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Abstract

5G networks are the next generation of mobile telephony systems, offering faster
speeds, more reliable connections and a platform for various vertical industries.
However, 5G also comes with potentially enormous privacy risks. It is therefore
crucial for a successful 5G future that these privacy issues be resolved at the earliest.
This thesis examines the current state of subscription privacy in 5G and highlights
outstanding privacy problems and viable approaches to their resolution.

One of the most pressing privacy concerns in mobile networks relates to the exposure
of the subscribers’ permanent identifier, known as IMSI-catching attack. Since these
identifiers uniquely identify the subscribers, malicious third parties in the past have
misused their exposure to physically locate and track subscribers. Although 3GPP,
the defacto international body for mobile telephony standardization, has introduced
a public-key based protection mechanism to counter this threat in 5G, the proposed
solution is marred with various shortcomings. Keeping in view the long-term deploy-
ment timeframes of 5G, the most significant of these shortcomings is the insecurity
of the proposed mechanism against a quantum adversary. This technical problem
of private identification in 5G remains open in symmetric-key settings; i.e. does
there exist an efficient symmetric-key solution for private identification in 5G? This
thesis answers this question positively and presents an alternative private identifi-
cation scheme for 5G that works within the symmetric-key domain and overcomes
the other limitations of the existing 3GPP scheme.

Another potent threat to 5G privacy is that of downgrade attacks, where a fake
base station forces the connection down to one of the previous generations and then
exploits the existing privacy vulnerabilities. Keeping this threat in mind, this thesis
also explores the feasibility of combining the symmetric private identification scheme
with a recent downgrade protection proposal to come up with a 5G identification
mechanism that is both quantum-secure and downgrade-resistant.

This problem of private identification within the symmetric-key domain is of interest
in other application areas too. The techniques utilized for the 5G private identifi-
cation scheme are further extended to address the problem of key establishment for
Wireless Body Area Networks (WBANs) in a privacy-preserving manner without re-
sorting to public-key cryptography. This is significant because the nodes in a WBAN
are energy constrained and require battery-efficient security solutions. Moreover, by
avoiding public-key cryptography, a quantum-secure key agreement solution with
advance security properties for the WBAN standard IEEE Std 802.15.6 is achieved.

5



Contents

1 Introduction 14
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Privacy - More Than A Modern Technological Issue . . . . . 15
1.1.2 Privacy in Mobile Telephony Systems . . . . . . . . . . . . . 15
1.1.3 Security and Privacy in WBANs . . . . . . . . . . . . . . . . 16
1.1.4 Moving Towards Quantum-Secure Standards . . . . . . . . . 16

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Associated Publications . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Background and Preliminaries 20
2.1 3rd Generation Partnership Project . . . . . . . . . . . . . . . . . . . 20
2.2 Evolution of Mobile Telephony Security . . . . . . . . . . . . . . . . 21
2.3 Mobile Telephony System Architecture . . . . . . . . . . . . . . . . . 22
2.4 Identifier Types and Terminologies . . . . . . . . . . . . . . . . . . . 24
2.5 Security Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Assumptions on Channels . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Assumptions on Parties . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Assumptions on Cryptographic Functions . . . . . . . . . . . 25

2.6 Initialization of Authentication . . . . . . . . . . . . . . . . . . . . . 26
2.7 The 5G-AKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Paging Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9 Lawful Interception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.10 Wireless Body Area Networks . . . . . . . . . . . . . . . . . . . . . . 30
2.11 WBAN System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.12 IEEE Std 802.15.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.13 Two Sides of the Same Coin . . . . . . . . . . . . . . . . . . . . . . . 32
2.14 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 State of Subscription Privacy in 5G 34
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Scope of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 The Past - Inherited Challenges . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 IMSI-catching . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 (Raw) IMSI-probing . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Unauthenticated IMEI Request . . . . . . . . . . . . . . . . . 38
3.3.4 GUTI Persistence . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.5 Mapping between GUTI and MSISDN . . . . . . . . . . . . . 39
3.3.6 C-RNTI based Tracking . . . . . . . . . . . . . . . . . . . . . 40
3.3.7 GUTI Reallocation Replay Attack . . . . . . . . . . . . . . . 40

6



CONTENTS

3.3.8 RRC Protocol Vulnerabilities / Misimplementations . . . . . 42
3.3.9 IMSI-based Paging . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.10 ToRPEDO Attack . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.11 Linkability of AKA Failure Messages . . . . . . . . . . . . . . 45

3.4 The Present - Privacy Improvements by Release 15 . . . . . . . . . . 46
3.4.1 Concealment of SUPI . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Strict Refreshment of GUTI . . . . . . . . . . . . . . . . . . . 47
3.4.3 False Base Station Detection Framework . . . . . . . . . . . . 48
3.4.4 Decoupling of SUPI from the Paging Mechanism . . . . . . . 49
3.4.5 GUTI-based Paging Occasions . . . . . . . . . . . . . . . . . 49
3.4.6 Secure Radio Redirections . . . . . . . . . . . . . . . . . . . . 49

3.5 The Future - Outstanding Issues, New Attacks and Proposed Measures 49
3.5.1 Unresolved Vulnerabilities . . . . . . . . . . . . . . . . . . . . 50
3.5.2 New Attacks on 5G Subscription Privacy . . . . . . . . . . . 50
3.5.3 Fixing LFM, AMA and LCA . . . . . . . . . . . . . . . . . . . 51
3.5.4 Quantum-secure and Downgrade-resistant SUPI Protection . 52
3.5.5 IBE-based SUPI Protection . . . . . . . . . . . . . . . . . . . 52
3.5.6 Study on Protection against False Base Stations . . . . . . . 54

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Efficacy of New Privacy Attacks against 5G-AKA 58
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 The 5G-AKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 The Logical Vulnerability . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Activity Monitoring Attack . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Location Confidentiality Attack . . . . . . . . . . . . . . . . . . . . . 63
4.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.1 Analysis of AMA . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.2 Analysis of LCA . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.3 The Curious Case of Out-of-Order Message Delivery . . . . . 67

4.7 Summary and Recommendations . . . . . . . . . . . . . . . . . . . . 68

5 An Alternative Proposal for SUPI Protection 70
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Countermeasures to IMSI-catchers in 5G . . . . . . . . . . . 70
5.1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.3 Chapter Contributions . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 The 5G-AKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Identity Privacy in 5G . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 ECIES-based Protection Scheme . . . . . . . . . . . . . . . . 76
5.4.2 Limitations of the 3GPP Protection Scheme . . . . . . . . . . 78

5.5 Towards Quantum-secure Identity Privacy . . . . . . . . . . . . . . . 79
5.5.1 System Setup Phase . . . . . . . . . . . . . . . . . . . . . . . 79
5.5.2 Identification Phase . . . . . . . . . . . . . . . . . . . . . . . 80
5.5.3 Update Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Security Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.1 Execution Environment . . . . . . . . . . . . . . . . . . . . . 84

7



CONTENTS

5.6.2 Adversary Queries . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6.3 Security Definitions . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Analysis of the Proposed Protection Scheme . . . . . . . . . . . . . . 89
5.7.1 Formal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.7.2 Other Improvements . . . . . . . . . . . . . . . . . . . . . . . 98

5.8 Parameter Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Mitigating Downgrade Attacks on 5G 101
6.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . 101
6.2 The Downgrade Protection Solution . . . . . . . . . . . . . . . . . . 103

6.2.1 LTE-AKA based Solution . . . . . . . . . . . . . . . . . . . . 105
6.2.2 5G-AKA based Solution . . . . . . . . . . . . . . . . . . . . . 107
6.2.3 Pseudonym Allocation and Removal Process . . . . . . . . . 110

6.3 Analysis of the Proposed Solution . . . . . . . . . . . . . . . . . . . 111
6.3.1 Pseudonym Synchronization . . . . . . . . . . . . . . . . . . . 112
6.3.2 Lawful Interception . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.3 Performance Overheads . . . . . . . . . . . . . . . . . . . . . 113

6.4 Quantum Security with Downgrade Resistance . . . . . . . . . . . . 113
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Privacy-Preserving Key Agreement for IEEE Std 802.15.6 118
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.1 Desired Objectives . . . . . . . . . . . . . . . . . . . . . . . . 118
7.1.2 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Li et al.’s Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.1 The Key Agreement Protocol . . . . . . . . . . . . . . . . . . 123
7.2.2 Analysis of the Li et al.’s Scheme . . . . . . . . . . . . . . . . 126

7.3 Our PPKA Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.1 PPKA-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3.2 PPKA-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.4.1 Why a Bespoke Solution? . . . . . . . . . . . . . . . . . . . . 134
7.4.2 Random Number Generation on WBAN Nodes . . . . . . . . 134
7.4.3 Post-Quantum Significance . . . . . . . . . . . . . . . . . . . 135
7.4.4 Why Timestamps? . . . . . . . . . . . . . . . . . . . . . . . . 135
7.4.5 Why Two Proposals? . . . . . . . . . . . . . . . . . . . . . . 135

7.5 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.5.1 Execution Environment . . . . . . . . . . . . . . . . . . . . . 136
7.5.2 Adversarial Interaction . . . . . . . . . . . . . . . . . . . . . . 138
7.5.3 Unlinkability . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.4 Cleanness Predicates . . . . . . . . . . . . . . . . . . . . . . . 140

7.6 Analysis of the PPKA Protocols . . . . . . . . . . . . . . . . . . . . 142
7.6.1 Security and Privacy Analysis . . . . . . . . . . . . . . . . . . 142
7.6.2 Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . 154

7.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8



CONTENTS

8 Conclusion 156
8.1 Contributions Summary . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.2 On Interaction with the Standardization Bodies . . . . . . . . . . . . 157
8.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 158

9



List of Figures

2.1 The mobile network architecture. The channel between UE and SN
is initially unprotected while that between SN and HN is assumed to
be protected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Initiation of authentication procedure. . . . . . . . . . . . . . . . . . 26
2.3 The 5G-AKA protocol and its associated failure mechanisms. . . . . 28
2.4 Generic architecture of a typical WBAN. . . . . . . . . . . . . . . . . 31

3.1 3GPP time-lines pertaining to various Releases. . . . . . . . . . . . . 35
3.2 GUTI reallocation procedure. . . . . . . . . . . . . . . . . . . . . . . 41
3.3 The LTE paging mechanism. . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Proposed fixes for 5G-AKA failure messages. . . . . . . . . . . . . . 53

4.1 The online phase of the AMA. . . . . . . . . . . . . . . . . . . . . . . 62
4.2 SQN inference algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Overview of the 5G-AKA protocol. . . . . . . . . . . . . . . . . . . . 75
5.2 Detail of ECIES-based protection scheme . . . . . . . . . . . . . . . 77
5.3 Our proposed protection scheme PQID. . . . . . . . . . . . . . . . . . 81
5.4 Algorithmic description of system setup phase. . . . . . . . . . . . . 81
5.5 Algorithmic description of identification phase. . . . . . . . . . . . . 82
5.6 Algorithmic description of update phase. . . . . . . . . . . . . . . . . 83
5.7 An algorithmic description of the SUPA security experiment. We

assume the existence of a function F that is capable of taking as
input a message m and the current internal state πsi .st of the protocol
execution and forwarding the inputs to either Update or Identify as
appropriate. We refer to the “test” session in the description of the
SUPA experiment as πb (and the other session as π1−b). . . . . . . . 86

6.1 Pseudonym state in UE and HN. . . . . . . . . . . . . . . . . . . . . 104
6.2 LTE-AKA based solution. The differences to the standard LTE-AKA

are highlighted in red. . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 5G-AKA based solution. The differences to 5G-AKA are highlighted

in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4 Combining PQID with 5G-AKA based downgrade protection solution.

The differences to Figure 6.3 are highlighted in red. . . . . . . . . . . 114
6.5 The amended PQID for the combined solution. The differences to

Figure 5.3 are highlighted in red. . . . . . . . . . . . . . . . . . . . . 115

7.1 Li et al.’s protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 The privacy dilemma of Li et al.’s scheme. . . . . . . . . . . . . . . . 127

10



LIST OF FIGURES

7.3 Protocol PPKA-1. Steps different from Li et al.’s protocol (Figure 7.1)
are highlighted in red. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Protocol PPKA-2. Steps different from PPKA-1 (Figure 7.3) are high-
lighted in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5 An algorithmic description of the PPKA-IND and PPKA-U security
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

11



List of Tables

2.1 Security evolution in mobile telephony generations. . . . . . . . . . . 22
2.2 Description of 5G-AKA parameters. . . . . . . . . . . . . . . . . . . 27

3.1 Summary of privacy attacks in the previous generations. . . . . . . . 37
3.2 Effect of 5G privacy enhancements upon existing attacks. . . . . . . 46
3.3 Important recent survey publications related to 5G security and privacy. 55

5.1 Description of 5G-AKA parameters. . . . . . . . . . . . . . . . . . . 74
5.2 Notation used in the proposed scheme. . . . . . . . . . . . . . . . . . 80

7.1 Comparison of security and privacy features. . . . . . . . . . . . . . 123
7.2 Notations used in Li et al.’s protocol. . . . . . . . . . . . . . . . . . . 124
7.3 Overheads associated with Li et al.’s scheme. . . . . . . . . . . . . . 129
7.4 Detail of additional symbols. . . . . . . . . . . . . . . . . . . . . . . 129
7.5 Overheads associated with PPKA protocol 1. . . . . . . . . . . . . . 155
7.6 Overheads associated with PPKA protocol 2. . . . . . . . . . . . . . 155

12



Abbreviations
2G: 2nd Generation mobile

telephone system

3G: 3rd Generation mobile

telephone system

3GPP: 3rd Generation Partnership

Project

4G: 4th Generation mobile

telephone system

5G: 5th Generation mobile

telephone system

AES: Advance Encryption Standard

AKA: Authentication and Key

Agreement

AMF: Access and Mobility

management Function

ARIB: Association of Radio

Industries and Businesses,

Japan

ARPF: Authentication credential

Repository and

Processing Function

ATIS: Alliance for Telecommunications

Industry Solutions, USA

AUSF: AUthentication Server Function

CCSA: China Communications

Standards Association

CT: Core network and Terminals

DH: Diffie-Hellman

ETSI: European Telecommunications

Standards Institutes

GSM: Global System for Mobile

communications

GUTI: Globally Unique Temporary

Identifier

HIPPA: Health Insurance Portability

and Accountability Act

IBC: Identity-Based Cryptography

IBE: Identity-Based Encryption

ICT: Information and Communications

Technology

IEC: International Electrotechnical

Commission

IEEE: the Institute of Electrical and

Electronics Engineers

IMSI: International Mobile Subscriber

Identity

IoT: Internet of Things

ISO: International Organization for

Standardization

KDF: Key Derivation Function

LTE: Long-Term Evolution

MAC: Message Authentication Code

ME: Mobile Equipment

NIST: National Institute of Standards

and Technology

PKG: Private Key Generator

RAN: Radio Access Network

SA: Services and systems Aspects

SUCI: SUbscription Concealed

Identifier

SUPI: SUbscription Permanent

Identifier

TLS: Transport Layer Security

TMSI: Temporary Mobile Subscriber

Identity

TSG: Technical Specification Group

TSDSI: Telecommunications Standards

Development Society, India

TTA: Telecommunications Technology

Association, Korea

TTC: Telecommunication Technology

Committee, Japan

UE: User Equipment

UICC: Universal Integrated

Circuit Card

UMTS: Universal Mobile

Telecommunications Service

USIM: Universal Subscriber

Identity Module

V2X: Vehicle to Everything

WBAN: Wireless Body Area

Network

WG: Working Group

13



Chapter 1

Introduction

This chapter provides an executive summary of the thesis. We explain the motivation

for our research and describe the structure and contributions of the thesis.

1.1 Motivation

This thesis is motivated by the application of recent cryptographic research to real-

world scenarios. The aim is to focus on practical research contributions, which have

the potential for widespread societal implications. One of the most viable way to

achieve this is to consider improvements to existing cyber security standards.

During the last few decades a broad range of standards have been developed covering

many areas of cyber security. These standards have been issued by national and

international standardization bodies, as well as by industry consortia. Many of these

standards have been very widely adopted - for example, the ISO/IEC 27000 series of

standards has become the default basis for information security management within

organizations. Despite their widespread use, there is always room for improvement

in these standards and a need to revise existing security standards.

Modern communication is evolving at a rapid pace, with new paradigms being in-

troduced by emerging ICT standards such as 5G. End-user privacy in these mod-

ern communication systems is of great importance because of the envisaged hyper-

connectivity and the potential of the unprecedented services (virtual reality, machine-

type communication, vehicle-to-everything, IoT, etc.) being offered. Much of the

emphasis within these emerging standards has been placed on provisioning of pri-

mary security guarantees such as confidentiality, integrity, authentication, etc., and

rightly so. However, pertinent privacy aspects that could have made it into the spec-

ifications with relatively little effort have often been overlooked during this process.

Moreover, a reliance on public-key cryptography in some of these communication
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standards puts them at risk of being vulnerable to quantum cryptanalysis. In this

thesis we focus on the privacy gaps along with the substitution of public-key cryptog-

raphy with symmetric cryptography to avert quantum threats. We identify security

and privacy gaps in two of the emerging communication standards, 5G and the IEEE

Std 802.15.6 and propose improvements to address these gaps.

1.1.1 Privacy - More Than A Modern Technological Issue

“Privacy is not about having something to hide. Privacy is about protec-

tion, and that is who you are and what you believe in. That is who you

want to become. Privacy is a self right. Privacy is what gives you the

ability to share with the world who you are on your own terms.”

The above statement, made back in 2016 by Edward Snowden [127], presents one of

the most contentious issues of the today’s modern society - privacy. In this digital

era, privacy has become even more important as it is not just another technological

question but, many would argue, a fundamental human right. Privacy is a concept

that cuts across many areas: for example, it can be concerned with something as

simple as an opt-in or opt-out to an online marketing survey, or it can concern the

tracking of one’s online and offline activity. In the context of modern communication

systems, privacy is usually concerned with one’s personally identifying information,

such as a subscriber’s long-term credentials in the case of mobile telephony sys-

tems or an individual’s health data in the case of Wireless Body Area Networks

(WBANs) [70, 86].

1.1.2 Privacy in Mobile Telephony Systems

With the passage of time, we have come to rely more and more on our mobile phones.

These devices have become part and parcel of our daily lives. It is now more impor-

tant than ever before that end-user privacy be ensured in mobile telephony systems.

The segment of mobile telephony systems where privacy controls are required the

most is the radio access network, which is the most vulnerable to various privacy

threats. In this thesis we analyze privacy controls for the 5G radio access network,

point out the shortcomings and propose appropriate improvements.
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1.1.3 Security and Privacy in WBANs

Another area of increasing concern is the security and privacy issues facing our

health data. Health-related data has been shown [57] to be worth more than any

other type of data record. This is because health information has a long shelf-life and

is unalterable. With an ever-increasing aging population [111], remote healthcare

seems to be the way forward. WBANs have emerged as a key technology for the

realization of remote healthcare systems. IEEE Std 802.15.6 [3] is the international

standard for WBANs.

Compliance requirements for health-related data, such as the U.S. based HIPPA

Privacy Rule [117], try to ensure that privacy is upheld. But laws like HIPPA still

need to be augmented with robust security standards concerning the underlying

technologies such as WBANs, which should respect privacy as a right of the patient.

Unfortunately, in the case of IEEE Std 802.15.6 this has not been the case. This

thesis addresses this issue for IEEE Std 802.15.6.

1.1.4 Moving Towards Quantum-Secure Standards

Many examples of a preference for public-key cryptography can be witnessed in the

latest communication standards. While it is true that key distribution and manage-

ment are relatively easy to handle in the public-key domain, a reliance on public-key

cryptography puts standards at risk of being vulnerable to quantum cryptanalysis.

Moreover, key management becomes a “real” issue only when the number of users

grows, which is not always the situation for some standards. For example, in IEEE

Std 802.15.6, the maximum number of users that a WBAN is allowed to handle is

64 [3]. It is thus arguable, in this case, that the risk exposure greatly outweighs

the purported benefits. Hence, it is worth considering whether it is possible to re-

place public-key cryptography with symmetric-key cryptography to avoid exposure

to future quantum threats.

1.2 Research Contributions

The contributions of this thesis can be summarized as follows:

� This thesis presents a comprehensive literature review of subscription privacy

on the 5G wireless interface. Moreover, various aspects of subscription privacy
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are contextualized in chronological order, which provides an insight into the

standards' development cycle. We highlight privacy issues that are yet to be

addressed by the 5G standard. To address the identified privacy gaps, we also

propose improvements for future versions of the 5G standard.

� The thesis also provides an analysis of the privacy attacks on 5G by [38]. The

findings of our analysis contradict some of the claims made in [38]. Specifically,

we show that the activity monitoring attack is infeasible to execute in 5G

networks. We also demonstrate that the location confidentiality attack is a

direct extension of an existing privacy vulnerability that exploits linkability of

the authentication failure messages.

� We propose an alternative identification scheme which overcomes the limi-

tations of the current public-key based identification mechanism of the 5G

standard. We also develop a novel security framework titled Symmetric Up-

datable Private Authentication (SUPA) and provide a detailed formal security

and privacy analysis of the proposed scheme in this framework.

� The existing identity protection mechanism of 5G and our alternative proposal

are both vulnerable to downgrade attacks; i.e. an active attacker is able to

force the connection down to one of the previous generations and exploit known

vulnerabilities. This thesis also shows how a downgrade protection proposal

for 5G [89] can be seamlessly integrated with our identity protection scheme to

come up with a quantum-secure and downgrade-resistant identification mech-

anism for 5G.

� We propose two key agreement protocols for IEEE Std 802.15.6. These proto-

cols, in addition to being efficient and provisioning advance security properties,

also offer essential privacy attributes necessary for WBANs. The protocols are

also quantum-secure as they are independent of any public-key based oper-

ations. We also develop a formal security and privacy model called Privacy

Preserving Key Agreement (PPKA) in an appropriate complexity-theoretic

framework and prove the proposed protocols secure in this model.

1.3 Thesis Structure

Chapter 2 provides the requisite technical background and preliminary material

for Chapters 3 to 6. This chapter outlines the historical evolution of security and
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privacy in various generations of mobile telephony standards. It also provides a

description of the mobile telephony ecosystem and its pertinent security and privacy

mechanisms.

Chapter 3 reviews the current status of subscription privacy on the 5G radio inter-

face. Although 5G offers better privacy guarantees than its predecessors, this work

highlights that there still remain significant gaps which need rectifying.

Chapter 4 analyzes two privacy attacks on 5G by Borgaonkar et al. [38]. We evaluate

these attacks for their effectiveness, practicability and potency against 5G.

In Chapter 5, we present an alternative identity protection scheme for 5G which

utilizes only symmetric cryptographic primitives and formally analyze its security

and privacy properties.

In Chapter 6, we show how a downgrade protection proposal can be combined with

our alternative identification scheme to provide a quantum-secure and downgrade-

resistant private identification for 5G.

In Chapter 7, we further evolve the concepts and techniques which we develop in

Chapter 5 to come up with two key agreement protocols for another international

communication standard, the IEEE Std 802.15.6.

Finally, Chapter 8 provides concluding remarks and discusses future research direc-

tions.

1.4 Associated Publications

In the course of my PhD I have been fortunate to collaborate on my research ques-

tions with other talented researchers. In the following, I will expand on my role in

each of these pieces of work, but wish to emphasize that all work was a collaborative

effort, and could not have been possible without the contributions of all co-authors.

� Haibat Khan, Benjamin Dowling and Keith M. Martin. Identity Confiden-

tiality in 5G Mobile Telephony Systems. In 4th International Conference on

Security Standardization Research, SSR 2018, Darmstadt, Germany, Novem-

ber 26-27, 2018. Proceedings Ed. by Cas Cremers and Anja Lehmann, LNCS

Volume 11322, pp. 120-142, Springer, 2018 [83].
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In this work, we presented our proposal for an alternative identity protection

mechanism for 5G (Chapter 5). Being the main author, the overall conceptu-

alization, research and writing of the draft was undertaken by myself.

� Haibat Khan, Benjamin Dowling and Keith M. Martin. Highly Efficient

Privacy-Preserving Key Agreement for Wireless Body Area Networks. In 17th

IEEE International Conference On Trust, Security And Privacy In Comput-

ing And Communications, TrustCom 2018, New York, NY, USA, August 1-3,

2018, pp. 1064-1069, IEEE, 2018 [82].

This paper presented our key agreement protocols for WBAN standard IEEE

Std 802.15.6 (Chapter 7). The major write-up, initial conceptualization and

investigation was undertaken by me. Due to a limit on the number of pages

of the conference proceedings, an abridged version of our work was published

at this venue. A full version of this work is available online at https://

eprint.iacr.org/2020/045 and is currently under submission.

� Haibat Khan and Keith M. Martin. On the Efficacy of New Privacy At-

tacks against 5G-AKA. In Proceedings of the 16th International Conference

on Security and Cryptography, SECRYPT 2019, Prague, Czech Republic, July

26-28, 2019. Proceedings Ed. by M. S. Obaidat and P. Samarati, pp. 431-438,

SciTePress, 2019 [84].

This paper detailed our analysis and evaluation of the privacy attacks against

5G (Chapter 4). Most of the work including research, investigation, drafting,

etc. was undertook by myself.

� Haibat Khan and Keith M. Martin. A Survey of Subscription Privacy on the

5G Radio Interface - The Past, Present and Future. Journal of Information

Security and Applications, vol. 53(102537), pp. 1-17, Elsevier, 2020 [85].

This paper presents a state of the art survey of subscription privacy on the 5G

wireless channel (Chapter 3). Majority of the work on this project was carried

out by me.

Additionally, the following work was conducted during the course of this PhD but

is not included in this thesis:

� Haibat Khan. An Identity based Routing Path Verification Scheme for Wire-

less Sensor Networks. International Journal of Sensor Networks, vol. 26(1),

pp. 54-68, Inderscience Publishers, 2018 [81].

19

https://eprint.iacr.org/2020/045
https://eprint.iacr.org/2020/045


Chapter 2

Background and Preliminaries

This chapter provides the requisite technical background and introduces the notation

and symbolism for the rest of the thesis. It starts by outlining the standardization pro-

cess and the historical evolution of mobile telephony followed by a description of its

ecosystem and pertinent security and privacy mechanisms. Thereafter, background

regarding WBANs is described and the interconnection between mobile telephony and

WBANs security and privacy problems is explained.

2.1 3rd Generation Partnership Project

The 3rd Generation Partnership Project (3GPP) is the de facto international body

responsible for mobile telephony standardization. 3GPP unites seven telecommu-

nications standard development organizations (ARIB, ATIS, CCSA, ETSI, TSDSI,

TTA, TTC), known as “Organizational Partners”, and provides their members with

a stable environment to produce the reports and specifications that define 3GPP

technologies. The project covers cellular telecommunications technologies, includ-

ing radio access, core network and service capabilities, which provide a complete

system description for mobile telecommunications. The three Technical Specifica-

tion Groups (TSG) in 3GPP are:

� Radio Access Networks (RAN);

� Services & Systems Aspects (SA);

� Core Network & Terminals (CT).

The TSGs are further divided into specialized Working Groups (WGs). Most of

the work carried out on this thesis deals with the security and privacy aspects of

5G radio access technology and comes under the scope of SA WG3 (SA3), which
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is a specialized group responsible for security and privacy of 3GPP systems. SA3

performs analysis of potential threats to 3GPP systems. Based on the threat anal-

ysis, SA3 determines the security and privacy requirements for 3GPP systems, and

specifies the security architectures and protocols.

2.2 Evolution of Mobile Telephony Security

The First Generation (1G) of mobile telephony systems was based on analogue

technology whose commercial deployment started during the 1980s. Various 1G

technologies were deployed both regionally and globally, the most widespread of

which was AMPS (Advanced Mobile Phone System). 1G systems offered no security

to its users.

The first digital systems were introduced by the Second Generation (2G) of mobile

telephony which additionally provided SMS and data services along with voice. 2G

networks were commercially launched as Global System for Mobile Communications

(GSM) in 1991 in Finland. As indicated in Table 2.1, 2G plugged glaring holes in

1G security, offering payload encryption and authentication of mobile subscribers to

the networks.

The Third Generation (3G) of mobile telephony introduced in 2001 as Universal

Mobile Telecommunications Service (UMTS) upgraded 2G systems for faster data

transfer speeds (at least 144 kbit/s) and paved the way for mobile broadband access.

The security improvements in 3G systems were also significant. One-way authenti-

cation was transformed into mutual authentication between mobile subscribers and

their service providers. Moreover, publicly-known encryption and integrity algo-

rithms with improved key lengths (128-bits) were introduced.

The Fourth Generation (4G) systems, which commercially debuted as Long Term

Evolution (LTE) in 2009 in Norway, re-utilized a few of the 3G encryption and

integrity algorithms. One security improvement that 4G offered was that the au-

thentication protocol additionally assured the mobile subscriber of the identity1 of

its service provider. Moreover, from 4G onwards, use of different encryption and

integrity algorithms resulted in the derivation of distinct keys, unlike earlier gener-

ations.

The latest Fifth Generation (5G) of mobile telephony systems has recently been

1In 3G, the user was only assured of the legitimacy of the service provider.

21



2.3 Mobile Telephony System Architecture

Table 2.1: Security evolution in mobile telephony generations.

Security Aspect 1G 2G 3G 4G 5G

Authentication No One-way Mutual
Proves the ex-
act network to
the user

Prevents roam-
ing billing fraud

Cipher Key
Length

No 54/64-bits 128-bits 128-bits 128-bits

Encryption
Algorithm
Strength

N/A Weak Strong Strong Strong

Public Algorithms N/A Not Public Public Public Public

Distinct Keys for
Algorithms

No No No Yes Yes

Signalling In-
tegrity

No No Yes Yes Yes

Traffic Integrity No No No No Yes

standardized and is now undergoing commercial deployment. The significant secu-

rity enhancements offered by 5G systems are the ability to integrity protect user

plane traffic (payload) in addition to the control plane traffic (signalling), and the

protection from roaming billing fraud by giving increased control to the home net-

work during the execution of the authentication and key agreement protocol. In

5G, the home network of the mobile subscriber is also provided with a proof of

authentication after a successful user authentication (see §2.7 for more details).

2.3 Mobile Telephony System Architecture

The mobile telephony architecture consists of three main domains; Home Network

(HN), Serving Network (SN) and User Equipment (UE) (see Figure 2.1). The sub-

scribers carry UE, which typically refers to Mobile Equipment (ME) (the phone)

containing a Universal Integrated Circuit Card (UICC) (the SIM card). The HN

domain represents the network functions that are conducted at a permanent loca-

tion regardless of the location of the subscriber. The HN is where a subscription

initially gets registered. It stores the subscribers’ credentials and is responsible for

management of subscription information. The SN domain is the part which provides

the subscribers access to the telephony network and its services. It represents the

network functions that are local to the user’s access point and thus their location

changes when the user moves. The SN is responsible for routing calls and transport

of user data/information from source to destination. It has the ability to interact
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with the HN to cater for user-specific data/services.

Often UEs may have to operate in areas where their operators have no network cov-

erage (i.e., base stations). In such scenarios called roaming, other service providers,

who have a roaming agreement with the subscriber’s operator, provide SN services.

Hence, in this paper, we treat SN as a semi-trusted entity to whom a subscriber’s

long-term credentials can not be exposed (barring a few exceptions). Note that ac-

cording to the 3GPP standard [14], HNs and SNs are further divided into logical

sub-entities. The security and privacy properties being discussed in this thesis do

not require this level of granularity.

(a) When not roaming, both HN and SN belong to the same mobile network operator.

(b) When roaming, the SN and HN belong to distinct mobile network operators.

Figure 2.1: The mobile network architecture. The channel between UE and SN is
initially unprotected while that between SN and HN is assumed to be protected.

It is within the UICC that the application Universal Subscriber Identity Module

(USIM) runs. The USIM represents the relationship between a subscriber and its

issuing HN. During a subscription registration, the HN stores the subscriber’s long-
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term identifier, Mobile Station International Subscriber Directory Number (MSISDN)

(the telephone number) and other subscriber related data, including a 128-bit se-

cret key K and 48-bit monotonically increasing counters called Sequence Numbers

(SQNs), within the USIM. The key K never leaves the USIM and any processing

that requires key K as an input is executed within the USIM. These SQNs are uti-

lized for the purpose of replay prevention. While an SQN should be synchronized

between the UE and HN, sometimes it may become out-of-sync due to the loss of

messages on the wireless channel. We therefore use SQNUE and SQNHN to refer to

the state of SQN in UE and HN respectively. These subscription parameters are also

stored within the HN’s database and form the basis of a security context between

UEs and HNs and by extension (during roaming) between UEs and SNs. The SNs

provision services to UEs after establishment of a secure channel between them with

help of the HNs.

2.4 Identifier Types and Terminologies

In mobile telephony systems, networks allocate to each subscriber a unique long-term

identifier, known up to 4G as a International Mobile Subscriber Identity (IMSI)

and since 5G as a Subscription Permanent Identifier (SUPI). A SUPI, as defined

in 3GPP TS 23.501 [15], is usually a string of 15 decimal digits and acts as the

long-term identifier of an individual subscriber. The first three digits represent the

Mobile Country Code (MCC), while the next two or three form the Mobile Network

Code (MNC), which identifies the network operator. The length of the MNC field

is a national affair. The remaining (nine or ten) digits are known as the Mobile

Subscriber Identification Number (MSIN) and represent the individual user of that

particular operator. Each decimal digit of the SUPI is represented in binary by

using the Telephony Binary Coded Decimal (TBCD) encoding [12].

Authentication between a user and its service provider is based on a shared sym-

metric key (details in §2.7), which means it can only take place after an initial user

identification. However, if the IMSI/SUPI values are sent in plaintext over the ra-

dio link for this purpose, then subscribers can be identified, located and tracked

using these permanent identifiers. To avoid this privacy breach, subscribers are

assigned temporary identifiers called Globally Unique Temporary User Equipment

Identities (GUTIs) by the SNs. A GUTI uniquely and globally identifies a partic-

ular subscriber. These frequently-changing temporary identifiers are then used for
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identification purposes over the wireless link before the establishment of a secure

channel.

The International Mobile Equipment Identity (IMEI), which uniquely identifies the

ME, is a string of 15 digits. If the IMEI is sent in plaintext over the radio inter-

face then it could compromise user privacy as it is also uniquely identifying from

a subscription viewpoint. However, the 3GPP specifications prohibit a UE from

transmitting the IMEI until after establishment of a secure channel with the net-

work [118].

2.5 Security Assumptions

2.5.1 Assumptions on Channels

According to 3GPP TS 33.501 (sub-clause 5.9.3) [14], the channel between SN and

HN should provide confidentiality, integrity, authentication and replay prevention.

The channel between UE and SN, essentially being a wireless one, is subject to

eavesdropping, interception and injection of messages by malicious third parties.

