
Algorithmic, probabilistic, and
physics-inspired methods for cuts
and shortest paths in graphs

Balázs Ferenc Mezei

Department of Mathematics
Royal Holloway, University of London

This dissertation is submitted for the degree of
Doctor of Philosophy

September 2020

1



2



I would like to dedicate this thesis to my loving family …

3



4



Declaration

These doctoral studies were conducted under the supervision of Professor Stefanie Gerke
and Professor Gregory Sorkin.

The work presented in this thesis is the result of original research I conducted, in col-
laboration with others, whilst enrolled in the Department of Mathematics as a candidate
for the degree of Doctor of Philosophy. This work has not been submitted for any other
degree or award in any other university or educational establishment.

The content of Chapter 2 is joint work with Stefanie Gerke and Gregory Sorkin.

The content of Chapter 3 is joint work with Gregory Sorkin.

The content of Chapter 4 is joint work with Amin Coja-Oglan, Philipp Loick and Gre-
gory Sorkin.

Balázs Ferenc Mezei
September 2020

5



6



Acknowledgements

I would like to thank my supervisors, Stefanie Gerke and Gregory Sorkin for always mak-
ing me feel welcome, their guidance in mathematics and the community thereof, and the
many hours spent thinking and drinking coffee together. I have felt incredibly lucky to
have them as supervisors, and would also like to thank them for their support outside
mathematics.

I am grateful to Amin-Coja Oghlan for the research visits and introducing me to statis-
tical physics.

Thank you to András Sándor, Eszter Rónai, Christina Clarke, Philip Ovington, Nicola
Wendt, Eammon Postlethwaite, Jeroen Pijnenburg, Liam Medley, Catherine Keele and
Nicholas Winstone. In trying to keep this list short, many friends and teachers were omit-
ted, but are remembered.

Finally, I would like to acknowledge my parents Ágnes and László, and my brother
Tamás for their continued support throughout my studies.

7



8



Abstract

This thesis considers classical combinatorial optimisation problems in various settings.
Optimisation is fundamental in many areas, from computer science, to operations re-
search, biology, chemistry, social sciences and engineering. Broadly speaking, combina-
torial optimisation problems consist of finding an optimal solution or configuration from
a large (but finite) set of possibilities.

Chapter 2 studies the shortest path problem in a random setting. Consider a complete
graph 𝐾𝑛 with edge weights drawn independently from a uniform distribution 𝑈(0, 1).
Theweight of the shortest (minimum-weight) path 𝑃1 between two given vertices is known
to be ln𝑛/𝑛, asymptotically almost surely almost exactly (a.a.s. a.e.). We define a second-
shortest path 𝑃2 to be the shortest path edge-disjoint from 𝑃1, and consider more generally
the shortest path 𝑃𝑘 edge-disjoint from all earlier paths. We show that the cost 𝑋𝑘 of 𝑃𝑘 is
a.a.s. a.e. (2𝑘 + ln𝑛)/𝑛, uniformly for all 𝑘 ≤ 𝑛 − 1. We show analogous results when the
edge weights are drawn from an exponential distribution.

Chapters 3 and 4 study partitioning problems on 𝑑-regular graphs. In Chapter 3, we
show improved bounds on the minimum bisection size (bisection width) for arbitrary 𝑑-
regular graphs by analysing a local iterative algorithm, obtaining improved asymptotic
bounds for 5 ≤ 𝑑 ≤ 125. In Chapter 4, we show improved upper bounds on the maxi-
mum cut size of random 𝑑-regular graphs by analysing the Ising antiferromagnet, using
mathematically rigorous techniques drawn from statistical physics.

9



10



Table of contents

1 Introduction 13
1.1 Successive shortest paths in 𝐾𝑛 with random edge weights . . . . . . . . . . 13
1.2 Partitioning problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Successive shortest paths in 𝐾𝑛 with random edge weights 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Upper bound for small 𝑘 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Edge order statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Upper bound for large 𝑘, sketch . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Upper bound for large 𝑘, uniform model . . . . . . . . . . . . . . . . . . . . 48
2.7 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.8 Exponential model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.9 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Bisection width of arbitrary 𝑑-regular graphs 77
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 Technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3 Method overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4 The 𝑑 = 3 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5 The 𝑑 even, 𝑑 ≥ 4 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.6 The 𝑑 odd, 𝑑 ≥ 5 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4 Maximum cut of random 𝑑-regular graphs 123
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3 Statistical physics formulation . . . . . . . . . . . . . . . . . . . . . . . . . 126

11



Table of contents

4.4 Proof of main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.5 Numerical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

References 139

12



Chapter 1

Introduction

A graph is a simple mathematical structure that is frequently used by mathematicians,
computer scientists, engineers, social scientist, biologists, chemists and others to model
problems. A wide range of complex real-world problems and models can be captured
accurately by representing them as graphs, e.g. social networks, electrical circuit layouts,
load balancing, transportation networks, spread of diseases, logistics problems. Especially
since the advent of computing, the study of the structures of (random) graphs, and graph
algorithms have been under constant research.

Formally, a (simple) graph 𝐺 = (𝑉, 𝐸) is a set of vertices 𝑉 and edges 𝐸 ⊆ 𝑉 (2), where
𝑉 (2) denotes the set of all unordered pairs of 𝑉 . Sometimes, each edge 𝑒 ∈ 𝐸 is assigned a
weight, in which case we call 𝐺 a weighted graph. For example, the weight can represent
the distance between two cities, or the strength of a connection in a network.

This thesis contributes to the field of combinatorial optimization in three different
settings. We give a brief introduction to each in the following subsections.

1.1 Successive shortest paths in 𝐾𝑛 with random edge
weights

Dijkstra’s algorithm is one of first graph algorithms, published in 1959 [Dij59]. Given a
graph 𝐺 with non-negative edge weights, it finds the shortest path between two vertices
of 𝐺. We study the shortest path problem in a random setting.

Let𝐺 = 𝐾𝑛 be the complete graph on 𝑛 vertices, and assign i.i.d. uniform (0, 1)weights
to each edge. Fixing vertices 𝑠, 𝑡 ∈ 𝑉(𝐺) it is natural to consider the weight of the cheapest
path 𝑃1 between 𝑠 and 𝑡. It is a well-known result of Janson [Jan99] that 𝑋1, the cost of 𝑃1,

13



Introduction

is asymptotically almost surely almost exactly (a.a.s. a.e.) log𝑛/𝑛. That is, as 𝑛 → ∞,

𝑋1
ln𝑛/𝑛

p⟶1. (1.1)

We define the second cheapest path 𝑃2, with cost 𝑋2, to be the cheapest 𝑠–𝑡 path edge-
disjoint from 𝑃1, and in general define 𝑃𝑘, with cost 𝑋𝑘, to be the cheapest 𝑠–𝑡 path edge-
disjoint from 𝑃1 ∪⋯ ∪ 𝑃𝑘−1, provided such a path exists (for 𝑘 ≤ 𝑛/2, the path 𝑃𝑘 is deter-
ministically guaranteed to exist, but for 𝑘 > 𝑛/2, there is a small probability that it does
not).

Our question is how the costs 𝑋𝑘 behave in the limit as 𝑛 → ∞. Note that 𝑃𝑘 can only
exist for 𝑘 ≤ 𝑛 − 1, as 𝑠 and 𝑡 have degree 𝑛 − 1. We generalise the result of eq. (1.1) all
the way to 𝑘 ≤ 𝑛 − 1: we show that for 𝑘 ≤ 𝑛 − 1, the cost of 𝑃𝑘 is a.a.s. a.e. 2𝑘/𝑛 + log𝑛/𝑛.
More precisely, we show that

𝑋𝑘
2𝑘/𝑛 + ln𝑛/𝑛

p⟶1 (1.2)

uniformly in 𝑘.
For similar problems, it is common that the results automatically extend to other edge

weight distributions, however this is not the case here. Nonetheless, we give an extension
to the case where the edge weights are i.i.d. exponentially distributed. For both distribu-
tions, we also establish the expectation of 𝑋𝑘 conditioned on the existence of 𝑃𝑘 (as it may
not exist for 𝑘 > 𝑛/2).

Similar questions on the minimum cost of other structures have been studied: min-
imum spanning trees [Fri85], matchings in bipartite graphs [Ald01; Wäs09], Hamilton
cycles [Fri04], and travelling salesmen tours [Wäs10]. Recently, questions on successive
and simultaneous structures have been explored forminimum spanning trees [FJ18; JS19],
motivating our work.

1.2 Partitioning problems
Partitioning the graph into smaller pieces under certain constraints is a fundamental algo-
rithmic and theoretical challenge. The study of partitioning problems has given rise to a
rich literature and contribution to complexity theory. It has also lead to the development of
important algorithmic techniques, such as network flows and semidefinite programming
[ARV04; GW95]. Practical uses include divide and conquer algorithms [Shm97; LLR95],
cost minimisation in VLSI design [AK95], and parallel computing [HL95]; for a survey see
[PT93].

14



1.2 Partitioning problems

We study a special case of graph partitioning problems, specifically we study the min-
imum bisection and maximum cut of 𝑑-regular graphs. A cut of a graph 𝐺 is a partition
of the vertex set into two parts, and the size of a cut is the number of edges between the
two parts. A bisection is a cut with the two parts as equal as possible in size. The mini-
mumbisection of a graph𝐺, denotedMinBis(𝐺), is the size of the bisectionwithminimum
cut size; the maximum cut, denoted MaxCut(𝐺), is the size of the cut with maximum cut
size. The minimum bisection is also known as the bisection width, as we will refer to it in
Chapter 3.

Finding the minimum bisection and maximum cut of a graph are both NP-hard prob-
lems, therefore unless P = NP, there is no polynomial time algorithm to find them. They
remain NP-hard, even when restricted to 𝑑-regular graphs, for 𝑑 ≥ 3 [GJ09; BCLS87;
GJS76].

1.2.1 Minimum bisection (bisection width)
As mentioned before, the partitioning of a system to minimise the connection between
the two clusters (parts) arises naturally in VLSI design [AK95]. Current chip designs now
have transistor counts in excess of billions, and partitioning these systems to smaller com-
ponents makes them more manageable for both design and production. Interactions still
need to happen between the components, and generally one wishes to minimise these
as they increase manufacturing costs and have a negative impact on performance. Con-
sider the graph with the 𝑛 transistors as vertices, and an edge between two transistors if
interaction between them is required. The optimal allocation of transistors (the one that
minimises interactions) corresponds exactly to the minimum bisection of the this graph.

Even approximating the minimum bisection is difficult: the best known algorithmic
guarantee in polynomial time is an approximation within a factor of 𝒪(log𝑛) [Räc08].

In Chapter 3 we derive upper bounds on the minimum bisection size for arbitrary 𝑑-
regular graphs. We do this by analysing an iterative local search algorithm: we start with
any arbitrary bisection of 𝐺, then iteratively move a small set of vertices from the current
larger part to the smaller, decreasing the cut size in each step. When we can no longer
find such a small set, we naively rebalance the partition to obtain a bisection.

The method is based on an earlier paper by Monien and Preis [MP06] which deals
with the 𝑑 = 3, 4 cases. We generalise the technique for all 𝑑, and we obtain improved
asymptotic upper bounds on the bisection width of arbitrary 𝑑-regular graphs with 5 ≤
𝑑 ≤ 125.

15



Introduction

1.2.2 Maximum cut
We study the maximum cut size of a random 𝑑-regular graph 𝐺(𝑛, 𝑑), which is a random
graph sampleduniformly fromall𝑑-regular graphs on𝑛 vertices. (Note that this only exists
when 𝑑𝑛 is even.) Specifically, we derive high probability upper bounds on the random
variable MaxCut(𝐺(𝑛, 𝑑)), by analysing the Ising antiferromagnet, described below.

Given a graph 𝐺 = (𝑉, 𝐸), a mapping 𝜎 ∈ {±1}𝑉 of each vertex to a spin +1 or −1 is
called a configuration. A configuration 𝜎 naturally gives rise to a cut of 𝐺, by letting the
two vertex classes be the vertices to which 𝜎 assigns +1 and −1 respectively. Define the
total energy (also known as the Hamiltonian) of a configuration 𝜎 as

ℋ𝐺(𝜎) = ∑
𝑢𝑣∈𝐸(𝐺)

𝟏{𝜎𝑢 = 𝜎𝑣},

so thatℋ𝐺(𝜎) counts the number of uncut (unsatisfied) edges in the cut given by 𝜎.
The Ising antiferromagnet with inverse temperature (parameter) 𝛽 ≥ 0 on 𝐺 is a prob-

ability distribution 𝜇𝐺,𝛽 on all configurations Ω = {±1}𝑉 defined by

𝜇𝐺,𝛽(𝜎) =
1

𝑍𝛽(𝐺)
exp(−𝛽ℋ𝐺(𝜎)),

𝑍𝛽(𝐺) = ∑
𝜎∈{±1}𝑉

exp(−𝛽ℋ𝐺(𝜎)).

The normalising constant 𝑍𝛽(𝐺) is called the partition function. The distribution assigns
a penalty term exp(−𝛽) for each unsatisfied (uncut) edge in the configuration 𝜎. At 𝛽 =
0, the distribution becomes the uniform distribution on all configurations. In the limit
𝛽 → ∞, the probability becomes concentrated on configurations with minimal energy, i.e.
those corresponding to the maximum cut of 𝐺. This is the limit we will be interested in,
as we have

MaxCut(𝐺) = 𝑑𝑛
2 − min

𝜎∈{±1}𝑉
ℋ𝐺(𝜎) ≤

𝑑𝑛
2 + 1

𝛽 log𝑍𝛽(𝐺).

We obtain a (high probability) upper bound on MaxCut(𝐺(𝑛, 𝑑)) from the last expression
as follows. We show an upper bound on the expectation of the log-partition function,
𝔼[log𝑍𝛽(𝐺(𝑛, 𝑑))] (which in this casewill be a negative quantity), anduse that log𝑍𝛽(𝐺(𝑛, 𝑑))
is tightly concentrated around its mean.

The technique we apply is called the interpolation method. It has recently become
standard in literature, and has been applied to numerous problems in combinatorics and
theoretical computer science: to establish lower bound on the chromatic number of ran-
dom graphs [ACG19], to establish the satisfiability threshold for random 𝑘-SAT [DSS15],

16



1.2 Partitioning problems

to count the number of solutions to random 𝑘-NAE-SAT [SSZ16] and to establish an upper
bound independence number of random graphs [LO18].

17



18



Chapter 2

Successive shortest paths in 𝐾𝑛 with
random edge weights

2.1 Introduction
It is a standard problem to find the shortest 𝑠–𝑡 path in a graph, i.e., the cheapest path 𝑃1
between specified vertices 𝑠 and 𝑡, and its cost𝑋1, where the cost of a path is the sum of the
costs of its edges. We will use the terms “cost” and “weight” interchangeably, and reserve
“length” for the number of edges in a path. Shortest paths will refer to paths of minimum
weight, however we will use “short” to describe a path of small length.

Consider the complete graph 𝐺 = 𝐾𝑛 with each edge {𝑢, 𝑣} having weight 𝑤(𝑢, 𝑣),
where the 𝑤(𝑢, 𝑣) are i.i.d. random variables with exponential distribution Exp(1) or uni-
form distribution 𝑈(0, 1) (we consider both versions). In this random setting, a well-
known result of Janson [Jan99] is that as 𝑛 → ∞,

𝑋1
ln𝑛/𝑛

p⟶1. (2.1)

We define the second cheapest path 𝑃2, with cost 𝑋2, to be the cheapest 𝑠–𝑡 path edge-
disjoint from 𝑃1, and in general define 𝑃𝑘, with cost 𝑋𝑘, to be the cheapest 𝑠–𝑡 path edge-
disjoint from 𝑃1 ∪ ⋯ ∪ 𝑃𝑘−1, provided such a path exists. We also think of this as finding
path 𝑃𝑘 after the preceding paths’ edges have been removed. Our question is how the costs
𝑋𝑘 behave in the limit as 𝑛 → ∞ (this limit is implicit throughout). Our main result is the
following.

19



Successive shortest paths in 𝐾𝑛 with random edge weights

Theorem 2.1.1. In the complete graph 𝐾𝑛 with i.i.d. uniform 𝑈(0, 1) edge weights, with 𝑋𝑘
the cost of the 𝑘th cheapest path,

𝑋𝑘
2𝑘/𝑛 + ln𝑛/𝑛

p⟶1 (2.2)

uniformly for all 𝑘 ≤ 𝑛 − 1. That is, for any 𝜀 > 0, asymptotically almost surely, for every
𝑘 = 1, … , 𝑛 − 1,

1 − 𝜀 ≤ 𝑋𝑘
2𝑘/𝑛 + ln𝑛/𝑛 ≤ 1 + 𝜀. (2.3)

Naturally, with 𝑘 = 1, eq. (2.2) recovers Janson’s result eq. (2.1), since 2/𝑛 = 𝑜(ln𝑛/𝑛).
As discussed shortly, in contrast to many cases, the result for the uniform distribution

does not extend immediately to all distributions with positive density at 0. However, we
have a corresponding result for exponentially distributed edge weights. Given an edge-
weight distribution, let 𝑊(𝑘) be the (random) weight of the 𝑘th cheapest edge out of a
vertex (the 𝑘th order statistic of 𝑛 − 1 edge weights).
Theorem 2.1.2. In the complete graph 𝐾𝑛 with i.i.d. exponential edge weights with mean 1,

𝑋𝑘
2 𝔼𝑊(𝑘) + ln𝑛/𝑛

p⟶1 (2.4)

uniformly for all 𝑘 ≤ 𝑛 − 1.
We give the guiding intuition behind the formula eq. (2.4) in Section 2.1.1. Note that
𝔼𝑊(𝑘) = ∑𝑘

𝑖=1
1

𝑛−𝑖
in the exponential case (see e.g. Lemma 2.4.2). In the uniform case,

𝔼𝑊(𝑘) = 𝑘/𝑛, so eq. (2.2) in Theorem 2.1.1 can also be written as eq. (2.4).
Rather than finding the 𝑘 successive cheapest paths, we may alternatively wish to find

the 𝑘 edge-disjoint paths of collective minimum cost. Equivalently, where every edge of
𝐺 has capacity 1, we may be interested in the minimum-cost 𝑘-flow from 𝑠 to 𝑡 in 𝐺. The
following remark shows that this problem leads to essentially the same costs. (The anal-
ogous “collective” problem for minimum spanning trees is solved in [FJ18], and [JS19]
shows that for MSTs, the “successive” version leads to strictly larger costs.)

Remark 2.1.3. In the complete graph𝐾𝑛 with i.i.d. edge weights with distribution𝑈(0, 1) or
exponential with mean 1, the minimum-cost 𝑘-flow has cost 𝐹𝑘 satisfying

𝐹𝑘
∑𝑘

𝑖=1(2 𝔼𝑊(𝑖) + ln𝑛/𝑛)
p⟶1 (2.5)

uniformly for all 𝑘 ≤ 𝑛 − 1.

20



2.1 Introduction

As in eq. (2.3), the statement consists of high-probability upper and lower bounds. The
upper bounds here, for the two models, follow immediately from the upper bounds of
eq. (2.2) and eq. (2.4). The lower bounds follow from the lower bound on 𝑆𝑘 ≔ ∑𝑘

𝑖=1 𝑋𝑘
(see eq. (2.84)) in eq. (2.87) and its analogue for the exponential case, as those bounds hold
for any set of 𝑘 edge-disjoint paths. (The main work in Section 2.7, not needed here, is to
extract lower bounds on 𝑋𝑘 from the lower bounds on 𝑆𝑘.)

Remark 2.1.4. 𝑃𝑘 is always defined for all 𝑘 ≤ 𝑛/2, but, at least for 𝑛 even, may be undefined
for all 𝑘 > 𝑛/2.

Proof. There are 𝑛 − 2 length-2 𝑠–𝑡 paths. Any path 𝑃𝑘 can destroy (share an edge with)
at most two such paths (since 𝑃𝑘 uses just one edge incident to each of 𝑠 and 𝑡). Also, the
single-edge path {𝑠, 𝑡} is destroyed only by the path 𝑃𝑘 consisting of just this edge. So, for
𝑃1, … , 𝑃𝑘 to destroy all length-1 and length-2 paths requires 𝑘 ≥ (𝑛 − 2)/2 + 1 = 𝑛/2, so for
𝑘 ≤ 𝑛/2, certainly path 𝑃𝑘 exists.

Conversely, a construction described in 1892 by Lucas [Luc92, pp. 162–164], which he
attributes to Walecki, shows that a complete graph 𝐾2𝑟 can be decomposed into 𝑟 edge-
disjoint Hamilton paths (whose 2𝑟 terminals are all distinct). For 𝑛 even, decompose 𝐺 =
𝐾𝑛 ⧵ {𝑠, 𝑡} in this way, then link 𝑠 to one “start” terminal of each such path and 𝑡 to the
other “end” terminal, giving (𝑛−2)/2 edge-disjoint 𝑠–𝑡 paths. The edge {𝑠, 𝑡} gives another
path, for 𝑛/2 paths in all. The only edges not used by these paths are a star from 𝑠 to the
Hamilton paths’ end terminals, and another star from 𝑡 to their start terminals, and as
there are no other unused edges to connect these two stars, there is no further 𝑠–𝑡 path.
With nonzero probability, the edge weights are such that 𝑃1, … , 𝑃𝑛/2 are these 𝑛/2 paths, so
that 𝑃𝑛/2+1 does not exist.

Remark 2.1.4 implies that, at least for 𝑛 even, 𝔼[𝑋𝑘] is undefined for 𝑘 > 𝑛/2. The
following theorem establishes 𝔼𝑋𝑘 for 𝑘 ≤ 𝑛/2, and for all 𝑘 ≤ 𝑛−1, gives the expectation
conditioned on the (high-probability) event that 𝑃𝑘 exists.

Theorem 2.1.5. In both the uniform and exponential models, for 𝑘 ≤ 𝑛 − 1, a.a.s. 𝑃𝑘 exists,
and

𝔼[𝑋𝑘 ∣ 𝑃𝑘 exists] = (1 + 𝑜(1))(2 𝔼𝑊(𝑘) + ln𝑛/𝑛), (2.6)

uniformly in 𝑘.

For 𝑘 ≤ 𝑛/2, by Remark 2.1.4 the conditioning is null, so it is immediate from Theo-
rem 2.1.5 that 𝐸[𝑋𝑘] = (1 + 𝑜(1))(2 𝔼𝑊(𝑘) + ln𝑛/𝑛).

21



Successive shortest paths in 𝐾𝑛 with random edge weights

2.1.1 Intuition
The intuitive picture is that path 𝑃𝑘 should use the 𝑘th cheapest edges out of 𝑠 and 𝑡, whose
costs are denoted 𝑊 𝑠

(𝑘) and 𝑊 𝑡
(𝑘) respectively. Then, if we ignore previous paths’ use of

other edges in 𝐺 ⧵ {𝑠, 𝑡}, by eq. (2.1) the opposite endpoints of these two edges should be
connected by a path of cost about ln𝑛/𝑛. This suggests that 𝑋𝑘 ≤ 𝑊 𝑠

(𝑘)+𝑊 𝑡
(𝑘)+ ln𝑛/𝑛, and

this is our guiding intuition. Obviously, the path 𝑃𝑘 does not have to use the 𝑘th cheap-
est edge, its middle section may cost more or less than ln𝑛/𝑛, and as earlier paths use
up edges, the costs of these middle sections may rise. It is true, though, that ∑𝑘

𝑖=1 𝑋𝑖 ≥
∑𝑘−1

𝑖=1 (𝑊 𝑠
(𝑘) +𝑊 𝑡

(𝑘)) (summing only to 𝑘 − 1 on the right-hand side to avoid doubly count-
ing edge {𝑠, 𝑡}), and we use this in proving the lower bounds on 𝑋𝑘 (in Section 2.7 for
uniform and Section 2.8.7 for exponential) and, more surprisingly, in proving the upper
bounds on 𝑋𝑘 for large 𝑘 (in Section 2.5 generically, the details treated in Sections 2.6
and 2.8).

Our upper bounds are obtained by reasoning as follows. Janson [Jan99] analyses the
shortest 𝑠–𝑡 path, and shortest-path tree (SP tree or SPT) on 𝑠, in the randomly edge-
weighted graph𝐺 = 𝐾𝑛, showing that the cost of 𝑃1 is asymptotically almost surely, almost
exactly ln𝑛/𝑛. When the path 𝑃1 is deleted, this prunes away a root-level branch of the SP
tree. The SP tree is a uniform random tree, and using known properties of such trees (see
for example [SFH06]) it is not hard to show that what remains of the SP tree is likely to be
large; capitalising on this we can find an almost equally cheap path 𝑃′2 . This line of argu-
ment also shows that there remains a cheap path after deleting 𝑃′2 , but we need to know
what happens when we delete the true second-shortest path 𝑃2, and at this point the argu-
ment fails because it gives no characterisation of 𝑃2, only of 𝑃′2 . We do know, however, that
𝑃2 is cheap (no more expensive than 𝑃′2 ), and of course uses just one edge incident to each
of 𝑠 and 𝑡, and we will show that deleting any edge set with these properties (including 𝑃2
as a possibility) must still leave a cheap path 𝑃′3 , and so forth. This “adversarial” deletion
argument is developed in Section 2.3.2 to prove Theorem 2.1.1.

2.1.2 Context
The question fits with a broad research theme on optimisation (and satisfiability) prob-
lems on random structures. The novel element here is the “robustness” aspect of finding
cheap structures even after the cheapest has been removed, and in this we were moti-
vated by a recent study by Janson and Sorkin [JS19] of the same question for successive
minimum spanning trees (MSTs), again for 𝐾𝑛 with uniform or exponential random edge
weights. The results for shortest paths and MSTs are dramatically different. For MSTs,

22



2.1 Introduction

it is a celebrated result of Frieze [Fri85] that as 𝑛 → ∞ the cost of the MST 𝑇1 satis-
fies 𝑤(𝑇1)

p⟶ 𝜁(3) ≝ ∑∞
𝑘=1 1/𝑘3, and [JS19] shows that each subsequent tree’s cost has

𝑤(𝑇𝑘)
p⟶𝛾𝑘 with the 𝛾𝑘 strictly increasing (and 2𝑘 − 2√𝑘 < 𝛾𝑘 < 2𝑘 + 2√𝑘). That is very

different from the case here, for paths, where for 𝑘 = 𝑜(ln𝑛) we have 𝑋𝑘 asymptotically
equal to 𝑋1.

Further context is given in the discussion of open problems in Section 2.2.2.

2.1.3 Edge weight distributions
As remarked earlier, in many contexts (including for the length 𝑋1 of a shortest path) the
result for any distribution with positive density at 0 follows immediately from that for the
uniform distribution 𝑈(0, 1), but that is not the case for the successive paths considered
here.

Remark 2.1.6. Janson proves the 𝑋1 case in the exponential model but provides standard
“black-box” reasoning that it holds also for the uniform distribution, for any distribution with
density 1 at 0 (i.e., with cumulative distribution function 𝐹(𝑥) = ℙ(𝑋 ≤ 𝑥) = 𝑥 + 𝑜(𝑥) for
𝑥 ↘ 0), and, after simple rescaling, for any distribution with positive density at 0. Simply, if
there is a path 𝑃 of cost 𝑤(𝑃) = 𝑜(1) in some such model, each edge 𝑤 ∈ 𝑃 must have cost
𝑤(𝑒) ≤ 𝑤(𝑃). Coupling with the uniform distribution by replacing 𝑤 with 𝑤′ = 𝐹(𝑤), for
𝑤 ≤ 𝑤(𝑃) = 𝑜(1) we have that

𝑤′ = (1 + 𝑜(1))𝑤,

and thus the same path 𝑃 is similarly cheap in the uniform model:

𝑤′(𝑃) = ∑
𝑒∈𝑃

𝑤′(𝑒) = (1 + 𝑜(1)) ∑
𝑒∈𝑃

𝑤(𝑒) = (1 + 𝑜(1))𝑤(𝑃). (2.7)

By the same token, if a path is cheap in any model, the same path has asymptotically the
same cost in any other model, and thus the cheapest paths have asymptotically the same cost.

Remark 2.1.7. In our setting this argument does not apply: to find path 𝑃𝑘 we must know
the nature of the 𝑘 − 1 previous paths; their costs are not enough. For 𝑘 = 𝑜(𝑛), however, the
standard argument applies within our proofs, since the proofs rely only on edges of cost 𝑜(1).
However, for larger 𝑘 there are genuine difficulties. Our argument for the exponential case,
in Section 2.8, largely parallels that for uniform but requires new calculations for the upper
bound, and one new idea for the lower bound (in Section 2.8.7). It is not clear for what other
edge-weight distributions (even those with density 1 at 0) eq. (2.4) will hold.

23



Successive shortest paths in 𝐾𝑛 with random edge weights

2.2 Open problems

2.2.1 Poisson multigraph model
The issue of possible non-existence of paths 𝑃𝑘 for 𝑘 > 𝑛/2 (see Remark 2.1.4) is obviated
if, as in [JS19], we work in a Poisson multigraph model. Here, each pair of vertices {𝑢, 𝑣}
of 𝐾𝑛 is joined by infinitely many edges, whose weights are drawn from a Poisson process
of rate 1 (so that the cheapest {𝑢, 𝑣} edge has exponentially distributed cost of mean 1). By
construction, in this model every 𝑠–𝑡 path is always available (possibly at a higher cost).

Conjecture 2.2.1. In the Poisson multigraph model, 𝑋𝑘
2𝑘/𝑛+ln𝑛/𝑛

p⟶ 1 uniformly for all
𝑘 ≤ 𝑛 − 1, and 𝔼𝑋𝑘

2𝑘/𝑛+ln𝑛/𝑛
→ 1 for all 𝑘 ≤ 𝑛 − 1.

Actually, in this model there is no need to stop at 𝑘 = 𝑛 − 1, but it is not clear how far out
we can go (especially preserving uniform convergence).

2.2.2 Other models
Most narrowly, it would be interesting to characterise successive shortest paths that are
vertex-disjoint rather than edge-disjoint, and (in the style of Remark 2.1.3 for edge-disjoint
paths) the 𝑘 vertex-disjoint paths of collective minimum cost. In this model, guessing that
path lengths stay around log𝑛, we would expect 𝑃𝑘 to be defined up to 𝑘 about 𝑛/ log𝑛.

More broadly, it would be interesting to explore different edge-weight distributions,
different structures, and different graphs.

As noted earlier, we have results for uniformly and exponentially distributed edge
weights, but not for arbitrary distributions. As mentioned, results for the single shortest
path follow by standard arguments for any distribution with positive density near 0. For a
distribution with density tending to 0 or∞ at 0, shortest paths were studied in [BH12]. In
particular, they consider the case when edge weights are i.i.d. and have the same distribu-
tion as 𝑍𝑝, where 𝑍 ∼ Exp(1) and 𝑝 > 0 is a fixed parameter; in this setting, the shortest
path has length𝑝 ln𝑛 and its cost is ln𝑛/𝑛𝑝 times a𝑝-dependent constant. A variantwhere
the edge-weight distribution may depend on 𝑛 is studied in [EGvdHN13].

To what distributions does Theorem 2.1.2 extend? Restricting to distributions with
positive density near 0, the arguments in Section 2.8 should immediately extend for all
𝑘 = 𝑜(𝑛). For larger 𝑘, the “middle” of each path should remain short, so the issue is
the edges incident on 𝑠 and 𝑡 in 𝑃𝑘. Certainly eq. (2.4) will fail if the order statistics of
edges incident to 𝑠 are not concentrated, for example if the edge distribution is a mixture
of 𝑈(0, 1) and an atom at 2 or (for a continuous example) a mixture of 𝑈(0, 1) and the

24



2.3 Upper bound for small 𝑘

Pareto distribution with CDF 1 − 1/𝑥 for 𝑥 ≥ 1. It might be true that eq. (2.4) holds more
generally if the expectation 2 𝔼𝑊(𝑘) is replaced by 𝑊 𝑠

(𝑘) + 𝑊 𝑡
(𝑘). However, to obtain the

needed lower bound for the exponential model (see Section 2.8), we had to address the
the fact that the 𝑘th path does not necessarily use the edges of cost𝑊 𝑠

(𝑘) and𝑊 𝑡
(𝑘); we also

needed exponential-specific calculations for the upper bound.
One could explore other structural models. Minimum spanning trees (MSTs) have al-

ready been explored in [JS19] for the successive version and in [FJ18] for the collective ver-
sion. But for many other models the single cheapest structure is well studied but the suc-
cessive and collective extensions have not been explored: this includes perfect matchings
in complete bipartite graphs 𝐾𝑛,𝑛 [Ald01; Wäs09], perfect matchings in complete graphs
𝐾𝑛 [Wäs08], and Hamilton cycles (i.e., the Travelling Salesman Problem) in 𝐾𝑛 [Wäs10].

One could also consider graphs other than complete graphs, in the style of studies of
the MST in a random regular graph [BFM98], and of first-passage percolation in Erdős–
Rényi random graphs [BHH11] and hypercubes [Mar16].

2.3 Upper bound for small 𝑘
In this section we prove the upper bound of Theorem 2.1.1 for all 𝑘 = 𝑜(√𝑛); larger values
are treated in the next section.

As discussed in the introduction, we can characterise the cheapest path 𝑃1 and subse-
quent paths that are cheap but not necessarily cheapest, putting us at a loss to characterise
what remains on deletion of a subsequent cheapest path. We address this in this section.
Given 𝑘, we show a construction of a subgraph 𝑅 = 𝑅(𝑘) of 𝐺 designed so that, as we will
show in turn, its 𝑠–𝑡 paths are all cheap, and no deletion of edges from 𝑅 subject to certain
constraints can destroy all these paths. We show that the union of the 𝑘 shortest paths
satisfies these constraints, so that there remains a cheap 𝑠–𝑡 path in 𝑅 and thus in 𝐺, and
use this to prove Theorem 2.1.1.

Specifically, we will define a structure 𝑅, sketched in Fig. 2.1, that has many cheap
and spread-out paths between 𝑠 and 𝑡, within which we will always find a cheap path. A
crucial point is that each step of the construction occurs in a complete induced subgraph
of 𝐺 of size 𝑛 − 𝑜(𝑛) with all edges unconditioned.

We will show, assuming that

𝑋𝑖 ≤ (1 + 𝜀) (2𝑖𝑛 + ln𝑛
𝑛 ) (2.8)

25



Successive shortest paths in 𝐾𝑛 with random edge weights

t

s

Fig. 2.1 Cartoon of a robust subgraph 𝑅 of 𝐺, showing the vertices 𝑠 and 𝑡, their respective
structures 𝑅𝑠 and 𝑅𝑡 including shortest-path trees represented by triangles (some “failed”
and thus not shown), and the cheap edges connecting triangles in 𝑅𝑠 and 𝑅𝑡. Vertices 𝑠
and 𝑡 have down-degree (number of children) 𝑟0, and vertices at levels 1 and 2 (in 𝑅𝑠 and
𝑅𝑡) have down-degrees 𝑟1 and 𝑟2 respectively.

for all 𝑖 ≤ 𝑘, that the same holds for 𝑖 = 𝑘 + 1. We will do so by showing that after deleting
𝑘 paths, each of cost ≤ (1 + 𝜀)(2𝑘/𝑛 + ln𝑛/𝑛) from 𝐺, some or all of whose edges may lie
in 𝑅, there remains a path in 𝑅 satisfying the same cost bound, and so this must also be
true of 𝑃𝑘+1.

Consistent with this approach, and because to prove convergence in probability it suf-
fices to consider an arbitrarily small, fixed 𝜀 (see around eq. (2.3)), throughout this section
we assume that 𝜀 > 0 is fixed. Thus, in the 𝑛 → ∞ limit implicit throughout,

𝜀 = Θ(1), (2.9)

and 𝜀 (and functions of 𝜀) may be absorbed into the constants implicit in any Landau-
notation expression.

Remark 2.3.1. Most of the calculations below hold for any 𝜀 > 0, but a few (eq. (2.14) and
eq. (2.15) for example) hold only for 𝜀 sufficiently small. This is not restrictive here, in proving
convergence in probability, but to characterise expectation, Section 2.9.1 requires 𝜀 to be a
large constant (to assure sufficiently small failure probabilities). The proof of Lemma 2.9.1
addresses the changes needed.

Before going into detail let us sketch the construction of 𝑅. We first build up a tree
𝑅𝑠 on 𝑠, starting from 𝑠 at level 0, the opposite endpoints of edges out of level 𝑖 forming

26



2.3 Upper bound for small 𝑘

level 𝑖 + 1. We will always choose “cheap” edges, but not always the cheapest ones, as
explained later. From 𝑠we will choose 𝑘+ 𝑟0 cheap edges; from each of these 𝑘+ 𝑟0 level-1
vertices we choose 𝑟1 cheap edges; from each of the (𝑘 + 𝑟0)𝑟1 level-2 vertices we choose 𝑟2
cheap edges; and on each of the (𝑘+𝑟0)𝑟1𝑟2 level-3 vertices we construct a shortest-path tree
comprising 𝑑 vertices. We do a similar construction on 𝑡 to form 𝑅𝑡. Finally, we link 𝑅𝑠
and 𝑅𝑡 using cheap edges between their shortest-path trees. The values of the parameters
𝑟0, 𝑟1, 𝑟2 and 𝑑 are given in eq. (2.18), eq. (2.20), eq. (2.24) and eq. (2.26), and it is confirmed
in Section 2.3.9 that the construction uses only a small fraction of 𝐺’s vertices,

|𝑉(𝑅)| = 𝒪((𝑘 + 𝑟0)𝑟1𝑟2𝑑) = 𝑜(𝑛), (2.10)

a fact we rely on in the construction.
We will repeatedly use the following Chernoff bound, which in fact holds under more

general conditions; see for example [Jan02, Theorem 1, eq. (4)].

Lemma 2.3.2. Let 𝑋 ∼ Bi(𝑛, 𝑝) be a binomial random variable with mean 𝜆 = 𝑛𝑝. Then
for any 𝜀 > 0, ℙ(𝑋 < (1 − 𝜀)𝜆) ≤ exp(−𝜀2𝜆/2).

2.3.1 Cheap paths are short
We show that, w.h.p., every cheap path in𝐺 is also short. The following lemma asserts the
contrapositive. The result is used in eq. (2.16) to restrict the number of edges the adversary
can delete.

Lemma 2.3.3. In both the uniform and exponential models, with probability 1 − 𝒪(𝑛−1.9),
simultaneously for all 𝑙 with ln𝑛 ≤ 𝑙 < 𝑛, every 𝑠–𝑡 path of length 𝑙 has cost ≥ 𝑙/(19𝑛).

Proof. We start with the uniform distribution. Here, with 𝑋 = ∑𝑙
𝑖=1 𝑋𝑖, 𝑋𝑖 ∼ 𝑈(0, 1) i.i.d.,

𝑋 has the Irwin-Hall distribution and it is a standard result that ℙ(𝑋 ≤ 𝑎) ≤ 𝑎𝑙/𝑙! (see for
example [FPS18, eq. 8]). Recall that Stirling’s approximation is also a lower bound. Thus,

ℙ(𝑋 ≤ 𝑙
19𝑛) ≤

(𝑙/19𝑛)𝑙
𝑙! ≤ (𝑙/19𝑛)𝑙

√2𝜋𝑙 (𝑙/𝑒)𝑙
< ( 𝑒

19𝑛)
𝑙
.

The cost of a fixed path of length 𝑙 has the same law as 𝑋 . Over the ≤ 𝑛𝑙 choices for such a
path, the number𝑀𝑙 of “cheap paths” (of cost< 𝑙/(19𝑛)) satisfies (byMarkov’s inequality)

ℙ(𝑀𝑙 > 0) ≤ 𝔼𝑀𝑙 ≤ 𝑛𝑙 ℙ(𝑋 ≤ 𝑙
19𝑛) ≤ 𝑛𝑙 ( 𝑒

19𝑛)
𝑙
= ( 𝑒19)

𝑙
.

27



Successive shortest paths in 𝐾𝑛 with random edge weights

Summing over 𝑙 ≥ ln𝑛, the probability that there is a cheap path of any such length is
𝒪((𝑒/19)ln𝑛) = 𝒪(𝑛−1.9).

Since an Exp(1) random weight 𝑋 ′ can be obtained from a 𝑈(0, 1) r.v. 𝑋 by setting
𝑋 ′ = − ln(1 − 𝑋) > 𝑋 , the exponential weight stochastically dominates the uniform, so
the result for uniform immediately implies that for exponential.

2.3.2 Adversarial edge deletions
Asnoted in the introduction, we introduce an edge-deleting adversarywhose powers allow
it to delete the paths 𝑃1, … , 𝑃𝑘, but which is more easily characterised than those paths are.
We now specify what the adversary is permitted to do.

Let

𝑠 = 𝑠(𝑘) ≔ 2𝑘 + ln𝑛. (2.11)

(From context it should be easy to distinguish this use of 𝑠 from that as the source of an
𝑠–𝑡 path.) Let 𝑤0 be the “target cost” of a path, namely

𝑤0 = 𝑤0(𝑘) ≔
𝑠
𝑛 = 2𝑘

𝑛 + ln𝑛
𝑛 . (2.12)

Define a “heavy” edge to be one of cost

≥ 1
11
𝜀𝑤0. (2.13)

Assuming that each of 𝑃1, … , 𝑃𝑘 has weight ≤ (1 + 𝜀)𝑤0, the number of heavy edges in
𝑃1 ∪⋯ ∪ 𝑃𝑘 is at most

𝑘(1 + 𝜀)𝑤0
1
11
𝜀𝑤0

< 12𝑘
𝜀 < 12𝑠

𝜀 . (2.14)

Also, modulo the one-time failure probability𝒪(𝑛−1.9) from Lemma 2.3.3, by that lemma
each path has length at most

(1 + 𝜀)𝑤0 ⋅ 19𝑛 < 20𝑠. (2.15)

28



2.3 Upper bound for small 𝑘

Thus, the length of all 𝑘 paths taken together (i.e., the number of edges in 𝑃1 ∪⋯ ∪ 𝑃𝑘) is
at most

20𝑘𝑠 < 10𝑠2. (2.16)

And of course the 𝑘 paths include

exactly 𝑘 edges incident on each of 𝑠 and 𝑡. (2.17)

Subject to these assumptions — that each of 𝑃1, … , 𝑃𝑘 has weight ≤ (1 + 𝜀)𝑤0 and that
the high-probability conclusion of Lemma 2.3.3 holds— 𝑃1∪⋯∪𝑃𝑘 satisfies all three of the
constraints eq. (2.14), eq. (2.16), and eq. (2.17) on heavy edges, all edges, and “incident”
edges. An adversary who can delete any edge set subject to these constraints is able to
delete 𝑃1 ∪⋯ ∪ 𝑃𝑘, which is all we require. However, to simplify analysis we will give the
adversary even more power.

At the root of 𝑅 we will allow the adversary to delete edges subject only to eq. (2.17); at
level 1, additional edges subject only to the “heavy-edge budget” eq. (2.14); and at levels
2 and 3 and for “middle” edges, additional edges subject only to the “edge-count budget”
eq. (2.16).

We will show how to choose the parameters of 𝑅 so that every 𝑠–𝑡 path in 𝑅 has cost
≤ (1 + 𝜀)𝑤0, and so that 𝑅 is “robust”: after the adversarial deletions, at least one path
remains. Specifically, we will arrange that there remains a path in which the “root” edge
incident to 𝑠 costs ≤ 𝑘

𝑛
+ 1

9
𝜀𝑤0, the edge out of level 1 is heavy but has cost ≤

1
9
𝜀𝑤0, the

edge out of level 2 may be light or heavy and also has cost ≤ 1
9
𝜀𝑤0, the path through the

SP tree has total cost ≤ 1
2
ln𝑛
𝑛
+ 1

9
𝜀𝑤0, the central edge joining this to the opposite SP tree

adds cost ≤ 1
9
𝜀𝑤0, and the continuation of this path to 𝑡 has the symmetrical properties. It

is immediate that such a path has total cost ≤ (2𝑘 + ln𝑛)/𝑛 + 9 ⋅ 1
9
𝜀𝑤0 = (1 + 𝜀)𝑤0. (But

see eq. (2.35) for confirmation, after the construction is detailed.)

Note: We use the variable 𝑛′ in the following sections to denote the number of vertices
not currently in 𝑅. This changes after each level is built, but the crucial point is that we
always have 𝑛′ = (1 − 𝑜(1))𝑛, which we confirm in Section 2.3.9.

29



Successive shortest paths in 𝐾𝑛 with random edge weights

2.3.3 Level 0, cheapest edges
On 𝑠, add to 𝑅 the 𝑘 + 𝑟0 edges of lowest cost, excluding {𝑠, 𝑡} from consideration, with

𝑟0 = ⌈ 1
10
𝜀𝑠⌉ = Θ(𝑠). (2.18)

Consider this step a failure if any selected edge has cost greater than 𝑘
𝑛
+ 1

9
𝜀𝑤0. There are

𝑛′ = 𝑛−2 = (1−𝑜(1))𝑛 edges under consideration, with weights i.i.d.𝑈(0, 1), and failure
occurs iff the number 𝑋 of edges with weights in the interval [0, 𝑘

𝑛
+ 1

9
𝜀𝑤0] is smaller than

𝑘 + 𝑟0. Note that 𝑋 ∼ Bi(𝑛′, 𝑘
𝑛
+ 1

9
𝜀𝑤0), thus 𝔼𝑋 = (1 − 𝑜(1)) (𝑘 + 1

9
𝜀𝑠), and failure means

that 𝑋 < 𝑘 + 𝑟0, i.e., that

𝑋
𝔼𝑋 < (1 + 𝑜(1)) 𝑘 + 𝑟0

𝑘 + 1
9
𝜀𝑠
= (1 + 𝑜(1))

𝑘 + 1
10
𝜀𝑠

𝑘 + 1
9
𝜀𝑠
,

which by 𝑠 > 2𝑘 is

< (1 + 𝑜(1))
𝑘 + 1

10
𝜀 ⋅ 2𝑘

𝑘 + 1
9
𝜀 ⋅ 2𝑘

= (1 + 𝑜(1))
(1 + 2

10
𝜀)𝑘

(1 + 2
9
𝜀)𝑘

< 1 − 1
50
𝜀 = 1 − Ω(𝜀).

