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Abstract

The dynamics of gene frequencies are extraordinarily complex. Disentangling and ab-

stracting away this complexity often requires a mathematical approach. Traditionally,

theoretical population genetics has primarily focused on models which are simple enough

to be amenable to analysis, or too complex for any analytic progress to be made — the lat-

ter relying heavily on numerical methods. We seek to make progress by analysing models

which are in the middle ground: mechanistically derived and amenable to detailed ana-

lytic analysis, yet complex enough for the dynamic behaviours to be non-equilibrial. For

example, Chapter 3 sees advances from empirical knowledge of the molecular action of a

protein, known as PRDM9, on its target site, and associated potential fertility benefits, in

a two-locus two-allele model. The recency of the empirical details of this action led to the

model being truly novel. Plus, it has interesting dynamic consequences, such as the ex-

istence of a degenerate bifurcation and an attracting heteroclinic cycle. Furthermore, we

have been able to go beyond the endpoint for many classical analyses: finding equilibria

and determining their linear stability. We do so in Chapter 5, where we: find a Lyapunov

function for a special case of the two-locus two-allele system, find an approximate closed-

form expression for a well-known invariant manifold in population genetics and, using

this expression, prove stability of a heteroclinic cycle bounded by the edges in the reduced

system. We extended existing models in Chapters 4 and 6. The extensions are of models

of recombination hotspot evolution and segregation distorters (respectively). Mathemat-

ically, they boil down to systems of eight and nine coupled difference equations. The

resulting models were both more biologically realistic and capable of complex dynam-

ics — the second model exhibiting chaotic-like dynamics nearby a heteroclinic network.

In these models, we are able to calculate analytic polymorphic equilibria expressions

in both (the first being an approximation, but a highly accurate one; the second being

exact). Chapter 2, the review, framework and methodology chapter, named the selection-

recombination equation, contributes a clear and verbose guide through some of what is

known about the equation including some technical details from the recent advances. We

analyse the models presented without the need for the almost ubiquitous weak selection

approximation, an assumption that produces a small selection parameter (relative to the

other parameters) — a common technique for simplifying models in applied dynamical

systems.

4 of 173



Contents

1 Introduction 13
1.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 The genetic code . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 The laws of Mendelian inheritance . . . . . . . . . . . . . . . . . 15

1.1.3 The forces behind changes in gene frequencies . . . . . . . . . . 17

1.1.3.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.3.2 Recombination . . . . . . . . . . . . . . . . . . . . . . 18

1.1.3.3 Recombination hotspots¸ PRMD9 and the protein PRMD9 18

1.1.3.4 Genetic drift . . . . . . . . . . . . . . . . . . . . . . . 21

1.1.3.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.4 Selfish genetic elements . . . . . . . . . . . . . . . . . . . . . . 22

1.1.4.1 Segregation distorters and meiotic drivers . . . . . . . . 23

1.2 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1.1 Continuous-time . . . . . . . . . . . . . . . . . . . . . 24

1.2.1.2 Discrete time . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1.3 Equilibria . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.1.4 Linear stability . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Goals and structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Additional materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 The selection-recombination equation 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Two-locus n-alleles . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1.1 Discrete-time . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1.2 Continuous-time . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Two-locus two-allele . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2.1 The evolution of recombination hotspots model . . . . 36

5 of 173



Contents

2.3 Reviewing known results . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Two-locus two-alleles . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1.1 Equilibria . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1.2 Invariant subspaces . . . . . . . . . . . . . . . . . . . 41

2.3.1.3 Invariant line . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1.4 Stable cycles . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1.5 The quasi-linkage equilibrium manifold . . . . . . . . 43

2.3.1.6 Coordinate transformation . . . . . . . . . . . . . . . . 44

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 PRDM9 and the evolution of recombination hotspots 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Two-locus n-alleles model . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Two-locus two-allele model . . . . . . . . . . . . . . . . . . . . 58

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2.1 Corner equilibria . . . . . . . . . . . . . . . . . . . . . 65

3.3.2.2 Heteroclinic orbit . . . . . . . . . . . . . . . . . . . . 66

3.3.2.3 Internal equilibrium . . . . . . . . . . . . . . . . . . . 68

3.3.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Stable yet distinct linkage disequilibria between sexes due to sexually-antagonistic
recombination hotspot evolution 83
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Two-locus n-alleles model . . . . . . . . . . . . . . . . . . . . . 87

4.2.2 Cases of biological interest . . . . . . . . . . . . . . . . . . . . . 88

4.2.2.1 No viability effects no sex-antagonistic break . . . . . 89

4.2.2.2 No viability effects sex-antagonistic break . . . . . . . 89

4.2.2.3 Sex-specific viability effects but not sexually antagonistic 90

4.2.2.4 Sex-antagonistic viability . . . . . . . . . . . . . . . . 90

4.2.3 Two-locus two-alleles model . . . . . . . . . . . . . . . . . . . . 90

4.2.4 Simplified model with sex-antagonistic viability . . . . . . . . . 92

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 of 173



Contents

4.3.1.1 Edge equilibria . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1.2 Polymorphic equilibria . . . . . . . . . . . . . . . . . 93

4.3.1.3 Approximating the interior equilibrium . . . . . . . . . 98

4.3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.2.1 Edge equilibria . . . . . . . . . . . . . . . . . . . . . . 100

4.3.2.2 Polymorphic equilibria . . . . . . . . . . . . . . . . . 101

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Stable cycling in quasi-linkage equilibrium: Fluctuating dynamics under
gene conversion and selection 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Analysis and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Change of variables . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.2 Equilibria and local stability . . . . . . . . . . . . . . . . . . . . 116

5.3.3 Global stability: a Lyapunov function and heteroclinic cycle . . . 119

5.3.3.1 A continuous-time approximate model . . . . . . . . . 119

5.3.3.2 Lyapunov function . . . . . . . . . . . . . . . . . . . . 120

5.3.3.3 Discrete-time heteroclinic cycle . . . . . . . . . . . . . 121

5.3.4 The QLE manifold . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.5 Simplification by reducing to allele frequencies . . . . . . . . . . 124

5.3.6 Stability of heteroclinic cycle in discrete-time model . . . . . . . 126

5.3.7 Justifying the use of DS derived from the continuous-time model 129

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Chaotic evolutionary dynamics predict faster-than-drift divergence 143
6.1 Main text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.1 The in-patch dynamics . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.1.1 Equilibria . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2.1.2 Invariant subspaces and heteroclinic connections . . . . 155

6.2.2 The spatial model . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3 Supplementary material . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3.1 Model description and motivatoin . . . . . . . . . . . . . . . . . 156

6.3.2 The models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3.3 The two-allele model explicitly . . . . . . . . . . . . . . . . . . 157

6.3.4 The three-allele model explicitly . . . . . . . . . . . . . . . . . . 158

6.3.4.1 Matrix notation . . . . . . . . . . . . . . . . . . . . . 160

7 of 173



Contents

6.3.5 Some analysis of the two-allele model . . . . . . . . . . . . . . . 160

6.3.5.1 Corner and side equilibria . . . . . . . . . . . . . . . . 162

6.3.6 Projection function . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Conclusion 165
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1.1 Overview of the models used: their novelty and complexity . . . 166

7.1.2 Details of the analyses . . . . . . . . . . . . . . . . . . . . . . . 167

7.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8 of 173



List of Figures

1.1 from Wikimedia Commons (2013). The structure of DNA as a double
helix along with the individual nucleotide bases and how they bond. . 16

1.2 from Seymenoglu (2019). Depiction of a single cross-over event . . . . 17

1.3 from Myers et al. (2005). A high resolution map of the rate of recom-
bination across a chromosome . . . . . . . . . . . . . . . . . . . . . . 19

1.4 The effects of genetic drift on the frequency of a single allele in dif-
ferent sized populations . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Visualising two coordinate transformations used in the study of the
selection-recombination equations . . . . . . . . . . . . . . . . . . . . 45

3.1 Model for recombination initiated by specificity of the double-strand
break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Equilibria and heteroclinic cycle . . . . . . . . . . . . . . . . . . . . . 61

3.3 Dynamics of the system . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Correspondence between infinite and finite population dynamics . . . 71

3.5 Evolutionary game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 The dynamics of the system: an attracting limit cycle . . . . . . . . . 94

4.2 The dynamics of the system: an attracting interior equilibrium . . . . 96

4.3 Numerically assessing the accuracy of the approximate polymorphic
equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Time series showing examples of the two types of behaviour of the
discrete-time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 The basin of attraction of the heteroclinic cycle against β for the
discrete-time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 The approximate quasi-linkage equilibrium manifold, and the ap-
proach to it by two typical trajectories of the discrete-time model . . . 123

5.4 The fast approach to the QLE manifold shown using a Poincaré section125

9 of 173



List of Figures

5.5 The simplification of the system by using the approximate slow man-
ifold, DQLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Relative error of our approximate manifold DS . . . . . . . . . . . . . 129

6.1 The dynamics of the two-allele model . . . . . . . . . . . . . . . . . . 146

6.2 The dynamics of the three-allele model . . . . . . . . . . . . . . . . . 148

6.3 The next driver map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 A snapshot of the spatial three-allele model . . . . . . . . . . . . . . . 152

10 of 173



List of Tables

2.1 The assumptions, and their consequences mathematically, behind
the selection-recombination equations . . . . . . . . . . . . . . . . . . 35

3.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Haplotype to allelic frequency relationship . . . . . . . . . . . . . . . 115

5.2 Eigenvalues of the saddle equilibrium between which the heteroclinic
cycle travels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 The eigenvalues of the equilibria Φ1 and Φ4 . . . . . . . . . . . . . . . 139

5.4 The eigenvalues of the equilibria Φ2 and Φ3 . . . . . . . . . . . . . . . 139

11 of 173



List of Tables

12 of 173



Chapter 1

Introduction

Contents
1.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 The genetic code . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 The laws of Mendelian inheritance . . . . . . . . . . . . . . . 15

1.1.3 The forces behind changes in gene frequencies . . . . . . . . 17

1.1.4 Selfish genetic elements . . . . . . . . . . . . . . . . . . . . 22

1.2 Mathematical background . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Goals and structure of the thesis . . . . . . . . . . . . . . . . . . . 28

1.4 Additional materials . . . . . . . . . . . . . . . . . . . . . . . . . . 29

13 of 173



Chapter 1. Introduction

The living world is shaped by genetics and how gene frequencies change over time

within populations. The totality of the forces guiding such changes are typically bewil-

deringly complex. However, once such forces are abstracted away mathematically, con-

clusions about the resulting success, or failure, of certain genes can begin to be drawn.

Theoretical population genetics achieves this using broad yet mathematically precise def-

initions, phenomenologically capturing such categories of processes. This framework

allows one to enter the realm of mathematical modelling, where it is possible to, under

certain sets of well-defined assumptions, predict the future trajectory of the gene frequen-

cies within a population.

Theoretical population genetics lies at the intersection between complex mathemat-

ics and in-depth biology. Therefore, this introduction provides the necessary background

for both. The biological background covers the basics of genetics, mostly from an evo-

lutionary genetics perspective, introducing the jargon used throughout the thesis. More

specifically, the biological background includes introductions to: the genetic code, the

products of the genetic code, meiotic recombination, selection, mutation, selfish genetic

elements and ideas behind gene flow on the scale of populations. After which, we intro-

duce the necessary mathematical concepts, such as: dynamical systems, equilibria and

local stability. Lastly, we set out the goals of the thesis and how the structure of the thesis

aligns with these goals.

1.1 Biological background

1.1.1 The genetic code

DNA is made up of sequences of nucleotides. Groups of three nucleotide bases, named

codons, determine which amino acids are produced. These then bind together to form

proteins, one of the three classes of biological macromolecule — the other two being

carbohydrates and lipids. However, some sections of DNA — known as introns — do

not code for amino acids. Introns are ubiquitous and are known to perform vital structural

functions ensuring the products of the coding regions — exons — are formed as error-

free as possible. Its biochemistry aside, the broadly accepted definition of a gene is a

functional one: sections of DNA which, one way or another, perform a specific task or

function. More so, whose function is similar across species, orders and for that matter,

any taxonomic group.

The enormous amounts of DNA within each individual is typically stored in effi-

ciently packaged discrete structures called chromosomes. The number of chromosomes

varies across species, but is well conserved between individuals of the same species. It
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Chapter 1. Introduction

it commonly known that healthy humans possess 23 distinct chromosomes. However,

given that humans, like many other complex species, are diploid, we possess two copies

of each distinct chromosome; one from each parent. This idea neatly leads us to two of

the most central definitions in population genetics. Namely, that of a locus and an al-

lele. The former describes the location of a given gene within a chromosome. The latter

describes a particular variant of such a gene.

To elucidate both of these definitions, we provide abstract examples of how each

would be reported in practice. To state a particular locus, one would need to specify

first which chromosome the gene in question was placed on; then one would need to

state how far along the chromosome (typically using the genetic unit of base pairs, or

kilobase pairs for large distances) the gene can be found at. This location, within a certain

chromosome would be the locus for a gene. To report an allele, one would simply state

the sequence of nucleotide bases at a certain locus. Typically only one strand of bases is

reported, as the other can be uniquely inferred from the other via the complementary base

pairing relationships (see Figure 1.1 for these relationships). The definitions of genes,

loci and alleles are three bedrocks of genetics, bioinformatics, evolutionary genetics and

population genetics.

The story of the discovery of inherited traits by Gregor Mendel in 1886 (Mendel,

1866; Weiling, 1991) helps shed light on the importance of these definitions. Further-

more, it provides the terminology to discuss how gene frequencies change over time —

the central principle of population genetics.

1.1.2 The laws of Mendelian inheritance

Gregor Mendel was a monk from the 19th century, who, like many other monks from

this time period, studied aspects of the natural world in his spare time. After some initial

experiments and inspired by his professors and colleagues at his monastery, he began

to concentrate his wide ranging biological experiments on seven observable traits in pea

plants: seed shape, flower colour, seed coat tint, pod shape, unripe pod colour, flower

location, and plant height (Mendel, 1866). These traits were chosen as the inheritance of

each seemed to be independent of the inheritance of any other trait. Once the pea plants

were bred to the point where it was fairly certain each individual was purely of the type

corresponding to a given trait — the individuals were now close to being pure breeds —

Mendel started to cross them with each other. With plenty of replicates, he showed that

in the second generation of cross-breds, a quarter of the resulting plants had one trait,

and three quarters had another trait. From these experiments, he was able to deduce the

following laws, which have since been coined as the laws of Mendelian inheritance:
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Chapter 1. Introduction

Figure 1.1: from Wikimedia Commons (2013). The structure of DNA as a double
helix along with the individual nucleotide bases and how they bond. Left: a pictorial
representation of the double helix structure of DNA. Right: both the sugar-phosphate
backbone of DNA — which remains unchanged for all nucleotides — and the bases,
which vary between nucleotides. It also shows how the nucleotides bond and the specific
number of hydrogen bonds between each pairing.

Law of segregation: this law describes how alleles from each copy of DNA in diploid

organisms organise themselves when gametes are formed. It states that the two alleles

each individual possesses for a gene segregate uniformly at random, so each gamete

carries one allele each.

Law of independent assortment: this law describes how different genes organise

themselves when gametes are formed. The probability that a certain gene is passed on

into a gamete, does not depend on the probability of any other gene being passed on into

the same gamete.

Law of dominance: this law describes how the two alleles present in a diploid interact

and, more specifically, which of the two alleles is ultimately expressed phenotypically.

Alleles which obey Mendel’s law of dominance are either dominant or recessive. Domi-

nant alleles are always expressed. Recessive alleles are only expressed if both alleles at

a given locus are recessive.

However, as is all too often the case with the natural world, the behaviour of most empir-

ical genetic systems are more complex than these laws describe. Their simplicity means

they provide a fantastic benchmark against which certain genetic systems can be tested.

In fact, their simplicity means very simple mathematical models can be derived which
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Chapter 1. Introduction

Figure 1.2: from Seymenoglu (2019). Depiction of a single cross-over event. Homolo-
gous chromosomes, one paternally inherited, one maternally inherited cross over during
meiotic cell division causing an exchange of genetic material, producing a potentially
novel genetic sequence.

represent systems that do obey these laws. Then it becomes a simple task to test the dy-

namics of an empirical system, or the dynamics of a more complex model, against these

hypothetical systems to test how close a system is to being Mendelian. Furthermore, it

can often be quantified how much certain genetic systems deviate from these laws. We

will see in Chapter 6, for example, a model for the dynamics of meiotic drivers; a genetic

element which is defined by its ability to deviate from Mendel’s first law. The biological

background for these are introduced in Section 1.1.4.1 of the Introduction.

1.1.3 The forces behind changes in gene frequencies

At the start of the introduction, we discussed broad categories which guide the changes

in gene frequencies over time. Here we list the main categories and describe verbally

how each is translated into a component of a resulting mathematical model.

1.1.3.1 Selection

Selection, or natural selection is the effect of differential success of individuals, whereby

success is measured by the ability to survive until reproductive age and reproduce, creat-

ing viable offspring. Individual differences are expressed phenotypically and are caused
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by the combined effects of mutations and recombination on the genotype. Differences

clearly are not necessarily beneficial to the individual and if the changes are sufficiently

deleterious so that the individual is not able to survive long enough to be able to re-

produce viable offspring, the genes responsible are removed from the gene pool. This

process was famously posited by Charles Darwin in the 19th century and forms the basis

for this theory of natural selection, which sought to explain how living organisms were

so well adapted to their environment (Darwin, 2004).

Given the breadth of modelling procedures in modern population genetics, now-

days there exist many varied ways in which selection is implemented. However, within

frequency-independent models from classical theoretical population genetics, selection

typically boiled down to a parameter or phenotype-dependent variable within a dynam-

ical system describing the relative advantage/disadvantage an individual receives based

on their phenotype. Furthermore, frequency-dependent models classically allow for the

parameter to be a function of the relative frequencies of whichever genes or haplotypes

are being described. It typically results in a more complex model, but with markedly

more flexibility.

1.1.3.2 Recombination

During meiosis, the maternally inherited chromosome can interact with the paternally

inherited chromosome in a process called homologous recombination or more simply,

just recombination. Occurring after an event known as a double-strand break (DSB)

— whereby both sister chromatids of one of the homologous chromosomes are broken

apart — recombination is one of the three possible pathways these DSBs are repaired

by. The other two repair pathways are known as non-homologous end joining (NHEJ),

microhomology-mediated end joining (MMEJ). The details of the latter two pathways

are beyond the scope of this thesis and are therefore omitted.

Recombination in its generality is a broad and fascinating topic. To focus on what

is required by the content in this thesis, specifically the content in Chapters 3 and 4, we

concern ourselves with the elements of recombination known as crossing-over (see Fig-

ure 1.2) and gene conversion. The former sees the homologous chromosomes cross-over,

resulting in a swap of genetic material. The latter sees the non-broken chromosome used

as a template to repair the broken chromosome. Both crossing over and gene conversion

have the potential to create novel sequences of genetic material.

1.1.3.3 Recombination hotspots¸ PRMD9 and the protein PRMD9

Advances in molecular biology have revealed that the location of these recombination

events is not uniformly distributed across whole genomes. On the contrary, it is concen-
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Figure 1.3: from Myers et al. (2005). A high resolution map of the rate of recombi-
nation across a chromosome. This figure helps show the existence and whereabouts of
areas of the genome known as recombination hotspots: locations where recombination is
significantly higher than the average rate across a chromosome.

trated in small regions come to be known as recombination hotspots (Myers et al., 2005).

These hotspots are an active area of research. We address questions pertaining to the

evolution of recombination hotspots in Chapter 3 and 4. Figure 1.3 plots the recombi-

nation rate against location within a chromosome — the peaks within the figure are the

hotspots. A large portion of the biological background for recombination hotspots and

their evolution is covered in the Introduction in Chapter 3. We give a short survey here

on the missing details.

The evolutionary persistence of such hotspots was proposed as paradoxical in Boul-

ton et al. (1997). Succinctly, the paradox asks how can genetic elements - which control

the position recombination occurs at - persist over evolutionarly timescales, if the se-

quence which initiates the process is nearby the hotspot and therefore very likely to be

recombined? Such a genetic dynamic would be self-destructive (Boulton et al., 1997;

Ubeda and Wilkins, 2011; Úbeda et al., 2019). It is the discovery of the initiating gene

(PRDM9) the protein it produces (PRDM9) and many of its molecular biological details

that is widely accepted to resolve the paradox. Indeed, its diversity and ability to undergo

rapid selective sweeps allow it to persist in different locations across a genome over short

evolutionary timescales (Lichten and Goldman, 1995).

It has been estimated that in mouse genomes there are in excess of 15,000 recom-
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bination hotspots (Grey et al., 2018); furthermore, estimates for human genomes pro-

pose around 30,000 hotspots exist (Baudat et al., 2010; Grey et al., 2018) — both were

found by detecting the number of sequences known to be associated with recombination

hotspots. However, when more direct methods are used to detect the consequence of the

initiation of recombination, i.e. the number of DSBs is measured, in the range of 200-

400 such events are observed (per cell). The implication for this striking difference is

that most cells only use a fraction of the available hotspots and which hotspots are used

varies from cell to cell (Grey et al., 2018).

Another approach taken to determine the number of PRDM9-target binds that take

place is achieved by measuring the number of PRDM9 foci — which can be used as a in-

dicator for the number of successful PRDM9-target binds — in mice spermatocytes (Grey

et al., 2018). Doing so reveals that thousands of such binds take place, which when com-

pared to the number of DSB events taking place in the same genomes (200-400 per cell)

implies that PRDM9-target binds are occuring that do not result in detectable DSBs and

that these binds are in excess. To complicate matters further, the level of PRDM9-binds

ranges between individuals by significant amounts (at least double) before the number of

DSBs caused by the hotspots which rely on the action of PRDM9 is reduced a detectable

amount (Grey et al., 2018). This provides some evidence that different PRDM9 polymor-

phisms — of which there are many, as it is undergoing rapid evolution (Ponting, 2011)

— bind to different sites. However, this is difficult to detect directly due to the presence

of multiple other proteins associated with recombination hotspots (see Figure 3 in Grey

et al. (2018)).

With an aim of quantifying how often recombination and recombination hotspots are

initiated, causing DSBs — and therefore potential crossing over events — estimates have

found that in human genomes, each hotspot on average has around one crossing over

event per 1,300 meiotic divisions (Myers et al., 2006). There is some variation in this

figure between different hotspots where some are known to have a rate of roughly one

crossover event per 110 meiotic divisions. Recall that crossing over is one of the path-

ways of repairing a DSB within the canonical model of DSB repair (Ubeda and Wilkins,

2011). These quantities help shed light on the centimorgan: the functionally defined unit

of length within genetics. The exact length of a centimorgan— which is measured given

in base pairs (bps) or mega base pairs (Mbps) — varies between different species (NIH,

2015). This is because it is defined as the average length of DNA within a chromosome

that corresponds to a 1% chance of crossover. When this length is calculated for humans,

it results in a measurement of around 1Mbp as a centimorgan, but this number varies

between different areas of the genome, as different chromosomes have different levels of

recombination and crossover.
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Figure 1.4: The effects of genetic drift on the frequency of a single allele in different
sized populations. Each panel shows 10 ndependent simulations of genetic drift acting
on a single allele in a randomly mating population. The total population size is varied
between the panels. The population sizes used were 20, 100, 200 and 500 from panels
A to D respectively. The probability of the success of the allele plotted was 0.5 for each
simulation and in each panel. If only the population size is varied, it becomes clear that
these stochastic effects are the greatest when the population is small. Only one simulation
was not at either extinction or fixation by 100 generations for a population size of 20. In
contrast, when the population size was 500, all simulations saw the frequency of the allele
somewhere between extinction and fixation.

The advances in understanding the causes and consequences of recombination hotspots

are ongoing, and highly complex. We describe the details of PRDM9 required to under-

stand the motivation and the details of the models whose evolution they describe (Chapter

3 and Chapter 4). However, a detailed discussion on the molecular biology of recombina-

tion hotspots is far beyond the scope of this mathematically focused thesis. More details

on the low level processes governing the evolution of recombination hotspots can be

found in the following review articles Lichten and Goldman (1995); Paigen and Petkov

(2010).

1.1.3.4 Genetic drift

The effects stochasticity has on the ultimate survival or extinction of specific alleles is

known as genetic drift. Discussions of this process are primarily concerned with how

stochastic effects vary with the population size — i.e. its effects can be more dramatic
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when populations are small (see Figure 1.4). This can cause the relative frequencies of

alleles to move very low or very high over time, which can cause extinction or fixation

of the allele (respectively). Mathematically, this is modelled using a iterated binomial

random variable (for a single allele) or an iterated multinomial random variable when

multiple alleles are concerned. The probability of success parameter(s) for these distri-

butions is interpreted biologically as the survival and passing on of the allele in question.

Our models of PRDM9 and recombination hotspots in Chapter 3 and our model of

meiotic drivers in Chapter 6 include genetic drift, using multinomial sampling of the

alleles between generations.

1.1.3.5 Mutation

Mutations typically occur as a result of an error when DNA is replicated, which occurs

during both mitosis and meiosis. The rates at which these errors occur is higher dur-

ing meiosis than mitosis (Rodgers and McVey, 2016). Mutation events result in altered

nucleotide sequences. If this occurs during meiosis, it provides a source of variation be-

tween gametes and therefore between offspring. Mutation rates are relatively constant

among individuals from the same species, where current estimates for humans are in the

region of 1.1× 10−8 per nucleotide site per generation (Roach et al., 2010).

Mathematically, mutations are modelled by including a term describing one allele

slightly reducing in frequency and another slightly increasing, proportional to a mutation

rate parameter. Our models of recombination hotspots in Chapters 3 and our models of

PRDM9 and recombination hotspots in Chapter 3 and our model of segregation distorters

in Chapter 6 include mutations.

1.1.4 Selfish genetic elements

Throughout most of the 20th century, the prevailing view of the evolutionary forces de-

scribed so far was that they sought to increase the fitness — the ability to survive and

reproduce — of individuals. Paved by the mathematical underpinnings of population

genetics by Sewall Wright, Ronald Fisher and J. B. S. Haldane , many evolutionary bi-

ologists began to posit, during the 1950s and beyond, that the gene may have an evolu-

tionary agenda of its own. The eminent figures within this paradigm shift were W. D.

Hamilton (Hamilton, 1963, 1964), George C. Williams (Williams, 1966) and Colin Pit-

tendrigh (Pittendrigh, 1958). Finally, these ideas were popularised in The Selfish Gene

(Dawkins, 1976). Since then, there have been major advances in the discovery of genes

which seem to be favouring their own fitness rather than the individuals. This shift in

thinking is one of utmost importance across biological subdisciplines, as it allows the

22 of 173



Chapter 1. Introduction

true unit on which natural selection acts to be elucidated, the gene.

Genes which do not benefit, or even cause a reduction in fitness to individuals whilst

seeking to increase their own transmission are known as selfish genetic elements (SGEs).

There are many genetic elements which fit this broad class and an in-depth description of

them all is beyond the scope of this thesis. We list the main categories of SGEs, omitting

that of segregation distorters, as it is the focus of the following subsection:

i Homing endonucleases: these are genes which code for any enzyme that is able to

cause double-strand breaks (DSBs) at specific sequences of nucleotides. The repair

mechanism uses the homologous strand as a template which necessarily contains the

homing endonuclease gene. This is how it increases its own transmission (Burt and

Koufopanou, 2004);

ii Transposable elements: these are any genes with the ability to move, or transpose, to

a new location within whichever genome they are in. Changing location and replacing

whatever nucleotide sequence which might have been their before means they can

easily disrupt the genome they reside in, typically for their own benefit;

iii Genomic imprinting: this is the name given to the inherent asymmetry between ma-

ternally inherited and paternally inherited genes. More specifically, the competition

for expression between the maternal and paternal DNA. This is the known cause of

several serious human diseases, one such example is Prader-Willi syndrome (Buiting

et al., 1995);

iv Greenbeard genes: these are genes which code some ability to recognise itself but in

other individuals and after recognition, it then favours these individuals. By favouring

individuals with similar conspicuous tags, it can increase its relative frequency in a

population.

1.1.4.1 Segregation distorters and meiotic drivers

Segregation distorters (SDs) are genes are able to disrupt the frequency of the trans-

mission of other genes, thereby increasing their own relative frequency in a population.

Specifically, SDs are able to disrupt the Mendelian law of segregation via a variety of

mechanisms, each specific to the genetic system in question (Larracuente and Presgraves,

2012). If the distortion occurs during meiosis, then it is known as meiotic drive and the

element responsible is known as the meiotic driver. We’ll discuss one such example and

refer to one specific model, as the model in Chapter 6 is an extension of it.

The example we discuss comes from the well-studied Drosophila melanogaster. On

chromosome 2 (out of 4 pairs), there is a locus which can have either an SD allele or
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any number of wild type alleles, which following convention, we will denote as SD+.

Within heterozygous males, i.e. males with alleles SD/SD+ at this locus, the spermatid

which segregate with the SD+ allele fail to complete a key stage in spermatogenesis.

This means most ( 95%) of the successful sperm that develop are carrying the SD allele,

clearly disrupting or distorting the ratios which would ensue if the Mendelian laws were

obeyed.

The well-known model of Charlesworth and Hartl (1978) describes this interaction,

showing a stable polymorphic equilibria to exist between the male SD gene and the

responder gene Rsp, with damped oscillatory behaviour towards this equilibrium. The

similar results we found in our models of the evolution of recombination hotspots in

Chapters 3 and 4 when the polymorphic equilibria is stable. The model of Stadler (1996)

finds stable heteroclinic cycles in models of segregation distorters, guiding the work in

Chapter 6. The models in Chapter 6 are that of two-loci but three-alleles and therefore

have a high dimensional state space. Due to this high dimension, build by extending

models with heteroclinic cycles, there exists a stable heteroclinic network.

The evolutionary dynamics of meiotic drivers, due to the balance of strong positive

and negative selective forces, can be complex. For example, they have been observed

undergoing selective sweeps and other non equilibrium behaviours such as recurring cy-

cles and damped oscillations (Lindholm et al., 2016; Núñez et al., 2018). There is strong

theoretical support for such behaviours when the interplay between selective forces are

modelled (Haig and Grafen, 1991; Stadler, 1996). In fact, these theoretical results involve

heteroclinic cycles, in which both recurrent cycles and strong selective sweeps between

the cycles are present, suggesting that cycling and heteroclinic trajectories and the evo-

lutionary forces behind meiotic drivers — and other SGEs for that matter, for example

homing endonucleases (Yahara et al., 2009) — could be closely linked.

1.2 Mathematical background

This section is dedicated to providing the relevant mathematical knowledge to interpret,

at the very least, the models used in the thesis and their numerical results.

1.2.1 Dynamical systems

1.2.1.1 Continuous-time

An (autonomous) dynamical system is a mathematical construction typically consisting

of coupled first-order ordinary differential equations (ODEs) and enough initial/boundary

conditions for the initial value problem (IVP) to be well-posed. Indeed, this means that
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the solution exists, is unique and varies continuously as the initial conditions change as

proved by the Picard–Lindelöf theorem (Coddington and Levinson, 1955).

Real dynamical systems are what we are concerned with throughout this thesis. They

are systems in which the dependent variables in the coupled ODEs are real-valued (rather

than complex-valued). We focus on autonomous dynamical systems — systems where

the functions on the right hand side (1.1) depend only on the independent variable and not

the dependent variables. This is not particularly restrictive, as almost all non-autonomous

systems can be transformed into autonomous ones by defining extra variables and equa-

tions. All of the systems we are concerned with are autonomous.

If we let x(t) be our vector of real-valued dependent variables, we can describe the

state space, S, for a real dynamical system as x ∈ S ⊆ Rn. The independent variable,

which we denote with t, typically refers to time — this is the case throughout this thesis

— but it can refer to anything in principle. Mathematically, this description looks like

dx
dt

= f(x), f(x) : S ⊆ Rn → Rm, x ∈ Rn, t ∈ R≥0. (1.1)

The dimension of a dynamical system is given by the minimum total number of de-

pendent variables in the system. In science and applied dynamical systems, it is common

to have other identities holding for all time, such as conservation laws and other similar

relations. This reduces the dimension, as this relation means one variable can always be

written in terms of the others. This occurs in all of our models, as the variables represent

haplotype frequencies implying the sum of all the variables is identically one.

There are certainly more technical definitions of a dynamical system than the one

provided here, involving semi-groups and manifolds. These facilitate the study of such

systems in their own right, but they are not necessary for the content in this thesis. Alas,

they would just confuse matters with far more technicalities than are required.

