ν̄ CC 1π 0.073 0.268 0.617
FGD1 RHC ν̄ CC Other 0.056 0.001 0.020
FGD2 RHC ν̄ CC 0π 0.001 0.010 0.035
FGD2 RHC ν̄ CC 1π 0.187 0.010 0.139
FGD2 RHC ν̄ CC Other 0.001 0.050 0.085
FGD1 RHC ν CC 0π 0.079 0.246 0.518
FGD1 RHC ν CC 1π 0.011 0.500 0.716
FGD1 RHC ν CC Other 0.203 0.008 0.079
FGD2 RHC ν CC 0π 0.055 0.037 0.010
FGD2 RHC ν CC 1π 0.019 0.095 0.286
FGD2 RHC ν CC Other 0.338 0.097 0.436
Total 0.000 0.000 0.000

Table 6.11.: Posterior predictive p-values for each sample, from the non-uniform fit binning
fits.

Event Rates
Uniform Fit Non-Uniform Fit, Non-Uniform Fit

Sample and Det. Bins Uniform Det. Bins and Det. Bins

1Rµ 347.46 ± 6.92 347.67 ± 8.05 351.25 ± 7.13
RHC 1Rµ 134.94 ± 3.00 134.81 ± 3.59 136.57 ± 3.12
1Re 94.56 ± 3.16 95.49 ± 3.69 96.63 ± 3.18
RHC 1Re 15.96 ± 0.55 16.17 ± 0.65 16.33 ± 0.55
1Re 1d.e. 9.04 ± 0.42 8.89 ± 0.47 8.62 ± 0.42
Total 601.96 ± 11.60 603.03 ± 13.96 609.41 ± 11.76

Table 6.12.: Prior and posterior predictive SK event rates.

δN/N(%)
Uniform Fit Non-Uniform Fit, Non-Uniform Fit

Sample and Det. Bins Uniform Det. Bins and Det. Bins

1Rµ 1.99 2.32 2.03
RHC 1Rµ 2.22 2.66 2.28
1Re 3.34 3.86 3.30
RHC 1Re 3.45 4.02 3.37
1Re 1d.e. 4.65 5.29 4.87
Total 1.93 2.31 1.93

Table 6.13.: Fractional uncertainties on the prior and posterior predictive SK event rates.
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The predictions for the FHC 1Re sample has a higher peak for the uniform fit binning

fit. Above and below the peak energy, the non-uniform fit binning predictions are slightly

higher. This is a larger effect at lower energies.

For the RHC 1Re sample, the three predictions are very consistent. For the uniform fit

binning, the event rate is slightly smaller at low energies than for the other fits, but the

difference is very small.

The predictions for the 1Re 1d.e. sample are also compatible across all energies. However,

the peak is lower for the non-uniform fit and detector binning. This is the only region in any

of the samples where the two non-uniform fit binning predictions aren’t closer to each other

than the uniform binning. Here, the non-uniform fit and merged-uniform detector binning

event rate is slightly lower than the for the uniform binning, but this difference is smaller

than the difference to the non-uniform fit and detector binning.

Overall, the three fit predictions are very compatible, with similar shapes and differences

to the prior prediction. All the differences between the three posterior predictions are within

the predicted uncertainties.

As the aim of the non-uniform binning was to improve the sensitivity, it is perhaps disap-

pointing that the uncertainties on the event rates at SK are not smaller for the non-uniform

binning fits. However, looking at just the event rate does not take into account the changes

in shape and so does not describe the the full impact on the sensitivity to oscillation mea-

surements. The shape changes in the predicted event distributions cause the sin2θ23 contours

to be tighter, particularly for the normal hierarchy, indicating an improvement in constraint,

as discussed in Section 6.8.2.

6.8. Oscillation Parameter Sensitivity

To see the full effect of all the updates to the near detector fit on the oscillation analysis,

joint Asimov fits were run. These fit the ND280 and SK MC to the ND280 data and SK

nominal MC.

Like for the SK posterior predictions, the oscillation parameters are set to the values in

Table 6.6, and the SK detector parameters are set to their nominal values. The priors on

sin2θ23, ∆m2
32, δCP, and sin2θ13 are flat for these fits. The solar parameters, sin2θ12 and ∆m2

12,

which T2K has little sensitivity to, have Gaussian priors from the PDG [72].

The ND280 fit binning used is the non-uniform binning defined in Appendix B. However,

the detector binning is the 574 merged-uniform bins, as using the fit binning as detector
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Figure 6.30.: Posterior predictive SK distributions with non-uniform binnings.
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binning introduces too many parameters for the full joint fit to converge in a feasible amount

of time. As the joint fits have an increased number of samples and systematics, longer Markov

Chains are needed to reach the stationary distribution. The joint fit presented here consists

of ∼21 million steps.

The interaction and flux systematics are compared to the near detector only fit in Figures

6.31 and 6.32, with the full results being shown in Appendix F. The postfit central values

are very similar and the uncertainties are not reduced further, showing that almost the

entire constraint on the systematic parameters is coming from the near detector samples.

Interestingly, many parameters have a slightly larger postfit uncertainty for the joint fit than

for the near detector only fit. This is likely due to correlations with SK only parameters

causing marginalisation effects.

6.8.1. Comparison to the 2018 Oscillation Analysis

The joint Asimov fit results were compared to those from the 2018 oscillation analysis, with

the improvement in sensitivity coming from the increase in data and updates to the input

models, fitting framework, and systematic treatments described in this thesis. Part of the

improvement will also be due to the increased SK data and updated SK detector covariance.

Figure 6.33 shows the posterior probability distribution for the disappearance parameters,

∆m2
23 and sin2θ23, with all other parameters marginalised over. Figure 6.33a shows steps

for the normal hierarchy, with ∆m2
23 < 0, and Figure 6.33b shows steps for the inverted

hierarchy, with ∆m2
23 > 0. The solid dashed lines show the 90% and 68% credible intervals

respectively. The best fit points are shown by the triangles, for both analyses. Where the

contours are jagged and not smooth, this is due to more steps being needed to fully fill out

the posterior distribution.

There is significant improvement on the potential constraint for both parameters, with

the 90% interval for this analysis now lying almost entirely inside the 68% interval for the

previous analysis, for both hierarchies.

The comparison of the appearance parameters, δCP and sin2θ13, are shown in Figure 6.34.

The constraint on sin2θ13 has improved significantly, but not by as much as the disappearance

parameters. The δCP constraint is very similar for the two analyses. This is because the

appearance parameters are dominated by the statistical uncertainty, and so the considerable

updates to the systematic treatments has a smaller effect. The one dimensional posterior

probability distributions for δCP are shown in Figure 6.35. There is a slightly narrower peak

for the 2020 analysis, but this a very small difference.

172



6.8. Oscillation Parameter Sensitivity

Prior

ND Only

Joint Fit

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

µνND280 FHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(a) ND FHC νµ

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

µνND280 FHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(b) ND FHC ν̄µ

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

eνND280 FHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(c) ND FHC νe

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

eνND280 FHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(d) ND FHC ν̄e

Figure 6.31.: ND280 FHC flux parameters for the joint and near detector only fits.

To show exactly where the improvement in sensitivity is coming from, one of the far

detector fitting groups produced contours adding in updates in a piecewise manner [144].

These contours include a prior [72] on sin2θ13 using data from reactor experiments, which

also had an update for this analysis. The results in Figures 6.33–6.35 only use T2K data, and

so do not agree exactly with these contours. Furthermore, these were produced using one of
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Figure 6.32.: Interaction parameters for the joint and near detector only fits.
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Figure 6.33.: Comparison of the disappearance parameter credible intervals from joint Asi-
mov fits for the 2018 and 2020 oscillation analyses. The solid (dashed) lines
show the 90% (68%) credible intervals.

the frequentist far detector fitting groups which takes the BANFF near detector fit result as

an input. There are therefore expected to be differences to the Markov Chain result because

of differences in the implementation. Marginalisation effects, the different near detector fit

binning, and the different Eb treatments will all cause discrepancies in the results. However,

the relative size of changes from the different updates will be the same for each analysis.

The disappearance parameters in Figure 6.36 show a large increase in constraint for fixing

the binding energy parameter, demonstrating how big an impact the old treatment of the

uncertainty had on the oscillation analysis. There are then smaller improvements for moving
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Figure 6.34.: Comparison of the appearance parameter credible intervals from joint Asimov
fits for the 2018 and 2020 oscillation analyses. The solid (dashed) lines show
the 90% (68%) credible intervals.

to the updated interaction model (including the new binding energy parameter), and the new

near detector fit results. The update to the reactor constraint, which sets a tighter prior on

sin2θ13, does not have a significant effect on the disappearance parameters. Finally, adding

the new SK data improves the sensitivity, but the change is not as large as for fixing the

binding energy. There are similar relative improvements from each update for the normal

and inverted hierarchies.

For the appearance parameters in Figure 6.37, the update to the reactor constraint has

the most significant impact. The contours get tighter in sin2θ13, but slightly wider in δCP.
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Figure 6.35.: Comparison of the δCP posterior probability distribution from joint Asimov fits
for the 2018 and 2020 oscillation analyses.

They also move to a higher value in sin2θ13, which is expected from the change in prior.

6.8.2. Impact of Non-Uniform Near Detector Binning

Although the uncertainty on the predicted SK event rate was not reduced by using non-

rectangular fit binning at the near detector, this was a single bin analysis which did not

take into account any shape information. The full impact of the non-uniform binning on the

potential sensitivity is seen in the posterior probability distributions from joint Asimov fits.

