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Abstract

Measurements of tt production cross sections at the Large Hadron Collider

are presented. Proton–proton collision data with a centre-of-momentum

energy of 13 TeV were collected using the ATLAS detector, totalling an

integrated luminosity of 36.1 fb−1. The measurements are performed for the

fully hadronic decay channel where the jets can be resolved. This allows all

tt decay components to be measured along with additional QCD radiation.

The results are presented as absolute and normalised unfolded differen-

tial cross sections at particle level, as functions of several kinematic vari-

ables. Some cross sections are also unfolded to parton level, and some

two-dimensional differential cross sections are presented. These distributions

are compared to several Monte Carlo simulations.

Potential uses for Gaussian processes in particle physics are discussed,

and a novel method for unfolding with Gaussian processes is introduced. The

method is derived and assessed in terms of the unfolded estimators, statistical

covariance matrices, and flexibility of the model.
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Chapter 1

Introduction

The Standard Model of particle physics has a rich history of accurate predictions of the

phenomena occurring with high energy at subatomic scales. It describes particles and their

interactions through a renormalisable quantum field theory. Despite its fruitful successes, the

theory does not describe a range of observations, indicating the existence of a description of

the universe beyond the Standard Model.

The t quark is the most massive constituent particle of the Standard Model. Studying

it could elucidate any discrepancies between theoretical predictions and the data. At the

Large Hadron Collider, pp collisions with energy
√
s = 13 TeV provide favourable conditions

to perform measurements of tt production. Differential measurements of tt production cross

sections can probe many facets of the multiple perturbative models available. In this thesis, a

set of measurements of differential tt production cross sections in the fully resolved all-hadronic

decay channel using the ATLAS detector is presented.

The statistical treatment of such measurements is also considered. In particular, the process

of unfolding applies deconvolution methods to allow the measured distributions to be directly

compared with theoretical predictions and other experimental observations. The measured

differential tt production cross sections are unfolded and compared with computer simulations.

Additionally, Gaussian processes may provide improvements to the traditional collection of

unfolding techniques used in particle physics.
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1 Introduction

Thesis layout

An overview of the theoretical setting is given in Chapter 2. The Standard Model of particle

physics is presented along with a discussion of phenomena it fails to describe. Motivation and

previous measurements of differential tt production cross sections are given, and the case for

measurements in the all-hadronic decay channel is made.

In Chapter 3, the experimental apparatus used to perform the measurements – the Large

Hadron Collider and ATLAS – are described. A description of the methods used to reconstruct

physics analysis objects from the data is given. An analysis of ATLAS data taken from pp

collisions is described in Chapter 4 and the results are presented. The measured differential tt

production cross sections are compared to Standard Model predictions from simulations.

An overview of Gaussian processes and the applications to particle physics is presented in

Chapter 5. A novel method of unfolding with Gaussian processes is presented in Chapter 6.

Personal contribution

The ATLAS Collaboration consists of approximately 3000 members from 183 institutes in 38

countries [1]. Some of the work in this thesis is the result of this collaborative research effort

and the design, construction, and running of the ATLAS experiment. Here my own individual

contributions are outlined.

I worked on the software for the trigger configuration system described in Section 3.2.5. I

also provided expertise on the trigger and data acquisition systems in the form of hardware

installation, control room shift work, and on-call expertise during operation. For the data

analysis in Chapter 4, I played a major role in the analysis team and wrote analysis software

and documentation.

I worked equally in collaboration with others on introducing the techniques of Bayesian

optimisation with Gaussian processes to the field, in particular for configuring simulation

software. This particular technique is discussed in Section 5.4.5. For the method of unfolding
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with Gaussian processes described in Chapter 6, I am the principal investigator and lead the

research project.
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Chapter 2

Theoretical foundations

The mechanics of natural phenomena at the smallest scale can be described with the mathem-

atical framework of quantum field theory, of which a few principles are presented in Section 2.1.

The Standard Model of particle physics, presented in Section 2.2, is a rigorous and successful

quantum field theory with almost a century’s history of construction, scrutiny, and experimental

testing. A few symmetries lead to a rich structure of field content and interactions. Despite

broad-ranging successes, there remain some theoretical failures and experimental discrepancies,

some of which are presented and discussed in Section 2.2.5. Modern particle physics research

is focused on precision tests of the theory and resolving these issues. Finally, the theoretical

motivation behind measurements of tt production cross sections is presented in Section 2.3.

This forms the foundation for the measurements presented in Chapter 4.

Natural units are used throughout, where the speed of light is c = 1 and the reduced Planck

constant is ~ = h/2π = 1. Therefore these factors are not written except where it is instructive

to do so. Spacetime coordinates are x = (t,x)T = (t, x1, x2, x3)T with the Minkowski metric

ηµν = diag(+1,−1,−1,−1). The Einstein summation convention is used, whereby pairs of

repeated indices in a product imply a sum over that index. For notational convenience, the

differential operator is written ∂µ ≡ ∂
∂x
µ .
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2 Theoretical foundations 2.1 Mechanics

2.1 Mechanics

In mechanics [2], every path through the configuration space of generalised coordinates for

some system has an associated quantity called the action, given by the functional

S[φ, ∂µφ] =
∫

d4x L[φ, ∂µφ], (2.1)

where L is the Lagrangian density for the system containing the fields φ(x) = {φ1(x), φ2(x), . . .},

and the integration is over a region in spacetime. The variational principle of stationary action

says that the path taken in the classical limit is given by an extremum of S. Such a path obeys

the Euler–Lagrange equations [3],

∂µ

(
∂L

∂(∂µφa)

)
− ∂L
∂φa

= 0, (2.2)

for each field φa in φ. These give the equations of motion for a classical system.

In Feynman’s path integral formulation of quantum mechanics [4, 5], the amplitude for a

process is given by the sum over histories where each path has weight eiS/~. In the Heisenberg

picture the equation of motion associated with the field operator φa(t,x) = eiHt φa(0,x) e−iHt

is [6]

i ∂tφa = [φa, H], (2.3)

where the term on the right is a commutator and the Hamiltonian is given by

H =
∫

d3x
(

∂L
∂(∂tφa)

(∂tφa)− L
)
. (2.4)

A similar equation of motion follows for the conjugate momentum operator ∂µφa. The Hamilto-

nian is the generator of translations through time. Naturally, the classical result is recovered

for S � ~ [7].
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2 Theoretical foundations 2.1 Mechanics

Lagrangian density

In both the classical and quantum mechanical cases, the dynamics of a system are described by

the local Lagrangian density. Given this, the propagation of the system through spacetime can

be determined by the application of the relevant equations of motion.

In φ4 theory [8], a system containing one real scalar field φ has Lagrangian density

L = −1
2 ∂

µφ∂µφ−
1
2m

2φ2 − 1
4!λφ

4︸ ︷︷ ︸
−V (φ)

. (2.5)

The first term is referred to as the kinetic term and only contains spacetime derivatives of the

field. The remainder is the negative of the potential V (φ), which is polynomial in φ. Its first

term, 1
2m

2φ2, is the mass term, where m is the mass of the field. This is the general form of the

Lagrangian density for a renormalisable quantum field theory. Such theories are also subject to

other constraints – namely certain symmetries – discussed in the rest of this chapter.

Noether’s theorem

A general continuous transformation of the field φa can be expressed as multiple applications

of smaller transformations of the form

φa → φa + ε∆φa, (2.6)

where ε is an infinitesimal scalar parameter and ∆φa is some arbitrary change in the field

configuration. Under one such transformation, the Lagrangian density becomes

L → L+ ∂L
∂φa

(α∆φa) +
(

∂L
∂(∂µφa)

)
∂µ(α∆φa) (2.7)

= L+ α∂µ

(
∂L

∂(∂µφa)
∆φa

)
+ α

 ∂L
∂φa
− ∂µ

(
∂L

∂(∂µφa)

)∆φa (2.8)

(the sum over a is performed if there are multiple fields). From Equation 2.2, the expression

in the square brackets is equal to zero for classical paths. If the equations of motion are
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2 Theoretical foundations 2.1 Mechanics

left unchanged, the transformation is considered a symmetry of the system. In this case, the

Lagrangian density is invariant under the transformation, up to a divergence:

L → L+ α∂µJ µ. (2.9)

Comparing Equations 2.8 and 2.9, a conservation law applies to classical paths:

∂µj
µ = 0 for jµ = ∂L

∂(∂µφa)
∆φa − J µ. (2.10)

This result is known at Noether’s theorem [9] for classical fields, and a similar argument follows

in quantum field theory [6]. It states that for every continuous symmetry of a system there is a

conserved current jµ(x). Moreover, Equation 2.10 implies local conservation of the charge j0,

since it follows that

∂tj
0 = −∇ · j, (2.11)

and therefore the global charge Q =
∫

all space d3x j0 is constant in time. These charges will be

used later in this chapter to categorise the fields of the Standard Model by their transformation

properties under the actions of various symmetry group transformations.

2.1.1 Particles and interactions

Free field theory

When λ = 0, Equation 2.5 describes a free scalar field with Lagrangian density

L0 = −1
2∂µφ∂

µφ− 1
2m

2φ2. (2.12)

Transition amplitudes can be calculated – for example via the LSZ reduction formula [8, 10]

– from n-point time-ordered correlation functions. These are given by the vacuum expectation
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values

〈0 |T φ(x1)φ(x2) . . . φ(xn)|0〉0 =

∫
Dφφ(x1)φ(x2) . . . φ(xn) ei

∫
d4
xL0∫

Dφ ei
∫

d4
xL0

, (2.13)

where T denotes time ordering of the operators and Dφ ∝ ∏x dφ(x) is the functional measure

up to a constant normalising factor. In this free field theory, the two-point correlation function

can be determined exactly through Gaussian integration as [6]

〈0 |T φ(x1)φ(x2)|0〉0 =
∫ d4k

(2π)4
i

k2 −m2 + iε
e−ikµ(xµ1−x

µ
2 ) ≡ ∆(x1 − x2), (2.14)

where ε parameterises a small imaginary offset introduced so that the integral converges. This

is known as the Feynman propagator for a scalar particle.

Similarly, the four-point correlation function reduces to

〈0 |T φ(x1)φ(x2)φ(x3)φ(x4)|0〉0 = ∆(x1 − x2)∆(x3 − x4)

+∆(x1 − x3)∆(x2 − x4)

+∆(x1 − x4)∆(x2 − x3), (2.15)

by integration of Gaussian terms. The vacuum expectation value of products of odd numbers

of field operators is zero. The general result, known as Wick’s theorem [11], can be written

〈0|T φ(x1) . . . φ(x2n)|0〉0 =
∑

P (1,...,2n)
∆(xP1 − xP2) . . .∆(xP2n−1 − xP2n), (2.16)

where the sum is taken over all pairings of {1, . . . , 2n}. This means that n-point correlation

functions can be expressed as simple products of the propagator when the Lagrangian density

is quadratic in φ(x) [12].
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φ4 interacting theory

For small values of λ, Equation 2.5 is a Lagrangian density for a free scalar field and a

perturbative contribution from an interacting term,

L = L0 −
λ

4!φ
4. (2.17)

Then the phasor can be expanded as

ei
∫

d4
xL = e

i
∫

d4
x

(
L0− λ

4!φ
4
)

(2.18)

= ei
∫

d4
xL0

(
1− i

∫
d4x

λ

4!φ
4 + . . .

)
. (2.19)

Consequently, the vacuum expectation values for this interacting theory can be expressed solely

in terms of the propagator of the free-field theory, by Wick’s theorem. For example,

〈0 |T φ(x1)φ(x2)|0〉 =

∫
Dφφ(x1)φ(x2) . . . φ(xn) e

i
∫

d4
x

(
L0− λ

4!φ
4
)

∫
Dφ ei

∫
d4
x

(
L0− λ

4!φ
4
) (2.20)

=

∫
Dφφ(x1)φ(x2) . . . φ(xn) ei

∫
d4
xL0

(
1− i

∫
d4x

λ

4!φ
4 + . . .

)
∫
Dφ ei

∫
d4
xL0

(
1− i

∫
d4x

λ

4!φ
4 + . . .

) (2.21)

= 1
Z[0]

(
−i δ

δJ(x1)

)(
−i δ

δJ(x2)

)
Z[J ]

∣∣∣∣
J=0

, (2.22)

where δ
δJ(xj)

denotes functional differentiation and the generating functional of the correlation

functions, with source term J(x)φ(x), is given by

Z[J ] ≡
∫
Dφ exp

i ∫ d4x

(
L0 −

λ

4!φ
4 + Jφ

) (2.23)

= exp

− iλ4!

∫
d4x

(
δ

δJ(x)

)4
∫ Dφ ei∫ d4

x (L0+Jφ) (2.24)

= exp

− iλ4!

∫
d4x

(
δ

δJ(x)

)4
Z0[J ]. (2.25)
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Now the evaluation of the correlation functions for the interacting theory can be carried out

through functional differentiation of the free field partition function, given by Equation 2.25

with [6]

Z0[J ] = Z0[0] exp
[
−1

2

∫
d4x d4y J(x)∆(x− y)J(y)

]
. (2.26)

Taylor expanding Equation 2.25 in powers of λ, Z[J ] is given by the perturbation series

Z[J ] = Z0[J ]−

Leading order︷ ︸︸ ︷
iλ

4!

∫
d4x

(
δ

δJ(x)

)4 ∣∣∣∣∣
J=0

Z0[J ]

− 1
2

(
λ

4!

)2 ∫
d4x d4y

(
δ

δJ(x)

)4(
δ

δJ(y)

)4 ∣∣∣∣∣
J=0

Z0[J ]︸ ︷︷ ︸
Next-to-leading order

+ . . . . (2.27)

Feynman rules

Scattering amplitudes can be calculated using the Lehmann–Symanzik–Zimmermann (LSZ)

reduction formula [8, 10]. For an initial state containing n particles with momenta {k1, . . . , kn}

transitioning to the final state containing m particles with momenta {p1, . . . , pm}, the amplitude

is given by

〈p1, . . . , pm|S |k1, . . . , kn〉 =
n∏
j=1

{∫
d4xj ie

ikj ·xj
(
∂2
xj

+m2
)}
×

m∏
l=1

{∫
d4yl ie

−ipl·yl
(
∂2
yl

+m2
)}

× 〈0|T φ(x1) . . . φ(xn)φ(y1) . . . φ(ym)|0〉, (2.28)

where k · x ≡ kµx
µ and ∂2

xj
= [∂xj ]µ[∂xj ]

µ (no sum over j) with [∂xj ]µ ≡
∂
∂x
µ
j
. The S-matrix

operator contains a trivial (non-interacting) part and an interacting part written S = 1 + iT [6].

This formula applies for unbound massive particles, and it allows for the scattering amplitude

to be expressed in terms of correlation functions. For a theory with a perturbative interaction
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potential, these correlation functions can be written as sums of multiples of the free-field

propagator, as illustrated by Equations 2.22, 2.26, and 2.27 for the example of scalar φ4 theory.

Taking 2 → 2 scattering as a simple example, the amplitude is then given by

〈p1, p2|S |k1, k2〉 =
∫

d4x1 ie
ik1·x1

(
∂2
x1 +m2

) ∫
d4x2 ie

ik2·x2
(
∂2
x2 +m2

)
×
∫

d4y1 ie
−ip1·y1

(
∂2
y1 +m2

) ∫
d4y2 ie

−p2·y2
(
∂2
y2 +m2

)
×〈0|T φ(x1)φ(x2)φ(y1)φ(y2)|0〉, (2.29)

where the four-point correlation function is, by Wick’s theorem and Equations 2.26 and 2.27,

〈0|T φ(x1)φ(x2)φ(y1)φ(y2)|0〉 = (−i)4

Z[0]
δ

δJ(x1)
δ

δJ(x2)
δ

δJ(y1)
δ

δJ(y2)Z[J ]
∣∣∣∣∣
J=0

(2.30)

= −iλZ0[0]
Z[0]

∫
d4x∆(x1 − x)∆(x2 − x)∆(x3 − x)∆(x4 − x) + . . . . (2.31)

The Klein–Gordon wave operator acts on the propagator from Equation 2.14 as

i
(
∂2
x +m2

)
∆(x− y) = i

∫ d4k

(2π)4

(
∂2
x +m2

) i

k2 −m2 + iε
e−ikµ(xµ−yµ) (2.32)

=
∫ d4k

(2π)4 e
−ikµ(xµ−yµ) (2.33)

= δ(4)(x− y), (2.34)

where δ(4)(x− y) is the Dirac delta in four dimensions and its Fourier transform [13] is used to

obtain the last line. Applying this to the substitution of Equation 2.31 into Equation 2.29, the

contribution of interactions to the scattering amplitude is given by

〈p1, p2|iT |k1, k2〉 = −iλ (2π)4 δ(4)(k1 + k2 − p1 − p2). (2.35)

The terms that make up the correlation functions can be represented by graphs, Feynman

diagrams [14], composed of edges and vertices. This allows for the calculation of many more

complicated terms involved in the expansion of higher-order correlation functions. For each
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such diagram, the momentum-space Feynman rules for a particular theory are used. Each

element of the diagram has an associated multiplicative factor1:

Vertex = −iλ; (2.36)

Propagator
k

= i

k2 −m2 + iε
; (2.37)

Loop

k

=
∫ d4k

(2π)4 . (2.38)

Every vertex conserves momentum – the sum of momenta flowing into it must be zero. Since

there are often multiple ways to draw the same diagram, each is divided by its symmetry factor.

The action of functional differentiation of Z[J ] in this framework is to remove a source J

and fix the propagator to an external point; it becomes a leg and the diagram is now connected.

The partition function, Z[0], contains only unconnected vacuum ‘bubble’ diagrams, and the

effect of the denominator in Equations 2.13 and 2.31 is to remove all such diagrams from

the calculation of the scattering amplitude. Similarly, loop corrections to any propagators in

diagrams do not contribute to the interacting part of the S-matrix operator. Therefore, the

contribution due to interactions is given by the sum of all fully-connected amputated Feynman

diagrams for the process under consideration [6]. Since the example term considered here is

the only such diagram to first order in λ in this theory, the operator on the left-hand side of

Equation 2.35 is written as iT . The unwritten terms in the expansion of the 4-point correlation

function in Equation 2.31 are for diagrams which contribute to the non-interacting part of the

S-matrix.

1Feynman diagrams in this thesis were drawn with TikZ-Feynman [15].
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Cross sections

The Feynman rules can be used to calculate the cross section for a process. For 2 → 2 particle

scattering, the differential cross section in the centre-of-momentum frame is given by [6]

dσ
dΩ = |M|2

64π2E2
CM

, (2.39)

where ECM = 2
√
k2 +m2 is the collision energy. The matrix element M is defined by

〈p1, . . . , pm|iT |k1, . . . , kn〉 = iM (2π)4 δ(4)(k1 + . . .+ kn − p1 − . . .− pm), (2.40)

and it is the sum of all fully-connected amputated diagrams. There is only one first-order

interacting diagram in scalar φ4 theory for 2 → 2 scattering, so the matrix element is given by

iM = k1

p1

p2

k2

= −iλ. (2.41)

Substituting this into Equation 2.40 gives the same result obtained in Equation 2.35, but from

application of the Feynman rules. The differential cross section is therefore

dσ
dΩ = λ2

64π2E2
CM

. (2.42)

The matrix element has no angular dependence in this case. The total cross section is obtained

by integrating over full solid angle (4π) and dividing by two [6], since the two final-state particles

are indistinguishable:

σtotal = λ2

32πE2
CM

. (2.43)

If the scalar φ4 theory detailed here provided an accurate description for subatomic interactions,

a collider experiment would be able to measure the cross section and thus determine a value
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for the parameter λ. At the time of writing, however, the best description is given by a richer,

more complicated theory with many more parameters – the Standard Model.

2.2 The Standard Model

The Standard Model is a quantum field theory with multiple interacting fields and symmetries.

There is a history of excellent agreement between the predictions of the Standard Model

and experimental data from particle physics experiments. For example, a prediction of the

dimensionless fine-structure constant α = e2/4πε0~c – including 12 672 tenth-order Feynman

diagrams [16] – agrees with the currently accepted measured value [17] within 0.25 ppb (parts per

billion), with theoretical and experimental uncertainties of 0.25 ppb and 0.23 ppb, respectively.

The Lagrangian for this theory demonstrates invariance under spacetime transformations of

the Poincaré group. This is the isometry group of Minkowski spacetime in 1+3 dimensions, so

it corresponds to the symmetries of special relativity. Such transformations act on coordinates

as

xµ → Λµν xν + aµ. (2.44)

The spacetime interval between events, ∆s2 = ∆t2 −∆xT∆x is preserved under these trans-

formations. The Poincaré group can be decomposed into translations (aµ) and the subgroup

of proper, orthochronous Lorentz transformations which leave the metric tensor invariant

(ΛTηΛ = η), composed of three-dimensional rotations under SO(3) and linear velocity boosts.

Under these symmetries, the theory conserves 4-momentum.

The fields of the Standard Model have definite transformation properties under the Poincaré

symmetry group, and they can be defined in terms of group representations. There is a

correspondence for the Lorentz subgroup (the spin double cover), SO+(1, 3) ∼= SL(2,C) ∼=

SU(2)× SU(2) [18]. This permits a representation in terms of ordered pairs of half-integers,

(m,n), corresponding to the fields’ embeddings in the two SU(2) subalgebras [19].
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A scalar field has no spacetime coordinates and has the singlet representation (0,0). The

Higgs field, ϕ, is the only scalar field in the Standard Model. The fundamental representation,

(1
2 ,0) represents left-handed chiral bispinors, where 1

2 is the fundamental representation of SU(2)

– two-component complex vectors. The Standard model contains two left-handed spinor fields,

q and l. Related by Hermitian conjugation, right-handed chiral spinors have the representation

(0, 1
2). There are three such fields in the Standard Model, e, u, and d. The final representation

is (1
2 ,

1
2), corresponding to four-component vector fields. The gauge vector fields B, W , and G

have this form. Since the Lagrangian remains invariant under Lorentz transformations, it only

contains combinations of fields which together transform as a singlet. For example, these can

take the form of a left-handed spinor coupled to a right-handed antispinor, e.g. q̄ /Dq, or the

contraction of vector fields, e.g. BµνBµν .

For Λ connected to the identity, the Lorentz transformations are continuous, i.e. they can be

parametrised by an arbitrary value α. There also exist discrete transformations that are discon-

nected from the identity, for example P = diag(1,−1,−1,−1) and T = diag(−1, 1, 1, 1), known

as the parity and time reversal operators, respectively. Additionally, the charge conjugation

operator C replaces a particle with its antiparticle, e.g. q → q̄. Since the Standard Model differ-

entiates between left- and right-handed chiral fields (based on experimental observations [20]),

it is not symmetric under P and parity is not a conserved quantity. The combined CP is a

near symmetry, but measurements show it is broken [21, 22] and the Standard Model therefore

allows for CP -violation. However, CPT is an exact symmetry of the Standard Model [23–25]

by construction. A direct consequence of CPT symmetry is the spin statistics theorem [26–28],

which gives the (anti)commutation relations of the field operators. Particles with half-integer

spin (i.e. those corresponding to fields that transform as spinors) obey Fermi–Dirac statistics,

whereas those with integer spin (scalar and vector fields) obey Bose–Einstein statistics. Particles

are therefore labelled as fermions (and obey the Pauli exclusion principle [29]) for half-integer

spin and bosons for integer spin.
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2.2.1 Gauge sector

In addition to the spacetime symmetry of the Poincaré group, the Standard Model has an

internal symmetry under local transformations of the gauge product group,

GSM = SU(3)C × SU(2)L × U(1)Y . (2.45)

This means that spacetime-dependent transformations of the fields,

φa →M b
a φb (2.46)

leave the Lagrangian unchanged for M ∈ GSM. The internal gauge symmetry is realised through

modification of the partial differentiation operator to the gauge covariant derivative, ∂µ → Dµ,

which involves the gauge vector fields. This gives rise to interactions between the fields in the

Standard Model, which depend on the fields’ charges, {C,L, Y }, under each symmetry group.

The decomposition of GSM in Equation 2.45 is considered here as a combination of two frozen

symmetries: SU(3) of the strong interaction and SU(2)× U(1) of the electroweak interaction.