1.2.1.2 Discrete time

If the independent variable — typically time — is integer valued, rather than real valued,

the system is known as a discrete-time dynamical system. Such systems are defined

by determining a law for how the next generation of the system depends on the current

generation. For a dependent variable y, this rule for the next generations values based on

the current generation is denoted by

y(n+ 1) = g(y(n)) g(y) : S ⊆ Rn → Rm, y ∈ Rn, n ∈ N. (1.2)

Such systems can be more simple to derive than their continuous-time analogues.
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Furthermore, they are more simple to numerically simulate, as solutions consist of many

iterations, rather than some complex numerical integration scheme. However, they are

often far more difficult to analyse analytically due to particular mathematical oddities

that occur which never do when time is continuous. Plus, even though implementing a

numerical simulation of such a system is simple, they are often far more computationally

intense than solving their continuous-time analogues. This is in part due to the fact that

the mathematics behind solving continuous-time systems — numerical integration — is

a more mathematically natural process than iteration. This leads to the existence of very

efficient algorithms for ’well-behaved’ continuous-time systems (such as the well-known

and widely used Runge-Kutta collection of numerical integration schemes DeVries and

Wolf (1994)). Put simply, it means that, for example, the solution to a continuous-time

dynamical system does not change particularly much between two fixed time-steps (in

a crude fixed time-step solving regime), a more sophisticated regime could exploit this

and far more efficiently find the solution by varying the time-step used. Such schemes do

exist for discrete-time systems, but they are rare and far more complex given their less

natural mathematical nature. Therefore when dealing with large systems or simulating

over large ranges of parameters, continuous-time systems are often more agreeable.

1.2.1.3 Equilibria

Most applied dynamical systems are nonlinear, which means attaining a general solution

is typically not possible. At the very least, it is far from guaranteed, but it can be done for

particular models. When a general solution is out of reach, other methods are required. A

standard approach is to look for time-independent solutions, i.e. equilibria of the system.

This are points within the full solution for which the system of differential equations —

which usually would need to be solved — reduces to a system of algebraic equations.

Generally speaking, solutions can be found, or at least, well approximated, for such

algebraic systems.

The equilibria of the continuous-time system (1.1) are given by the solutions, x∗ to

the system
dx∗

dt
= f(x∗) = 0, (1.3)

and the equilibria of the discrete-time system (1.2) are given by the solutions, x∗ to the

system

x∗ = f(x∗). (1.4)

Related continuous-time and discrete-time systems are used within this thesis, in Chap-

ter 5. The similarity of the specific discrete and continuous-time models used in this

thesis results in them both having the same equilibria. This is clearly not true in general,
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however, it is often the case with applied dynamical systems.

1.2.1.4 Linear stability

Using the equilibria of a system, a qualitative picture of the full solution can begin to

be pieced together. This is achieved by determining the linear stability of equilibria, in-

forming whether trajectories starting "close" to such equilibria will converge (or diverge)

towards (or away) from the equilibria. We show how linear stability calculations are

carried out by studying how solutions which are just a small perturbation away from an

equilibrium change over time. To begin, we define our solution close to an equilibrium

in the following way

x = x∗ + ε =: δx, ε� 1, (1.5)

which means (1.1) becomes

f(x) = f(x∗ + ε). (1.6)

Taylor expanding (1.6) gives the following infinite sum

f(x∗ + ε) = f(x∗) + ε
∂

∂xf(x∗) + 1
2ε

2 ∂
2

∂x2 f(x∗) +O(ε3). (1.7)

The first term in this expansion is identically zero, given that we are evaluating the right

hand side of the dynamical system at equilibrium, which is, by definition, zero. Truncat-

ing this series at O(ε), which serves as a good approximation close to the equilibrium in

question, as each term is an order of magnitude smaller than the last in (1.8) gives

f(x∗ + ε) = ���f(x∗)=0 + ε
∂

∂xf(x∗)

= Jxf(x)|x=x∗

(1.8)

which denotes the Jacobian of (1.1) evaluated at equilibrium.

Clearly, perturbations nearby equilibria grow according to

Jxf(x)|x=x∗ (1.9)

to first-order. Therefore, studying how perturbations near equilibria grow, i.e. the sta-

bility properties of an equilibrium, comes down to finding eigenvalues of the Jacobian

matrix evaluated at equilibrium. We outline the typical procedure used to study stability

1. Find equilibria, by solving f(x∗) = 0;

2. Evaluate the Jacobian matrix at this equilibrium Jxf |x=x∗;
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3. Determine the eigenvalues λ of this matrix by solving the characteristic equation

det(J |x=x∗ − λI) = 0

4. Determine whether the real part of the eigenvalues are positive or negative. If

all are positive, the equilibrium is locally attracting. If not, it is repelling. If the

eigenvalues are identically zero, a higher order analysis is required where more

terms in (1.8) are needed to determine how perturbations grow.

1.3 Goals and structure of the thesis

The central aim of this thesis is twofold: to study deterministic and stochastic genetic

systems modelling novel processes or with a novel number of alleles; to analyse systems

which are similar to those that exist, but to a level of analysis beyond linear stability

if possible. We now lay out which of these broad aims, and any others, each chapter

addresses.

• Chapter 3 builds a model including novel knowledge of the action of a gene PRDM9

on a target site at a different loci. We associate a fitness benefit to such an action

within this model and find complex behaviours arising from the model. We then

analyse the model to the point of a linear stability analysis. The aim satisfied by

this chapter is that of building a biologically novel system and analysing it numer-

ically and analytically to the point where its dynamics can be qualitatively fully

characterised.

• Chapter 4 sees the model built in Chapter 3 extended to allow for the sex-specific

effects of the target site to which the protein PRDM9 binds to. This means dou-

bling the size of the dynamical system and breaking up the population into a male

population and a female population. We then proceed to find a stable polymorphic

equilibria for which linkage disequilibrium is different between the sexes. Again,

the model in this chapter is biologically novel. Its complexity means full analytic

analysis is difficult, but with some approximation techniques, we can analytically

find equilibria. We find its stability numerically.

• Chapter 5 involves a model inspired by the system studied in Chapter 3. However,

in Chapter 5, we relax the dependency of the simplifying parameters on the original

biological parameters. We are able to analyse the model to a higher degree than

was possible in Chapter 3 by noticing there was an attracting invariant manifold.

We find an approximate closed-form for this manifold and prove stability of the

heteroclinic cycle found in Chapter 3 in the reduced system, constrained to the

manifold.
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• Chapter 6 is based on a model for segregation distortion, a specific type of self-

ish genetic element. We generalise a model derived originally in Charlesworth and

Hartl (1978) to allow for n-alleles. We then study in detail the dynamics when three

alleles are possible. We find an attracting heteroclinic network, close to which,

chaotic-like dynamics are possible. We study the dynamics of this system in a

metapopulation context by coupling many instances of the system together on a

lattice. Within this context, we are able to see that chaotic in-patch dynamics cause

faster divergence rates of subpopulations than regular in-patch dynamics. We sug-

gest this could be a novel evolutionary dynamic which, if genetic systems include

multiple variants interacting at specific loci, could be generic.

• Chapter 2, mainly a framework and review chapter, lays out the general model used

in all other chapters. It describes the common techniques used to study the general

system and reviews some of the known results about the system. We also show

how the models used in Chapters 3, 4 and 5 are special cases of this general model.

1.4 Additional materials

All of the additional materials referred to throughout this thesis, whether they are C++

code, Mathematica notebooks or animations, can be found at the following shared Drop-

box folder: https://tinyurl.com/y6caeto6. However, if GitHub is easier, they can

also be found at the following GitHub repository: https://github.com/thimotei/
thesis-additional-materials. A GitHub account is required for to add you as a

collaborator, as the repository is private. Email timothywilliamrussell@gmail.com for

access as a collaborator or for it to be shared a different way if it is easier. Once all of

the work is published, the repository will be make public. On request, I can share the

materials a different way if the readers do not use Dropbox or GitHub.
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The selection-recombination equation
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Abstract

In theoretical population genetics, the selection-recombination equations, or variants on

these equations, have been central to understanding how gene frequencies change over

time. More so, they have helped mould mathematically rigorous but broad definitions

of the range of processes behind these changes. Indeed, these definitions, like selection,

recombination, marginal fitness et cetera, now have well understood mathematical defini-

tions helping to disentangle the complexities involved in the dynamics of genetic systems.

Much is known about this system of nonlinear difference, or differential equations — de-

pending on whether non-overlapping or overlapping generations are under consideration

(respectively). We briefly survey the known results, adding to them where possible with

several pieces of modern work. Global stability within the system, for example, has seen

good progress in the last few years. We show some of the common techniques used to

study the system in-depth, such as common coordinate transformations and techniques.

We also show the breadth of the system with some simple proofs which show how some

modern models can be re-written as a member of the general system. Finally, we provide

some ideas for potential future research avenues.
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1. Introduction

The general system of equations known in theoretical population genetics as the selection-

recombination equations have been a central tenet of the field for decades (Hastings,

1981; Bürger, 2011). This widely studied system of equations describes how the haplo-

type frequencies in a population change over time. The equations track the outcome of

every possible pairing of haploid gametes pi,j and associate with each haplotype pairing a

fitness benefit, ai,j;k,l which describes a selective advantage any given pair of haplotypes,

pi,j and pk,l, may confer to the resulting diploid individual.

The equations also describe the effects of recombination has on the population of hap-

lotypes. Recombination is a genetic process which occurs during meiotic cell division,

whereby diploid individuals with specific combinations of alleles on sister chromatids

can transfer alleles from one to another. This complex genetic process results in a shuf-

fling of alleles in the segregating chromosomes, altering the resulting haplotype relative

frequencies. Hence, recombination is a necessary component for a reliable model of the

evolution of haplotype frequencies within a population. A more detailed discussion about

the background biology governing this process can be found in Bürger (2011). Classi-

cally, in these equations, the rate at which this happens is denoted by r and is bounded

by r ∈ [0, 1
2
].

As far as the authors are aware, the two-locus two-allele version of the model was

first suggested — in continuous-time — by Kimura (1956). The model has since been

generalised to arbitrary loci and allele numbers; one well-known example of such a gen-

eralisation is given — in discrete-time — by Nagylaki (1993). Table 1 states the assump-

tions that are used to derive system (1), using the standard theoretical population genetics

terms, along with how the statements translate into mathematics.

The aims of this paper are:

• to give an overview of the different implementations of the model, for example

discrete vs continuous-time;

• describe the assumptions behind the model;

• give some basic results showing how some recent models, especially those used

to study the evolution of recombination hotspots, fall into the category of the

selection-recombination equations;

• review the literature, describing many of the results known about the system of

equations — especially for the two-locus two-allele and two-locus three-allele

cases;
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• show how the mathematical results from this thesis fit within some of the known

results from the literature;

Given that each of the models within the thesis this paper is originally from (Russell,

2019) is either: trivially a member of the class of selection-recombination equations; or,

with some work, can be shown to fall into the class, we treat the general model as the

linchpin of the thesis. Therefore, the overarching aim of this paper is to provide the math-

ematical framework — and the biological assumptions used to build such a framework

— that the rest of the thesis is built upon.

2. The model

2.1. Two-locus n-alleles

2.1.1. Discrete-time

We only present the system of equations describing the interaction between two loci and

not for higher numbers. We do so because all of the models considered in this thesis

concern the interaction of the products of two loci only and the structure of the expanded

equations changes considerably as more loci are considered. In discrete-time, for n-

distinct allelic variants at each locus, the general system is given by

p′i,j = w̄−1

(
pi,j

n∑

k,l=1

ai,j;k,lpk,l − r
n∑

k,l=1

(pi,jpk,l − pi,lpk,j)
)
, (1)

where p′i,j is shorthand for the frequency of pi,j in the next generation, the ai,j;k,l param-

eters correspond to the fitness of an individual formed by the pairing of haplotypes with

alleles i, j from one gamete and k, l from the other and

w̄ =
n∑

i,j,k,l=1

ai,j;k,lpi,jpk,l, (2)

is known as the population mean fitness. Mathematically, it is a normalisation term, used

to maintain the interpretation of each variable as a frequency. A consequence of which is

that
n∑

i,j

pi,j(t) = 1, ∀t ∈ N+. (3)

This implies the state space for the model is the n-simplex, defined by

∆n = {(p1,1, ..., pn,n) ∈ Rn : pi,j ≥ 0,
n∑

i,j

pi,j = 1}. (4)
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Assumption Modelling consequences
Infinite population size The model is deterministic — typically a dynamical system on a subset of

the real numbers — as there is no need to track the time evolution of each
individual when the population is infinite.

Random union of ga-
metes: panmixia

Only need to keep track of four haplotypes, rather than 16 distinct geno-
types.

Variables are frequencies
of haplotypes

The sum of all the variables is identically one, achieved by subtracting or
dividing, for continuous and discrete-time (respectively), the right hand side
of each equation by the population mean fitness given by w̄: defined as the
sum of the right-hand sides of the system of equations.

No parent-of-origin ef-
fects

Whether an allele came from a sperm or an egg is irrelevant to the fitness of
the resulting individual

Table 1: The assumptions, and their consequences mathematically, behind the selection recombina-
tion equations.

2.1.2. Continuous-time

In continuous-time, we present the equations in the following form

ṗi,j = m̄−1

(
pi,j

n∑

k,l=1

mi,j;k,lpk,l − r

=:D︷ ︸︸ ︷
n∑

k,l=1

(pi,jpk,l − pi,lpk,j)
)
− pi,j, (5)

where the variables are now functions of time as a real number and as is standard, a

dot is used to denote the derivative with respect to some unique independent variable —

typically time, which is clearly what it is with respect to in this case and throughout this

thesis. This is not the most common form of the continuous-time equations however;

usually, for the classic two-locus two-allele model, the system is written as

ṗi,j = pi,j

( n∑

k,l=1

mi,j;k,lpk,l − m̄
)
− r

n∑

k,l=1

(pi,jpk,l − pi,lpk,j). (6)

It is easy to see however, that these two systems, (5) and (6), are almost equivalent —

there is a difference in the scaling of time and the second is more restrictive. We prefer

the first for these reasons. Furthermore, it more clearly elucidates the difference between

the discrete and continuous-time models. Notationally, the fitness parameters are now

denoted by mi,j;k,l for Malthusian fitness and the population mean fitness — which is

given by the same function as the discrete-time formulation — is denoted by m̄.

2.2. Two-locus two-allele

Most of this paper is focused on the discrete-time formulation of the selection-recombination

equations. However, we discuss in detail the known results of both the discrete and

continuous-time systems in Section 3. Moreover, we cover the similarities and differ-
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ences of the two models in this section.

The term delineated by the over brace in equation (5) is a well-known quantity

throughout population genetics. It is known as the linkage disequilibrium, it is typically

denoted by D and, for two-loci and two-alleles, it is given by

D = p1,1p2,2 − p1,2p2,1. (7)

When n = 2, the second term in (5) — defined above the over brace as D — the sum is

expanded and the resulting expression is simplified, reduces to (7).

For mathematical convenience, we briefly switch from double to single subscript no-

tation in the following way pi,j =: xi+n(j−1) for the haplotype frequencies, ai,j;k,l =

wi+n(j−1),k+n(l−1) =: wī,j̄ for the selection parameters and m := n2 for the summation

index — the two here comes from the number of loci under consideration. Doing so gives

the following system of equations

x′i = w̄−1

(
xi

m∑

j=1

wī,j̄xj + εirD

)
, i ∈ {1, ..., 4}. (8)

The new parameter ε is introduced so that the sign of the linkage disequilibrium term

remains correct when written using the same term for each equation. Specifically,

εi
∗ =





1, i = 1, 4;

−1, i = 2, 3.
(9)

This system, the two-locus two-allele governing equations (8) are a system of four cou-

pled nonlinear difference equations. A general solution is almost certainly out of reach.

However, we discuss some of what is known about this system, including bifurcation

patterns, potential behaviours and special cases in Section 3.

2.2.1. The evolution of recombination hotspots model

The deterministic model developed and presented in Úbeda et al. (2019), representing

the evolution of recombination hotspots - a collection of genes involved in the genetic

control of recombination, is a special case of the selection-recombination equations (1).

To see precisely how, we begin from the general form that all of the different instances

of the hotspot models took. Indeed, we observed that the processes we were modelling,

under many different sets of biological assumptions — outlined in the supplementary

∗Under the double subscript notation, this definition becomes εi,j = 1 if i = j and -1 if i 6= j.
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material of Úbeda et al. (2019) —resulted in many models, all of this generic form

p′i,j = w̄−1

( n∑

k,l=1

ai,j;k,lpi,jpk,l +
n∑

k,l=1

bi,j;k,lpi,lpk,j

)
†. (10)

We wish to show that (10) can be written in the form of (8). Specifically, we wish to

show that (10) can be reduced to the following system

p′i,j = w̄−1

(
1 + εi,jβpi,j − εi,jγpi,l

)
pi,j − εi,jδD, (11)

which, following the notation of the original version in both Úbeda et al. (2019) and

Russell et al. (2019), reads as

x1 =
1

w̄

[
x1(1 + βx1 − γx2)− δD

]
,

x2 =
1

w̄

[
x2(1− βx2 + γx1) + δD

]
,

x3 =
1

w̄

[
x3(1− βx3 + γx4) + δD

]
,

x4 =
1

w̄

[
x4(1 + βx4 − γx3)− δD

]
.

(12)

Both indexes are expanded and presented in single subscript form. The population mean

fitness is now given by

w̄ = x1 + x2 + x3 + x4 + β(x2
1 + x2

4 − x2
2 − x2

3). (13)

We have also defined new parameters, which are functions of the original ai,j;k,l and

bi,j;k,l parameters, simplifying the resulting equations greatly. The following mathemati-

cal steps describe explicitly how we defined these new parameters.

Given that the indices, for the two-locus two-allele model, only take values of either

one or two, we define s as the value this is not i, for a given i. Similarly, let be t the

value that is not j. Mathematically, this can be stated as s := i (mod 2) + 1 and t = j

†We switch back to the double subscript notation from here onwards, as it aids with the following steps
showing that this system falls, under some generic assumptions of the parameters ai,j;k,l and bi,j;k,l, into
the class of selection-recombination equations.
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(mod 2) + 1. Using these definitions, we can rewrite (8) as

w̄p′i,j = pi,j

n∑

k,l=1

ai,j;k,lpk,l +
n∑

k,l=1

bi,j;k,lpi,lpk,j

= pi,j

n∑

k,l=1

ai,j;k,lpk,l +
n∑

k,l=1

bi,j;k,lpi,jpk,l +
n∑

k,l=1

bi,j;k,l(pi,lpk,j − pi,jpk,l)

= pi,j

n∑

k,l=1

(ai,j;k,l + bi,j;k,l)pk,l + bi,k;s,t(pi,tps,j − pi,jps,t).

(14)

If we assume that

ai,j;s,j + bi,j;s,j = ai,j;s,t + bi,j;s,t =: ci,j;s = ci,j;t, (15)

we are able to write (14) as

w̄p′i,j = pi,j

n∑

l=1

(ai,j;i,l + bi,j;i,l)pi,l + pi,j

n∑

l=1

(ai,j;s,l + bi,j;s,l)ps,l + bi,j;s,t(pi,sps,j − pi,jps,t)

= pi,j

n∑

l=1

(ai,j;i,l + bi,j;i,l)pi,l + ci,j;spi,j

n∑

l=1

ps,l + bi,j;s,t(pi,tps,j − pi,jps,t)

= pi,j

n∑

l=1

(ai,j;i,l + bi,j;i,l)pi,l + pi,jci,j;s(1−
n∑

l=1

pi,l) + bi,j;s,t(pi,tps,j − pi,jps,t)

= pi,j

[
ci,j;s +

n∑

l=1

(ai,j;i,l + bi,j;i,l − ci,j;s)pi,l
]

+ bi,j;s,t(pi,tps,j − pi,jps,t).

(16)

With this general form, if we choose

β :=
1

ci,j;s

(
ai,j;i,j + bi,j;i,j − ci,j;s

)
,

γ :=
1

ci,j;s

(
ai,j;i,t + bi,j;i,t − ci,j;t

)
,

δ :=
1

ci,j;s
bi,j;s,t,

(17)

and switch back to the single subscript notation, we recover (12).

The specific expressions for the new parameters can be found by calculating the

ai,j;p,k and bi,;k,l terms from the biological formulation of the recombination hotspots

Chapter 2. The selection-recombination equation

38 of 173



model in Úbeda et al. (2019). Doing so gives

β =
1
4
bf

1
4
b+ 1

2
(1− 1

2
b)(1− f)

,

γ =
1
8
bc

1
4
b+ 1

2
(1− 1

2
b)(1− f)

,

δ =

1
8
b

[
1
2
c+ (1− c)r

]

1
4
b+ 1

2
(1− 1

2
b)(1− f)

,

(18)

as stated, but not derived, in Úbeda et al. (2019). Here, we followed (Russell et al., 2019)

and normalised the parameters in Úbeda et al. (2019) by the parameter α for mathematical

simplicity.

In contrast to the treatment in Úbeda et al. (2019) which obeys the biological con-

straints on the parameters, the analysis of the simplified system (12) in Russell et al.

(2019) treats the parameters β, γ and δ independently. Therefore, apart from the assump-

tion given by (15), the analysis in Russell et al. (2019) is a general analysis of the system

(8). In the context of recombination hotspots, this assumption can be interpreted as: if

a haplotype produces only one allelic variant of the recombinogenic protein, acting on

two target sites, the rate of breakage is equal to when two different allelic variants of the

protein are produced and each protein acts on a different target site.

3. Reviewing known results

We begin this section with some remarks about which parts of the literature serve as ex-

cellent reference and survey material. For the classic continuous-time viability selection-

recombination model, the textbook Akin (1979) gives a full account of the dynamics,

cast in terms of the Shahshahani gradient (Shahshahani, 1979): a metric which allows

global stability of the continuous-time model to be determined; for both the discrete and

the continuous-time systems, the paper Bürger (2011) gives a full account of the equilib-

ria and behaviour of both models and describes the differences with clarity — the weak

selection approximation is particularly well discussed, with a simple derivation of the

model under weak selection included.

We use this section to pick apart what is currently known about the system (1) and

its counterpart in continuous-time (6) and place the results from this thesis within these

results. The pool of knowledge is deeper for the continuous-time model, which is not

particularly surprising, given that continuous-time models are typically more amenable to

analysis; discrete-time models often throw up mathematical oddities with require an enor-
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mous amount of work to prove analogous results. The scope and the limits of known re-

sults for the two-locus two-allele continuous-time model is best described in Sub-section

3.1.5. Generally speaking, being able to prove existence of invariant manifolds within

dynamical systems tends to be a highly powerful tool for characterising the dynamics,

as it allows for global stability properties to be determined along with, occasionally, a

reduction in dimension (Kuehn, 2015).

3.1. Two-locus two-alleles

3.1.1. Equilibria

The equilibria of the discrete and continuous-time models are equivalent, with a short,

simple proof of this in Bürger (2011). Equilibria of the system (1) are given when

p′|p=p∗ = f(p∗) = p∗ (19)

and the equilibria are given by p∗, which are the solutions to (19). For the two-locus two-

allele system, this is a system of 4 coupled nonlinear polynomials that need to be solved.

However, the conservation law (3) applies and therefore, the true number of equations to

be solved is three. The equations are of order two, i.e. each term is no more than quadratic

and can be solved, occasionally giving relatively simple closed-form solutions for certain

special cases of the general system, which typically make simplifying assumptions on

the general parameters (Úbeda et al., 2019; Russell et al., 2019).

The four vertices of the tetrahedron are equilibria for the general system, without the

need for simplifying assumptions to guarantee this. These equilibria, the edges of the

tetrahedron, are given by
p∗1,1 = (1, 0, 0, 0),

p∗1,2 = (0, 1, 0, 0),

p∗2,1 = (0, 0, 1, 0),

p∗2,2 = (0, 0, 0, 1).

(20)

The other equilibria for the general model exist only under certain conditions on the

systems parameters, conditions which are unwieldy and complicated. Conditions for

the existence of a unique polymorphic equilibria are equally unwieldy. However, many

special cases exist and are able to show when such an equilibria exists. Typically, these

analyses go further and prove when such equilibria are linearly (or occasionally globally)

stable.
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3.1.2. Invariant subspaces

Each of the six edges of the 4-simplex, the tetrahedron, can be parameterised using a

single variable. This is due to the fact that on each edge, two variables are identically

zero, and one of the two non-zero variables can always be written in terms of the other,

by making use of the conservation law (3), which is now comprised of only two variables.

The following is a list of particular parameterisations of the six edges, using the dou-

ble subscript notation for the variables

E1,2 = (p1,1, 1− p1,1, 0, 0) = E2,1,

E1,3 = (p1,1, 0, 1− p1,1, 0) = E3,1,

E1,4 = (p1,1, 0, 0, 1− p1,1) = E4,1,

E2,3 = (0, p1,2, 1− p1,2, 0) = E3,2,

E2,4 = (0, p1,2, 0, 1− p1,2) = E4,2,

E3,4 = (0, 0, p2,1, 1− p2,1) = E4,3.

(21)

The edges E1,2, E2,4, E4,3 and E4,1 are invariant with respect to both the general system

given as a flow (6) and given as a map (1). The remaining two edges, E1,3 and E2,3, are

not invariant with respect to either the general system (1), or our special case model (12).

Lemma 3.1. The subspace E1,2 is invariant with respect to the dynamics of the map (1).

Proof. The dynamics constrained to the first of these subspaces, E1,2, with the equations

expanded, is given by

p′1,1 = w̄−1p1,1

[
p1,1(a1,1;1,1 + b1,1;1,1) + p1,2(a1,1;1,2 + b1,1;1,2)

]
,

p′1,2 = w̄−1p1,2

[
p1,1(a1,2;1,1 + b1,2;1,1) + p1,2(a1,2;1,2 + b1,2;1,2)

]
,

p′2,1 = 0,

p′2,2 = 0,

(22)

where w̄ constrained to this subspace is given by

w̄ =p2
1,1(a1,1;1,1 + b1,1;1,1) + p2

1,2(a1,2;1,2 + b1,2;1,2)

+ p1,2x1,1(a1,1;1,2 + a1,2;1,1 + b1,1;1,2 + b1,2;1,1).
(23)

Recall that the subspace under consideration is given by (p1,1, 1 − p1,1, 0, 0). Therefore,

to show the invariance of this subspace with respect to the dynamics of the map (1), it
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suffices to show that

p′1,1 + p′1,2 = 1, (24)

which can be easily verified by substituting p1,2 = 1− p1,1 into the condition (24) to give

w̄−1

[
p1,1

(
p1,1(a1,1;1,1 + b1,1;1,1) + p1,2(a1,1;1,2 + b1,1;1,2)

)

+p1,2

(
p1,1(a1,2;1,1 + b1,2;1,1) + p1,2(a1,2;1,2 + b1,2;1,2)

)]
=
w̄

w̄
.

(25)

As the left hand side of the condition reduces identically to 1, (24) is satisfied.

Remark. The proofs of the invariance of E2,4, E4,3 and E4,1 with respect to either (1) or

(5) are trivially similar and are therefore omitted.

The invariance of these four edges of the tetrahedron is a result of both the Kol-

mogorov form of the selection term — that each variables selection term is proportional

to its own frequency — and that the linkage disequilibrium term p1,1p2,2 − p1,2p2,1 is

identically zero along the four invariant edges. Along E2,3 and E2,4 however, the linkage

disequilibrium term equals p1,1(1 − p1,1) and p1,2(p1,2 − 1) respectively, causing these

edges not to be invariant with respect to either (1) or (5). This indicates that if searching

for behaviour reliant on invariant subspaces, such as: equilibria, homoclinic connections

or heteroclinic connections; the four subspaces outlined here are likely candidates, as

they are invariant for any specific implementation of the general model, in both continu-

ous and discrete-time.

3.1.3. Invariant line

The subspace parameterised by
p1,1 = p2,2

p1,2 = p2,1

(26)

describes a straight line from the middle of the edge E1,4 and the edge E2,3, whose mid-

point intersects the Wright manifold. This line is invariant with respect to specific re-

combination hotspots model (Russell et al., 2019) given by equation (10). This does not

carry over to the general case and relies on the assumption (15) build into the recombina-

tion hotspots model (15). Precise conditions for the invariance of this line, derived from

the general model (1), are possible. However, without a simplifying assumption — for

example (15) — they are ardous and not particularly illuminating, given the high number

of parameters.
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3.1.4. Stable cycles

Stable cycles, in the form of limit cycles, have been shown to exist: numerically in

discrete-time (1) by Hastings (1981) and analytically in continuous-time (6) by Akin

(1979, 1982, 1983, 1987). Stable cycles, in the form of heteroclinic cycles, have been

shown to exist in the discrete-time model by Haig and Grafen (1991); Úbeda et al. (2019)

and have been proved to be stable by Stadler (1996); Russell et al. (2019). A Hopf

bifurcation, and nearby stable limit cycles, were determined to exist by Hofbauer (1985)

in a nearby model: namely, the selection-mutation equation.

3.1.5. The quasi-linkage equilibrium manifold

For the two-locus n-allele case, a globally attracting invariant manifold known as the

quasi-linkage equilibrium (QLE) manifold is known to exist, if the well-known popula-

tion genetics assumption — known as the weak selection approximation — is satisfied

(Nagylaki et al., 1999). In the context of the selection-recombination equations, this as-

sumption means selection is weak relative to recombination, hence producing a small

parameter in the system.

Several attempts have been made to determine the existence, attraction and closed-

form expressions for such manifolds, without the need for necessarily small parameters:

• In the continuous-time two-locus two-allele model (6), sufficient conditions on the

parameters for the existence of the QLE manifold, in a slightly simplified version

of the model have been recently determined in Seymenoglu (2019).

• In the two-locus two-allele discrete-time model, with assumption (15), the QLE

manifold has been shown to exist under some parameter regimes. When it does,

it can be globally attracting, shown using a combination of numerical and analytic

results. Furthermore, an approximate closed-form was determined as a graph of

the linkage disequilibrium function — analytically determined change on a faster

time-scale than the other variables (Russell et al., 2019). Both of these approaches,

and many others throughout the study of applied dynamical system, employ coor-

dinate transformations, making the analysis possible by disentangling as much of

the complexity as possible of coupled nonlinear systems. Two of the many trans-

formations used are discussed below.
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3.1.6. Coordinate transformations

To study the continuous-time two-locus two-allele model, Seymenoglu (2019) defined

the following coordinate transformation Φ1 : ∆4 → R3
+

p 7→ u = Φ1(p) :=



p1,1 + p1,2

p1,1 + p1,3

p1,1 + p1,4




T

, (27)

where p = (p1,1, p1,2, p2,1, p2,2) and u = (u, v, w). The map Φ1(x) has the inverse

Φ−1
1 (u) given by

u 7→ p = Φ−1
1 (u) =

1

2




u+ v + q − 1

u− v − q + 1

−u+ v − q + 1

−u− v + q + 1




T

. (28)

This transformation is also known to at least have been used in Wagner and Bürger

(1985).

The first two new variables u and v are equivalent to the variables defined in Russell

et al. (2019). The transformation from the tetrahedron to a subset of R3 is also similar.

However, the third variable chosen in Russell et al. (2019) does change the resulting

geometry somewhat. Let the mapping chosen by Russell et al. (2019) be named here as

Φ2 : ∆4 → R3. It is defined as

p 7→ y = Φ2(p) :=




p1,1 + p1,2

p1,1 + p1,3

p1,1p1,4 − p1,2p2,1




T

. (29)

where we follow notation from the paper and let y = (A,B,D). The interpretation of

these variables is: the frequency of allele A1, the frequency of allele B1 and the amount

of linkage disequilibrium between the two, respectively. The second map, Φ2(x), has the

inverse Φ−1
2 (u) given by

y 7→ p = Φ−1
2 (y) =




AB +D

A(1−B)−D
(1− A)B −D

(1− A)(1−B) +D




T

. (30)

This transformation was certainly used in Karlin et al. (1970). However, we believe it to
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Φ1

Φ2

A
B

C

Figure 1: Visualising two coordinate transformations used in the study of the selection-recombination
equations. The state space for the two-locus two-allele system, represented in three different coordinate
systems and the relationship between them. Panel A is ∆4, the 4-simplex or the tetrahedron, which is
typically how the selection-recombination equations are represented. Panel B is the resulting representation
of the state space after mapping Φ1 transforms the space. Similarly, Panel C is the space after the map Φ2

has transformed the state space. Both B and C are subsets of R3.

be a widely known transformation.

The second transformation, Φ2, was chosen to approximately study the QLE manifold

as Nagylaki et al. (1999) observed that the QLE manifold, under the weak selection

approximation, was a perturbation of the Wright manifold. The Wright manifold, ΣW , is

defined as the subset of the state space for which

p1,1p2,2 − p1,2p2,1 = 0 (31)

(Rice, 2004). It is easy to see that ΣW is given, in terms of y coordinates, by

ΣW = {y = (A,B,D) ∈ R3 : 0 ≤ A ≤ 1, 0 ≤ B ≤ 1, D = 0}. (32)

Since the QLE manifold was determined to be a perturbation of the Wright manifold in

Nagylaki et al. (1999), which can be thought of as the subspace whereD = 0, we conjec-

tured that D would be small if the QLE manifold existed and was attracting. Therefore,

the second coordinate choice was employed to find an approximate closed-form for the

QLE manifold using a quasi-steady state assumption (Russell et al., 2019). The differ-

ence in coordinate choice Φ1 and Φ2 reflects the difference in approach: the first found

Chapter 2. The selection-recombination equation

45 of 173



explicit sufficient parameter conditions which ensure the existence of the QLE manifold

(Seymenoglu, 2019); whereas, the second used approximate techniques from multiple

time-scale analysis to find a graph of a function approximating the QLE manifold.

