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Summary	3	

1. Although	social	learning	capabilities	are	taxonomically	widespread,	demonstrating	4	

that	freely	interacting	animals	(whether	under	wild	or	captive	conditions)	rely	on	5	

social	learning	has	proved	remarkably	challenging.	6	

2. Network-based	diffusion	analysis	(NBDA)	offers	a	means	for	detecting	social	learning	7	

within	such	freely	interacting	groups.	Its	core	assumption	is	that	if	a	target	behaviour	8	

is	being	socially	transmitted,	then	its	spread	should	follow	the	pattern	of	9	

connections	in	a	social	network	that	reflects	opportunities	for	social	learning.	10	

3. Here,	we	provide	a	comprehensive	guide	for	using	NBDA.	We	first	present	the	types	11	

of	questions	that	NBDA	can	address,	as	well	as	introduce	its	underlying	12	

mathematical	framework.	We	then	guide	researchers	through	the	process	of:	(i)	13	

selecting	an	appropriate	social	network	to	address	different	research	questions;	(ii)	14	

determining	which	NBDA	variant	should	be	used;	and	(iii)	incorporating	other	15	

variables	that	may	impact	asocial	and	social	learning.	We	then	discuss	how	to	16	

interpret	the	output	of	an	NBDA	model,	as	well	as	provide	practical	17	

recommendations	for	model	selection.	18	

4. Throughout	the	manuscript,	we	highlight	extensions	to	the	basic	NBDA	framework.	19	

These	include	the	incorporation	of	dynamic	network	structures	to	capture	changes	20	

in	social	relationships	during	the	diffusion	process,	and	estimating	information	flow	21	

across	multiple	types	of	social	relationship	using	a	multi-network	NBDA.	22	



5. Alongside	this	information,	we	provide	worked	examples	and	tutorials	23	

demonstrating	how	to	perform	analyses	using	the	newly	developed	NBDA	package	24	

written	in	the	R	programming	language.	25	

1		Introduction	26	

Over	recent	decades,	a	vast	body	of	research	has	revealed	that	social	learning	capabilities	27	

are	widespread	across	the	animal	kingdom	(Heyes	1994;	Hoppitt	&	Laland	2013),	and	that	28	

social	transmission	can	result	in	culture-like	phenomena	in	non-humans	(Laland	&	Galef	29	

2009).	And	yet,	although	social	learning	is	predicted	to	be	adaptive	across	diverse	contexts	30	

(Rendell	et	al.	2010),	demonstrating	that	animals	rely	on	social	learning	in	the	wild	has	31	

remained	notoriously	challenging	(Reader	2004;	Laland	&	Janik	2006;	Schuppli	&	van	Schaik	32	

2019).	The	main	difficulty	lies	in	disentangling	social	and	asocial	influences	on	learning	in	33	

contexts	where	animals	are	free	to	interact	(or	not)	with	each	other	and	with	their	34	

environment.	For	instance,	a	historically	common	approach	has	been	the	ethnographic	35	

method,	in	which	social	learning	can	be	inferred	as	the	cause	of	behavioural	variation	across	36	

populations	only	if	genetic	and	ecological	explanations	(e.g.	differential	opportunities	for	37	

individual	learning	resulting	from	spatially	heterogeneous	resources)	can	first	be	ruled	out	38	

(Whiten	et	al.	1999).	However,	this	conservative	approach	precludes	investigation	of	how	39	

such	factors	may	interact	(Laland	&	Janik	2006;	Wild	et	al.	2019),	and	may	systematically	40	

underestimate	the	prevalence	of	socially	transmitted	behaviours	in	the	wild	(Schuppli	&	van	41	

Schaik	2019).	As	such,	researchers	have	sought	to	develop	alternative	methods	for	inferring	42	

social	learning	in	circumstances	where	only	observational	data	are	generally	available.	43	

Network-based	diffusion	analysis	(NBDA)	is	just	such	an	approach	(Franz	&	Nunn	44	

2009;	Hoppitt,	Boogert	&	Laland	2010).	NBDA	follows	the	assumption	that	individuals	are	45	



more	likely	to	learn	from	one	another	if	they	frequently	associate	or	interact	(Coussi-Korbel	46	

&	Fragaszy	1995).	Thus,	social	transmission	is	inferred	if	the	spread	of	a	novel	behaviour	47	

pattern	follows	the	connections	in	a	social	network	that	reflects	opportunities	for	social	48	

learning	(Hoppitt	2017).	Moreover,	rather	than	assume	that	a	given	behaviour	diffuses	49	

entirely	through	either	social	or	asocial	processes,	NBDA	estimates	the	strength	of	social	50	

learning	relative	to	asocial	learning.	NBDA	therefore	provides	researchers	with	a	means	by	51	

which	to	evaluate	the	impact	of	different	factors	(e.g.	genetic,	phenotypic,	ecological)	on	52	

both	social	and	asocial	learning	(Hoppitt,	Boogert	et	al.	2010).	53	

Since	its	initial	development,	NBDA	has	enabled	investigation	of	social	transmission	54	

across	diverse	taxa,	including	cetaceans	(Allen,	Weinrich,	Hoppitt	&	Rendell	2013;	Wild	et	al.	55	

2019),	primates	(Hobaiter,	Poisot,	Zuberbühler,	Hoppitt	&	Gruber	2014),	songbirds	(Aplin,	56	

Farine,	Morand-Ferron	&	Sheldon	2012),	and	teleost	fish	(Atton,	Hoppitt,	Webster,	Galef	&	57	

Laland	2012;	Hasenjager	&	Dugatkin	2017).	Such	studies	have	resulted	in	several	extensions	58	

to	the	basic	NBDA	model,	including	the	use	of	dynamic	networks	that	take	into	account	59	

changes	in	social	relationships	over	time	(Hobaiter	et	al.	2014),	inclusion	of	multiple	60	

network	types	to	evaluate	how	social	transmission	may	be	influenced	by	different	forms	of	61	

social	relationship	(Farine,	Aplin,	Sheldon	&	Hoppitt	2015),	and	incorporation	of	learning	62	

tasks	that	involve	multiple	steps	to	complete	(Atton	et	al.	2012).	However,	many	of	these	63	

extensions	have	not	been	publicly	available	until	recently	(Hoppitt,	Photopoulou,	64	

Hasenjager	&	Leadbeater	2019),	and	references	to	their	implementation	are	scattered	65	

across	the	literature.	Here,	we	aim	to	provide	a	comprehensive	and	up-to-date	resource	for	66	

researchers	interested	in	using	NBDA,	and	to	illustrate	the	use	of	the	newly	developed	67	

NBDA	package	for	R	(Hoppitt	et	al.	2019).	In	the	Supporting	Information,	we	also	provide	68	

tutorial	R	scripts	showing	how	to	implement	the	analyses	using	the	NBDA	package.	69	



2	Initial	considerations	70	

2.1	What	types	of	questions	can	NBDA	address?	71	

There	are	typically	two	primary	aims	a	researcher	might	have	when	employing	NBDA.	The	72	

first	is	to	evaluate	the	strength	of	evidence	for	social	transmission,	and	to	quantify	its	73	

impact.	For	example,	Allen	et	al.	(2013)	used	NBDA	to	investigate	the	spread	of	an	74	

innovative	foraging	behaviour—lobtail	feeding—over	a	27	year	period	through	a	population	75	

of	humpback	whales	(Megaptera	novaeangliae).	Their	analysis	revealed	that	the	lobtail	76	

technique	did	not	diffuse	through	the	population	at	random,	nor	through	individual	learning	77	

alone.	Rather,	the	order	in	which	whales	acquired	this	behaviour	was	predicted	by	the	78	

strength	of	their	social	connections	to	knowledgeable	individuals	(i.e.	those	that	had	79	

previously	learned	the	lobtail	technique).	In	other	words,	frequently	associating	with	80	

individuals	that	practised	lobtail	feeding	provided	whales	with	opportunities	to	learn	this	81	

behaviour,	such	that	an	estimated	45–85%	of	whales	that	acquired	lobtail	feeding	did	so	82	

through	social	transmission	(Allen	et	al.	2013).	83	

The	second	main	application	of	NBDA	is	to	identify	the	typical	pathways	of	84	

information	flow	through	a	group.	In	this	sense,	networks	represent	hypotheses	about	how	85	

information	is	expected	to	spread.	For	instance,	a	researcher	could	compare	NBDA	models	86	

fitted	with	alternative	networks—e.g.	networks	quantifying	affiliative	versus	agonistic	87	

interactions—to	determine	which	type	of	interaction	or	social	relationship	is	most	88	

important	in	facilitating	social	learning	(e.g.	Kulahci	et	al.	2016).	In	addition	to	networks	89	

built	from	empirical	data	on	social	relationships	,	researchers	can	also	construct	90	

theoretically	derived	networks	that	represent	hypothesized	pathways	of	information	flow.	91	

For	example,	Atton,	Galef,	Hoppitt,	Webster,	and	Laland	(2014)	presented	novel	foraging	92	



tasks	to	shoals	of	three-spined	sticklebacks	(Gasterosteus	aculeatus)	in	which	individuals	93	

were	familiar	with	some	shoal	mates,	but	not	with	others.	To	determine	whether	familiarity	94	

facilitated	information	flow	between	sticklebacks,	a	binary	network	that	indicated	whether	95	

each	pair	of	individuals	was	familiar	(1)	or	not	(0)	was	constructed,	and	included	in	an	NBDA.	96	

This	familiarity	network	was	found	to	better	predict	the	order	in	which	sticklebacks	both	97	

discovered	and	solved	the	foraging	task	than	either	a	network	of	shoaling	associations,	or	a	98	

homogeneous	network	in	which	all	individuals	were	connected	with	a	strength	of	1.	In	other	99	

words,	patterns	of	familiarity	directed	patterns	of	social	learning	within	these	shoals.	100	

2.2	What	types	of	data	does	NBDA	require?	101	

There	are	two	main	components	of	an	NBDA	model.	The	first	component	is	data	on	the	102	

order	or	timing	with	which	individuals	acquire	a	behavioural	trait	of	interest	(i.e.	diffusion	103	

data;	Section	5).	Under	certain	circumstances,	such	as	in	laboratory	experiments	or	through	104	

use	of	automated	tracking	technology,	researchers	might	have	highly	resolved	data	on	the	105	

exact	time	that	each	individual	first	performed	the	target	behaviour.	In	other	cases,	the	106	

available	data	might	be	much	less	detailed.	For	instance,	it	may	only	be	possible	to	state	107	

that	an	individual	first	performed	the	trait	at	some	point	within	a	certain	timespan.	The	108	

resolution	of	the	diffusion	data	determines	which	NBDA	variants	can	be	used,	though	other	109	

factors	are	also	important	when	making	this	selection	(see	Section	5).	110	

The	second	main	component	of	the	model	is	a	social	network	(or	networks)	that	is	111	

thought	to	reflect	opportunities	for	social	learning.	The	reasoning	here	is	that	if	the	target	112	

behaviour	spreads	through	social	transmission,	then	we	would	expect	this	diffusion	to	113	

follow	the	pattern	of	connections	in	such	a	network.	There	are	many	types	of	social	network	114	

a	researcher	could	include	in	an	NBDA.	For	example,	association	networks	indicate	the	115	



propensity	for	pairs	of	individuals	to	co-occur	in	space	and	time.	Such	a	network	might	be	116	

used	to	estimate	the	probability	that	one	individual’s	performance	of	the	target	behaviour	is	117	

observed	by	another	(Hoppitt	2017).	Another	possibility	is	to	include	networks	that	capture	118	

particular	forms	of	interaction	that	are	known	or	suspected	to	transmit	information—e.g.	119	

honeybees	(Apis	mellifera)	searching	for	a	novel	foraging	site	can	acquire	its	spatial	120	

coordinates	by	following	the	waggle	dances	of	successful	foragers	(Grüter	&	Farina	2009).	121	

The	most	appropriate	choice	of	network	will	often	depend	on	the	research	question(s)	(see	122	

Section	4).	A	researcher	can	also	include	other	predictor	variables,	such	as	sex,	body	size,	or	123	

personality	type,	that	may	influence	asocial	and/or	social	learning	(see	Section	6).	124	

3		The	basic	NBDA	model	125	

An	understanding	of	the	basic	NBDA	model	is	key	to	understanding	and	interpreting	the	126	

various	forms	of	NBDA	and	its	extensions,	so	we	first	present	the	mathematical	formulation	127	

of	the	model	in	its	most	fundamental	form	and	explain	it	in	some	detail.	The	basic	NBDA	128	

model	can	be	expressed	as	129	

𝜆! 𝑡 = 𝜆! 𝑡 1− 𝑧! 𝑡 𝑠 𝑎!"𝑧! 𝑡
!

!!!

+ 1 	

Eqn.	1	130	

where	𝜆! 𝑡 	is	the	rate	at	which	individual	i	acquires	the	target	behaviour	as	a	function	of	131	

time,	𝜆! 𝑡 	is	a	baseline	rate	function,	𝑧! 𝑡 	is	the	‘status’	of	individual	i	at	time	t,	(1	=	132	

informed;	0	=	naïve),	N	is	the	number	of	individuals	in	the	population,	s	is	a	parameter	133	

determining	the	strength	of	social	transmission,	and	𝑎!" 	is	the	network	connection	from	j	to	134	



i.	The	NBDA	model	can	be	expanded	in	various	ways	beyond	the	model	defined	in	Eqn.	1,	135	

which	we	describe	and	define	in	the	Sections	below.	136	

The	 1− 𝑧! 𝑡 	term	ensures	that	only	naïve	individuals	can	learn,	since	when	i	is	137	

informed,	𝑧! 𝑡 = 1,	so	 1− 𝑧! 𝑡 = 0	and	consequently	𝜆! 𝑡 = 0.		The	rate	at	which	a	138	

naïve	individual	acquires	the	target	behaviour	by	social	transmission	is	assumed	to	be	139	

proportional	to	 𝑎!"𝑧! 𝑡!
!!! ,	the	total	connection	of	i	to	informed	individuals	at	time	t.	140	

Consequently,	s,	a	parameter	fitted	to	the	data,	estimates	the	rate	of	transmission	per	unit	141	

connection	relative	to	the	rate	of	asocial	learning	of	the	target	behaviour.	Depending	on	the	142	

type	of	network	used,	s	can	sometimes	be	interpreted	in	a	more	specific	manner:	e.g.	the	143	

rate	of	social	transmission	from	an	informed	to	naïve	individual	during	periods	when	they	144	

are	associating,	relative	to	the	rate	of	asocial	learning	(see	Section	4).	s	=	0	represents	the	145	

case	of	no	social	transmission:	the	null	model	of	interest	if	a	researcher	is	quantifying	the	146	

evidence	for	social	transmission,	in	which	the	rate	of	acquisition	is	determined	by	the	rate	147	

of	asocial	learning	alone.	We	refer	to	models	in	which	s	is	constrained	to	0	as	“asocial	148	

learning	models”	or	“asocial”	models,	which	should	be	taken	as	shorthand	for	a	model	with	149	

asocial	learning	only,	since	asocial	learning	is	also	occurring	when	s	>	0.	Finally,	the	baseline	150	

rate	function, 𝜆! 𝑡 ,	(terminology	adapted	from	survival	analysis;	see	Moore	2016)	151	

determines	how	the	rate	of	learning	generally	changes	over	time.	Different	types	of	NBDA	152	

make	different	assumptions	about	the	shape	of	𝜆! 𝑡 ,	as	explained	in	Section	5.	153	