2.5.2 Assumptions on Parties

The USIM and its associated HN are fully trusted entities. The shared secret data

being stored by these two entities is assumed to be protected from third parties.

Specifically, the UICC (upon which USIM is stored) is considered to be a tamper-

resistant security module whose contents cannot be read by a malicious entity. MEs

are semi-trusted devices because the long-term key K of the USIM is never revealed

to them. SNs are also semi-trusted entities in the sense that during the secure

channel establishment the long-term shared secret keyK and sequence numbers SQN

should not be revealed to them while SUPI is provisioned to them. The provisioning

of SUPI is essential for accurate billing purposes.

2.5.3 Assumptions on Cryptographic Functions

All the cryptographic functions (detailed in §2.7) are assumed to provision both

confidentiality and integrity protection to their respective inputs.
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UE
(SUPI, K, SQNUE)

SN
(SNname)

HN
(SUPI, K, SQNHN )

Authentication Method Selection

5G-GUTI
(Registration Request message)

SUPI, SNname

(Authenticate Request message)

(a) Authentication procedure utilizing 5G-GUTI.

UE
(SUPI, K, SQNUE)

SN
(SNname)

HN
(SUPI, K, SQNHN )

1. SUCI to SUPI de-concealment
2. Authentication Method Selection

(Identifier Request message)

SUCI
(Identifier Response message)

SUCI, SNname

(Authenticate Request message)

(b) Authentication procedure utilizing SUCI.

Figure 2.2: Initiation of authentication procedure.

2.6 Initialization of Authentication

As we will see in §2.7, secure channel establishment between subscribers and their

service providers is done via challenge-response protocols which are based upon the

shared secret key K. Thus, before such protocols can be executed, it is imper-

ative that the service provider correctly identifies the subscriber with whom this

channel needs to be established. 3GPP TS 33.501 (sub-clause 6.1.2) [14] details

the procedures for this subscription identification and selection of the subsequent

authentication method. The same is being depicted pictorially in Figure 2.2.

The SN may initiate an authentication with the UE during any procedure estab-

lishing a connection with the UE. The UE sends the SN either the 5G-GUTI in a

registration request message (Figure 2.2a) or the Subscription Concealed Identifier

(SUCI) as a response to an identifier request message (Figure 2.2b). SUCI is a

randomized public-key encryption of SUPI (see §5.4 for details). In the case of a

5G-GUTI, the SN extracts the corresponding SUPI from its database and forwards

it along with its global identity Serving Network Name (SNname) to the HN in an

authenticate request message. Otherwise, the SUCI is sent instead of the SUPI.

Upon receipt of the authenticate request message, the HN checks whether the SN is

entitled to use the serving network name in the request message by comparing the
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Table 2.2: Description of 5G-AKA parameters.

Parameter Content/Description

RAND Random Challenge
AK Anonymity Key
CK Confidentiality Key
IK Integrity Key
RES Response
MAC Message Authentication Code
CONC Concealed Sequence Number
AUTN Authentication Token
AUTS Resynchronization Token
XRES Expected Response
HRES/HXRES Hash of RES/XRES
KAUSF Intermediate Key
KSEAF Anchor Key

incoming serving network name with the expected serving network name. The HN

stores the received serving network name temporarily. If the SN is not authorized

to use the serving network name, the HN responds with a “serving network not

authorized” message. If the SUCI is received in an authenticate request message by

HN, it de-conceals the SUPI from it and chooses the authentication method based

upon its policy.

2.7 The 5G-AKA

The security of communication between telephony subscribers and their service

providers requires mutual authentication and key agreement. In 5G systems, these

requirements are fulfilled by either EAP-AKA' or 5G-AKA, which are both Au-

thenticated Key Agreement (AKA) protocols. EAP-AKA' and 5G-AKA are quite

similar, with identical message flows, but with a little difference in way the various

keys are derived. We therefore only consider 5G-AKA in this thesis. 3GPP TS

33.501 (sub-clause 6.1.3.2) [14] defines the details of the 5G-AKA protocol. The

security of 5G-AKA is based upon the shared symmetric key K, while SQN provi-

sions replay protection. To initiate authentication, the UE sends the SN either the

5G-GUTI in a registration request message, or the SUCI as response to an identifier

request message as explained in §2.6.

Figure 2.3 shows the 5G-AKA and its associated failure mechanisms. Table 2.2 de-

tails the various acronyms used in Figure 2.3. In this figure, RAND is a uniformly
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UE
(SUPI, K, SQNUE)

SN
(SNname)

HN
(SUPI, K, SQNHN )

RAND
$← {0, 1}128

AK ← f5(K,RAND)
MAC ← f1(K,SQNHN‖RAND)
CONC ← SQNHN ⊕AK
AUTN ← CONC‖MAC
CK, IK ← f3(K,RAND), f4(K,RAND)
XRES ← f2(K,RAND)
XRES∗ ← KDF (CK‖IK, SNname‖RAND‖XRES)
HXRES∗ ← SHA256(RAND‖XRES∗)
KAUSF ← KDF (CK‖IK, SNname‖CONC)
KSEAF ← KDF (KAUSF , SNname)
SQNHN ← SQNHN + 1

XCONC‖XMAC ← AUTN
AK ← f5(K,RAND)
XSQNHN ← XCONC ⊕AK
MAC ← f1(K,XSQNHN‖RAND)

Check (i) XMAC
?
= MAC

(ii) XSQNHN > SQNUE −4

SQNUE ← XSQNHN

RES ← f2(K,RAND)
...
RES∗ ← KDF (CK‖IK, SNname‖RAND‖RES)
KSEAF ← KDF (KAUSF , SNname)

HRES∗ ← SHA256(RAND‖RES∗)
Check HRES∗

?
= HXRES∗

Check RES∗
?
= XRES∗

MAC∗ ← f1
∗(K,SQNUE‖RAND)

AK∗ ← f5
∗(K,RAND)

CONC∗ ← SQNUE ⊕AK∗
AUTS ← CONC∗‖MAC∗

RAND,AUTN,HXRES∗RAND,AUTN

RES∗

RES∗

Success,KSEAF , [SUPI]

MAC Failure

Sync Failure, AUTS

If (i) and (ii) then:

If ¬(i) then:

If (i) and ¬(ii) then:

Figure 2.3: The 5G-AKA protocol and its associated failure mechanisms.

chosen 128-bit random number and functions f1,. . ., f5, f1
∗ and f5

∗ are symmetric

key algorithms. Functions f1, f2 and f1
∗ act as message authentication algorithms,

while f3, f4, f5 and f5
∗ are used as key derivation algorithms. Key derivation is per-

formed using the Key Derivation Function (KDF) specified in 3GPP TS 33.220 [11].

A successful 5G-AKA culminates in the derivation of the anchor key KSEAF by both

SN and UE from which further keys for subsequent communication are derived. The

two cases of authentication failure for the 5G-AKA are as follows:

1. MAC Failure: As the first step in authentication confirmation, the UE

checks whether the received MAC value is correct or not. In case of a failure

(Case ¬(i) in Figure 2.3), the UE replies with a MAC Failure message back

to the SN.
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2. Sync Failure: After MAC verification, the UE checks the freshness of the

sequence number SQNUE received in the authentication challenge. In case of

this failure (Case (i) and ¬(ii) Figure 2.3), it responds with a Sync Failure

message along with a re-sync token AUTS. Note that in Figure 2.3, the

sequence number freshness check is denoted by XSQNHN > SQNUE − 4.

What this actually means is that there is some “window” of size 4 within

which sequence numbers smaller than the current sequence number of UE will

be accepted given they previously had not been received by the UE. This

mechanism is there to handle out-of-order delivery of challenge messages from

HN to UE.

During the execution of 5G-AKA, it is crucial that SQN is protected from an eaves-

dropper during the exchange of messages between the UE and SN, as its exposure

may lead to the compromise of the identity and location of a subscriber. We will

see in §3.5.2 how SQN leakage can manifest into privacy vulnerabilities. Also note

from Figure 2.3 that at the culmination of a successful 5G-AKA, the HN provides

the SUPI of the UE to the SN. This is required essentially for two main purposes

- accurate billing and Lawful Interception (see §2.9). The SUPI is later also used

as an input to the key derivation functions between UE and SN. This ensures that

the SUPI value provisioned by the HN is the one claimed by the UE, otherwise the

communication breaks down.

2.8 Paging Messages

When a UE does not have any ongoing data transmissions, it enters an idle state in

order to preserve energy. If delivery of a network service like a call or SMS needs to be

delivered to the UE, the network probes the idle UE by sending a “paging” message

and the UE responds correspondingly. The paging procedure works because even

when in the idle state, the UE keeps on monitoring for the paging message at certain

device-specific time intervals. The device is able to preserve battery because, at other

times, it switches off its receiver. The idle UE decodes these broadcast probes and

if it detects its identity in these messages, it randomly acquires an available radio

channel and requests the concerned base station for “connection setup” for exchange

of further signalling messages. It is worth mentioning that a new authentication may

be initiated by the SN after the UE responds to a paging message.
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2.9 Lawful Interception

Lawful interception (LI) refers to the facilities in telecommunication networks that

allow law enforcement agencies with court orders or other legal authorization to

selectively wiretap individual subscribers. Usually network data collection under LI

is for the purpose of analysis or evidence. Such data generally consists of signalling

or network management information or, in fewer instances, the content of the com-

munications. The collection of data could or could not be in real-time and can be

performed in either core or edge network.

3GPP TS 33.126 [25] specifies various LI requirements for telecommunication op-

erators. As such not all requirements in this document will apply in all national

jurisdictions or to all 3GPP operator deployments. Various LI architectures and

functions are detailed in 3GPP TS 33.127 [24]. This document provides an LI archi-

tecture supporting both network layer based and service layer based interception.

3GPP TS 33.128 [26] describes the protocols and procedures required to perform

LI within a 3GPP network. It addresses both internal interfaces used internally

with a 3GPP network and external handover interfaces used to handover intercepted

communications to law enforcement. It describes the detailed targeting of commu-

nications in each point of interception within a 3GPP network and the information

that a point of interception needs to be able to capture. Furthermore, the detailed

data formats for both the internal and external interfaces are also defined.

2.10 Wireless Body Area Networks

Wireless Body Area Networks (WBANs) consist of miniaturized computing devices

with the aim to provide low power, short range, and extremely reliable wireless

communication within the surrounding area of the human body, supporting a vast

range of data rates for different applications [44]. These devices talk to a designated

centralized node (Hub) which further communicates with external networks via a

Gateway [110]. The general layout of a typical WBAN is illustrated in Figure 2.4.

Note that the Hub and Gateway are functionally two separate entities, but are

usually combined into a single physical node.
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Figure 2.4: Generic architecture of a typical WBAN.

2.11 WBAN System Model

We now describe a system model suitable for the deployment scenarios of WBANs.

In this model, a System Administrator (SA) initializes the network. The network is

composed of three types of nodes: a Hub Node (HN2), Intermediary Nodes (IN) and

Normal Nodes (N). As the HN is usually a resourceful device with better hardware

protection mechanisms in place, we assume it to be trusted and its long term secret

master key (kHN ) to be protected. As the role of HN is usually undertaken by

a modern smartphone in a generic WBAN, this argument is supported aptly by

the real-world example of the “FBI-Apple encryption dispute” [2] where, even for

resourceful parties like government agencies, it is not easy to crack into a smartphone.

Normal nodes N are resource-constrained and their transmission range is assumed

to be limited; in particular, they are not always able to communicate directly with

HN. Intermediary nodes IN are also located in and around the body but, at a

particular time instance, are in direct communication with both N and HN, thus

acting as intermediary nodes for the purpose of relaying traffic between HN and N

when required. We assume a Dolev-Yao [56] adversary A who can listen, modify

and synthesize any messages of his choice in this model.

2Note that the notation HN has also been used in this thesis to refer to the home network of
mobile telephony systems. However, within the context of WBANs, HN refers to the hub node.
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2.12 IEEE Std 802.15.6

Mindful of the peculiarities of communicating in and around the human body, the

IEEE published the standard IEEE Std 802.15.6 [3] for WBAN communications in

2012. Being part of the 802 series of IEEE standards, which comprises of a family of

networking standards that cover the physical layer specifications of technologies from

Ethernet to wireless, IEEE Std 802.15.6 describes the physical (PHY) layer and the

medium access control (MAC) sublayer for WBAN communication in accordance

with the IEEE 802 reference model. The standard contains three specifications of

PHY layer; narrowband, ultra wideband and human body communications. Direct

communication between a node N and a hub node HN transpire at the PHY layer

and MAC sublayer as specified in this standard. Additionally, the standard also de-

scribes the frame formats and various functional elements associated with the MAC

sublayer. As high-power transmissions are harmful to humans and WBAN nodes

are energy constrained, this standard provisions an optional two-hop communication

architecture via a relay node to enable nodes to communicate with the Hub node.

Message security services occur at the MAC sublayer, and security key generation

functionality can take place inside and/or outside the MAC sublayer. In addition to

conventional security guarantees, privacy is of utmost importance for typical target

application areas of WBANs such as healthcare and the military [136]. The elliptic-

curve based key agreement (termed as security association within the standard) pro-

tocols of IEEE Std 802.15.6 have been shown to have security weaknesses [134], but

also do not provide the privacy features that should be expected of a WBAN [102].

In Chapter 7 we propose two key agreement protocols for IEEE Std 802.15.6 which

in addition to the requisite security properties, also offer privacy guarantees. Next,

we discuss the interconnection between the works carried out in Chapters 5 and 7.

2.13 Two Sides of the Same Coin

As one progresses through this thesis, they may notice the similarities between the

techniques utilized for coming up with a private user-identification scheme for 5G

(Chapter 5) and the privacy-preserving key agreement protocols for IEEE Std 802.15.6

(Chapter 7). Both utilize only symmetric cryptographic primitives in a much similar

style and manner to cope with slightly varying problems. The reason for this is that

the threat model, associated trust assumptions, security and privacy objectives, etc.
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are quite similar for both scenarios, which enabled us to import techniques from

one setting to handle the problems of the other. In both settings, there is a central

trusted entity (home network for the mobile telephony and hub node for WBAN)

which can be bootstrapped securely, both demand similar kind of privacy guaran-

tees like anonymity and unlinkability and both want to avoid the use of public-key

cryptography. In the case of mobile telephony, we are only concerned with the user-

identification in a private manner which forms the basis of the later key agreement

via a separate 5G-AKA. However, in the case of WBANs, we go a step forward

and transform the private identification scheme into a full fledged key agreement

protocol.

Next we explain the evolution and developmental connections between the results

of Chapters 5 and 7. From a temporal viewpoint, the work in Chapter 7 was carried

out before than that of Chapter 5. The initial inspiration for the work of Chapter 7

came from Li et al.’s scheme [103]. After analyzing and later improving Li et al’s

scheme, it became clear that such techniques could also be utilized for the private

identification problem in mobile telephony networks. Note that by that time, the

public-key based identity protection scheme (see Section 5.4.1) was yet not pub-

lished by 3GPP. Though, the basic premise was same as that of WBAN, in mobile

telephony the various cryptographic guarantees were required to be ensured via the

already available primitives.

2.14 Chapter Summary

This chapter provided the background information for the mobile telephony systems.

It presented an overview of evolution of security through different generations of mo-

bile telephony. Further, the security architecture was outlined and pertinent security

and privacy mechanisms were reviewed. Specifically, various types of user identifiers

utilized within the mobile telephony systems along with the associated user identi-

fication and authentication protocols were detailed. Thereafter, an introduction to

WBANs and its international standard IEEE Std 802.15.6 was provided
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Chapter 3

State of Subscription Privacy in 5G

This chapter reviews the current state of subscription privacy in 5G systems. The

scope of the privacy study undertaken is limited to the wireless part of the 5G system

which occurs between the service provider’s base station and the subscriber’s mobile

phone.

3.1 Introduction

Mobile telephony subscribers’ personal information has become an attractive target

for online advertisements and other connected industries. Besides the commercial

arena, the Edward Snowden revelations show that national intelligence agencies also

collect telephony subscribers’ personal information on an unprecedented scale [67].

Apart from the danger that this personal information is utilized for nefarious political

agendas, it may also be misused for personal advantages. Thus, privacy has turned

out to be a primary consideration for end users when selecting and using a telephony

service today. From a regulatory compliance perspective, the EU General Data

Protection Regulation (GDPR) [137] obligations for protecting personal data of

subscribers are directly applicable to mobile telephony operators. With penalties

that can reach as high as EUR 20 million or 4 percent of total worldwide annual

turnover, there is a huge financial risk for mobile operators in the event of potential

non-compliance. Hence, protecting end-user privacy is all the more important for

the latest international mobile telephony standards such as 5G.

3GPP released the first documents pertaining to 5G at the end of the year 2017. The

development of the 5G system was planned in two phases: 5G Phase 1 (formally

called Release 15) and 5G Phase 2 (formally Release 16).As 5G Release 15 – the first

full set of 5G standards – was frozen 1 in June 2019 (see Figure 3.1), this seems to

be an appropriate occasion to undertake a comprehensive review of one of the most

1After ”freezing”, no additional functionality can be added to a Release.
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3.1 Introduction

Figure 3.1: 3GPP time-lines pertaining to various Releases.

prominent privacy aspects of 5G based mobile telephony, i.e., subscription privacy

on the wireless channel.

5G security and privacy documentation [14] often refers to previous generations for

elaboration of various security and privacy requirements. The same is true in the

case of subscription privacy where Release 15 refers to 3GPP TS 33.102 [9] for the

requirements which are listed below:

� User Identity Privacy: The permanent identity of a user to whom a service

is delivered cannot be eavesdropped on the radio access link.

� User Location Privacy: The presence or the arrival of a user in a certain

area cannot be determined by eavesdropping on the radio access link.

� User Untraceability: An intruder cannot deduce whether different services

are delivered to the same user by eavesdropping on the radio access link.

An important point to note here is that the use of the phrase “cannot be eaves-

dropped” in the above statements should not be misinterpreted if it only refers to

a passive adversary 'eavesdropping' on the radio interface. This certainly is not the

case here and a few previously published papers [33] fell prey to this misnomer.

3GPP has always considered active adversaries for its security and privacy scenarios.

A pertinent example of this is the 3GPP study TR 33.899 [8] which was conducted to
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collect, analyze and further investigate potential security threats and requirements

for 5G systems and contains explicit references to active adversaries.

In this chapter, we provide an overview of the state of subscription privacy on the 5G

radio interface. Keeping the aforementioned privacy objectives in mind, this chapter

evaluates, systematizes, and contextualizes the requisite aspects of 5G subscription

privacy in three chronological categories; past, present and the future. The past

category looks at the state of subscription privacy before the advent of 5G Release

15. In present, the improvements provisioned to user privacy by Release 15 are

explored. Finally, the future category discusses the privacy aspects which still could

be improved in subsequent Releases.

The rest of the chapter is organized as follows: §3.2 discusses the scope of the privacy

study while §3.3 details the past vulnerabilities. 5G Release 15 improvements are

discussed in §3.4. §3.5 highlights the outstanding issues and new vulnerabilities.

§3.6 discusses the related work and §3.7 concludes the chapter.

3.2 Scope of the Study

There are three aspects which play a pivotal role in defining the scope of the study

undertaken in this chapter:

� We confine the privacy study undertaken in this chapter to the wireless part of

the 5G system. This is primarily because this medium is open and can easily

be exploited by any malicious party and, as a result, is the most vulnerable.

� In this study only those aspects of subscription privacy are discussed which

come under the purview of 3GPP. Modern-day smart phones have evolved into

powerful devices with functionality that goes beyond just telecommunications.

These multitasking devices are now being utilized for all sorts of computational

purposes which may or may not affect the end-user privacy that 3GPP is trying

to protect. There are numerous other sources of leakage affecting user privacy

such as Wi-Fi [74], Bluetooth [75], etc. which do not fall under the purview

of 3GPP. We do not consider privacy leakages via these other sources in this

work.

� Lastly, as work on 3GPP Release 16 (Phase 2 of 5G) is still under active

development, we do not consider the ever-evolving Release 16.
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Table 3.1: Summary of privacy attacks in the previous generations.
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3.3.1 IMSI-catching [118], [120], [108], [53], [52], [113], [104],
[63]

3.3.2 (Raw) IMSI-probing [51]

3.3.3 Unauthenticated IMEI Request [120], [53], [113]

3.3.4 GUTI Persistence [32], [129]

3.3.5 GUTI-MSISDN Mapping [129], [97], [114], [72]

3.3.6 C-RNTI based Tracking [77]

3.3.7 GUTI Reallocation Replay Attack [32], [30]

3.3.8 Localization through Measurement Reports [129], [61] ?

3.3.9 IMSI-paging Attack [31], [129], [32], [132]

3.3.10 ToRPEDO Attack [73]

3.3.11 AKA Protocol Linkability Attack (LFM) [32], [31], [39]

Legend: = yes, applicable = partially/limited/optional = no, not applicable ? = property unknown

3.3 The Past - Inherited Challenges

The first and foremost task for 5G Release 15 was to address the privacy vulner-

abilities that existed in the previous generations. Hence, before we discuss the

improvements offered by Release 15, we take a look at the vulnerabilities that al-

ready existed in the early generations that affect subscription privacy on the radio

channel. Table 3.1 provides a summary of the attacks on subscription privacy in

earlier generations.

3.3.1 IMSI-catching

As mentioned in §2.4, for obvious privacy reasons, GUTI is utilized for subscription

identification purposes over the wireless interface before the establishment of a secure

channel. However, there are certain situations where authentication through the use

of these temporary identifiers is not possible. For instance, when a user registers with

a network for the first time and is not yet assigned a temporary identifier. Another

case is when the network is unable to resolve the IMSI from the presented GUTI.

An active man-in-the-middle adversary can intentionally simulate this scenario to

force an unsuspecting user to reveal its long-term identity. These attacks are known

as “IMSI-catching” attacks [104] and persist in mobile networks including LTE [108,

118].
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IMSI-catching attacks have threatened all generations of mobile telephony for

decades [63]. In IMSI-catching, the attacker through the use of identifier request

messages (§2.6) can get the identities of every subscriber present in the attack area.

The attacker needs no previous assumption of who might be there, and needs no

previous information about the victim. Thus, it is a powerful attack, breaching the

subscription privacy completely. IMSI-catching is well documented as a Key Issue2

in 3GPP TR 33.899 (sub-clause 5.7.3.2) [8].

3.3.2 (Raw) IMSI-probing

In its discussions, 3GPP distinguishes between “IMSI-catching” and “IMSI-probing”.

IMSI-probing is where an attacker already knows the subscription identity, like an

IMSI or an MSISDN plus some associated information, and wants to find out whether

the subscriber with this identity is present in a given area. This is a far less pow-

erful attack than IMSI-catching. There are many possible ways to carry out such

an attack, for example by sending a bunch of (if possible silent [51]) SMSs or other

“activity triggers” to the target MSISDN and seeing whether there is a correspond-

ing flurry of signalling in the cell being tested. Preventing all sorts of IMSI-probing

attacks would be difficult and would involve a lot of overhead, such as including ex-

tensive dummy signalling to conceal when the real signalling happens. Consequently,

it was not thought worthwhile to try addressing by 3GPP.

3.3.3 Unauthenticated IMEI Request

In GSM and UMTS systems, it was possible for an attacker to request the subscriber

for its IMEI via an unauthenticated identity request message [53, 113, 120]. How-

ever, from LTE onwards, such provisions were removed and now the network can

only request the user for its IMEI after establishment of a secure channel between

them [16]. However, under certain special circumstance, e.g., when the UE has no

IMSI or no valid GUTI during emergency attach, the IMEI is sent before a secu-

rity context is activated. This is to restrain the misuse of ME for placing invalid

emergency calls [6].

2Key Issue is the terminology used in 3GPP studies for potential security or privacy problem.
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3.3.4 GUTI Persistence

Temporary subscriber identifiers like GUTI are used as a privacy measure to mitigate

subscription identification and tracking by eavesdroppers on the radio link, making

it harder to track the location or activity of a particular subscriber. In LTE, the

updating of GUTI is recommended on the following occasions:

� When the SN gets changed or during a new attach procedure;

� During a Tracking Area (TA) update;

� When the SN issues a “GUTI reallocation command”.

The major problem with the mechanism of GUTI allocation in the current LTE

system is that it is up to the SN policy configuration when, and if at all, to reallo-

cate the GUTI. It is also possible for the SN to keep (re)allocating the same GUTI

to the UE. The UE neither takes part in the generation of the GUTI nor verifies

the freshness of the newly allocated GUTI. This opens up possibilities for either

poor implementations or poor configuration that keeps the GUTI the same for a

long time. Evidence of these poor practices has been found in real mobile network

operators [129, 32] where the operators tend not to frequently update the GUTI

on these occasions. The reason ascribed to such practices is to avoid the signalling

storms [27] within the networks. In LTE networks, acquiring or tracking the tempo-

rary subscription identifiers has been one of the most prominent attack strategies in

compromising the subscription privacy [129]. GUTI persistence has been identified

as a Key Issue in 3GPP TR 33.899 (sub-clause 5.7.3.1) [8].

3.3.5 Mapping between GUTI and MSISDN

These attacks are somewhat related to the IMSI-probing ones, but are more fine-

grained. In these attacks, the attacker starts with similar assumptions about know-

ing one of the subscription long-term identities and the aim is to locate and then

further trace that subscriber. The attack uses the usual techniques of either ini-

tiating phone calls [97] or sending silent SMSs [114] to the target MSISDN. This

results in triggering of their paging procedures which ultimately leads to a mapping

between the known identity (usually MSISDN) and the GUTI [72]. This enables

an attacker to track a particular subscriber over a long duration due to infrequent

updating of GUTI in LTE (as already detailed in §3.3.4). Note that in these attacks
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paging messages are sought by the attackers instead of looking out for a generic

signalling flurry.

3.3.6 C-RNTI based Tracking

The Cell Random Network Temporary Identifier (C-RNTI) is a physical layer 16-

bit identifier unique within a given cell and is assigned to each device during the

“Random Access Procedure” (see Section 3.3.9 for details). Passive analysis of real

LTE traffic has revealed that the C-RNTI is included in the header (in unencrypted

form) of every single packet [77]. This leads to linking of the radio traffic (both

user and control plane) by a passive adversary. Further mapping to a user’s GUTI

or MSISDN is trivial and can be undertaken via the use of silent text messages.

Through tracking of the C-RNTI value, an attacker can easily determine how long

a given user stays at a given location.

Further analysis of captured LTE traffic has revealed that during mobility handover

events these physical layer identifiers can be linked together. This leads to trace-

ability of users when they move from cell to cell. This was because the captured

handover triggering messages were sent in the clear. According to the response of

the standardization bodies, these messages are not suppose to be in the clear.

3.3.7 GUTI Reallocation Replay Attack

As explained in §2.4, subscribers communicate with the networks using GUTIs as

their identifiers for privacy purposes. To avoid traceability of subscribers based upon

GUTI, it is imperative that these temporary identifiers are updated frequently. To

update the GUTI, the mobile networks use a process called “GUTI Reallocation

Procedure” (sub-clause 5.4.1 of TS 24.301 [22]). Figure 3.2 depicts this procedure

as defined for LTE in [22]. In this figure, oGUTI depicts the old GUTI and nGUTI

is the new GUTI, while CK is the “confidentiality key”. The procedure works as

follows:

� The UE identifies itself to the network on a dedicated channel via its currently

allocated temporary identifier oGUTI.

� The network identifies the UE and establishes the means of ciphering for sub-

sequent communication.
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UE
(IMSI, oGUTI, CK)

Network
(IMSI, oGUTI, CK)

new nGUTI

deallocate oGUTI deallocate oGUTI

oGUTI

{GUTI REALLOC CMD, nGUTI, nLAI}CK

{GUTI REALLOC COMPLETE}CK

Ciphering management; CK established

Figure 3.2: GUTI reallocation procedure.

� Thereafter, a new GUTI (nGUTI) is sent to the UE in a message encrypted

with CK via a GUTI Reallocation Command. If required, this message may

also contain the identity of the current location area (nLAI).

� Upon receipt of the GUTI reallocation command, the GUTI replies via the

GUTI Reallocation Complete message to acknowledge receipt of the new

GUTI.

If the network does not receive the expected acknowledgment from the UE, it main-

tains both oGUTI and nGUTI for the concerned IMSI. The standard defines two

methods for the means of ciphering; i.e. for the establishment of the confidentiality

key CK: (1) either a new key is established via the authentication procedure or

(2) a previously established ciphering key is restored via the security mode setup

procedure. The option of using the restored keys allows a linkability attack on the

GUTI reallocation procedure [32, 30]. As the GUTI Reallocation Command does

not contain a replay protection mechanism, an adversary is able to exploit this weak-

ness. The adversary first captures a GUTI reallocation command. Later, when the

UE has already updated its GUTI but not yet the ciphering key CK, the attacker

replays the captured reallocation command. The victim UE has no way to detect

this replay attack. It successfully decrypts this reallocation command and replies via

a GUTI Reallocation Complete message. This allows the adversary to distinguish

the target UE from any other, as other UEs will not be able to decrypt the reallo-

cation command and hence will not reply the completion message, even though in
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the meantime the target UE was assigned with an updated GUTI. This results in

the adversary being able to track the target user with minimal effort.

3.3.8 RRC Protocol Vulnerabilities / Misimplementations

The Radio Resource Control (RRC) protocol is used to set up and manage the radio

connectivity between the UE and SN. The major functions of the RRC protocol

include connection establishment and release functions, broadcast of system infor-

mation, radio bearer establishment, reconfiguration and release, RRC connection

mobility procedures, paging notification and release, etc. Within the protocol stack,

it exists at the network (IP) layer. The RRC protocol is specified in 3GPP TS

25.331 [13] for UMTS and in 3GPP TS 36.331 [17] for LTE. In LTE, when the UE

selects a cell in RRC idle mode, it does not validate whether the base station is

authentic or fake. As a result, the UE may clamp on to a rogue base station. So far,

the mobile telephony systems have focused on providing secure communication in

the RRC connected state and security aspects in RRC idle state have not been con-

sidered. This vulnerability of UE to false base station attacks during the RRC idle

state has been acknowledged as a Key Issue in TR 33.899 (sub-clause 5.4.3.1) [8].

The LTE RRC protocol also contains a “network information broadcast” function

in which GUTIs associated with the SNs are broadcasted over the air [129]. These

broadcasts are neither encrypted nor authenticated, hence can be decoded easily

by an adversary. Since these broadcasts are location specific, techniques described

in [97] can be exploited to reveal presence of subscribers in that specific area (a type

of IMSI-probing attack, as explained in § 3.3.2). Another type of RRC message

which contains subscriber-specific sensitive information is the “UE measurement

report”. In particular, two types of UE measurement reports have been exploited

in the literature [129] to compromise location of subscribers:

� Measurement Report: Measurement report is a necessary part of the han-

dover procedure of LTE networks. The SN sends a “measurement configura-

tion” message to the UE indicating what type of measurement is to be per-

formed. In response, the UE compiles and sends the appropriate measurement

report. The earlier LTE specifications (Version 12.5.0 of TS 36.331 and earlier)

allowed transmission of these RRC messages before establishment of a secu-

rity context between the UE and SN. This has been exploited to compromise

the location of subscribers by decoding of the location information contained
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within these messages [129, 61]. However, later the specification was updated

to allow measurement report transmission only after establishment of the se-

curity context between UE and SN. Although the attack descriptions in [129]

mention “mapping between GUTI and IMSI via semi-passive attacks”, it is

unclear whether knowledge of the victim’s IMSI contributes towards these at-

tacks - hence the property unknown label (?) in Table 3.1.

� Radio Link Failure (RLF) Reports: RLF reports are used to troubleshoot

signal coverage issues. These reports contain serving and neighboring base

stations’ identifiers along with their corresponding power measurements, which

can be used as inputs to trilateration techniques such as [42] to determine

an accurate position of the UE. The LTE standard (Appendix A.6 of [17])

does not allow transmission of RLF reports before establishment of a security

context between the UE and SN. However, practical investigations [129] of real-

world mobile networks has found that LTE phones (baseband processor to be

more specific) do transmit these reports without a security context, leading to

location leaks of the subscribers. This shows that the related guidelines within

the standard are vague and ambiguous (described in an appendix located at

the end of a 900+ page document), which leads to incorrect implementation

by multiple manufacturers.

3.3.9 IMSI-based Paging

Figure 3.3 outlines the paging procedure in LTE. The Mobility Management Entity

(MME) (a part of the SN’s core network) is responsible for initiating paging and

authentication of the mobile device, while eNodeB is the LTE base station (part of

SN’s access network). At the commencement of the paging, the MME starts a timer

(T3413) and expects a response from the UE before the expiration of this timer. UEs

in RRC idle state use Discontinuous Reception (DRX) also known as the paging cycle

to reduce power consumption. This DRX cycle determines how frequently the UE

checks for paging messages. The default DRX cycle is broadcast by the SN via the

System Information Block (SIB). The Paging Occasion (PO) for a UE (i.e., when

it wakes up to check for paging messages) is given by three numbers: the paging

cycle T ∈ {32, 64, 128, 256}; the Paging Frame Index (PFI), which is an integer

between 0 and T − 1; and a subframe index s where, 0 ≤ s ≤ 9. The UE decodes

the RRC paging messages and if it finds its identifier within this message then it

initiates the acquirement of an available radio channel through the “Random Access
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Random Access Procedure

Figure 3.3: The LTE paging mechanism.

Procedure”. Thereafter, the UE requests the eNodeB via the “RRC Connection

Request” to configure radio resources for signalling exchange. After completion of

this RRC connection setup, the UE send a “Service Request” message and enters

the connected state.

In LTE paging, two types of identities could be used to alert idle UEs about incoming

data: temporary identifier GUTI or permanent identifier IMSI. Usually, it is the

GUTI which is utilized as an identifier within the paging messages. However, in

situations where the SN loses its context with the UE due to a crash or restart, the

provision is there to send the IMSI as the UE identifier. Using the IMSI as the UE

identifier while sending paging messages has been reported as a privacy threat to

users [129, 31, 132, 32].

A passive adversary can just observe the radio communication in an interested loca-

tion and come to know which subscribers are located in that particular area. Since

during the paging procedure a security context is not yet established between the

UE and SN, an active adversary can set up a false base station in an area of interest

(airports, hospitals, etc.). It can then start sending out IMSI-based paging requests
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to the subscribers and, based upon the responses, will come to know which IMSIs

are present in that particular area. The LTE subscribers reply to IMSI-based paging

triggers via their GUTIs. Hence, this leads to a correlation between the IMSIs and

GUTIs. This, combined with the initiation of paging mechanism via placing phone

calls to the MSISDN (§3.3.5), allows an attacker to further correlate its IMSI and

GUTI with the MSISDN. Thus active/passive listeners, fake SNs, etc. can track

down subscribers with reasonable accuracy to a specific geographic area, which has

serious privacy implications. IMSI-based paging has been identified as a Key Issue

in 3GPP TR 33.899 (sub-clause 5.7.3.10) [8].

