Performance Evaluation
on the MULTOS

and Optimisation for Kyber
loT Trust-Anchor

Keith Mayes
Information Security Group
Royal Holloway, University of London
Egham, UK
keith.mayes@rhul.ac.uk

Abstract—The Internet of Things (IoT) may be considered
as a distributed, critical infrastructure, consisting of billions of
devices, many of which having limited processing capabilt
However, the security of 10T must not be compromised by
these limitations, and defenses need to protect against tag's
threats, and those predicted for the future. This requires po-
tection against implementation attacks, as well as the ahiy to
load, replace and run, best-practice cryptographic algorthms.
Post-Quantum cryptographic algorithms are attracting great
interest, and NIST standardization has a competition to find
the best. Prior research demonstrated that a Learning With
Errors candidate algorithm could be implemented on a smart
card chip, however this was a low-level implementation, and
not representative of loading the algorithm onto a secured
IoT chip platform. In this paper we present analysis from a
practical implementation of the Kyber768 CPAPKE public key
encryption component on a MULTOS 10T Trust-Anchor chip.
The investigation considered memory and speed requiremest
and optimizations, and compared the NTT transform version
of Kyber, presented in Round 1 of the NIST competition, with
the Kroenecker multiplier technique that exploits a hardware
crypto-coprocessor. The work began with a generic multi-rand
multiplier approach, which was then improved using a novel
modification of the input data, allowing a built-in modular
multiply function to be used, significantly increasing the gpeed
of a multiplication round, and doubling the useable size of e
hardware multiplier.

Index Terms—MULTOS, Kyber, Post Quantum, embedded,
performance, loT

I. INTRODUCTION

we cannot rely on legacy Public Key Infrastructure (PKI) for
confidentiality, integrity and availability.

In this paper we do not offer a magic bullet for 0T security,
but, practically investigate, trustworthy security foatidns
for 10T that support traditional algorithms, yet are suéitily
flexible to support the future loading of post-quantum algo-
rithms. The considered scenario was the I0T seeded with post
guantum capable security anchors.

There are numerous security-sensitive systems in use,today
which have protection from strongly attack-resistant amnc,
e.g., the chips in our bank cards and passports. They include
specialist hardware, to resist physical, side-channelfant
attacks (summarized in [11]), supported by software défens
measures, and are typically assessed under Common Criteria
(CQC) [2]. The secured microcontrollers within bank cardsg, a
normally of small register size (16-bit is common) and have
limited memory and processing speed; the Infineon SLE78
[7] is typical. The software defensive measures for higlelev
CC evaluation, significantly degrade performance compared
to unprotected native mode implementations, with one or two
orders of magnitude not untypical (see [10]). Thereforega s
cured microcontroller has a crypto-co-processor (CCoRh w
special hardware for executing specific functions muchefast
than the CPU. The functions may be complete algorithms,
e.g., RSA [15], or general utilities such as block multiplié
secure chiplatform will offer an API for functions that map
onto the underlying CCoP. The CCoP cryptographic operation

The Internet of Things (loT), is fast evolving into a criticamay be fast relative to simple byte or bit manipulation via th
enabler for future society. Much focus is on new functiaiyali main CPU; making results and optimisation strategies uslusu
and services, however ensuring the security of 10T is ctuci@ompared to a CPU without CCoP.

As yet there is no clear solution for securing the entire 1oT, The MULTOS [13] platform has a CCoP, but also offers
however a lot is known about providing system security igeneric software primitives that still have defensive oggdbut

legacy systems, using best-practice cryptographic dlgos

are optimized for faster execution compared to implemeértat

and protocols, and there is considerable industry exgertst the application level. Secure chips are typically itizzd
in protecting security sensitive devices from attacks airth and personalized before first use, which may include the

implementation. Complications for 10T security, includeet
long potential life of the deployed infrastructure, thefidiflty
to physically access and/or replace security-sensitivécds,
and their processing resource limitations. To maintainfeece
tive defense against evolving attacks, requires flexibbesegy

storage of identities and cryptographic keys for operation
and management. To overcome processing restrictions, some
values may be pre-computed, for example, storing a diver-
sified ID rather than calculating it, or adding small look-up
tables to speed execution; our work made extensive use of

devices, which even after deployment, can be loaded with néve personalisation phase. In this research we chose to use
algorithms. The greatest test for such devices, may evigntuaULTOS security platform(s) based on the high-levels of
be attackers equipped with quantum computers, implying threecurity assurance that they have achieved, and the aligjlab

D A s E stored within a 2-byte/16-bit unsigned integer. A polynami
data structure is referred to as a@ocly’ in the reference
code, and every small box in Figure 1 representpody.
The secret keyS and noiseE are vectors containing three
poly types; and referred to aspblyvecs. The generator
matrix A consists of thregolyvecs One of the most time-
critical operations within the algorithm, is the multigiton
Fig. 1: Kyber Calculation of polyvecswhich for the multiplication ofA by Sis required
three times. Eacpolyvecmultiplication consists of threpoly

of the new loT Trust-Anchor device. For the algorithm wénultiplications, and subsequent addition of their resulits
chose Kyber768 [16] CPAPKE, primarily because it wathe original specification of Kyber, theolyvecsare encoded
the subject of the main prior-research reference, but alébthe Number Theoretic Transform (NTT) domain, reducing
because the inherent polynomial multiplications woulesgr classical polynomial multiplication to vector inner pradst
our implementation. Note that as anyA matrix would transform into anothek