By Lemma 2.3.2, then, the probability of failure is

ℙ(𝑋 < (1 − Ω(𝜀)) 𝔼𝑋) ≤ exp(−Ω(𝜀2) 𝔼𝑋/2) ≤ exp(−Ω(𝜀2 ⋅ 𝜀𝑠)) ≤ exp(−Θ(𝑠)), (2.19)

the final expression using that 𝜀 is constant (see (2.9)).
So, modulo the given failure probability, every selected edge incident on 𝑠 has cost

≤ 𝑘
𝑛
+ 1

9
𝜀𝑤0, and after the adversarial deletion of 𝑘 of these edges, 𝑟0 remain. The selection

of edges conditions the costs of the other edges incident on 𝑠, but none will play any role
in the analysis.

The purpose of the next two levels is to expand the number of edges to the point where
the adversary cannot delete all of them, because of the heavy-edge budget eq. (2.14) for
edges out of level 1, and the edge-count budget eq. (2.16) for edges out of level 2 and be-
yond. At the same time, we try to minimise the number of vertices introduced into the
construction so that it will remain 𝑜(𝑛) for as large a 𝑘 as possible.

30



2.3 Upper bound for small 𝑘

2.3.4 Level 1, cheapest heavy edges
From each neighbour 𝑣 of 𝑠 along the edges just added, add to 𝑅 the

𝑟1 ≔ ⌈10, 000/𝜀2⌉ = Θ(1) (2.20)

cheapest heavy edges from 𝑣 to any of the 𝑛′ = 𝑛(1 − 𝑜(1)) vertices not yet added (see
eq. (2.10)), as before also excluding vertex 𝑡. Consider this step a failure if any added edge
has cost greater than 1

9
𝜀𝑤0. For each neighbour 𝑣 there are 𝑛′ edges under consideration,

with weights i.i.d. 𝑈(0, 1), and failure occurs iff the number 𝑋 of edges with weights in
the interval [ 1

11
𝜀𝑤0,

1
9
𝜀𝑤0] is smaller than 𝑟1. Note that 𝑋 ∼ Bi(𝑛′, ( 1

9
− 1

11
)𝜀𝑤0), thus 𝔼𝑋 =

(1 − 𝑜(1)) ( 1
9
− 1

11
)𝜀𝑠 = Θ(𝜀𝑠). Failure means that 𝑋 < 𝑟1 < 𝔼𝑋/2, so by Lemma 2.3.2 the

probability of failure for a given 𝑣 is ≤ exp(−Θ(𝜀𝑠)). The number of level-1 vertices 𝑣 is
𝑘 + 𝑟0 = 𝒪(𝑠), so by the union bound the probability of any failure is

≤ 𝒪(𝑠) exp(−Θ(𝜀𝑠)) ≤ exp(−Θ(𝑠)), (2.21)

by suitable adjustment of the constants implicit in Θ.
This edge selection conditions the costs of the other edges incident on each 𝑣, but

none will play any role in the analysis. The adversary must leave 𝑟0 edges out of the root,
expanding to

𝑟0𝑟1 ≥
1
10
𝜀𝑠 ⋅ 10, 000/𝜀2 = 1, 000𝑠/𝜀

(heavy) edges out of level 1, of which (by eq. (2.14)) he can delete at most 12𝑠/𝜀, leaving
(very generously calculated) at least

𝜌1 ≔ 120𝑠/𝜀 = Θ(𝑟0𝑟1) (2.22)

edges out of level 1. The vertices at the opposite endpoints of these edges constitute level
2.

2.3.5 Level 2, cheapest edges
From each level 2 vertex 𝑣 in turn, add to 𝑅 the cheapest 𝑟2 edges to any of the 𝑛′ = 𝑛(1 −
𝑜(1)) vertices not yet added, again also excluding vertex 𝑡 from consideration. Here choose

31



Successive shortest paths in 𝐾𝑛 with random edge weights

𝑟2 so as to make

𝜌2 ≔ 𝜌1𝑟2 = 12𝑠2, (2.23)

namely taking

𝑟2 =
12𝑠2
𝜌1

= 12𝑠2
120𝑠/𝜀 =

1
10
𝜀𝑠 = Θ(𝜀𝑠). (2.24)

Consider this step a failure if any added edge has cost greater than 1
9
𝜀𝑤0. For each neigh-

bour 𝑣 there are 𝑛′ = (1−𝑜(1))𝑛 edges under consideration, withweights i.i.d.𝑈(0, 1), and
failure occurs iff the number 𝑋 of edges with weights in the interval [0, 1

9
𝜀𝑤0] is smaller

than 𝑟2. Note that 𝑋 ∼ Bi(𝑛′, 1
9
𝜀𝑤0), thus 𝔼𝑋 = (1 − 𝑜(1)) 1

9
𝜀𝑠 = Θ(𝜀𝑠). Failure means

that 𝑋 < 𝑟2 < 0.99 𝔼𝑋 , so by Lemma 2.3.2 the probability of failure for a given 𝑣 is
≤ exp(−Θ(𝜀𝑠)). The number of level-2 vertices 𝑣 is (𝑘 + 𝑟0)𝑟1 = 𝒪(𝑠) so by the union
bound the probability of any failure is

≤ exp(−Θ(𝜀𝑠)) (2.25)

This edge selection conditions the costs of the other edges incident on each 𝑣, but none
will play any role in the analysis. The adversary had to leave at least 𝜌1 edges out of level 1,
expanding to 𝜌1𝑟2 = 𝜌2 = 12𝑠2 edges out of level 2, of which by eq. (2.16) he can delete at
most 10𝑠2, leaving at least 2𝑠2 edges out of level 2. The vertices at the opposite endpoints
of these edges constitute level 3.

2.3.6 Level 3, shortest-path trees
We now grow each level-3 vertex 𝑣 to a tree 𝑇𝑣 with 𝑑 vertices, including 𝑣, choosing

𝑑 ≔ ⌈√
𝑛 ln𝑛
2𝑠3 ⌉ < √𝑛. (2.26)

We grow these trees one after another, always working within the 𝑛′ = 𝑛(1−𝑜(1)) vertices
not yet added, and again always excluding vertex t from consideration.

Controlling the lengths of the paths in 𝑇𝑣 would allow a choice of 𝑑 as large as√𝑛, but
we make it smaller to keep the number of vertices in 𝑅 as small as possible (and thus keep
it to 𝑜(𝑛) for 𝑠 as large as possible).

32



2.3 Upper bound for small 𝑘

Here itwill be convenient toworkwith exponentially rather thanuniformly distributed
edge weights. There are various easy ways to arrange this. We do so by temporarily replac-
ing each uniform weight 𝑤 with a weight 𝑤′ = − ln(1 −𝑤); it is standard that these trans-
formed weights are exponentially distributed, and that 𝑤′ ≥ 𝑤. We construct a shortest-
path tree (SPT) of order 𝑑 using the transformed weights; it will not be an SPT for the
original weights, but its paths will cost less under the original weights, which is all that
we care about.

Define the distance dist(𝑢, 𝑣) between two vertices to be the cost of aminimum-weight
path between them, anddefine the radius rad(𝑇𝑣) of an SPT𝑇𝑣 to be themaximumdistance
from 𝑣 to any vertex in𝑇𝑣. The radius is described by the following claim, whichwe phrase
in a generic setting with 𝑛 vertices and a root vertex 𝑠.
Claim 2.3.4. In a complete graph 𝐾𝑛 with i.i.d. exponential edge weights with mean 1, the
radius 𝑋 = rad(𝑇𝑠) of a shortest-path tree 𝑇𝑠 of order 𝑑 is

𝑋 =
𝑑−1
∑
𝑖=1

𝑋𝑖, (2.27)

where the 𝑋𝑖 are independent random variables with 𝑋𝑖 ∼ Exp(𝑖(𝑛 − 𝑖)).
Proof. Following [Jan99], think of the process of finding shortest paths from 𝑠 to other
vertices as first-passage percolation or “infection spreading” starting from 𝑠. Let 𝐿 ≔ 𝐿(𝑟)
be the set of vertices within radius (distance) 𝑟 of 𝑠; we think of gradually increasing 𝑟,
starting with 𝑟 = 0 where 𝐿 = {𝑠}. It is well known that each edge (𝑣, 𝑢) ∈ 𝐿(𝑟) × (𝑉 ⧵
𝐿(𝑟)) has exponentially distributed weight𝑊 conditioned by𝑊 + dist(𝑠, 𝑣) ≥ 𝑟, and that
these random weights are independent. This can be seen by imagining that infection has
spread to radius 𝑟 from 𝑠, including to the vertex 𝑣 and additionally a length 𝑟 − dist(𝑠, 𝑣)
further along the edge (𝑣, 𝑢), and appealing to thememoryless property of the exponential
distribution; it can also be verified by analysing Dijkstra’s algorithm in this randomised
setting.

It follows that the distance 𝑋1 to the vertex nearest 𝑠 is distributed as 𝑋1 ∼ Exp(𝑛 − 1);
the additional distance to the next vertex is 𝑋2 with 𝑋2 ∼ Exp(2(𝑛 − 2)) and independent
of 𝑋1 (for total distance 𝑋1 + 𝑋2); and when there are 𝑖 vertices in the tree, the additional
distance to the next is 𝑋𝑖 ∼ Exp(𝑖(𝑛 − 𝑖)), with all the 𝑋𝑖 independent, for total distance as
claimed.

We will only use trees 𝑇𝑣 whose radius is 𝑋 ≤ (1 + 2
9
𝜀) 1

2
ln𝑛/𝑛 < 1

2
ln𝑛/𝑛 + 1

9
𝜀𝑤0. Call

a tree a failure (and do not include it in the structure 𝑅) if 𝑋 > (1 + 2
9
𝜀)1

2
ln𝑛/𝑛. Declare

the construction of level 3 a failure if more than 0.01𝑠2 trees fail.

33



Successive shortest paths in 𝐾𝑛 with random edge weights

Since eq. (2.27) is monotone increasing in 𝑑, the larger the 𝑑, the greater the probabil-
ity of failure, so in the next paragraphs we will pessimistically take 𝑑 to be √𝑛 (ignoring
integrality since √𝑛 is large). In this case, applying Claim 2.3.4 to 𝑇𝑣, constructed in a
complete graph of order 𝑛′ = 𝑛(1 − 𝑜(1)), the expectation of 𝑋 is

𝜇 ≔ 𝔼𝑋 =
𝑑−1
∑
𝑖=1

1
𝑖(𝑛′ − 𝑖) =

1 + 𝑜(1)
𝑛

𝑑−1
∑
𝑖=1

1
𝑖 = (1 + 𝑜(1)) ln𝑑𝑛 = (1 + 𝑜(1))12

ln𝑛
𝑛 . (2.28)

Thus, failure of 𝑇𝑣 implies that

𝑋
𝜇 > 1 + 1

5𝜀. (2.29)

To bound the probability of this event we require one more lemma (also used later in
proving Lemma 2.4.2).

Lemma 2.3.5 ([Jan18, Theorem 5.1]). Let 𝑋 = ∑𝑛
𝑖=1 𝑋𝑖 with 𝑋𝑖 ∼ Exp(𝑎𝑖) independent

rate-𝑎𝑖 random variables, where 𝑎𝑖 ≥ 0. Write 𝑎∗ ≔ min𝑖 𝑎𝑖 and 𝜇 ≔ 𝔼𝑋 = ∑𝑛
𝑖=1

1
𝑎𝑖
. Then:

for any 𝜆 = 1 + 𝜀 > 1,

ℙ(𝑋 ≥ 𝜆𝜇) ≤ 𝜆−1𝑒−𝑎∗𝜇(𝜆−1−ln𝜆) ≤ exp(−Ω(𝛼∗𝜇)) (2.30)

for any 𝜆 = 1 − 𝜀 < 1,

ℙ(𝑋 ≤ 𝜆𝜇) ≤ 𝑒−𝑎∗𝜇(𝜆−1−ln𝜆) ≤ exp(−Ω(𝛼∗𝜇)), (2.31)

and for any 𝜀 > 0,

ℙ(|𝑋 − 𝜇| ≥ 𝜀𝜇) ≤ 2 exp(−Ω(𝛼∗𝜇)). (2.32)

The constants implicit in theΩ(⋅) expressions are positive and only depend on 𝜀.

Proof. The inequalities in eq. (2.30) and eq. (2.31) in terms of 𝜆 are directly from [Jan18,
Theorem 5.1]. The remaining expressions, including eq. (2.32), follow immediately.

From eq. (2.30) of Lemma 2.3.5, the probability of the event in eq. (2.29) (and thus that
of 𝑇𝑣 failing) is at most

ℙ (𝑋 − 𝜇 > 1
5𝜀𝜇) ≤ exp(−Ω(𝛼∗𝜇)) = exp(−Ω(ln𝑛)), (2.33)

using that 𝑎∗ = 𝑛′ = (1 − 𝑜(1))𝑛, 𝜇 is given by eq. (2.28), and 𝜀 = Θ(1).

34



2.3 Upper bound for small 𝑘

The total number of trees built is 𝑁 = (𝑘 + 𝑟0)𝑟1𝑟2, which, with reference to eq. (2.11),
eq. (2.18), eq. (2.20), and eq. (2.24), is Θ(𝑠2). By eq. (2.33), each tree independently fails
with at most some probability 𝑝 = 𝑜(1). Thus, the number of trees surviving dominates
Bi(𝑁, 1 − 𝑝), with expectation 𝜆 = 𝑁(1 − 𝑝) = 𝑁(1 − 𝑜(1)). Failure at level 3 means
that at least 0.01𝑠2 = Θ(𝑁) trees fail, equivalently the number surviving is at most some
𝜆(1 − Θ(1)), which by Lemma 2.3.2 has probability

exp(−Ω(𝑠2)). (2.34)

Remark 2.3.6. When construction of a tree𝑇𝑣 rooted at a level-3 vertex 𝑣 is finished, the edge
between any vertex 𝑎 of𝑇𝑣 and any vertex 𝑏 in𝑉 ′⧵𝑉(𝑇𝑣) has weight𝑤(𝑎, 𝑏) that— still in the
uniformmodel with edge weights temporarily transformed to be exponentially distributed—
is exponentially distributed, conditional upon being ≥ rad(𝑇𝑣) − 𝑑(𝑣, 𝑎). Equivalently, the
edge {𝑎, 𝑏} gives a 𝑣-to-𝑏 path (through 𝑎) with cost rad(𝑇𝑣) + 𝑋𝑎,𝑏, where the “excess” 𝑋𝑎,𝑏
has simple exponential distribution 𝑋𝑎,𝑏 ∼ Exp(1) (with no conditioning). Furthermore, the
𝑋𝑎,𝑏 are independent, over all choices of 𝑎 and 𝑏.

Call 𝑅𝑠 the now-complete construction on 𝑠. Note that there is no conditioning on
edges between the remaining vertices; in particular, the SPT infection process (or equiv-
alently Dijkstra’s algorithm) as described in Claim 2.3.4 never looked at edges between
uninfected vertices.

2.3.7 Symmetric construction on vertex 𝑡
Just as we have constructed 𝑅𝑠, we now make a similar construction 𝑅𝑡 for vertex 𝑡, with
the same branching factors out of levels 0, 1, and 2 and similar SPTs on level-3 vertices.
Since the number 𝑛′ of vertices available after constructing𝑅𝑠 still satisfies 𝑛′ = (1−𝑜(1))𝑛,
and because the construction on 𝑠 did not look at nor condition any edge between these
vertices, the construction on 𝑡 enjoys the same properties as that on 𝑠.

2.3.8 Edges between the trees on 𝑠 and 𝑡
It remains only to complete paths between 𝑠 and 𝑡, which we do by adding cheap edges
(where present) between the SPTs in 𝑅𝑠 and those in 𝑅𝑡.

Let 𝑇𝑢 be an SPT rooted at a level-3 vertex 𝑢 of 𝑅𝑠, and 𝑇𝑣 one rooted at a level-3 vertex
𝑣 of 𝑅𝑡. Let 𝑎 and 𝑏 be any vertices in 𝑇𝑢 and 𝑇𝑣 respectively. By Remark 2.3.6, edge
{𝑎, 𝑏} gives a 𝑢-to-𝑏 path with cost rad(𝑇𝑢) + 𝑋𝑎,𝑏, the collection of all the excesses 𝑋𝑎,𝑏

35



Successive shortest paths in 𝐾𝑛 with random edge weights

being i.i.d. each with distribution 𝑋𝑎,𝑏 ∼ Exp(1). Thus, {𝑎, 𝑏} gives a 𝑢-to-𝑣 path with cost
≤ rad(𝑇𝑢) + 𝑋𝑎,𝑏 + rad(𝑇𝑣).

Select, and add to the full construction 𝑅, any such “middle edge” {𝑎, 𝑏} having 𝑋𝑎,𝑏 ≤
1
9
𝜀𝑤0. This completes the construction of 𝑅.

2.3.9 Order of 𝑅, failure probability, and path costs
It is worth first confirming that the construction uses, as claimed, 𝑜(𝑛) vertices. The num-
ber of vertices used is of order (𝑘 + 𝑟0)𝑟1𝑟2𝑑, which by eq. (2.18), eq. (2.20), eq. (2.24), and
eq. (2.26) is 𝒪(𝑠2𝑑). Recalling from eq. (2.26) that 𝑑 = ⌈√𝑛 ln𝑛/2𝑠3 ⌉, as long as the
ceiling function does not affect the order of 𝑑, the total number of vertices is 𝒪(𝑠2𝑑) =
𝒪(√𝑛𝑠 ln𝑛), which is 𝑜(𝑛) for 𝑠 = 𝑜(𝑛/ ln𝑛). However, the ceiling function does affect

the order of 𝑑 when 𝑛 ln𝑛/2𝑠3 < 1, i.e., when 𝑠 > (1
2
𝑛 ln𝑛)

1/3
; in this case, 𝑑 = 1, the total

number of vertices used is 𝒪(𝑠2), and this is still 𝑜(𝑛) if 𝑠 = 𝑜(√𝑛). Taking the two cases
together, the construction is valid up to any 𝑠 = 𝑜(√𝑛), or equivalently for any 𝑘 = 𝑜(√𝑛).

Failures at levels 0, 1, and 2 each occur w.p.≤ exp(−Θ(𝑠)) (by eq. (2.19), eq. (2.21), and
eq. (2.25)), and at level 3 w.p. ≤ exp(−Ω(𝑠2)) (by eq. (2.34)), so by the union bound the
probability of any failure is ≤ exp(−Θ(𝑠)).

We now confirm that, assuming that the construction was successful, any 𝑠–𝑡 path
in 𝑅 through successful SPTs has cost ≤ (1 + 𝜀)𝑤0. (Remember that there may be some
unsuccessful SPTs.) By assumption of success, any level-0 edge on 𝑠 or 𝑡 has cost ≤ 𝑘

𝑛
+

1
9
𝜀𝑤0, any level-1 edge has cost ≤

1
9
𝜀𝑤0, and any level-2 edge also has cost ≤

1
9
𝜀𝑤0. Each

successful level-3 tree 𝑇 in 𝑅𝑠 or 𝑅𝑡 has radius rad(𝑇) ≤ (1+ 2
9
𝜀)1

2
ln𝑛/𝑛 ≤ 1

2
ln𝑛/𝑛+ 1

9
𝜀𝑤0,

and each selectedmiddle edge {𝑎, 𝑏} connects the roots of two trees at an excess cost (above
the sum of the two radii) of 𝑋𝑎,𝑏 ≤

1
9
𝜀𝑤0. The total of the 9 upper bounds in question is

2 ⋅ 𝑘𝑛 + 2 ⋅ 12 ln𝑛/𝑛 + 9 ⋅ 19𝜀𝑤0 = (1 + 𝜀)𝑤0. (2.35)

2.3.10 Robustness of 𝑅
Wenowshow that, after the deletion of the𝑘 cheapest paths in𝐺, there remains at least one
path in𝑅 (that uses successful SPTs). Recall from Section 2.3.2 that deletion of the 𝑘 cheap-
est paths in 𝐺 is conservatively modeled as an adversarial deletion subject to: eq. (2.17),
the deletion of exactly 𝑘 edges incident on each of 𝑠 and 𝑡; eq. (2.14), the number of heavy
edges deleted at level 1; and eq. (2.16), the total number of edges deleted elsewhere in 𝑅
(at levels 2 and 3, and joining 𝑅𝑠 and 𝑅𝑡).

36



2.3 Upper bound for small 𝑘

Without loss of generality we may assume that the adversary does not delete an edge
within an SPT 𝑇, nor a middle edge from such a tree to a facing one, since deleting the
level-2 edge into the level-3 root of 𝑇 destroys more paths in 𝑅 at the same budgetary cost.

By the assumption of success, there are at most 0.01𝑠2 failed SPTs on each of 𝑠 and
𝑡, and for simplicity we will deal with them by imagining all trees to be successful but
allowing the adversary his choice of this many SPTs to delete; by the argument above we
can model this as deletion of edges into the roots of these trees, and simply add 0.02𝑠2 to
this budget.

Let us now allow the adversary to delete 𝑘 edges from each of 𝑠 and 𝑡, 12𝑠/𝜀 edges out
of level 1 for each (double-counting the heavy-edge budget), and 10.02𝑠2 edges out of level
2 for each (again double-counting). Can he destroy all 𝑠–𝑡 paths? We have not yet made
any high-probability structural assertion about the middle edges, so this is a probabilistic
question: what is the probability, over the randomness still present in the middle edges,
that there is an adversarial deletion destroying all paths?

Of the 𝑘+𝑟0 = 𝒪(𝑠) edges on 𝑠, the adversary chooses 𝑘 to delete; there are atmost 2𝒪(𝑠)
ways to do so. Any choice leavesΘ(𝑟0𝑟1) = Θ(𝑠) edges out of level 1, of which the adversary
is able to delete a positive fraction, again in at most 2𝒪(𝑠) ways. Any choice leaves Θ(𝑠2)
edges out of level 2, of which the adversary is able to delete a positive fraction, in at most
2𝒪(𝑠2) ways. The adversary makes a similar set of choices on 𝑡, but still this comes to just
2𝒪(𝑠2) possible outcomes in all.

A given deletion choice destroys all paths precisely if it leaves nomiddle edge of excess
≤ 1

9
𝜀𝑤0. (Remember that, w.l.o.g., we have excluded deletions in and between the SPTs

at level 3.) By construction, any deletion choice leaves Θ(𝑠2) edges out of level 2 and thus,
by eq. (2.26), Θ(𝑠2𝑑) = Ω(√𝑛𝑠 ln𝑛) vertices in SPTs in each of 𝑅𝑠 and 𝑅𝑡, for Ω(𝑛𝑠 ln𝑛)
potential middle edges. A middle edge is selected if its excess cost (in the exponential
model) is 𝑤′ = − ln(1 − 𝑤) ≤ 1

9
𝜀𝑤0, i.e., if 1 − 𝑤 ≥ exp(− 1

9
𝜀𝑤0), thus is rejected with

probability exp(− 1
9
𝜀𝑤0). There is no path only if every potential edge is rejected, which

happens w.p. ≤ exp(− 1
9
𝜀𝑤0 ⋅ 𝑛𝑠 ln𝑛) = exp(−Ω(𝑠2 ln𝑛)). Taking the union bound over all

adversarial choices, the probability than any choice leaves no paths is

2𝒪(𝑠2) exp(−Ω(𝑠2 ln𝑛)) = exp(−Ω(𝑠2 ln𝑛)). (2.36)

This is dominated by the failure probabilities exp(−Θ(𝑠)) for other steps.

37



Successive shortest paths in 𝐾𝑛 with random edge weights

2.3.11 Success for each 𝑘, and for all 𝑘
We have shown that, for any 𝑘 = 𝑜(√𝑛), subject to an absence of failures, we can generate
a robust structure 𝑅(𝑘) in which, after adversarial deletions, there remains an 𝑠–𝑡 path of
cost ≤ (1 + 𝜀)𝑤0(𝑘). (Remember that 𝑤0 and 𝑠 are simple functions of 𝑘, per eq. (2.11)
and eq. (2.12). Here we retain the argument 𝑘 we usually suppress.) There are two types
of failures possible. The first is that the graph fails Lemma 2.3.3’s conclusion that “cheap
paths are short”; this occursw.p.𝒪(𝑛−1.9). The second is that𝑅(𝑘) is not robust; this occurs
w.p. 𝒪(exp(−Ω(𝑠(𝑘)))).

Assume success in generating𝑅(𝑘). We claim that𝑃1, … , 𝑃𝑘+1 all have cost≤ (1+𝜀)𝑤0(𝑘)
(call this “cheap”). Suppose not. Then there is some 𝑖 ≤ 𝑘 for which 𝑃1, … , 𝑃𝑖 are cheap but
𝑃𝑖+1 is not. Our adversary’s budget allows it to delete 𝑃1, … , 𝑃𝑖, and by assumption of success
this leaves a cheap path 𝑃 in 𝑅(𝑘). Thus there is a cheap 𝑖 + 1st path in 𝐺, a contradiction.

It follows that for each 𝑘, 𝑋𝑘+1 ≤ (1 + 𝜀)𝑤0(𝑘) with probability

1 − 𝒪(𝑛−1.9) − 𝒪(exp(−Ω(𝑠(𝑘)))). (2.37)

A simple calculation shows that w.h.p. 𝑋𝑘+1 ≤ (1 + 𝜀)𝑤0(𝑘) simultaneously for all 𝑘 in
this range, proving the upper bound in eq. (2.3). By the union bound, the probability of
failure to build a robust structure for any 𝑘 is at most

∞
∑
𝑘=0

exp(−Ω(𝑠(𝑘))) ≤ ln𝑛 exp(−Ω(ln𝑛)) +
∞
∑

𝑘=ln𝑛
exp(−Ω(𝑘))

= exp(−Ω(ln𝑛)) = 𝑛−Ω(1). (2.38)

Including the probability of failure in applying Lemma 2.3.3, the total failure probability
is 𝒪(𝑛−1.9 + 𝑛−Ω(1)) = 𝑜(1).

2.3.12 Limitation to small 𝑘
We have established Theorem 2.1.1 up to any 𝑘 = 𝑜(√𝑛), and the construction of 𝑅(𝑘)
was tailored to such values. For levels using heavy edges, fanout is limited to 𝒪(𝑠). On
the other hand, the meet-in-the-middle argument requires that each side grow large, to
Ω(√𝑛/𝑠). Thus, for small 𝑘, a more-than-constant number of levels is needed. Summing
heavy edges over this many levels would exceed the target weight (1+ 𝜀)𝑤0, so light edges
are needed. The adversary may delete Θ(𝑠2) light edges, so the construction must contain
at least this many. The construction explicitly required each light edge to lead to a new

38



2.4 Edge order statistics

vertex, and we do not readily see how to do otherwise as long as we are using shortest-
path trees, thus intrinsically limiting 𝑠 (thus 𝑘) to 𝒪(√𝑛). For larger 𝑘, however, we can
obtain sufficient heavy-edge fanout in constant depth, permitting a simpler construction
described in Section 2.5.

2.4 Edge order statistics
In this section we establish results on order statistics needed in later sections. The 𝑘th
order statistic of a sample is its 𝑘th smallest value. Let {𝑊(𝑘)}𝑛−1𝑘=1 be the order statistics of
a sample of 𝑛− 1 i.i.d. random variables, variously uniform 𝑈(0, 1) or exponential Exp(1).
We choose 𝑛 − 1 rather than 𝑛 as the parameter both because many expressions are more
natural in this parametrisation, and because this way𝑊(𝑘) is the cost of the 𝑘th cheapest
edge incident to a fixed vertex 𝑣 ∈ 𝐾𝑛.

The following lemma is used in Section 2.6.3.

Lemma 2.4.1. Let 𝑙 = 𝑛−0.99. Consider the unit interval [0, 1] with 𝑛 points placed uni-
formly and independently at random. Then w.h.p. every interval of length at least 𝑙′ ≥ 𝑙
contains at least 0.99𝑙′𝑛 points.

Proof. Partition the unit interval into contiguous intervals 𝐼𝑖 each of length 𝐿 ≔ 𝑙/1000, us-
ing ⌊1/𝐿⌋ such intervals (possibly leaving a small interval near 1 not covered). Any interval
𝐼 of length 𝑙′ ≥ 𝑙 has at least a 998/1000 fraction of its length covered by intervals 𝐼𝑖 ⊂ 𝐼, and
we will show that w.h.p. every interval 𝐼𝑖 contains at least 0.999𝐿𝑛 points (that is, at least a
0.999 fraction of the expectation). If so, it follows that 𝐼 has at least 0.999⋅0.998𝑙′𝑛 ≥ 0.99𝑙′𝑛
points.

The distribution of the number of points in each interval 𝐼𝑖 of length 𝐿 follows the
binomial distribution Bi(𝑛, 𝐿). By Lemma 2.3.2,

ℙ (Bi(𝑛, 𝐿) ≤ 0.999𝐿𝑛) ≤ exp(−Ω(𝐿𝑛)),

where the sign in the Ω is taken as positive. The probability that any interval 𝐼𝑖 contains
less than 0.999 points is, by the union bound, at most,

⌊1/𝐿⌋ ⋅ exp(−Ω(𝐿𝑛)) = exp(−Ω(𝑛0.01)) = 𝑜(1) (2.39)

as desired.

The following lemma is used in eq. (2.73) and eq. (2.88). It shows that the order statis-
tics are simultaneously concentrated around their means.

39



Successive shortest paths in 𝐾𝑛 with random edge weights

Lemma 2.4.2. Let {𝑊(𝑘)}𝑛−1𝑘=1 be the order statistics of 𝑛−1 i.i.d. random variables, either all
uniform 𝑈(0, 1) or all exponential Exp(1). For any 𝜀 > 0 and 𝑎 = 𝑎(𝑛) = 𝜔(1), w.h.p.

1 − 𝜀 ≤
𝑊(𝑘)
𝔼𝑊(𝑘)

≤ 1 + 𝜀

simultaneously for all 𝑘 in the range 𝑎 ≤ 𝑘 ≤ 𝑛 − 1.

Proof. Without loss of generality, we may assume that 𝑎 ≤ 𝑛/10.
Exponential case. It is standard that, where𝑍𝑖 ∼ Exp(𝑖) are independent exponential

r.v.s, we may generate the𝑊(𝑘) as

𝑊(𝑘) =
𝑘
∑
𝑖=1

𝑍𝑛−𝑖. (2.40)

Using a superscripted 𝐸 to highlight the exponential model,𝑊(𝑘) has mean

𝜇𝑘 = 𝜇(𝐸)𝑘 ≔ 𝔼𝑊(𝑘) =
𝑘
∑
𝑖=1

1
𝑛 − 𝑖 = 𝐻(𝑛 − 1) − 𝐻(𝑛 − 𝑘 − 1) ∼ ln(𝑛) − ln(𝑛 − 𝑘); (2.41)

the change by 1 in the logarithms’ arguments avoids ln(0) when 𝑘 = 𝑛 − 1 and remains
asymptotically correct.

By eq. (2.32),

ℙ(|𝑊(𝑘) − 𝜇𝑘| ≥ 𝜀𝜇) ≤ 2 exp (−Ω((𝑛 − 𝑘)𝜇𝑘)) . (2.42)

By the union bound, it suffices to show that the sum over 𝑘 from 𝑎 to 𝑛 − 1 of the RHS
of eq. (2.42) is 𝑜(1). We treat the sum in two ranges. For 𝑘 ≤ 𝑛

2
, (𝑛 − 𝑘)𝜇𝑘 ≥

𝑛
2
⋅ 𝑘
𝑛
= 𝑘

2
.

Thus,

𝑛/2
∑
𝑘=𝑎

exp (−Ω((𝑛 − 𝑘)𝜇𝑘)) ≤
𝑛/2
∑
𝑘=𝑎

exp (−Ω(𝑘)) ≤ 𝒪(𝑎𝑒−Ω(𝑎)) → 0, (2.43)

40



2.4 Edge order statistics

since 𝑎 = 𝜔(1). For 𝑘 > 𝑛
2
, for brevity let ̄𝑘 = 𝑛 − 𝑘. Then 𝜇𝑘 ∼ ln𝑛 − ln( ̄𝑘) by eq. (2.41)

and

𝑛/2
∑
̄𝑘=1
exp (−Ω((𝑛 − 𝑘)𝜇𝑘)) =

𝑛/2
∑
̄𝑘=1
exp (− ̄𝑘Ω(ln𝑛 − ln( ̄𝑘))) =

𝑛/2
∑
̄𝑘=1
(
̄𝑘
𝑛)

Ω( ̄𝑘)

≤ (1𝑛)
Ω(1) 𝑛/2

∑
̄𝑘=1

̄𝑘Ω(1) (
̄𝑘
𝑛)

Ω( ̄𝑘−1)
= 𝑛−Ω(1) = 𝑜(1), (2.44)

where the explicit inequality factors out the ̄𝑘 = 1 term, from which, since ̄𝑘/𝑛 ≤ 1/2, the
later terms decrease geometrically. This concludes the exponential case.

Uniform case: Let 𝑈𝑖 ∼ 𝑈(0, 1) be i.i.d. uniform random variables and𝑊𝑖 ∼ Exp(1)
i.i.d. exponential random variables. Because the exponential distribution has CDF 𝐹(𝑥) =
1 − exp(−𝑥), we may couple the two sets of variables as 𝑈𝑖 = 𝐹(𝑊𝑖) or equivalently𝑊𝑖 =
𝑓(𝑈𝑖) with 𝑓(𝑥) = 𝐹−1(𝑥) = − ln(1 − 𝑥). Because 𝑓 is increasing, 𝑊(𝑘) = 𝑓(𝑈(𝑘)). Now
using superscript 𝑈 to distinguish the uniform model, the mean is well known to be

𝜇𝑘 = 𝜇(𝑈)
𝑘 ≔ 𝔼𝑈(𝑘) =

𝑘
𝑛 (2.45)

We want to show that with high probability, for all 𝑘 in the range 𝑎 ≤ 𝑘 ≤ 𝑛 − 1,

(1 − 𝜀)𝜇(𝑈)
𝑘 ≤ 𝑈(𝑘) ≤ (1 + 𝜀)𝜇(𝑈)

𝑘

or equivalently,
𝑓 ((1 − 𝜀)𝜇(𝑈)

𝑘 ) ≤ 𝑊(𝑘) ≤ 𝑓 ((1 + 𝜀)𝜇(𝑈)
𝑘 ) .

From the exponential case already proved, taking error bound 𝜀/2, we know that w.h.p.,
for all 𝑘,

(1 − 𝜀/2)𝜇(𝐸)𝑘 ≤ 𝑊(𝑘) ≤ (1 + 𝜀/2)𝜇(𝐸)𝑘 ,

so it suffices to show that, for all 𝑘 (deterministically),

𝑓 ((1 − 𝜀)𝜇(𝑈)
𝑘 ) ≤ (1 − 𝜀/2)𝜇(𝐸)𝑘 and 𝑓 ((1 + 𝜀)𝜇(𝑈)

𝑘 ) ≥ (1 + 𝜀/2)𝜇(𝐸)𝑘 .

This is so. Using eq. (2.45), eq. (2.41), and convexity of 𝑓,

𝑓 ((1 − 𝜀)𝜇(𝑈)
𝑘 ) = 𝑓((1 − 𝜀)𝑘/𝑛) ≤ (1 − 𝜀)𝑓(𝑘/𝑛) = (1 − 𝜀) ln ( 𝑛

𝑛 − 𝑘) ≤ (1 − 𝜀/2)𝜇(𝐸)𝑘 ;

𝑓 ((1 + 𝜀)𝜇(𝑈)
𝑘 ) = 𝑓((1 + 𝜀)𝑘/𝑛) ≥ (1 + 𝜀)𝑓(𝑘/𝑛) = (1 + 𝜀) ln ( 𝑛

𝑛 − 𝑘) ≥ (1 + 𝜀/2)𝜇(𝐸)𝑘 .

41



Successive shortest paths in 𝐾𝑛 with random edge weights

2.5 Upper bound for large 𝑘, sketch

2.5.1 Introduction
To address larger values of 𝑘we use a different construction, generating 𝑠–𝑡 paths of length
4. A straightforward extension of the previous argument to this construction would let us
get up to 𝑘 = 𝑛 − 𝑓(𝑛) for an arbitrarily slowly growing function 𝑓, but not to 𝑘 = 𝑛 − 1
because it requires 𝑘 + 1/𝜀2 edges incident on each of 𝑠 and 𝑡 (thus requires that 𝑘 + 1/𝜀2 ≤
𝑛 − 1).

Getting all the way to 𝑘 = 𝑛 − 1 requires a couple of additional ideas. Again, we will
introduce an adversary with a cost budget that with high probability exceeds the cost of
the first 𝑘 cheapest paths. First, we observe that much of the adversary’s cost budget must
be spent on edges incident to 𝑠 and 𝑡, leaving less to delete other edges, thus allowing a
smaller structure 𝑅 to be sufficiently robust. In particular, the 𝑘 cheapest paths from 𝑠 to
𝑡must use edges incident on 𝑠 of total weight at least∑𝑘

𝑖=1𝑊 𝑠
(𝑖) where

𝑊 𝑣
(𝑖) (2.46)

is the cost of the 𝑖th cheapest edge incident to 𝑣. (We may omit the superscript when it
is either generic or clear from context.) One technical detail is that, where 𝑅 includes the
𝑘 + 𝑟0 cheapest edges incident to 𝑠, we will control 𝑊(𝑘+𝑟0) − 𝑊(𝑘) directly, using results
on order statistics from Section 2.4, rather than through a high-probability upper bound
on𝑊(𝑘+𝑟0) and a high-probability lower bound on𝑊(𝑘). Finally, it is no longer adequate
to allow path costs to exceed their nominal values by an 𝜀 = Θ(1) factor, as such large
excesses would swell the adversary’s budget too quickly, so we more tightly control the
excess cost of each path 𝑃𝑘 as a function of 𝑘 (and 𝑛, implicitly).

The details later will be clearer if we sketch the argument now, with most details but
without the calculations. Wewill argue for 𝑘 from 𝑛4/10 to 𝑛−1. (Wemust start with some
𝑘 = 𝑜(𝑛1/2) since that is as far as the “small 𝑘” argument extended, andweneed 𝑘 = 𝜔(𝑛1/3)
since below this the new construction’s path costs would exceed the 2𝑘/𝑛 target.)

2.5.2 Structure 𝑅
Figure 2.2 illustrates the robust structure 𝑅 = 𝑅(𝑘) after adversarial deletion of root edges,
as discussed in itemSection 2.5.6 below. The construction is based onparameters 𝑟0 = 𝑟0(𝑘)

42



2.5 Upper bound for large 𝑘, sketch

s

V ′
s

M ′v

t

V ′
t

Fig. 2.2 The robust structure 𝑅 = 𝑅(𝑘) after adversarial deletion of 𝑘 edges on 𝑠, leaving 𝑟0
edges to some vertices 𝑉 ′

𝑠 ⊆ 𝑉𝑠, and likewise for 𝑡 and 𝑉 ′
𝑡 . The middle vertices are pruned

to𝑀′ = 𝑀⧵(𝑉 ′
𝑠 ∪𝑉 ′

𝑡 ), and edges from𝑀′ to𝑉 ′
𝑠 and𝑉 ′

𝑡 are in 𝑅 if they have weight between
𝜀𝑘 and 2𝜀𝑘. Here, edges from just one representative vertex 𝑣 ∈ 𝑀′ are illustrated.

and 𝜀𝑘 to be defined later. Start with 𝑅 consisting of just the vertices 𝑠 and 𝑡. Add to 𝑅 the
𝑘+𝑟0 edges incident on 𝑠 of lowest cost, and let 𝑉𝑠 be the set of opposite endpoints of these
edges. Do the same for 𝑡, generating vertex set 𝑉𝑡. Take𝑀 ≔ 𝑉(𝐺) ⧵ {𝑠, 𝑡} as a collection of
“middle vertices”.

Note that 𝑉𝑠, 𝑉𝑡, and𝑀 may well have vertices in common, but our analysis will use a
subgraph of 𝑅 where the relevant subsets of these three sets are disjoint, and it is easier to
understand the construction imagining them to be disjoint. Add to 𝑅 each edge 𝑒 in𝑀×𝑉𝑠
and 𝑀 × 𝑉𝑡 that is “heavy but not too heavy”, with cost𝑊(𝑒) ∈ (𝜀𝑘, 2𝜀𝑘). This concludes
the construction of the structure 𝑅.

2.5.3 Path weights
It is immediate that every 𝑠–𝑡 path in 𝑅 has cost at most

𝑊 𝑠
(𝑘+𝑟0) + 2𝜀𝑘 + 2𝜀𝑘 +𝑊 𝑡

(𝑘+𝑟0). (2.47)

43



Successive shortest paths in 𝐾𝑛 with random edge weights

Wewill show (in eq. (2.74) for uniform and eq. (2.110) for exponential) that, subject to the
non-occurrence of certain unlikely failure events, eq. (2.47) is at most

𝑊 𝑠
(𝑘+1) +𝑊 𝑡

(𝑘+1) + 7𝜀𝑘. (2.48)

We will show in Section 2.5.6 that, after deletion of the first 𝑘 paths, there remains an
𝑠–𝑡 path in 𝑅 (again subject to non-occurrence of unlikely failure events), whereupon it
follows that

𝑋𝑘+1 ≤ 𝑊 𝑠
(𝑘+1) +𝑊 𝑡

(𝑘+1) + 7𝜀𝑘. (2.49)

2.5.4 Adversary
Wedefine an adversarywho is “sufficiently strong” to delete the first 𝑘 paths. For 𝑘 ≤ 𝑛4/10,
taking 𝜀 = 0.1, eq. (2.37) implies that w.p.

1 − 𝒪(𝑛−1.9) − 𝒪(exp(−Ω(𝑛4/10))) = 1 − 𝒪(𝑛−1.9) = 1 − 𝑜(1), (2.50)

we have that

𝑋𝑘 ≤ 𝑋𝑛4/10 ≤ 3𝑛4/10/𝑛. (2.51)

For 𝑘 > 𝑛4/10, further assume the absence of the failure events alluded to just above, so
that eq. (2.49) holds. Then, hiding a sum of the ln𝑛/𝑛 terms of eq. (2.3) in the 𝑜( ) term
below,

𝑘
∑
𝑖=1

𝑋𝑖 =
𝑛4/10

∑
𝑖=1

𝑋𝑖 +
𝑘
∑

𝑖=𝑛4/10+1
𝑋𝑖

≤ 3(𝑛4/10)2

𝑛 +
𝑘
∑

𝑖=𝑛4/10+1
𝑋𝑖

≤ 3𝑛−2/10 +
𝑘
∑

𝑖=𝑛4/10+1
(𝑊 𝑠

(𝑖) +𝑊 𝑡
(𝑖) + 7𝜀𝑖−1)

=∶ 𝑈𝑘. (2.52)

Thus, the first 𝑘 paths’ edges have total weight at most 𝑈𝑘.
Furthermore, the first 𝑘 paths’ edges incident on 𝑠 and 𝑡 are all distinct except, possibly,

for the edge {𝑠, 𝑡}. Therefore, not counting edge 𝑠–𝑡 at all, the cost of these “incident” edges

44



2.5 Upper bound for large 𝑘, sketch

is at least

𝐼𝑘 ≔
𝑘−1
∑
𝑖=1

(𝑊 𝑠
(𝑖) +𝑊 𝑡

(𝑖)) . (2.53)

(In proving Claim 2.8.2 we will use a slightly different lower bound 𝐼𝑘 on the weight of the
incident edges.)

It follows that the first 𝑘 paths’ “middle edges” (edges other than the incident edges)
cost at most 𝑈𝑘 − 𝐼𝑘. We will explicitly define a budget 𝐵𝑘 satisfying

𝐵𝑘 ≥ 𝑈𝑘 − 𝐼𝑘. (2.54)

We will allow the adversary to delete any 𝑘 edges in 𝐺 incident on each of 𝑠 and 𝑡,
possibly including the edge 𝑠–𝑡 (enough to let it delete the incident edges of the first 𝑘
paths), and to delete any other edges in 𝐺 of total cost at most 𝐵𝑘 (enough to let it delete
the middle edges of the first 𝑘 paths). Thus, the adversary is sufficiently strong to delete
the first 𝑘 paths.

The adversary’s allowable deletions in 𝐺mean that also in 𝑅 it deletes at most 𝑘 edges
incident on each of 𝑠 and 𝑡, and middle edges of total cost at most 𝐵𝑘.

2.5.5 Budgets 𝐵𝑘
The budgets 𝐵𝑘 will be defined explicitly in the details. For the model with uniformly
distributed edge weights we will do so in two ranges of 𝑘, corresponding to Claims 2.6.1
and 2.6.2, and likewise in the model with exponentially distributed edge weights, corre-
sponding to Claims 2.8.1 and 2.8.2. For Claims 2.6.2 and 2.8.2 we will establish eq. (2.54)
directly.

For Claims 2.6.1 and 2.8.1 we will establish eq. (2.54) by the following reasoning; we
will only need to check eq. (2.55), eq. (2.56), and eq. (2.57) below. We will show that the
budgets satisfy

𝐵𝑘+1 ≥ 𝐵𝑘 + 8𝜀𝑘. (2.55)

(Roughly speaking, given 𝐵𝑘 wewill set 𝜀𝑘 as small as possible while keeping 𝑅(𝑘) robust to
the adversarywith budget𝐵𝑘. Then, wewill set𝐵𝑘+1 as small as possible, namely by taking
equality in eq. (2.55). Behind the scenes, we derive 𝐵𝑘 by solving the differential-equation
equivalent of eq. (2.55) satisfied with equality.)