4. Conclusions

We discuss the selection-recombination equation in its generality, for two-loci and n-

alleles. We elaborate, giving details of known results for the two-locus two-allele imple-

mentation of the model and outline some of the techniques used to prove these results.

Much of the results on the dynamics of the two-locus two-allele model comes from study-

ing special cases, with some specific biological interpretation. This is in part due to the

complexity of the model in general. More recent general results are discussed too, where

the model in its fullest form is studied.

A clear take-home message from the work in this paper (and the discussed specific

instances of the selection-recombination equations discussed) is that the biological for-

mulation of the model with double subscript notation and up to 16 parameters for the

two-locus two-allele model (and far more possible for higher locus or allele numbers)

is that it can be notationally cumbersome. The simplification procedure undergone here

for the models of recombination hotspot evolution would apply to other special cases of

this system and, as can be seen by the relative simplicity of resulting system (12), others

models may be reducible to a far simpler version if a similar procedure is employed.

The combined effects of selection and recombination can produce complex dynam-

ics (Russell et al., 2019). Instances of the model which converge, either via damped

oscillations or monotonically towards a stable equilibrium have been more commonly

studied than those which produce more complex dynamics (limit cycles, heteroclinic cy-

cles, chaotic-like dynamics, bistability etc). We believe this is partly due to simplifying

assumptions — i.e. the weak selection approximation — and partly due to focussing on

instances which only allow for low numbers (less than two) of both loci and alleles pos-

sible at each locus. Speaking generally, dynamical systems of low dimension can only

exhibit dynamics of certain levels of complexity. Only in higher dimensions are many of

the discussed complex dynamics possible.
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PRDM9 and the evolution of recombination hotspots
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Abstract

Recombination in mammals is not uniformly distributed along the chromosome but con-

centrated in small regions known as recombination hotspots. Recombination starts with the

double-strand break of a chromosomal sequence and results in the transmission of the se-

quence that does not break (preventing recombination) more often than the sequence that

breaks (allowing recombination). Thus recombination itself renders individual recombina-

tion hotspots inactive and over time should drive them to extinction in the genome. Empirical

evidence shows that individual recombination hotspots die but, far from being driven to ex-

tinction, they are abundant in the genome: a contradiction referred to as the Recombination

Hotspot Paradox. What saves recombination hotspots from extinction? The current answer

relies on the formation of new recombination hotspots in new genomic sites driven by viabil-

ity selection in favour of recombination. Here we formulate a population genetics model that

incorporates the molecular mechanism initiating recombination in mammals (PRDM9–like

genes), to provide an alternative solution to the paradox. We find that low selection allows

individual recombination hotspots to become inactive (die) while saving them from extinc-

tion in the genome by driving their re-activation (resurrection). Our model shows that when

selection for recombination is low, the introduction of rare variants causes recombination

sites to oscillate between hot and cold phenotypes with a recombination hotspot dying only

to come back. Counter-intuitively, we find that low viability selection leaves a hard selec-

tive sweep signature in the genome, with the selective sweep at the recombination hotspot

being the hardest when fertility selection is the lowest. Our model can help to understand

the rapid evolution of PRDM9, the co-existence of two types of hotspots, the life expectancy

of hotspots, and the volatility of the recombinational landscape (with hotspots rarely being

shared between closely related species). From a more applied perspective our findings sug-

gest ways of determining the strength of fertility driving the evolution of recombination and

the need to account for the variability in fitness effects between subpopulations when using
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genetic markers to predict diseases (genome wide association studies).

Keywords:

Recombination Hotspot Paradox, PRDM9, Population genetics, Gene conversion, viability

selection, Heteroclinic cycles
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1. Introduction

The distribution of recombination in the genome - and thus crossover events - is key to our

understanding of the molecular mechanisms controlling recombination, the role of recombi-

nation on evolution, and the implementation of tests linking genetic markers with human dis-

ease (genome-wide association studies) (Boulton et al., 1997; Hey, 2004; Rosenberg et al.,

2010). In many mammals, recombination is not uniformly distributed in the genome but

concentrated in small chromosomal regions - known as recombination hotspots - where re-

combination is ten to a thousand times more frequent than the genome’s average (Lichten

and Goldman, 1995; Petes, 2001; Myers et al., 2005; Paigen and Petkov, 2010). While re-

combination hotspots are abundant in the mammalian genome (for example, in the human

genome there are more than twenty five thousand), their mere existence is paradoxical and

their life cycle is not fully understood (Boulton et al., 1997; Pineda-Krch and Redfield, 2005;

Myers et al., 2005).

Recombination is initiated by a double-strand break (DSB) and may result in the con-

version of the allelic sequence that breaks (active allele, enabling recombination) into the

allelic sequence that does not break (inactive allele, disabling recombination) (Lichten and

Goldman, 1995; Petes, 2001). The conversion of the allele that enables recombination into

the one that disables recombination should be faster in genomic regions where recombi-

nation is higher (recombination hotspots). As a result individual recombination hotspots

should become inactive (this process is often referred as the death of a hotspot; Coop and

Myers (2007)) and, over evolutionary time, recombination hotspots should disappear from

the genome (Boulton et al., 1997; Pineda-Krch and Redfield, 2005). Empirical work shows

that individual recombination hotspots die (Ptak et al., 2004, 2005; Winckler et al., 2005;

Coop et al., 2008; Myers et al., 2010; Stevison et al., 2015) but, despite their self-destructive

nature, recombination hotspots are abundant in the mammalian genome (Myers et al., 2005;

Baudat et al., 2013), thus posing the Recombination Hotspot Paradox (Boulton et al., 1997;

Pineda-Krch and Redfield, 2005): what saves recombination hotspots from extinction?

Due to its molecular, evolutionary and medical implications the Recombination Hotspot

Paradox has received much attention. Initial work aimed to test whether the known beneficial

effects of recombination - in particular how recombination may favor proper chromosomal

segregation during meiosis; thus avoiding the formation of aneuploidy gametes (Hassold

et al., 2000; Louis and Borts, 2003; Brick et al., 2012; Alves et al., 2017)- can solve the

paradox (Boulton et al., 1997; Pineda-Krch and Redfield, 2005; Calabrese, 2007; Peters,

2008). These mathematical models found that the strength of viability selection needed to
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maintain active alleles at recombination hotspots over evolutionary time was too high to

be realistic (Boulton et al., 1997; Pineda-Krch and Redfield, 2005; Calabrese, 2007; Peters,

2008). Furthermore, in these models when viability selection prevents the extinction of

hotspots in the genome, it does so by preventing the death of individual hotspots, which is

contrary to empirical observations (Ptak et al., 2004, 2005; Winckler et al., 2005; Coop et al.,

2008; Myers et al., 2010; Stevison et al., 2015). Therefore, far from providing solutions to

the Recombination Hotspot Paradox, previous work demonstrates that the paradox is well

grounded.

Recent advances in our understanding of the molecular mechanisms initiating recombi-

nation include the identification of gene PRDM9 in humans (and many mammals) coding for

protein PRDM9 that may bind a specific sequence at a target recombination hotspot (Myers

et al., 2010; Baudat et al., 2010). Binding specificity between PRDM9 and its target site is

required for the initiation of recombination (Myers et al., 2010; Baudat et al., 2010). This

finding led to the verbal argument that when a target site has its binding motif (active allele)

replaced by the non-binding motif (inactive allele) due to biased gene conversion, a mutant

PRDM9 could create a new target site by coding for a new binding motif (Myers et al., 2010;

Baudat et al., 2010). Natural selection would thus favor this rare mutant PRDM9 as long as

recombination is advantageous for the individual (Myers et al., 2010; Baudat et al., 2010).

Lacking a mathematical model to back this claim, it remained unclear whether selection

would favor such mutant to the extent of allowing the formation (henceforth birth) of new

recombination hotspots before an inactive allele arose. Furthermore, would the strength of

selection required for the birth of new hotspots be too high to be realistic?

Úbeda and Wilkins (2011) modelled a trans acting modifier locus with binding specificity

- like PRDM9 - showing that, for a strength of selection lower than in previous models,

new recombination hotspots can be born at new target sites, while existing recombination

hotspots die (Úbeda and Wilkins, 2011). These findings were consistent with empirical

observations regarding the persistence of recombination hotspots in the genome in spite of

the death of individual recombination hotspots (Úbeda and Wilkins, 2011). The Red Queen

hypothesis of recombination hotspots evolution refers to the balance between death and birth

of new hotspots driven by conversion and viability selection (Myers et al., 2010; Baudat

et al., 2010; Úbeda and Wilkins, 2011), and is currently accepted as a possible resolution to

the recombination hotspots paradox (Lesecque et al., 2014; Latrille et al., 2017).

In many respects, however, the Red Queen hypothesis needs further theoretical inves-

tigation (Latrille et al., 2017). One of these key theoretical aspects is the role of viability
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selection in maintaining recombination hotspots, and the evolution of PRDM9 and target

sequences (Ségurel et al., 2011; Latrille et al., 2017). Recent models include variables that

mask the effect of selection; for example drift, recurrent mutation, and multiple locus targets

(Úbeda and Wilkins, 2011; Latrille et al., 2017). While the introduction of these variables is

justified to make the models more realistic, they complicate our understanding of the inter-

play between the key variables of these models, namely conversion and selection.

Here we formulate a population genetics model aimed to explore the interplay between

conversion and selection in the resolution of the Recombination Hotspot Paradox. We start

by considering an infinite population, without recurrent mutation and with a single target

locus, to eliminate the above mentioned confounding variables. We build on the insight

gained from this minimal model to interpret the results of an extended model with a finite

population and recurrent mutation. In doing so, we find an alternative solution to the Re-

combination Hotspot Paradox, one that does not require the formation of new hotspots but

relies on existing hotspots. Counter-intuitively, in our novel solution, it is low viability se-

lection regimes that allow the persistence of recombination hotspots in spite of the death

of individual ones (contrary to all previous models). Furthermore, sometimes, low viability

selection accelerates the turnover of hotspots. We also find that viability selection can main-

tain polymorphisms at the PRDM9 and target loci. We apply these findings to explore the

molecular signatures of selection in PRDM9 and target loci and consider their implications

for genome-wide association studies.

2. Methods

2.1. Two-locus n-alleles model

We follow the classic Wright-Fisher population genetics framework (Wright, 1969; Bürger,

2000) to formulate a discrete time mathematical model of an infinite population of diploid

individuals carrying two loci with an arbitrary number of alleles in each locus.

This model represents the interaction between a gene (PRDM9–like) producing a protein

that binds a specific motif at a target recombination site (Figure 1), as it is observed in

humans and many mammals (Myers et al., 2010; Baudat et al., 2010, 2013). The modifier

locusAmay carry allelesA1, A2, ..., AI each encoding a protein that attempts to bind a motif

at a target locus B. Locus B may carry alleles B1, B2, ..., BK each corresponding to a base

pair motif that the protein produced by locus A may attempt to bind. In each generation,

both modifier alleles in each diploid individual show the same level of expression producing
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Figure 1 (previous page): Model for recombination initiated by specificity of the double strand break.
Summary of the sequence of events modeled. We start with the production of a PRDM9-like protein with a
recognition sequence that may match the target motif (same color sequence in recognition and motif) or not
(different color sequence in recognition and motif). If protein and target bind, we follow the canonical DSB
repair model for the initiation of recombination (Szostak et al., 1983; Sun et al., 1991). Once recombination
(including crossover and conversion effects) has been completed, we model Mendelian segregation of haplo-
types with no fitness cost. If protein and target do not bind, there is no recombination and we model Mendelian
segregation of haplotypes with a fitness cost. Notice that sister chromatids are represented at the beginning and
end of the figure but are omitted from the middle part for clarity.

proteins that have equal probability of binding the two target motifs (Figure 1). Therefore,

in an individual with genotype AiBk

AjBl
, the probability that a protein produced by alleles Ai or

Aj attempts to bind the motif of alleles Bk or Bl is 1
4 (Figure 1). The binding attempt of

the protein Ai to the motif Bk results in binding and a double-strand break of allele Bk with

probability bi,k. However, the binding attempt may result in failure to bind and lack of any

double-strand break with probability 1− bi,k (where 0 < bi,k < 1) (Figure 1).

A double-strand break initiates recombination and the chromatid that breaks is often

repaired using its homologous chromatid as a template (Lichten and Goldman, 1995; Petes,

2001) (Figure 1). During the repair process there might be a crossover event in or near the

target locus with probability r and none with probability 1 − r (where 0 < r < 1) (Lichten

and Goldman, 1995; Petes, 2001) (Figure 1). In our model, we assume that a crossover

event between the modifier and target loci requires a double-strand break at the target locus.

However, if the modifier and target loci are far apart in the same chromosome or in separate

chromosomes, a crossover event between these loci may not require a double-strand break.

Whether a crossover event between the modifier and target loci require a double-strand break

at the target locus or not does not change any of the qualitative results of our model (see

the Supplemental Material for a formulation of this model and the Discussion section for

a summary of the results). During the repair process there might also be conversion of the

allelic motif that breaks into the allelic motif that does not break with probability c and

restoration to the allelic motif that breaks with probability 1− c (where 0 < c < 1) (Szostak

et al., 1983; Sun et al., 1991; Lichten and Goldman, 1995; Petes, 2001) (Figure 1). Typically

c takes the value 1
2 (Szostak et al., 1983; Sun et al., 1991; Lichten and Goldman, 1995; Petes,

2001). Notice that biased gene conversion results in the over-transmission of the allele that

is less likely to break (Boulton et al., 1997; Petes, 2001) (Figure 1).

Recombination ends up with Mendelian segregation of alleles into gametes. Following

previous models (Boulton et al., 1997; Pineda-Krch and Redfield, 2005; Peters, 2008; Úbeda

and Wilkins, 2011; Latrille et al., 2017), we assume that individuals undergoing recombina-
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tion at the target locus have proper chromosomal segregation and do not suffer any fitness

cost, while individuals that do not undergo recombination at the target locus have defec-

tive chromosomal segregation producing aneuploid (non-viable) gametes with probability f

(where 0 < f < 1) (Figure 1). Therefore, the fitness of individuals experiencing a recom-

bination event is 1 but the fitness of individuals not experiencing a recombination event is

1−f (Figure 1). Proper chromosomal segregation, however, often requires a crossover event

rather than a recombination event (Baker et al., 1976; Koehler et al., 1996; Hassold and Hunt,

2001; Louis and Borts, 2003; Brick et al., 2012; Alves et al., 2017). Whether it is a crossover

or a recombination event that determine the probability of proper chromosomal segregation

does not change any of the qualitative results of our model (see the Supplemental Material

for a formulation of this model and the Discussion section for a summary of the results).

Let xi,k be the frequency of haplotype AiBk in gametes. Notice that 0 ≤ xi,k ≤ 1 and
∑
i,k xi,k = 1. Random union of gametes results in an embryo with genotype AiBk

AjBl
with

frequency xi,kxj,l. The probability that this embryo reaches adulthood is independent of its

genotype, but its genotype determines the outcome of meiosis in adults. In particular, the

probability that during meiosis the protein produced by the modifier locus breaks targets Bk

and Bl are b̄ij,k = 1
2(bi,k + bj,k) and b̄ij,l = 1

2(bi,l + bj,l) respectively, and the probability that

it breaks one of the targets is ¯̄bij,kl = 1
2(b̄ij,k + b̄ij,l). The probability that during meiosis

a double-strand break is followed by a crossover event between alleles at locus A and B

is r, and the probability that the motif that breaks is converted into the motif that does not

break is c. Recombination at the target locus is followed by correct Mendelian segregation

of haplotypes into gametes but in the absence of recombination segregation of haplotypes is

incorrect with probability f . Haplotype segregation brings us back to the beginning of our

census.

The frequency of haplotype AiBk in gametes in the next generation is:

x′i,k = 1
w̄

∑

j,l

1
2 [(¯̄bij,kl + (1− ¯̄bij,kl)(1− f))xi,kxj,l

− 1
4c(b̄ij,kxi,kxj,l − b̄ij,lxi,lxj,k)

− 1
2(1− c)r¯̄bij,kl(xi,kxj,l − xi,lxj,k)]

(1)

where prime represents the next generation and:

w̄ =
∑

i,k

∑

j,l

1
2 [¯̄bij,kl + (1− ¯̄bij,kl)(1− f)]xi,kxj,l (2)
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is the population mean fitness. These changes in haplotype frequency underpin changes in

the population mean crossover rate at the target locus

r̄ = 1
2r
∑

i,k

∑

j,l

¯̄bij,klxi,kxj,l, (3)

which is the phenotype whose evolution we are interested in.

Our model greatly differs from all other attempts to incorporate binding specificity (PRDM9-

like genes) into the mechanism of recombination hotspots (Úbeda and Wilkins, 2011; La-

trille et al., 2017), as previous models relied on simulations while we present analytic results

(although see Latrille et al. (2017) for a one locus model approximating the frequency of

PRDM9-like alleles in an infinite population).

2.2. Two-locus two-allele model

We consider the above model in the particular case when there are two alleles (A1, A2) at

the modifier locus and two alleles (B1, B2) at the only target locus, resulting in four different

haplotypes (A1B1, A1B2, A2B1, A2B2). Henceforth, we assume that a match between the

subscripts of the modifier allele producing the binding protein and the allelic sequence that is

the target of this protein results in a double-strand break with probability b (where 0 < b < 1)

and a mismatch between the subscripts prevents a double-strand break. For our modelling

purposes this translates into:

bi,k =




b if i = k,

0 if i 6= k.

Notice that two of these haplotypes (A1B1, A2B2) correspond to haplotypes producing

a protein that matches its own recognition sequence (recombination enabling haplotypes)

and the other two (A1B2, A2B1) correspond to haplotypes producing a protein that does not

match its own recognition sequence (recombination disabling haplotypes).

The dynamic system describing the change in frequency over time of each of these hap-

lotypes can be obtained from replacing generic subscripts i and k by specific subscripts 1
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and 2 in equation (1). The frequency of haplotype AiBk in gametes in the next generation is

w̄x′1,1 =
[

1
4b+ 1

2(1− 1
2b)(1− f) + 1

4bfx1,1 − 1
8bcx1,2

]
x1,1 − 1

8b

(
1
2c+ (1− c)r

)
D,

w̄x′1,2 =
[

1
4b+ 1

2(1− 1
2b)(1− f)− 1

4bfx1,2 + 1
8bcx1,1

]
x1,2 + 1

8b

(
1
2c+ (1− c)r

)
D,

w̄x′2,1 =
[

1
4b+ 1

2(1− 1
2b)(1− f)− 1

4bfx2,1 + 1
8bcx2,2

]
x2,1 + 1

8b

(
1
2c+ (1− c)r

)
D,

w̄x′2,2 =
[

1
4b+ 1

2(1− 1
2b)(1− f) + 1

4bfx2,2 − 1
8bcx2,1

]
x2,2 − 1

8b

(
1
2c+ (1− c)r

)
D,

(4)

where

w̄ = 1
4b+ 1

2(1− 1
2b)(1− f) + 1

4bf(x2
1,1 + x2

2,2 − x2
1,2 − x2

2,1), (5)

is the population mean fitness and

D = x1,1x2,2 − x1,2x2,1, (6)

is the linkage disequilibrium.

To simplify the analysis, we define parameters α, β, γ, and δ as follows

w̄x′i,k = (1
4b+ 1

2(1− 1
2b)(1− f)

︸ ︷︷ ︸
α

± 1
4bf︸︷︷︸
β

xi,k ± 1
8bc︸︷︷︸
γ

xi,l)xi,k

± 1
8b(

1
2c+ (1− c)r)

︸ ︷︷ ︸
δ

D,
(7)

which allows us to re-write the system of equations (4) as follows:

w̄x′1,1 =(α + βx1,1 − γx1,2)x1,1 − δD,

w̄x′1,2 =(α− βx1,2 + γx1,1)x1,2 + δD,

w̄x′2,1 =(α− βx2,1 + γx2,2)x2,1 + δD,

w̄x′2,2 =(α + βx2,2 − γx2,1)x2,2 − δD,

(8)

with population mean fitness

w̄ = α + β(x2
1,1 − x2

1,2 − x2
2,1 + x2

2,2). (9)
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Notice that 0 < α, β, γ, δ < 1. This two-locus two-allele model shares some similarities

with the well-known symmetric viability model of Karlin and Feldman (Karlin et al., 1970;

Bürger, 2000).

3. Results

3.1. Equilibria

We apply the equilibrium conditions (x′i,k = xi,k = x∗i,k for all i, k) to system (8) to find

five equilibria with biological meaning; where all haplotype frequencies lie between (and

including) 0 and 1. Let x∗e = (x∗e1,1, x∗e1,2, x∗e2,1, x∗e2,2) denote the haplotype frequencies at

equilibrium e where e is between one and five.

The first four equilibria correspond to the corners of the three dimensional simplex:

x∗1 = (1, 0, 0, 0),

x∗2 = (0, 1, 0, 0),

x∗3 = (0, 0, 1, 0),

x∗4 = (0, 0, 0, 1).

(10)

Notice that equilibria 1 and 4, x∗1 and x∗4, correspond to the fixation of one of the two

recombination enabling haplotypes, x1,1 and x2,2 respectively. Equilibria 2 and 3, x∗2 and

x∗3, correspond to the fixation of one of the two recombination disabling haplotypes, x1,2

and x2,1 respectively (Figure 2).

The last equilibrium can be obtained by noticing some symmetries of our model. In

particular:

(i) If at any point x1,1 = x2,2 and x1,2 = x2,1, this remains so in the future;

(ii) If x1,1 = x2,2 and x1,2 = x2,1, the difference equations become x′1,1 = x′2,2 and

x′1,2 = x′2,1 and the changes in x1,1 and x1,2 are equal to the changes in x2,2 and x2,1

respectively;

(iii) If x1,1 = x2,2 and x1,2 = x2,1 and keeping in mind that x1,1 + x1,2 + x2,1 + x2,2 = 1,

we also have that 2x1,1 + 2x1,2 = 1 and thus x1,2 = 1
2 − x1,1

The existence of a one dimensional manifold which is invariant in the interior of the state

space implies that there is a symmetric equilibrium. The dynamics on this manifold are
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Figure 2: Equilibria and heteroclinic cycle. Summary of the equilibria with biological meaning, their stability
and the basin of attraction of the heteroclinic cycle. Each panel corresponds to a different value of the conver-
sion rate c = {0, 1

2 , 1} and shades of green correspond to different values of the crossover rate r = {0, 1
2 , 1}

(with darker green corresponding to no-crossover r = 0). For each pair of values (c, r), the equilibrium fre-
quency of haplotype x∗

1,1 is plotted as a function of the fitness cost f . Red lines depict corner equilibria x∗1 and
x∗4 corresponding to the fixation of recombination enabling haplotypes (notice that these are independent of
the values of c and r). Blue lines depict corner equilibria x∗2 and x∗3 corresponding to the fixation of recom-
bination disabling haplotypes (notice that these are independent of the values of c and r). Green lines depict
twice corner equilibrium x∗5 corresponding to a polymorphism between recombination enabling and disabling
haplotypes. Continuous lines depict stable equilibria while dashed lines depict unstable equilibria. The green
colored area corresponds to the region in the space formed by the initial frequencies (x0

1,1, 0, 0, 1 − x0
1,1) and

the fitness cost f where the system tends to the heteroclinic cycle (...x∗1 → x∗2 → x∗4 → x∗3 → x∗1...) as
opposed to the internal equilibrium x∗5. Shades of green correspond to different values of the crossover rate
r = {0, 1

2 , 1} (with darker green corresponding to no-crossover r = 0).
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described by a single difference equation

w̄x′1,1 =
(
α + βx1,1 − γ(1

2 − x1,1)
)
x1,1 − δ(x1,1 − 1

4), (11)

with population mean fitness

w̄ = α + 2β
(
x1,1 −

1
4

)
. (12)

Applying the equilibrium condition (x′1,1 = x1,1 = x∗1,1) to the previous equation yields

the symmetric equilibrium:

x∗5 = (x∗51,1,
1
2 − x∗51,1,

1
2 − x∗51,1, x

∗5
1,1),

x∗51,1 = 1
4 + 1

4
2δ −

√
(2δ)2 + (γ − β)2

γ − β .

(13)

At this equilibrium, the linkage disequilibrium is

D∗ = x∗51,1 −
1
4 = 1

4
2δ −

√
(2δ)2 + (γ − β)2

γ − β , (14)

and the population mean fitness is

w̄∗ = α + 2β
(
x∗1,1 −

1
4

)
= α + 2βD∗. (15)

Notice that equilibrium x∗5 corresponds to a polymorphism where all haplotypes (recombi-

nation enablers and disablers) are preserved.

Finally, we can re-write the expression for equilibrium x∗5 in terms of the original pa-

rameters of our model

x∗51,1 = 1
4 + 1

4

1
2c+ (1− c)r −

√
(1

2c+ (1− c)r)2 + (1
2c− f)2

1
2c− f

. (16)

3.2. Stability

The stability of an equilibrium x∗e of a map x′ = g(x) is determined by studying the eigen-

values λe of the Jacobian matrix J of the map evaluated at the equilibrium, that is J|x=x∗e .
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Figure 3 (previous page): Dynamics of the system. Examples of the three types of dynamics we find in our
system. Each panel corresponds to a different combination of parameter values (f, b) and initial conditions
(x0

1,1, x
0
1,2, x

0
2,1, x

0
2,2), while parameter values r, c remain fixed across panels, in particular (r, c) = (1, 1

2 ).
Subpanel (i) depicts the frequency of all haplotypes (x1,1, x1,2, x2,1, x2,2) at time t as a point in the three
dimensional simplex. Arrows indicate in which direction the dynamics progress as time goes by. The color of
the line depicts the population mean recombination activity of the target (see legend). Subpanel (ii) stacks three
plots, namely: each of the haplotype frequencies against generational time, the population mean recombination
activity as a line against time, and the population mean recombination activity as heat map against time. Panel
(a) corresponds to parameter values (f, b) = (0.44, 0.50) and initial conditions (0, x0

1,2, 1 − x0
1,2, 0) where

x0
1,2 = 0.33 or x0

1,2 = 0.66. (a.i) shows that when the initial condition is x0
1,2 = 0.33 the system tends

to corner equilibrium x∗1. When the initial condition is x1,2 = 0.66 the system tends to the other stable
corner equilibrium x∗4. In both cases the target site at equilibrium is a recombination hotspot (target colored).
(a.ii) shows that when the initial condition is x0

1,2 = 0.33 the recombination enabling haplotype x1,1 becomes
fixed. There are no changes at the modifier locus coding for PRDM9-like proteins. The population mean
recombination activity reaches and remains over time at its highest (1). The target site becomes and remains
a recombination hotspot over time. Panel (b) corresponds to parameter values (f, b) = (0.22, 0.25) and initial
conditions (x0

1,1, 0, 0, 1 − x1,1) where x1,1 = 0.80. (b.i) shows that the system tends to internal equilibrium
x∗5 where the target site is what we called a recombination warmspot. (b.ii) shows that the frequency of
all haplotypes oscillate in their approach to equilibrium where all haplotypes (recombination enabling and
disabling) are present. There are oscillations at the locus coding for PRDM9-like proteins in the approach
to equilibrium but these changes cease when equilibrium is reached. The population mean recombination
activity oscillates between high and low as it approaches an intermediate value (0.5) at equilibrium. The target
site oscillates between hot and cold phenotypes as it approaches a warm phenotype at equilibrium. Panel
(c) corresponds to parameter values (f, b) = (0.22, 0.75) and initial conditions (x0

1,1, 0, 0, 1 − x0
1,1) where

x0
1,1 = 0.90. (c.i) shows that the system tends to the heteroclinic cycle (...x∗1 → x∗2 → x∗4 → x∗3 → x∗1...).

(c.ii) shows that the frequency of all haplotypes oscillate in their approach to the heteroclinic cycle where there
is an alternation between near fixation of one of the recombination enabling haplotypes and near fixation
of one of the recombination disabling haplotypes. There are oscillations at the locus coding for PRDM9-like
proteins, oscillations that become increasingly pronounced as the system approaches the heteroclinic cycle. The
population mean recombination activity oscillates between high and low, oscillations that become increasingly
pronounced as the system approaches the heteroclinic cycle. The target site oscillates between hot and cold
phenotypes with it hot and cold character becoming more marked as the system approaches the heteroclinic
cycle.

For brevity, we will refer to the eigenvalues λei as the eigenvalues of equilibrium x∗e. If the

modulus of all eigenvalues of equilibrium x∗e are less than one (|λei | < 1 for all i = 1, ...n),

the equilibrium is linearly stable (where |z| denotes the modulus of a number z that may have

real Re(z) and imaginary Im(z) components and is defined as |z| =
√

Re(z)2 + Im(z)2). If

the modulus of at least one eigenvalue of equilibrium x∗e is greater than one (|λei | > 1 for

any i = 1, ...n), the equilibrium is linearly unstable.

The specifics of our model simplify the calculation of the Jacobian at equilibrium. In

particular, our model describes changes in haplotype frequencies. To ensure that all frequen-

cies add up to one at all times, the changes in frequency are normalised and the system is of

the form

x′ = g(x)
w̄(x) , (17)
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where w̄(x) = 1Tg(x), 1 is a vector with all entries equal to one, and subscript T is the

transpose operator. The Jacobian of this system is

J = Dx
g(x)
w̄(x) = Dxg(x)

w̄(x) −
g(x)
w̄(x)

1TDxg(x)
w̄(x) , (18)

where Dx is the total derivative with respect to x. Evaluated at equilibrium x∗ the Jacobian

reduces to

J|x=x∗ = 1
w̄(x∗)(I− x∗1T ) Dxg(x)|x=x∗ , (19)

where I is the identity matrix.

3.2.1. Corner equilibria

The eigenvalues of corner equilibria x∗1 and x∗4 are equal and given by

{λ1
1, λ

1
2, λ

1
3, λ

1
4} = {λ4

1, λ
4
2, λ

4
3, λ

4
4} =

(
0, α

α+β ,
α+γ
α+β ,

α−δ
α+β

)
. (20)

All eigenvalues of corner equilibrium x∗1 are real numbers, and x∗1 is stable if all λ1
1−4

lie between 1 and −1.

1. Condition −1 < λ1
2 < 1 is always satisfied.

2. Condition −1 < λ1
3 < 1 implies the satisfaction of:

i. λ1
3 < 1 which requires that β > γ.

ii. λ1
3 > −1 which is always satisfied.

3. Condition −1 < λ1
4 < 1 implies the satisfaction of:

i. λ1
4 < 1 which is always satisfied.

ii. λ1
4 > −1 which requires that 2α + β − δ > 0 which is always satisfied for the

original parameters of our model.

To summarise, corner equilibria x∗1 and x∗4 are stable (−1 < λ1
2−4 < 1) if β > γ

(f > 1
2c in terms of the original parameters) but unstable (saddles) (−1 < λ1

2,4 < 1 but

λ1
3 > 1) if β < γ (f < 1

2c) (see Table 1 and Figure 2).

The eigenvalues of corner equilibria x∗2 and x∗3 are equal and given by

{λ2
1, λ

2
2, λ

2
3, λ

2
4} = {λ3

1, λ
3
2, λ

3
3, λ

3
4} =

(
0, α

α−β ,
α−γ
α−β ,

α−δ
α−β

)
. (21)

All eigenvalues of corner equilibrium x∗2 are real numbers, and x∗2 is stable if all λ2
1−4

lie between 1 and −1.
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1. Condition −1 < λ2
2 < 1 implies the satisfaction of:

i. λ2
2 < 1 which is never satisfied.

ii. λ2
2 > −1 which is always satisfied.

2. Condition −1 < λ2
3 < 1 implies the satisfaction of:

i. λ2
3 < 1 which requires that β < γ.

ii. λ2
3 > −1 which is always satisfied for the original parameters of our model.

To summarise, corner equilibria x∗2 and x∗3 are unstable (λ2
2 > 1). If β < γ (f < 1

2c)

these equilibria are saddles (λ2
2 > 1 but −1 < λ2

3 < 1) (see Table 1 and Figure 2).

3.2.2. Heteroclinic orbit

Here we show the existence of a heteroclinic orbit between the corner equilibria in our state

space: ...x∗1 → x∗2 → x∗4 → x∗3 → x∗1... . To do so, we need to show that the subspaces

in which the heteroclinic orbit travels are invariant. A set, C ⊆ Rn, is an invariant set with

respect to the map x′ = g(x) if, for every orbit φ it is true that φt(x) ∈ C =⇒ φτ (x) ∈ C
for all τ > t where t, τ ∈ N+. The subspaces in which our heteroclinic orbit travels are

described by the lines joining each of the corners of our simplex, namely: (x1,1, 1−x1,1, 0, 0),

(0, x1,2, 0, 1 − x1,2), (0, 0, 1 − x2,2, x2,2), (1 − x2,1, 0, x2,1, 0). Our system can be written in

the form

w̄x′i,k = (α + εβxi,k − εγxi,l)xi,k − εδ(xi,kxj,l − xi,lxj,k), (22)

where ε = 1 for (i, k) = (1, 1) and (2, 2), and ε = −1 for (i, k) = (1, 2) and (2, 1). From

the system written in this form, it is easy to see that if xi,k = 0 and xi,l = 0 or xj,k = 0
for (i, k, j, l) ∈ 1, 2 then x′i,k = 0. In particular for the heteroclinic orbit we consider, either

when x2,2 = 0 then x2,1 = 0 and x′2,2 = 0, when x2,1 = 0 then x1,1 = 0 and x′2,1 = 0, when

x1,1 = 0 then x1,2 = 0 and x′1,1 = 0, and when x1,2 = 0 then x2,2 = 0 and x′1,2 = 0. This

means that any subspace where xi,k = 0 and xi,l = 0 or xj,k = 0 is invariant and thus all

subspaces considered in our system are invariants.

