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Abstract

A generalization of the well-known Vickrey auctions are lottery qualification auc-

tions – where the m highest bidders win the good with uniform probability, and pay the

m + 1st highest bid upon winning. A random lottery qualification mechanism decides

the integer m randomly. We characterize the class of mechanisms which are payoff

equivalent to the random lottery qualification auctions. The key property character-

izing this class of mechanisms is one which states that only the ordinal comparison

of willingness-to-pay across individuals is relevant in determining the allocation. The

mechanisms can be seen as compromising between ex-post utility efficiency and mon-

etary efficiency.

1 Introduction

A mechanism designer seeks to allocate an object. She wants to base this allocation on the

participants’ valuations, but she is not necessarily concerned with revenue maximization.

For example, a government may worry that allocating the object to the participant with

the highest valuation may tend to induce a monopoly. Or, there may be legal constraints

involved with using money in certain ways; as in kidney exchange.
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To this end, we discuss, in a private-value setting, a class of mechanisms which naturally

generalize the Vickrey mechanism. These mechanisms do not guarantee ex-post efficiency

(Green and Laffont (1977)), the property that the good goes to a participant with the highest

valuation. The building blocks of the mechanisms we study here are not new: they generalize

the Vickrey (Vickrey (1961); Clarke (1971); Groves (1973)) auction in a natural way. We

imagine a single-unit auction with transfers and quasilinear preferences. The class of lottery

qualification auctions, introduced by Harstad and Bordley (1996), is parametrized by an

integer. The participants bid, and the m highest bidders each have a (uniform) chance of

winning the object. The winner gets the object, and pays the m + 1st highest price.

This primitive class generalizes both the second-price Vickrey auction (when m = 1),

and a straight uniform lottery with no transfers (as in models of kidney exchange (Roth,

Sönmez, and Ünver, 2004)).

Ex-post efficiency (Green and Laffont (1977)) usually has the interpretation that, af-

ter all transfers have been paid (the money presumably burned or given to the mechanism

designer), no reallocation of the goods (or money) results in Pareto dominance. However,

in a well-known phenomenon in mechanism design (Green and Laffont (1977); Holmström

(1979); Laffont and Maskin (1980)), the allocations recommended by these mechanisms are

not in general efficient. Money must be burned or injected. This is because only the VCG

mechanism is ex-post incentive compatible and efficient (Green and Laffont (1977); Holm-

ström (1979); Laffont and Maskin (1980)), and it is not ex-post budget-balanced. From the

point of view of a mechanism designer who operates outside of the mechanism (and does not

enjoy any profits), this is pure waste as much as “misallocating” the good is.

On the other hand, ex-post efficiency can be viewed as preventing a kind of aftermarket

from occurring, after any money is burned. By preventing ex-post trade of objects (or ex-

post trade of objects for money), the mechanism designer can ensure that the recommended

allocation is actually implemented. This would not necessarily be so were ex-post efficiency

violated. So, the mechanisms we consider are probably best used when consumption of rec-

ommended objects can be credibly enforced (such as with auctioning bandwidth, or perhaps

exchange of kidneys).

So, ex-post efficency and incentive compatibility imply that some money must be burned.

However; observe that the absence of budget-balance is not inevitable unless we require both
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of these properties. For example, we may simply take the object and randomly allocate it

without even asking the agents’ valuations. In fact, some variant of this takes place in kidney

exchange, where for ethical and legal reasons, monetary valuation of kidneys are not even

considered and money is not permitted (Roth, Sönmez, and Ünver (2004)). The important

takeaway here is that money need not be burned. And, in fact, in our general class, there

is a kind of tradeoff. The more we seek to satisfy ex-post efficiency, in equilibrium, the less

“monetary efficiency” will be satisfied.

Our main result characterizes the class of lottery qualification auctions as (the extreme

points of) the class of mechanisms satisfying four basic properties. The first three are

standard: incentive compatibility, anonymity, and a property stating that those who bid

nothing pay nothing. The key property here is a property we term ordinality. Ordinality

requires that the probabilistic allocation of the object be determined solely by the ordinal

ranking of the individuals’ willingness to pay for the object. The chances of winning the

object are completely determined by who values the object more (or less). Ex-post efficiency

implies ordinality: it forces the participant with the highest valuation to necessarily obtain

the good. As far as we know, ordinality is novel to this context. But axioms along these

lines are frequently posited in the theory of matching with risk; see, e.g. Bogomolnaia and

Moulin (2001).