4		Different	types	of	networks	154	

The	social	network	can	be	thought	of	as	the	key	predictor	variable	in	an	NBDA.	In	principle,	155	

one	can	use	any	type	of	social	network	that	specifies	a	non-negative	connection	in	each	156	

direction	for	each	dyad.	However,	different	types	of	network	may	be	appropriate	depending	157	



on	the	aim	of	the	NBDA,	and	the	exact	meaning	of	the	s	parameter	may	vary	depending	on	158	

the	type	of	network	(Hoppitt	2017).	159	

4.1	Networks	for	detecting	and	quantifying	social	transmission	160	

When	the	goal	of	an	NBDA	is	to	simply	to	detect	and	quantify	social	transmission,	there	are	161	

many	different	types	of	social	network	a	researcher	can	choose.	For	information	on	162	

techniques	for	constructing	empirical	social	networks,	see	(Croft,	James	&	Krause	2008;	163	

Whitehead	2009;	Farine	&	Whitehead	2015).	The	simplest	network	one	could	input	is	a	164	

binary	or	unweighted	network,	in	which	individuals	that	are	socially	connected	share	a	link	165	

(𝑎!" = 𝑎!" = 1),	whereas	those	that	are	not	remain	unlinked	(𝑎!" = 𝑎!" = 0).	In	this	case,	s	166	

estimates	the	rate	of	social	transmission	from	an	informed	individual	to	a	socially	connected	167	

naïve	individual,	relative	to	the	rate	of	asocial	learning.	168	

Perhaps	the	most	obvious	choice	for	NBDA	is	an	association	network,	where	𝑎!" 	169	

estimates	the	proportion	of	time	i	spends	associating	with	j.	Ideally,	one	would	assume	that	170	

individuals	can	only	socially	learn	from	one	another	when	they	are	associating.	For	this	171	

assumption	to	be	reasonable,	the	criterion	for	i	to	be	recorded	as	associating	with	j	has	to	172	

be	specified	at	the	appropriate	spatial	scale.	Individuals	recorded	as	associating	must	be	173	

within	observation	distance,	whereas	individuals	recorded	as	not	associating	must	tend	to	174	

be	at	a	distance	at	which	observation	is	impossible	or	unlikely	(Hoppitt	2017).		For	example,	175	

Allen	et	al.	(2013)	used	an	association	network	to	track	the	spread	of	a	novel	feeding	176	

technique	through	a	population	of	humpback	whales	(M.	novaeangliae).	Since	whales	177	

needed	to	be	within	two	body	lengths	to	be	recorded	as	‘associating’	and	the	study	was	178	

conducted	over	an	area	of	approximately	1000	square	miles,	the	aforementioned	179	

assumption	seems	reasonable.	In	such	cases,	s	can	be	interpreted	as	the	rate	of	social	180	



transmission	from	an	informed	to	naïve	individual	during	periods	when	they	are	associating,	181	

relative	to	the	rate	of	asocial	learning	(Hoppitt	2017).	182	

In	contrast,	other	studies	on	captive	birds	(Boogert,	Reader,	Hoppitt	&	Laland	2008;	183	

Boogert,	Nightingale,	Hoppitt	&	Laland	2014)	have	used	a	criterion	based	on	proximity	(e.g.	184	

nearest	neighbour)	within	an	enclosure	of	a	few	square	meters,	such	that	dyads	observed	as	185	

not	associating	are	still	within	observation	distance.	We	refer	to	the	former	as	‘large-scale	186	

association	networks’	and	the	latter	as	‘small-scale	association	networks’.	When	using	187	

small-scale	association	networks,	there	is	no	guarantee	that	s	can	be	interpreted	in	the	188	

same	specific	manner	as	for	large-scale	association	networks.	In	other	words,	s	may	not	189	

necessarily	provide	the	rate	of	social	transmission	during	periods	in	which	individuals	are	190	

able	to	observe	knowledgeable	individuals.	Rather,	use	of	a	proximity	network	represents	191	

the	hypothesis	that	individuals	are	more	likely	to	learn	from	demonstrators	that	they	tend	192	

to	be	found	near	to	than	from	those	that	are	more	spatially	distant	(see	Section	4.2	for	193	

further	discussion).	194	

An	alternative	type	of	network	is	an	observation	network,	where		𝑎!" 	represents	the	195	

number	of	opportunities	i	has	had	to	observe	j	performing	the	target	behaviour.	Such	a	196	

network	is	perhaps	the	most	direct	method	for	detecting	and	quantifying	social	197	

transmission.	If	an	observation	network	is	to	be	used,	it	makes	sense	to	use	a	dynamic	198	

(time-varying)	version	of	the	observation	network,	so	we	delay	further	discussion	of	199	

observation	networks	until	Section	4.4.	200	

4.2	Networks	for	establishing	the	typical	pathways	of	information	transfer	201	

Another	aim	a	researcher	might	have	is	to	elucidate	the	typical	pathways	of	diffusion	by	202	

comparing	the	fit	of	alternative	NBDA	models	using	different	networks	(Franz	&	Nunn	2009;	203	



Hoppitt	2017).	The	result	of	this	process	would	suggest	the	types	of	relationship	that	are	204	

important	in	providing	the	opportunity	and/or	motivation	to	observe	and	learn	from	others.	205	

For	example,	Kulahci	et	al.	(2016)	found	in	a	study	on	ravens	(Corvus	corax)	that	a	social	206	

network	based	on	affiliative	interactions,	such	as	allopreening	and	food	sharing,	predicted	207	

the	spread	of	a	novel	foraging	behaviour	better	than	networks	based	on	aggressive	208	

interactions	and	proximity.	Alternative	models	can	be	fitted	and	compared	using	Akaike’s	209	

Information	Criterion	corrected	for	sample	size	(AICc,	see	Section	9)	and	whichever	network	210	

best	approximates	the	true	pathway(s)	of	transmission	is	likely	to	be	favoured	(Hoppitt	211	

2017).	A	researcher	will	often	have	the	combined	aim	of	detecting	and	quantifying	social	212	

transmission,	and	can	include	an	asocial	model	(s	=	0)	in	the	model	comparison.	If	no	213	

network	provides	a	substantially	better	fit	than	the	asocial	model,	there	is	little	evidence	for	214	

social	transmission	following	any	of	the	networks	included	in	the	comparison.	If	there	is	215	

evidence	for	social	transmission,	the	best	fitting	model	can	be	used	to	generate	estimates	of	216	

the	strength	of	social	transmission	(s).	217	

A	number	of	types	of	networks	might	be	included	in	such	an	analysis.	For	instance,	218	

proximity	networks	are	derived	from	data	on	spatial	relationships	among	individuals,	with	a	219	

common	example	being	an	association	network	that	estimates	the	propensity	of	pairs	of	220	

individuals	to	co-occur	in	space	and	time	(Franks,	Ruxton	&	James	2010;	Farine	&	221	

Whitehead	2015).	If	the	criterion	used	for	association	is	thought	to	approximate	the	222	

conditions	for	observation,	then	s	can	be	interpreted	in	the	manner	described	for	large-223	

scale	association	networks	in	Section	4.1;	i.e.	the	rate	of	social	transmission	from	informed	224	

to	naïve	individuals	during	periods	in	which	the	latter	can	observe	the	former,	relative	to	225	

the	rate	of	asocial	learning.	However,	if	proximity	networks	are	collected	on	a	small	spatial	226	

scale,	and	thus	may	not	fully	encompass	opportunities	for	observation,	they	rather	227	



represent	the	more	general	hypothesis	that	individuals	in	close	proximity	will	tend	to	learn	228	

from	one	another	more	often	than	those	that	are	more	spatially	distant	(Hoppitt	2017).	229	

Interaction	networks	quantify	the	rate	at	which	dyads	interact,	or	show	a	specified	type	of	230	

interaction	(e.g.	allopreening,	fights)	(Croft,	James	&	Krause	2008).	When	used	in	an	NBDA,	231	

interaction	networks	represent	the	hypothesis	that	a	particular	interaction	type	predicts	the	232	

rate	at	which	individuals	learn	from	one	another.	As	such,	they	are	not	a	priori	preferable	to	233	

proximity	networks	for	an	NBDA.	Instead,	interaction	networks	can	be	thought	of	as	a	234	

competing	set	of	hypotheses	that	can	be	compared	empirically,	both	to	one	another	and	to	235	

proximity	networks.	236	

The	estimate	of	s	yielded	from	an	interaction	network	or	small-scale	proximity	237	

network	is	more	general	and	abstract	than	for	large-scale	association	networks:	s	estimates	238	

the	rate	of	social	transmission	from	informed	to	naïve	individuals	per	unit	of	network	239	

connection,	relative	to	the	rate	of	asocial	learning.	In	such	cases,	s	may	be	difficult	to	240	

interpret	biologically	and	may	also	not	be	comparable	across	networks	with	different	scales.	241	

Such	circumstances	may	make	it	difficult	to	gauge	the	importance	of	social	transmission.	A	242	

solution	is	to	convert	the	estimate	of	s	into	the	estimated	proportion	of	learning	events	that	243	

occurred	by	social	transmission	as	opposed	to	asocial	learning	(see	Section	7.5).	244	

4.3	Including	transmission	weights	245	

The	standard	NBDA	model	implicitly	assumes	that	all	individuals	perform	the	target	246	

behaviour	at	a	similar	rate	once	they	have	learned	it.	However,	it	may	be	that	some	247	

individuals	perform	the	behaviour	more	often,	and	thus	socially	transmit	the	behaviour	248	

more	effectively,	than	those	that	perform	it	less	frequently.	If	a	researcher	has	a	measure	of	249	

the	rate	at	which	individuals	performed	the	target	behaviour	during	the	course	of	the	250	



diffusion,	this	information	can	be	included	in	the	model	as	transmission	weights,	𝑊!,	by	251	

replacing	𝑎!" 	with	𝑊!𝑎!".	Thus,	the	rate	of	transmission	is	assumed	to	be	proportional	to	252	

rate	of	performance.	𝑊! 	should	be	an	estimate	of	the	rate	at	which	the	target	behaviour	is	253	

performed	by	j	once	it	is	informed,	so	ideally	𝑊! = 𝑛! 𝑇 − 𝑡! ,	where	𝑛! 	is	the	number	of	254	

performances,	T	is	the	total	time	of	the	diffusion,	and	𝑡! 	is	the	time	at	which	j	acquired	the	255	

target	behaviour.	s	now	estimates	the	rate	of	social	learning	per	unit	connection	multiplied	256	

by	performance	rate,	relative	to	asocial	learning.	However,	we	can	be	more	specific	if	𝑎!" 	is	257	

a	large-scale	association	network,	and	if	we	assume	that	i	has	a	probability	of	learning	the	258	

target	behaviour	from	each	observation.	Since	𝑊!𝑎!" 	estimates	the	rate	at	which	i	observes	j	259	

perform	the	target	behaviour,	s	estimates	the	probability	of	learning	each	time	a	naïve	260	

individual	observes	an	informed	individual	perform	the	behaviour,	relative	to	the	rate	of	261	

asocial	learning	(Hoppitt	2017).	Hoppitt	(2017)	suggests	that	if	transmission	weights	are	262	

available,	they	should	be	included	in	the	analysis	if	they	improve	model	fit	(i.e.	decrease	263	

AICc,	see	Section	9).	264	

4.4	Dynamic	networks	and	observation	networks	265	

The	basic	NBDA	model	defined	in	Eqn.	1	assumes	that	the	social	network	does	not	change	266	

over	the	course	of	the	diffusion,	i.e.	that	it	is	a	‘static	network’.	However,	under	some	267	

circumstances,	the	structure	of	a	network	may	undergo	substantial	changes	during	the	268	

diffusion	process,	e.g.	as	a	result	of	demographic	processes	or	shifting	dominance	ranks.	By	269	

extending	the	basic	NBDA	model	so	that	it	can	incorporate	a	time-varying	or	‘dynamic	270	

network’,	we	can	include	these	temporal	changes	in	the	analysis	(Hobaiter	et	al.	2014).	This	271	

is	done	simply	by	replacing	𝑎!" 	(i.e.	the	connection	from	individual	j	to	i)	with	𝑎!" 𝑡 ,	the	272	

connection	from	individual	j	to	i	at	time	t:	273	



𝜆! 𝑡 = 𝜆! 𝑡 1− 𝑧! 𝑡 𝑠 𝑎!" 𝑡 𝑧! 𝑡
!

!!!

