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Abstract

How to evaluate replications is a fundamental issue in experimental methodology. We 

develop a likelihood-based approach to assessing evidence for replication. In this approach, the 

design of the original study is used to derive an estimate of a theoretically interesting effect size. 

A likelihood ratio is then calculated to contrast the match of two models to the data from the 

replication attempt: 1) A model based on the derived theoretically interesting effect size; and 2) a 

null model. This approach provides new insights not available with existing methods of assessing 

replication. When applied to data from the Replication Project (Open Science Collaboration, 

2015), the procedure indicates that a large portion of the replications failed to find evidence for a 

theoretically interesting effect.  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Assessing Evidence for Replication: A Likelihood-Based Approach

There has been a great deal of concern expressed recently regarding the “replication 

crisis” in psychology (e.g., Lindsay, 2015; Pashler & Harris, 2012; Shrout & Rodgers, 2018), 

wherein a potentially large number of published results may be difficult to replicate (Camerer, 

Dreber, Holzmeister, et al, 2018; Klein, Vianello, Hassleman et al., 2018; Open Science 

Collaboration, 2015). Low replication rates have been ascribed to a number of factors, including 

data analysis strategies that inflate the Type I error rate (e.g., Bishop, 2019; Simmons, Nelson, & 

Simonsohn, 2011), publication practices that favor reporting significant results (e.g., de Bruin, 

Treccani, & Della Sala, 2015; Francis, 2012), and inherent problems with significance testing 

(e.g., Masicampo & Lalande, 2012; Wassersman & Lazar, 2016). Any or all of these issues may 

indeed contribute to a failure to replicate, but an equally important question revolves around 

what counts as evidence for or against replication. In fact, it seems crucial to have a solid 

statistical foundation for deciding whether a replication has been successful or not before 

addressing issues related to improving replicability itself. 

In the present paper, we argue that there are different senses in which a result may or may 

not replicate. As an illustration, we contrast two recently offered approaches to replication, a 

Bayes factor test proposed by Verhagen and Wagenmakers (2014) and the “small-telescopes” 

approach of Simonsohn (2015). Following this, we describe a likelihood-based approach to 

replication based on the evidence for what might be the theoretically interesting effect size 

implicit in the original study. As an illustration of the technique, we apply this new approach to 

data from the Reproducibility Project (Open Science Collaboration, 2015). We conclude that our 

method provides important new insights into the assessment of replication that are not available 

with other approaches.
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The Aims of Replication

A core problem in science is deciding whether or not an observed result provides 

evidence for a theoretically interesting effect. As many have noted, a theoretically interesting 

effect is not the same as a statistically significant effect (e.g., Thompson, 1993). For example, an 

effect of any magnitude can be statistically significant given sufficient power, whereas an effect 

generally must be of a certain magnitude to be considered theoretically interesting. Further, there 

is good reason to believe that in many paradigms, there is always going to be some minimal 

difference between conditions for reasons that have little to do with the question of interest (cf. 

Bakan, 1966; see also Meehl, 1990). Thus, effects must be of some minimal value to provide a 

meaningful insight into the research question. We assume that published papers should generally 

report reasonable evidence for theoretically interesting effects given that such evidence is a 

central criterion on which publication depends. 

From the perspective of the field and for the advancement of scientific knowledge, it is 

unimportant whether a replication produces precisely the same result as the original study. 

Rather, what matters is whether the replication evidence supports the same interpretation as the 

original, namely that evidence exists for a theoretically interesting effect. Thus, an important 

aspect of a replication attempt is an answer to the question: Does the evidence from the 

replication support the existence of a theoretically interesting effect or not? That said, the 

magnitude that an effect must have to be theoretically interesting may be difficult to determine. 

Although researchers may have an intuitive understanding of this magnitude, it is rarely 

discussed in research reports. Further, information about the variability of an effect in the 

population (and hence the standardized effect size) might be lacking for novel findings or 
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paradigms. The technique we develop below provides a way to estimate the size of the 

theoretically interesting effect that might have been anticipated by the original researchers by 

examining the design of their study. 