SU(3)

For invariance of the terms in the Lagrangian under transformations of the SU(3) symmetry

group, the gauge covariant derivative is

Dµ = ∂µ − igSTaGaµ, (2.47)

where gS is the strong coupling constant and Ta = λa/2 are the eight generators of the

fundamental (triplet) representation of SU(3), with the 3 × 3 traceless Gell-Mann matrices

λa [30]. Eight gauge vector fields Gaµ are necessarily introduced, corresponding to massless

gluons.
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The non-abelian nature of SU(3) leads to gluon self-couplings in the Standard Model. The

Lie algebra is given by

[T a, T b] = ifabcT c (2.48)

with the totally antisymmetric structure constants fabc. Defining the gluon field strength tensor

as Gaµν = ∂µG
a
ν − ∂νGaµ + gSf

abcGbµG
c
ν , the contribution to the Lagrangian density due to these

fields is given by

LG =− 1
4G

a
µνG

µν
a (2.49)

=− 1
4(∂µGaν − ∂νGaµ)(∂µGνa − ∂νGµa)

− gSfabc(∂µGaν)GµbG
ν
c −

1
4g

2
S(feabGaµGbν)(fecdGµcGνd). (2.50)

The first line of Equation 2.50 is the free-field (i.e. gS → 0) kinetic term. By analogy to

Section 2.1.1, the free-field gluon propagator is given by [6]

〈0|T Gaµ(x1)Gbν(x2)|0〉0 =
∫ d4k

(2π)4
−iδabηµν
k2 + iε

e−kρ(xρ1−x
ρ
2). (2.51)

Therefore the corresponding momentum-space Feynman rule is

k
a, µ b, ν =

−iδabηµν
k2 + iε

. (2.52)
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The last two terms of Equation 2.50 give the cubic and quartic couplings, respectively, with the

momentum-space Feynman rules given by [6]

p

q

k
a, µ

c, ρ

b, ν

= gSf
abc
[
ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν

]
; (2.53)

a, µ

b, ν d, σ

c, ρ

=

−ig2
S

[
fabef cde(ηµρηνσ − ηµσηνρ)

+facef bde(ηµνηρσ − ηµσηνρ)

+fadef bce(ηµνηρσ − ηµρηνσ)
]
.

(2.54)

SU(2) ×U(1)

Under SU(2)× U(1) group transformations, the gauge covariant derivative is

Dµ = ∂µ − igτaW a
µ − ig′

Y

2 Bµ, (2.55)

where τa = σa/2 are the three generators of the fundamental representation of SU(2) with

the Pauli matrices σa [31] and scalar Y is the weak hypercharge. Four gauge vector fields are

introduced, W 1
µ , W 2

µ , W 3
µ , and Bµ, with coupling constant g for the W a

µ fields and g′ for the

Bµ field.

Again, the non-abelian nature of the SU(2) symmetry group gives rise to interactions

between the gauge fields. The Lie algebra is given by

[τa, τ b] = iεabcτ c, (2.56)
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where the structure constant εabc is the antisymmetric Levi-Civita tensor. U(1) is abelian, and

therefore has no self-interaction. The contribution to the Lagrangian is

LEW = −1
4W

a
µνW

µν
a −

1
4BµνB

µν , (2.57)

where W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν and Bµν = ∂µBν − ∂νBν . LEW contains a term

LEW cubic = −g2
(
∂µW

a
ν − ∂νW a

µ

)
εabcWµ

b W
ν
c , (2.58)

leading to cubic couplings between the W a
µ fields. There is also a quartic term which gives

four-point couplings [32].

Up to this point, the theory contains a description of four massless electroweak gauge

fields. However, the Standard Model contains three massive bosons associated with the weak

interaction along with the massless photon of the electromagnetic interaction. Mass terms are

included in the potential of the Lagrangian density (c.f. Equation 2.5), and can take multiple

forms. The most direct approach gives mass to the vector field Wµ via the term

1
2m

2WµW
µ. (2.59)

While this contribution to the Lagrangian is invariant to Lorentz transformations, it is not

symmetric under transformations of the SU(2)× U(1) electroweak gauge group. Instead the

electroweak gauge fields acquire a mass, while the gauge invariance is preserved, through the

Higgs mechanism.

Electroweak symmetry breaking

A scheme due to Anderson [33], Brout and Englert [34], Guralnik, Hagen and Kibble [35, 36],

Higgs [37–39], and ’t Hooft [40] introduces another field, ϕ, to the Standard Model Lagrangian.

Through spontaneous symmetry breaking, the electroweak W a
µ and Bµ fields mix and acquire

masses, with the weak and electromagnetic interactions precipitating out [41–43].
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The ϕ field can be represented as a complex SU(2) doublet, scalar under Lorentz trans-

formations:

ϕ =
(
ϕ+

ϕ0

)
. (2.60)

It is subject to a quartic potential of the form

V (ϕ) = −µ2ϕ†ϕ+ λ
(
ϕ†ϕ

)2
, (2.61)

with µ2 > 0 and λ > 0. The field has a non-zero vacuum expectation value, which may be

freely chosen to be

〈ϕ〉 = 1√
2

(
0
v

)
(2.62)

with v =
√
µ2/λ. This vacuum solution spontaneously breaks the now hidden SU(2) symmetry

but maintains invariance under U(1) transformations, giving the symmetry breaking pattern

SU(2)L × U(1)Y → U(1)Q. The kinetic contribution to the Lagrangian from this field in the

vacuum state is given by

LK0 = (Dµϕ)†(Dµϕ)
∣∣∣
ϕ=〈ϕ〉

(2.63)

=

∣∣∣∣∣∣
(
∂µ − igτaW a

µ −
1
2 ig
′Bµ

) 1√
2

(
0
v

)∣∣∣∣∣∣
2

(2.64)

= v2

8

∣∣∣∣∣∣
(
gW 1

µ − igW 2
µ

−gW 3
µ + g′Bµ

)∣∣∣∣∣∣
2

(2.65)

= m2
WW

+
µ W

−µ + 1
2m

2
ZZµZ

µ, (2.66)

where in the last line W± = 1√
2

(
W 1
µ ∓ iW 2

µ

)
and Zµ = cos θwW 3

µ − sin θwB with cos θw =

g/
√
g2 + g′2 and sin θw = g′/

√
g2 + g′2. Here the massless electroweak gauge fields have

mixed and acquired masses mW = gv/2 and mZ = mW / cos θw. The fourth mixed field,

Aµ = sin θwW 3
µ + cos θwBµ is massless and is identified as the electromagnetic vector gauge

field, with particle γ, of the surviving U(1) symmetry.

35



2 Theoretical foundations 2.2 The Standard Model

Rewriting the covariant derivative given by Equation 2.55 in terms of these definite-mass

fields gives

Dµ = ∂µ −
ig√

2

(
τ+W+

µ + τ−W−µ
)
− ig

cos θw

(
τ3 − sin θwQ

)
Zµ − ieQAµ, (2.67)

where τ± = τ1 ± iτ2, Q = τ3 + Y/2, and e = g sin θw.

The quadratic contributions to LEW in Equation 2.57 lead to the Feynman propagators for

the electroweak gauge bosons [6], given (in the Feynman–’t Hooft gauge [44]) by

k

W
µ ν =

−iηµν
k2 −m2

W + iε
; (2.68)

k

Z
µ ν =

−iηµν
k2 −m2

Z + iε
; (2.69)

k

γ
µ ν =

−iηµν
k2 + iε

. (2.70)

The interaction between the gauge fields is found by rewriting Equation 2.58 as

LEW cubic = ig

{(
∂µW

+
ν − ∂νW+

µ

)
W−µ

(
cos θwZν + sin θwAν

)
−
(
∂µW

−
ν − ∂νW−µ

)
W+µ (cos θwZν + sin θwAν

)
+1

2

[
cos θw

(
∂µ − ∂ν

)
Zν − sin θw

(
∂µ − ∂ν

)
Aν
] (
W+µW−µ −W−µW+ν

)}
(2.71)

= ig cos θw

[(
∂µW

+
ν − ∂νW+µ

)
W−µZν −

(
∂µW

−
ν − ∂νW−µ

)
W+µZν

+ 1
2
(
∂µZ

ν − ∂νZν
) (
W+µW−µ −W−µW+ν

)]

+ ie

[(
∂µW

+
ν − ∂νW+µ

)
W−µAν −

(
∂µW

−
ν − ∂νW−µ

)
W+µAν

+ 1
2
(
∂µA

ν − ∂νAν
) (
W+µW−µ −W−µW+ν

)]
. (2.72)
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The first two lines of Equation 2.72 give the cubic W+W−Z coupling. The last two lines give

the cubic W+W−γ coupling. These lead to the momentum-space Feynman rules [6],

p

q

k
Zρ

W −
ν

W +
µ

= ig cos θw
[
ηµν(k − q)ρ + ηνρ(q − p)µ + ηρµ(p− k)ν

]
; (2.73)

p

q

k
Aρ

W −
ν

W +
µ

= ie
[
ηµν(k − q)ρ + ηνρ(q − p)µ + ηρµ(p− k)ν

]
. (2.74)

Quartic W+W−W+W−, W+W−γγ, W+W−ZZ , and W+W−γZ couplings are also described

by LEW [32], with the Feynman rules

W +
µ W +

ρ

W −
σW −

ν

= ig2
[
2ησµηρν − ησρηµν − ησνηρµ

]
; (2.75)

W +
µ Aρ

AσW −
ν

= −ie2
[
2ησρηµν − ησµηρν − ησνηρµ

]
; (2.76)

W +
µ Zρ

ZσW −
ν

= −ig2 cos2 θw
[
2ησρηµν − ησµηρν − ησνηρµ

]
; (2.77)
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W +
µ Aρ

ZσW −
ν

= −ieg cos θw
[
2ησρηµν − ησµηρν − ησνηρµ

]
. (2.78)

2.2.2 Higgs sector

Expanding around the vacuum expectation value, in the unitary gauge [45] the ϕ field takes

the form

ϕ(x) = 1√
2

(
0

v +H(x)

)
. (2.79)

The contribution to the Lagrangian from the field H, using the potential given by Equation 2.61

and the covariant derivative by Equation 2.67, is

LHiggs = (Dµϕ)†Dµϕ− V (ϕ) (2.80)

= 1
2∂µH ∂µH − µ2H2 +

(
m2
WW

+
µ W

−µ + 1
2m

2
ZZµZ

µ
)(

1 + H

v

)2

− λvH3 − λH4.

(2.81)

This describes a real scalar field with mass mH =
√

2µ, leading to the propagator

k
= i

k2 −m2
H + iε

. (2.82)
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The middle term in Equation 2.81 is equal to LK0 plus cubic and quartic interactions between

the H field and the massive electroweak gauge fields. The associated Feynman rules are [6, 32]

W −
ν

W +
µ

= 2im
2
W

v
gµν ; (2.83)

Zν

Zµ

= 2im
2
Z

v
gµν ; (2.84)

W +
ν

W −
µ

= 2im
2
W

v2 gµν ; (2.85)

Zν

Zµ

= 2im
2
Z

v2 gµν . (2.86)

The trailing two terms in Equation 2.81 give cubic and quartic self-couplings for the H field

with Feynman rules

= −3im
2
H

v
; (2.87)

= −3im
2
H

v2 . (2.88)
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Representation Charge

Field SU(3) SU(2) Y

lL 0 1
2 −1

qL 3 1
2 +1

3
eR 0 0 −2
uR 3 0 +4

3
dR 3 0 −2

3

Table 2.1 Fermion fields of the Standard Model and their gauge group representations.

2.2.3 Fermion sector

The fermion fields of the Standard Model can be expressed in the chiral basis as lL, qL, eR, uR,

and dR. The left-handed fields are written as isospin doublets,

lL =
(
νe
e

)
L

, qL =
(
u
d

)
L

, (2.89)

whereas the right-handed fields are SU(2) singlets, with τ3ψR = 0. This means that the weak

interaction only couples to left-handed quarks and leptons. There are no right-handed neutrinos

in the Standard Model.

The kinetic contribution to the Lagrangian density due to a single fermion field ψ is given

by

Lψ = iψ̄ /Dψ (2.90)

= iψ̄γµ
(
∂µ − igτaW a

µ − ig′
Y

2 Bµ − igSTaG
a
µ

)
ψ, (2.91)

where γµ are the Dirac matrices, and the generators (τa, Y , Ta) are evaluated according to the

charge of ψ under the corresponding group. These representations are shown in Table 2.1 for

the Standard Model fermion fields. The equation of motion for ψ corresponding to this form of

the free-field Lagrangian density, L = iψ̄ /∂ψ, is the Dirac equation [46]. Following quantisation,
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the Dirac propagator for a fermion is [6]

k
= i(/k +m)
k2 −m2 + iε

. (2.92)

Only the quark fields qL, uR, dR are charged under SU(3) and the theory of quarks and

gluons is known as quantum chromodynamics (QCD). The term in Equation 2.91 corresponding

to quark–gluon interactions is

gSψ̄γ
µTaG

a
µψ, (2.93)

and the associated Feynman rule is given by [6]

a, µ

j

i

= igγµT
a
ij , (2.94)

where the fermion fields have indices i and j in the SU(3) group space.

After spontaneous symmetry breaking, the electroweak interactions in Equation 2.91 with

all the fermion fields can be written [6]

∑
ψ

ψ̄γµ
(
gτaW

a
µ + g′

Y

2 Bµ

)
ψ = g

(
W+
µ J

+µ
W +W−µ J

−µ
W + ZµJ

µ
Z

)
+ eAµJ

µ
EM, (2.95)

where the currents take the forms

J+µ
W = 1√

2
(
ν̄Lγ

µeL + ūLγ
µdL

)
, (2.96)

J−µW = 1√
2

(
ēLγ

µνL + d̄Lγ
µuL

)
, (2.97)

JµZ = 1
cos θw

∑
ψ

ψ̄γµ
(
τ3 − sin2 θwQ

)
ψ, (2.98)

JµEM =
∑
ψ

ψ̄γµψ. (2.99)
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This gives rise to interactions between fermions and the electroweak gauge bosons, with

momentum-space Feynman rules:

νL

eL

W −
µ

= ig√
2
γµ (2.100)

Zµ
= ig

cos θw
γµ
(
τ3 − sin2 θwQ

)
; (2.101)

Aµ
= ieQγµ. (2.102)

Massive fermions

Explicit mass terms for the fermion fields (e.g. −me[ēLeR+ēReL]) are prohibited from appearing

in Lψ by the gauge symmetry. Instead, there is a Yukawa coupling between each fermion field

and the ϕ field [6],

LYukawa = −
√

2
v
me l̄

a
L ϕa eR −

√
2
v
md q̄

a
L ϕa dR −

√
2
v
mu q̄

a
Lε

b
a ϕ
†
b uR + h.c., (2.103)

where a and b are SU(2) indices, and h.c. stands for the Hermitian conjugate of the previous

terms (i.e. ēLeR + h.c. = ēLeR + ēReL). Expanding around the vacuum expectation value by

substituting ϕ from Equation 2.79, this becomes

LYukawa =−me ēLeR −md d̄LdR −mu ūLuR + h.c.

− me

v
ēL h eR −

md

v
d̄L h dR −

mu

v
ūL huR + h.c.. (2.104)
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Generation, i

Field 1 2 3

νi νe νµ ντ

ei e µ τ

ui u c t

di d s b

Table 2.2 Fermion generations in the Standard Model.

The first line of Equation 2.104 gives masses to the fermion fields. The second line describes

interactions between the fermion and H fields, with the Feynman rule

f

f

= −imf

v
(2.105)

with f ∈ {e, u, d}.

The Standard Model contains three generations of fermions, each containing a copy of the

fields discussed above. The fermion content for each generation is shown in Table 2.2. The

left-handed quark fields can be written

uiL = (uL, cL, tL) (2.106)

diL = (dL, sL, bL) (2.107)

in the basis where the qqW couplings are diagonal, but the qqH couplings are mixed. The

modified representations u′iL and d′iL denote the left-handed quark fields in the basis of definite

mass, where Equation 2.105 expresses diagonal couplings. These representations are given by
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the transformations

uiL = U iju u
′j
L , (2.108)

diL = U ijd d
′j
L . (2.109)

Substituting Equations 2.108 and 2.109 into Equation 2.96, the W+ current is given by

J+µ
W = 1√

2

(
ν̄Lγ

µeL + ū′iLγ
µ
[
U †uUd

]
ij
d′jL

)
(2.110)

= 1√
2

(
ν̄Lγ

µeL + ū′iLγ
µVijd

′j
L

)
, (2.111)

where in the last line V ≡ U †uUd is used. The 3×3 Cabibbo–Kobayashi–Maskawa (CKM) [47, 48]

matrix V is required to be unitary. This leaves four degrees of freedom, interpretable as three

rotation angles, θ12, θ23, θ13, and a CP -violating phase angle δ [49]:

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.112)

=


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13



c12 s12 0
−s12 c12 0

0 0 1

 (2.113)

=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (2.114)

where sij ≡ sin θij and cij ≡ cos θij . The Wolfenstein parameterisation [50] expresses V in terms

of O(1) parameters, λ, A, ρ, η, with λ = sin θ12, Aλ2 = sin θ23, and Aλ3(ρ− iη) = sin θ13e
−iδ.

Expanding in terms of λ,
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V =


1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+Oλ4). (2.115)

This parameterisation emphasizes that the third generation of quarks is relatively decoupled

from the first two. Consequently, the t quark decays almost exclusively to the lighter b quark,

which is long-lived.

2.2.4 Summary and status

The Standard Model is a powerful quantum field theory, able to describe many phenomena

in particle physics. It has a complex history of development and study, and has fuelled

generations of particle physics experiments. The phenomena described by the Standard Model

are encapsulated in the full Lagrangian density

LSM = LG + LEW + LHiggs +
∑
ψ

Lψ + LYukawa (2.116)

along with the mechanical principles set out in Section 2.1. The construction and form of LSM

relies on a number of symmetries under discrete and continuous transformations.

The theory involves a number of subtle intricacies which allow it to give a description of

particle physics at the energy scales of experiments. LSM is constructed from fundamental

quantum fields, but interacting particles precipitate out by perturbative expansion at such

energies. These energy scales (and the particle masses) are much lower than the ultraviolet

cut-off, the scale at which the Standard Model is expected to break down. The inclusion of this

cut-off allows for the cancellation of many divergent quantities that appear in the calculations

of amplitudes for processes, leading to physically verifiable predictions.

Another consequential behaviour of the Standard Model is that the interactions of quarks

and gluons, governed by QCD, exhibit asymptotic freedom. That is, at higher energy scales the
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SU(3) gauge couplings of particles becomes weaker. Conversely, the force due to QCD dominates

at low energy scales, leading to confinement. In the phenomenological Lund string model [51, 52],

two separating quarks have a gluon string between them, a force field concentrated in a flux

tube by the gluon self-interaction. As the distance between them increases, so does the energy

in the string, until the field yields a pair of new quarks or gluons. These quarks are then subject

to the same process, leading to the creation of many new particles. This process is known as

hadronisation. The result is that no bare quark or gluon is observable, only a spray of stable

hadrons – a jet.

A successful theory is able to agree with, predict, and explain observations. Under these

criteria, the Standard Model has proved to be very successful. To date, all particles corresponding

to the fields mentioned in this section have been observed by experiments. This includes quarks

in various bound states and resonances, except for the t quark for which observation of

tt → W+W−bb in the leptonic channel at the Tevatron was announced in 1995 [53–55]. In

2012, the ATLAS [56] and CMS [57] collaborations announced the observation of a scalar

boson at the Large Hadron Collider. When this is interpreted as the H boson, the particle

content of the Standard Model is complete. Recently, measurements of processes involving

these particles, for example ttH associated production, have been found to agree with Standard

Model predictions [58, 59].

However, at the time of writing, there still exist some observations which are unexplained

by the Standard Model. The theory requires modification or replacement if it is to become a

complete description of Nature.

2.2.5 Beyond the Standard Model

A few of the remaining issues with the current description of particle physics are discussed in

this section. This list is not exhaustive, and the topics here remain areas of active research.
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Grand Unified Theory

The Standard Model contains 19 free parameters to be determined by experiment. In Sec-

tion 2.2.1, it is shown that the electromagnetic U(1) and weak SU(2) interactions can be

combined into one SU(2)×U(1) electroweak interaction. Then symmetry breaking ‘freezes out’

the low-energy interactions that are observed, and provides a mechanism to generate and relate

the masses of the associated vector bosons.

In a similar way, it might be imagined that the QCD SU(3) interaction is also frozen out

of some Grand Unified Theory (GUT) at a higher energy scale. Indeed, it is found that the

coupling constants for the three observed forces take on similar values at a unification scale

Λ ∼ 1016 GeV, due to the running of the coupling strengths [60]. This indicates that there

exists a theory of unified gauge interactions, from which the separate SU(3)× SU(2)× U(1)

structure of the Standard Model is the result of a symmetry breaking pattern.

The simplest such theory [61] contains the unified gauge group SU(5) ⊃ SU(3)× SU(2)×

U(1). In this theory, the Standard Model particles fit into three generations of SU(5) represent-

ations. Another GUT that contains the Standard Model is based on the spin group SO(10) [62].

Despite the neat arrangement of Standard Model particles in these theories, they also predict

further phenomena such as the decay of protons. To date, however, the proton lifetime has

been experimentally measured to be greater than 2.1× 1029 yr at 90% confidence level [22, 63].

Gravity

The Standard Model provides no description or prediction for gravitation. The current best

explanation for this phenomenon is given by Einstein’s theory of general relativity (GR) [64]. The

theory provides vital corrections to the classical Newtonian theory that agree with experimental

observations to a remarkable degree. Such observations include the moving perihelion of

Mercury’s orbit around the Sun, gravitational lensing of light, and black holes [65, 66]. Recently,

a key prediction of GR was verified by observations of gravitational waves emerging from a black

hole merger, an extreme astrophysical event [67, 68]. The peak gravitational wave strain is
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10−21, necessitating extremely precise measurements using laser interferometry. In comparison

to the Standard Model gauge forces, the gravitational interaction is very weak (e.g. the QCD

interaction is 1041 times stronger) [69], and therefore its effects are negligible at the scale of

particle physics experiments.

GR is a theory of classical fields, in contrast to the quantum fields that make up the

Standard Model. There have been many attempts to construct a quantum theory of gravity

that recovers GR in the classical limit. Many such theories predict the existence of a spin-2

graviton [70], with a mass constrained to less than 7.7× 10−23 eV at a 95% confidence level by

gravitational wave measurements [22, 71]. So far, the production and decay of these exotic

particles at collider experiments have not been detected, and the existence of a Kaluza–Klein

graviton [72, 73] with mass below 2.3 TeV has been excluded at a 95% confidence level [74].

Some modern approaches evangelise a reconsideration of axioms and assumptions that play

roles in the construction of the classical and quantum theories in an attempt to unify them. For

example, in one approach [75–77] spacetime and its geometry emerge from quantum information

theory, where distance is a property of the entanglement of quantum states. Owing to the

finiteness of Hilbert space, theories of this category also predict that Lorentz invariance should

be violated [78]. Experiments have not produced any unexplainable result showing a significant

degree of violation [79–82].

The hierarchy problem and fine-tuning

The gravitational force is significantly weaker than the Standard Model gauge interactions –

the weak coupling is of order 1024 times larger, for example [83]. This discrepancy is manifested

in the mass of the H field being disproportionately smaller than the GUT energy scale. In the

Standard Model, quadratic divergences arise when summing over diagrams for scalar particles

with free momenta, such as in the H self-coupling [84],

k

∼ − 3
4π2

m2
t

v2 Λ2. (2.117)
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Here Λ is a large ultraviolet cut-off at the GUT scale, and other loop diagrams cancel out the

divergence to leave the relatively small bare mass for H. Such precise fine-tuning is considered

unnatural in a physical theory.

A solution is proposed by supersymmetric theories, whereby every fermion and boson field

in the Standard Model has a boson or fermion superpartner, respectively [85, 86]. This addi-

tional symmetry would precisely cancel out quadratic divergences in perturbative calculations.

Additionally, supersymmetry permits a modification to the running of the coupling constants,

such that the unification of forces has better agreement at Λ [60]. Extensive searches at

collider experiments have found no evidence for any supersymmetric extension to the Standard

Model [87].