When β < γ (f < 1
2c in terms of the original parameters) all corner equilibria are saddles

with one incoming and one outgoing eigenvector situated within the lines connecting the

corner equilibria. Under the action of our system, the invariant subspaces have orbits which

tend always away from one saddle equilibrium and towards another saddle equilibrium, thus

implying the existence of a heteroclinic orbit.
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Table 1 (previous page): Stability. The eigenvalue column contains the eigenvalues corresponding to each
equilibrium with biological meaning (x∗1−5). The stability column summarises the analysis of the stability of
each equilibrium using their eigenvalues. This analysis shows that the stability of all equilibria is determined
by a single condition, namely whether β > γ or not.

3.2.3. Internal equilibrium

Calculating the eigenvalues of the internal equilibrium x∗5 using the original Jacobian matrix

in (19) leads to intractable results. To attain eigenvalues that are tractable, we transform the

vector x into the vector y using the linear transformation y = Mx where

M =




1 1 1 1
1 −1 −1 1
1 1 0 0
1 0 1 0



. (23)

This matrix simplies the eigenvalue calculation, as it almost diagonalises the Jacobian

matrix evaluated at the internal equilibrium x∗5. It does so because it is the linearisation

of the well-known transformation from haplotype frequencies to allele frequencies Bürger

(2000). The linearisation of such a transformation is sufficient to simplify this calculation, as

it is the linearised dynamics (linearised around the internal equilibrium) that we are interested

it.

The dynamics in the vicinity of the equilibrium for the transformed variables are

y′ = Mx′ = MJx = MJM−1y, (24)

where the matrix MJM−1 is given by

MJM−1 = M 1
w̄∗ (I− x∗1T ) Dxg(x)|x=x∗ M−1

=




0 0 0 0
β−γ−8D∗(w̄∗+δ)

2w̄∗ −4D∗(β−γ)−2(w̄∗−δ)
2w̄∗ 0 0

− w̄∗+ 1
2β

2w̄∗ 0 1 β
2w̄∗

−
1
2 (β−γ)+2D∗+w̄∗

2w̄∗ 0 β−γ
2w̄∗

4D∗γ+2w̄∗

2w̄∗




.
(25)

The eigenvalues of the transformed matrix MJM−1 are equivalent to the eigenvalues of the

original matrix J but they are easier to find. In particular, the eigenvalues of matrix MJM−1
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are

{λ5
1, λ

5
2, λ

5
3, λ

5
4} =

(
0, 1 + γD∗+

√
∆∗

w̄∗ , 1 + γD∗−
√

∆∗
w̄∗ , 1− δ+2D∗(β−γ)

w̄∗

)
, (26)

where ∆∗ = (γD∗)2 + 1
4β(β − γ).

The eigenvalues of internal equilibrium x∗5 can be either real of imaginary numbers.

1. Stability conditions derived from the second and third eigenvalues λ5
2,3.

(a) Eigenvalues λ5
2,3 are real numbers when ∆∗ > 0. If β > γ, the later condition

is always satisfied, eigenvalues λ5
2,3 are real numbers, and the stability of the

internal equilibrium requires that −1 < λ5
2,3 < 1. This requirement implies the

satisfaction of four conditions:

i. Condition λ5
2 < 1 requires that γD∗ +

√
∆∗ < 0 which is never satisfied.

ii. Condition λ5
2 > −1 requires that γD∗ +

√
∆∗ > −2w̄∗ which is always

satisfied.

iii. Condition λ5
3 < 1 requires that γD∗ −

√
∆∗ < 0 which is always satisfied

because γD∗ < (γD∗)2 + 1
4β(β − γ).

iv. Condition λ5
3 > −1 requires that γD∗ −

√
∆∗ > −2w̄∗ which is always

satisfied because α > β given the parametrisation of our model.

Notice that β > γ implies that D∗ > 0. In particular, from (14) we know that

D∗ = 1
2(β−γ)

(√
δ2 + 1

4 (β − γ)2 − δ
)

and given that δ2 + 1
4 (β − γ)2 > δ2 the

sign of D∗ is always equal to the sign of β − γ.

(b) Eigenvalues λ5
2,3 are complex conjugate numbers when ∆∗ < 0 and thus con-

dition β < γ is necessary for having complex eigenvalues. If β > γ and the

eigenvalues λ5
2,3 are complex numbers, the stability of the internal equilibrium

requires that |λ5
2,3| < 1. This requirement implies the satisfaction of a single

condition.

i. Condition |λ5
2| = |λ5

3| < 1 requires that 2γw̄∗D∗− 1
4β(β−γ) < 0. Replacing

w̄∗ and D∗ with their definitions from (15) and (14) respectively, yields the

new condition α − Ω < 4δ < α + Ω where Ω = (2γ−β)
√
γ(β3−β2γ+α2γ)
βγ

.

The term Ω is equal to α if β = γ but is greater than α if β < γ. This can

be shown by calculating the derivative of Ω with respect to β, ∂Ω
∂β

, which is

negative when β < γ. This is true when α > β, 2δ as is the case given the

parametrisation of our model. Because Ω is greater than α when β < γ, the

stability condition α − Ω < 4δ < α + Ω can be replaced by 0 < 4δ < 2α
which is always satisfied given the parametrisation of our model. Therefore,

when eigenvalues λ5
2,3 are complex, their modulus is always less then one.
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2. Stability conditions derived from the fourth eigenvalue λ5
4. Eigenvalue λ5

4 is a real

number and the stability of the internal equilibrium requires that −1 < λ5
4 < 1. This

requirement implies the satisfaction of two conditions:

i. Condition λ5
4 < 1 requires that −δ − 2D∗(β − γ) < 0 which is always satisfied

because β−γ andD∗ have the same sign and thus their product is always positive.

ii. Condition λ5
4 > −1 requires that δ + 2D∗(β − γ) < 2w̄∗. Replacing D∗ and

w̄∗ with their definitions from (14) and (15) respectively, yields the new condition

2(α + 2βD∗) >
√

1
4(β − γ)2 + δ2. Because 2 (α + 2βD∗) > 2α − β and 1

2(γ −
β)+δ >

√
1
4(β − γ)2 + δ2 the later condition is true when 2α−β > 1

2(γ−β)+δ

which is always satisfied for the parametrisation of our model.

To summarise, internal equilibrium x∗5 is unstable (saddle) (λ5
2 > 1 but −1 < λ5

3,4 < 1)

if β > γ (f > 1
2c) but stable (|λ5

2,3| < 1 and −1 < λ5
4 < 1) if β > γ (f < 1

2c) (see Table 1

and Figure 2).

3.3. Dynamics

When viability selection is high (f > 1
2c) the dynamics of our system tend towards the fixa-

tion of one of the recombination enabling haplotypes (x∗1 or x∗4) (Figure 2 and 3.a). In these

two corner equilibria, an individual recombination hotspot remains inactive and the genomic

recombinational landscape remains unchanged (Figure 3.a). Furthermore, the PRDM9-like

gene does not evolve and remains monomorphic. An unchanging recombinational landscape

and a non-evolving PRDM9 gene, are inconsistent with empirical observations on the life

history of recombination hotspots controlled by PRDM9 (Ptak et al., 2004, 2005; Winckler

et al., 2005; Coop et al., 2008; Myers et al., 2010; Stevison et al., 2015).

When viability selection is weak (f < 1
2c) and initially all haplotypes are present in the

population (xi,k 6≈ 0 for any pair (i, k)), the dynamics of our system oscillate towards a poly-

morphic equilibrium where all haplotypes (enabling and disabling) are present (x∗5)(Figure

2 and 3.b). At this interior equilibrium, an individual recombination hotspot will see their

activity reduced but not extinguished and the genomic recombinational landscape remains

unchanged (Figure 3.b). Furthermore, the PRDM9-like gene does not evolve but remains

polymorphic. An unchanging recombinational landscape and a non-evolving PRDM9 gene,

are inconsistent with empirical observations (Ptak et al., 2004, 2005; Winckler et al., 2005;

Coop et al., 2008; Myers et al., 2010; Stevison et al., 2015).

Chapter 3. Recombination hotspot evolution

70 of 173



Chapter 3. Recombination hotspot evolution

71 of 173



Chapter 3. Recombination hotspot evolution

72 of 173



Figure 4 (previous page): Correspondence between infinite and finite population dynamics. Examples
of the correspondence between dynamics in the infinite and finite population models. Each panel corre-
sponds to a different combination of parameter values (f, b) and (µ,N) where µ is the mutation rate and
N is the population size. Parameter values (r, c) = (1, 1

2 ) and initial conditions (x0
1,1, x

0
1,2, x

0
2,1, x

0
2,2) =

(0.99, 1
30.01, 1

30.01, 1
30.01) remain fixed across panels. Subpanel (i) stacks three plots, namely: each of the

haplotype frequencies against generational time, the population mean recombination activity against time, and
the population mean recombination activity as a heat map against time. Subpanel (ii) depicts the frequency
of all haplotypes (x1,1, x1,2, x2,1, x2,2) at time t as a point in the three dimensional simplex. Arrows indi-
cate in which direction the dynamics progress as time goes by. The color of the line depicts the popula-
tion mean recombination activity of the target site (see legend). Panel (a) corresponds to parameter values
(f, b) = (0.22, 1.00) and (µ,N) = (10−5, 104). The target site oscillates between hot and cold phenotypes
rapidly and no haplotype becomes fixed. Panel (b) corresponds to parameter values (f, b) = (0.22, 1.00) and
(µ,N) = (10−6, 104). The target site oscillates between hot and cold phenotypes slowly and haplotypes often
become fixed.

When viability selection is low (f < 1
2c) and initially one haplotype is present while

the others are rare mutants (xi,k ≈ 1 for one (i, k) while xi,k ≈ 0 for any other pair (i, k)),

the dynamics of our system oscillate towards a (heteroclinic) cycle where fixation of one of

the recombination enabling haplotypes alternates with fixation of one of the recombination

disabling haplotypes (...x∗1 → x∗2 → x∗4 → x∗3 → x∗1...) (Figure 2 and 3.c). Other exam-

ples of heteroclinic cycles in evolutionary genetics can be found in Haig and Grafen (1991)

or Yahara et al. (2009). Along this cycle, an individual recombination hotspot will alter-

nate between becoming inactive (die) and becoming active (resurrect) (Figure 3.c). There-

fore, the recombinational landscape becomes highly dynamic (Figure 3.c). Furthermore, the

PRDM9-like gene is evolving fast with selective sweeps that are harder when viability se-

lection is higher within the lower range (f < 1
2c). A changing recombinational landscape

and a rapidly evolving PRDM9 gene, are consistent with empirical observations on the life

history of recombination hotspots controlled by PRDM9 (Ptak et al., 2004, 2005; Winckler

et al., 2005; Coop et al., 2008; Myers et al., 2010; Stevison et al., 2015).

4. Discussion

We find that strong selection (defined as selection bigger than conversion) fixes haplotypes

which enable double-strand breaks (which translates into individual recombination hotspots

exhibiting high activity and do not die over time (Figure 3.a)). This finding recovers the result

of previous models (Boulton et al., 1997; Pineda-Krch and Redfield, 2005; Calabrese, 2007;

Peters, 2008). In our model however, weak selection (defined as selection smaller than con-

version) does not fix any particular haplotype; it either maintains all haplotypes in constant

proportions (which translates into individual recombination hotspots that exhibit moderate

Chapter 3. Recombination hotspot evolution

73 of 173



0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

Time (generations)

H
a
p
lo
ty
p
e
fr
e
q
u
e
n
c
y

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

Time (generations)

H
a
p
lo
ty
p
e
fr
e
q
u
e
n
c
y

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

Time (generations)

H
a
p
lo
ty
p
e
fr
e
q
u
e
n
c
y

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

Time (generations)

H
a
p
lo
ty
p
e
fr
e
q
u
e
n
c
y

Figure 5: Extending the number of targets and the number of alleles. We simulate extensions of the model
numerically to study the nature of the resulting cycles. Top left: a simulation of the heteroclinic cycle present
in the two locus two allele model (four equations). Bottom left: A regular heteroclinic cycle in the model with
two alleles but three loci (two target loci; 8 equations); the cycling is still regular, but the complexity of the
cycle has increased somewhat. Top right: a chaotic solution of the three alleles two loci model (nine equations);
cycling is still possible in certain subspaces of the state space (see Chapter 6 for an in-depth analysis of this
model). Bottom right: a highly disordered trajecory of the three allele three locus model (27 equations); clearly
hotspot turnover is still occuring but in a far less regular and predictable fashion. The parameters used for these
simulations were all the same: f = 0.2, c = 0.5, b = r = 1 and the initial conditions were x1 close to 1 (i.e.
x1 = 0.99) and whichever other variables present in the model in question (each model required a different
number of initial conditions) almost equal to zero. We omit a key as it is really the nature of the cycles which
we wish to emphasise with this figure, not which haplotype is which. Furthermore, the number of haplotypes
present varies between each figure and the bottom right panel has a total of 27 possible haplotypes, making a
key less than helpful.

activity and do not die (Figure 3.b)), or the proportion of each haplotype cycles over time

(which translates into individual recombination hotspots that exhibit low and high activity,

dying and resurrecting in a constant cycle (Figure 3.c)). These two types of recombination

hotspots are novel. An equilibrium that maintains a polymorphism at a PRDM9-like locus

and its target has not been described (Latrille et al., 2017). A cycle whereby the same set

of alleles at a PRDM9-like locus and its target site rotate has not yet been described; Úbeda

and Wilkins (2011) and Latrille et al. (2017) found through simulations a succession of new

alleles at a PRDM9-like locus targeting a large number of new target sites.

It is possible to gain an intuitive interpretation of our formal results if we consider a mu-

tant gene playing a game against another gene from a gamete pool in a diploid individual.
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Figure 6: Evolutionary game. Payoff matrix of a game played by each haplotype against a haplotype pool. The
payoff is determined by the possibility of a diploid genotypecontaining that haplotype experiencing a fitness
cost (Fk) due to the absence of a double-strand break, a conversion benefit (Cb) - or conversion cost (-Cb) -
due to the conversion of the opponent’s haplotype intotheplayer’s haplotype or the conversion of the player’s
haplotype into the opponent’s haplotype, and are shuffling benefit or cost due to the generation of the player’s
or the opponent’s haplotype due to the formation of new combinations of alleles. In the first matrix we assume
that the fitness cost is greater than the conversion benefit (Fk > Cb). Starting with a population fixed for
haplotype A1B1, A1B1 is the mutant strategy that gives the highest payoff (in gray in the matrix). No mutant
haplotype can invade and A1B1 is the only evolutionarily stable strategy. In the second matrix we assume that
the fitness cost is smaller than the conversion benefit (Fk < Cb). Starting with a population fixed for haplotype
A1B1, A1B2 is the mutant strategy that gives the highest payoff (in gray in the matrix) and should take over the
population. When A1B2 has become the resident strategy, A2B2 is the mutant strategy that gives the highest
payoff (in gray in the matrix) and should take over the population. Using the same logic it becomes obvious
that in this second game there is no pure evolutionarily stable strategy but a continuous cycling of strategies.
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A mutant gene can play four strategies (A1B1, A1B2, A2B1, A2B2) and the gamete pool can

formed by the same four strategies. The payoff of each interaction is summarized in the

payoff matrix provided in Figure 4 and is determined by the individual fitness cost of not

experiencing a DSB (Fk = f > 0), the allelic conversion benefit (or cost) of not experi-

encing (or experiencing) a DSB (Cb = 1
2c > 0), and a recombination shuffling factor that

determines which alleles benefit from conversion in double heterozygotes (Rs = f(r) > 0).

Lets start by considering a population almost fixed for a recombination enabling haplotype

A1B1. If fitness cost is greater than conversion benefit (Fk > Cb), our resident population of

A1B1 cannot be invaded by any alternative strategy (1 > 1− 1
2Fk + 1

2Cb; Figure 4.a). There-

fore strong selection favors highly active permanent recombination hotspots (Figure 3.a). If

fitness cost is lower than conversion benefit (Fk < Cb; Figure 4.b), our resident population

of A1B1 can be invaded by the rare mutant A1B2 (1 − 1
2Fk + 1

2Cb > 1 − 1
2Fk + Rs > 1

when Cb > 2Rs; Figure 4.b) as it gains a transmission advantage that more than compen-

sates for its fitness cost; once A1B2 becomes the resident haplotype, it can be invaded by

rare mutant A2B2(1 − 1
2Fk > 1 − Fk; Figure 4.b) as it gains a fitness benefit and does not

suffer a transmission disadvantage, once A2B2 becomes the resident it can be invaded by

rare mutant A2B1(1 − 1
2Fk + 1

2Cb > 1; Figure 4.b), and once A2B1 becomes the resident

it can be invaded by rare mutant A1B1(1 − 1
2Fk > 1 − Fk; Figure 4.b) thus completing a

recurrent cycle. Therefore weak selection and abundance of only one haplotype, can favor

recombination hotspots that alternate between low and high activity; dying and resurrecting

in a permanent cycle (Figure 3.c). When all haplotypes are frequent in the initial population,

the abundance of double heterozygotes results in the shuffling of the transmission advantage

between different haplotypes. Depending on intensity of the shuffling either the previous

cycle is maintained or the best strategy becomes to play a fixed proportion of each strategy.

Therefore weak selection and abundance of all haplotypes, can favor recombination hotspots

that exhibit moderate activity and do not die (Figure 3.b), forming an intuitive (non-rigorous)

interpretation of our rigorous analysis.

These findings provide an alternative solution to the recombination hotspots paradox

(Boulton et al., 1997). In the prevailing explanation (the Red Queen theory), individual re-

combination hostpots die and are saved from extinction in the genome by the birth of new

recombination hotspots at new target sites in the genome (Myers et al., 2010; Baudat et al.,

2010). Strong viability selection favors mutant PRDM9 alleles that bind new target sites

(Úbeda and Wilkins, 2011; Latrille et al., 2017). In our model, viability selection does not

prevent the death of individual recombination hotspots but saves them from extinction in the
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genome by driving their resurrection in homozygous targets where the effect of conversion

is negligible (Figure 3, 4). Selection favors mutant PRDM9 alleles that bind the alternative

target allele within the same target site. Both theories succeed in explaining the life history of

recombination hotspots characterized by: i. the death of individual recombination hotspots

not leading to the their extinction in the genome (notice however that in principle the Red

Queen theory would require an infinite number of targets to prevent the extinction); ii. rapid

change of the recombinational landscape; iii. rapid evolution of PRDM9. In our model

however, this life history is explained by the bottom range of viability selection parameters

(which seems more plausible from an empirical perspective) while the Red Queen theory

requires the upper range (Úbeda and Wilkins, 2011; Latrille et al., 2017). A more rigorous

analysis of the Red Queen model may expand the range of values where it applies though.

Furthemore, our model makes novel predictions that the Red Queen (at least in its present

formulation) does not; in particular, our model predicts that: i. the molecular signature near

some recombination hotspots should be one of multiple recurrent events of high crossover

activity evolutionary time as opposed to a single event of high crossover activity; ii. viabil-

ity selection can maintain polymorphisms in PRDM9 (see Latrille et al. (2017) to put into

context the uniqueness of this finding); iii. the same genetic architecture under the same se-

lection regime can result in two different families of recombination hotspots, one family with

alternation of high and low activity and another family with constant intermediate activity.

For the purpose of characterizing the interplay between selection and conversion on the

evolution of recombination hotspots, our model makes a series of simplifying assumptions

provided in the Methods section. Many of these assumptions are standard in population

genetics models and relaxing all of them is beyond the scope of this research. However,

relaxing some of them will help us to better understand the empirical relevance of our model.

In particular, we relax three types of assumptions, specifically those relating to:

i Selection and cross-over;

ii Number of alleles and target loci;

iii Population size.

i Selection and cross-over: in our research, we focus on the case where viability selection

is caused by a DSB and crossover between PRDM9-like and target loci requires a DSB

in the latter. In the Methods section however, we show that all results we present hold

when assuming that viability selection is caused by crossover events and when crossover

between PRDM9-like and target loci does not requires a DSB in the latter. This change

in assumptions changes the exact value of the polymorphic equilibrium, and the range of
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initial conditions that lead to the heteroclinic cycle (its basin of attraction), but not the

qualitative results. The case that we discuss in the main text is the one where the basin of

attraction of the heteroclinic cycle is smallest and thus least favorable to the arguments

we develop.

ii Number of alleles and target loci: in the main text, we modelled the cases of two locus

two alleles as the minimal expression of the biological process we were interested in

researching. In humans there are multiple alleles segregating at PRDM9 and multiple

alleles at each of many target sites. Here we carried out some numerical analysis of

a two locus (1 target) three alleles model to gain insight on how multiple alleles at a

PRDM9-like and target loci would affect our conclusions from the main text. The typical

dynamics are summarized in Figure 5, (bottom left). In this figure it can be observed

that the cycling remains with a rapid alternation of hotspots and coldspots. The most

striking difference with its two locus two alleles counterpart is that the fluctuations are no

longer regular; the expected lifetime and temperature of the hotspot cannot be predicted

in general. This is consistent with intuition as in this extended model it is not one but

multiple alleles that can be favored by selection and conversion in each oscillation taking

the dynamics in different trajectories, albeit always fluctuating, trajectories. In addition,

we carried out some numerical analysis of the corresponding three locus (2 targets) two

alleles models to gain insight on how multiple target loci would affect our conclusions

from the main text. The typical dynamics are summarized in Figure 5 (top right). In this

figure it can be observed that - once again - the cycling remains with a rapid alternation

of hotspots and coldspots. The most interesting feature is that each of the two targets

can fluctuate concordantly, or independently. In this extended model, alleles of PRDM9

that match the allele at one of the targets but not the other are also favored by natural

selection. The introduction of three alleles in this three locus model brings about a

combination irregular fluctuations within and between target locus (Figure 5, bottom

right).

iii Population size: we modelled the cases of an infinite population without recurrent mu-

tation, to better characterize the interaction between selection and conversion. In nature

however, the population is finite and mutations are introduced recurrently. Therefore, we

carried out some numerical analysis of a model for a finite population with recurrent mu-

tations at the modifier and target locus to gain insight on the effect of these two variables

in our conclusions from the main text. The typical dynamics are summarized in Figure 4.

In this figure it can be observed that the cycling remains with an alternation of hotspots

and coldspots. In particular, when viability selection is weak (f < 1
2c) and initially

Chapter 3. Recombination hotspot evolution

78 of 173



one of the haplotypes is much more frequent than all the others, the frequency of the

haplotypes fluctuates around the heteroclinic cycle (x∗1 → x∗2 → x∗4 → x∗3 → x∗1)
(Figure 6.b). This is intuitively consistent; selection and conversion favour the oscillation

of haplotypic frequencies towards the heteroclinic cycle and genetic drift pushes some

of them to extinction (Figure 6.b). Due to extinction, hotspots and coldspots alternate

but how fast they alternate is determined by the mutation rates. To conclude, extinction

slows down the oscillatory dynamics but does not put an end to the oscillations, recur-

rent mutations re-introduce the missing variability and the system is again in the initial

conditions that favour the heteroclinic cycle (Figure 6.b). When viability selection is

weak (f < 1
2c) and initially all the haplotypes are abundant, the frequency of the hap-

lotypes fluctuates around the polymorphic equilibrium (x∗5) (Figure 6.a). This is again

consistent with ones intuition; selection and conversion favour the oscillation of haplo-

typic frequencies towards the internal equilibrium but genetic drift prevents them from

settling (Figure 6.a). Because these oscillations remain close to the internal equilibrium

the extinction of haplotypes is rarely observed (Figure 6.a). In the absence of extinction,

hotspots and coldspots alternate rapidly. Genetic drift allows transition from oscillations

around the heteroclinic cycle to oscillations around the equilibrium and back.

The insight gained from relaxing some of our assumptions in the main text suggests

that in a finite population with multiple alleles and target locus and recurrent mutations we

expect that our main results hold. Individual hotspots will die but they will resurrect later in

evolutionary time thus precluding their extinction from the genome in the long term. It also

suggests that these results apply to different details of the molecular architecture considered.

In general, these results suggest that the solution to the recombination hotspot theory we

propose here does extend to realistic conditions.
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Abstract

Recent advances in molecular biology have shed light on the genetic control of recombi-

nation. Specifically, a gene (PRDM9) the protein it codes for (PRDM9) and its target site

has been strongly associated with the initiation of recombination via double-strand breaks

(DSBs). Some of the regions nearby these target sites have been identified as having much

higher than average rates of recombination and have since been coined as recombination

hotspots. Furthermore, the intensity of such hotspots differs between haplotypes of oppo-

site sexes in many mammalian species. Given these recent empirical advances, we extend

an existing model of the evolution of recombination hotspots modelling how haplotype fre-

quencies change over generations. The novel aspect of the original model was the inclusion

of the action of PRDM9 on the initiation of recombination. Here, we extend this model to

allow two distinct sexes, aiming to shed light on differences between the sexes recent em-

pirical observations have found. We carry out an extensive analytic and numerical analysis

of the extended model, finding explicit stability conditions for the edge equilibria. Plus, we

are able to find, using approximation techniques, a closed-form solution for the polymorphic

(interior) equilibrium. We then assess the stability of the interior equilibrium numerically,

finding extensive ranges of the biological parameters which admit stability for the polymor-

phic equilibrium, which has differing values for the male and female haplotype frequencies.

Our model extension, which allows for sexual antagonism, includes a stable, yet distinct,

polymorphic equilibrium. This implies that sexual antagonism may be the root cause for the

observed sex differences in some of the attributes of recombination hotspot evolution.

∗Corresponding author
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1. Introduction

Understanding meiotic recombination is vital to a vast number of fields of biology across a

range of length scales. The specific control and action of recombination within the genome

is of primary concern to molecular biologists (Myers et al., 2010); the maintenance of a re-

combination rate above a certain threshold within an organism is significant for the health

of an individual, ensuring correct segregation of homologs (Brick et al., 2012; Alves et al.,

2017); lastly, on a population scale, the ability of recombination to affect the relative gene

frequencies has fascinated applied and theoretical population geneticists for decades (Barton,

1995; Otto and Michalakis, 1998). Great progress has been made understanding aspects of

recombination — and therefore crossover events— across all of the aforementioned scales.

Yet, there remain open questions about the evolutionary role of recombination. Some exam-

ples of such questions include: how does the molecular mechanisms which are known to be

associated with the initiation of recombination persist over evolutionary time? And, why do

the locations of recombination within a species genome — and for that matter, many other

aspects of crossover events — differ so greatly between sexes of many mammals?

Meiotic recombination occurs at highly non-uniform rates across many genomes of many

species (Lichten and Goldman, 1995; Petes, 2001). In fact, the rate of recombination has

such peaks and troughs at different locations in mammalian genomes, it was necessary to

coin a term for such peaks: recombination hotspots (Lichten and Goldman, 1995; Petes,

2001). Recombination hotspots have been discovered in humans, where it is known that

the recombination rate can be up to a thousand times greater than the average (Myers et al.,

2005, 2010; Paigen and Petkov, 2010) — where average is the mean of the rate is taken

across the entire genome. The existence and control of such hotspots have provided many

fascinating evolutionary research avenues. One such avenue is primarily concerned with the

evolutionary maintenance of these hotspots. Coined by Boulton et al. (1997), the recombina-

tion hotspot paradox asks how recombination hotspots persist over evolutionary timescales,

given that the gene initiating recombination has a high chance of recombining its own se-

quence away over short timescales? Many studies, both theoretical and applied, have pro-

vided plenty of insight into this question. Indeed, many believe the resolution of the paradox

was the discovery of a gene known as PRDM9 and continued molecular understanding of the

action of its products, a protein known as PRDM9 (Myers et al., 2010; Baudat et al., 2010;

Parvanov et al., 2010).

It is established that recombination is one of the repair pathways, repairing the DNA

nearby a double-strand break (DSB) (Szostak et al., 1983). During the repair, the broken
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strand of DNA is often involved in a crossover event (Lichten and Goldman, 1995; Petes,

2001). Alternatively, repairing the DNA using the homolog, some level of gene conver-

sion can occur (Lichten and Goldman, 1995; Petes, 2001). It is the asymmetry between the

results of crossover events and conversion events which led to the specifics of the recombi-

nation hotspot paradox (Boulton et al., 1997; Úbeda and Wilkins, 2011). Recent attempts to

model this asymmetric interaction over evolutionary timescales include Úbeda and Wilkins

(2011); Latrille et al. (2017); Úbeda et al. (2019). The first two provide plausible explana-

tions reminiscent of the well-known Red Queen hypothesis of coevolution. Specifically, the

connection to the Red Queen theory is made through the balance of the two opposing forces

of gene conversion and viability selection. These studies modelled this process, showing

that this balance of forces can produce stable evolutionary trajectories where hotspots, move

around throughout the genome, but persist evolutionarily (Úbeda and Wilkins, 2011; Latrille

et al., 2017). The final paper sought to develop a mechanistic model, rather than an IBM

and in doing so found plausible solutions to the paradox which allowed for resurrection of

hotspots, rather than constant birth and death. The dynamics of PRDM9 and its target sites

in reality is almost certainly somewhere between the IBM models and the dynamical system

model, where both birth and death and resurrection are possible. But these investigations,

amongst others, certainly show that a balance between the two main forces of selection and

conversion give rise to persistent cycling behaviour (Úbeda and Wilkins, 2011; Latrille et al.,

2017; Russell et al., 2019).

Recent empirical advances of the molecular biology of PRDM9 and its target site, espe-

cially in mammalian genomes, have revealed differences between the sexes of the location

and intensity of the recombination hotspots (de Boer et al., 2015; Halldorsson et al., 2016;

Brick et al., 2018). Indeed, the last of these papers finds that most of the differences are

produced at sex-biased hotspots (Brick et al., 2018), finding — contrary to previous findings

— that most hotspots (∼ 88−97%) can be found in both sexes (Brick et al., 2018). The high

number of similar empirical findings of sex-specific attributes of recombination hotspots, in

humans and other mammals, suggest that they are relatively evolutionarily stable.

We aim to address the seeming stability of these sex-specific attributes of recombination

hotspots. To do so, we extend the model developed in (Úbeda et al., 2019) which mechanisti-

cally describes the aforementioned interplay between gene conversion and viability selection

of PRDM9 and its target site(s). It does so by deriving a two-locus n-allele population ge-

netic model including these forces, finding stable cycling behaviour between hotspot/target

site combinations (Úbeda et al., 2019; Russell et al., 2019). The extension we derive here
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includes separated systems, one for each sex — similar to that of the models in (Úbeda et al.,

2010; Patten et al., 2010). Our model describes the frequencies of the genes are each loci are

coupled together, similarly to the original model. However, as the extended model includes

separate subsystems for each sex, it produces a dynamical system of twice the dimension of

the original model (Úbeda et al., 2019). Using some simplifying parameter definitions, and

the use of a coordinate transformation — from haplotypes frequencies, to allelic frequencies

plus linkage disequilibria, we are able to analyse this system both analytically and numeri-

cally. Indeed, the use of symmetric (allelic) coordinates aids us in deriving an approximate

closed-form expression for the unique polymorphic equilibrium. Furthermore, we find that

the linkage disequilibria at this equilibrium differs between the sexes. A difference in link-

age disequilibrium at a stable interior polymorphic equilibrium indicates that the mechanism

modelled can indeed produce the observed differences in recombination hotspot attributes.

2. Methods

2.1. Two locus n-allele model

Following the framework from the original paper (Úbeda et al., 2019), we derive a Wright-

Fisher model: the population is assumed to be infinite; the generations are non-overlapping

and the individuals are assumed to be diploid. We track the changes of haplotypes between

generations, where the (random) union of gametes occurs implicitly between the generations.

More specifically, we follow how the frequencies of alleles at two loci change between gen-

erations. For the molecular biological details of the action of the protein produced at the first

locus on its target site at the second locus, refer to Úbeda et al. (2019). It suffices to know

that a protein produced by an allele at the first locus with a specific index, breaks a target site

at the other locus if the allele at the target locus has the same index.

Let xi,k and yi,k be the frequency of haplotype AiBk in eggs and sperm respectively.

