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Abstract. We report an ab initio calculation of crystal structure and lattice

dynamics of cubic silicon dicarbodiimide, Si(NCN)2, using Density Functional Theory

methods. The calculations reveal a low-energy spectrum of Rigid Unit Modes that are

shown to be associate with negative thermal expansion. Comparisons are drawn with

the closely-related NTE material Zn(CN)2, the related cubic-cristobalite phase of SiO2.

1. Introduction

Interest in negative thermal expansion (NTE) has grown significantly over the past

two decades as we have seen new materials that exhibit this counter-intuitive physical

property. The early materials, as discussed in some earlier [1, 2, 3, 4] and more recent

reviews [5, 6, 7, 8, 9], typically had formulae of the form MX2O7, MX2O8 and M2X3O12.

The crystal structures of these materials formed as infinite networks of corner-linked
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MO6 octahedra and XO4 tetrahedra. Since the early days NTE has been found in

a wide range of materials. Actually simultaneously with the re-discovery of NTE in

ZrW2O8 [10, 11] that ushered in the current interest was the discovery of NTE in

zeolitic materials of formula SiO2 or AlPO4 [12, 13, 14, 15, 16, 17, 18]. These materials

consist of corner linked tetrahedra, as also do quartz and cristobalite forms of silica in

their high-temperatures phases [19, 20, 21]. More recently NTE was found in the simple

cubic form of ScF3 [22], which consists only of corner-linked ScF6 octahedra.

The natural development after the work on the pure oxides (and halide analogues)

was to investigate materials in which the linker oxygen atoms are replaced by small

molecular ions. The simples analogues of ScF3 (linked octahedra) and SiO2 (linked

tetrahedra) are obtained by replacing the oxygen by cyanide anions, and indeed NTE

is found in the respective materials of the Prussian blue family [23, 24, 25, 26] and

Zn(CN)2 and related materials [27, 28, 28, 29, 30]. There is great interest in extending

the range of potential molecular ions in such materials, particularly if they can lead to

enhanced NTE in the way demonstrated by Zn(CN)2 [27].

In this paper we consider the new material silicon dicarbodiimide, Si(NCN)2 [31, 32],

which in its high-temperature β-phase has a similar crystal structure to that of Zn(CN)2
but with the extended NCN2− anion replacing the CN− anion, Figure 1. There is some

discussion regarding whether the crystal structure represented with linear Si–N–C–N–

Si atomic connections is an idealisation of the true structure [31, 32, 33, 34], with the

possibility that there are local bond-bending fluctuations, reminiscent of the dynamic

disorder in the cubic phase of cristobalite [35, 36, 37, 38, 39]. The crystal structure of

the low-temperature α-phase appears not to have been deduced experimentally, but has

been investigated using ab initio methods [40].

The same researchers discovered that the cubic β-phase of Si(NCN)2 shows negative

thermal expansion [33], with coefficients of volume expansivity αV in the range −3.7 to

−5.8 MK−1 (the paper actually reports data for linear rather than volume expansivity).

This is somewhat smaller than for most other NTE materials as tabulated in the review

of Dove and Fang [8], and in particular smaller by an order of magnitude than in Zn(CN)2
[27]. However, ab initio simulation methods reported in the same paper showed a rather

larger negative volume expansivity of αV = −60 ± 9 MK−1, which is comparable to

that of Zn(CN)2. Faced with a choice between finding fault with the experiment or

simulation, the authors were inclined to put more trust in their simulation, and they

suggested that the experimental samples may have suffered from small-size effects and

impurities.

In this paper we examine the NTE in Si(NCN)2 using ab initio lattice dynamics

methods, using methods similar to those used to evaluate NTE in Cu2O [41], Zn(CN)2
[42], Y2W3O12 [43], ZrW2O8 and MOF-5 [44]. The results form an interesting comparison

with the results of Zn(CN)2 [42] in terms of the underlying flexibility of the network. The

results are analysed in terms of the Rigid Unit Modes (RUMs) of the system [45, 46, 47],

in which the network flexibility can be described in terms of the translation and rotation

models of ‘rigid’ SiN4 tetrahedra connected by ‘rigid’ NCN rods. The RUM model does
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Figure 1. Crystal structure of the cubic phase of Si(NCN)2, from the paper of Riedel

et al [31]. The crystal has space group Pn3m, with lattice parameter a = 6.19 Å.