3.3.10 ToRPEDO Attack

In LTE paging, the POs are determined by the UE’s IMSI. This mechanism has

been exploited to verify the presence (or absence) of a target in a specific location

via an attack called ToRPEDO (TRacking via Paging mEssage DistributiOn) [73].

This attack leverages the fact that the PO for a specific UE is always fixed as it is

based upon its IMSI. Hence, through triggering successive paging procedures, the

attacker is ultimately able to determine the presence or absence of a target UE with

high confidence.

Moreover, in the ToRPEDO process, the attacker learns the last 7 bits of the UE’s

IMSI. We now briefly outline this leakage process. In LTE, the last 10 bits of the

subcriber’s IMSI are used for calculating the PO of a device. In this calculation,

however, the IMSI is considered to be a 14/15-digit decimal number instead of a

TBCD encoded number. Without loss of generality, if we consider T = 128, then

successfully calculating the victim’s PO will leak the last 7 bits of the victim’s IMSI.

3.3.11 Linkability of AKA Failure Messages

All generations of mobile telephony suffer from a location attack known as the

Linkability of (AKA) Failure Messages (LFM) attack [39, 31, 32]. The LFM attack

exploits the fact that in an AKA protocol (see §2.7), in the event of an erroneous

authentication challenge, the reason for the authentication failure is exposed to the

attacker, i.e., either MAC Failure or Sync Failure. This allows an attacker to link

two different AKA sessions to identify a target user. The LFM attack is simple to

execute in practice. The attacker first observes an AKA session of the target user

and records the authentication challenge (R,AUTN). Later, when the attacker
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Table 3.2: Effect of 5G privacy enhancements upon existing attacks.

Section 5G Privacy Enhancing Features Existing Attacks 3GPP Reference
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3.4.1 SUPI Concealment Sub-clause 5.2.5 of TS 33.501 [14]

3.4.2 Strict GUTI Refreshment Sub-clause 6.12.3 of TS 33.501 [14]

3.4.3 False Base Station Detection Framework Annex E of TS 33.501 [14]

3.4.4 De-coupling of SUPI from Paging Sub-clause 9.3.3.18 of TS 38.413 [18]

3.4.5 GUTI-based Paging Occasion Sub-clause 7.1 of TS 38.304 [19]

3.4.6 Secure Radio Redirections TS 38.331 [20]

Legend: = resolves, applicable = partial/limited effect = does not resolves, not applicable

wants to check whether another AKA session belongs to the same user or not,

he replays the recorded authentication challenge and observes the type of failure

message received. In the case of MAC Failure it is some other user, while in the

case of Sync Failure it is the same user. Note that in an LFM attack no further

computations are required and the results are precise. Hence this is a devastating

attack (albeit under additional assumptions about the attacker’s capabilities) which

compromises subscription location and, as an extension, allows user-traceability.

3.4 The Present - Privacy Improvements by Release 15

Release 15 comes with several new features that significantly improve subscription

privacy on the radio interface [98, 123]. In this section, we review and discuss these

new features. Table 3.2 provides a summary of the effect of these new features upon

the vulnerabilities from previous generations.

3.4.1 Concealment of SUPI

Keeping in mind the severity of the threats posed by SUPI exposure via IMSI-

catching attacks (§3.3.1), 3GPP decided to address this problem in 5G Release 15

(sub-clause 5.2.5 of TS 33.501) [14]. In the case of identification failure via a 5G-

GUTI, unlike earlier generations, 5G security specifications do not allow plaintext

transmissions of the SUPI over the radio interface. Instead, a public-key based

privacy-preserving identifier containing the concealed SUPI is transmitted. The
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public-key scheme chosen by 3GPP for this purpose is Elliptic Curve Integrated

Encryption Scheme (ECIES) [131]. The concealed identifier is called SUCI. When

enabled, this feature makes it infeasible for false base stations to identify or trace

subscribers in a 5G-only system. The UE generates the SUCI with the public key

pk of the HN using an ECIES-based protection scheme. This public key is securely

provisioned to the UE during the USIM registration. Only the MSIN part of the

SUPI is concealed by this protection scheme, while the home network identifier

(MCC/MNC) is transmitted in plaintext as it is required for routing in roaming use

cases.

As the pk comes pre-configured on the USIM, a Public-Key Infrastructure (PKI)

is not needed. Also, the subscription identification is achieved in just one pass of

communication, which helps in reducing the connection set-up time. Further, this

scheme is oblivious to desynchronization [90] of identifiers between the UE and HN

and requires simple key management, both of which lead to significant reduction

in connection failures. However, there still remain aspects which require further

improvement. These issues were communicated to 3GPP by European Telecom-

munications Standards Institute’s (ETSI) Security Algorithms Group of Experts

(SAGE) [59] and are discussed in further detail in §5.4.2.

3.4.2 Strict Refreshment of GUTI

In 5G Release 15 (sub-clause 6.12.3 of TS 33.501), it is mandatory to refresh the

5G-GUTI on the following occasions:

� Initial Registration: If the SN receives a registration request message of

type“initial registration” or “mobility registration update” from a UE, it should

send a new 5G-GUTI to the UE in the registration procedure.

� Mobility Registration Update: If the SN receives a registration request

message of type ”mobility registration update” from a UE, it should send a

new 5G-GUTI to the UE in the registration procedure.

� Periodic Registration Update: If the SN receives a registration request

message of type ”periodic registration update” from a UE, it should send a

new 5G-GUTI to the UE in the registration procedure.

� Network Triggered Service Request: Upon receiving a service request
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message sent by the UE in response to a paging message, the SN sends a new

5G-GUTI to the UE.

These mandatory update features makes identifying or tracing subscribers based on

5G-GUTI impractical. Further, it is left to a network operator’s implementation

to re-assign 5G-GUTI more frequently, for example after a service request message

from the UE not triggered by the network.

3.4.3 False Base Station Detection Framework

As evident from the description of vulnerabilities in §3.3, most attacks on previous

generations leverage false base stations before the UE can go into an authenticated

state. To counter such vulnerabilities, a general framework for detecting false base

stations has been described in 5G Release 15 (Annex E of [14]). This network-

based detection framework uses radio condition information (measurement reports

of §3.3.8)) received from the devices, which can be used to make it significantly

harder for false base stations to remain stealthy. The received-signal strength and

location information in measurement reports can be used to detect a false base

station which tries to attract the UEs by transmitting signal with higher power

than that of the genuine base stations. These reports can also be used to detect a

false base station which replays the original network broadcast information without

any modification.

To detect a false base station which replays modified broadcast information to pre-

vent victim UEs from switching back and forth between itself and the genuine base

stations (by modifying neighboring cells, cell reselection criteria, registration timers,

etc. to avoid the so called ping-pong effect), information from the broadcast informa-

tion can be used to detect inconsistency from the deployment information. Further,

false base stations using unusual frequencies or cell identifiers can be detected by

analyzing the respective information in the received measurements reports. Net-

works and devices can utilise other additional security and privacy features which

are proprietary to the operators. Effective false base station detection should re-

sult in significant privacy improvement. This is because it has already been proven

by [101] that in case of uncorrupted mobile network participants, the AKA protocol

provides anonymity guarantees to the UE.
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3.4.4 Decoupling of SUPI from the Paging Mechanism

The provision of paging UE based on SUPI has been removed from 5G (sub-clause

9.3.3.18 of TS 38.413) [18]. Moreover, the calculation of the paging frame index

and paging occasions is no longer based on SUPI and is instead based on 5G-GUTI.

Coupled with the mandatory 5G-GUTI update mechanism (§3.4.2), this makes it

infeasible for false base stations to use paging messages for identifying or tracing

subscribers.

3.4.5 GUTI-based Paging Occasions

While, in LTE, POs were determined based on the IMSI, in 5G they are based on a

temporary identifier (called 5G-S-TMSI) which is a subset of the GUTI. The result

of this change is that now the ToRPEDO attack (§3.3.10), which leveraged fixed POs

for a target UE, is no longer able to exploit the permanency in paging timings. This

enhancement, along with frequent GUTI refreshment (§3.4.2), results in enhanced

user privacy.

3.4.6 Secure Radio Redirections

It is mandatory in 5G Release 15 (TS 38.331 [20]) to integrity protect RRC messages

that redirect devices. This feature makes it infeasible for false base stations to

perform rogue redirections. As a result, the level of difficulty to launch various

privacy attacks which rely on rogue redirections increases manifold.

3.5 The Future - Outstanding Issues, New Attacks and Pro-
posed Measures

The successful deployment of future 5G systems requires resolution of the outstand-

ing subscription privacy issues. In this section, we highlight the subscription privacy

vulnerabilities which were not addressed by Release 15. We also discuss the recent

literature which either suggests improvements or presents new attacks on 5G sub-

scription privacy.
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3.5.1 Unresolved Vulnerabilities

An examination of Table 3.2 reveals that there are three privacy issues from previous

generations which were not aptly addressed by Release 15: (Raw) IMSI-probing

(§3.3.2), C-RNTI-based tracking (Section 3.3.6) and the AKA-protocol based LFM

attack (§3.3.11). Regarding (Raw) IMSI-probing, as already discussed in §3.3.2, it

is highly unlikely that 3GPP will adopt countermeasures to this particular problem

because of the overhead of the required dummy signalling. The only feasible solution

to handle the C-RNTI-based privacy breaches is to employ a network-wide PKI [79]

since this requires encryption of these pre-authentication identifiers. This is unlikely

to be a desirable option for 3GPP due to the high costs associated with deploying

and maintaining a PKI.

As regards the LFM attack, Arapinis et al. [31], while highlighting this vulnerability,

also proposed a fix to resolve this problem. The proposed fix requires the HNs to

have a public/private key pair, where each USIM stores the public key of its HN.

The AKA failure messages are then encrypted using the network’s public key. They

verified the privacy properties of their fixes using the automated symbolic analysis

tool ProVerif [35]. However, their proposed fix has been shown by Fouque et al. [62]

to be still plagued with certain privacy weaknesses. Fouque et al. presented their

own improved variant of the public-key based fix for the LFM vulnerability. However,

the solution of Fouque et al. has been shown by [94] to be vulnerable to permanent

desynchronization attacks. 3GPP has never considered adoption of these proposals,

essentially because they are public-key based and introduce significant overhead. As

the UE and HN already share common secrets between them, the better way forward

seems to resolve this issue via symmetric key solutions. We explore such approaches

further in §3.5.3.

3.5.2 New Attacks on 5G Subscription Privacy

Recently, Borgaonkar et al. [38] have presented new attacks against all variants of

the AKA protocol, including 5G-AKA, which breach subscribers’ privacy. These

attacks exploit a logical vulnerability in the AKA protocol’s failure mechanism.

The vulnerability stems from the use of XOR within the re-sync token AUTS (see

Figure 2.3), which is concatenation of two parameters: CONC∗ and MAC∗. Based

upon this logical vulnerability, [38] presented two attacks against 5G user privacy:

Activity Monitoring Attack (AMA) and Location Confidentiality Attack (LCA).
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In AMA, the adversary tries to learn the n least-significant bits of SQNUE at two

different time instances, t1 and t2. Thereafter, from the difference between the

sequence numbers (corresponding to successful authentication sessions), the attacker

infers the volume of “activity” (number of calls, SMSs, etc) a particular user has

performed between these two time instances - hence the name Activity Monitoring

Attack. In LCA, the aim of the attacker is to find out whether some targeted UE

is present in a certain location or not. We analyze these attacks in more detail for

their effectiveness, practicability and potency against 5G in Chapter 4.

3.5.3 Fixing LFM, AMA and LCA

As discussed previously in §3.5.1, a symmetric-key based solution is required which

should together resolve the three vulnerabilities of LFM, AMA and LCA. We now

briefly review some of these solutions proposed by [38].

3.5.3.1 Symmetrically Encrypting SQNUE (Fix 1)

This fix consists of modifying the sequence number concealing mechanism. Instead of

using XOR to conceal SQNUE , this fix utilizes symmetric encryption. The resulting

fix is depicted in Figure 3.4a. To counter the LFM attack, it suffices to hide the

reason for the 5G-AKA protocol failure inside the ciphertext CONC∗. The authors

of [38] claim that this fix is easy to deploy in the current cellular system as it only

requires changes in the baseband module of the UE (i.e. ME) and not USIM. This

seems strange as it is the USIM (not the mobile handset) which is directly under

the control of the mobile network operator. This solution suffers from a flaw: when

an attacker triggers a failure message by injecting the same authentication challenge

twice while the SQNUE has not being updated in the UE, then the replied CONC∗

will be the same as before, leaking to the attacker that SQNUE is unchanged.

3.5.3.2 Correctly Randomizing AUTS (Fix 2)

Another way to fix the AMA and LCA is to generate a new random (RAND∗) to

conceal SQNUE instead of utilizing the one (RAND) received in the authentication

challenge. This new random RAND∗ needs to be sent back in clear to the HN along

with AUTS for decryption of SQNUE . Figure 3.4b depicts this solution. Note

that the original RAND must be used in calculation of MAC∗ to guarantee a fresh
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response to the received authentication challenge. Otherwise, an attacker will be

able to replay an old response back to the HN, forcing it to synchronize its SQNHN

to an older value. Also note that this fix does not resolves LFM attack on its own.

3.5.3.3 Combining Fix 1 and Fix 2 (Fix 3)

Both Fix 1 and Fix 2 have limitations of their own. Fix 1 suffers from a minor flaw,

while Fix 2 is not applicable for LFM attack. For a comprehensive solution, which

resolves both of these issues, we combine Fix 1 and Fix 2 as suggested in [38]. This

combined fix is depicted in Figure 3.4c and addresses LFM, AMA and LCA without

any known flaws / limitations.

3.5.4 Quantum-secure and Downgrade-resistant SUPI Protection

As pointed out by [109], the current ECIES-based SUPI protection solution is vulner-

able to quantum cryptanalysis. Until the publication of the 3GPP’s public-key based

protection mechanism, the technical problem of finding a SUPI protection solution

remained opened in a purely symmetric-key setting. However, later on, we proposed

a solution for SUPI protection that works entirely within symmetric-key domain.

This solution was presented at the 2018 Security Standardization Research (SSR)

conference [83] and addresses all the shortcomings of the ECIES-based mechanism.

We discuss this alternative proposal in further detail in Chapter 5. Interestingly,

another paper [89] presented at the same venue proposed a protection mechanism

for the downgrade attacks against 5G-AKA. These two solutions can be combined

together to come up with a 5G SUPI protection mechanism which is both quantum-

secure and downgrade-resistant. We present this combined solution in Chapter 6.

3.5.5 IBE-based SUPI Protection

Both the current 3GPP SUPI protection mechanism (§3.4.1) and our alternative

symmetric-key proposal (detailed in Chapter 5) hide only the MSIN part of the

SUPI, while the MCC and MNC part is sent in clear over-the-air to the SN for

routing of the SUCI to the correct HN. Also, to increase look-up efficiency, mobile

network operators divide their subscriber database into further sub-domains [140].

Therefore, it is required that the SUCI be delivered to the correct sub-domain within

the HN. Typically, this requires between one and three digits after the MCC/MNC
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UE
(SUPI, K, SQNUE)

SN
(SNname)

MAC∗ ← f1
∗(K,SQNUE‖RAND)

CK∗ ← f3(K,RAND)
CONC∗ ← Enc(CK∗,Failure Reason||SQNUE)
AUTS ← CONC∗‖MAC∗

Failure, AUTS

If ¬(i) or ¬(ii) then:

(a) Fix 1: Symmetrically encrypting SQNUE .

UE
(SUPI, K, SQNUE)

SN
(SNname)

new RAND∗

MAC∗ ← f1
∗(K,SQNUE‖RAND‖RAND∗)

AK∗ ← f5
∗(K,RAND∗)

CONC∗ ← SQNUE ⊕AK∗
AUTS ← CONC∗‖MAC∗‖RAND∗

Sync Failure, AUTS

If (i) and ¬(ii) then:

(b) Fix 2: Correctly randomizing AUTS.

UE
(SUPI, K, SQNUE)

SN
(SNname)

new RAND∗

MAC∗ ← f1
∗(K,SQNUE‖RAND‖RAND∗)

CK∗ ← f3(K,RAND∗)
CONC∗ ← Enc(CK∗,Failure Reason||SQNUE)
AUTS ← CONC∗‖MAC∗‖RAND∗

Failure, AUTS

If ¬(i) or ¬(ii) then:

(c) Fix 3: Combining Fix 1 and Fix 2.

Figure 3.4: Proposed fixes for 5G-AKA failure messages.
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in the MSIN to be sent in clear as part of the routing information [141]. All this

results in weakening of the privacy protection being offered to the mobile subscriber

as a significant part of its identity is now exposed to an attacker.

Another limitation of the 3GPP protection mechanism and our alternative proposal

is that the SN is entirely dependent upon the HN for revelation of the SUCI and the

associated LI purposes [92]. Several countermeasures have been proposed in 3GPP

meetings for handling of this issue [43, 58, 95, 115, 116]. All of these suggested

countermeasures introduce overhead either due to additional signalling messages or

due to requirement of new parameters. Moreover, there is nothing stopping the UE

and its HN from colluding to provide the SN with a false SUPI.

To counter these limitations, Khan and Niemi [91] proposed a 5G-SUPI protection

scheme based on Identity-based Encryption (IBE). In this scheme, the UE’s HN

act as the Private Key Generator (PKG). IBE-based schemes inherently resolve the

exposure of partial MSIN and provide better LI guarantees as the SN can now work

out the SUPI from the SUCI independently of the HN. The proposal by [91] can be

argued to be a better alternative to the current 3GPP mechanism, though the asso-

ciated key-revocation is quite complex. However, compared to our solution ([83]), it

is not quantum-secure and the increase in computational and signalling overhead is

much higher. Also, it is unclear whether the IBE-based solution can be used in com-

bination with the downgrade protection proposal of [89]. Given these limitations, in

the long-term, our solution seems more preferable.

3.5.6 Study on Protection against False Base Stations

Another important avenue which still requires further research is that of protection

against false base station attacks. Though 5G Release 15 provides a false base sta-

tion detection framework (§3.4.3), its status as of now is informative only. Moreover,

the provided framework is generic in nature and focuses only on the detection as-

pects. Very recently, 3GPP has initiated a comprehensive study [23] which focuses

on security enhancements against false base stations for the next 5G Release 16.

The aim is to study the potential threats and privacy issues associated with false

base station scenarios and identify potential solutions for mitigating the risks caused

by false base stations. As various attacks against 5G subscription privacy on the

radio interface exploit false base station as the underlying platform, this study will

also contribute towards subscription privacy enhancement in Release 16.
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Table 3.3: Important recent survey publications related to 5G security and privacy.

Reference Publication Year Application Area Main Contribution Relevance to 5G Privacy

[126] 2018 2G, 3G, 4G A survey of existing literature
on attacks in previous gener-
ations (GSM/UMTS/LTE) of
mobile telephony.

Suggests research directions /
improvements for 5G subscrip-
tion privacy.

[135] 2018 ICN A survey about security, pri-
vacy, and access control in
information-centric network-
ing.

The privacy attack scenarios
discussed are also applicable to
5G networking concepts.

[28], [29] 2017/2018 5G An overview of 5G security
challenges and solutions.

Discusses the privacy chal-
lenges in 5G from the user’s
perspective.

[93] 2019 5G A survey on the security and
privacy of 5G.

Focused on portraying a land-
scape of futuristic security
threats to 5G.

[78] 2019 5G A survey of remaining security
and privacy issues in 5G.

Proposes PKI integration to re-
solve outstanding issues.

[60] 2018 4G, 5G A survey of existing authenti-
cation and privacy-preserving
schemes for 4G and 5G cellu-
lar networks.

Discusses privacy attacks on
5G networks and provides rec-
ommendations for further re-
search.

[65] 2017 5G A survey on green communi-
cation and the associated se-
curity challenges in 5G net-
works.

Reviews privacy aspects of
various 5G enabling technolo-
gies like machine-to-machine
(M2M) communications, etc.

[124] 2017 SDN A survey of issues and chal-
lenges in designing SDN based
5G networks.

No explicit focus on 5G privacy
rather provides SDN based se-
curity solutions for 4G and 5G
networks.

[48] 2019 5G A survey on the security
of alternative computing
paradigms for 5G networks.

Emphasizes the applicabil-
ity of alternative computing
paradigms for enhancement of
subscriber privacy.

3.6 Related Work

We believe there does not exist any prior work in the published literature with

exclusive focus on 5G subscription privacy. The probable reason for this seems to

be that 5G is a very nascent technology within which extensive development and

upgrades were undertaken as late as June 2019. Table 3.3 presents a summary of

the related literature which has considered security and privacy in 5G or 5G-like

networks. Here, we briefly discuss the work carried out in these publications.

Rupprecht et al. [126] categorized and systematized attacks in existing mobile gen-

erations (GSM/UMTS/LTE) by their aim, impact and attacker capabilities. They

further identified future research directions for 5G networks based on these existing

security and privacy issues. The main difference between [126] and our work is that

we also consider 5G Release 15, while the privacy analysis of [126] is limited only to

the previous generations. Tourani et al. [135] have analyzed security, privacy and

access control within the scope of Information-centric Networking (ICN). ICN is a
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networking paradigm which focuses on content of the traffic rather than its origin

- a concept similar [125] to network slicing3 in 5G. Ahmad et al. [28, 29] analyzed

generic security and privacy threats to 5G networks and suggested possible solutions

to these threats from the published literature. As both of these works were carried

out before the publication of the 5G standard, they are mostly speculative in nature.

Khan et al. [93] have presented a survey about security and privacy of 5G. The 5G

privacy issues discussed in [93] are again speculative in nature as the manuscript

was drafted before the publication of 5G Release 15.

Jover [78] discussed security challenges faced by 5G. The main focus of this work was

the integration of a Public Key Infrastructure (PKI) within the current 5G network

architecture to resolve outstanding security and privacy issues. Ferrag et al. [60]

presented a survey of existing authentication and privacy-preserving schemes for

LTE and 5G mobile networks. They provided a classification of threat models in 4G

and 5G cellular networks in four categories: attacks against privacy, attacks against

integrity, attacks against availability, and attacks against authentication. They also

provided a classification of the respective countermeasures into three categories:

cryptographic methods, humans factors, and intrusion detection methods. It seems

that the work of [60] presumed that all the analysis and contextualization with

respect to 4G can be seamlessly applied to 5G. The reason for this is because at the

time of publication of [60] (January, 2018) even the Stage-24 of 5G Release 15 was

not completed (see Figure 3.1).

Gandotra and Jha [65] presented a survey on various energy-efficient scenarios for

green communication in 5G and the related security aspects. For improving the bat-

tery lifetime of user terminals, [65] proposed transmitting information through relays

and discussed security susceptibilities via these relays and the associated counter-

measures. However, [65] did not consider 5G privacy. Rangisetti and Tamma [124]

explored the aspects related to migration of mobile network infrastructure in LTE

and 5G to Software Defined Networking (SDN) and Network Function Virtualization

(NFV). It further elaborated security issues in migration to these new technologies

and suggested SDN-based solutions. The work by [124] is focused on the security

issues during architecture migration and not on subscription privacy. Choudhry

3Network slicing is a form of virtual network architecture which delivers greater network flexi-
bility by allowing traditional network architectures to be partitioned into virtual elements that can
be linked through software.

4“Stage-2” is a stage where logical analysis, devising an abstract architecture of functional ele-
ments and the information flows amongst them across reference points between functional entities
is carried out.
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and Sharma [48] surveyed recent computing paradigms as alternative mechanisms

for the enhancement of 5G security. This work particularly focuses on the feasibility

of catalytic and osmotic computing in 5G networks and not subscription privacy.

3.7 Chapter Summary

Although 5G offers better privacy guarantees than its predecessors, this work showed

that there still remain significant issues which need rectifying. Several privacy vul-

nerabilities that remain unresolved in 5G Release 15 were highlighted. To address

the identified privacy gaps, this chapter also proposed improvements for future ver-

sions of the 5G standard. The study concludes that new and more rigorous privacy

protection mechanisms are required to guarantee subscription privacy in 5G. In

particular, for a quantum-secure future, 3GPP should consider accompanying the

current subscriber identification protection mechanism (being the only public-key

based mechanism in 5G) with the symmetric proposal of [83].
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Chapter 4

Efficacy of New Privacy Attacks against
5G-AKA

This chapter provides an analysis of the attacks on 5G privacy by Borgaonkar et

al. [38]. We evaluate these attacks for their effectiveness, practicability and potency

against 5G. This analysis was published at the International Conference on Security

and Cryptography 2019 [84].

4.1 Introduction

The 3GPP standard for 3G/4G mobile telephony security [16] provisions an Au-

thenticated Key Agreement (AKA) protocol for establishment of a secure channel

between mobile subscribers and their service providers. The AKA protocol for 4G

networks is similar to that of 3G with slight differences in identifier and key manage-

ment. For 5G, an enhanced version of this AKA protocol called the 5G-AKA was

introduced by 3GPP [14]. Apart from typical security requirements, an important

consideration for these AKA protocols (and their associated mechanisms) is end-user

privacy.

Borgaonkar et al. [38] have revealed a new logical vulnerability in one of the asso-

ciated mechanisms (sequence number re-synchronization) of the 3G/4G/5G AKA

protocols. Based upon this vulnerability, they have presented two privacy attacks:

Activity Monitoring Attack (AMA) and Location Confidentiality Attack (LCA). The

AMA allows an attacker to learn subscribers' mobile service consumption patterns

while the LCA allows tracking of mobile subscribers, thus breaking location confiden-

tiality. Borgaonkar et al. claim that these attacks adversely affect all generations of

mobile telecommunications, including 5G. More importantly, they state that these

attacks have been acknowledged by the requisite standardization bodies and that

remedial actions are underway for the future 5G specifications.
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In this chapter, we analyze the efficacy of these new privacy attacks against 5G. The

reason for confining this analysis to 5G is due to the fact that relatively facile attacks

(IMSI-catching [63], Linkability via Failure Messages (LFM) [31]1) provisioning more

disastrous breaches of subscriber privacy already exist for the previous generations

(2G/3G/4G). Effective countermeasures for these existing attacks were not incorpo-

rated in the already-deployed standards because of the high upgrade costs involved.

It is thus too late to propose any amendments for the 2G/3G/4G specifications. The

findings of our analysis contradict some of the claims made in [38]. Specifically, we

show the following:

� The AMA is infeasible to execute in 5G networks.

� The LCA is a direct extension of an existing privacy vulnerability [31] that

exploits linkability of the AKA failure messages. Moreover, we demonstrate

that the results obtained with this extension attack are less effective than those

achieved via the existing vulnerability.

� Contrary to [38] which claims dedicated fixes are required for their attacks,

we establish that in case of effectual countermeasures introduced against the

existing vulnerability of [31], both AMA and LCA will be rendered futile.

� The associated security and privacy analysis of the modified 5G-AKA in [38],

carried out in a symbolic model, is inaccurate and error prone due to omission

of important aspects specified within the 3GPP standard.

The rest of the chapter is organized as follows: §4.2 provides the requisite back-

ground, §4.3 details the logical vulnerability in the 5G-AKA, AMA and LCA are

described in §4.4 and §4.5, respectively, §4.6 analyzes the attacks and §4.7 provides

concluding remarks.

4.2 The 5G-AKA

Before considering the details of the privacy attacks, we outline the 5G-AKA upon

which these attacks are based. Though §2.7 already details the 5G-AKA, we restate

the pertinent aspects here for continuity purpose. Figure 2.3 shows details of the

5G-AKA and its associated failure mechanisms. In Figure 2.3 functions f1,. . ., f5,

1This linkability attack is also valid for 5G Release 15.
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f1
∗ and f5

∗ are unrelated symmetric key algorithms, f1, f2 and f1
∗ act as message

authentication functions, while f3, f4, f5 and f5
∗ are used as key derivation functions.

Key derivation is performed using the Key Derivation Function (KDF) specified in

3GPP TS 33.220 [11] and SNname is the global identity of the SN. A successful

5G-AKA culminates in the derivation of the anchor key KSEAF by the SN and UE

from which further keys for securing various layers of communication are derived.

The two cases of authentication failure for the 5G-AKA are as follows:

1. MAC Failure: As the first step in authentication confirmation, the UE

checks whether the received MAC value is correct or not. In case of a failure

[Case ¬(i) in Figure 2.3], the UE replies with a MAC Failure message back to

the SN.

2. Sync Failure: After MAC verification, the UE checks the freshness of the se-

quence number SQN received in the authentication challenge. In case of this

failure [Case (i) and ¬(ii) in Figure 2.3], it responds with a Sync Failure mes-

sage along with a re-sync token AUTS. Note that in Figure 2.3, the sequence

number freshness check is denoted by XSQNHN > SQNUE −4. What this

means is that there is some “window” of size 4, within which sequence num-

bers smaller than the current sequence number of UE will be accepted given

they previously had not been received by the UE. This mechanism is there to

handle out-of-order delivery of challenge messages from HN to UE. We discuss

this aspect in further detail in Section 4.6.3.

In addition to the requirements of mutual authentication and data confidentiality, it

is crucial that SQN is protected from an eavesdropper during the establishment of a

secure channel between the UE and SN as its exposure may lead to the compromise

of the identity and location of a user [9].

4.3 The Logical Vulnerability

The logical vulnerability of [38] affecting user privacy stems from the use of XOR

within the re-sync token AUTS, which is concatenation of two parameters: CONC∗

and MAC∗. The parameter CONC∗ contains the current sequence number of the

UE in a masked form as SQNUE ⊕ AK∗, where AK∗ = f5
∗(K,RAND). Note

that during calculation of the masking key AK∗, the value RAND is extracted

from the received authentication challenge. Hence, in the case of receiving the same
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authentication challenge twice at two different times t1 and t2, the masked sequence

numbers in their corresponding AUTS tokens will be:

CONC∗1 = SQN1
UE ⊕AK∗1 , where AK∗1 = f5

∗(K,RAND)

CONC∗2 = SQN2
UE ⊕AK∗2 , where AK∗2 = f5

∗(K,RAND),

where SQN1
UE is the sequence number of UE at time t1 and SQN2

UE is the sequence

number at time t2. Therefore, the adversary can compute:

CONC∗1 ⊕ CONC∗2 = SQN1
UE ⊕ SQN2

UE .

Next we detail the two attacks presented in [38] which, by exploiting this vulnera-

bility, try to compromise user privacy.

4.4 Activity Monitoring Attack

In this attack the adversary tries to learn the n least significant bits of SQNUE

at two different time instances, t1 and t2. Thereafter, from the difference between

the sequence numbers (corresponding to successful authentication sessions), the at-

tacker infers the volume of “activity” (number of call, SMS, etc) a particular user has

performed between these two time instances, hence the name Activity Monitoring

Attack. As we will see shortly, to mount this attack the adversary requires malicious

interaction with both UE and HN (via SN). Hence, the compromise of both iden-

tity confidentiality and location confidentiality of the target UE are prerequisites to

launch an AMA.

Details of a single instance of the attack at a particular time t are now explained.

The online phase of the AMA is depicted in Figure 4.1. During this phase the

attacker first fetches 2n−1 + 1 successive authentication challenges from the SN for

the targeted UE. The attacker then sends a particular n + 1 of these challenges to

the UE, each followed by a replay instance of the initially received authentication

challenge (RAND0, AUTN0), and records the corresponding n + 1 resync tokens;

i.e. AUTS‘ and AUTSj (for j = 0 to n− 1).

In the offline phase, utilizing the logical vulnerability as elaborated earlier in Sec-

tion 4.3, the attacker retrieves the following values from the recorded resync tokens:

δi = SQN0
HN ⊕ (SQN0

HN + 2i) for 0 ≤ i ≤ n− 1,
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UE
(SUPI, K, SQNUE)

Attacker
(SUPI or

Encrypted SUPI)

SN + HN
(SUPI, K, SQNHN = SQN0

HN )

...
SQNHN ← SQNHN + 1

ID
RANDi, AUTNi

RAND0, AUTN0

RES0

RAND0, AUTN0

Sync Failure, AUTS‘

RAND2j , AUTN2j

RESj
RAND0, AUTN0

Sync Failure, AUTSj

for i = 0 to 2n−1 :

for j = 0 to n− 1 :

Figure 4.1: The online phase of the AMA.

Data: δi for 0 ≤ i ≤ n− 1
Result: X = n least significant bits of SQN0

HN
X ← [0, 0, . . . , 0] // init an array of size n

for i← 0 to n− 1 do
// Analyze δi at bit positions i, i+ 1

(b1, b2)← (δi [i] , δi [i+ 1])
if (b1, b2)⇔ (1, 0) then

// No remainder propagates when SQN0
HN + 2i

X [i]← 0

else if (b1, b2)⇔ (1, 1) then
// A remainder propagates when SQN0

HN + 2i

X [i]← 1

else
// Not possible

Error

end

end
return (X)

Figure 4.2: SQN inference algorithm.

where SQN0
HN is the initial value of the SN’s sequence number at the start of the at-

tack. Note that due to receipt of the first authentication challenge (RAND0, AUTN0)

from the adversary, the UE will also sync its sequence number to this value at the

start of the attack. Further, by feeding these n values into SQN Inference Algo-

rithm (Figure 4.2), the attacker extracts the n least significant bits of SQN0
HN .
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4.5 Location Confidentiality Attack

As another consequence of the logical vulnerability of Section 4.3, [38] presented a

Location Confidentiality Attack (LCA); i.e. finding out whether some targeted UE

is present in a certain location. Note that we present LCA as explained in [38]. We

claim there are several erroneous assumptions upon which this attack is based and we

will highlight these when we undertake the corresponding analysis in Section 4.6.2.

The LCA proceeds as follows:

1. The attacker observes a 5G-AKA session of some targeted user2 UEx and

extracts the corresponding CONC∗x value by replaying the observed authenti-

cation challenge to UEx.

2. After some time, if the attacker wishes to check whether another unknown

5G-AKA session belongs to UEx or not, the attacker again replays the earlier

observed challenge from Step (1) to this unknown user and obtains CONC∗? .

3. Now based upon the value CONC∗x ⊕ CONC∗? , the attacker can infer (with

non-negligible probability) whether this new user is UEx or not. In the case

of some other user this will be a random value, while in the case of UEx it will

equate SQNold
UEx
⊕ SQN current

UEx
due to canceling out of the common masking

key AK∗. This value (dependent upon the lapsed time) should be small in the

case of user UEx.