45



Successive shortest paths in 𝐾𝑛 with random edge weights

We will show that eq. (2.54) is satisfied in the base case, by showing that

𝐵𝑘 ≥ 𝑈𝑘 for 𝑘 = 𝑛4/10. (2.56)

Then, eq. (2.54) is established for all 𝑘 by induction on 𝑘:

𝑈𝑘+1 − 𝐼𝑘+1 = (𝑈𝑘+1 − 𝑈𝑘) − (𝐼𝑘+1 − 𝐼𝑘) + (𝑈𝑘 − 𝐼𝑘)

which by eq. (2.52), eq. (2.53), and the inductive hypothesis eq. (2.54) is

≤ (𝑊 𝑠
(𝑘+1) +𝑊 𝑡

(𝑘+1) + 7𝜀𝑘) − (𝑊 𝑠
(𝑘) +𝑊 𝑡

(𝑘)) + 𝐵𝑘
≤ 𝐵𝑘 + 8𝜀𝑘 (see below) (2.57)
≤ 𝐵𝑘+1 (by eq. (2.55)). (2.58)

To justify eq. (2.57) it suffices to show that𝑊(𝑘+1) −𝑊(𝑘) is at most 0.1𝜀𝑘, and we do so in
eq. (2.75) for the uniform case and in eq. (2.112) for the exponential case. In both cases,
𝑟0 = 𝜔(1), and 𝑊(𝑘+𝑟0) − 𝑊(𝑘+1) = 𝒪(𝜀𝑘) (as used in going from eq. (2.47) to eq. (2.48)),
making this conclusion unsurprising.1

2.5.6 Robustness of 𝑅
We wish to make 𝑅 robust against the adversary, so that after the deletions just described,
𝑅 should retain an 𝑠–𝑡 path w.h.p., so that eq. (2.49) holds and 𝑋𝑘+1 is small. It will suffice
to show that, to delete all 𝑠–𝑡 paths in 𝑅,

after deletion of 𝑘 edges incident on each of 𝑠 and 𝑡, an adversary would
still have to delete middle edges of total cost more than 𝐵𝑘,

(2.59)

and thus it is powerless to do so.
Obtaining this robustness requires choosing 𝜀𝑘 sufficiently large in the construction.

With reference to Fig. 2.2, on deletion of any 𝑘 edges on each of 𝑠 and 𝑡, the level-1 sets
are in effect pruned to 𝑉 ′

𝑠 and 𝑉 ′
𝑡 , each of cardinality 𝑟0. Should 𝑉 ′

𝑠 and 𝑉 ′
𝑡 have vertices in

common, or if 𝑡 ∈ 𝑉 ′
𝑠 or 𝑠 ∈ 𝑉 ′

𝑡 , then there is an 𝑠–𝑡 path. So, assume that 𝑉 ′
𝑠 and 𝑉 ′

𝑡 are
disjoint and do not contain 𝑠 nor 𝑡. Consider only middle vertices𝑀′ ⊆ 𝑀 not appearing

1In proving Claims 2.6.2 and 2.8.2 we will set 𝑟0 = 1, so this reasoning does not apply. Indeed, in
Claim 2.8.2 (the large-𝑘 exponential case) eq. (2.57) would be false —𝑊(𝑘+1) −𝑊(𝑘) can be much larger
than 𝜀𝑘 — but (to reiterate) it is not needed there, as we establish eq. (2.54) directly.

46



2.5 Upper bound for large 𝑘, sketch

in 𝑉 ′
𝑠 nor 𝑉 ′

𝑡 , i.e.,𝑀′ = 𝑀⧵{𝑉 ′
𝑠 ∪𝑉 ′

𝑡 }. We will have 𝑟0 = 𝑜(𝑛), so |𝑀′| = 𝑛−2−2𝑟0 > 0.99𝑛.
Note that edges in𝑀′ × 𝑉 ′

𝑠 ,𝑀′ × 𝑉 ′
𝑡 , {𝑠} × 𝑉 ′

𝑠 , and {𝑡} × 𝑉 ′
𝑡 are all distinct.

Consider a choice of the 𝑘 deletions on 𝑠 and 𝑡 to be fixed in advance. (We will eventu-
ally take a union bound over all such choices.) Theweights of edges in𝑀′×𝑉 ′

𝑠 and𝑀′×𝑉 ′
𝑡

have not even been observed yet, so each has (unconditioned) 𝑈(0, 1) distribution, all are
independent (by distinctness of the edges), and thus each such edge is included in 𝑅 with
probability 𝜀𝑘, independently.

A vertex 𝑣 ∈ 𝑀′ is connected to 𝑉 ′
𝑠 by

𝑍𝑠𝑣 ∼ Bi(𝑟0, 𝜀𝑘) (2.60)

edges, with mean

𝜆 ≔ 𝔼𝑍𝑠𝑣 = 𝑟0𝜀𝑘. (2.61)

Define 𝑍𝑡𝑣 symmetrically, and note that 𝑍𝑠𝑣 and 𝑍𝑡𝑣 are i.i.d. Intuitively, if 𝜆 is small, 𝑍𝑠𝑣 is
usually 0, is 1 with probability about 𝜆, and rarely any larger value. So, the probability that
𝑣 is connected to both 𝑉 ′

𝑠 and 𝑉 ′
𝑡 is about 𝜆2, in which case to destroy 𝑠–𝑡 paths through 𝑣

the adversary must delete an edge of cost at least 𝜀𝑘. So, to delete all 𝑠–𝑡 paths, over the
nearly 𝑛 vertices in𝑀′ the adversary would have to delete edges of expected total weight
at least

𝜀𝑘 𝑛 𝜆2. (2.62)

We will choose 𝜀𝑘 so that

𝜀𝑘 𝑛 𝜆2 > 𝐵𝑘, (2.63)

which hopefully will ensure (see Remark 2.5.1) that a path must remain (i.e., that 𝑅 is
robust).

Let us give a back-of-the-envelope calculation. In the uniform casewe expect𝑊(𝑘) to be
about 𝑘/𝑛, so letting 𝑟0 = 𝜀𝑘𝑛means that𝑊(𝑘+𝑟0)−𝑊(𝑘)will be about 𝜀𝑘, justifying eq. (2.48).
Then eq. (2.61) gives 𝜆 = 𝜀2𝑘𝑛, so eq. (2.63) indicates that we need to take 𝜀5𝑘𝑛3 > 𝐵𝑘. As
noted after eq. (2.55), roughly speaking, we obtain 𝐵𝑘 and 𝜀𝑘 by solving this and eq. (2.55)
with equality as a system of differential equations.

Remark 2.5.1. This intuitive argument proves to be essentially sound, but tomake it rigorous
will take somework. Chiefly,ℙ(𝑍𝑠𝑣 > 0) is of course not exactly𝔼𝑍𝑠𝑣 = 𝜆 even when 𝜆 is small,

47



Successive shortest paths in 𝐾𝑛 with random edge weights

and we will also have to consider the case when 𝜆 is large. Also, where the intuition is based
on expectations, we must calculate the probability of the “failure” event that all paths can
be deleted at a cost less than 𝐵𝑘. Finally, we must take the union bound of this failure event
over all choices of root edges at 𝑠 and 𝑡 (but, as in the small-𝑘 case, this turns out to change
nothing).

2.6 Upper bound for large 𝑘, uniformmodel
In this section we fill in the details of the steps from Section 2.5 and show that they con-
clude the proof of the upper bound in Theorem 2.1.1. Specifically, to control the path
weights (these emphasised keywords match section titles) we must show that eq. (2.47) is
at most eq. (2.48). For the adversary we need only show eq. (2.54); as noted earlier, for
large 𝑘 (Claim 2.6.2) we will do this directly, while for medium 𝑘 (Claim 2.6.1) we will
argue that the budgets 𝐵𝑘 satisfy eq. (2.56) and eq. (2.57). And for robustnesswe will prove
that the probability of failure is small (i.e., it is unlikely that the adversary can destroy all
𝑠–𝑡 paths in 𝑅(𝑘)).

2.6.1 Claims, and implications for Theorem 2.1.1
We first state the two precise claims we make for large 𝑘, in two ranges. We use symbolic
constants 𝐶𝐵, 𝐶𝜀, 𝐶′

𝐵, and 𝐶′
𝜀 in the claims and the proofs, as it makes the calculations

clearer. Whenever we encounter an inequality that the constants must satisfy, we will
highlight with a parenthetical “check” that they do so.

Claim 2.6.1. For 𝑘 ∈ [𝑛4/10, 𝑛 − 14√𝑛 ], let 𝐵𝑘 = (𝐶𝐵𝑘𝑛−3/5 + (2𝑛−1/5)4/5)
5/4

and 𝜀𝑘 =
𝐶𝜀𝑛−3/5𝐵𝑘1/5, with 𝐶𝐵 = 32 and 𝐶𝜀 = 5. Then, asymptotically almost surely, simultaneously
for all 𝑘 in this range,

𝑋𝑘+1 ≤ 𝑊 𝑠
(𝑘+1) +𝑊 𝑡

(𝑘+1) + 8𝜀𝑘. (2.64)

Remark: In proving Claim 2.6.1 we will set

𝑟0 ≔ 𝜀𝑘𝑛. (2.65)

48



2.6 Upper bound for large 𝑘, uniformmodel

From the definitions of 𝐵𝑘 and 𝜀𝑘 in Claim 2.6.1, both are increasing in 𝑘, andwewill make
frequent use of the following inequalities. For 𝑛 sufficiently large,

𝐵𝑘 = Θ (𝑘5/4𝑛−3/4 + 𝑛−1/5) (2.66)
𝐵𝑘 ≤ 𝐵𝑛 ≤ 1.01𝐶 5/4

𝐵 𝑛1/2 (2.67)
𝐵𝑘 ≥ 𝐵𝑛4/10 ≥ 2𝑛−1/5 (2.68)

𝜀𝑘 = Θ (𝑘1/4𝑛−3/4 + 𝑛−16/25) (2.69)
𝜀𝑘 ≤ 𝜀𝑛 ≤ 1.01𝐶𝜀𝐶 1/4

𝐵 𝑛−1/2 (2.70)
𝜀𝑘 ≥ 𝜀𝑛4/10 ≥ 1.14𝐶𝜀𝑛−16/25. (2.71)

Claim 2.6.2. For 𝑘 ∈ (𝑛 − 14√𝑛, 𝑛 − 2], let

𝐵𝑘 = 𝐶′
𝐵√𝑛 and 𝜀𝑘 = 𝐶′

𝜀𝑛−1/6 (2.72)

with 𝐶′
𝐵 = 78 and 𝐶′

𝜀 = 5. Then, asymptotically almost surely, simultaneously for all 𝑘 in
this range,

𝑋𝑘+1 ≤ 𝑊 𝑠
(𝑘+1) +𝑊 𝑡

(𝑘+1) + 8𝜀𝑘.
Remark: In proving Claim 2.6.2 we will set 𝑟0 ≔ 1. Note that here 𝐵𝑘 and 𝜀𝑘 are con-
stants independent of 𝑘, but we retain the subscript for consistency with the notation of
Section 2.5.1.

We will prove the two claims shortly.

Proof of the upper bound of eq. (2.3) in Theorem 2.1.1. Given 𝜀 > 0 from Theorem 2.1.1,
apply Lemma 2.4.2 to the order statistics𝑊 𝑠

(𝑘) and𝑊 𝑡
(𝑘) with 𝜀 in the lemma as our 𝜀/2 and

𝑎 = 𝑛4/10. Then by Claim 2.6.1 w.h.p., simultaneously for all 𝑘 ∈ [𝑛4/10 + 1, 𝑛 − 14√𝑛],

𝑋𝑘 ≤ 𝑊 𝑠
(𝑘) +𝑊 𝑡

(𝑘) + 8𝜀𝑘−1 ≤ (1 + 𝜀/2)2𝑘/𝑛 + 8𝜀𝑘−1 ≤ (1 + 𝜀)(2𝑘/𝑛 + ln𝑛/𝑛); (2.73)

the key point is that 𝜀𝑘−1 ≤ 𝜀𝑘 = 𝑜(𝑘/𝑛), which follows from 𝑒𝑞. (2.69). Specifically, by
eq. (2.69), 𝜀𝑘/(𝑘/𝑛) = 𝒪(𝑘−3/4𝑛1/4 + 𝑘−1𝑛9/25), which by𝑘 ≥ 𝑛4/10 is𝒪(𝑛−0.3𝑛0.25 + 𝑛−4/10𝑛0.36) =
𝑜(1).

Likewise, by Claim 2.6.2, inequality eq. (2.73) holds w.h.p. simultaneously for all 𝑘 ∈
[𝑛 − 14√𝑛, 𝑛 − 2]. Again, we need only show that 𝜀𝑘 = 𝑜(𝑘/𝑛), which holds because here
𝑘/𝑛 = Θ(1) while by definition 𝜀𝑘 = 𝑜(1).

We now prove the two claims, by filling in the details for Sections 2.5.2 and 2.5.6.

2.6.2 Structure 𝑅
With reference to Section 2.5.2, all that we need to confirm is that 𝑘 + 𝑟0 ≤ 𝑛 − 1. For
Claim 2.6.1, by hypothesis 𝑘 ≤ 𝑛 − 14√𝑛, and provided that 1.01𝐶𝜀𝐶 1/4

𝐵 ≤ 13 (check),

49



Successive shortest paths in 𝐾𝑛 with random edge weights

by eq. (2.70) 𝜀𝑘 ≤ 13𝑛−1/2, whereupon 𝑟0 = 𝜀𝑘𝑛 ≤ 13√𝑛. For Claim 2.6.2, with 𝑟0 = 1,
𝑘 + 𝑟0 ≤ 𝑛 − 1 is immediate.

2.6.3 Path weights
With reference to Section 2.5.3, we establish that the bound eq. (2.48) holds w.h.p. simulta-
neously for all 𝑘 ≥ 𝑛4/10. With𝑊(𝑘) representing the cost of the 𝑘th cheapest edge incident
on some fixed vertex (which we will take to be 𝑠 and then 𝑡 in turn), it suffices to show that

𝑊(𝑘+𝑟0) ≤ 𝑊(𝑘+1) + 1.1𝜀𝑘 (2.74)

holds with high probability for all 𝑘 ≥ 𝑛4/10.
For Claim 2.6.2, with 𝑟0 = 1, eq. (2.74) is immediate. For Claim 2.6.1, with 𝑟0 = 𝜀𝑘𝑛,

generate the variables 𝑊(𝑘) by placing 𝑛 − 1 points uniformly at random on the unit in-
terval 𝐼, associating 𝑊(𝑘) with the 𝑘th smallest point. It suffices to show that, w.h.p.,
each interval (𝑊(𝑘+1),𝑊(𝑘+1) + 1.1𝜀𝑘) contains at least 𝑟0 points. For all 𝑘 ∈ [𝑛4/10, 𝑛 −
14√𝑛 − 1 ], Claim 2.6.1 has 𝜀𝑘 ≥ 𝑛−0.99 by eq. (2.71), so Lemma 2.4.1 shows that w.p.
1 − exp(−Ω(𝑛0.01)), every interval of length ≥ 1.1𝜀𝑘 in [0, 1] contains at least 𝑟0 ≝ 𝜀𝑘𝑛
points, and in particular this holds for all the intervals (𝑊(𝑘+1),𝑊(𝑘+1) + 1.1𝜀𝑘).

We assume henceforth that the graph 𝐺 is “good” in the sense that eq. (2.74) holds for
all 𝑘 ≥ 𝑛4/10 for vertices 𝑠 and 𝑡, and that for all 𝑘 ≤ 𝑛4/10 we have the upper bounds on
𝑋𝑘 from eq. (2.3), as proved to hold w.h.p. in Section 2.3.

2.6.4 Adversary
With reference to Section 2.5.4, we need only verify eq. (2.54), and this will be done in the
next subsection.

2.6.5 Budgets 𝐵𝑘
With reference to Section 2.5.5, we first establish eq. (2.57). This follows from

𝑊 𝑠
(𝑘+1) −𝑊 𝑠

(𝑘) ≤ 0.1𝜀𝑘. (2.75)

The reasoning for this is the same as for eq. (2.74): each interval of length 0.1𝜀𝑘 contains
at least one point. The parameters are trivial to check.

Next, we show that the parameters of Claim 2.6.1 satisfy eq. (2.54), for which as argued
in Section 2.5.5 it suffices to show that they satisfy eq. (2.55) and eq. (2.56). We start with

50



2.6 Upper bound for large 𝑘, uniformmodel

eq. (2.56), the base case. Here 𝑘 = 𝑛4/10, 𝐵𝑘 ≥ 3𝑛−2/10 from eq. (2.68), and 𝑈𝑘 = 3𝑛−2/10
from eq. (2.52), establishing eq. (2.56).

To establish eq. (2.55), first note that 𝜕
𝜕𝑘
𝐵𝑘 =

5
4
𝐶𝐵𝐵𝑘1/5𝑛−3/5 is an increasing function.

Then,
𝐵𝑘+1 − 𝐵𝑘 ≥

𝜕
𝜕𝑘𝐵𝑘 =

5
4𝐶𝐵𝐵𝑘

1/5𝑛−3/5 = 5
4
𝐶𝐵
𝐶𝜀
𝜀𝑘 ≥ 8𝜀𝑘,

since 𝐶𝐵 ≥
8⋅4
5
𝐶𝜀 (check).

We now establish eq. (2.54) for the parameters of Claim 2.6.2. With 𝑘⋆ = ⌊𝑛 − 14√𝑛⌋,
the point where Claim 2.6.1 ends and just before Claim 2.6.2 begins, the previous case
showed that 𝐵𝑘⋆ ≥ 𝑈𝑘⋆ − 𝐼𝑘⋆ , and by eq. (2.67) 𝐵𝑘⋆ ≤ 77√𝑛. Then, for 𝑘 from 𝑘⋆ + 1 to
𝑛 − 2,

𝑈𝑘 − 𝐼𝑘 = (𝑈𝑘⋆ − 𝐼𝑘⋆) + [(𝑈𝑘 − 𝑈𝑘⋆) − (𝐼𝑘 − 𝐼𝑘⋆)]

≤ 𝐵𝑘⋆ + [
𝑘
∑

𝑖=𝑘⋆+1
(𝑊 𝑠

(𝑖) +𝑊 𝑡
(𝑖) + 7𝜀𝑖−1) −

𝑘−1
∑
𝑖=𝑘⋆

(𝑊 𝑠
(𝑖) +𝑊 𝑡

(𝑖))] (see eq. (2.52) and eq. (2.53))

≤ 𝐵𝑘⋆ +
𝑛−2
∑

𝑖=𝑘⋆+1
7𝜀𝑖−1 + (𝑊 𝑠

(𝑘) +𝑊 𝑡
(𝑘) −𝑊 𝑠

(𝑘⋆) −𝑊 𝑡
(𝑘⋆))

≤ 77√𝑛 + (14√𝑛) ⋅ 7𝐶′
𝜀𝑛−1/6 + 2 (see eq. (2.72))

≤ 78√𝑛
≤ 𝐵𝑘 (see eq. (2.72)), (2.76)

using that 𝐶′
𝐵 ≥ 78 (check).

2.6.6 Minimum of two binomial variables
Before addressing robustness of the structure 𝑅, we require a lemma (Lemma 2.6.4) on the
minimum 𝑍 of two i.i.d. binomial Bi(𝑛, 𝑝) random variables. There is a genuine difference
in the cases when the common mean 𝜆 = 𝑛𝑝 is large or small: if 𝜆 is large then 𝑍 is likely
to be close to 𝜆, making 𝔼𝑍 = Θ(𝜆); if 𝜆 is small then 𝑍 will most often be 0, occasionally
1 (with probability about 𝜆2), and rarely anything larger, making 𝔼𝑍 = Θ(𝜆2). The lemma
relies on the following property of the median of a binomial random variable. (A weaker
form of eq. (2.77) and thus of Lemma 2.6.4 can be obtained from Lemma 2.3.2 in lieu of
using the median.)

Theorem2.6.3 (Hamza [Ham95, Theorem 2]). Abinomial random variable𝑋 hasmedian
satisfying |Med(𝑋) − 𝔼𝑋| ≤ ln 2.

51



Successive shortest paths in 𝐾𝑛 with random edge weights

In this discrete setting Med(𝑋) is not unique: it can be any value 𝑚 for which ℙ(𝑋 ≤
𝑚) ≥ 1/2 and ℙ(𝑋 ≥ 𝑚) ≥ 1/2. [Ham95] defines it uniquely as the smallest integer
𝑚 such that ℙ(𝑋 ≤ 𝑚) > 1/2; as desired, this gives ℙ(𝑋 ≥ Med(𝑋)) = 1 − ℙ(𝑋 ≤
Med(𝑋) − 1) ≥ 1 − 1/2 = 1/2. (For other results on the binomial median see Kaas and
Buhrman [KB80], in particular, Corollary 1. Stronger results for the Poisson distribution
are given by Choi [Cho94], proving a conjecture of Chen and Rubin, and by Adell and
Jodrá [AJ05].)

Lemma 2.6.4. Let 𝑍1, 𝑍2 be i.i.d. Bi(𝑛, 𝑝) random variables, 𝑍 ≔ min(𝑍1, 𝑍2) and 𝜆 ≔
𝔼𝑍1 = 𝑛𝑝.

1. If 𝜆 ≥ 2, then

ℙ(𝑍 ≥ 0.65𝜆) > 1/4. (2.77)

2. If 𝜆 ≤ 2, then

ℙ(𝑍 ≥ 1) > 0.18𝜆2. (2.78)

Proof. In the first case,

Med(𝑍1) ≥ 𝜆 − ln 2 = 𝜆 − ln 2
𝜆 𝜆 ≥ 2 − ln 2

2 𝜆 ≥ 0.65𝜆,

so ℙ (𝑍1 ≥ 0.65𝜆) ≥ ℙ (𝑍1 ≥ Med(𝑍1)) ≥ 1/2. The same holds of course for 𝑍2, and the
result follows by independence.

In the second case we again use independence, and here

ℙ (𝑍1 ≥ 1) = 1 − (1 − 𝑝)𝑛 ≥ 1 − exp(−𝜆) = 1 − exp(−𝜆)
𝜆 ⋅ 𝜆 ≥ 0.43𝜆.

The last inequality comes from minimising 1−exp(−𝑥)
𝑥

over 0 ≤ 𝑥 ≤ 2; the function is
decreasing so the minimum is at 𝑥 = 2.

2.6.7 Robustness in Claim 2.6.1
With reference to Section 2.5.6, let us complete the robustness argument for Claim 2.6.1,
showing that eq. (2.59) holds with high probability. Here we have taken 𝑟0 = 𝜀𝑘𝑛, so that
the number of edges from a middle vertex to 𝑉 ′

𝑆 (see eq. (2.60)) is 𝑍𝑠𝑣 ∼ Bi(𝜀𝑘𝑛, 𝜀𝑘), with
mean 𝜆 = 𝑟0𝜀𝑘 = 𝜀2𝑘𝑛 (see eq. (2.61)).

52



2.6 Upper bound for large 𝑘, uniformmodel

Recall that if 𝜆 is small we expect (see eq. (2.62)) that to destroy all paths the adversary
will have to delete edges of total weight at least 𝜀𝑘 𝑛 𝜆2 = 𝜀5𝑘𝑛3, which will exceed 𝐵𝑘. And,
if 𝜆 is large, then each 𝑍𝑣 will have expectation close to 𝜆 = 𝜀2𝑘𝑛, for a total cost 𝜀𝑘𝑛 times
larger, namely 𝜀3𝑘𝑛2, and again this exceeds 𝐵𝑘. We now replace these rough calculations
with detailed probabilistic ones, applying Lemma 2.6.4 to 𝑍𝑣 in the two cases of 𝜆 small
and large.

For the adversary to delete all 𝑠–𝑡 paths via 𝑣, he must delete at least

𝑍𝑣 ≔ min(𝑍𝑠𝑣, 𝑍𝑡𝑣)

edges, and to destroy all paths he must delete at least

𝑁 ≔ ∑
𝑣∈𝑀′

𝑍𝑣

edges. As described in Section 2.5.6, we imagine a fixed deletion of 𝑘 edges on each of 𝑠
and 𝑡 giving neighbour sets 𝑉 ′

𝑠 and 𝑉 ′
𝑡 and a set𝑀′ of middle vertices; we will eventually

take a union bound over all such choices.

If 𝜆 ≥ 2, then by Lemma 2.6.4, for each 𝑣 ∈ 𝑀′, ℙ(𝑍𝑠𝑣 ≥ 0.65𝜆) ≥ 1/4. Thus, 𝑁 stochasti-
cally dominates 0.65𝜆 ⋅Bi(0.99𝑛, 1/4), with expectation > 0.1608𝜆𝑛. We shall consider it a
failure if𝑁 ≤ 0.16𝜆𝑛. Assuming success, since each edge costs at least 𝜀𝑘 to delete, it costs
at least 0.16𝜀𝑘𝜆𝑛 = 0.16𝜀3𝑘𝑛2 to delete them all. This exceeds 𝐵𝑘:

0.16 ⋅ 𝜀3𝑘𝑛2
𝐵𝑘

= 0.16 ⋅ 𝐶3
𝜀 𝑛−9/5𝐵−2/5𝑘 𝑛2 (by definition of 𝜀𝑘)

≥ 0.15 ⋅ 𝐶3
𝜀𝐶−1/2

𝐵 𝑛1/5𝑛−1/5 (by eq. (2.67))
> 1,

using that 0.15 ⋅ 𝐶3
𝜀𝐶−1/2

𝐵 > 1 (check).
Failure means that 𝑁/(0.65𝜆) ∼ Bi(0.99𝑛, 1/4) ≤ (0.16/0.65)𝑛. Noting that 0.99 ⋅ 1/4 >

0.16/0.65, by Lemma 2.3.2, the probability of failure is exp(−Ω(𝑛)). By the union bound,
the total of the failure probabilities, over all rounds (values of 𝑘) and all adversary choices

53



Successive shortest paths in 𝐾𝑛 with random edge weights

of the 𝑘 root edges at 𝑠 and 𝑡, is small:

∑
𝑘
(𝑘 + 𝑟0

𝑟0
)
2

⋅ exp(−Ω(𝑛)) (2.79)

≤ ∑
𝑘
(𝑛𝑟0)2 exp(−Ω(𝑛))

= ∑
𝑘
exp (2𝜀𝑘𝑛 ln𝑛 − Ω(𝑛)) (by 𝑟0 = 𝜀𝑘𝑛)

≤ 𝑛 exp(−Ω(𝑛)) (using 𝜀𝑘𝑛 = 𝒪(𝑛1/2) from eq. (2.70))
= 𝑜(1).

If 𝜆 < 2, then by Lemma 2.6.4 𝑁 stochastically dominates Bi(0.99𝑛, 0.18𝜆2), with expecta-
tion > 0.175𝜆2𝑛. We shall consider it a failure if 𝑁 ≤ 0.17𝜆2𝑛 = 0.17𝜀4𝑘𝑛3. Each edge costs
at least 𝜀𝑘 to delete. Assuming success, it thus costs at least 0.17𝜀5𝑘𝑛3 to delete them all,
which exceeds 𝐵𝑘:

0.17𝜀5𝑘𝑛3
𝐵𝑘

= 0.17𝐶5
𝜀 (by definition of 𝜀𝑘)

> 1,

using that 0.17𝐶5
𝜀 > 1 (check).

By Lemma 2.3.2, the probability of failure is

ℙ (𝑁 ≤ 0.17𝜀4𝑘𝑛3) = exp(−Ω(𝜀4𝑘𝑛3)). (2.80)

Over all rounds (values of 𝑘) and adversary choices of edges incident to 𝑠 and 𝑡, the total
failure probability is at most

∑
𝑘
(𝑘 + 𝑟0

𝑟0
)
2

⋅ ℙ (𝑁 < 0.17𝜀4𝑘𝑛2)

≤ ∑
𝑘
exp (2𝜀𝑘𝑛 ln𝑛 − exp(−Ω(𝜀4𝑘𝑛3)))

≤ 𝑛 exp(−Ω(𝜀4𝑘𝑛3)),

54



2.6 Upper bound for large 𝑘, uniformmodel

because 𝜀𝑘𝑛 ln𝑛 is dominated by 𝜀4𝑘𝑛3: the latter is larger by a factor 𝜀3𝑘𝑛2/ ln𝑛, which
by eq. (2.71) is Ω(𝑛−48/25𝑛2/ ln𝑛) = Ω(𝑛2/25/ ln𝑛) = 𝜔(1). Continuing, this is

≤ 𝑛 exp(−Ω(𝑛11/25)) (invoking eq. (2.71) again)
= 𝑜(1). (2.81)

2.6.8 Robustness in Claim 2.6.2
Again, our aim is to establish robustness of 𝑅 by showing that eq. (2.59) holds with high
probability, and the argument is similar to but simpler than that of Section 2.6.7.

Since 𝑟0 = 1, both 𝑉 ′
𝑠 and 𝑉 ′

𝑡 have size 1. For a vertex 𝑣 ∈ 𝑀′, let 𝑍𝑣 be the number of
paths from 𝑉 ′

𝑠 to 𝑉 ′
𝑡 via 𝑣. There is only one such possible path, hence

𝑍𝑣 ∼ Bernoulli (𝜀2𝑘) .

To destroy all 𝑠–𝑡 paths the adversary must delete at least

𝑁 ≔ ∑
𝑣∈𝑀′

𝑍𝑣

edges. 𝑁 stochastically dominates Bi(0.99𝑛, 𝜀2𝑘), which has expectation 0.99𝜀2𝑘𝑛. We de-
clare the event 𝑁 ≤ 0.98𝜀2𝑘𝑛 a failure. Assuming success, destroying all 𝑠–𝑡 paths would
cost at least 𝜀𝑘𝑁 ≥ 0.98𝜀3𝑘𝑛. This exceeds 𝐵𝑘, since

0.98𝜀3𝑘𝑛
𝐵𝑘

= 0.98𝐶′
𝜀
3

𝐶′
𝐵

,

and 0.98𝐶′
𝜀
3 > 𝐶′

𝐵 (check).
The probability of failure is

ℙ (𝑁 ≤ 0.98𝜀2𝑘𝑛) = exp(−Ω(𝜀2𝑘𝑛)) = exp(−Ω(𝑛2/3)). (2.82)

55



Successive shortest paths in 𝐾𝑛 with random edge weights

Over all rounds and adversary choices, using that (𝑘+𝑟0
𝑟0

) = (𝑘+1
1
) ≤ 𝑛, the total failure

probability is at most

∑
𝑘
(𝑘 + 𝑟0

𝑟0
)
2

⋅ ℙ(𝑁 ≤ 0.98𝜀2𝑛)

≤ (14√𝑛) 𝑛2 exp(−Ω(𝑛2/3)) (by eq. (2.82)) (2.83)
= 𝑜(1).

2.7 Lower bound
In this section, we establish the lower bound in eq. (2.3) of Theorem 2.1.1. Section 2.7.1
establishes the lower bound on 𝑋𝑘 directly for 𝑘 ≤ √ln𝑛. Values 𝑘 ≥ √ln𝑛 are treated
in the subsequent parts. In Section 2.7.2, Lemma 2.7.1 establishes a lower bound on the
running totals 𝑆𝑘,

𝑆𝑘 ≔
𝑘
∑
𝑖=1

𝑋𝑖. (2.84)

In Section 2.7.3, Lemma 2.7.2 obtains a lower bound on 𝑋𝑘 using Lemma 2.7.1’s lower
bound on 𝑆𝑘, the previously established upper bound on 𝑋𝑘 from Theorem 2.1.1, and the
monotonicity of 𝑋𝑘.

2.7.1 Lower bound for small 𝑘
We begin with 𝑘 ≤ √ln𝑛. For any fixed 𝜀 > 0, we know from [Jan99] that w.h.p.

𝑋1 > (1 − 𝜀/2) ln𝑛𝑛 . (2.85)

Assuming that eq. (2.85) holds, it follows immediately, and deterministically, that for all
𝑘 ≤ √ln𝑛,

𝑋𝑘 ≥ 𝑋1 ≥ (1 − 𝜀/2) ln𝑛𝑛 ≥ (1 − 𝜀)2𝑘 + ln𝑛
𝑛 . (2.86)

The first inequality holds because the sequence 𝑋𝑘 is monotone increasing, the next by
assumption on 𝑋1, the next by 𝑘 = 𝑜(ln𝑛).

56



2.7 Lower bound

2.7.2 Lower bound on the running totals
Lemma 2.7.1. For any 𝜀 > 0, w.h.p., simultaneously for every 𝑘 ≤ 𝑛 − 1,

𝑆𝑘 ≥ (1 − 𝜀)
𝑘
∑
𝑖=1

(2𝑖 + ln𝑛
𝑛 ) . (2.87)

Proof. Write𝑊 𝑠
(𝑖) and𝑊 𝑡

(𝑖) for the order statistics of edge weights out of 𝑠 and 𝑡, respectively.
By Lemma 2.4.2, w.h.p.,

𝑊 𝑠
(𝑘),𝑊 𝑡

(𝑘) ∈ [(1 − 𝜀/2) 𝑘𝑛, (1 + 𝜀/2) 𝑘𝑛] for all 𝑘 ≥ 3√ln𝑛, (2.88)

and we will assume throughout the proof that eq. (2.88) holds.
We prove the assertion in two ranges of 𝑘.

For ln11/10 𝑛 ≤ 𝑘 ≤ 𝑛 − 1, the 𝑘 paths must use at least 𝑘 − 1 edges on each of 𝑠 and 𝑡, all
distinct (𝑘 edges each, ignoring the edge {𝑠, 𝑡} if it is used). Then, using eq. (2.88), we get
that w.h.p., for all 𝑘 in the range,

𝑆𝑘 ≥
𝑘−1
∑
𝑖=1

(𝑊 𝑠
(𝑖) +𝑊 𝑡

(𝑖)) ≥
𝑘−1
∑

𝑖=3√ln𝑛
(1 − 𝜀/2)2𝑖𝑛

= (1 − 𝜀/2) (
𝑘
∑
𝑖=1

2𝑖 + ln𝑛
𝑛 −

𝑘
∑
𝑖=1

ln𝑛
𝑛 −

3√ln𝑛−1
∑
𝑖=1

2𝑖
𝑛 − 2𝑘

𝑛 ) (2.89)

≥ (1 − 𝑜(1))(1 − 𝜀/2)
𝑘
∑
𝑖=1

2𝑖 + ln𝑛
𝑛 (see below) (2.90)

≥ (1 − 𝜀)
𝑘
∑
𝑖=1

(2𝑖 + ln𝑛
𝑛 ) . (2.91)

To justify eq. (2.90) it suffices to show that the first sum in eq. (2.89) is of strictly larger
order than the other terms. The first sum is at least∑𝑘

𝑖=𝑘/2 2𝑖/𝑛 = Ω(𝑘2/𝑛), which since
𝑘 ≥ ln11/10 𝑛 is also Ω(𝑘 ln11/10 𝑛/𝑛) and Ω(ln22/10 𝑛/𝑛); we will use all three formulations.
The second term is of order𝒪(𝑘 ln𝑛/𝑛), negligible compared with themiddle formulation.
The third term is 𝒪(ln2/3 𝑛/𝑛), negligible compared with the last formulation. And the
fourth term, of order 𝒪(𝑘/𝑛), is negligible compared with the first formulation.

57



Successive shortest paths in 𝐾𝑛 with random edge weights

For 1 ≤ 𝑘 ≤ ln
11/10 𝑛, let 𝛿 = 𝜀/3 and let 𝐺′ = 𝐺 − 𝑠− 𝑡. Let 𝑁𝑠 and 𝑁𝑡 be the endpoints of

the cheapest ln3 𝑛 edges out of 𝑠 and 𝑡 respectively. Note that these sets are independent
of the edge weights of 𝐺′.

If any path 𝑃𝑖, 𝑖 ≤ 𝑘, uses a root edge (edge incident on 𝑠 or 𝑡) not amongst the ln3 𝑛
cheapest edges of 𝑠 or 𝑡, then by eq. (2.88) this edge costs at least (1 − 𝜀) ln3 𝑛/𝑛, thus
𝑆𝑘 ≥ (1−𝜀) ln3 𝑛/𝑛. Then eq. (2.87) follows because this is larger than the RHS of eq. (2.87),
namely Θ((𝑘2 + 𝑘 ln𝑛)/𝑛) = 𝒪(ln11/5 𝑛/𝑛) for this range of 𝑘. Thus we may assume that
for all 𝑖 ≤ 𝑘, each path 𝑃𝑖 goes via some 𝑠′ ∈ 𝑁𝑠, 𝑡′ ∈ 𝑁𝑡.

For 𝑠′ ∈ 𝑁𝑠, 𝑡′ ∈ 𝑁𝑡, define 𝐴(𝑠′, 𝑡′) to be the event that 𝑡′ is one of the (𝑛 − 2)1−𝛿

nearest vertices of 𝑠′, by cost, in 𝐺′. Clearly, for each pair 𝑠′, 𝑡′, ℙ(𝐴(𝑠′, 𝑡′)) = (𝑛 − 2)−𝛿.
Let 𝐴 be the union of these events, i.e., the event that any such pair has this property. By
the union bound,

ℙ(𝐴) ≤ (ln3 𝑛)
2
(𝑛 − 2)−𝛿 = 𝑜(1).

We assume henceforth that𝐴 does not hold: the ln3 𝑛 cheapest root edges at 𝑠 and 𝑡 do not
happen to sample any “nearest” pairs in 𝐺′.

Let us temporarily switch from the uniform model (in which we are working) to the
exponentialmodel 𝐺′ where the edge weights are i.i.d. Exp(1). By assumption that 𝐴 does
not hold, for each 𝑠′ ∈ 𝑁𝑠, 𝑡′ ∈ 𝑁𝑡, the distance 𝑑(𝑠′, 𝑡′) stochastically dominates 𝑌 ∼
∑𝑛1−𝛿

𝑖=1 Exp(𝑖(𝑛−2−𝑖)) by eq. (2.27). Wehave𝔼𝑌 = (1+𝑜(1))(1−𝛿) ln𝑛/𝑛 by eq. (2.28) (just
adjusting its last equation where the value of 𝑑 is substituted in). Applying Lemma 2.3.5’s
eq. (2.32) with 𝜇 = 𝔼𝑌 as above, 𝑎⋆ = 𝑛− 3, and 𝜆 = 1− 𝛿, that in the exponential model
𝐺′,

ℙ(𝑑𝐺′(𝑠′, 𝑡′) ≤ (1 − 𝛿)(1 + 𝑜(1))(1 − 𝛿) ln𝑛
𝑛 ) ≤ exp (−Θ(𝑛 ⋅ ln𝑛/𝑛 ⋅ 𝛿2)) = 𝑛−Θ(1).

Since (1 + 𝑜(1))(1 − 𝛿)2 ≥ (1− 3
4
𝜀), by the union bound this implies, still in the exponential

model 𝐺′,

ℙ (∃𝑠′ ∈ 𝑁𝑠, 𝑡′ ∈ 𝑁𝑡∶ 𝑑𝐺′(𝑠′, 𝑡′) ≤ (1 − 3
4
𝜀) ln𝑛/𝑛) ≤ (ln3 𝑛)

2
𝑛−Θ(1) = 𝑜(1). (2.92)

Since (1− 3
4
𝜀) ln𝑛/𝑛 = 𝑜(1), by standard coupling arguments (see Remark 2.1.6, eq. (2.7)),

this also implies that eq. (2.92) holds in the uniform model 𝐺 in which we are working.
(The 1+𝑜(1)multiplier present in 𝑒𝑞. (2.7) can be subsumed into 𝜀, as the argument holds
for arbitrary small 𝜀 > 0.)

Thus w.h.p., for all 𝑠′ ∈ 𝑁𝑠, 𝑡′ ∈ 𝑁𝑡, we have 𝑑𝐺′(𝑠′, 𝑡′) ≥ (1 − 3
4
𝜀) ln𝑛; assume this

holds. We already assumed that each path 𝑃𝑖, 𝑖 ≤ 𝑘, goes via some 𝑠′ ∈ 𝑁𝑠, 𝑡′ ∈ 𝑁𝑡, so its

58



2.7 Lower bound

non-root edges contribute at least 𝑑𝐺′(𝑠′, 𝑡′) ≥ (1 − 3
4
𝜀) ln𝑛/𝑛 to 𝑆𝑘. Then, for all 𝑘 in this

range,

𝑆𝑘 ≥
𝑘
∑
𝑖=1
(1 − 3

4
𝜀) ln𝑛𝑛 +

𝑘−1
∑
𝑖=1

(𝑊 𝑠
(𝑖) +𝑊 𝑡

(𝑖))

≥
𝑘
∑
𝑖=1
(1 − 3

4
𝜀) ln𝑛𝑛 + (1 − 1

2
𝜀)

𝑘−1
∑

𝑖=3√ln𝑛

2𝑖
𝑛 (by eq. (2.88)) (2.93)

≥ (1 − 𝜀)
𝑘
∑
𝑖=1

(2𝑖 + ln𝑛
𝑛 ) .

To justify the final inequality, rewrite the second sum in eq. (2.93) as ∑𝑘
𝑖=1

2𝑖
𝑛
− 2𝑘

𝑛
−

∑
3√ln𝑛−1
𝑖=1

2𝑖
𝑛
and observe that both its second term, 2𝑘/𝑛, and its final term, which is of

order 𝒪(3√ln𝑛
2
/𝑛), are negligible compared with the first sum in eq. (2.93), which is of

order Ω(𝑘 ln𝑛/𝑛).

2.7.3 Lower bound for large 𝑘
Lemma 2.7.2. For any 𝜀 > 0, w.h.p., simultaneously for every 𝑘 ∈ [√ln𝑛, 𝑛 − 1],

𝑋𝑘 ≥ (1 − 𝜀) (2𝑘 + ln𝑛
𝑛 ) .

Proof. Let 𝛿 = 𝜀2/9 and define

𝑐𝑘 =
2𝑘 + ln𝑛

𝑛 , 𝐿𝑘 = (1 − 𝛿)
𝑘
∑
𝑖=1

𝑐𝑖, 𝑈𝑘 = (1 + 𝛿)
𝑘
∑
𝑖=1

𝑐𝑖. (2.94)

W.h.p., simultaneously for all 𝑘, 𝑆𝑘 ≥ 𝐿𝑘 (by Lemma 2.7.1) and 𝑆𝑘 ≤ 𝑈𝑘 (by the upper
bound of Theorem 2.1.1, already proved). Henceforth, assume that both hold, so 𝐿𝑘 ≤
𝑆𝑘 ≤ 𝑈𝑘. The rest of the argument is deterministic. For any positive integer 𝑡 < 𝑘, using
that 𝑋𝑘 is monotone increasing, we have

𝑡𝑋𝑘 ≥ 𝑋𝑘 +⋯+ 𝑋𝑘−𝑡+1
= 𝑆𝑘 − 𝑆𝑘−𝑡
≥ 𝐿𝑘 − 𝑈𝑘−𝑡. (2.95)

59



Successive shortest paths in 𝐾𝑛 with random edge weights

Thus

𝑋𝑘 ≥
1
𝑡 (𝐿𝑘 − 𝑈𝑘−𝑡) =

1
𝑡 ((1 − 𝛿)

𝑘
∑
𝑖=1

𝑐𝑖 − (1 + 𝛿)
𝑘−𝑡
∑
𝑖=1

𝑐𝑖)

≥ 1
𝑡 (

𝑘
∑

𝑖=𝑘−𝑡+1
𝑐𝑖 − 2𝛿

𝑘
∑
𝑖=1

𝑐𝑖) ≥
1
𝑡 (𝑡𝑐𝑘−𝑡 − 2𝛿𝑘𝑐𝑘) = 𝑐𝑘−𝑡 −

2𝛿𝑘𝑐𝑘
𝑡

= 𝑐𝑘 −
2𝑡
𝑛 − 2𝛿𝑘𝑐𝑘

𝑡
≥ 𝑐𝑘 −

𝑡𝑐𝑘
𝑘 − 2𝛿𝑘

𝑡 𝑐𝑘 (using that 𝑐𝑘/𝑘 > 2/𝑛)

= 𝑐𝑘 (1 −
𝑡
𝑘 −

2𝛿𝑘
𝑡 ) .

Ignoring integrality for amoment, setting 𝑡 = 𝑘√2𝛿wouldmake the last expression 𝑐𝑘(1−
2√2𝛿). Since this 𝑡 = Θ(𝑘) = 𝜔(1), rounding it can be seen to change the expression by a
factor 1 + 𝑜(1), so we may safely write

𝑋𝑘 ≥ 𝑐𝑘(1 − 3√𝛿) = (1 − 𝜀)2𝑘 + ln𝑛
𝑛 .

2.8 Exponential model
In this section we prove Theorem 2.1.2, the analogue of Theorem 2.1.1 for exponentially
distributed edge weights.

For small 𝑘, results for the exponential case follow from those for the uniform. We
first argue that the upper bound of Theorem 2.1.1 also holds in the exponential case for
any 𝑘 = 𝑜(𝑛). Couple the two models, so that any edge of weight 𝑤 = 𝑜(1) in one model
has cost 𝑤′ = 𝑤(1 + 𝑜(1)) in the other. The uniform-model upper-bound constructions in
Section 2.3 (for 𝑘 = 𝑜(𝑛1/2)) and Sections 2.5 and 2.6 (for larger 𝑘) only use edges of weight
𝑜(1) (when 𝑘 = 𝑜(𝑛)), and therefore the same upper bounds hold for the exponential
model; the multiplicative difference of 1 + 𝑜(1) can be subsumed into the factor 1 + 𝜀
already present. (In the construction of Sections 2.5 and 2.6, the “middle edges” are of
cost 𝑜(1) for all 𝑘, but the “incident edges” have larger cost for 𝑘 large. In particular, for
large 𝑘, eq. (2.74) will no longer hold in the exponential case until we adjust 𝑟0 and 𝜀𝑘
appropriately.)

60



2.8 Exponential model

For the lower bound too, the argument in Section 2.7 carries over for all 𝑘 = 𝑜(𝑛). The
lower bounds 𝐿𝑘 on the prefix sums 𝑆𝑘 derived in Sections 2.7.1 and 2.7.2 carry over to
the exponential case because the edge costs are equal to within 1 + 𝑜(1) factors in the two
models. The upper bounds 𝑈𝑘 on the prefix sums are simply the sums of the individual
upper bounds on 𝑋𝑘, and we have just argued that these change only by a 1 + 𝑜(1) factor.
Section 2.7.3 only uses 𝐿𝑘 and𝑈𝑘 to derive lower bounds on𝑋𝑘, sowith these both changed
only by 1 + 𝑜(1) factors, its results carry over verbatim.