An identical joint Asimov fit was run, but with the uniform near detector fit binning. All

other aspects of the systematics and samples for both the near and far detector were the
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(a) Normal Hierarchy

(b) Inverted Hierarchy

Figure 6.36.: Asimov sensitivity for the disappearance parameters with incremental updates
from the 2018 oscillation analysis [134]. Figures from [144].

same, and both fits used the 574 merged near detector systematic binning.

The credible intervals for the appearance parameters are compared in Figure 6.38, for both

the normal and inverted hierarchies. There is a better constraint on sin2θ23 for the fit using

non-uniform near detector fit binning for both hierarchies. This is due to the dip in the

FHC νµ prediction being slightly narrower in the posterior prediction for the non-uniform

fits. The constraint on ∆m2
23 is also slightly stronger for the non-uniform fits, particularly

for the normal hierarchy, but this is a smaller effect.

The posterior distributions for the appearance parameters are shown in Figure 6.40. The

contours for the uniform near detector binning were produced from a fit with fewer steps,
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(a) Normal Hierarchy

(b) Inverted Hierarchy

Figure 6.37.: Asimov sensitivity for the appearance parameters with incremental updates
from the 2018 oscillation analysis [134]. Figures from [144].

causing the contours to be less smooth. For sin2θ13, the constraint is slightly tighter, but

this is a very small effect. The constraint on δCP is unchanged. This is confirmed by the 1D

posterior distributions for δCP, shown in Figure 6.40.

6.8.3. Impact of Eb

As discussed in Section 5.4.1.1, the binding energy was the largest individual systematic

uncertainty in the previous T2K oscillation analysis. Simulated data studies have shown that

the effect of varying this systematic has a significant impact on the oscillation parameter
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Figure 6.38.: Comparison of the disappearance parameter credible intervals from joint Asi-
mov fits using uniform and non-uniform near detector fit binning. The solid
(dashed) lines show the 90% (68%) credible intervals.

contours [135], and this was also seen in the piecewise updates in Section 6.8.1.

To inspect the impact of the new treatment of the binding energy on the full oscillation

analysis, the Ebν
16O parameter was fixed to the post near detector fit value and the same

oscillation parameter contours were produced. Fixing the parameter was simulated by using

only steps with Ebν
16O between -3.2 and -1.6 (corresponding to a range of 23.8–25.4 MeV),

a thin region around the peak in Figure 6.29c at -2.41. The region was chosen to be as small

as possible while still having enough steps to produce stable contours. The number of steps

contained in this region was ∼4 million.
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Figure 6.39.: Comparison of the appearance parameter credible intervals from joint Asimov
fits using uniform and non-uniform near detector fit binning. The solid (dashed)
lines show the 90% (68%) credible intervals.

Only Ebν
16O was fixed to ensure enough steps were selected, but the correlations mean

the other Eb parameters will be somewhat fixed. Furthermore, as there is no 12C in SK, and

there is a larger POT for FHC than RHC, Ebν
16O is the dominant Eb parameter.

The comparison of the posterior distributions for the disappearance parameters is shown

in Figure 6.41. The Eb fixed contours are not as smooth as much fewer steps were used to

produce them, but the shape and size is very consistent with the full fit. Any changes are

much smaller than for fixing the previous Eb implementation in Figure 6.36.

The appearance contours, shown in Figure 6.42, are also very compatible. There are
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Figure 6.40.: Comparison of the δCP posterior probability distribution from from joint Asimov
fits using uniform and non-uniform near detector fit binning.

slight differences due to the lack of steps for the Eb fixed contours causing more jaggedness,

but the overall shape and size aren’t changed. As for the disappearance parameters, any

differences are much smaller than for fixing the previous implementation in Figure 6.37. The

1D posteriors for δCP, shown in Figure 6.43 are also unchanged.

The fact that fixing the binding energy does not change the credible intervals demonstrates

it is no longer the significant uncertainty it was in previous analyses. In 2018, the binding

energy could not be fit at the near detector, and so a very large effective parameter was

applied at SK. With the new treatment described in Section 5.4.1.1, the binding energy can

be fit at the near detector, reducing its impact on the fit. It has now gone from being a
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Figure 6.41.: Comparison of the disappearance parameter credible intervals from joint Asi-
mov fits using steps with −3.2 < Ebν

16O < −1.6, and using all steps. The
solid (dashed) lines show the 90% (68%) credible intervals.

dominant, to a sub-dominant systematic uncertainty in the oscillation analysis.

6.9. Summary

This chapter has presented the results of the near detector fit for the 2020 T2K oscillation

analysis. The nominal MC and prior predictions have significant discrepancies to the data.

The log-likelihood scans, parameter variations, and Asimov fit indicate that the fitter is

behaving as expected, and is validated with the other near detector fitting group.
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Figure 6.42.: Comparison of the disappearance parameter credible intervals from joint Asi-
mov fits using steps with −3.2 < Ebν

16O < −1.6, and using all steps. The
solid (dashed) lines show the 90% (68%) credible intervals.

The datafit results do not show any concerning deviations from the nominal central values,

and most parameters are within the prefit uncertainty band. For the majority of samples, the

posterior predictions are in much better agreement with the data than the prefit predictions.

The uncertainties in the overall event rates are reduced significantly for all samples of both

the near and far detector posterior predictions.

The posterior predictive p-values are low for a number of samples. However, this does not

necessarily indicate a bad goodness of fit. The Bayesian p-values calculated in this analysis

are used to show which samples and regions of phase space the fit has performed well for,
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Figure 6.43.: Comparison of the δCP posterior probability distribution from joint Asimov fits
using steps with −3.2 < Ebν

16O < −1.6, and using all steps.

rather than to determine if the overall goodness of fit is acceptable. The other near detector

fitting group construct a more traditional p-value, which indicated that the goodness of fit

had improved since previous analyses.

Similar results were obtained by using a detector covariance produced with the same

detector binning as the fit binning. This shows that the bin merging process successfully

reduced the number of fit parameters without reducing the accuracy of the fit.

There were larger differences in the postfit results for using uniform fit binning. This

manifested as a slight shape change in the prediction at SK, but did not significantly change

the uncertainty in the overall rates. However, the joint near and far detector Asimov fits
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show that the non-uniform binning causes a small but not insignificant improvement in the

sensitivity to sin2θ23.

Overall, there is significant improvement in the sensitivity to sin2θ23, sin2θ13, and ∆m2
23

since the last analysis, and a slight improvement for δCP. This increase in constraint comes

mostly from the updates to the cross-section model, particularly the treatment of the binding

energy uncertainty. In the previous analysis, the binding energy was the dominant system-

atic, causing significant inflation to the oscillation parameter contours. With the new binding

energy implementation, the uncertainty has very little impact on the oscillation sensitivities,

showing that it is no longer a dominant systematic at T2K.

The increase in sensitivity to oscillation parameters from the non-uniform binning, and the

reduction of impact of the binding energy with its new treatment are the main improvements

from the work of this thesis.
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7. Future Near Detectors for Long

Baseline Neutrino Oscillation

Experiments

For T2K, the statistical error is still the largest uncertainty on oscillation measurements.

This will not be the case for the future long baseline neutrino oscillation experiments, HK

and DUNE, and so they aim to perform 5σ measurements of δCP. However, as the statistical

error becomes less significant, it is ever more important that systematic uncertainties are

reduced. To achieve the target sensitivity, systematic errors will need to be reduced to the

1–2% level.

As discussed in Section 5.4.1.1, cross-section uncertainties are the dominant systematic,

and these depend heavily on theoretical nuclear models. This is because the target nucleon

resides inside a nucleus, and so nuclear effects and final state interactions (FSI) alter the

measured kinematics of final state particles. As discussed in Section 2.3.3, FSI effects cause

the neutrino energy to be reconstructed incorrectly, and interactions to be misclassified,

contributing a large systematic uncertainty. To reduce these uncertainties, tensions in nu-

clear models must be resolved, which can only be done with improved measurements of the

multiplicity and momentum distributions of final state particles [145].

The NEUT, GENIE, and NuWro [146] neutrino event generators use cascade models

tuned to hadron-nucleus scattering measurements to simulate final-state particles leaving

the target nucleus. However, these measurements are sparse, as shown in Figure 7.1, and so

semi-empirical parametrisations are used to extrapolate to the relevant momentum ranges

and target nuclei. The parametrisations are different in the three generators, leading to

significant differences in the multiplicity of final state protons, as shown in Figure 7.2. Below

100 MeV, the proton momentum distributions diverge considerably, but this is below the

detection threshold of current detectors.

It is therefore crucial that future near detectors are able to accurately measure final state
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Figure 7.1.: Cross-section measurements of protons on different nuclei. Figure from [147].

particles, particularly at low momentum, to distinguish between nuclear models and reduce

the effects of FSI.

7.1. High Pressure Time Projection Chamber

A high pressure time projection chamber (HPTPC) is a proposed near detector for future

long baseline neutrino oscillation experiments. It is designed to be able to probe the low

momentum region of parameter space to resolve nuclear model tensions and reduce neutrino

interaction cross-section uncertainties.

Gas TPCs have lower momentum thresholds for detecting secondary particles as low energy

hadrons travel further from the interaction point in gas than in denser detectors. The proton

detection threshold is ∼110 MeV in water Cerenkov detectors, and ∼400 MeV in liquid argon

TPCs. These are both too high to resolve model discrepancies.