We observe a critical difference between classical notions of ordinality (as in Bogomolnaia

and Moulin (2001) and our notion. In the work of Bogomolnaia and Moulin (2001), the

ordinality represents a preference structure. Their goal is to allocate objects probabilistically,

and they assume preferences are only observed over nonrandom alternatives. So, in their

case, this ordinal structure can easily be elicited without asking an individual about any

kind of cardinal information. In contrast, our axiom is, in a way, less compelling as it works

across individuals. Viewing the amount an individual is willing to pay for an object as

a utility, our notion gives a natural interpersonally comparable notion of utility. It is the

ordinal structure of this utility across agents which we study. We see no obvious method

of eliciting this structure without first eliciting the cardinal utility (value of the object).

Thus, our axiom should be viewed as more of an axiom which simplifies the structure of the

problem, rather than one that has some underlying economic content.
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In order to justify our claims about Pareto efficiency, we demonstrate a profile of valua-

tions for which no mechanism in our class Pareto dominates any other mechanism. In other

words, for this particular profile, all such mechanisms are Pareto efficient among the class

of achievable allocations. In fact, there is a “large” set of such valuations, but we do not

demonstrate this formally.

Section 2 describes the model and the main result. Section 3 demonstrates the profile

with the Pareto non-dominance result. Finally, Section 4 concludes.

2 Model and Characterization

Let N ≡ {1, . . . , n} be a finite set of agents, with generic element i ∈ N . The set of

valuations is Θ = [0, +∞). Agents are risk-neutral and the utility an agent i ∈ N with

valuation θi ∈ Θ gathers from receiving the object with probability p ∈ [0, 1] less transfer t

is ui(p, t : θi) = θip − t.

Though the interpretation of our mechanisms involves random payments, we consider only

the relevant welfare of individuals. To this end, the set of allocations is Y = Δ(N) × <N ,

with typical element (p, t). Let us comment on this definition. First, a more general type of

allocation would take as a primitive a deterministic allocation, which would be an element of

N ×<N . Then, a random allocation would be a simple lottery over these objects. However,

any such “generalized allocation” would induce an allocation of the form we consider, merely

by taking appropriate expectations. So long as our primary axioms are about welfare, and

our characterization speaks only to the welfare of the agents, it is without loss to consider

this type of allocation.

A valuation profile is an element θ ∈ ΘN , written θ = {θi}i∈N . A valuation profile without

ties is an element θ ∈ ΘN for which for all i, j ∈ N with i 6= j, θi 6= θj . The set of valuation

profiles without ties is written ΘN . For ease of exposition, we will primarily concern ourselves

with valuation profiles that have no ties.

To this end, define an allocation rule to be a function f : ΘN → Y . We often write

f(θ) = (p(θ), t(θ)). The notation pi(θ) refers to the probability that agent i receives the

good with profile θ, and ti(θ) refers to the transfer for agent i with profiles θ
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First, an allocation rule is incentive compatible if for all θ ∈ ΘN , all i ∈ N , and all θ′ ∈ Θ

for which (θ′, θ−i) ∈ ΘN , it satisfies

θipi(θ) − ti(θ) ≥ θipi(θ
′, θ−i) − ti(θ

′, θ−i).

An allocation rule is anonymous if for all θ ∈ ΘN , any permutation σ : N → N , and any

i ∈ N , we have pi(θ ◦ σ) = pσ(i)(θ) and ti(θ ◦ σ) = tσ(i)(θ).

The allocation and transfer rules are normalized so that for all θ ∈ ΘN , if θi = 0, then

θipi(θ) − ti(θ) = 0. Observe that normalization and incentive compatibility jointly imply

individual rationality, which means θipi(θ) − ti(θ) ≥ 0. Another consequence is that when

θi = 0, ti(θ) = 0.

Finally, the allocation rule is ordinal if for all θ ∈ ΘN and any strictly increasing function

ϕ : Θ → Θ, we have p(θ) = p(ϕ ◦ θ).

Ordinality is the substantive axiom introduced in our work. Observe that the classical

axiom of ex-post efficiency implies ordinality. Our framework allows interpersonal comparison

of utility. In other words, we can meaningfully talk of one individual as obtaining a higher

utility from the good than another (their willingness to pay). Ordinality is the statement that

only the ordinal content of the interpersonal comparison of utility is relevant for determining

the random allocation.