It consists of two interpenetrating networks of SiN4 tetrahedra linked by the NCN2−

anions.

not presume infinite rigidity of the structural units, but highlights the differentiation of

stiffer and weaker forces, the latter being the flexing of the Si–N–C angle, as previously

indicated as having a wide variation from linear from consideration of bond lengths

and from the NMR [31, 40, 33, 34]. The issue of rigidity has been discussed in general

detail elsewhere [48]. We also use the ab initio lattice dynamics calculations to give

information of the instability of the cubic β-phase that leads to the phase transition to

the lower-symmetry α-phase [31, 33].

2. Simulation methods

The ab initio calculations reported here were performed using the CASTEP software

package [49], version 19.1. CASTEP is an implementation of the standard density

functional theory (DFT) methods, using plane waves to represent the electron wave

functions represented, and CASTEP’s internal pseudopotentials to represent the effects

of the core electrons. The GGA-PBE functional [50, 51] was used for all calculations,

with norm-conserving pseudopoentials. A plane-wave cutoff energy of 1200 eV was used,

together with a Monkhorst-Pack grid [52] for wave vectors of size 8×8×8 for integration

of electronic states. The material was constrained as an insulator. Forces and stresses

within the geometry optimisations were performed to convergence of XXX eV/Å and

10−4 GPa respectively.

Phonon frequencies were calculated using the density functional perturbation theory

(DFPT) method [53, 54]. For phonon dispersion curves along high-symmetry directions

in reciprocal space, a Monkhorst-Pack grid of size 8 × 8 × 8 was used for calculations
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Table 1. Comparison of the observed crystal structure [31] and selected bond lengths

of Si(NCN)2 with those calculated from a zero-pressure optimisation and with a small

expansion. The crystal structure has space group Pn3m, with origin at the centre

of symmetry (co-located with the position of the C atom, site symmetry 3m). In this

setting Si has fractional coordinates 1/4, 1/4, 1/4, C has fractional coordinations 0, 0, 0,

and N has fractional coordinates x, x, x.

Experimental [31] Optimised DFT Expanded DFT

a (Å) 6.1885(1) 6.6998 6.7221

x 0.103(2) 0.1043 0.1042

Si–N (Å) 1.576 1.691 1.698

N–C (Å) 1.104 1.210 1.213

of the dynamical matrix, and phonon frequencies for specific wave vectors along the

line calculatied by interpolation. A convergence tolerance for force constants during the

DFPT calculations of 10−5 eV/Å2 was used. The phonon acoustic sum rule was enforced.

For calculation of thermodynamic properties phonon frequencies were calculated for a

set of random wave vectors.

3. Crystal structure and lattice dynamics of β-Si(NCN)2

The relaxed crystal structure optimised at zero pressure is shown in Table 1, where

it is compared with the experimental crystal structure [31]. The striking difference is

that the Si–N and N–C bond lengths are overestimated from the experimental values

by 7% and 10% respectively, leading to an overestimate of the unit cell parameter by

8%. This discrepancy is not typical of the accuracy of DFT. However, we note that our

value of the carbodiimide N–C bond length is typical of those found in other materials.

For example, the four distinct N–C bond lengths in BaZn(NCN)2 are found from x-ray

diffraction measurements and by DFT calculations to be around 1.22 Å and 1.23 Å

respectively, consistent with our calculated values [55]. The discrepancy between the

DFT and experimental distances seen here in β-Si(NCN)2 quite likely reflect the effect

of thermal motion that involves rotations of rigid bonds, as indeed was pointed out

when the crystal structure was determined [31]. This is very similar to the situation in

the related material β-cristobalite [36, 37] and indeed in the case of the better known

quartz polymorph of silica [56, 57]. We will discuss this point in more detail below.

Calculations of the phonon dispersion curves for the optimised structure (we will

discuss the phonon dispersion relations in more detail below) showed that for all

wave vectors along the main symmetry directions up to eight branches have negative

eigenvalues of the dynamical matrix, indicating an inherent instability. Given that we

know there is a phase transition to a structure of lower (but so far undetermined), the

calculation of some unstable vibrations is not surprising. We can drive the eigenvalues

towards positive values by a slight expansion of the lattice, and we report in Table 1

the crystal structure for a specific fixed lattice parameter at which the low-frequency
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Table 2. Vibration frequencies for zero wave vector calculated for the expanded unit

cell reported in Table 1, given in two units for convenience. The mode decomposition

is A2u +Eu (acoustic models) and A1g +Eg + 4Tg + 4A2u + 2B2u + 6Eu + 2Tu (optic

modes). The symbols R and IR indicated Raman and infrared activity.