The main disadvantage of using gas as an active target is the reduction in number of

events due to the lower density, but this effect can be reduced by increasing the pressure.

This, combined with the Mega-Watt beams future experiments will utilise, mean there can

be enough detected events using a gaseous target.

Having the TPC filled with the active target allows 4-π angular coverage of final state

particles, further adding to the HPTPC’s ability to distinguish between interaction models.
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7.1. High Pressure Time Projection Chamber

Figure 7.2.: Predicted proton energy distributions at the DUNE far detector using GENIE,
NEUT and NuWro. The dashed and solid lines show the expected recon-
struction thresholds in liquid and 10 atm gaseous argon detectors respecctively.
Figure from [148].

An HPTPC is part of the planned near detector complex at DUNE, and T2K has explored

the possibility of using an HPTPC as a long term near detector upgrade.

7.1.1. Single Transverse Variables

When the true momentum vector of the final state lepton and hadrons are projected into

the plane transverse to the original neutrino’s trajectory, any momentum imbalance is due

to final state interactions and nuclear effects. By making accurate measurements of the

multiplicity and momentum distributions of secondary particles, an HPTPC can probe the

missing momentum, and better characterise events affected by FSI. This can be done using

single transverse kinematics variables (STV) [149]:

• δpT : represents the imbalance in the three momentum in the transverse plane. It is

zero in the absence of FSI.

• δφT : characterises how ‘back-to-back’ the transverse components in the final states

are. It is zero for a completely balanced final state.

• δαT : describes how the hadronic system has been ‘accelerated’ or ‘decelerated’ by FSI

effects. This is < π/2 if the proton transverse momentum is larger than expected

for the observed lepton transverse momentum, and > π/2 if the proton transverse

momentum is smaller than expected.
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Figure 7.3.: Definition of the single transverse variables in the plane transverse to the neu-
trino direction. Figure from [150].

The geometric definitions of these variables in the plane transverse to the neutrino direction

are shown in Figure 7.3.

These kinematics are also less dependent on the true incoming neutrino energy, which is

not precisely known for individual events in accelerator neutrino experiments. Using these

transverse variables can therefore provide insight into final state interactions and nuclear

effects [151].

7.1.2. Sensitivity Studies

HPTPC simulation was produced to explore the potential sensitivity improvement from using

an HPTPC. This was done by smearing the true kinematics of a subset of ND280 FGD1 MC

events. For each event, for both the momentum and angle of the final state lepton, a random

number was drawn from a Gaussian with mean equal to the true value of the variable in

the ND280 MC, and width equal to the assumed resolution of the HPTPC. The assumed

resolutions are shown in Table 7.1.

The selection of events is similar to that described in Section 5.2, but using the full

FGD1 volume. The assumed detection thresholds were different for the ND280 and HPTPC

selections, as shown in Table 7.2. The thresholds are the only differences between the ND280

and HPTPC MC.

The selected events are then divided by pion and proton multiplicity, giving seven samples

in total:

• CC 0π 0p: 1 muon above threshold, 0 charged pions above threshold, 0 protons above

threshold.
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Value Fractional Resolution

pµ < 200 MeV 0.036
200–400 MeV 0.043
400–600 MeV 0.053
600–800 MeV 0.070
800–1000 MeV 0.090
1000–1200 MeV 0.093
1200–1400 MeV 0.110
1400–1600 MeV 0.120
1600–1800 MeV 0.125
> 1800 MeV 0.130

cosθµ < 1, > −1 0.040

Table 7.1.: Assumed HPTPC pµ and cosθµ resolutions.

Detection Threshold (MeV)
Particle ND280 HPTPC

µ± 100 15
π± 120 16
p 450 60

Table 7.2.: Assumed detection thresholds used in these studies for the HPTPC and ND280
MC.

• CC 0π 1p: 1 muon above threshold, 0 charged pions above threshold, 1 proton above

threshold.

• CC 0π Np: 1 muon above threshold, 0 charged pions above threshold, > 1 protons

above threshold.

• CC 1π 1p: 1 muon above threshold, 1 charged pion above threshold, 0 protons above

threshold.

• CC 1π 1p: 1 muon above threshold, 1 charged pion above threshold, 1 proton above

threshold.

• CC 1π Np: 1 muon above threshold, 1 charged pion above threshold, > 1 protons

above threshold.

• CC Other: 1 muon above threshold, > 1 charged pions above threshold.

The cross-section and flux systematics from the 2015 T2K oscillation analysis, described

in [152] and [153] respectively, were applied. The main difference to the interaction model

191



7. Future Near Detectors for Long Baseline Neutrino Oscillation Experiments

described in Section 5.4.1 is that a Relativistic Fermi Gas (RFG), rather than Spectral

Function (SF), nuclear model was used. The flux model was tuned using data from a thinner

replica target experiment than the model described in Section 5.4.2. Detector systematics

have not been developed for the HPTPC, so weren’t applied to either the HPTPC or ND280

MC.

The total number of events in each sample, for each detector, are shown in Table 7.3.

Events
Sample ND280 HPTPC

CC 0π 0p 3165.52 645.38
CC 0π 1p 3038.75 4956.65
CC 0π Np 491.36 2634.29
CC 1π 0p 1296.50 833.26
CC 1π 1p 1094.97 1719.41
CC 1π Np 94.69 516.67
CC Other 1104.51 1348.12
Total 10286.30 12653.78

Table 7.3.: Number of events in each sample for the ND280 and HPTPC MC.

The CC 0π 0p and CC 1π 0p samples have more events for ND280, as higher multiplicity

events will be misclassified as having zero protons due to the higher detection thresholds.

Overall, there is a greater number of interactions in the HPTPC sample, due to the lower

thresholds.

The pµ–cosθµ distributions for the two detectors are shown in Figures 7.4 and 7.5.

The distributions of CC 0π 0p and CC 0π 1p samples are similar for the two detectors, but

the normalisations are higher for ND280. The 1p and Np samples have significantly more

backward going low momentum events in the HPTPC distributions than ND280. This is

because if a proton is detected in an event with a low momentum lepton, the proton momen-

tum is also likely to be low, and so more will be below the ND280 detection threshold. The

shape of the CC Other distributions are similar, but there is a slightly higher normalisation

for HPTPC.

The full potential sensitivity of the HPTPC to resolving nuclear model tensions cannot

be achieved with lepton kinematics alone. To investigate the impact of using hadronic infor-

mation in interactions, ±1σ parameter variations were run on the HPTPC MC in different

combinations of single transverse variables, and lepton, proton, and pion momentum and

angle. The process was the same as that described in Section 6.3, but events were binned in

different variables.
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Figure 7.4.: True pµ–cosθµ distributions for the ND280 MC.
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(f) CC 1π Np

 (MeV)µp
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

µθ
co

s

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

E
ve

nt
s

0

10

20

30

40

50

60

(g) CC Other

Figure 7.5.: True pµ–cosθµ distributions for the HPTPC MC.
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The transverse variables are calculated for each event from the smeared true lepton mo-

mentum and angle. For each sample, the combination of interaction parameter and kinematic

variables which caused the largest changed in the total number of events is shown in Table

7.4.

Sample Parameter Kinematic Variables

CC 0π 0p MRES
A pµ–cosθµ

CC 0π 1p 2p2h Shape C pp–cosθµ
CC 0π Np MQE

A pp–cosθµ
CC 1π 0p MRES

A pπ–cosθµ
CC 1π 1p C5

A δpT–cosθµ
CC 1π Np C5

A pp–cosθµ
CC Other CC DIS pµ–cosθµ

Table 7.4.: Combination of kinematic variable pair and interaction parameter which caused
the biggest change in the total event rate for each sample in the ±1σ parameter
variations.

Interestingly, for each sample one of the pair of kinematic that variables that cause the

biggest change in the event rates in the parameter variations is either the lepton momentum

or angle. This is likely because these variables can be measured with the best resolution by

the detectors.

The distributions in these pairs of kinematics for the HPTPC MC samples are shown in

Figure 7.6.

The samples binned in pp and pπ have hard cuts at low momentum, beyond which there

are very few events. However, these are significantly below the ND280 detection thresholds.

These samples, along with the δpT binned CC 1π 1p sample, have much narrower momentum

distributions than those binned in pµ. The ‘gaps’ in the distributions at cosθµ ∼0.8 are

binning effects, whereby bins in the peak regions are finer, so have fewer events. The binnings

have not been fully tuned to the new kinematic variables.

7.1.2.1. Asimov Fits

Three Asimov fits were ran to compare the sensitivities of the two detectors. The ND280

and HPTPC nominal MC distributions were fit in pµ–cosθµ, and the HPTPC MC was also

fit in the combination of single transverse variables for each sample shown in Figure 7.6.

The fit results are shown in Figures 7.7, 7.8 and 7.9.

As expected, the postfit values of all parameters are very close to their nominal values.

The slight differences are due to marginalisation effects, which are larger than for the full

analysis fits due to the lower statistics.
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(f) CC 1π Np: pp–cosθµ
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Figure 7.6.: Distributions of HPTPC MC in different kinematic variables. For each sample,
the pair of kinematics shown are those that had the largest change in event rates
in ±1σ parameter variations.
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Figure 7.7.: ND280 flux parameters for ND280 pµ–cosθµ, HPTPC pµ–cosθµ, and HPTPC
mixed STV fits.
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Figure 7.8.: SK flux parameters for ND280 pµ–cosθµ, HPTPC pµ–cosθµ, and HPTPC mixed
STV fits.
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Figure 7.9.: Interaction parameters for ND280 pµ–cosθµ, HPTPC pµ–cosθµ, and HPTPC
mixed STV fits.