In Section Il we provide a brief overview of Kyber and thernatrix, the original Kyber was able to avoid the transform,
in Section 1ll we outline initial assumptions and strategy f by stating that the generated matrix was already transfdrme
the implementation. Section IV introduces the essentjgéets The paper [1] swapped the transform approach for the use
of MULTOS. In Section V we describe the implementatio®f a hardware multiplier and we will follow this strategy;
process and challenges. Section VI presents, analyses alidough an NTT version was ported to the test platform
optimizes the Part | experimental results; initially comipg for comparison. We note that there is considerable research
the NTT and generic multiplier methods, and then going on &stivity to determine specialist hardware implementatitor
analyse the timing breakdown of the latter. In Section Vé thNTT (and LWE) such as in [3], [6], which contrasts with our
Part Il work and results are discussed, which are based ogagl of using an existing and flexible attack-resistantfptat,
novel multiplication strategy, possible when one of theuitsp With generic CCoP support. For clarity we will recap here on
represents noise. Section VIII offers conclusions and esigg the multiplier method.

future research. A. Multiplier-Method

Il. KYBER Polynomial multiplications are at the heart of Kyber, and

Kyber is a Key Encapsulation Mechanism, within the NISTEritical in our use of the MULTOS Trust-Anchor, but such
competition [14] for standardising post-quantum algarnil) operations can be slow without specialist hardware. TheeKyb
as an alternative to well-known asymmetric algorithmshsas reference uses the NTT transform as a means to avoid costly
RSA. There are different classes of post-quantum algosthnpolynomial multiplication, however there is a time cost for
and particular algorithm proposals are evolving and combithe transform and its inverse. The method proposed in [1]
ing as the competition progresses. The theoretical sgcurvoids the transform cost, by exploiting a hardware muéipl
properties of Kyber are left to the international communitwithin the CCoP. It turns a polynominal multiplication into
of cryptographic experts, as we focus on its implementatiolarge integer multiplications. The CCoP hardware mukipis
as a downloaded algorithm on an attack-resistant hardwai as large as the multiplication required by Kyber. Theref
platform. The security of Kyber is based on the hardness thfe multiplications have to be broken into interleaved part
the Module Learning With Errors problem (MLWE). This iswith each handling a sub-set of coefficients, and then an
an algebraic assumption part of the larger family of Leagniraccumulation of the interleaved results. For each subiphylt
With Errors (LWE), for which an introduction can be foundwe refer to as Rounds), we use the Kronecker substitution
in [17]. The design of Kyber as a PKE scheme follows th§8] as per the prior research [1]. The principle is to space
outlined in [9]. In terms of basic encryption process, thisre the polynomial coefficients sufficiently far apart withineth
some population of fields with random values, multiplicatiolarge input integer, that they do not overflow their storage
with a generator matrix and a fixed key vector, and then tlas a result of the multiplication, so the output coefficients
intentional combination with a noise vector; as illustchia can be simply extracted from the result. For Kyber, our input
Figure 1. The security design goal is to make it infeasiblyoefficients are mod Kybe® (7681), so 7680 is the largest
difficult for an attacker to determine either the private K&y magnitude, requiring a minimum 13-bit storage locatiorg an
or the random noise vect& from a knowledge of the resuli 26-bits for the product of two coefficients. In our initial
and the generator matri&. Note that we also us& transpose implementation, for each round of multiplication, we had 32
(A") in calculations, but we will just refer té for simplicity (of the 256) polynomial coefficients within each long intege
of explanation. input, meaning that an unreduced resulting coefficientcoul

The calculations centre around polynomials. A polynomidle the sum of 32 of the 26-bit products; requiring a total
has 256 coefficients, with each coefficient being representaf 31-bits of storage and fitting within the 32-bits provided
as a modulo KYBERQ (7681) unsigned integer. In the Kybemote that for the initial implementation, the full resultcha
reference implementation, and in this work, each coeffiden to be available from the multiplier, in order to support a

modular reduction, whereby the upper (overflow)coeffigent Data Space

were subtracted (modulo Kyhdp) from the lower (retained) Registers
coefficients. This is discussed further in Section V-B, but J Stack W
accounts for why we could only multiply 32 coefficients at a LT Session Local Base
time (within a 2048-bit multiplier). In our final implemeritan / - EI‘J’S"EO%%'"
we succeeded in multiplying 64 coefficients at a time, within EE@E <= o i y Public Bottom
the same size multiplier; as discussed in Section VII. .k /_ m