4.6 Analysis

4.6.1 Analysis of AMA

4.6.1.1 Infeasible Prerequisites

As elaborated earlier in Section 4.4, to launch an AMA the adversary first needs to

compromise the target’s identity and location confidentiality. While such a compro-

mise is easy to manage in earlier generations (3G/4G) via IMSI-catching attacks [63],

how this will be achieved in 5G is not clear. With a randomized public-key en-

cryption mechanism in place to protect direct exposure of the SUPI during the

identification phase, such a compromise is highly unlikely in 5G Release 15. In §5.2

2Note that it is not necessary for the attacker to know the SUPI of the user to launch this
attack.
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of [38], in the case of an unknown SUPI, the use of SUCI (the randomized en-

cryption of SUPI) is suggested for fetching the requisite authentication challenges

from the SN. This would require correlating the SUCI to the appropriate SUPI,

which in the case of a secure encryption scheme is not possible. The most convincing

implementation of AMA in 5G would look something like this: the attacker follows

the victim closely3 and observes the victim’s attach procedure (utilizing SUCI) to

the network. We stress that all this needs to be undertaken in isolation without the

presence of other mobile subscribers in the concerned attack area. Such requirement

of physical tracking of the target in AMA render it unattractive for its automated

use in 5G.

The prospect of the repeated use of SUCI for fetching of successive authentication

challenges from the SN to launch the AMA is possible because the current identifica-

tion mechanism in 5G [14] is susceptible to replay attacks. No dedicated replay pre-

vention mechanism has been built into the 5G randomized encryption scheme used

for SUPI protection. This was highlighted to 3GPP by the European Telecommu-

nications Standards Institute Security Algorithms Group of Experts (ETSI SAGE)

during their evaluation of the SUPI protection mechanism for 5G [59]. We pro-

pose an alternative SUPI protection mechanism for 5G (detailed in Chapter 5)

which prevents such SUCI replay attacks [83]. We stress that adoption of such a

mechanism will render attacks such as AMA infeasible.

4.6.1.2 Requesting Batch of AVs

Unlike the previous generations, Clause 6.1.3.2.0 of [14] does not support requests

for issuing multiple Authentication Vectors (AVs) for 5G-AKA. Also, after issuance

of each 5G AV, the HN waits for a response from the SN after successful mutual

authentication and key agreement between UE and SN, as elaborated in Figure 2.3.

Hence, the adversary has to wait for the expiration of the timeout of the currently

issued AV before the next AV issuance request can be entertained by the SN. This

considerably increases the time complexity of AMA’s online phase in 5G.

3In this case the identity confidentiality and location confidentiality are already compromised as
the attacker can already identify the target and is aware of its location.
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4.6.1.3 The Accuracy of AMA Assumptions

Essentially AMA tries to reveal the n least significant bits of SQNUE at two dif-

ferent time frames for the target user. Thereafter, based upon the assumption

that each sequence number increment corresponds to a successful AKA session, it

deduces that the difference between the two SQNUE reveals the user’s service con-

sumption during that time interval. The problem with this assumption is that the

difference between the sequence numbers does not “fully” corresponds to successful

AKA sessions. Many times, due to network failure or channel noise (bad weather,

etc), legitimate messages may get lost during transmission and may not reach the

intended destination. On the other hand, it may be the case that a user is gen-

uinely under attack by some active attacker. In such cases, the end result would

be the non-utilization of the affected sequence numbers. Thus, while a difference in

sequence numbers may give a rough idea about the user’s service consumption, its

efficacy is dependent upon many other factors.

Another assumption that adversely affects AMA’s accuracy is the inference of SQNUE

from SQNHN . Note that at the start of the AMA, SQNUE is forced to update to the

value SQN0
HN , the initial value of the SQNHN . The presumption behind this step

is that the two values should be equivalent, which may or may not be the case. It

is quite possible (due to a variety of circumstances) for SQNHN to be much higher

than that of SQNUE at the start of AMA. In such scenarios, AMA’s accuracy about

the target’s activity is negatively impacted.

4.6.1.4 Severity of AMA

In [38], it is claimed that AMA breaches subscribers’ privacy more severely than

either location confidentiality or identity confidentiality attacks. This seems to be

an overstatement as compromise of the permanent identity or location is arguably a

more severe breach of privacy than the exposure of a number of voice calls or SMSs

sent by a user. Otherwise, such a breach of privacy would have been mentioned in

the official 3GPP mobile subscribers’ privacy requirements [9]. In fact, breach of a

user’s identity and location does not only violate the user’s privacy but can lead to

physical attacks. For (a sensational) example, consider the scenario where a bomb

explosion is triggered automatically when a high value target’s presence is detected

in the near vicinity of an IMSI-catcher [66, 36].
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4.6.2 Analysis of LCA

4.6.2.1 No Activity Monitoring

Unlike AMA, LCA does not presume any prerequisite compromises (such as identity

and location confidentiality) about the target which makes it a much easier attack to

launch in practice. Moreover, LCA targets location confidentiality of a user instead

of its service consumption, which is a more severe breach of privacy as discussed in

§4.6.1. In a way, LCA can be considered as a more direct application of the logical

vulnerability of §4.3. Though [38] presented LCA as an extension of their primary

attack AMA, we argue that LCA is a much more significant attack than AMA as it

does not require fetching of authentication vectors from the SN, nor running of the

SQN Inference Algorithm, and is simple to execute. However, we stress that there is

no activity monitoring (contrary to the claim made in the Footnote No. 2 of [38]).

This is because, now, what the attacker gets after a successful LCA is:

CONC∗UE ⊕ CONC∗? = SQNold
UE ⊕ SQN current

UE .

Note that the presumption for this is that the value SQNold
UE ⊕ SQN current

UE will be

small (less than some threshold value). So there are two aspects which hinder the

accurate inference of activity monitoring :

1. The attacker is already operating the LCA under the presumption of a small

increase in SQNUE , which renders the aspect of activity monitoring ineffective.

2. Unlike AMA, in LCA the attacker is unable to extract the n least significant

bits of SQNUE . What the attacker actually gets are the positions of the

bits of SQNUE which flipped their value (either 0 to 1 or 1 to 0), hindering

an accurate estimate of the difference between the two values. Nevertheless,

there is some leakage from a cryptographic viewpoint.

4.6.2.2 No Requirement of Dedicated Fixes

Having established that LCA is not another version of AMA but, rather, an attack

targeting location confidentiality in its own right, we turn our attention to another

important dimension. All generations of mobile telephony (including 5G Release 15)

suffer from an existing location attack known in the literature as Linkability of Fail-

ure Messages (LFM) attack [31] (discussed previously in §3.3.11). The LFM attack
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exploits the fact that in the case of an erroneous authentication challenge, the reason

of the authentication failure is exposed to the attacker; i.e. either MAC Failure or

Sync Failure. This allows an attacker to link two failure messages together to iden-

tify a target user. LFM is much simpler to execute than LCA. In LFM, the attacker

first observes an AKA session of the target user and records the authentication chal-

lenge (RAND,AUTN). Later, when the attacker wants to check whether another

AKA session belongs to the same user or not, he replays the recorded authenti-

cation challenge and observes the type of failure message received. In the case of

MAC Failure it is some other user, while in the case of Sync Failure it is the same

user. Note that in LFM, unlike LCA, no further computations are required and the

results are precise. Hence, it is a more devastating attack than LCA.

In [38] it is claimed that LCA will work even if LFM attack gets patched. The reason

behind this claim seems to be the (erroneous) assumption that a countermeasure

for the LFM attack will only hide the reason of authentication failure and not the

rest of the failure message contents (including AUTS token) leading to the logi-

cal vulnerability of Section 4.3. However, the solutions in the literature proposing

countermeasures to the LFM attack suggest otherwise. This is essentially because

the indistinguishability experiments proving unlinkability in these solutions cover all

aspects of unlinkability and not only the reason of the authentication failure. As a

concrete example, we consider the countermeasure proposed in [31]. In case of an

authentication failure (due to any reason), the whole failure message including the

resync token is encrypted by the network public key. Hence, the logical vulnerabil-

ity of §4.3 gets resolved before it can be exploited. This leads us to the deduction

that, in reality, LCA is a more complex version of the LFM attack. Surprisingly, in

5G Release 15 no countermeasures for this potent LFM attack have been adopted.

Though the authors of [38] present LCA as a distinct attack from the LFM attack,

suggesting that dedicated countermeasures independent of existing attacks would be

required, it is not hard to see that a suitable countermeasure (as already suggested

in §3.5.3) against the LFM attack will also render both AMA and LCA ineffective.

This is because now the attacker will not be able to the exploit the resync tokens

AUTS to launch AMA or LCA.

4.6.3 The Curious Case of Out-of-Order Message Delivery

Although there have been a number of formal analyses of the 5G-AKA [33, 49] in the

symbolic model using tools such as Tamarin Prover [106], and 3GPP has been using
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this approach for protocol evaluations [5], the problem has always been the necessary

abstraction required during the transformation from the real-world conditions to

the underlying mathematical model of the system being evaluated. As a concrete

example, consider the case of the analysis carried out in [5]. Even after formal

analysis, a number of vulnerabilities were later discovered in the 3G-AKA. Another

example is that of [33], whose analysis of the 5G-AKA failed to capture the privacy

flaws pointed out in [38]. While the formal analysis of 5G-AKA undertaken in [38]

is based upon enhanced system models which consider the AUTS tokens of the

Sync Failure messages, there is an important aspect which was missed; i.e. how

the 5G-AKA (and the earlier AKA protocols) handle out-of-order delivery of the

authentication challenges from the SN to UE.

As per 3GPP specifications [9], the mechanism in the UE for verifying the freshness of

sequence numbers should to some extent allow the out-of-order delivery of sequence

numbers. This is to ensure that the authentication failure rate due to synchroniza-

tion failures resulting from such messages is sufficiently low. The standard requires

that the UE should store in its memory the sequence numbers of a certain number

of past successful authentication events. Such a mechanism ensures that a (stale)

sequence number can still be accepted if it is among the last 32 sequence numbers

generated (i.e. 4 = 32 in Figure 2.3) and was not previously used. Unfortunately,

the formal models of [33, 38] have ignored this important aspect of sequence number

freshness verification, which renders their security and privacy analysis of 5G-AKA

imprecise.

4.7 Summary and Recommendations

In this chapter we analyzed two recent attacks (AMA and LCA) on 5G subscription

privacy by [38]. We established that AMA is infeasible in practice to execute in 5G

networks. We also showed that LCA is trying to achieve what the existing LFM

attack [31] already does with much less effort and greater effectiveness. Moreover,

we demonstrated that both these attacks will become irrelevant if the LFM attack

is patched. Additionally, we highlighted how the history of the symbolic modeling

of the AKA protocol has been plagued with serious gaps that lead to various vul-

nerabilities. Looking at the results of our analysis in hindsight, it seems that the

authors of [38] were overoptimistic in interpretation of their results. Keeping in mind

the current development status of the 5G-AKA, the following recommendations are
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made to 3GPP:

� To improve user privacy, 3GPP should consider appropriate countermeasures

(as detailed in §3.5.3) for the LFM attack.

� Considering the aspects of protocol analysis discussed in §4.6.3, it is suggested

that a comprehensive security and privacy analysis of the 5G-AKA in an ap-

propriate computational model should be carried out.

� To prevent any further future attacks, there is a need to remediate the existing

vulnerability of the 5G-AKA identification phase to replay attacks. We detail

a proposal in Chapter 5 which prevents such replay attacks.
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Chapter 5

An Alternative Proposal for SUPI
Protection

In this chapter we present an alternative private identification scheme for 5G which

utilizes only symmetric cryptographic primitives. We also provide a detailed for-

mal security analysis of the scheme in a novel security framework. This scheme

was published at the International Conference on Security Standardization Research

2018 [83].

5.1 Introduction

While many mobile users may be comfortable with the fact that their service provider

is able to identify them and track their geographical location ubiquitously, fewer

are likely to be comfortable with an arbitrary third party having this capabil-

ity. In the hands of a third party, such a capability could lead to undesirable

breaches of end-user privacy, opening the door to a range of potential consequences,

such as harassment, stalking, employee monitoring, commercial profiling, etc. As

elaborated earlier in §2.4, the subscribers are identified over the radio access link

via frequently-changing temporary identifiers (called Temporary Mobile Subscriber

Identity (TMSI) until 3G systems and a Globally Unique Temporary User Equip-

ment Identity (GUTI) for 4G and 5G systems) by the serving network. However,

despite the use of these temporary identifiers, IMSI-catching attacks [52, 53, 63, 104,

113, 118, 120] persist in today’s mobile networks including the 4G LTE [108].

5.1.1 Countermeasures to IMSI-catchers in 5G

As highlighted in §3.3.1, IMSI-catching attacks have been a threat to all generations

(2G/3G/4G) of mobile telecommunication [63]. As a result of technological barri-

ers, this privacy problem appears to have persisted for decades [7]. However, 3GPP
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decided to address this issue in 5G. In the event of identification failure via a 5G-

GUTI, unlike earlier generations, 5G security specifications do not allow plaintext

transmissions of the SUPI over the radio interface [14]. Instead, an Elliptic Curve

Integrated Encryption Scheme (ECIES)-based privacy-preserving identifier contain-

ing the concealed SUPI is transmitted [131]. We elaborate upon the details of this

scheme further in §5.4.1.

5.1.2 Motivation

5G Release 15 - the first full set of standalone 5G specifications - was finalized in

June 2019. However, it will almost certainly take a decade or so before all legacy

systems are upgraded to 5G. Hence, IMSI-catching attacks remain an issue during

the mid-term future, possibly even beyond the year 2030. By then it is likely that

practical quantum computers will pose a much more immediate threat than they

do today [80, 45]. The impact of quantum computers on mobile networks is al-

ready being discussed within the telephony industry [105], with a call to implement

quantum-secure cryptography [21]. It is thus imperative that 5G security specifica-

tions such as 3GPP TS 33.501 [14] (hereafter referred as TS 33.501) include options

for quantum-secure schemes. Fortunately, 5G security has mostly relied upon sym-

metric cryptography (whose security is less impacted by quantum computers) for

achieving its security objectives. However, the ECIES-based identification mecha-

nism is an exception since it is known to be vulnerable to quantum algorithms. We

suggest that one viable way forward is to develop a symmetric alternative to the

ECIES mechanism. Any proposal for an alternative user identification protection

scheme for 5G systems should ideally strive to satisfy the following requirements:

� Provision privacy guarantees such as anonymity and unlinkability [122] against

a quantum adversary.

� The computational and communication overhead should be minimal. Specif-

ically, the number of communication passes should not increase as it impacts

the call-setup durations the most.

� Offer protection against replay attacks.

� Fulfill “Lawful Interception” requirements (for details see §2.9) in mobile telecom-

munications.
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� Adhere to the existing 3GPP message structures as specified in current 5G

specifications.

5.1.3 Chapter Contributions

The contributions of this chapter are as follows:

� We detail limitations of the ECIES-based identification scheme of TS 33.501.

� We present an alternative quantum-secure scheme which overcomes the limi-

tations identified in the 3GPP scheme.

� We develop an appropriate model of security and formally prove the privacy

guarantees offered by our proposal in this model.

The rest of this chapter is organized as follows: §5.2 discusses the related work while

§5.3 details the pertinent aspects of the 5G-AKA. The current identity protection

mechanism of 5G Release 15 is detailed in §5.4. §5.5 presents our identity protection

proposal. §5.6 explains the security framework and §5.7 provides the analysis of our

proposal. §5.8 provides a discussion about the impact of parameter sizes and §5.9

summarizes the chapter.

5.2 Related Work

To our knowledge, this is the first work on 5G identity protection since the publica-

tion of TS 33.501. Before a protection scheme was chosen, a study was conducted

by 3GPP to evaluate a number of potential solutions. In total 24 proposals were

considered, details of which can be found in the associated report 3GPP TR 33.899

(Clause 5.7.4) [8]. Most (but not all) proposals were based on public-key cryptog-

raphy, and the ECIES-based mechanism was selected as the final candidate. The

few symmetric-key proposals all relied on utilizing pseudonyms for privacy purposes,

and thus were susceptible to desynchronization attacks potentially causing perma-

nent DoS attacks on the mobile users.

Various academic works have considered IMSI-catching attacks. The major thrust of

these papers has been to devise a solution for 3G/4G without modifying the existing

message structures out of concern for legacy devices and backwards-compatibility.
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Broek et al. [138] introduced a proposal based on changing pseudonyms and required

no modifications to the existing infrastructure. As a result of reliance on changing

pseudonyms, this solution was susceptible to desynchronization attacks. A similar

proposal was that by Khan and Mitchell [87], which relied on using a set of IMSIs

for a particular user to offer some degree of pseudonymity, however, as in the case

of [138], this solution could also get knocked out of the service permanently. Khan

and Mitchell, based upon their previous work, subsequently presented an improved

solution [88]. This solution relied on using a dynamic pseudo-IMSI for identifica-

tion purposes, however identity desynchronization attacks still had the potential to

cause permanent denial of service. Thus their solution is accompanied with an iden-

tity recovery mechanism (in case of desynchronization) which required no changes

to the existing message structures. However, this solution fails to satisfy the Law-

ful Interception (LI) requirements without further changes to the existing message

structures.

5.3 The 5G-AKA

Our proposal for private identification in 5G (§5.4) works in tandem with the 5G-

AKA protocol. Hence, before we layout our proposal, we detail the message flow

of the 5G-AKA. As already elaborated earlier in §2.7, 5G-AKA utilizes various

symmetric cryptographic algorithms. Detail of how these cryptographic algorithms

are used for calculation of various 5G-AKA parameters can be found in Table 5.1.

A pictorial representation of the 5G-AKA message flow is given in Figure 5.1 and

elaborated further in the following:

0. 1 To initiate authentication, the UE sends the SN either the 5G-GUTI in

a “registration request” message or the SUCI as response to an “identifier

request” message (see §2.6 for further details).

1. In case of a 5G-GUTI, the SN extracts the corresponding SUPI from its

database and forwards it along with its serving network name (SNname) to

the HN in an “authenticate request” message. Otherwise the SUCI is sent

instead of the SUPI.

2. If the SUCI is received in an authenticate request message by HN, it de-conceals

(for details see §5.4.1) the SUPI from it. It further derives the expected re-

1This first Step is numbered 0 because its not an exclusive part of the AKA but rather the
identification phase.
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Table 5.1: Description of 5G-AKA parameters.

Parameter Content/Description

RAND 128-bit Random Challenge
SQN 48-bit Sequence Number
AMF 16-bit Authentication Management Field
SNname Serving Network Name
AK f5(K,RAND)
CK f3(K,RAND)
IK f4(K,RAND)
RES f2(K,RAND)
MAC f1(K,SQN‖RAND‖AMF )
AUTN (SQN ⊕AK)‖AMF‖MAC
RES∗/XRES∗ KDF (CK‖IK, SNname‖RAND‖RES/XRES)
HXRES∗/HRES∗ SHA256(RAND‖XRES∗/RES∗)
KAUSF KDF (CK‖IK, SNname‖SQN ⊕AK)
KSEAF KDF (KAUSF , SNname)
5G AV RAND‖AUTN‖HXRES∗

sponse XRES* and generates the authentication vector 5G AV. The 5G AV

consists of a random challenge RAND, an authentication token AUTN and a

hash of expected response HXRES*.

3. The HN stores XRES*.

4. The HN forwards the 5G AV (RAND, AUTN, HXRES*) in an “authenticate

response” message to the SN.

5. The SN forwards RAND, AUTN to the UE in an Auth-Req message.

6. Upon receiving the RAND and AUTN, the UE verifies the freshness and au-

thenticity as described in [9]. It then computes the response RES* and derives

the anchor key KSEAF to be used for establishment of the secure channel with

the SN.

7. The UE returns RES* in an Auth-Resp message to the SN.

8. The SN then computes the hash of the response HRES* from the received

RES* and compares HRES* with XHRES*. If they are equal, the SN considers

the authentication successful.

9. The SN then sends RES*, as received from the UE, to the HN in an “authen-

tication confirmation” message (containing the SUPI or SUCI and the serving

network name).
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Figure 5.1: Overview of the 5G-AKA protocol.

10. When the HN receives a confirmation message, it compares RES* with the

stored XRES*. If these two are equal, the HN considers the confirmation

message as successfully verified.

11. Finally, the HN indicates to the SN in a “confirmation response” message

whether the confirmation was successful or not. In case of a success, an an-

chor key KSEAF which is cryptographically bound to the requesting SN is also

provided by the HN. If the HN received a SUCI from the SN when authen-

tication was initiated, and if the confirmation is successful, then the HN also

includes the SUPI in this message.

5.4 Identity Privacy in 5G

In the 5G system, Subscription Concealed Identifier (SUCI) is a privacy preserving

identifier containing the concealed SUPI. The UE generates a SUCI using a protec-

tion scheme (see §5.4.1) with the public key of the HN that was securely provisioned
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to the USIM during the USIM registration. Only the MSIN part of the SUPI is con-

cealed by the protection scheme, while the home network identifier (MCC/MNC) is

transmitted in plaintext. The data fields constituting the SUCI are:

� Protection Scheme Identifier. This field represents the null scheme2 or

any other specified protection scheme.

� Home Network Public-Key Identifier. This represents the public key

provisioned by the HN. In case of a null scheme, this field is set to null.

� Home Network Identifier. This contains the MCC and MNC part of the

SUPI.

� Protection Scheme Output. This represents the output of the public-key

based protection scheme.

The subscriber identification mechanism of 5G allows the identification of a UE

on the radio path by means of the SUCI. This mechanism is usually invoked by

the SN by sending an identifier request message (§2.6) to the UE when the UE

is not identifiable by means of a temporary identity. The UE then responds with

the identifier response message (§2.6), containing the SUCI. Additionally, if the

UE sends a registration request message (§2.6) of the type “initial registration” to a

mobile network for which it does not already have a 5G-GUTI, then the UE includes

a SUCI to the registration request.

5.4.1 ECIES-based Protection Scheme

We now provide an overview of the ECIES-based protection scheme as described in

TS 33.501 (Annex C.3) [14]. ECIES [131] is a hybrid encryption scheme that com-

bines Elliptic Curve Cryptography (ECC) [69] with symmetric-key cryptography;

it is a semantically secure probabilistic encryption scheme ensuring that successive

encryptions of the same plaintext with the same public key result in different ci-

phertexts with very high probability. To compute a fresh SUCI, the UE generates a

fresh ECC ephemeral public/private key pair utilizing the HN public key. Processing

on the UE side is done according to the encryption operation defined in [128] and

as further illustrated in Figure 5.2a. The final output of this protection scheme is

2The null-scheme is used only if the UE is making an unauthenticated emergency session or if
the HN has configured “null-scheme” to be used or if the HN has not provisioned the public key
needed to generate SUCI.
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(a) Encryption at UE side

(b) Decryption at HN side

Figure 5.2: Detail of ECIES-based protection scheme

the concatenation of the ECC ephemeral public key, the ciphertext value, the MAC

tag value, and any other parameters, if applicable. The HN uses the received ECC

ephemeral public key and its private key to deconceal the received SUCI. Processing

on the HN side is illustrated in Figure 5.2b.

The ECIES-based protection scheme is a framework, not a concrete algorithm. It

can be implemented by plugging different algorithms, e.g. the secp256k1 or P-521

elliptic curve for the public-key calculations, PBKDF2 or Scrypt for KDF func-
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tion, AES-CTR or AES-GCM or ChaCha20-Poly1305 for symmetric cipher and

authentication tag, HMAC-SHA512 for MAC algorithm, etc. Hence, TS 33.501 in-

cludes two ECIES profiles which specifies the exact algorithms to be used for various

cryptographic operations within the ECIES framework, both for the approximately

128-bit security level. Both profiles use AES-128 in CTR mode for confidentiality,

ANSI-X9.63-KDF for KDF and HMAC-SHA-256 for authenticity in the symmetric-

key cryptography part, but use either Curve25519 or secp256r1 elliptic curves for

the public-key cryptography part.

5.4.2 Limitations of the 3GPP Protection Scheme

Although the ECIES-based scheme is oblivious to loss of synchronization between

the UE and HN and has simple key management requirements, both of which lead

to significant reduction in connection failures, there are still aspects which require

further improvement [59].

� Quantum Insecurity. As the ECIES-based scheme employs ECC to provi-

sion identity privacy, it relies on the hardness assumption of the Elliptic Curve

Discrete Logarithm Problem (ECDLP) [144]. An adversary capable of issuing

quantum queries to an appropriate quantum computer can easily break this

scheme by employing Shor’s algorithm [130].

� Chosen SUPI Attacks. Any arbitrary third party can always select a SUPI

of its choosing and send the corresponding SUCI to the HN. Thereafter the ad-

versary can look out for various responses from the HN, depending on whether

the target user is present in that particular cell tower area or not. Any notice-

able variation in the perceived output would allow the adversary to confirm or

deny the presence of the target in that particular cell. There is no mechanism

in the ECIES-based scheme to prevent these attacks.

� Replay Attacks. Note that the ECIES-based scheme does not have any

inherent mechanism to provide freshness guarantees to the HN and is thus

susceptible to replay attacks. An adversary can always resend a previously

encrypted SUPI to the HN and look out for various responses (such as au-

thentication challenge or a failure message). Based on the received response,

a device whose SUPI is unknown to the attacker may be tracked with some

confidence.
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� Downgrade Attacks. An active adversary simulating a (false) base station

can force the UE to use one of the previous generation (GSM/UMTS/LTE)

and can then get hold of the IMSI / SUPI using an identity request message.

In 3GPP Release 15 [14], the SUPI is derived directly from the IMSI, so these

downgrade attacks also compromise the 5G SUPI.

� Update of HN Public Key. There could be situations which require the

HN to have a robust way of quickly updating its public key to subscriber UEs,

such as a malware attack which tries to recover the home network’s private

key. Such situations enforce the need to have a quick way of updating the

corresponding public keys.

5.5 Towards Quantum-secure Identity Privacy

We now detail our proposal for an alternative identity protection scheme. Unlike the

ECIES-based scheme (§5.4.1), our proposal mostly requires the cryptographic prim-

itives already provisioned by the current 5G specifications. We utilise the previously

specified key derivation and message authentication functions of the 5G-AKA for

our proposal. Specifically, we use function f1 for message authentication and func-

tions f3, f4, f5 and f5
∗ for key derivation. As elaborated in 3GPP TS 33.102, no

valuable information can be inferred from the values of any of these functions about

other functions [9]. Table 5.2 gives a summary of notations used in the proposed

scheme and Figure 5.3 provides an overview of the proposed scheme PQID. Various

phases of the PQID are explained further.

5.5.1 System Setup Phase

The HN generates a long-term secret key KHN for the calculation of identification

parameters for its subscribers. HN stores this value internally in a secure manner,

allowing no other entity access. HN randomly chooses KN and KID during the USIM

registration and computes the (data) confidentiality key CKID = f4(KHN ,KN ) for

the protection scheme as well as identification parameters A = SUPI ⊕ CKID and

B = KHN ⊕ KN . In addition to the SUPI , the AKA sequence number SQN and

the shared key K (which are all from the original 5G-AKA), the USIM also stores

KID , identification parameters A and B along with an additional 48-bit identifica-
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Table 5.2: Notation used in the proposed scheme.

Notation Description

A and B Identification parameters generated by HN for UE
SQNID Counter used for replay prevention
KHN Long term secret key of HN
KN Randomly generated ephemeral parameter
KID Randomly generated long-term secret key for UE
RANDID Freshly generated random number
CKID Confidentiality key
AKID Anonymity key
MACID MAC Tag
f1 Message Authentication Function
f3, f4, f5, f5

∗ Key Derivation Functions
AE.Enc Authenticated Encryption Function
AE.Dec Authenticated Decryption Function
f(K,X) Execution of keyed-function f upon input X with key K

tion sequence number SQNIDUE
3 with initial value set to 1. HN initializes a cor-

responding identification sequence number SQNIDHN
4 with initial value of 0 and

stores SQNIDHN in its database. HN also stores the value of KID in its database

for the particular subscriber. An algorithmic description of the computation of this

phase can be found in Figure 5.4.

5.5.2 Identification Phase

An algorithmic description of the operations of UE and HN during this phase is

presented in Figure 5.5. Note that the output of f3(KID ,RANDID) is truncated

to get a 48-bit AKID . The UE prepares the SUCI = (labelps, ε, labelHN ,

(D‖A‖B‖C‖MACID)) using various data fields5, as explained in §5.4, and forwards

SUCI to SN. The SN appends its SNname (Clause 6.1.1.4 of [14]) to the received

SUCI and forwards the resulting message to the HN. Upon successful MAC verifi-

cation, HN accepts the extracted SUPI as valid for subsequent processing.

3As the ME and the USIM together form the UE and the trust model within the UE is reasonably
simple i.e. there are two trust domains, the tamper proof UICC on which the the USIM resides
as trust anchor and the ME; for sake of simplicity, we label user side notations with UE instead of
distinct USIM or ME.

4Note that HN will maintain a separate distinct value of SQNIDHN for each registered USIM in
its database.

5Note that labelps is a constant value indicating the protection scheme, and labelHN is a
constant value identifying the HN.
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Figure 5.3: Our proposed protection scheme PQID.

KHN
$← {0, 1}λ // init master secret key KHN

for each USIM do
// init secret keys and identification parameters

KN
$← {0, 1}λ

KID
$← {0, 1}λ

SQNIDUE ← 1
SQNIDHN ← 0
CKID ← f4(KHN ,KN )
A← SUPI ⊕ CKID
B ← KHN ⊕KN

end
USIM ← (KID , A,B,SQNIDUE )
HN ← (KID ,SQNIDHN )

Figure 5.4: Algorithmic description of system setup phase.
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// description of UE’s operations

RANDID
$← {0, 1}λ

CKID ← A⊕ SUPI
AKID ← f3(KID ,RANDID)
IKID ← f5(KID ,RANDID)
C ← RANDID ⊕ CKID
D ← SQNIDUE ⊕AKID
MACID ← f1(IKID , D‖A‖B‖C)
SUCI ← (labelps, ε, labelHN , D‖A‖B‖C‖MACID)
SQNIDUE ← SQNIDUE + 1

// description of HN’s operations

KN ← KHN ⊕B
CKID ← f4(KHN ,KN )
SUPI ← A⊕ CKID
RANDID ← C ⊕ CKID
AKID ← f3(KID ,RANDID)
IKID ← f5(KID ,RANDID)
SQNID∗ ← D ⊕AKID
if SQNID∗ ≤ SQNIDHN then

abort
else

MACID∗ ← f1(IKID , D‖A‖B‖C)
end
if MACID 6= MACID∗ then

abort
else

SQNIDHN ← SQNID∗

end

Figure 5.5: Algorithmic description of identification phase.

5.5.3 Update Phase

An algorithmic description of the operations of UE and HN during this phase can

be found in Figure 5.6. The output of the encryption scheme AE.Enc(EK,A+‖B+)

is appended to the 5G-AKA authentication vector 5G AV and is forwarded to the

SN as part of the authenticate response message (Step 4 in Figure 5.1) of the 5G-

AKA. The SN, upon receipt of the response message, undertakes the required steps

necessary for 5G-AKA and forwards the encrypted identification parameters to the

UE along with the 5G-AKA authentication challenge parameters RAND (note that

RAND is unrelated to RANDID) and AUTN (Step 5 in Figure 5.1).
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// description of HN’s operations

KN
+ ← {0, 1}λ

CKID+ ← f4(KHN ,KN
+)

A+ ← SUPI ⊕ CKID+

B+ ← KHN ⊕KN
+

EK ← f5
∗(KID ,RANDID)

EKID ← AE.Enc(EK , A+‖B+)

// description of UE’s operations

EK ← f5
∗(KID ,RANDID)

A+‖B+ ← AE.Dec(EK ,EKID)
A, B ← A+, B+

Figure 5.6: Algorithmic description of update phase.

5.6 Security Framework

In this section we introduce our Symmetric Updatable Private Authentication (SUPA)

framework, which follows in the long tradition of standard Bellare-Rogaway (BR)

key-indistinguishability games. Essentially, a protocol within the SUPA framework

is a protocol that authenticates an end-user to a central node via a shared symmet-

ric key in a private way. In comparison to similar BR-styled mutual authentication

games, our SUPA experiment diverges by considering identity privacy. In particu-

lar, the SUPA-based security experiment asks the adversary to decide which of two

parties attempted to authenticate itself to a centralised home network. In addition,

SUPA distinguishes itself by considering a multi-stage authentication protocol - i.e.

subsequent authentication attempts between the UE and the HN (after the first

successful authentication) are not independent, but instead dependent on values de-

rived from previous stages. This allows us to capture both identity confidentiality

and untraceability from the 3GPP requirements of user privacy (see §5.1). We can

now formally define a SUPA protocol.

Definition 1 (Symmetric Updatable Private Authentication). A Symmetric Updat-

able Private Authentication (SUPA) protocol is a tuple of algorithms

{SetupHN, SetupUE, Identify,Update}.

� SetupHN(λ) → KHN : SetupHN takes as input some security parameter λ and

outputs a long-term symmetric key KHN .

� SetupUE(λ,KHN )→ K, st: SetupUE takes as input some security parameter λ
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and a long-term symmetric key KHN , and outputs some shared (between the

UE and the HN ) secret state st and a shared symmetric key K.

� Identify(role,m, st,KHN )→ (id,m′, st′): Identify takes as input the role of the

party in the protocol execution, a (potentially empty) message m, the internal

state of the party st and (if role = HN ) the long-term HN key KHN , and

outputs an identifier id, a new (potentially empty) message m′, and an updated

state st′. Note that the identifier id doubles as a failure flag if the Identify

algorithm is forced to abort.

� Update(role,m, st,KHN ) → (m′, st′): Update takes as input the role of the

party in the protocol execution, a (potentially empty) message m, the internal

state of the party st and (if role = HN ) the long-term HN key KHN , and

outputs a new (potentially empty) message m′, an updated state st′. As in

Identify, the output message m′ doubles as a failure flag if the Update algorithm

is forced to abort.

5.6.1 Execution Environment

We now describe the execution environment of the SUPA security experiment. The

experiment ExpSUPA
Π,nN ,nS ,A(λ) is played between a challenger C and an adversary A.

The challenger C maintains a single HN , running a number of instances of the SUPA

protocol Π, and a set of (up to) nN users UE 1, . . . ,UEnN (representing nodes com-

municating with the home network HN ), each potentially running a single session

executing (up to) nS consecutive stages of Π. The protocol Π is represented as a

tuple of algorithms SUPA = {SetupHN,SetupUE, Identify,Update}. We abuse nota-

tion and use πsi to refer to both the identifier of the s-th stage of Π being run by

node UE i and the collection of per-session variables maintained for this stage. Each

session maintains the following set of per-session variables:

� i ∈ {1, . . . , nN} - the index of the party UE i;

� ltk ∈ {0, 1}λ - the long-term symmetric secret of UE i, shared with HN ;

� id ∈ {0, 1}∗ - the identifier of party UE i;

� ms ∈ {0, 1}∗ ∪ {⊥} - the concatenation of messages sent by the session, ini-

tialised by ⊥;

84



5.6 Security Framework

� mr ∈ {0, 1}∗ ∪ {⊥} - the concatenation of messages received by the session,

initialised by ⊥;

� st ∈ {0, 1}∗ ∪ {⊥} - the per-stage secret state of the session, initialised by ⊥;

� s ∈ {1, . . . , nS} - the index of the most recently completed authentication

stage, initialised by 1 and increased monotonically;

� α ∈ {active, accept,⊥} - the current status of the session, initialised by ⊥.