Random union of gametes results in an embryo with genotype AiAj

BkBl
(where the first haplotype

has maternal origin and the second has paternal origin) with frequency xi,kyj,l. This embryo

has a probability of reaching adulthood which is independent of its genotype. Its genotype,

however, determines the outcome of meiosis in adult individuals during gametogenesis. In

particular, the probability that, during meiosis, there is a DSB (due to either of the two allelic

motifs, the maternally inherited Mk or the paternally inherited Ml) is

Bξ
i,j;k,l = 1

2(Bξ
i,j;k,. +Bξ

i,j;.,l) (1)
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in sex ξ where Bξ
i,j;k,. = 1

2b
ξ
i,.;k,. + bξ.,j;k,. and Bξ

i,j;.,l = 1
2b
ξ
i,.;.,l + bξ.,j;.,l are the probabilities

that it is the maternally inherited motif Mk and the paternally inherited motif Ml the one that

breaks respectively in sex ξ. N.B. For brevity we let ξ ∈ {♀,♂} represent either sex, for

parameters which are considered to be non sex-specific given a particular context. A DSB is

followed by crossover between alleles at locus A and B with probability rξ, and conversion

of the allelic motif that breaks into the allelic motif that does not break with probability

cξ. Recombination is followed by Mendelian segregation of haplotypes into gametes that

undergo fertility selection. The expected fitness of an individual Ai,Aj

Bk,Bl
of sex ξ is

F ξ
i,j;k,l = Bξ

i,j;kf
ξ
b1 + (1−Bi,j;k,l)f ξb2 . (2)

For simplicity, we assume no parent-of-origin effects. Mathematically, this corresponds

to: bξi.;k. = bξ.i;k. = bξi.;.k = bξ.i;.k = bξi;k. Therefore, Bξ
i,j;k,l = Bξ

j,i;k,l = Bξ
i,j;l,k = Bξ

j,i;l,k.

The frequency of each haplotype in gametes in the next generation in eggs is:

x′i,k = 1
w̄♀

n∑

j,l

[(
F
♀
i,j;k,l − f

♀
b1

(
1
4c
♀B♀

i,j;k. + r♀(1− c♀) B♀
i,j;k,l

))
1
2(xi,kyj,l + xj,lyi,k)

+ f
♀
b1

(
1
4c
♀B♀

i,j;l. + r♀(1− c♀)B♀
i,j;k,l

)
1
2(xi,lyj,k + xj,kyi,l)

] (3)

where w̄♀ = 1
2
∑
i,k

∑
j,l F

♀
i,j;k,l(xi,kyj,l + xj,lyi,k) is the expected fitness in females. The

frequency of each haplotype in gametes in the next generation in sperm is:

y′i,k = 1
w̄♂

n∑

j,l

[(
F♂i,j;k,l − f♂b1

(
1
4c
♂B♂

i,j;k. + r♂(1− c♂) B♂
i,j;k,l

))
1
2(xi,kyj,l + xj,lyi,k)

+ f♂b1

(
1
4c
♂B♂

i,j;l. + r♂(1− c♂)B♂
i,j;k,l

)
1
2(xi,lyj,k + xj,kyi,l)

] (4)

where w̄♂ = 1
2
∑
i,k

∑
j,l F

♂
i,j;k,l(xi,kyj,l + xj,lyi,k) is the expected fertility in males.

We henceforth assume no sex-specificity in crossover rate. Mathematically, this corre-

sponds to the following relation on the parameters r♀ = r♂ = r.

2.2. Cases of biological interest

Henceforth, we present special cases of the model representing cases of distinct biological

interest. Mathematically, each case of interest is given by a specific parameterisation. We

consider no sex-antagonistic fertility and sex-antagonistic fertility benefits after a DSB oc-

curs. From this point forwards we assume, for simplicity, no sex-specificity in the crossover
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rate r♀ = r♂ =: r. However, we do consider sex-specific effects for the conversion rate

c♀ 6= c♂ in general. We include the resulting model only for the final subsection for sex-

antagonistic fertility, as this is the focal model for the paper. The others are included to

clarify how the parameterisations are formed from the biological assumptions. The first

three cases are presented to show how correspondence between the biological assumption

and its mathematical representation. It is the fourth case — that of sexually antagonistic

viability selection — which is the linchpin of this paper.

2.2.1. No viability effects, no sex-antagonistic break

Here, there are no sex-specific effects and therefore the resulting model is the same as the

version presented in the previous paper (Úbeda et al., 2019). To arrive at that model from

within the framework of the sex-specific model, we define the parameters in the following

way
f
♀
b = f♂b = 1,

f♀r = f♂r = 1− f,
b♀ = b♂ = b,

c♀ = c♂ = c,

(5)

recalling that the remaining parameter, the crossover rate r is considered to not have sex-

specific effects throughout.

With this parameterisation, and not distinguishing between haplotypes within sperm and

eggs, we arrive at the model from the previous paper.

2.2.2. No viability effects, sex-antagonistic break

There is a sex-antagonistic break when

b
♀
i,j =




b♀ if i = j,

0 if i 6=, j
(6)

and

b♂i,j =





0 if i = j,

b♂ if i 6= j.
(7)

This means matching alleles will be driven against in females but driven in favour of in

males.
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2.2.3. Sex-specific viability effects but not sexually antagonistic

Firstly, we define how the match and break dynamics work. For no sex-specific effects for

DSB’s, let

bξi,j =




bξ if i = j,

0 if i 6= j.
(8)

I.e. matching alleles are driven against in females and males although the strength of the

drive can differ between the sexes. Previously we studied the case where b♀ = b♂ =: b.
Similarly, viability selection is sex-specific but not antagonistic, meaning the strength of the

effect can differ between the sexes but they are not necessarily driving against each other.

Mathematically this corresponds to the following parameterisation

f ξb = 1

f ξr = 1− f ξ.
(9)

2.2.4. Sex-antagonistic viability

Here, we include sex-antagonistic viability selection, but simply sex-specific effects for the

breakage and conversion terms. Mathematically, this corresponds to the following for the

breakage rate

bξi,j =




bξ if i = j,

0 if i 6= j,
(10)

and for the fertility benefit

f
♀
b = 1 f♂b = 1− f♂,
f♀r = 1− f♀ f♂r = 1.

(11)

2.3. Two-locus two-alleles model

In this paper, we focus only on the case where we have two allelic variants possible at each

locus.

The equations allowing for two allelic variants at each locus are unwieldy when fully ex-

panded. Therefore, we omit the expanded equations in their original biological formulation

and seek a simpler form. In a manner similar to the non sex-specific version of the model,
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we define the following compound parameters

α1 = b♀(f♀b − f♀r ),

β1 = f♀r ,

γ1 = 1
4b

♀c♀f♀b ,

δ1 = b♀(1− c♀)f♀b , r

α2 = b♂(f♂b − f♂r ),

β2 = f♂r ,

γ2 = 1
4b

♂c♂f♂b ,

δ2 = b♂(1− c♂)f♂b r.

(12)

Using these definitions, the expanded system can be written as:

x′1 = 1
w̄1

[
α1(x1 + y1 + 2x1y1) + 2β1(x1 + y1)− 2γ1(x2y1 + x1y2)− (γ1 + δ1)Dt

]
,

x′2 = 1
w̄1

[
α1(x2 + y2 − 2x2y2) + 2β1(x2 + y2) + 2γ1(x2y1 + x1y2) + (γ1 + δ1)Dt

]
,

x′3 = 1
w̄1

[
α1(x3 + y3 − 2x3y3) + 2β1(x3 + y3) + 2γ1(x3y4 + x4y3) + (γ1 + δ1)Dt

]
,

x′4 = 1
w̄1

[
α1(x4 + y4 + 2x4y4) + 2β1(x4 + y4)− 2γ1(x3y4 + x4y3)− (γ1 + δ1)Dt

]
,

y′1 = 1
w̄2

[
α2(x1 + y1 + 2x1y1) + 2β2(x1 + y1)− 2γ2(x2y1 + x1y2)− (γ2 + δ2)Dt

]
,

y′2 = 1
w̄2

[
α2(x2 + y2 − 2x2y2) + 2β2(x2 + y2) + 2γ2(x2y1 + x1y2) + (γ2 + δ2)Dt

]
,

y′3 = 1
w̄2

[
α2(x3 + y3 − 2x3y3) + 2β2(x3 + y3) + 2γ2(x3y4 + x4y3) + (γ2 + δ2)Dt

]
,

y′4 = 1
w̄2

[
α2(x4 + y4 + 2x4y4) + 2β2(x4 + y4)− 2γ2(x3y4 + x4y3)− (γ2 + δ2)Dt

]
,

(13)

where use w̄1 and w̄2 to denote the population mean fitness of females and males respectively,

xi and yi are the frequencies of haplotype i in females and males respectively. We move from

double subscripts to single subscripts for both sexes in the following way: A1B1 becomes

haplotype 1, A1B2 becomes haplotype 2, A2B1 becomes haplotype 3 and A2B2 becomes

haplotype 4. Lastly, Dt is the linkage disequilibrium of the population.

Explicitly, the mean fitnesses are given by

w̄1 = α1(x1 + y1 + 2x1y1 + x2 + y2 − 2x2y2 + x3 + y3 − 2x3y3 + x4 + y4 + 2x4y4)

+ 2β1(x1 + y1 + x2 + y2 + x3 + y3 + x4 + y4),

w̄2 = α2(x1 + y1 + 2x1y1 + x2 + y2 − 2x2y2 + x3 + y3 − 2x3y3 + x4 + y4 + 2x4y4)

+ 2β2(x1 + y1 + x2 + y2 + x3 + y3 + x4 + y4),

(14)
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and the total linkage disequilibrium of the population is

Dt = 1
2

(
x1y4 + x4y1 − x2y3 − x3y2

)
. (15)

2.4. Simplified model with sex-antagonistic fertility

The biological parameterisation for sex-antagonistic fertility given by (10) and (11) — along

with the two for the crossover rate and the conversion rate discussed at the start of this section

— produces the following set of compound parameters

α1 = b♀f♀,
β1 = 1− f♀,

γ1 = 1
4b

♀c♀,

δ1 = b♀(1− c♀)r,

α2 = −b♂f♂,
β2 = 1,

γ2 = 1
4b

♂c♂(1− f♂),

δ2 = b♂(1− c♂)(1− f♂)r.

(16)

With these compound parameters which now represent the system under the assumptions

of sex-specific DSBs and sexually antagonistic fertility benefits, we arrive at the following

system of equations

x′1 = 1
w̄1

[
α1(x1 + y1 + 2x1y1) + 2β1(x1 + y1)− 2γ1(x2y1 + x1y2)− (γ1 + δ1)Dt

]
,

x′2 = 1
w̄1

[
α1(x2 + y2 − 2x2y2) + 2β1(x2 + y2) + 2γ1(x2y1 + x1y2) + (γ1 + δ1)Dt

]
,

x′3 = 1
w̄1

[
α1(x3 + y3 − 2x3y3) + 2β1(x3 + y3) + 2γ1(x3y4 + x4y3) + (γ1 + δ1)Dt

]
,

x′4 = 1
w̄1

[
α1(x4 + y4 + 2x4y4) + 2β1(x4 + y4)− 2γ1(x3y4 + x4y3)− (γ1 + δ1)Dt

]
,

y′1 = 1
w̄2

[
α2(x1 + y1 + 2x1y1) + 2(x1 + y1)− 2γ2(x2y1 + x1y2)− (γ2 + δ2)Dt

]
,

y′2 = 1
w̄2

[
α2(x2 + y2 − 2x2y2) + 2(x2 + y2) + 2γ2(x2y1 + x1y2) + (γ2 + δ2)Dt

]
,

y′3 = 1
w̄2

[
α2(x3 + y3 − 2x3y3) + 2(x3 + y3) + 2γ2(x3y4 + x4y3) + (γ2 + δ2)Dt

]
,

y′4 = 1
w̄2

[
α2(x4 + y4 + 2x4y4) + 2(x4 + y4)− 2γ2(x3y4 + x4y3)− (γ2 + δ2)Dt

]
,

(17)

where use w̄1 and w̄2 to denote the population mean fitness of females and males respectively

and Dt is the linkage disequilibrium of the population. Explicitly, the two mean fitness

Chapter 4. Distinct stable disequilibria between sexes

92 of 173



functions are given by

w̄1 = α1(x1 + y1 + 2x1y1 + x2 + y2 − 2x2y2 + x3 + y3 − 2x3y3 + x4 + y4 + 2x4y4)

+ 2β1(x1 + y1 + x2 + y2 + x3 + y3 + x4 + y4),

w̄2 = α2(x1 + y1 + 2x1y1 + x2 + y2 − 2x2y2 + x3 + y3 − 2x3y3 + x4 + y4 + 2x4y4)

+ 2β2(x1 + y1 + x2 + y2 + x3 + y3 + x4 + y4).

(18)

3. Results

We focus our results on the biologically interesting case of sex-antagonistic fertility (17).

However, the simplifying parameterisation captures — relative to the full model — how

restrictive this biological constraint is. Using this, it is easy to see how the results would

easily generalise to the full model (13).

3.1. Equilibria

Attempting to directly solve the resulting system of polynomials after applying the equilib-

rium condition (x′ = x and y′ = y) does not prove very successful as it is of high order. As

we will see, even the much reduced system, constrained to the invariant lines the polymor-

phic equilibrium lies on is a nonlinear system of polynomials, which, when reduced to its

fundamental dimension, is of order 4. As solutions to quartics are unwieldy to say the least,

we use a combination of numerical and approximation techniques instead.

3.1.1. Edge equilibria

The edge equilibria, where one haplotype in both the female and male populations is at

fixation, are easy to find both numerically and by inspection. The latter is clear after noticing,

similarly to the replicator equations, the edges of the phase space are invariant for each

population. It is easily verified that the following four points are equilibria with respect to

(17)
Φ1 = (1, 0, 0, 0, 1, 0, 0, 0),

Φ2 = (0, 1, 0, 0, 0, 1, 0, 0),

Φ3 = (0, 0, 1, 0, 0, 0, 1, 0),

Φ4 = (0, 0, 0, 1, 0, 0, 0, 1),

(19)
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Figure 1: The dynamics of the system: an attracting limit cycle. We plot a trajectory of the system exhibiting
cycling behaviour. The first row shows this trajectory in the tetrahedron — separately for each of the two sexes.
The second row shows the same trajectory, but as time series. Lastly, in the third row, we plot the corresponding
eigenvalues at the unique interior equilibrium. We find that there are two eigenvalues off the real axis implying
the possibility of a Hopf bifurcation. The parameters used are: f♀b = 0.7, f♀r = 0.08, b♀ = 1, r♀ = 0.5, c♀ =
1, f♂b = 0.08, f♂r = 0.1, b♂ = 1, r♂ = 0.5 and c♂ = 1. The initial conditions for the females were
x1 = 0.4, x2 = x3 = 0 and x4 = 0.6. For the males y1 = 0.92, y2 = y3 = 0 and y4 = 0.08.

Chapter 4. Distinct stable disequilibria between sexes

94 of 173



where we denote the ith equilibria of the system (17) by

Φi = (x∗1, x∗2, x∗3, x∗4, y∗1, y∗2, y∗3, y∗4). (20)

3.1.2. Interior equilibria

Similarly to the non sex-specific hotspots model in Úbeda et al. (2019), the polymorphic

equilibria lie on an invariant subspace within the phase space of the system. The invariant

subspace, using haplotype coordinates, is described by

ξ1 = ξ4,

ξ2 = ξ3,
(21)

where ξ ∈ {x, y}. It is relatively easy to show that the surface defined by these variable

relations is invariant under the action of system (13). Let

x′i = gi(x,y),

y′i = hi(x,y),
(22)

represent our system in compact notation. The system at equilibrium is therefore given by

x∗i = gi(x∗,y∗),

y∗i = hi(x∗,y∗),
(23)

where superscript x∗ and y∗ represent the value of the haplotypes in eggs and sperm at

equilibrium (respectively). Restricting the dynamics to this invariant surface reduces the

number of polynomials which need to be solved to find the unique polymorphic (interior)

equilibrium. To derive the resulting system of two second-order polynomials the equilibrium

calculation reduces to, we establish that on this invariant surface, the variables can be re-

written using the simplified versions of the conservation laws

x1 + x2 + x3 + x4 = 1,

y1 + y2 + y3 + y4 = 1,
(24)
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which, using the relations in (21) can be simplified to

x1 + x2 = 1
2 ⇐⇒ x1 = 1

2 − x2,

y1 + y2 = 1
2 ⇐⇒ y1 = 1

2 − y2.
(25)

We are now able to constrain the dynamics to this two-dimensional subspace, on which the

polymorphic equilibrium lives. Before we do so, we introduce a coordinate transformation

which helps simplify the algebra and clarify the interpretation of the position of this invariant

subspace.

Extending the haplotype frequency to allelic frequency coordinate transformation used

in Russell et al. (2019) to allow for both female (Ax, Bx, Dx) and male (Ay, By, Dy) popu-

lations of haplotype gives the following forward transformation

Ax = x1 + x2,

Bx = x1 + x3,

Dx = x1x4 − x2x3,

Ay = y1 + y2,

By = y1 + y3,

Dy = y1y4 − y2y3.

(26)

The transformed equations in their full form are given in the complementary Mathematica

notebook (see the last section of the Introduction for instructions on how to find the note-

book).

First of all we note that the original invariant surface on which the interior equilibrium is

positioned becomes, under transformation (26)

A∗x = 1
2 ,

B∗x = 1
2 ,

A∗y = 1
2 ,

B∗y = 1
2 .

(27)

The expressions for D∗x and D∗y can be found implicitly by evaluating the D′x and D′y equa-

tions at the transformed equilibrium values given by (27). Explicitly, if we define the right-

hand side of the D′x and D′y equations as

D′x = g1(Ax, Bx, Ay, By, Dx, Dy),

D′y = g2(Ax, Bx, Ay, By, Dx, Dy).
(28)
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Figure 2: The dynamics of the system: an attracting interior equilibrium. The plot layout is similar to
Figure 1. In this plot, the trajectory converges to the attracting interior equilibrium. All eigenvalues are within
the unit circle in the complex plan. The parameters used are: f♀b = 0.25, f♀r = 0.08, b♀ = 0.8, c♀ =
0.9, f♂b = 0.05, f♂r = 0.06, b♂ = 0.7, c♂ = 0.8 and r = 0.5. The initial conditions for the females were
x1 = 0.8, x2 = x3 = 0 and x4 = 0.2. For the males y1 = 0.92, y2 = y3 = 0 and y4 = 0.08.
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Setting these equations to be at the polymorphic equilibrium (27) and evaluating them gives

D∗x = g1(D∗x, D∗y)|Ax= 1
2 ,Bx= 1

2 ,Ay= 1
2 ,By= 1

2
,

D∗y = g2(D∗x, D∗y)|Ax= 1
2 ,Bx= 1

2 ,Ay= 1
2 ,By= 1

2
.

(29)

which, once g1 and g2 are expressed explicitly, these equations become

− α1D
2
x + 2γ1DxDy + 1

2α1(Dy −Dx) + 1
2(γ1 + δ1)(Dx +Dy)

+Dx −Dy − 1
8(γ1 − 1

2α1) = 0,

− α2D
2
y + 2γ2DxDy + 1

2α2(Dy −Dx) + 1
2(γ2 + δ2)(Dx +Dy)

−Dx +Dy − 1
8(γ2 − 1

2α2) = 0.

(30)

This is a system of two second-order polynomials, which results in having to solve a quartic

for each variableDx andDy. The solution can be found in Mathematica or a similar symbolic

programming language. However, the solution includes thousands of terms and is far too

unwieldy to state or work with. Therefore, to proceed, we use an approximation method.

Namely, we Taylor expand around the point (Dx, Dy) = (0, 0) which reduces the resulting

order of each polynomial by one, we arrive at a system of far simpler polynomials to solve.

3.1.3. Approximating the interior equilibrium

The new coordinates representing linkage disequilibrium in female and male haplotypes re-

spectively lie within the following region (Dx, Dy) ∈ [−1
4 ,

1
4 ] and solving the system repre-

senting the polymorphic equilibrium numerically reveals that most polymorphic equilibrium

values are very close to the point (Dx, Dy) = (0, 0). Therefore, we choose this point to

Taylor expand around to arrive at an approximate but far more tractable system to solve for

the polymorphic equilibrium. Taylor expanding around this point gives

2γ1DxDy + 1
2α1(Dy −Dx) + 1

2(γ1 + δ1)(Dx +Dy)

+Dx −Dy − 1
8(γ1 − 1

2 , α1) = 0

2γ2DxDy + 1
2α2(Dy −Dx) + 1

2(γ2 + δ2)(Dx +Dy)

−Dx +Dy − 1
8(γ2 − 1

2α2) = 0.

(31)

The system is identical to (30) except without the first term in each original equation, −αD2
x

and −αD2
y respectively. As a result of the interval in which the variables Dx and Dy lie,

these squared terms clearly contributed very little to the overall solution. They did, however,
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Figure 3: Numerically assessing the accuracy of the approximate polymorphic equilibrium. The closed-
form expression for the approximate polymorphic equilibrium is plotted against α1 for a range of biologically
realistic values of α2 along with numerical solutions to (30) — representing the exact value of the polymorphic
equilibrium — in order to assess the accuracy of the approximation. Clearly, the two are in close agreement,
apart from at the higher end for α1, where the influence of the second-order term (dropped in the approximate
solution) proportional to α1 or α2 begins to have a greater affect. The other parameters were set to γ1 =
0.25, γ2 = 0.2, δ1 = 0.3 and δ2 = 0.2. Note that the values of d∗

ζ are not equivalent at the stable polymorphic
equilibrium, for ζ ∈ (x, y). The intersection of the two solutions for d∗

ζ is the stable polymorphic equilibrium
found in the non sex-specific model in Úbeda et al. (2019).

increase the algebraic complexity significantly. The solutions to the system without these

terms (31) are still large, but are tractable. We give these solutions in full in the accompany-

ing Mathematica notebook.

We numerically assess the accuracy of the equilibria across a range of the parameter’s

which influence its values the most, α1 and α2. It is clear that, apart from in the extremely

high regions of the parameter space, which are not particularly biologically realistic, the

approximation is very accurate (see Figure 3).
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3.2. Stability

Let J(z) denote the Jacobian of system (13) where z = (x1, x2, x3, x4, y1, y2, y3, y4). We

determine the stability of the edge equilibria by directly evaluating J at the first two Φ1

and Φ2 (19). We omit the multipliers of Φ3 and Φ4 as, similarly to the edge equilibria in

Úbeda et al. (2019), they are equivalent to the multipliers of Φ2 and Φ1 respectively. Due to

the complexity and dimension of the system, we study the eigenvalues of the polymorphic

equilibrium numerically.

Recall, a fixed point in a discrete-time dynamical system is stable if and only if the

modulus of all its multipliers — within the complex plane — lie inside, or on, the unit circle.

If the modulus of its multipliers is identical to one, a higher-order analysis is required to

determine stability.

Simulations suggest that, similarly to the analogous parameters in the non sex-specific

model (Úbeda et al., 2019), the breakage rate parameters simply scale time (apart from when

they are zero, at which most of the selection dynamics are prevented). With this in mind, for

mathematical convenience, we assume throughout the rest of this section that b♀ = b♂ = 1.

Plus, we switch between the original parameters and the simplified parameters, (10) and

(11), at leisure, whichever is mathematically simpler for a given result.

3.2.1. Edge equilibria

The eigenvalues of the matrices J
∣∣∣
z=Φ1

and J
∣∣∣
z=Φ2

represent the multipliers of the fixed

points Φ1 and Φ2. Calculating these directly in Mathematica gives the following two sets of

eigenvalues λ1 = (0, 0, 0, 0, λ1
6, λ

1
7, λ

1
8) and λ2 = (0, 0, 0, 0, λ2

6, λ
2
7, λ

2
8) where the non-trivial

elements of λ1 are given by

λ1
6 = 1

4

(
3 + 1

1 + α2
− α1

α1 + β1

)
,

λ1
7 = 2γ1(α2 + 1) + α1(2α2 + 2γ2 + 3) + β1(3α2 + 2γ2 + 4)

4(α2 + 1)(α1 + β1) ,

λ1
8 = α1(2α2 − γ2 − δ2 + 3) + β1(3α2 − γ2 − δ2 + 4)− (α2 + 1)(γ1 + δ1)

4(α2 + 1)(α1 + β1) ,

(32)
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and the non-trivial elements of λ2 are given by

λ2
6 = 1 + 1

4α2 + 1
4
α1

β1
,

λ2
7 = α1 − 2γ1 + β1(α2 − 2γ2 + 4)

4β1
,

λ2
8 = α1 − γ1 − δ1 + β1(α2 − γ2 − δ2 + 4)

4β1
.

(33)

Moving back to the biological parameters, for mathematical convenience and to aid the

interpretation the conditions, λ1
6 < 1 is satisfied when

f♂ <
f♀

1 + f♀ . (34)

Similarly, λ1
7 < 1 is satisfied when

f♂ − 1
1
2c
♀ + 1

2c
♂ − f♀ + 1

> 1. (35)

Lastly, λ1
8 < 1 is satisfied when

1
f♀ + c♀(1

4 − r) + c♂(1
4 − r) + 2r + 1

+ f♂ > 1. (36)

Now, we present the conditions for stability for the second set of eigenvalues λ2. The

first eigenvalue in this set, λ2
6 < 1 is satisfied when the same condition as λ1

6 < 1 is satisfied,

given by condition (34). The second eigenvalue in this set is stable, i.e. λ2
7 < 1 when

c♀ + c♂ + (c♂ − 2)(f♀ − 1)f♂

c♂ + 2
> f♀. (37)

Lastly, the stability condition for the third eigenvalue in this set, λ2
8 < 1 is when

f♀ −
1
4c
♀ − f♀ − r − c♀r

1
4(1− f♂) + r(c♂ − 1)(f♂ − 1)

< 1 (38)

3.2.2. Polymorphic equilibrium

Even after using an approximation technique to derive a closed-form solution for the unique

interior polymorphic equilibrium, its large functional form means an explicit stability anal-
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Figure 4: Numerically assessing the stability of the unique polymorphic equilibrium. We find the eigen-
values of the Jacobian matrix evaluated at the unique polymorphic equilibrium for a range of parameter values.
The breakage parameters b and r are fixed (as described in the main text). However, f♀ and f♂ are varied.
The level sets of the modulus of each of the six (non-zero) eigenvalues are plotted against these two parame-
ters, showing the interior equilibrium to be stable for almost the entire fitness parameter (f ) range. The only
eigenvalue whose modulus can be greater than one is the first. The others always attract the dynamics of the
system (in the direction of the corresponding eigenvector). The conversion parameters were set to c♀ = 0.9
and c♂ = 0.5. A total of 900 sets of eigenvalues were solved for and plotted in each subplot.

ysis is intractable. Therefore, we assess the stability of this equilibria numerically over a

range of parameter values. Specifically, we find the value of the interior equilibrium for a

given set of parameters; we then find the eigenvalues of the Jacobian at all of these equilib-

ria; lastly, we plot them against the parameters being varied. We found that the parameters

with the biggest influence on the qualitative dynamics — similarly to those which were most

important for the non sex-specific models dynamics (Úbeda et al., 2019) — are f♀, f♂, c♀

and c♂. Therefore, we fixed the remaining parameters: b♀ = b♂ = 1 and r = 1
2 and varied

the others. We plot the level sets of the modulus of each of the six non-trivial eigenvalues

— two out of the eight orthogonal directions of the linearised dynamics give eigenvalues

identically equal to zero, due to the two conservation laws (24). Figure 4 shows these level

sets plotted against the viability fitness parameters f♀ and f♂. The results show the interior

equilibrium is attracting throughout most of the parameter space. The attached Mathemat-

ica notebook includes many more versions of the plot, over the whole range of biologically

realistic parameter values.
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4. Discussion

We present a model which is a direct extension of the model in Úbeda et al. (2019) that

models the evolution of a specific gene PRDM9, the protein it produces, PRDM9, and its

target site. The gene is involved in the initiation of recombination and has been strongly

associated with locations in the genome where recombination occurs orders of magnitude

higher than the chromosomal average: recombination hotspots (Boulton et al., 1997; Myers

et al., 2005). The original model found persistent cycling behaviour, caused by a balance of

the following evolutionary forces: viability selection for matching protein and target site and

gene conversion (Úbeda et al., 2019). However, there have been manifold recent discoveries

describing sex-specific differences between location and intensity of hotspots in mammals

(de Boer et al., 2015; Halldorsson et al., 2016; Brick et al., 2018). Motivated by these

discoveries, we extend the original recombination hotspot evolution model to include sex-

specificity.

To extend the model, we followed the modelling framework used in Úbeda et al. (2010).

Specifically, we allow for one system of equations describing the evolution of PRDM9 in

female haplotypes and another system describing this evolution in male haplotypes (17). If

two allelic variants are permitted at each locus, our extended model mathematically boils

down to a system of eight coupled nonlinear difference equations. Given the already high

level of complexity a nonlinear model of this dimension presents, we do not consider parent-

of-origin effects in this paper. For these effects to be included, one would need different

breakage functions, where a DSB would only be caused if both the protein and target came

from the same parent. We conjecture that a model which included such effects would have

complex dynamics, including novel heteroclinic cycles which did not necessarily move be-

tween the edge equilibria — as was the case for the heteroclinic cycle in the original paper

(Úbeda et al., 2019).

We present the model which allows for n-alleles. However, due to the complexity of

the model, we focus on the two-allele case. We also focus on the case where the viability

selection effects are sex-antagonistic. Specifically, this means that a high level of viability

selection for the haplotypes of one sex, carries precisely the inverse level of benefit (10) and

(11), producing the effect of sexually-antagonistic viability (Patten et al., 2010).

To begin the analysis of the system, we first define new sets of compound parameters

which allow for the system to be written in a much more mathematically concise form (13).

The simplifying compound parameters chosen are analogous to those in Úbeda et al. (2019);

Russell et al. (2019). We are then able to find all the edge equilibria. Furthermore, after

Chapter 4. Distinct stable disequilibria between sexes

103 of 173



transforming to allelic with linkage disequilibrium coordinates, we find the system of two

nonlinear polynomials whose solutions give the value of linkage disequilibrium at the in-

terior equilibrium (30). We observe the system is equivalent to solving a quartic equation,

meaning closed-form solutions exist, but are intractable. We therefore use an approximation

method, where we Taylor expand around the point where the two solutions for the interior

equilibrium — one for each sex — intersect (Figure 3). Truncating the Taylor expansion at

one order lower than the original system reduces the complexity of the solution dramatically.

Numerically, we show that the accuracy of the approximate solution is very high, especially

close to the point of intersection.

We go on to show that the interior equilibrium is stable across most of the range of pa-

rameter space which is biologically relevant. We plot the modulus of the eigenvalues against

the values of the most relevant parameters. We also attach a Mathematica notebook which

can numerically compute the ranges of parameter values which allow for a stable polymor-

phic equilibrium. Only unrealistically high values of the viability selection parameters cause

instability at the interior equilibrium. However, often a pair of eigenvalues at the interior

equilibrium are complex, meaning that on approach toward the equilibrium, the trajectory

exhibits damped oscillations. We used this to guide the search for a limit cycle. Úbeda et al.

(2019) found that there was an unstable limit cycle acting as the separatrix between the inte-

rior equilibrium and the heteroclinic cycle. As we did not find an attracting heteroclinic cycle

analogous to that found in the original model (Úbeda et al., 2019), we suspected there could

now be a stable limit cycle in the interior. After searching numerically, we found trajectories

that converged to a low amplitude limit cycle (Figure 1).

Our original question can be summarised as: if we extend the original model of recom-

bination hotspot evolution (Úbeda et al., 2019) to allow for distinct sexes, will some sex-

specific attributes of the hotspots — observed in abundance in the literature — be displayed

by the model? The stable polymorphic equilibrium identified in the model with sexually an-

tagonistic viability selection suggests that sexual antagonism at loci involved in the genetic

control of recombination can produce evolutionary persistent behaviours. Furthermore, we

found some sex-specific attributes of recombination hotspot evolution: both the polymorphic

equilibrium and the stable limit cycle — a novel behaviour relative to the non sex-specific

implementation of the model (Úbeda et al., 2019) — involve haplotype frequencies that dif-

fer (sometimes slightly, sometimes by a great deal) between the sexes.

Lastly, we hope the model presented in this paper can serve as a framework for other

population genetic models for which sex-specific differences are being discovered. Even
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though the process modelled here is particular to the evolution of PRDM9 and recombination

hotspots, the way in which the model was extended to allow for two distinct sexes is generic

and can be used to extend most non sex-specific theoretical population genetic models.

References

Alves, I., Houle, A.A., Hussin, J.G., Awadalla, P., 2017. The impact of recombination on

human mutation load and disease. Philosophical Transactions of the Royal Society B:

Biological Sciences 372, 20160465.

Barton, N., 1995. A general model for the evolution of recombination. Genetics Research

65, 123–144.

Baudat, F., Buard, J., Grey, C., Fledel-Alon, A., Ober, C., Przeworski, M., Coop, G.,

De Massy, B., 2010. Prdm9 is a major determinant of meiotic recombination hotspots

in humans and mice. Science 327, 836–840.

de Boer, E., Jasin, M., Keeney, S., 2015. Local and sex-specific biases in crossover vs.

noncrossover outcomes at meiotic recombination hot spots in mice. Genes & Development

29, 1721.