A second aspect of assessing evidence for replication is that one’s concerns are often 

symmetrical: We generally wish to know both when the evidence is in favor of replication and 

when it is against. If one can gauge the magnitude of a theoretically interesting effect, the 

question can be posed in this symmetrical fashion. That is, we can ask: Does the replication 

evidence better support the existence of a theoretically interesting effect, or does it better support 

a null effect? One benefit of such a symmetrical question is that it is straightforward to use 

likelihood ratios to describe the statistical evidence.

Techniques for Describing Replication

Both Verhagen and Wagenmakers (2014) and Simonsohn (2015) identified a number of 

problems with common approaches to evaluating replication. For example, comparing patterns 

of significance is problematic because one result may be significant and another nonsignificant 

even though the two effect sizes are comparable. Similarly, testing for a significant difference 

between the size of the original effect and that found in a replication attempt can be biased 

because null results are likely if the original effect is imprecise. These authors proposed solutions 

to these problems, and the present approach builds on these solutions.

Bayes-Factor Replication Test. Verhagen and Wagenmakers (2014) proposed a Bayesian 

approach to replication in which two possible interpretations of the replication’s effect size are 

compared: The first is that the replication results are consistent with the posterior distribution 

derived from the original study; the second is a null model in which the effect is assumed to be 

zero. This technique has the advantage of framing the replication question in a symmetrical 
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fashion: Are the replication results more consistent with the original study or with a null effect? 

Thus, it can provide evidence both for and against replication. As well, the evidence from the 

technique is expressed as a Bayes factor, which allows one to gauge the strength of the evidence 

in the context of the studies in question. However, it can still be difficult to find evidence against 

replication using this method when the original finding is imprecise. This is because the posterior 

distribution derived from an imprecise original study will be relatively diffuse, with some 

likelihood assigned to even small values of the effect.

“Small Telescopes.” Simonsohn (2015) described an interesting alternative solution to 

the question of replication. Rather than assessing evidence for or against a previously obtained 

result, he argued that one should consider the magnitude of the effect one could reasonably be 

expected to find given the design of the original study. The first step here would be defining a 

“small effect” as an effect that could be found 33% of the time given the sample size used in the 

original study (described as “d33”). Following this, an analysis would be conducted to see if the 

effect obtained in the replication attempt was significantly smaller than d33. If the null hypothesis 

of no difference were rejected, one could conclude that the original result failed to replicate in 

the sense that the effect was smaller than what the original experiment could reasonably have 

been expected to find. In other words, the conclusion would be that the original experiment was 

“too small a telescope” to see the effect that was obtained. 

This approach makes it easier to find evidence for a failure to replicate because rejecting 

a small effect specified a priori can be easier than finding evidence against an originally 

imprecise finding. However, the small telescopes approach requires that a relatively large sample 

is needed to find evidence against replication in many cases; for example, Simonsohn (2015) 

recommended samples 2.5 times as large as the original study. Further, the procedure is 
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essentially a means to provide evidence that would discredit the original study, and a failure to 

reject the null hypothesis in this case does not provide clear evidence for replication. As such, 

this method doesn’t fulfill the goal of assessing the evidence in a symmetrical fashion. In order to 

provide evidence for replication, one might conceivably supplement the small-telescopes test 

with a conventional test of significance against the null hypothesis of 0; however, such an 

approach requires special handling because the two significance tests are not independent.

In sum, both the Verhagen and Wagenmakers (2014) and Simonoshn (2015) methods 

provide improvements over naive methods of assessing replication, and both provide information 

that is valuable for interpreting the results of a replication attempt. Here, we build on these ideas 

to develop a likelihood-based approach that poses the question somewhat differently: Does the 

replication attempt provide evidence for a theoretically interesting effect, or is the evidence more 

consistent with a null effect?

A Likelihood-Based Approach

Our method for assessing evidence for replication combines elements of the Bayesian and 

the small-telescopes approaches to provide clear inferences concerning replication without the 

need for large samples. This approach uses the design of the original research to make a best 

guess as to how large a theoretically interesting effect would be. This depends on what we refer 

to as the “researcher-insight” assumption: that the original researchers had some insight 

regarding how large an effect would be theoretically interesting and that they designed a suitably 

powerful study based on that insight. Using this assumption and working backwards from the 

size of the original study, we can then make an informed estimate as to the magnitude of the 

effect for which the study might have been designed. Although this researcher-insight 

assumption may be debatable in many cases, we argue that it provides a useful starting point in 
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assessing evidence for replication. Further, even if the assumption is incorrect, the results of the 

assessment can constrain further reasoning about the theoretically interesting effect size. 