A1g (R) 3Eg (R) 4Tg (R)

cm−1 THz cm−1 THz cm−1 THz

1578.6 47.36 241.5 7.24 48.1 1.44

224.8 6.75

577.3 17.32

1582.7 47.48

4A2u (IR) 2B2u (–) 6Eu (IR) 2Tu (IR)

cm−1 THz cm−1 THz cm−1 THz cm−1 THz

334.3 10.03 667.7 20.03 219.2 6.58 36.0 1.08

528.8 15.86 2377.6 71.33 301.3 9.04 525.5 15.77

847.9 25.44 524.8 15.75

2328.5 69.86 533.6 16.01

743.4 22.30

2202.5 66.07

modes all have positive eigenvalues.

The calculated frequencies for vibrations with zero wave vector are given in Table

2. At the time of writing there are little in the ways of reported vibrational frequencies

for Si(NCN)2 measured by spectroscopy other than from a preliminary characterisation

by infrared spectroscopy. That showed the existence of an IR-active mode at a frequency

of 2174 cm−1, which is the antisymmetric stretching mode of the N–C–N anion. The

corresponding modes are the four highest-frequency modes of the group A2u +B2u +Eu,

with average of 2303 cm−1 (69.1 THz), higher than experiment by 6%. From a tabulation

of frequency values [58], the symmetric stretch frequency of a carbodiimide anion is

around 1250 cm−1. The calculated mode is of the group A1g + Tg, with average of 1581

cm−1 (47.4 THz). This is around 25% larger than the value for carbodiimide salts ,

and we attribute this to a strong Si–N bond that is co-linear with the N–C–N bond,

providing a resistance to the motion and hence higher frequency. The same study reports

the N–C–N bending frequencies for a range of carbodiimide crystals to have frequencies

of around 650 cm−1, in some cases dipping down to 580 cm−1. In the calculations the

expected 8 N–C–N bending modes correspond to the A2u + 2Eu + Tu group between

524.8–533.6 cm−1 (average around 15.9 THz).

The lower-frequency part of the phonon dispersion curves for the expanded lattice

with parameters in Table 1 – that is, the range excluding the high-frequency symmetric

and antisymmetric stretch modes – are shown for the main symmetry directions in

Figure 2. The phonon density of states sampled from across the whole Brillouin zone is

shown in Figure 3.

From the slopes of the acoustic mode dispersion curves we calculated values of
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Figure 2. Calculated phonon dispersion curves for the structure of cubic Si(NCN)2
with the expanded lattice parameter of Table 1. Results are shown for wave

vectors along the high-symmetry directions in reciprocal space. In order to provide

clarity for the lower frequency results we exclude the high-frequency symmetric and

antisymmetric stretch frequencies of 47 and 69 THz respectively.

the elastic constants for the expanded lattice of C11 = 102 GPa, C12 = 96 GPa, and

C44 = 2.8 GPa, yielding a value for the bulk modulus of 98 GPa. The values of C44

are particularly sensitive to the size of the lattice parameter, and for the equilibrium

lattice parameter reported in Table 1 the transverse acoustic modes are systematically

unstable and C44 has a negative value. Furthermore, we consider that the true value

of these modulii at high temperatures will be considerably lower than these values for

this reason. In the ordered structure, compression will exert forces along the linear Si–

N–C–N–Si linkage, which will compress relatively rigid bonds giving a relatively high

elastic modulus. On the other hand, at high temperature the atomic displacements

will crumple this linkage, and compressional forces can be readily absorbed by further
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Figure 3. Calculated phonon density of states for the structure of cubic Si(NCN)2 with

the expanded lattice parameter of Table 1, excluding the higher frequency range that

includes the symmetric and anti-symmetric stretch modes of the N–C–N anion. The

diagram on the left shows in more detail the low-frequency part of the density of states,

highlighting the region containing the Rigid Unit Modes. Note that the histogram bin

is five times wider in the wide-range plot on the right in order to reduce the heights

of the higher-frequency peaks; this accounts for the difference in the heights of the

common parts of the density of states in the two diagrams.

crumpling rather than by compression of the bonds. This point has been discussed with

regard to the phenomenon of pressure-induced softening as found in Zn(CN)2 [42, 59]

and predicted to be a more general phenomenon [60, 61].