I1l. | MPLEMENTATION, INITIAL ASSUMPTIONS AND

— % Static Bottom
STRATEGY

The focus of the research was to determine whether the EEPROM QX . W
Kyber768 algorithm, as an example of a polynomial based I .-
algorithm, could be loaded as an application onto a MUL- Code Space
TOS VM platform and execute acceptably via its APIs. As Fig. 2: MULTOS Application Memory Architecture
the critical aspects centred aroupdlyvec multiplication, a
scenario was envisaged in which a test message was encryfitegsh NVM is used, with the code being logically read-only,
and decrypted using keys/generators known in advance and with the possibility of overwriting static data. The NVis!
personalized on the chip. It was important to prove, that tii&st to read, yet very slow to write; so useful for persoreliz
MULTOS code was correctly matching that of the referenceata, but not for dynamic variable storage. Run-time data
which would not have been possible if using MULTOS randomind variables are in RAM; some is needed for the stack to
numbers, or different hash types. To achieve this, the Lingypport the OS as well as loaded applications. The apmlitati
reference code was used to dump its "random” data fieldgso needs private RAM (session data) for variables, taiffer
as well as data representing generators, keys and noisefy whirrays etc.. There is some public data, used for I/O buffieds a
were subsequently personalized into the Non-Volatile-ldgm communicating between applications; which can (with some
(NVM) of the MULTOS test device. Additional data was precare) be re-used as extended session memory; the motivation
computed to support the multiplier method; for example, thseing that the RAM for the entire chip is usually a small
inverse NTT version of the original matrik was needed. fraction of the maximum 64kbytes that MULTOS would
support within one application’s data space.

Code Pointer

IV. MULTOS

Our MULTOS device can be considered as a secure Virtda Memory requirements
Machine (VM) running on an attack-resistant chip, plus exte Generally, application coding is unlikely to exceed the
nal systems and processes that manage personalisatioa of6bkbyte code memory space, so the focus was on the RAM
chip with cryptographically protected Application Loaditén and to a lesser extent on the data NVM. The latter was
The management and personalisation are currently basedoaly relevant due to the pre-calculated data needed for the
PKI, but would eventually evolve to a post-quantum equivaxperiments. In the core calculation, we need to multiply a
lent. The PKI loading approach is interesting for 10T, as thgolyvecby another; to have a generator matrix and at least
distribution of the more commonly-used symmetric keys do@amothempolyvecstored in NVM. The storage of a normably
not scale well. The security evaluated MULTOS managemest 256*2 = 512 bytes. Apolyveccontains threepolys and
capability, provides reasonable justification that thgpshian therefore needs 1,536 bytes, and we need two. We also need
be securely loaded and personalized post-deployment. Bsfers to expand thpolysfor the Kronecker substitution, with
would be expected from a secure multi-application devic&ur bytes per coefficient, so 1024 bytes each, and we need
loaded applications are isolated from each other and unden. Allowing for other buffers and variables, but assuming
the unique control of the Issuer. Source code developmeaime re-use of theoly/polyvecmemory, we estimated a
for MULTOS is normally in the "C” language, which is minimum of 6kbytes application RAM, plus enough to support
compiled to MULTOS Execution Language (MEL). MEL carthe OS and the application stack requirements. For thec stati
be regarded as a kind of assembly language, however, fata, the largest entry would be the generator mariwhich
security, it is greatly abstracted from the underlying gssor, is threepolyvecs and so 4608 bytes; allowing for a similar
and instructions are better thought of as functions. The VRumber of individualpolyvecswe would need 9216 bytes,
is 16-bit, with 32-bit extensions for memory access, arahd reserving half again for static values and look-up t&ble
the compiler supports up to 32-bit integer types. MULTO®e are in the range of 14kbyes. Fortunately, the memory sizes
applications run within a virtual address memory map, whidit within the logical limits of the MULTOS virtual memory.
is shown in Figure 2. The static memory is no concern, as MULTOS chips usually

The main memory split is between code and data spachaye a few 100kbytes of NVM. The RAM requirement is just
both of which can be addressed up to 64kbyes. Historicallyjthin the MULTOS Trust-Anchor [12], which has a total of
the code (and static data) spaces, were held in ROM, with h8kbytes RAM; 9.5kbytes for stack and session, and 3.5kbyte
option to change the contents during deployment. Nowadayjs:; public data.

B. Hardware Multiplier API

The Trust-Anchor has a CCoP, although at 2048bits, Rultiplier approach

is half the size of the one used in [1]. The MULTOS API
supports two ways to access the multiplier; the simplesidei

NTT ORIGINAL
poly_frommsg (...);
polyvec_ntt (...);

spent in transforms and inverses, which are not needed in the

MULTIPLIER
polyfrommsg (...);

for (i=0;i<KYBERK; i++)
polyvecmultiply_acc (...);

multosMultiply which mapped to th#MULTIPLYN primitive.
In our Part | implementation, we multiply inputs of 32

for (1=0;i<KYBERK; i++)
polyvec_pointwise_acc (...);
polyvec_invntt (...);

coefficients, each stored in 4-byte storage, equivalen®® 1 polyvec_add (...); ~ polyvecadd (...); _
byte large integer inpu_ts. I_n theom,uItosMuItipIyshouId have gg'ls;\i?ﬁ;ﬁc:tnztw.ie_acc () .p.o.lyve(;multlply_acc (...);
been capable of multiplying two 128 byte unsigned integers poly_add (...); polyadd (...);

poly_add (...); poly add (...);

and producing a 256 byte result, however 8T 6OREprimitive
is restricted to a maximum length of 255 bytes, whereas
blockLength*2is 256 bytes. In any case, timeultosModular-