Our experiment begins with the challenger C sampling the random test bit b
$←

{0, 1}. The challenger generates the long-term symmetric key KHN of the HN and

initializes its corruption registers (which maintain the list of secrets A has leaked).

At this point, A now gains access to the queries listed in §5.6.2 and eventually

terminates and outputs a single guess bit b′. The freshness predicate fresh for our

SUPA security experiment is defined next.

Definition 2 (SUPA-fresh). A session πsi in the SUPA experiment is fresh if clean(πsi ) =

true (as defined in Definition 3) and πsi .mr = ⊥ ∧ πsi .ms = ⊥ at the start of the

experiment.

If A causes the challenger to:

� either execute Identify(HN ,m,HN .st,KHN )→ (id,m′, st′) such that there ex-

ists some session πsi .id = id, but m 6⊂ πsi .ms
6 or;

� execute Update(UE ,m, πsi .st, ε) → (m′, st′) such that m′ 6= ⊥ but there was

no execution of Update(HN ,m∗,HN .st,KHN )→ (m,HN .st′).

If either of the above is true and fresh(i, s) = true then C returns 1. Otherwise, if

A issued a Test(i∗, s∗) query, then C computes fresh(i∗, s∗). If fresh(i∗, s∗) is true,

then the challenger returns (b = b′), otherwise the challenger returns b∗
$← {0, 1}.

5.6.2 Adversary Queries

Here we describe the intuition behind each query that A has access to during the

SUPA experiment. For full details on each of these queries, see Figure 5.7.

6Note that here we are using ⊂ to indicate substrings
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ExpSUPA,clean
Π,nN ,nS ,A(λ):

1: b
$← {0, 1}

2: KHN
$← SetupHN(λ)

3: LSKflagi, . . . , LSKflagnN
← clean

4: PSSflag1
1, . . . ,PSSflagnN

nS
← clean

5: ctr ← 0
6: b′

$← ASend?,Create,Corrupt,StateReveal(λ)
7: if ∃ (i∗, s∗) s.t.

((Identify(HN ,m,HN .st,KHN ) →
(id,m′, st) s.t πs∗

i∗ .id = id,
m 6= πs∗

i∗ .ms) ∧ (clean(πs∗

i∗ )))
∨ ((Update(UE ,m, πs∗

i∗ .st, ε) →
(m′, st′) s.t. m′ 6= ⊥,
@Update(HN ,m∗,HN .st,KHN ) →
(m,HN .st′))) ∧ (clean(πs∗

i∗ ))) then
8: return 1
9: end if

10: if clean(πb) ∧ clean(π1−b) then
11: return (b′ = b)
12: else
13: return b∗

$← {0, 1}
14: end if

Test((i, s), (i′, s′)):

1: if (πs
i .α = active) ∨ (πs′

i′ .α = active)
then

2: return ⊥
3: end if
4: if (b = 0) then
5: πb ← πs

i

6: πb−1 ← πs′

i′

7: else
8: πb ← πs′

i′

9: πb−1 ← πs
i

10: end if
11: m← Identify(UE ,⊥, πb.st,⊥)
12: return m

StateReveal(i, s):

1: if πsi .st = ⊥ then
2: return ⊥
3: end if
4: PSSflagis ← corrupt

5: return πsi .st

Create(λ):

1: ctr ← ctr + 1
2: π.s← 1
3: π.ltk, π.st← SetupUE(λ,KHN )
4: π.i← ctr
5: return π.i

SendTest(m):

1: Send(πb,m)→ m′

2: return m′

Send(role, i, s,m):

1: if role = HN then
2: (HN .st′,m′)← F (λ,HN ,m)
3: end if
4: let s = max{s : πsi .α 6= ⊥}
5: if πsi .α 6= active then
6: return ⊥
7: end if
8: πsi .mr ← πsi .mr‖m
9: (πsi ,m

′)← F (λ, πsi ,m)
10: πsi .ms ← πsi .ms‖m′
11: return m′

Corrupt(i):

1: LSKflagi ← corrupt

2: return πi.ltk

Figure 5.7: An algorithmic description of the SUPA security experiment. We assume
the existence of a function F that is capable of taking as input a message m and
the current internal state πsi .st of the protocol execution and forwarding the inputs
to either Update or Identify as appropriate. We refer to the “test” session in the
description of the SUPA experiment as πb (and the other session as π1−b).
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� Create(i): Allows A to initialise a new UE party with shared symmetric state

and shared symmetric key with HN .

� Send(role, i, s,m)→ m′: Sends a message m to session πsi , which updates the

per-session variables, returning a (potentially empty) message m′.

� Corrupt(i)→ πi.ltk: Reveals to A the long-term symmetric key of UE i
7.

� Test(i, s, i′, s′) → m: Uses the random bit b sampled by C to begin a new

Identify phase with either πsi (if b = 0) or πs
′
i′ (if b = 1). For ease of notation,

we refer to the “test” session as πb (and the other session as π1−b). Note

that A cannot issue this query if there exists some stage s such that either

πsi .α = active or πs
′
i′ .α = active, nor can A issue Send queries to πsi or πs

′
i′

until πb has either accepted or rejected the protocol execution.

� SendTest(m) → m′: Allows A to send a message m to the test session πb

after A has issued a Test query. After πb.α 6= active, the challenger responds

to SendTest queries with ⊥.

� StateReveal(i, s)→ πsi : Reveals to A the full internal state of πsi .

We require a cleanness predicate, in order to disallow combinations of Corrupt

and StateReveal queries that allow an adversary to trivially break SUPA security.

We do not capture notions of forward secrecy, so our cleanness predicate is very

simple: A is not allowed to break sessions that it has issued either a Corrupt or a

StateReveal query to.

Definition 3 (SUPA-clean). A session πsi in the SUPA experiment defined in Fig-

ure 5.7 is clean if LSKflagi 6= corrupt and PSSflagsi 6= corrupt.

5.6.3 Security Definitions

Here we define the security of a SUPA protocol, and additionally show that the

PQID scheme described in Figure 5.3 executes correctly in the presence of a passive

adversary.

Definition 4 (Private Authentication Security). Let Π be a SUPA protocol, and nN ,

nS ∈ N. For a given cleanness predicate clean, and a PPT algorithm A, we define

the advantage of A in the SUPA game to be:

AdvSUPA,clean
Π,nN ,nS ,A(λ) = |Pr[ExpSUPA,clean

Π,nN ,nS ,A(λ) = 1]− 1

2
|.

7In PQID, this is the key KID , not the independent 5G-AKA key K.
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We say that Π is SUPA-secure if, for all A, AdvSUPA,clean
Π,nN ,nS ,A(λ) is negligible in the

security parameter λ.

We also need to define identification correctness as well as update correctness, to

ensure that we only capture protocols that are actually useful.

Definition 5 (Identification Correctness). Let Π be a SUPA protocol. We say that Π

has identification correctness if after an execution of Identify(HN ,m′, HN .st,KHN )→
(id′,m∗, st′) in the presence of a passive adversary A such that for some session

πsi .ms = m′, then πsi .id = id′.

It is fairly straightforward to see that the proposed protocol in Figure 5.3 has iden-

tification correctness: The fields A = SUPI ⊕ CKID and B = KHN ⊕ KN sent by

the UE contains all the information necessary to recompute the identifier SUPI

of the UE . HN first computes KN = B ⊕ KHN and then CKID = f4(KHN ,KN ).

Retrieving SUPI is then simply a matter of SUPI ← A⊕ CKID .

Update correctness is a little different to identification correctness. We only require

that the session executing an Update using output from HN simply updates their

state without aborting the protocol execution, instead of having to agree to some

shared updated state. This is to capture stateless HN sessions that simply regenerate

per-session state when required, usually by processing client-maintained tokens. In

this sense, the A and B values sent by the UE during our PQID protocol are tokens

that allow HN to recover per-session state.

Definition 6 (Update Correctness). Let Π be a SUPA protocol. We say that Π has

update correctness if after an execution of Update(UE ,m′, πsi .st, ε)→ (m∗, πsi .st
′) in

the presence of a passive adversary A such that for some execution of

Update(HN ,m,HN .st,KHN )→ (m′,HN .st′), then m∗ 6= ⊥ and πsi .st
′ 6= πsi .st.

Similarly to identification correctness, it is straightforward to see that the proposed

protocol in Figure 5.3 has update correctness: The fields A+ = SUPI ⊕ CKID+

and B+ = KHN ⊕ KN
+ encrypted under EK = f5∗(KID ,RANDID) sent by the

HN contains all the information necessary to update the values A, B and CKID .

UE computes EK = f5∗(KID ,RANDID) (where RANDID was sampled initially by

UE and KID is the long-term symmetric key shared by UE and HN in the PQID

protocol, so both are known to UE ), and decrypts A+ and B+. Afterwards, UE

updates A← A+, B ← B+, CKID ← A+ ⊕ SUPI .
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5.7 Analysis of the Proposed Protection Scheme

5.7.1 Formal Analysis

We discuss and analyse our proposed 5G identity protection scheme PQID within the

SUPA security framework, and show that it achieves the notion of SUPA protocols.

Theorem 1. The identity protection scheme PQID given in Figure 5.3 is SUPA-

secure under cleanness predicate clean and assuming all hash functions are random

oracles. For any PPT algorithm A against the SUPA experiment, AdvSUPA,clean
PQID,nN ,nS ,A(λ)

is negligible under the ae, kdf and eufcma security assumptions of the AE, KDF and

MAC schemes, respectively.

Proof. Before we begin our analysis in earnest, we show that an adversary A is

unable to recover the long-term symmetric key of the home network KHN (with

non-negligible probability) even if A reveals all long-term secrets K of all nodes

and all per-stage secret states st, assuming underlying hash functions are random

oracles. In our proof we work within the random oracle model, and A cannot learn

anything about KHN from hash outputs H(KHN , X) (where X is any concatenation

of arbitrary values).

We turn to A attempting to learn KHN that has been “blinded” through exclusive-or

(XOR) operations, which are only sent in the following values: B = KHN ⊕KN and

B+ = KHN ⊕KN
+. KN and KN

+ are acting as one-time-pads encrypting the long-

term symmetric key of the home network HN , and each KN /KN
+ is a value internal

to the home network that cannot be compromised via A issuing a Corrupt or

StateReveal query. A therefore cannot recover KHN in this way, but can attempt

to guess and verify the guess by first querying StateReveal to any UE party,

recovering CKID and B, and querying the random oracle with (KHN
′, B ⊕ KHN

′)

and comparing the output of the random oracle with CKID . The probability of A’s

success in this strategy is qr/2λ−1. (where qr is the number of queries that A makes

to the random oracle and λ is the bit-length of KHN ). During our analysis then, we

assume that in each stage of a protocol execution KHN is indistinguishable from a

uniformly-random value KHN
∗ from the same distribution.

In our analysis, we split our proof into three cases:

1. A has caused a session πsi to reach a status accept when calling Update(UE ,

m, πsi .st, ε) such that m is not the output of HN and clean(πsi ) = true.
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2. A has caused HN to call Identify(HN ,m,HN .st,KHN )→ (id′,m′,HN .st′) such

that ∃ πsi .id = id′, but m was not the output of Identify(UE , ε, πsi .st, ε) and

clean(πsi ) = true.

3. A has output a guessed bit b′ after issuing a Test(i, s, i′, s′) query

We show that A has negligible advantage in causing the first two cases to occur, and

thus A also has negligible advantage in winning the SUPA experiment in the third

case. Each of these three cases are disjoint by the definition of the SUPA experiment:

the experiment terminates immediately in the first two cases when a (clean) session

has reached the accept state after recieving a message m that is not the honest

output of either the HN or the UE . It follows that A cannot output the guessed bit

b′ in these cases. Thus:

AdvSUPA,clean
PQID,nN ,nS ,A(λ) ≤ AdvSUPA,clean,C1

PQID,nN ,nS ,A(λ)+AdvSUPA,clean,C2
PQID,nN ,nS ,A(λ)+AdvSUPA,clean,C3

PQID,nN ,nS ,A(λ).

Case 1. In this case, we show that the advantage that A has in causing a session

πsi to set πsi .α ← accept when calling Update(UE ,m, πsi .st, ε) and m is not the

output of the home network HN is negligible.

Game 0

This game is Case 1 with cleanness predicate clean in the SUPA experiment as

described in Definition 4. Thus we have:

AdvSUPA,clean,C1
PQID,nN ,nS ,A(λ) = Pr(break0).

Game 1

In this game we guess the session πsi such that πsi has reached a status accept when

calling Update(UE ,m, πsi .st, ε) and m is not an output of the home network HN .

Thus we have:

Pr(break0) = nSnN ·
(

Pr(break1)
)
.

Game 2

In this game we replace the keys AKID , IKID and EK computed in the session

πsi with uniformly-random values AKID∗, IKID∗ and EK ∗ from {0, 1}|KDF|, where
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|KDF| represents the output length of KDF. Recall that AKID , IKID , EK are com-

puted honestly as f3(KID ,RANDID), f5(KID ,RANDID) and f5∗(KID ,RANDID) re-

spectively. We note that KID is not used in any other context (and is independent

of the long-term key K used in the rest of the 5G AKA), and that for Case 2

clean(πsi ) = true, so A has not issued Corrupt(πsi ) or StateReveal(πsi ). Thus,

KID is a uniformly random value that is independent of the protocol execution,

and any algorithm that can distinguish Game 2 from Game 1 can be used to con-

struct a simulator B that distinguishes the output of KDF from random. When

the random bit b sampled by the KDF challenger is 0, AKID = f3(KID ,RANDID),

IKID = f5(KID ,RANDID), EK = f5∗(KID ,RANDID) and B provides a perfect

simulation of Game 1. When b = 1, AKID∗, IKID∗ and EK ∗
$← {0, 1}|KDF| and B

provides a perfect simulation of Game 2. An A capable of distinguishing Game 2

from Game 1 can therefore break the kdf security of KDF, and thus we have:

Pr(break1) = Advkdf
KDF,A(λ) + Pr(break2).

Game 3

In this game, we define an abort event abortdec that occurs when πsi sets πsi .α ←
accept during a call to Update(UE ,m, πsi .st, ε) and m is not the output of the home

network HN . We do this by constructing a simulator B that interacts with an AE

challenger, computing AE.Enc(EK ∗, A+‖B+) by querying (A+‖B+, A+‖B+) to the

LoR AE challenger’s AuthEnc oracle instead of computing it honestly. Similarly, πsi

decrypts the ciphertext C received in the Update Phase by querying AE challenger

with C. Note that EK ∗ is already uniformly random and independent of the protocol

run by Game 3, and this replacement is sound. We note that, by the definition of

Case 1, abortdec must occur. In addition, πsi is the first session that sets πsi .α ←
accept during a call to Update(UE ,m, πsi .st, ε) and m is not the output of the home

network HN . Moreover, A cannot terminate and output a guess bit b′, and as such

the advantage of A in winning the SUPA experiment in Game 3 is negligible. Thus

we have:

Pr(break2) = abortdec.

We now show that the probability of A causing abortdec is negligible. Note that

if abortdec occurs that A caused πsi to accept when m is not the output of the

home network HN . In the proposed protocol, the message m purely consists of

AE.Enc(EK ∗, A+‖B+). Thus, if abortdec occurs, then m is a ciphertext that de-

crypts correctly by the AE challenger, but was not the output of the query (A+‖B+,
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A+‖B+) to the LoR AE challenger’s AuthEnc oracle. Thus, when abortdec occurs, B
has broken the ae security of the AE challenger, and thus:

abortdec = Advae
AE,A(λ).

Thus we have:

AdvSUPA,clean,C1
PQID,nN ,nS ,A(λ) = nNnS ·

(
AdvKDF

KDF,A(λ) + Advae
AE,A(λ)

)
.

Case 2. In this case, we show that the advantage that A has in causing HN to call

Identify(HN ,m,HN .st,KHN )→ (id′,m′,HN .st′) such that ∃ πsi .id = id′, but m was

not the output of some Identify(UE , ε, πsi .st, ε) and clean(πsi ) = true is negligible.

Game 0

This game is Case 2 with cleanness predicate clean in the SUPA experiment as

described in Definition 4. Thus we have:

AdvSUPA,clean,C2
PQID,nN ,nS ,A(λ) = Pr(break0).

Game 1

In this game we guess the index of the session πsi such that πsi .id = id′ when calling

Identify(HN ,m,HN .st,KHN ) → (id′,m′,HN .st′) and m is not the output of πsi .

Thus we have:

Pr(break0) = nN ·
(

Pr(break1)
)
.

Game 2

In this game we replace the keys AKID , IKID and EK computed in the HN and any

stage s of session πsi with uniformly-random values AKID∗, IKID∗ and EK ∗ from

{0, 1}|KDF|, where |KDF| represents the output length of KDF. We do so by interact-

ing with nS KDF challengers. Recall AKID , IKID , and EK are computed honestly

as f3(KID ,RANDID), f5(KID ,RANDID) and f5∗(KID ,RANDID) respectively. We

note that KID is not used in any other context (and again, is independent of the

long-term key K used in the 5G-AKA), but RANDID is sampled independently in

each of the nS stages, and that for Case 2 clean(πsi ) = true, so A has not issued

Corrupt(πsi ) or StateReveal(πsi ).
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Thus, KID is a uniformly random value that is independent of the protocol execu-

tion, and such any algorithm that can distinguish Game 2 from Game 1 can be used

to construct a simulator B that distinguishes the output of KDF from random.

When the random bit b sampled by the KDF challenger is 0,

AKID = f3(KID ,RANDID), IKID = f5(KID ,RANDID), EK = f5∗(KID ,RANDID),

and B provides a perfect simulation of Game 1. When b = 1, AKID∗, IKID∗ and

EK ∗
$← {0, 1}|KDF| and B provides a perfect simulation of Game 2. Any A capable

of distinguishing Game 2 from Game 1 can therefore break the kdf security of KDF,

and thus we have:

Pr(break1) = nS · Advkdf
KDF,A(λ) + Pr(break2).

Game 3

In this game, we define an abort event abortmac that occurs when HN outputs πsi .id =

id′ during a call to Identify(HN ,m,HN .st,KHN ) and m is not the output of some

stage s of the sessions owned by UE i. We do this by constructing a simulator B that

interacts with an MAC challenger, computing MAC(IKID∗, D‖A‖B‖C) by querying

(D‖A‖B‖C) to the MAC challenger instead of computing it honestly within HN or

any session owned by UE i. Note that the various IKID∗ keys are already uniformly

random and independent of the protocol run by Game 2, and this replacement is

sound. We note that by the definition of Case 2 and this case that abortmac must

occur. In addition, A cannot terminate and output a guess bit b′, and as such the

advantage of A in winning the SUPA experiment in Game 3 is negligible, and thus

we have:

Pr(break2) = abortmac.

We now show that the probability of A causing abortmac is negligible. Note that if

abortmac occurs that A caused πsi to accept when m is not the output of some session

owned by UE i. In PQID, the message m purely consists of D‖A‖B‖C‖MACID .

Thus, if abortmac occurs, then A has managed to produce a MAC tag under a

key IKID∗ that verifies correctly, but was not the output of a query to the MAC

challenger. Thus, when abortmac occurs, B can forward this to the MAC challenger

and break the eufcma security of the MAC, and thus:

abortmac = nSAdveufcma
MAC,A(λ).

Thus we have:

AdvSUPA,clean,C2
PQID,nN ,nS ,A(λ) = nNnS ·

(
Advkdf

KDF,A(λ) + Adveufcma
MAC,A(λ)

)
.
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Case 3. In this case we show that the advantage that A has in guessing the test

bit b is negligible.

Game 0

This game is Case 3 with cleanness predicate clean in the SUPA game as described

in Definition 4. Thus we have:

AdvSUPA,clean,C3
PQID,nN ,nS ,A(λ) = Pr(break0).

Game 1

In this game we guess the session πsi such that A issues a Test(i, s, i′, s′) query and

πsi = πb. Thus we have:

Pr(break0) = nSnN ·
(

Pr(break1)
)
.

Game 2

In this game we replace the key KHN used in the test session πsi with a uniformly

random values KHN
∗ from the same distribution {0, 1}λ. We argued at the beginning

of §5.7 that A has negligible chance in detecting this change, and thus:

Pr(break1) = qr/2λ−1 + Pr(break2).

Game 3

In this game we replace the value CKID+ computed in the previous stage of the

test session πs−1
i with a uniformly-random value CKID+∗ from {0, 1}|KDF| where

|KDF| represents the output length of KDF. Note that CKID+ is computed hon-

estly as f4(KHN
∗,KN ) respectively. We note that KHN is not used in any other

context, and that for Case 3 clean(πsi ) = true, so A has not issued Corrupt(πsi ) or

StateReveal(πsi ). Thusly, KHN
∗ is a uniformly random value that is independent

of the protocol execution, and as such any algorithm that can distinguish Game 3

from Game 2 can be used to construct a simulator B that distinguishes the output

of KDF from random. When the random bit b sampled by the KDF challenger is 0,

CKID+ = f4(KHN
∗,KN ), and B provides a perfect simulation of Game 2. When
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b = 1, CKID+∗ $← {0, 1}|KDF| and B provides a perfect simulation of Game 3. An A
capable of distinguishing Game 3 from Game 2 can therefore break the kdf security

of KDF, and thus we have:

Pr(break2) = Advkdf
KDF,A(λ) + Pr(break3).

Game 4

In this game we replace the keys AKID , IKID and EK computed in the previous

stage of the test session πs−1
i with uniformly-random values AKID∗, IKID∗ and

EK ∗ from {0, 1}|KDF| where |KDF| represents the output length of KDF. Note that

AKID , IKID ,EK are computed honestly as f3(KID ,RANDID∗), f5(KID ,RANDID∗)

and f5∗(KID ,RANDID∗) respectively. We note that KID is not used in any other

context (again, KID is independent of the long-term key K used in the 5G-AKA),

and that for Case 3 clean(πsi ) = true, so A has not issued Corrupt(πsi ) or

StateReveal(πsi ).

Thus, KID is a uniformly random value that is independent of the protocol execution,

and any algorithm that can distinguish Game 4 from Game 3 can be used to construct

a simulator B that distinguishes the output of KDF from random. When the ran-

dom bit b sampled by the KDF challenger is 0, AKID = f3(KID ,RANDID∗), IKID =

f5(KID ,RANDID∗),EK = f5∗(KID ,RANDID∗), and B provides a perfect simula-

tion of Game 3. When b = 1, AKID∗, IKID∗ and EK ∗
$← {0, 1}|KDF| and B provides

a perfect simulation of Game 4. An A capable of distinguishing Game 4 from Game

3 can therefore break the kdf security of KDF, and thus we have:

Pr(break3) = Advkdf
KDF,A(λ) + Pr(break4).

Game 5

In this game, we replace the A+, B+ values sent from HN to the test session’s previ-

ous stage πs−1
i with uniformly-random values A+∗, B+∗. We do this by constructing

a simulator B that interacts with an AE challenger, computing AE.Enc(EK ∗, A+‖B+)

by querying (A+‖B+, A+∗‖B+∗) to the LoR AE challenger’s AuthEnc oracle instead

of computing it honestly. Similarly, πs−1
i decrypts the ciphertext C received in the

update phase by simply querying it to the AuthDec oracle, ignoring the result of the

decryption and using the A+, B+ values created by HN instead. Note that EK ∗

is already uniformly random and independent of the protocol run by Game 4, and
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this replacement is sound. We note that this means that when the bit b sampled

by the AE challenger is 0, then A+, B+ values are sent honestly, but when the bit

b sampled by the AE challenger is 1, then A+∗, B+∗ values are sent instead and A+

and B+ are established independently of the ciphertext sent during the Updation

Phase. Any adversary capable of distinguishing this change can be turned into an

adversary capable of breaking the security of the AE scheme, and thus we have:

Pr(break4) = Advae
AE,A(λ) + Pr(break5).

Game 6

In this game we replace the value CKID computed in the test session πsi with a

uniformly-random value CKID∗ from {0, 1}|KDF| where |KDF| represents the output

length of KDF. Note that CKID is computed honestly as f4(KHN
∗,KN ). We note

that KHN is not used in any other context, and that for Case 3 clean(πsi ) = true,

so A has not issued Corrupt(πsi ) or StateReveal(πsi ). Thus, KHN
∗ is a uniformly

random value that is independent of the protocol execution, and as such any algo-

rithm that can distinguish Game 3 from Game 2 can be used to construct a simulator

B that distinguishes the output of KDF from random. When the random bit b sam-

pled by the KDF challenger is 0, CKID = f4(KHN
∗,KN ), and B provides a perfect

simulation of Game 5. When b = 1, CKID∗
$← {0, 1}|KDF| and B provides a perfect

simulation of Game 6. An A capable of distinguishing Game 6 from Game 5 can

therefore break the kdf security of KDF, and thus we have:

Pr(break5) = Advkdf
KDF,A(λ) + Pr(break6).

Game 7

In this game we replace the keys AKID , IKID and EK computed in the session πsi

with uniformly-random values AKID∗, IKID∗ and EK ∗ from {0, 1}|KDF| where |KDF|
represents the output length of KDF. Note that AKID , IKID , EK are computed

honestly as f3(KID ,RANDID), f5(KID ,RANDID) and f5∗(KID ,RANDID) respec-

tively. We note that KID is not used in any other context and also that RANDID is

independent from the RANDID∗ sampled in the previous stage, and that for Case

3 clean(πsi ) = true, so A has not issued Corrupt(πsi ) or StateReveal(πsi ).

Thus, KID is a uniformly random value that is independent of the protocol execution,

and any algorithm that can distinguish Game 7 from Game 6 can be used to construct
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a simulator B that distinguishes the output of KDF from random. When the random

bit b sampled by the KDF challenger is 0, AKID = f3(KID ,RANDID), IKID =

f5(KID ,RANDID), EK = f5∗(KID ,RANDID) and B provides a perfect simulation

of Game 6. When b = 1, AKID∗, IKID∗ and EK ∗
$← {0, 1}|KDF| and B provides a

perfect simulation of Game 7. An A capable of distinguishing Game 6 from Game

7 can therefore break the kdf security of KDF, and thus we have:

Pr(break6) = Advkdf
KDF,A(λ) + Pr(break7).

Game 8

In this game we replace SQNIDUE in both the test session and its matching home

network HN with a uniformly-random value from the same distribution. Note

that SQNIDUE sent once during the protocol execution: as the first field D =

SQNIDHN ⊕ AKID∗ in the SUCI message during the Identification Phase. By

Game 7, AKID∗ is a uniformly-random value independent of the protocol execu-

tion, and thus we can consider it a one-time-pad to SQNIDUE , perfectly hiding it.

As a result, we can replace SQNIDUE with any value without detection. In addi-

tion, in any future sessions πs+1
i we instead increment SQNIDUE from session πs−1

i

instead of incrementing from πsi . Thus we have:

Pr(break7) = Pr(break8).

Game 9

In this game, we replace the A+, B+ values sent from HN to the test session’s previ-

ous stage πsi with uniformly-random values A+∗, B+∗. We do this by constructing a

simulator B that interacts with an AE challenger, computing AE.Enc(EK ∗, A+‖B+)

by querying (A+‖B+, A+∗‖B+∗) to the LoR AE challenger’s AuthEnc oracle instead

of computing it honestly. Similarly, πsi decrypts the ciphertext C received in the

update phase by simply querying it to the AuthDec oracle, ignoring the result of the

decryption and using the A+, B+ values created by HN instead. Note that EK ∗

is already uniformly random and independent of the protocol run by Game 7, and

this replacement is sound. We note that this means that when the bit b sampled

by the AE challenger is 0, then A+, B+ values are sent honestly, but when the bit

b sampled by the AE challenger is 1, then A+∗, B+∗ values are sent instead and

A+ and B+ are established independently of the ciphertext sent during the update
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phase. Any adversary capable of distinguishing this change can be turned into an

adversary capable of breaking the security of the AE scheme, and thus we have:

Pr(break8) = Advae
AE,A(λ) + Pr(break9).

We argue now that all values sent in the tested session πsi are independent from any

value sent in previous and future sessions. Thus we have:

Pr(break9) = 0.

Thus we can show:

AdvSUPA,clean,C3
PQID,nN ,nS ,A(λ) ≤ nNnS ·

(
qr/2λ−1 + 4 · Advkdf

KDF,A(λ) + 2 · Advae
AE,A(λ)

)
.

Summing the previous cases allows us to show:

AdvSUPA,clean
PQID,nN ,nS ,A(λ) ≤ nNnS ·

(
Advkdf

KDF,A(λ) + Advae
AE,A(λ)

)
+ nNnS ·

(
Advkdf

KDF,A(λ) + Adveufcma
MAC,A(λ)

)
+ nNnS ·

(
qr/2λ−1 + 4 · Advkdf

KDF,A(λ) + 2 · Advae
AE,A(λ)

)
.

5.7.2 Other Improvements

We now discuss how our proposal prevents certain attacks and motivate our propos-

als to change aspects of the 3GPP specification.

� Update of Long-Term Secret Parameters. As elaborated in §5.4.2, it

may be required for HN to update its long-term secret key. In the current

ECIES-based mechanism this is a difficult proposition as it requires a suitable

mechanism to transport the updated public key of the HN to all of its sub-

scribers and also an update-confirmation mechanism used by the subscribers.

With our proposal, no such mechanism is required as the secret key is inter-

nal to HN. However, updating the KHN will require an interim period during

which the HN has to operate with both the new and old key, but this would

be handled within domains of the identification phase (§5.5.2) itself.

� Migration to Authenticated Encryption in 5G. Our proposal uses au-

thenticated encryption to update identification parameters. Currently, the

3GPP specifications do not list authenticated encryption algorithms, but in-

stead separate encryption and integrity algorithms, ascribed to historical rea-

sons. Previous generations of mobile telephony used to avoid integrity protec-

tion of user traffic (voice/data) because of the substantial errors during the
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radio channel propagation. Only the signalling traffic used to be integrity pro-

tected. But as the quality of radio traffic improved, provisions for integrity

protection of user traffic were also created. Though we could have achieved

the requisite security guarantees in our scheme using the currently specified

primitives by following the “Encrypt-then-authenticate” paradigm, we stress

that our approach is clearer and suggest that the 3GPP specifications should

introduce such primitives.

� Replay Prevention. We include and authenticate sequence numbers SQNID

in our protection scheme to prevent replay attacks. Moreover, they also provide

appropriate resilience to desynchronization between the UE and HN as now an

arbitrary third party cannot initiate an identification request without access

to the shared secret key KID .

� Chosen SUPI Attacks. Our scheme is resilient to chosen SUPI attacks

(§5.4.2), due to inclusion of the shared secret key KID as the keying input for

the computation of the MAC tag MACID .

� Multiple Identification Parameters. In the case of an unexpected inter-

ruption, the UE will re-attempt identification using the same parameters A

and B . Although this does not violate the session unlinkability criterion (as

it is effectively the same session), one could imagine the UE storing multiple

pairs of identification parameters in these cases.

5.8 Parameter Sizes

For 5G, the most cryptographically relevant quantum algorithms are Grover’s search-

ing algorithm [68] (quadratically faster than any classical brute force searching

scheme) and Shor’s factoring algorithm [130] (exponentially faster than the best

known classical factoring algorithm - the number field sieve). It is worth noting,

however, that if an alternative was suggested that utilizes the symmetric-key prim-

itives offered by the current 3GPP specification (and their associated parameter

sizes), then this may not achieve quantum security. For example, the output of the

MAC algorithm (referred to as f1, see Table 5.2) could be 64 bits. For such a pro-

posal to realize resilience against quantum algorithms [45], the standard technique

to achieve is to increase the length of the classical-secure key size, preferably to

256 bits. In this regard, 3GPP is already working towards supporting 256-bit algo-

rithms [21]. As regards the effects of bidding down attacks, in the current 3GPP
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specifications the SUPI is derived directly from the IMSI, and is thus susceptible to

bidding down attacks (§5.4.2) by an active adversary. To thwart such attacks, the

derivation of SUPI should be independent of the previous generations' IMSI.

5.9 Chapter Summary

In this chapter we introduced a new private identification scheme for the 5G speci-

fication, a quantum-secure alternative to the current public-key based solution. We

described the limitations of the existing solution and discussed how our proposal

mitigates these drawbacks. We introduced a security model for our protocols and

proved the security of our proposal. Our proposal is compatible with the current

5G specifications, depending mostly on cryptographic primitives already specified

in 5G, adding minimal performance overhead and requiring minor changes in the

existing message structure.
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Chapter 6

Mitigating Downgrade Attacks on
5G

The 5G Release 15 SUPI protection mechanism (§5.4.1) and our alternative SUPI

protection scheme PQID (§5.5) are both vulnerable to downgrade attacks, i.e. an ac-

tive attacker is able to force the connection down to 2G/3G/4G and exploit previously

known vulnerabilities. In this chapter we show how a recent downgrade protection

proposal for 5G Release 15 can be amalgamated with our SUPI protection scheme to

provide a quantum-secure and downgrade-resistant private identification mechanism

for 5G.

6.1 Introduction and Background

Despite the SUPI protection provisioned by 3GPP Release 15 (§5.4.1), IMSI-catching

remains unaffected in GSM/UMTS/LTE networks, which opens the possibility of

a downgrade attack on 5G user privacy. When a 5G UE wants to connect to a

GSM/UMTS/LTE SN, the SN wants to know the identity of the user so that the

user can be billed. The SN can send an IMSI inquiry to the UE. Since the link

between the UE and the SN is initially unprotected, the UE has to respond with

its IMSI in plaintext. A passive IMSI-catcher can listen to the radio channel and

read IMSIs sent in plaintext. An active IMSI-catcher can impersonate a legitimate

SN and can make an IMSI inquiry. The UE has no way to distinguish an active

IMSI-catcher from a legitimate SN before authenticating the SN. Hence, the UE

invariably has to send the plaintext IMSI to the attacker, otherwise it will be locked

out of the network. As in 5G networks, this identification is followed by mutual

authentication between UE and SN based upon a challenge-response based AKA

protocol.

Khan et al. [89] looked at this issue in 5G networks and proposed a solution to
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countermeasure downgrade attacks. Although we will only consider LTE networks

in our discussion about downgrade attacks, our analysis is equally applicable to

UMTS networks. As GSM networks lack mutual authentication between UE and

HN, this solution is not applicable to GSM networks in a straightforward manner.

The solution in [89] basically proposes the following:

� When interacting with LTE networks: To use an existing pseudonym-

based solution [90] to protect identity of 5G users against IMSI-catchers.