+ 1 	

Eqn.	2	274	

Therefore,	the	static	network	becomes	a	special	case	where	𝑎!" 𝑡 = 𝑎!".		275	

However,	we	advise	caution	when	considering	whether	to	include	an	association	or	276	

interaction	network	as	a	dynamic	network	in	an	NBDA.	If	the	network	is	broken	down	into	277	

time	periods	that	are	too	small,	apparent	changes	in	network	structure	may	simply	be	the	278	

result	of	sampling	error.	In	addition,	by	breaking	up	the	network	data	into	smaller	chunks,	279	

estimates	of	connection	strength	may	become	less	precise.	Therefore,	we	suggest	that	280	

researchers	only	use	a	dynamic	association	or	interaction	network	if	there	is	sufficient	data	281	

in	each	time	period	to	ensure	precise	estimates	of	network	ties	(Hoppitt	&	Farine	2018).	282	

In	contrast,	it	usually	makes	sense	to	use	a	dynamic	observation	network	rather	than	283	

a	static	observation	network.	If	one	wishes	to	detect	and	quantify	social	transmission,	then	284	

ideally,	the	researcher	would	like	a	complete	record	of	when	the	target	behaviour	was	285	

performed,	by	whom,	and	who	observed	each	performance.	It	is	possible	to	obtain	data	286	

close	to	this	level	of	resolution	in	cases	where	the	target	behaviour	is	only	performed	in	a	287	

specific	location	(or	locations)	that	can	be	monitored	closely.	For	example,	Hobaiter	et	al.	288	

(2014)	used	NBDA	to	analyse	the	diffusion	of	moss	sponging—the	use	of	pieces	of	moss	to	289	

obtain	water	from	holes	in	trees—in	chimpanzees	(Pan	troglodytes).	They	were	able	to	use	290	

a	dynamic	observation	network	because	the	initial	spread	of	this	behaviour	was	291	

documented	at	only	a	single	water	hole.	Researchers	might	obtain	a	similar	level	of	292	

resolution	using	an	artificial	foraging	task	that	can	be	monitored	closely	(e.g.	van	de	Waal,	293	

Renevey,	Favre	&	Bshary	2010),	or	when	information	transfer	is	largely	restricted	to	294	



particular	locations,	such	as	the	honeybee	‘dancefloor’	(Leadbeater	&	Hasenjager	2019;	Box	295	

4).	296	

In	a	dynamic	observation	network,	𝑎!" 𝑡 	is	the	number	of	times	i	has	observed	j	297	

perform	the	target	behaviour	prior	to	t.	In	practise,	it	will	usually	be	sufficient	to	specify	the	298	

network	only	at	the	times	at	which	each	acquisition	event	occurred.	The	corresponding	299	

static	observation	network	would	be	where	𝑎!" 	gives	the	total	number	of	times	i	observed	j	300	

performing	the	behaviour.	However,	the	latter	network	does	not	allow	for	the	actual	time	301	

course	of	observation	and	acquisition	events.	For	example,	imagine	a	group	of	three	302	

chimpanzees	(A,	B	and	C)	learning	moss	sponging	by	social	transmission	(see	Fig.	1).	A	learns	303	

how	to	moss	sponge	first,	and	is	observed	performing	it	three	times	by	B,	after	which	B	304	

learns	this	behaviour.	Next,	C	observes	A	perform	the	moss	sponging	behaviour	four	times	305	

then	learns	the	behaviour.	The	static	observation	network	(taken	from	Event	3	in	Fig.	1)	306	

would	represent	this	pattern	as	𝑎!,! = 3	and	𝑎!,! = 4.	Thus,	the	static	network	predicts	307	

that	C	will	learn	before	B,	whereas	in	reality	we	would	expect	B	to	learn	first,	as	would	be	308	

predicted	by	the	dynamic	observation	network.	309	



	310	

Fig.	1.	An	example	showing	the	predictive	power	of	a	hypothetical	dynamic	observation	311	

network	whereby	three	individuals	(A,	B	and	C)	learn	to	perform	a	particular	behaviour.	312	

Arrows	represent	social	transmission	events.	See	main	text	for	explanation.	313	

	 Use	of	a	dynamic	observation	network	has	the	advantage	that	it	can	infer	social	314	

learning	if	the	chance	order	in	which	individuals	observe	the	behaviour	predicts	the	order	of	315	

diffusion,	even	if	there	is	little	or	no	underlying	structure	in	the	social	network.	316	

Unfortunately,	s	does	not	have	a	straightforward	interpretation	(Hoppitt	2017),	so	we	317	

suggest	that	researchers	obtain	an	estimate	of	the	proportion	of	learning	events	that	318	

occurred	by	social	transmission	as	an	interpretable	measure	of	its	strength	(see	Section	7.5).	319	

In	contrast,	it	will	often	not	make	sense	to	include	an	observation	network	alongside	320	

association	or	interaction	networks	in	a	model	comparison	meant	to	establish	the	typical	321	

pathways	of	information	transfer.	The	goal	in	such	an	analysis	is,	in	part,	to	find	a	network	322	



that	best	approximates	opportunities	for	observation	and	social	learning.	The	observation	323	

network	bypasses	this	approximation	since	it	is	a	direct	quantification	of	these	324	

opportunities.	However,	it	may	make	sense	for	a	researcher	to	compare	models	with	325	

different	observation	networks	representing	different	types	of	observations	(see	Box	4	for	326	

an	example)	if	they	wish	to	know	which	of	these	pathways	(or	combination	of	pathways)	327	

best	explains	the	diffusion	data	(see	Section	9).	See	(Hoppitt	2017;	Hobaiter	et	al.	2014)	for	328	

further	recommendations	on	using	a	dynamic	social	network.	329	

4.5	Non-visual	social	learning	and	learning	from	products	330	

Thus	far	we	have	assumed	that	social	transmission	of	novel	behaviour	occurs	when	one	331	

individual	observes	another	performing	it.	The	term	‘observes’	should	not	necessarily	be	332	

taken	to	mean	restricted	to	the	visual	modality,	but	rather	should	be	interpreted	in	a	broad	333	

sense,	where	behaviour	can	be	observed	in	any	modality.	Familiar	examples	include	the	334	

many	species	that	learn	vocalizations	by	listening	to	others—e.g.	whale	song	(Noad,	Cato,	335	

Bryden,	Jenner	&	Jenner	2000).	The	recommendations	provided	above	should	therefore	be	336	

considered	in	light	of	the	modality	in	question.	For	instance,	a	large-scale	association	337	

network	needs	to	reflect	the	scale	over	which	social	learning	can	occur—e.g.	auditory	cues	338	

may	travel	much	further	than	visual	ones.	Furthermore,	it	is	well	documented	that	339	

behaviour	can	be	transmitted	when	a	naïve	individual	encounters	the	products	of	an	340	

informed	individual’s	performance	of	that	behaviour	(e.g.	Terkel	1995;	Leadbeater	&	Chittka	341	

2008).	In	such	cases,	the	predictive	power	of	a	network	in	an	NBDA	will	depend	on	the	342	

extent	to	which	it	approximates	i’s	opportunities	to	encounter	the	products	of	j’s	behaviour.	343	

To	date,	we	are	aware	of	no	uses	of	NBDA	that	are	targeted	at	behaviour	transmitted	344	



through	product	learning,	nor	through	non-visual	transmission,	but	these	remain	potential	345	

uses	of	the	method.	346	

	5	Diffusion	data	and	types	of	NBDA	347	

In	the	context	of	NBDA,	diffusion	data	refers	to	the	pattern	of	spread	of	the	target	348	

behaviour,	and	provides	the	response	variable	for	the	analysis.	There	are	two	main	variants	349	

of	NBDA:	order-of-acquisition	diffusion	analysis	(OADA),	which	takes	as	data	the	order	in	350	

which	individuals	acquired	the	target	behaviour,	and	time-of-acquisition	diffusion	analysis	351	

(TADA),	which	takes	as	data	the	times	of	acquisition.	TADA	can	be	further	subdivided	into	a	352	

version	that	treats	time	as	a	continuous	variable	(continuous	TADA	or	‘cTADA’),	and	a	353	

version	that	takes	time	as	a	discrete	variable	split	into	units	(discrete	TADA	or	‘dTADA’).	354	

Here,	we	first	explain	how	a	researcher	should	decide	between	the	different	variants.	355	

5.1	OADA,	cTADA,	or	dTADA?	356	

The	original	form	of	NBDA	was	the	dTADA	(Franz	&	Nunn	2009),	with	the	OADA	and	cTADA	357	

being	proposed	soon	afterwards	(Hoppitt,	Boogert	et	al.	2010).	All	forms	can	be	expressed	358	

in	the	form	given	in	Eqn.	1	and	2.	Choice	of	OADA	versus	cTADA	versus	dTADA	depends	on	359	

the	diffusion	data	available	and	the	assumptions	one	is	willing	to	make	about	the	baseline	360	

rate	function,	𝜆! 𝑡 .	Here,	we	discuss	the	latter	issue	first.	361	

OADA	makes	no	specific	assumptions	about	the	shape	of	𝜆! 𝑡 ,	but	only	assumes	362	

that	this	function	is	the	same	for	every	individual	in	the	diffusion	(to	understand	why,	see	363	

Box	2).	In	contrast,	TADA	requires	the	researcher	to	make	assumptions	about	the	form	of	364	

𝜆! 𝑡 ,	and	fit	parameters	controlling	its	shape.	When	these	assumptions	are	met,	TADA	365	

offers	more	statistical	power	than	OADA	(Hoppitt,	Boogert	et	al.	2010).	This	is	especially	366	



true	when	the	network	is	highly	homogeneous	(i.e.	when	it	is	densely	connected	with	367	

relatively	little	variation	in	connection	strength).	Indeed,	when	the	network	is	completely	368	

homogeneous—that	is,	if	all	possible	connections	exist	and	are	of	equal	strength—OADA		369	

will	be	unable	to	distinguish	social	transmission	from	asocial	learning	since	all	orders	of	370	

acquisition	would	be	equally	likely	in	both	models.	371	

In	the	simplest	case,	one	can	fit	a	TADA	that	assumes	a	constant	baseline	hazard	rate	372	

of	learning,	𝜆! 𝑡 = 𝜆!,	with	an	extra	parameter,	𝜆!,	fitted	to	the	data	(Franz	&	Nunn	2009;	373	

Hoppitt,	Boogert	et	al.	2010).	However,	if	the	rate	at	which	individuals	learn	asocially	374	

increases	over	time,	this	can	cause	a	spurious	positive	result	for	social	transmission	in	a	375	

TADA	(Hoppitt,	Kandler,	Kendal	&	Laland	2010).	For	example,	if	a	novel	foraging	task	is	376	

presented	to	a	group	of	animals,	they	might	initially	exhibit	neophobic	responses	towards	it;	377	

as	this	effect	fades	over	time,	the	rate	at	which	they	learn	to	solve	the	task	asocially	will	378	

likely	increase.	Conversely,	if	𝜆! 𝑡 	decreases	over	time—e.g.	if	the	resources	necessary	to	379	

learn	the	behaviour	begin	to	deplete—this	can	reduce	the	power	of	TADA	to	detect	social	380	

transmission.	Fortunately,	TADA	can	be	modified	to	have	a	non-constant	baseline	rate.	Any	381	

positive	function	can	be	specified	for	𝜆! 𝑡 .	However,	the	NBDA	package	has	two	functions	382	

built-in	which	will	be	sufficient	in	most	cases.	One	corresponds	to	a	gamma	distribution	of	383	

latencies	under	asocial	learning	(Hoppitt,	Kandler	et	al.	2010),	and	the	other	to	a	Weibull	384	

distribution	of	latencies	(a	common	choice	in	survival	analysis;	Moore	2016).	Both	offer	385	

flexible	modelling	of	𝜆! 𝑡 	with	a	shape	parameter	that	allows	for	the	possibility	of	386	

systematically	increasing,	constant,	and	systematically	decreasing	baseline	functions.	387	

If	instead	𝜆! 𝑡 	fluctuates	unpredictably,	this	can	badly	reduce	the	power	of	TADA,	388	

but	OADA	will	remain	unaffected	(Hoppitt,	Boogert	et	al.	2010).	For	example,	if	a	field	389	



experiment	is	conducted	in	which	a	population	of	animals	is	presented	with	a	foraging	task,	390	

there	may	be	many	factors	influencing	the	rate	at	which	individuals	in	the	population	solve	391	

the	task	at	any	given	time,	such	as	weather	conditions,	predation	risk,	the	presence	of	prey,	392	

or	diurnal	rhythms.	In	principle,	if	all	the	variables	causing	fluctuations	in	the	baseline	393	

acquisition	rate	can	be	identified	and	included	in	the	model	(see	Section	6),	TADA	could	still	394	

be	appropriate.	However,	OADA	is	a	far	easier	option.	395	

So	what	does	this	mean	for	a	researcher	choosing	between	OADA,	cTADA	and	396	

dTADA?		If	the	researcher	only	has	data	on	the	order	in	which	individuals	acquired	the	397	

behaviour,	then	OADA	must	be	used	(Fig.	2).	However,	if	data	on	exact	times	of	acquisitions	398	

are	available,	there	is	a	choice	between	OADA	and	cTADA.	If	it	is	likely	that	𝜆! 𝑡 	fluctuates	399	

unpredictably,	then	OADA	is	again	to	be	preferred.	However,	if	the	researcher	is	confident	400	

that	the	baseline	rate	function	can	be	assumed	to	be	constant	or	can	be	modelled	as	a	401	

potentially	systematically	increasing	or	decreasing	function,	then	cTADA	is	to	be	initially	402	

preferred,	since	it	offers	more	statistical	power	under	these	circumstances.	In	such	cases,	403	

we	recommend	that	models	with	both	constant	and	Weibull	(and/or	gamma)	baseline	404	

functions	be	fitted,	and	the	best	fitting	baseline	function	be	used	to	generate	parameter	405	

estimates	(see	Section	9.2).	However,	if	very	different	results	are	obtained	from	models	406	

with	different	baseline	functions	(e.g.	strong	support	for	asocial	learning	versus	strong	407	

support	for	social	transmission),	it	suggests	that	the	analysis	is	dominated	by	the	time	408	

course	of	events	as	opposed	to	the	pattern	of	diffusion	through	the	network.	For	an	409	

example	of	such	a	situation,	see	Tutorial	7	in	the	Supporting	Information.	In	such	cases,	we	410	

recommend	that	researchers	switch	to	OADA	since	it	is	invariant	to	the	shape	of	𝜆! 𝑡 ,	and	411	

sensitive	only	to	the	pattern	of	diffusion	through	the	network.	The	above	recommendations	412	

are	summarized	in	Fig.	2.	413	



	414	

Fig.	2.	Flowchart	for	selecting	the	appropriate	NBDA	model.		415	

In	other	cases,	some	information	on	time	of	acquisition	may	be	available,	but	the	416	

exact	times	are	not	known.	One	reason	this	could	occur	is	if	the	population	is	sampled	417	

periodically,	giving	a	temporal	snapshot	of	who	is	informed	at	any	given	time.	The	418	

researcher	then	knows	only	the	time	period	in	which	each	individual	acquired	the	419	

behaviour.	The	natural	choice	here	is	a	dTADA,	though	if	the	sampling	periods	are	420	

sufficiently	frequent,	it	may	be	possible	to	resolve	the	order	of	acquisition	(a	few	ties	can	be	421	

accommodated,	see	Section	10.3).	In	such	cases,	there	is	a	choice	between	OADA	and	422	



dTADA,	and	the	researcher	can	use	the	same	reasoning	for	choosing	between	OADA	and	423	

cTADA	described	above	(Fig.	2).	Another	reason	we	might	have	inexact	times	of	acquisition	424	

is	if	there	is	observation	error	in	the	recorded	time	of	acquisition.	Franz	and	Nunn	(2010)	425	

find	that	this	can	inflate	the	false	positive	error	rate	for	social	transmission	in	a	dTADA	when	426	

the	time	units	are	small.	Since	the	results	of	a	dTADA	converge	on	the	results	of	cTADA	as	427	

the	time	units	get	smaller,	observation	error	will	also	inflate	the	false	positive	rate	in	a	428	

cTADA.	However,	by	using	dTADA	with	a	sufficiently	long	time	unit,	the	problem	is	429	

alleviated.	Franz	and	Nunn	(2010)	provide	a	rule	of	thumb	that	there	should	be	≥	50%	430	

probability	that	an	individual	who	has	acquired	the	trait	will	be	observed	performing	it	in	a	431	

given	time	unit.	This	can	be	checked	by	calculating	the	proportion	of	time	units	in	which	432	

individuals	are	observed	performing	the	behaviour	following	the	time	unit	in	which	their	433	

performance	was	first	observed.	434	

If	TADA	is	chosen,	it	is	important	that	the	times	entered	into	the	model	are	435	

cumulative	times	that	include	only	those	periods	during	which	it	was	possible	for	the	436	

animals	to	learn	the	behaviour.	For	example,	imagine	a	foraging	task	presented	to	a	group	437	

of	animals	at	9–10	a.m.	each	day.	If	individual	A	learns	to	solve	the	task	5	minutes	into	the	438	

session	on	the	second	day,	it	would	be	attributed	65	mins	as	its	time	of	acquisition,	since	A	439	

could	only	solve	the	task	when	the	task	was	available	to	be	solved.	440	

Note	that	in	a	TADA,	while	evidence	for	a	model	of	social	transmission	over	an	441	

asocial	model	supports	the	presence	of	social	transmission,	it	does	not	necessarily	442	

constitute	evidence	that	transmission	follows	the	network	provided.	Therefore,	we	443	

recommend	researchers	include	an	additional	model	(or	set	of	models)	in	which	the	social	444	

network	is	replaced	with	a	homogeneous	network	(connections	of	1	for	all	dyads).	If	the	445	



homogeneous	network	is	favoured	over	the	measured	social	network	(see	Section	9),	it	446	

implies	either	that	transmission	occurs	homogeneously	amongst	the	group,	or,	more	likely,	447	

that	the	measured	social	network	is	substantially	different	from	the	real	pathways	of	448	

transmission	(Whalen	&	Hoppitt	2016).	449	

5.2	Modelling	multiple	diffusions	450	

Thus	far	we	have	assumed	that	the	researcher	has	data	from	a	single	diffusion,	i.e.	the	451	

spread	of	a	single	behaviour	pattern	through	a	single	population	or	group.	But	a	researcher	452	

can	also	combine	data	from	multiple	diffusions,	such	as	the	same	foraging	task	presented	to	453	

different	groups,	into	a	single	NBDA	model.	There	are	a	number	of	ways	that	this	can	be	454	

done.	Let	us	first	extend	the	NBDA	model	from	Eqn.	2	to	multiple	diffusions:	455	

𝜆!" 𝑡 = 𝜆!" 𝑡 1− 𝑧!" 𝑡 𝑠 𝑎!"# 𝑡 𝑧!" 𝑡
!