Massive neutrinos

The Sun burns hydrogen into helium in two fusion processes: a proton–proton (pp) chain

reaction, and the CNO cycle [88]. The overall reaction in the pp chain is summarised by

4p → 4He + 2e+ + 2νe. (2.118)

This reaction occurs through four possible branches, each producing neutrinos with dif-

ferent energy distributions. The rates of each of these can be predicted [89], and con-

sequently the total neutrino flux emitted from the Sun due to the pp chain is expected

to be 5.98± 0.04× 1010 cm−2s−1 [90]. Importantly, these neutrinos are expected to be only

electron-type (νe), as indicated by Equation 2.118, assuming their state is fixed from production

to detection. However, measurements have found the solar νe flux, detected via charged current

interactions, to have a large deficit which cannot be explained by the Standard Model. For

example, the Sudbury Neutrino Observatory (SNO) reported [91] a charged current 8B νe flux

3.3σ lower than that from electron scattering, which is sensitive to all neutrinos.

The solution is a theory of neutrino oscillation [92, 93], whereby neutrinos change type

(between νe, νµ, and ντ ) as they propagate. Evidence for this phenomenon is given by subsequent
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results from SNO [94], for example, where the total flux from neutral current interactions

(sensitive to all neutrinos equally) was found to be consistent with the Standard Solar Model.

Such a change of state while travelling requires that there exists a rest frame for the particle

and therefore neutrinos are required to have non-zero mass, in contradiction to the Standard

Model. Analogously to the quark mixing mechanism discussed in Section 2.2.3, the physical

mass eigenstates (ν1, ν2, ν3)L and weak interaction eigenstates (νe, νµ, ντ )L for the neutrinos in

this model are distinct and related by a transformation

|νl〉 =
3∑
j=1

U∗lj |νj〉, l = e, µ, τ , (2.119)

where U is the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) [92, 95] matrix. If it is constrained

to be unitary, the matrix can be parameterised in terms of three mixing angles θ12, θ23, θ13

and a CP -violating phase angle δ. The oscillation probabilities can be shown [22] to depend on

the difference of the square masses, ∆m2
ij = m2

i −m2
j , i > j. In the full three-neutrino mixing

model, the ‘survival’ probability for a νe to be detected as νe is given by [22, 96]

P (νe → νe) = cos4 θ13

1− sin2(2θ12) sin2

∆m2
21L

4E


+ sin4 θ13, (2.120)

where L is the distance from emission to detection, and E is the energy of the νe.

A modification to the Standard Model is required to describe the mechanism by which

neutrinos acquire mass. Its form depends on whether the νi, i = 1, 2, 3 are Dirac fermions [97],

like the electron, or Majorana fermions, where the field is a solution to the Majorana wave

equation [98]. In the Dirac case, lepton number is conserved in interactions. For Majorana

neutrinos, however, it is not a conserved quantity. In the later case, neutrinoless double-beta

decay is a predicted process, since the neutrino would be its own antiparticle. There are some

experiments looking for this phenomenon, but it has so far not been observed [99–102]. If

neutrinos are Majorana fermions, this adds another two degrees of freedom to the theory, in

the form of CP -violating phase angles.
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The seesaw mechanism [103–107] provides a convenient explanation for the small mass of

the left-handed neutrinos, relative to the massive Standard Model particles. It introduces right-

handed chargeless Majorana neutrino fields, NiR, with large masses Mi, i = 1, 2, 3. Following

the Standard Model electroweak symmetry breaking process, in the basis where the mass

matrix is diagonal, the neutrinos acquire a Dirac mass term (mixing the right- and left-handed

fields), of the form mD
il NiR νlL + h.c. For |mD

il | �Mj , i, j = 1, 2, 3, l = e, µ, τ , the left-handed

neutrinos acquire an effective Majorana mass term mLL
l
′
l
∼= −[mD]T

l
′
j
M−1
j mD

jl [22]. Empirically,

and in many GUTs, mLL ∼ 0.1 eV, mD ∼ 100 GeV, M ∼ 1014 GeV.

Baryon asymmetry

The amount of baryonic matter versus antimatter observed in the present-day universe is

highly unbalanced [108, 109]. The Standard Model predicts the conservation of charge, so the

baryogenesis mechanisms produce equal proportions of particles and antiparticles, to leading

order. CP -violation in the Standard Model does permit a matter–antimatter asymmetry, but

the measured strength of this violation is incompatible with large-scale observations [110–112].

The seesaw mechanism, discussed above, could provide a solution [113, 114]. CP -violation in

decays of heavy right-handed neutrinos in the primordial universe could lead to the asymmetry

observed today.

Dark matter

Measurements of nearby galaxies’ velocity curves by redshift do not match density predictions

based on the light emitted from them [115–117]. Modifications to gravitational theories have

so far been unsuccessful in describing this while preserving the excellent agreement between

GR and observations [118]. Therefore, these observations suggest the existence of massive

dark matter, distributed in a ‘halo’ around the galaxy [119]. The universal energy density

contributed by dark matter is estimated to be around 27% by satellite measurements of the

cosmic microwave background [120–122].
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It is expected that there exists some modification to the Standard Model to account for

the presence of dark matter. Candidate cold dark matter particles can be classed as axions

and weakly interacting massive particles (WIMPs). Axionic bosons are presented as a possible

solution to the strong CP problem [123]. They have a small predicted mass – 10−6 to 1 eV,

depending on the model [124] – and are expected to interact minimally with Standard Model

fields. WIMPs, conversely, are theoretical particles of moderate to high mass (1 to 104 GeV)

also with low interaction cross sections. Candidates for WIMPs can be provided by GUTs,

which often predict the existence of heavy bosons [125]. Finally (but not exhaustively), sterile

neutrinos of an SU(2)L × U(1)Y singlet field with mass ∼ 1 keV could fit the profile for cold

dark matter.

Indirect detection experiments aim to detect the products of interactions between dark

matter particles, often in the form of an excess astronomical photon signal [126]. Despite

many searches and fluctuations seen by experiments, no significant signal has so far been

reported [127]. Direct detection experiments, on the other hand, aim to observe the scattering

of dark matter with Standard Model particles, usually large amounts of material nuclei shielded

in underground chambers. Currently, the nucleon–WIMP interaction cross section has been

excluded to approximately 10−46 cm2 for a WIMP mass of 100 GeV at a 90% confidence

level [128]. Modern collider experiments also have extensive programmes searching for dark

matter particles, but no signal has been detected [129].

2.3 tt production cross sections

The t quark is the heaviest particle in the Standard Model, with a directly measured mass

of mt = 172.69± 0.25 (stat)± 0.41 (syst)GeV [130]. The next most massive particle is the H

boson at 125.10± 0.14 GeV [22]. There is currently no mechanism that precisely predicts the

masses of the Standard Model particles (that is, they are free parameters of the model), and it

is interesting to note that mt is significantly larger than the masses of the other five quarks.

It is similar in magnitude to the electroweak energy scale at v ≈ 246 GeV [131]. Interactions

involving t quarks are especially sensitive to effects described beyond the Standard Model.
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The large mass of the t quark means that there is extensive phase space available for its

decay. The measured total decay width is Γt = 1.42 +0.19
−0.15 GeV [22]. This is related to the

lifetime – the time for the survival probability to reach e−1 – by τ = ~/Γ, giving the t quark

lifetime as τt ≈ 4.6× 10−25 s. Because of this extremely short lifetime, it decays effectively

instantly (cτt ≈ 1.4× 10−16 fm) and hence the t quark is the only quark to never hadronise.

Consequently, the 4-momentum of the t quark is conserved in its direct decay products which

can be mathematically reconstructed. This permits the study of a ‘bare’ quark, a unique

opportunity in experimental particle physics.

2.3.1 Motivation for measurements

A precise understanding of t quarks and the mechanisms of their production tests the limits of

the accuracy of the Standard Model. t quarks are mostly produced via tt pair production in

collider experiments [22]. The rate of tt pair production via the cross section is sensitive to

modifications to the Standard Model [132–134].

The total, or inclusive, cross section provides a measurement of the rate of production of tt

in collider experiments, and it is different for pp collisions versus pp. Total cross sections have

been measured at the a variety of collision energies, spanning almost an order of magnitude [135].

A summary of these measurements is shown in Figure 2.1. As can be seen from the figure,

the measured total cross sections are in good agreement with theoretical predictions from the

Standard Model, calculated up through O(α4
S) [134].

Additionally, the kinematic properties of the tt system are subject to modifications from

extensions to the theory [137]. It is therefore interesting to study the distributions of tt

production cross section as functions of measurable kinematic variables. Such distributions are

reported as differential cross sections, dσ
dx , with the relation

σtotal =
∫
X

dσ
dx dx, (2.121)
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Figure 2.1 Predictions and measurements for total tt cross sections at collider experiments, as a

function of the centre-of-mass energy
√
s. From [136] with theoretical predictions from [134].

where x ∈ X stands for the kinematic variable of interest. Measurements of tt differential cross

sections can be used to perform intricate tests of Standard Model predictions at the TeV scale.

tt pair production is also a dominant background process in many searches for physics

beyond the Standard Model [138, 139] and studies of the Standard Model H boson [140] at

collider experiments. For example, an analysis searching for the production of ttH (with

H → bb) [141] found that approximately 85–95% of background events in the signal and control

regions are from tt production. Diagrams for the ttH signal process and one such possible

background process are shown in Figure 2.2. This background contribution was suppressed

using stacked multivariate models to discriminate events containing a H boson. However, the

uncertainty in modelling the large tt + ≥1b background is the dominant systematic uncertainty

in the analysis.
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Figure 2.2 Signal process (a) for one channel of a ttH search. Production of tt bb (b) contributes an

important background to the ttH signal.

2.3.2 Decay channels

As discussed in Section 2.2.3, the third quark generation is almost independent of the lighter

two generations in the electroweak interaction eigenbasis. This means that, for experimental

considerations, the t quark decays exclusively to b in the process t → W+b or t → W−b:

t Vtb

b

W+

(2.122)

t quark–antiquark pair (tt) decay processes therefore contain at least two b quarks, observed

via the decay products of B hadrons. The decay modes are stratified according to the products

of the two W bosons into separate experimental analyses. Approximately two thirds of W

boson decays are to quarks, resulting in a hadronic final state. The other third are decays to
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Decay mode BR (%) Unc. (%)

W+ → e+νe 10.71 ±0.16
W+ → µ+νµ 10.63 ±0.15
W+ → τ+ντ 11.38 ±0.21

W+ → hadrons 67.41 ±0.27

Table 2.3 Branching ratios BR = Γi/Γtotal for the decay modes i of the W+ boson. The rightmost

column indicates the total uncertainty. Values from [22].

leptons. The corresponding vertices are given by

W+ Vqq′

q

q ′

q ∈ {u, c}, q ′ ∈ {d, s}, (2.123)

W+

`+

ν`

l ∈ {e, µ, τ}. (2.124)

The measured branching ratios for an on-shell W+ boson are shown in Table 2.3.

All tt decay channels contain at least two b-tagged jets, as described in Section 3.3.4. In

the dilepton channel both W bosons decay to leptons, with a final state containing e−e+, e−µ+,

e+µ−, or µ−µ+, plus two neutrinos. The leptonic signature of this process allows for a relatively

clean measurement [142], although the smaller branching ratio for tt → leptons means that

fewer events pass selection, compared to the channels containing hadrons. The neutrinos are

not detected in current analyses and since there are two of them, the tt system cannot be fully

reconstructed. In the lepton+jets decay channel, one of the W bosons decays hadronically

and the other to leptons. In this case, there is only one invisible neutrino, so its 4-momentum

can be determined by conservation considerations. The initial longitudinal momenta of the

partons in the hard scattering are unknown, so a pseudo-top algorithm [143, 144] is used to
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Figure 2.3 Tree-level diagram for one mode of the production of tt and decay in the fully hadronic

channel.

infer the properties of the tt system in this channel. The fully hadronic decay mode gives the

only channel in which the tt system can be completely reconstructed from the observed final

state, since there are no invisible decay products. A diagram for this decay (in the gg fusion

production mode) is shown in Figure 2.3. The data analysis in Chapter 4 is performed in the

fully hadronic channel, and motivations for these cross section measurements are discussed in

Section 2.3.1 below.

In the t quark rest frame, the b and W decay products travel back-to-back by conservation

of zero total 3-momentum. In the laboratory frame, however, the t quarks decay with some

momentum which is carried forward. Higher momenta particles decay into more closely

collimated products. Therefore for a t quark with large momentum, the B hadron and the

(leptonic or hadronic) products of the W boson are close in the detector. It is said that the

t quarks are boosted. For example, an ATLAS analysis [145] targeted boosted t quarks in the

fully hadronic channel, requiring the two reconstructed t quarks to have transverse momenta of

at least 500 GeV and 350 GeV. In these cases, separate selection criteria are needed to filter
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relevant collision events. Therefore, separate experimental channels containing boosted t quarks

exist for the lepton+jets and fully hadronic decay modes.

2.3.3 Previous measurements

The t quark was discovered via tt pair production 1995 by the CDF and D0 collaborations at

the Tevatron [54, 55]. These experiments have since performed measurements of differential

tt production cross sections for pp collisions with centre-of-mass energy
√
s = 1.96 TeV [146–

150]. At the LHC (described in Section 3.1), the ATLAS and CMS collaborations have

published multiple tt differential production cross section measurements for
√
s = 7, 8, and

13 TeV [142, 145, 151–174]. Brief summaries of measurements with ATLAS at
√
s = 13 TeV are

given here.

In the dilepton channel, 3.2 fb−1 of LHC pp collision data recorded in 2015 were ana-

lysed [142]. Collision events with one e and one µ of opposite charge, plus two b-tagged jets

(detailed in Sections 3.3.3 and 3.3.4) were selected. Differential tt production cross sections are

reported as a function of the transverse momentum pT and absolute rapidity |y| for both the

t quark and tt system, in addition to the invariant mass mtt of the tt system. The resulting

normalised differential cross sections as functions of t quark pT and mtt are shown in Figure 2.4.

The same dataset was used to perform measurements of differential tt production cross

sections in the lepton+jets decay channel [161]. Events containing exactly one e or µ, plus at

least two jets of hadrons were selected. In this analysis, selection criteria are defined such that

the momenta of the t quarks were categorised as resolved or boosted, and the cross sections were

then measured separately in each topology. In the resolved regime, absolute and normalised

differential cross sections are reported as functions of the hadronically-decaying t quark pT and

absolute rapidity, as well as invariant mass, pT, and absolute rapidity of the tt system. The

normalised differential cross section as a function of the hadronically-decaying t quark is shown

in Figure 2.5a, and as a function of mtt in Figure 2.5b. In the boosted regime, differential cross

sections are reported as functions of the pT and absolute rapidity of the hadronically-decaying

t quark, shown in Figures 2.5c and 2.5d.
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Figure 2.4 Normalised tt fiducial differential cross sections as functions of (a) t quark pT and (b) mtt

in the eµ channel. These are a subset of the results from [142].

A larger dataset of 36.1 fb−1 LHC pp collisions, collected by ATLAS in 2015 and 2016, was

analysed in the all-hadronic channel, where both t quarks decay to hadrons [145]. This analysis

used events where the t quarks were highly boosted, by selecting those containing at least

two large-R jets with pT(t1) > 500 GeV and pT(t2) > 350 GeV that both fall inside a mass

window, |mjet −mt | < 50 GeV. Any events with an e or µ were vetoed, and further cuts were

made to reduce the mostly QCD-produced multi-jet background, increasing the purity of the

sample. The cross sections were unfolded to both a fiducial phase space at particle level and a

reduced phase space at parton level. (These terms are explained in Section 4.6 below.) The

differential cross sections are measured as functions of the leading (higher pT) and subleading

(lower pT) t quark pT and absolute rapidity |yt |, as well as the tt system pT, invariant mass,

and other kinematic quantities. Other variables of interest are defined in the tt system rest

frame, for example χtt = exp(|yt − yt |) and the cosine of the relative polar angle, cos θ?. These

variables, among others, are defined and explained in Section 4.2. The particle-level normalised

differential tt production cross sections are shown as functions of the leading t quark pT and
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Figure 2.5 Normalised tt fiducial differential cross sections measured in the lepton+jets channel. These

are a subset of the results from [161].
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absolute rapidity, in addition to | cos θ?| and χtt at particle level in Figure 2.6 and at parton

level in Figure 2.7. These results serve as a baseline for the measurements in Chapter 4.

2.3.4 The fully resolved all-hadronic channel

The analysis described in Chapter 4 is performed in the all-hadronic channel, where both W

bosons from the tt decay into a final state of hadrons. In contrast to the all-hadronic boosted tt

analysis summarised above, events are selected where all jets can be resolved with R = 0.4. This

targets collision events producing relatively low-pT t quarks, such that their decay products are

separated. In this channel, the tt system can be fully reconstructed from the observed final

state. There are no invisible decay products, such as neutrinos, and the measurement achieves

good resolution in η.

The potentially high precision of this measurement technique permits further phenomeno-

logical studies, for example the extraction of a t quark pole mass [175–177]. By reference to

Equation 2.92, the t quark propagator with momentum k is given by

k

t
=

i(/k +mt)
k2 −m2

t + iε
, (2.125)

with the pole mass defined as the positive square root of the real part of the complex pole.

The strong dependence of absolute and differential tt production cross sections on mt can be

calculated [134], and a maximum likelihood fit to data performed. Measurements with ATLAS

at pp collision energies of 7 and 8 TeV report t quark pole mass measurements in agreement

with predictions within experimental uncertainties of approximately 1 GeV [178, 179]. No such

analysis has been performed with ATLAS data at
√
s = 13 TeV to date, although a recent CMS

result from data collected in 2016 at this collision energy reported mt = 170.5± 0.8 GeV [180].

This analysis was performed in the dileptonic decay channel, whereas the high resolution

afforded by the fully hadronic analysis presented in Chapter 4 could lead to a more precise

measurement.
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Figure 2.6 Normalised tt fiducial differential cross sections in the fully boosted all-hadronic channel,

unfolded to particle level. Cross sections are reported as functions of (a) leading t quark pT, (b) leading

t quark absolute rapidity, (c) | cos θ?|, and (d) χtt , defined in the text. These are a subset of the results

from [145].
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Figure 2.7 Normalised tt differential cross sections in the fully boosted all-hadronic channel, unfolded

to parton level. Cross sections are reported as functions of (a) t quark pT, (b) t quark absolute rapidity,

(c) | cos θ?|, and (d) χtt , defined in the text. These are a subset of the results from [145].
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Another motivation for performing this measurement is given by the fact that it is the

first such analysis in this channel performed by ATLAS at the LHC [181]. The resulting tt

production cross section measurements complement those performed in other tt decay channels

on the 36.1 fb−1 2015+2016 ATLAS dataset. Uniquely in this channel, low-pT t quarks can be

fully reconstructed and their kinematic distributions compared with theoretical predictions. The

parton-level differential cross sections from one set of predictions [182] are shown in Figure 2.8

for t quark pT, tt invariant mass, and tt absolute rapidity. It can be seen that the predicted

distributions are highly sensitive to perturbative corrections in the Standard Model, and may

also exhibit similar sensitivity to effects of new physics beyond the established theory. The

low-pT region contains the bulk of this sensitivity, peaking at approximately 75 GeV.

The good angular resolution enabled by the fully resolved topology allows precise measure-

ments of QCD radiation emitted almost collinearly to the t quark. Correlations between the

tt decay final product kinematics and additional hadronic radiation can be studied in detail.

NNLO QCD predictions with NLO electroweak corrections [183] predict a high sensitivity of

differential cross sections as functions of kinematic properties of this additional radiation to

perturbative effects. Therefore a precision measurement of such distributions could constrain

the parameter space for theoretical modelling.

The CMS Collaboration performed measurements in the fully resolved all-hadronic tt decay

channel [184]. The analysis was done on 2.53 fb−1 of
√
s = 13 TeV LHC pp collision data,

collected in 2015 with the CMS detector [185]. The selected events were combined with a

separate sample containing boosted t quarks to perform a combined analysis. The tt differential

cross section as a function of the leading t quark transverse momentum was unfolded to parton

level and extrapolated to the full phase space. The absolute cross section distribution and

a comparison to Monte Carlo predictions are shown in Figure 2.9. This analysis observed

that the t quark pT is distributed softer (lower average pT) than predicted by Standard Model

calculations at next-to-leading order (NLO).
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scale variation is only shown for the NNLO correction.
When computing various perturbative orders we always use
PDFs of matching order.
No overflow events are included in any of the bins shown

in this Letter. The normalizations of the distributions in
Figs. 1 and 2 are derived in such a way that the integral over
the bins shown in these figures yields unity. Because of a
slight difference in the bins, we note a small mismatch with
respect to themeasurementswe compare to: for the top-quark
pT distribution CMS has one additional bin 400 GeV <
pT < 500 GeV (not shown in Fig. 1). This bin contributes
only around 4 per mil to the normalization of the data and we
neglect it in the comparison. The yt distribution computed by
us extends to jytj < 2.6. This last bin differs slightly from the
corresponding CMS bin which extends to jytj < 2.5. This
mismatch is shown explicitly in Fig. 2.
We observe that the inclusion of NNLOQCD corrections

in the pT;t distribution brings SM predictions closer to
CMS data in all bins. In fact the two agree within errors in
all bins but one (recall that the PDF error has not been
included in Fig. 2). The case of the yt distribution is more
intriguing; we observe in Fig. 2 that the NNLO and NLO
central values are essentially identical in the whole rapidity
range (this is partly related to the size of the bins). Given the
size of the data error, it does not appear that there is any
notable tension between NNLO QCD and data. The
apparent stability of this distribution with respect to

NNLO radiative corrections will clearly make comparisons
with future high-precision data very interesting.
We do not compare with the CMS data for themtt̄ and ytt̄

distributions since the mismatch in binning is more
significant. Instead, in Figs. 4 and 5 we present the
NNLO predictions for the absolute normalizations of these
distributions. We stress that the bin sizes we present are
significantly smaller than the ones in the existing exper-
imental publications. This should make it possible to use
our results in a variety of future experimental and theo-
retical analyses. For this reason, in Fig. 3 we also present
the absolute prediction for the top-quark pT distribution
with much finer binning compared to the one in Fig. 1.
In Figs. 3,4, and 5 we show the scale variation for each

computed perturbative order, together with the NLO and
NNLO K factors. In all cases one observes a consistent
reduction in scale variation with successive perturbative
orders. Importantly, we also conclude that our scale
variation procedure is reliable, since NNLO QCD correc-
tions are typically contained within the NLO error bands
(and to a lesser degree for NLO with respect to LO). We
also notice that the NNLO corrections do not affect the
shape of the mtt̄ distribution. The stability of this distri-
bution with respect to higher-order corrections makes
it, among others, an ideal place to search for BSM physics.
It will be very interesting to check if this property is
maintained with dynamic scales and if it extends to
higher mtt̄.