Alternatively, in cases in which where the theoretical and empirical issues are relatively well 

understood, it may be possible to identify a suitable estimate of the theoretically interesting effect 

size with an a priori analysis, without depending on the researcher insight assumption. The 

present approach applies primarily to situations in which such analysis is not available.

In the present development, we build on the approach to assessing evidence described by 

Glover and Dixon (2004). There, we suggested using an “adjusted” likelihood ratio (λadj) to 

describe the evidence for one model of the data relative to another. The likelihood ratio is the 

likelihood of the data given one model of the results relative to the likelihood of the data given a 

competing model and can be written as:

(1)

where L0 and L1 are the likelihoods given the two models. The adjusted likelihood ratio uses the 

Akaike (1973) Information Criterion to compensate for the fact that the evidence will nearly 

always favor the model with more parameters. Using a small sample approximation to the AIC 

yields the following expression for the adjusted likelihood ratio:

(2)

where

(3)

and k1 and k2 are the number of parameters in the two models. Such an adjusted likelihood ratio 

is tantamount to selecting models based on AIC values. Burnham and Anderson (2002) refer to 

λ =
L1

L0

λadj = Qc(n)λ

Qc(n) = exp[k2( n
n − k2 − 1 ) − k1( n

n − k1 − 1 )]



Evidence for replication
9

such adjusted likelihood ratios as “evidence ratios.” The AIC-adjusted likelihood ratio is closely 

and inversely related to p values in some simple hypothesis-testing contexts but differs in that it 

provides an index of the relative strength of the evidence for two competing models rather than 

supporting a dichotomous accept/reject decision. 

The first step in our procedure is to use the sample size of the original study to calculate 

the theoretically interesting effect size that might have been anticipated by the researchers. This 

is the minimum size of an effect for which the study could have been expected to produce good 

evidence. We assume that “good evidence” corresponds to an adjusted likelihood ratio of 8:1. 

(Although arbitrary to some extent, this criterion is somewhere in between weak evidence and 

very strong evidence. Somewhat different choices are possible, but this would not change the 

substance of our approach.) In a significance testing framework, this would correspond to a 

power of about .7 (as shown in the supplementary materials). We refer to this as the anticipated 

evidence for the study, λae = 8, and the corresponding effect size as the anticipated theoretically 

interesting effect size, dtie. With normal data, the likelihood of the data is a simple function of 

variance that is unexplained by a model. This allows one to calculate dtie from the sample size 

with some algebraic manipulation:

(4)

where n is the original sample size. (These calculations are derived in the supplementary 

materials.) Of course, this calculation would not be necessary if dtie could be identified via an 

analysis of the research domain. Indeed, if such an analysis leads to a value that is substantially 

less than the results of Equation 4, one might conclude that the original study was underpowered.

dtie = 2
n − 2

n [ 8
Qc(n) ]

2/n

− 1

1/2
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Having determined dtie, we then consider how well the effect obtained in a replication 

attempt, dobt, is explained by two models: a null model assuming no effect and a replication 

model that assumes the effect is dtie. A likelihood ratio is used to describe how likely the obtained 

effect is given the replication model relative to how likely it is given the null model. As shown in 

the supplementary materials, this ratio is:

(5)

where n is the sample size in the replication attempt. The magnitude of the likelihood ratio 

describes the strength of the evidence in favor of one or the other model. Very large ratios in 

favor of the anticipated theoretically interesting effect would be considered strong evidence for 

replication. Symmetrically, very large ratios in favor of the null model would be strong evidence 

against replication. Smaller ratios in either direction would be weaker evidence, and ratios near 

1:1 would be inconclusive. 