Boulton, A., Myers, R.S., Redfield, R.J., 1997. The hotspot conversion paradox and the

evolution of meiotic recombination. Proceedings of the National Academy of Sciences

94, 8058–8063.

Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R.D., Petukhova, G.V., 2012. Genetic

recombination is directed away from functional genomic elements in mice. Nature 485,

642.

Brick, K., Thibault-Sennett, S., Smagulova, F., Lam, K.W.G., Pu, Y., Pratto, F., Camerini-

Otero, R.D., Petukhova, G.V., 2018. Extensive sex differences at the initiation of genetic

recombination. Nature 561, 338.

Halldorsson, B.V., Hardarson, M.T., Kehr, B., Styrkarsdottir, U., Gylfason, A., Thorleifsson,

G., Zink, F., Jonasdottir, A., Jonasdottir, A., Sulem, P., et al., 2016. The rate of meiotic

gene conversion varies by sex and age. Nature genetics 48, 1377.

Chapter 4. Distinct stable disequilibria between sexes

105 of 173



Latrille, T., Duret, L., Lartillot, N., 2017. The red queen model of recombination hot-spot

evolution: a theoretical investigation. Philosophical Transactions of the Royal Society B:

Biological Sciences 372, 20160463.

Lichten, M., Goldman, A.S., 1995. Meiotic recombination hotspots. Annual review of

genetics 29, 423–444.

Myers, S., Bottolo, L., Freeman, C., McVean, G., Donnelly, P., 2005. A fine-scale map of

recombination rates and hotspots across the human genome. Science 310, 321–324.

Myers, S., Bowden, R., Tumian, A., Bontrop, R.E., Freeman, C., MacFie, T.S., McVean, G.,

Donnelly, P., 2010. Drive against hotspot motifs in primates implicates the prdm9 gene in

meiotic recombination. Science 327, 876–879.

Otto, S.P., Michalakis, Y., 1998. The evolution of recombination in changing environments.

Trends in ecology & evolution 13, 145–151.

Paigen, K., Petkov, P., 2010. Mammalian recombination hot spots: properties, control and

evolution. Nature Reviews Genetics 11, 221.

Parvanov, E.D., Petkov, P.M., Paigen, K., 2010. Prdm9 controls activation of mammalian

recombination hotspots. Science 327, 835–835.

Patten, M.M., Haig, D., Ubeda, F., 2010. Fitness variation due to sexual antagonism and

linkage disequilibrium. Evolution: International Journal of Organic Evolution 64, 3638–

3642.

Petes, T.D., 2001. Meiotic recombination hot spots and cold spots. Nature Reviews Genetics

2, 360.
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Abstract

Genetic systems with multiple loci can have complex dynamics. For example, mean

fitness need not always increase and stable cycling is possible. Here, we study the dynam-

ics of a genetic system inspired by the molecular biology of recognition-dependent double

strand breaks and repair as it happens in recombination hotspots. The model shows slow-fast

dynamics in which the system converges to the quasi-linkage equilibrium (QLE) manifold.

On this manifold, sustained cycling is possible as the dynamics approach a heteroclinic cy-

cle, in which allele frequencies alternate between near extinction and near fixation. We find

a closed-form approximation for the QLE manifold and use it to simplify the model. For

the simplified model, we can analytically calculate the stability of the heteroclinic cycle.

In the discrete-time model the cycle is always stable; in a continuous-time approximation,

the cycle is always unstable. This demonstrates that complex dynamics are possible under

quasi-linkage equilibrium.

Keywords:

Slow manifold, Lyapunov function, Multiple time-scales, Heteroclinic cycle, Two-locus

two-allele
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1. Introduction

Genetic equilibrium, the idea that gene frequencies are the same from one generation to the

next, was the focus of early work in population genetics. The attention shifted when it was

discovered that one-locus viability models can exhibit cycling behaviour and genetic equilib-

rium does not have to be achieved (Kimura, 1958; Hadeler and Liberman, 1975; Asmussen

and Feldman, 1977; Cressman, 1988). Further investigation showed that two-locus viability

models with recombination can also exhibit cycling behaviour (Akin, 1979; Hastings, 1981;

Akin, 1982, 1983, 1987).

The discrete-time selection-recombination equations (Lewontin and Kojima, 1960; Bürger,

2000) have provided a deterministic model for changes in the genetic make up of a popu-

lation. Despite the fact that these equations are often used to study the properties of stable

equilibria, they are inherently nonlinear, meaning even the most simple formulations of the

equations can have complex dynamics. Examples include limit cycles (Akin, 1983) and

heteroclinic cycles (Haig and Grafen, 1991; Úbeda et al., 2019). Whether the cycles are

maintained indefinitely or eventually die out (i.e. their stability properties) is mathemati-

cally challenging and of significant biological importance. This is the focus of the research

we present here.

Many genetic processes within an interacting population of individuals can be captured

by the selection-recombination equations, as they allow for arbitrary selection regimes de-

fined by model-specific fitness matrices. Here, we investigate the stability of cycles in

two-locus genetic systems characterised by a specific interaction between selection, gene

conversion and crossover. This interaction corresponds to a model of the evolution of re-

combination hotspots (Úbeda et al., 2019). However, we re-write this model in standard

selection-recombination equations form by noticing that the effect of conversion in Úbeda

et al. (2019) can be split into its effect on selection (and incorporated to the selection compo-

nent of the standard selection-recombination equation) and its effect on formation of double

heterozygotes (and incorporated into the recombination component of the standard selection-

recombination equation). Furthermore, while the model in Úbeda et al. (2019) assumes that

the values taken by the selection-recombination parameters are constrained by their biolog-

ical interdependence, here we assume that the parameter values are independent and not

limited by biological constraints. In doing so, we allow for multiple forms of interaction be-

tween selection, conversion and crossover, provided they produce the same equations. This

formulation allow us to focus on the mathematical properties of the generalised model.

Biologically, the processes in our model are initiated by recognition between a protein
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formed by a modifier gene and a target locus, whereby the protein interacts with the tar-

get, initiating conversion and potentially crossover (Úbeda and Wilkins, 2011; Úbeda et al.,

2019). Other than the evolution of recombination hotspots (Úbeda and Wilkins, 2011; Úbeda

et al., 2019), examples of similar recognition-initiated interactions producing sustained cy-

cling include: the evolution of homing endonucleases (Yahara et al., 2009), the evolution

of meiotic drive (Haig and Grafen, 1991), the evolution of host-parasite interactions (Sasaki

et al., 2002) and the evolution of altruism via tag based recognition (Jansen and Van Baalen,

2006).

If selection is weak, stable cycling cannot occur within the two-locus selection-recombination

equations if the equilibria are hyperbolic (Nagylaki et al., 1999; Pontz et al., 2018). These

conditions produce dynamics which converge to a stable equilibrium. Under weak selection,

the argument by Nagylaki et al. (1999) uses the existence of an invariant stable manifold

which attracts the dynamics. On this attracting manifold, the dynamics are gradient-like and

converge to equilibrium (Pugh et al., 1977). This manifold is known in genetics as the quasi-

linkage equilibrium (QLE) manifold (Kimura, 1965). It is the set of states defined by the

property that linkage disequilibrium changes an order of magnitude slower than the allele

frequencies (Kimura, 1965).

In geometric terms, this means that the dynamics approach a manifold after a short ini-

tial time. If an approximate expression for such a manifold can be found, it can be exploited

mathematically to simplify the system (Constable and McKane, 2017). This is usually done

by assuming that selection in the model is weak (Barton, 1995; Nagylaki et al., 1999; Kirk-

patrick et al., 2002; Lion, 2018). We identify the linkage disequilibrium as a fast variable

in our model, isolate it using a coordinate transformation and find an approximation of the

surface to which the dynamics converge. Here we show that the existence of a time-scale

separation between variables and hence attraction to the QLE manifold is not exclusively

associated with simple dynamics which are characterised by gradient-like convergence to an

interior equilibrium.

The model presented here has complex dynamics, such as bistability and a global bi-

furcation. We show that, in such a system, it is still possible to find an approximate yet

accurate explicit expression for the QLE manifold. For analytical tractability, following

standard methods in population genetics, we derive a continuous-time approximation to our

discrete-time model (Nagylaki et al., 1999; Bürger, 2000; Pontz et al., 2018). We use this

continuous-time approximation to find an expression for the QLE manifold. We go on to use

this to constrain the dynamics analytically to this surface, reducing the dimension of the sys-
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tem. We are then able to calculate the stability of the now-planar heteroclinic cycle that exists

in our model within certain parameter regimes. Constraining the dynamics is a powerful step

as it allows for the use of the analytic heteroclinic stability condition for discrete-time planar

heteroclinic cycles (Hofbauer and Schlag, 2000). In the vicinity of this heteroclinic cycle,

strong fluctuations are possible on the QLE manifold.

Finally, we numerically assess the accuracy of our approximation of the QLE mani-

fold against both sources of error: the quasi steady-state assumption and the use of the

continuous-time derived manifold within the discrete-time system. We find that the manifold

is a good approximation for the discrete-time system for both damped oscillations towards

the unique interior equilibrium and the approach towards the heteroclinic cycle.

2. The model

We investigate the dynamics of haplotype frequencies of two alleles at two interacting loci,

in an infinite population, undergoing a specific selection regime (uniquely defining the fit-

ness matrix W ), recombination and random union of gametes (panmixia). Once the fitness

matrix and the parameter δ are defined, the system of equations in question is fully defined

(A.1). First, we describe the biological processes which justify our selection regime, then

we present the resulting fitness matrix (A.5).

Our model describes the evolution of recombination hotspots by following the dynam-

ics between a modifier gene — producing a recombinogenic protein — and a target gene,

on which the protein binds to, causing a double-strand break and initiating recombination

(Úbeda et al., 2019). This model is here re-written as a system of selection-recombination

equations. This system describes the following general processes: a fitness benefit derived

from recognition between modifier and target (β), a fitness cost derived from gene conver-

sion (γ) and the reshuffling of alleles in double heterozygotes caused by gene conversion and

crossover (δ) (Úbeda et al., 2019). Our original formulation of the model included another

parameter α, which we have normalised to one (without loss of generality).

The dynamics of the matching process between homozygotes and gene conversion leads

to the following system of equations describing the frequency of each haplotype in the next
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generation

x′1 = 1
w̄

(
x1[1 + βx1 − γx2]− δD

)
,

x′2 = 1
w̄

(
x2[1− βx2 + γx1] + δD

)
,

x′3 = 1
w̄

(
x3[1− βx3 + γx4] + δD

)
,

x′4 = 1
w̄

(
x4[1 + βx4 − γx3]− δD

)
,

(1)

where the linkage disequilibrium between alleles is

D = x1x4 − x2x3, (2)

and the population mean fitness is

w̄ = x1 + x2 + x3 + x4 + β
(
x2

1 − x2
2 − x2

3 + x2
4

)
. (3)

Superscript primes indicate the value of the variable in the next generation. The population

mean fitness, w̄, ensures that the sum of the haplotype frequencies remains constant in time.

To ensure the right hand side of the difference equations does not become negative, which

would imply that the number of gametes produced is negative, we require that the parameters

β, γ can only take values between 0 and 1. This can be justified by the fact parameters rep-

resent probabilities in the context of the selection-recombination equations. The parameter

δ can only take values between 0 and 1
2 .

Our fitness matrix and therefore our model has similarities with that of (Karlin et al.,

1970). They study symmetric viability, meaning they impose a symmetric fitness matrix.

Ours is perhaps superficially similar but has a crucial difference; our matrix is not symmetric

meaning mean fitness is no longer a Lyapunov function. Our matrix results in certain local

symmetries within the resulting equations — symmetries which are a hallmark of hetero-

clinic cycles. In that sense, our model is closer to the ones of Haig and Grafen (1991) who

also studied a process with a non-symmetric fitness matrix also finding a heteroclinic cycle.

We choose a specific example to study for mathematical tractability and to link it to specific

biological examples.
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A1 A2
B1 x1 x3
B2 x2 x4

Table 1: Relations between the haplotype frequencies, x1, x2, x3, x4, the alleles controlling the recombinogenic
protein type, A1, A2, and the alleles controlling the target site sequence, B1, B2. The table indicates that the
allele frequencies are obtained by summing over the haplotype frequencies in the corresponding row or column.
Explicitly, A1 = x1 + x2, A2 = x3 + x4, B1 = x1 + x3 and B2 = x2 + x4.

3. Analysis and results

The model has two different qualitative behaviours: convergence to equilibrium and sus-

tained oscillations. In both cases, the rate-of-change of D tends towards zero on a faster

time scale than the rate-of-change of the allele frequencies (see Figure 1). This suggests that

the system has two separate time scales and that the dynamics converge towards the QLE

manifold. We will find an approximate expression for this manifold.

For brevity, we introduce A = A1 and B = B1 to denote the frequency of the first

recombinogenic protein and its matching target allele, respectively. The frequency of the

second recombinogenic protein and its target allele can then be written as A2 = 1 − A and

B2 = 1−B (Table 1).

3.1. Change of variables

The first step towards finding an approximation of the QLE manifold is changing coordinates

so that they describe the allele frequencies and linkage disequilibrium. We achieve this by

transforming variables from haplotype frequencies to allele frequencies using

A = x1 + x2,

B = x1 + x3,

D = x1x4 − x2x3,

(4)

where A and B take values on the interval [0, 1]. D represents linkage disequilibrium be-

tween alleles and takes values on [−1
4 ,

1
4 ]. If we consider (4) to be the forward transformation,
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we arrive at the backward transformation

x1 = AB +D,

x2 = A(1−B)−D,
x3 = (1− A)B −D,
x4 = (1− A)(1−B) +D.

(5)

Transforming using (4), the discrete-time model becomes

A′ = 1
w̄
βA(1− A)(2B − 1) + A,

B′ = 1
w̄

[
(γ − β)B(2A− 1)(B − 1) + γ(2B − 1)D

]
+B,

D′ = 1
w̄2

[
(A− 1)A(B − 1)B(β − γ)+

D

(
β[2A(A− 1)(B2 −B)(γ + β)+

A(A− 1)γ − (2A− 1)(δ − 1)(2B − 1)]− δ + 1
)

+

D2
(
β(β + γ)(2A− 1)(2B − 1) + β(−2δ + 3) + γ

)
+

2βD3(β + γ)
]
.

(6)

Additionally, w̄ is transformed into

w̄ = 1 + β(2A− 1)(2B − 1) + 2βD. (7)

As these coordinates include linkage disequilibrium (D) explicitly, they allow for a sim-

ple interpretation of the surface of total linkage equilibrium: the Wright manifold. This

surface can now be written as the part of state space where D = 0 (Rice, 2004).

3.2. Equilibria and local stability

The system has a maximum of ten solutions when solving for potential equilibria. Five of

these live within the positive state space of the model and are therefore biologically feasible.

Four of the five biologically realistic equilibria are located at the four vertices of the tetrahe-

dron that forms the 3-simplex (in haplotype coordinates). These corner equilibria, in allelic
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Figure 1: Time series showing examples of the two types of behaviour of the discrete-time model (6). The
examples in the top row have initial conditions: A(0) = 0.05, B(0) = 0.95, D(0) = 0.0005 and those in the
bottom row have initial conditions A(0) = 0.25, B(0) = 0.75, D(0) = 0.0005. Trajectories in both rows
were solved with the same set of parameters: β = 0.1, γ = 0.13, δ = 0.2. The top row shows a typical
trajectory nearby the heteroclinic cycle. It also shows that after an initial period of rapid change, the linkage
disequilibrium eventually changes relatively slowly (D′ becomes approximately constant in time), indicating
the convergence of the dynamics to QLE manifold. The bottom row shows a typical orbit exhibiting damped
oscillations and convergence to the asymptotically stable interior equilibrium (9).

coordinates (A,B,D), are

Φ1 = (1, 1, 0),

Φ2 = (1, 0, 0),

Φ3 = (0, 1, 0),

Φ4 = (0, 0, 0).

(8)

We analysed the linear stability of these equilibria in Úbeda et al. (2019) and we summarise

the main results here. For our choice of parameters the equilibria Φ2 and Φ3 are always

unstable. Moreover, if β < γ these equilibria are saddles. The equilibria Φ1 and Φ4 are

stable if β > γ and are saddles, and thus unstable, if β < γ. Note that if A or B take values

of either 0 or 1 then D = 0. Upon inspection of the transformed models, we find that the

lines connecting the equilibria Φ1 to Φ2 (A = 1, D = 0), Φ2 to Φ4 (B = 0, D = 0), Φ4 to

Φ3 (A = 0, D = 0) and Φ3 to Φ1 (B = 1, D = 0) are all invariant. When all these equilibria
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are saddles (i.e. when β < γ) a heteroclinic cycle exists:

· · · → Φ1 → Φ2 → Φ4 → Φ3 → Φ1 → · · · .

The fifth equilibrium is positioned in the interior of the simplex. For this equilibrium it is

easily verified that Ȧ = 0 and Ḃ = 0 for A = B = 1
2 . The interior equilibrium, in allelic

coordinates, is

Φ5 = (1
2 ,

1
2 , D

∗), (9)

where D∗ is the negative root of

(γ − β)D∗2 − δD∗ − 1
16(γ − β) = 0, (10)

given by

D∗ =
δ −

√
δ2 + 1

4(γ − β)2

2(γ − β) . (11)

The positive root is larger than 1
4 for δ > 0 and therefore the corresponding equilibrium has

negative haplotype frequencies.

The multipliers of the discrete-time model (6) at the interior equilibrium Φ5 are given by

λ1 = 1 +
γD∗ +

√
(γD∗)2 + 1

4β(β − γ)
w̄∗

,

λ2 = 1 +
γD∗ −

√
(γD∗)2 + 1

4β(β − γ)
w̄∗

,

λ3 = 1− δ + 2D∗(β − γ)
w̄∗

,

(12)

where w̄∗ = 1 + 2βD∗ denotes the value of w̄ evaluated at the interior equilibrium (Úbeda

et al., 2019). The eigenvalues λ̂i of the interior equilibrium of the continuous-time approxi-

mation are given by λ̂i = λi − 1.

If β > γ then D∗ > 0 and w̄∗ > 0. Therefore, in this region of parameter space, it is

relatively easy to see that the interior equilibrium is a saddle (both in the discrete and the

continuous-time models). Specifically, λ1 and λ3 are always negative, and for 0 < δ < 1
2 ,

λ3 > −1. λ2 is always positive. If β < γ then D∗ < 0. Eigenvalues λ1 and λ2 can now

form a conjugate pair of complex eigenvalues. For the equilibrium to be locally stable in the
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discrete-time model we require |λ1,2| < 1. This leads to the conditions for local stability

2γw̄∗D∗ < 1
4β(β − γ). (13)

If δ < 1
2 this condition is always fulfilled (Úbeda et al., 2019). This stability condition (13)

applies only to the discrete-time model as its continuous-time approximation (15) is always

locally stable (for β < γ).

3.3. Global stability: A Lyapunov function and heteroclinic cycle

3.3.1. A continuous-time approximate model

These results on asymptotic local stability leave the question of what the global dynamics

are and, in particular, if the heteroclinic cycle is an attractor, or whether orbits move away

from it. While the focus of this paper is to analyse the global stability properties of the

discrete-time model (1), we introduce the following continuous-time approximation of the

discrete-time model (Nagylaki et al., 1999; Bürger, 2000) to aid us in this matter significantly

ẋ1 = 1
w̄

(
x1[1 + βx1 − γx2]− δD

)
− x1,

ẋ2 = 1
w̄

(
x2[1− βx2 + γx1] + δD

)
− x2,

ẋ3 = 1
w̄

(
x3[1− βx3 + γx4] + δD

)
− x3,

ẋ4 = 1
w̄

(
x4[1 + βx4 − γx3]− δD

)
− x4,

(14)

where derivatives with respect to time t are denoted by a dot above a variable. The expres-

sions for w̄ and D are given by (2) and (3), the same as in the discrete-time model. The

continuous-time model written in the transformed variables is

Ȧ = 1
w̄
βA(1− A)(2B − 1),

Ḃ = 1
w̄

[
(γ − β)B(2A− 1)(B − 1) + γ(2B − 1)D

]
,

Ḋ = 1
w̄

[
(γ − β)

[
D2 − AB(1− A)(1−B)

]
− βD(2A− 1)(2B − 1)− δD

]
.

(15)

It is easy to show that the equilibria for the discrete-time model and its continuous-time
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approximation are the same (Bürger, 2000). Similarly, it is easy to show that the eigenvalues

of the Jacobian at each equilibrium in the continuous-time model equal the discrete-time

eigenvalues minus unity — a consequence of the fixed time-step in the discrete-time system.

We use the continuous-time model in two ways: introducing a Lyapunov function for the

interior equilibrium and to find an analytically tractable version of the approximate QLE

manifold, as the expression is significantly simpler when derived from the continuous-time

model.

3.3.2. Lyapunov function

For the continuous-time model it is relatively easy to show that the heteroclinic cycle repels

orbits using a Lyapunov function. Before we show this, we first observe that for any solution

of (15) as long as D ≤ 0 at some point in time, D ≤ 0 onwards if β < γ, and with equality

only if the solution lives on the heteroclinic connection. This can easily be seen by inspecting

the right hand side of the differential equation describing the change inD when β < γ, which

is negative everywhere on the Wright manifold, apart from on the heteroclinic connection,

where it is zero. Therefore, if D(t0) < 0, then D(t) < 0 for all t > t0. This means that

trajectories can pass through the Wright manifold where D = 0 in only one direction, and

are then confined to the region where D ≤ 0 once they have done so.

With this established, we now consider the function

V (A,B) = [A(1− A)]γ−β[B(1−B)]β. (16)

This function (16) serves as a natural candidate for a Lyapunov function of system (14) as it

retains invariance of the system along the boundaries (where either A = 0, A = 1, B = 0
or B = 1). Indeed, for β < γ this function takes the value V = 0 along the heteroclinic

connection, and takes positive values anywhere else in or on the simplex. The continuous-

time model with D set to zero (15) is equivalent to the replicator equations for 2× 2 games

and our Lyapunov function (16) is equivalent to that of this system, serving as its constant of

motion (Hofbauer and Sigmund, 1998).

The candidate function V is a Lyapunov function if β < γ for orbits which at some

point pass through the Wright manifold. To show this, we inspect its time derivative along

solutions of (15):

V̇ = −βγD
w̄

(1− 2B)2

B(1−B)V. (17)

The right hand side of (17) is always less than or equal to zero if D ≤ 0, meaning V is

a Lyapunov function within this region. For orbits starting in the forward invariant part of
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state space where D < 0 the value of V will thus increase or stay constant over time. The

ω-limit of these orbits must therefore be invariant sets for which either D = 0 or B = 1
2 . If

β < γ the only invariant part of the Wright manifold D = 0 is the heteroclinic connection,

where V = 0. As the value of V cannot decrease and is positive for all points in or on the

simplex that are not part of the heteroclinic connection, the heteroclinic connection cannot

be an ω-limit of these orbits, within which the only other candidates are the invariant sets

contained with B = 1
2 , which is the interior equilibrium Φ5. Any orbits starting within the

parts of the simplex where D < 0 will therefore move towards the interior equilibrium.

A corollary of this observation is that arbitrarily close to the heteroclinic connection,

where D = 0, there will be points that are within the region of the simplex where D < 0.

The Lyapunov function (16) shows that orbits starting at these points will move away from

the heteroclinic connection, towards the interior equilibrium. The heteroclinic connection is

therefore not stable. The interior equilibrium clearly is stable and must be the attractor for

all initial points in the interior of the simplex for which initially D < 0. This shows that in

the continuous-time model the heteroclinic cycle is unstable. Simulations suggest that the

interior equilibrium is a global attractor within the simplex.

3.3.3. Discrete-time heteroclinic cycle

The Lyapunov argument does not carry over to the discrete-time model. In the discrete-

time model, does the heteroclinic connection attract or repel? We analytically investigate

this using the approximate QLE manifold in section 3.6. We also numerically investigate the

regions of initial condition space in which the cycle is attracting, and the results are plotted in

Figure 2. In the diagram we can distinguish two regions in parameter space with qualitatively

different behaviour, and the boundary between them:

1. Within the first region, β < γ, the interior equilibrium is stable and attracts nearby

orbits. Within this region the heteroclinic connection also attracts. Between the two

attractors we find the boundary of the basins of attraction. The basin boundary moves

towards the heteroclinic connection for small β.

2. Within the second region β > γ. All trajectories converge to one of the corner equi-

libria, Φ1 or Φ4, apart from orbits starting exactly at the saddle interior equilibrium

Φ5.

3. Between these two regions β = γ, all trajectories converge to the Wright manifold.

On the Wright manifold there is a line of unstable equilibria for which B = 1
2 , D = 0.
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Figure 2: The basin of attraction of the heteroclinic cycle against β for the discrete-time model. The
diagram shows the different qualitative behaviours of the model resulting from different initial conditions. The
arrows point towards the different attractors. The shaded regions show the basins of attraction of heteroclinic
cycle for varying values of δ (see legend). The diagram was constructed by starting orbits at different initial
conditions, sampled at equally spaced intervals along the line connecting the equilibria Φ1 and Φ4 for which
A = B and D = A(1 − A) in allelic coordinates, or (x1, 0, 0, 1 − x1) in gametic coordinates. We determine
whether a specific orbit reaches interior equilibrium or a heteroclinic cycle numerically: if an orbit reaches
within ε = 10−12 distance from the equilibrium, it is assumed to be at equilibrium. The first trajectory moving
along the line of initial conditions which does not tend towards equilibrium is taken to be on the basin boundary.
The heteroclinic cycle exists on the left of the vertical dashed line at β = γ = 0.5. At this point both the interior
equilibrium and heteroclinic cycle lose stability and all trajectories tend toward one of the corner equilibria, Φ1
or Φ4. Parameters: γ = 0.5, δ as indicated in figure. Dashed lines represent unstable equilibria, drawn lines
represent stable equilibria and small blue circles represent the heteroclinic cycles.

Orbits starting on the Wright manifold with B < 1
2 converge to the line A = 0, D = 0,

and those starting with B > 1
2 converge to the line A = 1, D = 0.

These numerical results show that the heteroclinic connection in the discrete-time model can

be stable. To find out how general this is we will next analytically determine the stability

of the heteroclinic connection in the discrete-time model. First, we approximate the QLE

manifold towards which the trajectories converge.
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Figure 3: The approximate quasi-linkage equilibrium manifold, and the approach to it by two typical
trajectories of the discrete-time model. Two trajectories, φheteroclinic and φequilibrium, differing only in initial
conditions, of the transformed discrete-time (1) system within the tetrahedron, both converging quickly to a
slow manifold. Here, the small dots are points on the manifold DQLE , given by (18). As can be seen, the
trajectories converge quickly to this manifold. Parameters and initial conditions as in Figure 1.

3.4. The QLE manifold

If β = γ the interior equilibrium is degenerate: in the discrete-time model the equilibrium

has two real multipliers at unity (and the interior equilibrium of the continuous-time model

has two eigenvalues at zero). Because there are two eigenvalues at unity (zero), the equi-

librium will have a two dimensional center manifold. If β = γ the center manifold is the

Wright manifold, the part of state space where D = 0, and where the gamete frequencies are

in linkage equilibrium. The third eigenvalue has a modulus smaller than one (smaller than

zero for the continuous-time model) and the associated stable manifold is given by the line

A = B = 1
2 . Orbits on this stable manifold move towards the center manifold.

If β < γ these two multipliers become a complex pair with real part smaller than one

(or negative real part for the continuous-time model). The equilibrium within this region

is hyperbolic (for all 0 < δ < 1
2 ) for the ODE (15). The same is true for the map (6)

when there is not equality in the stability condition (13). The center manifold morphs into a

two dimensional invariant manifold that is different from the Wright manifold and contains
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the interior equilibrium (9). On this manifold, orbits cycle around the equilibrium. The

invariant manifold containing the third eigenvector, the line on whichA = B = 1
2 , remains in

existence. Over this line, orbits quickly converge towards the equilibrium. On this approach,

the linkage disequilibrium, D changes rapidly while the allele frequencies A and B remain

unchanged. Other orbits show a similar behaviour (see Figure 3): orbits generally converge

towards the two dimensional manifold. Once orbits are close to this manifold the orbits

move slowly towards either the interior equilibrium or the heteroclinic cycle, depending on

the initial conditions (see Figure 2).

To approximate the QLE manifold, we will use a quasi-steady state argument. Specif-

ically, we say that the change in linkage disequilibrium D(t) occurs on a much faster time

scale than changes in the allele frequencies and will therefore settle on a quasi-equilibrium.

This means that we can assume that the allele frequencies A and B are effectively con-

stant, as D settles. With this assumption, we then solve the equilibrium equation for D (in

continuous-time) as a function of the allele frequencies, DQLE(A,B). It turns out that this

gives a good approximation for the QLE manifold for the discrete-time model as well as the

continuous-time approximation.

Simulations suggest that the gamete frequencies are attracted towards the manifold where

they are in quasi-linkage equilibrium (Fig. 4). We approximate the QLE manifold by

DQLE(A,B) = β(2A− 1)(2B − 1) + δ

2(γ − β)

−
√√√√
(
β(2A− 1)(2B − 1) + δ

2(γ − β)

)2

+ AB(1− A)(1−B).

(18)

As we show in Appendix B the relevant slow time-scale is proportional to (γ − β)− 1
2 .

3.5. Simplification by reducing to allele frequencies

Given the tendency of haplotype frequencies to settle in QLE, one would expect that if γ > β,

the dynamics proceed to the QLE manifold, and that the allele frequencies then change

slowly, either towards, or away from the interior equilibrium. This is indeed what happens

in the vicinity of the interior equilibrium. Further away from equilibrium, and in particular

in the vicinity of the heteroclinic cycle, this is not necessarily true. It is possible that the

manifold D = DQLE(A,B) is situated outside the simplex in which all gamete frequencies

are positive. If that is the case, the dynamics will be constrained by the edges of the simplex.
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(Φ2 + Φ3) Φ4

Figure 4: The fast approach to the QLE manifold shown using a Poincaré section. The dynamics of our
model has two different times scales and shows slow-fast dynamics. (a) A typical trajectory of the model
(1), simulated using β = 0.1, γ = 0.13 and δ = 0.11 and initial conditions (x1(0), x2(0), x3(0), x4(0)) =
(0.24, 0, 0, 0.76). To visualise the slow-fast dynamics we following the Poincaré section x2 = x3 (=A =
B) and record every instance where the orbit (shown in red) cuts through this section. (b) The intersection
points for a orbit plotted on the Poincaré section. The points of intersection of 22 trajectories are shown. The
trajectories have initial conditions equally spaced on the line connecting Φ1 to Φ4. The parameters used are
β = 0.3, γ = 0.35 and δ = 0.2. The figure shows the fast approach towards the slow manifold (the thin,
drawn lines connect the points of intersection from the same initial condition). The slow manifold is visible as
the accumulation of points forming a curve. Although the true slow manifold (blue and green filled lines) and
our approximation, DQLE , (purple dashed line) are distinct from the Wright manifold (dashed grey line) apart
from at the corners, where they intersect, they are very close and the purple curve is covered by the blue and
green line in most of the figure. Green dots are from orbits that end up in the interior equilibrium, Φ5, blue dots
from orbits going towards the heteroclinic cycle. The gap on the slow manifold between the blue and green
points contains the basin boundary. There will be an invariant closed curve located on the slow manifold in the
middle of this gap.
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Inside the simplex, DQLE ≤ 0 if γ > β. If the manifold, DQLE , cuts through the

sides of the simplex, it can only be on the faces where D ≤ 0, which is when x1 ≤ 0
or x4 ≤ 0. In terms of allele frequencies (A,B,D), that is when D = −AB or when

D = −(1−A)(1−B). The approximate manifold to which the dynamics are drawn is thus

given by D = DS(A,B), where

DS(A,B) = max
[
DQLE(A,B),−AB,−(1− A)(1−B)

]
, (19)

and we will use this to simplify the dynamics; in particular we will use it to determine the

stability of the heteroclinic cycle.

The system constrained to the attracting manifold is given by just two equations, describ-

ing the frequencies of A and B on the slow manifold,

A′ = 1
w̄
βA(1− A)(2B − 1) + A,

B′ = 1
w̄

[
(γ − β)B(2A− 1)(B − 1) + γ(2B − 1)DS(A,B)

]
+B,

(20)

where

w̄ = β(2A− 1)(2B − 1) + 2βDS(A,B) + 1. (21)

The dimensionality is now reduced and the system is significantly simplified. We can now

study and depict our model as a two dimensional system (Figure 5). The stability of the

heteroclinic cycle is governed by the magnitude of the eigenvalues in the connected saddles

that make up the cycle. In the planar system this is relatively simple to do.