4. Rigid Unit Modes and network flexibility of β-Si(NCN)2

The RUM analysis performed for Zn(CN)2 by Goodwin [62] is directly applicable to

β-Si(NCN)2 since the crystal structures both consist of two interpenetrating cristobalite

networks in a crystal structure of cubic symmetry with linear cation–anion–cation

connectivities. It was shown that there are eight RUMs per wave vector, with two

corresponding to the transverse acoustic modes, three corresponding to modes in which

there is a uniform displacement of the N–C–N anion from the corresponding Si. . . Si

vector, and three corresponding to modes in which the N–C–N anion rotates about

the position of the C atom to give a twist to the Si–N–C–N–Si vector. Inspection of the

phonon eigenvectors showed that the displacement modes at zero wave vector correspond

to the Tu mode of frequency 1.08 THz, and the twist modes at zero wave vector

correspond to the Tg mode of frequency 1.44 THz. Thus we conclude that the optic-

mode RUMs in Si(NCN)2 are systematically the lowest-frequency modes. Inspection of

the phonon density of states shown in Figure 3 indicates that the transverse acoustic

RUMs are the spectrum between 0–0.8 THz, and the optic-mode RUMs are the spectrum

between 1–1.6 THz. There is a significant gap before reaching the lower frequency of

the other optic phonons at just over 5 THz.

It is interesting to compare the RUMs in Si(NCN)2 with those in Zn(CN)2, as
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Figure 4. The three types of Rigid Unit Mode – displacement mode, twist mode, and

acoustic mode – compared with the original crystallographic arrangement. All three

RUMs pull the Si atoms towards each other in the vertical direction. The end atoms

are the Si cations, between which are the carbonodiimide N–C–C anions.

explored in detailed by Fang et al [42]. As we noted before, the crystal structure is

topologically equivalent, and the fact that the C–N anion has head-to-tail disorder means

that it is effectively a quadrupolar rather dipolar molecular anion, as is the N–C–N anion.

However, in Zn(CN)2 there are strong angular forces along the Zn–cyanide–Zn linkage,

which push the displacement RUM frequencies up to the range 2–4 THz, and the twist

RUM up to frequencies in the range 8.5–9 THz. Thus in Zn(CN)2 the optic RUMs play

a very weak role in the NTE in this material, and instead the larger contribution to

NTE comes from the acoustic RUMs, whose frequencies are mostly below 1 THz.

From the discussion of phonon instabilities given above, we can note that in the

equilibrium structure calculated by DFT, there is an exact correspondence between the

unstable phonons and the RUMs. Expansion of the lattice is sufficient to stabilise the

RUMs, because the atomic structure is put under some degree of tension. An analogy

might be of a guitar string.that vibrations only when a certain tension is applied. In

this context, the comparison with the β-cristobalite phase of silica is very pertinent. Our

understanding the high-temperature cubic phase is that the RUMs have low-frequency

[35] and hence high amplitude, and it was shown that most of the atomic motions can

be associated with RUMs in which the SiO4 tetrahedral move with minimal distortions

[38]. As found here, the rotations of the tetrahedra lead to a shortening of the distance

between average positions of neighbouring atoms compared to the instantaneous bond

lengths [36, 37].

β-Si(NCN)2 has a lot more RUMs than in β-cristobalite, with the RUMs in the

latter case restricted to planes of wave vectors in reciprocal space [35, 45, 46, 63]. On

this basis, we expect to see large-amplitude thermal motion based on the superposition

of all RUMs, and this thermal motion will give rise to the apparent shortening of bonds
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(that is, shortening of distance between average atom positions) seen by the comparison

of DFT results and experimental structure data.