Let θ[m] be the m-th order statistic, so that on ΘN , θ[1] > θ[2] > . . . > θ[n]. Because we

consider θ ∈ ΘN , the n order statistics are distinct.

When 1 ≤ m ≤ n − 1, we define a m-lottery qualification auction (Harstad and Bordley

(1996)) to be the mechanism on ΘN taking the form:

pi(θ) =






1
m

if θi > θ[m+1]

0 otherwise

and

ti(θ) =






θ[m+1]

m
if θi > θ[m+1]

0 otherwise
,

We define the n-lottery qualification auction to consist of uniform randomization across all

agents, without any payments. We write pm, and tm, for the m-lottery qualification auction,
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and transfer function respectively. The rule itself is written fm. 1

Observe that this mechanism is a “reduced form” of the mechanism which awards the

object to one of the m highest bidders with uniform probability, asking them to pay the

m + 1st highest price. Underlying uncertainty about the payoff is collapsed via expectation.

A rule is a random lottery qualification auction if there is q ∈ Δ(n) such that for all

i ∈ N , pi(θ) =
∑n

m=1 qmpm
i (θ) and fi(θ) =

∑n
m=1 qmtmi (θ).

Theorem 1. An allocation rule is a random lottery qualification auction if and only if it

satisfies ordinality, incentive compatibility, anonymity, and normalization.

Proof. Let q be a random lottery qualification auction. Anonymity, ordinality, and normal-

ization are all immediate. We establish that incentive compatibility is satisfied.

We first verify incentive compatibility for lottery qualification auctions. The result is

trivial for the n-lottery qualification auction.

So, consider a lottery qualification auction, fm. For any i, given our domain assumption,

there are two possibilities: either θi > θ[m+1] or θi < θ[m]. Suppose that θi > θ[m+1].

Then for any θ′ > θ[m+1], fm(θ′, θ−i) = fm(θ), so that ui
θi
(fm(θ)) = ui

θi
(fm(θ′, θ−i)). For

any θ′ < θ[m+1] (recall our allocation rule is defined on ΘN), observe that ui
θi
(fm(θ)) =

θi

m
−

θ[m+1]

m
> 0 = ui(fm(θ′, θ−i)).

Now suppose that θi < θ[m]. For any θ′ < θ[m], f(θ) = f(θ′, θ−i). Suppose instead

θ′ > θ[m]. Then uθi
(fm(θ)) = 0, and uθi

(fm(θ′, θ−i)) = θi

m
−

θ[m]

m
< 0.

We have shown that for any m = 1, . . . , n, and all θ ∈ ΘN , all i ∈ N and all θ′ ∈ Θ

for which (θ′, θ−i) ∈ ΘN , we have ui
θi
(fm(θ)) ≥ ui

θi
(fm(θ′, θ−i)). Now observe that for

any τ ∈ ΘN , ui(θi)(f
q(τ)) =

∑n
k=1 q(k)u(fk(τ)). Incentive compatibility therefore follows

directly by linearity.

Conversely, we will show that an allocation rule satisfying the axioms is a random lottery

qualification auction.

As a first step, fix 1 ∈ N . Observe that if θ∗2 > . . . > θ∗n > 0, then by incentive

compatibility p1(θ1, θ
∗
2, . . . , θ

∗
n) weakly increases in θ1. The argument is standard.

1This mechanism is usually understood as a hybrid of a “rationing” mechanism and an auction; see, e.g.,

Parlour, Prasnikar, and Rajan (2007).
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Secondly, by ordinality, it follows that p1(∙, θ∗2, . . . , θ
∗
n) is constant on the intervals: (θ∗2, +∞),

(θ∗k+1, θ
∗
k) for k = 1, . . . , n − 1, and [0, θ∗n). Define p(1) ≡ p1(θ1, θ

∗
2, . . . , θ

∗
n) for any θ1 > θ∗2,

p(k) ≡ p1(θ1, θ
∗
2, . . . , θ

∗
n) for any θ1 ∈ (θk, θk−1), and finally p(n) ≡ p1(θ1, θ

∗
2, . . . , θ

∗
n) when

0 ≤ θ1 < θ∗n.