3.6. Stability of heteroclinic cycle in the discrete-time model

To study the stability of our heteroclinic cycle, we use the condition derived in Hofbauer and

Schlag (2000) which determines whether a planar discrete-time heteroclinic cycle is attract-

ing or not. The condition involves the product of the ratio of the logarithm of the expanding

(ei) eigenvalues and the absolute value of the logarithm of the contracting eigenvalues (ci)

at the saddle equilibria (Φi where i = 1, ..., 4) the heteroclinic cycle travels between. We

follow their notation and use ρi to denote each individual ratio and ρ to denote the product
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Figure 5: The simplification of the system by using the approximate slow manifold, DQLE. (a) The
trajectories of our model represented gamete frequencies as given by eqns (1), plotted on the 3-simplex. The
QLE manifold, D = DQLE , is also plotted with a grid of equally spaced points. (b) The same trajectories and
the attracting manifold plotted for the transformed model (20); in both panels (a) and (b) the fast approach to
the slow manifold is visible. (c) The same trajectories but plotted on the QLE manifold. The system is reduced
to a planar system in the allele coordinates. Parameters and initial conditions as in Figures 1 and 3. Panel (a) is
a re-use of Figure 3.

of the ρi,

ρ =
n∏

i=1
ρi,

ρi = log ei
|log ci|

, i = 1, ..., n.
(22)

For our model, n = 4 and therefore ρ = ρ1ρ2ρ3ρ4. We are then able to state the stability

condition: a planar discrete-time heteroclinic cycle is asymptotically stable if ρ < 1 and is

unstable if ρ > 1 (Hofbauer and Schlag, 2000). The specific eigenvalues for the equilibria

and their type are given in Table 2. Their derivation can be found in Appendix C.

Calculating ρ using the eigenvalues in Table 2, we arrive at the condition for stability of
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Eigenvalue 1
1+β

1+γ
1+β

1
1−β

1−γ
1−β

Type c1, c4 e1, e4 e2, e3 c2, c3

Equilibria Φ1 & Φ4 Φ2 & Φ3

Table 2: The eigenvalues of the saddle equilibria between which the heteroclinic cycle travels, used to deter-
mine the asymptotic stability of the heteroclinic cycle in discrete-time. Eigenvalues of type c are contracting
(incoming), ones of type e are expanding (outgoing). Due to the symmetries in our system, the eigenvalues at
Φ1 and at Φ4 are equal and the eigenvalues at Φ2 and at Φ3 are equal.

the heteroclinic cycle 
 log 1+γ

1+β

|log 1
1+β |

log 1
1−β

|log 1−γ
1−β |




2

< 1, (23)

which, if β < γ, can be rewritten as

log(1 + β)
log(1− β) <

log(1 + γ)
log(1− γ) . (24)

In this form, it is readily seen that (23) is always satisfied if β < γ. Therefore, in our

discrete-time model constrained to the QLE manifold (20), the heteroclinic cycle is always

asymptotically stable if it exists.
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Figure 6: Relative error of our approximate manifold DS . To justify the use of the manifold derived from
the continuous-time system, DS , we numerically compute the relative error between the manifold and the D
component of an orbit of the discrete time system close to heteroclinic cycle. We compute both the manifold
expression and the orbit at the generation times of the discrete-time model, n and plot the following error
expressions |D(n) − Ds|/max (|D(n), |Ds|). Parameters were set to: γ = 0.25, δ = 0.3, A(0) = 0.9,
B(0) = 0.9, D(0) = 0.05 and the values of β are indicated in the plot titles. The The insets show the same
curves but with finer grain x-axis and y-axis scales allowing the bursts to be seen in more detail. The magnitude
of error is always very low.

3.7. Justifying the use of DS derived from the continuous-time model

In Figure 6, we show the relative error between the value ofD(n), the linkage disequilibrium

within the discrete-time model (1), and DS(t), the approximate slow manifold derived using

the continuous-time approximation of the discrete-time system, finding the difference to be

small. The error is computed using

E = |D(n)−DS|
max (|D(n), |DS|)

, (25)

a modified form of the relative error between the approximate manifold DS , and the D-

component of a trajectory of the discrete-time system, which aims to avoid division by zero

when one of the quantities is very small. The standard relative error expression could be

problematic in this case, since the orbits are close to the manifold. We produce a time se-
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ries of the distance between the D-component of the discrete-time orbit and the value of

DS evaluated at the values of the other variables along the orbit. This indicates that the

continuous-time manifold, DS , provides a good approximation for the discrete-time dynam-

ics.

4. Discussion

We studied a genetic system with viability selection and gene conversion that encompasses

a wide range of variants where selection can be derived from different aspects of the re-

combinational process (Úbeda and Wilkins, 2011; Úbeda et al., 2019). We show that the

selection regime associated with a fitness benefit derived from a sequence recognition (β),

a fitness cost derived from a gene conversion (γ) altogether with the reshuffling of alleles

in double heterozygotes induced by gene conversion and crossover (δ), can lead to stable

cycling dynamics in the two-locus, two-alleles model. Our model is most similar to that of

Haig and Grafen (1991), because in both models the often assumed symmetry of the fitness

matrix (Karlin et al., 1970) is broken. The fluctuations that feature in the model are caused

by selection for one allele burning out a target sequence followed by selection for an alter-

native allele that can burn out the sequence that replaced the old one. This pattern can repeat

indefinitely and the resulting dynamics form a heteroclinic cycle (Úbeda et al., 2019). To

find out if sustained fluctuations are possible in either of our model variants we investigated

whether the heteroclinic cycle attracts or repels (Hofbauer and Schlag, 2000).

We found that haplotype frequencies settle quickly on a state depending on the allele

frequencies in the population, and the allele frequencies change on a slower time scale than

the linkage disequilibrium (Kimura, 1965). After identifying the linkage disequilibrium D

as a good candidate for the fast variable, we performed the nonlinear change of variables

from haplotype to allele frequencies, which introduces D(t) as an explicit variable. We then

apply a quasi-steady state assumption to D(t) and solve the resulting algebraic equation for

D, which we use to reduce the dimension of our system by removing dependency on D

altogether (Figure 5) (Kuehn, 2015). We find that the dynamics don’t necessarily converge

to a single stable interior (polymorphic) equilibrium. We thus provide a biological example

of a doubly degenerate system that admits cycling.

After reducing the dimensionality, we found explicit conditions for stability of the het-

eroclinic cycles. Namely, the discrete-time model allows a heteroclinic cycle that is stable

if β < γ; on the other hand, its continuous-time approximation has a heteroclinic cycle
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that is always unstable and the dynamics eventually settle on an equilibrium. Furthermore,

we established numerically the basin of attraction for the heteroclinic cycle and studied the

accuracy of the closed-form approximation DS of the QLE manifold used to constrain the

dynamics (Figure 6).

The equilibria of the discrete and continuous-time models are the same (Bürger, 2000).

However, the stability of the heteroclinic cycle differs between the two models: the discrete-

time model can have an attracting heteroclinic cycle and a stable equilibrium, and thus has a

region of bistability in parameter space; however, its continuous-time approximation has, in

the same region of parameter space, β < γ, a globally attracting interior equilibrium point.

From a dynamical systems point of view this is not a surprise: it is well known that similar

nonlinear discrete and continuous-time models can differ in various ways (May, 1976).

However, preliminary results show that if the population in the model is finite and multi-

nomial sampling is used to pick the individuals who mate and are replaced (Wright, 1984;

Úbeda et al., 2019) — producing a stochastic and more biologically realistic version of our

model — we see the gap between the discrete-time model and continuous-time approxi-

mation bridged. Indeed, similar oscillatory behaviour is now observed in both models. In

fact, we see the two models behaving almost identically when the population is finite, just

differing in time scale. We also observe that the deterministic slow manifold, DQLE , is a

good approximation for the dynamics of the stochastic model, as shown to be possible in

some systems by (Constable and McKane, 2017). An in depth analysis of the stochastic

model however, is beyond the scope of this paper. Further work could use DQLE to simplify

the dynamics of the stochastic implementation of the model. Globally attracting invari-

ant QLE manifolds have recently been found to exist under certain parameter regimes in

the continuous-time two locus-two allele selection-recombination equations by Baigent and

Seymenoglu (2018).

Similar analyses using quasi-equilibria involving variables other than linkage disequilib-

rium have been conducted (Van Baalen and Rand, 1998; Day et al., 2011; Lion and Gandon,

2016; Lion, 2018). These models are evolutionary-ecological rather than population ge-

netic models, and rely on the weak selection approximation, but they still observe a rapid

convergence to quasi-linkage equilibrium. Our approach to studying the QLE manifold is

very general, applicable to any system showing a significant separation of time-scales. Any

genetic system of this sort converges to quasi-linkage equilibrium and therefore under an

appropriate transformation of variables — one which isolates the fast subsystem — can be

analysed in a similar fashion. Therefore, treating the QLE manifold as an slow manifold
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and using linkage disequilibrium as a coordinate to approximate this surface explicitly, is a

powerful technique for other genetic systems and even evolutionary ecological models.

Multi-locus models can have complex dynamics (Hastings, 1981; Hofbauer and Iooss,

1984; Haig and Grafen, 1991; Úbeda et al., 2019). It appears that most analyses of multi-

locus models have been carried out under weak selection assumptions, in which case the

dynamics are relatively simple: stable cycling is generally not possible and the dynamics

go to an equilibrium (Nagylaki et al., 1999). The weak selection assumption allows for

general analytic results (Akin, 1982; Hofbauer, 1985; Barton, 1995; Nagylaki et al., 1999;

Kirkpatrick et al., 2002), often invoking the use of the QLE. Under weak selection, stable

cycling and complex dynamics do not occur if the equilibria are not degenerate and therefore

complex dynamics are not observed under QLE. This association of QLE with weak selec-

tion and stability might have led to the impression that complex dynamics are not compatible

with quasi-linkage equilibrium (Pomiankowski and Bridle, 2004). What we have shown here

is that complex dynamics are possible and, furthermore, are played out in a state of quasi-

linkage equilibrium showing the association between QLE and convergence to equilibrium

to not be true in general: it is possible to find continued fluctuations and sudden changes in

the genetic make up in a population at quasi-linkage equilibrium.
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Appendix A. Deriving the discrete-time model

Our model (Úbeda et al., 2019) can be written as a particular case of the model known as

the selection-recombination equations presented in (Lewontin and Kojima, 1960; Nagylaki

et al., 1999; Bürger, 2000; Ubeda and Haig, 2005) and many other papers (Nagylaki et al.,

1999). In the general model, haplotype frequencies evolve according to

w̄x′i(n) =
m∑

j=1
wi,jxixj + εiδ (w1,4x1x4 − w2,3x2x3) , (A.1)

where xi denotes the frequency of haplotype i, m is the number of alleles and n ∈ N+

represents the discrete time step. The recombination terms δ (w1,4x1x4 − w2,3x2x3) have

different signs depending on the haplotype, provided by εi for haplotype i. Specifically, for
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a two-locus two-allele implementation of the model, ei is defined as

εi =




−1 for i = 1, 4

1 for i = 2, 3.
(A.2)

The marginal mean fitness of a haplotype whose frequency is xi is given by

wi =
n∑

j=1
wi,jxj, (A.3)

and the mean fitness of the population is given by

w̄ =
n∑

j=1
wjxj. (A.4)

Due to the normalisation of the right hand side of the governing equations of the model by

the mean fitness of the population, the sum of the haplotype frequencies is always one. This

means the state space of the model is the simplex of dimension nm−1, where n is the number

of alleles and m is the number of loci.

Fitnesses for the two-locus two-allele version of our model are derived by computing

all of the frequencies of offspring given by each possible mating combination. Due to the

symmetries on the allele types determining when recombination occurs, the linkage disequi-

libriumD is the same for each haplotype and therefore can be taken out of the fitness matrix.

This is clearly true in the more general versions of the model, meaning the linkage terms

are separate in the statement of the general model equations (A.1). After this, and other

simplifications which are possible due to symmetries in the gene conversion process and the

viability benefits derived from crossover, we arrive at the following fitness matrix for the two

allele two loci version of the model

W =




1 + β 1− γ 1 1
1 + γ 1− β 1 1

1 1 1− β 1 + γ

1 1 1− γ 1 + β



. (A.5)

Applying our specific fitness matrix to the general model given gives the following system
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of equations

w̄x1(n+ 1) = (1 + β)x2
1 + (1− γ)x1x2 + x1x3 + x1x4 − δD,

w̄x2(n+ 1) = (1− β)x2
2 + (1 + γ)x2x1 + x2x3 + x2x4 + δD,

w̄x3(n+ 1) = (1− β)x2
3 + (1 + γ)x3x4 + x3x1 + x3x2 + δD,

w̄x4(n+ 1) = (1 + β)x2
4 + (1− γ)x4x3 + x4x1 + x4x2 − δD.

(A.6)

Expanding the brackets in system (A.6) and applying the conservation law for the total pop-

ulation,
∑4
i=1 xi = 1, we can simply the system to

w̄x1(n+ 1) = x1(n)[1 + βx1(n)− γx2(n)]− δD,
w̄x2(n+ 1) = x2(n)[1− βx2(n) + γx1(n)] + δD,

w̄x3(n+ 1) = x3(n)[1− βx3(n) + γx4(n)] + δD,

w̄x4(n+ 1) = x4(n)[1 + βx4(n)− γx3(n)]− δD,

(A.7)

where w̄x(n+ 1) = f(x) and n ∈ N+ and the population mean fitness is

w̄ =
4∑

i=1
fi(x) = x1 + x2 + x3 + x4 + β(x2

1 + x2
4 − x2

2 − x2
3). (A.8)

Appendix B. Isolation of the multiple time-scales

The region of parameter space for which the following arguments hold is where the hetero-

clinic cycle exists and is attracting in the discrete-time model, i.e. β < γ.

Appendix B.1. Time-scale separation nearby the interior equilibrium

We find three distinct time-scales in the dynamics of the linearised system nearby the interior

equilibrium. Recall that the eigenvalues of the interior equilibrium of the continuous-time

model are given by

λ1 =
γD∗ +

√
(γD∗)2 + 1

4β(β − γ)
w̄∗

,

λ2 =
γD∗ −

√
(γD∗)2 + 1

4β(β − γ)
w̄∗

,

λ3 = −δ + 2D∗(β − γ)
w̄∗

,

(B.1)
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where w̄∗ = 1 + 2βD∗. If β > γ then D∗ > 0. The interior equilibrium in that case is a

saddle. If β < γ then D∗ < 0. Eigenvalues λ1 and λ2 then are complex with negative real

parts and the interior equilibrium is always locally stable.

We introduce the parameter

ε =
√
γ − β, (B.2)

which is small near the boundary of the region of parameter space in which we observe

time-scale separation, β < γ. We substitute this definition into the equations and compute

the eigenvalues at the interior equilibrium (9). For 0 < ε � 1, the eigenvalues satisfy the

identities
w̄∗λ1 = −ε2 γ

8δ + iε

√
γ

2 +O(ε3),

w̄∗λ2 = −ε2 γ

8δ − iε
√
γ

2 +O(ε3),

w̄∗λ3 = −δ +O(ε3).

(B.3)

The dynamics of the system linearised around the interior equilibrium (9) operate on three

distinct time-scales: w̄δ−1, 2w̄ε−1γ−
1
2 and 8δw̄ε−2γ−1. If 0 < ε

√
γ � 2δ < 1 the time

scales separate as δ−1 � 2ε−1γ−
1
2 � 2δ

(
2ε−1γ−

1
2
)2
. The second and third time-scales are

associated with the motion within the QLE manifold, while the first relates to the approach

towards the QLE manifold. Under this condition, the approach is very fast compared to

the dynamics on the manifold, which justifies making a quasi-steady state assumption. This

behaviour can be observed in Figure 3 where the approach to QLE is very fast with associated

time-scale w̄δ−1, and much faster than the cyclic behaviour on the manifold, which acts on

time-scale 2w̄ε−1γ−
1
2 , which in turn is faster than the approach to equilibrium which acts on

time-scale 8δw̄ε−2γ−1.

Note that the separation of time-scales is a direct consequence of the double degeneracy

of the interior equilibrium (9). Specifically, when β = γ, and hence ε = 0, two eigenvalues

are zero. If the third eigenvalue is much smaller than zero, for small ε and continuous

dependence of the eigenvalues on ε, the separation of time scales follows. This implies

that the existence of a two-dimensional slow manifold is a generic result in the proximity of

a double degeneracy and independent of the details of the model.
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Appendix B.2. Time-scale separation in the full system

We introduce the new variables

X =
√
γ − β ln

(
A

1− A

)
+
√
β ln

(
B

1−B

)
,

Y = (γ − β) ln
(
A(1− A)

)
+ β ln

(
B(1−B)

)
,

Z = D

γ − β .

(B.4)

If γ 6= β, these definitions implicitly define A and B locally as functions of X and Y and

therefore the inverse transformation exists.

Rewriting the continuous-time model (15) in the new variables (B.4),

dX
dt =

√
β(γ − β)
w̄

(
√
β(2B − 1) +

√
γ − β(2A− 1) + γ

√
γ − β(2B − 1)Z
B(1−B)

)
,

dY
dt = −β(γ − β)

w̄
γ

(1− 2B)2

B(1−B)Z,

dZ
dt = (γ − β)−1

w̄

[
(γ − β)

[
(γ − β)2Z2 −AB(1−A)(1−B)

]

− (γ − β)Z(β(2A− 1)(2B − 1) + δ)
]
.

(B.5)

Using (B.2), this can be written as

1
ε

dX
dt =

√
β

w̄

(√
β(2B − 1) + ε(2A− 1) + γε(2B − 1)

B(1−B) Z
)
,

1
ε2

dY
dt = −βγ

w̄

(1− 2B)2

B(1−B)Z,

dZ
dt = 1

w̄

[
ε4Z2 − AB(1− A)(1−B)− Z (β(2A− 1)(2B − 1) + δ)

]
.

(B.6)

When ε is small, the form of (B.6) isolates three distinct time-scales. The variable Z is

changing at the fastest time-scale, and for Z small the variables X and Y (and A and B) are

effectively constant. If A and B are constant, the variable Z has an equilibrium at

Z∗ =ε−2β(2A− 1)(2B − 1) + δ

2ε2

− ε−2

√√√√
(
β(2A− 1)(2B − 1) + δ

2ε2

)2

+ AB(1− A)(1−B).
(B.7)
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The linearised dynamics around Z∗ are given by

d(Z − Z∗)
dt = − 1

w̄
(Z − Z∗)

√(
β(2A− 1)(2B − 1) + δ

)2
+ 4ε4AB(1−A)(1−B) (B.8)

which always converges to the equilibrium Z = Z∗. Based on this we chooseDQLE = ε2Z∗.

If DQLE is situated outside the simplex this argument is not relevant but a similar argument

can be applied for attraction to the state Z = ε−2DS.

Appendix C. Determining the contracting and expanding

eigenvalues of the corner equilibria

Eigenvalue 1− β
1+β 1 + γ−β

1+β 1− β
1+β 1 + γ−β

1+β

Type cj ej cj ej

Condition δ ≤ γ − 2β δ > γ − 2β

Table C.3: The eigenvalues of the equilibria Φ1 and Φ4. The eigenvalues do not depend on the condition.

In the vicinity of the origin (Φ4), we find by Taylor expanding to second order that the

QLE manifold is approximately defined by DQLE(0, 0) ≈ −γ−β
β+δAB. The attracting mani-

fold D = DS(A,B) in the vicinity of the origin is approximately

DS(A,B) ≈




−AB if δ ≤ γ − 2β,

DQLE(A,B) if δ > γ − 2β.
(C.1)

The eigenvalues are therefore those given in table C.3.

Likewise, in the vicinity of the equilibrium Φ2 and Φ3 the QLE manifold is approximately

DQLE(A,B) ≈




− β−δ
γ−β + 2β

γ−βA+ 2β
γ−β (1−B) + (γ−ββ−δ + 4β

γ−β )A(B − 1) if δ < β,

−γ−β
δ−βA(1−B) if δ > β,

(C.2)

Eigenvalue 1− γ−β
1−β 1 + β

1−β 1− γ−β
1−β 1 + β

1−β

Type cj ej cj ej

Condition δ ≤ β δ > β

Table C.4: The eigenvalues of the equilibria Φ2 and Φ3. The eigenvalues do not depend on the condition
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and hence

DS(A,B) ≈





max(−AB,−(1− A)(1−B)) if δ ≤ β,

DQLE(A,B) if δ > β,
. (C.3)

The eigenvalues are therefore those given in table C.4.
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Chaotic evolutionary dynamics predict faster-than-drift
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Abstract

Selfish genetic elements are genes that seek to enhance their own frequency, at no benefit
or even a cost to the individual Lindholm et al. (2016). Theoretical models of evolution-
ary dynamics tend to focus on populations near or at equilibrial gene frequencies, typically
limiting their analyses to linear stability and seeking models that lend themselves to this
procedure, i.e. focusing on models which do not exhibit sufficiently complex dynamics to
warrant a different approach. Given the evolutionarily complex behaviour of SGEs, for ex-
ample selective sweeps followed by stasis (Lindholm et al., 2016; Núñez et al., 2018), we
ask whether the interaction between selfish driver and target loci, interacting with specificity,
exhibit complex behaviour. We show that genetic systems, with high enough biodiversity,
can have chaotic dynamics arising from the linking of many heteroclinic cycles producing a
heteroclinic network. We show, using symbolic dynamics, that this leads to a horseshoe map
and positive Lyapunov exponents. The dependence on initial conditions means that nearby
populations are driven apart. Populations diverge quickly, showcasing how chaotic dynamics
can isolate populations. We believe this provides a plausible explanation for some observed
chaotic genetic patterns, for example chaotic genetic patchiness.
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∗Corresponding author
Email address: timothy.russell.2015@rhul.ac.uk (Timothy W. Russell)

Chapter 6. Chaotic evolutionary dynamics

144 of 173



1. Main text
The dynamics of biological populations are often erratic and unpredictable. Chaos theory
has given us the insight that such dynamics come about even if the biological rules gov-
erning the system are simple (May, 1976). Gene frequencies, on the other hand, tend to
have less complex dynamics and convergence to an equilibrium state is seen as the prevail-
ing mode. Although genetic systems can theoretically have non-equilibrium behaviour and
show, for instance, sustained oscillations (Akin, 1982; Hastings, 1981; Russell et al., 2019),
such dynamics have not been widely supported by empirical results.

A notable exception are selfish genetics elements (SGEs). SGEs are genes, or sets of
genes, that enhance their own transmission at the expense of the fitness of the organism they
reside in (Werren, 2011). This results in rapid evolutionary change and genetic sweeps, punc-
tuated by periods of relative stasis (Le Rouzic and Deceliere, 2005; Camacho et al., 1997;
Goddard and Burt, 1999). Due to the fitness advantage they gain through overtransmission,
populations can be invaded by SGEs. However, once established, they are prone to invasion
themselves by genotypes that are resistant to overtransmission by the SGE. This can result in
periods of rapid evolution including cyclic and recurrent replacement, as has been reported
for meiotic drivers (Lindholm et al., 2016), a broad class of SGE’s.

Meiotic drive systems typically involve a number of genes: the driver locus and a tightly
linked target locus, on which the products of the driver locus act. Specific genes for drivers
and targets have been identified in many cases, but the mechanism by which drive is achieved
mostly remains elusive. Over transmission can be achieved through selective disruption or
harm caused by a mismatch between driver and target, so that if the drivers in the gametes
are matched to a different degree a departure from normal Mendelian segregation is achieved
(Werren, 2011). It is further recognized to be likely that functional drivers impose a fitness
cost; without such a cost, drivers would go to fixation (Núñez et al., 2018).

Meiotic drives often do not go to permanent fixation: drivers coexist in a population at
relatively low frequencies, or show repeated invasion and degeneration, followed by re inva-
sion (Lindholm et al., 2016). This is also supported by theoretical models which show that
the dynamics of meiotic drivers can proceed to equilibrium, or have a sequence of cyclical
connections between unstable (saddle) equilibria, known in mathematical terms as a hete-
roclinic cycle (Haig and Grafen, 1991; Stadler, 1996). This results in dynamics in which
the population shows periods of stasis, interspersed with rapid sweeps (Figure 1). In models
with two driver variants this results in dynamics in which the population shows an alternation
of drivers sweeping through the population (Haig and Grafen, 1991; Stadler, 1996). Further-
more, the same patterns have been observed in models of homing endonuclease dynamics,
another class of SGE (Yahara et al., 2009).

But what if there are more than two driver alleles? Will there be a stable equilibrium,
will there be cycles of invasion in which the drivers take turns, or will the dynamics show
an irregular sequence of invasions and become complex? Theoretically, if there are more
than two driver alleles, multiple heteroclinic cycles can coexist and link together to form
a heteroclinic network (Figure 2). In the vicinity of such heteroclinic networks complex
dynamics are common and chaotic dynamics often ensue (Kirk et al., 2010). Here, we will
explore if the heteroclinic networks that are associated with three allele systems for SGEs
can give rise to chaotic dynamics.
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Figure 1: The dynamics of the two-allele model. We plot a solution of the two-allele model undergoing a
heteroclinic cycle. When just two-alleles at each locus are present in our model, the allele frequencies proceed
either towards the interior equilibrium or a heteroclinic cycle — where the system moves from one saddle
equilibrium to another around the edges of the state space. During the approach to the heteroclinic cycle, the
system stays in the vicinity of the unstable equilibria for longer and longer and dominant driver-target pairs in
the population alternate. Panel A shows a phase space plot of a trajectory of the two-allele model using allele
frequencies as coordinates. The environments in which a driver-target pair dominates are indicated by coloured
spheres. Panel B shows a time series of the same trajectory, but in haplotype coordinates, with an inset of the
phase space in haplotype coordinates — the tetrahedron. The bars above the time series indicate the times for
which a matching driver-target pair dominates the population (i.e. when p2

i,i − φ2
i,i < ε2ball for i = 1, 2 where

φi,i is the saddle equilibria with haplotype pi,i at fixation and ε = 1× 10−2).

We formulated a simple model for a meiotic driver. Our model is a special case of
the standard selection-recombination model (Bürger, 2000) that simplifies and generalizes
a model for segregation distortion including drive, the reduction it causes in fitness, and re-
combination (Charlesworth and Hartl, 1978). We assume that there are m-alleles present in
the population for both the driver and the target loci. Gametes that contain an unmatched
driver allele are under transmitted relative to gametes that have a matched allele. The match-
ing between the driver and target allele bears a fertility cost for the diploid: the more matches
possible, the greater the cost. Therefore, a homozygous individual bearing matching driver
and target has a reduction in fertility. Our model thus captures the essential feature of SGEs:
they can invade when rare despite imposing a fitness cost on the individuals that bear them,
thus capturing the complex dynamic interaction within a diverse population of SGEs.

For two-alleles we found the model to show oscillatory dynamics, which converged either
to an equilibrium or to a heteroclinic cycle. This pattern can then repeat itself in a cyclic
manner where the population alternates over time between the two different morphs of the
distorters. The heteroclinic cycle can be characterized as follows: in a population in which a
matching distorter-recognition pair dominates, a different recognition allele can invade, as it
conveys a fitness benefit. Once this recognition allele has established itself in the population
the matching distorter allele can invade (Figure 1).

The two-allele model exhibits regular dynamics, including stable cycling. Whereas, the
dynamics of the three-allele model are much richer. Indeed, they can be irregular and highly
complex. Figure 2 shows an example of the possible dynamics, suggesting the genetic sys-
tem of three variant meiotic drivers can be chaotic. The irregular dynamics are easiest under-
stood with reference to the heteroclinic cycles that the model allows. The three-allele model
clearly has three heteroclinic cycles analogous to the one we encountered in the two-allele
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Figure 2: The dynamics of the three allele model. In the vicinity of heteroclinic networks, chaos is com-
monly found (Rodrigues et al., 2011). If three allelic variants are permitted in our model, we find a heteroclinic
network with neighbouring chaotic dynamics in large regions of parameter space. More specifically, the pop-
ulation fluctuates, with one of the driver-target pairs dominating most of the time. This succession can be
irregular and unpredictable. The left panel shows the state space projected into 2D using the projection func-
tion given by (39). Here, we see that the dynamics follow the heteroclinic network (heteroclinic connections
are in solid and dashed black lines) with oscillatory behaviour in between connections. The dynamics occa-
sionally get very close to nodes in the network, then to move away from it again. Panel B shows a time series
of one of the same trajectories which is plotted using dashed lines in the projection (Panel A). There are three
of these cycles in total. Panel C shows a time series of a chaotic solution which starts close but not on any of
the cycles. Bars above both of the time series (Panel B and C) indicate which driver-target pair is dominating
at that time in a similar fashion to Figure 1.

model. They occur in the three-allele model when one of the driver-target pairs is absent
(Figure 2, Panel A, solid black lines). In addition, a further set of three heteroclinic cycles
can exist if one driver competes against a coalition of two drivers that are present at equal
frequencies (Figure 2, Panel A, dashed black lines). Starting from a population dominated
by one type, say type 1, this state is then invaded by a coalition of equal frequencies of re-
sistance alleles 2 and 3. This in turn leads than to a population in which type 1 is absent
and types 2 and 3 are at equilibrium. This polymorphic equilibrium can then be invaded by
resistance gene 1, which in turn can be invaded by killer gene, which completes the cycle.

These six heteroclinic cycles link together form a heteroclinic network, and this hetero-
clinic network structure the dynamics of the three-allele model (Figure 2). When plotted in
state space spanned up by the allele frequencies we see that the dynamics loosely follow the
heteroclinic networks (Figure 2, Panel A, solid and dashed black lines). In the process we
can see the population being close to a state where a single driver-target pair dominates the
population, then to move away from it again.

Chaotic-like dynamics are commonly found in the vicinity of heteroclinic networks (Kirk
et al., 2010). The three-allele system is an example of such a model. The population fluctu-
ates and is being dominated by a succession of alleles. This succession can be irregular and
unpredictable (Figure 2). The dynamics occasionally get very close to nodes in the network,

Chapter 6. Chaotic evolutionary dynamics

147 of 173



then move away again; a behaviour known as switching where a trajectory moving close to
one heteroclinic cycle can abruptly switch and start following another cycle on the nearby
network.

In natural populations, meiotic drivers vary over space and time; the dynamics often
showing episodes of rapid turnover and sweeps, leading to a succession of different dominant
drivers (Lindholm et al., 2016). This succession of different drivers provides a natural way
to characterize the dynamics, both in empirical and model systems. In mathematics, the
following concept is known as symbolic dynamics. Within the context of our model, the
idea is to describe the dynamics as a sequence of states — which driver-target is dominating
at a given time — rather than looking at the change in gene frequencies. To do so, we
look at the sequence of bars that are depicted in Figures 1 and 2. If we assign the numbers
1, 2, 3, ..., n to the distinct balls corresponding to the haplotypes with matching driver and
target alleles, the succession of dominant types translates into a sequence of numbers. This
sequence suffices to describe the dynamics. For instance, in the approach to the heteroclinic
cycle in the two allele model the symbolic dynamics can be 1, 2, 1, 2, 1 etc. (see Figure 1).

Which driver is the first one to become dominant depends on the initial conditions. Figure
3 shows a map of which driver is the first to become dominant in the three allele model,
starting from different combinations of the 3 matching driver-allele pairs and using the same
colours as Figure 2. The dependence on initial conditions is complicated, but note that the
heteroclinic cycles that we have outlined (black dashed and solid lines in Figure 2, left panel)
can be identified in this map. Concentrating on the corners of the triangular map we can see
that starting from an initial condition dominated by one driver, we see that the next driver can
by any of three (Figure 3b). If we then look at the state after that, we see that the domains
leading to next state are split in 3: from one driver to the next anything is possible. This
argument is similar to the of the Smale horseshoe map that is used in chaos theory to show
that any sequence of types is possible: if from one dominant driver type to the next any driver
can be picked there exist any sequence of symbols is possible and this shows the existence
of irregular, and non-cyclic sequences – a hallmark of chaos (Smale, 1967).

Figure 3 also shows the sensitivity to initial conditions in the three-allele model. Solu-
tions that start from nearby initial conditions will eventually diverge and lead to a very dif-
ferent sequence of states, therefore the map of the possible sequences becomes finer grained
as the sequence gets longer (Figure 3b and 3c). This is further confirmed by the observation
that the solutions can have a positive Lyapunov exponent.

A positive Lyapunov exponent means that two populations — with slightly different ini-
tial conditions — will eventually become very different (Arnold and Wihstutz, 1986). In a
spatial setting of this model this means that spatial differences will increase over time if the
coupling between two populations is less than the Lyapunov exponent (Jansen and Lloyd,
2000). To demonstrate this, we implement a finite population spatial version of the chaotic
three allele model. We achieve this by first formulating the model for the subpopulation dy-
namics: a version of the model with demographic stochasticity, in the form of multinomial
sampling of haplotypes between each generation, and mutation between alleles at both loci.
Then, to produce the model representing the metapopulation dynamics, we couple n2 sub-
populations together on a square n-by-n lattice. The coupling represents migration between
patches, causing gene flow between neighbouring subpopulations (see Subsection 2.2 in the
Methods section).
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Figure 3 (previous page): The next driver map. We visualize the symbolic dynamics by constructing a map of
the next driver for different starting frequencies. The map is constructed by computing trajectories which begin
with a mixture of matching driver-target pairs (and all other haplotypes absent initially) — we depict the results
as a barycentric map. More specifically, we linearly divide the space in which all three driver-target pairs are
initially present in the population (and the other haplotypes are not present). We then iterate the system and
determine which of the three driver-target pairs dominate next — determined by whether the trajectory has
entered one of the three spheres depicted on the projection on the phase space with the same colours in Figure
3. The position of the map indicates the driver-target pair (p1,1, p2,2 or p3,3), initial frequency and the colour
indicates which sphere that trajectory entered first after simulating the dynamics.