5. Mode Grüneisen parameters and negative thermal expansion in

β-Si(NCN)2

The Grüneisen model for negative thermal expansion, as discussed in some recent reviews

[3, 8, 9], is based on the fact that a change in volume will cause a change in the values

of phonon frequencies as a result of changes in interatomic bond force constants due to

increase separation lengths. The coefficient of volume expansivity is given as

αV =
CV γ

BV
(1)

where V is the volume, B = −V (∂P/∂V )T is the isothermal bulk modulus, CV is the

heat capacity, The quantity γ is the “overall Grüneisen parameters”, and this defines how

phonon frequencies depend on volume. It is defined as a weighted sum over individual

mode Grüneisen parameters:

γ =
1

CV

∑
i

ciγi (2)

where the sum is over all phonon modes, and the mode Grüneisen parameters γi are

defined as

γi = −V
ωi

∂V

∂ωi

(3)

where ωi is the frequency of phonon mode i. The coefficients ci which weight the

contribution from each mode are given as

ci = ~ωi
∂n(ωi, T )

∂T
(4)

where T is the temperature, and n(ωi, T ) = 1/ (exp(~ωi/kBT )− 1) is the Bose-Einstein

distribution. It follows that Cv =
∑

i ci. In most materials γ ∼ +1, but in NTE materials

γ must have a negative value, which will typically arise from a material having a sufficient

number of individual mode Grüneisen parameters γi with large negative values; these

will typically be for the lower-frequency modes.

Mode Grüneisen parameters were calculated from the phonons calculated for two

very slightly different volumes, using a random selection of wave vectors. The pairs of

frequencies to compare were selected on the basis of matching mode eigenvectors, using

software described elsewhere [43]. The average values within small ranges of frequencies

are shown in Figure 5. From comparison with the density of states, Figure 3, we can

see that the RUMs are very closely associated with the modes with negative values of

mode Grüneisen parameters, and therefore contribute significantly to NTE. We can see

separately in Figure 5 the contributions from the acoustic RUMs (0–0.7 THz) and from

the bands of optic RUMS (1–1.6 THz). Although there are other modes with negative

values of mode Grüneisen parameters – including the N–C–N bending modes at around
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Figure 5. Frequency-ranged average values of the mode Grüneisen parameters plotted

over two ranges of frequencies. The averaging interval was 0.02 THz. Data are presented

in two ranges of frequency because of the huge negative values at low frequency.
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Figure 6. Temperature-dependence of the overall Grüneisen parameter (left) and

coefficient of thermal expansion (right).

15.9 THz – the NTE is clealy dominated by the effects of all the RUMs. We note also that

as in Zn(CN)2 the acoustic RUMs are important for NTE. The immediate impression

Figure 5 that the acoustic RUMs are roughly of equivalent importance for NTE as the

optic-mode RUMs. The same was found for Cu2O [41] and MOF-5 [44].

Figure 6 shows the calculated values of the overall Grüneisen parameter and

coefficient of thermal expansivity as functions of temperature for the expanded lattice of

Table 1. The value of the coefficient of thermal expansivity is considerably larger (more

negative) than reported from ab initio molecular dynamics [33], which in turn is larger

than the experimental value as discussed above.

One way to try to account for the discrepancy between the values of thermal

expansivity of the previous MD [33] and our calculation is to return to the definition of

the mode Grüneisen parameters and write then in the alternative but equivalent form

γi = − V

2ω2
i

∂ω2

∂V
(5)



Negative thermal expansion in Si(NCN)2 11

which as the advantage of emphasising that the solutions of the dynamical matrix

are the values ω2
i . Linearising the variation of force constant on change in volume as

∆ω2
i = ω2

i + (∂ω2
i /∂V ) ∆V if follows that γi ∝ −ω−2

i . Increasing the value of ω2
i will

reduce the magnitude of γi. Since by this definition – and as found in this study (Figure

5) – the low-frequency modes provide the largest negative contribution to the overall

γ. Simply allowing a small increase to the calculated frequencies of the low frequency

RUMs in Si(NCN)2, and we note that the values we calculated through expansion of the

unit cell are certainly affected by our arbitrary value of our unit cell parameter. This

sensitivity is reflected in the very large values of the mode Grüneisen parameters seen

in Figure 5.

Another reason for a larger ω−2
i and hence lower γi is from renormalisation through

fourth-order phonon-phonon interactions, which must indeed exist and be strong enough

to stabilise the cubic phase. We already know from previous work that these interactions

reduce the size of the negative thermal expansion at higher temperatures [61].