The majority of flux parameters have a smaller postfit uncertainty for the HPTPC than

ND280. The increase in number of events from lowering the detection thresholds allows a

slight increase in the constraint on these systematics.

There is also a further reduction in the majority of postfit flux uncertainties for fitting

in STVs rather than just pµ–cosθµ. This is a smaller effect however, and is not consistent

across all energies.
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7. Future Near Detectors for Long Baseline Neutrino Oscillation Experiments

Several of the interaction parameters also have a general trend of the HPTPC seeing

better constraint than ND280, and the STVs being a slight improvement on just the lepton

variables.

The size of the MQE
A , Fermi momentum 12C, and binding energy 12C uncertainties are

very similar in the three fits. The MEC 12C uncertainty has a stronger constraint for the

HPTPC, but only a small improvement from the STVs. The 16O parameters have very little

constraint in any of the fits as only FGD1 MC is used.

Of the 1 π parameters, the I1/2 non-resonant background is the only uncertainty to reduce

for the HPTPC compared to ND280. The STVs do not improve the constraint any further.

The CC DIS and CC coh. 12C parameters have small improvements in constraint for HPTPC,

but this is not reduced any further by the STVs. The CC coh. 16O has a similar postfit

uncertainty for all three fits, as the constraint comes entirely from the prior. The NC

parameters have similar postfit uncertainties for each of the fits.

The FSI parameters all have similar constraints for the HPTPC and ND280, but a signif-

icant improvement from using the STVs.

Overall, the majority of parameters have a smaller uncertainty for the HPTPC STV fit

than the ND280 pµ–cosθµ fit.

These results show that lowering detection thresholds, and using more kinematic informa-

tion than just the lepton variables, can improve the constraint of systematic uncertainties

in the fit. However, this is not a complete study, for a number of reasons. Firstly, without

detector systematics in the fit the results are not entirely valid. These could correlate with

the other parameters differently for the two detectors, altering the uncertainties in each fit.

There is also a low sample size used in this study compared to the full T2K oscillation

analysis. Using the entire runs 2–9 MC to produce HPTPC-like events would give a better

comparison of the potential sensitivities.

Furthermore, the HPTPC events are truth-smeared ND280 FGD1 events, and so the target

is carbon. Future studies aiming for a more complete comparison of the sensitivity of the

detectors should use a full simulation of an HPTPC with different target gasses. The target

volume of an HPTPC would also be larger than that of ND280, increasing the target mass

and therefore the number of interactions, which is not accounted for in this study.

Further improvements to the fitting framework could also help achieve the full potential of

an HPTPC. With the increase in statistics future experiments will benefit from, events could

be binned in more than two kinematic variables. This would allow better characterisation of

interactions, and so systematics could be applied to the target events more accurately. The
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systematics themselves could also be generated to be more appropriate for use with transverse

kinematics. The systematics used in this study were designed to depend on the leptonic

information in the event. As the lower detection thresholds allow better measurements of

the hadronic side of interactions, models constructed to use this information would better

use the full constraining power of an HPTPC.

However, this study does show that just by lowering detection thresholds and using differ-

ent kinematic variables, systematic uncertainties gain a significant improvement in constraint

compared to ND280. This is not just due to the increase in interactions, but because the

extra interactions detected are at low momentum. By reducing cross-section systematics,

different interaction model components can be distinguished, and in particular by probing

the low momentum regions an HPTPC will allow nuclear FSI model tensions to be resolved.

This will be crucial for reducing systematic uncertainties sufficiently to measure δCP to 5σ

in future long baseline neutrino oscillation experiments. The full constraining power of an

HPTPC will be further improved on these results by the larger target mass and fitting in

more than two kinematic variables. Doing a full scale simulation of the detector would give

a better indication of the HPTPC’s potential sensitivity.

7.2. Summary

This chapter has presented an overview of sensitivity studies for a proposed near detector for

future long baseline neutrino oscillation experiments. For the next generation of experiments

to achieve their target sensitivity, systematic uncertainties will need to be reduced to the

1–2% level. This will require tensions in nuclear models to be resolved.

Using a gas target will allow an HPTPC to probe the low momentum region of parameter

space where nuclear models currently diverge. Increasing the pressure of the gas, combined

with future Mega-Watt beams, means there can be enough detected events using a gaseous

target.

The 4-π angular coverage and lower momentum thresholds of an HPTPC allow accurate

measurement of the momentum and multiplicity of secondary particles. This allows STVs

to be used to better characterise events affected by FSI, and so nuclear model tensions can

be better resolved.

HPTPC MC events were produced by smearing the true kinematics of ND280 FGD1

MC events and using estimated improvements in detection thresholds. Asimov fits show

an improvement in sensitivity from the estimated thresholds for an HPTPC compared to
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7. Future Near Detectors for Long Baseline Neutrino Oscillation Experiments

ND280, and for using a combination of different STVs for different samples compared to

using lepton kinematics only.

Although a larger dataset, and full HPTPC simulation should be used for more compre-

hensive sensitivity studies, these results show that lowering detection thresholds and using

different kinematic variables significantly improve the constraint on systematic uncertainties

compared to ND280. This will allow nuclear models to be better distinguished in future long

baseline neutrino oscillation experiments, which will be crucial for measuring δCP to 5σ.
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8. Conclusions

This thesis has presented a Bayesian analysis of T2K near detector data, using Markov Chain

Monte Carlo methods to constrain systematic uncertainties for oscillation measurements.

Parametrised models of the interaction, flux, and detector systematics are fit to near detector

data, and the results are propagated to the far detector by a joint ND280 and SK fit. The

constraint on systematics in the full joint fit comes almost entirely from near detector data.

The uncertainties on predicted SK event rates are reduced from 12–14% to 2–3% by this

analysis.

Since the last oscillation analysis, there have been several updates to the near detector

fit. This has included improved interaction, flux and detector models, new near detector

samples, non-rectangular fit binning, and doubling the amount of data. Implementing these

updates into the near detector framework has been the work of this thesis.

In particular, the treatment of the binding energy systematic has been overhauled for this

analysis. Having a parameter directly shift the kinematics of an MC event, rather than

just reweighting, has not been done before at T2K. Many studies and validations of the

parameter were performed as part of this thesis. The new implementation has reduced the

binding energy from being a dominant systematic in the previous oscillation analysis, to

being sub-dominant in this analysis.

Updating the near detector fitting framework to accommodate non-uniform binning and

tuning this binning was another large aspect of this thesis. The new binning has improved

the sensitivity to the disappearance parameters, ∆m2
23 and sin2θ23, significantly. In the

future, as more data is taken, the impact of non-uniform binning will increase.

Although the Bayesian p-value for this result was low for several samples, the frequentist

p-value, calculated by the other near detector fitting group on T2K, has increased signifi-

cantly since the last analysis. It is not expected that the two p-value calculations give the

same results, as they answer different questions. The Bayesian p-value is a harsh test by

construction, used for determining for which samples and regions of phase space the fit is

performing well, whereas the frequentist version is a more traditional p-value. The frequen-
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tist p-value also uses a more accurate treatment of detector systematics, and so is used as the

main indicator of goodness of fit for the analysis. The improvement in frequentist p-value is

largely due to the improvements to the fit and input models since the last analysis.

The full effect of all the updates to the fit implemented for this analysis was a significant

improvement in the sensitivity of the measurement of oscillation parameters, particularly for

the disappearance parameters where the 90% credible intervals for this analysis are similar

to the 68% credible intervals for the previous analysis.

In future analyses, using Principle Component Analysis to reduce the number of fitted

detector parameters will allow the full fit binning to be used as the detector binning in joint

fits. This will allow more accurate application of ND280 detector systematics. Although

the merged detector binning produced very similar results to the full fit binning as detector

binning in near detector only fits, the Bayesian p-value was not as high for several samples.

Furthermore, as was shown by the improvement in sin2θ23 sensitivity for the non-uniform

binning, the SK prediction uncertainty not reducing does not necessarily mean the oscillation

parameter sensitivity will not improve. Ultimately, fitting each underlying detector system-

atic individually, allowing some to directly shift event kinematics like the binding energy

parameter, would be a more accurate implementation.

In the longer term future, sensitivity studies show that using new technologies, such as

an HPTPC, in combination with fitting in Single Transverse Variables would enable better

distinguishing of final state interaction models, which diverge at low momentum. With

increased statistics, it will be possible to fit in more than two dimensions, allowing further

improvements in distinguishing interaction types and therefore providing a better distinction

of signal and background. This will provide a better constraint on systematics, which will be

even more vital with the higher statistics future long baseline neutrino oscillation experiments

will benefit from. This will ultimately improve the sensitivity to oscillation parameters,

allowing even more precise measurements of their values to be made.
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A. Detector Binning

The result of the fits with different detector binnings, used to tune the final detector binning,

are shown in Figures A.1 and A.2 for the flux parameters, and Figure A.3 for the cross-section

parameters. To avoid tuning the detector binning on data, fake data was produced by setting

the cross-section parameters to their best fit values from the 2017 analysis and reweighting

the runs 2–6 nominal MC. The MC was then fitted to this fake data.
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A. Detector Binning
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Figure A.1.: ND280 flux parameters for fake data fits using different detector binnings.
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Figure A.2.: SK flux parameters for fake data fits using different detector binnings.
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A. Detector Binning

Prior

4238 Bins (Fit Binning)

1347 Bins

574 Bins

179 Bins

Prior

4238 Bins (Fit Binning)

1347 Bins

574 Bins

179 Bins

Q
E

A
M

C Fp O Fp ν
2p

2h
 n

or
m

 ν
2p

2h
 n

or
m

 O
16

C
/

12
2p

2h
 n

or
m

 

C
12

2p
2h

 s
ha

pe
 

O
16

2p
2h

 s
ha

pe
 

B
eR

P
A

 A

B
eR

P
A

 B

B
eR

P
A

 D

B
eR

P
A

 E

B
eR

P
A

 U

V
ar

ia
tio

n 
re

l. 
no

m
.