!!!

+ 1 	

Eqn.	3	456	

Here,	subscript	l	denotes	the	diffusion	number	(i.e.	𝜆!" 𝑡 	is	the	rate	of	acquisition	for	457	

individual	i	in	diffusion	l).	458	

The	first	option	is	to	fit	an	OADA	in	which	the	shape	of	the	baseline	rate,	𝜆!" 𝑡 ,	is	459	

unspecified	and	allowed	to	vary	among	diffusions.	In	this	case,	the	analysis	is	sensitive	only	460	

to	the	order	within	each	diffusion.	However,	this	approach	ignores	the	possibility	that	the	461	

spread	of	behaviour	‘takes	off’	at	different	times	in	different	diffusions.	For	instance,	462	

imagine	a	study	consisting	of	three	diffusions	in	which	everyone	in	group	1	learns	in	the	first	463	

5	mins,	everyone	in	group	2	learns	in	the	middle	of	the	experiment,	and	everyone	in	group	3	464	

learns	at	the	end	of	the	experiment.	This	pattern	is	consistent	with	innovations	arising	at	465	



different	times	in	each	group	and	rapidly	spreading	through	each	group,	but	would	be	466	

ignored	by	the	OADA	described	above,	thus	resulting	in	lower	statistical	power	to	detect	467	

social	transmission.	468	

A	researcher	could	instead	use	a	TADA	if	the	assumptions	are	reasonable	(see	469	

Section	5.1).	In	principle,	one	could	fit	a	TADA	with	separate	𝜆!" 𝑡 	fitted	to	each	diffusion.	470	

However,	this	results	in	a	rather	complex	model	and	we	suggest	this	route	be	avoided	(this	471	

option	is	not	supported	in	the	NBDA	package).	A	preferable	option	is	to	assume	that	the	472	

shape	of	the	baseline	function	is	the	same	in	all	diffusions,	𝜆!" 𝑡 = 𝜆! 𝑡 .	One	can	then	473	

control	for	the	possibility	of	a	different	rate	of	asocial	learning	in	each	group	by	including	a	474	

‘group’	individual	level	variable	(see	Section	6).	However,	this	requires	a	choice	of	baseline	475	

function,	and	as	recommended	above,	if	the	results	are	not	robust	to	this	choice	then	OADA	476	

is	to	be	preferred	(Fig.	2).	477	

A	compromise	is	to	assume	that	𝜆!" 𝑡 = 𝜆! 𝑡 ,	but	to	leave	𝜆! 𝑡 	unspecified.	This	478	

amounts	to	fitting	an	OADA	in	which	all	diffusions	are	treated	as	a	single	diffusion.	Thus,	the	479	

order	of	acquisition	is	specified	across	all	diffusions,	but	individuals	from	different	diffusions	480	

are	not	connected	in	the	network.	More	generally,	a	researcher	can	pool	diffusions	into	481	

‘strata’,	and	assume	that	diffusions	within	the	same	‘stratum’	have	the	same	baseline	rate	482	

function:	i.e.	𝜆!" 𝑡 = 𝜆!"(!) 𝑡 ,	where	S(l)	is	the	stratum	for	diffusion	l.	In	this	case,	the	483	

researcher	treats	each	stratum	as	a	single	diffusion	(again	providing	zero	connections	for	484	

dyads	in	different	diffusions)	(Hoppitt	&	Laland	2013).	We	refer	to	this	model	as	a	‘stratified	485	

OADA’.	As	with	a	TADA,	a	‘group’	individual	level	variable	can	be	included	to	control	for	the	486	

possibility	that	groups	differ	in	their	asocial	acquisition	rate.	487	



In	a	multiple	diffusion	analysis	using	TADA	or	stratified	OADA,	comparing	a	network-488	

based	model	of	social	learning	to	an	asocial	model	does	not	test	whether	the	diffusion	489	

follows	the	network	within	each	group.	For	example,	if	everyone	in	each	group	learns	490	

homogeneously,	the	network	provided	to	the	analysis	is	likely	to	be	a	reasonable	491	

approximation	of	the	pathway	of	learning,	due	to	the	zero	connections	between	individuals	492	

in	different	groups.	Therefore,	the	network	model	is	likely	to	provide	a	better	fit	than	the	493	

asocial	model.	To	test	whether	the	diffusion	in	fact	follows	the	social	network	within	each	494	

group,	a	researcher	must	fit	an	alternative	model	in	which	the	connections	within	each	495	

group	are	set	to	1	and,	if	using	a	stratified	OADA,	connections	between	groups	are	set	to	0	496	

(we	term	this	network	the	‘group	network’).	If	the	social	network	provides	a	substantially	497	

better	fit	than	the	group	network,	this	suggests	that	the	social	network	approximates	the	498	

pathways	of	learning	within	each	group.	If	instead	the	group	network	is	favoured	over	both	499	

the	asocial	model	and	the	network	model,	then	the	researcher	has	evidence	of	social	500	

transmission	within	each	group,	but	no	evidence	that	transmission	follows	each	group’s	501	

social	network.	502	

So	far	we	have	assumed	that	researchers	are	analysing	multiple	diffusions	on	503	

different	sets	of	individuals.	Alternatively,	it	could	be	that	individuals	are	present	in	more	504	

than	one	diffusion,	e.g.	if	different	foraging	tasks	are	presented	to	the	same	group.	In	such	505	

cases,	the	rate	of	acquisition	for	each	individual	is	likely	to	be	correlated	across	diffusions.	506	

This	can	be	accounted	for	by	including	random	effects.	The	NBDA	package	allows	this	to	be	507	

done	in	an	OADA	using	the	coxme	package	(Therneau	2009),	using	the	technique	described	508	

by	(Hoppitt,	Boogert	et	al.	2010).	509	

5.3	Seeded	demonstrators	510	



In	many	diffusion	studies,	some	individuals	start	the	diffusion	already	informed,	often	511	

because	they	are	trained	to	perform	the	target	behaviour	and	‘seeded’	in	the	diffusion.	Such	512	

individuals	are	easily	accounted	for	in	an	NBDA	by	simply	setting	status,	𝑧! 𝑡 ,	to	1	for	all	t	>	513	

0.	The	NBDA	package	easily	allows	for	incorporating	such	information	(see	Tutorial	1	in	the	514	

Supporting	Information).	515	

6	Individual	level	variables	516	

NBDA	can	be	expanded	to	include	other	predictor	variables	that	might	influence	the	rate	of	517	

social	transmission	and/or	asocial	learning,	termed	‘individual	level	variables’	(ILVs)	518	

(Hoppitt,	Boogert	et	al.	2010).	We	expand	Eqn.	2	to	include	the	effects	of	V	continuous	or	519	

binary	ILVs	as	follows:	520	

𝜆! 𝑡 = 𝜆! 𝑡 1− 𝑧! 𝑡 𝑠 exp Γ! 𝑎!" 𝑡 𝑧! 𝑡
!

!!!

+ exp Β! 	

Β! = 𝛽!𝑥!,!

!

!!!

	

Γ! = 𝛾!𝑥!,!

!

!!!

	

Eqn.	4	521	

Where	𝑥!,! 	is	the	value	of	the	kth	variable	for	individual	i,	𝛽!	is	the	coefficient	of	the	effect	of	522	

variable	k	on	asocial	learning,	and	𝛾!	is	the	coefficient	of	the	effect	of	variable	k	on	social	523	

transmission	(see	Section	7.1	for	how	these	coefficients	can	be	interpreted).		524	

6.1	Why	include	ILVs?	525	



The	most	obvious	reason	to	include	ILVs	in	an	NBDA	is	if	the	researcher	is	interested	in	the	526	

effect	those	variables	may	have	on	asocial	and/or	social	learning	(see	Box	3	for	an	example).	527	

Alternatively,	one	may	wish	to	include	a	potentially	confounding	variable	that	might	cause	a	528	

spurious	social	transmission	effect.	This	can	occur	if	a	variable	is	both	correlated	with	the	529	

network	and	has	an	effect	on	asocial	learning	(Hoppitt,	Boogert	et	al.	2010)—e.g.	older	530	

individuals	may	tend	to	associate	with	one	another	and	be	more	likely	to	acquire	a	novel	531	

foraging	trait	through	asocial	learning.	Hoppitt,	Boogert	et	al.	(2010)	showed	that	such	532	

confounds	could	be	statistically	controlled	for	by	including	the	relevant	ILV	in	the	NBDA	533	

model.	534	

6.2	Additive,	multiplicative	and	unconstrained	models	535	

When	NBDA	was	first	extended	to	include	ILVs,	two	variants	were	proposed	(Hoppitt,	536	

Boogert	et	al.	2010).	The	additive	model	assumed	that	all	ILVs	affected	only	the	rate	of	537	

asocial	learning,	Γ! = 0,	whereas	the	multiplicative	model	assumed	that	all	ILVs	influenced	538	

both	asocial	learning	and	social	transmission,	and	did	so	by	the	same	amount—i.e.	𝛽! = 𝛾!	539	

for	all	k.	Studies	using	this	approach	tended	to	include	separate	sets	of	additive	and	540	

multiplicative	models	during	model	selection,	and	used	AICc	to	choose	between	the	two	541	

(see	Section	9).	However,	this	approach	excludes	the	possibility	that	an	ILV	might	have	a	542	

different	effect	on	social	transmission	and	asocial	learning,	so	we	generally	prefer	fitting	the	543	

‘unconstrained’	model	(Hoppitt	&	Laland	2013)	in	which	𝛽!	and	𝛾!	are	estimated	544	

independently.	Nonetheless,	for	some	variables	it	may	make	sense	to	assume	a	priori	that	545	

they	only	operate	on	asocial	learning	(𝛾! = 0),	only	on	social	transmission	(𝛽! = 0),	or	that	546	

they	affect	asocial	learning	and	social	transmission	the	same	amount	(𝛽! = 𝛾!).	Therefore,	547	



in	the	NBDA	package	the	user	can	specify	which	variables	affect	social	transmission,	which	548	

affect	asocial	learning	and	which	are	assumed	to	have	the	same	effect	on	each.		549	

6.3	Entering	ILVs	550	

s	is	estimated	relative	to	the	baseline	rate	of	asocial	learning,	which	is	the	rate	of	asocial	551	

learning	when	all	ILVs	in	the	model	are	set	to	zero.	As	such,	a	researcher	should	attempt	to	552	

enter	ILVs	in	a	way	that	makes	interpretation	of	s	most	meaningful.	553	

Continuous	variables:	We	recommend	centring	all	continuous	variables	(subtract	the	mean)	554	

such	that	they	have	a	mean	of	zero.	In	this	way,	the	baseline	rate	of	asocial	learning	is	set	to	555	

the	mean	of	all	continuous	variables.	Dividing	each	variable	by	its	standard	deviation	such	556	

that	it	is	fully	standardized	(mean	=	0,	SD	=	1)	is	also	advisable	since	it	improves	the	557	

probability	of	model	convergence.	558	

Binary	variables:	for	two	level	factors,	such	as	sex,	the	most	obvious	way	to	code	the	559	

variable	is	0/1	(e.g.	males	=	0,	females	=	1)	such	that	the	estimated	effect	𝛽!	or 𝛾!		gives	the	560	

difference	on	the	log	scale	between	the	two	levels	(see	Section	7.1).	This	means	that	the	561	

baseline	asocial	learning	rate	will	be	set	to	whichever	level	of	the	factor	is	set	to	zero.	An	562	

alternative	is	to	code	the	variable	as	-0.5/0.5	(e.g.	males	=	-0.5,	females	=	0.5).	Since	the	563	

difference	between	the	two	levels	is	1,	the	estimated	effect	still	gives	the	difference	on	the	564	

log	scale	between	the	two	levels,	but	the	baseline	asocial	learning	rate	is	set	to	the	midpoint	565	

of	the	two	levels.	It	may	also	be	necessary	to	re-code	binary	variables	once	the	analysis	has	566	

been	run	to	obtain	interpretable	estimates	of	s	(see	Section	7.4).	567	

Factors:	categorical	variables	with	F	>	2	levels	can	be	broken	down	into	F	-	1	indicator	568	

variables	in	the	same	way	as	for	a	standard	regression	analysis.	For	example,	if	we	have	an	569	



‘age	category’	with	adults,	sub-adults	and	juveniles,	this	could	be	broken	down	into	a	570	

variable	‘juv’	which	takes	the	value	1	for	juveniles	and	0	for	adults/sub-adults,	and	a	variable	571	

‘sub’	which	takes	the	value	1	for	sub-adults	and	0	for	adults/juveniles.	In	doing	so,	adults	572	

becomes	the	reference	level	(juv	=	0,	sub	=	0)	to	which	juveniles	(juv	=	1,	sub	=	0)	and	sub-573	

adults	(juv	=	0,	sub	=	1)	are	compared.	Whichever	factor	level	is	set	as	the	reference	is	also	574	

the	baseline	rate	of	asocial	learning.	So	in	our	example,	s	is	estimated	relative	to	the	adult	575	

rate	of	asocial	learning.	Again,	it	may	also	be	necessary	to	re-code	factors	once	the	analysis	576	

has	been	run	to	obtain	interpretable	estimates	of	s	(see	Section	7.4).	577	

6.4	Time-varying	ILVs	578	

NBDA	can	be	further	expanded	to	include	ILVs	that	vary	over	the	course	of	the	diffusion:	579	

𝜆! 𝑡 = 𝜆! 𝑡 1− 𝑧! 𝑡 𝑠 exp Γ! 𝑡 𝑎!" 𝑡 𝑧! 𝑡
!