FIG. 3. Top-antitop pT distribution in LO, NLO, and NNLO
QCD. Error bands from scale variation only.
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The K factors in Figs. 3 and 4 show a peculiar rise at low
pT;t and mtt̄, respectively, which is due to soft gluon and
Coulomb threshold effects. We do not investigate them in
detail in the present work; related past studies include
Refs. [57–66].
A feature of our calculation that needs to be addressed

more extensively is the fact that we use fixed scales.
Running scales are usually thought to be more appropriate
for such a differential calculation. However, in this first
work on the subject, we opt for the simplicity of fixed
scales in order to perform checks with existing NNLO
calculations. We intend to extend our result to dynamical
scales, which typically involve the top transverse massffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

t

p
and thus start to deviate from fixed scales at

large pT , in future publications. The result presented here,
however, should not be affected substantially by such a
change due to the limited kinematical range considered (for
instance pT;t < 400 GeV).
Conclusions.—In this Letter, we present for the first time

NNLO accurate differential distributions for top-quark pair
production at the LHC at 8 TeV. It is easy to conclude from
the shownK factors that our calculation is of very highquality
(i.e., MC errors are small). Our result is exact in the sense
that it fully includes all partonic channels contributing to
NNLO and, moreover, includes them completely (in particu-
lar, we do not resort to the leading color approximation).
Partial NNLO results have been computed by two

groups [67–69]. At the level of the total inclusive cross

section, these results agree with our previous calculations
[6–9]. Although highly desirable, a comparison at the
differential level is not possible at present since in our
current calculation we do not separate subsets of partonic
reactions or implement the leading colour approximation.
Additionally, various NNLO approximations exist in the
literature [61–64,70,71]. A dedicated comparison with
these approximate results would be valuable.
The results derived in this Letter would allow one to

undertake a number of high-caliber phenomenological
LHC analyses. Some examples are: validation of different
implementations of higher-order effects in MC event
generators, extraction of NNLO PDFs from LHC data,
improved determination of the top-quark mass, and direct
measurement of the running of αS at high scales. Moreover,
SM predictions with improved precision will enable a
higher level of scrutiny of the SM with the help of LHC
data as well as novel searches for BSM physics, possibly
along the lines of Refs. [3,72]. Finally, this result will serve
as the basis for future inclusion of top-quark decay [73,74].
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Figure 2.8 Predicted differential tt +X cross sections as functions of (a) t quark pT, (b) tt invariant

mass, and (c) tt absolute rapidity. The calculations are shown in perturbative expansions up to leading

order (LO), next-to-leading order (NLO), and next-to-next-to-leading order (NNLO), in the full phase

space. From [182].
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Figure 2.9 (a) Absolute differential tt production cross section as a function of the leading t quark

pT, measured with CMS. Collision events were selected using all-hadronic tt decays in the resolved

and boosted channels, extrapolated to the full phase space, and unfolded to parton level. (b) Ratio

Data/MC where MC is the prediction from Powheg+Pythia8. From [184].
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Chapter 3

Experimental setup and method

Phenomenological predictions made with theories such as the Standard Model and its extensions

can be tested by experiment. In order to carry out the analysis in Chapter 4, data are collected

from experimental conditions provided by a complex arrangement of machinery, described in

Section 3.1. A bespoke detector system acquires, filters, and processes the data, as detailed in

Section 3.2.

3.1 The Large Hadron Collider

The European Organisation for Nuclear Research (CERN) hosts a complex of machinery,

infrastructure, and experiments for fundamental high energy physics research. At the heart of

this is a chain of particle accelerators culminating in the Large Hadron Collider (LHC) [186], a

pair of intersecting near-circular rings that provide high energy particle collisions to detectors.

While the LHC supports heavy ionic beams (e.g. Pb and Xe), the proton–proton (pp) programme

is the main concern of this thesis.

First, molecular hydrogen is released into a linear accelerator, Linac 2, which ionises

H2 → 2p + 2e− and accelerates the protons to an energy of 50 MeV. The protons are fed

into the Proton Synchrotron (PS) at 1.4 GeV via a booster (PSB), an arrangement of four

vertically stacked synchrotron rings of radius 25 m. The 628 m-circumference PS accelerates the
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Figure 3.1 Schematic of the CERN accelerator complex. Two proton beams are injected into the LHC

rings from the SPS in opposite directions via transfer lines (TI2 and TI8). From [190].

proton beam to an energy of 25 GeV before injecting them into the Super Proton Synchrotron

(SPS), a larger synchrotron of circumference 7 km. The SPS accelerates the proton beam,

arranged into 240 bunches, to an energy of 450 GeV [187, 188]. The bunches are injected

into the counter-circulating LHC rings, eventually containing up to a total of 2808 bunches

of approximately 1.2× 1011 protons, spaced 25 ns apart [189]. The LHC rings are 27 km in

circumference, located approximately 100 m underground near Geneva. A schematic diagram

of the LHC injector chain, along with other experimental facilities at CERN, is shown in

Figure 3.1.

An extensive system of electromagnets controls the beam parameters throughout the LHC

machine. The most abundant create dipole fields, which constantly deflect the beams to steer
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Figure 3.3: Cross-section of cryodipole (lengths in mm).

an important operation for the geometry and the alignment of the magnet, which is critical for the
performance of the magnets in view of the large beam energy and small bore of the beam pipe.
The core of the cryodipole is the “dipole cold mass”, which contains all the components cooled
by superfluid helium. Referring to figure 3.3, the dipole cold mass is the part inside the shrinking
cylinder/He II vessel. The dipole cold mass provides two apertures for the cold bore tubes (i.e. the
tubes where the proton beams will circulate) and is operated at 1.9 K in superfluid helium. It has an
overall length of about 16.5 m (ancillaries included), a diameter of 570 mm (at room temperature),
and a mass of about 27.5 t. The cold mass is curved in the horizontal plane with an apical angle of
5.1 mrad, corresponding to a radius of curvature of about 2’812 m at 293 K, so as to closely match
the trajectory of the particles. The main parameters of the dipole magnets are given in table 3.4.

The successful operation of LHC requires that the main dipole magnets have practically iden-
tical characteristics. The relative variations of the integrated field and the field shape imperfections
must not exceed ⇠10�4, and their reproducibility must be better than 10�4after magnet testing and
during magnet operation. The reproducibility of the integrated field strength requires close control
of coil diameter and length, of the stacking factor of the laminated magnetic yokes, and possibly
fine-tuning of the length ratio between the magnetic and non-magnetic parts of the yoke. The struc-
tural stability of the cold mass assembly is achieved by using very rigid collars, and by opposing
the electromagnetic forces acting at the interfaces between the collared coils and the magnetic yoke
with the forces set up by the shrinking cylinder. A pre-stress between coils and retaining structure

– 23 –

Figure 3.2 Cross section of an LHC dipole. Two magnetic dipole fields are generated by the supercon-

ducting solenoids within the cold mass. Lengths are in mm. From [186].

them around each ring. Since the beams have the same charge but are counter-circulating, the

field intersecting one beam must oppose the other. This is achieved with coils placed around

the beampipes, as shown in Figure 3.2. They produce a dipole field of strength 8.3 T, generated

by a current of 11 850 A. This current flows through copper-clad superconducting Nb–Ti wires

embedded in a 1.9 K liquid helium circuit. 1 232 units of dipole magnets are placed around the

LHC ring, each 15 m in length, and a cryogenics system handles 120 t of helium [188, 191, 192].

Magnetic fields with more than two poles do not change the beam momentum. Instead,

they are required in order to control the shape and dispersion of the beams. 392 quadrupole

magnets lie around the LHC, arranged in pairs of focussing and defocussing units along the

transverse beam axes. Sextupole, octopole, and decapole magnet systems adorn the ends of

the dipole units to correct for imperfections in the steering fields fields and provide high-order

corrections to the beam [191, 193].
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The LHC accelerates the beams with two independent banks of linear accelerating radiofre-

quency cavities operating at 400.8 MHz. Each system contains eight single-cell superconducting

cavities, arranged into two cryomodules cooled by liquid helium at 4.5 K. The accelerating field

produced is 5.5 MV m−1 [194]. Although the design energy of the LHC is 7 TeV per beam, the

data analysed in this thesis (during LHC Run 2) was collected using beams of energy 6.5 TeV,

giving a centre-of-mass collision energy of
√
s = 13 TeV. This collision energy was chosen to

maximise the energy frontier and the potential for experiments to observe new phenomena both

within and beyond the Standard Model, while fitting within engineering constraints.

The two counter-circulating beams in the LHC are made to intersect at four points around

the ring. These interaction points are surrounded by detector equipment, comprising separate

particle physics experiments. ATLAS [195] and CMS [185] are general-purpose particle detectors,

whereas LHCb [196] and ALICE’s [197] designs are informed by their particular physics

programmes. The data analysed in Chapter 4 were collected with ATLAS, and its design is

discussed in detail in Section 3.2.

As the proton beams approach the interaction points, they are ‘squeezed’ by specialised

electromagnets to greatly increase the instantaneous collision luminosity, given by [198]

L = nbfN
2γ

4πεβ∗ F, (3.1)

where nb is the number of colliding bunches containing N protons, f is the revolution frequency,

γ is the beams’ relativistic γ-factor, ε is the normalised emittance determined by the injection

system, and F is a geometric factor which accounts for effects from the bunch length and

crossing angle. Here the amplitude β∗ is a measure of the size of the beam at the interaction

point, as determined by the LHC magnets nearby. Using β∗ = 30 cm, the instantaneous collision

luminosity delivered to ATLAS by the LHC is approximately 2× 1034 cm−2s−1 [199].

A centralised 25 ns-cycle clock system synchronises the LHC machine and detector readout

and trigger systems [200], detailed in Section 3.2.5 for ATLAS. The LHC facility also contains

infrastructure for vacuum and beam instrumentation systems. The complex of accelerators

is centrally managed, independently of the experimental detectors, with the aim of creating
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the conditions desired for measurement. The first pp collisions (with
√
s = 0.9 TeV) were

successfully delivered to ATLAS in November 2009 [201, 202].

3.2 ATLAS

The ATLAS experiment [195] is situated at one of the interaction points around the LHC ring,

where the beams are steered to produce pp collisions. A local right-handed coordinate system

is defined with its origin at the interaction point. The x axis points towards the centre of the

LHC, the y axis upwards towards the surface, and the z axis along the beamline. An angular

system is also used, with the radial coordinate r being the perpendicular distance from the

beamline and φ the azimuthal angle in the x–y transverse plane, with φ = 0 pointing along the

x axis. The polar angle θ is measured with θ = 0 aligned with the positive z axis. Often the

pseudorapidity is used, defined by η = − log tan θ
2 , shown in Figure 3.3. A Euclidean distance

metric ∆R =
√

(∆η)2 + (∆φ)2 is used in the η–φ plane, mapped onto the surfaces of cylindrical

detectors.

ATLAS consists of integrated systems of magnets, detectors, triggers, and data acquisition.

The main hardware is arranged in an approximately cylindrical barrel, measuring 25 m in

diameter and 46 m long [203]. Four electromagnet systems provide strong magnetic field

coverage across the entire detector body. Near to the interaction point, the inner detector
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provides position and momentum information for charged particles emerging from collisions.

The electromagnetic and hadronic calorimeters are placed at a larger radius, serving to measure

the energy of particles. The muon spectrometer takes up most of the volume of ATLAS, forming

the outermost layer of the detector equipment. In total, the detector and magnet hardware has

a mass of approximately 7000 t. An illustrated overview of the whole ATLAS detector is shown

in Figure 3.4. Each of these systems is discussed in detail in the following subsections.

3.2.1 Magnets

Four electromagnetic systems provide strong magnetic fields throughout the detector body.

These fields exert a Lorentz force, f = qv ×B, on particles with electric U(1) charge q. By

definition, f = dp
dt and the particle momentum is related to its velocity by p = γ(v)m0v. The

solution to this equation of motion determines the trajectory followed by the particle. In a

linear magnetic field, for example, charged particles follow a helical path. The momentum per

unit charge of the particle can be determined from the radius of curvature of the trajectory, and

the sign of its charge can be found from the direction of the deflection due to the magnetic field.

Therefore, the magnets in ATLAS provide vital conditions for the precise measurement of the

momentum of charged particles in the inner detector and muon spectrometer. The geometry of

the magnet systems is illustrated in Figure 3.5.

A solenoid coil [205] is wrapped around the outside of the inner detector, aligned along the

longitudinal z axis, with a radius of 1.235 m. Superconducting NbTi/Cu wire carries a current

of 7600 A, producing an approximately uniform axial field with flux density 2 T. The solenoid

was designed to be thin (coil thickness 45 mm, 174 mm including infrastructure) and light (cold

mass 5.7 t), so as to be almost transparent to particles travelling through the detector and to

reduce the required mechanical support. This reduces degradation in the performance of the

calorimeters due to the material at smaller radius.

A system of large electromagnets produce a toroidal magnetic field in the outer regions

of ATLAS. In the central region (−1.35 < η < 1.35), the barrel toroid [206] contains eight

NbTi/Cu superconducting coils carrying 20.5 kA to produce a 0.6 T average magnetic field,
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Toroid magnets Solenoid magnet SCT Pixel detector TRT

Muon spectrometer Tile calorimeter LAr calorimeter

Figure 3.4 Illustrated overview of the ATLAS detector with cutaway. Colours are false and people are

added for scale. From [204] with added labels.

73



3 Experimental setup and method 3.2 ATLAS

2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
3

Figure 2.1: Geometry of magnet windings and
tile calorimeter steel. The eight barrel toroid
coils, with the end-cap coils interleaved are
visible. The solenoid winding lies inside the
calorimeter volume. The tile calorimeter is
modelled (section 2.2.2) by four layers with dif-
ferent magnetic properties, plus an outside re-
turn yoke. For the sake of clarity the forward
shielding disk (section 3.2) is not displayed.

Figure 2.2: Bare central solenoid in the factory
after completion of the coil winding.

phases. The cold-mass and cryostat integration work began in 2001. The first barrel toroid coil
was lowered in the cavern in fall 2004, immediately followed by the solenoid (embedded inside the
LAr barrel calorimeter). The remaining seven barrel-toroid coils were installed in 2004 and 2005,
and the end-cap toroids in the summer of 2007.

2.1.1 Central solenoid

The central solenoid [2] is displayed in figure 2.2, and its main parameters are listed in table 2.1.
It is designed to provide a 2 T axial field (1.998 T at the magnet’s centre at the nominal 7.730 kA
operational current). To achieve the desired calorimeter performance, the layout was carefully
optimised to keep the material thickness in front of the calorimeter as low as possible, resulting
in the solenoid assembly contributing a total of ⇠ 0.66 radiation lengths [9] at normal incidence.
This required, in particular, that the solenoid windings and LAr calorimeter share a common vac-
uum vessel, thereby eliminating two vacuum walls. An additional heat shield consisting of 2 mm
thick aluminium panels is installed between the solenoid and the inner wall of the cryostat. The
single-layer coil is wound with a high-strength Al-stabilised NbTi conductor, specially developed
to achieve a high field while optimising thickness, inside a 12 mm thick Al 5083 support cylin-
der. The inner and outer diameters of the solenoid are 2.46 m and 2.56 m and its axial length
is 5.8 m. The coil mass is 5.4 tonnes and the stored energy is 40 MJ. The stored-energy-to-mass
ratio of only 7.4 kJ/kg at nominal field [2] clearly demonstrates successful compliance with the
design requirement of an extremely light-weight structure. The flux is returned by the steel of the
ATLAS hadronic calorimeter and its girder structure (see figure 2.1). The solenoid is charged and
discharged in about 30 minutes. In the case of a quench, the stored energy is absorbed by the en-
thalpy of the cold mass which raises the cold mass temperature to a safe value of 120 K maximum.
Re-cooling to 4.5 K is achieved within one day.

– 20 –

Barrel toroidEnd-cap toroids

Solenoid

Tile calorimeter

Figure 3.5 Geometry of the magnet systems in ATLAS. Magnet windings are shown in red. Also shown

are the layers of the hadronic calorimeter and return yoke steel, in other colours. The eight barrel toroid

coils and the end-cap toroid coils lie outside the calorimeter. The cylindrical solenoid coil is inside the

calorimeter. From [195] with added labels.
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peaking at 3.9 T. End-cap toroid magnets [207] cover the forward regions (1.55 < |η| < 2.70),

producing a similar field. The toroid magnets in ATLAS produce a large magnetic field in the

muon spectrometer, which makes up most of the volume of the detector. This size allows for a

state-of-the-art transverse momentum resolution for charged particles travelling through the

outer detector region, as detailed in Section 3.2.4.

3.2.2 Inner detector

The inner detector [208] enables the tracking of charged particles close to the interaction point.

It is composed of a series of three independent but complementary subdetectors: the pixel

detector, semiconductor tracker, and transition radiation tracker. Each is described below. It

covers the central region of ATLAS, in the pseudorapidity range −2.5 < η < 2.5. The positional

resolution of the subdetectors increases with radius. The design of the inner detector includes

considerations to make it as transparent as possible, so as to reduce multiple scattering and to

allow particles to travel to the outer detectors unimpeded. It also must withstand the high dose

of radiation it will be exposed to over its lifetime. The layout of the ATLAS inner detector is

shown in Figure 3.6

Pixel detector

The pixel detector [210, 211] is made up of four concentric cylindrical layers, the closest having

a radius of 33.25 mm. Each layer contains a grid of reverse-biased diodes. When a charged

particle travels through the doped silicon, it forms electron–hole pairs and a current flows. This

is detected by the electronic front-end readout system. For the outer three layers, 90% of pixels

measure 50 µm× 400 µm, and the intrinsic position measurement resolution is 10 µm× 115 µm.

The innermost layer, the insertable B-layer [211], was added in 2014 to improve the resolution

of primary and secondary decay vertices to approximately 10 µm [212]. This layer has an

intrinsic resolution of 8 µm× 40 µm. In addition, there are five disks of sensors on each end of

the detector. In all layers, the pixel detector contains a total of 1.4× 108 readout channels and

covers an active area of 2.2 m2.
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End-cap SCT

Barrel SCT

Pixel detector

Barrel TRT

End-cap TRT

Figure 3.6 Illustration of the ATLAS inner detector, containing the pixel detector, semiconductor

tracker (SCT), and transition radiation tracker (TRT). The insertable B-layer, installed in 2014, is not

shown. From [209] with added labels.
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Semiconductor tracker

The semiconductor tracker (SCT) [208] is also based on silicon sensors. In contrast to the pixel

detector, however, it uses 128 mm long strips of sensors rather than grids. This is because four

the SCT barrel detector are placed at a larger radii (300, 373, 447 and 520 mm) and therefore

must over a much larger active area of 61 m2. Nine wheels split into three rings in the forward

regions extend the coverage of the SCT to −2.5 < η < 2.5. SCT modules are arranged in pairs

with a 40 mrad relative angle, allowing two-dimensional position measurements. The intrinsic

resolution of the SCT is 17 µm.

Transition radiation tracker

The outermost component of the inner detector is the transition radiation tracker (TRT) [208].

It consists of approximately 370 000 straw tubes filled with a Xe/CO2/O2 gas mixture. Each

tube acts as a capacitor, with a central gold-plated tungsten wire anode and the outer tube

acting as a cathode. When a charged particle crosses the tube, it ionises the gas leading to

an electron avalanche and a detectable current in the wire. The straws are arranged into a

barrel section containing about 50 000 straw tubes, spaced horizontally at distances from 560

to 1070 mm from the interaction point, and two end-caps each of 18 wheels containing straws

aligned in the radial direction. Each readout channel provides a drift time measurement, giving

a spatial resolution of 170 µm per straw. About 30 to 40 hits per particle are detected by

the TRT. Combining the measurements from many straws, a resolution of 50 µm is achieved.

Additionally, the straw tubes contain material to stimulate transition radiation (keV photons).

The probability of radiation emission is proportional to the particle’s relativistic γ factor, so

the signal is different for particles of different rest mass. In this way, the TRT can be used to

provide information for limited particle identification.
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3.2.3 Calorimeters

The purpose of the ATLAS calorimetry system is to measure the energy, position, and direction

of particles emerging from the primary collision point. ATLAS’s system is divided into an

electromagnetic calorimeter and hadronic calorimeter, which absorb and measure the energies

of γ and e, and hadrons, respectively. In contrast to the detector components at smaller radii,

the calorimeters are designed to have a high probability of interaction with particles emerging

from collisions. As such, nearly every Standard Model is absorbed in the calorimeters, except

for the minimally ionising µ and weakly interacting neutrinos. Neutral particles that do not

induce any signal in the inner detector, such as photons and neutral hadrons, appear in the

calorimeters and can therefore be identified.

A high-energy incident particle undergoes multiple scattering, with mean free path λ between

inelastic collisions with nuclei in the calorimeter material. This produces a shower of lower

energy particles travelling through the calorimeter, which share the total energy of the incident

particle. Particles are also subject to electromagnetic interactions with the surrounding material.

Over one radiation length X0, a particle’s energy becomes e−1 times the initial, on average.

Summing the total radiation produced by a shower constitutes a measurement of the incident

particle energy.

ATLAS uses sampling calorimeters, made up of alternating layers of dense and scintillating

material. Showers are produced in the dense material and the secondary particles induce

measurable signals in the scintillator.

Electromagnetic calorimeter

The electromagnetic calorimeter system uses liquid argon as the active scintillating medium.

This was chosen for its stable, linear response to long-term radiation exposure [213]. The liquid

argon components of the ATLAS calorimeters are highlighted in Figure 3.7. Electrodes and

grounded lead absorber plates are placed placed in an ‘accordion’ shape, providing complete
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Hadronic end-cap
calorimeter

Forward calorimeter

Barrel electromagnetic
calorimeter

Electromagnetic end-cap
calorimeter

Figure 3.7 Illustration highlighting the liquid argon components of the ATLAS calorimeters. From

[214] with added labels.

coverage in φ with no azimuthal cracks between calorimeter modules. Incident showers ionise

the argon, inducing a current pulse in the electrodes.

In central barrel region of the detector, at |η| < 1.475, the electromagnetic calorimeter

consists of three layers of different granularities. A segment of this layout is illustrated in

Figure 3.8, where the dimensions and cell granularities are also given. The first layer has

fine granularity in η. Combined with the square-prism second layer, which makes up the

majority of the electromagnetic calorimeter, the detector is able to locate the origin of neutral

particles, which do not leave any trace in the inner detector. The outermost layer has the largest

granularity, and mainly serves to discriminate between electromagnetic and hadronic showers

and to measure the energy loss after the electromagnetic calorimeter. The region with |η| < 1.8

is preceded by a thin liquid argon pre-sampler with granularity (∆η ×∆φ) = (0.025 × 0.1).

This serves to estimate the energy lost before the calorimeter.
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Figure 5.4: Sketch of a barrel module where the different layers are clearly visible with the ganging
of electrodes in f . The granularity in h and f of the cells of each of the three layers and of the
trigger towers is also shown.

5.2.2 Barrel geometry

The barrel electromagnetic calorimeter [107] is made of two half-barrels, centred around the z-
axis. One half-barrel covers the region with z > 0 (0 < h < 1.475) and the other one the region
with z < 0 (�1.475 < h < 0). The length of each half-barrel is 3.2 m, their inner and outer
diameters are 2.8 m and 4 m respectively, and each half-barrel weighs 57 tonnes. As mentioned
above, the barrel calorimeter is complemented with a liquid-argon presampler detector, placed in
front of its inner surface, over the full h-range.

A half-barrel is made of 1024 accordion-shaped absorbers, interleaved with readout elec-
trodes. The electrodes are positioned in the middle of the gap by honeycomb spacers. The size
of the drift gap on each side of the electrode is 2.1 mm, which corresponds to a total drift time
of about 450 ns for an operating voltage of 2000 V. Once assembled, a half-barrel presents no
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Figure 3.8 Drawing showing a section of the barrel electromagnetic calorimeter. The liquid argon cells

are arranged into three distinct layers, with granularity decreasing for larger radius. From [195].
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Two endcap electromagnetic calorimeters are placed in the forward regions [213]. Each

consists of two coaxial wheels. The inner wheel covers 1.375 < |η| < 2.5, and is constructed

similarly to the barrel electromagnetic calorimeter, shown in Figure 3.8. The outer wheel covers

2.5 < |η| < 3.2 and has a larger granularity.

Hadronic calorimeter

Heavier hadrons penetrate the electromagnetic calorimeter and enter the hadronic calorimeter

system. In the barrel region sits the tile calorimeter at |η| < 1.7, which uses steel absorbing

plates and plastic scintillating tiles [215]. Light is produced by hadronic interactions with the

steel and diffused in the tiles then directed along wavelength-shifting fibres to photomultiplier

tubes. The tile calorimeter is divided into a central barrel covering |η| < 1.0, and two extended

barrels covering 0.8 < |η| < 1.7. Each barrel is made up of 64 trapezoidal modules covering

∆φ ≈ 0.1. A drawing of one such module of the tile calorimeter is shown in Figure 3.9.

Hadronic end-cap calorimeters cover the forward regions at 1.5 < |η| < 3.2, and are liquid

argon sampling calorimeters [213]. They use copper plates as the shower-inducing material,

with width 25 mm in the inner wheels, and 50 mm in the outer wheels. These plates are aligned

perpendicular to the beam axis. The hadronic end-cap calorimeters are placed directly behind

the electromagnetic end-cap calorimeters, as shown in Figure 3.7.