πCC0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Q
E

A
M

C Fp O Fp ν
2p

2h
 n

or
m

 ν
2p

2h
 n

or
m

 O
16

C
/

12
2p

2h
 n

or
m

 

C
12

2p
2h

 s
ha

pe
 

O
16

2p
2h

 s
ha

pe
 

B
eR

P
A

 A

B
eR

P
A

 B

B
eR

P
A

 D

B
eR

P
A

 E

B
eR

P
A

 U

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(a) CC 0π

A 5
C R
E

S
A

M

1/
2

N
on

-r
es

 I

ν
C

C
 N

or
m

 nu
C

C
 N

or
m

 

µν/ eν

µν/ eν

C
C

_D
IS C

12
C

C
 c

oh
. 

O
16

C
C

 c
oh

. 

V
ar

ia
tio

n 
re

l. 
no

m
.

, CC DIS, CC coh
e

ν, πCC1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A 5
C R
E

S
A

M

1/
2

N
on

-r
es

 I

ν
C

C
 N

or
m

 nu
C

C
 N

or
m

 

µν/ eν

µν/ eν

C
C

_D
IS C

12
C

C
 c

oh
. 

O
16

C
C

 c
oh

. 

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(b) CC 1π, νe, CC DIS, and CC coh.

N
C

 c
oh

. γ
N

C
 1

N
C

 o
th

. N
D

28
0

N
C

 o
th

. S
K

V
ar

ia
tio

n 
re

l. 
no

m
.

NC

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
C

 c
oh

. γ
N

C
 1

N
C

 o
th

. N
D

28
0

N
C

 o
th

. S
K

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(c) NC

F
E

F
Q

E

F
E

F
Q

E
H

F
E

F
IN

E
L

F
E

F
A

B
S

F
E

F
C

X

E
B

_d
ia

l_
C

E
B

_d
ia

l_
O

V
ar

ia
tio

n 
re

l. 
no

m
.

Pion FSI + EB

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
E

F
Q

E

F
E

F
Q

E
H

F
E

F
IN

E
L

F
E

F
A

B
S

F
E

F
C

X

E
B

_d
ia

l_
C

E
B

_d
ia

l_
O

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

(d) π FSI and Eb

Figure A.3.: Interaction parameters for fake data fits using different detector binnings.
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B. Selection Binning

Runs 2–8 data and MC were used to tune the algorithm for producing the non-uniform

rectangular sample binning. The distribution of events binned using the original uniform

binning is shown for all samples in Figure B.1. The distribution of events binned using

the final non-uniform rectangular binning is shown for all samples in Figure B.2. For the

non-uniform rectangular binning, the bins containing the largest amount of events are in the

peak regions at high angle and ∼500 MeV.

Templates for the non-uniform fit binning for each sample are presented in this section, as

it is not feasible to express the bin edges in text for non-uniform binning. Figure B.3 shows

the x-axis range reduced to 0–5000 MeV so that the smaller bins in the peak can be seen.

Figure B.4 shows the full distributions out to 30 GeV, for each sample.

The uniform binning used to validate against the other near detector fitting group is as

follows:

• FHC νµ CC 0π:

pµ (MeV/c): 0, 200, 300, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950,

1000, 1050, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 2000, 2500, 3000, 5000,

30000.

cos θµ: -1, 0.5, 0.6, 0.7, 0.76, 0.78, 0.8, 0.83, 0.85, 0.88, 0.89, 0.9, 0.91, 0.92, 0.925,

0.93, 0.935, 0.94, 0.945, 0.95, 0.955, 0.96, 0.965, 0.97, 0.975, 0.98, 0.985, 0.99, 0.995, 1.

• FHC νµ CC 1π:

pµ (MeV/c): 0, 300, 350, 400, 500, 600, 650, 700, 750, 800, 900, 1000, 1100, 1200,

1500, 2000, 3000, 5000, 30000.

cos θµ: -1, 0.6, 0.7, 0.8, 0.85, 0.88, 0.9, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99,

0.995, 1.

• FHC νµ CC Other:

pµ (MeV/c): 0, 300, 400, 500, 600, 650, 700, 750, 800, 900, 1000, 1100, 1250, 1500,

1750, 2000, 3000, 5000, 30000.
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B. Selection Binning
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Figure B.1.: Uniform rectangular binning of MC events for T2K runs 2–8.
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Figure B.2.: Non-uniform rectangular binning of MC events for T2K runs 2–8.
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B. Selection Binning
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Figure B.3.: Non-uniform rectangular binning used in this analysis for each sample. The
x-axis is reduced to better show the smaller bins at low momentum and high
angle.
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Figure B.4.: Non-uniform rectangular binning used in this analysis for each sample.
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B. Selection Binning

cos θµ: -1, 0.6, 0.7, 0.76, 0.8, 0.85, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96,

0.97, 0.98, 0.99, 0.995, 1.

• RHC ν̄µ CC 0π:

pµ (MeV/c): 0, 300, 400, 500, 550, 600, 650, 700, 750, 800, 900, 1000, 1100, 1200,

1500, 2000, 4000, 30000.

cos θµ: -1, 0.6, 0.7, 0.8, 0.85, 0.9, 0.92, 0.93, 0.94, 0.95, 0.96, 0.965, 0.97, 0.975, 0.98,

0.985, 0.99, 0.995, 1.

• RHC ν̄µ CC 1π:

pµ (MeV/c): 0, 500, 700, 900, 1300, 2500, 30000.

cos θµ: -1, 0.7, 0.8, 0.9, 0.94, 0.96, 0.98, 0.99, 1.

• RHC ν̄µ CC Other: pµ (MeV/c): 0, 600, 800, 1000, 1250, 1500, 2000, 4000, 30000.

cos θµ: -1, 0.7, 0.8, 0.85, 0.9, 0.93, 0.95, 0.97, 0.98, 0.99, 1.

• RHC νµ CC 0π:

pµ (MeV/c): 0, 300, 500, 700, 800, 900, 1250, 1500, 2000, 4000, 30000.

cos θµ: -1, 0.7, 0.8, 0.85, 0.88, 0.9, 0.92, 0.94, 0.96, 0.97, 0.98, 0.99, 1.

• RHC νµ CC 1π:

pµ (MeV/c): 0, 600, 800, 1500, 30000.

cos θµ: -1, 0.7, 0.8, 0.86, 0.9, 0.94, 0.96, 0.97, 0.98, 0.99, 1.

• RHC νµ CC Other:

pµ (MeV/c): 0, 600, 1000, 1250, 2000, 4000, 30000.

cos θµ: -1, 0.7, 0.8, 0.86, 0.9, 0.93, 0.95, 0.97, 0.99, 1.
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C. Full Prefit Correlation Matrices

The full flux correlation matrix for all samples is shown in Figure C.1.
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Figure C.1.: The full flux covariance matrix for all samples.

The full 574-bin detector correlation matrix for all samples is shown in Figure C.2. The

bunching of the RHC samples at the end of each axis shows the detector bin merging process

targeted bins and samples with fewer events, keeping more bins the well populated FHC

samples.

The full 3071-bin detector correlation matrix for all samples is shown in Figure C.3. Again,

the bunching of the RHC samples at the end of each axis shows the detector bin merging

process targeted bins and samples with fewer events, keeping more bins in the well populated

FHC samples.
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C. Full Prefit Correlation Matrices

Figure C.2.: The ND280 detector covariance matrix for all samples with 574 merged bins,
produced using runs 2–9 MC.

Figure C.3.: The ND280 detector covariance matrix for all samples with the full 3071-bin
non-uniform fit binning, produced using runs 2–9 MC.
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D. Nominal MC Distributions

The 2D nominal, uniformly-binned runs 2–9 MC distributions are shown in Figure D.1.

The projection of the non-uniformly binned nominal MC distributions onto the pµ axis

are shown in Figures D.2, D.3, and D.4, along with the interaction mode breakdown and

data.

The projection of the non-uniformly binned nominal MC distributions onto the cosθµ axis

are shown in Figures D.5, D.6, and D.7, along with the interaction mode breakdown and

data.