� When interacting with 5G networks: To include a mechanism for up-

dating the LTE pseudonyms using the 5G ECIES-based identity protection

scheme.

The update mechanism helps in recovering from an (unlikely) loss of pseudonym

synchronization between a UE and its HN once they reconnect over a 5G network.

The proposed solution utilizes existing LTE messages and requires minimalistic

changes to the 3GPP Release 15 messages. It requires modifications only in the

UE and HN (not within SN) in order to provide identity privacy. The solution

uses pseudonyms that have the same format as LTE IMSIs to defeat the downgrade

attack. A pseudonym looks like a normal LTE IMSI, but its MSIN part is ran-

domized and frequently changing. The UE is provisioned with two pseudonyms at

the beginning and it obtains fresh pseudonyms during further AKA protocol runs.

It uses these pseudonyms instead of IMSI to identify itself when connecting to an

LTE SN. This solution piggybacks on existing messages involved in the LTE-AKA

and 5G-AKA protocols to deliver new pseudonyms to the UE and does not require

separate messages.

Since the total number of pseudonyms is limited, pseudonyms need to be reused,

i.e., disassociated from one user and reallocated to another. In this solution the

UE updates its pseudonyms by interacting with HN via either an LTE SN or 5G

SN. The UE does not need a pseudonym to connect to a 5G SN. Hence, even in

the unlikely event where the UE and HN lose synchronization of pseudonyms, the

synchronization can be restored by obtaining a new LTE pseudonym from the HN,

simply by connecting to a 5G SN.

The work in this chapter shows how the downgrade protection proposal by Khan

et al. [89], which was originally for 5G Release 15, can be combined with our

SUPI protection scheme PQID (Chapter 5) to provision both quantum-security and
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downgrade-resistance for private identification in 5G. The rest of the chapter is or-

ganized as follows: §6.2 details the proposal by Khan et al, 6.3 presents an analysis

of the downgrade protection proposal, while §6.4 shows the amalgamation of the

downgrade proposal with our PQID. §6.5 discusses the combined solution and §6.6

provides the summary.

6.2 The Downgrade Protection Solution

We now explain the details of the 5G downgrade protection solution as proposed

by [89]. We use similar notation to that used in [89] for ease of comparison. In

this solution, instead of IMSI, a 5G UE when interacting with an LTE network uses

pseudonyms that have the same format as an LTE IMSI. In addition, when a 5G

UE runs the 5G-AKA, it synchronizes its LTE pseudonyms with the HN. In this

solution:

� A 5G UE uses pseudonyms to connect with LTE SNs and SUCI to connect

with 5G SNs.

� Only the HN allocates and releases pseudonyms of mobile users; initially the

HN allocates two pseudonyms per 5G user and provisions them into the users

USIMs.

� A 5G UE obtains new pseudonyms by participating in authentication protocols

(LTE-AKA or 5G-AKA). The two latest pseudonyms received by the UE are

denoted by p1 and p2.

� In order to support simultaneous connections with multiple 5G SNs, the solu-

tion:

– Uses a subscriber-specific counter d of pseudonyms maintained by the

HN.

– Keeps track of in-use pseudonyms in 5G UE and HN, using sets PUE

and PHN , respectively; the elements of these sets are pairs (pi, di) of

pseudonyms and their respective counters (see Figure 6.1).

– Transmits information about pseudonyms being used in 5G UE via the

SUCI.
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PUE = {(pi, di)| where di < d1} (p1, d1) (p2, d2)UE Side:

d1 < d2

PHN = {(pi, di)| where di < dc} (pc, dc) (pn, dn) (pf , df )HN Side:

dc < dn < df

Figure 6.1: Pseudonym state in UE and HN.

The 5G UE uses only p1 or p2 when replying to an IMSI inquiry from an LTE

SN. The set PUE contains pseudonyms that 5G UE received before p1 and p2. The

UE deletes pseudonyms from PUE based on policy provided by the HN that could

include, for example, pseudonyms' lifetime or the maximum size of PUE . The PHN

contains pseudonyms that the HN thinks are in PUE , and it deletes pseudonyms

from PHN according to another policy. One objective of these policies is that the

HN should not delete a pseudonym which the UE has not yet deleted. Thus, PUE

is a subset of PHN . In short, the UE informs the HN about its older pseudonyms

when it connects with a 5G SN using SUCI, and then the HN is able to reduce the

set PHN . Note that as long as the UE is connecting to LTE SN only, the size of

PHN grows.

This solution does not introduce any new messages on top of what 3GPP has stan-

dardized. Although the authors of [89] claim that their scheme is completely trans-

parent to a participating 5G SN, it is not. It modifies the length of a couple of

existing 5G-AKA messages (for details see Steps (3) and (4) of Figure 6.3) while the

LTE-AKA messages remain fully transparent to the SN. It only introduces changes

in the 5G UE and its HN. However, to enable Lawful Interception, this solution does

require some modifications within the LTE SNs.

As standardized, a 5G USIM comes with an IMSI, a master key K and the HN’s

public key pk embedded in it. In this solution, a 5G USIM is also provisioned with

two pseudonyms p1, p2 and a key k, shared with HN for decrypting the pseudonyms.

Similarly, along with the user’s IMSI, and master key K, the HN in this solution

has to store additional information: the shared key k for encrypting pseudonyms

and three pseudonyms pc, pn, and pf (where the subscripts stand for current, next

and future). Ideally p1 = pc and p2 = pn. When a pseudonym p is allocated to a

subscriber, it is associated with a subscriber-specific counter d, which is a strictly

monotonically increasing counter value that increments each time the HN allocates

a new pseudonym to the subscriber.
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6.2.1 LTE-AKA based Solution

This part of the solution, when the 5G UE interacts with an LTE SN, is shown in

Figure 6.2 and works as follows:

UE(5G) SN(LTE) HN(5G)

(2) q ← p1 or q ← p2

(9) LTE-AKA operations

(11) Update pseudonyms (12) Verify RES
?
= XRES

(5) UE identification, RAND construction
(6) Remaining LTE-AKA operations

(14) User identification via
q and pseudonym update

(1) IMSI Inquiry

(4) AV request with q(3) q

(8) RAND,AUTN (7) RAND,AUTN,XRES,KASME

(13) LU message for pseudonym q

(10) RES

Figure 6.2: LTE-AKA based solution. The differences to the standard LTE-AKA
are highlighted in red.

1. An LTE SN requests the IMSI from the UE.

2. The UE chooses one of the pseudonyms p1, p2 and assigns it to q.

3. The UE sends q to the SN.

4. The SN sends an AV request for the pseudonym q to the HN. The user mostly

identifies itself with the GUTI. Sometimes the user may implicitly identify itself

by responding to a paging message. In either case, if the SN wants to perform

an LTE-AKA, the SN requests an AV from the HN for the pseudonym/IMSI

that was associated with the GUTI or was used in the paging message.

5. The HN checks whether the pseudonym q is in use for any subscriber. If it

is, the HN starts to prepare the AV. It first constructs the random challenge

RAND. A new pseudonym is embedded in the RAND as follows:

� The 128-bit long random challenge RAND is created by encrypting (using

key k that can be generated from the master key K) the pseudonym pf ,
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its counter df , an error correction flag (ECF) and a randomly chosen

l-bit long salt. If the pseudonym pf is null, a new m-bit long pf is

chosen randomly from the pool of unused pseudonyms. Then df is set to

the current value of the counter CTR, which is a strictly monotonically

increasing counter maintained by the HN. It increases each time the HN

generates a new pseudonym. The flag ECF is by default set to 0 but a

5G HN may set it to some other values to notify the UE about an error

in the UEs pseudonym state.

� The length of l is equal to (128 − length(df ) − length(ECF ) −m) bits.

The length of m depends on how many digits of the IMSI are randomized.

Since the number of randomized digits can be at most 10, m ≤ 34. The

length of df and ECF depends on implementation; length(df ) ≤ 24 and

length(ECF ) ≤ 2 bits should be enough. This implies length(l) ≥ 68.

6. The HN computes other parts of the authentication vector AV (in addition to

the RAND), including the expected response XRES to the challenge RAND,

anchoring key KASME , and authentication token AUTN [16].

7. The HN sends RAND, AUTN, XRES and KASME to the SN.

8. The SN forwards RAND and AUTN to the UE.

9. The UE performs LTE-AKA related operations, like verifying the MAC in

AUTN and computing the response RES [16].

10. If everything is fine in Step (9), the UE sends RES to the SN.

11. The UE decrypts RAND to extract the embedded pseudonym p, and the

counter d, and updates the pseudonyms p1, p2 if p is new. These operations

are as follows:

� UE decrypts RAND using key k and obtains p, d, ECF and salt.

� In an LTE-AKA, the ECF field is always set to 0.

� If the pseudonym p is a new pseudonym, i.e., d > d2, then the UE inserts

(p1, d1) into PUE and sets (p1, d1),(p2, d2) ← (p2, d2),(p, d).

� If d ≤ d2, then p is considered as an old pseudonym and the UE does

not update pseudonyms. If somehow the value of d2 (in the UE) gets

corrupted and becomes larger than df (in the HN), the UE would no

longer be able to accept new pseudonyms just by running LTE-AKA. In

this case, the UE can still obtain a new pseudonym by running a 5G-AKA.
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12. The SN compares RES and XRES and aborts if RES 6= XRES.

13. The SN sends a Location Update (LU) message to the HN for the pseudonym

q.

14. The HN searches for a user q ∈ {pn, pf}. If found, and pf is not null, then the

HN inserts (pc, dc) into PHN and sets (pc, dc),(pn, dn),(pf , df )← (pn, dn),(pf ,

df ),(NULL, NULL).

6.2.2 5G-AKA based Solution

The following are the major aims of this phase of the solution:

� Deliver a new pseudonym to a 5G UE using the 5G-AKA;

� Notify the HN about pseudonyms that the UE is not using any more so that

those pseudonyms can be reused by the HN;

� Re-synchronize pseudonym states in the (rather unlikely) erroneous situation

where d2 becomes greater than df .

It is required that new pseudonyms be delivered to a 5G UE even when the UE

has not used the existing pseudonyms to connect with a legitimate LTE SN. This

is because the UE may have used those pseudonyms with an active IMSI-catcher.

If a 5G UE always connects with a 5G SN and does not get new pseudonyms by

participating in the 5G-AKA, then the 5G UE will have the same pseudonyms for a

long time. If an active IMSI-catcher makes many IMSI inquiries over this time then

the UE would respond to each of those IMSI inquiries with the same pseudonym.

Thus, an active IMSI-catcher would be able to track and monitor the user with this

long-lived pseudonym.

This solution is built on the 5G-AKA protocol of Release 15 [14] with changes only

in the 5G UE and the HN. The solution is thus mostly transparent to the 5G SNs

of Release 15 except for the length of a couple of messages (Steps (3) and (4)). This

part of the solution requires the HN and the USIM to contain all the information of

the LTE-AKA based part of the solution. Moreover, it requires the HN to have a

public/private key pair pk, sk and the USIM to be provisioned with the HNs public

key pk. This solution is presented in Figure 6.3 and proceeds as follows:
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UE(5G) SN(5G) HN(5G)

(2) Generate SUCI

(10) 5G-AKA operations

(12) Update pseudonyms

(13) Verify HRES
?
= HXRES∗

(5) UE identification, generate RAND
(6) Purge PHN
(7) Remaining 5G-AKA operations

(15) Verify RES∗
?
= XRES

(16) If verification is successful and
AV request came with a SUCI not
SUPI, then update pseudonyms

(1) SUPI Inquiry

(4) AV request with SUCI(3) SUCI

(9) RAND,AUTN (8) RAND,AUTN,HXRES∗

(14) RES∗

(11) RES∗

Figure 6.3: 5G-AKA based solution. The differences to 5G-AKA are highlighted in
red.

1. A 5G SN requests the SUPI from the UE.

2. The UE generates a SUCI. Here, the plaintext encrypted into SUCI is differ-

ent from that of Release 15 (see §5.4.1). Two counters, δmin and δmax, are

also encrypted along with the MSIN. δmin is the smallest counter of all the

pseudonyms in the UE. The HN can thus know which pseudonyms the UE is

no longer using. Consequently, they can be allocated to other UEs. The value

of the counter δmax is always set to d2. The construction of the SUCI is as

follows:

� UE computes MAC T of message MSIN ||δmin||δmax with master key K.

� UE encrypts MSIN ||δmin||δmax||T with HNs public key pk.

� The ciphertext is concatenated with other plaintext like HN identifier, the

public-key identifier of the HN, and the SUPI protection scheme identifier.

The outcome is returned as the SUCI.

3. The UE sends the SUCI to the SN.
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4. The SN forwards the SUCI to the HN, requesting an AV. Most of the time

the user identifies with the GUTI. Sometimes the user may implicitly identify

itself by responding to a paging message. In either case, if the SN wants to

perform a 5G-AKA, the SN requests an AV from the HN with the SUPI that

was associated with the GUTI or paging.

5. The HN constructs the RAND by embedding a pseudonym in it as follows:

� The HN extracts MSIN, δmin, δmax and T from the encrypted part of

the SUCI using the private key sk.

� HN verifies the MAC T using master key K. If this verification fails, the

HN aborts.

� HN checks if pf is NULL. If yes, an m-bit long pf is randomly allocated

(from the pool of free pseudonyms) and df is set to CTR, which is a

subscriber-specific counter maintained by the HN. It increases every time

the HN generates a new pseudonym.

� HN checks whether δmax is greater than df . If yes, it sets ECF to 1,

otherwise ECF is set to 0.

� A l-bit long random salt is chosen.

� (p, d)← (pf , df ).

� (p, d, ECF, salt) is encrypted with key k. The resultant ciphertext is

RAND.

6. Further, HN removes pseudonyms from PHN which have counter smaller than

δmin.

7. HN performs the other operations of 5G-AKA, except the construction of

RAND.

8. HN then sends an AV (RAND,AUTN,HXRES∗) to the SN.

9. SN forwards the RAND and AUTN to the UE.

10. UE performs the 5G-AKA related operations.

11. UE then sends the response RES* to the SN.

12. UE further decrypts RAND, extracts the embedded pseudonym from the

RAND, and updates the pseudonyms in the UE. In 5G-AKA, the ECF might

be set to 1 by the HN. In this case the UE will empty the set PUE , set
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(p1, d1), (p2, d2) ← (p, d − 1), (p, d) and terminate the algorithm at this step.

This is needed to recover from a very unlikely error situation where d2 gets

corrupted in the UE.

13. SN computes HRES* as a function of RES* and then compares HRES* with

HXRES*.

14. If the comparison in Step (13) matches, SN forwards the RES* to the HN.

15. The HN compares RES* and XRES.

16. If the comparison in Step (15) matches, HN checks whether the AV (associated

with the current 5G-AKA run) came with a SUCI or a SUPI. If with a SUCI,

HN checks if the pseudonym p that was embedded in the RAND is still pf .

If yes, the HN moves (pc, dc) to PHN and sets (pc, dc), (pn, dn), (pf , df ) ←
(pn, dn), (pf , df ), (NULL,NULL). Consequently, the HN would embed a new

pseudonym in the RAND while responding to the next AV request. If the

UE identified itself with GUTI or responded to a paging message, then the

subsequent AV request sent by the SN would be with a SUPI. Hence, the

pseudonyms would not get updated in HN. This means that in response to the

next AV request, the HN will embed the same pseudonym in the RAND.

Step (16) helps the system to avoid generating unnecessary pseudonyms. If a 5G

UE attempts to connect with an LTE SN using a pseudonym, but the subsequent

LTE-AKA fails or no LTE-AKA follows (possibly because the SN is an active IMSI-

catcher), then the next time the UE tries to connect with a 5G SN it can use

SUCI instead of GUTI. In this way the UE can notify the HN that it needs a new

pseudonym, and it will receive a new pseudonym in the next AKA. Thus, the solution

avoids generating unnecessary pseudonyms.

6.2.3 Pseudonym Allocation and Removal Process

The HN randomly allocates a new pseudonym for a user from a pool of free

pseudonyms. A pseudonym p can be in the pool of free pseudonyms only if it is

not in the set PHN (or used as pc, pn or pf ) for any user. As new pseudonyms are

generated for a user, the older pseudonyms are stored in the sets PHN and PUE . A

pseudonym should not be allocated to a new user as long as it is in PHN and PUE of

any other user. If pseudonyms are never removed from PHN and PUE , the system

will eventually run out of free pseudonyms. To keep the pool of free pseudonyms
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large enough, the HN needs to remove old pseudonyms that are no longer used by

a UE from PHN . Hence, a policy is required for removal of pseudonyms from these

sets. One objective of this policy should be that a pseudonym should not be deleted

from PHN of a user that is not yet deleted from the set PUE of that user.

In this downgrade protection solution, a UE removes pseudonyms from PUE accord-

ing to the policies provisioned in the UE by the HN. The UE notifies the HN about

the pseudonyms that the HN can remove from the PHN . The UE sends (encrypted

in the SUCI message) the smallest counter value δmin of all the pseudonyms avail-

able in the UE. The HN then removes (from PHN ) all pseudonyms that have smaller

counter values than δmin . The UE sends δmin with both integrity and confidentiality

protection within the encrypted part of SUCI, as discussed in §6.2.2.

It is important to define when the UE can decide that it no longer uses a pseudonym

and it can be removed from PUE . The pseudonyms in PUE are stored because the

UE should be able to respond to paging messages sent by the SN. Therefore, if a UE

has a pseudonym (and the associated GUTI) that has not been used for a reasonably

long time (as defined in the policy) and the UE is currently connected to a different

SN, the pseudonym can be removed.

The UE may have an old pseudonym in PUE that is associated with a GUTI and a

security context but has no other pseudonyms associated with the same SN and the

UE is currently connected to this SN. In such a case, the UE would initiate a new

registration procedure with the SN using pseudonym p1 or p2. If this registration

is successful, the UE can remove the old pseudonym from PUE . The UE may also

follow a guideline set by the HN to remove pseudonyms from PUE ; for example,

removing pseudonyms that are older than one day.

6.3 Analysis of the Proposed Solution

In the downgrade protection proposal by [89], new pseudonyms are delivered to the

UE under confidentiality protection of the key k. Therefore, an LTE-based IMSI

catcher cannot know a pseudonym before the UE uses it. This ensures unlinkability

between various pseudonyms being utilized by the same user. We further analyze

this downgrade protection proposal now.

111



6.3 Analysis of the Proposed Solution

6.3.1 Pseudonym Synchronization

Desynchronization between UE and HN means that the pseudonyms p1 and p2 asso-

ciated a user within the UE are no longer associated with same user within the HN.

We say that a UE is desynchronized with its HN if the following condition occurs:

(p1, d1), (p2, d2) /∈ {(pc, dc), (pn, dn), (pf , df )} ∪ PHN .

In this downgrade protection mechanism, if both UE and HN function correctly, a

desynchronization scenario cannot occur. However, if due to some unlikely error

(such as HN memory erasure, etc.) desynchronization occurs, the UE can easily

resynchronize by connecting to a 5G SN. This is because, to participate in a 5G-

AKA, there is no requirement for pseudonyms and, after a successful 5G-AKA, the

UE will be allotted new valid pseudonyms.

6.3.2 Lawful Interception

The 3GPP LI requirements state that a network operator should be able to intercept

communications independently without the need to rely on another network operator

or party. In particular, a SN should not be required to provide the identity of the

target user to the HN and vice versa [10, 25]. In 5G Release 15, LI is ensured via

two features:

1. The HN provides the SUPI of the user to the SN during the 5G-AKA (see §2.7).

In this way, even if a SUCI was utilized by the user for initial identification,

the SN comes to know of the actual long-term identifier of the user before

provisioning actual services.

2. Both UE and SN use SUPI as one of the inputs to derive the master session

key [14]. This ensures that communication can only occur if both parties agree

on the same SUPI.

The authors of [89] propose LI in their solution by suggesting to incorporate Fea-

ture 1: i.e., after a successful LTE-AKA, the HN should provision the IMSI of the

user to the SN as part of the LTE-AKA protocol. This of course will require soft-

ware updates in both LTE SN and HN. Incorporating Feature 2 is more involved

and will require the MSIN part of the user’s IMSI as an additional input during the

derivation of the master session key by UE and SN.
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6.3.3 Performance Overheads

In this downgrade protection solution, the pseudonym delivery and update is under-

taken via existing (LTE/5G) AKA messages. The overall structure of these existing

messages remains unchanged, however parts of these messages are constructed and

interpreted differently. Hence, there is no communication overhead and delay as ex-

isting message lengths remain the same (except for a minor increase in two messages

of the 5G-AKA) with no extra messages. There is some additional computational

overhead involved, such as during embedding of pseudonyms within the RAND, etc.

However, most of these additional operations are carried out in the HN and consist

of symmetric cryptographic operations, hence the impact is negligible.

6.4 Quantum Security with Downgrade Resistance

In this section we present the details of the combining of our PQID proposal (§5.5)

with the downgrade protection proposal (§6.2) to come up with a 5G user identifica-

tion mechanism which is both quantum-secure and downgrade resistant. Basically,

the aim is to replace the public-key based operations of §6.2 with the symmetric-key

based operations of §5.5. The LTE-AKA based part (§6.2.1) will remain unchanged,

hence we do not discuss it further. The 5G-AKA based part (§6.2.2) will require

some amendments.

While combining the two solutions, the overall structure and message flow of §6.2.2

remains unaffected. The only difference is in the way the SUCI is calculated, and

transmission of additional parameters along with a few of the original messages.

Figure 6.4 shows the overall message flow and structure of the combined solution

and highlights the various steps that are different from those of §6.2.2. We further

explain each of these individual steps as follows:

1. A 5G SN requests the SUPI from the UE.

2. The UE generates a SUCI. Here, the SUCI is computed according to the details

provided in §5.5. However, as the downgrade protection solution also requires

the two counters, δmin and δmax, to be sent to the HN along with the MSIN,

the SUCI calculation here caters for it. Figure 6.5 details the construction of

the SUCI.

3. The UE sends the SUCI to the SN.
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UE(5G) SN(5G) HN(5G)

(2) Generate SUCI

(10) 5G-AKA and PQID operations

(12) Update pseudonyms

(13) Verify HRES
?
= HXRES∗

(5) UE identification, generate RAND
(6) Purge PHN
(7) Remaining 5G-AKA and PQID operations

(15) Verify RES∗
?
= XRES

(16) If verification is successful and
AV request came with a SUCI not
SUPI, then update pseudonyms

(1) SUPI Inquiry

(4) AV request with SUCI(3) SUCI

(9) RAND,AUTN,AE.Enc(EK,A+||B+) (8) RAND,AUTN,HXRES∗, AE.Enc(EK,A+||B+)

(14) RES∗

(11) RES∗

Figure 6.4: Combining PQID with 5G-AKA based downgrade protection solution.
The differences to Figure 6.3 are highlighted in red.

4. The SN forwards the SUCI to the HN, requesting an AV.

5. The HN extracts MSIN , δmin and δmax from the encrypted part of the SUCI

according to Figure 6.5. Further, the HN constructs the RAND by embedding

a pseudonym in it as follows:

� HN checks if pf is NULL. If yes, an m-bit long pf is randomly allocated

(from the pool of free pseudonyms) and df is set to CTR, which is a

subscriber-specific counter maintained by the HN. It increases every time

the HN generates a new pseudonym.

� HN checks whether δmax is greater than df . If yes, it sets ECF to 1,

otherwise ECF is set to 0.

� A l-bit long random salt is chosen.

� (p, d)← (pf , df ).

� (p, d, ECF, salt) is encrypted with key k. The resultant ciphertext is

RAND.

6. HN removes pseudonyms from PHN which have counter smaller than δmin.

7. HN performs other operations of 5G-AKA (except the construction of RAND)

and PQID (as per Figure 6.5).

8. HN then sends an AV (RAND,AUTN,HXRES∗) to the SN along with the

encrypted update parameters AE.Enc(EK,A+||B+).
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Figure 6.5: The amended PQID for the combined solution. The differences to Fig-
ure 5.3 are highlighted in red.

9. SN forwards the RAND, AUTN and AE.Enc(EK,A+||B+) to the UE.

10. UE performs the 5G-AKA and PQID related operations (see Figure 6.5).

11. UE then sends the response RES* to the SN.

12. UE further decrypts RAND, extracts the embedded pseudonym from the

RAND, and updates the pseudonyms in the UE. In 5G-AKA the ECF might

be set to 1 by the HN. In this case the UE will empty the set PUE , set

(p1, d1), (p2, d2) ← (p, d − 1), (p, d) and terminates the algorithm at this step.

This is needed to recover from a very unlikely error situation where d2 gets

corrupted in the UE.

13. SN computes HRES* as a function of RES* and then compares HRES* with

HXRES*.

115



6.5 Discussion

14. If the comparison in Step (13) matches, SN forwards the RES* to the HN.

15. The HN compares RES* and XRES.

16. If the comparison in Step (15) matches, HN checks whether the AV (associ-

ated with the current 5G-AKA run) came with a SUCI or a SUPI. If with a

SUCI, HN checks if the pseudonym p that was embedded in the RAND is still

pf . If yes, the HN moves (pc, dc) to PHN and sets (pc, dc), (pn, dn), (pf , df )←
(pn, dn), (pf , df ), (NULL,NULL). Consequently, the HN will embed a new

pseudonym in the RAND while responding to the next AV request. If the UE

identified itself with GUTI or responded to a paging message, then the subse-

quent AV request sent by the SN will be with a SUPI. Hence, the pseudonyms

will not get updated in HN. This means, in response to the next AV request,

the HN will embed the same pseudonym in the RAND.

6.5 Discussion

A quick look at Figure 6.5 shows that the impact of this amalgamation is minimal

upon our original PQID (§5.5) proposal. The only difference is that, in addition to

masking of the MSIN, the two counters δmin and δmax are also masked. This can

easily be accommodated by truncating the 128-bit masking parameter AKID (see

§5.5.2) to 96 bits instead of the 48 bits in the original scheme. Consequently, the

formal security analysis of PQID (§5.7) and the results also remain valid for these

changes. We therefore omit repeating the details here.

With regards to the impact of this amalgamation upon the original downgrade pro-

tection proposal of [89], as mentioned before the LTE-AKA based part remains

unaffected. The changes to the 5G-AKA based part retain the original properties

provisioned by the solution, as detailed in §6.4. The original message structure is

maintained after the amalgamation, avoiding any additional communication over-

head. Moreover, due to replacement of the public-key cryptography with symmet-

ric cryptographic operations, a reduction in computational overhead is expected.

Achieving resynchronization and provisioning of LI remains unaffected after this

amalgamation because both these features are related to the LTE-AKA based part

of the downgrade protection proposal, which remains unaltered.

116



6.6 Chapter Summary

6.6 Chapter Summary

This chapter explored the feasibility of combining our symmetric private identifi-

cation scheme (PQID, for details see §5.5) with the downgrade protection proposal

by Khan et al. [89] to come up with a 5G identification mechanism that is both

quantum-secure and downgrade-resistant. We showed how the combining of our

PQID scheme with the downgrade protection proposal can be undertaken in a seam-

less manner. The impact of this amalgamation is minimal upon both our PQID

scheme and the downgrade protection proposal of [89].
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Chapter 7

Privacy-Preserving Key Agreement
for IEEE Std 802.15.6

In this chapter we propose two key agreement protocols for the international WBAN

standard IEEE Std 802.15.6. In addition to the requisite security properties, the

proposed protocols also offer privacy guarantees. We develop a formal security and

privacy model and prove the proposed protocols secure in this model.

7.1 Introduction

The security of traffic in IEEE Std 802.15.6 is protected using authenticated en-

cryption, which requires the establishment of symmetric keys. The procedure for

agreeing these keys is thus critical to the overall security and privacy of a WBAN.

As discussed in Chapter 2, the key agreement protocols of IEEE Std 802.15.6 have

been shown to have security weaknesses [134]. In this chapter, we present two key

agreement protocols for IEEE Std 802.15.6 which render a comprehensive range of

security and privacy properties, which are regarded as essential [102] for WBANs.

We start by elaborating upon the desired security, privacy and functional objectives.

7.1.1 Desired Objectives

The list of the requisite properties (and, where required, the associated rationale)

of a Privacy-Preserving Key Agreement (PPKA) protocol to be executed between a

node N and HN is as below:

7.1.1.1 Security Properties

� Mutual Entity Authentication. Entity authentication is the process by

which one entity (the verifier) is assured of the identity of a second entity (the
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claimant) [139]. The PPKA protocol should provision mutual entity authen-

tication between N and HN.

� Mutual “Implicit” Key Authentication. The assurance that only a par-

ticularly identified other party may possibly know the negotiated key [139].

Mutual “implicit” key authentication is required between N and HN.

� Known Key Security. An adversary compromising a session key in a single

session should not impose any threat to the session key security in any other

sessions.

� Key Randomness. The assurance that any successful key agreement should

output a uniformly distributed session key among the set of all possible session

keys [133].

� Partial Forward Secrecy. The compromise of the long-term secret of a node

N should not enable an adversary to compromise previously established session

keys of that node. Partial Forward Secrecy (PrFS) is crucial as client nodes

(unlike HN) in typical WBAN deployment scenarios are not tamper-proof and

their internal storage can be accessed by an adversary easily. Note that, as

already explained in §2.11, we do not consider the compromise of the long-term

secret of HN. This enables us to consider a more pragmatic version of forward

secrecy for WBANs. PrFS is a well-documented [41] and discussed [40, 46, 47,

121] security notion for key exchange protocols. In contrast to the standard

notion of Perfect Forward Secrecy (PFS), PrFS considers the compromise of

the long-term secret of only one of the protocol participants. We remark that

PrFS is distinct from the related notion of Weak Forward Secrecy (WFS) [96],

where the concerned adversary is a passive one. PrFS considers an active

adversary.

� Key Compromise Impersonation (KCI) Resilience. Suppose N’s long-

term secret gets disclosed. Clearly an adversary that knows this value can now

impersonate N, since it is precisely this value that identifies N. However, it is

highly desirable that this loss should not enable an adversary to impersonate

other entities to N [100]. Consider the scenario where a cardiac pacemaker

is part of a WBAN deployed upon a chronic patient by a hospital for remote

administration and monitoring purposes. The leakage of the pacemaker’s long-

term secret should not enable the adversary to issue “stop” commands to the

pacemaker by impersonating as the hospital administrator. Such a case could

potentially lead to a life-threatening situation.
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� Replay Prevention. An adversary should not be able to successfully re-

play previously captured copies of legitimate messages between the protocol

participants.

� Desynchronization Resistance. If the authentication parameters get up-

dated during the protocol execution, then usually the participants need to

have the same updated values at the end of a protocol run. Otherwise, they

will not authenticate each other in later associations and we say they have

been desynchronized. In a desynchronization attack, the adversary forces the

protocol participants to update their authentication parameters to different

values. A PPKA needs to be resistant to these types of attacks.

7.1.1.2 Privacy Properties

We focus on two privacy aspects:

1. Node Anonymity. An adversary A, who is observing all communications,

should not be able to learn the identity of any node N who is participating in

a PPKA protocol with HN. The privacy attribute of anonymity is a necessity

for typical application scenarios of WBANs, such as healthcare and military.

2. Unlinkability. An adversary A, who is observing communications, should

not be able to link one successfully-executed PPKA instance of node N to

another successfully-completed instance of the same node. Unlinkability is

imperative in addition to anonymity. Although the PPKA instances could

be anonymous, if the adversary is able to link various PPKA instancess and

group them together then A would be able to attribute a group of captured

instances to a particular node with high probability, due to his knowledge of

the operations of the WBAN. For example, consider a medical WBAN in which

a pacemaker is to communicate with the remote healthcare providers every five

minutes, while the body temperature sensor communicates only three times

per day.

7.1.1.3 Functional Requirements

� Support for Multi-Hop Communication. As discussed in §2.11, depend-

ing upon the network topology, nodes would either be communicating directly
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with the Hub Node HN or via an Intermediary Node IN. Therefore, the PPKA

protocol should be designed to be suitable for both single-hop and two-hop

communication modes of [3].

� Energy Consumption. As nodes in a WBAN are severely energy-constrained,

the PPKA protocol needs to be minimalistic in terms of computation, commu-

nication and storage overhead. Energy consumption in WBANs is dominated

by radio communications [54], which mainly depends on the number of bits to

be transmitted within the network. Consequently, the PPKA protocol should

be designed such that the number of bits to be exchanged between the protocol

participants and the computational overhead for nodes N should be minimal.

� Stateless HN. HN is the consistent nucleus of the network whose lack of

accessibility will have devastating effects on the complete WBAN. As the net-

work topology in WBANs is dynamic (client nodes join and leave the network

on a frequent basis), it is imperative for HN’s accessibility that it be inde-

pendent of such dynamism. Consequently, an important requirement is that

the PPKA protocol should not require HN to maintain a state of the WBAN

nodes.

7.1.2 Design Principles

During the design of the PPKA protocols for IEEE Std 802.15.6 we focus on the

following principles:

� Offloading of Expensive Operations. As nodes in a WBAN are resource-

constrained, it makes sense to offload energy-expensive operations to more

resourceful entities such as SA and HN. An example of this is discussed in

more detail in §7.4.2.

� Minimizing the Implementation Footprint. Ideally, the proposed solu-

tion should not introduce new cryptographic primitives as this will adversely

affect the implementation footprint (both hardware and memory). Specifically,

we aim to use the already specified block cipher function in [3] for achieving

the various security and privacy objectives. A more detailed discussion is given

in §7.4.2.

� Reducing Management Costs. A PPKA solution should not place man-

agement costs on the WBAN nodes after the network initialization. Consider
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the situation where a third party wants to add its node (for example a fit-

ness tracker) to an already deployed WBAN. The third party should be able

to contact the SA who (after registration of the new node) dispatches it to

the WBAN owner, who begins using the new device upon receipt. Note that

all this was done without any interaction between the SA and the currently

operational WBAN.

7.1.3 Related Work

Toorani [134] discovered various security weaknesses in the key agreement methods

of IEEE Std 802.15.6, all of which were susceptible to KCI attacks (see §7.1.1.1), as

well as attacks on forward secrecy. Wang and Zhang [142] proposed a key agreement

scheme for WBANs that claimed to provide anonymity and unlinkability in addition

to the requisite security guarantees. However, Jiang et al. [76] showed that the

scheme in [142] is vulnerable to a client impersonation attack. They proposed an

authenticated key agreement scheme which rectified this flaw. However, their scheme

was based on computing bilinear pairings [64], which means that it is not suitable for

deployment in resource-constrained WBANs. To avoid the overhead of managing

public-key certificates, He et al. proposed a certificateless authentication scheme

[71], which provides anonymity and unlinkability. However, the computation and

communication overheads associated with their scheme also render it unsuitable for

WBAN deployment. Li et al. [103] presented an authenticated key agreement scheme

based only upon symmetric cryptographic primitives. This is an attractive proposal

since there is no requirement of any additional infrastructure and the associated

computation and communication overheads are negligible. The authors claimed

that this scheme achieved almost all of the security and privacy objectives defined

in §7.1.1.