Our approach is illustrated in Figure 1. In this example, we assume that in the original 

study, there were 40 participants in a between-participants design with two groups of 20. From 

Equation 4, the anticipated theoretically interesting effect size is dtie = 0.82. We assume that a 

replication attempt used a somewhat larger sample with 60 participants (again, with two groups 

of 30). The solid curve indicates the likelihood corresponding to different possible effect sizes in 

such a replication attempt if the true effect size was equal to dtie = 0.82. The dashed curve 

indicates the likelihood corresponding to possible effect sizes if the true effect size were 0. The 

solid and dashed gray vertical lines depict the ratio of these two likelihoods under three different 

λrep =
Lrep

L0
=

n
n − 2 ( dobt

2 )
2

+ 1

n
n − 2 ( dtie − dobt

2 )
2

+ 1

n
2
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scenarios. On the far right, it is assumed that the replication attempt found an effect size of dobt = 

0.70; this is much more likely given the anticipated-evidence model than the null model and 

produces a likelihood ratio of λadj = 32.07, or compelling evidence in favor of replication. In the 

center, the replication attempt produced an effect size of dobt = 0.50. This produces a likelihood 

ratio of only λadj = 2.99. Although it favors replication, this is fairly weak evidence. Finally, on 

the left, an effect size of dobt = 0.25 was obtained in the replication attempt. This is more likely 

under the null model than under the anticipated-evidence model and leads to a likelihood ratio of 

λadj = 0.14 or, inversely, λadj = 6.89 in favor of failure to replicate. (These example calculations 

are detailed in the supplementary materials.)  



Evidence for replication
12

 

Figure 1. Likelihood ratios under the null and anticipated-effect models for three different 

obtained effects. The solid curve represents the expected distribution of effect sizes under 

the anticipated effect model assuming a theoretically interesting effect, while the dotted 

curve represents the same under the null model.  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This technique provides an effective way to describe the evidence for or against 

replicating a theoretically interesting effect size. However, “failure to replicate” has a specialized 

interpretation in this context: It means that the obtained estimate of the effect is smaller than a 

theoretically interesting effect (based on the researcher-insight assumption) and is better 

described as being equal to zero. Because of this specialized interpretation, one possible 

conclusion following from evidence for a “failure to replicate” is that the estimate of the 

theoretically interesting effect size is exaggerated. Indeed, it is possible with this outcome that 

the design of the original study was not sufficiently powerful to detect a small (but potentially 

theoretically interesting) effect. Our view is that if there is substantial evidence against 

replication using this procedure (and even when there is weak evidence for replication), it should 

prompt a careful analysis of the research paradigm and theoretical context in order to arrive at a 

deeper understanding of how large an interesting effect would be. In many cases, a natural 

conclusion may be that more powerful studies would be needed to detect a smaller effect. Thus, 

our researcher-insight assumption, although not always justified, can in many cases lead to the 

identification of contexts in which further analysis of a theoretically interesting effect size is 

required.

Comparison to Other Approaches

The present approach has similarities with both the Simonsohn (2015) small-telescopes 

approach and the Verhagen and Wagenmakers (2014) Bayes-factor replication test outlined in the 

introduction. Regarding Simonsohn (2015), our likelihood-based approach is similar in that the 

comparison is between results of the replication attempt and an index derived from the design of 

the original study (rather than the actual results of that study). However, the present approach 

differs from that of Simonsohn in four important respects: First, the approach can also provide 
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positive evidence for successful replication (which does not directly follow from the small-

telescopes test). Second, our approach provides a continuous index of the strength of the 

evidence for or against replication, rather than the dichotomous decision that emerges from 

significance testing. (Using the obtained p value as an index of strength of evidence would be 

inconsistent with the tenets of significance testing as commonly described.) Third, because the 

comparison is between two a priori point alternatives, a more sensitive index of failing to 

replicate is possible, typically with about half the sample size for comparable levels of power 

(see supplementary materials). Fourth, there is an important conceptual difference in what is 

entailed by “failure to replicate.” In the small-telescopes test, this means rejecting the null 

hypothesis that the effect was large enough to be readily detectable in the original study. In the 

likelihood-based approach, this means that the null model provides a better account of the 

replication data than a model based on the theoretically interesting effect size determined by the 

size of the original study. This distinction can easily lead to different interpretations. For 

example, the likelihood-based approach might imply that a small replication effect size provides 

evidence for a failure to replicate if the sample size of the original study was small (implying a 

large anticipated effect). In contrast, given the same data, the small-telescopes method could 

easily fail to reject the null hypothesis, resulting in an inconclusive interpretation.