Within the finite population metapopulation model, spatial patterning develops and the
gene frequencies differ between locations if the local solutions are chaotic. The chaotic
dynamics drive populations apart and the divergence in populations is faster than what one
would obtain than through genetic drift causing classical isolation by distance (Figure 4).

Our results show that the specific features of SGEs can lead to complex, non-equilibrial
dynamics in the gene frequencies. The dynamics are dominated by selective sweeps and
repeated invasions which can lead to the unstable coexistence of multiple types of an SGE. If
there are more than three driver and target genes possible in the population, chaotic dynamics
are possible. In a spatial context this can lead to the divergence of local populations and a
shifting mosaic type pattern. All these observations have parallels in the observed dynamics
of SGEs. For example, selective sweeps and repeated invasions are commonplace for SGEs
(Camacho et al., 1997; Goddard and Burt, 1999; Le Rouzic and Deceliere, 2005; Lindholm
et al., 2016; Núñez et al., 2018). Diversity in types has been observed for meiotic drivers
in the fungi Neurospora (Hammond et al., 2012) and Podospora (van der Gaag et al., 2000;
Vogan et al., 2019): in the latter as many as seven types have been found to co-occur, as well
as considerable spatial heterogeneity (Lindholm et al., 2016).

Our results show that chaotic dynamics can easily emerge in some simple genetic models,
provided diversity is sufficiently high, suggesting that chaotic genetic dynamics could be
more prevalent than hitherto assumed. Furthermore, the dynamics of our metapopulation
model sheds new light on the potential speed and cause of of genetic divergence of local
populations. Specifically, chaotic in-patch dynamics can cause local populations to diverge
faster than they would via genetic drift alone (Figure 4). The novelty of this pattern explains
why few data exist supporting this statement. However, empirical phenomena this pattern
might explain do exist. The clearest example comes from the genetics of marine ecosystems
and is known as chaotic genetic patchiness. It sees genetic diversity at a small scale — in
the order of a kilometer — appearing as large as would be expected through isolation by
distance, over distances of hundreds of kilometers (Eldon et al., 2016).
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Figure 4: A snapshot of the spatial three-allele model. Snapshot taken at t = 2, 050 of the spatial model
(see Subsection 2.2 in the Methods section), with four neighbours per site and periodic boundary conditions.
The same three colours as Figures 2 and 3 represent symbolically which of the homozygote haplotypes are
dominant in the subpopulation. The parameters used were the same as those in Figure 2. Green represents
non-matching driver-target haplotypes are dominating the subpopulation.
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2. Methods

2.1. The in-patch dynamics
The mathematical model describing the dynamics within each patch is a special case of
the selection-recombination equation for two interacting loci and m-alleles. The general
selection-recombination equations are given by

p′i,j = w̄−1
(
pi,j

m∑

k,l=1
ai,j;k,lpk,l − r

m∑

k,l=1
(pi,jpk,l − pi,lpk,j)

)
, (1)

where

w̄ =
m∑

i,j,k,l=1
ai,j;k,lpi,jpk,l (2)

and pi,j is the frequency of gametes that have distorter allele i and recognition allele j. There
are m2 different haplotypes. We focus on the models with two or three variants of the driver
and target loci, i.e. where m = 2 or m = 3.

We generalise the model for segregation distorters — by allowing for m alleles — orig-
inally formulated by Charlesworth and Hartl (1978). We also simplify their model by com-
bining the effects of over transmission and fitness reduction, resulting in a far simpler for-
mulation of the process. Their model describes distortion, the reduction in fitness distortion
causes and recombination between two loci. The interaction of a driver and target loci is
modelled by assuming the following: if a diploid contains one unmatched distorter allele,
the gametes containing this allele are under transmitted and the other allele is over transmit-
ted both by a factor of ki; if the distorter and recognition allele match (i.e. the subscripts
at the two loci are equal), this bears a fitness cost to the resulting gamete by a factor of si.
Therefore, homozygous individuals bearing matching distorter and recognition alleles have
a drastic reduction in fertility. The effect of recombination follows the standard selection-
recombination equation and remains unchanged from the general model (1).

Putting the over/under transmission and the fertility cost together, we arrive at the fol-
lowing rules for the fitness parameters ai,j;k,l for each haplotype

ai,j;k,l =





sb(i;j,l)+b(k;j,l) if b(i; j, l) > 0 ∨ b(k; j, l) > 0,
sb(k;j,l) − kb(k;j,l) if b(i; j, l) = 0 ∨ b(k; j, l) > 0,
sb(i;j,l) + kb(i;j,l) if b(i; j, l) > 0 ∨ b(k; j, l) = 0,
s0 if b(i; j, l) = 0 ∨ b(k; j, l) = 0.

(3)

where — using δ(i, j), the Kronecker delta function — we define the function

b(i; j, l) = δi,j + δi,l (4)

to count the total number of matches for distorter allele i that are possible in a diploid. The
total number of matches in the diploid is b(i; j, l) + b(k; j, l). For the explicit model in full,
for both two and three-alleles, see Sections 3.3 and 3.4 respectively.

Note that the figures showing the in-patch dynamics (Figures 1 and 2) were of the allelic
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frequencies, not the haplotype frequencies. The transformation, from haplotype frequencies
to allelic frequencies (+ linkage disequilibrium) is known as symmetric coordinates and is
standard in theoretical population genetics Karlin et al. (1970). We use it as our model has
a lot of intrinsic symmetry, which is the cause of the many heteroclinic cycles connected,
forming a heteroclinic network. Therefore the symmetric coordinates are a natural choice.

To aid some of the analysis, especially in the invariant subspaces subsection, we occa-
sionally use single subscript notation via the following relation

xi+m(j−1) = pi,j. (5)

2.1.1. Equilibria

We were able to determine the form of the unique polymorphic equilibrium of the m-allele
model, using the form of the lower dimensional equilibria and the internal symmetries within
the equations. The most concise way to write it is using vector notation. Let 1 denote a vector
of ones of dimension m2. We use Φ to denote the equilibrium, D∗ to denote the value of the
linkage disequilibrium at the polymorphic equilibrium. Lastly, v represents an eigenvector of
the equilibrium. Using these definitions, it is possible to write the polymorphic equilibrium
as

Φ = 1
n

1 +D∗v. (6)

All three vectors in the equilibrium equation above, Φ,1 and v, are of dimension m2. The
eigenvector v is, using the single subscript notation, given by

vi+n(j−1) =



m− 1 if i = j,

−1 if i 6= j.
(7)

The equilibrium equation is derived in full for the two-allele model in the supplementary
material (22). It is a cubic, therefore its solution is omitted for brevity.

2.1.2. Invariant subspaces and heteroclinic connections

To illustrate the existence of the heteroclinic connections within the three-allele model, we
parameterise one of the three heteroclinic cycles for both the solid and the dashed cycles (see
Figure 2, Panel A). The other two cycles for both types can be easily deduced by using the
equivariance of the equations.

The cycles move on heteroclinic connection between equilibria (saddles): the solid cycles
between equilibria that lie on the edges of the state space; the dashed cycles between a
mixture of edge and interior equilibria. To explicitly state one cycle of each type, let lpi denote
the ith heteroclinic connection of pth solid cycle where i ∈ {1, ..., 4} and p ∈ {1, 2, 3}.
Furthermore, let l̄pi similarly denote the ith connection on the pth dashed cycle. We present
parameterised versions of all four connections, using haplotype coordinates, for l1i and l̄1i .
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The solid cycle is comprised of the following four heteroclinic connections

l11 =
(
x1, 1− x1, 0, 0, 0, 0, 0, 0, 0

)
,

l12 =
(

0, x2, 0, 0, 1− x2, 0, 0, 0, 0
)
,

l13 =
(

0, 0, 0, 1− x5, x5, 0, 0, 0, 0
)
,

l14 =
(

1− x4, 0, 0, x4, 0, 0, 0, 0, 0
)
,

(8)

where all variables are between zero and one and all lines are oriented positively (the vari-
ables increase as time increases).

Now for the dashed cycle

l̄11 =
(
x1, 0, 0, 1

2(1− x1), 0, 0, 1
2(1− x1), 0, 0

)
,

l̄12 =
(

0, 0, 0, x4, x5, x6, x4, x6, x5

)
,

l̄13 =
(

0, x2, x2, 0, x5, x6, 0, x6, x5

)
,

l̄14 =
(
x1,

1
2(1− x1), 1

2(1− x1), 0, 0, 0, 0, 0, 0
)
.

(9)

We evaluate the invariance of these subspaces by seeing A parameterised subset of the
state space, y, is invariant (with respect to the dynamics of our map) if

x = y =⇒ x′ = y′. (10)

This condition, for the lines presented above (and the other four heteroclinic cycles), is
verified for our system in the attached Mathematica notebook (see Subsection 3.7 for details).
The other cycles of both types are produced by the three-fold equivariance of our equations.
The connections which make up those cycles can be found by permuting the connections
given explicitly in this section. Alternatively, we provide their explicit form in the attached
Mathematica notebook before verifying their invariance with respect to the dynamics of the
system.

2.2. The spatial model
To extend the in-patch dynamics to a spatial model, we develop a well-known type of dynam-
ical system known as a coupled map lattice. It is named so as we are coupling many maps
— aka discrete-time dynamical systems — together in a lattice formation. The coupling
biologically represents migration.

To ensure the spatial model was as biologically realistic as possible, we changed from
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an infinite population (deterministic) model, for the in-patch dynamics, to a finite population
(stochastic) model. We did this by multinomially sampling from the gamete pool at the end
of each generation, representing classical genetic drift (Ewens, 2012). For individuals in a
given patch, migration is possible to the patches four nearest neighbour patches, at a constant
rate given by a parameter µ. Lastly, the boundaries are periodic, meaning that the surface is
topologically equivalent to the torus.

3. Supplementary material

3.1. Model description and motivation
Selfish genetic elements enhance their own transmission at the expense of the fitness of
the organism they reside in. One way in which selfish genetic elements achieve over-
transmission is through segregation distortion: a manipulation of the genetic process so that
one allele is passed on more than another to the next generation. This can be achieved is
through causing allele causing differential harm or mortality to the gametes. This can be
achieved through linked loci coding for a distortion and recognition. The distortion allele
produces a protein matches the recognition allele (or its product), and if so there is a reduc-
tion in the bearer’s fitness. It the distorter allele isn’t matched, then the part of the gametes
containing such alleles fail to develop or function properly. If the distortion alleles in the
gametes are matched to a different degree a departure from normal Mendelian segregation is
achieved (Werren, 2011).

We formulate a simple model for such a segregation distorter. Our model is a simplified
and generalised version of an earlier model for segregation distortion that describes distor-
tion, the reduction its causes in fitness and recombination (Charlesworth and Hartl, 1978).
We assume that there are many different alleles for the distorter and recognition alleles. If
a diploid contains one unmatched distorter allele, the gametes containing this allele are un-
der transmitted and the other allele is over transmitted. We assume that matching between
the distorter and recognition allele bears a fitness cost for the individual in the form of re-
duced fertility. The more matches that are possible, the greater the cost and the stronger
the over transmission. Therefore, a homozygous individuals bearing matching distorter and
recognition alleles have a drastic reduction in fertility.

3.2. The models
Although the model simplifies many of the features found in other models for genetic ele-
ments, it does include the essential features of a selfish genetic element in that it imposes as
cost on the individual that bears it, and that the selfish element can over-transmit.
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3.3. The two-allele model explicitly
For two-alleles, the model reads

p′1,1 = 1
w̄

[p1,1(s4p1,1 + s2p1,2 + (s2 + k)p2,1 + s2p2,2)− rD],

p′1,2 = 1
w̄

[p1,2(s2p1,1 + s0p1,2 + s2p2,1 + (s2 − k)p2,2) + rD],

p′2,1 = 1
w̄

[p2,1((s2 − k)p1,1 + s2p1,2 + s0p2,1 + s2p2,2) + rD],

p′2,2 = 1
w̄

[p2,2(s2p1,1 + s2p1,2 + (s2 + k)p2,1 + s4p2,2)− rD],

(11)

where D = p1,1p2,2 − p1,2p2,1 and the population mean fitness is given by

w̄ = −kp1,2p2,2 + kp2,1p2,2 + s4p
2
1,1 + 2s2p2,1p1,1 + 2s2p2,2p1,1

+s0p
2
1,2 − 2s2p

2
1,2 + s0p

2
2,1 + s4p

2
2,2 + 2s2p1,2 + 2s2p2,1p2,2.

(12)

For compactness of notation, similarly to the methods section of the main text, we denote
the frequencies of the gametic genotypes through the variable x, which has a single subscript
such that xi+n(j−1) = pi,j . By introducing the new variables β = s0−s4

2s2
,ε = 2s2−s0−s4

2s2
δ = r

s2
,

γ = k2
s2

, the system becomes

x′1 = 1
w̄

[x1(1− (β + ε)x1 + γx2)− δD] ,

x′2 = 1
w̄

[x2(1 + (β − ε)x2 − γx1) + δD] ,

x′3 = 1
w̄

[x3(1 + (β − ε)x3 − γx4) + δD] ,

x′4 = 1
w̄

[x4(1− (β + ε)x4 + γx3)− δD] ,

(13)

with
w̄ = 1− β(x2

1 − x2
2 − x2

3 + x2
4)− ε(x2

1 + x2
2 + x2

3 + x2
4) (14)

and where we used p11 + p12 + p21 + p22 = 1.

3.4. The three-allele model explicitly
For the three-allele model written out explicitly, we begin with the version after the same
parameter simplifications as used for the two-allele model have been used as the original pa-
rameterisation produces a very large system. After expanding, transforming the parameters
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and some simplification, the three-allele system reads

p′1,1 = 1
w̄

[
p1,1(1− (β + ε)p1,1 + φ(p2,3 + p3,2) + γ(p1,2 + p1,3 + p2,3 + p3,2) + δD1

]
,

p′1,2 = 1
w̄

[
p1,2(1 + (p1,2 + p1,3 + p3,2)(β − ε) + φ(p2,3 + p3,1 + p3,3)

− γ(p1,1 − p2,3 + p3,1 + p3,3) + δD2

]
,

p′1,3 = 1
w̄

[
p1,3(1 + (p1,2 + p1,3 + p2,3)(β − ε) + φ(p2,1 + p2,2 + p3,2)

− γ(p1,1 + p2,1 + p2,2 − p3,2) + δD3

]
,

p′2,1 = 1
w̄

[
p2,1(1 + (p2,1 + p2,3 + p3,1)(β − ε) + φ(p1,3 + p3,2 + p3,3)

− γ(−p1,3 + p2,2 + p3,2 + p3,3) + δD4

]

p′2,2 = 1
w̄

[
p2,2(1− (β + ε)p2,2 + φ(p1,3 + p3,1) + γ(p1,3 + p2,1 + p2,3 + p3,1) + δD5

]
,

p′2,3 = 1
w̄

[
p2,3(1 + (p1,3 + p2,1 + p2,3)(β − ε) + φ(p1,1 + p1,2 + p3,1)

− γ(p1,1 + p1,2 + p2,2 − p3,1) + δD6

]
,

p′3,1 = 1
w̄

[
p3,1(1 + (p2,1 + p3,1 + p3,2)(β − ε) + φ(p1,2 + p2,2 + p2,3)

− γ(−p1,2 + p2,2 + p2,3 + p3,3) + δD7

]
,

p′3,2 = 1
w̄

[
p3,2(1 + (p1,2 + p3,1 + p3,2)(β − ε) + φ(p1,1 + p1,3 + p2,1)

− γ(p1,1 + p1,3 − p2,1 + p3,3) + δD8

]
,

p′3,3 = 1
w̄

[
p3,3(1− (β + ε)p3,3 + φ(p1,2 + p2,1) + γ(p1,2 + p2,1 + p3,1 + p3,2) + δD9

]
,

(15)
where the population mean fitness is given by

w̄ =
n∑

i,j;k,l
ai,j;k,lpi,jpk,l, (16)

or alternatively, it can be thought of as the sum of the right-hand side of the entire system.
The expanded version of the population mean fitness can be found in the accompanying
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Mathematica notebook as its size makes it very difficult to present here. The Dk terms are
given by (18).

3.4.1. Matrix notation

Matrix and vector notation allows us to write the general model (1) as follows. We collect
the elements xi in a row vector x. The model then reads

x′ = w̄−1(x + diag(x) · F · x− δD), (17)

where w̄ = 1 + xT · F · x and the vector D has elements

Di+n(j−1) =
n∑

k,l=1
pi,jpk,l − pi,lpk,j. (18)

The elements of F are defined as

Fi+n(j−1),k+n(l−1) = ai,j;k,l − s2

s2
. (19)

3.5. Some analysis of the two-allele model
We give a brief analysis including explicit equilibria and stability calculations for the two-
allele model only. An analytic analysis of the three-allele model is beyond the scope of this
paper.

If at any point x1 = x4 and x2 = x3, then this remains so in the future. If this is the case
the difference equations become:

w̄x′1 = w̄x′4,

w̄x′2 = w̄x′3

and thus the increments of x1 are the same as for x4 and for x2 they are the same as for x3.
If this is the case we also have that 2x1 + 2x2 = 1 and thus x2 = 1

2 − x1. The difference
equation for x1 then is

w̄x′1 = x1

(
1− (β + ε)x1 + γ[1

2 − x1]
)
− δ(x1 − 1

4), (20)

with
w̄ = 1− β(2x1 − 1

2)− 2ε(2x2
1 + 1

4 − x1) = 1− 2βD∗ − ε(4D∗2 + 1
4). (21)

On this manifold there is an equilibrium. On this manifold the linkage disequilibrium is
D = x1 − 1

4 . At equilibrium the linkage disequilibrium D∗ can be found from as the root of
the cubic

(β − γ + 4εD∗)( 1
16 −D

∗2) + δD∗ = 0, (22)

for which −1
4 ≤ D∗ ≤ 1

4 and the equilibrium is given by x∗ = 1
41 + D∗(1,−1,−, 1, 1)T .
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Note that if β = γ then there is a solution D∗ = 0. In the vicinity of β − γ, D∗ is approxi-
mately −(β − γ) 1

4(ε+4δ) . If δ = 0, D∗ = −β−γ
4ε .

The Jacobian takes the form:

J|x=x∗ = 1
w̄∗

(
I− x∗1T

)
D(x + diag(x) · F · x− δD)|x=x∗

= 1
w̄∗

(
I− x∗1T

)
(I + diag(F · x∗) + diag(x∗) · F− δD D|x=x∗) .

where, for m = 2

D D|x=x∗ =




1
4 +D∗ −1

4 +D∗ −1
4 +D∗ 1

4 +D∗

−1
4 −D∗ 1

4 −D∗ 1
4 −D∗ −1

4 −D∗
−1

4 −D∗ 1
4 −D∗ 1

4 −D∗ −1
4 −D∗1

4 +D∗ −1
4 +D∗ −1

4 +D∗ 1
4 +D∗


 . (23)

Direct analysis of the Jacobian is cumbersome. Following the analysis in Úbeda et al.
(2019), which involves a similar model to this two-alleles model, we define the following
matrix

M =




1 1 1 1
1 −1 −1 1
1 1 0 0
1 0 1 0


 . (24)

The matrix M · (J− I) ·M−1 is given by



−1 0 0 0
1
2

(
16βD∗2 − 8(δ + 1)D∗ − β + γ

)
8εD∗2 − 2γD∗ − δ − ε

2 0 0
1
4 (4D∗β + β + 4D∗ε+ ε− 2) 0 −2D∗β − ε

2 −β
2 − 2D∗ε

1
4 ((β + ε+ γ)(4D∗ + 1)− 2γ − 2) 0 1

2 (−β + γ − 4D∗ε) −2D∗(β + γ)− ε
2


 .

and with eigenvalues

λ1 = 0,

λ2 = −δ + 8D∗2ε− 2γD∗ − ε

2 ,

λ3,4 = 1
2

(
−2D∗(2β + γ)− ε±

√
β2 − β(γ − 8D∗ε) + 4D∗ (−γε+ γ2D∗ + 4D∗ε2)

)
.

(25)

3.5.1. Corner and side equilibria

The corner and side equilibria all have the property that one of the allele frequencies is zero,
so either x1 +x2 = 0, x1 +x3 = 0, x3 +x4 = 0 or x2 +x4 = 0. Whichever it is, as will only
consider non-negative frequencies, for all these equilibria both terms in the sum have to be
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zero and D = 0. So the equilibria are the solutions of

w̄x1 = x1

[
1− (β + ε)x1 + γx2

]
,

w̄x2 = x2

[
1 + (β − ε)x2 − γx1

]
,

w̄x3 = x3

[
1 + (β − ε)x3 − γx4

]
,

w̄x4 = x4

[
1− (β + ε)x4 + γx3

]
.

(26)

The four possibilities are:

The side x1 = 0, x2 = 0

The dynamics are given by

w̄(x′3 − x3) = x3

[
1 + (β − ε)x3 − γx4 − w̄

]
,

w̄(x′4 − x4) = x4

[
1− (β + ε)x4 + γx3 − w̄

]
,

(27)

with
w̄ = x3 + x4 − β(−x2

3 + x2
4)− ε(x2

3 + x2
4). (28)

It is easy to work out that x3 + x4 is constant, and we choose this sum equal to 1. The
dynamics for x4 simplify to

w̄(x′4 − x4) = x4

[
−(β + ε)x4 + γ(1− x4) + β(2x4 − 1) + ε(1− 2x4 + 2x2

4)
]
,

w̄(x′4 − x4) = x4

[
γ + ε− β + (−γ + β − 3ε)x4 + 2εx2

4

]
,

w̄(x′4 − x4) = x4(1− x4)
[
(γ + ε− β)− 2εx4

]
.

(29)

The side equilibrium is given by

1
2

(
1− β − γ

ε

)
= x4,

1
2

(
1 + β − γ

ε

)
= x3,

with bifurcations at ε = γ−β and ε = β−γ and it has no negative elements if ε ≤ β−γ ≤ −ε
and ε = β − γ.
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The side x1 = 0, x3 = 0
The equilibria of the system are solutions of

w̄x2 = x2

(
1 + (β − ε)x2

)
,

w̄x4 = x4

(
1− (β + ε)x4

)
,

(30)

with
w̄ = 1− β(−x2

2 + x2
4)− ε(x2

2 + x2
4), (31)

hence
−(β + ε)x4 = (β − ε)x2,

w̄(x2 + x4) = w̄
(32)

−β = ε(x4 − x2),
1 = x2 + x4,

(33)

−β = ε(1− 2x2),
1 = x2 + x4,

(34)

1
2

(
1− β

ε

)
= x4,

1
2

(
1 + β

ε

)
= x2,

(35)

with bifurcations at β = 0 and ε = β.
We will facilitate analysis of this system with the usual transformation of variables

A = x1 + x2,

B = x1 + x3,

D = x1x4 − x2x3,

(36)

with the reverse transformation (using x1 + x2 + x3 + x4 = 1)

x1 = AB +D,

x2 = A(1−B)−D,
x3 = (1− A)B −D,
x4 = (1− A)(1−B) +D,

(37)
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so that we get

Ȧ = 1
w̄
Aβ(1− A)(2B − 1) + ε

w̄
((1− A)(x2

1 + x2
2)− A(x2

3 + x2
4)),

Ḃ = µ

w̄
[(γ − β)B(1− 2A)(1−B) + γ(2B − 1)D] ,

Ḋ = µ

w̄

[
A(A− 1)(B − 1)B(β − γ)−D((1− 2A)(1− 2B)β + δ) +D2(γ − β)

]
.

(38)

3.6. Projection function
The function used to project the trajectories in Figure 2 is used by Ashwin and Postlethwaite
(2013) and is given by

R(t) = 1
nv

n∑

k=1
x2
k exp

[
iπ

2(k − 1)
nv

]
. (39)

It projects the edges of the m-simplex onto the edges of a regular m-gon on the unit circle
in the complex plane. As our dynamics are typically following on or nearby one of the het-
eroclinic connections, which almost all lie in one or two dimensional space, this projection
works very effectively. More complex heteroclinic networks, with connections in higher
dimensions, would have more information lost with such a projection function.

3.7. Additional materials
The additional materials to accompany this paper can be found at the following shared
Dropbox folder: https://tinyurl.com/y6caeto6. Alternatively, if preferred, they can
be found at the following private GitHub repository https://github.com/thimotei/
thesis-additional-materials. Access to the private repository can be granted on re-
quest by sending an email to timothywilliamrussell@gmail.com. The materials include: an
animation of the dynamics of the spatial model and the Mathematica notebook in which the
model is implemented, dynamics are simulated and plotted and the invariance of the hetero-
clinic connections is verified. All of the exact parameters and initial conditions used for the
figures can also be found in either the Mathematica notebooks or the C++ code.
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Chapter 7. Conclusion

7.1 Summary

The two central aims of this thesis were: to develop models in population genetics includ-

ing novel biological details and extensions or capable of non-equilibrium and complex

dynamics; and to analyse them, if necessary, to a point beyond that of linear stability

— the standard endpoint for many models in specific cases within theoretical population

genetics. Here, we list all of the models derived and presented in this thesis and describe

briefly how each satisfies the central aims.

7.1.1 Overview of the models used: their novelty and complexity

Focusing on the first aim, these are the model we derived and presented in the thesis:

1. A two-locus n-allele non sex-specific model of the evolution of recombination

hotspots in Chapter 3;

2. A sex-specific extension of the model from Chapter 4;

3. Chapter 5 saw the assumptions on the parameters of the non sex-specific model of

the evolution of recombination hotspots from Chapter 3 relaxed (described in detail

in Chapter 2), showing how it fits as a special case of the discrete-time selection-

recombination equations;

4. Chapter 6 develops a model of the evolution of a genetic element known as a mei-

otic driver. The novelty here was allowing three-allelic variants within subpopula-

tions to exist, producing very complex dynamics.

The models of the evolution of recombination hotspots in Chapters 3 and 4 included

recent details of the molecular action of PRDM9 on its target site. Furthermore, extend-

ing the model to allow for two distinct sexes, as in Chapter 4, was motivated by strong

empirical evidence that recombination hotspot evolution had many attributes which are

sex-specific. Deriving a heteroclinic cycle, producing persist evolutionary behaviour of

recombination hotspots in the non sex-specific model and a sex-specific level of linkage

disequilibrium at a stable polymorphic equilibrium in the sex-specific model supports

many of the empirical advances the models were motivated by.

The novelty and advances in Chapter 5 were primarily through the level of analysis

undergone and therefore refer to the next section (7.1.2) about depth of analysis.

The novelty of the model in Chapter 6 came in two ways. First, we extended an

existing model to allow for n-alleles of a meiotic driver. This process manifests itself by

the way of index-based rules for the interaction between any number of alleles of a driver-

target haplotype undergoing arbitrary levels of selection and recombination. Primarily
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though, the advances given by this chapter are in the way of novel behaviours in models

in theoretical population genetics — heteroclinic network and nearby chaos — and the

resulting in-depth numerical and analytic analysis.

The final chapter is a framework and review chapter. Chapter 2 discusses clearly

and verbosely the general model known as the selection-recombination equation. We

show how some of the models used in this thesis are special cases of the selection-

recombination equation and which genetic assumptions are required for this to be the

case — allowing easily for other theoretical population genetic models to determine

whether they too are members of this system. The chapter does not provide any new

models. However, it reviews many of the known results from the literature about the

general system and discusses some of the techniques used to establish these results. Its

novelty comes in the way of a clear and expansive overview of the widely used general

model.

Next, we describe the analyses carried out on the models, mentioning specific tech-

nical details which can be thought of as going beyond linear stability.

7.1.2 Details of the analyses

Chapter 5 was devoted to the global dynamics of discrete and continuous-time models

inspired by the model of recombination hotspot evolution from Chapter 3. We noticed

the model had a stable heteroclinic cycle and polymorphic equilibrium, both on the same

surface within the state space. This surface, a well-known manifold in theoretical pop-

ulation genetics, is known as the quasi-linkage equilibrium manifold. We were able to

determine an approximate closed-form expression for this surface in our model and, using

the expression, we were able to determine the stability of the heteroclinic cycle bounded

by the manifold. We also found a Lyapunov function for the continuous-time analogous

system — proving global stability (for the subspace of the state space for which D ≤ 0)

for the interior equilibrium in continuous-time. Bistability, especially if studied using

invariant manifold theory, a Lyapunov function and involves determining the stability of

a heteroclinic cycle are beyond the standard levels of analysis.

The dynamics of the three-allele model presented in Chapter 6 are most easily inter-

preted as an extension the heteroclinic cycle from the two-allele models of recombination

hotspot evolution via a three-fold symmetry, producing three such heteroclinic cycles

joined together. However, allowing three allelic variants at each loci did more than this,

it gave birth to three novel heteroclinic cycles of a different type — they did not only

travel around the edges of the state space. Three quarters of the heteroclinic connec-

tions each of the new cycles are comprised of lie within the interior of the state space

— something which was not possible in the two-allele version of the model. In total, the
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model includes six heteroclinic cycles, with paths from one to another other point, pro-

ducing a complex attracting heteroclinic network. As is common with such topologies

within dynamical systems, the nearby dynamics were chaotic. We numerically computed

which saddle along the network trajectories hit first, showing the dependency on initial

conditions to be highly sensitive. Furthermore, we produced a coupled metapopulation

implementation of the model. This metapopulation implementation exhibits highly com-

plex patterns, including selective sweeps, divergence between subpopulations giving rise

to patches of individuals with the same allele at fixation within the patch and a shifting

mosaic pattern with what seem to be travelling wave solutions across the lattice. There is

plenty more analysis possible on the spatial model, discussed at length in the next section

about Further work.

7.2 Further work

It is the results of Chapters 5 and 6 that I believe have the clearest potential for further

work. The QLE manifold in Chapter 5 was derived for a special case of the model, with

a specific, but not too restrictive parameterisation of the fitness matrix. A separation of

timescales existed, allowing for relatively simple approximation techniques to be used to

find the closed-form expression for the QLE manifold. How generic is this separation

of timescales? After transforming coordinates, using highly non-intuitive variables, we

could isolate distinct timescales. Do these coordinate transformations isolate timescales

in the most general formulation of the system? Exact conditions on the parameters for

the existence of the QLE manifold were derived in Seymenoglu (2019). Inspecting these

conditions under the coordinate transformations used in this thesis could elucidate if and

when a separation of timescales exists in the two-locus two-allele equations.

Another interesting question comes from the stochastic implementation of the model

describing the evolution of recombination hotspots in Chapter 3. Specifically, now it is

clear there can exist a separation of timescales in this model, how close is the stochas-

tic implementation of the model to manifold in general. I.e. are the stochastic models

dynamics well approximated by the dynamics of a stochastic model constrained to the

QLE manifold? This approach would use techniques developed in Constable and McK-

ane (2017), whereby certain stochastic models are constrained to surfaces extracted from

a deterministic analogue and results on the convergence of their stationary distributions

are proved, showing the constrained dynamics to be very accurate. We predict that will

be the case with the stochastic model in Chapter 3.

More abstractly, it would be a worthwhile, yet difficult endeavour, to try and de-

rive conditions within the two-locus two-allele model which produce heteroclinic cycles.
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Much like many models from mathematical biology, the edges of the state space are in-

variant, even in the most general formulation of the system (see a proof of the invariance

of the edges of the tetrahedron in the two-locus two-allele model in Chapter 2). This

would be best attempted by finding all of the sets of parameters which give the equations

the type of intrinsic symmetries that give rise to heteroclinic cycles. Systems possessing

such symmetries are known in as equivariant dynamical systems — systems where their

solutions under the action of some Lie group are also solutions.

Finally, it would be fascinating to derive a version of the metapopulations model in

Chapter 6 that varies continuously through space. This would involve taking a continuum

limit and using the limit to derive a PDE. It would look like a reaction-diffusion equation.

However, its coefficients would depend on the nine-dimensional system of difference (or

differential) equations (for discrete and continuous-time respectively). This would mean

it would be a highly complex and nonlinear PDE. However, as the numerical simulations

suggest, the system seems to possess travelling wave solutions. Using this as an ansatz, it

might be possible to make progress analytically, possibly finding certain sets of solutions

to this highly complex PDE.

7.3 Concluding remarks

Studying the world of genetics and changing gene frequencies using complex mathe-

matics has provided enough food-for-thought to keep theoretical population geneticists

interested for over a century. This is the case as both the mathematical understanding

required to study such systems, or the biological processes the systems represent, is suf-

ficient for a career of wonderment. Furthermore, as the dynamics tend to be nonlinear

and therefore complex dynamics are not just possible but quite likely. Indeed, the more

and more realistic the models become, the more interesting and rich the dynamics are

sure to be. Systems with enough complexity to represent the dynamics of genes in em-

pirical populations are of dimension well high enough for the complexities observed in,

for example, Chapter 6. It is the richness of both the mathematics and the biology — and

the intimate connections between the two — which make theoretical population genetics

a highly appealing avenue for research.
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