!!!

+ exp Β! 𝑡 	

Β! 𝑡 = 𝛽!𝑥!,!(𝑡)
!

!!!

	

Γ! 𝑡 = 𝛾!𝑥!,!(𝑡)
!

!!!

	

Eqn.	5	580	

where	𝑥!,!(𝑡)	is	the	value	of	the	kth	variable	for	individual	i	at	time	t.	For	OADA,	we	only	581	

need	to	specify	the	value	of	each	variable	at	the	time	of	each	acquisition	event,	and	the	582	

NBDA	package	allows	a	user	to	do	this.	For	a	cTADA,	time-varying	ILVs	can	currently	be	583	

specified	such	they	change	value	only	at	the	times	of	the	acquisition	events.	For	a	dTADA,	a	584	



value	is	specified	for	each	time	unit—that	is,	it	is	assumed	that	the	value	does	not	change	585	

within	each	time	unit.	586	

7	Interpretation	of	NBDA	models	587	

7.1	Individual	level	variables	588	

Continuous	variables:	Note	from	Eqn.	4	and	5	that	ILVs	are	modelled	as	having	a	linear	589	

effect	on	the	log	scale	(as	with	most	survival	analysis	models	(Moore	2016)	and	any	590	

generalized	linear	models	with	a	log	link	function).	Therefore,	exp 𝛽! 	estimates	the	591	

multiplicative	effect	of	one	unit	increase	in	𝑥!	on	the	rate	of	asocial	learning,	and	592	

exp 𝛾!  estimates	the	multiplicative	effect	of	one	unit	increase	in	𝑥!	on	the	rate	of	social	593	

learning	(i.e.	incoming	social	transmission).	If	the	variable	has	been	standardized,	the	594	

estimates	give	the	effect	of	one	SD	increase	in	𝑥!.	One	can	transform	the	effect	back	to	the	595	

original	scale	by	dividing	𝛽!	and	𝛾!	by	the	SD	for	the	unstandardized	variable.	596	

For	example,	imagine	that	we	have	an	ILV	‘age’,	which	had	a	SD	of	10	years.	We	597	

standardized	the	variable	and	obtained	the	estimates	𝛽!"# = 1.5	and	𝛾!"# =	-0.8.	We	can	598	

therefore	estimate	that	for	an	increase	in	age	of	1	SD	(10	years),	the	asocial	learning	rate	599	

increases	by	a	factor	of	exp(1.5)	=	4.48x,	whereas	the	rate	of	social	learning	decreases	by	a	600	

factor	of	exp(-0.8)	=	0.45x.	Or	we	can	obtain	our	estimate	on	the	scale	of	years:	the	rate	of	601	

asocial	learning	increases	by	a	factor	of	exp(1.5/10)	=	1.16x	per	year,	whereas	the	rate	of	602	

social	learning	decreases	by	a	factor	of	exp(-0.8/10)	=	0.92x	per	year.	603	

Binary	variables:	If	a	binary	variable	has	been	coded	such	that	there	is	a	difference	of	1	604	

between	the	levels	(e.g.	1/0	or	-0.5/0.5),	exp 𝛽! 	estimates	the	ratio	of	asocial	learning	605	

rates	between	the	two	levels.	Likewise,	exp 𝛾! 	estimates	the	ratio	of	social	learning	rates	606	



between	the	two	levels.	For	example,	imagine	we	have	an	ILV	‘sex’	with	-0.5	=	male	and	0.5	607	

=	female.	We	get	𝛽!"#	=	1.8	and	𝛾!"# = −1.2.	Therefore,	females	are	an	estimated	exp(1.8)	608	

=	6.05x	faster	than	males	at	asocial	learning	and	an	estimated	exp(-1.2)	=	0.30x	slower	at	609	

social	learning.	Alternately,	we	can	reverse	the	sign	of	the	𝛾!"# coefficient	and	say	that	610	

males	are	an	estimated	exp(1.2)	=	3.32x	faster	than	females	at	social	learning.	611	

Factors:	coefficients	can	be	interpreted	in	the	same	manner	as	binary	variables	in	a	pairwise	612	

manner.	For	our	example	in	Section	6.3,	imagine	that	we	got	𝛽!"# = 0.74	and	𝛽!"# = 0.32.	613	

We	can	conclude	that	juveniles	are	an	estimated	exp(0.74)	=	2.10x	faster	at	asocial	learning	614	

than	adults	and	sub-adults	are	an	estimated	exp(0.32)	=	1.38x	faster	at	asocial	learning	then	615	

adults.	To	get	the	estimated	difference	between	juveniles	and	subadults,	we	back-transform	616	

the	difference	between	their	coefficients,	exp 𝛽!"# − 𝛽!"# :	juveniles	are	an	estimated	617	

exp(0.74-0.32)	=	1.52x	faster	at	asocial	learning	than	sub-adults.	618	

7.2	Social	transmission	(s)	619	

In	general,	s	is	the	rate	of	social	transmission	per	unit	connection,	relative	to	the	baseline	620	

rate	of	asocial	learning,	but	may	have	a	more	specific	interpretation	depending	on	the	621	

network	used	(see	Section	4).	The	baseline	rate	of	asocial	learning	is	obtained	by	setting	all	622	

ILVs	to	zero	(see	Section	6.3).		623	

For	example,	imagine	that	we	have	a	large	scale	association	network	(see	Section	624	

4.1),	a	continuous	ILV	‘age’	centred	on	zero,	and	a	binary	variable	‘sex’,	coded	as	males	=	0,	625	

females	=	1,	and	we	obtain	an	estimate	of	s	=	3.2.	We	can	conclude	that	the	rate	of	social	626	

transmission	from	informed	to	naïve	individuals	during	periods	when	they	are	associating	627	

was	estimated	at	3.2x	the	baseline	rate	of	asocial	learning	(that	is,	the	asocial	learning	rate	628	

for	a	male	of	average	age).	629	



7.3	Obtaining	and	interpreting	confidence	intervals	630	

Confidence	intervals	(CIs)	for	a	parameter	give	a	plausible	range	for	the	real	value	of	that	631	

parameter;	that	is,	an	X%	CI	is	expected	to	contain	the	true	value	of	a	parameter	on	X%	of	632	

occasions.	CIs	therefore	should	be	obtained,	reported	and	interpreted	for	any	parameters	of	633	

interest,	including	s.	A	common	way	to	obtain	CIs	is	take	the	maximum	likelihood	estimate	±	634	

1.96	x	the	standard	error,	referred	to	as	Wald	confidence	intervals.	However,	Wald	CIs	can	635	

be	misleading	if	the	uncertainty	in	the	value	of	a	parameter	is	asymmetrical,	as	is	often	the	636	

case	for	parameters	in	an	NBDA.	In	particular,	for	s	there	is	often	more	certainty	in	the	637	

lower	limit	than	there	is	for	the	upper	limit.	638	

A	preferred	approach	for	dealing	with	such	a	scenario	is	to	use	the	profile	likelihood	639	

technique	(Morgan	2010),	which	provides	CIs	reflecting	any	asymmetry	in	the	certainty	in	a	640	

parameter	(Fig.	3).	The	profile	log-likelihood	is	the	-log-likelihood	for	a	specified	value	of	the	641	

parameter,	once	all	other	parameters	in	the	model	have	been	optimized.	If	a	specified	642	

value,	v,	for	the	parameter	has	a	profile	log-likelihood	that	is	within	1.92	units	of	the	643	

minimum,	then	v	falls	within	the	95%	CI;	this	is	because	the	95%	profile	CI	contains	all	644	

values	that	would	not	be	rejected	at	the	5%	level	in	a	likelihood	ratio	test	(see	Section	9.1).	645	

So	to	find	the	95%	CI,	researchers	need	to	plot	the	profile	log-likelihood,	draw	a	line	at	1.92	646	

units	above	the	minimum	value	(which	is	also	the	-log-likelihood	of	the	fitted	model),	and	647	

find	the	upper	and	lower	crossing	points	(Fig.	3).	Functions	are	provided	in	the	NBDA	648	

package	to	facilitate	this	process	(e.g.	see	Tutorial	1	in	the	Supporting	Information).	649	



	650	

Fig.	3.	Profile	log-likelihood	plot	used	for	obtaining	confidence	intervals	for	parameters	in	651	

which	there	is	asymmetry	in	the	uncertainty	regarding	their	values.	The	profile	log-652	

likelihood	is	the	-log-likelihood	for	a	specified	value	of	the	target	parameter	once	all	other	653	

parameters	in	the	model	have	been	optimized.	The	lowest	point	of	the	curve	(A)	654	

corresponds	to	the	profile	log-likelihood	for	the	parameter	value	obtained	from	the	fitted	655	

model.	The	dashed	line	indicates	1.92	units	above	this	minimum	-log-likelihood.	Values	that	656	

fall	within	this	region	are	within	the	95%	CI.	The	values	at	which	the	curve	crosses	this	657	

dashed	line	indicate	the	lower	(B)	and	upper	(C)	values	for	the	95%	confidence	interval.	658	

Here,	the	estimate	from	the	fitted	model	is	1.54	(95%	CI:	0.40,	6.61).	659	



The	CI	for	s	allows	the	researcher	to	determine	the	level	of	information	provided	by	660	

their	data	about	the	importance	of	social	transmission	in	their	diffusion(s),	as	shown	in	661	

Table	1.	662	

Table	1.	Interpreting	95%	confidence	intervals	for	s.	663	

	 Upper	limit	of	95%	CI	

Lower	limit	of	95%	CI	 Low	value	 High	value	

0	 Little	or	no	social	transmission	 Weak	or	no	evidence	of	social	

transmission,	but	cannot	rule	out	

an	important	effect	either	

Low	value	 A	small	effect	of	social	

transmission	

Evidence	of	social	transmission,	

but	uncertain	whether	the	effect	is	

strong	or	weak	

High	value	 Not	possible	 Strong	evidence	of	social	

transmission	that	has	an	important	

effect	in	the	diffusion	

	664	

Whist	it	may	sometimes	be	possible	for	the	researcher	to	interpret	the	value	of	s	665	

directly,	and	thus	determine	what	values	should	be	considered	‘low’	or	‘high’,	in	many	cases	666	

this	will	be	difficult.	In	such	cases	researchers	can	transform	the	upper	and	lower	limits	of	667	

the	95%	CI	into	upper	and	lower	estimates	of	the	percentage	of	events	that	occurred	by	668	

social	transmission	(see	Section	7.5).	669	



Confidence	intervals	for	the	effects	of	ILVs	can	be	interpreted	in	an	analogous	670	

manner,	but	the	parameter	values	should	first	be	back-transformed	as	described	in	Section	671	

7.1,	after	which,	the	point	of	no	effect	is	exp(0)	=	1.	CIs	for	ILVs	could	also	potentially	include	672	

values	in	either	direction	(i.e.	greater	than	and/or	less	than	1).	673	

7.4	Dealing	with	large	estimates	for	s	674	

Note	that	sometimes	very	large	estimates	of	s	can	be	obtained,	especially	in	an	OADA,	675	

which	can	seem	difficult	to	interpret.	This	also	usually	means	that	we	cannot	find	an	upper	676	

limit	for	the	95%	CI	for	s	(see	Section	7.3).	There	are	two	main	reasons	that	such	large	677	

estimates	can	arise.	678	

First,	this	can	occur	if	an	ILV	has	a	very	large	positive	coefficient.	For	example,	let	us	679	

assume	that	we	have	𝛽!"# = 14	in	our	example	above;	this	corresponds	to	females	being	an	680	

estimated		1,200,000x	faster	to	learn	asocially	than	males.	This	is	probably	because	the	only	681	

individuals	that	ever	learned	when	their	total	connection	to	demonstrators,	682	

𝑎!" 𝑡 𝑧! 𝑡!
!!! ,	was	zero	were	female.	This	makes	it	logically	plausible	that	only	females	683	

can	learn	asocially,	resulting	in	a	profile	log-likelihood	for	𝛽!"#that	flattens	out	to	an	684	

asymptote	as	𝛽!"#	tends	to	infinity	(see	Box	4	Figure	1	for	an	example	of	this).	This	means	685	

that	we	can	only	set	a	lower	estimate	on	𝛽!"#,	but	it	also	impacts	the	estimated	value	for	s.	686	

This	is	because	s	is	being	estimated	relative	to	the	asocial	learning	rate	for	males:	since	687	

males	are	effectively	concluded	to	have	an	asocial	learning	rate	of	0,	this	pushes	s	up	to	an	688	

arbitrarily	large	value.	This	also	means	that	we	cannot	obtain	an	upper	limit	for	the	95%	CI	689	

for	s.	We	can	solve	this	problem	by	simply	re-parameterizing	the	model	such	that	females	690	

are	set	to	zero.	We	will	then	obtain	a	model	output	with	𝛽!"# = −14,	but	s	will	now	be	691	

estimated	relative	to	the	(non-zero)	female	rate	of	asocial	learning.	This	is	now	likely	to	yield	692	



an	interpretable	estimate	for	s	and	an	upper	limit	for	the	95%	CI.	In	general,	if	large	values	693	

of	s	are	obtained	and/or	no	upper	limit	can	be	found	for	the	95%	CI,	re-parameterize	the	694	

model	such	that	all	the	ILVs	are	set	to	zero	at	the	point	where	they	have	their	maximum	695	

effect	size.	The	model	may	then	yield	a	value	of	s	that	is	more	easily	interpretable.	696	

A	second	reason	that	large	estimates	of	s	can	be	obtained	is	if	the	diffusion	follows	697	

the	network	very	closely.	The	most	extreme	case	is	if	the	next	individual	to	learn	is	always	698	

the	one	with	the	highest	total	connection	to	informed	individuals,	 𝑎!" 𝑡 𝑧! 𝑡!
!!! .	In	such	699	

cases,	the	profile	likelihood	for	s	will	keep	levelling	out	towards	infinity—as	far	as	the	700	

underlying	logic	of	the	NDBA	model	is	concerned,	these	values	of	s	are	plausible.	In	such	701	

cases,	one	can	only	set	a	lower	plausible	limit	on	s,	and	report	“s	is	estimated	to	be	at	least	702	

[insert	lower	95%	CI]”.	However,	we	may	be	able	to	set	an	upper	limit	on	the	percentage	of	703	

events	that	are	estimated	to	have	occurred	by	social	transmission	(see	Section	7.5).	704	

7.5	Estimating	the	percentage	events	occurring	by	social	transmission	705	

For	some	types	of	network,	it	is	not	easy	to	interpret	s	in	an	intuitive	manner	(see	Section	706	

4),	and	thus	it	can	be	difficult	to	get	an	idea	of	the	importance	of	social	transmission	in	the	707	

spread	of	the	target	behaviour.	A	solution	is	to	convert	s	into	an	estimate	of	the	proportion	708	

of	learning	events	that	occurred	by	social	transmission	(which	we	refer	to	as	%ST).	The	709	

probability	that	each	event,	e,	occurred	by	social	learning	can	be	calculated	as:	710	

𝑝!"#$%&,! =
𝑠 exp Γ! 𝑡! 𝑎!" 𝑡! 𝑧! 𝑡!!