Observe that by ordinality and symmetry, it follows that for any i ∈ N and any θ ∈ ΘN ,

we have pi(θ) ≡ p(k) where p(k) is such that θi = θ[k]. It therefore also follows by the

definition of allocation rule that
∑n

k=1 p(k) = 1.

Now, define q(n) = np(n), and observe that 0 ≤ q(n). For m < n, define q(m) =

m(p(m) − p(m + 1)). By monotonicity of p, 0 ≤ q(m). Finally, observe that
∑

m q(m) =

np(n) +
∑

m<n m(p(m) − p(m + 1)) =
∑

m p(m) = 1. We claim that the q-lottery qual-

ification auction returns the probabilities p specified by the mechanism. Let us write

p(n + 1) = 0 to simplify notation. Let m ∈ {1, . . . , n}; the q-lottery qualification auction

awards the individual whose valuation is in the m-th position with probability
∑

k≥m q(k) 1
k
.

But
∑

k≥m q(k) 1
k

=
∑

k≥m k(p(k) − p(k + 1)) 1
k

=
∑

k≥m(p(k) − p(k + 1)) = p(m).

Finally, the transfer function t is uniquely defined by incentive compatibility and nor-

malization.

There is nothing at all novel in this simple revenue equivalence argument (see e.g. Myer-

son (1981)), but we replicate it here simply because our domain is ΘN rather than ΘN . Recall

that normalization implies that ti(θ) = 0 whenever θi = 0. Let vi(θi; θ−i) ≡ θipi(θ) − ti(θ),

and observe that by incentive compatibility, vi(θi; θ−i) = supθ′ θipi(θ
′, θ−i) − ti(θ

′, θ−i); so

that vi is the supremum of a collection of affine functions (in θi) defined on Θ \ {θ2, . . . , θn}.

In particular, p(k) form the ordered collection of subgradients of vi(θ1; θ−i). This set of

subgradients is monotone, and hence cyclically monotone; they can clearly be extended (in

a set valued-sense) uniquely to the points {θ2, . . . , θn} to preserve monotonicity. Theorem

24.9 of Rockafellar (1970) demonstrates that vi(θ1; θ−i) is therefore defined uniquely by the

p(i) and the fact that vi(0; θ−i) = 0.

Observe then that ti(θ1; θ−i) = θipi(θi; θ−i)−vi(θi; θ−i) ≥ θipi(θ
′; θ−i)−vi(θ

′; θ−i). That is,

ti(θ1; θ−i) = supθ′ θipi(θ
′; θ−i)−vi(θ

′; θ−i); ti is a Fenchel conjugate of vi (see, e.g. Rockafellar

(1970), Section 12). Since vi is uniquely determined, so is ti.
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3 On the Lack of Pareto Dominance across q-Lottery

Qualification Auctions

Here we show that there is a profile θ ∈ ΘN which has the property that, for any q, r ∈ Δ(n)

where q 6= r, the induced payoffs from q and r are not Pareto ranked. That is, given

any two lottery qualification auctions, some agents will strictly prefer one, and others will

strictly prefer the other. In terms of welfare of the agents participating in the allocation rule,

therefore, ex-post efficiency cannot be used as an efficiency argument. In other words, absent

revenue considerations, there are no efficiency arguments dictating which of the allocation

rules to use. Naturally, a mechanism designer who also accounts for the seller’s revenue will

find the lottery qualification auctions to be Pareto-unranked.

Proposition 1. There exists θ∗ ∈ ΘN such that for any q, r ∈ Δ(n) for which q 6= r, there

exists i ∈ N for which ui
θ∗i

(f r
i (θ∗)) > ui

θ∗i
(f q

i (θ∗)).

Proof. We demonstrate a particular profile θ∗ ∈ ΘN where the payoffs ui
θ∗i

(fm(θ∗)) as m ∈

{1, . . . , n} are Pareto unranked and form the vertices of a simplex. This is enough to prove

the Proposition.

First, observe that in the following matrix, the rows and columns are each linearly in-

dependent. The columns are intended to index individuals N ≡ {1, . . . , n} and the rows

the k-lottery qualification auction. We plan to construct a profile θ ∈ ΘN for which, up to

individual scale transformations, entry (l, k) in this matrix approximates the utility agent k

gets from the l-lottery qualification allocation rule.