Forward calorimeter

Sampling calorimeters cover the extreme forward regions at 3.1 < |η| < 4.9, designed to

serve as both electromagnetic and hadronic calorimeters [213]. Copper rods lie parallel to the

beam axis in the innermost layer, producing showers for the electromagnetic portion of the

calorimeter. The showers travel through 250 mm of liquid argon in a cylindrical tube, with

granularity (∆η ×∆φ) = (0.1× 0.1). This is surrounded by the hadronic part of the forward

calorimeter, which uses tungsten as the absorber. Tungsten rods are placed in a matrix with

two sampling gaps of 275 and 500 mm, filled with liquid argon. The hadronic part is segmented

by (∆η ×∆φ) = (0.2× 0.2).

81



3 Experimental setup and method 3.2 ATLAS

2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
3

supplies which power the readout are mounted in an external steel box, which has the cross-section
of the support girder and which also contains the external connections for power and other services
for the electronics (see section 5.6.3.1). Finally, the calorimeter is equipped with three calibration
systems: charge injection, laser and a 137Cs radioactive source. These systems test the optical
and digitised signals at various stages and are used to set the PMT gains to a uniformity of ±3%
(see section 5.6.2).

5.3.1.2 Mechanical structure
Photomultiplier

Wavelength-shifting fibre

Scintillator Steel

Source

tubes

Figure 5.9: Schematic showing how the mechan-
ical assembly and the optical readout of the tile
calorimeter are integrated together. The vari-
ous components of the optical readout, namely
the tiles, the fibres and the photomultipliers, are
shown.

The mechanical structure of the tile calorime-
ter is designed as a self-supporting, segmented
structure comprising 64 modules, each sub-
tending 5.625 degrees in azimuth, for each of
the three sections of the calorimeter [112]. The
module sub-assembly is shown in figure 5.10.
Each module contains a precision-machined
strong-back steel girder, the edges of which
are used to establish a module-to-module gap
of 1.5 mm at the inner radius. To maximise
the use of radial space, the girder provides both
the volume in which the tile calorimeter read-
out electronics are contained and the flux return
for the solenoid field. The readout fibres, suit-
ably bundled, penetrate the edges of the gird-
ers through machined holes, into which plas-
tic rings have been precisely mounted. These
rings are matched to the position of photomul-
tipliers. The fundamental element of the ab-
sorber structure consists of a 5 mm thick mas-
ter plate, onto which 4 mm thick spacer plates
are glued in a staggered fashion to form the
pockets in which the scintillator tiles are lo-
cated [113]. The master plate was fabricated
by high-precision die stamping to obtain the dimensional tolerances required to meet the specifica-
tion for the module-to-module gap. At the module edges, the spacer plates are aligned into recessed
slots, in which the readout fibres run. Holes in the master and spacer plates allow the insertion of
stainless-steel tubes for the radioactive source calibration system.

Each module is constructed by gluing the structures described above into sub-modules on a
custom stacking fixture. These are then bolted onto the girder to form modules, with care being
taken to ensure that the azimuthal alignment meets the specifications. The calorimeter is assembled
by mounting and bolting modules to each other in sequence. Shims are inserted at the inner and
outer radius load-bearing surfaces to control the overall geometry and yield a nominal module-
to-module azimuthal gap of 1.5 mm and a radial envelope which is generally within 5 mm of the
nominal one [112, 114].
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Figure 3.9 Drawing showing a section of the tile calorimeter. The steel and scintillator are layered

together, with a wavelength-shifting fibre carrying signals from the scintillator to a photomultiplier

located at the end of each unit. From [195].
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Figure 5.38: Linearity of response as a func-
tion of the beam energy, Ebeam, at |h | = 0.687,
for a barrel LAr electromagnetic module in
the combined test-beam set-up exposed to elec-
tron beams with different amounts of material
placed upstream of the active calorimeter.

Figure 5.39: Fractional energy resolution as
a function of the electron beam energy, Ebeam,
for a barrel LAr electromagnetic module in the
combined test-beam. Electronic noise has been
subtracted from the data. The results are shown
for an amount of upstream material of 2.4 X0,
which is that expected in ATLAS at h = 0.4.
The curves represent the results of fits to the
data and the simulation using eq. 5.2.

been compared in detail to simulations (GFLUKA, GCALOR and GHEISHA) with satisfactory
results [151].

From 2002 to 2004, a new set of combined test-beam measurements was launched. The main
purposes were to define calibration procedures and constants for initial operation in ATLAS and
to operate the EMEC, the HEC and the FCal together in conditions as close as feasible to those
expected in ATLAS. The first of these combined test-beam periods took place in 2002 and was
devoted to the region 1.6 < |h | < 1.8 [152, 153]. The second period took place in 2004 and was
dedicated to a scan of the transition region around |h | = 3.2.

A three-dimensional clustering algorithm and a signal-weighting approach (see sec-
tion 10.5.2), used already in previous experiments, have been tested and the first results yield good
energy resolution for pions. The signal-weighting technique exploits the fact that local energy
depositions of high density are mainly due to electromagnetic interactions, whereas for hadronic
interactions, the corresponding density is substantially lower. Thus, for a segmented calorimeter,
the energy deposited in individual readout cells can, on a statistical basis, be identified to be of
electromagnetic or hadronic origin. For ATLAS, these weights are derived from simulations of
single particles and jets. In test-beam, the volume of the related clusters in EMEC and HEC has
been used to obtain the cluster energy density. The weighting function has been derived from the
data directly, but after correcting for leakage (for details see [152]).

Figure 5.40 shows the energy dependence of the fractional energy resolution separately for
the p� and p+ data. For energies up to 80 GeV, a differential Cerenkov counter has been used
to separate p+ and protons. The proton contamination in the beam increases with energy and its
contribution to the p+ data in figure 5.40 is the dominant source of systematics when comparing
these data to the p� data and to simulation. Fits to the data using eq. (5.2) yield stochastic terms
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Figure 5.45: Linearity of response as a func-
tion of the pion beam energy, Ebeam, for com-
bined LAr and tile calorimetry at |h | = 0.25.

Figure 5.46: Fractional energy resolution ob-
tained for pions as a function of the inverse
square root of the beam energy, Ebeam, for com-
bined LAr and tile calorimetry at |h | = 0.25.
The curve corresponds to the result of a fit to the
data points with the functional form as shown.

5.7.4.2 Combined LAr and tile calorimeter test-beam measurements

The combined performance of the barrel LAr electromagnetic and tile calorimeters was measured
in 1996 in the H8 beam at the CERN SPS. The set-up used prototype modules of the two calorime-
ters. The LAr stack consisted of two modules, each spanning nine degrees in the azimuthal di-
rection. The modules were longitudinally segmented into three layers, of 9 X0, 9 X0 and 7 X0

each at h = 0, for a total of 25 radiation lengths (1.22 interaction lengths). The segmentation
was 0.018⇥ 0.02 in Dh ⇥Df for the first two longitudinal layers and 0.036⇥ 0.02 for the third
layer.

Five prototype modules of the tile calorimeter, each covering Df = 0.1, were stacked verti-
cally downstream of the LAr cryostat and as close as possible to it; the distance between the active
parts of the two detectors was nevertheless about 55 cm, roughly twice as much as in ATLAS.
The tile calorimeter modules had the same steel and scintillator plate geometry as the production
modules, but, in the longitudinal direction, the active portion of the calorimeter measured 180 cm,
rather than 152 cm as in the production modules. These modules were segmented into four longi-
tudinal layers, of about 1.5, 2.0, 2.5 and 3 interaction lengths; in the h-direction, each module was
segmented into five equal cells of size Dh = 0.2.

The hadron beam consisted of pions with an energy-dependent proton component and im-
pinged on the combined calorimeter assembly at an angle of 12�. Data were taken in the energy
range between 10 and 300 GeV. The pion energy was reconstructed by a cell-weighting technique,
which corrected upwards the response of cells with relatively small signals to equalise it to that
of cells with large, typically electromagnetic, signals. This method had been successfully tested
in a combined LAr and tile calorimeter test-beam run, as described in [158]. The total energy is
expressed as:

E = Âem.cellsWem(Ecell,Ebeam) ·Ecell +Âhad.cellsWhad(Ecell,Ebeam) ·Ecell +Ecryo, where the last
term accounts for the energy lost in the dead region between the electromagnetic and the hadronic
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Figure 3.10 (a) Combined electron and pion test beam performance for a barrel electromagnetic

calorimeter module. (b) Combined liquid argon and tile calorimeter response in a pion test beam.

From [195].

Calorimeter performance

The analysis in Chapter 4 uses measurements from the ATLAS calorimetry system to measure

the energy of hadronic jets. In order to accurately reconstruct the properties of the tt system,

the jet energy must be precisely known. Also, the precise detection of the position and energy

of b jets is essential for tagging, and thus identifying the tt production event.

Test beam experiments were used to measure the performance of the calorimeter. For the

barrel electromagnetic calorimeter, combined electron and pion test beam measurements are

shown in Figure 3.10a. After noise subtraction, the energy response is fit to [216]

σ(E)
E

= (10.1± 0.4)%×
√

GeV√
E

⊕ (0.4± 0.1)%. (3.2)

The energy response to hadrons in the barrel calorimeter was assessed using pion test beams

incident on a combined module of liquid argon electromagnetic and hadronic tile calorimeters.

The fractional energy resolution is shown in Figure 3.10b, and fit to [217]

σ(E)
E

= 1.6 GeV
E

⊕ (52.0± 1.0)%×
√

GeV√
E

⊕ (3.0± 0.1)%. (3.3)
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Figure 3.11 Illustration of the ATLAS muon spectrometer components. The toroid magnet coils are

also shown in yellow. From [219] with added labels.

3.2.4 Muon spectrometer

The outermost portion, and most of the volume, of the ATLAS experiment contains the muon

spectrometer [218]. The dense material in the calorimeters absorbs most of the particles

emerging from LHC collisions at the centre of the detector, so only minimally ionising µ leptons

and invisible particles reach the muon spectrometer. This detector’s role is to detect the

presence of µ particles and measure their position and momentum. The layout and components

of the muon spectrometer are shown in Figure 3.11.
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µ leptons leave at least three hits in the detector, and are matched to tracks left in the

ATLAS inner detector. The muon spectrometer is immersed in the magnetic field supplied by

ATLAS’s toroid magnet system. This allows the µ transverse momentum to be measured via

the sagitta s [220] of the curved trajectory, by

pT
q

= L2B

8s , (3.4)

where L is the length of the path in an approximately constant magnetic field B, and q is the

electric charge of the particle.

270 000 aluminium monitored drift tubes (MDTs) with 30 mm diameter form the bulk of

the pT measurement apparatus in the muon spectrometer. The tubes are filled with a 97 : 3

Ar/CO2 gas mix held at 3 bar, with a W-Re anode wire through the centre. The mode of

operation is similar to the TRT, described above. The MDT intrinsic spatial resolution is 80 µm,

but this is improved to an average of 35 µm in the z direction by multiple layers of tubes per

chamber providing multiple hits. MDTs cover 99.5% of the active area of the detector, equal

to 5500 m2. The remainder contains cathode strip chambers (CSCs), placed in the high-flux

region at 2.0 < |η| < 2.7. These are multi-wire proportional chambers, with radial anode

wires and cathode strips placed in orthogonal planes in order to provide radial and transverse

measurements. The four CSC layers achieve a combined resolution of 40 µm in the η direction

and 4 mm in the φ direction. Together, MDTs and and CSCs provide state-of-the-art precision

measurements of µ lepton pT.

The event selection for the analysis in Chapter 4 rejects any collision events containing

µ leptons. The muon spectrometer is used to identify those events containing such particles.

In the barrel region, where |η| < 1.05, 596 resistive plate chambers (RPC) provide 10 mm

resolution in both the z and φ directions. Importantly, the RPCs have a short response time of

< 25 ns. They are made up of two parallel resistive plates held at a 9.8 kV potential difference

provides a 4.9 kV mm−1 constant electric field. The gas between the plates is ionised by passing

µ leptons, inducing an avalanche which cause current spikes in matrices of aluminium strips on

the back of the resistive plates. In the endcap at 1.05 < |η| < 2.4, thin gap chambers (TGCs) are
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able to withstand the exposure to a higher flux, while maintaining a < 25 ns temporal resolution.

They are multi-wire proportional chambers, similar to the CSCs albeit with more distance

between the anode wires and cathode cases. The wires are arranged parallel to the MDTs and

orthogonal to the readout strips, providing a resolution of 2 to 6 mm in the r direction, and 3

to 7 mm in the φ direction. The RPC and TGC trigger chambers provide measurements for

timing bunch crossings and providing information to the trigger for rapid decision making.

3.2.5 Trigger and data acquisition

The LHC provided pp collisions to ATLAS in 2015 and 2016 at a centre-of-mass energy of 13 TeV

and a bunch spacing of 25 ns. This means there is an unfiltered event rate of up to 40 MHz.

This is too large to fully read out the complete detector state for every event for processing and

storage, since the upstream processing system does not provide adequate bandwidth or capacity.

The ATLAS trigger system makes a decision on whether to full read out an event. It targets

a readout rate of approximately 1 kHz to storage, equivalent to an overall rejection factor of

40× 103 against minimum bias events, while maintaining high efficiency for events of interest

for the ATLAS physics research programme. To do this, it uses a cascading chain of decision

making algorithms in hardware and software. In parallel, the data acquisition system buffers

the data from the various subdetector readout systems and controls the data flow when the

trigger decision is received. These systems are detailed here. An overview of the components of

the ATLAS trigger and data acquisition system is shown in Figure 3.12.

Level 1 trigger

The Level 1 trigger [222] is an ASIC/FPGA hardware-based trigger system implemented in

fast electronics. It takes input from reduced-granularity portions of the calorimeters and muon

spectrometer. It targets an event acceptance rate of at most 100 kHz, to be passed to the

readout system for the High Level Trigger to process.

For the calorimeters, special trigger towers with typical granularity (∆η×∆φ) = (0.1× 0.1)

supply data from the electromagnetic and hadronic calorimeter systems. The towers are formed
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1 kHz on average within a processing time of about 200 ms. A schematic overview of the upgraded
ATLAS trigger and data acquisition system is shown in Fig. 1.
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Figure 1. Schematic layout of the ATLAS trigger and data acquisition system in Run-2.

2.1. Level-1 Trigger Upgrades
Several upgrades have been introduced in the di↵erent components of the ATLAS Level-1 trigger
system for Run-2 data taking. The upgrades, both in the Level-1 trigger hardware and in the
detector readout, allowed to rise the maximum Level-1 trigger rate from 70 kHz in Run-1 to
100 kHz in Run-2.

The Level-1 Calorimeter trigger makes use of reduced granularity information from the
electromagnetic and hadronic calorimeters to search for electrons, photons, taus and jets, as
well as high total and missing transverse energy (Emiss

T ). One of the main upgrades in the Level-
1 Calorimeter trigger is the new Multi-Chip Modules (nMCM), based on field-programmable
gate array (FPGA) technology, which replace the application-specific integrated circuits (ASICs)
included in the modules used in Run-1. This new hardware allows the use of auto-correlation
filters and a new bunch-by-bunch dynamic pedestal correction, meant to suppress pile-up
e↵ects. The e↵ect of these corrections in linearising the Emiss

T trigger rates as function of the
instantaneous luminosity is illustrated in Fig. 2.

The Level-1 Muon trigger system, which consists of a barrel section and two endcap sections,
provides fast trigger signals from the muon detectors for the Level-1 trigger decision. For Run-2,
various improvements were added to the Level-1 Muon trigger. To suppress most of the fake

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012003 doi:10.1088/1742-6596/762/1/012003

2

Figure 3.12 Functional overview of the ATLAS trigger and data acquisition system. Arrows indicate

the direction of data flow. From [221].

by aggregating constituent cells in the calorimeter front-end analogue electronics, and provide

approximately 7200 inputs to the calorimeter trigger system. Here the signals are digitised and

a series of programmable selections filter the event signature for e, γ, hadronically-decaying τ ,

and jets. Selections can also be applied for the total calorimeter energy and missing transverse

energy. The surviving object count for each threshold is passed to the central trigger processor

(CTP), described below.

In the muon spectrometer, the RPC and TGC front-end electronics amplify, shape, and

discriminate signal patterns. There are approximately 8× 105 inputs to the muon trigger

system. The time resolution of the muon spectrometer trigger chambers are designed such that

the bunch crossing from which a signal originates can be determined from time-of-flight. Six

programmable thresholds are applied and the resulting multiplicities for each bunch crossing

are forwarded to the CTP.
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A topological trigger system [223] receives input from the calorimeter and muon trigger

systems in the form of trigger objects. It applies up to 128 algorithmic cuts based on the

location of the objects in the detector, thereby discriminating event topologies and shapes. The

surviving 128-bit trigger objects encoding energy and resolution are passed to the CTP. The

topological trigger system operates with a latency < 200 ns and has complete coverage in η and

φ.

The CTP combines the information provided from the systems described above and computes

the Level 1 accept/reject decision. It can be programmed with up to 96 trigger menu items

which define a series of event selection rules. If an event survives any one of these items, a ‘Level

1 accept’ signal is passed to the readout system. The CTP can also automatically reject events

due to prescale or deadtime requirements. Each trigger menu item can be prescaled so as to

dampen the acceptance rate of the events passing the cuts. Deadtime refers to the time between

Level 1 accept signals in which upstream (front-end drivers) or downstream (HLT) components

of the trigger and data acquisition system are saturated, blocking the flow of data. The CTP

contains systems to automatically monitor and regulate acceptance rates and deadtime.

High level trigger

The high level trigger (HLT) system [221, 224] is implemented in software run on approximately

80 000 x86-64 CPU cores. Following a Level 1 accept signal, the detector readout systems flush

the complete detector state from buffers for each subdetector system. This is passed to the

HLT, where the full granularity of the event data is available.

The event input rate from the detector to the HLT is substantially reduced by the Level 1

trigger system and the architecture of the HLT permits large-scale parallel processing. Therefore

the HLT algorithms can be dramatically more complex than those implemented at Level 1, also

enhanced by the flexibility of the software implementation. On average, the decision time is

approximately 75 ms per event, peaking at approximately 1 s for accepted events.

Algorithms are combined into chains that can be applied to the event data sequentially.

Early algorithms may request region-of-interest information from the Level 1 system, bypassing
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the need to process the complete event data. Later algorithms can use the objects constructed

by earlier ones in combination to make complex decisions based on the entire detector state. If

an event survives any HLT chain, it is accepted and read out to permanent storage.

The HLT targets an event output rate of 1 kHz. The main constraints on the output rate

are from downstream data storage capacity and network bandwidth of the readout and storage

systems.

Trigger configuration

At all states of operation, the trigger system must be correctly configured to record collision

events of interest, while limit processing load to allow adequate throughput. Furthermore,

although the Level 1 and HLT systems are configured separately, they must use compatible

modes of operation. The ATLAS trigger system is dynamically configured through a relational

ORACLE SQL database [225], hosted on the ATLAS machine local area network.

The database contains multiple tables, related by many-to-many link tables. No records

are duplicated, for efficiency, and every possible trigger configuration used to collect data with

ATLAS is stored in the database. Primitive records corresponding to Level 1 items and HLT

algorithms are stored in tables, which are parents to tables containing records for chains and

menus and sets of prescales for the items. Ultimately, a particular trigger configuration is

defined by two ID numbers: one for Level 1 and one for the HLT. During data collection, an

appropriate configuration is chosen for the instantaneous luminosity supplied by the LHC. The

data flow rates at various stages of the trigger and data acquisition system are monitored during

operation in the ATLAS control room.

Readout system and data processing

The ATLAS readout system [226] serves to buffer data from the detector front-end electronics

for events passing a Level 1 accept while the HLT performs a more detailed decision-making

process. During the HLT operation, the readout system handles requests from the HLT for data
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fragments, and ultimately either passes the data downstream for permanent storage or deletes

it, depending on the HLT decision. This is implemented with approximately 100 PC server

units each fit with four custom RobinNP cards [227]. The input from the detector readout

drivers is passed along one of around 1850 optical links at a rate of 100 kHz, with an average

fragment size of 1.5 kB. Each card contains 8 GB of DDR3 random access memory to buffer

the event data.

The target event acceptance rate of 1 kHz corresponds to an output data transfer rate of

approximately 1.5 GB/s from the ATLAS data acquisition system [227]. This is sent over a

network to permanent digital storage at CERN. There is it distributed across the Worldwide

LHC Computing Grid (WLCG) [228], a globally-distributed network of storage and compute

clusters which is shared with the other LHC experiments. The clusters are hosted at over 130

ATLAS Collaboration member universities and scientific institutions [229].

Raw ATLAS data are processed on the WLCG to extract information useful for physics

analyses and reduce the size of files used. The full information of the detector readout

summarised and compressed into representations of physics objects, such as the jets used in

the analysis in Chapter 4. This is done with ATLAS offline software [230], which applies a

framework of reduction and skimming algorithms to store the transformed data in xAOD

format, where it can then be used for analysis. The WLCG also provides massively-distributed

computing resources for batched custom data processing. These facilities were used to produce

the intermediate and final results in Chapter 4.

3.3 Physics object reconstruction

Signals in each part of the ATLAS detector are combined to form physics objects, corresponding

to data structures which may be used in downstream data analyses. Offline software performs

this reconstruction on saved data which passes trigger selections. Objects can be either photons,

electrons, muons, τ jets, hadronic jets, or missing transverse energy. The reconstruction of
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leptonic objects and hadronic jets are detailed in this section. Since the analysis in Chapter 4

does not use photons or missing transverse energy, their reconstruction is omitted.

3.3.1 Tracks and vertices

Tracks are used to build the physics objects in this section and also to identify vertices. They

describe the trajectory of a charged particle moving in the solenoidal magnetic field through

the ATLAS inner detector. Each track is described by five parameters: the transverse impact

parameter d0, the longitudinal impact parameter z0, azimuthal angle φ, polar angle θ, and the

ratio of charge to momentum q/p. Tracks are reconstructed from the inner detector readout

using a series of sequential algorithms [231].

The data from the pixel and strip detectors are processed into hits, defined by three-

dimensional space points. Drift circles in the TRT straw detectors are also defined. Clusters

of three hits in the pixel detector and innermost layer of the SCT then define track seeds.

Extending these into the outer layers of the SCT gives track candidates. The track candidates are

fit to hits using consecutive local pattern recognition and global pattern recognition algorithms

based on a Kalman filter [231, 232], making use of accurate geometry and material information.

Cuts on the fit χ2 value and subdetector track scores removes poor-quality tracks. Ambiguities

are removed by using the track corresponding to the maximum-χ2 fit. Surviving tracks are

extended into the TRT and matched with compatible drift circles. Finally, the track is refit to

the information from all inner detector systems simultaneously. An illustration of tracks found

by this algorithm for a simulated event containing a tt decay is shown in Figures 3.13 and 3.14.

A second, outside–in algorithm is used to find track segments which are not found by the

inside–out sequence described above. These may exist because no seeds are found in the silicon

detectors, which is the case when the charged particle loses a large amount of energy through

material interactions, or is produced by photon conversion or other in-flight decay processes

within the inner detector volume. Here the track segments are formed by drift circles from the

TRT not associated with tracks from the first reconstruction algorithm. They are indicated by

black circles in Figure 3.14. These seeds are extrapolated inwards to hits in the inner silicon
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Figure 3: SpacePoint seeds consisting of two (short seeds) respectively three (long seeds) objects in the
ATLAS Inner Detector barrel for a tt̄ event, found with the z-vertex constraint seed search: the seeds consisting
of two SpacePoint objects are used to determine z-coordinates of the predicted vertex positions. Only vertices
within a defined range around the interaction point are used to constrain further seeds with three or more
SpacePoint objects. For convenience, only seeds that are entirely in the barrel region are drawn.

AlgTool. The vertices are filled in histograms, keeping the seeds compatible with a given
momentum and transverse impact range. A fast primary vertex search is performed and the
primary vertex is used to further constrain the seeds with three or more space points. The
tolerance region for predicted vertices from constructed seeds can hereby be chosen as a cut
parameter. Figure 3 shows the seeds for vertex finding and track candidate search for an example
tt̄ event in the pixel and SCT barrel.

• Unconstrained seed search: The seed search can also be performed without the given z vertex
constraint, which leads to a significantly higher number of initial track seeds (and in the following
track candidates). The unconstrained seed search is evidently more time consuming, but more
e�cient to find tracks in events with loosely constraint primary vertices, such as H ! �� decays
or non-physical single track events with superimposed pile-up signatures. Figure 4 shows the
z vertex distribution for an example tt̄ event and Fig. 5 shows the resulting SpacePoint seeds
found without z vertex constraint.