Our task, then, is to prove the upper and lower bounds in Theorem 2.1.2 for larger 𝑘.
For the upper bound, arguing for 𝑘 > 𝑛0.4 (there is no advantage to a larger starting value),
we use the same approach as for the uniform model in Section 2.5.

For the lower bound, we argue for 𝑘 ≥ 𝑛9/10. Unfortunately, the method used in
Section 2.7 for the uniform distribution does not extend; let us explain why. The lower
bound there came from eq. (2.95), 𝑡𝑋𝑘 ≥ 𝐿𝑘 − 𝑈𝑘−𝑡, valid for any functions 𝐿 and 𝑈 with
𝐿𝑘 ≤ 𝑆𝑘 ≤ 𝑈𝑘. Here, we would take 𝐿𝑘 as the sum 𝐼𝑘 of incident edges as in eq. (2.53) and
𝑈𝑘 as the sum of the 𝑋𝑘 upper bounds as in eq. (2.49). Recall that we defined 𝐵𝑘 so that
𝐵𝑘 ≥ 𝑈𝑘 −𝐿𝑘, as in eq. (2.54). Then we can rewrite the previous lower bound approach as
𝑋𝑘 ≥

1
𝑡
(𝐿𝑘 −𝑈𝑘−𝑡) ≥

1
𝑡
(𝐿𝑘 − 𝐿𝑘−𝑡) +

1
𝑡
(𝐿𝑘−𝑡 −𝑈𝑘−𝑡) ≥

1
𝑡
∑𝑘−1

𝑖=𝑘−𝑡𝑊(𝑖) −
1
𝑡
𝐵𝑘−𝑡. For large 𝑘,

𝑊(𝑘) and therefore𝑋𝑘 areΘ(ln𝑛). Since the𝐵𝑘 grow to sizeΘ(𝑛1/2) (in the exponential case
as well as the uniform case), we are thus limited by the second term to 𝑡 = Ω(𝑛1/2+𝑜(1)).
However, from eq. (2.41), such a large value of 𝑡would mean that the average given by the
first term is significantly different from𝑊(𝑘).

The desired lower boundwould be immediate ifwe could claim that𝑃𝑘 necessarily used
the 𝑘th cheapest edge on 𝑠 (of cost𝑊 𝑠

(𝑘)) or a later one, and likewise for 𝑡. We will prove
something close to this. We argue in Section 2.8.7 that every pair of vertices (excluding
both 𝑠 and 𝑡) is joined by a path of cost at most 𝛿 (for some small 𝛿 to be specified) that is
edge-disjoint from all 𝑃𝑖, 𝑖 = 1, … , 𝑛 − 1. We will show that this implies that path 𝑃𝑘 uses
an edge on 𝑠 that is at most 𝛿 cheaper than 𝑊 𝑠

(𝑘), and likewise for 𝑡, yielding a sufficient
lower bound.

2.8.1 Claims, and implications for Theorem 2.1.2
In order to establish upper bounds on 𝑋𝑘 in the exponential model, we use the same struc-
ture 𝑅(𝑘) as described in Section 2.5.2. Then eq. (2.49) follows as before, and we can con-
tinue to define 𝑈𝑘 as in eq. (2.52). For convenience define

̄𝑘 = 𝑛 − 𝑘. (2.96)

61



Successive shortest paths in 𝐾𝑛 with random edge weights

As before we will treat 𝑘 in two ranges, and we start now with the smaller range.

Claim 2.8.1. For 𝑘 ∈ [𝑛4/10, 𝑛 − √𝑛 ], let

𝐵𝑘 ≔ (2𝑛
1/25 + 𝐶𝐵(𝑛3/5 − ̄𝑘3/5)

𝑛1/5 )
5/4

and 𝜀𝑘 ≔ 𝐶𝜀𝐵1/5𝑘 𝑛−1/5 ̄𝑘−2/5, (2.97)

with 𝐶𝐵 = 44 and 𝐶𝜀 = 4. Then, asymptotically almost surely,

𝑋𝑘+1 ≤ 𝑊 𝑠
(𝑘+1) +𝑊 𝑡

(𝑘+1) + 8𝜀𝑘. (2.98)

Remark: In proving Claim 2.8.1 we will set

𝑟0 ≔ 𝜀𝑘 ̄𝑘. (2.99)

because it roughly equates𝑊(𝑘+𝑟0) −𝑊(𝑘) and 𝜀𝑘; see eq. (2.41). In this regime integrality
is not an issue: 𝑟0 is large, per eq. (2.104).

It is clear that both 𝐵𝑘 and 𝜀𝑘 in eq. (2.97) are increasing in 𝑘, even over the larger range
𝑘 ∈ [0, 𝑛]. Wewillmake use of the following bounds, holding for 𝑛 sufficiently large. Here,
eq. (2.100) uses that at 𝑘 = 𝑛−Θ(√𝑛), ̄𝑘3/5 dominates 2𝑛1/25, while eq. (2.101) takes 𝑘 = 0.

𝐵𝑘 ≤ 𝐵𝑛−√𝑛 ≤ 𝐶 5/4
𝐵 𝑛1/2 (2.100)

𝐵𝑘 ≥ 𝐵𝑛4/10 ≥ 2𝑛−1/5 (2.101)
𝜀𝑘 ≤ 𝐶𝜀𝐵1/5𝑘 𝑛−1/5𝑛−1/2⋅2/5 ≤ 𝐶𝜀𝐶 1/4

𝐵 𝑛−3/10 (2.102)

𝜀𝑘 ≥ 𝐶𝜀(𝐵𝑛4/10)
1/5 𝑛−1/5 ̄𝑘−2/5 ≥ 𝐶𝜀𝑛−6/25 ̄𝑘−2/5 (2.103)

𝑟0 = ̄𝑘𝜀𝑘
𝑒𝑞. (2.103)

≥ 𝐶𝜀𝑛−6/25 ̄𝑘3/5 ≥ 𝐶𝜀𝑛3/50. (2.104)

Claim 2.8.2. For 𝑘 ∈ (𝑛 − √𝑛, 𝑛 − 2 ], let

𝐵𝑘 ≔ 𝐶′
𝐵√𝑛 and 𝜀𝑘 ≔ 𝐶′

𝜀𝑛−1/6, (2.105)

with 𝐶𝐵 = 115 and 𝐶𝜀 = 5. Then, asymptotically almost surely, simultaneously for all 𝑘 in
this range,

𝑋𝑘+1 ≤ 𝑊 𝑠
(𝑘+1) +𝑊 𝑡

(𝑘+1) + 8𝜀𝑘. (2.106)

62



2.8 Exponential model

Remark: In proving Claim 2.8.2 we will set

𝑟0 ≔ 1. (2.107)

As in Claim 2.6.2, 𝐵𝑘 and 𝜀𝑘 are constants independent of 𝑘, but we retain the subscript
for consistency with the notation of Section 2.5.1.

Proof of the upper bounds in Theorem 2.1.2. Analogous to the argument in Section 2.6.1, it
is sufficient to check that 𝜀𝑘 = 𝑜(𝔼𝑊(𝑘)). Since 𝔼𝑊(𝑘) ∼ ln ( 𝑛

𝑛−𝑘
) ≥ 𝑘

𝑛
(see eq. (2.41)), it is

enough to show that 𝜀𝑘 = 𝑜(𝑘/𝑛).
For 𝑘 ≤ 𝑛0.99 = 𝑜(𝑛), by first-order approximation,

𝑛3/5 − ̄𝑘3/5 ≝ 𝑛3/5 − (𝑛 − 𝑘)3/5 ∼ 3
5
𝑛−2/5𝑘, (2.108)

so 𝐵𝑘 = Θ (𝑛−1/5 + 𝑛−3/4𝑘5/4). Hence, from Claim 2.8.1, specifically eq. (2.97),

𝜀𝑘 = Θ((𝑛−1/25 + 𝑛−3/20𝑘1/4)𝑛−1/5𝑛−2/5) = Θ(𝑛−16/25 + 𝑛−3/4𝑘1/4) = 𝑜(𝑘/𝑛) (2.109)

as 𝑘 ≥ 𝑛4/10.
For 𝑘 > 𝑛0.99, we have in Claim 2.8.1 that 𝜀𝑘 = 𝒪(𝑛−3/10) by eq. (2.100), and so 𝜀𝑘 =

𝑜(𝑘/𝑛), while in Claim 2.8.2, 𝜀𝑘 = Θ(𝑛−1/6) = 𝑜(𝑘/𝑛).

2.8.2 Path weights
To show inequality eq. (2.48) it suffices to show that

𝑊(𝑘+𝑟0) −𝑊(𝑘+1) ≤ 1.1𝜀𝑘. (2.110)

In Claim 2.8.2, we have defined 𝑟0 ≔ 1, so eq. (2.110) is trivial. For Claim 2.8.1, Δ ≔
𝑊(𝑘+𝑟0) −𝑊(𝑘+1) has the same distribution as∑

𝑘+𝑟0
𝑖=𝑘+2 𝑋(𝑛 − 𝑖), where 𝑋(𝑎) ∼ Exp(𝑎) and

these variables are all independent. ThusΔ is stochastically dominated by the sum of 𝑟0−1
independent random variables 𝑋( ̄𝑘 − 𝑟0). Since 𝑟0 = ̄𝑘𝜀𝑘, we have that 𝔼Δ ≤ 𝑟0/( ̄𝑘 − 𝑟0) =
𝜀𝑘/(1 − 𝜀𝑘), and from Lemma 2.3.5 it follows that ℙ(Δ > 1.1𝜀𝑘) = 𝒪(exp(−Θ(𝑟0))). From
eq. (2.104), by the union bound, there is a negligible chance that eq. (2.48) fails in any
round.

63



Successive shortest paths in 𝐾𝑛 with random edge weights

2.8.3 Budgets in Claim 2.8.1
As before, we need to define a 𝐵𝑘 satisfying eq. (2.54) and, as before, 𝜀𝑘 can be guessed
from eq. (2.63), then checked to satisfy yield robustness as in Sections 2.6.7 and 2.6.8. The
base case, confirming eq. (2.56), is given by 𝑘 = 𝑛4/10, where by eq. (2.101)

𝐵𝑘 ≥ 2𝑛−1/5 ≝ 𝑈𝑘. (2.111)

To verify eq. (2.55), it is straightforward to check that 𝜕2

𝜕𝑘2
𝐵𝑘 is positive, so

𝜕
𝜕𝑘
𝐵𝑘 is in-

creasing, and
𝐵𝑘+1 − 𝐵𝑘 ≥

𝜕
𝜕𝑘𝐵𝑘 =

5
4
3
5
𝐶𝐵
𝐶𝜀

= 3
4
𝐶𝐵
𝐶𝜀

≥ 8𝜀𝑘,

since 3
4
𝐶𝐵
𝐶𝜀

≥ 8 (check). Finally, we establish eq. (2.57). We show that w.h.p. for all 𝑘 in the
range,

Δ ≔ 𝑊 𝑠
(𝑘+1) −𝑊 𝑠

(𝑘) ≤ 0.1𝜀𝑘. (2.112)

Note that Δ ∼ Exp( ̄𝑘 − 1), so

ℙ (Δ > 0.1𝜀𝑘) = exp (−0.1𝜀𝑘 ⋅ ( ̄𝑘 − 1)) = exp(−Ω(𝑟0)) = exp(−𝑛Ω(1))

by eq. (2.104). Then, by the union bound there is a negligible chance that eq. (2.112) fails
for any 𝑘.

2.8.4 Robustness in Claim 2.8.1
With reference to Section 2.5.6, we complete the robustness argument for Claim 2.8.1,
showing that (2.59) holds with high probability. Here we have taken 𝑟0 = 𝜀𝑘 ̄𝑘, so the
number of edges from a middle vertex to 𝑉 ′

𝑆 (see eq. (2.60)) is 𝑍𝑠𝑣 ∼ Bi(𝜀𝑘 ̄𝑘, 𝜀𝑘), with mean

𝜆 = 𝑟0𝜀𝑘 = 𝜀2𝑘 ̄𝑘 (2.113)

(see eq. (2.61)). Recall that if 𝜆 is small we expect (see eq. (2.62)) that to destroy all paths
the adversary will have to delete edges of total weight at least 𝜀𝑘 𝑛 𝜆2 = 𝜀5𝑘𝑛 ̄𝑘2, which will
exceed 𝐵𝑘. And, if 𝜆 is large, then each 𝑍𝑣 will have expectation close to 𝜆 = 𝜀2𝑘 ̄𝑘, for a total
cost 𝜀𝑘𝑛 times larger, namely 𝜀3𝑘𝑛 ̄𝑘, and again this exceeds 𝐵𝑘.

Wenow show the details of these rough calculations, including the probabilistic details,
applying Lemma 2.6.4 to 𝑍𝑣 in the two cases of 𝜆 small and large.

64



2.8 Exponential model

For the adversary to delete all 𝑠–𝑡 paths via 𝑣, he must delete at least

𝑍𝑣 ≔ min(𝑍𝑠𝑣, 𝑍𝑡𝑣)

edges, and to destroy all paths he must delete at least

𝑁 ≔ ∑
𝑣∈𝑀′

𝑍𝑣

edges. As described in Section 2.5.6, we imagine a fixed deletion of 𝑘 edges on each of 𝑠
and 𝑡, giving neighbour sets 𝑉 ′

𝑠 and 𝑉 ′
𝑡 and a set𝑀′ of middle vertices, eventually taking a

union bound over all such choices.

If 𝜆 ≥ 2, then by Lemma 2.6.4, for each 𝑣 ∈ 𝑀′, ℙ(𝑍𝑠𝑣 ≥ 0.65𝜆) ≥ 1/4. Thus, 𝑁 stochasti-
cally dominates 0.65𝜆 ⋅Bi(0.99𝑛, 1/4), with expectation > 0.1608𝜆𝑛. We shall consider it a
failure if𝑁 ≤ 0.16𝜆𝑛. Assuming success, since each edge costs at least 𝜀𝑘 to delete, it costs
at least 0.16𝜀𝑘𝜆𝑛 = 0.16𝜀3𝑘𝑛 ̄𝑘 to delete them all. This exceeds 𝐵𝑘:

0.16 𝜀3𝑘𝑛 ̄𝑘
𝐵𝑘

= 0.16𝐶3
𝜀 𝑛−3/5 ̄𝑘−6/5𝐵−2/5𝑘 𝑛 ̄𝑘 (by definition of 𝜀𝑘)

= 0.16𝐶3
𝜀𝐵−2/5𝑘 𝑛2/5 ̄𝑘−1/5

≥ 0.15𝐶3
𝜀𝐶−1/2

𝐵 𝑛1/5𝑛−1/5 (by eq. (2.100))
> 1,

using that 0.15 ⋅ 𝐶3
𝜀𝐶−1/2

𝐵 > 1 (check).
Failure means that 𝑁/(0.65𝜆) ∼ Bi(0.99𝑛, 1/4) ≤ (0.16𝜆𝑛)/(0.65𝑛) = (0.16/0.65)𝑛.

Noting that 0.99⋅1/4 > 0.16/0.65, by Lemma 2.3.2, the probability of failure is exp(−Ω(𝑛)).
By the union bound, the total of the failure probabilities, over all rounds and all adversary
choices of the 𝑘 root edges at 𝑠 and 𝑡, is small:

∑
𝑘
(𝑘 + 𝑟0

𝑟0
)
2

⋅ exp(−Ω(𝑛)) (2.114)

≤ ∑
𝑘
(𝑛𝑟0)2 exp(−Ω(𝑛))

= ∑
𝑘
exp (2𝜀𝑘 ̄𝑘 ln𝑛 − Ω(𝑛)) (by 𝑟0 = 𝜀𝑘 ̄𝑘)

≤ 𝑛 exp(−Ω(𝑛)) = 𝑜(1),

the penultimate inequality using 𝜀𝑘 ̄𝑘 = 𝒪(𝑛7/10) by eq. (2.102).

65



Successive shortest paths in 𝐾𝑛 with random edge weights

If 𝜆 < 2, then by Lemma 2.6.4 𝑁 stochastically dominates Bi(0.99𝑛, 0.18𝜆2), with expec-
tation > 0.175𝜆2𝑛. We shall consider it a failure if 𝑁 ≤ 0.17𝜆2𝑛 = 0.17𝜀4𝑘𝑛 ̄𝑘2. Each edge
costs at least 𝜀𝑘 to delete. Assuming success, it thus costs at least 0.17𝜀5𝑘𝑛 ̄𝑘2 to delete them
all, which exceeds 𝐵𝑘:

0.17𝜀5𝑘𝑛 ̄𝑘2
𝐵𝑘

= 0.17𝐶5
𝜀 (by definition of 𝜀𝑘)

> 1,

using that 0.17𝐶5
𝜀 > 1 (check).

By Lemma 2.3.2, the probability of failure is

ℙ (𝑁 ≤ 0.17𝜀4𝑘𝑛 ̄𝑘2) = exp(−Ω(𝜀4𝑘𝑛 ̄𝑘2)). (2.115)

Over all rounds and adversary choices of edges incident to 𝑠 and 𝑡, the total failure proba-
bility is at most

∑
𝑘
(𝑘 + 𝑟0

𝑟0
)
2

⋅ ℙ (𝑁 < 0.17𝜀4𝑘𝑛 ̄𝑘2)

≤ ∑
𝑘
exp (2𝜀𝑘 ̄𝑘 ln𝑛 − exp(−Ω(𝜀4𝑘𝑛 ̄𝑘2)))

≤ 𝑛 exp(−Ω(𝜀4𝑘𝑛 ̄𝑘2)),

because 𝜀4𝑘𝑛 ̄𝑘2 is larger than 𝜀𝑘 ̄𝑘 by a factor 𝜀3𝑘𝑛 ̄𝑘, which by eq. (2.103) isΩ(𝑛−18/25 ̄𝑘−6/5𝑛 ̄𝑘) =
Ω(𝑛7/25 ̄𝑘−1/5) = Ω(𝑛2/25). Continuing, this is

≤ 𝑛 exp(−Ω(𝑛1/25 ̄𝑘2/5)) (invoking eq. (2.103) again) (2.116)
= 𝑜(1).

2.8.5 Budgets in Claim 2.8.2
We now establish eq. (2.54) for the parameters of Claim 2.8.2. Section 2.8.3 showed that
eq. (2.54) holds for 𝑘 up to 𝑘⋆ ≔ ⌊𝑛 − √𝑛⌋, the point where Claim 2.8.1 ends and just
before Claim 2.8.2 begins, so in particular 𝐵𝑘⋆ ≥ 𝑈𝑘⋆ − 𝐼𝑘⋆ . For the regime of Claim 2.8.2,
we redefine 𝐼𝑘 from eq. (2.53). Recall that 𝐼𝑘 is a lower bound on the edges incident to 𝑠
and 𝑡 used by the first 𝑘 paths. Previously, the sum defining 𝐼𝑘 in eq. (2.53) went to 𝑘 − 1
to avoid double counting the {𝑠, 𝑡} edge. In this regime, however, we need the sum to go

66



2.8 Exponential model

𝑘, as the 𝑊(𝑖) increase rapidly. The weight of the {𝑠, 𝑡} edge is distributed as Exp(1), thus
w.h.p. it costs at most 𝑛0.01. For 𝑘 > 𝑘⋆, define

𝐼𝑘 ≔
𝑘
∑
𝑖=1

(𝑊 𝑠
(𝑘) +𝑊 𝑡

(𝑘)) − 𝑛0.01, (2.117)

so thatw.h.p. 𝐼𝑘 is a lower boundon the incident edges: the𝑛0.01 term resolves the potential
double-counting of {𝑠, 𝑡}. We are now ready to check that eq. (2.54) holds. Following the
derivation of eq. (2.76), for 𝑘 from 𝑘⋆ + 1 to 𝑛 − 2,

𝑈𝑘 − 𝐼𝑘 = (𝑈𝑘⋆ − 𝐼𝑘⋆) + [(𝑈𝑘 − 𝑈𝑘⋆) − (𝐼𝑘 − 𝐼𝑘⋆)]

≤ 𝐵𝑘⋆ +
𝑛−2
∑

𝑘=𝑘⋆+1
7𝜀𝑘 − (𝑊 𝑠

(𝑘⋆) +𝑊 𝑡
(𝑘⋆) − 𝑛0.01) (see eq. (2.52), eq. (2.53), and eq. (2.117))

≤ 114√𝑛 + √𝑛 ⋅ 7𝐶′
𝜀𝑛−1/6 + 𝑛0.01 (see eq. (2.100) and eq. (2.105))

≤ 115√𝑛
≤ 𝐵𝑘 (see eq. (2.105)), (2.118)

using that 𝐶′
𝐵 ≥ 115 (check).

2.8.6 Robustness in Claim 2.8.2
Again, our aim is to establish robustness of 𝑅 by showing that eq. (2.59) holds with high
probability, and the argument is similar to but simpler than that for robustness inClaim2.8.1.

Since 𝑟0 = 1, both 𝑉 ′
𝑠 and 𝑉 ′

𝑡 have size 1. For a vertex 𝑣 ∈ 𝑀′, let 𝑍𝑣 be the number of
paths from 𝑉 ′

𝑠 to 𝑉 ′
𝑡 via 𝑣. There is only one such possible path, hence

𝑍𝑣 ∼ Bernoulli (𝜀2𝑘) .

To destroy all 𝑠–𝑡 paths the adversary must delete at least

𝑁 ≔ ∑
𝑣∈𝑀′

𝑍𝑣

edges. 𝑁 stochastically dominates Bi(0.99𝑛, 𝜀2𝑘), with expectation at least 0.99𝜀2𝑘. We de-
clare the event 𝑁 ≤ 0.98𝜀2𝑘𝑛 a failure. Assuming success, destroying all 𝑠–𝑡 paths would

67



Successive shortest paths in 𝐾𝑛 with random edge weights

cost at least 𝜀𝑘𝑁 ≥ 0.98𝜀3𝑘𝑛. This exceeds 𝐵𝑘, since by eq. (2.105) and 0.98𝐶′
𝜀
3 > 𝐶′

𝐵 (check),

0.98𝜀3𝑘𝑛
𝐵𝑘

= 0.98𝐶′
𝜀
3

𝐶′
𝐵

> 1.

The probability of failure is

ℙ (𝑁 ≤ 0.98𝜀2𝑘𝑛) = exp(−Ω(𝜀2𝑘𝑛)) = exp(−Ω(𝑛2/3)). (2.119)

Over all rounds and adversary choices, using that (𝑘+𝑟0
𝑟0

) = (𝑘+1
1
) ≤ 𝑛, the total failure

probability is at most

∑
𝑘
(𝑘 + 𝑟0

𝑟0
)
2

⋅ ℙ(𝑁 ≤ 0.98𝜀2𝑛)

≤ √𝑛𝑛2 exp(−Ω(𝑛2/3)) (by eq. (2.119)) (2.120)
= 𝑜(1).

2.8.7 Lower bound
As argued in the introduction of this section, for any 𝑘 = 𝑜(𝑛), the lower bound follows
from the uniform case. Thus it is sufficient if we show the lower bound for 𝑘 ≥ 𝑛9/10,
which we do now.

Remark 2.8.3. With high probability, for every pair of vertices 𝑢 and 𝑣 in 𝐺′ = 𝐺 − 𝑠 − 𝑡,
there is a 𝑢–𝑣 path in 𝐺′ of cost at most 𝛿 = 20𝑛−1/6 that is edge-disjoint from 𝑃1, … , 𝑃𝑛−1.

Proof. The proof of Claim 2.8.2 showed that w.h.p., for all 𝑘 in the claim’s range (up to
𝑘 = 𝑛 − 2), there is a cheap 𝑠–𝑡 path (of cost given by eq. (2.106)) disjoint from 𝑃1, … , 𝑃𝑘,
because for a given pair of neighbours 𝑢, 𝑣 of 𝑠 and 𝑡, there is a 𝑢–𝑣 path in 𝐺′ that is edge-
disjoint from these 𝑘 paths and has cost at most 4𝜀𝑘 = 20𝑛−1/6 ≝ 𝛿 (see eq. (2.105)). The
existence of a 𝑘+1st 𝑠–𝑡 path limits 𝑘 to 𝑛−2 since after that there are no new neighbours
𝑢 and 𝑣 of 𝑠 and 𝑡, but the rest of the argument extends to 𝑘 = 𝑛 − 1.

In particular, extending the definition eq. (2.105) of 𝐵𝑘 and 𝜀𝑘 to 𝑘 = 𝑛 − 1, the deriva-
tion of eq. (2.118) extends without change and shows that the budget 𝐵𝑛−1 covers the mid-
dle edges of all paths 𝑃1, … , 𝑃𝑛−1, and the robustness argument also extends and shows
eq. (2.119) to hold for 𝑘 = 𝑛 − 1. Since the failure probability in eq. (2.119) is exponen-
tially small, and there are fewer than 𝑛2 pairs {𝑢, 𝑣} in 𝐺′, w.h.p. there is a cheap path (of
cost ≤ 𝛿) for every pair.

68



2.8 Exponential model

For the remainder of this section we assume that the high-probability conclusion of
Remark 2.8.3 holds.

Let𝐻𝑠
𝑘 be the weight of the heaviest edge incident to 𝑠 used by the first 𝑘 paths, and let

𝐿𝑠𝑘 be the weight of the lightest edge incident to 𝑠 not used by the first 𝑘 paths. Define 𝐻𝑡
𝑘

and 𝐿𝑡𝑘 likewise.
We claim that for all 𝑘 from 1 to 𝑛 − 1, with 𝛿 = 20𝑛−1/6 as in Remark 2.8.3,

𝐻𝑠
𝑘 − 𝐿𝑠𝑘 ≤ 𝛿. (2.121)

We argue by contradiction. Given 𝑘, let 𝑃𝑖, 𝑖 ≤ 𝑘, be the path using the edge of weight
𝐻𝑠
𝑘. By Remark 2.8.3, we can construct an 𝑠–𝑡 path 𝑄 whose 𝑠-incident edge is the one of

weight 𝐿𝑠𝑘, whose 𝑡-incident edge is the same as that of 𝑃𝑖, and whose middle edges cost at
most 𝛿 and are not used in 𝑃1, … , 𝑃𝑛−1. This path 𝑄 is cheaper than 𝑃𝑖: its 𝑠-incident edge
is cheaper by 𝐻𝑠

𝑘 − 𝐿𝑠𝑘 > 𝛿, its 𝑡-incident edge has the same cost, and its middle edges
(costing at most 𝛿) cost at most 𝛿 more than those of 𝑃𝑖. Also, 𝑄 is edge-disjoint from the
first 𝑖 − 1 paths: its 𝑠-incident edge 𝐿𝑠𝑘 is not used even by the first 𝑘 paths, the middle
edges are disjoint from those of all 𝑛 − 1 paths, and its 𝑡-incident edge is that used by 𝑃𝑖
(so not used by a previous path). Thus, 𝑄 should have been chosen in preference to 𝑃𝑖, a
contradiction, establishing eq. (2.121).

Trivially, 𝐻𝑠
𝑘 ≥ 𝑊 𝑠

(𝑘). Thus, from eq. (2.121),

𝐿𝑠𝑘 ≥ 𝐻𝑠
𝑘 − 𝛿 ≥ 𝑊 𝑠

(𝑘) − 𝛿. (2.122)

For 𝑘 ≤ 𝑛−2, the edge of 𝑃𝑘+1 incident to 𝑠 costs at least 𝐿𝑠𝑘 and the edge incident to 𝑡 at
least 𝐿𝑡𝑘. If 𝑃𝑘+1 is not the single-edge path {𝑠, 𝑡} these two edges are distinct, so that𝑋𝑘+1 ≥
𝐿𝑠𝑘 + 𝐿𝑡𝑘. If 𝑃𝑘+1 is the single-edge path {𝑠, 𝑡} then 𝑃𝑘 is not, and 𝑋𝑘+1 ≥ 𝑋𝑘 ≥ 𝐿𝑠𝑘−1 + 𝐿𝑡𝑘−1.
Either way, by eq. (2.122),

𝑋𝑘+1 ≥ 𝐿𝑠𝑘−1 + 𝐿𝑡𝑘−1
≥ 𝑊 𝑠

(𝑘−1) +𝑊 𝑡
(𝑘−1) − 2𝛿. (2.123)

Recall that we are concerned here with 𝑘 ≥ 𝑛9/10. By Lemma 2.4.2, for all such 𝑘,
and for any 𝛾 > 0, w.h.p.𝑊(𝑘) ≥ (1 − 𝛾) 𝔼𝑊(𝑘). Since the exponential random variable is
stochastically greater than the uniform, 𝔼𝑊(𝑘) > 𝑘/𝑛 = Ω(𝑛−1/10), while 𝛿 = 20𝑛−1/6 =
𝑜(𝔼𝑊(𝑘)). From eq. (2.41) it is clear that 𝔼𝑊(𝑘−1) ∼ 𝔼𝑊(𝑘+1) (for any 𝑘 = 𝜔(1)), and we
subsume the asymptotic error into the constant 𝛾. Thus, from eq. (2.123), for any 𝛾 > 0,

69



Successive shortest paths in 𝐾𝑛 with random edge weights

w.h.p., for all 𝑘 ≥ 𝑛9/10,

𝑋𝑘 ≥ (1 − 𝛾)2 𝔼𝑊(𝑘),

completing the proof of the lower bound in Theorem 2.1.2.

2.9 Expectation
In this section we prove Theorem 2.1.5. We treat the uniform and exponential models
at the same time. Let 𝒫𝑘 be the event that 𝑃𝑘 exists. Clearly ℙ(𝒫𝑘) ≥ ℙ(𝒫𝑛−1). By The-
orem 2.1.1 (for the uniformly random model) and Theorem 2.1.2 (for the exponential
model), ℙ(𝒫𝑛−1) = 1 − 𝑜(1). This establishes the first part of the theorem. Then, let
𝜇𝑘 = 2𝔼𝑊(𝑘) + ln𝑛/𝑛 (so for the uniform model, 𝜇𝑘 = 𝑤0(𝑘)). It suffices to show that

𝔼[𝑋𝑘 ∣ 𝒫𝑘] = (1 + 𝑜(1))𝜇𝑘 (2.124)

uniformly in 𝑘.
First, we show the lower bound implicit in eq. (2.124). Fix 𝜀 > 0. Let ℒ𝑘 be the event

that (jointly) 𝑃𝑘 exists and 𝑋𝑘 ≥ (1 − 𝜀)𝜇𝑘. By Theorem 2.1.1 (for the uniform model) and
Theorem 2.1.2 (for the exponential model), ℒ𝑘 holds with probability 1 − 𝑜(1) uniformly
in 𝑘. Thus,

𝐸[𝑋𝑘 ∣ 𝒫𝑘] ≥ ℙ(ℒ𝑘) 𝔼[𝑋𝑘 ∣ 𝒫𝑘 ∧ ℒ𝑘] ≥ (1 − 𝑜(1)) (1 − 𝜀)𝜇𝑘.

Since this holds for any 𝜀, we have that

𝔼[𝑋𝑘 ∣ 𝒫𝑘] ≥ (1 − 𝑜(1))𝜇𝑘.

We now establish the corresponding upper bound.

2.9.1 Small 𝑘
First, we consider the range 𝑘 ≤ 𝑛4/10. We will need the following lemma in eq. (2.131).

Lemma 2.9.1. There exists an absolute constant 𝐶 > 0 such that, for all 𝜀 > 𝐶, in both the
exponential and uniform models, for all 𝑘 = 𝑜(√𝑛) the probability of the event

𝑋𝑘 > (1 + 𝜀)𝜇𝑘 (2.125)

70



2.9 Expectation

is 𝒪(𝑛−1.9).

Proof. By the reasoning given in the introduction of Section 2.8, it is sufficient to show the
result in the uniform case, where 𝜇𝑘 =

2𝑘+ln𝑛
𝑛

. We use the same argument as developed in
Section 2.3, where we prove Theorem 2.1.1 up to 𝑘 = 𝑜(√𝑛). Our argument in Section 2.3
(see eq. (2.8)) was that for any sufficiently small 𝜀 > 0,

if 𝑋𝑖 ≤ (1 + 𝜀) (2𝑖𝑛 + ln𝑛
𝑛 ) for all 𝑖 ≤ 𝑘, then w.h.p. the same holds for 𝑖 = 𝑘 + 1. (2.126)

We proved this by constructing a structure 𝑅 = 𝑅(𝑘) in 𝐺, in which after deleting 𝑘 paths,
each of cost≤ (1+𝜀)(2𝑘/𝑛+ ln𝑛/𝑛) from𝐺, w.h.p. there remains a path in 𝑅 satisfying the
same cost bound. By eq. (2.37), the probability of failure was 𝒪(𝑛−1.9) + exp(−Θ(𝑠(𝑘))).
This does not suffice since for 𝑘 small the second term may exceed 𝒪(𝑛−1.9) (recall 𝑠 =
2𝑘 + ln𝑛).

To prove the lemma, we will show that for some sufficiently large constant 𝜀, the fail-
ure probability in eq. (2.126) is 𝒪(𝑛−1.9). As noted in Remark 2.3.1, a few parts of the
argument developed in Section 2.3 rely on 𝜀 being sufficiently small, and here we will de-
tail the changes needed. Principally, we will make one modification (a simplification) to
Section 2.3’s construction of 𝑅. We will also track the dependence of key Landau-notation
expressions on 𝜀.

Recall from eqs. (2.11) and (2.12) that 𝑠 = 2𝑘 + ln𝑛 and 𝑤0 = 𝑠/𝑛.
Parallelling the structure of Section 2.3, we start by reviewing the adversary’s edge-

count budget. This was given by eq. (2.16) which, through its dependence on eq. (2.15),
held only for sufficiently small 𝜀. For sufficiently large 𝜀, modulo the one-time failure
probability 𝒪(𝑛−1.9) from Lemma 2.3.3, each of the first 𝑘 paths has length ≤ (1 + 𝜀)𝑤0 ⋅
19𝑛 < 20𝑠𝜀, and the total length of the first 𝑘 paths is at most

20𝑘𝑠𝜀 < 10𝑠2𝜀, (2.127)

so we now take this to be the adversary’s budget.
We build level-0 edges of 𝑅 exactly as in Section 2.3.3, and using the same parameter

𝑟0. That is, we add the cheapest 𝑘+ 𝑟0 edges incident on 𝑠, with 𝑟0 = ⌈ 1
10
𝜀𝑠⌉ as in eq. (2.18);

the opposite endpoints of these edges are the level-1 vertices. Recall that we declared this
step a failure if the number 𝑋 of edges with weights in the interval [0, 𝑘

𝑛
+ 1

9
𝜀𝑤0] is smaller

than 𝑘 + 𝑟0. Note that 𝑋 ∼ Bi(𝑛′, 𝑘
𝑛
+ 1

9
𝜀𝑤0), thus 𝔼𝑋 = (1 − 𝑜(1)) (𝑘 + 1

9
𝜀𝑠), and failure

71



Successive shortest paths in 𝐾𝑛 with random edge weights

means that 𝑋 < 𝑘 + 𝑟0, i.e., that

𝑋
𝔼𝑋 = (1 + 𝑜(1))

𝑘 + 1
10
𝜀𝑠

𝑘 + 1
9
𝜀𝑠

≤ 10
11

for 𝜀 sufficiently large. Then, analogously to eq. (2.19), the failure probability byLemma2.3.2
is at most

ℙ(𝑋 < 10
11
𝔼𝑋) ≤ exp(−Ω(𝔼𝑋)) ≤ exp(−Ω(𝜀𝑠)). (2.128)

We skip constructing level-1 edges as in Section 2.3.4, instead setting the level-2 ver-
tices identical to level-1 vertices. (There are no edges between these levels; we have “level
2” only to keep the level numbering the same as before.)

We build level-2 edges exactly as before, with the same parameter 𝑟2, linking to each
level-2 vertex its cheapest 𝑟2 =

1
10
𝜀𝑠 neighbours (which become the level-3 vertices). The

calculations in Section 2.3.5 hold for any 𝜀 > 0, and from eq. (2.25) the probability of any
failure on this level is

≤ exp−Θ(𝜀𝑠). (2.129)

The adversary’s deletions of edges incident on 𝑠must leave 𝑟0 vertices at level 1 (a.k.a.
level 2), thus 𝑟0𝑟2 = 𝜀2𝑠2/100 edges leading to level 3. By eq. (2.127) the adversary is allowed
to delete at most 10𝑠2𝜀 edges, so for 𝜀 sufficiently large, at least 2𝑠2 level-3 vertices remain;
this is the same as before, and will continue to suffice.

From level 3 we construct shortest-path trees just as in Section 2.3.6, whose calcula-
tions hold for any 𝜀 > 0. To recapitulate, these trees are built to a size eq. (2.26) indepen-
dent of 𝜀, the calculations made are valid for all 𝜀, and the result (here as in Section 2.3) is
that each tree fails with some probability 𝑜(1), but the level as a whole fails only if at least
0.01𝑠2 trees fail, which occurs with probability only exp(−Ω(𝑠2)) (see eq. (2.34)).

This concludes the modified construction of 𝑅. The remainder of the argument is un-
changed from Section 2.3. In the absence of failures, the maximumweight of any 𝑠–𝑡 path
in 𝑅 remains at most (1 + 𝜀)𝑤0 per eq. (2.35) (indeed, a little less as we’ve skipped the
level-1 edges). The number of successful level-3 trees is Ω(𝑠2) as before, and the calcu-
lations leading to the probability that an adversary can destroy all cheap paths in 𝑅 are
unaffected: this probability remains exp(−Ω(𝑠2 ln𝑛)) as in eq. (2.36), which is dominated
by other failure probabilities.

72



2.9 Expectation

Tallying up, as in Section 2.3.11, we have a one-time failure probability of 𝒪(𝑛−1.9)
from Lemma 2.3.3. Out of levels 0, 2 and 3 we have failure probabilities given respec-
tively by eq. (2.128), eq. (2.129) and eq. (2.34), namely exp(−Ω(𝜀𝑠)), exp(−Ω(𝜀𝑠)) and
exp(−Ω(𝑠2)). Since 𝑠 > ln𝑛, for some 𝜀 sufficiently large, the net failure probability is
𝒪(𝑛−1.9), as claimed.

Let 𝐶 be the constant in Lemma 2.9.1. Separately, fix any sufficiently small 𝜀 > 0. Let

𝑈1 = [0, (1 + 𝜀)𝜇𝑘),
𝑈2 = [(1 + 𝜀)𝜇𝑘, 𝐶𝜇𝑘),
𝑈3 = [𝐶𝜇𝑘,∞).

Let 𝒜𝑖 be the event that 𝑋𝑘 ∈ 𝑈𝑖. By Theorem 2.1.1, ℙ(𝒜1) = 1 − 𝑜(1) and ℙ(𝒜2) = 𝑜(1),
and by Lemma 2.9.1, ℙ(𝒜3) = 𝒪(𝑛−1.9).

Since here we are considering 𝑘 ≤ 𝑛4/10 ≤ 𝑛/2, with reference to the proof of Re-
mark 2.1.4, one possible choice for 𝑃𝑘 is some path of length 2 (there must remain at least
one such), and thus, deterministically,

𝑋𝑘 ≤ 𝑊𝑠 +𝑊𝑡, (2.130)

where𝑊𝑣 denotes most expensive edge out of 𝑣 (𝑊𝑣 = 𝑊 𝑣
(𝑛−1) in the notation of eq. (2.46)).

In the uniform model, eq. (2.130) means that, deterministically, 𝑋𝑘 ≤ 2. Then,

𝔼[𝑋𝑘] = ℙ(𝒜1) 𝔼[𝑋𝑘 ∣ 𝒜1] + ℙ(𝒜2) 𝔼[𝑋𝑘 ∣ 𝒜2] + ℙ(𝒜3) 𝔼[𝑋𝑘 ∣ 𝒜3]
≤ (1 − 𝑜(1)) ⋅ (1 + 𝜀)𝜇𝑘 + 𝑜(1) ⋅ (1 + 𝐶)𝜇𝑘 + 𝒪(𝑛−1.9) ⋅ 2
≤ (1 + 𝜀 + 𝑜(1))𝜇𝑘, (2.131)

since 𝜇𝑘 > ln𝑛/𝑛. As this holds for arbitrarily small 𝜀 > 0,

𝔼[𝑋𝑘] ≤ (1 + 𝑜(1))𝜇𝑘. (2.132)

For the exponential model the same argument applies, once we control 𝔼[𝑋𝑘 ∣ 𝒜3].
We make use of the following inequality. Let 𝑍 be a random variable with CDF 𝐹, and 𝒜
be an event with ℙ(𝒜) = 𝛼. Then,

𝔼[𝑍 ∣ 𝒜] ≤ 𝔼[𝑍 ∣ 𝑍 > 𝐹−1(1 − 𝛼)]. (2.133)

73



Successive shortest paths in 𝐾𝑛 with random edge weights

In the case that 𝑍 is an exponential random variable with rate 𝜆, 𝐹(𝑧) = 1 − exp(−𝜆𝑧),
so 𝐹−1(1 − 𝛼) = − ln(𝛼)/𝜆. By the memoryless property of the exponential, the RHS of
eq. (2.133) is 𝔼[𝑍] + 𝐹−1(1 − 𝛼), giving

𝔼[𝑍 ∣ 𝒜] ≤ 1 − ln(𝛼)
𝜆 . (2.134)

Recall from eq. (2.40) that𝑊𝑣 = ∑𝑛−1
𝑖=1 𝑍𝑖 where 𝑍𝑖 ∼ Exp(𝑖). Condition on the event

𝒜3, taking 𝛼 ≔ ℙ(𝒜3) = 𝒪(𝑛−1.9). By eq. (2.134),

𝔼[𝑊𝑘 ∣ 𝒜3] =
𝑛−1
∑
𝑖=1

𝔼[𝑍𝑖 ∣ 𝒜3] ≤
𝑛−1
∑
𝑖=1

1 − ln(𝛼)
𝑖 ∼ (1 − ln(𝛼)) ln𝑛 = 𝒪(ln2 𝑛). (2.135)

By eq. (2.130), eq. (2.135) and linearity of expectation,

ℙ(𝒜3) 𝔼[𝑋𝑘 ∣ 𝒜3] ≤ 𝛼𝔼[𝑊𝑠 +𝑊𝑡 ∣ 𝒜3] = 2𝛼𝒪(ln2 𝑛) = 𝒪(𝑛−1.9 ln2 𝑛), (2.136)

which is 𝑜(𝜇𝑘) since 𝜇𝑘 > ln𝑛/𝑛. Thus eq. (2.131) holds also for the exponential model
(the change to the middle line of the calculation affects nothing), whereupon so does
eq. (2.132).

2.9.2 Large 𝑘
For 𝑘 ≥ 𝑛4/10, we gather the failure events in Section 2.5. First, we have 𝑋𝑛4/10 ≤ 3𝑛4/10/𝑛
with failure probability 𝒪(𝑛−1.9), from eq. (2.51) and eq. (2.50). Then, we have to check
two types of failures: failure of eq. (2.48) to be an upper bound on eq. (2.47) (because the
edge order statistics are not as expected), and violation of eq. (2.49) (because 𝑅 fails to be
robust against the adversary).

Failure of eq. (2.48) as an upper bound is, in the uniform model, checked through vi-
olation of eq. (2.74), the paragraph after eq. (2.74) showing failure to occur w.p. at most
exp(−Ω(𝑛0.01)). Likewise, in the exponentialmodel it is checked in and following eq. (2.110),
with a failure probability of 𝒪(exp(−Ω(𝑛3/50))).

The failure probability of eq. (2.49) in the uniform model is calculated for three cases:
near eq. (2.79) as 𝑛 exp(−Ω(𝑛)), near eq. (2.81) as 𝑛 exp(−Ω(𝑛11/25)), and near eq. (2.83) as
14𝑛5/2 exp(−Ω(𝑛2/3)). The failure probability in the exponential model is also calculated
for three cases: near eq. (2.114) as 𝑛 exp(−Ω(𝑛)), near eq. (2.116) as 𝑛 exp(−Ω(𝑛1/25)), and
near eq. (2.120) 𝑛5/2 exp(−Ω(𝑛2/3)).

74



2.9 Expectation

Thus, the failure probabilities for eq. (2.48) and eq. (2.49) are all𝒪(exp(−𝑛0.01)), so the
probability of any failure affecting any 𝑘 > 𝑛4/10 is 𝒪(𝑛−1.9).

Let

𝑈1 = [0, (1 + 𝜀)𝜇𝑘)
𝑈2 = [(1 + 𝜀)𝜇𝑘,∞),

and let 𝒜𝑖 be the event that 𝑃𝑘 exists and 𝑋𝑘 ∈ 𝑈𝑖. Thus ℙ(𝒜1) = 1 − 𝑜(1) and ℙ(𝒜2) =
𝒪(𝑛−1.9).

Conditioning on the event 𝒫𝑘 that 𝑃𝑘 exists, this path clearly has cost

𝑋𝑘 ≤ 𝑍 ≔ ∑
𝑣∈𝑉(𝐺)

𝑊𝑣

(analogous to eq. (2.130)). In the uniform model, deterministically, 𝑍 ≤ 𝑛. In the expo-
nential model, the event𝒜2 here has the same probability as event𝒜3 in Section 2.9.1, so
we may reuse eq. (2.135), obtaining

𝔼[𝑍 ∣ 𝒜2] = ∑
𝑣∈𝑉(𝐺)

𝔼[𝑊𝑣 ∣ 𝒜2] = 𝑛𝒪(ln2 𝑛) = 𝑜(𝑛1.1).