A ≡















1 2 ∙∙∙ k ∙∙∙ n

1 1 0 ∙ ∙ ∙ 0 ∙ ∙ ∙ 0

2
1
2

1
2

∙ ∙ ∙ 0 ∙ ∙ ∙ 0
...

...
...

...
...

k
1
k

1
k

∙ ∙ ∙ 1
k

∙ ∙ ∙ 0
...

...
...

...
...

n
1
n

1
n

∙ ∙ ∙ 1
n

∙ ∙ ∙ 1
n














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To this end, consider a profile θ∗ ∈ ΘN whereby θ∗1 > θ∗2 > . . . θ∗n. A corresponding matrix

of utilities from participating in each of the allocation rules is as follows:

G(θ∗) ≡















1 2 ∙∙∙ k ∙∙∙ n

1 θ∗1 − θ∗2 0 ∙ ∙ ∙ 0 ∙ ∙ ∙ 0

2
θ∗1−θ∗3

2

θ∗2−θ∗3
2

∙ ∙ ∙ 0 ∙ ∙ ∙ 0
...

...
...

...
...

k
θ∗1−θ∗k+1

k

θ∗2−θk+1

k
∙ ∙ ∙

θ∗k−θ∗k+1

k
∙ ∙ ∙ 0

...
...

...
...

...

n
θ∗1
n

θ∗2
n

∙ ∙ ∙ θ∗k
n

∙ ∙ ∙ θ∗n
n















Here, Gi,j(θ
∗) (the i-th row and j-th column) is the payoff of the i-lottery qualification

allocation rule to individual j.

Now, let us multiply each column k by 1
θ∗k

, resulting in a rescaling of utility for each

individual, but no change in the ranking.

B(θ∗) ≡
















1 2 ∙∙∙ k ∙∙∙ n

1 1 − θ∗2
θ∗1

0 ∙ ∙ ∙ 0 ∙ ∙ ∙ 0

2
1
2
− θ∗3

2θ∗1

1
2
− θ∗3

2θ∗2
∙ ∙ ∙ 0 ∙ ∙ ∙ 0

...
...

...
...

...

k
1
k
−

θ∗k+1

kθ∗1

1
k
− θk+1

kθ∗2
∙ ∙ ∙ 1

k
−

θ∗k+1

kθ∗k
∙ ∙ ∙ 0

...
...

...
...

...

n
1
n

1
n

∙ ∙ ∙ 1
n

∙ ∙ ∙ 1
n
















Evidently, for any ε > 0, we can choose supk=1,...,n−1

θ∗k+1

θ∗k
< ε, rendering B(θ∗) arbitrarily

close to A. Choose θ∗ so that the rows of B(θ∗) are linearly independent, such that for each

k = 1, . . . , n, arg maxl Bk,l(θ
∗) = k, and finally such that for each column k, Bi,k(θ

∗) strictly

decreases as i increases (which is the case when ε < 1/n2).

Obviously, the rows (and columns) of B(θ∗) are linearly independent.

Now, we claim that for each p, q ∈ Δ(n) with p 6= q, it follows that neither pT B(θ∗) ≥

qT B(θ∗), or qT B(θ∗) ≥ pT B(θ∗). Here, the inequalities are vector inequalities.

9



So, suppose without loss that there are p, q ∈ Δ(n) for which p 6= q and pT B(θ∗) ≥

qT B(θ∗). Clearly, this is true if and only if there is x ∈ <n \ {0} for which
∑

i xi = 0

and xT B(θ∗) ≥ 0, where by linear independence, xT B(θ∗) 6= 0. So, suppose by means of

contradiction that there is such an x. Let Bk(θ∗) denote the k-th column of B(θ∗). It is

clear that there are weights λ1, . . . , λn > 0 such that
∑n

i=1 λiB
i(θ∗) =







1
n
...
1
n





.

Thus, if there were such an x, we would obtain:

xT (
n∑

i=1

λiB
i(θ∗)) = 0,

and, since xT B(θ∗) ≥ 0, but xT B(θ∗) 6= 0, there is some k for which xT Bk(θ∗) > 0. Conse-

quently, since each λi > 0, there would also exist k′ for which xT Bk′
(θ∗) < 0, contradicting

the fact that xT B(θ∗) ≥ 0.