The z vertex scan is the standard SpacePoint seeded track search strategy in the ATLAS release
12.0.6, while for further production releases the unconstrained seeding is foreseen to be default in the
ID NEWT track reconstruction.

Once the SpacePoint seeds are found, the road building process is started: the seeds provide already
enough directional information to build roads of detector elements for the further search of associated
hits to one track candidate. This marks the beginning of the local part of the silicon pattern recogni-
tion. At this stage, the SpacePoint objects are dissolved into the cluster objects of which they have
been originally build from. This is, because the track candidate creation involves track fitting, which
is in general performed on either PrepRawData or RIO OnTrack level11. The cluster collections that
contain also the clusters that have not been used to create SpacePoint objects are retrieved from the
transient event store and those that are located on detector elements that build a road are used for the
track candidate. A Kalman fitter-smoother formalism is used to simultaneously follow the trajectory

11The SpacePoint class, however, has been recently integrated into the MeasurementBase schema and could also be
used for track fitting on this level. Since the creation of the SpacePoint objects include a projective error treatment,
the fit on RIO OnTrack level is more precise.

Figure 3.13 Inside–out track reconstruction for a simulated tt decay event. Hits in the inner detectors

are indicated by black circles. Track seeds are shown in red, and fully reconstructed tracks are in blue.

From [231].

detectors to form tracks. Again, ambiguities are removed with fit quality criteria and a complete

fit is performed to extract the track parameters.

After complete tracks have been identified, they are used to determine primary and secondary

vertices. Vertices are points from which particles emerge, indicating the occurrence of a physical

process at that location. Since the LHC collides bunches containing 1.15× 1011 protons [189] at

high instantaneous luminosity, there are typically multiple pp interactions per bunch crossing.

The distribution of the number of interactions per crossing is shown for the 2015+2016 data-

taking period in Figure 3.15. For the dataset considered in the analysis in Chapter 4, the mean

number of interactions per bunch crossing is 23.7.

Tracks are assigned to a vertex by an adaptive fitting algorithm [233], restricted to the

beam spot region. The primary vertex is the pp interaction vertex emitting the most transverse

momentum. The other pp interaction vertices in the collision event are referred to as ‘pileup’.

Secondary vertices are those where a decay has taken place subsequent to the primary pp
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same color. The black circles mark hits that have
been associated to TRT segments, which builds the
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particular power of the back tracking approach is
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not been found through the inside-out sequence,
simply for the fact that no appropriate silicon seed
did exist for the further extension process. This is
mainly due to strong energy loss of the particle, or
due to the fact that the track segments originate
from photon conversions or other decay vertices
inside the Inner Detector volume.

4.2.1 TRT Segment Finding

The currently existing TRT segment finder implementation in the ID New Tracking realm is based
on the outside-in track reconstruction strategy taken from the legacy xKalman program. It follows a
two step procedure, starting with a global pattern search and a subsequent local pattern recognition
with intrinsic track segment building. Since the TRT drift tube measurements do not provide any
information about the coordinate along the straw direction, SpacePoint objects can not be built and
the global pattern recognition has to be done in projective planes. Evidently, the most adequate
projection planes for the TRT geometry have been chosen: the r � � plane in the TRT barrel region
and the r � z plane in the TRT endcap part, where the single straws fan out on disc structures.
Assuming that the tracks originate roughly from the primary interaction region, track segments from
tracks with transverse momentum greater than 500 MeV appear as almost straight lines in the r � �
and rigorous straight lines in the z � � projection. There exist many techniques to find straight line
patterns. A very common one in high energy physics event reconstruction, the Hough transform [20],
is used to find the hit pattern: it is based on the simple fact that by transforming the projection
plane r�� (or z��, respectively) into the parameter space of the straight line — in this specific case
identified as the initial azimuthal angle �0 and the inverse momentum parameter cT (respectively cz)
— the points associated with one line are transformed into one single cell, since they satisfy the same
line parameterisation. The global track segment search thus can be reduced to the local maximum
finding in a two-dimensional histogram. To reduce the number of overlaying track segments, this
histograming process is done for several ⌘ slices of the TRT detector. The missing hit information
along the drift tubes in the TRT, however, results in the fact that hits have to be in general considered
in several di↵erent slices. This relation has to be tracked and resolved by a simple maximisation of the
the straw hits per found track candidate. Figure 8 shows a two-dimensional histogram for an example
⌘ slice in the Hough space.

Local Pattern Recognition and Event Sample Cleaning The histogram method provides a set
of track segment candidates that are further processed in a second step of the TRT segment finding.
Whereas the global hough transform uses the straw center position for the finding of compatible sets of
hits, the drift time information is also used in the local pattern recognition process: using a Kalman
filter-smoothing formalism the track segments are build and the final collection of TrackSegment

objects are written to the transient event store.

In many cases, the TrackSegment finding will pick up segments that have been already successfully
associated to tracks found in the silicon detector by the extension Algorithm. To save CPU time the
segment finding is planned to work on a cleaned out hit sample. For the event cleaning, an association

Figure 3.14 Track finding for the same simulated tt event as in Figure 3.13. Hits are indicated by

small black dots in the transverse plane. Red dots show hits in associated with tracks built using the

inside–out algorithm, seeded in the silicon detectors and extended into the TRT. Black circles indicate

hits that form track segments in the TRT which are not found by the inside–out approach. These

segments are used by the outside–in track finding algorithm. From [231].
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interaction. They are characterised by large transverse impact parameters, indicating the

propagation of some long-lived particle. Secondary vertices are used in b-tagging algorithms,

detailed in Section 3.3.4 below.

3.3.2 Leptons

Electrons

Electron objects are defined by charged tracks which deposit all their energy in the electromag-

netic calorimeter. Their reconstruction begins with seed clusters identified in the calorimeter,

using a sliding window algorithm in η–φ space to identify clusters with energy above 2.5 GeV.

These are combined with a clustering algorithm to give a total cluster energy measurement. The

calorimeter clusters are matched with tracks from the inner detector. The tracks are refit with

an electron hypothesis [234] to account for the 20–50% energy loss in the inner detector, due to

emission of bremsstrahlung photons, and they are extended into the middle calorimeter layer in

order to match to a cluster. Ambiguities in matching tracks to clusters are resolved with track

quality criteria. Finally, the combined electron object quality is assessed using a multivariate

likelihood to distinguish objects derived from signal e leptons from possible backgrounds such

as hadronic jets or converted γ particles. The electron identification efficiency is shown as a

function of the transverse energy for three likelihood working points in Figure 3.16.

Muons

Construction of muon objects uses data from the ATLAS inner detector and muon spectrometer

systems. Tracks are first reconstructed independently in each detector system. In the muon

spectrometer, seed track segments are found using a Hough transform [236]. Track candidates

are formed using a combinatorial search over the track segment seeds. Candidates are accepted

or rejected using fit and track quality criteria. Combined muon objects are formed by aligning

tracks found in both the inner detector and muon spectrometer, mostly using an outside–

in method. After alignment, the track is refit throughout the detector, where hits in the
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Figure 1: The e�ciency to identify electrons from Z ! ee decays (left) and the e�ciency to identify hadrons as
electrons (background rejection, right) estimated using simulated dijet samples. The e�ciencies are obtained using
Monte Carlo simulations, and are measured with respect to reconstructed electrons. The candidates are matched to
true electron candidates for Z ! ee events. For background rejection studies the electrons matched to true electron
candidates are not included in the analysis. Note that the last bin used for the optimisation of the ID is 45-50 GeV,
which is why the signal e�ciency increases slightly more in the 50 GeV bin than in others, and the background
e�ciency increases in this bin as well.

The electron identification performance may be influenced by the parasitic collisions taking place in the
same beam crossing (in-time pileup) or a consecutive bunch crossing (out-of-time pileup) as the hard pp
collision producing the electron candidate. The number of reconstructed primary vertices is indicative
of the level of pileup in each event, with the average number of primary vertices (eight per event)
corresponding to an average pileup of 13.7. Since some shower shape distributions depend on the number
of pileup collisions per bunch crossing, the cut on the LH discriminant value is loosened as a function
of the number of primary vertices. This is done to ensure that the LH identification remains e�cient at
high pileup, without drastically increasing the amount of background accepted by the LH selection. The
optimisation included simulations with a number of pileup collisions of up to 40, covering the range of
the pileup observed in 2015.

At high ET, some of the calorimeter variable distributions are di�erent from the typical distributions
obtained with Z ! ee and used to construct the LH PDFs. Higher energy electrons tend to deposit
relatively smaller fractions of their energy in the early layers of the EM calorimeter, and more in the later
layers of the EM calorimeter or even in the hadronic calorimeter. Loose and Medium were deemed to be
loose enough to be robust against these ET-dependent changes. However, the tighter requirement used in
Tight would lead to ine�ciencies at high ET, if not handled properly. Thus, for electron candidates with
ET above 125 GeV, Tight uses the same discriminant selection as Medium but adds rectangular cuts on
wstot and E/p, which were found to be particularly e�ective at discriminating signal from background at
high ET.

In addition to the multivariate approach used in the LH method described so far, a cut-based method using
a set of rectangular cuts on the electron ID discriminating variables was used in Run-1. This method
encompasses a similar set of operating points. The cut-based Loose operating point relies primarily on
information from the hadronic calorimeter and the first two layers of the EM calorimeter for distinguishing
signal from background. The cut-based Medium operating point adds information from the TRT, the
transverse impact parameter, and the third layer of the EM calorimeter, in addition to tighter cuts on the

8

Figure 3.16 Electron identification efficiency as a function of the transverse energy in simulated Z → ee

events. The analysis in Chapter 4 uses the ‘Tight’ likelihood threshold. From [235].

muon spectrometer can be added to or removed from the muon object. The quality of the

reconstructed object is assessed using variables such as the number of hits in the subdetectors,

the quality of the global track fit, and the degree of imbalance in the charge and momentum in

the inner detector and muon spectrometer. The muon reconstruction efficiency is shown as a

function of transverse momentum for simulated and measured J/ψ → µµ and Z → µµ events

in Figure 3.17.

τ leptons

τ leptons decay into lighter leptons or hadrons before they reach the detector equipment, with

a mean lifetime of cττ = 8.7 µm [22]. Leptonic decay modes, with a branching fraction of

35.2% [22], have observable final states containing e and µ leptons. These leptonically-decaying

τ leptons may be reconstructed as electron or muon objects. τ leptons decaying to hadrons are

identified using clusters at the cores of jets reconstructed as described in Section 3.3.3 below.

Tracking information and calorimeter shower shapes are used by a boosted decision tree to

identify jets originating from τ decays. Some results from a study of the performance of this
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Fig. 6 Reconstruction efficiency for the Medium muon selection as
a function of the pT of the muon, in the region 0.1 < |η| < 2.5 as
obtained with Z → µµ and J/ψ → µµ events. The error bars on the
efficiencies indicate the statistical uncertainty. The panel at the bottom
shows the ratio of the measured to predicted efficiencies, with statistical
and systematic uncertainties

muons with 0.1 < |η| < 2.5. The efficiency is stable and
slightly above 99 % for pT > 6 GeV. Values measured from
J/ψ → µµ and Z → µµ events are in agreement in the
overlap region between 10 and 20 GeV. The efficiency scale
factors are also found to be compatible.

6.2 Muon reconstruction efficiency for |η| > 2.5

As described in the previous sections, the reconstruction of
combined muons is limited by the ID acceptance to the pseu-
dorapidity region |η| < 2.5. For |η| > 2.5, the efficiency is
recovered by using the ME muons included in the Loose and
Medium muon selections. A measurement of the efficiency
SF for muons in the region 2.5 < |η| < 2.7 (high-η region)
is performed using the method described in Ref. [12]. The
number of muons observed in Z → µµ decays in the high-η
region is normalised to the number of muons observed in the
region 2.2 < |η| < 2.5. This ratio is calculated for both data
and simulation, applying all known performance corrections
to the region |η| < 2.5. The SFs in the high-η region are
defined as the ratio of the aforementioned ratios and are pro-
vided in 4 η and 16 φ bins. The values of the SFs measured
using the 2015 dataset are close to 0.9 and are determined
with a 3–5 % uncertainty.

7 Isolation

Muons originating from the decay of heavy particles, such
as W , Z , or Higgs bosons, are often produced isolated from
other particles. Unlike muons from semileptonic decays,
which are embedded in jets, these muons are well separated
from other particles in the event. The measurement of the

detector activity around a muon candidate, referred to as
muon isolation, is therefore a powerful tool for background
rejection in many physics analyses.

7.1 Muon isolation variables

Two variables are defined to assess muon isolation: a track-
based isolation variable and a calorimeter-based isolation
variable.

The track-based isolation variable, pvarcone30
T , is defined as

the scalar sum of the transverse momenta of the tracks with
pT > 1 GeV in a cone of size $R = min

(
10 GeV/pµT , 0.3

)

around the muon of transverse momentum pµT , excluding the
muon track itself. The cone size is chosen to be pT-dependent
to improve the performance for muons produced in the decay
of particles with a large transverse momentum.

The calorimeter-based isolation variable, E topocone20
T , is

defined as the sum of the transverse energy of topological
clusters [27] in a cone of size $R = 0.2 around the muon, after
subtracting the contribution from the energy deposit of the
muon itself and correcting for pile-up effects. Contributions
from pile-up and the underlying event are estimated using
the ambient energy-density technique [28] and are corrected
on an event-by-event basis.

The isolation selection criteria are determined using the
relative isolation variables, which are defined as the ratio
of the track- or calorimeter-based isolation variables to the
transverse momentum of the muon. The distribution of the
relative isolation variables in muons from Z → µµ events
is shown in the top panels of Fig. 7. Muons included in
the plot satisfy the Medium identification criteria and are
well separated from the other muon from the Z boson
($Rµµ > 0.3). The bottom panel shows the ratio of data
to simulation.

7.2 Muon isolation performance

Seven isolation selection criteria (isolation working points)
are defined, each optimised for different physics analyses.
Table 2 lists the seven isolation working points with the dis-
criminating variables and the criteria used in their definition.

The efficiencies for the seven isolation working points are
measured in data and simulation in Z → µµdecays using the
tag-and-probe method described in Sect. 6. To avoid probe
muons in the vicinity of a jet, the angular separation $R
between the probe muon and the closest jet, reconstructed
using an anti-kt algorithm [29] with radius parameter 0.4
and with a transverse momentum greater than 20 GeV, is
required to be greater than 0.4. In addition, the two muons
originating from the Z boson decay are required to be sep-
arated by $Rµµ > 0.3. Figure 8 shows the isolation effi-
ciency measured for Medium muons in data and simulation
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Figure 3.17 Muon reconstruction efficiency for as a function of the transverse momentum in J/ψ → µµ

and Z → µµ events. Muon objects are defined using the ‘Medium’ likelihood threshold, used in the

analysis in Chapter 4. From [237].
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as they are most likely photons from a π0 decay; or if the
τhad-vis candidate is classified as h± ≥2π0 because three or
more photons are found in a single π0

cand, only this π0
cand is

added and its mass is set to twice the π0 mass. A calibration is
applied to the Constituent-based τhad-vis energy in each decay
mode as a function of the Constituent-based ET, to correct
for the π0

cand energy bias. The resulting four-momentum is
used to set the τhad-vis direction in the Tau Particle Flow. Fig-
ure 8a, b show distributions of the τhad-vis η and φ residuals
of the Tau Particle Flow and the Baseline four-momentum
reconstruction. The core angular resolutions of the Tau Par-
ticle Flow are 0.002 in η and 0.004 rad in φ, which are more
than five times better than the Baseline resolutions of 0.012
and 0.02 rad, respectively.

Figure 9a shows distributions of the ET residuals. The
Constituent-based calculation is inherently stable against
pile-up as both the decay-mode classification used to select
h± ’s and π0

cand’s, and the reconstruction of h± ’s and π0
cand’s

themselves, are stable against pile-up. The ET increases by
∼6 MeV and its resolution degrades fractionally by ∼0.6 %
per additional reconstructed vertex. Figure 9b shows the res-
olution as a function of the ET of the generated τhad-vis.
For the final energy calibration of the Tau Particle Flow, the
Constituent-based ET is combined with the Baseline ET by
weighting each by the inverse-square of their respective ET-
dependent core resolutions, which ensures a smooth transi-
tion to high pT where the Baseline calibration is superior.
The Baseline ET is used if the two ET values disagree by
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more than five times their combined core resolutions, as it
has smaller resolution tails. The resolution of the Tau Particle
Flow is superior in both the core and tails at low ET with a
core resolution of 8 % at an ET of 20 GeV, compared to 15 %
from the Baseline. It approaches the Baseline performance
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Flow is superior in both the core and tails at low ET with a
core resolution of 8 % at an ET of 20 GeV, compared to 15 %
from the Baseline. It approaches the Baseline performance
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(b)

Figure 3.18 (a) Generated versus reconstructed decay modes for hadronically-decaying τ leptons; (b)

Abundances of reconstructed decay modes for hadronically-decaying τ leptons in simulation and data.

From [238].

reconstruction method [238] are shown in Figure 3.18. The ‘Medium’ working point for this

discriminator is used to define hadronically-decaying τ leptons in the analysis in Chapter 4.
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2 The calibration to the truth jet

According to the perturbative QCD, jets are the manifestations of scattered partons (quarks and gluons).
After undergoing fragmentation, a collimated collection of hadrons emerges and its energy is measured
in the calorimeter system. In addition to this hard scattering, the final state also contains energy coming
from multiple proton–proton (pile–up) interactions and the underlying event.

The typical output of an event generator will provide theoretical predictions about the particle con-
tent and spectra at this stage, the so called particle level. Jets resulting from the application of a jet
reconstruction algorithm at the particle level are thus relevant as “truth”, since they represent the final
state jets that ideally must be reconstructed starting from the detector level. In the following we refer to
them using the expression “truth jets”.

Since jet fragmentation functions are independent of jet energy, the fraction of the total jet energy
carried by the different particle types in a jet is basically independent of energy. Figure 1 shows the
relative contribution of the different particle types to the jet energy as a function of the jet ET. About
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Figure 1: Left: fractional energy carried by different particle types as a function of the jet energy. Right:
fraction of true energy deposited in the different calorimeter samplings for a jet in the central (|h | < 0.7)
calorimeter region as a function of its true energy.

40% of the total energy is carried by charged pions, 25% is carried by photons (mainly coming from the
p0 decay), another 20% is accounted for by kaons, nearly 10% by protons and neutrons. Therefore, 25%
of the energy deposits in the calorimeters come directly from pure electromagnetic showers. The right
plot of Fig. 1 shows the average fractional energy deposit in the different calorimeter samplings with
respect to the true jet energy in the central calorimeter regions (|h | < 0.7). Most of the energy (about
2/3 of the reconstructed energy) is measured by the electromagnetic calorimeter. The total reconstructed
energy differs significantly from the true jet energy. This is because of a number of detector effects:

• if the calorimeters are non-compensating (as in ATLAS), their response to hadrons is lower than
that to electrons and photons, and is non-linear with the hadron energy.

• part of the energy is lost because of dead material, cracks and gaps in the calorimeters, and is also
non-linear with hadron energy.

• The solenoidal magnetic field will bend low energy charged particles outside the jet cone.

The reconstructed jet energy must be corrected for these effects to obtain the best estimator for true
jet energy.

In the following we will discuss two possible strategies. The first one (referred to as global calibra-
tion) aims to provide calibration coefficients at jet level; the second one, the local calibration, provides

JETS AND MISSING ET – DETECTOR LEVEL JET CORRECTIONS

299

Figure 3.19 Fractional energy carried by different particle types as a function of the transverse jet

energy. The jets are produced by simulation of QCD processes. From [239].

3.3.3 Jets

Sprays of hadronic activity from QCD processes result in many tracks and calorimeter deposits

in the ATLAS detector. The total energy deposited relates to the energy of the original gluon

or quark. Tracks and calorimeter clusters are combined or separated to define jet objects for

analyses. Jets are the objects of interest for the analysis in Chapter 4, since the final state is

fully hadronic.

The energy in a jet is distributed among many different particle types, as shown in Figure 3.19.

The largest proportion of energy (approximately 40%) is carried by light charged hadrons,

which leave a track in the inner detector and deposit energy in the calorimeters. Some of the

energy is carried by neutral γ particles, which do not leave any track in the inner detector,

but do deposit energy in the electromagnetic calorimeter. Therefore a jet is recognised by

a signature of multiple tracks aligned with energy deposits in both the electromagnetic and

hadronic calorimeters. Jets are constructed using a sequence of clustering algorithms, detailed

in this section.

The fine segmentation of the ATLAS calorimeters allows for good jet resolution, but

also admits a large amount of cell-to-cell electrical noise, in addition to noise from soft
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radiation from pileup vertices. For robustness against this noise, topological cell clusters

are first constructed [240, 241]. These start with seed cells with signal-to-noise ratio Γ =

Ecell/σnoise,cell > S = 4. Directly neighbouring cells are then included in the cluster. Secondary

neighbours are included if Γ > N = 2. Finally, a ring of ‘guard cells’ with Γ > P = 0 are added.

A splitting algorithm prohibits very large merged clusters by identifying local maxima [242].

These topological cell clusters form the input to the jet clustering algorithm. They are

defined as massless pseudo-particles with four-momentum constructed from the calorimeter

energy and direction as the energy-weighted barycentre of the cluster in (η, φ) space. The

anti-kt algorithm [243] is used to group the inputs into jet objects. It is a sequential combination

algorithm which calculates the ‘distance’ between every pair of inputs i and j as

dij = min
(
k2p
ti , k

2p
tj

) ∆2
ij

R2 (3.5)

and also the distance to the beam axis,

diB = k2p
ti . (3.6)

Here kt is the transverse momentum and p = −1 gives anti-kt its name. ∆ij = (yi − yj)2 −

(φi − φj)2 where yi and φi are the rapidity and azimuthal angle of the inputs, respectively. The

jet radius parameter R controls the characteristic size of the final jets, and is set to R = 0.4 for

all the resolved jets in this thesis. The sequential algorithm merges entities by summing their

four-momenta if dij < diB for any j. If, however, dij > diB for all j then entity i is declared a

final jet and removed from the list of entities. The algorithm runs until this list is empty. An

example illustration of the resultant jets using R = 1.0 is shown in Figure 3.20. The final jet

object has a four vector (E,p) that is the sum of its massless constituents. The jet mass is

then defined by mjet =
√
E2 − |p|2.

The anti-kt algorithm produces conical jets when they are isolated, and shares constituents

between overlapping jets according to their momenta. Crucially, the clustering algorithm is

infrared safe, meaning it is insensitive to soft QCD radiation emitted by particles in the jet,

and also collinear safe, meaning a constituent particle may split into two particles travelling
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Figure 3.20 Example clustering of jets using the anti-kt algorithm. From [243].

collinearly and this leaves the resulting jet unchanged. These properties are required for the

definition of the jet to be able to be used in measurements that compare to theory. They ensure

that the jet definition is not highly sensitive to increasing orders in the perturbative expansion

of QCD matrix elements.

A series of corrections is applied to the resultant jet objects to calibrate them [244]:

1. Origin correction – moves the origin of the jet momentum from the centre of the detector

to the primary vertex of the event. This correction improves the resolution in η by

approximately 80% for jets with pT > 20 GeV.

2. Pileup corrections – the jet momentum is adjusted so that the corrected pT is given by

pcorrected
T = pT − ρA− α(pT, η)(NPV − 1)− β(pT, η)µ. (3.7)

The first subtraction removes contributions from pileup with median energy density ρ,

calculated in the central detector region. The correction is proportional to the jet area

A [245]. Then a residual correction is applied with the functions α and β determined
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Figure 3: Dependence of the reconstructed jet pT on in-time pile-up (a) and out-of-time pile-up (b) at various
correction stages in bins of jet |⌘ | shown with the piecewise linear fit used to define the residual correction. The red
curve shows the application of the residual corrections ↵ in a) and � in b).
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Figure 4: Energy response (a) and bias in the ⌘ reconstruction (b) as a function of ⌘ before calibration for EM scale
anti-kt , R=0.4 jets.All pile-up corrections have been applied, as well as for the position of the hard scatter vertex.