Thus, in both the uniform and exponential cases,

𝔼[𝑋𝑘 ∣ 𝒫𝑘] = ℙ(𝒜1) 𝔼[𝑋𝑘 ∣ 𝒜1] + ℙ(𝒜2) 𝔼[𝑋𝑘 ∣ 𝒜2]
≤ (1 − 𝑜(1)) ⋅ (1 + 𝜀)𝜇𝑘 + 𝒪(𝑛−1.9) ⋅ 𝑜(𝑛1.1)
= (1 − 𝑜(1))(1 + 𝜀)𝜇𝑘, (2.137)

since 𝜇𝑘 > 2𝑘/𝑛 > 𝑛−6/10 = 𝜔(𝑛−0.8). As this holds for arbitrarily small 𝜀 > 0, for all
𝑘 ≥ 𝑛4/10,

𝔼[𝑋𝑘 ∣ 𝒫𝑘] ≤ (1 + 𝑜(1))𝜇𝑘, (2.138)

completing the proof.

75



Successive shortest paths in 𝐾𝑛 with random edge weights

Acknowledgements
We thankAlan Frieze andWes Pegden for an initial discussion of the second-shortest path.
We are also grateful to Alan for noticing thatminimum-cost 𝑘-flow (Remark 2.1.3) was not
an open problem but immediately implied by our other results.

76



Chapter 3

Bisection width of arbitrary 𝑑-regular
graphs

3.1 Introduction
Given a graph 𝐺 = (𝑉, 𝐸), a cut is a partition of the vertex set 𝑉 into two disjoint parts
(𝑉0, 𝑉1). A bisection is a cut where the two parts are as equal as possible, i.e. if |𝑉0| and |𝑉1|
differ by at most 1. The cut size of a cut is the number of edges 𝑒(𝑉0, 𝑉1) from 𝑉0 to 𝑉1. The
bisection width bw(𝐺) of 𝐺 is the minimum cut size among all bisections of 𝐺.

The decision problemof bisectionwidth of arbitrary graphs is known to beNP-complete
[GJS76, Theorem 1.3]. It remains NP-complete for 𝑑-regular graphs for 𝑑 ≥ 3 [BCLS87,
Section 2.2], and also for 𝑑 = 2 as in this case 𝐺 is a union of cycles (and thus bw(𝐺) ∈
{0, 2}): associatingweightswith the cycle sizes, the hardness follows from theNP-completeness
of the partition problem [GJ09, Appendix 3.2].

There are several papers on the bisection width of regular graphs. Kostochka and
Mel’nikov [KM92, Theorem 1] show that for all 𝑑, one has

bw(𝐺) ≤ (𝑑 − 2)𝑛4 + 𝒪(𝑑√𝑛 ln𝑛).

This was then improved for even 𝑑 by Monien, Preis, and Diekmann [MPD00] showing
that

bw(𝐺) ≤ (𝑑 − 2)𝑛4 + 1

for 𝑛 sufficiently large.

77



Bisection width of arbitrary 𝑑-regular graphs

Alon [Alo97] shows

bw(𝐺) ≤ (𝑑 − 3√𝑑
8√2

) 𝑛4 (3.1)

for 𝑛 sufficiently large, which gives the best asymptotic bound for large 𝑑.
For smaller 𝑑, Monien and Preis [MP06] show that for 𝑑 = 3 one has bw(𝐺) ≤ 𝑛/6 +

𝑜(𝑛), and for 𝑑 = 4 one has bw(𝐺) ≤ 2𝑛/5+𝑜(𝑛), improving on previous bounds. Stronger
bounds can be shown for random 𝑑-regular graphs, or for arbitrary 𝑑-regular graphs with
sufficiently large girth [DSW07; HW16]. As mentioned above, for 𝑑 = 2, 𝐺 is a union of
cycles and thus bw(𝐺) ∈ {0, 2}.

As the graph 𝐺 could comprise of two components of equal size and therefore have
bisection width 0, there are no lower bounds in terms of 𝑑 that apply to all graphs. How-
ever, Bollobás [Bol88, Corollary 2] shows that as 𝑑 → ∞ almost all 𝑑-regular graphs satisfy
bw(𝐺) ≥ (𝑑 − 2√ln(2)√𝑑) 𝑛

4
, showing that eq. (3.1) is optimal up to the constant of the

second order term√𝑑.
Our main result is as follows.

Theorem 3.1.1. Let 𝐺 be a 𝑑-regular graph on 𝑛 vertices. Then,

bw(𝐺) ≤

⎧⎪⎪
⎨⎪⎪
⎩

1
6𝑛 + 𝒪(√𝑛) for 𝑑 = 3,

(𝑑 − 3 + 3
𝑑 + 1)

𝑛
4 + 𝑑𝒪(√𝑛 ln𝑛) for 𝑑 ≥ 4 even,

(𝑑 − 3 + 2(𝑑 + 3)
𝑑2 + 2𝑑 + 3)

𝑛
4 + 𝒪(√𝑛 ln𝑛) for 𝑑 ≥ 5 odd.

For 𝑑 = 3, observe that we obtain the same primary term as in [MP06]. For 𝑑 = 4,
we have (𝑑 − 3 + 3/(𝑑 + 1))/4 = 2/5, so again we obtain the same leading term, but we
have an improved second order term in both cases. We improve the best known bounds
for small 𝑑 ≥ 5 (up to 𝑑 = 125), after which eq. (3.1) (from [Alo97]) is superior. The
improvement is more significant for smaller 𝑑, e.g. for 𝑑 = 5 we improve the previous
bound of (𝑑 − 2)𝑛/4 = 0.75𝑛 (from [KM92]) to 23𝑛/38 ≈ 0.605𝑛.

The proof for the 𝑑 = 3 case is a simplification of the proof given by [MP06]. The
even 𝑑 case is a simplification and generalization of the 𝑑 = 4 result in [MP06]. Our main
contribution is the 𝑑 ≥ 5, 𝑑 odd case, and developing a unifying framework.

78



3.2 Technical lemmas

3.2 Technical lemmas
In this chapter we describe technical lemmas that we later rely on. It is sufficient if the
reader familiarises themself with the statements of Lemmas 3.2.3 and 3.2.4.

Definition 3.2.1. A weighted token tree 𝑇 with maximum weight 𝑝 ≥ 1 is a tree such
that each vertex 𝑣 is equipped with +1 and −1 tokens, and assigned weight 𝑤(𝑣) with
1 ≤ 𝑤(𝑣) ≤ 𝑝. We let 𝑡+(𝑣), 𝑡−(𝑣) ∈ ℕ denote the number of +1 and −1 tokens at 𝑣
respectively. We require that the sum of the number of tokens and the degree at each
vertex does not exceed 3, i.e.

𝑡+(𝑣) + 𝑡−(𝑣) + deg(𝑣) ≤ 3. (3.2)

For a subset 𝑆 ⊂ 𝑇 we define the token sum 𝑡(𝑆) as the signed sum of all tokens in 𝑆,
i.e.

𝑡(𝑆) = ∑
𝑣∈𝑆

(𝑡+(𝑣) − 𝑡−(𝑣)).

We denote the total weight of vertices in 𝑆 as 𝑤(𝑆). We define the token density as

𝛿(𝑆) = 𝑡(𝑆)
𝑤(𝑆) ,

so that it may be negative, but we will only deal with weighted token trees with positive
density. We write 𝑡 = 𝑡(𝑇), 𝑤 = (𝑇) and 𝛿 = 𝛿(𝑇) for short.

For a graph 𝐺 = (𝑉, 𝐸) and a subset 𝑃 ⊂ 𝑉 we define the external edges of 𝑃 with
respect to 𝐺 as the edges between 𝑃 and 𝑉 ⧵ 𝑃. We let ext𝐺(𝑃) be the number of external
edges, i.e.

ext𝐺(𝑃) ≔ 𝑒(𝑃, 𝑉 ⧵ 𝑃). (3.3)

We use the shorthand ext(𝑃) if the underlying graph is clear from the context.
The following lemma will be used in proving Lemma 3.2.3, another technical lemma.

Lemma 3.2.2. Let𝑇 be aweighted token tree withmaximumweight𝑝, such that 𝛿 = 𝛿(𝑇) >
0 and 𝑝 ≤ 4/𝛿. Then, there is a set 𝑆 ⊂ 𝑉(𝑇) with 𝑤(𝑆) ≤ 20/𝛿 and

𝑡(𝑆) > ext(𝑆) = 𝑒(𝑆, 𝑇 ⧵ 𝑆).

The constant 4 in the constraint 𝑝 ≤ 4/𝛿 is in some sense arbitrary. We may replace it
by any larger positive constant at the expense of finding a larger (higher weight) set 𝑆.

79



Bisection width of arbitrary 𝑑-regular graphs

Proof. We present an algorithm to find a suitable set 𝑆. The main idea is as follows. Let
𝑒 ∈ 𝐸(𝑇) be a (carefully selected) edge and consider forming a new graph 𝑇 ′ from 𝑇 by
placing a −1 token on the vertices of 𝑒 and then removing the edge 𝑒. Then a suitable set
(for the purposes of the lemma) in either component of 𝑇 ′ is suitable in 𝑇. (In 𝑇 we may
have not counted an extra edge from 𝑆 to 𝑇 ⧵ 𝑆, but in that case we counted an extra −1
token to compensate.)

The algorithm constructs a sequence of trees 𝑇𝑖, staring with 𝑇0 ≔ 𝑇. We henceforth
write 𝑤𝑖 = 𝑤(𝑇𝑖) and 𝑡𝑖 = 𝑡(𝑇𝑖). The algorithm stops when we first have 𝑤𝑖 ≤ 20/𝛿. Each
𝑇𝑖 will have a positive token sum and density; see eq. (3.6) and the final paragraph for
confirmation.

We describe how to obtain 𝑇𝑖+1 from 𝑇𝑖. First, we find a vertex 𝑣 ∈ 𝑇𝑖, such that all (at
most 3) subtrees at 𝑣 (components if we deleted 𝑣) have weight at most 𝑤𝑖/2. Start with
any vertex 𝑣 and iterativelymove towards the subtree that has weight> 𝑤𝑖/2, if such exists.
We can never move back on an edge to a previous vertex (that would mean both sides of
the edge have weight > 𝑤𝑖/2). So the algorithm terminates, and when it does we have a
suitable 𝑣.

Let 𝐴 be the heaviest (by weight) subtree of 𝑣, and let 𝑒 be the edge from 𝑣 to 𝐴. Let
𝐵 ≔ 𝑇𝑖 ⧵ 𝐴. We have,

𝑤𝑖
2 ≥ 𝑤(𝐴) ≥ 𝑤𝑖 − 𝑝

3 ≥ 𝑤𝑖
3 − 𝑤𝑖

12 =
𝑤𝑖
4 ,

where the first inequality is by the choice of 𝑣, the second by the choice of 𝐴 (heaviest
subtree), and the last inequality follows as 𝑤𝑖 ≥ 20/𝛿 ≥ 5𝑝. As 𝑤𝑖 = 𝑤(𝐴)+𝑤(𝐵), we also
have

3𝑤𝑖
4 ≥ 𝑤𝑖(𝐵) ≥

𝑤𝑖
2 .

We let 𝑇𝑖+1 be the component (𝐴 or 𝐵) that has the higher density (i.e. “𝑡/𝑤” ratio). If
equal, we can pick either. In either case, we have

1
4𝑤𝑖 ≤ 𝑤𝑖+1 ≤

3
4𝑤𝑖. (3.4)

In 𝑇𝑖+1, we place a additional −1 token on the vertex that was part of 𝑒. (As we have
removed the edge 𝑒, there is guaranteed to be place for an extra token, i.e. eq. (3.2) is not
violated.) This is a crucial, since a suitable set in 𝑇𝑖+1 is suitable in 𝑇𝑖, and thus inductively
in 𝑇 = 𝑇0. We have

𝑡𝑖+1 ≥ 𝑤𝑖+1
𝑡𝑖
𝑤𝑖

− 1, (3.5)

80



3.2 Technical lemmas

where the first term is due to picking the denser component, and the −1 term due to in-
troducing a new −1 token. If 𝑤𝑖+1 ≤ 20/𝛿, then let 𝑆 ≔ 𝑇𝑖+1 as the output. Otherwise, we
continue. This concludes the description of the algorithm. It is clear by eq. (3.4) that the
algorithm eventually terminates.

Let 𝑘 be such that the algorithm stopped at 𝑇𝑘. In order to show that 𝑇𝑘 is suitable in
𝑇, it is sufficient to show that 𝑡𝑘 ≥ 1 (as ext𝑇𝑘(𝑇𝑘) = 0, so this implies that 𝑇𝑘 is suitable in
𝑇𝑘.). First, we inductively prove that for all 𝑖 ≤ 𝑘,

𝑡𝑖 ≥ 𝛿𝑤𝑖 − 4, (3.6)

where 𝛿 = 𝑡/𝑤. This trivially holds for 𝑖 = 0. Assuming the inductive hypothesis eq. (3.6)
up to 𝑖, we show that it holds for 𝑖 + 1. We have, by eq. (3.5), eq. (3.6) and eq. (3.4),

𝑡𝑖+1 ≥ 𝑤𝑖+1
𝑡𝑖
𝑤𝑖

− 1 ≥ 𝑤𝑖+1
𝛿𝑤𝑖 − 4
𝑤𝑖

− 1 ≥ 𝛿𝑤𝑖+1 −
3
44 − 1 = 𝛿𝑤𝑖+1 − 4. (3.7)

The algorithm stopped when we first had 𝑤𝑘 ≤ 20/𝛿. Thus 𝑤𝑘−1 > 20/𝛿 and so
by eq. (3.4) this also implies that 𝑤𝑘 ≥ 5/𝛿. Then 𝑡𝑘 ≥ 𝛿 ⋅ 5/𝛿 − 4 = 1 by eq. (3.6) and so
𝑇𝑘 is a suitable set in 𝑇.

The following lemma will be used in proving Theorem 3.1.1 for the 3-regular case,
specifically in Lemma 3.4.2. The statement is slightly stronger than that of [MP06, Lemma
1], and we draw ideas from their proof in the proof we give below. The proof we give is
simpler, but still lengthy.

Lemma 3.2.3. Let 𝐺 be a 3-regular graph on 𝑛 vertices, with each edge coloured black or
red. Let 𝑅 be the number of red edges and let 𝑅 = (1

2
+ 𝜀) 𝑛 for some 𝜀 > 0. Then, there is

a set 𝑋 ⊂ 𝑉(𝐺) of size 𝒪(1/𝜀) such that the number of red edges within 𝑋 is larger than the
number of external black edges, i.e. black edges between 𝑋 and 𝑉 ⧵ 𝑋 .

Proof. Let 𝜀 > 0. Without loss of generality, 𝜀 is sufficiently small. For sets 𝐴, 𝐵 ⊂ 𝑉(𝐺)
we define 𝑏(𝐴, 𝐵) and 𝑟(𝐴, 𝐵) respectively as the number of black and red edges between
vertices in 𝐴 and 𝐵. Let 𝑟(𝐴) = 𝑟(𝐴, 𝐴), that is, the number of red edges within A.

For a set 𝑆 ⊂ 𝑉(𝐺) we define the value of 𝑆 as

𝑣(𝑆) ≔ 𝑟(𝑆) − 𝑏(𝑆, 𝑉 ⧵ 𝑆). (3.8)

Our aim is to find a set 𝑋 ⊂ 𝑉(𝐺) of size 𝒪(1/𝜀) with 𝑣(𝑋) ≥ 1.

81



Bisection width of arbitrary 𝑑-regular graphs

Let𝐹 be the family of connected black components of𝐺, i.e. the connected components
of the subgraph induced by the black edges. (A vertex with 3 red edges out is a black
component by itself.) For 𝐼 ∈ 𝐹, we have 𝑣(𝐼) = 𝑟(𝐼) ≥ 0. We define a connected black
component 𝐼 ∈ 𝐹 to be small if it has size ≤ 2/𝜀, and large otherwise. Let 𝐹𝐿 ⊂ 𝐹 and
𝐹𝑆 ⊂ 𝐹 be the family of small and large black components respectively. We have,

|𝐹𝐿| ≤ 𝑛/(2/𝜀) = 𝜀𝑛/2. (3.9)

(By counting the number of black edges, it is easy to see that 𝜀𝑛 ≤ |𝐹𝐿| + |𝐹𝑆|. Thus using
eq. (3.9), we obtain that |𝐹𝑆| ≥ |𝐹𝐿|.)

Observe that a small component 𝐼 ∈ 𝐹𝑆 with at least one internal red edge is suitable
and so is the union of two small components connected by a red edge. These have sizes
𝒪(1/𝜀), and we henceforth assume no such black components exist. Thus every red edge
from a small component has its other endpoint in a large component.

Let us sketch the proof strategy before dwelling into details. For each large black com-
ponent 𝐼 ∈ 𝐹𝐿, we let 𝑇𝐼 be an arbitrary spanning tree of 𝐼 on black edges. We build a
weighted token tree from each 𝑇𝐼 as follows. Place a −1 token at the endpoints for each
edge 𝐸(𝐼) ⧵ 𝐸(𝑇𝐼), that is for each black edge in 𝐼 but not within the spanning tree 𝑇𝐼 . Fur-
ther, place a+1 token at each vertex with a red edge towards a small component. Consider
a set in this tree with a higher token sum than external edges. Extending it with the small
black components connected to it via red edges will give a set with a positive value. We
will use Lemma 3.2.2 to find such a set, and show that it is of suitable size.

Let 𝑆 and 𝐿 be the unions of small and large black components respectively. We now
establish a lower bound on 𝑟(𝑆, 𝐿), the number of red edges between small and large com-
ponents.

For 𝑖 ≤ 3, write 𝑏𝑖 for the number of vertices with black degree 𝑖, and write 𝑏𝑆𝑖 and 𝑏𝐿𝑖
for the number of vertices with black degree 𝑖 in 𝑆 and 𝐿 respectively. Note that 𝑏𝐿0 = 0,
as vertices without black edges are black components of size 1 and thus small. Hence
𝑏0 = 𝑏𝑆0 , and 𝑏𝑖 = 𝑏𝑆𝑖 + 𝑏𝐿𝑖 .

For a connected black component 𝐼 ∈ 𝐹, let 𝑏3(𝐼) and 𝑏1(𝐼) be the number of vertices
within 𝐼 with degrees 3 and 1 respectively. Further, define the excess 𝑑(𝐼) as

𝑑(𝐼) ≔ 2 (|𝐸(𝐼)| − |𝑉(𝐼)|) = 𝑏3(𝐼) − 𝑏1(𝐼), (3.10)

82



3.2 Technical lemmas

We have 𝑑(𝐼) ≥ −2, equality precisely when 𝐼 is a tree. Let the total excess be

𝑑 ≔ ∑
𝐼∈𝐹𝐿

𝑑(𝐼) = 𝑏𝐿3 − 𝑏𝐿1 . (3.11)

As 𝑑(𝐼) ≥ −2 for each 𝐼 ∈ 𝐹𝐿, by eq. (3.9), have

𝑑 ≥ −2|𝐹𝐿| ≥ −𝜀𝑛. (3.12)

Moreover, as red edges from small components go to large components

𝑟(𝑆, 𝐿) = 3𝑏𝑆0 + 2𝑏𝑆1 + 𝑏𝑆2 . (3.13)

Next, by assumption

2𝑅 = 𝑛 + 2𝜀𝑛 = 3𝑏0 + 2𝑏1 + 1𝑏2. (3.14)

We have 𝑛 = 𝑏3 + 𝑏2 + 𝑏1 + 𝑏0, thus from eqs. (3.11), (3.13) and (3.14),

2𝜀𝑛 = 2𝑅 − 𝑛 = 2𝑏0 + 𝑏1 − 𝑏3 ≤ 2𝑏𝑆0 + 𝑏𝑆1 − 𝑑 ≤ 2
3𝑟(𝑆, 𝐿) − 𝑑.

Hence,

𝑟(𝑆, 𝐿) ≥ 3𝜀𝑛 + 3
2𝑑. (3.15)

Recall Definition 3.2.1 of a weighted token tree. For each 𝐼 ∈ 𝐹𝐿 let 𝑇𝐼 be an arbi-
trary spanning tree of 𝐼 on black edges. We define a weighted token tree on each 𝑇𝐼 with
maximum weight

𝑝 ≔ 1 + 4/𝜀 ≤ 5/𝜀.

For each 𝑣 ∈ 𝑇𝐼 place a +1 token for each red edge it has going to a small black com-
ponent, so that the total number of +1 tokens placed is 𝑡+ = 𝑟(𝑆, 𝐿). Write 𝑡+(𝑣) for the
number of +1 tokens at 𝑣 and assign weight

𝑤(𝑣) = 1 + 𝑡+(𝑣) ⋅ (2/𝜀). (3.16)

to 𝑣. We have 𝑤(𝑣) ≤ 𝑝, as 𝑡+(𝑣) is at most 2, since 𝑣 can be joined to at most 2 red edges,
since it is in a (large) black component.

83



Bisection width of arbitrary 𝑑-regular graphs

Next, for each 𝐼 ∈ 𝐹𝐿 and for each black edge 𝑒 in 𝐼 but not in 𝑇𝐼 , place a −1 token at
both endpoints of 𝑒. The number of −1 tokens in component 𝐼 is exactly 𝑑(𝐼) + 2. Let 𝑡−
be the total number of −1 tokens, so that by eqs. (3.9) and (3.11),

𝑡− = ∑
𝐼∈𝐹𝐿

(𝑑(𝐼) + 2) = 𝑑 + 2|𝐹𝐿| ≤ 𝑑 + 𝜀𝑛. (3.17)

Consider a subset 𝑃 ⊂ 𝑉(𝐼) for some 𝐼 ∈ 𝐹𝐿 with larger token sum 𝑡(𝑃) than edges
from 𝑃 to 𝑉(𝐼) ⧵ 𝑃 in 𝑇𝐼 , i.e.

𝑡(𝑃) > ext𝑇𝐼 (𝑃). (3.18)

Note that by construction (placement of −1 tokens),

𝑡−(𝑃) + ext𝑇𝐼 (𝑃) ≥ ext𝐼(𝑃). (3.19)

Let 𝑄 be the union of 𝑃 together with all small black components connected to 𝑃 via
red edges in 𝐺. Then, by construction (eq. (3.16))

|𝑄| ≤ 𝑤(𝑃)

as for each +1 token the weight of 𝑣 was increased by 2/𝜀 and we include a small black
component of size≤ 2/𝜀. Consider the value 𝑣(𝑄). We have 𝑟(𝑄) = 𝑡+(𝑃) and 𝑏(𝑄, 𝑉⧵𝑄) =
ext𝐼(𝑃). Thus, from eq. (3.19),

𝑣(𝑄) = 𝑡+(𝑃) − ext𝐼(𝑃) ≥ 𝑡(𝑃) − ext𝑇𝐼 (𝑃) ≥ 1.

Thus it is sufficient to find a set 𝑃 as above of weight𝑤(𝑃) = 𝒪(1/𝜀) that satisfies eq. (3.18)
to finish the proof of the lemma. We find such a set using Lemma 3.2.2.

Let 𝑡 = ∑𝐼∈𝐹𝐿 𝑡(𝑇𝐼), 𝑤 = ∑𝐼∈𝐹𝐿 𝑤(𝑇𝐼) and 𝛿 = 𝑡/𝑤. We have that,

𝑡 = 𝑡+ − 𝑡−
𝑒𝑞. (3.17)
≥ 𝑟(𝑆, 𝐿) − 𝑑 − 𝜀𝑛

𝑒𝑞. (3.15)
≥ 𝑑/2 + 2𝜀𝑛

𝑒𝑞. (3.12)
≥ 𝜀𝑛. (3.20)

Using eq. (3.17) and penultimate expression above, we have that 𝑡− ≤ 2𝑡 and so 𝑡+ ≤ 3𝑡,
which in turn gives that,

𝑤 ≤ 𝑛 + 𝑡+/𝜀 ≤ 𝑛 + 3𝑡/𝜀. (3.21)

84



3.2 Technical lemmas

We can now give a bound on the token density. The last inequality will follow as the
penultimate expression is increasing in 𝑡, thus we can substitute in the last expression
from eq. (3.20) to obtain a lower bound. Thus,

𝛿 = 𝑡
𝑤 ≥ 𝑡

𝑛 + 3𝑡/𝜀 ≥
𝜀
4.

As 𝛿 is just an ‘average’, we can find a tree 𝑇 ≔ 𝑇𝐼 for some 𝐼 ∈ 𝐹𝐿 that has

𝛿(𝑇) ≥ 𝛿 ≥ 𝜀
4.

Further,
𝛿(𝑇) ≤ 𝑡+(𝑇)

𝑡+(𝑇) ⋅ 2/𝜀
= 𝜀/2 ≤ 4/𝑝.

Thus we can apply Lemma 3.2.2 to 𝑇 to obtain a set of weight 𝒪(1/𝜀) that has a higher
token sum than external black edges. Thus by the remark above we can find a suitable set
in 𝐺 whose size is at most the weight of the set found, completing the proof.

The following lemma is used in Sections 3.5 and 3.6, which contain the proof for the
cases 𝑑 ≥ 4. Specifically, we use it to obtain eq. (3.38) and eq. (3.51). The lemma is a
generalization of [MP06, Lemma 2].

Lemma 3.2.4. Let 𝛽 > 0 and 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices with maximum vertex
degree at most Δ ≥ 3 and

|𝐸|
|𝑉| = 1 + (Δ − 2)𝛽. (3.22)

Then, there exists an induced subgraph 𝑆 ⊂ 𝐺 such that it has at least |𝑆| + 1 internal edges
and |𝑆| ≤ 𝒪( ln𝑛

𝛽
) uniformly in 𝛽 (i.e. the constant implicit in 𝒪(.) does not depend on 𝛽).

Proof. Observe the following.

(W1) Without loss of generality
𝛽 > ln𝑛

𝑛 , (3.23)

or else 𝑆 ≔ 𝐺 satisfies the lemma.

(W2) Without loss of generality there are no vertices of degree 1, as deleting them in-
creases the edge to vertex ratio (|𝐸|/|𝑉|) and thus 𝛽, and we apply the lemma again
to a smaller graph. A suitable set 𝑆 in the smaller graph is trivially suitable in the
original graph 𝐺.

85



Bisection width of arbitrary 𝑑-regular graphs

(W3) Without loss of generality there are no paths of length > 1/𝛽 on degree 2 vertices.
Deleting a path of length 𝑘 > 1/𝛽 would remove 𝑘 + 1 edges and 𝑘 vertices, a ratio
of 𝑘+1

𝑘
= 1 + 1

𝑘
< 1 + 𝛽, thus in the new graph we have a higher edge to vertex ratio

(|𝐸|/|𝑉|) and thus a higher implied 𝛽. Again, we apply the lemma to the new smaller
graph to get a suitable set in the original graph.

(W4) Without loss of generality 𝐺 is connected, as we can apply the lemma to the com-
ponent with the highest |𝐸|

|𝑉 |
ratio, for which it will be higher (or equal) than it is for

𝐺.
Let 𝑑𝑖 be the number of vertices of degree 𝑖 in 𝐺. We have 𝑑1 = 0 by assumption (W2).

From eq. (3.22), we have that,

2(Δ − 2)𝛽𝑛 = 2(|𝐸| − |𝑉|) =
Δ
∑
𝑖=2
(𝑖 − 2)𝑑𝑖 ≤ (Δ − 2)(𝑛 − 𝑑2)

2𝛽𝑛 ≤ 𝑛 − 𝑑2. (3.24)

The number of degree 3 or higher vertices in 𝐺 by eqs. (3.23) and (3.24) is

𝑑≥3(𝐺) = 𝑛 − 𝑑2 ≥ 2𝛽𝑛 ≥ 2 ln𝑛. (3.25)

Next, we form a multigraph 𝐹 by contracting maximal paths on degree 2 vertices (con-
necting degree 3 or higher vertices) into a single edge. Each contracted path has length
≤ 1/𝛽 by assumption (W3). Every vertex in 𝐹 has degree at least 3. 𝐹 is non-empty
by eq. (3.25).

Consider a breadth first search (BFS) on 𝐹. Stop when we find the first cycle 𝐶. Then
𝐶 has size at most 2 log2 𝑛, since every vertex has degree ≥ 3 in 𝐹.

Consider a BFS again starting from the whole of 𝐶. Stop when we either obtain a new
cycle joined by a path to 𝐶, or a path leading back to 𝐶 (including the case when the path
is a chord in 𝐶). Again, the total length of any of these is at most 2 log2 𝑛. Let this new set
of vertices be 𝑅. Note that 𝑅 has at least |𝑅| + 1 internal edges and that |𝑅| = 𝒪(ln𝑛).

The edges in𝑅 represent either edges in𝐺 or contracted paths of length≤ 1/𝛽. Expand
the contracted paths back in into the original graph, andwe obtain a set 𝑆 of size𝒪(ln𝑛/𝛽).
This set 𝑆 now fulfils the lemma.

3.3 Method overview
In this chapter we describe the main methods used.

86



3.3 Method overview

3.3.1 Helpful sets and proof approach
Definition 3.3.1. For a cut (𝑉0, 𝑉1) of a graph 𝐺 and a set 𝑆 ⊂ 𝑉0 we define the helpfulness
of 𝑆 to be

ℎ(𝑆) = 𝑒(𝑉0, 𝑉1) − 𝑒(𝑉0 ⧵ 𝑆, 𝑉1∪̇𝑆) = 𝑒(𝑆, 𝑉1) − 𝑒(𝑆, 𝑉0 ⧵ 𝑆)

i. e. ℎ(𝑆) is the decrease in the cut size if we move 𝑆 from 𝑉0 to 𝑉1. 𝑆 is said to be helpful if
ℎ(𝑆) > 0.

When the underlying graph is not clear from the contextwewill denote the helpfulness
as ℎ𝐺(𝑆).

𝑉0

𝑆

𝑉1

Fig. 3.1 A helpful set 𝑆 of helpfulness ℎ(𝑆) = 4 − 3 = 1.

In other words, a set 𝑆 ⊂ 𝑉0 is helpful if moving the whole set to 𝑉1 decreases the cut
size. For a set 𝑆 ⊂ 𝑉0, we define themarginal helpfulness of a vertex 𝑣 with respect to 𝑆 as

ℎ(𝑣, 𝑆) = {
𝑒(𝑣, 𝑉1) − 𝑒(𝑣, 𝑉0 ⧵ 𝑆) if 𝑣 ∈ 𝑆,
0 if 𝑣 ∉ 𝑆,

(3.26)

so that ℎ(𝑆) = ∑𝑣∈𝑆 ℎ(𝑣, 𝑆) = ∑𝑣∈𝑉0 ℎ(𝑣, 𝑆).

Remark 3.3.2. Observe the following:

ℎ(𝑆) = ∑
𝑣∈𝑆

(𝑒(𝑣, 𝑉1) − 𝑒(𝑣, 𝑉0)) + 2𝑒(𝑆), (3.27)

where 𝑒(𝑆) is the number of edges within 𝐺[𝑆].

Example 3.3.3. A vertex 𝑣 ∈ 𝑉0 with 𝑒(𝑣, 𝑉1) > 𝑒(𝑣, 𝑉0) is a helpful set by itself.

87



Bisection width of arbitrary 𝑑-regular graphs

Example 3.3.4. For 𝑑 even, 𝑑 = 2ℎ, a set 𝑆 ⊂ 𝑉0 where each 𝑣 ∈ 𝑆 is incident to exactly
ℎ − 1 cut edges (and so exactly ℎ + 1 vertices in 𝑉0) is helpful if and only if it has |𝑆| + 1 or
more internal edges by eq. (3.27).

Our approach in establishing the claimed bounds on the bisection width in Theo-
rem 3.1.1 is as follows. We start with any bisection (𝑉0, 𝑉1) of 𝐺. At each step, relabelling if
necessary so that |𝑉0| ≥ |𝑉1|, we find a helpful set 𝑆 ⊂ 𝑉0, and move it to 𝑉1, decreasing the
cut size. We repeat this step while we can find a helpful set that is sufficiently small, en-
suring that the cut stays roughly balanced, as helpful set is always moved from the larger
part to the smaller one. We stop when we can no longer find a small 𝑆, but this will mean
the cut size is small.

Finally, we obtain a bisection from the current cut by naively moving vertices from the
larger side to the smaller one. Since the cut was kept roughly balanced, the cut size will
not increase too much.

3.3.2 Reversible transformations
We introduce the concept of reversible transformations. Reversible transformations trans-
form a graph 𝐺 to a new graph 𝐺′ on the same vertex set, such that helpful sets in 𝐺′

translate to helpful sets in 𝐺. This allows us continue to look for a helpful set in 𝐺′, while
gaining desirable properties of the structure of 𝐺′.

Definition 3.3.5 (Reversible transformations). Let𝐺 = (𝑉, 𝐸) be a 𝑑-regular graph with a
cut (𝑉0, 𝑉1). A reversible transformation from 𝐺 to 𝐺′ = (𝑉, 𝐸′) is obtained by deleting and
adding edges to 𝐺, such that the resulting graph 𝐺′ is 𝑑-regular.

The transformation comes equipped with: a function 𝑟 ∶ 𝒫(𝑉0) → 𝒫(𝑉0), that trans-
forms helpful sets from 𝐺′ to 𝐺; and sets 𝐼, 𝑅 ⊂ 𝑉0. Write ℎ for helpfulness in 𝐺 and ℎ′ for
helpfulness in 𝐺′ with respect to the cut (𝑉0, 𝑉1).

For all 𝑆′ ⊂ 𝑉0, writing 𝑆 = 𝑟(𝑆′) for the translation of 𝑆 from 𝐺′ to 𝐺, we require the
following properties to hold:

(P1) ℎ(𝑆) ≥ ℎ′(𝑆′),

(P2) 𝑆′ ⊂ 𝑆 ⊂ 𝑆′ ∪ 𝐼,

(P3) 𝑆 = 𝑆′ if 𝑆′ ∩ 𝑅 = ∅,

(P4) edges may only be added or deleted from 𝐺 if at least one its endpoints lies in 𝐼 or 𝑅.

88



3.3 Method overview

In other words, 𝐼 controls which vertices 𝑆′ may be enlarged with during the translation,
and 𝑅 controls when we need to change the set 𝑆′. When translating a helpful set from 𝐺′

back to 𝐺, its size may grow by at most |𝐼| (by property (P2).
The first example of a reversible transformation is given in the proof of Lemma 3.4.1.

Remark 3.3.6. In a reversible transformation, since𝐺 and𝐺′ are both 𝑑-regular, each vertex
has exactly the same number of edges deleted from it as new ones added to it. For sets 𝑆 ⊂ 𝑉0
with 𝑅 ∪ 𝐼 ⊂ 𝑆, by property (P4) this implies that ℎ(𝑆) = ℎ′(𝑆).

Further, for the reversible transformations that we will define, it will always hold that

ℎ′(𝑆′) ≤ ℎ′(𝑆) ≤ ℎ(𝑆), (3.28)

making property (P1) easier to verify. (We again wrote 𝑆 for 𝑟(𝑆′).)

Wewill sometimes define a reversible transformation by𝐺′, 𝑅 and 𝐼 sets only, in which
case we take 𝑟 to be the standard 𝑟 defined by

𝑟(𝑆′) = {
𝑆′ ∪ 𝐼 if 𝑆′ ∩ 𝑅 ≠ ∅,
𝑆′ else.

(3.29)

The standard 𝑟 clearly satisfies properties (P2) and (P3), so it will remain to check that
properties (P1) and (P4) hold. In the case that 𝑅 ⊂ 𝐼, or that 𝑅 is a singleton set, Re-
mark 3.3.6 implies that the second inequality in eq. (3.28) holds too, so it will remain to
check the first inequality in order to verify property (P1).

3.3.3 Independence and reducibility
In practice, we will apply a sequence of reversible transformations from 𝐺 eventually to
𝐺′. Say the reversible transformations are

𝐺 = 𝐺1 → 𝐺2 → … → 𝐺𝑡+1 = 𝐺′,

with the transformation from 𝐺𝑖 to 𝐺𝑖+1 described by the triplet (𝐼𝑖, 𝑅𝑖, 𝑟𝑖) for 1 ≤ 𝑖 ≤ 𝑡.
If we are given a helpful set in 𝑆′ ⊂ 𝐺′, then

𝑆 = (𝑟1 ∘ 𝑟2 ∘ … ∘ 𝑟𝑡)(𝑆′)

is a helpful set in 𝐺 by definition of 𝑟. In practice the sets 𝐼𝑖 will be small (usually 𝒪(1),
but at most 𝒪(ln𝑛)), however 𝑡 may be large. This means that our set 𝑆 may be large, as

89



Bisection width of arbitrary 𝑑-regular graphs

the only bound we have is that

|𝑆| ≤ |𝑆′| +
𝑡
∑
𝑖=1
|𝐼𝑖|. (3.30)

The bound from eq. (3.30) is insufficient for our purposes; in the following we show
that under certain conditions the size of 𝑆 is at most a multiplicative factor (depending on
max𝑖|𝐼𝑖|) more than 𝑆′.

Definition 3.3.7 (Reducibility). Let 𝐺 and 𝐺′ be 𝑑-regular graphs on the same vertex set,
and (𝑉0, 𝑉1) be a cut. We say that 𝐺 is 𝑘-reducible to 𝐺′ if for all helpful sets 𝑆′ ⊂ 𝑉0 in 𝐺′

there exists a helpful set 𝑆 ⊂ 𝑉0 in 𝐺 with |𝑆| ≤ 𝑘|𝑆′| and ℎ𝐺(𝑆) ≥ ℎ𝐺′(𝑆′).

Remark 3.3.8 (Multiplicity). Reducibility is multiplicative in the following sense. If 𝐺1 is
𝑘1-reducible to 𝐺2, and 𝐺2 is 𝑘2-reducible to 𝐺3, then 𝐺1 is (𝑘1𝑘2)-reducible to 𝐺3. Similarly
for a sequence of 𝑡 reductions.

Definition 3.3.9 (Independence of transformations). The sequence of transformations
characterised by (𝐼𝑖, 𝑅𝑖, 𝑟𝑖)

𝑡
𝑖=1 is independent if

𝐼𝑖 ∩ 𝑅𝑗 = ∅ (3.31)

holds for all 𝑖 > 𝑗.

The following lemma establishes conditions on a sequence of reversible transforma-
tions to obtain a reduction with a small constant, providing us with a more useful control
on |𝑆| than eq. (3.30).

Lemma 3.3.10. Let 𝑞 ∈ ℤ+ be a positive integer, and consider a sequence of reversible trans-
formations from 𝐺1 eventually to 𝐺𝑡+1:

𝐺1 → 𝐺2 → … → 𝐺𝑡+1.

Let the transformations be described by the triplets (𝐼𝑖, 𝑅𝑖, 𝑟𝑖)
𝑡
𝑖=1, satisfying the following:

(C1) the transformations are independent, i.e. 𝐼𝑖 ∩ 𝑅𝑗 = ∅ for all 𝑖 > 𝑗,

(C2) each 𝑣 ∈ 𝐺 is in at most 𝑞 of the sets 𝑅𝑖.

Let 𝑘 ≔ 1 +max𝑖=1…𝑡|𝐼𝑖|. Then 𝐺1 is (𝑞𝑘)-reducible to 𝐺𝑡+1.

90



3.4 The 𝑑 = 3 case

Proof. Write ℎ𝑖(⋅) for the helpfulness in 𝐺𝑖. Given a set 𝑆𝑡+1 ⊂ 𝐺𝑡+1, for 𝑗 = 1… 𝑡 let

𝑆𝑗 = (𝑟𝑗 ∘ 𝑟𝑗+1 ∘ … ∘ 𝑟𝑡)(𝑆𝑡+1), (3.32)

so that 𝑆𝑗 = 𝑟𝑗(𝑆𝑗+1). By definition of 𝑟 (property (P1) in Definition 3.3.5) we have that
ℎ𝑖(𝑆𝑖) ≥ ℎ𝑡+1(𝑆𝑡+1) for each 𝑖, so in particular ℎ1(𝑆1) ≥ ℎ𝑡+1(𝑆𝑡+1). It now remains to
show that |𝑆1| ≤ 𝑞𝑘|𝑆𝑡+1|.

The crucial element here is condition (C1) of the lemma. Suppose that for some 𝑗 we
have

𝑅𝑗 ∩ 𝑆𝑡+1 = ∅.

As for each 𝑖 > 𝑗we have 𝐼𝑖∩𝑅𝑗 = ∅ (by independence of transformations, (C1)), we have

𝑅𝑗 ∩ 𝑆𝑗+1 = ∅

by property (P2), and thus
𝑆𝑗 = 𝑆𝑗+1

by property (P3).
This, in combination with condition (C2) implies that at most 𝑞|𝑆𝑡+1| of the 𝑟𝑖 enlarge

their arguments and add vertices to 𝑆1. Each of them adds at most 𝑘 − 1 vertices by defi-
nition of 𝑘 and property (P2), implying that

|𝑆1| ≤ 𝑞𝑘|𝑆𝑡+1|.

Thus 𝐺1 is 𝑞𝑘-reducible to 𝐺𝑡+1.

3.4 The 𝑑 = 3 case
In this section we show Theorem 3.1.1 for 𝑑 = 3. Let 𝐺 be a 3-regular graph, and (𝑉0, 𝑉1)
be a cut of 𝐺. Let 𝒜 ⊂ 𝑉0 denote the set of vertices that have exactly one cut edge. The
following form helpful sets.

(H1) A vertex 𝑣 in 𝑉0 with more than 1 cut edge, then {𝑣} is a helpful set, as in Exam-
ple 3.3.3.

(H2) A path of three connected𝒜 vertices forms a helpful set of size 3.

(H3) A vertex connected to three 𝒜 vertices and one of the 𝒜 neighbours connected to
another 𝒜 vertex forms a helpful set of size 5.

91



Bisection width of arbitrary 𝑑-regular graphs

Lemma 3.4.1. Let 𝐺 be a 3-regular graph with cut (𝑉0, 𝑉1). Then either 𝐺 is 𝒪(1)-reducible
to a graph that has no connected𝒜 vertices, or we can find a helpful set of size 𝒪(1) in 𝐺.

Proof. If any of the helpful sets (H1) to (H3) described above exist, we are done. We
henceforth assume that such sets are not present. Thus each vertex has 0 or 1 cut edge
adjacent to it by (H1).

Consider 𝑥, 𝑦 ∈ 𝒜 connected by an edge. Let 𝑢 be the remaining neighbour of 𝑦 in 𝑉0,
𝑢 ∉ 𝒜 by (H2). If 𝑥𝑢 is an edge, we have a helpful set {𝑥, 𝑦, 𝑢} of helpfulness 1 and we are
done. Otherwise, by (H3) we can find a 𝑣 ∉ 𝐴 neighbour of 𝑢. Consider the transforma-
tion of deleting 𝑥𝑦 and 𝑢𝑣 edges and adding 𝑥𝑢 and 𝑦𝑣 as new edges. See Fig. 3.2.

𝑉0

𝑉1

𝒜 ∋ 𝑥 𝑦 ∈ 𝒜

𝑢 ∉ 𝒜 𝑣 ∉ 𝒜

Fig. 3.2 Transforming two connected 𝒜 vertices. New edges are shown as dotted, deleted
ones are crossed out.

As 𝑢, 𝑣 ∉ 𝒜, no new 𝒜𝒜 edge is created, and exactly one is removed. We claim the
above is a reversible transformation. Write ℎ( . ) and ℎ′( . ) for helpfulness in 𝐺 and 𝐺′

respectively. Let 𝑆′ be a set in 𝐺′. If 𝑆′ contains 0, 1, 3 or 4 of {𝑥, 𝑦, 𝑢, 𝑣} then ℎ(𝑆) = ℎ′(𝑆′).
In the same notation as of Definition 3.3.5 let

𝑅 = {𝑥, 𝑦}, 𝐼 = {𝑥, 𝑦, 𝑢},

and

𝑟(𝑆′) =
⎧⎪
⎨⎪
⎩

𝑆′ ∪ {𝑦} if 𝑥, 𝑢 ∈ 𝑆′

𝑆′ ∪ {𝑥, 𝑢} if 𝑦, 𝑣 ∈ 𝑆′

𝑆′ else.

It is easy to verify that ℎ′(𝑆′) ≤ ℎ′(𝑟(𝑆′)) ≤ ℎ(𝑟(𝑆′)) and that this describes a reversible
transformation.

Until there is an 𝒜𝒜 edge present, do the transformation described above, letting the
final graph be𝐺′. The number of𝒜𝒜 decreases by 1 after each transformation, so the pro-

92



3.4 The 𝑑 = 3 case

cess terminates or we find a helpful set, which we will show momentarily gives a helpful
set of size 𝒪(1) in 𝐺. Since initially (in 𝐺) we don’t have paths on three 𝒜 vertices, the
transformations are independent.

The conditions of Lemma 3.3.10 with 𝑞 = 1 are satisfied, so the final graph 𝐺′ has the
property that it has no𝒜𝒜 edges and 𝐺 is 3-reducible to 𝐺′. (By the same argument if we
find a helpful set while transforming the graph, the resulting helpful set in𝐺 is still of size
𝒪(1).)

Lemma 3.4.2. Let 𝐺 be a 3-regular graph, with cut (𝑉0, 𝑉1). If

𝑒(𝑉0, 𝑉1) = (1 + 𝜀)13|𝑉0|, (3.33)

for some 𝜀 > 0, then there is a helpful set of size 𝒪(1
𝜀
) in 𝑉0.

Proof. Apply Lemma 3.4.1. If we obtain a helpful set, we are done. Else relabel 𝐺 to be
𝐺′ obtained from the lemma. 𝑉0 does not have adjacent 𝒜 vertices, and every vertex is
adjacent to at most 1 cut edge, otherwise we have a helpful set.

We construct a new graph 𝐻. Form 𝐻 from 𝐺[𝑉0] by deleting all𝒜 vertices, and place
a red edge between the two neighbours in 𝑉0 of each 𝒜 vertex deleted (remember, there
are no adjacent 𝒜 vertices). See Fig. 3.3. So 𝑉(𝐻) = 𝑉0 ⧵ 𝒜.

𝑣 ∈ 𝒜

𝑥

𝑦

Fig. 3.3 We apply the above transformation for each 𝒜 vertex, resulting in graph 𝐻.