!!!

𝑠 exp Γ! 𝑡! 𝑎!" 𝑡 𝑧! 𝑡!!
!!! + exp Β! 𝑡!

	

Eqn.	6	711	



where	i	is	the	individual	that	learned	during	event	e,	and	𝑡! 	is	the	time	at	which	event	e	712	

occurred.		This	is	the	predicted	relative	rate	of	social	transmission	divided	by	the	predicted	713	

total	relative	learning	rate	for	i	at	the	time	of	learning.	The	mean	of	𝑝!"#$%&,! 	across	all	714	

events	is	then	the	estimated	proportion	of	events	that	occurred	by	social	transmission	715	

(%ST).	One	can	obtain	analogous	estimates	for	the	upper	and	lower	limits	of	the	95%	CI	for	716	

s.	For	an	example	of	how	this	may	be	achieved,	see	Tutorial	2	in	the	Supporting	Information.	717	

s	and	%ST	quantify	the	importance	of	social	transmission	in	subtly	different	ways,	718	

with	the	latter	taking	into	account	the	connections	of	the	network.	For	illustration,	imagine	719	

two	diffusions	of	the	same	behaviour,	in	two	different	populations	A	and	B.	An	NBDA	using	720	

a	large-scale	association	network	yields	an	estimate	of	s	=	4	in	population	A	and	s	=	2	in	721	

population	B.	However,	because	population	B	tends	to	have	stronger	associations	than	722	

population	A,	we	obtain	an	estimate	that	50%	of	events	occurred	by	social	transmission	in	723	

population	A	and	75%	in	population	B.	In	population	A,	for	every	unit	of	time	naïve	724	

individuals	spent	with	informed	individuals,	social	transmission	occurred	at	double	the	rate	725	

than	in	population	B.	However,	because	individuals	in	population	B	associated	more	often,	726	

more	individuals	in	population	B	are	likely	to	have	learned	by	social	transmission.	727	

8	Multiple	network	NBDA	728	

The	approaches	described	in	Eqns.	1-5	assume	that	social	transmission	follows	only	a	single	729	

pathway,	represented	by	a	single	network	(or	a	single	type	of	network	when	modelling	730	

multiple	diffusions).	An	alternative	approach	is	to	allow	for	the	possibility	that	social	731	

transmission	might	follow	more	than	one	pathway,	and	do	so	at	different	rates	(for	an	732	

example,	see	Box	4).	This	situation	can	be	modelled	using	a	multiple	network	NBDA	(Farine	733	

et	al.	2015),	expanding	Eqn.	5	as	follows:	734	



𝜆! 𝑡 = 𝜆! 𝑡 1− 𝑧! 𝑡 exp Γ! 𝑡 𝑠! 𝑎!,!" 𝑡 𝑧! 𝑡
!

!!!!

+ exp Β! 𝑡 	

Eqn.	7	735	

Where	𝑎!,!" 𝑡 	is	the	connection	from	j	to	i	in	network	n	at	time	t,	and	𝑠!	is	the	rate	of	736	

transmission	per	unit	connection	in	network	n	(relative	to	the	rate	of	asocial	learning).	737	

This	model	can	be	compared	with	those	in	which	some	or	all	of	the	s	parameters	are	738	

constrained.	For	example,	comparison	with	a	model	in	which	𝑠! = 𝑠!	tests	for	a	difference	739	

in	transmission	rate	between	network	1	and	network	2.	We	could	also	consider	models	in	740	

which	there	is	no	transmission	in	a	specific	network,	e.g.	𝑠! = 0,	to	test	for	evidence	of	741	

social	transmission	on	a	specific	pathway.	742	

We	can	also	estimate	the	percentage	of	events	occurring	by	social	transmission	via	a	743	

specific	network	n,	%STn	(see	Section	7.5).	We	first	expand	Eqn.	6	to	calculate	the	744	

probability	that	each	event	occurred	as	a	result	of	social	transmission	via	network	n:	745	

𝑝!,! =
𝑠! exp Γ! 𝑡! 𝑎!,!" 𝑡! 𝑧! 𝑡!!

!!!

exp Γ! 𝑡! 𝑠! 𝑎!,!" 𝑡! 𝑧! 𝑡!!
!!!! + exp Β! 𝑡!

	

Eqn.	8	746	

We	then	take	the	mean	value	of	𝑝!,!	across	all	events	to	obtain	%STn.	𝑠!	allows	the	747	

comparison	of	the	rate	of	transmission	per	unit	connection	in	each	network,	and	thus	is	748	

sensitive	to	the	scale	of	each	network—e.g.	if	we	divide	network	n	by	2,	the	value	of	𝑠!	will	749	

be	doubled.	In	contrast,	%STn	is	invariant	to	the	scale	of	each	network,	but	also	takes	into	750	

account	the	number	and	strength	of	connections	in	each	network.	See	Farine	et	al.	(2015)	751	



for	further	discussion	on	how	to	quantify	the	influence	of	each	network	in	a	multi-network	752	

NBDA.	753	

One	potential	use	of	multi-network	NBDA	is	to	break	down	association	or	754	

observation	networks	into	different	pathways	to	test	for	biases	in	transmission.	For	755	

example,	to	test	for	a	rank	bias	in	transmission	we	might	break	down	an	association	756	

network	into	two	networks:	network	1	containing	the	links	from	higher	to	lower	ranks	(and	757	

0	connections	elsewhere),	and	network	2	containing	links	from	lower	to	higher	ranks.	We	758	

can	then	compare	this	model	with	one	in	which	𝑠! = 𝑠!	in	order	to	test	for	a	rank	bias—that	759	

is,	are	individuals	more	(or	less)	likely	to	learn	from	those	with	higher	rank	than	those	with	a	760	

lower	rank?	Hoppitt	(2017)	provides	further	discussion	of	the	potential	uses	of	multi-761	

network	NBDA.	Farine,	Spencer	and	Boogert	(2015)	provide	an	excellent	example	of	how	a	762	

network	can	be	broken	down	into	a	number	of	pathways	to	test	hypotheses	about	social	763	

transmission.	Wild	et	al.	(2019)	use	multi-network	NBDA	in	a	slightly	different	way:	to	tease	764	

apart	the	effects	of	social	transmission,	shared	environment	and	genetic	relatedness	on	a	765	

foraging	behaviour	in	bottlenose	dolphins	(Tursiops	aduncus).	766	

9	Model	selection	approaches	767	

9.1	Model	comparison	768	

In	the	preceding	sections,	we	have	alluded	to	a	number	of	different	situations	where	the	fit	769	

of	two	or	more	NBDA	models	needs	to	be	compared	in	order	to	assess	the	evidence	for	770	

competing	hypotheses,	including:	771	

a) comparing	a	model	of	social	transmission	to	an	asocial	model	(s	=	0)	to	quantify	the	772	

evidence	for	social	transmission	(Section	4.1)	773	



b) comparing	a	network-based	model	of	social	transmission	to	a	model	with	a	774	

homogeneous	network	(Section	5.1)	or	with	a	group	network	(Section	5.2)	775	

c) comparing	models	with	different	networks	(Section	4.2)	or	different	combinations	of	776	

networks	(Section	8)	to	ascertain	which	best	approximates	the	pathways	of	777	

transmission	778	

d) comparing	multi-network	models	with	models	in	which	some	or	all	𝑠!	are	779	

constrained	(e.g.	𝑠! = 𝑠!,	or	𝑠! = 0;	Section	8).	780	

In	some	cases,	the	models	to	be	compared	are	nested—i.e.	one	is	a	special	case	of	781	

the	other	model,	with	constraints	imposed	on	one	or	more	parameters	(this	is	true	for	a	and	782	

d	unless	different	baseline	rate	functions	are	fitted	in	each	model).	When	this	is	true,	one	783	

can	use	a	likelihood	ratio	test	(LRT)	to	obtain	a	P	value	quantifying	the	evidence	against	the	784	

null	hypothesis	represented	in	the	constrained	model	(Morgan	2010).	Here,	the	test	statistic	785	

is	the	likelihood	ratio,	which	equals	2x	the	difference	in	the	negative	log-likelihoods	786	

between	the	two	models	(Box	2).	The	P	value	is	then	obtained	from	the	upper	tail	of	a	chi-787	

square	distribution	with	degrees	of	freedom	equal	to	the	difference	in	the	number	of	788	

parameters	in	the	two	models.	For	example,	imagine	that	we	fit	an	OADA	model	with	three	789	

networks	and	no	ILVs,	and	wish	to	test	the	null	hypothesis	that	the	rate	of	transmission	is	790	

the	same	in	each	network.	We	fit	a	null	model	with	the	constraint	𝑠! = 𝑠! = 𝑠!.	We	obtain	a	791	

difference	in	negative	log-likelihoods	of	3.23,	giving	a	test	statistic	of	6.46.	In	the	full	model,	792	

three	parameters	are	fitted	(i.e.	s	is	estimated	separately	for	each	network),	whereas	only	793	

one	s	parameter	is	fitted	in	the	null	model.	So,	we	obtain	a	P	value	from	the	upper	tail	of	a	794	

chi-square	distribution	with	2	df—the	R	command	is:	pchisq(6.46,	df=2,	lower.tail=F)—giving	795	

us	P	=	0.0396,	i.e.	reasonable	evidence	against	the	null	hypothesis.		796	



However,	a	LRT	cannot	be	used	to	compare	two	or	more	non-nested	models,	such	as	797	

models	that	contain	different	networks	(e.g.	b	and	c	above).	In	such	cases,	one	can	use	798	

Akaike’s	Information	Criterion	(AIC)	to	compare	the	fit	of	models.	A	full	explanation	of	the	799	

theoretical	basis	for	AIC	and	a	guide	for	its	use	can	be	found	in	Burnham	and	Anderson	800	

(2002).	Burnham,	Anderson	and	Huyvaert	(2011)	provide	a	succinct	review	of	this	topic.	801	

Here,	we	give	a	brief	outline.	AIC	is	calculated	as	2x	-log(L)	+	2k,	where	-log(L)	is	the	negative	802	

log-likelihood	for	a	model,	and	k	is	the	number	of	parameters	in	that	model.	In	practise,	we	803	

recommend	use	of	AICc,	a	version	of	AIC	that	corrects	for	sample	size;	the	NBDA	package	804	

provides	AICc	for	fitted	models,	taking	sample	size	to	be	the	number	of	acquisition	events.	805	

Models	with	lower	AICc	are	those	that	explain	the	data	better	after	penalizing	for	806	

the	number	of	parameters	in	the	model.	The	penalty	imposed	is	not	arbitrary;	it	is	chosen	807	

such	that	the	difference	in	AICc	between	any	two	models	fitted	to	the	same	data	estimates	808	

the	difference	in	Kullback-Leibler	(K-L)	information.	In	turn,	K-L	information	measures	the	809	

extent	to	which	the	predicted	distribution	for	the	response	variable	differs	from	its	true	810	

distribution.	In	other	words,	it	estimates	the	information	that	is	lost	when	moving	from	the	811	

true	distribution	to	the	model.	Consequently,	AICc	provides	a	theoretically	well	justified	812	

measure	of	the	relative	fit	of	two	or	more	models.	We	can	transform	the	difference	in	AICc	813	

between	two	models	(ΔAIC)	to	obtain	the	relative	support	for	the	two	models,	exp(ΔAIC/2).	814	

This	value	quantifies	the	ratio	of	probabilities	that	each	model	is	the	one	with	the	best	K-L	815	

information	(termed	the	‘best	K-L	model’).	816	

For	example,	imagine	that	we	fit	a	model	with	a	proximity	network	(AICc	=	382),	and	817	

a	model	with	a	network	quantifying	the	rate	of	grooming	interactions	(AICc	=	373.5).	Thus,	818	

these	data	suggest	that	the	grooming	network	is	a	better	approximation	of	the	pathways	of	819	



transmission	than	the	proximity	network,	but	how	certain	of	this	result	can	we	be?	It	might	820	

just	be	a	chance	result	of	sampling	error.	The	difference	in	AICc	(ΔAICc)	between	these	two	821	

models	is	9.5,	giving	a	relative	support	of	exp(9.5/2)	=	115.6.	This	means	that	the	grooming	822	

network	is	115.6x	more	likely	to	be	a	closer	approximation	to	the	transmission	pathways	823	

than	the	proximity	network,	which	we	would	take	to	be	very	strong	support	in	favour	of	the	824	

grooming	network.	825	

If	a	researcher	has	a	number	of	candidate	models,	they	can	list	them	in	increasing	826	

order	of	AICc	to	show	the	order	of	preference	in	model	fit	(Box	4).	They	can	then	calculate	827	

the	Akaike	weight	for	each	model	as	a	measure	of	its	support.	To	do	this,	one	first	calculates	828	

the	AICc	difference	between	each	model,	i,	and	the	best	model,	Δ! = 𝐴𝐼𝐶𝑐! − 𝐴𝐼𝐶𝑐!"#$.	The	829	

Akaike	weight	for	model	i	is	then	w! = exp (−!
!Δ!) exp (−!