Multiplication was more interesting, as when the Kronecker The poly frommmsg the last two poly_adds and the
multiply is broken down into sub-multiplies, it is necessarpack ciphertextare common to both versions. The multiplier
to do a modular reduction after each, to get back to a %rformance is dominated W)|yvegmu|tip|y_acc which has
coefficient result. As will be explained later, for Part I ofnree calls topolymodmul(which multiplies two polynomi-
the StUdy,mU|tOSMOdU|arMU|tip|icati0nCOU|d not be used to als together), after which a process adds the three sets of
exactly duplicate the NTT reference results. However, ieSpcoefficient results and reduces them mod KYBER Note
the input parameters and modulus having to be the same sig@y polyvec multiply_acc s called four times irindcpa eng

we were still able to ConﬁgUrﬁuItOSMOdUlarMUltiplication SO p0|ym0dmu|is called 12 times; becoming the focus for
to be a reliable functional equivalent OﬁultosMultipIy but performance ana|ysis and optimisation.

we were then obliged to carry out the reduction manually in A representative flow chart is shown in Figure 3. Section 1
application level software. in the diagram is responsible for partitioning, expanding a
re-ordering the source polynomial coefficients into comsen

h ;)) h q ; form for large integer multiplication, and is performed enc
The software starting point was the NIST Round 1 refereng@, oo The core processing relates to the diagram section

version fr.o_m GiTHub [5]. This was built on a Linux machin , 3 and 4; and in our implementation it uses an inner and
and modified so that data values could be dumped from tgg;, loop, executing a total of 8x8 rounds in our Part |

code for import as pre—personglized data within the MULTO%pIementation, reducing to 4x4 in the Part Il implemen-
test-code. The exported data included the transposecbmer%tion' Diagram section 2 is the actual hardware multiply

g : :
of the”generator matrlx? hgsed in the lN-Il-T %algulqtlon, with some surrounding buffer management. Diagram section
as we a? a version o t Sfmatr?x calqulate oy mvr(]arsg reduces the resulting polynomial back down to the number
NTT transform onA’; required for the multiply version. The ¢ oo efficients in an input polynomial, and diagram section 4

unpa_cked pl_JbI'C key was s?ored inplyvec, pkpvTo be . modulo adds the interleaved round results to the apprepriat
consistent with the NTT version, an NTT transformed Versioly ofricients in an overall result accumulator Finally,giim
of pkpvwas also pre-stored, and the NTT transformed VersiQQ (s 5 reduces the accumulated result back to the size of a

of the unpacked secret kesk as well as an untransformed, v \omial, then re-orders and reconstructs the actualteg
version. Noise vectorsp, epandeppwere also stored to avoid polynomial

any difference from sources of randomisation. The initaius
of the investigation was around the performancadtpa enc
and indcpa dec functions; exploiting pre-stored values an

comparing the NTT approach with the multiplier equivalent. Multiplying two polynomials as large integers of si2¢
results in an integer of siz@N; therefore, to fit back into

A. NTT and Multiplier Version polynomial storage, requires reduction. The form used is a
After using pre-personalized keys and data fields where pasedular reduction byXN+ 1. XN alone would be an easy
sible, the essential part aidcpa encis outlined in Listing 1, discard of the overflow, but the extra '1’ in the expression
along with the multiplier equivalent. Note that KYBER is requires the high order (overflow) half of the result to be mod

'3’, and the original performance critical parts were theTNT ularly subtracted from the low (retained) half. Unfortusigt
transform,polyvec ntt, the inverse transform@olyvecinvntt we cannot directly usmultosModularMultiplicationas in the

and polyvec pointwise acc the latter being much simplified subtraction, it treats the upper and lower halves of theltrasu

by the transforms. The NTT version was primarily to showng integers, whereas, Kyber requires a modular subtracti
exact functional equivalence, but its timing was also messu coefficient-by-coefficient. This necessitated a manuat@ggh

as an initial benchmark. The experimental timing is shown o reduction. ThanultosModularMultiplicationwas still used,
Table I. As anticipated, the overall duration was much tdout with a modulus that could never be exceeded. Code was
slow to be practical on our VM, although the breakdown addded, to provide the modular reduction functionality atirey

the timing was encouraging; much of the execution time waghat was referred to as V1 (unoptimized) code. Note that in

pack_ciphertext (...); packciphertext (...);

Listing 1: Overview of Encrypt Methods

V. SOFTWARE IMPLEMENTATION

dB' Polynomial Reductions

TABLE I: Non-optimized Initial Results (ms) TABLE II: polymodmul Performance Breakdown (ms)