Crucially, as there are no connected 𝒜 vertices in 𝑉0, for each cut edge in 𝐺 there is a
corresponding red edge in 𝐻.

The graph 𝐻 is 3-regular, and has 𝑐 ≔ 𝑒(𝑉0, 𝑉1) red edges, the rest are black. We have,

|𝐻| = |𝑉0| − 𝑐 = (2/3 − 𝜀/3)|𝑉0|.

Hence,
𝑐 = (1 + 𝜀)13|𝑉0| =

1/3 + 𝜀/3
2/3 − 𝜀/3|𝐻| ≥ (12 +

𝜀
2) |𝐻|,

93



Bisection width of arbitrary 𝑑-regular graphs

so by Lemma 3.2.3 there is a subset 𝑆 ⊂ 𝐻 such that graph induced by 𝑆 has more internal
red edges than external black edges in 𝐻 i.e. 𝑣𝐻(𝑆) ≥ 1 (as defined in eq. (3.8)), and
|𝑆| = 𝒪(1/𝜀).

We now show how to construct a set 𝑆′ ⊂ 𝑉0 with helpfulness ℎ𝐺(𝑆′) = 𝑣𝐻(𝑆). Let
𝑆′ ⊂ 𝑉0 be the union of 𝑆 plus all adjacent𝒜 vertices in 𝐺[𝑉0]. Each external black edge of
𝑆′ in𝐻 decreases the helpfulness of 𝑆′ by one; each internal red edge of 𝑆′ (in𝐻) increases
the helpfulness by one; and each external red edge is neutral. Thus

ℎ𝐺(𝑆′) = 𝑣𝐻(𝑆) ≥ 1,

and
|𝑆′| ≤ 3|𝑆| = 𝒪(1/𝜀),

so that 𝑆′ satisfies the lemma, completing the proof.

Theorem 3.4.3. Let 𝐺 be a 3-regular graph on 𝑛 vertices. Then,

𝑏𝑤(𝐺) ≤ 1
6𝑛 + 𝒪(√𝑛).

Proof. Let (𝑉0, 𝑉1) be any bisection of 𝐺. We always relabel such that |𝑉0| ≥ |𝑉1|. Let 𝜀0 > 0
be chosen later. We apply Lemma 3.4.2 to 𝑉0 (larger part) until we can with 𝜀 ≥ 𝜀0, moving
the helpful set across to 𝑉1, decreasing the cut size in each step. We relabel if necessary,
then repeat. As the cut size decreases in each step, the process terminates. We obtain an
(unbalanced) cut (𝑉0, 𝑉1). By construction,

|𝑉0| =
𝑛
2 + 𝒪( 1𝜀0

),

𝑒(𝑉0, 𝑉1) ≤
1
3|𝑉0|(1 + 𝜀0) =

1
6𝑛 + 𝒪(𝜀0𝑛 +

1
𝜀0
).

Let 𝑅 be an arbitrary subset 𝑅 ⊂ 𝑉0 of size ⌈(|𝑉0| − |𝑉1|)/2⌉ to obtain the bisection
(𝑉 ′
0 , 𝑉 ′

1 ) = (𝑉0 ⧵ 𝑅, 𝑉1∪̇𝑅). Note that |𝑅| = 𝒪( 1
𝜀0
). Thus,

𝑒(𝑉 ′
0 , 𝑉 ′

1 ) ≤ 𝑐(𝑉0, 𝑉1) + 3|𝑅| = 1
6𝑛 + 𝒪(𝜀0𝑛 +

1
𝜀0
). (3.34)

The right hand side expression of eq. (3.34) is minimised for 𝜀0 =
1
√𝑛
, giving the bound

bw(𝐺) ≤ 1
6𝑛 + 𝒪(√𝑛).

94



3.5 The 𝑑 even, 𝑑 ≥ 4 case

3.5 The 𝑑 even, 𝑑 ≥ 4 case
In this section we show Theorem 3.1.1 for 𝑑 ≥ 4, 𝑑 even. For the whole of this section, let

𝑑 = 2ℎ.

For a 𝑑-regular graph 𝐺 equipped with a cut (𝑉0, 𝑉1), we let 𝒜,ℬ, 𝒞 ⊂ 𝑉0 denote vertices
with ℎ, ℎ − 1, and ≤ ℎ− 2 cut edges (number of edges to 𝑉1) respectively. We shall refer to
an ‘𝒜 vertex’ to mean a vertex in the set 𝒜; similarly for ℬ and 𝒞.

Lemma 3.5.1. Let 𝑑 ≥ 4 even, 𝐺 be a 𝑑-regular graph. Then, for any (𝑉0, 𝑉1) bisection of 𝐺,
there is either a helpful set of size 𝒪(ln𝑛) in 𝑉0, or there is an injective function 𝑓∶ 𝒜 → 𝒞
such that there is a path among ℬ vertices from each 𝑢 to 𝑓(𝑢). These paths are also vertex-
disjoint.

Proof. Without loss of generality all vertices are incident to at most ℎ cut edges, otherwise
they form a helpful set by themselves (Example 3.3.3). Thus all vertices are either𝒜,ℬ or
𝒞 vertices.

The following form helpful sets. We indicate the marginal helpfulness in the figures,
as defined in eq. (3.26).

(H1) Two 𝒜 vertices joined by a path on ℬ vertices, including the case of two 𝒜 vertices
joined by an edge. See Fig. 3.4.

𝒜
+1

ℬ ℬ ℬ 𝒜
+1

Fig. 3.4 The two end 𝒜 vertices contribute at least +1 while the ℬ vertices are neutral at
worst, so the helpfulness is at least 2.

(H2) An𝒜 vertex joined to a cycle ofℬ vertices on a path ofℬ vertices, including the case
of the path having length 0, so the 𝒜 vertex is in the cycle (Fig. 3.5).

𝒜
+1

ℬ ℬ
+1

ℬ ℬ

ℬℬ
𝒜
+2

ℬ ℬ

ℬℬ

Fig. 3.5 Helpfulness of at least 2.

95



Bisection width of arbitrary 𝑑-regular graphs

(H3) A 𝒞 vertex joined to ℎ + 1 𝒜 vertices (Fig. 3.6).

𝒞

𝒜

𝒜

𝒜

𝒜

𝒜

ℎ + 1

Fig. 3.6 The𝒜 vertices contribute at least ℎ+1 in total, while the 𝒞 vertex may subtract at
most ℎ − 1, giving a helpfulness of at least 2.

If there are helpful sets of the types above of size at most 2(log2 𝑛 + 2ℎ) + 1, we are
done. Henceforth we assume no such set exists.

Consider a BFS starting from all the𝒜 vertices (in parallel) traversing alongℬ vertices
only, stopping at depth log2 𝑛 + 2ℎ. The search trees are disjoint, otherwise we can form
a helpful set of type (H1); there are no cross-edges in the BFS trees, as otherwise we can
form helpful sets of type (H2).

Claim 3.5.2. All search trees are joined to at least ℎ distinct 𝒞 vertices, via paths of length at
most log2 𝑛 + 2ℎ. (These paths may not be edge disjoint.)

Proof of claim. Suppose not, so there is a search tree𝑇 that is joined to atmostℎ−1 distinct
𝒞 vertices. The tree has size at least 2, otherwise its a singleton𝒜 vertex which is joined to
ℎ 𝒞 vertices. Let 𝑘 be the number of ℬ vertices with degree 2 in 𝑇. The number of edges
from 𝑇 to 𝒞 is at least 𝑘(ℎ − 1), as each degree 2 vertex is joined to ℎ − 1 of 𝒞 vertices.
However, it is at most (ℎ − 1)2ℎ, as each 𝒞 vertex has degree 2ℎ and 𝑇 is joined to at most
ℎ − 1 of them. Hence,

𝑘(ℎ − 1) ≤ 𝑒(𝑇, 𝒞) ≤ (ℎ − 1)2ℎ,

and thus,
𝑘 ≤ 2ℎ.

This implies that all but at most 2ℎ levels have vertices with degree 2 (i.e. down degree
1), so vertices in other levels have down-degree ≥ 2 or are leaves. The BFS stops at depth
log2 𝑛+2ℎ. Thismeans theremust be a leaf 𝑣 ∈ 𝑇 that is not at depth log2 𝑛+2ℎ, otherwise
|𝑇| is larger than 𝑛. The only non-𝒞 neighbour of 𝑣 is its parent. We have that 𝑣 has ℎ − 1

96



3.5 The 𝑑 even, 𝑑 ≥ 4 case

cut edges, one edge to its parent, and thus has ℎ distinct 𝒞 vertex neighbours, which is a
contradiction. End of proof of claim.

Consider a bipartite graph with vertex classes 𝒜 and 𝒞 and an edge between two ver-
tices if there is a path on ℬ vertices of length at most log2 𝑛 + 2ℎ connecting them. By
the claim above, each 𝒜 vertex has at least ℎ neighbours. By (H3), each 𝒞 vertex has at
most ℎ neighbours. Hall’s marriage theorem [Bol98, Theorem 7, p. 77] says there is an
𝒜-saturating matching if for all 𝑋 ⊂ 𝒜 we have |Γ(𝑋)| ≥ |𝑋|. This is trivially satisfied, as
ℎ|Γ(𝑋)| ≥ 𝑒(𝑋, Γ(𝑋)) ≥ ℎ|𝑋|, thus |Γ(𝑋)| ≥ |𝑋| for all 𝑋 ⊂ 𝒜.

We let 𝑓∶ 𝒜 → 𝒞 be an 𝒜-saturating matching in the bipartite graph above, and take
the paths between 𝑢 and 𝑓(𝑢) as given by the search trees. The paths are disjoint by con-
struction.

Remark 3.5.3. Observe that given a set 𝑆 ⊂ 𝑉0, 𝑣 ∈ 𝑆 and 𝑏 ∈ ℬ such that 𝑣𝑏 is an edge,
then 𝑆′ = 𝑆 ∪ {𝑏} has ℎ(𝑆′) ≥ ℎ(𝑆). See Fig. 3.7.

𝑆
𝑆′

𝑣
+1

𝑏 ∈ ℬ
-1

Fig. 3.7 Enlarging 𝑆 by a ℬ vertex does not decrease helpfulness. Changes in marginal
helpfulness (ℎ𝑆′(𝑣) − ℎ𝑆(𝑣)) indicated. If 𝑏 has more than one edge to 𝑆, the helpfulness
actually increases.

Lemma 3.5.4. Let 𝑑 ≥ 4 even, 𝐺 be a 𝑑-regular graph and (𝑉0, 𝑉1) a bisection of 𝐺. Given
a matching 𝑓 ∶ 𝒜 → 𝒞 as in Lemma 3.5.1, there exists a 𝑑-regular graph 𝐺′ that is 𝒪(ln𝑛)-
reducible to 𝐺 and has no𝒜 vertices.

Proof. We have an injection 𝑓∶ 𝒜 → 𝒞, such that for each 𝑢 ∈ 𝒜 there are disjoint paths
𝑃𝑢 from 𝑢 to 𝑓(𝑢) on ℬ vertices.

Consider the path 𝑃𝑢 for each 𝑢 ∈ 𝐴. Let 𝑣 = 𝑓(𝑢). We can find vertices 𝑥 ∈ 𝑉1, 𝑦 ∈ 𝑉0
such that 𝑢𝑥, 𝑣𝑦 are edges and 𝑢𝑦, 𝑥𝑣 are non-edges. (This holds as 𝑢 hasmore neighbours
in 𝑉1 than 𝑣, and 𝑣 has more neighbours in 𝑉0 than 𝑢, since 𝑢 is an 𝒜 vertex and 𝑣 is a 𝒞
vertex.) See Fig. 3.8.

Consider the transformation on 𝐺 that replaces the edges 𝑢𝑥, 𝑣𝑦 (shown crossed out)
with 𝑢𝑣, 𝑣𝑥 (shown dotted). The new graph is 𝑑-regular and has exactly one fewer𝒜 vertex
than before, as 𝑢 becomes a ℬ vertex and 𝑣 can become a ℬ vertex at most.

97



Bisection width of arbitrary 𝑑-regular graphs

𝑉0

𝑉1

𝒜 ∋ 𝑢 ℬ ℬ ℬ 𝑣 ∈ 𝒞

𝑥

𝑦

Fig. 3.8 Cartoon showing the transformation of an 𝒜ℬ…ℬ𝒞 path.

We show that this a reversible transformation. Let 𝑅 = {𝑣} and 𝐼 be the vertices of path
from 𝑢 to 𝑣. We take the standard 𝑟 (eq. (3.29)), i.e.

𝑟(𝑆′) ≔ {
𝑆′ ∪ 𝐼 if 𝑣 ∈ 𝑆′,
𝑆′ else.

(3.35)

We claim that
ℎ′(𝑆′) ≤ ℎ′(𝑟(𝑆′)) ≤ ℎ(𝑟(𝑆′)).

Indeed, in the case 𝑣 ∈ 𝑆′, the first inequality can been seen by Remark 3.5.3, the second
by Remark 3.3.6. Otherwise, if 𝑣 ∉ 𝑆′, the first inequality is actually an equality, and the
second can be seen by inspection.

In any order iterate through all 𝑢–𝑓(𝑢) paths. For each path find vertices 𝑥 and 𝑦 as
above, and apply the transformation as above.

By construction, the sets 𝑅 and 𝐼 of different transformations are disjoint, and so the
transformations are independent (Definition 3.3.9). Thus, by Lemma 3.3.10 with 𝑞 = 1,
we obtain a graph 𝐺′ that is 𝒪(log𝑛) reduced from 𝐺 and has no 𝒜 vertices.

Lemma 3.5.5. Let 𝐺 be a 𝑑-regular graph on 𝑛 vertices, 𝑑 ≥ 4 even, and a (𝑉0, 𝑉1) be a cut
of 𝐺. Assume that the cut size satisfies

𝑒(𝑉0, 𝑉1) >
1
2|𝑉0| (𝑑 − 3 + 3

𝑑 + 1 + 𝜀) . (3.36)

for some 𝜀 > 0. Then, we can find a helpful set in 𝑉0 of size𝒪(
ln2 𝑛
𝜀
) uniformly in 𝜀 as 𝑛 → ∞.

Proof. We may assume 𝜀 is sufficiently small. Apply Lemma 3.5.1. If we obtain a helpful
set of size 𝒪(ln𝑛) we are done. Else, we obtain a matching 𝑓∶ 𝒜 → 𝒞 that we apply to
Lemma 3.5.4 to obtain a graph 𝐺′ that is 𝒪(ln𝑛)-reducible to 𝐺 and has no 𝒜 vertices. It
is thus sufficient to find a helpful set of size 𝒪( ln𝑛

𝜀
) in 𝐺′ to prove the lemma.

98



3.5 The 𝑑 even, 𝑑 ≥ 4 case

For 0 ≤ 𝑖 ≤ 𝑑 let 𝑋𝑖 ⊂ 𝑉0 be the vertex induced graph in 𝐺 that are incident to 𝑖 cut
edges. So 𝑋𝑖 is empty for 𝑖 ≥ ℎ (due to the transformations above). Note that the degree
of a vertex 𝑣 ∈ 𝑋ℎ−𝑖 is ℎ + 𝑖.

𝑋ℎ−1 is the subgraph induced by the ℬ vertices. A set 𝑆 ⊂ 𝑋ℎ−1 is helpful if and only
if it has |𝑆| + 1 or more internal edges. Consider the case that the following holds,

|𝐸(𝑋ℎ−1)| ≥ |𝑋ℎ−1| (1 + (ℎ − 1) 𝜀2) (3.37)

then by Lemma 3.2.4, with 𝐺 = 𝐺[𝑋ℎ−1], Δ = ℎ + 1, 𝛽 = 𝜀/2, there is a helpful set of size
𝒪( ln𝑛

𝜀
) in 𝐺 and we are done.

We assume the converse of (3.37) holds, or equivalently, the average number of edges
from a ℬ vertex to 𝒞 is at least (ℎ + 1) − 2 (1 + (ℎ − 1) 𝜀

2
) = (ℎ − 1)(1 − 𝜀). Thus,

|𝑋ℎ−1|(ℎ − 1)(1 − 𝜀) ≤ 𝑒(ℬ, 𝒞) ≤
ℎ−1
∑
𝑖=2

|𝑋ℎ−𝑖|(ℎ + 𝑖) (3.38)

We show that eq. (3.38) gives an upper bound on the cut size that contradicts eq. (3.36)
in the premise of the lemma. To this end, we reformulate as linear program with the cut
size as the objective function, subject to eq. (3.38) and∑ℎ

𝑖=0|𝑋𝑖| = |𝑉0|, so that the optimal
value of the LP is an upper bound on the cut size. Wewrite the LP in terms of the variables
𝑥𝑖 =

|𝑋𝑖|
|𝑉0|

relaxed to 𝑥𝑖 ≥ 0. The linear program is given in Fig. 3.9 and its dual in Fig. 3.10.

maximise:
ℎ
∑
𝑖=1

𝑥ℎ−𝑖(ℎ − 𝑖)

subject to:
ℎ−1
∑
𝑖=0

𝑥𝑖 = 1

𝑥ℎ−1(ℎ − 1)(1 − 𝜀) ≤
ℎ
∑
𝑖=2

𝑥ℎ−𝑖(ℎ + 𝑖)

𝑥𝑖 ≥ 0, 𝑖 = 0, … , ℎ − 1.

Fig. 3.9 Linear program relaxation subject to eq. (3.38). The objective function is maximis-
ing the cut size.

99



Bisection width of arbitrary 𝑑-regular graphs

minimise: 𝜆1
subject to: ℎ − 1 − 𝜆1 − 𝜆2(ℎ − 1)(1 − 𝜀) ≤ 0 (3.39)

ℎ − 𝑖 − 𝜆1 + 𝜆2(ℎ + 𝑖) ≤ 0, for 𝑖 = 2, … , ℎ (3.40)
𝜆2 ≥ 0.

Fig. 3.10 Dual program to Fig. 3.9

Any feasible solution to the dual gives an upper bound on the optimal value of the LP.
Let

𝜆1 ≔ ℎ − 1 − (ℎ − 1)(1 − 𝜀)
2ℎ + 1 − 𝜀(ℎ − 1), (3.41)

𝜆2 ≔
1

2ℎ + 1 − 𝜀(ℎ − 1). (3.42)

We claim this gives a feasible solution to the dual. It is clear that eq. (3.39) holds with
equality. We now check eq. (3.40) for 𝑖 = 2. As eq. (3.39) holds with equality, subtracting
it from both sides gives that it is equivalent to check that,

𝜆2(ℎ + 2 + (ℎ − 1)(1 − 𝜀)) ≤ 1,

which actually holds with equality. The LHS of eq. (3.40) decreases by 1 − 𝜆2 > 0 as 𝑖
increases by 1, so it holds for all 𝑖 ≥ 2. Thus the solution given by eqs. (3.39) and (3.40) is
feasible.

As (ℎ − 1)/(2ℎ + 1) < 1/2, we have that

𝜆1 < ℎ − 1 − ℎ − 1
2ℎ + 1 + 𝜀/2

= ℎ − 3/2 + 3/2
2ℎ + 1 + 𝜀/2

= 1
2 (𝑑 − 3 + 3

𝑑 + 1 + 𝜀) .

As the solution of the primal is at most 𝜆1, the cut size is at most 𝜆1|𝑉0|, contradicting
eq. (3.36).

Theorem 3.5.6. Let 𝐺 be a 𝑑-regular graph on 𝑛 vertices, 𝑑 ≥ 4 even. Then,

𝑏𝑤(𝐺) ≤ (𝑑 − 3 + 3
𝑑 + 1)

𝑛
4 + 𝒪(√𝑛 ln𝑛).

100



3.6 The 𝑑 odd, 𝑑 ≥ 5 case

Proof. Let (𝑉0, 𝑉1) be any bisection of 𝐺. We always relabel such that |𝑉0| ≥ |𝑉1|. Let 𝜀0 > 0
be chosen later. We apply Lemma 3.5.5 to 𝑉0 (larger part) until we can with 𝜀 ≥ 𝜀0, moving
the helpful set across to 𝑉1, decreasing the cut size in each step. We relabel if necessary,
then repeat. As the cut size decreases in each step, the process terminates. We obtain an
(unbalanced) cut (𝑉0, 𝑉1). By construction,

|𝑉0| =
𝑛
2 + 𝒪( ln

2 𝑛
𝜀0

)

𝑒(𝑉0, 𝑉1) ≤
1
2|𝑉0| (𝑑 − 3 + 3

𝑑 + 1 + 𝜀0) =
𝑛
4 (𝑑 − 3 + 3

𝑑 + 1) + 𝑑𝒪(𝜀0𝑛 +
ln2 𝑛
𝜀0

).

Let 𝑅 be an arbitrary subset 𝑅 ⊂ 𝑉0 of size ⌈(|𝑉0| − |𝑉1|)/2⌉ to obtain the balanced bisec-
tion (𝑉 ′

0 , 𝑉 ′
1 ) = (𝑉0 ⧵ 𝑅, 𝑉1∪̇𝑅). Note that |𝑅| = 𝒪( ln

2 𝑛
𝜀0
). Thus,

𝑒(𝑉 ′
0 , 𝑉 ′

1 ) ≤ 𝑒(𝑉0, 𝑉1) + 𝑑|𝑅| = (𝑑 − 3 + 3
𝑑 + 1)

𝑛
4 + 𝑑𝒪(𝜀0𝑛 +

ln2 𝑛
𝜀0

). (3.43)

The right hand side expression of eq. (3.43) isminimised for 𝜀0 =
ln𝑛
√𝑛
, giving the bound

bw(𝐺) ≤ 𝑒(𝑉 ′
0 , 𝑉 ′

1 ) ≤ (𝑑 − 3 + 3
𝑑 + 1)

𝑛
4 + 𝑑𝒪(√𝑛 ln𝑛).

3.6 The 𝑑 odd, 𝑑 ≥ 5 case
In this section we show Theorem 3.1.1 for 𝑑 ≥ 5, 𝑑 odd. For the whole of this section, let
ℎ be defined by

𝑑 = 2ℎ + 1.

If a vertex 𝑣 ∈ 𝑉0 has ℎ+1 ore more cut edges it is a helpful set by itself. We assume no
such vertices exist from now on. We denote vertices with ℎ, ℎ − 1, and ℎ − 2 cut edges as
𝒜, ℬ, and 𝒞 vertices respectively. Vertices with ≤ ℎ − 2 cut edges are denoted 𝒟, so that
𝒞 ⊂ 𝒟.

For a set 𝑆 ⊂ 𝐺 let 𝒜(𝑆) be the set 𝑆 enlarged with the 𝒜 vertices connected to it,

𝒜(𝑆) ≔ 𝑆 ∪ (Γ(𝑆) ∩ 𝒜),

101



Bisection width of arbitrary 𝑑-regular graphs

where Γ(𝑆) is the neighbourhood of 𝑆.
We further sub-classify ℬ and 𝒞 vertices by the number of 𝒜 neighbours they are in-

cident to. We let ℬ𝑖 ⊂ ℬ and 𝒞𝑖 ⊂ 𝒞 be vertices that are incident to exactly 𝑖 vertices of
type 𝒜. A ℬ4 or a 𝒞6 (or higher subscripts) vertex together with their 𝒜 neighbours form
a helpful set, so we henceforth assume no such vertices exist.

Table 3.1 below lists some properties of vertices based on classification, for later refer-
ence.

𝑣 𝑒(𝑣, 𝑉1) 𝑒(𝑣, 𝑉0 ⧵ 𝒜) 𝑒(𝑣,𝒜) ℎ(𝒜(𝑣))
𝒜 ℎ ℎ + 1 −1
ℬ3 ℎ − 1 ℎ − 1 3 0
ℬ2 ℎ − 1 ℎ 2 −1
ℬ1 ℎ − 1 ℎ + 1 1 −2
ℬ0 ℎ − 1 ℎ + 2 0 −3
𝒞3 ℎ − 2 ℎ 3 −2
𝒞2 ℎ − 2 ℎ + 1 2 −3
𝒟 ≤ ℎ − 2 ≥ ℎ + 1

Table 3.1 Properties of 𝑣 depending on its type. The rightmost column is a lower bound
on ℎ(𝐴(𝑣)).

Given a set 𝑆 ⊂ 𝑉0, 𝑣 ∈ 𝑆 with 𝑣 ∉ 𝒜, 𝑏 ∈ 𝑉0 ⧵ 𝑆 with 𝑏 ∈ ℬ1 such that 𝑣𝑏 is an edge,
then 𝑆′ = 𝑆 ∪ 𝒜(𝑏) has ℎ(𝑆′) ≥ ℎ(𝑆). See Fig. 3.11.

𝑆
𝑆′

𝑣
+1

𝑏 ∈ ℬ1

-1
𝒜
+0

Fig. 3.11 Enlarging 𝑆 by a ℬ1 vertex and its 𝒜 neighbour does not decrease helpfulness.
Changes in marginal helpfulness (ℎ(𝑣, 𝑆) − ℎ(𝑣, 𝑆′)) shown in red.

If 𝑏 is joined to 𝑆 by more than one edge, the helpfulness actually increases. If the
𝒜 vertex is in 𝑆, the helpfulness increases. If 𝑣 and the 𝒜 vertex were to coincide, the
helpfulness may actually decrease, but we’ve specified 𝑣 ∉ 𝒜, so this does not happen.
We use this observation (and ones similar to it, see Remark 3.6.2) in showing that some
transformations are reversible.

102



3.6 The 𝑑 odd, 𝑑 ≥ 5 case

3.6.1 Reduction
For a vertex 𝑥 ∈ 𝐵2 we define 𝑃(𝑥) as the number of paths that start from 𝑥 and terminate
in a𝒟 vertex, such that the intermediate vertices are all inℬ1∪ℬ2, and the path has length
at most 2 log2 𝑛.

Lemma 3.6.1. There is either a helpful set in 𝐺 of size 𝒪(log𝑛) or we can 𝒪(log𝑛)-reduce
𝐺 to a graph 𝐺′ such that the following structures are not present in 𝐺′:

1. 𝒜𝒜 edges,

2. ℬ2ℬ2 edges,

3. ℬ3 vertices,

4. 𝒞5 vertices.

Further, it holds that,
𝑃 ≔ ∑

𝑥∈ℬ2

𝑃(𝑥) ≥ ℎ|ℬ2| + 𝑒(ℬ2, ℬ1). (3.44)

Proof. We make a series of reductions for each structure listed, while making sure that
we do not recreate a type of structure we have already removed. We deal with each listed
forbidden structure in its dedicated subsection.

Transforming𝒜𝒜 edges

In this subsection we reduce the graph so that it does not contain 𝒜𝒜 edges (i.e. two 𝒜
vertices connected by an edge). Let 𝐹 be the collection of all 𝒜𝒜 edges, represented as
an ordered pair. Consider an element (𝑥, 𝑦) ∈ 𝐹, so that 𝑥𝑦 is an 𝒜𝒜 edge. Then 𝑦 has
ℎ edges left going to other (non-𝑥) vertices in 𝑉0. Any vertex in 𝑉0 can be connected to at
most ℎ edges connecting two𝒜 vertices, otherwise we can find a helpful set of size at most
1 + 2(ℎ + 1).

Thus, by Hall’s marriage theorem, we can assign a unique neighbour 𝑢 ≠ 𝑥 of 𝑦 for
all (𝑥, 𝑦) ∈ 𝐹. Extend the elements of 𝐹 into triplets by their assigned neighbour 𝑢. The
elements of 𝐹 are thus disjoint by construction. If 𝑢 ∈ 𝒜∪ℬ3, we can form a helpful set of
size at most 5, and we are done. By definition 𝑢 ∉ ℬ0 (as 𝑢 is attached to 𝑦, an 𝒜 vertex),
thus either 𝑢 ∈ ℬ1 ∪ ℬ2, or 𝑢 ∈ 𝒟:

• Case: 𝑢 ∈ ℬ1 ∪ ℬ2. See Fig. 3.12a. We can find a vertex 𝑣 that is adjacent to 𝑢 but
not to 𝑦, as 𝑢 has a higher degree in 𝑉0 than 𝑦. If 𝑢 ∈ ℬ2 and 𝑥𝑢 is an edge, then
{𝑥, 𝑦, 𝑢} is helpful set of size 3, and we are done. If 𝑢 ∈ ℬ1, then 𝑥𝑢 is not an edge by

103



Bisection width of arbitrary 𝑑-regular graphs

definition. Consider the transformation that replaces edges 𝑥𝑦 and 𝑢𝑣 with 𝑥𝑢 and
𝑦𝑣, as depicted in Fig. 3.12a. Let 𝐼 = 𝑅 = {𝑥, 𝑦, 𝑢} and

𝑟(𝑆′) =
⎧⎪
⎨⎪
⎩

𝑆′ ∪ {𝑦} if 𝑥, 𝑢 ∈ 𝑆′,
𝑆′ ∪ {𝑥, 𝑢} if 𝑦, 𝑣 ∈ 𝑆′,
𝑆′ else.

It is easy to verify that this defines a reversible transformation. (Recall Remark 3.3.6.)

• Case: 𝑢 ∉ ℬ. See Fig. 3.12b. We can find a neighbour 𝑣 of 𝑢 that is not adjacent to 𝑦,
as 𝑢 has a higher degree in 𝑉0. Similarly, we can find a neighbour𝑤 ∈ 𝑉1 of 𝑦, that is
not adjacent to 𝑢. Consider the transformation that replaces edges 𝑦𝑤 and 𝑢𝑣 with
𝑦𝑣 and 𝑤𝑢, as depicted in Fig. 3.12b. Let 𝐼 = {𝑥, 𝑦}, 𝑅 = {𝑢} and

𝑟(𝑆′) = {
𝑆′ ∪ {𝑥, 𝑦} if 𝑢 ∈ 𝑆′,
𝑆′ else.

It is straightforward to verify that this defines a reversible transformation.

Observe that both transformations in Fig. 3.12 reduce the number of 𝒜𝒜 edges by ex-
actly one. In any order, for each triplet {𝑥, 𝑦, 𝑢} ∈ 𝐹, apply the appropriate transformation.

The triples {𝑥, 𝑦, 𝑢} ∈ 𝐹 are disjoint by construction, and in both transformations𝑅, 𝐼 ⊂
{𝑥, 𝑦, 𝑢}, so the transformations are independent (Definition 3.3.9), thus the conditions of
Lemma 3.3.10 are satisfied with 𝑞 = 1. Thus, 𝐺 is 𝒪(1) reducible to the new graph we’ve
just formed, which is without 𝒜𝒜 edges.

𝒜 ∋ 𝑥 𝑦 ∈ 𝒜

𝑢 ∈ ℬ1 ∪ ℬ2 𝑣

(a)

𝑉0

𝑉1

𝒜 ∋ 𝑥
𝑦 ∈ 𝒜

𝑢 ∈ 𝒟

𝑤

𝑣

(b)

Fig. 3.12 Transforming an 𝒜𝒜 edge

104



3.6 The 𝑑 odd, 𝑑 ≥ 5 case

Transforming ℬ2ℬ2 edges

We show how to transform the graph to eliminate two ℬ2 vertices connected by an edge,
while not creating a new 𝒜𝒜 edge.

If there is a path on three ℬ2 vertices, along with their 𝒜 neighbours, they form a
helpful set of size 9. Assume such paths don’t exist, otherwise we are done.

Let 𝑥𝑦 be an edge with 𝑥, 𝑦 ∈ ℬ2. If any of the 𝒜 neighbours are shared, we have a
helpful set of size at most 5. Let 𝑢 be any 𝒜 neighbour of 𝑦. Then 𝑢 has a neighbour 𝑣
that is not adjacent to 𝑦. (As 𝑢 has ℎ remaining edges to 𝑉0 and 𝑦 has ℎ − 1.) See Fig. 3.13.
If 𝑣 ∈ ℬ3, then {𝑥, 𝑦, 𝑢, 𝑣} and their 𝒜 neighbours form a helpful set. Further, 𝑢𝑥 is a
non-edge, otherwise {𝑥, 𝑦, 𝑢} and their 𝒜 neighbours form a helpful set. Consider the
transformation as depicted in Fig. 3.13, i.e. replace edges 𝑥𝑦 and 𝑢𝑣 with 𝑥𝑢 and 𝑦𝑣. Thus
𝑥 becomes an ℬ3 vertex and 𝑦 remains a ℬ2 vertex. Note that 𝑣 can not become an ℬ2
vertex, thus no new ℬ2ℬ2 edges are created. Also note that no new 𝒜𝒜 edges can be
formed.

ℬ2 ∋ 𝑥 𝑦 ∈ ℬ2

𝒜

𝒜

𝑢 ∈ 𝒜

𝒜

𝑣

Fig. 3.13 Transformation of a ℬ2ℬ2 edge 𝑥𝑦, vertex 𝑥 becomes ℬ3 while 𝑦 stays ℬ2.

Let 𝑅 = {𝑥, 𝑦}, 𝐼 = 𝒜(𝑥) ∪ 𝒜(𝑦) and

𝑟(𝑆′) ≔
⎧⎪
⎨⎪
⎩

𝑆′ ∪ {𝑢} ∪ 𝒜(𝑥) if 𝑣, 𝑦 ∈ 𝑆′,
𝑆′ ∪ 𝒜(𝑦) if 𝑢, 𝑥 ∈ 𝑆′,
𝑆′ else.

It is straightforward to verify this defines a reversible transformation. In any order, we
apply the above transformation to all such {𝑥, 𝑦} pairs ofℬ2ℬ2 edges. Since initially there
are are no ℬ2ℬ2ℬ2 paths, the transformations are independent. (As 𝐼 is a subset of 𝒜
vertices, and 𝑅 is a subset of ℬ vertices, and these classification do not change.) So the
conditions of Lemma 3.3.10 are satisfied, and we obtain a graph without ℬ2ℬ2 and 𝒜𝒜
edges. The reduction is of order 𝒪(1).

105



Bisection width of arbitrary 𝑑-regular graphs

Transforming ℬ3 vertices

In this section we make a 𝒪(1)-reduction to a graph that is withoutℬ3 vertices, while not
creating𝒜𝒜 nor ℬ2ℬ2 edges.

Remark 3.6.2. Aℬ3 vertex along with its𝒜 neighbours is 0-helpful. If aℬ3 vertex is joined
to aℬ2 vertex, then together (with their𝒜 neighbours) they form a helpful set. However, if one
of the 𝒜 neighbours of the ℬ3 vertex is joined to an ℬ2 vertex, then together (plus 𝒜 vertices)
they still only form a 0-helpful set.

In the future, when we say a set forms a helpful set, we implicitly include all their 𝒜
neighbours. We will at times omit the calculation of the helpfulness of a set. Usually the
easiest way is to look at the marginal contributions of adding each vertex, however we have
to be careful: when extending a set, a ℬ1 vertex when attached via a non-𝒜 vertex does not
change helpfulness (as in Fig. 3.11), a ℬ2 vertex increases it by one. When attached via an
𝒜 vertex, a ℬ1 vertex decreases the helpfulness by one, whereas a ℬ2 does not change the
helpfulness.

A path of type ℬ3𝒜ℬ3 (along with 𝒜 neighbours) is helpful, so assume no such paths
exist. Let 𝐹 be a maximal set of independent ℬ3𝒜 edges represented as an ordered pair
where the first element is the ℬ3 vertex. As there are no paths ℬ3𝒜ℬ3 each ℬ3 vertex is
present exactly once. (Equivalently, we assign an arbitrary𝒜 neighbour to eachℬ3 vertex.)

Consider an element (𝑥, 𝑎) ∈ 𝐹, 𝑥 ∈ ℬ3, 𝑎 ∈ 𝒜 and let 𝑦 ≠ 𝑥 be a neighbour of vertex
𝑎. If 𝑦 ∈ 𝒞5, then {𝑥, 𝑎, 𝑦}, along with their 𝒜 neighbours, forms a helpful set. As there
are no 𝒜𝒜 edges, we have that 𝑦 ∉ 𝒜 ∪ ℬ3 ∪ 𝒞5.

Consider the case 𝑦 ∈ 𝒟. We can find a neighbour 𝑤 ∈ 𝑉1 of 𝑎 that is not attached to
𝑦, as 𝑎 has more edges to 𝑉1 than 𝑦. Similary, we can find a neighbour 𝑣 ∈ 𝑉0 that is not
connected to 𝑎. See Fig. 3.14. We claim that transformation that replaces edges 𝑣𝑦 and 𝑎𝑤
with 𝑎𝑣 and 𝑦𝑤 is reversible. Depending on 𝑦, we make the following choices with regard
to 𝑣:

• If 𝑦 ∈ 𝒞3 ∪ 𝒞4, we let 𝑣 be an 𝒜 neighbour of 𝑦. This is not adjacent to 𝑎, as there
are no𝒜𝒜 edges. If 𝑦 ∈ 𝒞4, then 𝑦 does not have aℬ2 neighbour, otherwise we can
form a helpful set. If 𝑦 ∈ 𝒞3 it becomes a ℬ1, if 𝑦 ∈ 𝒞4, it becomes a ℬ2 after the
transformation. In either case, no ℬ2ℬ2 edge can be created.

• Else, we let 𝑣 be any neighbour of 𝑦 such that 𝑎𝑣 is not an edge. Such a vertex exists,
as 𝑦 has more neighbours left in 𝑉0 than 𝑎. In this case 𝑦 becomes an ℬ0 or a ℬ1
vertex.

106



3.6 The 𝑑 odd, 𝑑 ≥ 5 case

ℬ3 ∋ 𝑥 𝑎 ∈ 𝒜 𝑦 ∈ 𝒟

𝑤

𝑣

𝑉0

𝑉1

Fig. 3.14 Transforming the 𝒜 vertex 𝑎 to a ℬ0 (or ℬ1 if 𝑣 ∈ 𝐴), so that 𝑥 becomes ℬ2,
whereas 𝑦may become a ℬ2 at most.

In either case no ℬ2ℬ2 nor 𝒜𝒜 edge is created. Let

𝑅 = {𝑦}

and
𝐼 = 𝒜(𝑥)

(note that 𝑥, 𝑎 ∈ 𝐼), and we take the standard 𝑟 (eq. (3.29)). It is straightforward to verify
this is a reversible transformation.

Iterate over all pairs in 𝐹 and do as follows. For a pairℬ3𝒜, if the𝒜 vertex is attached
to a vertex 𝑦 ∈ 𝒟, then apply the above transformation and remove the pair from 𝐹. If we
can’t find such a vertex 𝑦, move on to the next pair.

In the transformation, the vertex 𝑎 becomes a ℬ vertex, whereas the 𝑦 vertex gains a
cut edge, so a vertex may be a “𝑦 vertex” at most ℎ times (after that its a helpful set on
its own). As 𝑅 is always a 𝒟 vertex, it is trivial that the transformations are independent.
Thus, we can apply Lemma 3.3.10 with 𝑞 = ℎ, giving a 𝒪(1) reduction.

For theℬ3𝐴 edges that remain in 𝐹, it is crucial that now none of them are attached to
vertices such as 𝑦, i.e.𝒟 vertices. (If theℬ3𝒜 edge is not attached to a𝒟 vertex at time we
consider it, it cannot gain a𝒟 neighbour in later transformations.) Thus, in the remaining
pairs the 𝒜 vertex 𝑎 only has neighbours in ℬ1 and ℬ2.

Consider the case that 𝑦 ∈ ℬ1 and 𝑦 has no neighbours in ℬ2. Let 𝑣 be a neighbour of
𝑥 that is not connected to 𝑦, and 𝑢 be a non-𝒜 neighbour of 𝑦 that is not connected to 𝑥.
See Fig. 3.15. Consider the transformation that replaces 𝑥𝑣 and 𝑦𝑢 with 𝑣𝑦 and 𝑥𝑢. Since
𝑦 has no ℬ2 neighbours, this does not create a new ℬ2ℬ2 edge.

107



Bisection width of arbitrary 𝑑-regular graphs

ℬ3 ∋ 𝑥 𝐴 𝑦 ∈ ℬ1

𝑣 ∈ 𝐴

𝑢 ∉ 𝐴
𝑉0

Fig. 3.15ℬ3 changes to aℬ2, whereas 𝑦 gains an𝒜 neighbour and becomesℬ2. However,
no ℬ2ℬ2 edge created as 𝑦 did not have any ℬ2 neighbours.

It is straightforward to verity that this is a reversible transformation by

𝑅 = {𝑥, 𝑦}, 𝐼 = 𝒜(𝑥) ∪ 𝒜(𝑦),

and the standard 𝑟 (eq. (3.29)). Again, go through all pairs in 𝐹 and if applicable do the
transformation above and delete the pair from 𝐹. Again, the transformations are indepen-
dent, so this is a 𝒪(1) reduction.

Now, paths ℬ3𝒜𝒟, and paths ℬ3𝒜ℬ1 which are not adjacent to ℬ2s have been trans-
formed. Thus, all ordered pairs (edges) that remain in 𝐹 can be continued as a path in one
of the two following ways:

• ℬ3𝒜ℬ2 or,

• ℬ3𝒜ℬ1ℬ2.

Extend each pair in 𝐹 to a path as above. Note that both these paths are 0-helpful. The
paths are vertex disjoint, otherwise we can form a helpful set. Moreover, there is no edge
between any of these paths, otherwise we could form a helpful set.

We will apply a transformation to these paths that are very similar to the ones applied
to theℬ3𝒜 edges. They are in effect the same with the change that there is aℬ2 vertex (or
a ℬ1 and a ℬ2) in the middle.

Consider aℬ3𝒜ℬ2 path and a neighbour of theℬ2 vertex, so let 𝑥 ∈ ℬ3, 𝑎 ∈ 𝒜, 𝑦 ∈ ℬ2
and 𝑧 a neighbour of 𝑦, so that 𝑥𝑎𝑦𝑧 is a path in 𝑉0. Then 𝑧 ∈ 𝒟 or 𝑧 ∈ ℬ0∪ℬ1, otherwise
we can form a helpful set. If 𝑧 ∈ 𝒞4 ∪ 𝒞5, again, we can form a helpful set, so assume
otherwise.

Consider the case that 𝑧 ∈ 𝒟. We can find a neighbour 𝑢 ∈ 𝑉1 of 𝑎 that is not attached
to 𝑧, as 𝑎 has more edges to 𝑉1 than 𝑧. Similary, we can find a neighbour 𝑣 ∈ 𝑉0 that is
not connected to 𝑎. See Fig. 3.16. Consider the transformation that replaces edges 𝑎𝑤 and
𝑧𝑣 with 𝑎𝑣 and 𝑧𝑤. If 𝑧 ∈ 𝒞3, we choose 𝑣 to be an 𝒜 vertex, so that 𝑧 becomes ℬ1. This

108



3.6 The 𝑑 odd, 𝑑 ≥ 5 case

transformation does not create a new ℬ2ℬ2 edge, and removes exactly one ℬ3 vertex. Let

𝑅 = {𝑧},

and
𝐼 = 𝒜(𝑦) ∪ 𝒜(𝑥)

note that 𝑎 ∈ 𝐼, and we take the standard (eq. (3.29)) 𝑟. It is easy to verify this defines a
reversible transformation.

ℬ3 ∋ 𝑥 𝑎 ∈ 𝒜 𝑦 ∈ ℬ2 𝑧 ∈ 𝒟

𝑤

𝑣

𝑉0

𝑉1

Fig. 3.16 Transforming 𝑥 into a ℬ2, as 𝑎 becomes ℬ, whereas 𝑧 gains a cut edge.

We canmake the same transformation for the pathsℬ3𝒜ℬ1ℬ2 in 𝐹, by also adding the
ℬ1 vertex (between 𝑎 and 𝑦) to the set 𝐼.

As before, iterate through all paths in 𝐹. If we can continue a path with a 𝑧 ∈ 𝒟 as
above, then apply the above transformation. As before, the transformations are indepen-
dent and so by Lemma 3.3.10 this is a𝒪(1) reduction. Remove the transformed paths from
𝐹.

Now the paths in 𝐹 (either of type ℬ3𝒜ℬ2 or ℬ3𝒜ℬ1ℬ2) can only be continued by a
vertex 𝑧 ∈ ℬ0 ∪ ℬ1.

Still considering aℬ3𝒜ℬ2 path from 𝐹, consider the case 𝑧 ∈ ℬ0. Then, let 𝑤 be an𝒜
neighbour of 𝑥 that is not connected to 𝑧, and let 𝑣 be a neighbour of 𝑧 (𝑣 ∉ 𝒜 as 𝑧 ∈ ℬ0),
that is not connected to 𝑥. See Fig. 3.17. Consider the transformation that replaces 𝑥𝑤
and 𝑧𝑣 with 𝑥𝑣 and 𝑧𝑤. Then 𝑥 becomes ℬ2 and 𝑧 becomes ℬ1.

109



Bisection width of arbitrary 𝑑-regular graphs

ℬ3 ∋ 𝑥 𝑎 ∈ 𝒜 𝑦 ∈ ℬ2 𝑧 ∈ ℬ0

𝑢 ∈ 𝒜

𝑣 ∉ 𝒜

𝑉0

Fig. 3.17 Transforming 𝑥 into a ℬ2, while 𝑧 gains an 𝒜 neighbour.

Let
𝑅 = {𝑥, 𝑧},

𝐼 = 𝒜(𝑥) ∪ {𝑎} ∪ 𝒜(𝑦) ∪ {𝑧},

and we take the standard 𝑟. It is straightforward to verify this gives a reversible transfor-
mation. A similar transformation can be defined for paths of type ℬ3𝒜ℬ1ℬ2 in 𝐹 that
transforms the ℬ3 to a ℬ2 vertex.

Again, iterate over all paths in 𝐹, and if applicable apply the above transformation.
The transformations are independent, and by Lemma 3.3.10 this gives a 𝒪(1) reduction.
Remove the transformed paths from 𝐹.

Now, each element in 𝐹 can be continued as

• ℬ3𝒜ℬ2ℬ1 or

• ℬ3𝒜ℬ1ℬ2ℬ1.