Regarding the Verhagen and Wagenmakers (2014) approach, the likelihood-based 

analysis is similar in that both pose the question symmetrically in terms of which model is 

supported by the evidence (the “replication” model versus the null). Thus, both methods allow 

for evidence either for or against replication. However, a critical difference is that we compare 

the null model to a model based on a theoretically interesting effect size rather than the posterior 

distribution estimated from the original results. This difference can lead to different insights 
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regarding a potential failure to replicate. For example, as shown in Figure 1, according to our 

method, when a small observed effect size of dobt = 0.25 is compared to the anticipated effect 

size of dtie = 0.82, there is clear evidence of 6.95:1 against replication. However, in the Verhagen 

and Wagenmakers approach, such data produce equivocal results, with a Bayes factor of 0.54 in 

favor of replication, or 1.84 in favor of failure to replicate. More interestingly, if that same small 

effect size were observed in a very large replication attempt with five hundred observations, the 

Bayes factor would actually favor replication, whereas the likelihood-based approach would 

provide very strong evidence against replication. 

We believe that this difference in interpretation arises because of Verhagen and 

Wagenmakers are comparing the null model to the posterior distribution of the effect based on 

the original results. Because the posterior distribution of the effect size is, to some extent, 

diffuse, it will have at least some density at even small values of the effect size. Thus, a very 

precise, but small, estimate of the effect size can be more consistent with the posterior 

distribution than with zero. In contrast, in the likelihood-based approach we are comparing two a 

priori point values, zero and the effect size based on the original study’s design. Thus, a small 

effect is likely to be more consistent with zero than with a large anticipated effect, regardless of 

sample size. Under such circumstances, it would be reasonable to conclude that the replication 

attempt produced an effect that is much smaller than what the researchers might have originally 

expected. Thus, a researcher using our method might reasonably be led to ponder whether the 

effect is real but smaller than the effect suggested by the design of the original study. The 

researcher would, of course, then have to evaluate whether or not this new estimate of effect size 

was of sufficient magnitude to be considered theoretically interesting.
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Application to the Reproducibility Project

As an illustration of the likelihood-based approach, we applied it to results from the 

Reproducibility Project (2015).  The project reported the results of 100 attempts to replicate 

quasi-randomly selected research results from across a broad range of psychology journals. Their 

results are important because they provide an independent assessment of the extent to which 

results in psychology are replicable. For simplicity, we considered studies for which the relevant 

test statistic was either t or F (although the current approach could be extended to other 

analyses). We also did not use studies for which the original or the replication attempt had a 

sample size greater than 1,000 because these would be atypical of replication attempts in 

experimental psychology. We also omitted one additional study as atypical because the effect 

degrees of freedom was 18. This resulted in a total of 83 pairs of studies. For each pair, we 

calculated the anticipated effect size for the original design and the replication effect size from 

the reported test statistic. We then calculated the evidence for or against replication. For the 

purposes of this application, we made two adjustments to the approach developed so far. First, 

because some portion of the studies involved effects with more than a single degree of freedom, 

we calculated effect size in terms of f 2 rather than d. Second, we describe the evidence as the 

difference in AIC values for the null and replication models, effectively putting the likelihood 

ratio on a log scale. (Although we regard likelihood ratios as more intuitive, the AIC difference is 

more suitable for a graphical presentation of evidence for and against replication.) In this case, 

large positive values of the difference in AIC values would indicate evidence for replication and 

large negative values against replication.