Following the calibration in energy it is found that in specific regions of the detector there is a bias in the
reconstruction of the ⌘ direction of the jet. An additional correction in ⌘ is applied to resolve this bias. It
is antisymmetric and shown as a function of |⌘ | in Fig. 4(b). This bias is also visibly a�ected by the gaps
and transitions in the calorimeters and its correction brings the average reconstructed pT of jets closer to
their truth value.
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anti-kt , R=0.4 jets.All pile-up corrections have been applied, as well as for the position of the hard scatter vertex.

Following the calibration in energy it is found that in specific regions of the detector there is a bias in the
reconstruction of the ⌘ direction of the jet. An additional correction in ⌘ is applied to resolve this bias. It
is antisymmetric and shown as a function of |⌘ | in Fig. 4(b). This bias is also visibly a�ected by the gaps
and transitions in the calorimeters and its correction brings the average reconstructed pT of jets closer to
their truth value.
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(b)

Figure 3.21 Dependence of reconstructed jet pT on (a) in-time pileup and (b) out-of-time pileup in

bins of jet |η|. The red curve shows the effect of of the residual pileup correction functions (a) α and (b)

β in Equation 3.7. From [246].

empirically from a piecewise linear fit to simulation [246]. Here NPV is the number of

pp interaction vertices in that event, correcting for ‘in-time’ pileup collisions that occur

during the same bunch crossing. For the last term, µ is the average number of pp vertices

per event, providing a correction for ‘out-of-time’ pileup. The effects of these corrections

are shown in Figure 3.21.

3. Absolute Monte Carlo-based calibration – the reconstructed jet energy and pseudorapidity

are calibrated to agree with simulation by a correction in bins of simulated and recon-

structed pseudorapidity. In each bin, a multiplicative correction factor is determined from

the mean of a Gaussian fit to the distribution of ratio of the reconstructed to simulated

jet energy. Biases in the reconstructed jet pseudorapidity due to detector layout are also

corrected.

4. Global sequential calibration – biases are corrected in five variables for each jet object:

a) Jet energy fraction deposited in the first layer of the tile calorimeter;
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b) Jet energy fraction deposited in the third layer of the liquid argon electromagnetic

calorimeter;

c) Number of tracks with pT > 1 GeV;

d) Jet radius, weighted by the pT of constituent tracks;

e) Number of muon track segments.

5. Residual in-situ calibration – a correction to biases from Monte Carlo simulations is

applied by empirical measurements to well-known real collision events. This is done

by balancing dijet events in the forward and central detector regions up to jet pT of

1.2 TeV. Reconstructed jet momenta are also balanced with well-measured photons or

reconstructed Z bosons (with Z → ee or Z → µµ) in the central region, up to jet pT of

944 GeV. Finally a correction is applied based on measurements of multi-jet events where

one high-pT jet (300 < pT < 2000 GeV) recoils from several low-pT jets in the central

detector region.

Despite these corrections, the jet energy scale contributes a significant systematic uncertainty

in many analyses, including the one presented in Chapter 4. This is due to the different responses

of the ATLAS calorimeters for hadronic and leptonic particles of the same energy. For hadronic

jets, a per-cell weighting is applied to account for the smaller response, resulting in two possible

energy scales being defined for jet reconstruction. Since hadronic objects generally penetrate

further into the calorimeter material, this provides an estimate for which energy scale should

be used for reconstruction.

Since jets are abundant in hadron collisions, it is advantageous to discriminate those

originating from the primary event of interest from those resulting from pileup interactions.

This is done in ATLAS with a k-nearest neighbour likelihood discriminant formed from track-

based variables for each jet, resulting in a jet vertex tagger (JVT) variable [247]. Cutting on

the JVT results in an event selection with a jet efficiency that is approximately independent of

the variable number of pileup vertices in the event.
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3.3.4 b tagging

The analysis presented in Chapter 4 is concerned with identifying the decay products of t

quarks in order to measure the rate of tt production. As discussed in Sections 2.2.3 and 2.3.2,

t quark decays result in a b quark and a W± boson. The b quark undergoes the hadronisation

process to form a B hadron, which is relatively long-lived since the CKM coupling of the third

quark generation to the lighter two is weak. The average lifetime of the B± meson, for example,

is 1.64× 10−12 s [22], giving a typical decay length of γcτ ≈ 5 mm for relativistic factor γ = 10.

This means experimental techniques can be used to tag jets containing B hadrons [248, 249],

which is useful for many analyses of particle collision data, especially those containing t quarks.

Due to its long lifetime, it is expected that the decay of a B hadron will occur at some

resolvable distance from the primary vertex. The point of B hadron decay in space is called

the secondary vertex. For b quarks produced with significant energy, the B decay products

will be produced at an acute relative angle in the laboratory frame, so are expected to remain

within the same clustered jet. One indication of whether a jet contains a B hadron is given

by the impact parameters of the constituent tracks. The transverse and longitudinal impact

parameters are denoted d0 and z0 sin θ. They equal to the distance of closest approach of

the track to the primary vertex in the transverse and longitudinal planes, respectively. The

signed significance of the impact parameter measurements is used for each track to determine

the likelihood under different jet flavour hypotheses: b, c, and light (u, d, s, g). These are

constructed from simulated events where the quark is matched to each jet within ∆R < 0.3.

The transverse impact parameter and likelihood ratio for tracks in simulated tt events are

shown in Figure 3.22b. The impact parameter significance is given a negative sign if the point

of closest approach of the track to the primary vertex lies in the opposite direction to the jet.

It is positive otherwise [250].

To further improve the discriminating power of b from c flavour jets, properties of the

reconstructed secondary vertex are considered [250]. A list of possible secondary vertices is made

from pairs of well-measured tracks in the jet, each with at least seven hits and a good global

track fit. These two-track vertex candidates are required to have a significant displacement
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Fractional contribution [%]
# Category b-jets c-jets light-jets
0 No hits in first two layers; expected hit in IBL and b-layer 1.9 2.0 1.9
1 No hits in first two layers; expected hit in IBL and no expected hit in b-layer 0.1 0.1 0.1
2 No hits in first two layers; no expected hit in IBL and expected hit in b-layer 0.04 0.04 0.04
3 No hits in first two layers; no expected hit in IBL and b-layer 0.03 0.03 0.03
4 No hit in IBL; expected hit in IBL 2.4 2.3 2.1
5 No hit in IBL; no expected hit in IBL 1.0 1.0 0.9
6 No hit in b-layer; expected hit in b-layer 0.5 0.5 0.5
7 No hit in b-layer; no expected hit in b-layer 2.4 2.4 2.2
8 Shared hit in both IBL and b-layer 0.01 0.01 0.03
9 At least one shared pixel hits 2.0 1.7 1.5
10 Two or more shared SCT hits 3.2 3.0 2.7
11 Split hits in both IBL and b-layer 1.0 0.87 0.6
12 Split pixel hit 1.8 1.4 0.9
13 Good 83.6 84.8 86.4

Table 1: Description of the track categories used by IP2D and IP3D together with the fraction of tracks in each
category for jets in tt̄ events. The order of the layers is explained in the text. The categories further down in the list
can be more inclusive than the first ones because, when a category is not fulfilled, the next one is evaluated.
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Figure 1: The transverse (a) and longitudinal (b) signed impact parameter significance of tracks in tt̄ events for b
(solid blue), c (dashed green) and light flavour (dotted red) jets for the Good category as defined in Table 1.
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(a)

The distributions of the final LLR discriminant for IP2D and IP3D are shown in Figures 2 (a) and 2 (b)
for the b- versus light-flavour separation.
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Figure 2: The log-likelihood ratio for the IP2D (a) and IP3D (b) b-tagging algorithm for b- (solid blue), c- (dashed
green) and light-flavour (dotted red) jets in tt̄ events. The log-likelihood ratio shown here is computed as ratio of
the b- and light-flavour jet hypotheses. If no tracks are found in the jet, a large negative value that is not indicated
in the plot is assigned as the algorithm output.

Correctly measuring the d0/�d0 and z0/�z0 shapes for even classes with a small track population can
significantly improve the rejection because even a small class of tracks can significantly contribute to the
already very small fake rate. This is shown in Figure 3 that illustrates the distributions of the transverse
and longitudinal impact parameter significances for the fourth category in Table 1 (no hits in IBL while
expected). The comparison with the templates for the Good category shown in Figure 1 illustrates the
di�erence of the distributions.

Several refinements in the algorithm have been introduced for the new version of the IP tagger compared
to the version described in [2]. They are listed below.

• The requirement on the number of pixel hits is relaxed from at least two to at least one in the pixel
detector. The previous requirement induced some ine�ciency in the high b-jet pT region because a
significant fraction of high pT b-hadrons decay after the IBL (R=3.3 cm) and the b-layer (R=5.5 cm).
The new requirement increases the performance at high b-jet pT , while not significantly a�ecting
the low-medium pT regime.

• It is found that by ignoring tracks originating from conversions, ⇤ and KS decays, material in-
teractions as identified by the SV algorithm described in Section 3.2, a sizeable gain of 15% in
light-flavour jet rejection for a b-jet e�ciency working point of 77% is achieved.

6

(b)

Figure 3.22 (a) Signed transverse impact parameter significance and (b) b-to-light log likelihood ratio

for tracks belonging to b, c, and light flavoured jets in simulated tt decays. From [249].

from the primary vertex. Pairs of tracks which are likely to have originated from decays of

other long-lived particles such as K0
S and Λ are removed, as well as those likely to be from

interactions with detector material and those with combined invariant mass above 6 GeV. The

surviving tracks are then all used to determine a final secondary vertex, with an iterative

pruning procedure used to ensure a good fit.

The outputs from the impact parameter and secondary vertex calculations are combined

with normalised jet four-momentum and decay chain multi-vertex information [251] to form the

feature set for a boosted decision tree discriminator, MV2c10 [248]. The model is trained using

simulated tt events, with the signal sample containing b flavour jets and the background made

up of 7% c and 93% light flavour jets. The distribution of the discriminator scalar output is

shown in Figure 3.23.

Jets with an associated discriminant value above a chosen threshold are referred to as b-jets.

For the analysis described in Chapter 4, the threshold MV2c10 > 0.8244273 is used. This

corresponds to a 70% b-jet selection efficiency. At this working point, the rejection factor is 12.17

for c flavour jets, and 381.3 for light flavour jets [252]. The preceeding ATLAS measurement in
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MV2c10 BDT Output

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

A
rb

itr
a

ry
 u

n
its

3−10

2−10

1−10

1

10

ATLAS  Simulation Preliminary

t = 13 TeV, ts b jets

c jets

Light-flavour jets

Figure 11: MV2c10 BDT output for b- (solid blue), c- (dashed green) and light-flavour (dotted red) jets evaluated
with tt̄ events.

GeV), but, at the same time, the b-jet e�ciency is also increased in the same kinematic region. The
reason for this is that the new MV2 training with the updated downgrading procedure results in a di�erent
e�ective tagging requirement as a function of jet pT : at high jet pT , the 77% working point is slightly
worse as compared to the 2015 configuration. The b-jet e�ciency distribution as a function of jet ⌘ has
also been inspected: no major di�erences in e�ciency are found when comparing the results in 2015 and
2016 MV2 trainings.

Figure 14 displays the comparison between the baseline 2015 configuration (MV2c20) and the current
2016 approach (MV2c10) for the light-flavour and c-jet rejection. In each bin of the pT distribution, the
b-tagging cut value has been chosen in such a way to yield a constant b-jet e�ciency of 77%. For fixed
b-jet e�ciency, the new MV2 training shows a sizeable improvement in all kinematic regions.

Similarly to the rejection vs e�ciency curves reported in Figure 10, the enhancement in c-jet rejection
brought by the optimization of the MV2 multivariate classifier is also clearly visible over the full pT and
⌘ range. Furtermore, as a consequence of the choice of the c-jet fraction in the training for MV2c10, the
⌧-rejection has increased by approximately a factor 2 with respect the 2015 algorithm.

Additional cross-validation checks on the final BDT configuration were performed in order to assess
the impact of the usage of di�erent training samples on the performance and to verify the e�ect of the
finite Monte Carlo statistics for the training of the classifier. Cross-training tests have been performed in
order to make sure that the performance is consistent when independent sub-samples are used as input to
the multivariate classifier. It is observed that the tagging performance for c- and light-flavour jet rejection

16

Figure 3.23 Distribution of the MV2c10 discriminant for simulated b, c, and light flavoured jets in tt

events. From [249].

the resolved channel [161] used a working point with efficiency of 77%, with rejection factor

6.21 for c flavour jets and 134.3 for light flavour jets. For the anaylsis described in Chapter 4, a

greater than tenfold larger data sample is analysed. This presents the opportunity to use a

b tagging working point with lower efficiency. This results in a higher purity, albeit smaller,

sample. Accordingly, the accepted sample will incur reduced associated systematic errors, but

increased relative statistical uncertainty. Studies of the effects due to different choices of b

tagging working point were performed and found that optimal total uncertainty is reached at

the 70% efficiency level [253]. This choice reduces the QCD multi-jet background estimation

systematic uncertainties to a level comparable with the overall statistical uncertainty. The

use of a working point with higher efficiency – and therefore lower purity – does improve the

statistical precision of the analysis, despite a lower relative statistical uncertainty. Conversely,

working points with efficiency lower than 70% were determined to increase the relative statistical

uncertainty to undesirable levels.
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3.3.5 Overlap removal

The reconstruction algorithms of physics objects described in this section do not use detector

signals exclusively. That is, a signal used in the construction of one object can also be used in

another. To remove these ambiguities, spatially overlapping pairs of objects are considered and

one element is removed from the event. The distance between two objects is measured using the

metric ∆Ry =
√

(∆y)2 + (∆φ)2, where ∆y and ∆φ are the differences in object rapidity and

azimuthal angle, respectively. The overlap removal procedure used for the analysis described in

Chapter 4 is given by:

1. If an electron and muon share a track in the inner detector, the electron is removed.

2. If a jet and electron have ∆Ry < 0.2, the jet is removed.

3. If a jet and electron have ∆Ry < 0.4, the electron is removed.

4. If a muon and jet have ∆Ry < 0.2, the jet is removed if its pT, total track pT, and number

of tracks are consistent with radiation emitted by or energy lost from the muon.

5. If a muon and jet have ∆Ry < 0.4, the muon is removed.

6. If a jet from a hadronically-decaying τ lepton and another jet have ∆Ry < 0.2, the non-τ

jet is removed.

The precedence of the objects and order of the overlap removals are chosen to favour preservation

of the reconstruction efficiency of the tt signal.

3.4 Event simulation

Many high energy physics experiments aim to make comparisons of experimental data and

theoretical predictions. To do this, simulations of
√
s = 13 TeV pp collisions are made to predict

the signal detected by ATLAS under the Standard Model hypothesis [254]. This process is

divided into a linked chain of separate simulations, each employing Monte Carlo sampling

methods.

105



3 Experimental setup and method 3.4 Event simulation

A fixed-order transition matrix element is calculated and integrated over the final state

phase space to derive a predicted cross section. For each point sampled, interacting quarks

and gluons are assigned initial momenta according to the parton distribution functions which

describe the fraction of the proton momentum carried by the parton. The outgoing scattered

particles and their momenta are given by application of the transition matrix to the incoming

state.

Particles which are charged under SU(3)C are modelled to emit QCD radiation as the energy

scale of the process evolves. For high-energy outgoing quarks and gluons, the ‘parton splitting’

process is modelled by the DGLAP equations [255–257], until the partonic energy scale reaches

about 1 GeV. Outgoing low-energy quarks and gluons undergo hadronisation, as described

in Section 2.2.4. This is simulated with non-perturbative phenomenological models [51, 258].

Decays of short-lived particles with lifetime cτ < 10 mm are simulated at this stage.

The resulting simulation of the outgoing particles from the ‘hard scattering’ process are

overlaid with simulations of the underlying event. This is the propagation of the remnants of

the colliding protons, simulated with phenomenological models tuned with data. Additionally,

pileup collisions between other protons in the beam are overlaid.

The description of decayed particles produced by the event generation procedures are

input into a detector simulation, a detailed computer model of the ATLAS detector materials

and geometry, including misalignments and electrical malfunctions. The Geant4 simulation

software [259–261] is continually calibrated, tuned, and validated throughout the lifetime of the

experiment. The output from the full event simulation is treated by the same reconstruction

pipeline as real data from the experiment. This preserves compatibility and consistency between

the simulated and real datasets.

The full simulation of a single pp collision event producing tt takes on average 33 minutes

to run [254], normalised for comparisons of different CPUs [262]. This includes a factor of

160 for simulating the pileup effects for an instantaneous collision luminosity of 1034 cm−2s−1.

This represents a significant use of resources for the experiment. For the analysis presented

in Chapter 4, multiple such samples are required to quantify the systematic uncertainty in

106



3 Experimental setup and method 3.4 Event simulation

the result due to the choice in procedure for the event generator and parton shower. It is not

viable to produce full simulations for these variation samples in addition to the nominal sample.

Therefore an approximate detector simulation, Atlfast-II [263], is used. This model applies

parameterised functions to the energies of particles incident on the calorimeter system, rather

than simulating the scattering and propagation processes through it. This fast simulation also

parameterises the particle showers in the calorimeters, taking the active and passive material

geometry into account. These approximations result in a speed-up factor of 20, with a tt event

taking 101 s on average [254].
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Chapter 4

Measurements of tt differential production

cross sections

In this chapter, an analysis resulting in multiple measurements of tt differential production

cross sections as functions of kinematic variables in the resolved all-hadronic decay channel is

presented. It is performed on 36.1 fb−1 of
√
s = 13 TeV pp collision data collected by ATLAS

at the LHC in 2015 and 2016. Much of the contents of this chapter are also included in

documentation by the ATLAS collaboration [253, 264].

4.1 Selection and reconstruction

The dataset is filtered to select collision events which match the desired signature of tt decaying

hadronically into jets that can be individually resolved by the detector. The cutoff values

are chosen to ensure good purity of this signal process in the selected sample, to reduce

contamination from background processes, and also to maintain efficiency. The first selection

takes place at the trigger level. Then a series of object and event selections are made after

reconstruction of the t quarks and tt system in each event. These are detailed in this section.
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# jets jet pT [GeV] # b-jets MC yield

≥ 6 > 45 ≥ 0 329 317± 482
≥ 5 > 65 ≥ 0 240 166± 412
≥ 2 > 75 ≥ 2 303 399± 464

Table 4.1 Comparison of trigger strategies. The minimum number of jets, pT for those jets, and

number of b-tagged jets are shown with the associated yields after applying to a Monte Carlo simulation,

normalised to the data luminosity. The top row corresponds to the strategy used for the analysis in this

chapter.

4.1.1 Trigger

The analysis in this chapter uses collision events which pass a single algorithm running in

the ATLAS high level trigger system. The chosen algorithm selects events with at least six

hadronic jets, all of which have pT > 45 GeV and |η| < 2.4. This trigger was not prescaled

for the runs when the dataset used in this analysis was recorded. In subsequent data-taking

periods in 2017 and 2018, this trigger algorithm was associated with a large prescale factor

to account for the increased instantaneous luminosity delivered by the LHC. This means that

adding this additional dataset has a negligible effect on the yield while adding complications

and bifurcations to the data analysis. For these reasons, the dataset considered in this analysis

is restricted to the 36.1 fb−1 collected by ATLAS in 2015 and 2016.

A comparison with two other possible trigger strategies is shown in Table 4.1, where the

top row corresponds to the chosen strategy. The yield is shown for various trigger selections

applied to a simulated tt all-hadronic sample, scaled to the data luminosity. The numbers

shown are given after applying the event selections described below.

The chosen trigger algorithm results in the largest yield when applied to Monte Carlo

samples (detailed in Section 4.4), due to the lower pT requirement. A trigger requiring b-jets is

not used so that a ‘0b’ region can be used in the background estimation described in Section 4.5.

A ‘turn on curve’ for this trigger is shown in Figure 4.1. It shows the efficiency of selecting the

sixth jet as a function of its transverse momentum after the five leading have been selected
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Figure 4.1 Turn-on curve for the 6-jet trigger used in the analysis presented in this chapter. The

efficiency of selecting the sixth jet is shown as a function of its transverse momentum. The five leading

jets are required to have pT > 55 GeV. From [253].

with pT > 55 GeV. This is performed only on events with exactly 2 b-tagged jets. The trigger

efficiency in data when the sixth jet has pT = 55 GeV is 92.0%. The efficiency of the trigger

selection on Monte Carlo data is higher than for data throughout the curve. The difference is

4% at 55 GeV. This is found to have less than 1% impact on the final cross section calculations.

This threshold is chosen for all six leading jets to balance signal efficiency with trigger efficiency.

4.1.2 Event selection

Collision events containing at least six jets with pT > 55 GeV are selected. Extra jets are

included in the event if they have pT > 25 GeV. Any events containing e, µ, or leptonically-

decaying τ leptons – reconstructed as per Section 3.3.2 – with pT > 15 GeV are rejected.

Events containing any reconstructed hadronically-decaying τ leptons with pT > 25 GeV are also

rejected. This is found to slightly improve the background rejection in Monte Carlo simulation,

while maintaining signal purity and efficiency.
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The surviving background processes are dominated by the production of multi-jet events

from QCD scattering. This process typically produces showers of light quarks, whereas the

signal tt decay process produces heavy b quarks. Therefore requiring events to contain b-jets

strongly suppresses the multi-jet background while maintaining efficiency for tt decay events.

Events containing exactly two b-tagged jets, as described in Section 3.3.4, are selected. While

allowing events with more than two b-tagged jets increases the signal yield by 17%, it is also

found to increase the multi-jet background contribution by 61% and the other background

process contributions by 23%, thereby lowering the signal purity. Additionally, the inclusion of

extra b-tagged jets would introduce further combinatorial complications to the downstream

reconstruction steps in this analysis. Therefore only events containing exactly two b-tagged jets

are selected.

Following these event selections, an attempt is made to reconstruct the t and t quark

four-momenta and the tt system of the hypothesised signal process. This allows more selections

to be made, further reducing background contributions, as well as defining kinematic variables

of the t quarks to be studied. The same selections are used at both detector and particle level

in this analysis.

4.1.3 t quark reconstruction

Simulated tt events are used to determine the experimental resolutions of various invariant mass

quantities derived from combinations of jets. To do this, the parton-level tt decay products

are matched to reconstructed jets within ∆R < 0.3. The widths of Gaussian fits to the

invariant mass distributions for reconstructed t → bqq ′ and W → qq ′ are denoted σt and

σW , respectively. The detector-level invariant mass distributions and fits for the reconstructed

t → W b and W bosons are shown in Figure 4.2. Fits are performed in the cores of the

distributions (150 to 200 GeV for mt and 65 to 100 GeV for mW ) to avoid interference from

effects in the tails. This results in extracted resolutions of σt = 10.7 GeV and σW = 5.90 GeV,

assuming perfect matching.
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Figure 4.2 Distributions (black histograms) and fits (red curves) for (a) the invariant mass of bqq ′ jets

from t decays and (b) pairs of jets matched to quarks from W decays in tt simulations.

In what follows, subscript b denotes a jet which has been assigned a b-tag and j denotes a

non-b-tagged jet. A χ2 discriminant is defined

χ2 =

(
mb1j1j2 −mb2j3j4

)2

σ2
t

+

(
mj1j2 −mW

)2

σ2
W

+

(
mj3j4 −mW

)2

σ2
W

, (4.1)

where mb1j1j2 is the invariant mass of the combined system of one b-tagged jet and two non-b-

tagged jets. Similarly, mj1j2 is the invariant mass of the combination of two non-b-tagged jets.

This quantity follows a chi-squared distribution with four degrees of freedom for background

events, reduced to two degrees of freedom for signal events due to the extra constraints of the

originating t quarks. The accepted mass of the W boson is used as mW = 80.385 GeV [22].

The form of Equation 4.1 is chosen to test the tt hypothesis, matching pairs of non-b-tagged

jets to decaying W bosons and balancing the invariant masses of the two W b systems in

the first term. The t quark mass does not appear explicitly to avoid sculpting background

distributions to resemble those from the signal. Of at least 48 possible assignments of jets in

each event, the permutation associated with the minimum value of χ2 is chosen to define the

reconstructed leading and subleading W bosons (W 1 and W 2) and the leading and subleading

t quarks (t1 and t2). The reconstructed tt system has four-momentum defined by the sum of
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the four-momenta of t1 and t2. This assignment of jets is found match the true configuration

in approximately 60% of cases for events containing six jets, decreasing to 40–50% for higher

jet multiplicities [265].