However, more pertinent might be the comparison with the thermal expansion in

β-cristobalite. This is a material that surely is expected to show NTE, but in truth show

positive expansion over a wide temperature range [64] until finally showing NTE only at

very high temperature [19]. β-cristobalite shows the same sort of RUM disorder we see in

Si(NCN)2 as discussed above. In the case of β-cristobalite, there is considerable thermal

motion at all temperatures involving significant displacements of the oxygen atoms that

are sufficiently anharmonic that a quasiharmonic description is not appropriate. That

said, the quasiharmonic model and an interpretation based on the role of the RUMs

appears to be appropriate [8, 38]. By contrast, the corresponding RUMs in Zn(CN)2 are

much higher in frequency, as we remarked, which means that the same sort of disorder

will not be observed in this material, and thus Zn(CN)2 has the thermal expansion as

predicted by the quasiharmonic model [65].

6. Lattice dynamic basis of the α–β phase transition in Si(NCN)2

As noted earlier, a calculation of the phonon dispersion curves of Si(NCN)2 for the

structure optimised at a notional pressure of 0 GPa gave negative eigenvalues. At

this point we can remark that these were the eight RUMs, and they appeared to be

unstable for all wave vectors along the main symmetry directions in reciprocal space.

By increasing the cubic lattice parameter it was possible to make all eigenvalues positive.

This leads to the question of which is the last phonon whose eigenvalue becomes positive

on continued expansion, and whether this one might be the soft mode for the known

displacive phase transition. However, on expansion the RUMs moved towards positive

eigenvalues almost uniformly, with the last mode turning positive at an incommensurate

wave vector. It appears to us that there is therefore likely to be a very complex phase

space of all potential instabilities, associated with all RUMs across all wave vectors, and

the energy differences will be smaller than the inherent accuracy of the DFT method.
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7. Discussion

Our aim in this paper was to explore the origin of NTE in β-Si(NCN)2 using calculations

of phonons using conventional DFT methods. The key results that we obtained are

1. β-Si(NCN)2 has a tight spectrum of RUMs, all at low-frequencies and at all wave

vectors. The RUMs include the transverse acoustic modes over the frequency range 0–

0.7 TGZ, with the two sets of optic-mode RUMs (the displacement and twist modes)

being within a band of frequencies between 1.1–1.7 THz. The phonons that involve

the distortions of the SiN4 tetrahedra have significantly higher frequency, starting at

around 6 THz.

2. The displacement and twist RUMS give a strong contribution to NTE, but we

highlighted here also the importance of the acoustic modes. We note that the earlier

paper on NTE in β-Si(NCN)2 considered only the displacement optic-modes in their

discussion, and not the twist mode or the acoustic mode. The acoustic RUMs are of

equal importance to the optic RUMs. The important role of acoustic modes in giving

rise to NTE has been noted by us in other systems recently [41, 42, 44].

3. The comparison with Zn(CN)2 is particularly interesting give the close similarities

between the two structures and hence of the RUM spectrum. In both cases the

acoustic RUMs are very important for NTE, but in Zn(CN)2 the strong angular

forces mean that the Zn–cyanide–Zn linkages are much more rigid than the Si–

carbodiidime–Si linkage. This pushes the optic RUMs to higher frequencies in

Zn(CN)2, whereas in Si(NCN)2 the linkage crumples easily. Indeed, all RUMs of

the equilibrium structure are unstable, as they would be in a calculation of phonon

dispersion curves for the analogous β-cristobalite [8], reflecting the lack of resistance

against a transition to a phase of lower symmetry.

4. The fact that the interatomic distances in the crystal structure are significantly lower

than predicted by DFT suggests a lot of dynamic disorder, analogous that seen in

β-cristobalite and in this sense different from Zn(CN)2. This is consistent with the

spectrum of low-frequency RUMs.

5. The calculations within the quasi-harmonic model significantly over-estimates the size

of the NTE. This may be associated with the fact that the relevant phonon frequencies

are lower than they should be, either because of the arbitrary expansion of the lattice

required to make the RUMs stable is not quite right, or because of phonon-phonon

anharmonic interactions, but probably it is an effect of the dynamic disorder. We

note that β-cristobalite, whose crystal structure and RUM spectrum would indicate

that this material should have significant NTE, nevertheless has positive thermal

expansion until high temperature.
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