!Δ!)! ,	and	can	be	interpreted	830	

as	the	probability	that	model	i	is	the	best	K-L	model	in	the	set,	accounting	for	sampling	831	

error.	832	

9.2	Multi-model	inference	833	

If	there	are	a	number	of	ILVs	to	consider	in	addition	to	our	competing	hypotheses	about	834	

social	transmission,	this	complicates	the	model	selection	process.	We	could	simply	include	835	

all	ILVs	in	all	candidate	models,	but	requiring	these	models	to	fit	additional	parameters	may	836	

decrease	the	precision	of	our	estimates	for	s.	Ideally,	we	only	want	to	include	the	variables	837	

for	which	there	is	evidence	of	an	effect	on	asocial	and/or	social	learning.	The	traditional	838	

approach	to	this	would	be	to	select	the	combination	of	ILVs	that	provides	the	best	model	fit,	839	

and	base	our	inferences	on	that	model.	With	modern	computing	power,	it	would	even	be	840	

feasible	to	fit	all	possible	combinations	of	ILVs	and	select	the	lowest	AICc	as	our	best	model.	841	

However,	this	approach	inherently	assumes	we	are	certain	that	the	best-supported	model	842	



really	is	the	best	one	(in	the	sense	of	minimizing	K-L	information	loss).	As	we	saw	in	Section	843	

9.1,	there	is	often	substantial	uncertainty	due	to	sampling	error	over	which	model	really	is	844	

the	best;	this	model	selection	uncertainty	is	quantified	by	the	Akaike	weight	(Burnham	&	845	

Anderson	2002;	Burnham	et	al.	2011).	846	

Multi-model	inference	is	a	set	of	tools	that	allows	us	to	account	for	model	selection	847	

uncertainty	when	we	make	our	inferences	(these	tools	are	available	in	the	NBDA	package).	848	

The	first	such	tool	allows	us	to	quantify	the	overall	strength	of	evidence	for	a	particular	849	

network	(or	combination	of	networks)	by	calculating	the	total	Akaike	weight	for	that	850	

network	(otherwise	simply	known	as	“support”	for	that	network).	This	is	done	by	simply	851	

summing	the	Akaike	weights,	Σwi,	for	all	the	models	that	contain	the	network.	This	value	852	

can	be	thought	of	as	the	probability	that	the	best	K-L	model	is	one	that	includes	the	network	853	

of	interest.	We	can	obtain	the	support	for	all	the	networks	(or	network	combinations)	we	854	

are	considering	as	an	overall	measure	of	the	extent	to	which	each	one	approximates	the	855	

pathways	of	transmission.	For	this	to	be	a	fair	comparison,	a	researcher	needs	to	ensure	856	

that	there	are	the	same	number	of	models	for	each	network.	However,	if	the	same	857	

combinations	of	ILVs	are	considered	for	each	network,	this	condition	will	be	met.	Support	858	

can	also	be	obtained	for	an	effect	of	each	ILV	on	asocial	and	social	learning	rate	in	an	859	

analogous	manner.	We	can	also	compare	the	overall	fit	of	models	with	different	baseline	860	

rate	functions,	or	particular	combinations	of	baseline	function	and	network(s).	861	

The	question	remains	as	to	whether	we	can	validly	use	Σwi	to	measure	the	level	of	862	

support	for	asocial	models	versus	social	models	(i.e.	models	with	a	social	transmission	863	

component).	This	depends	on	the	set	of	models	that	we	are	considering.	Imagine	the	case	864	

where	we	have	an	OADA	with	3	ILVs	and	2	networks,	with	only	1	of	these	networks	included	865	



in	any	given	model.	An	approach	previously	used	was	to	consider	additive	models	in	which	866	

ILVs	affected	only	asocial	learning,	and	multiplicative	models,	in	which	ILVs	affected	both	867	

asocial	and	social	learning	by	the	same	amount	(see	Section	6.2).	There	are	8	different	868	

combinations	of	the	3	ILVs,	giving	8	multiplicative	+	8	additive	models	with	network	1,	8	869	

multiplicative	+	8	additive	models	with	network	2,	and	8	asocial	models	(since	the	additive	870	

and	multiplicative	models	are	the	same	when	s	=	0).	If	we	compared	the	support	for	asocial	871	

models	versus	social	models,	we	would	be	comparing	8	models	against	32	models,	giving	an	872	

unfair	and	misleading	picture	of	the	support	for	social	transmission.	Instead,	we	should	do	a	873	

five	way	comparison	of:	(a)	asocial	learning	only;	(b)	network	1	multiplicative;	(c)	network	1	874	

additive;	(d)	network	2	additive;	and	(e)	network	2	multiplicative.	Within	each	category,	875	

there	are	8	models.	The	Σwi	for	each	of	the	4	categories	of	social	models	can	be	thought	of	876	

as	support	for	competing	hypotheses	about	social	transmission,	which	can	also	be	877	

compared	with	the	support	for	asocial	models.	878	

However,	in	Section	6.2	we	argued	that	using	an	unconstrained	model	was	879	

preferable	to	the	additive	versus	multiplicative	model	approach	described	above.	Recall	that	880	

in	the	unconstrained	model,	the	effect	that	each	ILV	has	on	asocial	and	social	learning	is	881	

estimated	independently,	allowing	for	the	possibility	that	any	ILV	could	have	different	882	

effects	on	each	type	of	learning.	In	our	example	above,	this	means	that	instead	of	having	2	883	

sets	of	8	combinations	of	ILVs,	we	now	have	36	combinations	of	effects	on	asocial	and	social	884	

learning!	This	assumes	that	is	plausible	that	any	of	our	ILVs	could	affect	social	learning	885	

without	affecting	asocial	learning.	So	in	our	example	above,	we	now	have	36	network	1	886	

models,	36	network	2	models	and	8	asocial	models	(since	ILVs	cannot	affect	social	learning	887	

when	s	=	0).	Thus,	a	three-way	comparison	of	support	would	be	unfair	and	misleading.	We	888	

recommend	that	total	Akaike	weights	are	not	generally	used	to	quantify	the	relative	support	889	



for	asocial	models	versus	social	models	where	the	unconstrained	model	is	used.	890	

Researchers	can	use	the	total	Akaike	weights	to	select	the	best	supported	network(s),	and	891	

then	use	confidence	intervals	on	the	s	parameters	(Section	7.3)	to	assess	the	strength	of	892	

evidence	against	asocial	learning	(s	=	0).	However,	if	the	asocial	models	have	the	greatest	893	

support	despite	the	smaller	number	of	models,	this	can	be	taken	as	evidence	against	social	894	

transmission.	895	

Model-averaged	estimates	(MAEs)	provide	researchers	with	a	means	to	estimate	the	896	

values	of	parameters	in	a	way	that	accounts	for	model	selection	uncertainty.	MAEs	are	an	897	

Akaike	weighted	average	of	the	parameter	value	in	each	individual	model.	Unconditional	898	

standard	errors	(USEs)	can	also	be	calculated	as	a	measure	of	precision	that	accounts	for	899	

both	the	uncertainty	in	the	value	of	parameters	among	models,	as	well	the	within-model	900	

uncertainty	quantified	by	traditional	standard	errors	(SEs)	(Burnham	&	Anderson	2002).	901	

Unfortunately,	SEs	cannot	always	be	calculated	for	NBDA	models,	meaning	that	USEs	across	902	

a	model	set	can	also	not	be	calculated.	Where	SEs	are	only	missing	for	a	few	models	of	low	903	

Akaike	weight,	we	recommend	replacing	these	with	the	Akaike	weighted	average	SE	across	904	

all	other	models,	and	calculate	USE	as	usual	to	obtain	an	approximation.	However,	if	SEs	are	905	

missing	for	many	models,	or	for	models	with	high	Akaike	weight,	we	recommend	omitting	906	

USEs.	907	

For	s	parameters,	we	recommend	obtaining	MAEs	and	USEs	that	are	conditional	on	908	

the	relevant	network(s)	being	presented	in	the	model.	If	a	large	number	of	networks	are	909	

considered,	then	any	given	s	parameter	will	be	absent	from	the	vast	majority	of	models	in	910	

the	set,	and	MAEs	and	USEs	will	be	misleading.	Conditioning	on	the	subset	of	models	that	911	

contain	a	specific	network	reweights	the	Akaike	weights	such	that	they	sum	to	1	within	the	912	



subset,	and	then	carries	out	multi-model	inference	using	those	models.	This	is	equivalent	to	913	

asking	‘given	that	the	best	K-L	model	contains	network	n,	what	is	our	best	estimate	of	s?”	914	

The	MAE	for	an	s	parameter	can	still	be	misleading	if	there	are	some	models	in	the	set	for	915	

which	s	is	estimated	arbitrarily	large	(see	Section	7.4).	Even	if	these	models	have	a	tiny	916	

Akaike	weight,	they	can	still	badly	skew	the	estimate	of	s.	In	such	cases,	we	suggest	that	the	917	

model	weighted	median	for	s	is	obtained	instead	as	an	estimate	that	is	robust	to	extreme	918	

estimates	with	low	Akaike	weight.	919	

USEs	provide	a	useful	way	of	calculating	unconditional	95%	CIs	for	parameters	that	920	

account	for	model	selection	uncertainty:	one	simply	calculates	MAE	±	1.96	x	USE.	However,	921	

these	CIs	can	be	misleading	in	cases	when	the	profile	likelihood	is	asymmetrical	for	the	922	

same	reason	Wald	CIs	can	be	(see	Section	7.3).	Burnham	and	Anderson	(2002)	suggest	a	923	

method	for	inflating	95%	profile	likelihood	intervals	(Section	7.3)	to	account	for	model	924	

selection	uncertainty.	Instead	of	using	a	cut-off	line	1.92	units	above	the	minimum	negative	925	

log-likelihood	(Fig.	3),	one	elevates	the	cut-off	line	by	a	factor	=	USE2/(SE	in	best	model)2.	926	

However,	as	noted	above,	USEs	cannot	always	be	obtained.	Furthermore,	in	NBDA	it	is	not	927	

uncommon	for	the	inflation	method	to	return	a	95%	CI	for	s	that	includes	zero	even	when	928	

all	the	conditional	95%	CIs	exclude	zero	(so	logically	an	unconditional	95%	CI	should	also	929	

exclude	zero).	Therefore,	instead	of	using	the	inflation	method,	we	recommend	obtaining	930	

the	95%	CI	conditional	on	the	best	model	containing	a	parameter.		931	

Since	there	is	usually	particular	interest	in	determining	how	strong,	at	a	minimum,	932	

social	transmission	is,	we	recommend	assessing	the	robustness	of	the	lower	limit	of	the	95%	933	

CI	to	model	selection	uncertainty.	This	can	be	done	by	obtaining	the	95%	lower	limit	for	all	934	

models	containing	the	relevant	s	parameter	and	the	corresponding	estimate	of	%ST,	and	935	



interpreting	them.	For	example,	if	all	these	values	are	>	0,	then	the	evidence	for	social	936	

transmission	is	robust	to	model	selection	uncertainty.	We	also	suggest	providing	a	model-937	

averaged	version	of	the	value	of	%ST	corresponding	to	the	95%	lower	limit,	as	a	lower	938	

plausible	limit	on	the	importance	of	social	transmission	after	accounting	for	model	selection	939	

uncertainty	(see	Tutorial	7	in	the	Supporting	Information	for	the	relevant	code).	940	

10	Further	extensions	and	considerations	941	

10.1	Error	and	uncertainty	in	network	structure	942	

Hoppitt	(2017)	considers	the	effect	of	error	in	the	measured	social	network,	considering	943	

cases	where	there	is	random	noise	or	systematic	bias	resulting	in	relative	overestimates	or	944	

underestimates	of	larger	connections.	No	sources	of	error	inflated	the	type	1	error	rate,	945	

showing	that	a	positive	result	for	social	transmission	can	be	trusted	even	when	the	network	946	

may	not	be	accurate.	However,	some	sources	of	error	tended	to	make	estimates	of	s	and	947	

%ST	conservative.	Researchers	should	bear	this	in	mind	when	interpreting	confidence	948	

intervals	if	network	error	is	suspected.	Another	possibility	is	that	some	individuals	in	the	949	

population	have	limited	network	data.	Wild	and	Hoppitt	(2019)	develop	a	procedure	to	950	

determine	which	individuals,	if	any,	should	be	dropped	from	the	analysis.	951	

10.2	Untransmitted	social	effects	952	

When	the	target	behaviour	is	constrained	to	be	performed	at	a	specific	location,	e.g.	the	953	

solution	to	a	foraging	task,	it	may	be	that	closely	associated	individuals	are	likely	to	954	

encounter	the	task	at	the	same	time,	purely	as	a	result	of	being	together,	and	thus	solve	at	a	955	

similar	time.	This	could	result	in	a	statistical	pattern	that	looks	like	social	transmission	in	an	956	

NBDA,	referred	to	as	an	‘untransmitted	social	effect’	(Atton	et	al.	2012;	Hoppitt	&	Laland	957	



2013).	One	way	to	control	for	this	effect	is	to	exclude	the	possibility	that	individuals	that	958	

learned	together	close	in	time	could	have	learned	from	one	another,	i.e.	consider	them	to	959	

be	‘tied’	with	regards	to	the	incoming	social	information	(Hoppitt,	Boogert	et	al.	2010).	Any	960	

remaining	social	transmission	effect	is	then	unlikely	to	be	a	result	of	an	untransmitted	961	

effect.	In	a	dTADA,	such	individuals	can	simply	be	included	as	learning	in	the	same	time	962	

period.	A	similar	complication	arises	when	using	a	dynamic	observation	network	(see	963	

(Hobaiter	et	al.	2014;	Hoppitt	2017)	for	discussion	of	this	problem).	964	

10.3	‘True’	ties	965	

Another	type	of	tie	arises	if		we	are	uncertain	of	the	order	in	which	one	or	more	individuals	966	

learned	the	target	behaviour;	we	term	these	‘true	ties’	(Hoppitt,	Boogert	et	al.	2010).	This	967	

could	arise	if	the	population’s	behaviour	is	only	sampled	periodically,	or	because	two	968	

individuals	learn	the	behaviour	so	close	together	in	time	it	is	impossible	to	determine	the	969	

order.	This	problem	is	easily	dealt	with	in	a	dTADA,	since	the	tied	individuals	are	simply	970	

included	as	learning	in	the	same	time	period.	In	cTADA,	the	tied	individuals	can	be	assigned	971	

the	same	learning	time,	and	considered	to	be	‘tied’	in	the	sense	described	in	Section	10.2,	972	

since	it	is	implausible	that	social	transmission	occurred	between	two	individuals	who	973	

learned	at	approximately	the	same	time.	The	problem	is	also	conceptually	easy	to	solve	in	974	

an	OADA.	The	likelihood	for	a	tied	event	is	simply	the	sum	of	likelihoods	for	all	orders	that	975	

are	consistent	with	the	observed	tie—e.g.	if	individuals	A,	B	and	C	are	tied,	we	sum	the	976	

likelihood	for	the	six	possible	orders	ABC,	ACB,	BAC,	BCA,	CAB	and	CBA	(in	the	NBDA	977	

package,	one	simply	specifies	the	true	ties).	This	approach	may	be	feasible	if	we	have	a	978	

small	number	of	true	ties	involving	only	a	few	individuals.	However,	if	we	have	true	ties	979	

involving	many	individuals,	calculation	of	the	likelihood	can	take	a	prohibitively	long	time.	980	



For	example,	a	single	6-way	tie	requires	calculating	the	likelihood	for	6!	=	720	possible	981	

orderings	for	the	true	tie.	Therefore,	if	an	OADA	is	preferred,	then	we	suggest	that	982	

researchers	do	all	they	can	to	resolve	any	true	ties.	If	the	computation	remains	infeasible,	983	

then	a	TADA	must	be	used.	984	

10.4	Bayesian	NBDA	985	

NBDA	can	be	re-cast	in	a	Bayesian	framework,	which	has	a	number	of	potential	advantages,		986	

such	as	easy	inclusion	of	random	effects	and	better	methods	for	accounting	for	uncertainty	987	

in	data.	A	Bayesian	version	of	NBDA	has	been	investigated	and	used	by	Whalen	&	Hoppitt	988	