Type NTT All Poly All Other Total Code Poly Mult Reduce Acc Poly Total
xform xform vec Accs Ops Time Exp Round Round Round Reduce
acc 1.V1 412 268 6149 942 360 8131
NTT
enc 3 85987 4 41648 6372 134007 Part 437 273 3210 955 329 5204
dec 2 46863 1 10427 8931 66221 Reduce
Mult Block 637 66 2152 936 355 4146
enc 4 97975 6610 104585 add sub
dec 1 24619 5022 29641 MEL 419 66 1082 365 370 2302
Modulo
Section 1:) . .
Extract and Expand from Polynomials TABLE Ill;: Modulo Reduction Speed Comparison
Sub-Multiply Operands/Clear Buffers
Modulo Reduction Technique Duration (ms)
MULTOS C Remainder 0.97
Section 2: MULTOS ModularReduction 1.05
Multiply Round MEL Full Tabular 1.08
MEL Partial Tabular 0.21
Section 3:
Reduce Round
Core
Processing reduction after each multiply round; requiring an innergdoo
with a modular subtraction/reduction for each coefficient.
Section 4: The V1 code used two modulo reductions per coefficient,
8x8 Accumulate Round Results . . .
Iterations per round, relying on the MULTOS C-compiler remainder
operator. The modulo reductions served multiple purposes.
| Section 5: Firstly, to ensure that the subtraction result was posiind
Final Reduce| .
| Reconstruct Polynomial secondly to ensure that the sum of the results from the ntyltip
Fig. 3: Flowchart of Polynomial Multiply rounds would not overflow the 32-bit coefficient storage @f th

accumulator. Using the Kronecker substitution technigue,

Part Il of our study, a method was conceived to achieve polgtew that there would be no carries between result coeffieien
nomial reduction viamultosModularMultiplication although Furthermore, as the input coefficient values were 13-bé, th
this relied on assumptions about the inputs, and requirdgreduced product of two coefficients could not exceed 26-

changes to personalized data; as discussed in Section Vi1.bits, and with 32 coefficients (in our multiplier round long
integers), the maximum number of these that could be added

VI. TIMING ANALYSIS AND OPTIMISATION, PART | together in a result was 32, equivalent to needing an extra
The timing results from the very first (unoptimized) benchb-bits. The accumulator could add 8 (3-bits) of these result
mark experiments are shown in Table I. together, which would require 34-bits total if we were to iavo

They include the total execution times for the encryptiofeduction; thereby overflowing our 32-bit accumulator esor
and decryption processes when computed via the originalAs modulo reduction was a necessity within a performance
NTT and alternative multiplier methods. The table also showritical part of the code, an experiment was carried out to
the comparative time for thpolyvec pointwise acc and the compare several methods for reducing a 32-bit value mod
polyvec multiply_acc For the NTT case, the time for trans-Kyber_Q. The methods included tmaultosModularReduction
forms is shown separately. The NTT encryption method takegmitive, a new tabular technique, described later, along with
an extra 28% of the multiplier method time, but both are far td partial tabular reduction technique (for reasons which wi
slow to be usable in almost any practical applications, and Become apparent). The results are presented in Table . Th
significant optimisation is needed. Thelyvec pointwiseacc remainder operator was the fastest for full reduction; elips
is significantly faster than thpolyvec multiply_acg but it is followed by multosModularReductioand a MEL-optimized
reliant on NTT transforms. Both methods spend over 90% tsfbular version (discussed next);
their time in thepolyveccalculations..)

The focus of this research was on the CCoP multiplié} Tabular Reduction
method, and the first step was to identify where the main timeThe modulo reduction of result coefficients was sufficiently
losses occurred. Experiments were carried out to determizr@ical to justify an allocation of the platform’s flash meny
the proportion of total execution time spent in the variou®r tabular reduction methods. The design goals for thedatt
processing stages; with the evolving results presentedain Thcluded, no run-time multiplies, no run-time shifts, data
ble 1l. The first interesting observation is that in the V1 epd independent run-time and no table needing more than 1kbytes
the CCoP multiply section is far from being the bottleneclgf NVM.
accounting for just over 3% of the execution time. Even more The first attempt used three tables, KTH, KTM and KTL;
interesting is that 76% of the time is taken in manual modul#ne first two each have 256, 32-bit values (1kbytes), whereas

TABLE 1V: Polymodmul Performance Breakdown (ms)
Version Poly Polyvec indcpa indcpa
Mult Mult enc dec
NTT 134007 66221
First Multiply 8165 24494 104585 29641
Optimized Multiply 2302 6906 35917 12719
Estimated Multiply 1220 3660 22560 9381

KTL has 256, 16-bit (512 bytes). KTH is used for reduction
based on the most significant byte of the input, and then KTM
and KTL for the next most significant bytes. The contents of
the tables are calculated as the maximum integer multiple of i : _)
KYBER_Q that is smaller than the number represented by the ~ Fig. 4: Stages of Polynomial Multiply (20ms/div)