As before, these paths are disjoint, and there are no edges between them (otherwise, we
can form a helpful set). Consider the first case. Let 𝑥𝑎𝑦1𝑦2 be aℬ3𝒜ℬ2ℬ1 path, so 𝑥 ∈ ℬ3,
𝑎 ∈ 𝒜, 𝑦1 ∈ ℬ2 and 𝑦2 ∈ ℬ1. Extend to path by a neighbour of 𝑦2, say 𝑧. If 𝑧 ∈ ℬ2 ∪ 𝐶4
we are done, as the path forms a helpful set.

Consider the case 𝑧 ∈ 𝒟. See Fig. 3.18. We can find a neighbour 𝑤 ∈ 𝑉1 of 𝑎 that
is not attached to 𝑧, as 𝑎 has more edges to 𝑉1 than 𝑧. Similary, we can find a neighbour
𝑣 ∈ 𝑉0 that is not connected to 𝑎. Consider the transformation that replaces edges 𝑎𝑤 and
𝑣𝑧 with 𝑎𝑣 and 𝑧𝑤. If 𝑧 ∈ 𝐶3, then it is not adjacent to a ℬ2 else we can form a helpful
set. If 𝑧 ∈ 𝒞2 we let 𝑣 be an 𝒜 neighbour of 𝑧, so that no ℬ2ℬ2 edge may be created (as 𝑧
becomes a ℬ1). Let

𝑅 = {𝑧}

and
𝐼 = 𝒜({𝑦2, 𝑦1, 𝑎})

110



3.6 The 𝑑 odd, 𝑑 ≥ 5 case

and we take the standard 𝑟. It is straightforward to verify this gives a reversible transfor-
mation.

As before, similar transformation for paths ℬ3𝒜ℬ1ℬ2ℬ1 that transforms the ℬ3 to a
ℬ2 vertex can be defined.

ℬ3 ∋ 𝑥 𝑎 ∈ 𝒜 𝑦1 ∈ ℬ2 𝑦2 ∈ ℬ1 𝑧 ∈ 𝒟

𝑤

𝑣

𝑉0

𝑉1

Fig. 3.18 Transforming 𝑥 into a ℬ2, as 𝑎 becomes ℬ, whereas 𝑧 gains a cut edge.

Again, iterate through all paths in 𝐹, and if applicable apply the above transforma-
tions. The transformations are independent, thus this is a 𝒪(1) reduction. Remove the
transformed paths from 𝐹.

It remains to deal with the cases 𝑧 ∈ ℬ0 and 𝑧 ∈ ℬ1. If 𝑧 ∈ ℬ1 then it is not at-
tached to any ℬ2 vertices, otherwise we can form a helpful set. Consider the following
transformation.

ℬ3 ∋ 𝑥 𝑎 ∈ 𝒜 𝑦1 ∈ ℬ2 𝑦2 ∈ ℬ1 𝑧 ∈ ℬ0 ∪ ℬ1

𝑢 ∈ 𝒜

𝑣 ∉ 𝒜

𝑉0

Fig. 3.19 Transforming 𝑥 into a ℬ2, while 𝑧 gains an 𝒜 neighbour.

In the case 𝑧 ∈ ℬ1 it was not attached to a ℬ2 vertex, so no ℬ2ℬ2 may be created. Let

𝑅 = {𝑥, 𝑧},

𝐼 = 𝒜({𝑥}) ∪ {𝑎} ∪ 𝒜({𝑦1}) ∪ 𝒜({𝑦2}) ∪ {𝑧},

and we take the standard 𝑟. It is straightforward that this defines a reversible transforma-
tion. As before, similar transformation for pathsℬ3𝒜ℬ1ℬ2ℬ1 that transforms theℬ3 to a

111



Bisection width of arbitrary 𝑑-regular graphs

ℬ2 vertex can be defined. Iterate through all paths in 𝐹, and apply the above transforma-
tion. As before, this is a 𝒪(1) reduction, and now we have no ℬ3 vertices left.

Transforming 𝒞5 vertices

The transformation described in Section 3.6.1 holds verbatim if we replace ℬ3 with 𝒞5.
(This holds as a 𝒞5 and a ℬ3 together with their 𝒜 neighbours are both 0-helpful.) For
𝑑 = 5, a 𝒞5 vertex only has 𝒜 neighbours. This is the reason we transformed the ℬ3
vertices “through” their 𝒜 neighbours, so that we can apply the same transformations to
𝒞5.

Bound on 𝑃

Consider a path ℬ2ℬ𝑘
1ℬ0, i.e. a path starting from a 𝑥 ∈ ℬ2 vertex followed by vertices

{𝑏𝑖}𝑘𝑖=1 with 𝑏𝑖 ∈ ℬ1, and terminating in a 𝑦 ∈ ℬ0 vertex. Let 𝑣 ∈ 𝒜 be an arbitrary
𝒜 neighbour of 𝑥 and 𝑢 be a neighbour of 𝑦 that is not joined to 𝑥. See Fig. 3.20. We
claim that the transformation of replacing the edges 𝑥𝑣 and 𝑦𝑢 by 𝑥𝑢 and 𝑦𝑣 is a reversible
transformation. Let

𝑅 = {𝑥, 𝑦}

and

𝐼 = 𝒜(𝑥) ∪
𝑘

⋃
𝑖=1

𝒜(𝑏𝑖) ∪ 𝒜(𝑦),

and 𝑟 be the standard choice. We have |𝐼| = 𝒪(𝑘). Observe that this remains a reversible
transformation if any of the intermediate vertices 𝑏𝑖 are in ℬ2 instead of ℬ1. (If at least
two of them are in fact in ℬ2, then could form a helpful set.)

𝑘

ℬ2 ∋ 𝑥
𝑏1 ∈ ℬ1 ℬ1

𝑏𝑘 ∈ ℬ1
𝑦 ∈ ℬ0

𝑣 ∈ 𝒜

𝒜
𝑢

Fig. 3.20 Transforming 𝑥 and 𝑦 into ℬ1 vertices

The transformation changes both 𝑥 and 𝑦 into aℬ1 vertex, nothing else changes types.

112



3.6 The 𝑑 odd, 𝑑 ≥ 5 case

Consider a maximal set of independent ℬ2ℬ0 edges. In any order, we apply the trans-
formation above to them. The transformations are independent, thus this gives a 𝒪(1)
reduction. Further, there are noℬ2ℬ0 edges left. Next, consider a maximal set ofℬ2ℬ1ℬ0
paths whose first and last vertices are independent (i.e. the paths may only share interme-
diate vertices). Again, in any order apply the transformation above to them. This gives a
𝒪(𝑘) reduction, and there are no ℬ2ℬ0 edges or ℬ2ℬ1ℬ0 paths left.

Definition 3.6.3. A ℬ2–ℬ0 path is a path from ℬ2 vertex to a ℬ0 vertex, where all inter-
mediate vertices are ℬ2 or ℬ1, of length at most 2 log2 𝑛.

Definition 3.6.4. Aℬ2–𝒟 path is a path fromℬ2 vertex to a𝒟 vertex, where all interme-
diate vertices are ℬ2 or ℬ1, of length at most 2 log2 𝑛.

Recall that for a vertex 𝑥 ∈ ℬ2, 𝑃(𝑥) counts the number of ℬ2–𝒟 paths starting from
𝑥. We will transform (reduce) to a graph such that for all 𝑥 ∈ ℬ2,

𝑃(𝑥) ≥ ℎ + 𝑒(𝑣,ℬ1). (3.45)

and it is then immediate that eq. (3.44) holds.
As there are noℬ2ℬ0 edges, it is sufficient to show that eachℬ2ℬ1 edge can be contin-

ued into two distinct ℬ2–𝒟 paths. (As a ℬ2 vertex has ℎ non-𝒜 neighbours, and they all
go to a𝒟 or a ℬ1 vertex, as there are no ℬ2ℬ0 edges.)

Claim 3.6.5. Let 𝑥𝑦 be an ℬ2ℬ1 edge, 𝑥 ∈ ℬ2, 𝑦 ∈ ℬ0. Then, 𝑥𝑦 can be continued to a
ℬ2–𝒟 path in 2 ways, or into asℬ2–ℬ0 in 2 ways ending in distinctℬ0s.

The proof is similar to that of Lemma 3.5.1. This claim would be false had we not
removed (transformed) ℬ2ℬ≤1

1 ℬ0 paths. If ℎ = 2 (i.e. 𝑑 = 5), vertex 𝑦 has 2 reaming
edges to non-𝒜 vertices, so it could be that the graph is locally as depicted in Fig. 3.21. (𝒜
vertices not indicated.)

𝑥 ∈ ℬ2

𝑦 ∈ ℬ1

ℬ0 𝒟

Fig. 3.21 If we allowed ℬ2ℬ1ℬ0 paths, the claim would be false.

113



Bisection width of arbitrary 𝑑-regular graphs

Proof. Let 𝑇 be a BFS tree starting from 𝑦 traversing only on ℬ1 and ℬ2 vertices only,
excluding 𝑥. Continue the tree only up to depth 𝑡 ≔ ⌈log2 𝑛⌉ + 5. Note that in 𝐺[𝑉0 ⧵ 𝒜] a
ℬ1 vertex has degree ℎ + 1, and a ℬ2 vertex has degree ℎ.

If there is a cross edge in 𝐺[𝑇], then we have a helpful set formed by a cycle in 𝑇 plus
a path leading to 𝑥 from it, and all their𝒜 neighbours. Further, we may only encounter a
ℬ2 vertex in 𝑇 at most once, otherwise we have three (including 𝑥)ℬ2 vertices connected
by ℬ1 vertices which is a helpful set of size 𝒪(log𝑛).

A ℬ0 vertex can have at most 2 edges to 𝑇, otherwise we can form a helpful set of
size 𝒪(log𝑛). (If it has 3, take all paths leading back to 𝑦, and add the vertex 𝑥 plus all
neighbouring 𝒜 vertices.)

Let 𝑘 be the number of ℬ1s in 𝑇 at depth < 𝑡 that do not have ℎ children in 𝑇. Then
they all have at least one edge to ℬ0 ∪ 𝒟. Thus, if 𝑘 ≥ 4, then 𝑒(𝑇,ℬ0 ∪ 𝒟) ≥ 𝑘 ≥ 4, and
the claim follows. We henceforth assume 𝑘 ≤ 3.

As we stop the BFS at depth 𝑡, a leaf of 𝑇 at depth 𝑡 may have edges towards ℬ1 ∪ ℬ2
vertices in 𝑉0⧵𝑇. Call a leaf in 𝑇 a proper leaf if it is not at depth 𝑡. A proper leaf of typeℬ1
has ℎ ≥ 2 edges towardsℬ0 ∪𝐷, and a proper leaf of typeℬ2 has ℎ − 1 ≥ 1 edges towards
𝒟. (Remember, there are no ℬ2ℬ0 edges.)

Vertex 𝑦 has ℎ ≥ 2 edges remaining to 𝑉0, excluding 𝑥 and 𝒜 vertices. At most one of
these is a 𝒟 vertex, otherwise we are done. Suppose 𝑦 has exactly one 𝒟 neighbour. As
there are no ℬ2ℬ1ℬ0 paths, it must have a ℬ1 or ℬ2 neighbour as well. Let this ℬ vertex
be 𝑧. See Fig. 3.22a.

𝑥 ∈ ℬ2

𝑦 ∈ ℬ1

𝑧 ∈ ℬ1/ℬ2 𝒟

(a) Exactly one𝒟 neighbours.

𝑥 ∈ ℬ2

𝑦 ∈ ℬ1

𝑧1 ∈ ℬ1 𝑧2 ∈ ℬ1/ℬ2

(b) No𝒟 neighbours

Fig. 3.22 Vertex 𝑦 is connected to either 1 or 0𝒟 vertices

The subtree of 𝑇 below 𝑧 does not have a 𝒟 neighbour, otherwise we are done (as 𝑦
already has one 𝒟 neighbour). However, as 𝑘 ≤ 3, we must encounter a proper leaf of 𝑇,
otherwise |𝑇| is larger than 𝑛. This proper leaf will have ℎ ≥ 2 distinct ℬ0 neighbours.

Consider the case that 𝑦 is adjacent to no𝒟 vertices. Then it has at least oneℬ1 neigh-
bour, say 𝑧1, and another in ℬ1 ∪ ℬ2, say 𝑧2. See Fig. 3.22b. Then, as before we can find a

114



3.6 The 𝑑 odd, 𝑑 ≥ 5 case

proper leaf in both subtrees rooted at 𝑧1 and 𝑧2. At most one of those proper leaves can be
adjacent to𝒟 vertices, or else we are done. Thus at least one the proper leaves has edges
to ℬ0s, thus it must be an ℬ1 vertex adjacent to ℎ ≥ 2 vertices of type ℬ0.

Let𝐹 be the set ofℬ2 vertices forwhich eq. (3.45) does not hold. Then, each 𝑣 ∈ 𝐹must
be joined to aℬ1 vertex which leads to at most one𝒟 vertex via aℬ2–𝒟 as 𝑣 is connected
to two𝒜 vertices, andℬ1 and𝒟 vertices only. So by Claim 3.6.5 it leads to two distinctℬ0
via a ℬ2–ℬ0 path.

Consider a bipartite graphwith vertex sets𝐹 andℬ0, with an edge between two vertices
if there exists a ℬ2–ℬ0 path between them. By the paragraph above, the left-degree is at
least two, the right degree is at most 2 (as each ℬ0 is the endpoint of at most two ℬ2–ℬ0
paths, otherwise can form a helpful set).

By Hall’s marriage theorem, there is an 𝐹-saturating matching in this bipartite graph.
Thus, we can assign a ℬ2–ℬ0 path to each 𝑣 ∈ ℬ2 starting from 𝑣 ending in a unique
ℬ0 vertex. The first and last vertices of these ℬ2–ℬ0 paths are distinct, but the paths may
intersect. However, each path may intersect at most one other path, otherwise we could
form a helpful set. Let the set of these paths be 𝐾.

Select a maximal set of vertex-disjoint paths from 𝐾. Iterate through them (in any
order), and apply the transformation depicted in Fig. 3.20 to them, with 𝑘 ≤ 2 log2 𝑛, then
delete the path from𝐾. These transformations are independent, and thus this is a𝒪(log𝑛)
reduction. The transformations changed some ℬ2s to ℬ1s and some ℬ0s to ℬ1s. Thus all
paths remaining in 𝐾 are stillℬ2–𝒟 paths, and are now all vertex-disjoint. Thus, we again
iterate through all of them, and obtain a new graph again through a 𝒪(log𝑛) reduction.

𝐹 was the set of all ℬ2s that violated eq. (3.45). They have all been transformed to a
ℬ1, and thus are no longer violating. The transformation could not cause another ℬ2 to
violate eq. (3.45).

Now we have a graph that satisfies the lemma, and the product of all reductions is
𝒪(log𝑛), as claimed.

3.6.2 Relaxation to a Linear Program and result
In this subsection we use Lemma 3.5.4 to reformulate as a linear program to prove the
following lemma.

115



Bisection width of arbitrary 𝑑-regular graphs

Lemma 3.6.6. Let 𝐺 be a 𝑑-regular graph on 𝑛 vertices, 𝑑 ≥ 5 odd, and a (𝑉0, 𝑉1) be a cut of
𝐺. Assume that the cut size satisfies

𝑒(𝑉0, 𝑉1) >
1
2|𝑉0| (𝑑 − 3 + 2(𝑑 + 3)

𝑑2 + 2𝑑 + 3 + 𝜀) . (3.46)

for some 𝜀 > 0. Then, we can find a helpful set in 𝑉0 of size𝒪(
ln2 𝑛
𝜀
) uniformly in 𝜀 as 𝑛 → ∞.

Proof. As in the proof of Lemma 3.5.5, we may assume without loss of generality that 𝜀 is
sufficiently small. Apply Lemma 3.6.1, we either find a helpful set and we are done, or we
have a𝒪(log𝑛) reduction to a graph 𝐺′ as specified in the lemma. Relabel 𝐺 to be 𝐺′, and
we will remember the 𝒪(log𝑛) increase in the size of the helpful sets.

First, we note that,

𝑒(𝒜,𝒟) = 𝑒(𝒜,𝒟 ∪ ℬ0) = (ℎ + 1)|𝒜| − |ℬ1| − 2|ℬ2|. (3.47)

Let 𝑋ℎ−𝑖 ⊂ 𝑉0 be the set of vertices incident to ℎ − 𝑖 cut edges. Thus 𝒟 = ⋃ℎ
𝑖=2 𝑋ℎ−𝑖.

Consider a vertex 𝑣 ∈ 𝑋ℎ−𝑖. Then 𝑣 by itself is −(2𝑖 + 1) helpful. Recall from eq. (3.44), 𝑃
counts the total number ofℬ2–𝒟 paths. If there is aℬ2–𝒟 ending in 𝑣, then extending 𝑣 by
the path increases its helpfulness by at least one. Similarly, extending 𝑣 by a neighbouring
𝒜 vertex also increases its helpfulness by one. So the total number of 𝒜 neighbours plus
the number of ℬ2–𝒟 paths ending in 𝑣 is at most 2𝑖 + 1, otherwise we can form a helpful
set of size 𝒪(log𝑛). Thus,

𝑒(𝒜,𝒟) + 𝑃 ≤
ℎ
∑
𝑖=2
(2𝑖 + 1)|𝑋ℎ−𝑖|. (3.48)

From eqs. (3.44), (3.47) and (3.48), and ℎ ≥ 2, it follows that,

(ℎ + 1)|𝒜| − |ℬ1| + 𝑒(ℬ2, ℬ1) ≤
ℎ
∑
𝑖=2
(2𝑖 + 1)|𝑋ℎ−𝑖|. (3.49)

Further, as there are no 𝒞5 vertices, and a vertex in 𝑋ℎ−𝑖 has at most 2𝑖 + 1 edges to𝒜
vertices otherwise we can form a helpful set, we have that,

(ℎ + 1)|𝒜| − |ℬ1| − 2|ℬ2| = 𝑒(𝒜,𝒟) ≤ 4|𝑋ℎ−2| +
ℎ
∑
𝑖=3
(2𝑖 + 1)|𝑋ℎ−𝑖|. (3.50)

116



3.6 The 𝑑 odd, 𝑑 ≥ 5 case

A set 𝑆 ⊂ ℬ1 with |𝑆| + 1 internal edges is helpful (along with its𝒜 neighbours). Thus
the number of edges withinℬ1 vertices is at most (1 + 𝜀)|ℬ1|, otherwise we have a helpful
set of size𝒪(log𝑛/𝜀) by Lemma 3.2.4. Thus aℬ1 vertex has at least (ℎ−1−𝜀) edges towards
non-𝒜 and non-ℬ1 vertices. Hence,

𝑒(ℬ1, ℬ0 ∪ 𝒟) ≥ (ℎ − 1 − 𝜀)|ℬ1| − 𝑒(ℬ1, ℬ2). (3.51)

Further, as each ℬ2 vertex has 2 edges towards𝒜, and ℎ towards 𝑉0 ⧵ 𝒜, we have that,

𝑒(ℬ2, ℬ0 ∪ 𝒟) ≥ ℎ|ℬ2| − 𝑒(ℬ1, ℬ2). (3.52)

Remember that 𝒟 = ⋃ℎ
𝑖=2 𝑋ℎ−𝑖. Thus, as ℎ ≥ 2, from eqs. (3.47), (3.51) and (3.52) we

have

(ℎ + 1)|𝒜| + (ℎ − 2 − 𝜀)|ℬ1| − 2𝑒(ℬ1, ℬ2) ≤ 𝑒(𝐴 ∪ ℬ2 ∪ ℬ1, ℬ0 ∪
ℎ

⋃
𝑖=2

𝑋ℎ−𝑖) (3.53)

≤ (ℎ + 2)|ℬ0| +
ℎ
∑
𝑖=2
(ℎ + 𝑖 + 1)|𝑋ℎ−𝑖|, (3.54)

where the second inequality holds as a vertex in 𝑋ℎ−𝑖 has ℎ + 𝑖 + 1 edges towards 𝑉0.
We rescale the variables by |𝑉0|: we let 𝑎 = |𝒜|/|𝑉0|, 𝑏𝑖 = |ℬ𝑖|/|𝑉0| 𝑥𝑖 = |𝑋𝑖|/|𝑉0|, and

𝑚 = 𝑒(ℬ2, ℬ1)/|𝑉0|. Then, we reformulate as a linear program Primal(𝜀) with parameter
𝜀 (see Fig. 3.23), whose objective function is maximising the cut size subject to eqs. (3.49),
(3.50) and (3.53). We denote the value of the optimal solution to Primal(𝜀) by opt(𝜀). Thus
opt(𝜀) gives an upper bound on the cut size (scaled by |𝑉0|), as we are maximising for the
cut size, i.e.

𝑒(𝑉0, 𝑉1) ≤ |𝑉0| ⋅ opt(𝜀). (3.59)

Consider the following solution to Primal(0). Let

𝑎 = ℎ + 2
2ℎ2 + 4ℎ + 3,

𝑏1 =
(ℎ + 1)(ℎ + 2)
2ℎ2 + 4ℎ + 3 ,

𝑏0 =
(ℎ + 1)(ℎ − 1)
2ℎ2 + 4ℎ + 3 ,

117



Bisection width of arbitrary 𝑑-regular graphs

maximise:
ℎ−2
∑
𝑖=0

𝑖𝑥𝑖 + (ℎ − 1)(𝑏0 + 𝑏1 + 𝑏2) + ℎ𝑎

subject to:
ℎ−2
∑
𝑖=0

𝑥𝑖 + 𝑏0 + 𝑏1 + 𝑏2 + 𝑎 = 1 (3.55)

(ℎ + 1)𝑎 − 𝑏1 − 2𝑏2 ≤ 4𝑥ℎ−2 +
ℎ
∑
𝑖=3
(2𝑖 + 1)𝑥ℎ−𝑖 (3.56)

(ℎ + 1)𝑎 − 𝑏1 +𝑚 ≤
ℎ
∑
𝑖=2
(2𝑖 + 1)𝑥ℎ−𝑖 (3.57)

(ℎ + 1)𝑎 + (ℎ − 2 − 𝜀)𝑏1 − 2𝑚 ≤ (ℎ + 2)𝑏0 +
ℎ
∑
𝑖=2
(ℎ + 𝑖 + 1)𝑥ℎ−𝑖 (3.58)

𝑚, 𝑎, 𝑏2, 𝑏1, 𝑏0, 𝑥𝑖 ≥ 0, 𝑖 = 0, … , ℎ − 2.

Fig. 3.23 The linear program Primal(𝜀) with parameter 𝜀.

and the other variables are 0. It is straightforward to verify this solution is feasible. The
value of the solution is as follows:

ℎ𝑎 + (ℎ − 1)(𝑏1 + 𝑏0) =
ℎ(ℎ + 2) + (ℎ − 1)(ℎ + 1)(2ℎ + 1)

2ℎ2 + 4ℎ + 3
= 2ℎ3 + 2ℎ2 − 1

2ℎ2 + 4ℎ + 3
= ℎ − 1 + ℎ + 2

2ℎ2 + 4ℎ + 3
= 1
2 (𝑑 − 3 + 2(𝑑 + 3)

𝑑2 + 2𝑑 + 3) . (3.60)

The dual program Dual(𝜀) is given in Fig. 3.24. We have the following correspondence
between variables and constraints of the primal and dual:

• 𝜆1–eq. (3.55); 𝜆2–(3.56); 𝜆3–eq. (3.57); 𝜆4–eq. (3.58),

• 𝑚–eq. (3.61); 𝑎–eq. (3.62); 𝑏2–eq. (3.63); 𝑏1–eq. (3.64); 𝑏0–eq. (3.65); 𝑥ℎ−2–eq. (3.66);
𝑥ℎ−𝑖–eq. (3.67).

118



3.6 The 𝑑 odd, 𝑑 ≥ 5 case

minimise: 𝜆1
subject to: − 𝜆3 + 2𝜆4 ≤ 0 (3.61)

ℎ − 𝜆1 − (ℎ + 1)𝜆2 − (ℎ + 1)𝜆3 − (ℎ + 1)𝜆4 ≤ 0 (3.62)
(ℎ − 1) − 𝜆1 + 2𝜆2 ≤ 0 (3.63)
(ℎ − 1) − 𝜆1 + 𝜆2 + 𝜆3 − (ℎ − 2 − 𝜀)𝜆4 ≤ 0 (3.64)
(ℎ − 1) − 𝜆1 + (ℎ + 2)𝜆3 ≤ 0 (3.65)
(ℎ − 2) − 𝜆1 + 4𝜆2 + 5𝜆3 + (ℎ + 3)𝜆4 ≤ 0 (3.66)
(ℎ − 𝑖) − 𝜆1 + (2𝑖 + 1)𝜆2 + (2𝑖 + 1)𝜆3 + 𝜆4(ℎ + 𝑖 + 1) ≤ 0 𝑖 = 3, … , ℎ.

(3.67)
𝜆2, 𝜆3, 𝜆4 ≥ 0

Fig. 3.24 The dual linear program Dual(𝜀) to Primal(𝜀).

We claim the following is a feasible solution to Dual(0). Observe from eq. (3.60) that
𝜆1 is equal to the solution of the primal. Let

𝜆1 = ℎ − 1 + ℎ + 2
2ℎ2 + 4ℎ + 3,

𝜆2 =
ℎ + 2

2(2ℎ2 + 4ℎ + 3),

𝜆3 =
3ℎ − 2

2(2ℎ2 + 4ℎ + 3),

𝜆4 =
1

2ℎ2 + 4ℎ + 3.

It is straightforward to verity that eqs. (3.61) to (3.66) are satisfied. Consider eq. (3.67) with
𝑖 = 3. Multiplying both sides by 2ℎ2 + 4ℎ + 3 (the RHS remains 0), the LHS evaluates to

−(2ℎ2 + 4ℎ + 3) − (ℎ + 2) + 10ℎ + (ℎ + 3) = −4ℎ2 + 6ℎ + 2, (3.68)

which is negative for ℎ ≥ 2, i.e. for 𝑑 ≥ 5, as required. The 𝑖 = 3 case implies that
the equation holds for all 𝑖 ≥ 3, as the change in the LHS for an increase in 𝑖 by 1 (or
equivalently the derivative with respect to 𝑖) is

−1 + 2𝜆2 + 2𝜆3 + 𝜆4 = − 2ℎ2 + 2
2ℎ2 + 4ℎ + 3 ≤ 0.

By strong duality, opt(𝜀) is also the solution of Dual(𝜀), so that opt(0) = 𝜆1. Note that
𝜀 only appears in eq. (3.64) in the constraints of Dual(𝜀). Thus given the solution by 𝜆 for

119



Bisection width of arbitrary 𝑑-regular graphs

Dual(0), it is easy to see that 𝜆′1 = 𝜆1 + 𝜀𝜆4, and 𝜆′𝑖 = 𝜆𝑖 for 𝑖 ≥ 2 is a feasible solution for
Dual(𝜀). Thus

opt(𝜀) ≤ 𝜆′1 = 𝜆1 + 𝜀𝜆4 < 𝜆1 + 𝜀/2.

Remark 3.6.7. By standard theory on sensitivity analysis (see e.g. [BT97, Chapter 6, section
“Change in the Constraint Matrix”]), we actually have 𝜕

𝜕𝜀
opt(𝜀)||𝜀=0 = 𝑏1 ⋅ 𝜆4.

Hence, by eq. (3.59),

𝑒(𝑉0, 𝑉1) ≤ opt(𝜀) < 𝑉0(𝜆1 + 𝜀/2) = 1
2|𝑉0| (𝑑 − 3 + 2(𝑑 + 3)

𝑑2 + 2𝑑 + 3 + 𝜀) , (3.69)

contradicting eq. (3.46).

Theorem 3.6.8. Let 𝐺 be a 𝑑-regular graph on 𝑛 vertices, 𝑑 ≥ 5 odd. Then,

𝑏𝑤(𝐺) ≤ (𝑑 − 3 + 2(𝑑 + 3)
𝑑2 + 2𝑑 + 3)

𝑛
4 + 𝒪(√𝑛 ln𝑛).

Proof. Let (𝑉0, 𝑉1) be any bisection of 𝐺. We always relabel such that |𝑉0| ≥ |𝑉1|. Let 𝜀0 > 0
be chosen later. We apply Lemma 3.6.6 to 𝑉0 (larger part) until we can with 𝜀 ≥ 𝜀0, moving
the helpful set across to 𝑉1, decreasing the cut size in each step. We relabel if necessary,
then repeat. As the cut size decreases in each step, the process terminates. We obtain an
(unbalanced) cut (𝑉0, 𝑉1). By construction,

|𝑉0| =
𝑛
2 + 𝒪( ln

2 𝑛
𝜀0

)

𝑒(𝑉0, 𝑉1) ≤
1
2|𝑉0| (𝑑 − 3 + 2(𝑑 + 3)

𝑑2 + 2𝑑 + 3 + 𝜀0) =
𝑛
4 (𝑑 − 3 + 2(𝑑 + 3)

𝑑2 + 2𝑑 + 3) + 𝑑𝒪(𝜀0𝑛 +
ln2 𝑛
𝜀0

).

Let 𝑅 be an arbitrary subset 𝑅 ⊂ 𝑉0 of size ⌈(|𝑉0| − |𝑉1|)/2⌉ to obtain the balanced bisec-
tion (𝑉 ′

0 , 𝑉 ′
1 ) = (𝑉0 ⧵ 𝑅, 𝑉1∪̇𝑅). Note that |𝑅| = 𝒪( ln

2 𝑛
𝜀0
). Thus,

𝑒(𝑉 ′
0 , 𝑉 ′

1 ) ≤ 𝑒(𝑉0, 𝑉1) + 𝑑|𝑅| = (𝑑 − 3 + 2(𝑑 + 3)
𝑑2 + 2𝑑 + 3)

𝑛
4 + 𝑑𝒪(𝜀0𝑛 +

ln2 𝑛
𝜀0

). (3.70)

The right hand side expression of eq. (3.70) isminimised for 𝜀0 =
ln𝑛
√𝑛
, giving the bound

bw(𝐺) ≤ 𝑒(𝑉 ′
0 , 𝑉 ′

1 ) ≤ (𝑑 − 3 + 2(𝑑 + 3)
𝑑2 + 2𝑑 + 3)

𝑛
4 + 𝑑𝒪(√𝑛 ln𝑛).

120



3.7 Acknowledgements

3.7 Acknowledgements
We have made use of the JuMP modelling language [DHL17] embedded in the Julia pro-
gramming language [BEKS17].

121



122



Chapter 4

Maximum cut of random 𝑑-regular
graphs

4.1 Introduction
Given a graph 𝐺 = (𝑉, 𝐸), a cut is a partition of the vertex set 𝑉 into two disjoint parts
(𝑉0, 𝑉1). A bisection is a cut where the two parts are as equal as possible, i.e. if |𝑉0| and |𝑉1|
differ by at most 1. The cut size of a cut is the number of edges 𝑒(𝑉0, 𝑉1) from 𝑉0 to 𝑉1.

The maximum cut, denoted MaxCut(𝐺), of 𝐺 is the size of the cut with maximum
cut size. The maximum bisection, denoted MaxBis(𝐺), respectively minimum bisection,
denoted MinBis(𝐺), is the size of the bisection with maximum, respectively minimum
cut size. The minimum bisection is also known as bisection width (as we refer to it in
Chapter 3). Trivially, MaxCut(𝐺) ≥ MaxBis(𝐺).

All three problems are hard combinatorial optimization problems; their decision prob-
lems are all NP-complete. They remain NP-complete even when restricted to 𝑑-regular
graphs, 𝑑 ≥ 3.

The random 𝑑-regular graph 𝔾 = 𝔾(𝑛, 𝑑) is a graph drawn uniformly at random from
the set of all possible 𝑑-regular graphs on 𝑛 vertices (provided that 𝑑𝑛 is even). In this
chapter our focus is on the quantity MaxCut(𝔾) and we derive a high probability upper
bound on the random variable MaxCut(𝔾).

The precise analysis of the quantities MaxCut(𝔾), MaxBis(𝔾), andMinBis(𝔾) is a long-
standing open problem. In the 𝑑 → ∞ limit it has been proved that the main correc-
tion term, 𝑃 in Theorem 4.1.1 below, arises from the ‘Parisi formula’ in the Sherrington-
Kirkpatrick model [Tal06].

123



Maximum cut of random 𝑑-regular graphs

Theorem 4.1.1 ([DMS17, Theorems 1.5 and 1.6]). There exist a constant 𝑃 > 0, such that
for any 𝑑 ≥ 3, as 𝑛 → ∞, we have w.h.p.,

MaxCut(𝔾)
𝑑𝑛/2 = 1

2 +
𝑃
√𝑑

+ 𝑜𝑑 (1/√𝑑) ,

MaxBis(𝔾)
𝑑𝑛/2 = 1

2 +
𝑃
√𝑑

+ 𝑜𝑑 (1/√𝑑) ,

MinBis(𝔾)
𝑑𝑛/2 = 1

2 −
𝑃
√𝑑

+ 𝑜𝑑 (1/√𝑑) .

Note that the above theorem has no implications for any fixed 𝑑. The constant 𝑃 is
expressed analytically and 𝑃 ≈ 0.76321. This result is especially striking, as for a given
graph 𝐺, there is no obvious combinatorial relation between the bisections maximising
and minimising the cut size.

Our contribution is deriving explicit upper bounds on MaxBis(𝔾(𝑛, 𝑑)). The precise
statement is in the following section.

4.2 Main result
Ourmain result will be expressed via a closed formula that arises from analysing a random
walk. In the following, let

ℳ𝑑 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 ⋯ ⋯ ⋯
1
2

0 1
2

⋱
0 1

2
0 1

2
⋱

⋮ ⋱ ⋱ ⋱ ⋱ ⋱
⋮ ⋱ ⋱ ⋱ ⋱
⋮ 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.1)

be a band matrix of size (𝑑 + 1) × (𝑑 + 1), so that 𝑀𝑑 is a transition matrix. Let 𝑡 be a
dummy variable. We define the matrix

𝒜𝑑,𝛼 = (1 − 2𝛼)id + 2𝛼𝑡ℳ𝑑

124



4.2 Main result

for 0 < 𝛼 < 1/2 and id denotes the identity matrix. Further, define vectors 𝜁 and 𝜉 as

𝜁 = [1, 0, 0, ⋯ ] ∈ ℝ1×(𝑑+1), (4.2)

𝜉 = [1, 𝑡−1, 𝑡−2, 𝑡−3, ⋯]
𝑇
∈ ℝ(𝑑+1)×1. (4.3)

We are now ready to express the function in terms of which our main result is stated. For
𝛼 ∈ (0, 1/2) and 𝑧 ∈ (0, 1) let

𝐹𝑑(𝛼, 𝑧) = −
log (𝜁𝒜𝑑

𝑑,𝛼𝜉|𝑡=𝑧1/2)
log 𝑧 + 𝑑

2
log (1 − 2𝛼2 + 2𝛼2𝑧)

log 𝑧 . (4.4)

Recall that 𝔾(𝑛, 𝑑) is the random 𝑑-regular graph. Our contribution is the following
theorem.

Theorem 4.2.1. LetMaxCut(𝔾) be the size of the maximum cut of 𝔾(𝑛, 𝑑). Then, w.h.p.

MaxCut(𝔾)
𝑑𝑛/2 ≤ 1 + 2

𝑑 inf
𝛼∈(0,1/2)
𝑧∈(0,1)

(𝐹𝑑(𝛼, 𝑧)) + 𝑜(1). (4.5)

Note that |𝐸(𝔾)| = 𝑑𝑛/2, and that the infimum of 𝐹𝑑(𝛼, 𝑧) will be negative. We give
numerical solutions to the optimization problem eq. (4.5) for 𝑑 = 3… 10. Due to the com-
plexity of the formula eq. (4.4) — logarithms of polynomials in 𝛼 and 𝑧—- we can only
derive numerical results.

Corollary 4.2.2. MaxCut(𝔾)/|𝐸(𝔾)| is numerically upper-bounded (w.h.p.) by the following
values.

d 3 4 5 6 7 8 9 10
MaxCut(𝔾)/|𝐸| 0.9241 0.8683 0.8350 0.8049 0.7851 0.7659 0.7523 0.7388
Table 4.1 Upper bounds on the maximum cut size of a random 𝑑-regular graph, for 𝑑 =
3… 10. The values for 𝛼, 𝑧 and 𝐹𝑑(𝛼, 𝑧) can be found in Table 4.2 in Section 4.5.

The values in Table 4.1 match the conjectured values (obtained from numerical solu-
tions to the one-step replica breaking equations) from [ZB10]. The bound from 𝑑 = 3
improves on the bound of 0.9351 from [McK82], [Hla06] and 0.9319 from [Sor20].

125



Maximum cut of random 𝑑-regular graphs

4.3 Statistical physics formulation
This section (Section 4.3) follows the excellent description of the interpolation method from
[ACG19].

Note on notation: we will write for example∏1− 𝑥 to mean∏(1 − 𝑥), to declutter the
layout; the meaning should always be clear.

The general approach we follow is by now standard in a combinatorial literature in-
spired by statistical physics, but less familiar in combinatorics generally. Consequently,
while where possible we will refer to other works for lengthy details. Nonetheless, we
provide an introduction to statistical physics and give an outline of the interpolation argu-
ment.

Ayre, Coja-Oghlan, and Greenhill [ACG19] used an adaptation of the interpolation
method by [SSZ16] to lower-bound the chromatic number of random graphs. Our inter-
polation argument is a special case of theirs and so we will point the reader to the relevant
sections of [ACG19], keeping the same notation.

Given a multigraph 𝐺 = (𝑉, 𝐸), a mapping 𝜎 ∈ {±1}𝑉 of each vertex to +1 or −1
(called spins) is called a configuration. A configuration 𝜎 naturally gives rise to a cut of 𝐺,
by letting the two vertex classes be the vertices to which 𝜎 assigns +1 and −1 respectively.
We let total energy (also known as the Hamiltonian) of a configuration 𝜎 be

ℋ𝐺(𝜎) = ∑
𝑢𝑣∈𝐸(𝐺)

𝟏{𝜎𝑢 = 𝜎𝑣}, (4.6)

so thatℋ𝐺(𝜎) counts the number of uncut (unsatisfied) edges in the cut given by 𝜎.
The Ising antiferromagnet with inverse temperature (parameter) 𝛽 ≥ 0 on 𝐺 is a prob-

ability distribution 𝜇𝐺,𝛽 on all configurations Ω = {±1}𝑉 defined by

𝜇𝐺,𝛽(𝜎) =
1

𝑍𝛽(𝐺)
exp(−𝛽ℋ𝐺(𝜎)), (4.7)

𝑍𝛽(𝐺) = ∑
𝜎∈{±1}𝑉

exp(−𝛽ℋ𝐺(𝜎)). (4.8)

The function 𝑍𝛽(𝐺) is called the partition function. The distribution assigns a penalty
term exp(−𝛽) for each unsatisfied (uncut) edge in the configuration 𝜎. At 𝛽 = 0, the
distribution becomes the uniform distribution on all configurations. In the limit 𝛽 → ∞,
the probability becomes concentrated on configurations with minimal energy, i.e. those
corresponding to the maximum cut of 𝐺. This is the limit we will be interested in. We

126



4.3 Statistical physics formulation

have that,

2
𝑑𝑛MaxCut(𝐺) = 1 − 2

𝑑𝑛 min
𝜎∈{±1}𝑉

ℋ𝐺(𝜎) ≤ 1 + 2
𝛽𝑑𝑛 log𝑍𝛽(𝐺). (4.9)

The last inequality follows from log𝑍𝛽(𝐺) ≥ log(exp(−𝛽ℋ(𝜎𝑀))) = −𝛽ℋ𝐺(𝜎𝑀), where
𝜎𝑀 = argmin𝜎∈{±1}𝑉 ℋ𝐺(𝜎). Our goal is to upper-bound the log-partition function log𝑍𝛽(𝔾)
to obtain an upper bound on MaxCut(𝔾) via eq. (4.9). To this end, we will deduce an up-
per bound on 𝔼[log𝑍𝛽(𝔾)] and apply Proposition 4.3.1 below which says that log𝑍𝛽(𝔾) is
concentrated around its mean.

Proposition 4.3.1 ([ACG19, Proposition 2.1]). For any 𝛽, 𝛿 > 0, there exists 𝜅 > 0 such
that,

ℙ[||log𝑍𝛽(𝔾) − 𝔼[log𝑍𝛽(𝔾)]|| > 𝛿𝑛] ≤ exp(−𝜅𝑛), (4.10)

for 𝑛 sufficiently large.
However, analysing the log-partition function directly is very hard due to sheer number

of terms. To analyse log(𝑍𝛽(𝔾))we instead work in the following configurationmodel: fix
𝜀 > 0 small, and let

𝐦 ∼ Po≤𝑑𝑛/2((1 − 𝜀)𝑑𝑛/2) (4.11)

be a Poisson randomvariable of rate (1−𝜀)𝑑𝑛/2 conditioned on not exceeding 𝑑𝑛/2. Define
𝐆 = 𝐆(𝑛, 𝑑) to be the random multigraph obtained by choosing a matching 𝐋 of size𝐦
uniformly from the complete graph on 𝑉𝑛 × [𝑑]. Then, for each edge {(𝑢, 𝑖), (𝑣, 𝑗)} ∈ 𝐋 we
add edge 𝑢𝑣 (with multiplicity) to 𝐆.

For our purposes — the upper bound that can be derived from eq. (4.9) — the follow-
ing proposition says that the true 𝑑-regular model 𝔾 and the configuration model G are
equivalent, as our upper boundwill come from an upper bound on lim𝑛→∞

1
𝑛
𝔼 [log𝑍𝛽(𝔾)].

Proposition 4.3.2 ([ACG19, Corollary 2.2]). For any 𝛽 > 0, we have

lim
𝜀→0

lim
𝑛→∞

1
𝑛
||𝔼[log𝑍𝛽(𝔾)] − 𝔼[log𝑍𝛽(G)]|| = 0.

Finally, for all 𝑑, 𝛽 > 0 let

Φ𝑑(𝛽) = lim
𝑛→∞

1
𝑛𝔼 [log𝑍𝛽(𝔾)] . (4.12)

See e.g. [Pan13, Theorem 1.1] for a proof that the limit exists. With reference to eq. (4.9),
Propositions 4.3.1 and 4.3.2, the key quantity of interest is Φ𝑑(𝛽).

127



Maximum cut of random 𝑑-regular graphs

4.3.1 The interpolation method
Still following [ACG19].

Recall that our aim is to upper-bound log(𝑍𝛽(G)). To analyse the log-partition function
log(𝑍𝛽(G)), we will instead compare it to a graph G1, where the dependencies (in the par-
tition function) are more manageable. We construct a family of random graphs (G𝑡)𝑡∈[0,1]
such that we can easily relate (the partition functions of) G and 𝐆0. For the graphs G𝑡 we
will actually define a generalized partition function, which with a slight abuse of notation
we will still denote with 𝑍𝛽(⋅). Then, to compare G0 and G1 we essentially show that

𝜕
𝜕𝑡 𝔼[log𝑍𝛽(G𝑡)] > 0,

so that 𝔼[log𝑍𝛽(G0)] is upper-bounded by 𝔼[log𝑍𝛽(G1)]. Thus we can then directly com-
pare G and G1. This kind of argument is generally known as the interpolation method.

The relation between partition functions of 𝔾 andGwas spelt out in Proposition 4.3.2,
the relation between G and G0 is spelt out in Proposition 4.3.4, the relation between G0
and G1 in Proposition 4.3.3, and finally Proposition 4.3.5 gives a bound on the partition
function ofG1. Then Corollary 4.3.6 gives a formula for a bound on the partition function
of the true 𝑑-regular graph 𝔾, which only depends on the parameters 𝛽, 𝛾 and 𝔯 of the
interpolation scheme defined shortly below. Corollary 4.3.6 and all Propositions in this
section hold for any choice of parameters in the interpolation scheme. In Section 4.4 we
prove Theorem 4.2.1 by making the suitable choices to these parameters.

First, observe that we can rewrite eqs. (4.7) and (4.8) as

𝜇𝐺,𝛽(𝜎) =
1

𝑍𝛽(𝐺)
∏

𝑢𝑣∈𝐸(𝐺)
1 − (1 − exp(−𝛽))𝟏{𝜎𝑢 = 𝜎𝑣}, (4.13)

𝑍𝛽(𝐺) = ∑
𝜎∈{±1}𝑉

∏
𝑢𝑣∈𝐸(𝐺)

1 − (1 − exp(−𝛽))𝟏{𝜎𝑢 = 𝜎𝑣}. (4.14)

We denote with 𝒫(𝐴) probability measures over a set 𝐴, and with 𝒫2(𝐴) the proba-
bility measures over the probability measures over 𝐴, and so on. In order to construct
the interpolation scheme (the random graphs (G𝑡)𝑡∈[0,1]), we first fix parameters 𝛽, 𝜀 > 0,
a probability measure 𝔯 ∈ 𝒫3({±1}), and a probability measure 𝛾 on ℕ. Let (𝐫𝑖)𝑖≥1 be
independent samples from 𝔯; thus, 𝐫𝑖 ∈ 𝒫2({±1}). Further, for any 𝑖, 𝑗 ≥ 1 sample
(𝝆𝑖,ℎ, 𝝆𝑖,𝑗,ℎ, 𝝆′𝑖,ℎ, 𝝆″𝑖,ℎ)𝑖,𝑗,ℎ≥1 independently such that 𝝆𝑖,ℎ, 𝝆𝑖,𝑗,ℎ, 𝝆

′
𝑖,ℎ, 𝝆″𝑖,ℎ ∈ 𝒫({±1}) have dis-

128



4.3 Statistical physics formulation

tribution 𝐫𝑖 for all ℎ, 𝑗 ≥ 1. Finally, let 𝐑 = (𝐫1, 𝐫2, … ), and let

𝐌𝑡 ∼ Po((1 − 𝜀)(1 − 𝑡)𝑑𝑛2 ), 𝐌′
𝑡 ∼ Po((1 − 𝜀)𝑡𝑑𝑛), 𝐌″

𝑡 ∼ Po((1 − 𝜀)(1 − 𝑡)𝑑𝑛2 ) (4.15)

be independent Poisson random variables. Define the event

ℳ = {2𝐌𝑡 +𝐌′ ≤ 𝑑𝑛, 𝐌𝑡 +𝐌′
𝑡 +𝐌″

𝑡 ≤ 𝑑𝑛,𝐌″
𝑡 ≤ 𝑑𝑛/2} (4.16)

and write (𝐦𝑡,𝐦′
𝑡,𝐦″

𝑡 ) for (𝐌𝑡,𝐌′
𝑡,𝐌″

𝑡 ) conditioned on ℳ. Note that ℙ(ℳ) = 1 −
exp(−Ω(𝑛)). The variables 𝐦𝑡, 𝐦′

𝑡 and 𝐦″
𝑡 will denote the number of different types of

constraint nodes in 𝐆𝑡, defined shortly.
We also need the notion of a factor graph. A factor graph is represented by a bipartite

graph with vertex classes variable nodes 𝑉 and constraint nodes 𝐶. Each variable node
can be assigned a spin, and each constraint node (and a special variable node 𝑠) will be
assigned a weight that depends only on the spins of variable nodes adjacent to it. We let
𝐆𝑡 for 𝑡 ∈ [0, 1] be a factor graph variable nodes

𝑠, 𝑣1, … , 𝑣𝑛

and constraint nodes
𝑒1, … , 𝑒𝐦𝑡 , 𝑎1, … , 𝑎𝐦′

𝑡
, 𝑏1, … , 𝑏𝐦″

𝑡
.