219



D. Nominal MC Distributions
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Figure D.1.: pµ–cosθµ distributions for the nominal MC binned uniformly.
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Figure D.2.: pµ projections of data and nominal MC broken down by interaction mode for
FHC selections.
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D. Nominal MC Distributions
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Figure D.3.: pµ projections of data and nominal MC broken down by interaction mode for
RHC ν̄µ selections.
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Figure D.4.: pµ projections of data and nominal MC broken down by interaction mode for
RHC νµ selections.
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D. Nominal MC Distributions
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Figure D.5.: cos θµ projections of data and nominal MC broken down by interaction mode
for FHC selections.
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Figure D.6.: cos θµ projections of data and nominal MC broken down by interaction mode
for RHC ν̄µ selections.
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D. Nominal MC Distributions
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Figure D.7.: cos θµ projections of data and nominal MC broken down by interaction mode
for RHC νµ selections.
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E. Prior Predictive Distributions

The pµ and cosθµ projections of the prior predictive distributions are shown in Figures E.1–

E.6.
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Figure E.1.: pµ projections of the prior predictive distributions and data for FHC νµ selec-
tions.
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Figure E.2.: pµ projections of the prior predictive distributions and data for RHC ν̄µ selec-
tions.
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Figure E.3.: pµ projections of the prior predictive distributions and data for RHC νµ selec-
tions.
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Figure E.4.: cosθµ projections of the prior predictive distributions and data for FHC νµ
selections.
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E. Prior Predictive Distributions
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Figure E.5.: cosθµ projections of the prior predictive distributions and data for RHC ν̄µ
selections.
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Figure E.6.: cosθµ projections of the prior predictive distributions and data for RHC νµ
selections.
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F. Full Fit Results

The results for the Asimov fit are shown in Figures F.1, F.2 and F.3.

The results for the data fit are shown in Figures F.4, F.5 and F.6.

The results for the Asimov fits comparing different fit and detector binnings are shown in

Figures F.7, F.8 and F.9.

The results for the data fits comparing different fit and detector binnings are shown in

Figures F.10, F.11 and F.12.

The joint near and far, and near detector only fits are compared in Figures F.13, F.14 and

F.15.
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Figure F.1.: ND280 flux parameters for the Asimov fit.
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Figure F.2.: SK flux parameters for the Asimov fit.
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Figure F.3.: Interaction parameters for the Asimov fit.
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Figure F.4.: ND280 flux parameters for the data fit.
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Figure F.5.: SK flux parameters for the data fit.
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Figure F.6.: Interaction parameters for the data fit.
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Figure F.7.: Comparison of ND280 flux parameters for the Asimov fits with different fit and
detector binnings.
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Figure F.8.: Comparison of SK flux parameters for the Asimov fits with different fit and
detector binnings.
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Figure F.9.: Comparison of interaction parameters for the Asimov fits with different fit and
detector binnings.
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Figure F.10.: Comparison of ND280 flux parameters for the data fits with different fit and
detector binnings.
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Figure F.11.: Comparison of SK flux parameters for the data fits with different fit and de-
tector binnings.
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Figure F.12.: Comparison of interaction parameters for the data fits with different fit and
detector binnings.
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Figure F.13.: ND280 flux parameters for the joint and near detector only fits.
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Figure F.14.: SK flux parameters for the joint and near detector only fits.
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Figure F.15.: Interaction parameters for the joint and near detector only fits.
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G. Full Postfit Correlation Matrices

The post-Asimov-fit correlation matrix for the flux and interaction parameters is shown in

Figure G.1.

Figure G.1.: Asimov postfit correlation matrix for flux and interaction parameters.

The post-data-fit correlation matrix for the flux and interaction parameters is shown in

Figure G.2.
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G. Full Postfit Correlation Matrices

Figure G.2.: Data postfit correlation matrix for flux and interaction parameters.
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H. Posterior Predictive Distributions

The pµ and cosθµ projections of the posterior predictions for each sample are shown in Figures

H.1–H.6, along with the prior predictions and data.
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H. Posterior Predictive Distributions
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Figure H.1.: pµ projections of the prior and posterior predictive distributions and data for
FHC νµ selections.
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Figure H.2.: pµ projections of the prior and posterior predictive distributions and data for
RHC ν̄µ selections.
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H. Posterior Predictive Distributions
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Figure H.3.: pµ projections of the prior and posterior predictive distributions and data for
RHC νµ selections.
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Figure H.4.: cosθµ projections of the prior and posterior predictive distributions and data
for FHC νµ selections.
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H. Posterior Predictive Distributions

Data

Prior Prediction

Posterior Prediction

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

20

40

60

80

100

310×

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(a) FGD1 RHC ν̄µ 0π

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

10000

20000

30000

40000

50000

60000

70000

80000

90000

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(b) FGD2 RHC ν̄µ 0π

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

2000

4000

6000

8000

10000

12000

14000

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(c) FGD1 RHC ν̄µ 1π

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

2000

4000

6000

8000

10000

12000

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(d) FGD2 RHC ν̄µ 1π

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

5000

10000

15000

20000

25000

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(e) FGD1 RHC ν̄µ Other

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

5000

10000

15000

20000

25000

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(f) FGD2 RHC ν̄µ Other

Figure H.5.: cosθµ projections of the prior and posterior predictive distributions and data
for RHC ν̄µ selections.

258



Data

Prior Prediction

Posterior Prediction

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

10000

20000

30000

40000

50000

60000

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(a) FGD1 RHC νµ 0π

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

10000

20000

30000

40000

50000

60000

70000

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(b) FGD2 RHC νµ 0π

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(c) FGD1 RHC νµ 1π

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

2000

4000

6000

8000

10000

12000

14000

16000

18000

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(d) FGD2 RHC νµ 1π

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

5000

10000

15000

20000

25000

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(e) FGD1 RHC νµ Other

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
s/

M
eV

5000

10000

15000

20000

25000

µθcos 
0.7 0.75 0.8 0.85 0.9 0.95 1

M
C

/D
at

a

0.6
0.8

1
1.2
1.4

(f) FGD2 RHC νµ Other

Figure H.6.: cosθµ projections of the prior and posterior predictive distributions and data
for RHC νµ selections.
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I. Alternative Fit Studies

A number of compatibility studies were performed, comparing subsets of data and using

alternative fit models.

The data-subset results presented here were not used in the full oscillation analysis, but

are part of the validations of the input models and fitting framework. The alternative model

fits were used to inform choices in the interaction model used for the final fits.

These fits were all run using the uniform-rectangular fit binning and 574 merged detector

bins.

I.1. FGD1 and FGD2 Only Fits

As discussed in Section 3.2.2.1, FGD1 and FGD2 have different target materials. FGD2 has

water layers, and so contains a significant amount of 16O, whereas FGD1 has only plastic

scintillator (C8H8) layers. The constraint on 16O only parameters therefore comes only from

FGD2.

The location of the FGDs also causes differences in reconstruction between the two subde-

tectors. FGD1 has two TPCs downstream of it, and so performs more accurate reconstruction

for forward-going tracks, whereas FGD2 has two TPCs upstream of it, and so performs more

accurate reconstruction for backward going-tracks.

To investigate the compatibility of the FGD1 and FGD2 samples, fits were run using each

independently. There is approximately the same amount of data in the FGD1 and FGD2

sample, so the constraining power of each is expected to be similar.

The results for the flux parameters are shown in Figures I.1 and I.2, along with the full

FGD1 and FGD2 fit. The postfit values of the FGD1 and FGD2 only fits are consistently

within the postfit uncertainties of both each other, and the full fit. The high pulls at lower

energies are seen in all fits. The gradient of the decrease in pull with increasing energy shows

some small discrepancies, but this is to be expected given the high correlations between the

flux parameters.
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The SK flux parameters have very similar behaviour to the ND flux parameters, as is

expected as they are only constrained by their prior correlations.

The interaction parameters, shown in Figure I.4, have larger differences. MQE
A is pushed

higher for FGD1 than FGD2, with the full fit value lying between two. The 2p2h ν normal-

isation parameter is also higher for FGD1, with the FGD2 value remaining close to nominal

as it is for the full fit. The 2p2h shape parameters have large differences. For FGD2, 2p2h

shape C is pushed to its upper bound at ∼2, whereas it is only pushed to ∼1.3 for FGD1.

This is interesting as both FGDs are able to constrain the parameter. For the full fit, the

2p2h shape C postfit value lies between the FGD1 and FGD2 values, despite not affecting

any FGD1 events. This is likely driven by the prior correlations between 2p2h shape C and

O.

The shape of the increase in Q2 parameters is slightly different between the FGD1 and

FGD2 fits, but all are within uncertainty of each other.

The Eb parameters are significantly higher for FGD1. As discussed in Section 4.4.1, as

these parameters are non-Gaussian it is important to inspect the full distributions as well

as the extracted values. These are shown in Figure I.4. For Ebν C, there is clearly a strong

peak much higher than for both the FGD2 and full fits. For Ebν̄ C, there is again a higher

peak for FGD1, but the full fit lies between the two subdetector fits. For Ebν O there is

more overlap between the fits, which is more expected as there is no 16O in FGD1. However,

for Ebν̄ O, there are different peaks for the different fits, driven by the correlations between

the Eb parameters.

The CC DIS BY parameter is higher for FGD1 than FGD2, with the full fit falling between

the two. The other CC 1π and CC Other targetting parameters are more consistent for the

two fits. NC 1γ and NC Other show some differences, but this is not too concerning as there

are low statistics for the interaction modes they affect.

For FSI, the charge exchange parameter has the largest discrepancy, but this is within the

postfit uncertainty.

Overall there is fairly good compatibility between the FGD samples. Where there are

discrepancies, the full fit value tends to fall between the FGD1 and FGD2 only results. CC

DIS BY is the only parameter affecting both 12C and 16O events which are not within the

uncertainty for the two fits.
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Figure I.1.: ND280 flux parameters for the FGD1 and 2 only fits.
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Figure I.2.: SK flux parameters for the FGD1 and 2 only fits.
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Figure I.3.: Interaction parameters for the FGD1 and 2 only fits.
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Figure I.4.: Posterior distributions from the binding energy parameters for the FGD1 and
FGD2 only fits.