index, assuming the lower unknown bytes are zero. Because

the lower bytes could be say all OXFFs, it is possible thfte start of each round and the second trace illustrates the
the index value after reduction would still be non-zero; setages of a round; the third trace represents the chip power
the tabular reductions for KTH and KTM are used twice i#sage. The multiply stage (2) is relatively short, being som
sequence. However, in our implementation we do not neBdffer preparation and the actual hardware multiply (seen a
a full reduction. Partial reduction uses KTH once, adds the peak in power). The accumulate stage (4) takes longer
minimum fixed value to the retained (lower) coefficients andnan the multiply and involves adding interleaved resuits i
modulo subtracts the upper coefficients, knowing that tfi@e correct locations; however, the round reduction staye (
results would be positive, and that the addition of multiplelearly dominates. The reduction is split between the KY-
multiplication rounds would not overflow the result accumuBER_Q reduction of the resulting coefficients (stage 3a) and
lator. In MULTOS we are abstracted from the underlyin@he subtraction of the overflow coefficients from the retdine
processor, so the best code optimisation was to define #fefficients (stage 3b). To make a significant improvement to

functionality in the MULTOS Execution Language (MEL). Performance, we needed to remove stage (3) entirely, and we
began this by revisiting thmultosModularMultiplicationAPI
B. Other Optimisations call in MULTOS.

Referring back to diagram Fig 3, th&ccumulate Round
section was the next most time consuming after modul
reduction, followed byFinal Reduce so efficiencies were Recall from Section V-B that if we usenultosModular-
sought by unrolling loops, and where possible, using canstaVultiplication to perform aX?*%+ 1 reduction, it performs
rather than run-time calculated addresses. A halt wasdcal@n arithmetic subtraction of the overflow large-integemdro
on our Part | optimisation due to diminishing returns and tHbe retained large-integer, whereas Kyber expects thelower
experiments were repeated, also addingitttepa dec case. coefficients to be subtracted (modulo KYBER) coefficient-
The final results are presented in Table IV. The positive @sp®y-coefficient from the lower retained coefficients. Theref
is that on our attack-resistant device, the best optimizati mto usemultosModularMultiplicationrequires that all parts of
tiplier code encrypted (decrypted) more than 3.7 (5.2) siméhe overflow integer representing the overflow coefficients,
faster than the NTT method and 2.9 (2.3) times faster thare smaller in arithmetic magnitude than the corresponding
our initial ported multiplier code. The most negative agpsc values representing the retained coefficients. Addingipia#
that the encryption time is almost 36s, limiting the praaitic of KYBER_Q to coefficients will increase their arithmetic
usefulness of the algorithm. To go significantly faster withepresentation, without changing the final calculationyéeer
the Part | implementation design, would require MULTOS tthis alone does not help unless we can selectively control
incorporate a larger multiplier (4096 bit) and/or new ptiggs the dynamic range of the input data to affect the coefficient
within its platforms. However, we noted that if a variant ofesults. Therefore the first step was to try and reduce the
the Kyber768 implementation design could avoid the manudynamic range of the data representation for the inputsdo th
modulo reduction operations (for each multiplication rdyn multiplications.
we estimated execution times to be 22.56s for encrypt and) i)
9.38s for decrypt. This suggested a worthwhile speed iserea®: Reducing the Representation of Noise
and is what we set out to achieve in Part Il of the investigatio Part | assumed all coefficient values were up to KYBER

in size, requiring a minimum of 13-bit storage. When we

VII. TIMING ANALYSIS AND OPTIMISATION, PART I focussed on encryption, we noted that one of the inputs to

The goal of Part Il of the study was to avoid tb&'+ 1 the multiplications was always a representation of a noise.
manual reduction of the multiplier round results. The nemd fKeeping with the original reference implementation, thefeo
this can be seen from Table I, but is illustrated in the powdéicients in these noise vectors were actually allowed to edce
traces of Fig 4. The upper trace in the figure, transitions KiYBER_Q, but the extreme values were very limited, being