Let 𝑉𝑛 = {𝑣1, 𝑣2, … , 𝑣𝑛}, so that the variable nodes of 𝐆𝑡 are {𝑠} ∪ 𝑉𝑛. We construct 𝐆𝑡
with the following configuration model. Let 𝐋𝑡 be a random maximum matching of the
complete bipartite graph with vertex classes

(
𝐦𝑡

⋃
𝑖=1

{𝑒𝑖} × {1, 2}) ∪
𝐦′
𝑡

⋃
𝑖=1

{𝑎𝑖} and (
𝑛

⋃
𝑖=1

{𝑣𝑖} × [𝑑]) .

The matching 𝐋𝑡 is left-saturated, as 2𝐦𝑡 + 𝐦′
𝑡 ≤ 𝑑𝑛 (recall eq. (4.16)). We define 𝐆𝑡 as

follows:

1. Each constraint node 𝑎𝑖 is adjacent to variable node 𝑠 and variable node 𝑢 ∈ 𝑉𝑛 for
which there is an edge between 𝑎𝑖 and {𝑢} × [𝑑] in 𝐋𝑡.

2. Each constraint node 𝑒𝑖 is adjacent to variable nodes 𝑢, 𝑣 ∈ 𝑉𝑛 for which there is an
edge between (𝑒𝑖, 1) and {𝑢} × [𝑑], and an edge between (𝑒𝑖, 2) and {𝑣} × [𝑑].

3. Each constraint node 𝑏𝑖 is adjacent to variable node 𝑠 only.

129



Maximum cut of random 𝑑-regular graphs

There are no other edges present in 𝐆𝑡.

Fig. 4.1 The factor graphG0 (left) consisting of the original graphG and an auxiliary graph,
and the factor graph G1 (right).

A configuration 𝜎 on a factor graph assigns each variable node 𝑢 ∈ 𝑉𝑛 a spin in {±1}
and the node 𝑠 a value in ℕ. Thus 𝜎𝑠 ∈ ℕ and 𝜎𝑢 ∈ {±1} for 𝑢 ∈ 𝑉𝑛. Let Ω = ℕ × {±1}𝑉𝑛
be the set of all configurations.

We define the following weights on the constraint nodes and on 𝑠 depending on a con-
figuration 𝜎. Let

𝜓𝑠(𝜎𝑠) = 𝛾(𝜎𝑠)
𝜓𝑒𝑖(𝜎𝑢, 𝜎𝑣) = 1 − (1 − 𝑒−𝛽)𝟏{𝜎𝑢 = 𝜎𝑣} (𝜕𝑒𝑖 = {𝑢, 𝑣})
𝜓𝑎𝑖(𝜎𝑠, 𝜎𝑢) = 1 − (1 − 𝑒−𝛽)𝝆𝑖,𝜎𝑠(𝜎𝑢) (𝜕𝑎𝑖 = {𝑠, 𝑢})

𝜓𝑏𝑖(𝜎𝑠) = 1 − (1 − 𝑒−𝛽)∑
𝜏∈{±1}

𝝆′𝑖,𝜎𝑠(𝜏)𝝆
″
𝑖,𝜎𝑠(𝜏) (𝜕𝑏𝑖 = {𝑠})

Thus, 𝜓𝑠 weighs 𝑠 according to the probability distribution 𝛾; 𝜓𝑒𝑖 model the edge weights
assigned in the Ising model (compare to eq. (4.14)); 𝜓𝑎𝑖 weighs the adjacent variable node
according to 𝝆𝑖,𝜎𝑠 ; 𝜓𝑏𝑖 is determined by the probability that two spins sampled from 𝝆′𝑖,𝜎𝑠
and 𝝆″𝑖,𝜎𝑠 coincide, i.e. the probability that an edge between them is unsatisfied.

We define the partition function of 𝐆𝑡 as the product of the weights defined above:

𝑍𝛽(𝐆𝑡) = ∑
𝜎∈Ω

(𝜓𝑠(𝜎𝑠)
𝐦𝑡

∏
𝑖=1

𝜓𝑒𝑖(𝜎𝜕𝑒𝑖)
𝐦′
𝑡

∏
𝑖=1

𝜓𝑎𝑖(𝜎𝜕𝑎𝑖)
𝐦″
𝑡

∏
𝑖=1

𝜓𝑏𝑖(𝜎𝑠)) .

At ‘time’ 𝑡 = 0, we have 𝐦′
0 = 0 from eq. (4.15). Thus in 𝐆0 only constraint nodes

𝑒𝑖 and 𝑏𝑖 are present. See Fig. 4.1. Hence 𝐆0 is comprised of two parts: the component
of node 𝑠 which is a star with 𝑠 at the centre connected to constraint nodes 𝑏𝑖, and the
rest of the graph consists of 𝑉𝑛 and constraint nodes e𝑖. Crucially, the subgraph induced

130



4.3 Statistical physics formulation

by 𝑣1, … 𝑣𝑛 and 𝑒1, … 𝑒𝐦′
𝑡
is effectively identical to G, as 𝐦 (from eq. (4.11)) has the same

distribution as𝐦0. (As for 𝑡 = 0, the eventℳ reduces to event {𝐌0 ≤ 𝑑𝑛/2,𝐌″
0 ≤ 𝑑𝑛/2}.)

Further, as 𝜓𝑒𝑖 mimic the edge penalties in 𝑍𝛽(𝐆), we can relate the partition functions
𝑍𝛽(G) and 𝑍𝛽(𝐆0), which we do Proposition 4.3.4.

At time 𝑡 = 1, we have 𝐦1 = 𝐦″
1 = 0. Thus in 𝐆1 only the constraint nodes 𝑎𝑖 are

present.
The following proposition spells out the relation between 𝐆0 and 𝐆1 and is the heart

of the interpolation argument.

Proposition 4.3.3 ([ACG19, Proposition 2.8]). We have

𝔼[log𝑍𝛽(G0)] ≤ 𝔼[log𝑍𝛽(G1)] + 𝑜(𝑛). (4.17)

As noted earlier, the factor graph𝐆0 has twodisjoint parts. Thus, the partition function
𝑍𝛽(𝐆0) factorises as

𝑍𝛽(𝐆0) = 𝒴 ⋅ 𝒵
where

𝒴 =
∞
∑
𝑖=1

𝛾(𝜎𝑠)
𝐦″
0

∏
𝑖=1

𝜓𝑏𝑖(𝜎𝑠), 𝒵 = ∑
𝜎∈{±1}𝑉𝑛

𝐦0

∏
𝑖=1

𝜓𝑒𝑖(𝜎𝜕𝑒𝑖).

Thus
𝔼[log𝑍𝛽(𝐆0)] = 𝔼[log𝒵] + 𝔼[log𝒴].

Further, by construction
𝔼[log𝑍𝛽(𝐆)] = 𝔼[log𝒵],

and hence
𝔼[log𝑍𝛽(𝐆0)] = 𝔼[log𝑍𝛽(𝐆)] + 𝔼[log𝒴]. (4.18)

The function (randomvariable)𝒴 corresponds to the partition function of the 𝑠-component
of 𝐆0. Define the random variable

𝑌 ′ ≔
∞
∑
𝜎𝑠=1

𝛾(𝜎𝑠)
𝑑𝑛/2
∏
𝑖=1

1 − (1 − 𝑒−𝛽)∑
𝜏∈{±1}

𝝆′𝑖,𝜎𝑠(𝜏) 𝝆
″
𝑖,𝜎𝑠(𝜏). (4.19)

Observe that 𝑌 ′ has the same distribution as 𝒴 if𝐦″
0 = 𝑑𝑛/2. The following Proposition

says that 𝑌 ′ is a good approximation of 𝒴. (Compare to eq. (4.18).)

131



Maximum cut of random 𝑑-regular graphs

Proposition 4.3.4 ([ACG19, Proposition 2.7]). Let 𝛽, 𝛿 > 0. Then for sufficiently small
𝜀 > 0,

𝔼[log𝑍𝛽(𝐆0)] ≥ 𝔼[log𝑍𝛽(G)] + 𝔼[log𝑌 ′] − 𝛿𝑛.

We now turn our attention to 𝐆1. Define the random variable

𝑌 ≔
∞
∑
𝜎𝑠=1

𝛾(𝜎𝑠)
𝑛
∏
𝑖=1

∑
𝜏∈{±1}

𝑑
∏
ℎ=1

1 − (1 − 𝑒−𝛽)𝝆𝑖,𝜎𝑠,ℎ(𝜏). (4.20)

Observe that 𝑌 has the same distribution as 𝑍𝛽(𝐆1) conditioned on𝐦′
1 = 𝑑𝑛. Again,

we can use 𝑌 as an intermediate form to the partition function of 𝐆1.

Proposition 4.3.5 ([ACG19, Proposition 2.9]). Let 𝛽, 𝛿 > 0. Then for sufficiently small
𝜀 > 0,

𝔼[log𝑍𝛽(𝐆1)] ≤ 𝔼[log𝑌] + 𝛿𝑛.

We are ready to give a bound on the partition function of 𝔾 in terms of 𝑌 and 𝑌 ′, thus
it only depends on the parameters 𝛽, 𝛾 and 𝔯 of the interpolation scheme.

Corollary 4.3.6. For any 𝛽 > 0, 𝛾 ∈ 𝒫(ℕ) and 𝔯 ∈ 𝒫3({±1})

𝔼[log𝑍𝛽(𝔾)] ≤ 𝔼[log𝑌] − 𝔼[log𝑌 ′] + 𝑜(𝑛).

Proof. Immediate from Propositions 4.3.2 to 4.3.5.

4.3.2 Poisson-Dirichlet weights
Still following [ACG19].

There is a choice of distribution for 𝛾 that greatly simplifies the formulas for 𝔼[log𝑌]
and 𝔼[log𝑌 ′]. The Dirichlet distribution with parameter 𝑦 > 0 is defined as follows. Let
(𝐱𝑖)𝑖∈∞ be the sequence of points obtained from a Poisson Point Process 𝐏 on (0,∞) with
density 𝜇 = 𝑥−1−𝑦𝑑𝑥, in decreasing order: 𝐱1 > 𝐱2 > … . As 𝑦 > 0, we have that∑∞

𝑖=1 𝐱𝑖 <
∞ almost surely. We can then define the distribution 𝜸 on ℕ by

𝜸(𝑠) = 𝐱𝑠
∑∞

𝑖=1 𝐱𝑖
, (4.21)

132



4.3 Statistical physics formulation

so that 𝜸 is a random probability distribution that depends on the Poisson Point Process
𝐏.

Lemma 4.3.7 ([Tal03, Proposition 6.5.15]). Let (𝑋𝑠)𝑠∈ℕ be positive i.i.d. random variables
with 𝔼[𝑋2

𝑠 ] < ∞. Then, with 𝜸 as above,

𝔼[log
∞
∑
𝑠=1

𝜸(𝑠)𝑋𝑠] =
1
𝑦 log𝔼[𝑋

𝑦
1 ].

Recall the definition of Φ𝑑(𝛽) (our key quantity of interest) from eq. (4.12), and that
𝐑 = (𝐫1, 𝐫2, … ). So far we have omitted all proofs, but we give the proof of the following
Corollary, to shed some light on the origins the formulas.

Corollary 4.3.8 ([SSZ16]). For any 𝑦, 𝛽 > 0 and 𝔯 ∈ 𝒫3({±1}), we have Φ𝑑(𝛽) ≤ 𝜙𝛽,𝑦(𝔯),
where

𝜙𝛽,𝑦(𝔯) =
1
𝑦𝔼[log𝔼[𝑋

𝑦 ∣ 𝐑]] − 𝑑
2𝑦𝔼[log𝔼[𝑋

′𝑦 ∣ 𝐑]] (4.22)

with

𝑋 = ∑
𝜏∈{±1}

𝑑
∏
ℎ=1

1 − (1 − e−𝛽)𝝆1,1,ℎ(𝜏),

𝑋 ′ = 1 − (1 − e−𝛽) ∑
𝜏∈{±1}

𝝆′1,1(𝜏)𝝆″1,1(𝜏).

Proof. Define the random variables,

𝑋𝑘 =
𝑛
∏
𝑖=1

∑
𝜏∈{±1}

𝑑
∏
ℎ=1

1 − (1 − e−𝛽)𝝆𝑖,𝑘,ℎ(𝜏),

𝑋 ′
𝑘 =

𝑑𝑛/2
∏
𝑖=1

1 − (1 − e−𝛽) ∑
𝜏∈{±1}

𝝆′𝑖,𝑘(𝜏)𝝆″𝑖,𝑘(𝜏),

Thus, we have that

𝑌 =
∞
∑
𝑘=1

𝛾(𝑘)𝑋𝑘 and 𝑌 ′ =
∞
∑
𝑘=1

𝛾(𝑘)𝑋 ′
𝑘. (4.23)

133



Maximum cut of random 𝑑-regular graphs

Applying Corollary 4.3.6, Lemma 4.3.7, and eq. (4.23) with 𝛾 = 𝜸 (which depends on
the Poisson Point Process 𝐏, eq. (4.21)), we obtain

𝔼[log𝑍𝛽(𝔾)] ≤ 𝔼[log𝑌] − 𝔼[log𝑌 ′] + 𝑜(𝑛)

= 𝔼 [log (
∞
∑
𝑘=1

𝜸(𝑘)𝑋𝑘)] − 𝔼[log (
∞
∑
𝑘=1

𝜸(𝑘)𝑋 ′
𝑘)] + 𝑜(𝑛)

= 1
𝑦 𝔼[log𝔼[𝑋

𝑦
1 ∣ 𝐑]] −

1
𝑦 𝔼[log𝔼[𝑋

′
1
𝑦 ∣ 𝐑]] + 𝑜(𝑛).

As (𝝆𝑖,𝑘,ℎ, 𝝆′𝑖,𝑘, 𝝆″𝑖,𝑘)𝑘,ℎ≥1 are independent given𝐑, both 𝔼[𝑋
𝑦
1 ] and 𝔼[𝑋 ′

1
𝑦] factorise. Hence,

𝔼[log𝔼[𝑋𝑦
1 ∣ 𝐑]] = 𝑛𝔼[log𝔼[𝑋𝑦 ∣ 𝐑]],

𝔼[log𝔼[𝑋 ′
1
𝑦 ∣ 𝐑]] = 𝑑𝑛

2 𝔼[log𝔼[𝑋 ′𝑦 ∣ 𝐑]],

completing the proof.

4.4 Proof of main result
We now return to proving Theorem 4.2.1, which is our contribution.

It remains to choose the correct parameters 𝛽, 𝑦 and 𝔯 ∈ 𝒫3({±1}) in Corollary 4.3.6.
We take the limit 𝛽 → ∞, which in physical terms corresponds to the zero temperature
limit. We will take the limit such that 𝛽𝑦 = Θ(1), see eq. (4.26) below. Similar limits were
taken in [DSS15] to derive the upper bound on the 𝑘-SAT threshold from the formula for
the 𝑘-SAT partition function from [PT04], and in [ACG19] to derive a lower bound on the
chromatic number of random regular graphs.

For 𝑖 ∈ {±1}, let 𝛿𝑖 ∈ 𝒫({±1}) be the atom on spin +1 and -1, respectively. Then for
𝑝 ∈ {0, 1/2, 1} we define

𝑟𝑝 = 𝑝𝛿𝜈−1 + (1 − 𝑝)𝛿𝜈+1 ∈ 𝒫2({±1}). (4.24)

Thus 𝑟𝑝 is a distribution over distributions on {±1}, which with probability (w.p.) 𝑝makes
the spin+1 (w.p. 1), and w.p. 1−𝑝makes the spin−1 (w.p. 1). Further, for 𝛼 ∈ (0, 1/2) let

𝔯𝛼 = 𝛼𝑟0 + (1 − 2𝛼)𝑟1/2 + 𝛼𝑟1 ∈ 𝒫3({±1}) (4.25)

134



4.4 Proof of main result

Intuitively, we can think of 𝔯𝛼 as setting a vertex to a guaranteed+1 and -1with probability
𝛼 each, and randomly selecting between +1 and −1 otherwise.

In the following we use the substitution

𝑦 = − log(𝑧)/𝛽 (4.26)

for a fixed 𝑧 > 0.

Lemma 4.4.1. For 𝛼 ∈ (0, 1/2), 𝑧 ∈ (0, 1), we have

lim
𝛽→∞

𝔼[log𝔼[𝑋 ′𝑦 ∣ 𝐑]] = log (1 − 2𝛼2 + 2𝛼2𝑧) .

Proof. In the following, we abbreviate (1− (1− 𝑒−𝛽)(𝜌1𝜌2+(1−𝜌1)(1−𝜌2)))
𝑦 as ℰ. Then,

lim
𝛽→∞

𝔼[log𝔼[𝑋 ′𝑦 ∣ 𝐑]] = lim
𝛽→∞

𝔼[log𝔼[(1 − (1 − e−𝛽) ∑
𝜏∈{±1}

𝝆′1,1(𝜏)𝝆″1,1(𝜏))
𝑦
||| 𝐑]]

= lim
𝛽→∞

log( ∑
𝜌1,𝜌2∈{0,1/2,1}

𝔯𝛼(𝑟𝜌1)𝔯𝛼(𝑟𝜌2) ⋅ ℰ𝑦)

= log (1 − 2𝛼2 + 2𝛼2𝑧) .

The first equality is by definition of 𝑋 ′. For the second equality, we look to eq. (4.25).
In the inner expectation, we are sampling 𝝆′1,1 and 𝝆″1,1 according to 𝐫1, and therefore we
can simply write this as the sum over the 9 possible outcomes. The term 𝔯𝛼(𝑟𝜌1)𝔯𝛼(𝑟𝜌2)
corresponds to the probability of the given outcome, and ℰ𝑦 is the value given by the in-
ner expectation in this case. The outer expectation disappears, as the formula no longer
depends on 𝐫1 (or 𝐑).

To understand the third (asymptotic) equality, observe that there are four possibilities
for the relation between 𝜌1 and 𝜌2.

• If 𝜌1, 𝜌2 ∈ {0, 1} and 𝜌1 ≠ 𝜌2, which occurs with probability 2𝛼2, ℰ simplifies to
1𝑦 = 1.

• If 𝜌1, 𝜌2 ∈ {0, 1} and 𝜌1 = 𝜌2, which occurs with probability 2𝛼2, ℰ = exp(−𝛽𝑦).

• If 𝜌1 ∈ {0, 1} and 𝜌2 = 1/2 or vice versa, which occurs with probability 4𝛼(1 − 2𝛼),
ℰ = ((1 + 𝑒−𝛽)/2)𝑦 → 1, as 𝑦 → 0, 𝛽 → ∞.

• If 𝜌1, 𝜌2 = 1/2, which occurs with probability (1 − 2𝛼)2, ℰ = ((1 + 𝑒−𝛽)/2)𝑦 → 1 as
before.

135



Maximum cut of random 𝑑-regular graphs

Therefore, with probability 1−2𝛼2, ℰ tends to 1, while it takes the value 𝑧 = exp(−𝛽𝑦)
in the remaining cases. Intuitively, a penalty term 𝑧 is therefore only added, if both vertices
connected by an edge surely take the same spin.

Deriving an explicit bound for lim𝛽→∞ 𝔼[log𝔼[𝑋𝑦 ∣ 𝐑]] is more involved.

Lemma 4.4.2. For 𝛼 ∈ (0, 1/2), 𝑧 ∈ (0, 1), we have

lim
𝛽→∞

𝔼 [log𝔼 [𝑋𝑦 ∣ 𝐑]] = log (𝜁𝒜𝑑
𝑑,𝛼𝜉|𝑡=𝑧1/2) .

Proof. Consider the inner term

𝑋𝑦 = ( ∑
𝜏∈{±1}

𝑑
∏
ℎ=1

1 − (1 − e−𝛽)𝝆1,1,ℎ(𝜏))
𝑦

,

and define the following random variables:

𝐀 =
𝑑
∑
ℎ=1

𝟏{𝝆1,1,ℎ(1) = 0}, 𝐁 =
𝑑
∑
ℎ=1

𝟏{𝝆1,1,ℎ(1) = 1/2}, 𝐂 =
𝑑
∑
ℎ=1

𝟏{𝝆1,1,ℎ(1) = 1}.

Note that𝐀 ∼ Bin(𝑑, 𝛼), 𝐂 ∼ Bin(𝑑, 𝛼), 𝐁 ∼ Bin(𝑑, 1 − 2𝛼) conditioned on𝐀+𝐁+𝐂 = 𝑑.
Further,

(
𝑑
∏
ℎ=1

1 − (1 − 𝑒−𝛽)𝝆1,1,ℎ(1))
𝑦

= exp(−𝛽𝑦𝐂) (1 + 𝑒−𝛽
2 )

𝑦𝐁

∼ exp (−𝛽𝑦𝐂) as 𝛽 → ∞,

(
𝑑
∏
ℎ=1

1 − (1 − 𝑒−𝛽)𝝆1,1,ℎ(−1))
𝑦

= exp(−𝛽𝑦𝐀) (1 + 𝑒−𝛽
2 )

𝑦𝐁

∼ exp(−𝛽𝑦𝐀) as 𝛽 → ∞.

Thus,

𝑋𝑦 ∼ exp(−𝛽𝑦(𝐀 ∧ 𝐂)) as 𝛽 → ∞.

Finally, using 𝑧 = exp(−𝛽𝑦), we obtain

lim
𝛽→∞

𝔼[log𝔼[𝑋𝑦 ∣ 𝐑]] = 𝔼 [log𝔼 [𝑧𝐀∧𝐂 ∣ 𝐑]] .

To calculate this consider a 𝑑-step symmetric random walk on ℕ with a reflective bar-
rier at 0. At 𝑘 ∈ ℕ, for 𝑘 ≥ 1 the available moves are +1, −1 or 0, with probabilities 𝛼, 𝛼

136



4.4 Proof of main result

and 1 − 2𝛼 respectively; and for 𝑘 = 0 the available moves are +1 or 0 with probabilities
2𝛼 and 1 − 2𝛼 respectively. Let 𝐀 and 𝐂 count the +1 and −1moves, respectively, and 𝐁
the 0 moves. Thus, 𝐀 + 𝐂 is the total number of non-stationary moves and |𝐀 − 𝐂| the
final position of the walk. Consider the matrix

𝒜𝑑,𝛼 = (1 − 2𝛼)id + 2𝛼𝑡ℳ𝑑,

where 𝑡 is a dummy variable that we introduce to count upwards and downwards move-
ments andℳ𝑑 is defined as in eq. (4.1). Thus for every 𝑖 ∈ [𝑑],

(𝒜𝑑
𝑑,𝛼)1 𝑖 =

𝑑
∑

𝑘=𝑖−1
𝑡𝑘ℙ [𝐀 + 𝐂 = 𝑘 and |𝐀 − 𝐂| = 𝑖 − 1] .

Further, define vectors 𝜁 and 𝜉 as in eq. (4.2) and eq. (4.3). Consider the matrix product
𝜁𝒜𝑑

𝑑,𝛼𝜉 and observe that the exponent of 𝑡 equals 𝐀+𝐂− |𝐀 − 𝐂| = 2(𝐀 ∧ 𝐂). Therefore,
substituting 𝑡 = √𝑧 yields

𝔼 [log𝔼 [𝑧𝐀∧𝐂 ∣ 𝐑]] = log (𝜁𝒜𝑑
𝑑,𝛼𝜉||𝑡=𝑧1/2) .

Recall the definition of 𝐹𝑑(𝛼, 𝑧) from eq. (4.4) and that we are using the substitution
eq. (4.26). Corollary 4.3.8 and Lemmas 4.4.1 and 4.4.2 yield

lim sup
𝛽→∞

Φ𝑑(𝛽)
𝛽 ≤ 𝐹𝑑(𝛼, 𝑧) (4.27)

for all 𝛼 ∈ (0, 1/2), 𝑧 ∈ (0, 1).
We are now ready to prove our main theorem.

Proof of Theorem 4.2.1. By applying eq. (4.9) to 𝔾, for any 𝛽 > 0 we have

2
𝑑𝑛𝔼[MaxCut(𝔾)] ≤ 1 + 2

𝛽𝑑𝑛𝔼[log𝑍𝛽(𝔾)].

Hence, using eq. (4.27),

lim sup
𝑛→∞

2
𝑑𝑛𝔼[MaxCut(𝔾)] ≤ 1 + 2

𝑑 lim sup
𝛽→∞

Φ𝑑(𝛽)
𝛽 ≤ 1 + 2

𝑑 inf
𝛼∈(0,1/2)
𝑧∈(0,1)

𝐹𝑑(𝛼, 𝑧). (4.28)

The assertion eq. (4.5) follows from eq. (4.28) and Proposition 4.3.1.

137



Maximum cut of random 𝑑-regular graphs

4.5 Numerical data
Values in Table 4.1 (for Corollary 4.2.2) are obtained from the following 𝛼 and 𝑧 values.
The numerical optimization has been done using the Optim.jl numerical optimization
package [KN18] written in the Julia programming language [BEKS17].

𝑑 𝐹(𝛼, 𝑧) 𝛼 𝑧
3 -0.11385 0.39104 0.43395
4 -0.26353 0.47244 0.45909
5 -0.41240 0.42992 0.52974
6 -0.58541 0.47264 0.53430
7 -0.75217 0.44600 0.58249
8 -0.93659 0.47382 0.58312
9 -1.11453 0.45511 0.61837
10 -1.30615 0.47513 0.61815

Table 4.2 Optimal numerical values for 𝐹𝑑(𝛼, 𝑧) for 𝑑 = 3… 10

138



References

[ACG19] P. Ayre, A. Coja-Oghlan, and C. Greenhill. “Lower Bounds on the Chro-
matic Number of Random Graphs”. June 26, 2019. arXiv: 1812.09691.

[AJ05] J. A. Adell and P. Jodrá. “The Median of the Poisson Distribution”. In:
Metrika 61.3 (June 2005), pp. 337–346. issn: 0026-1335, 1435-926X. doi:
10.1007/s001840400350.

[AK95] C. J. Alpert and A. B. Kahng. “Recent Directions in Netlist Partitioning: A
Survey”. In: Integration 19.1-2 (Aug. 1995), pp. 1–81. issn: 01679260. doi:
10.1016/0167-9260(95)00008-4.

[Ald01] D. J. Aldous. “The 𝜁(2) Limit in the Random Assignment Problem”. In:
RandomStructures andAlgorithms 18.4 (July 2001), pp. 381–418. issn: 1042-
9832, 1098-2418. doi: 10.1002/rsa.1015.

[Alo97] N. Alon. “On the Edge-Expansion of Graphs”. In: Combinatorics, Proba-
bility and Computing 6.2 (June 1997), pp. 145–152. issn: 09635483. doi:
10.1017/S096354839700299X.

[ARV04] S. Arora, S. Rao, and U. Vazirani. “Expander Flows, Geometric Embed-
dings and Graph Partitioning”. In: Journal of the ACM 56 (Apr. 30, 2004).
doi: 10.1145/1502793.1502794.

[BCLS87] T. N. Bui, S. Chaudhuri, F. T. Leighton, andM. Sipser. “Graph Bisection Al-
gorithmswithGoodAverageCaseBehavior”. In:Combinatorica 7.2 (June 1,
1987), pp. 171–191. issn: 1439-6912. doi: 10.1007/BF02579448.

[BEKS17] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A Fresh
Approach to Numerical Computing”. In: SIAM Review 59.1 (Jan. 2017),
pp. 65–98. issn: 0036-1445, 1095-7200. doi: 10.1137/141000671.

[BFM98] A. Beveridge, A. Frieze, and C. McDiarmid. “Random Minimum Length
Spanning Trees in Regular Graphs”. In: Combinatorica 18.3 (Mar. 1, 1998),
pp. 311–333. issn: 1439-6912. doi: 10.1007/PL00009825.

[BH12] S. Bhamidi and R. van der Hofstad. “Weak Disorder Asymptotics in the
Stochastic Mean-Field Model of Distance”. In: Annals of Applied Probabil-
ity 22.1 (Feb. 2012), pp. 29–69. issn: 1050-5164, 2168-8737. doi: 10.1214/
10-AAP753.

[BHH11] S. Bhamidi, R. Hofstad, and G. Hooghiemstra. “First Passage Percolation
on theErdős-Rényi RandomGraph”. In:Combinatorics, Probability&Com-
puting 20 (Sept. 1, 2011), pp. 683–707. doi: 10.1017/S096354831100023X.

139

https://arxiv.org/abs/1812.09691
https://doi.org/10.1007/s001840400350
https://doi.org/10.1016/0167-9260(95)00008-4
https://doi.org/10.1002/rsa.1015
https://doi.org/10.1017/S096354839700299X
https://doi.org/10.1145/1502793.1502794
https://doi.org/10.1007/BF02579448
https://doi.org/10.1137/141000671
https://doi.org/10.1007/PL00009825
https://doi.org/10.1214/10-AAP753
https://doi.org/10.1214/10-AAP753
https://doi.org/10.1017/S096354831100023X


References

[Bol88] B. Bollobás. “The Isoperimetric Number of Random Regular Graphs”. In:
European Journal ofCombinatorics 9.3 (May 1988), pp. 241–244. issn: 01956698.
doi: 10.1016/S0195-6698(88)80014-3.

[Bol98] B. Bollobás.Modern Graph Theory. Vol. 184. Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0619-4.

[BT97] D. Bertsimas and J.N. Tsitsiklis. Introduction toLinearOptimization. Athena
Scientific Series in Optimization and Neural Computation. Athena Scien-
tific, 1997. 587 pp.

[Cho94] K. P. Choi. “On the Medians of Gamma Distributions and an Equation of
Ramanujan”. In: Proceedings of the American Mathematical Society 121.1
(May 1994), p. 245. issn: 00029939. doi: 10.2307/2160389.

[DHL17] I. Dunning, J. Huchette, and M. Lubin. “JuMP: A Modeling Language for
Mathematical Optimization”. In: SIAM Review 59.2 (Jan. 2017), pp. 295–
320. issn: 0036-1445, 1095-7200. doi: 10.1137/15M1020575.

[Dij59] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”.
In:Numerische Mathematik 1.1 (Dec. 1959), pp. 269–271. issn: 0029-599X,
0945-3245. doi: 10.1007/BF01386390.

[DMS17] A. Dembo, A. Montanari, and S. Sen. “Extremal Cuts of Sparse Random
Graphs”. In: The Annals of Probability 45.2 (Mar. 2017), pp. 1190–1217.
issn: 0091-1798. doi: 10.1214/15-AOP1084.

[DSS15] J. Ding, A. Sly, and N. Sun. “Proof of the Satisfiability Conjecture for Large
𝑘”. In: Proceedings of the Forty-Seventh Annual ACMon Symposium onThe-
ory of Computing - STOC ’15. ACM Press, 2015, pp. 59–68. doi: 10.1145/
2746539.2746619.

[DSW07] J. Díaz, M. Serna, and N. Wormald. “Bounds on the Bisection Width for
Random 𝑑-Regular Graphs”. In: Theoretical Computer Science 382.2 (Aug.
2007), pp. 120–130. issn: 03043975. doi: 10.1016/j.tcs.2007.03.003.

[EGvdHN13] M. Eckhoff, J. Goodman, R. van der Hofstad, and F. R. Nardi. “Short Paths
for First Passage Percolation on the Complete Graph”. In: Journal of Sta-
tistical Physics 151.6 (June 1, 2013), pp. 1056–1088. issn: 1572-9613. doi:
10.1007/s10955-013-0743-7.

[FJ18] A. Frieze and T. Johansson. “On Edge-Disjoint Spanning Trees in a Ran-
domlyWeightedCompleteGraph”. In:Combinatorics, Probability andCom-
puting 27.2 (Mar. 2018), pp. 228–244. issn: 0963-5483, 1469-2163. doi: 10.
1017/S0963548317000426.

[FPS18] A. Frieze, W. Pegden, and G. B. Sorkin. “The Distribution of Minimum-
WeightCliques andOther Subgraphs inGraphswithRandomEdgeWeights”.
In: SIAM Journal on Discrete Mathematics 32.3 (Jan. 2018), pp. 2115–2133.
issn: 0895-4801, 1095-7146. doi: 10.1137/17M1138303.

[Fri04] A. Frieze. “OnRandomSymmetric Travelling SalesmanProblems”. In:Math-
ematics of Operations Research 29.4 (Nov. 2004), pp. 878–890. issn: 0364-
765X, 1526-5471. doi: 10.1287/moor.1040.0105.

140

https://doi.org/10.1016/S0195-6698(88)80014-3
https://doi.org/10.1007/978-1-4612-0619-4
https://doi.org/10.2307/2160389
https://doi.org/10.1137/15M1020575
https://doi.org/10.1007/BF01386390
https://doi.org/10.1214/15-AOP1084
https://doi.org/10.1145/2746539.2746619
https://doi.org/10.1145/2746539.2746619
https://doi.org/10.1016/j.tcs.2007.03.003
https://doi.org/10.1007/s10955-013-0743-7
https://doi.org/10.1017/S0963548317000426
https://doi.org/10.1017/S0963548317000426
https://doi.org/10.1137/17M1138303
https://doi.org/10.1287/moor.1040.0105


References

[Fri85] A. Frieze. “On the Value of a Random Minimum Spanning Tree Prob-
lem”. In: Discrete Applied Mathematics 10.1 (Jan. 1985), pp. 47–56. issn:
0166218X. doi: 10.1016/0166-218X(85)90058-7.

[GJ09] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. A Series of Books in the Mathematical Sci-
ences. Freeman, 2009. 338 pp.

[GJS76] M. Garey, D. Johnson, and L. Stockmeyer. “Some Simplified NP-Complete
GraphProblems”. In:TheoreticalComputer Science 1.3 (Feb. 1976), pp. 237–
267. issn: 03043975. doi: 10.1016/0304-3975(76)90059-1.

[GW95] M. X. Goemans and D. P. Williamson. “Improved Approximation Algo-
rithms for Maximum Cut and Satisfiability Problems Using Semidefinite
Programming”. In: Journal of the ACM 42 (1995), pp. 1115–1145.

[Ham95] K. Hamza. “The Smallest UniformUpper Bound on the Distance between
the Mean and the Median of the Binomial and Poisson Distributions”. In:
Statistics & Probability Letters 23.1 (Apr. 1995), pp. 21–25. issn: 01677152.
doi: 10.1016/0167-7152(94)00090-U.

[HL95] B. Hendrickson and R. Leland. “A Multilevel Algorithm for Partitioning
Graphs”. In: Proceedings of the 1995 ACM/IEEE Conference on Supercom-
puting (CDROM) - Supercomputing ’95. ACM Press, 1995, 28–es. doi: 10.
1145/224170.224228.

[Hla06] J. Hladký. “Structural Properties of Graphs — Probabilistic and Determin-
istic Point of View”. Bachelor’s Thesis. 2006.

[HW16] C. Hoppen and N. Wormald. “Properties of Regular Graphs with Large
Girth via Local Algorithms”. In: Journal of Combinatorial Theory, Series B
121 (Nov. 2016), pp. 367–397. issn: 00958956. doi: 10.1016/j.jctb.2016.07.
009.

[Jan02] S. Janson. “On Concentration of Probability”. In: Combinatorics, Probabil-
ity and Computing (2002).

[Jan18] S. Janson. “Tail Bounds for Sums of Geometric and Exponential Variables”.
In: Statistics & Probability Letters 135 (Apr. 2018), pp. 1–6. issn: 01677152.
doi: 10.1016/j.spl.2017.11.017.

[Jan99] S. Janson. “One, Two and Three Times Log n/n for Paths in a Complete
Graphwith RandomWeights”. In:Combinatorics, Probability and Comput-
ing 8.4 (July 1999), pp. 347–361. issn: 09635483. doi: 10.1017/S0963548399003892.

[JS19] S. Janson andG. B. Sorkin. “SuccessiveMinimumSpanning Trees”. June 4,
2019. arXiv: 1906.01533.

[KB80] R. Kaas and J. Buhrman. “Mean, Median and Mode in Binomial Distribu-
tions”. In: Statistica Neerlandica 34.1 (Mar. 1980), pp. 13–18. issn: 0039-
0402, 1467-9574. doi: 10.1111/j.1467-9574.1980.tb00681.x.

[KM92] A. Kostochka and L. Mel’nikov. “On Bounds of the Bisection Width of
Cubic Graphs”. In: Fourth Czechoslovakian Symposium on Combinatorics,
Graphs and Complexity. Ed. by J. Neŝetril and M. Fiedler. Vol. 51. Annals
of Discrete Mathematics. Elsevier, 1992, pp. 151–154. doi: 10.1016/S0167-
5060(08)70620-4.

141

https://doi.org/10.1016/0166-218X(85)90058-7
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0167-7152(94)00090-U
https://doi.org/10.1145/224170.224228
https://doi.org/10.1145/224170.224228
https://doi.org/10.1016/j.jctb.2016.07.009
https://doi.org/10.1016/j.jctb.2016.07.009
https://doi.org/10.1016/j.spl.2017.11.017
https://doi.org/10.1017/S0963548399003892
https://arxiv.org/abs/1906.01533
https://doi.org/10.1111/j.1467-9574.1980.tb00681.x
https://doi.org/10.1016/S0167-5060(08)70620-4
https://doi.org/10.1016/S0167-5060(08)70620-4


References

[KN18] P. K Mogensen and A. N Riseth. “Optim: A Mathematical Optimization
Package for Julia”. In: Journal of Open Source Software 3.24 (Apr. 4, 2018),
p. 615. issn: 2475-9066. doi: 10.21105/joss.00615.

[LLR95] N. Linial, E. London, and Y. Rabinovich. “The Geometry of Graphs and
Some of Its Algorithmic Applications”. In: Combinatorica 15.2 (June 1,
1995), pp. 215–245. issn: 1439-6912. doi: 10.1007/BF01200757.

[LO18] M. Lelarge and M. Oulamara. “Replica Bounds by Combinatorial Inter-
polation for Diluted Spin Systems”. In: Journal of Statistical Physics 173.3
(Nov. 1, 2018), pp. 917–940. issn: 1572-9613. doi: 10 .1007/s10955- 018-
1964-6.

[Luc92] É. Lucas. RécréationsMathématiques. A facsimile of the 1896 second print-
ing is accessible at https://archive.org/details/recretionmatedou02lucarich.
Gauthier-Villars, 1892.

[Mar16] A. Martinsson. “Unoriented First-Passage Percolation on the n-Cube”. In:
Annals of Applied Probability 26.5 (Oct. 2016), pp. 2597–2625. issn: 1050-
5164, 2168-8737. doi: 10.1214/15-AAP1155.

[McK82] B. McKay. “Maximum Bipartite Subgraphs of Regular Graphs with Large
Grith”. In: Proceedings of the 13th Southeastern Conference on Combina-
torics, Graph Theory and Computing. Utilitas Mathematica Pub., 1982.

[MP06] B.Monien and R. Preis. “Upper Bounds on the BisectionWidth of 3- and 4-
RegularGraphs”. In: Journal ofDiscreteAlgorithms 4.3 (Sept. 2006), pp. 475–
498. issn: 15708667. doi: 10.1016/j.jda.2005.12.009.

[MPD00] B. Monien, R. Preis, and R. Diekmann. “Quality Matching and Local Im-
provement forMultilevelGraph-Partitioning”. In:Parallel Computing 26.12
(Nov. 2000), pp. 1609–1634. issn: 01678191. doi: 10.1016/S0167-8191(00)
00049-1.

[Pan13] D. Panchenko. The Sherrington-Kirkpatrick Model. Springer Monographs
in Mathematics. Springer New York, 2013. doi: 10.1007/978-1-4614-6289-
7.

[PT04] D. Panchenko and M. Talagrand. “Bounds for Diluted Mean-Fields Spin
Glass Models”. May 18, 2004. arXiv: math/0405357.

[PT93] S. Poljak and Z. Tuza. “Maximum Cuts and Largest Bipartite Subgraphs”.
In: Combinatorial Optimization. 1993. doi: 10.1090/dimacs/020/04.

[Räc08] H.Räcke. “OptimalHierarchicalDecompositions forCongestionMinimiza-
tion in Networks”. In: Proc. 40th STOC. May 17, 2008, pp. 255–264. doi:
10.1145/1374376.1374415.

[SFH06] C. Su, Q. Feng, and Z. Hu. “Uniform Recursive Trees: Branching Structure
and Simple Random Downward Walk”. In: Journal of Mathematical Anal-
ysis and Applications 315.1 (Mar. 2006), pp. 225–243. issn: 0022247X. doi:
10.1016/j.jmaa.2005.05.004.

[Shm97] D.B. Shmoys. “Cut Problems andTheirApplication toDivide-and-Conquer”.
In:ApproximationAlgorithms forNP-HardProblems. Ed. byD. S.Hochbaum.
PWS Pub. Co, 1997, pp. 192–235.

142

https://doi.org/10.21105/joss.00615
https://doi.org/10.1007/BF01200757
https://doi.org/10.1007/s10955-018-1964-6
https://doi.org/10.1007/s10955-018-1964-6
https://archive.org/details/recretionmatedou02lucarich
https://doi.org/10.1214/15-AAP1155
https://doi.org/10.1016/j.jda.2005.12.009
https://doi.org/10.1016/S0167-8191(00)00049-1
https://doi.org/10.1016/S0167-8191(00)00049-1
https://doi.org/10.1007/978-1-4614-6289-7
https://doi.org/10.1007/978-1-4614-6289-7
https://arxiv.org/abs/math/0405357
https://doi.org/10.1090/dimacs/020/04
https://doi.org/10.1145/1374376.1374415
https://doi.org/10.1016/j.jmaa.2005.05.004


References

[Sor20] G. B. Sorkin. “Extremal Cuts in Random Cubic Graphs”. Manuscript (28
pages). 2020.

[SSZ16] A. Sly, N. Sun, and Y. Zhang. “The Number of Solutions for Random Reg-
ular NAE-SAT”. In: 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, Oct. 2016, pp. 724–731. doi: 10.1109/
FOCS.2016.82.

[Tal03] M. Talagrand. Spin Glasses: A Challenge for Mathematicians: Cavity and
Mean Field Models. Ergebnisse Der Mathematik Und Ihrer Grenzgebiete
3. Folge, v. 46. Springer, 2003. 586 pp.

[Tal06] M.Talagrand. “TheParisi Formula”. In:Annals ofMathematics 163.1 (2006),
pp. 221–263. issn: 0003-486X. JSTOR: 20159953.

[Wäs08] J. Wästlund. “Random Matching Problems on the Complete Graph”. In:
Electronic Communications in Probability 13.0 (2008), pp. 258–265. issn:
1083-589X. doi: 10.1214/ECP.v13-1372.

[Wäs09] J. Wästlund. “An Easy Proof of the 𝜁(2) Limit in the Random Assignment
Problem”. In:ElectronicCommunications inProbability 14.0 (2009), pp. 261–
269. issn: 1083-589X. doi: 10.1214/ECP.v14-1475.

[Wäs10] J. Wästlund. “The Mean Field Traveling Salesman and Related Problems”.
In: Acta Mathematica 204.1 (Mar. 1, 2010), pp. 91–150. issn: 1871-2509.
doi: 10.1007/s11511-010-0046-7.

[ZB10] L. Zdeborová and S. Boettcher. “A Conjecture on the Maximum Cut and
BisectionWidth in Random Regular Graphs”. In: Journal of Statistical Me-
chanics: Theory andExperiment 2010.02 (Feb. 25, 2010), P02020. issn: 1742-
5468. doi: 10.1088/1742-5468/2010/02/P02020.

143

https://doi.org/10.1109/FOCS.2016.82
https://doi.org/10.1109/FOCS.2016.82
http://www.jstor.org/stable/20159953
https://doi.org/10.1214/ECP.v13-1372
https://doi.org/10.1214/ECP.v14-1475
https://doi.org/10.1007/s11511-010-0046-7
https://doi.org/10.1088/1742-5468/2010/02/P02020

	Table of contents
	1 Introduction
	1.1 Successive shortest paths in K_n with random edge weights
	1.2 Partitioning problems

	2 Successive shortest paths in K_n with random edge weights
	2.1 Introduction
	2.2 Open problems
	2.3 Upper bound for small k
	2.4 Edge order statistics
	2.5 Upper bound for large k, sketch
	2.6 Upper bound for large k, uniform model
	2.7 Lower bound
	2.8 Exponential model
	2.9 Expectation

	3 Bisection width of arbitrary d-regular graphs
	3.1 Introduction
	3.2 Technical lemmas
	3.3 Method overview
	3.4 The d=3 case
	3.5 The d even, 𝘥≥4 case
	3.6 The d odd, 𝘥≥5 case
	3.7 Acknowledgements

	4 Maximum cut of random d-regular graphs
	4.1 Introduction
	4.2 Main result
	4.3 Statistical physics formulation
	4.4 Proof of main result
	4.5 Numerical data

	References