7.1.4 Contributions

The main contributions of this chapter are as follows:

� We provide an analysis of [103] which, in addition to showing that Li et al.’s

scheme does not provide unlinkability and forward secrecy, also exhibits its

vulnerability to KCI attacks.

� We propose two key agreement protocols (PPKA-1 and PPKA-2) which provide
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Table 7.1: Comparison of security and privacy features.

Security/Privacy
Feature

Li et al. [103] PPKA-1 [§7.3.1] PPKA-2 [§7.3.2]

PrFS 7 7 3

KCI Resilience 7 7 3

Unlinkability 7 3 3

Anonymity 3 3 3

unlinkability and resolve the privacy flaws found in [103]. PPKA-2 additionally

provisions PrFS and KCI resilience. Table 7.1 lists the security and privacy

features provisioned by each protocol.

� We develop a formal security and privacy model in an appropriate complexity-

theoretic framework and prove the proposed protocols secure in this model.

The rest of this chapter is organized as follows: §7.2 details Li et al.’s scheme while

§7.3 presents our PPKA protocols. §7.4 discusses the design decisions regarding the

PPKA protocols. §7.5 presents the formal security model followed by §7.6, which

analyzes the PPKA protocols. Finally, §7.7 concludes the chapter.

7.2 Li et al.’s Scheme

In this section we present an overview and analysis of Li et al.’s scheme [103]. For

ease of comparison we use the same notation (details in Table 7.2) as used in [103].

7.2.1 The Key Agreement Protocol

Li et al.’s PPKA protocol between the HN and N consists of three phases. For a

pictorial overview of the protocol see Figure 7.1.

7.2.1.1 Initialization Phase

The SA generates a master secret key kHN and stores it in HN.
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Table 7.2: Notations used in Li et al.’s protocol.

Symbol Description

h(.) Cryptographic hash function
(a, b) Concatenation of a and b
⊕ Bitwise XOR operation k
SA System Administrator (initializes the WBAN)
N Normal Node
HN Hub Node
IN Intermediary Node
idN Long term secret/identity of node N
id′IN Relay identity of node IN
tidN Temporary identity of node N
kHN Long term master secret key of HN
kN , fN Temporary secret parameters chosen by HN/SA
rN Temporary secret parameter chosen by N
aN , bN Authentication parameters stored in N
xN , yN Auxiliary authentication parameters
α, β, η, µ Authentication parameters computed by HN
kS Resultant shared key
tN Timestamp generated by node N
X → Y : Z Entity X sends message Z to entity Y

7.2.1.2 Registration Phase

The SA generates a unique secret identity idN for node N. It then randomly chooses

the temporary secret parameter kN and calculates aN = idN ⊕ h(kHN , kN ) and

bN = kHN ⊕ aN ⊕ kN . A unique relay identity id′IN for the intermediary node

IN is chosen and the parameters 〈idN , aN , bN 〉 and 〈id′IN 〉 are stored in N and IN

respectively, while id′IN is stored by HN as the identity of IN when communicating

in relay mode.

7.2.1.3 Authentication Phase

We can think of the authentication phase of Li et al.’s scheme as a two-pass protocol.

The individual steps are outlined below:

Step 1: N → IN : 〈tidN , yN , aN , bN , tN 〉. N picks a random rN and creates

timestamp tN . Then it computes xN = aN ⊕ idN , yN = xN ⊕ rN and tidN =

h(idN ⊕ tN , rN ) and forwards the tuple 〈tidN , yN , aN , bN , tN 〉 to IN.

Step 2: IN → HN : 〈tidN , yN , aN , bN , tN , id′IN 〉. IN adds its relay identity id′IN to
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N
(idN ,aN ,bN )

IN
(id′IN )

HN
(id′IN ,kHN )

Picks rN
Generates timestamp tN
Computes xN = aN ⊕ idN ,
yN = xN ⊕ rN ,
tidN = h(idN ⊕ tN , rN )

Checks that id′IN exists
Validates tN
Computes k∗N = kHN ⊕ aN ⊕ bN ,
x∗N = h(kHN , k

∗
N ),id∗N = x∗N ⊕ aN ,

r∗N = x∗N ⊕ yN ,
tid∗N = h(id∗N ⊕ tN , r∗N )

Verify that tidN
?
= tid∗N

Picks fN
Computes α = xN ⊕ fN , γ = rN ⊕ fN
Picks new k+

N

Computes a+
N = idN ⊕ h(kHN , k

+
N ),

b+N = kHN ⊕ a+
N ⊕ k

+
N , η = γ ⊕ a+

N ,
µ = γ ⊕ b+N , β = h(xN , rN , fN , η, µ),
kS = h(idN , rN , fN , xN )
Stores session key kS

Computes f∗N = xN ⊕ α,
β∗ = h(xN , rN , f

∗
N , η, µ),

Verifies β∗
?
= β

Computes γ = rN ⊕ fN ,
a+
N = γ ⊕ η, b+N = γ ⊕ µ,
kS = h(idN , rN , fN , xN )
Replaces (aN , bN ) with (a+

N , b
+
N )

Stores session key kS

< tidN , yN , aN , bN , tN > < tidN , yN , aN , bN , tN , id
′
IN >

< α, β, η, µ > < α, β, η, µ, id′IN >

Figure 7.1: Li et al.’s protocol.

the tuple and forwards it to HN. Note that IN, when operating in relay mode, uses

id′IN not idIN .

Step 3: HN → IN : 〈α, β, η, µ, id′IN 〉. After receiving the parameters from IN, HN

verifies the relay identity id′IN from its database and substantiates the validity of the

timestamp tN . Upon success of these checks, it computes k∗N = kHN⊕aN⊕bN , x∗N =

h(kHN , k
∗
N ), id∗N = x∗N ⊕ aN , r∗N = x∗N ⊕ yN and tid∗N = h(id∗N ⊕ tN , r∗N ). It then

verifies whether tidN
?
= tid∗N . Then, a random fN is chosen and α = xN ⊕ fN and

γ = rN ⊕ fN are computed. A new k+
N is picked and a+

N = idN ⊕ h(kHN , k
+
N ), b+N =

kHN ⊕ a+
N ⊕ k

+
N , η = γ ⊕ a+

N , µ = γ ⊕ b+N , β = h(xN , rN , fN , η, µ) are computed.

The shared key is computed as kS = h(idN , rN , fN , xN ) and is stored in memory.

Finally, HN forwards the tuple 〈α, β, η, µ, id′IN 〉 to IN.
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Step 4: IN → N : 〈α, β, η, µ〉. IN removes the relay identity id′IN from the received

tuple and forwards 〈α, β, η, µ〉 to N.

Step 5: Upon receipt of the response from IN, N computes f∗N = xN ⊕ α and

β∗ = h(xN , rN , f
∗
N , η, µ) and verifies that β∗

?
= β. If true, N computes γ =

rN ⊕ fN , a+
N = γ ⊕ η and b+N = γ ⊕ µ. The shared key kS is computed as

h(idN , rN , fN , xN ) and the authentication parameters (aN , bN ) are replaced

by (a+
N , b

+
N ).

7.2.2 Analysis of the Li et al.’s Scheme

In this section we discuss vulnerabilities and attacks on the security and privacy of

Li et al.’s scheme.

7.2.2.1 Security Analysis

In addition to provisioning of mutual authentication [55], Li et al.’s scheme fulfills

all the security criteria as defined in §7.1.1 except KCI resilience and PrFS. More-

over, the scheme also protects the master secret (kHN ) in the event of compromise

of various nodes of the WBAN. For sake of brevity, we will restrict our security

analysis to highlight only the vulnerabilities of Li et al.’s scheme.

Discussion about Forward Secrecy. Li et al. claimed a forward security prop-

erty of their scheme. Their definition of forward secrecy varies from the generally

accepted one. According to Li et al., the goal of forward secrecy is to protect other

(past/future) keys in the event of compromise of the current key kS . However, the

conventional definition of forward secrecy states that in the event of compromise

of the long-term secrets of the protocol participant(s), an adversary should not be

able to obtain any of the past keys [107]. While Li et al.’s scheme is forward secure

according to their own definition, it is not forward secure in a conventional sense.

KCI Attack. We demonstrate a KCI attack on Li et al.’s scheme. A observes the

first pass of the protocol and notes the message contents. As the value idN is known

to A, he calculates the following values as follows:

xN = aN ⊕ idN ; rN = yN ⊕ xN .
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A chooses a random fN and calculates α = fN ⊕ xN . A then chooses arbitrary

values of η and µ and calculates β as:

β = h(xN , rN , fN , η, µ).

Finally, A sends the tuple 〈α, β, η, µ〉 back to node N. N cannot detect this KCI

attack as N’s computed value β is the same as in the received tuple. As a result,

node N will end up sharing the key kS = h(idN , rN , fN , xN ) with A, incorrectly

believing itself to be sharing kS with HN.

7.2.2.2 Privacy Analysis

The Anonymity Dilemma. It is known a priori to the attacker that all nodes

ultimately communicate with HN. As the node identifier idN is always masked (by

taking an XOR of it with a fresh random value), anonymity in Li et al.’s protocol

is preserved from “direct” privacy attacks. However, now consider the situation

depicted in Figure 7.2, where an intermediary node IN is providing the relaying

service to various nodes. In the second pass of Li et al.’s scheme, it is not clear

Figure 7.2: The privacy dilemma of Li et al.’s scheme.

how the intermediary node IN would be able to identify the original node N out of

the “anonymity set” [122] for onward forwarding of the tuple 〈α, β, η, µ〉 received

from HN. One naive way to resolve this is to allow IN to broadcast the second pass
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of protocol for all nodes. However, this approach is unsuitable for already energy-

constrained WBAN nodes as they will need to perform additional communication

(radio reception) and computational steps for each transmission.

Unlinkability. While Li et al. claim their scheme provides unlinkability, we show

this to be untrue. We highlight a weakness in Li et al.’s key agreement protocol,

which allows a passive attacker to easily link two or more key agreement instances

of the same node N. The attack proceeds as follows:

Instance # 1. Suppose that a run of Li et al.’s key agreement protocol is being

carried out between node N and HN. A passive attacker A observes the contents

of the messages being exchanged. From Step 1 of §7.2.1.3, A records the value

yN = xN ⊕ rN . Then, from Step 3 of §7.2.1.3, A records α = xN ⊕ fN . Now, A
obtains the value γ = rN ⊕ fN = α ⊕ yN . Further, A records the values η and µ

from Step 3 of §7.2.1.3 and uses γ to compute:

a+
N = γ ⊕ η; b+N = γ ⊕ µ.

Instance # 2. Now, A observes key exchange protocol exchanges between various

nodes and HN. A compares the values of the parameters aN and bN from Step

1 of the protocol with the saved values of a+
N and b+N . When A finds a match,

A concludes with almost certainty that another key exchange instance has been

initiated by the same node N. This is correct because node N uses the updated

authentication parameters a+
N and b+N in its next run of the protocol. In this way, A

can track and link instances of node N, demonstrating that Li et al.’s scheme does

not achieve unlinkability.

7.2.2.3 Functional Requirements

Li et al.’s scheme can easily be adapted for direct communication between N and HN

without the involvement of IN. Since this scheme employs only symmetric crypto-

graphic primitives, it is extremely efficient from a computation, communication and

storage-overhead perspective and there is no requirement for any additional network

infrastructure. Assuming a hash function with a digest length of B-bits and 16-bit

intermediary node IDs (i.e. id′IN ), Table 7.3 highlights the communication, compu-

tation and storage overhead of Li et al.’s scheme. In this table, h denotes one hash

operation, ⊕ denotes an XOR operation and m denotes the number of intermediary

nodes in the WBAN.
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Table 7.3: Overheads associated with Li et al.’s scheme.

Index Node N Hub Node HN

Computation Overhead 3h+ 7⊕ 5h+ 12⊕
Communication Overhead 5B bits 4B + 16 bits
Storage Overhead 3B bits (B + 16m) bits

Table 7.4: Detail of additional symbols.

Symbol Description

id′N Temporary identity chosen randomly by N
zN Security parameter stored in memory of N by HN/SA
Enc(k,m) Encryption of message m under symmetric key k
Dec(k, c) Decryption of ciphertext c under symmetric key k
γ Additional authentication parameter computed by HN

Note that, contrary to the assumption made by Li et al. in §5.4 of [103] about the

arbitrary length of the timestamp field, it is implicitly the same length as the hash

function digest because, as described earlier in §7.2.1.3, tidN = h(idN ⊕ tN , rN ).

This is not commensurate with the length of the timestamp field as defined in IEEE

Std 802.15.6, which is three octets or 24-bits. Regarding state maintenance by HN ,

in case of [103], HN needs to maintain states concerning the relay nodes IN , which

is an undesirable feature as already explained in §7.1.1.3.

7.3 Our PPKA Protocols

In this section we propose two PPKA protocols which rectify the problems high-

lighted in §7.2.2. While devising these PPKA protocols, we have tried to preserve

the original elegance, simplicity and efficiency of the scheme in [103]. The first

PPKA protocol (PPKA-1) addresses the privacy flaws of unlinkability and anonymity

dilemma faced by IN (§7.2.2.2) in Li et al.’s scheme. The second protocol (PPKA-2),

additionally provides PrFS and KCI resilience (in case of compromise of the long-

term secret of node N). Note that although in our protocols the intermediary node

IN is not an active participant from a cryptographic standpoint (this was a conscious

design consideration), we have included IN in our protocol description for verifica-

tion of the resolution of the anonymity dilemma of IN. Detail of additional notation

used in our PPKA protocols is given in Table 7.4.
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7.3.1 PPKA-1

PPKA-1 is separated into three distinct phases:

1. An Initialization Phase, that generates the long-term secret values for HN.

2. A Registration Phase, that generates the long-term values for the rest of the

nodes and stores them with HN.

3. An Authentication Phase where the nodes N and HN generate an authenticated

shared secret key, and update the authentication parameters.

We next describe these three phases.

7.3.1.1 Initialization Phase

This phase is identical to the Initialization Phase of [103]. Specifically, the SA

generates a master secret key kHN and stores it in HN.

7.3.1.2 Registration Phase

This phase is also similar to that of [103]. However, in the case of PPKA-1, the

intermediary node IN is not provided with a relay identity id′IN .

7.3.1.3 Authentication Phase

The various steps of the Authentication Phase of PPKA-1 are depicted in Figure 7.3

and are as follows:

Step 1: N → IN : 〈tidN , yN , aN , bN , tN , id′N 〉. N picks a random rN and creates

timestamp tN . It then computes xN = aN ⊕ idN , yN = xN ⊕ rN . It further picks a

random pseudonym id′N to be used as a temporary identifier for this key agreement

instance only, calculates tidN = h(idN , id
′
N , tN , rN ) and sets the “Relay Field” of

the underlying “MAC Header” to value 1, according to sub-clause 6.10 of [3].

Step 2: IN → HN : 〈tidN , yN , aN , bN , tN , id′N 〉. IN checks the value of “Relay

Field” and forwards the tuple to HN.
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< tidN , yN , aN , bN , tN , id
′
N >

< tidN , yN , aN , bN , tN , id
′
N >

< α, β, η, µ, id′N >

< α, β, η, µ, id′N >

Figure 7.3: Protocol PPKA-1. Steps different from Li et al.’s protocol (Figure 7.1)
are highlighted in red.

Step 3: HN → IN : 〈α, β, η, µ, id′N 〉. After receipt of the tuple from IN, HN

verifies the validity of the timestamp tN . Upon success of this check, it computes

k∗N = kHN⊕aN⊕bN , x∗N = h(kHN , k
∗
N ), id∗N = x∗N⊕aN , r∗N = x∗N⊕yN and tid∗N =

h(id∗N , id
′
N , tN , r

∗
N ). It then verifies whether tidN

?
= tid∗N . Then, a random fN is cho-

sen and α = xN⊕fN , γ = rN⊕fN⊕h(idN , tN ) and γ′ = rN⊕fN⊕h(idN , tN , rN , id
′
N )

are computed. Then a new k+
N is picked and a+

N = idN ⊕ h(kHN , k
+
N ), b+N =

kHN⊕a+
N⊕k

+
N , η = γ⊕a+

N , µ = γ′⊕b+N , β = h(xN , rN , fN , η, µ, id
′
N ) are computed.

Finally, the shared key kS = h(idN , rN , fN , xN ) is computed and stored in memory,
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and the value of the underlying “Relay Field” is set to 1.

Step 4: IN → N : 〈α, β, η, µ, id′N 〉. IN checks the “Relay Field” of the message

received from HN. If “Relay Field” value is set to 1, then it notes the identifier id′N

received in the tuple for onward forwarding of the tuple to node N.

Step 5: Upon receiving a response from IN, N computes f∗N = xN ⊕ α and

β∗ = h(xN , rN , f
∗
N , η, µ, id

′
N ) and verifies that β∗

?
= β. If so, N computes γ =

rN⊕fN⊕h(idN , tN ), γ′ = rN⊕fN⊕h(idN , tN , rN , id
′
N ), a+

N = γ⊕η and b+N = γ′⊕µ.

The shared key kS is computed as h(idN , rN , fN , xN ), and the authentication pa-

rameters (aN , bN ) are updated by being replaced with (a+
N , b

+
N ).

7.3.2 PPKA-2

The second PPKA protocol PPKA-2 is structurally similar to PPKA-1. We now

describe the execution of PPKA-2.

7.3.2.1 Initialization Phase

This phase is unchanged from PPKA-1.

7.3.2.2 Registration Phase

The Registration Phase is also identical to PPKA-1. However, SA additionally com-

putes zN = h(kHN , idN , kN ). Parameters 〈idN , aN , bN , zN 〉 are stored in N.

7.3.2.3 Authentication Phase

The authentication phase of PPKA-2 is depicted in Figure 7.4 and detailed as fol-

lows:

Step 1: N → IN : 〈tidN , yN , aN , bN , tN , id′N 〉. This is identical to Step 1 of PPKA-1

except that the value of tidN is calculated as h(idN , id
′
N , zN , tN , rN ).

Step 2: IN → HN : 〈tidN , yN , aN , bN , tN , id′N 〉. This is identical to Step 2 of

PPKA-1.
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Figure 7.4: Protocol PPKA-2. Steps different from PPKA-1 (Figure 7.3) are high-
lighted in red.

Step 3: HN → IN : 〈α, β, η, µ, δ, id′N 〉. After receipt of the tuple from IN,

HN proceeds identically to Step 3 of PPKA-1. Additionally z∗N is calculated as

h(kHN , idN , kN ) and tid∗N as h(id∗N , id
′
N , z

∗
N , tN , r

∗
N ). It then verifies whether tidN

?
=

tid∗N . Then, α, η and µ are computed as in PPKA-1. kS is computed as

h(idN , zN , rN , fN , xN , 1) while an additional key kZ is computed as

h(zN , idN , rN , fN , xN , 0) . HN then computes z+
N = h(kHN , idN , k

+
N ) and encrypt it

with kz as δ = Enc(kz, z
+
N ). Lastly, β is calculated as h(xN , zN , rN , fN , δ, η, µ, id

′
N ).
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Step 4: IN → N : 〈α, β, η, µ, δ, id′N 〉. Identical to Step 4 of PPKA-1.

Step 5: This is identical to Step 5 of PPKA-1, except that β∗ is calculated as

h(xN , zN , rN , f
∗
N , δ, η, µ, id

′
N ) and the shared key kS is computed as

h(idN , zN , rN , fN , xN , 1). Additionally, N decrypts z+
N = Dec(kz, δ) and replaces

zN with z+
N .

7.4 Discussion

7.4.1 Why a Bespoke Solution?

If we consider the scenario of direct communication between N and HN (without

the involvement of IN), at first glance it seems to be similar to that of RFID,

where a tag needs to be authenticated in a secure and private manner by the reader.

However, there is a fundamental distinction between the two scenarios. As discussed

in §7.1.1.3, in the WBAN case the HN does not maintain any state about the network

nodes and is oblivious to the identity management of the network while, in the RFID

setting, the reader has access to the back-end database server(s) which maintain

nodes' status in the RFID network. This means that in the case of RFID, SA needs

to update the status at the back-end servers whenever it introduces a new node or

removes an old one from the system. As explained in §7.1.1.3, this is problematic

for WBANs.

7.4.2 Random Number Generation on WBAN Nodes

The Pseudo Random Number Generator (PRNG) for a WBAN needs to be com-

putationally inexpensive and there should be no requirement for entropy collection

from environmental resources, as this would entail extra communication. To achieve

this, we recommend the approach outlined in [99]. During the “Registration Phase”,

SA can allocate each node N with a unique (randomly chosen) secret key K. There-

after, N can encrypt the sequence {0, 1, 2, 3, ...} under key K using AES (already

available for message security purposes) as the block cipher. This arrangement can

securely generate 260 bytes without the need for re-seeding the key K.
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7.4.3 Post-Quantum Significance

Given recent progress towards achieving practical universal quantum computers [45],

it is imperative that proposals for any standard should also cater for this future

threat. Our PPKA protocols avoid any public-key cryptography and are thus well

suited to post-quantum deployment scenarios.

7.4.4 Why Timestamps?

Timestamps are generally avoided in key agreement protocols as they present various

practical problems, such as the need for a reliable source of time. Our setting

does not face these difficulties, as a comprehensive mechanism already exists in

Clause 6.11 of [3] which provisions for HN to act as the central time source for the

WBAN and regularly broadcasts time-synchronization beacons.

7.4.5 Why Two Proposals?

As already highlighted in Table 7.1, PPKA-2 offers additional security and privacy

features over and above those offered by PPKA-1. The question then arises that why

there is a need for two separate proposals for IEEE 802.15.6? This is because these

additional features offered by PPKA-2 come at a cost of additional computational,

communication and storage overheads, the detail of which is further elaborated in

Tables 7.5 and 7.6. As discussed in Section 7.1.1.3, nodes in a WBAN are severely

energy-constrained; hence, the PPKA protocol needs to be minimalistic in terms

of computation, communication and storage overhead. By providing two separate

proposals, IEEE will have the flexibility to choose from two options that offer a

trade-off between overheads and the provided features.

7.5 Security Model

We now introduce our security model for the analysis of PPKA protocols. Our first

security experiment is based on standard key-exchange models in the tradition of

Bellare-Rogaway [34] key indistinguishability games. This allows our model to easily

capture known key secrecy, as well as generically capture key randomness notions,

since our adversary is tasked merely with the goal of distinguishing the targeted

session key from a random session key from the same distribution.
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Our second security experiment allows us to capture privacy notions of sessions

by challenging an adversary to determine which of two previously selected nodes

ran a given protocol execution. Our cleanness predicates (see §7.5.4) allows us to

model KCI attacks by allowing the adversary to reveal the long-term key of the node

running the PPKA protocol, as well as the notions of partial forward secrecy. We

begin by describing the execution environment for our security frameworks.

7.5.1 Execution Environment

Consider an experiment ExpPPKA-IND
Π,nN ,nS ,A(λ) played between a challenger C and an ad-

versary A. C maintains a single node HN , running a number of instances of the

PPKA protocol Π, and a set of (up to) nN nodes N1, . . . , NnN (representing nodes

communicating with the hub node HN ), each potentially running one stage of (up

to) nS consecutive stages of Π. The PPKA protocol Π is represented as a tuple

of algorithms Π = (HKeyGen,HF,NKeyGen,NF, StateGen,StateUpdate). We abuse

notation and use πsi to refer to both the identifier of the stid-th stage of Π being

run by node Nid and the collection of per-session variables maintained for this stage.

We describe the algorithms as follows:

� Π.HKeyGen(λ)
$→ (kHN ) is a probabilistic symmetric key generation algorithm

taking as input a security parameter λ and outputting a long-term hub node

secret key (kHN ).

� Π.HF(λ, kHN ,m)
$→ (m′) is a (potentially) probabilistic algorithm that takes a

security parameter λ, the long-term key of the hub node kHN , and an arbitrary

bit string m ∈ {0, 1}∗ ∪ {∅}, and outputs a response m′ ∈ {0, 1}∗ ∪ {∅} and an

updated per-session state π′.

� Π.NKeyGen(λ)
$→ (ltk) is a probabilistic symmetric key generation algorithm

taking as input a security parameter λ and outputting a long-term hub node

secret key (ltk). Note that in our proposed PPKA protocols, we denote this

long-term secret key with idN .

� Π.NF(λ, π,m)
$→ (m′, π′) is a probabilistic algorithm taking a security pa-

rameter λ, the set of per-session variables π and an arbitrary bit string m ∈
{0, 1}∗ ∪ {∅}, and outputs a response m′ ∈ {0, 1}∗ ∪ {∅} and an updated per-

session state π′.
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� Π.StateGen(λ, kHN , ltk)
$→ (psstate) is a probabilistic symmetric key genera-

tion algorithm taking as input a security parameter λ and the long-term secret

keys of the hub node and the “normal” node, outputting secret state informa-

tion for node N (psstate). In PPKA-1, this per-stage secret state is 〈aN , bN 〉.
In PPKA-2, this is 〈aN , bN , zN 〉.

� Π.StateUpdate(λ, π)
$→ (psstate) is a probabilistic symmetric key generation

algorithm taking as input a security parameter λ and a set of per-session

variables, outputting the next stage’s per-stage secret state (psstate) for node

N .

The experiment begins with C running Π.HKeyGen once to generate a long-term

secret key for the hub node (kHN ), and randomly sampling a bit b ∈ {0, 1}. A
then interacts with C via the queries listed in §7.5.2, eventually terminating and

outputting a guess bit b′ of C’s bit b. A wins the key-indistinguishability game if

b′ = b and the session πsi , such that A issued Test(id, stid), satisfies the cleanness

predicate clean, which we discuss in §7.5.4. Each session maintains the following set

of per-session variables:

� ltk ∈ {0, 1}λ - the long-term symmetric-secret of Nid;

� id ∈ {1, . . . , nN} - the index of the node Nid;

� ms ∈ {0, 1}∗∪{⊥} - the concatenation of messages sent by the node, initialised

by ⊥;

� mr ∈ {0, 1}∗ ∪ {⊥} - the concatenation of messages received by the node,

initialised by ⊥;

� psstate ∈ {0, 1}∗ ∪ {⊥} - the per-stage secret state of the node, initialised by

⊥;

� sk ∈ {0, 1}∗ ∪ {⊥} - the session key, initialised by ⊥;

� stid ∈ {1, . . . , nS} - the index of the most recently completed stage, initialised

by 1 and increased monotonically;

� α ∈ {active, accept,⊥} - the current status of the node, initialised by ⊥.

Finally, the challenger manages the following set of registers, which indicate A’s

compromise of secrets:
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� long-term symmetric keys {LSKflag1, . . . , LSKflagnN }, where LSKflagi ∈
{corrupt, clean,⊥} ∀ i ∈ [nN ];

� per-stage secret state {PSSflag1
1,PSSflag1

2, . . . ,PSSflag1
nS

, . . . PSSflagnN1 ,PSSflagnN2 ,

. . . ,PSSflagnNnS } where ∀i ∈ nN , j ∈ nS , PSSflagij ∈ {corrupt, clean,⊥};

� session keys {SKflag1
1, SKflag1

2, . . . ,SKflag1
nS

, . . . SKflagnN1 , SKflagnN2 , . . . ,SKflagnNnS }
where ∀i ∈ nN , j ∈ nS , SKflagij ∈ {corrupt, clean,⊥}.

7.5.2 Adversarial Interaction

In the game, the adversary A is able to communicate with the challenger and thus

interact with the parties/sessions via the following set of queries:

� Register(λ)→ id: Allows A to register a new node with security parameters

λ and givesA an identifier for the node id (which we denote Nid). For protocols

where nodes do not have a public identifier, the index of the node is given to

A.

� NextKey(λ, id)→ m: Allows A to indicate that the node with public identi-

fier id should attempt a new key agreement using (potentially) the new/updated

security parameters λ. The challenger then returns any protocol messages m.

� Corrupt(id) → ltk: Allows A to compromise the long-term key of the node

πid.ltk with public identifier id.

� Reveal(id, stid) → sk: Allows A to compromise the session key established

between the hub node and the node Nid in stage stid. Note that stid indicates

the index of the session key established between the node id and the hub node.

The challenger responds with the session key πsi .sk.

� StateReveal(id, stid) → psstate: Allows A to compromise the per-stage se-

cret state psstate of the node with public identifier id. Note that stid indi-

cates the index of the stage-specific state, and the challenger responds with

πsi .psstate.

� Send(id,m)→ m′: Allows A to send a message m to the node with identifier

id currently running a protocol execution. Note that the node will update its

per-session variables and potentially output a new message m′.
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� Test(id, stid) → sk: If the node Nid has completed its stid-stage key agree-

ment, then the challenger uses the randomly-sampled bit b ∈ {0, 1}. If b = 0

the challenger responds with πsi .sk, otherwise the challenger responds with a

random key from the same distribution.

We now formalise the advantage of a PPT algorithm A in winning the PPKA key-

indistinguishability game.

Definition 7 (Key Indistinguishability). Let Π be a PPKA protocol and nN , nS ∈
N. For a given cleanness predicate clean, and a PPT algorithm A, we define the

advantage of A in the key-indistinguishability game to be:

AdvPPKA-IND,clean
Π,nN ,nS ,A (λ) = |2 · (Pr[ExpPPKA-IND,clean

Π,nN ,nS ,A (λ) = 1]− 1

2
|).

We say that Π is PPKA-IND-secure if, for all A, AdvPPKA-IND,clean
Π,nN ,nS ,A (λ) is negligible in

security parameter λ.

7.5.3 Unlinkability

The experiments for PPKA key-indistinguishability and unlinkability are mostly

identical. However, instead of using the Test(id, stid) query, at some point A will

stop and output (id0, id1). When A outputs (id0, id1), C runs NextKey(λ, id0)

and responds to queries as before. We will refer to this as the “challenge” node.

However, when πstidid0
.α← accept, C then refers to the random bit b sampled at the

beginning of the experiment and:

� if b = 0, then C runs NextKey(λ, id0);

� if b = 1, then C runs NextKey(λ, id1) instead.

A now uses the SendTest(m) query to send messages to the node Nidb in order to

avoid trivial identification. We will refer to this as the “unnamed node”. A at some

point terminates and outputs a guess bit b′. If b′ = 0, then A is indicating that

the unnamed node Nidb was linked to the challenge node Nid0 . If b′ = 1, then A is

indicating that the unnamed node Nidb was not linked to the challenge node Nid0 .

We now formalise the advantage of a PPT algorithm A in winning the PPKA un-

linkability game.
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Definition 8 (Unlinkability). Let Π be a PPKA protocol, and nN , nS ∈ N. For a

given cleanness predicate clean, and a PPT algorithm A, we define the advantage of

A in the unlinkability game to be:

AdvPPKA-U,clean
Π,nN ,nS ,A (λ) = |2 · (Pr[ExpPPKA-U,clean

Π,nN ,nS ,A (λ) = 1]− 1

2
)|.

We say that Π is PPKA-U-secure if, for all A, AdvPPKA-U,clean
Π,nN ,nS ,A (λ) is negligible in the

security parameter λ.

7.5.4 Cleanness Predicates

The cleanness predicates are used in the security experiments to define the exact

combination of secrets that A is able to compromise without trivially breaking the

PPKA protocol. In order to capture KCI attacks and PrFS notions, we allow A to

leak the long-term secret key of the “normal” nodes if A has not also leaked any

previously established per-stage secret state. Our analysis is focused primarily on

the normal nodes. We do not allow the compromise of the HN ’s long-term secrets,

as security in all stages is lost in this scenario. We additionally describe a cleanness

predicate for PPKA protocols that do not achieve PrFS or KCI resilience.

Definition 9 (PrFS-KCI-clean). A session πsi such that πsi .α = accept in the

PPKA-IND experiment defined in Figure 7.5 is PrFS-KCI-clean if SKflagstidid 6= corrupt

and if LSKflagid = corrupt then ∀ s ≤ stid PSSflagsid 6= corrupt.

Definition 10 (nPrFS-clean). A session πsi such that πsi .α = accept in the PPKA-IND

experiment defined in Figure 7.5 is nPrFS-clean if SKflagstidid 6= corrupt.

Finally, we describe a cleanness predicate for our unlinkability game. It is straight-

forward to realise that if Corrupt(id0) or Corrupt(id1) were to be issued, it would

trivially allow A to win in either of our PPKA protocols by simply reconstructing

the tidN field sent by the unnamed node. Similarly, we cannot allow the adversary

to reveal the per-stage secret state for the current stage stid of the unnamed node

Nidb .