é‘r Polynomial Reduction Revisited

KYBER_Q +/- 4. The first step in our new method was to vargf rounds in our overall polynomial multiplication. Idealive
the way that noise was represented, so that the coefficiewtsuld have simply doubled from 32 to 64 coefficients (1028
could be represented by much smaller arithmetic values. For2048 bits), unfortunately, the API required that the itspu
example, an original noise vector with coefficients in thege were the same size as the modulus, so we needed to store
0x1DFD to 0x1EO5 would be converted to Ox0 to 0x8 b®5 coefficients within 2048bits; a packing/unpacking optio
adding 4 modulo KYBERQ. If the coefficients in the other was explored as an alternative. From the discussion in@ecti
input were 13-bit, then multiplying by up to 8 would require/Il-C we selected 28-bit packing, as sufficient to maintain
16-bit storage, and if there were up to 32 (5-bit) coeffidenseparation of the result coefficients. It was noted from the
in our long integers the largest resulting coefficient wouldutset that the packing and unpacking, would be slow on the
be 21-bits. This gave us the reduction we needed to try aselcured MULTOS platform, due to the hardware abstraction
manipulate the overflow coefficient results to be smallenthand defensive coding measures; potentially undermining im
the retained coefficient results. provements from the round reduction. However, as packing
]]]] ~ . and unpacking are the kind of utilities that could evenguall
C. Noise Data Manipulation: Overflow j Retained Coefficienigg incorporated into the MULTOS platform as optimized
The coefficient multiplication results are the sum of prodsrimitives, it was felt justified to explore further. The bes
ucts of the input coefficients. To modify the overflow coeffithat could be practically achieved in this work was with a
cient results differently from the retained coefficientquiges MEL-encoded unpack utility; the first results are shown as
a property that sets them apart. The least significant coeffie 16 round pack/reducentry in Table VI. As further round
cient (sayX? of the noise) only contributes to the retainededuction was not possible without a larger multipliereation
coefficients and not the overflow. Therefore, if we could makeas then turned to the accumulation stage.
the X° contribution dominant, it would dominate the retained))
values within the result. To achieve this, requires as a fifst Round Re-ordering and Accumulations
step, thaiX? is arithmetically much larger than the other noise Accumulation is necessary because of the multi-round ap-
coefficients; which can be achieved by adding KYBERto proach to multiplication. Because the input coefficients ar
it. This alone is not sufficient, a%° may be multiplied by a assigned to long-integers in an interleaved fashion, the ac
very small coefficient value in the other input. The requiredumulator adds results from a round into interleaved places
second step was to ensure that the other input is storedwashin the accumulated result. Therefore, accumulationat
its coefficient values plus KYBER). Considering dynamic a simple block addition, if it were, we could use the faster
ranges, one set of coefficient inputs had increased to $4-lIMULTOS primitive multosADD The round calculation was
and multiplying this by a noise coefficient (other thé?) gave originally formed within an inner and outer loop, indexed by
a 17-bit result; and 32 of these would take us to 22-bits. Thendj respectively. It was noted that the locations written to
X0 coefficient multiplication would give us a result in the 26by the accumulator were not unique to a round (16 values),
27bit range; so its contribution dominated and ensurechall tbut unique to the sum offtj. Therefore, if the rounds were
retained coefficients were larger than those in the overflowre-ordered so that common values i8f were sequential,
] o] there was the potential of substituting the accumulate waith
D. Input Data Manipulation in Practice block addition in some rounds. This assumed that the dynamic
The data conditioning was implemented for encryption (thiange of the stored results could increase without overflow
major performance challenge), and decrypted correctih wibetween coefficients. From Section VII-E, we recall that our
the Part | decryption function. It was assumed that noiseldvolchosen storage size was 28-bits, yet our maximum roundtresul
be generated in the required form (so no extra processinglues were 27-bits, so it was possible to combine two values
and the generator matrix and relevant vectors were availablithout overflow. If we had chosen at least 29 bit packing
pre-stored in the appropriate form. The technique worked @a®& could have combined four values, which is the most we
planned and the first performance results are presentéd asvould need to get optimum benefit from round re-ordering.
round noise reducevithin Table VI. Aside from obviating Table V illustrates the potential for swapping block adutis
the need for the manual round reduction, the success of tbheaccumulate operations. The results from the 28-bitigars
techniques permittethultosModularMultiplicatiorto be used are show in Table VI, as th&6 round plus result ordering
for multiplying larger integers, to reduce the number oftds; entry. The final entry in the table is a faster estimate of the
as discussed next. same functionality, when using a MULTOS primitive unpack
i utility; based on technical advice from MULTOS.
E. Round Reduction
To perform manual round reduction requires that the ovéf- Part I'v Part Il Results
flow part of the long-integer multiplication result is acside, Table VI summaries the improvements in Part Il of the study
so the inputs can only be half the size of the multiplier ca&zompared to the original Part I. Note that in Part II, the ®ocu
pacity. When usingnultosModularMultiplicatiorthe hardware was on polynomial multiplication, and only encryption was
and API take care of the reduction so you can use all of tlkensidered as a higher level operation; being the maximum
available capacity, which permitted a reduction in the nambchallenge for performance.

TABLE V: Swapping Block Adds for Accumulate (ms)

rounds. In hindsight, there would have been more benefit
with 29 or 30-bit packing, rather than 28. The best practical
results, 996ms for a polynomial multiply, and 20420ms for an
encryption, cannot be described as fast, however they may
be adequate in machine-to-machine scenarios, and with a
4096 bit multiplier, found in similar chips, performancmgs
could halve. The fact that a post-quantum algorithm can be

Sum Normal 28-bit 29-bit

i+ Accs Adds Accs Adds Accs Adds
0 1 0 1 0 1 0

1 2 0 1 1 1 1

2 3 0 2 1 1 2

3 4 0 2 2 1 3

4 3 0 2 1 1 2

5 2 0 1 1 1 1

6 1 0 1 0 1 0
Totals 16 0 10 6 7 9

TABLE VI: Part | v Part Il Results

Rounds: Version Poly (ms) Polyvec (ms) Encrypt (ms)
64:Part | 2302 6906 35917
64:Noise reduce 1149 4130 22318
16:Pack/Reduce 1094 3944 21537
16:Pack/Reduce/Order 996 3631 20420
16:Est. Primitive 935 3282 19692
16:Est. 4096 CCoP 468 1641 9846

downloaded/run on an existing loT Trust-Anchor platforsn, i
encouraging for the future security of IoT. It is recommeshde
that the implementation optimisations should be furthedst
ied alongside the algorithm design, so the combinationressu
the intended strength. It would also be interesting to ereat
30-bit packed coefficient solution, and to implement thedat
versions of Kyber or similar algorithms, such as Saber [4] (0
LightSaber).