I.2. FHC and RHC Only Fits

For runs 2–4, 8, data was taken in FHC mode, and for runs 5–7, 9, data was taken in RHC

mode. To see the compatibility of the model fit to neutrino and anti-neutrino data, fits were

running using runs 2–4+8 and runs 5–7+9 separately. As the amount of FHC data is ∼3×
larger than for RHC, it is expected there will be larger constraints for the FHC only fit.

The results for the flux parameters are shown in Figures I.5 and I.6. The shape of the

pulls are very similar for the three fits, but for RHC only the parameters are consistently

closer to nominal than for FHC only, with the full fit value lying between the two. In the

FHC fit, the RHC flux parameters are constrained via the prior correlations with the FHC

flux parameters, and vice versa.

The results for the interaction parameters are shown in Figure I.7. MQE
A is not pushed as

high for FHC as RHC, but both are within the postfit uncertainty of the full fit value. The
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Figure I.5.: ND flux parameters for the FHC and RHC only fits.
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Figure I.6.: SK flux parameters for the FHC and RHC only fits.
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2p2h ν normalisation gets a small constraint in the RHC fit from the ν in ν̄ samples, but the

2p2h ν̄ normalisation gets no constraint in the FHC only fit. The 2p2h C to O normalisation

and shape parameters for the FHC and RHC only fits are 1σ either side of the full fits.

The Q2 normalisations are closer to nominal for RHC, but the shape of the increase with

increasing Q2 is similar.

The Eb distributions are shown in Figure I.7 as they are non-Gaussian and so the single

extracted values do not show the whole story. The distributions for Ebν C parameter are

similar for the FHC and full fits, as would be expected. In the RHC fit, it is only constrained

through the prior correlations to the FHC Eb parameters and the wrong-sign background

samples. Similarly, Ebν̄ C is very similar for RHC only and the full fit. As there are

no FHC wrong-sign samples, Ebν̄ C is only constrained through the prior uncertainty and

correlations in FHC only fit, and so the postfit value is close to the prior central value. The

Eb O parameters are both much more consistent across the three fits.

MRES
A is much closer to nominal for RHC, but the full fit favours the FHC value. The BY

parameters are both also closer to nominal for RHC, with the full fit values lying between

the FHC and RHC only values. The NC parameters are all consistent for the fits, and of the

FSI parameters, high energy quasi-elastic is the only systematic for which the postfit values

are outside 1σ of each other, with the full fit favouring the FHC value.

Overall these fits show some tension, with the postfit values being generally closer to

nominal for RHC only. However, this is likely because there are lower statistics for RHC, so

the contribution to the likelihood from the prior uncertainty becomes more significant.

I.3. New and Old Data Only Fits

The previous oscillation analysis [4] used data from runs 2–6. The addition of runs 7, 8 and

9 for this analysis approximately doubles both the FHC and RHC data. To investigate the

compatibility of the new and old data, fits were run using data from just runs 2–6, and just

runs 7–9. This will show if unexpected results are coming from the changes in the model

or the extra data. There is approximately the same amount of data in each set, and so the

constraint is expected to be similar.

The results for the flux parameters are shown in Figures I.9 and I.10. They are mostly

consistent between the three fits, with the postfit parameters lying within the uncertainty

of each other. For runs 7–9, the fluxes tend to be slightly closer to nominal, but the overall

shape of the pulls in energy are similar.
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Figure I.7.: Interaction parameters for the FHC and RHC only fits.
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Figure I.8.: Posterior distributions from the binding energy parameters for the FHC and
RHC only fits.

The interaction parameters, shown in Figure I.11, show more differences between the fits.

MQE
A is very consistent, but the 2p2h normalisations are both closer to nominal for runs 2–6,

as is 2p2h shape C. Interestingly, the full fit value for 2p2h shape C to O is beyond both the

subset fits. The Q2 normalisations are all very similar for the three fits.

The Eb distributions are shown in Figure I.12, as they are non-Gaussian and so the single

extracted values alone are not sufficient. The Ebν C and Ebν O parameters both have large

peaks at higher values for runs 2–6. The full fit prefers the runs 7–9 value for C, and the

runs 2–6 value for O. The full fit distributions for the Ebν̄ C and Ebν̄ O parameters are both

similar to those for runs 7–9. The distributions for runs 2–6 have more peaks, but center

around similar values.

As runs 2–6 have a larger proportion of FHC data, it would be expected that more of the

full fit constraint on ν parameters would be coming from runs 2–6, and more of the full fit

constraint on ν̄ parameters would be coming from runs 7–9. However, there does not seem
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Figure I.9.: ND280 flux parameters for the new and old data only fits.
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Figure I.10.: SK flux parameters for the new and old data only fits.
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Figure I.11.: Interaction parameters for the new and old data only fits.
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Figure I.12.: Posterior distributions from the binding energy parameters for the new and old
data only fits.

to be a general trend of the full fit parameters for ν or ν̄ being closer to the runs 2–6 or 7–9

values. This is probably because the proportions of FHC/RHC data in each set are vastly

different, and so other factors dominate.

For runs 7–9, CC DIS BY is higher and CC BY multi-π, CC AGKY mult., and CC misc.

are lower than for runs 2–6, with the full fit values lying between the two. The rest of the

CC 1π and CC Other targetting parameters are fairly consistent. The inelastic and charge

exchange FSI parameters are both closer to nominal for runs 7–9.

Overall, there is some tension between these fits, but nearly all parameters are within 1σ

of the each other. In most cases, the full fit value lies between the runs 2–6 and 7–9 values.
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I. Alternative Fit Studies

I.4. Flat MAQE Prior and Less Q2 Freedom

Two interaction models were proposed for this analysis. As MQE
A affects events with high

Q2, one model had only five Q2 normalisations (up to 0.25 GeV), but with a flat prior on

MQE
A . The other model invoked a tight prior uncertainty of 0.06 GeV2 on MQE

A , but had

extra high Q2 freedom from the three additional high Q2 normalisations. Fits were ran with

both these models.

The comparison of the results for the flux parameters are shown in Figures I.13 and I.14.

The shape of the pulls in energy are similar for the two fits, but the fluxes are generally

slightly lower for the fit with eight Q2 normalisations.

Similar results are seen for the ND280 and SK flux parameters, as would be expected.

The interaction parameters are shown in Figure I.16. MQE
A is pushed even higher when

it does not have a prior uncertainty. The 2p2h normalisations are lower for having eight Q2

normalisations, and the five low Q2 normalisations themselves are slightly higher. The low

Q2 parameters are likely moved by their co-correlations with the fluxes, which control all

regions of Q2.

The comparison of the 1D distributions for the Eb parameters are shown in Figure I.16.

There are peaks in similar locations for Ebν C, but the lower peak is larger for having

five Q2 normalisations, whereas the higher peak is larger for having eight. The other Eb

parameters have similar shaped distributions, but with small changes in the relative sizes of

peaks causing changes in the constraints, particularly for Ebν̄ C and Ebν O.

The CC 1π, NC, and π FSI parameters are all unchanged.

The eight Q2 parameters give better control over high Q2 events and allows the MQE
A prior

uncertainty to be tuned to external data. For this reason, and as the fit results were similar,

it was decided the eight Q2 normalisation with 0.6 GeV2 MQE
A prior uncertainty would be

used in the final fits. It should be noted that these fits were run before other inputs to

the fits were finalised, and so the results aren’t the same as those in Section 6.5, but the

conclusions should not be different.

I.5. Fixing the 2p2ph Energy Dependence Parameters

The 2p2h energy dependence parameters were found to have no constraint from the near

detector fit, as shown in Figure I.17. This causes large marginalisation effects, and also can

prevent the other near detector fitting group’s gradient descent fit from converging. It was
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Figure I.13.: Comparison of ND280 flux parameters for the five and eight Q2 normalisation
models.
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Figure I.14.: Comparison of SK flux parameters for the five and eight Q2 normalisation
models.
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Figure I.15.: Comparison of interaction parameters for the five and eight Q2 normalisation
models.
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Figure I.16.: Posterior distributions from the binding energy parameters for the five and eight
Q2 normalisation models.

therefore decided that the parameters would not be fitted in the near detector analysis. To

make sure this did not have any unintended consequences, fits were run with them free and

fixed at their prior central values.

The results are in Figures I.18, I.19, I.20, and I.21. As expected, there is very little change

in the postfit parameter values. The 2p2h energy dependence parameters were therefore

fixed in this analysis, but are free for the full joint fits.