(2016)	and	Nightingale,	Boogert,	Laland	and	Hoppitt	(2014).	However,	there	is	not	yet	a	989	

user-friendly	package	to	implement	a	Bayesian	NBDA.	990	

11	Conclusion	991	

NBDA	provides	a	flexible	approach	for	detecting	and	quantifying	the	impact	of	social	992	

transmission	on	the	spread	of	information	and	novel	skills	through	animal	groups,	and	for	993	

elucidating	the	typical	pathways	of	information	flow.	With	the	widespread	adoption	of	994	

social	network	techniques	in	the	field	of	animal	behaviour,	the	data	necessary	for	NBDA	is	995	

likely	to	be	increasingly	available.	Here,	we	have	sought	to	guide	interested	researchers	996	

through	the	process	of	selecting	the	appropriate	NBDA	variant	and	network	structure(s)	for	997	

their	research	question,	incorporating	individual-level	variables	that	may	impact	social	and	998	

asocial	learning,	selecting	amongst	alternative	models	on	the	basis	of	their	relative	support,	999	

and	interpreting	model	outputs	in	terms	of	their	biological	significance.	NBDA	may	thereby	1000	

help	to	achieve	a	greater	understanding	of	the	links	between	social	structure	and	social	1001	

learning	dynamics	within	natural	settings.	1002	



Box	1.	Glossary	1003	

Asocial	(or	individual)	learning:	learning	through	trial-and-error	or	personal	sampling	of	the	1004	

environment.	In	the	context	of	NBDA,	this	refers	to	learning	the	target	behaviour	1005	

independently	of	others,	i.e.	not	through	social	transmission.	1006	

Asocial	model:	in	the	context	of	NBDA,	a	model	in	which	the	target	behaviour	is	never	1007	

learned	through	social	transmission,	i.e.	learning	is	always	asocial	learning.	1008	

Diffusion	data:	data	detailing	the	spread	of	a	target	behaviour	pattern	through	a	population	1009	

or	group	of	animals.	1010	

Individual-level	variable	(ILV):	a	variable	that	varies	among	individuals,	and	is	included	in	an	1011	

NBDA	for	its	potential	effect	on	the	rate	of	asocial	and/or	social	learning	1012	

Homogenous	network?	1013	

Network-based	diffusion	analysis	(NBDA):	a	statistical	method	for	quantifying	the	influence	1014	

of	social	transmission,	mediated	by	one	or	more	social	networks,	in	the	diffusion	(or	spread)	1015	

of	a	target	behaviour	through	a	group	of	animals.	1016	

Order-of-acquisition	diffusion	analysis	(OADA):	a	variant	of	NBDA	that	takes	as	data	the	1017	

order	in	which	individuals	acquired	a	target	behavioural	pattern	(usually	inferred	from	the	1018	

time	at	which	they	first	perform	it).	1019	

Social	learning:	learning	that	is	facilitated	by	observation	of,	or	interaction	with,	another	1020	

individual	or	its	products	(Hoppitt	&	Laland	2013	after	Heyes	1994).	Social	learning	can	(but	1021	

does	not	always)	result	in	the	social	transmission	of	behaviour.	1022	



Social	network:	A	mathematical	description	of	social	structure,	in	which	nodes	(usually	1023	

representing	individuals)	are	connected	by	edges	(or	ties)	indicating	some	form	of	social	1024	

relationship.	It	is	formally	represented	as	an	adjacency	matrix	(Farine	&	Whitehead	2015).	1025	

Social	transmission:	occurs	when	the	prior	acquisition	of	a	behavioural	trait	T	by	one	1026	

individual	A,	when	expressed	either	directly	in	the	performance	of	T	or	in	some	other	1027	

behaviour	associated	with	T,	exerts	a	lasting	positive	causal	influence	on	the	rate	at	which	1028	

another	individual	B	acquires	and/or	performs	T	(Hoppitt	&	Laland	2013).	1029	

Time-of-acquisition	diffusion	analysis	(TADA):	a	variant	of	NBDA	that	takes	as	data	the	time	1030	

at	which	individuals	acquired	a	target	behavioural	pattern	(usually	inferred	from	the	time	at	1031	

which	they	first	perform	it).	1032	

Box	2.	Fitting	a	basic	OADA	using	maximum	likelihood	1033	

Here,	we	show	how	a	basic	OADA	model,	containing	only	a	single	parameter,	s,	is	fitted	to	1034	

the	data	by	maximum	likelihood.	Note	that	this	process	is	carried	out	automatically	by	the	1035	

NBDA	package	(Hoppitt	et	al.	2019)	when	fitting	an	OADA	model,	but	it	is	useful	for	a	1036	

researcher	to	understand	how	the	model	is	fitted.	Maximum	likelihood	works	by	finding	the	1037	

values	of	the	parameters	for	which	the	observed	data	is	most	likely.	This	is	done	by	first	1038	

deriving	a	likelihood	function	that	specifies	the	likelihood	of	the	data	for	a	given	set	of	1039	

parameter	values.	For	OADA,	the	likelihood	for	a	single	acquisition	event,	E,	is:	1040	

𝐿! =
𝜆! 𝑡!
𝜆! 𝑡!!

!!!
	

Where	e	is	the	individual	that	learns	on	event	E,	and	𝑡! 	is	the	time	immediately	prior	to	1041	

event	E.	In	other	words,	𝐿! 	is	the	probability	that	e	would	be	the	next	individual	to	learn,	1042	



which	is	the	rate	of	learning	for	e	at	time	𝑡!,	divided	by	the	sum	of	rates	for	everyone	in	the	1043	

population,	 𝜆! 𝑡!!
!!! .		If	we	define	the	relative	rate	of	learning	to	be	1044	

𝑅! 𝑡 =
𝜆! 𝑡
𝜆! 𝑡

= 1− 𝑧! 𝑡 𝑠 𝑎!" 𝑡 𝑧! 𝑡
!

!!!

+ 1 	

𝐿! 	reduces	to:	1045	

𝐿! =
𝜆! 𝑡 𝑅! 𝑡!

𝜆! 𝑡 𝑅! 𝑡!!
!!!

=
𝑅! 𝑡!
𝑅! 𝑡!!

!!!
	

Therefore	𝜆! 𝑡 	drops	out	of	the	likelihood	function.	The	likelihood	function	for	the	whole	1046	

diffusion,	L,		is	the	product	of	the	likelihoods	for	all	acquisition	events.	In	principle,	the	value	1047	

of	s	could	be	chosen	to	directly	maximise	the	likelihood.	However,	for	computational	1048	

stability,	one	equivalently	takes	the	negative	logarithm	of	the	likelihoods	for	each	event	and	1049	

adds	them	together,	-log(L),	then	finds	the	value	of	s	that	minimizes	-log(L),	where:	1050	

log 𝐿 = 𝑙𝑜𝑔 𝑅! 𝑡!

!

!!!

− 𝑙𝑜𝑔 𝑅! 𝑡!

!

!!!

!

!!!

	

This	value	of	s	is	known	as	the	maximum	likelihood	estimator	for	s,	and	the	corresponding	1051	

value	of	-log(L)	is	known	as	the	negative	log-likelihood	(or	-log-likelihood)	for	the	model.	1052	

When	there	is	more	than	one	parameter	in	the	model,	the	optimization	algorithm	finds	the	1053	

combination	of	parameter	values	that	minimizes	-log(L).	A	review	of	the	likelihood	functions	1054	

for	NBDA,	including	cTADA	and	dTADA,	is	found	in	Hoppitt	and	Laland	(2013).	1055	

Box	3.	Fitting	an	OADA	with	individual	level	variables	(ILVs)	1056	

A	researcher	will	often	wish	to	include	ILVs	in	an	NBDA	model,	either	to	investigate	their	1057	

impact	on	social	and/or	asocial	learning,	or	to	control	for	spurious	social	transmission	1058	



effects	(Section	6.1).	Here,	we	illustrate	how	this	can	be	done	using	the	NBDA	package;	code	1059	

for	this	example	is	found	in	Tutorial	2	in	the	Supporting	Information.	We	generated	a	1060	

simulated	social	network	of	30	individuals,	as	well	as	the	order	in	which	they	acquired	a	1061	

target	behaviour.	We	also	have	two	ILVs:	age	(in	years)	and	sex.	To	ease	interpretation	of	s	1062	

and	to	facilitate	model	convergence,	we	standardized	age	by	first	subtracting	the	mean	and	1063	

then	dividing	by	the	standard	deviation.	The	NBDA	package	includes	three	options	for	how	1064	

an	ILV	can	affect	learning:	(a)	additive	models	assume	that	an	ILV	impacts	asocial	learning	1065	

only;	(b)	multiplicative	models	assume	that	an	ILV	impacts	both	asocial	and	social	learning,	1066	

and	does	so	by	the	same	amount;	and	(c)	unconstrained	models	assume	that	an	ILV	differs	1067	

in	its	effect	on	asocial	and	social	learning	(Section	6.2).	We	fit	each	of	these	three	models	to	1068	

our	simulated	data.	On	the	basis	of	AICc	(Section	9.1),	we	find	that	the	additive	model	is	1069	

best	supported.	Box	3	Table	1	presents	the	parameter	estimates,	SEs,	and	95%	CI	from	this	1070	

model.	s	estimates	the	rate	of	social	transmission	per	unit	of	network	connection,	relative	to	1071	

the	baseline	rate	of	asocial	learning.	Here,	this	baseline	rate	is	set	as	the	asocial	learning	1072	

rate	of	a	female	of	average	age	(Section	6.3).	Because	of	asymmetry	in	the	uncertainty	for	1073	

the	values	of	some	parameters	(i.e.	s	and	sex),	95%	CI	were	obtained	using	profile	likelihood	1074	

techniques	(Section	7.3).	The	asocial	learning	rate	is	estimated	to	decrease	by	exp(-1075	

1.027/SD(age))	=	0.62x	per	year	of	age.	However,	the	95%	CI	for	age	indicate	that	asocial	1076	

learning	rates	may	plausibly	decrease	by	as	much	as	0.16x	per	year	or	increase	by	up	to	1077	

1.35x.	In	other	words,	we	can	conclude	that	there	is	little	evidence	for	a	strong	effect	of	age	1078	

on	asocial	learning.	Turning	to	sex,	we	find	that	females	are	estimated	to	be	exp(19.84)	=	1079	

4.13	x	108	times	faster	than	males	at	learning	asocially!	If	we	examine	the	profile	log-1080	

likelihood,	we	find	that	it	is	very	asymmetric	(Box	3	Figure	1).	In	fact,	it	approaches	an	1081	

asymptote	as	the	estimated	effect	moves	towards	negative	infinity.	This	is	because	only	1082	



females	ever	learned	with	zero	network	connections	to	informed	individuals,	meaning	that	1083	

it	is	plausible	that	only	females	can	learn	asocially	(at	least	as	far	as	the	model	is	concerned).	1084	

In	this	instance,	we	can	only	obtain	the	upper	95%	CI	at	-0.001.	So,	we	can	conclude	that	1085	

females	are	at	least	exp(0.001)	=	1.001x	as	fast	as	males	at	learning	asocially.	1086	

Parameter	 Estimate	 SE	 95%	CI	

Social	transmission	rate,	s	 2.97	 3.92	 0.40,	101.42	

Age	(years)	 -1.03	 1.03	 -3.94,	0.65	

Sex	=	‘male’	 -19.84	 11618.17	 -∞,	-0.001	

	1087	

Box	4.	Testing	for	social	transmission	across	multiple	pathways	1088	

-30 -25 -20 -15 -10 -5 0 5

68
70

72
74

76
78

80

2 Asocial: male

P
ro

fil
e 

lo
g-

lik
el

ih
oo

d



It	may	be	the	case	that	a	target	behavior	is	socially	transmitted	across	multiple	pathways	1089	

(i.e.	network	types),	but	at	different	rates	in	each.	To	test	for	this,	one	can	input	multiple	1090	

networks	into	an	NBDA	and	estimate	a	separate	rate	of	social	transmission	(s)	for	each	one.	1091	

For	example,	honeybees	(A.	mellifera)	can	learn	about	foraging	opportunities	through	1092	

multiple	forms	of	interaction.	Waggle	dances	performed	by	successful	foragers	provide	the	1093	

location	of	profitable	foraging	sites	to	naïve	bees,	while	chemosensory	information	(e.g.	1094	

food	odor,	nectar	quality)	can	be	obtained	when	receiving	nectar	during	trophallaxis	1095	

(reviewed	in	Grüter	&	Farina	2009).	Even	simply	contacting	other	foragers	with	antennae	1096	

can	facilitate	olfactory	learning	about	food	sources	(Cholé	et	al.	2019).	To	assess	the	relative	1097	

importance	of	these	transmission	pathways	during	recruitment	of	foragers	to	a	novel	1098	

foraging	site,	we	recorded	all	interactions	within	the	hive	between	trained	demonstrator	1099	

bees	that	collected	food	from	a	feeding	station	and	a	cohort	of	potential	recruits	that	had	1100	

never	before	visited	that	site.	We	also	recorded	the	order	in	which	these	naïve	bees	1101	

successfully	located	the	feeding	station.	To	capture	the	temporal	ordering	of	in-hive	1102	

interactions	between	demonstrators	and	recruits,	all	three	networks—i.e.	dance	following	1103	

interactions,	trophallactic	exchanges,	and	antennal	contacts—were	input	as	dynamic,	time-1104	

varying	networks	(see	Section	4.4).	Box	4	Table	1	provides	the	relative	support	for	a	1105	

candidate	set	of	models.	A	comparison	of	models	2	and	3—either	with	a	likelihood	ratio	test	1106	

(𝜒!!=	11.12,	P	=	0.004)	or	on	the	basis	of	AICc—reveals	that	estimating	s	separately	for	each	1107	

network	type	is	favored	over	assuming	a	common	transmission	rate	across	all	interaction	1108	

types.	However,	in	this	instance,	Model	1	which	includes	only	the	time-varying	dance	1109	

following	network	is	clearly	favored—w1	=	0.94,	indicating	that	there	is	very	little	1110	

uncertainty	over	the	best	model	out	of	those	considered	here.	That	the	temporal	ordering	1111	

of	dance	following	interactions	is	key	is	revealed	by	Model	1	receiving	exp(25.48/2)	=	1112	



341124x	as	much	support	as	the	model	that	used	the	corresponding	static	observation	1113	

network	(Model	5).	Finally,	an	asocial	model	(Model	4)	that	assumed	that	discovering	the	1114	

feeding	station	occurred	through	independent	search	alone	received	virtually	no	support.	1115	

Model	1	yielded	a	very	large	estimate	of	s	=	9.94	x	107,	most	likely	because	the	order	of	in	1116	

which	recruits	discovered	the	feeding	site	followed	the	network	of	dance	following	1117	

interactions	very	closely	(see	Section	7.4).	Converting	this	value	into	%ST	suggests	that	1118	

following	dances	for	the	feeding	station	accounted	for	an	estimated	100%	(95%	CI:	91.2%,	+	1119	

∞)	of	the	16	recruitment	events.	The	code	for	these	models	and	analyses	is	found	in	the	1120	

Supporting	Information.	1121	

Model s parameters Network type 

(static/dynamic) 

log(L) K AICc ΔAICc wi 

1 sDance Dynamic 30.11 1 62.51 0 0.96 

2 sDance + 

sTrophallaxis + 

sAntennation 

Dynamic 30.11 3 68.23 5.72 0.05 

3 s(Dance + 

Trophallaxis + 

Antennation) 

Dynamic 35.67 1 73.64 11.13 0.004 

4 Asocial model 

(s = 0) 

N/A 43.08 0 86.16 23.65 6.9 x 10-6 

5 sDance Static 42.85 1 87.99 25.48 2.76 x 10-6 

	1122	
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