The results are shown in Figure 2; details are provided in the supplementary materials. A 

value of 3 for ΔAIC might be considered as clear evidence under many circumstances, and this 
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criterion is shown as dotted lines in the figure. (For example, in some prototypical hypothesis 

testing situations, an obtained p value of .05 corresponds to a ΔAIC of 2.2.) It is notable that 

using our likelihood-based replication assessment, there was evidence against replication in a 

large portion of the results. In this sense, the present approach does not change the broad 

conclusions from the Reproducibility Project, although we believe that these calculations provide 

additional insight into the problem.
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Figure 2. Results of applying the likelihood-based approach to studies in the Reproducibility 

Project (Open Science Collaboration, 2015). In the top panel, gray areas indicate the 

frequency of ΔAIC (difference in AIC values; see Equation 2.10 in the supplementary 

materials), and dotted vertical lines indicate the criteria of ±3 ΔAIC. The dark gray in the 

center panel depict the subset of studies for which the effect of interest was significantly 

greater than 0. The dark gray areas in the bottom panel depict the subset for which the 

effect was significantly smaller than d33 (Simonsohn, 2015). 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As a comparison to other indices of replication, two other measures are shown in Figure 

2. The first was whether or not the result in the replication attempt was statistically significant. 

Significant replication attempts are indicated by the dark gray area in the center panel. As can be 

seen, most of the cases in which the likelihood-based assessment yielded clear evidence for 

replication were also statistically significant. However, there were a few instances in which a 

significant effect was found but there was only weak evidence for replication. This can occur 

when the replication attempt has substantially higher power than the original study. Under such 

circumstances, the replication attempt may find a small, significant effect that is substantially 

smaller than the anticipated effect size estimated from the design of the original study. Note as 

well that a failure to find a statistically significant effect using standard significance testing did 

not always correspond to evidence for a failure to replicate using our approach.

In the second comparison, the results of the likelihood-based approach were compared to 

those results that represented a failure to replicate using the small-telescopes approach of 

Simonsohn (2015). These are depicted as the dark gray area in the bottom panel. As can be seen, 

those results in which the small-telescopes approach indicated a failure to replicate were also 

failures to replicate using the likelihood-based approach. In other words, when the obtained 

effect was smaller than d33 (using a significance test), it was also smaller than dtie (and was better 

fit by a null model). This is perhaps not surprising given that both criteria are derived from the 

sample size of the original study. However, there were also number of cases for which the 

likelihood-based approach suggested a failure to replicate when the small-telescopes approach 

did not. This highlights the different interpretation of “failure to replicate” in the two approaches. 

For the small-telescopes approach, “failure to replicate” means rejecting the hypothesis that the 

effect is larger than a small effect (estimated from the original study); for the likelihood-based 
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approach, “failure to replicate” means that the effect is better fit by null model than a model 

assuming a theoretically interesting effect size (estimated from the original study).

We also compared the results from the likelihood-based approach to the replication Bayes 

factor approach (Figure 3). Here, we plotted the difference in AIC values against the log of the 

Bayes factor. These two measures need not be precisely related since the Bayesian approach 

depends on the actual results of the original study while the likelihood-based approach depends 

on the anticipated effect size. Nevertheless, there is a clear relationship. The largest difference 

between the two patterns of results is that the Bayes factor is generally not as strong as the 

difference in AIC values, particularly for evidence against replication. This highlights our 

observation that for similar sample sizes, it is more difficult to find evidence against replication 

using the Bayes factor approach. We conjecture that this difference arises because the posterior 

distribution given the original result can be diffuse. This means, for example, that even small 

obtained effects have some likelihood given the posterior, and there is thus a limit in how small 

the Bayes factor can be. In contrast, the likelihood-based approach compares two point 

hypotheses (0 and dtie), and it is quite possible for an obtained effect to be much more consistent 

with one than with the other. There is also a discrepant result for one study that had a slightly 

positive AIC difference but a large negative Bayes factor. The original study in this instance had 

a large sample size (and consequently a small value for dtie), but also a very large effect size. The 

replication attempt found a small effect between dtie and 0. Consequently, the likelihood-based 

approach indicated that the replication was inconclusive. However, the Bayesian approach 

demonstrated that the obtained result was smaller than the original obtained result. This 

highlights the difference in questions being asked: The likelihood-based approach is concerned 

with whether the replication attempt found evidence for a theoretically interesting effect; the 
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Bayesian approach is concerned with whether the effect is similar to that obtained in the original 

study.  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Figure 3. Relationship between log Bayes factor and AIC difference when applied to data from 

the Reproducibility Project (Open Science Collaboration, 2015). For clarity, four studies 

with an AIC difference greater than 20 are not shown.