ACKNOWLEDGMENTS

Enormous thanks are due to Fernando Virdia for expert and

patient explanation of post-quantum algorithms, and toisChr
Torr of MULTOS for invaluable help and expertise.

VIII. CONCLUSIONS ANDFUTURE WORK

Part | of the research confirmed it was possible to Ioagi]
and run the Kyber768 CPAPKE algorithm component on the
MULTOS Trust-Anchor, using NTT or 64-round CCoP multi-
plier solutions; supporting the goal of downloading adwahc 2]
algorithms for IoT. Although the CCoP solution outperfone
NTT, it was too slow for envisaged use. Multiplication of [3I
polynomials was identified as the bottleneck, although et d
to CCoP multiplications, but the associated applicaterel
reduction and modulo operations. The latter was dominatéfl
by manualXN + 1 reduction. Modulo KYBERQ reductions
of individual coefficients were also challenging, as parfed [5]
many times. Various optimisations were attempted, inclgdi
a tabular partial reduction, but encryption performanceldo (6]
not improve beyond 36s. The design was changed in Part Il by
observing that in encryption, one polynomial input is neisel’]
based. The original (reference) noise values varied overadi s
magnitude range, yet required 13-bit storage; the new malpo
offset the noise into the 0 to 8 range, and the least significaff]
coefficient had KYBERQ added to it. KYBERQ, was added
to all coefficients in the other input, making them non-zémo, [10]
the range of 13 to 14 bits. The effect within multiplicatioasv
that the least significant coefficient of the noise, domidabe
lower coefficients in the result, ensuring they were eaalelar
than the corresponding overflow coefficients. This meartt tHa2l
the modular reduction ofultosModularMultiplicationcould 13
be used to generate the same results as in the Kyber NTI4]
reference. In the first instance this removed the manuakredu
tion, and polynomial multiply went from 2302ms to 1149ms.
In the second instance it allowed more data to be input to the]
multiplier, and to decrease the multiplication rounds ta 16
This was inefficient at the MULTOS application layer, as ihe]
necessitated packing/unpacking before and after mudéiptn
rounds. The fewer rounds, did however make it more practic[ri\;]
to order them so that a more efficiemultosADD could be
used instead of the interleaved accumulate function foresom

[11]

REFERENCES

M. Albrecht, C. Hanser, A. Hoeller, T. Pppelmann, F. Vadand
A. Wallner. Implementing RLWE-based schemes using an RSA co
processorlACR Transactions on Cryptographic Hardware and Embed-
ded Systemgages 169-208, 2019.

CC. Common criteria for information technology security ewlan
partl: Introduction and general model, version 3.1 revisig 2017.

D. Chen, N. Mentens, F. Vercauteren, S. Roy, R. CheungPd®, and

I. Verbauwhede. High speed polynomial multiplication aetture for
ring LWE and SHE cryptosystem$EEE Transactions on Circuits and
Systems62(1):157-166, 2015.

J. D’Anvers, A. Karmaker, S. Roy, and F. Vercauteren. éaModule
LWR based key exchange, CPA secure encryption and CCA secure
KEM. In Africacrypt 2018 2018.

GiTHub. Kyber Reference Codehttps://github.com/pg-crystals/kyber,
2019.

N. Gottert, T. Feller, M. Schneider, J. Buchmann, and 8s$1 On the
design of hardware building blocks for modern lattice-lasacryption
schemes. IProceedings of CHES 201page 512529, 2012.

Infineon. SLE78CAFX4000PM short product overview, v11.2012.

L. Kronecker. Grundzge einer arithmetischen theorie algebraischen
grssen.Journal Fr die reine undangewandteMathematik(9gages 1—
122, 1882.

V. Lyubashevsky, C. Peikert, and O. Regev. On idealdastiand learning
with errors over rings. IEUROCRYPT 2010volume 6110, page 123.
Springer, 2010.

K. Mayes, S. Babbage, and A. Maximov. Performance atan of
the new tuak mobile authentication algorithm, in proc. ®embedded
2016. pages 38-44, 2016.

K. Mayes and K. Markantonakis, editorSmart Cards, Tokens, Security
and Applications chapter Chapter 17. Springer, 2nd edition, 2017.
MULTOS Organization. The MULTOS Trust Anchor Development
Board https://www.multos.com/dewoards/devboardietails, 2019.
MULTOS Oganization.website http://www.multos.com/, 2020.

NIST Organization. Submission requirements and evaluation
criteria for the Post-Quantum Cryptography standardi@atiprocess
http://csrc.nist.gov/groups/ST/post-quantum-crygeatments/call-for-
proposals-final-dec-2016.pdf, 2016.

R. Rivest, A. Shamir, and L. Adelman. A method for obtagndigital
signatures and public-key cryptosysten@mmunications of the ACM
21(2):120-126, 1978.

P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. LigpoV. Lyuba-
shevsky, J. Schanck, G.Seiler, and D. Stehle. Crystalstkyliechnical
report, National Institute of Standards and Technolog@17.

D. Stebila. Introduction to post-quantum cryptography and learn-
ing with errors, summer school on real-world crypto and pgy.
https://www.douglas.stebila.ca/research/presemtsitia018.