280



I.5. Fixing the 2p2ph Energy Dependence Parameters

2p2h_Edep_lowEnu rel. nom
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
te

ps

0

10000

20000

30000

40000

50000

60000

70000

80000  = 0.29σ = 0.49, µ
PDF

 = 8.66σ = -12.66, µ
Gauss

 = 0.03 (+0.33-0.03)σ = 0.01, µ
HPD

x = 1.00
Input

(a) Low Energy ν

2p2h_Edep_lowEnubar rel. nom
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
te

ps

0

10000

20000

30000

40000

50000

60000

70000

80000

 = 0.29σ = 0.49, µ
PDF

 = 1.24σ = 0.26, µ
Gauss

 = 0.24 (+0.34-0.24)σ = 0.22, µ
HPD

x = 1.00
Input

(b) Low Energy ν̄

2p2h_Edep_highEnu rel. nom
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
te

ps

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

 = 0.28σ = 0.55, µ
PDF

 = 0.87σ = 0.95, µ
Gauss

 = 0.04 (+0.04-0.30)σ = 0.96, µ
HPD

x = 1.00
Input

(c) High Energy ν

2p2h_Edep_highEnubar rel. nom
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
te

ps

0

20000

40000

60000

80000

100000
 = 0.29σ = 0.56, µ

PDF

 = 3.55σ = 9.74, µ
Gauss

 = 0.04 (+0.04-0.27)σ = 0.96, µ
HPD

x = 1.00
Input

(d) High Energy ν̄

Figure I.17.: Posterior distributions for the 2p2h energy dependence parameters.
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Figure I.18.: Comparison of ND280 flux parameters with 2p2h energy dependence fixed and
free.
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Figure I.19.: Comparison of SK flux parameters with 2p2h energy dependence fixed and free.

283



I. Alternative Fit Studies

Prior

Fixed 2p2h E dep.

Free 2p2h E dep.

Prior

Fixed 2p2h E dep.

Free 2p2h E dep.

Q
E

A
M

ν
2p

2h
 n

or
m

 ν
2p

2h
 n

or
m

 O
16

C
/

12
2p

2h
 n

or
m

 

C
12

2p
2h

 s
ha

pe
 

O
16

2p
2h

 s
ha

pe
 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

V
ar

ia
tio

n 
re

l. 
no

m
.

πCC0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Q
E

A
M

ν
2p

2h
 n

or
m

 ν
2p

2h
 n

or
m

 O
16

C
/

12
2p

2h
 n

or
m

 

C
12

2p
2h

 s
ha

pe
 

O
16

2p
2h

 s
ha

pe
 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x 2−

1−

0

1

2

(a) CC 0π

 N
or

m
 0

2
Q

 N
or

m
 1

2
Q

 N
or

m
 2

2
Q

 N
or

m
 3

2
Q

 N
or

m
 4

2
Q

E
B

 D
ia

l C
 N

u

E
B

 D
ia

l C
 N

ub
ar

E
B

 D
ia

l O
 N

u

E
B

 D
ia

l O
 N

ub
ar

V
ar

ia
tio

n 
re

l. 
no

m
. b and E2Q

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 N
or

m
 0

2
Q

 N
or

m
 1

2
Q

 N
or

m
 2

2
Q

 N
or

m
 3

2
Q

 N
or

m
 4

2
Q

E
B

 D
ia

l C
 N

u

E
B

 D
ia

l C
 N

ub
ar

E
B

 D
ia

l O
 N

u

E
B

 D
ia

l O
 N

ub
ar

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x 2−

1−

0

1

2

(b) Q2 and Eb

A 5
C R
E

S
A

M

π
 L

ow
 p

1/
2

N
on

-r
es

 I

1/
2

N
on

-r
es

 I

ν
C

C
 N

or
m

 nu
C

C
 N

or
m

 

µν/ eν

µν/ eν

C
C

 B
Y

 D
IS π

C
C

 B
Y

 M
ul

ti 

π
C

C
 A

G
K

Y
 M

ul
ti 

C
C

 M
is

c ν
 n

or
m

 
π

C
C

 D
IS

/M

ν
 n

or
m

 
π

C
C

 D
IS

/M

C
12

C
C

 c
oh

. 

O
16

C
C

 c
oh

. 

V
ar

ia
tio

n 
re

l. 
no

m
.

, CC cohπ, CC DIS, CC Multi 
e

ν, πCC1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

A 5
C R
E

S
A

M

π
 L

ow
 p

1/
2

N
on

-r
es

 I

1/
2

N
on

-r
es

 I

ν
C

C
 N

or
m

 nu
C

C
 N

or
m

 

µν/ eν

µν/ eν

C
C

 B
Y

 D
IS π

C
C

 B
Y

 M
ul

ti 

π
C

C
 A

G
K

Y
 M

ul
ti 

C
C

 M
is

c ν
 n

or
m

 
π

C
C

 D
IS

/M

ν
 n

or
m

 
π

C
C

 D
IS

/M

C
12

C
C

 c
oh

. 

O
16

C
C

 c
oh

. 

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x 2−

1−

0

1

2

(c) CC 1π, νe, CC DIS, CC multi-π and CC Coh.

N
C

 c
oh

. γ
N

C
 1

N
C

 o
th

. N
D

28
0

N
C

 o
th

. S
K

V
ar

ia
tio

n 
re

l. 
no

m
.

NC

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
C

 c
oh

. γ
N

C
 1

N
C

 o
th

. N
D

28
0

N
C

 o
th

. S
K

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x 2−

1−

0

1

2

(d) NC

F
E

F
Q

E

F
E

F
Q

E
H

F
E

F
IN

E
L

F
E

F
A

B
S

F
E

F
C

X

V
ar

ia
tio

n 
re

l. 
no

m
.

Pion FSI

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
E

F
Q

E

F
E

F
Q

E
H

F
E

F
IN

E
L

F
E

F
A

B
S

F
E

F
C

X

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x 2−

1−

0

1

2

(e) π FSI

Figure I.20.: Comparison of interaction parameters with 2p2h energy dependence fixed and
free.
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Figure I.21.: Posterior distributions from the binding energy parameters with 2p2h energy
dependence fixed and free.
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J. RHC Multi Pi Samples Validation

Various fits were run to validate the implementation of the RHC samples being divided by

π, rather than track, multiplicity. Data fits using only runs 2–4 and 8 were run, as the

FHC sample should be unaffected by the changes. The results are shown in Figures J.1, J.2

and J.3, and as expected, there is no difference using the RHC multi-π or RHC multi-track

sample implementations.

To see the full impact of the change in samples, Asimov and data fits were run with the

multi-π and track implementations, using FHC and RHC data (runs 2–8). The Asimov fit

results, shown in Figures J.5, J.5 and J.6, are very similar for the two samples. The slight

differences are due to marginalisation effects, and the two fits are entirely compatible. There

is a very slight reduction in uncertainties using the RHC multi-π samples, showing a small

improvement in sensitivity.

The data fits using both FHC and RHC data have more differences. The flux parame-

ters, shown in Figures J.7 and J.8, are pulled further from nominal at low energies. The

oscillatory shape of the pulls in energy are similar for the two selections, and postfit values

are consistently within 1σ of each other. The ND and SK flux parameters have similar

behaviour.

The interaction parameters, shown in J.9, also have fairly significant differences. The 2p2h

normalisations for ν and ν̄ are both closer to nominal using the mulit-π samples, whereas

the 2p2h shape parameter on C is pulled about 1σ further. The CC 1 π parameters are very

compatible for the two selections, but the CC DIS parameter is closer to nominal for the

multi-π samples. The NC Other (NC 1π and NC DIS) is the only NC parameter to show any

differences, being pulled >1σ higher. For the π FSI parameters, the high energy quasi-elastic

and π absorption parameters are closer to nominal, whereas the charge exchange parameter

is pulled further away for the multi-π samples.

Overall the fits are largely compatible, with parameters mostly being within 1σ for the

two selections, and often being closer to nominal for multi-π.

These validation fits were run using an intermediate cross-section model made up of the
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one used for the 2017 oscillation analysis, which is described in more detail in [140], plus

normalisations for the CC ν and ν̄ cross-section, Coulomb corrections, and binding energy

dials.

288



Prior

RHC multi-track

πRHC multi-

Prior

RHC multi-track

πRHC multi-

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

µνND280 FHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

1−

0

1

2

(a) ND FHC νµ

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

µνND280 FHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x
2−

1−

0

1

2

(b) ND FHC ν̄µ

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

eνND280 FHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

1−

0

1

2

(c) ND FHC νe

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

eνND280 FHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

1−

0

1

2

(d) ND FHC ν̄e

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

µνND280 RHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

1−

0

1

2

(e) ND RHC νµ

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

µνND280 RHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

1−

0

1

2

(f) ND RHC ν̄µ

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

eνND280 RHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

1−

0

1

2

(g) ND RHC νe

 (GeV)νE
1 10

V
ar

ia
tio

n 
re

l. 
no

m
.

eνND280 RHC 

0.8

0.9

1

1.1

1.2

1.3

 (GeV)νE
1 10

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

1−

0

1

2

(h) ND RHC ν̄e

Figure J.1.: Comparison of ND280 flux parameters for RHC multi-π and multi-track data
fits using FHC only data.
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Figure J.2.: Comparison of SK flux parameters for RHC multi-π and multi-track data fits
using FHC only data.
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Figure J.3.: Comparison of interaction parameters for RHC multi-π and multi-track data fits
using FHC only data.
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Figure J.4.: Comparison of ND280 flux parameters for RHC multi-π and multi-track Asimov
fits using FHC and RHC data.
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Figure J.5.: Comparison of SK flux parameters for RHC multi-π and multi-track Asimov fits
using FHC and RHC data.
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Figure J.6.: Comparison of interaction parameters for RHC multi-π and multi-track Asimov
fits using FHC and RHC data.
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Figure J.7.: Comparison of ND280 flux parameters for RHC multi-π and multi-track data
fits using FHC and RHC data.
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Figure J.8.: Comparison of SK flux parameters for RHC multi-π and multi-track data fits
using FHC and RHC data.
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Figure J.9.: Comparison of interaction parameters for RHC multi-π and multi-track data fits
using FHC and RHC data.
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