Evidence for replication
23

Limitations

While we argue that the present approach can provide insights into the question of 

replication, there are a variety of constraints on our conclusions. As with all statistical models, 

the validity of the conclusions depends on the accuracy of the underlying assumptions. For 

example, our derivations are predicated on independent, normally distributed data. We are 

uncertain whether deviations from this assumption would lead to a bias towards the null or 

replication model in Equation 4. As noted above, the present development is limited to the 

simple comparison of two conditions; the extension to more complex statistical questions is 

possible but not treated here. Further, our analysis depends on the choice between two point 

estimates for the mean, with no variation in other aspects of the distributions. In some 

applications, such constraints may be unreasonable. Nevertheless, we feel that there is no 

substantial obstacle to applying the general approach to a broad range of other situations.

Concluding Comments

Our likelihood-based approach has several important differences from other methods of 

assessing replication. First, it poses the question of replication symmetrically, so that evidence 

can be found either for or against replication. This is in contrast to other methods which often 

can only answer one or the other side of the question. Second, it allows for a graded and intuitive 

description of the evidence. This avoids some of the problems with null-hypothesis significance 

testing that derive from the use of an arbitrary decision-making criterion. Finally, it uses the 

provisional, working assumption that the original researchers designed their study to be sufficient 

to detect a theoretically interesting effect, and it infers the expected effect size based on their 

design rather than on the obtained effect. Although this researcher-insight assumption may often 

be incorrect, the approach can nonetheless provide a starting point for evaluating the evidence 
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for replication. Further, where that assumption appears to fail, it may encourage a more careful 

evaluation of what might be considered an effect size sufficient to be considered theoretically 

interesting within that specific paradigm.

Although we have developed and applied this technique in terms of likelihood ratios, the 

same concepts could be used regardless of one’s approach to assessing evidence. In particular, 

using the design of the original experiment to assess the original researcher’s expectations does 

not depend on any assumptions about how competing hypotheses should be compared. For 

example, the same approach could be used by starting with the significance-testing concept of 

power and then developing mutually exclusive point hypotheses. As another example, a Bayesian 

version of the procedure could be developed by using the Bayesian model comparison statistic 

BIC instead of AIC in all of the present developments. Although these alternative approaches 

would, in general, be numerically different when applied to specific cases, we believe that the 

conclusions would typically be similar.

Understanding why results cannot be replicated is a critical issue in psychology and 

other sciences, but assessing replicability is equally crucial, for without a robust evaluation of the 

problem one cannot formulate suitable solutions, especially in terms of assessing individual 

attempts to replicate. Our approach is to focus on the central question, “Does the data provide 

evidence for a theoretically interesting effect, or for a null effect?”, and to frame this question in 

a symmetrical fashion. This approach in conjunction with the use of likelihood ratios allow a 

graded and principled means of assessing replication.  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Open Practices Statement

Supplementary materials, including R code used for generating simulations and 

analyses, are available at https://osf.io/xfy53/download  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Figure Captions

Figure 1. Likelihood ratios under the null and replication models for three different obtained 

effects. The solid curve represents the expected distribution of effect sizes under the 

replication model, while the dotted curve represents the same under the null model. 

Figure 2. Results of applying the likelihood-based approach to studies in the Reproducibility 

Project (Open Science Collaboration, 2015). In the top panel, gray areas indicate the 

frequency of ΔAIC (difference in AIC values; see Equation 2.10 in the supplementary 

materials), and dotted vertical lines indicate the criteria of ±3 ΔAIC. The dark gray in the 

center panel depict the subset of studies for which the effect of interest was significantly 

greater than 0. The dark gray areas in the bottom panel depict the subset for which the 

effect was significantly smaller than d33 (Simonsohn, 2015). 

Figure 3. Relationship between log Bayes factor and AIC difference when applied to data from 

the Reproducibility Project (Open Science Collaboration, 2015). For clarity, four studies 

with an AIC difference greater than 20 are not shown.