Definition 11 (U-clean). A session πsi in the PPKA-U experiment defined in Figure

7.5 is U-clean if LSKflagid 6= corrupt and PSSflagstidid 6= corrupt.
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Exp
PPKA-IND,clean
Π,nN ,nS,A (λ):

1: b $← {0, 1}
2: tested← false

3: kHN
$← HKeyGen(λ)

4: LSKflagi, . . . , LSKflagnN
← clean

5: PSSflag1
1, . . . , PSSflag

nN
nS
← clean

6: SKflag1
1, . . . , SKflag

nN
nS
← clean

7: ctr ← 0

8: b′ $← ASend,Register,NextKey,Corrupt,?Reveal,Test(λ)

9: For (id, stid) such that Test(id, stid) was issued:

10: if clean(πs
i ) then

11: return (b = b′)
12: else

13: return b′
$← {0, 1}

14: end if

Reveal(id, stid):

1: if πs
i .α 6= accept then

2: return ⊥
3: end if
4: SKflagidstid ← corrupt

5: return πs
i .sk

StateReveal(id, stid):

1: if πs
i .psstate = ⊥ then

2: return ⊥
3: end if
4: PSSflagidstid ← corrupt

5: return πs
i .psstate

NextKey(λ, id):

1: let stid = max{s : πs
id.α 6= ⊥}

2: if (πs
i .α 6= accept) then

3: return ⊥
4: end if
5: stid← stid + 1
6: πs

i .α← active

7: πs
i ,m

′ ← Π.NF(λ, πs
i ,⊥)

8: return m′

Send(id,m):

1: if id = HN then
2: return Π.HF(λ, kHN ,m)

3: end if
4: let stid = max{s : πs

id.α 6= ⊥}
5: if πs

i .α 6= active then

6: return ⊥
7: end if
8: πs

i .mr ← πs
i .mr‖m

9: (πs
i ,m

′)← Π.NF(λ, πs
i ,m)

10: πs
i .ms ← πs

i .ms‖m′

11: if πs
i .α← accept then

12: πstid+1
id

.psstate← StateUpdate(λ, πs
i )

13: end if
14: return m′

Corrupt(id):

1: LSKflagid ← corrupt

2: return πid.ltk

Test(id, stid):

1: if (tested = true) ∨ (πs
i .α 6= accept) then

2: return ⊥
3: end if
4: tested← true

5: if b = 0 then
6: return πs

i .sk

7: else

8: sk
$← K

9: return sk
10: end if

Register(λ):

1: ctr ← ctr + 1
2: π.stid← 1
3: π.ltk ← Π.NKeyGen(λ)

4: π.id← ctr
5: π.psstate← Π.StateGen(λ, kHN , π.ltk)

6: return π.id

Exp
PPKA-U,clean
Π,nN ,nS,A(λ):

1: b $← {0, 1}

2: kHN
$← HKeyGen(λ)

3: LSKflagi, . . . , LSKflagnN
← clean

4: PSSflag1
1, . . . , PSSflag

nN
nS
← clean

5: SKflag1
1, . . . , SKflag

nN
nS
← clean

6: ctr ← 0

7: (id0, id1)
$← ASend,Register,NextKey,Corrupt,?Reveal(λ)

8: NextKey(λ, id0)→ m

9: ∅ ← ASend,Register,NextKey,Corrupt,?Reveal(λ,m)

10: if πstid
id0

.α← accept then

11: NextKey(λ, idb)→ m′

12: end if

13: b′ $← ASend,Register,NextKey,Corrupt,?Reveal,SendTest(λ,m′)

14: if clean(π
stidb
id0

) ∧ clean(π
stidb
id1

) then

15: return (b = b′)
16: else

17: return b′
$← {0, 1}

18: end if

SendTest(m):

1: Send(idb,m)→ m′

2: return m′

Figure 7.5: An algorithmic description of the PPKA-IND and PPKA-U security ex-
periments.
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7.6 Analysis of the PPKA Protocols

7.6.1 Security and Privacy Analysis

Before we begin, we show that an adversary A is unable to recover HN ’s long-term

secret kHN (with non-negligible probability) even if A reveals all long-term secrets

idN of all nodes and all per-stage secret states psstate. In our proofs we work

within the random oracle model, and A cannot learn anything about kHN from

hash outputs h(kHN , X) (where X is any concatenation of arbitrary values). We

turn to A attempting to learn kHN that has been “blinded” through exclusive-or

(XOR) operations. The generic construction of messages that include kHN is as

follows:

� bN = kHN ⊕ kN ⊕ idN ⊕ h(kHN , kN );

� µ = kHN ⊕ k+
N ⊕ idN ⊕ h(kHN , k

+
N )⊕ h(idN , tN , rN , id

′
N ) ⊕ fN ⊕ rN .

Taking µ first, we note that k+
N (independently sampled by HN , uniformly-at-

random, in each stage) acts as the key in a one-time-pad, perfectly hiding the

long-term secret key kHN of HN , the long-term secret key idN of Nid and the

value h(kHN , k
+
N ). As k+

N is an internal value that is known only to the chal-

lenger implementing HN , it cannot be compromised by A via Reveal, Corrupt

or StateReveal queries. For bN , we note that kN (randomly sampled by HN in a

previous stage) is still acting as the same key k+
N in a one-time-pad, and thus still

perfectly hiding the same message; i.e. the long-term secret key kHN of HN , the

long-term secret key idN of Nid and the value h(kHN , kN ). We argue then that A
cannot recover kHN . We can further conclude that an adversary that compromises

fewer internal states and long-term secret keys will also be unable to recompute

kHN . We can continue our proof knowing that the best strategy for A to recover

kHN is to attempt to brute-force the value.

We now show that an adversary A that does not issue a Corrupt(id) query cannot

recover the long-term secret key idN of node Nid. As before, we note that, since

we instantiate the hash function as a random oracle, the adversary cannot invert

hash outputs of the form h(idN , X) (where X is some arbitrary concatenation of

values) in order to learn idN . We can now focus on the adversary attempting to

learn idN from “blinded” values by XORing them with other values. In each stage

of the protocol execution, this is available to A in the following generic ways:
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� aN = idN ⊕ h(kHN , kN );

� bN = kHN ⊕ kN ⊕ idN ⊕ h(kHN , kN );

� η = rN ⊕ fN ⊕ idN ⊕ kHN ⊕ kN ⊕ h(idN , fN )⊕ h(kHN , k
+
N );

� µ = rN ⊕ fN ⊕ idN ⊕ kHN ⊕ k+
N ⊕ h(idN , tN , rN , id

′
N )⊕ h(kHN , k

+
N ).

If this is the first stage of the protocol execution for node Nid, then aN and bN are

established in some out-of-band way. Thus h(kHN , kN ) and kN act as uniformly

random and independent keys in a one-time pad, perfectly hiding idN and kHN ⊕
idN ⊕ h(kHN , kN ) (for aN and bN respectively). Since, by the previous argument,

the best strategy for A to recover kHN is simply to guess (and we instantiate the

hash function with a random oracle), in order to recompute h(kHN , kN ) A must

either guess kHN or to guess h(kHN , kN ). Since they are the same bit-length, the

probability of A doing either is the same: 2−λ.

If this is not the first stage of the protocol execution, then aN and bN were sent as

“sub-XOR” of a previous stage η and µ. We argue that h(kHN , k
+
N ) and k+

N act as

keys to one-time-pads for η and µ respectively, and remain the keys to the one-time-

pad perfectly hiding idN and kHN ⊕ idN ⊕h(kHN , kN ) (for aN and bN respectively)

in the following stage. It follows then that the best strategy A has in recovering idN

is to merely guess idN : 2−λ.

We now prove the key-indistinguishability of our PPKA protocols given in Fig-

ures 7.3 and 7.4. We begin with PPKA-2, as it captures the strongest notions of

security, capturing PrFS, KCI resilience, key randomness, known key security and

authentication. Afterwards, we turn to proving the unlinkability of PPKA-2. We

then prove key indistinguishability and unlinkability of PPKA-1. As PPKA-1 is es-

sentially a truncated version of PPKA-2, this allows us to omit the most repetitive

details of the proofs.

Theorem 2 (Key Indistinguishability of PPKA-2). The privacy-preserving key agree-

ment protocol PPKA-2 given in Figure 7.4 is PPKA-IND-secure with cleanness pred-

icate PrFS-KCI-clean (capturing PrFS and KCI resilience) and assuming all hash

functions are random oracles. For any PPT algorithm A against the PPKA-IND key

indistinguishability game, AdvPPKA-IND,PrFS-KCI-clean
PPKA-2,nN ,nS ,A (λ) is negligible in the security

parameter λ.

Proof. For our proof, we assume that a test query Test(id, stid) has been issued,

and separate into the following three cases:
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1. πsi has accepted such that πsi .mr 6= PPKA-2.HF(λ, kHN , π
s
i .ms);

2. πsi has accepted such that πsi .mr = PPKA-2.HF(λ, kHN , π
s
i .ms) and Corrupt(id)

has not been issued;

3. πsi has accepted such that πsi .mr = PPKA-2.HF(λ, kHN , π
s
i .ms) and Corrupt(id)

has been issued; by the definition of the cleanness predicate PrFS-KCI-clean,

we assume that the per-stage secret state has not been revealed for any stage

s ≤ stid.

Case 1. In this case we show that once a Test(id, stid) query is issued, the proba-

bility, the session πsi sets πsi .α← accept such that πsi .mr 6= PPKA-2.HF(λ, kHN , π
s
i .ms),

is negligible.

Game 0

This is a normal PPKA key-indistinguishability game. Thus we have:

AdvPPKA-IND,C1

PPKA-2,nN ,nS ,A(λ) = Pr(break0).

Game 1

In this game, we guess the index (id, stid) of the session πsi , and abort if, during the

execution of the experiment, a query Test(i∗, s∗) is received and (i∗, s∗) 6= (id, stid).

Thus we have:

Pr(break0) ≤ nNnS · Pr(break1).

Game 2

In this game, we replace the h(kHN , kN ) value computed within πsi (and, potentially,

in the hub node processing πsi .ms) with a uniformly-random value ˜h(kHN , kN ). We

note that since we instantiate the hash function with a random oracle, the distribu-

tion is identical to h(kHN , kN ). Thus the only way that A can detect this change is

to query (kHN , kN ) to the random oracle. Since the only way for A to do this is to

recover kHN fully, and we argued previously that A’s probability of success in this

endeavour is 2−λ, we have:

Pr(break1) ≤ 2−λ + Pr(break2).
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Game 3

In this game we argue that the adversary A has a negligible probability of producing

a value β̂ = h( ˜h(kHN , kN ), ẑN , r̂N , f̂N , δ̂, η̂, µ̂, ˆid′N ). Note that for πsi .α to reach

accept, A must produce such a value β̂. We know by the definition of Case 1 that

the following must be true:

πsi .mr = 〈α̂, β̂, η̂, µ̂, δ̂, ˆid′N 〉 6= PPKA-2.HF(λ, kHN , π
s
i .ms).

Since all message fields are included in the computation of β̂, and the message re-

ceived by the test session does not match any output from an honest hub node,

we know that the only way that A can cause πsi to reach accept is to query

˜h(kHN , kN ), ẑN , r̂N , f̂N , δ̂, η̂, µ̂, ˆid′N to the random oracle. However, since, by Game 2,

˜h(kHN , kN ) is a uniformly-random value sampled independently from the protocol

flow, the only way for A to produce such an input is to guess ˜h(kHN , kN ). Thus we

have:

Pr(break2) ≤ 2−λ + Pr(break3).

It is clear that if the session πsi such that Test(id, stid) must be issued (by Game 1)

cannot reach πsi .α ← accept, then in Game 3 the experiment proceeds identically

regardless of the bit b sampled by the challenger. Thus:

Pr(break3) = 0.

Case 2. In this case, we show that an adversary who issues a Test(stid, id) query

(and does not also issue a Corrupt(id) query) cannot win the key-indistinguishability

game with non-negligible probability.

Game 0

This is a normal PPKA key-indistinguishability game. Thus we have:

AdvPPKA-IND,C2

PPKA-2,nN ,nS ,A(λ) = Pr(break0).

Game 1

In this game, we guess the index (id, stid) of the session πsi and abort if, during the

execution of the experiment, a query Test(i∗, s∗) is received and (i∗, s∗) 6= (id, stid).

Thus we have:

Pr(break0) ≤ nNnS · Pr(break1).

145



7.6 Analysis of the PPKA Protocols

Game 2

In this game, we replace the session key kS computed by the node Nid in stage

stid with a uniformly-random and independent value k̃S . First we note that kS is

computed as kS = h(idN , zN , rN , fN , xN ). Since we instantiate the hash function

as a random oracle, the distributions of k̃S and kS are identical. In order to dis-

tinguish this change, A must be able to query the random oracle with the input

(idN , rN , fN , xN ). Since we argued previously that in order to recover idN (the

long-term secret key of the node Nid), A’s only strategy to distinguish this change

would be to guess the long-term secret idN . The probability of A distinguishing this

replacement is 2−λ, where λ is the bit-length of idN .

After this change, the session key returned to A as the response to the Test(stid, id)

query is a uniformly-random value independent of the protocol execution, regardless

of the bit b sampled by the challenger. Thus we have:

Pr(break1) ≤ 2−λ.

Case 3. In this case, we show that an adversary who issues a Test(stid, id) query

(and does not issue StateReveal queries for all per-stage secret states established

before stage stid) cannot win the key-indistinguishability game.

Game 0

This is a normal PPKA key-indistinguishability game. Thus we have:

AdvPPKA-IND,C3

PPKA-2,nN ,nS ,A(λ) = Pr(break0).

Game 1

In this game, we guess the index (id, stid) of the session πsi and abort if, during the

execution of the experiment, a query Test(i∗, s∗) is received and (i∗, s∗) 6= (id, stid).

Thus we have:

Pr(break0) ≤ nNnS · Pr(break1).
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Game 2

In this game, we replace the zN = h(kHN , idN , kN ) value held in secret stage by the

node Nid with a uniformly random value z̃N independent from the protocol execu-

tion. Since we instantiate the hash function with a random oracle, the distributions

of zN and z̃N are identical. Thus, in order to detect this change, A must query the

random oracle with the input kHN , idN , kN . Since, by earlier arguments, the best

strategy A has to recover kHN is simply to guess kHN , the probability that A is

able to do this is 2−λ. Thus:

Pr(break1) = 2−λ + Pr(break2).

Game 3

In this game, we replace the computation of the z+
N encryption key

kz = h(z̃N , idN , rN , fN , 0) with a uniformly-random and independent value k̃z. We

note that since z̃N (by Game 2) is already a uniformly random value, and the hash

function is instantiated with a random oracle, this replacement is sound and indis-

tinguishable from the perspective of A. Thus:

Pr(break2) = Pr(break3).

Game 4

In this game, we replace the contents of ciphertext δ with a random string of the

same length, and abort if the ciphertext δ sent by the hub node HN is not the

ciphertext received by Nid, and the output of decrypting δ is not ⊥. We do so

by constructing an algorithm B that interacts with an IND-CCA challenger in the

following way: B acts identically as in Game 3, except for the hub node protocol

execution that computes k̃z. Instead, when B computes δ, B selects a uniformly-

random string z̃+
N (of the same length as z+

N ) and submits (z+
N , z̃

+
N ) to the IND-CCA

encryption oracle Enc.

When the random bit b sampled by the IND-CCA challenger is 0, then δ contains

the encryption of z+
N , so B is a perfect simulation of Game 3. However, when the

bit b sampled by the IND-CCA challenger is 1, then δ contains a random string z̃+
N

and thus B is a perfect simulator of Game 4. Since, in Game 3, the z+
N encryption
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key k̃z is uniformly-random and independent of the protocol execution, this replace-

ment is sound. Any adversary capable of distinguishing this change can break the

confidentiality of the IND-CCA encryption scheme and guess b with perfect success.

Thus:

Pr(break3) ≤ AdvIND-CCA
Enc + Pr(break4).

Game 5

We now note that by Game 4, z+
N has been established in an out-of-band way,

reminiscent of the first stage run by nodeNid. We now repeat the process of Games 2,

3, and 4 (stid− 2) times to establish a zN value for stage stid run by node Nid that

is indistinguishable from establishing zN in some out-of-band way. Thus:

Pr(break4) ≤ (stid− 2) · (2−λ + AdvIND-CCA
Enc ) + Pr(break5).

Game 6

We replace zN with a uniformly-random and independent value z̃N in stage stid of

node Nid by the same argument as Game 2. Thus:

Pr(break5) = 2−λ + Pr(break6).

Game 7

In this game, we replace the computation of the session key ks = h(idN , z̃N , rN , fN , 1)

with a uniformly-random and independent value k̃s. We note that since z̃N (by

Game 6) is already a uniformly random value, and the hash function is instantiated

with a random oracle, this replacement is sound and indistinguishable from the per-

spective of A. Thus Pr(break6) = Pr(break7). We finally note that the session key

established by πsi is now uniformly random and independent of the protocol flow,

and of the bit b sampled by the PPKA-IND challenger. Thus:

Pr(break7) = 0.

We follow our proof of the key-indistinguishability of PPKA-2 by proving the un-

linkability of PPKA-2.
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Theorem 3 (Unlinkability of PPKA-2). The PPKA-2 given in Figure 7.4 is PPKA-U-

secure with cleanness predicate U-clean and assuming all hash functions are random

oracles. For any PPT algorithm A against the PPKA-U unlinkability game described

in Figure 7.5, AdvPPKA-U,U-clean
PPKA-2,nN ,nS ,A(λ) is negligible in the security parameter λ.

Proof. We begin by restating the U-clean cleanness predicate, and reiterating the

impact upon our proof. For both nodes Nid0 and Nid1 , we know that the queries

Corrupt(id0) and Corrupt(id1) have not been issued. In addition, for the stage

stidb run by the unnamed node Nidb , we know that a StateReveal(idb)(stidb) query

has not been issued.

Game 0

This is a normal PPKA unlinkability game. Thus we have:

AdvPPKA-U
PPKA-2,nN ,nS ,A(λ) = Pr(break0).

Game 1

In this game, in the unnamed session πstidbidb
, we replace the hash outputs of the form

h(idN , X) (where X is a concatenation of arbitrary stings) with a uniformly random

values ˜h(idN , X) chosen independently of the protocol flow. As before, since we

instantiate (in our proof) the hash function with a random oracle, the distribution

of this change is indistinguishable. In order to detect this change, A must query the

random oracle with the input (idN , X). As per our previous arguments, in order to

query idN to the random oracle, A must first recover idN . Since the best strategy to

recover idN is simply to guess the value of idN , the probability of A distinguishing

this change is 2−λ. Thus we have:

Pr(break0) = 2−λ + Pr(break1).

Game 2

In this game, in the unnamed session πstidbidb
, we replace the hash outputs of the form

h(kHN , X) (where X is either kN or k+
N ) with uniformly random values ˜h(kHN , X)

chosen independently of the protocol flow. As before, since we instantiate (in our

proof) the hash function with a random oracle, the distributions of Game 1 and

Game 2 are indistinguishable. In order to detect this change, A must query the
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random oracle with the input (kHN , X). As per our previous arguments, in order

to query kHN to the random oracle, A must first recover kHN . Since the best

strategy to recover kHN is simply to guess the value of kHN , the probability of A
distinguishing this change is 2−λ. Thus we have:

Pr(break1) = 2−λ + Pr(break2).

Game 3

In this game, in the message output by the hub node for the unnamed session

πstidbidb
, we replace the hash outputs β = h( ˜h(kHN , k

+
N ), zN , rN , fN , δ, η, µ, id

′
N ) with

a uniformly random value β̃ chosen independently of the protocol flow. As pre-

vious arguments, the distributions of Game 2 and Game 3 are indistinguishable.

In order to detect this change, A must query the random oracle with the input

( ˜h(kHN , k
+
N ), zN , rN , fN , δ, η, µ, id

′
N ). Since ˜h(kHN , k

+
N ) is already a uniformly ran-

dom value independent of the protocol flow (by Game 2), the best strategy to dis-

tinguish this change is to simply guess the value of ˜h(kHN , k
+
N ). Thus we have:

Pr(break2) = 2−λ + Pr(break3).

Game 4

In this game, in the unnamed session πstidbidb
we replace the computation of the

z+
N key kz = h(zN , idN , rN , fN , 0) with a uniformly-random and independent value

k̃z. We note that, since we instantiate the hash function with a random oracle,

the distributions of k̃z and kz are indistinguishable. Thus, in order to detect this

change, Amust query the random oracle with the input zN , idN , rN , fN , 0. By earlier

arguments, the best strategy A has to recover idN is simply to guess idN . Thus:

Pr(break3) = 2−λ + Pr(break4).

Game 5

In this game we replace the value δ sent by the hub node to the unnamed session

πstidbidb
with a uniformly-random and independent value δ̃

$← {0, 1}λ. We do so by

constructing an algorithm B that interacts with a PRF challenger in the following

way, B acts identically as in Game 4, expect for the hub node protocol execution

that computes k̃z. Instead, B initialise a PRF challenger and queries (z+
n ), and uses
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the output δ̃ from the PRF challenger to replace the computation of δ. Since, by

Game 4, k̃z is a uniformly random and independent value, this replacement is sound.

If the test bit sampled by the PRF challenger is 0, then δ̃ ← Enc(k̃z, z
+
N ) and we are

in Game 4. If the test bit sampled by the PRF challenger is 1, then δ̃
$← {0, 1}λ

and we are in Game 5. Thus any adversary A capable of distinguishing this change

can be turned into a successful adversary against the PRF security of the encryption

scheme Enc, and we find:

Pr(break4) ≤ AdvPRF
Enc,A(λ) + Pr(break5).

We pause here to reflect on the consequences of these changes. The first message

sent by the unnamed node is 〈t̃idN , yN , aN , bN , tN , id′N 〉. Since tN is a timestamp

and id′N is sampled identically regardless of the identity of the unnamed node, the

distributions of these fields are similarly identical, independent of the choice of the

randomly sampled bit b. t̃idN is a uniformly-random valued and independent of the

protocol flow (by Game 1), as it is the output of a random oracle query that is of

the form (idNb , id
′
N , tn, rn). This is true regardless of the choice of the randomly

sampled bit b of the challenger.

For yN we remark that rN is a uniformly-random value sampled identically from

the same distribution regardless of the node identity. This value acts as the key

in a one-time-pad, perfectly hiding ˜h(kHN , kN ). As rN is not reused (as a key) in

any message in any stage, thus yN is a uniformly-random value, regardless of node

identity. The value aN is also a uniformly random. Here, ˜h(kHN , kN ) acts as the

key in a one-time-pad, perfectly hiding the long-term secret key idN of the node by

Game 2. Since ˜h(kHN , kN ) is not reused (as a key) in any message in any stage, aN

is a uniformly random value, regardless of the node identity, or the bit b randomly

sampled by the challenger. Finally, we turn to bN . We note that this time kN

(randomly sampled by the hub node in a previous stage, uniformly-at-random) acts

as the key in a one-time-pad, perfectly hiding the long-term secret key kHN of the

hub node, the long-term secret key idN of the node and the value ˜h(kHN , kN ). As kN

is not reused (as a key) in any message in any stage, thus bN is a uniformly-random

value, regardless of node identity.

We examine the first message received by the unnamed node, 〈α, β, η, µ, δ, id′N 〉.
Again, id′N is sampled identically regardless of the identity of the unnamed node;

the distributions of the fields are similarly identical independent of the choice of the

randomly sampled bit b. For α we remark that fN is a uniformly-random value
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sampled identically from the same distribution regardless of the node identity. This

value acts as the key in a one-time-pad, perfectly hiding ˜h(kHN , k
+
N ). As fN is not

reused (as a key) in any message in any stage, thus α is a uniformly-random value,

regardless of node identity. Value η is also a uniformly-random. Here, ˜h(idN , tN )

acts as the key in a one-time-pad, perfectly hiding the values rN , fN and a+
N by

Game 1. Since ˜h(idN , tN ) is not reused (as a key) in any message in any stage, η is

a uniformly random value, independent of the node identity, or the bit b randomly

sampled by the challenger.

A similar argument apples for µ, substituting ˜h(idN , tN , rN , id′N ) for ˜h(idN , tN ).

Value β̃ is a uniformly-random and independent of the protocol flow (by Game 3), as

it is the output of a random oracle query that is of the form ( ˜h(kHN , k
+
N ), zN , rN , fN ,

δ, η, µ, id′N ). This is true regardless of the choice of the randomly sampled bit b of

the challenger. Finally, we rely on the PRF security of the encryption scheme Enc to

replace the δ field returned by the hub node. By Game 5, the value δ̃ is uniformly-

random and independent of the protocol regardless of the node identity idb. We

note that all message fields have the same distribution regardless of the challenger’s

randomly-sampled bit b. Thus we have:

Pr(break5) = 0.

We now prove key-indistinguishability of our proposed PPKA-1, capturing known

key security, and key randomness, but not forward-secrecy. It follows identically

from Case 2 of the proof of PPKA-2 key-indistinguishability, as it does not capture

PrFS or KCI resilience. However, it still captures known key security, and key

randomness and (obviously) key-indistinguishability.

Theorem 4 (Key Indistinguishability of PPKA-1). The PPKA-1 given in Figure 7.3

is PPKA-IND-secure with cleanness predicate nPrFS-clean (capturing neither PrFS

nor KCI resilience) and assuming all hash functions are random oracles. For any

PPT algorithm A against the PPKA-IND key-indistinguishability game,

AdvPPKA-IND,nPrFS-clean
PPKA-1,nN ,nS ,A (λ) is negligible in the security parameter λ.

Proof. For our proof, we note that we cannot prove PrFS or KCI resilience for

the proposed PPKA-1. Thus, unlike PPKA-2, the cleanness predicate nPrFS-clean

ensures that Corrupt(id) has not been issued. In this case, we assume that the

per-stage secret state has been compromised at any (or perhaps, at all) previous

stages. Since PPKA-1 sends the per-stage secret state 〈aN , bN 〉 in the clear, this has

no bearing on our security proof of PPKA-1.
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Similarly to the proof for PPKA-2, we begin by showing that the adversary is un-

able to recover the HN secret key kHN (with non-negligible probability) even if A
completely reveals the long-term secret keys of every normal node and the per-stage

secret states of the nodes. This argument follows identically to the argument for

the secrecy of kHN in the proof of PPKA-2, and we can continue our proof knowing

that the best strategy A has for recovering kHN is to guess kHN .

In this proof, we show that an adversary which issues a Test(stid, id) query (and

does not also issue a Corrupt(id) query) cannot win the key-indistinguishability

game with negligible probability. Before we begin, we show that an adversary who

does not issue a Corrupt(id) query cannot recover the long-term secret key idN

of node Nid. This argument follows identically to the argument for the secrecy of

idN in the proof of PPKA-2, and we can continue our proof knowing that the best

strategy A has for recovering idN is to guess idN .

Game 0

This is a normal PPKA key-indistinguishability game. Thus we have:

AdvPPKA-IND,C1

PPKA-1,nN ,nS ,A(λ) = Pr(break0).

Game 1

In this game, we guess the index (id, stid) of the session πsi , and abort if, during the

execution of the experiment, a query Test(i∗, s∗) is received and (i∗, s∗) 6= (id, stid).

Thus we have:

Pr(break0) ≤ nNnS · Pr(break1).

Game 2

In this game, we replace the session key kS computed by the node Nid in stage

stid with a uniformly-random and independent value k̃S . First we note that kS

is computed as kS = h(idN , rN , fN , xN ). Since we instantiate the hash function

as a random oracle, the distributions of k̃S and kS are identical thus, in order to

distinguish this change, A must be able to query the random oracle with the input

(idN , rN , fN , xN ). We argued previously that in order to recover idN (the long-term

secret key of the node Nid), A’s only strategy in distinguishing this change would be
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to guess the long-term secret key idN . Thus the probability of A in distinguishing

this replacement is 2−λ, where λ is the bit-length of idN .

After this change, the session key returned to A as the response to the Test(stid, id)

query is a uniformly-random value independent of the protocol execution, regardless

of the bit b sampled by the challenger. Thus we have:

Pr(break1) ≤ 2−λ + 0.

Finally, we finish our security analysis by proving the unlinkability of PPKA-1.

Theorem 5 (Unlinkability of PPKA-1). The PPKA-1 given in Figure 7.3 is PPKA-U-

secure with cleanness predicate U-clean and assuming all hash functions are random

oracles. For any PPT algorithm A against the PPKA-U unlinkability game described

in Figure 7.5, AdvPPKA-U,U-clean
PPKA-1,nN ,nS ,A(λ) is negligible in the security parameter λ.

Proof. The proof of the unlinkability of PPKA-1 is identical to the proof of unlink-

ability for PPKA-2, (with the exception of Game 4 and Game 5, since PPKA-1 does

not have zN state, nor a δ field in the hub node’s response) and so we omit repeating

it here.

7.6.2 Functional Analysis

The proposed PPKA protocols can easily be adapted for direct communication be-

tween N and HN by removal of Steps 2 and 4 from their respective authentica-

tion phases. As our PPKA protocols are also based on symmetric cryptographic

primitives, they preserve the efficiency of the original scheme from a computation,

communication and storage perspective without the aid of any additional network

infrastructure. Moreover, in our protocols the timestamp field can be of any arbi-

trary length to suit the underlying protocol layers, unlike [103]. Assuming a B-bit

hash digest and 16-bit pseudo-identity id′N for node N , Tables 7.5 and 7.6 depict the

various overheads associated with PPKA Protocols 1 and 2, respectively. In these

tables, h denotes an instance of a hash operation and ⊕ denotes an XOR operation.

From a computational perspective, single instances of hash operation and encryption

operation have been considered equal [1].
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Table 7.5: Overheads associated with PPKA protocol 1.

Index Node N Hub Node HN

Computation Overhead 5h+ 9⊕ 7h+ 14⊕
Communication Overhead 5B + 16 bits 4B + 16 bits
Storage Overhead 3B bits B bits

Table 7.6: Overheads associated with PPKA protocol 2.

Index Node N Hub Node HN

Computation Overhead 6h+ 9⊕ 10h+ 14⊕
Communication Overhead 5B + 16 bits 5B + 16 bits
Storage Overhead 4B bits B bits

7.7 Chapter Summary

We proposed two authenticated key agreement protocols suitable for WBANs. The

protocols are based upon symmetric cryptographic components only and are thus

highly efficient and avoid the additional burden of deploying and managing an asso-

ciated PKI. Our protocols are suitable for any application scenario where efficiency

is of essence and the network can be initialized by a “System Administrator”. In

addition to the requisite security guarantees, the proposed protocols also offer ap-

propriate privacy attributes suitable for a wide variety of application scenarios. In

order to ensure confidence in our proposals, we introduce formal security frameworks

for the analysis of privacy-preserving key agreement protocols, and analyze our con-

structions. The proposed protocols emerge as attractive alternatives to the current

key exchange methods described in the IEEE 802.15.6 standard, which are based

upon legacy public-key based primitives and do not offer any privacy features.
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Chapter 8

Conclusion

This chapter provides concluding remarks about the thesis.

8.1 Contributions Summary

Given recent progress towards achieving practical quantum computers [119], it is

crucial that proposals for any cyber security standard should also cater for this

potent future threat. In this regard, NIST’s Post-Quantum Cryptography Standard-

ization project [112] is an ongoing effort to standardize quantum-secure public-key

cryptographic algorithms. The final draft standards are expected to be made pub-

licly available by 2024. However, it is not clear whether the candidate encryption

and signature schemes currently being evaluated by NIST will ultimately be suitable

for deployment in constrained communication environments such as IoT, embedded

SIMs, implantable wireless sensors, etc.

This thesis suggests that, instead of waiting for the outcome of the NIST standardiza-

tion project, wherever possible, we should consider whether public-key cryptography

can be substituted by symmetric cryptography in current security standards. This

especially applies to scenarios where a priori relationships already exists between

the protocol participants. Compared to quantum-secure public-key cryptography,

such an approach offers benefits from a viability and timeliness viewpoint. Moreover,

given the penetration of these modern communication technologies in our everyday

lives, it is desirable that provisions improving user privacy also be made part of

these standards. Unfortunately, this seems to be missing in many widely-adopted

communication standards.

This thesis has explored and analyzed end-user privacy in one of the most important

future communication standards, 5G (Chapter 3). We analyzed the current status

of subscription privacy on the 5G radio interface and found that there are significant
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issues which need rectifying. To shed light on this matter, we catalogued the pri-

vacy vulnerabilities that already exist in previous mobile telephony standards. The

privacy improvements offered by the recently finalized 5G standard were identified.

Consequently, we were able to highlight privacy issues from previous generations

that remain unresolved in 5G Release 15. For completeness, we also explored new

privacy attacks which surfaced after the publication of the 5G standard (Chapter 4).

To address the identified privacy gaps, we also presented improvements.

This thesis presented a symmetric alternative to the current public-key based user

identification scheme of the 5G standard (Chapter 5). As the current 5G identi-

fication scheme is the only public-key cryptography based mechanism within the

standard, adoption of our alternative proposal will make the 5G standard indepen-

dent of any quantum-vulnerable cryptography. We also developed a novel security

framework titled Symmetric Updatable Private Authentication (SUPA) and pro-

vided a detailed formal analysis of our proposed scheme in this framework. Another

contribution of this thesis was to combine our alternative 5G identification scheme

with a downgrade protection proposal to come with a 5G identification mechanism

which is both quantum-secure and downgrade-resistant (Chapter 6).

We adapted the techniques which we developed for our private 5G identification to

come up with two efficient Privacy Preserving Key Agreement (PPKA) protocols

for IEEE Std 802.15.6 (Chapter 7). Our PPKA protocols avoided any public-key

cryptography and are thus well-suited to post-quantum deployment scenarios. We

provided concise game-based security and privacy definitions capturing anonymity

and unlinkability and proved formally that our key agreement protocols achieved

these notions.

8.2 On Interaction with the Standardization Bodies

The journey from a novel cryptographic solution to a fully-specified and implementation-

ready standard is like a bumpy ride down a long, winding road. We decided to

embark on this journey and contacted the relevant standardization bodies' repre-

sentatives about our work. The response was not particularly encouraging. As

the organizational structure and rules of business of 3GPP’s Technical Specification

Groups (TSGs) and IEEE’s Working Groups (WGs) are poles apart, we provide the

details of our interaction with each one of them separately.
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3GPP is an international industry consortia driven by commercial interests. One

cannot participate in the 3GPP activities without a membership. We learned this

the hard way by trying to contact the 3GPP SA3 chair via email. The reply never

came. Fortunately, Royal Holloway’s Information Security Group (ISG) has an

ongoing collaboration with Vodafone, one of the 3GPP members. Steve Babbage of

Vodafone was kind enough to advise that any proposal for 3GPP needs to tabled at

one of its meetings by a member. We forwarded the details of our alternative SUPI

protection proposal (Chapter 5) to Vodafone. Vodafone promised to look at it but

warned that it might not be a 3GPP priority as they were already tied up due to

commercial launching of 5G. Quantum-secure cryptography for 5G is still in a study

phase [21] and may get looked at in Release 17 onwards.

For IEEE Std 802.15.6, we started by emailing the IEEE 802.15 WG chair regarding

our proposals. An intermittent email interaction with the WG chair, which lasted

from August, 2017 until March, 2019, started with the sending of a document sum-

marizing our proposals. This document was to be distributed among the WG email

group. The aim was to distribute “the idea” to the concerned audience for their

opinion and interest and then decide upon any further course of action based on the

response. Unfortunately, this response never came. All this explains why remedial

measures have never been taken for serious security vulnerabilities discovered back

in 2015 [134] in an “international” standard. Our conclusion from this experience is

that the IEEE committees are, essentially, voluntary organizations and the change

process involves a lot of bureaucratic hurdles. As a result, new standards do not

develop quickly and major security modifications may take years.

8.3 Future Research Directions

The study concerning subscription privacy in 5G (Chapter 3) takes into account

enhancements offered up to 3GPP Release 15 (5G Phase 1). The ongoing Release 16

(5G Phase 2) is planned to be placed into “frozen” status in March, 2020 with a

target completion date of June, 2020 [143]. As the list of new features of Release 16

contains support for IoT devices, V2X and a new user identity paradigm, it will be

interesting to evaluate the effect of these new features upon the current status of

subscription privacy in 5G.

We also suggest to conducting a security analysis of the combined 5G-AKA proto-

col and our PQID proposal (Chapter 5) in an AKA security model. Further, our

158



8.3 Future Research Directions

SUPA security framework can be augmented to capture quantum adversaries, to

show quantum security of our PQID scheme. Proving quantum security in such an

enhanced model usually requires the proof strategy of history-free reduction [37].

The PPKA-2 protocol (Chapter 7) offers the security properties of Partial Forward

Secrecy and KCI resilience for the WBAN standard IEEE Std 802.15.6 in case of

compromise of the long-term secret (idN ) of the sensor/client node. It would be

interesting to investigate whether future research can yield another PPKA protocol

based on symmetric primitives and still offers (full) Forward Secrecy and KCI re-

silience in the (additional) event of compromise of the long-term secret (kHN ) of the

Hub node.
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