Often in quasilinear allocation, the sum of utilities is a relevant object of study. The

reason for this is that when utility is freely transferable, an allocation is Pareto optimal

exactly when it maximizes a sum of utilities. When looking for efficient, or ex-post efficient

allocations, maximization of the sum of utilities is therefore the correct criterion. In con-

trast, it is not the case that a higher sum of utilities necessarily leads to Pareto dominance.

Rather, a higher sum of utilities for one allocation over another simply means that there

exist additional transfers which render the allocation with the higher sum Pareto dominant

to the one with the lower sum. In our context, we are comparing a given set of alloca-

tions without additional transfers. Thus, we are not claiming that all of the allocations we

study are efficient amongst the class of all allocations, but rather only amongst the class of

allocations which can arise from our class of mechanisms.

4 Related Literature and Conclusion

An obvious point is that our allocation rules focus on valuation profiles without ties. In

particular, we do not even allow individuals to announce ties in deviations. This is in the

interest of simplicity: when there are no ties, all valuation profiles are ordinally equivalent
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to each other. When ties are possible, there are as many ordinal equivalence classes as there

are ordered number partitions of n (see Aigner (2012)). The situation becomes cumbersome

and not particularly interesting formally, though still amenable to analysis. We demonstrate

an example here with the case of n = 3.

Example 1. An ordered number partition of n is a finite sequence of positive integers

summing to n. The following are the ordered number partitions of 3:

1. 1,1,1

2. 1,2

3. 2,1

4. 3

We associate each of these with a certain type of valuation profile. The ordered partition

1, 1, 1 is associated with the type of valuation profile considered in the body of this paper—one

in which all valuations are distinct. The partition 1, 2 is associated with a single individual

with the highest valuation, and a tie for the lowest. Likewise, 2, 1 represents a tie for the

highest valuation, and a single bidder with the lowest. Finally, 3 is the situation in which all

bids are tied.

An ordinal allocation rule in this context associates with each ordered partition a profile of

probabilities. Let us demonstrate by example. Suppose we associate with the ordered partition

1, 1, 1, the profile (.6, .3, .1). This profile of probabilities means that the highest bidder gets

the good with .6 chance, the middle with .2 and the lowest with .1. Importantly, this profile

is weakly decreasing and sums to one.

Now, let us associate with the ordered partition 1, 2 the profile of probabilities given by

(.5, .25). We interpret this as stating that the highest bidder achieves the good with probabil-

ity .5, and the lowest two with probability .25 each. Critically, .25 ∈ [.1, .3]. This constraint

ensures that a bidder’s probability of winning the good is weakly increasing in their announce-

ment (As they cross from the lowest bidder, receiving the good with probability .1, to tying,

they receive a probability of .25. In becoming the middle bidder, they receive a probability of

.3).
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Likewise, we can associate with the ordered partition 2, 1 the profile of probabilities

(.45, .1). Thus, the highest two bidders each have a probability of .45 of winning the good,

and the lowest bidder a probability of .1. Here, it is critical that .45 ∈ [.3, .6], so that a bidder

raising their valuation from the middle valuation to the highest maintains the appropriate

monotonicity constraint.

Finally, of necessity, the ordered partition 3 is associated with the profile (1/3), where each

individual gets a 1/3 chance of obtaining the good. Again, observe that 1/3 ∈ [.1, .45], and

1/3 ∈ [.25, .5], ensuring that the monotonicity implied by incentive compatibility is satisfied.

In general, these allocation rules are characterized by a collection of linear inequalities of

this type (to ensure weak monotonicity). Transfers are always then uniquely determined via

the normalization constraint. Unfortunately, we do not have a characterization of the type

of Theorem 1, though one is probably possible. We do mention that the random tie-breaking

rule, whereby when a set S of agents tie, then they each receive the good with the probability

avgi∈S(pi), is characterized by a strengthening of the ordinality condition: pi(θ) = pi(φ(θ))

for all values θ where φ is strictly increasing.

A classical characterization of incentive compatible allocation rules absent efficiency is

due to Roberts (1979) (there are corrections due to Carbajal, McLennan, and Tourky (2013);

Vohra (2011). These results do not apply to our case as our space of types is one-dimensional

(and thus lacks the necessary richness conditions to apply those results).

Other related characterizations of Vickrey style rules (for multiple units) are given by

Ashlagi and Serizawa (2012); Green and Laffont (1977); Chew and Serizawa (2007); Atlamaz

and Yengin (2008); Yengin (2012).
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