4.1.4 Background suppression

Events with χ2
min > 10 are rejected, since these fit the tt hypothesis poorly. The cut value is

chosen to balance the optimal points for the particle and parton level analyses, obtained from

Monte Carlo simulations. Studies demonstrate that the efficiency is largely insensitive to the

exact choice of cut, and the impact of using this middle value is at most 1%. The distributions

of χ2
min in simulated tt and non-all-hadronic events and data are shown in Figure 4.3a, after

the preselection detailed in Section 4.1.2 is applied but before any others. They are shown

inclusive of other cuts described here, in Figure 4.4a.

In the dominant g → bb background process, the b-jets are typically produced at an acute

angle in the laboratory frame. In contrast, the signal tt process produces the two b-jets at

a larger relative angle. To further suppress the background contribution, a selection is used

where events are required to have ∆Rb1b2 > 2.0 to pass. The threshold value is chosen by hand

to balance signal purity against selection efficiency, using simulated data. The distribution

for this variable in simulated tt and non-all-hadronic events and data, after the selection in

Section 4.1.2 but before any others, is shown in Figure 4.3b. They are shown inclusive of other

cuts described here, in Figure 4.4b.

Similarly, a cut is placed on the relative angle of the momenta of the b jets and their

associated W boson. For the energy of t quarks produced in tt events by the LHC, it is

expected that the maximum such angle, ∆Rmax
bW is rarely very large. Background events are

suppressed by rejecting events with ∆Rmax
bW ≥ 2.2. The threshold value is chosen by hand to

balance signal purity against selection efficiency, using simulated data. The distributions for this

variable are shown in Figure 4.3c for all events passing the preselection detailed in Section 4.1.

They are shown inclusive of other cuts described here, in Figure 4.4c. The distribution for

the signal sample before other selections is double-peaked. The peak in the rejected region
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(a) χ2
min (b) ∆Rbb

(c) ∆Rmax
bW (d) mt

Figure 4.3 Distributions of variables used in selections after event reconstruction, shown for simulated

tt and non-all-hadronic events as well as data. All samples are shown after the primary selection

described in Section 4.1.2, but before any other cuts. Each is normalised to unity. Cut values are

indicated by dotted red lines, and the accepted regions by arrows.
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(a) χ2
min (b) ∆Rbb

(c) ∆Rmax
bW (d) mt

Figure 4.4 Distributions of variables used in selections, after other cuts. Shown for simulated tt and

non-all-hadronic events as well as data. Each is normalised to unity. All samples are shown inclusive of

the selections in other panels. Cut values are indicated by dotted red lines, and the accepted regions by

arrows.
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corresponds to events where the minimum χ2 reconstruction assigns jets incorrectly. This peak

is strongly suppressed in signal events after applying the χ2
min, ∆Rbb, and mt cuts described in

this section, as demonstrated in Figures 4.4c and 4.5c.

Finally, a selection window is defined for the invariant mass of the reconstructed t quarks in

the event. Both are required to have 130 GeV < mt < 200 GeV to pass selection. The window

is determined by the signal region definition for the multi-jet background estimation detailed in

Section 4.5. It is chosen to allow reasonable signal and background purities, and to suppress the

combined statistical and systematic uncertainties from the data-driven background estimation.

The distributions for mt are shown in Figure 4.3d for events with only the preselection described

in Section 4.1.2 applied. They are also shown inclusive of the other cuts described in this

subsection in Figure 4.4d.

After this full selection is made, simulations show that the surviving sample is dominated by

the tt all-hadronic signal. Detector-level distributions, scaled to the data luminosity, for the cut

variables χ2
min, ∆Rbb, and ∆Rmax

bW for events passing all selections, except for in the independent

variable, are shown in Figure 4.5. Other tt decay channels are strongly suppressed by the

lepton veto selection and subsequent cuts. Yields and efficiencies for the sequence of selections

are shown in Table 4.3 for the data and simulated all-hadronic tt signal and non-all-hadronic

tt background samples. The initial sample from data discards events that fail to meet criteria

for experimental conditions, such as the status of the ATLAS calorimeters or the quality of the

primary vertex reconstruction. This corresponds to an initial selection efficiency of 97.6% for

the 36.1 fb−1 dataset. The initial sample for simulations consists of all events from the nominal

all-hadronic and non-all-hadronic background pp → tt samples, described in Section 4.4. The

smallest efficiency after the trigger decision is due to the Nb-jets = 2 selection in all samples, at

6.88% in data. Since the corresponding efficiencies for the simulated signal and non-all-hadronic

tt background samples are 39.7% and 41.2%, respectively, this cut strongly suppresses the

multi-jet background. For subsequent cuts, the background efficiencies are always smaller than

those for signal, since the selections are chosen to maximise signal purity while suppressing the

contamination from background. The final selection efficiencies are 9.84× 10−5 for data and

2.15× 10−3 for the simulated signal.
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Figure 4.5 Distributions of variables used for event selection, inclusive of other cuts. Each distribution

includes only the events passing the initial selection and cuts on variables except for the one being

shown.
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Sample Yield Proportion

tt all-hadronic 29459 +2044
−2454 67.70%

tt non-all-hadronic 1494 +140.4
−122.6 3.43%

Multi-jet 12564 +1896
−1894 28.87%

Total MC 43517 +2747
−3018 100%

Data 44621±211 100%

Table 4.2 Event yields after the full event selection is applied. The Monte Carlo samples are normalised

to the data luminosity. The uncertainties shown for simulation are the sum in quadrature of the statistical

and detector systematics. The uncertainty on the data is entirely statistical.
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Data Signal MC Non-all-hadronic background MC

Selection Yield Eff. [%] Cum. eff. [%] Yield Eff. [%] Cum. eff. [%] Yield Eff. [%] Cum. eff. [%]

Initial 4.4254× 108 97.6 97.6 1.3699× 107 100 100 1.6312× 107 100 100
Trigger 5.1478× 107 11.6 11.4 9.5296× 105 6.96 6.96 3.9369× 105 2.41 2.41
Ne,µ = 0 5.0382× 107 97.9 11.1 9.2150× 105 96.7 6.73 1.6928× 105 43.0 1.04
Njets ≥ 6 1.6034× 107 31.8 3.54 3.7324× 105 40.5 2.72 6.4639× 104 38.2 0.396
Nb-jets = 2 1.1031× 106 6.88 0.243 1.4801× 105 39.7 1.08 2.6611× 104 41.2 0.163
χ2

min ≤ 10 3.3172× 105 30.1 0.0732 8.0904× 104 54.7 0.590 8.7963× 103 33.1 0.0539
∆Rbb > 2.0 1.5599× 105 49.2 0.0344 5.6377× 104 69.7 0.412 5.4205× 103 61.6 0.0332
∆Rmax

bW < 2.2 7.2657× 104 46.6 0.0160 3.7222× 104 66.0 0.272 2.5394× 103 46.8 0.0156
mt window 4.4621× 104 61.4 0.00984 2.9459× 104 79.1 0.215 1.4919× 103 58.7 0.00915

Table 4.3 Selection yields and efficiencies for the data and nominal simulated all-hadronic signal and non-all-hadronic background tt samples,

normalised to the data luminosity.

119



4 Measurements of tt differential production cross sections 4.2 Observables

The final yields after selection, with combined statistical and systematic uncertainties, are

shown in Table 4.2, stratified by sample. To start, the tt all-hadronic sample contains 39 885 000

events, corresponding to an integrated luminosity of 54.654 fb−1. The tt non-all-hadronic sample

contains 119 432 000 events, corresponding to an integrated luminosity of 163.66 fb−1. These

are normalised to the luminosity of the data sample, 36.1 fb−1. The remaining background is

almost entirely dominated by events containing jets seeded by u, d, s, c, or b quarks, or by the

scattering of gluons. This irreducible multi-jet background is estimated using a data-driven

method, described in Section 4.5.

4.2 Observables

The analysis presented in this chapter measures differential cross sections as functions of many

observables. They are unfolded at particle level or parton level, as described in Section 4.6.

Many of these variables rely on the reconstruction of the t quarks and tt system, described

in Section 4.1.3. Here t1 and t2 refer to the leading- and subleading-pT reconstructed t or t

quark, respectively. A complete list of variables unfolded to particle level and parton level and

their descriptions are shown in Tables 4.4 and 4.5, respectively.

The kinematics of the tt decay can be observed through the reconstructed t quark transverse

momenta, pt1
T and p

t2
T and the rapidities, |yt1 | and |yt2 |. For the combined tt system, the

transverse momentum p
tt
T , rapidity |ytt |, and invariant mass mtt are measured. The cross

sections as functions of these variables are unfolded to both particle and parton levels. Combined,

these measurements capture the total and constituent four-momenta of the tt system. This

enables comparisons with fixed-order calculations, which test predictions from theoretical

models [132–134, 137], characterise the tt production process as a background for other

analyses [138–140], and enable general searches and determinations of limits for new physics [266,

267].

Unfolding to particle level, cross sections as functions of particular variables may be used to

constrain possible forms for the transition matrix element and parton shower process used in
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simulations. The rapidity of the t and t quarks in the tt rest frame are given by y? = (yt1−yt2)/2

and −y?. The observable χtt = exp(2|y?|) is highly sensitive to differences in t quark rapidities,

peaking at low values for many processes beyond the Standard Model [268, 269]. The longitudinal

motion of the tt system is indicated by the observable |yboost| = |yt1 +yt2 |/2, which is sensitive to

the form of the parton distribution functions used to sample the initial state momenta [157, 269].

The out-of-plane momentum is the projection of the three-momentum of one of the t quarks

along the normal to the plane formed between the other t quark and the beam axis:

Pout = pt1 · pt2 × ẑ
|pt2 × ẑ|

. (4.2)

Observable Description

Njets Number of reconstructed jets in the event
p

t1
T Leading t quark transverse momentum
|yt1 | Leading t quark absolute rapidity
p

t2
T Subleading t quark transverse momentum
|yt2 | Subleading t quark absolute rapidity
p

tt
T tt system transverse momentum
|ytt | tt system absolute rapidity
mtt tt system invariant mass
H

tt
T p

t1
T + p

t2
T ; scalar sum of t quark transverse momenta

χtt exp(|yt1 − yt2 |); sensitive to small differences in rapidity
Ztt p

t2
T/p

t1
T ; ratio of subleading to leading t quark transverse momenta

cos θ? Cosine of the relative polar angle of the t quarks in the tt rest frame
∆φ Relative azimuthal between the t quarks
|yboost| Absolute average rapidity of the t quarks
|Pout| Magnitude of the out-of-plane momentum
|Pcross| Magnitude of the cross product of jet directions
Rleading

W b pWT /p
b
T; ratio of W boson to b quark pT for the leading t quark

Rsubleading
W b pWT /p

b
T; ratio of W boson to b quark pT for the subleading t quark

Rleading
W t pWT /ptT; ratio of W boson to t quark pT for the leading t quark

Rsubleading
W t pWT /ptT; ratio of W boson to t quark pT for the subleading t quark

Table 4.4 Observables for one-dimensional tt differential cross sections unfolded to particle level.
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Observable Description

p
t1
T Leading t quark transverse momentum
|yt1 | Leading t quark absolute rapidity
p

t2
T Subleading t quark transverse momentum
|yt2 | Subleading t quark absolute rapidity
p

tt
T tt system transverse momentum
|ytt | tt system absolute rapidity
mtt tt system invariant mass
H

tt
T p

t1
T + p

t2
T ; scalar sum of t quark transverse momenta

χtt exp(|yt1 − yt2 |); sensitive to small differences in rapidity
∆φ Relative azimuthal between the t quarks
|yboost| Absolute average rapidity of the t quarks

Table 4.5 Observables for one-dimensional tt differential cross sections unfolded to parton level.

This observable and ∆φ are particularly sensitive to additional radiation in the main scattering

process, and therefore they are strongly effected by effects beyond leading order in the perturb-

ative expansion of the transition matrix element [270]. Hence measurements of these allow the

validation of matrix element calculations.

Many of these were previously measured with
√
s = 8 TeV ATLAS data in the tt lepton+jets

decay channel [157], and in the fully hadronic, highly boosted channel at
√
s = 13 TeV [145].

These analyses showed only modest agreement between theory and measurement. The analysis

presented here provides complementary measurements to these. In the fully hadronic decay mode,

the reconstruction of the tt system does not depend on missing energy in the detector, carried

away by invisible neutrinos. Since determination of missing energy has a large experimental

uncertainty, the fully hadronic analysis presented in this chapter is able to measure angular

quantities with smaller resolutions than those with leptonic decay modes. For example, the

resolution of |ηt1 | is 0.4 in the fully hadronic channel, compared to 0.8 in the lepton+jets

channel [271]. Therefore, good resolutions can be achieved for the directional observables,

|Pout|, χtt , and ∆φ. Cross sections as functions of another angular variable, cos θ?, characterise

the production angle of the t quarks in the tt rest frame. The variable is generally measured
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well, and some models beyond the Standard Model predict changes to its distribution [272].

Measurements in the fully hadronic, highly boosted decay channel show modest differences

with predictions [145]. A measurement in the resolved case complements this.

Distributions of combinations of the transverse momenta of reconstructed particles in tt

events can demonstrate particular sensitivities to differences between theory and observa-

tions [157, 273, 274]. In previous differential cross section measurements performed in channels

containing leptons, fewer events are observed than predicted at high values of H tt
T . For cross

sections as functions of the ratio variable RW t , the data show an excess of events at larger

values. In addition, information on the sharing of transverse momenta between the t quark

decay products can be used to constrain matrix element and parton shower models [145, 157].

This motivates the measurements of differential cross sections as functions of H tt
T , Ztt , and

RW t for both reconstructed t quarks (denoted ‘leading’ and ‘subleading’), as well as RW b.

The fully hadronic resolved channel studied in this analysis is the only tt decay channel

where the four-vectors for all decay products can be determined. Therefore it is uniquely

sensitive to a combination of jet directions never measured before,

Pcross =
[
p̂b1
×
(
p̂j1 × p̂j2

)]
×
[
p̂b2
×
(
p̂j3 × p̂j4

)]
, (4.3)

where p̂ denotes a unit vector in the direction of the jet momentum. The differential tt

production cross section as a function of the absolute magnitude of Pcross is measured in this

analysis, unfolded to particle level. Since the jet direction is well-measured, compared to energy,

|Pcross| can be determined with good resolution. The variable encapsulates information on the

directions of the six jets from the tt system decay. It therefore enables fine discrimination

between the predictions of angular variables from different theoretical models.

Some of the observables defined above are used in two-dimensional differential cross sections,

unfolded to particle and parton levels. The particular combinations used are listed in Tables 4.6

and 4.7. The differential tt production cross section is reported as a function of the internal

variable in bins of the external variable.
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These measurements can provide an improved understanding of correlations between the

kinematic properties of the tt system, such as in distributions of pt1
T in bins of pt2

T and |yt1 | in

bins of |yt2 |. Such results may be used to validate and tune theoretical models at increasingly

higher orders of αS [169, 275]. Previous measurements have shown increasing discrepancies

between predictions and observations with increasing mtt [275]. This motivates determinations

of differential cross sections in bins of mtt , in order to probe the modelled characteristics fo the

tt system at high invariant mass. Furthermore, the distributions of ptt
T and |ytt | are especially

sensitive to the effects of QCD radiation, and can therefore offer insights into the validation of

perturbative calculations [169].

Double differential cross sections are useful for a number of downstream analyses, offering

insights into many questions at the horizon of particle physics. At particle level, the cross

sections as functions of variables stratified by event jet multiplicity characterise the tt system

associated with different levels of additional radiation. These can be used to tune and constrain

parameters of Monte Carlo generator models [162]. Double differential cross sections may also

be used to determine parton distribution functions, in particular information about the gluon

content of the proton at small Bjorken x [169, 276]. A value of the t quark pole mass can be

extracted from template fits to cross sections [175, 277]. Since kinematic distributions of the tt

system and its decay products are sensitive to the value of the pole mass, new measurements of

double (or more) differential distributions can be used to constrain its value to increasingly

tighter limits.

4.3 Binning optimisation

The results from this analysis are reported as cross sections in bins of variables of interest.

Therefore the definition of the bins, in the form of the positions of their edges, are parameters

of the data analysis. Traditionally in particle physics, bins for distributions are defined by hand,

based on a priori reasoning and adjusted with empirical observations. The method described

in this section is based on the detector resolution and tuned for downstream steps.
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External Internal

p
t2
T p

t1
T

mtt

p
t1
T
p

t2
T

p
tt
T
|ytt |

Njets

p
t1
T
p

t2
T

p
tt
T

∆φ
|Pout|
|Pcross|

Table 4.6 Observables for two-dimensional tt differential cross sections unfolded to particle level. Cross

sections are reported as functions of the internal variable in bins of the external variable.

External Internal

p
t2
T p

t1
T

|yt1 | |yt2 |

mtt

p
t1
T
|yt1 |
p

t2
T
|yt2 |
p

tt
T
|ytt |

Table 4.7 Observables for two-dimensional tt differential cross sections unfolded to parton level. Cross

sections are reported as functions of the internal variable in bins of the external variable.
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Initial binnings for observables are obtained according to an algorithm based on resolution.

Resolutions for some observables at particle level, determined as the root-mean-square (RMS)

standard deviation across 200 fine bins, are shown in Figures 4.6 to 4.8. Resolutions for t quark

and tt kinematic variables at parton level are shown in Figure 4.9.

For each observable, the mean and RMS standard deviation of the difference between the

simulated true and measured values, is determined across 200 fine bins. Then the fine bins are

merged, starting from the leftmost, until two criteria are simultaneously satisfied:

• The merged bin width is greater than δ×RMS , where RMS is the total standard deviation

of the merged bin. Here δ is a regularisation parameter to be chosen by hand.

• The merged bin error is lower than 5%×N , where N is the number of fine bins within

the merged bin. For 200 fine bins and using the Poisson error (
√
N), this constraint is

equivalent to requiring at least 400 entries in each merged bin.

When both of these criteria are met, the merged bin is accepted and a new bin is defined by

merging from the next fine bin. If an accepted bin is smaller than the previous one, those bins

are merged. The parameter δ is scanned between 1.0 and 1.9 in intervals of 0.1. A suitable

value for δ is chosen by considering the resulting response matrix to be used in the unfolding

procedure, described below.

The binning schemes are reassessed for observables used in two-dimensional cross section

measurements. First, the procedure is run for external variable, with stricter requirements of

δ = 2.0 and a maximum relative statistical error of 1.5%. Then for each bin of the external

variable, the resolution of the internal variable is estimated as above, and the binning algorithm

run with δ = 2.0 and a maximum relative statistical error of 3.5%.

For some observables, such as cos θ?, the left-to-right binning procedure may be unsuitable,

since it creates bins closer to the start of the variable range before the end. To check sensitivity

to this effect, the procedure is also run for these variables in right-to-left mode. Bin edges

which contrast strongly between these results are adjusted by hand to minimise the effect of

the direction of the merging algorithm.
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Figure 4.6 Resolutions for particle level observables (a) pt1
T , (b) |yt1 |, (c) pt2

T , (d) |yt2 |, (e) ptt
T , and

(f) |ytt |.
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Figure 4.7 Resolutions for particle level observables (a) mtt , (b) Htt
T , (c) χtt , (d) Ztt , (e) |cos θ?|, and

(f) ∆φ.
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Figure 4.8 Resolutions for particle level observables (a) yboost and (b) |Pout|.

The definition of the bin edges for a distribution is a source of implicit regularisation in the

unfolding procedure described in Section 4.6. Therefore the level of agreement in the closure

and stress tests for the unfolding procedure depends on the output of the binning algorithm. In

turn, the covariance matrix of the resulting unfolded distribution is dependent on the binning

scheme. Therefore an iterative step is performed, whereby the bin edges are manually altered

to reach a satisfactory distribution. This alteration most commonly takes the form of merging

small neighbouring bins in order to reduce the migration of events between them. Finally, the

merged bin edges may be adjusted slightly by hand to give more regularly spaced intervals

between them.

It is notable that compared to an ATLAS analysis on the same dataset using the lepton+jets

channel [271], this channel achieves finer binning in the directional distributions, such as ∆φ

and χtt , under the same procedure. This is despite a much larger signal region sample for the

lepton+jets channel, in data after selection. With more data from the LHC and an optimised

trigger strategy, the fully hadronic tt decay channel offers potentially greater prospects for

precision measurements using angular observables than leptonic channels.
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Figure 4.9 Resolutions for parton level observables (a) pt1
T , (b) |yt1 |, (c) pt2

T , (d) |yt2 |, (e) ptt
T , and

(f) |ytt |.
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Sample Matrix element Parton shower Settings Detector Events
∫
L dt [fb−1] k factor

PWG+PY8 Powheg–Box Pythia8 A14 tune Geant4 39 885 000 54.654 1.1397
(nominal) v2 hdamp = 1.5mt

µR,F = 1.0

PWG+PY8 Powheg–Box Pythia8 Var3cUp A14 tune AtlFastII 39 976 000 54.781 1.1397
Var. Up v2 hdamp = 3mt

µR,F = 0.5

PWG+PY8 Powheg–Box Pythia8 Var3cDown A14 tune AtlFastII 19 995 000 27.399 1.1397
Var. Down v2 hdamp = 1.5mt

µR,F = 2.0

aMC@NLO+PY8 MadGraph5 Pythia8 A14 tune AtlFastII 20 000 000 28.114 1.1692
_aMC@NLO µq = 0.5HT

2.6.0

Sherpa Sherpa 2.2.1 Sherpa – AtlFastII 9 993 000 30.233 1.1484
ME+PS@NLO

PWG+H7 Powheg–Box Herwig7 H7-UE MMHT tune AtlFastII 19 997 000 27.388 1.1392
v2 hdamp = 1.5mt

Table 4.8 Generators and settings used to produce tt signal samples for the analysis presented in this chapter.
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4.4 Simulation samples

pp → tt collision events are simulated using Monte Carlo computer simulations, as described

in Section 3.4. The packages and settings used for the various signal samples in this analysis

are summarised in Table 4.8.

For the generation of tt events [278, 279], matrix elements are generated at next-to-leading

order (NLO) using the Powheg–Box v2 (r3026) generator [280–282] with the NNPDF3.0NLO

PDF set [283]. The parton shower and underlying event are generated by Pythia8 [284] using

the NNPDF2.3LO PDF set [283] and the ATLAS A14 tune [285]. For comparison, a sample is

also generated with the combined simulation from Sherpa 2.2.1 [286, 287].

The impact of the matrix element modelling choice is estimated with a variational sample

generated with MadGraph_aMC@NLO+Pythia8 at next-to-leading order. The parameter

for the shower starting scale function is set to µq = HT/2 for the MadGraph_aMC@NLO [288]

matrix element calculation.

To estimate the effect of the choice of parton shower algorithm, a Powheg+Herwig7

sample is generated using the same Powheg settings as for the nominal sample above. The

parton showering process is simulated with Herwig7 [289] using the H7-UE tune [290] and the

MMHT2014lo38cl PDF set [291].

The parameter mt , for the t quark mass, was set to 172.5 GeV for all generators. The

resummation damping parameter hdamp, which controls the pT of the first additional emission

beyond first order, was set to 1.5mt for most samples. This regulates the high-pT emission

that the tt system recoils against in Powheg. That is, a larger value for hdamp leads to

higher-pT additional QCD radiation [281, 282]. The signal samples are filtered for only those

where both W bosons from the tt decay hadronically. Additionally, tt events with at least one

leptonically-decaying W boson are produced with the same settings to estimate the background

contamination from misidentified leptons.
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The effects of different levels of QCD radiation in the initial and final states are evaluated

using variations of the renormalisation scale µR and the factorisation scale µF , in addition

to hdamp. The renormalisation scale refers to the energy at which ultraviolet divergences are

subtracted. The QCD coupling obeys the renormalisation group equation [292]

µ2
R

dαS
dµ2

R

= β(αS) = −
(
b0α

2
S + b1α

3
S + b2α

4
S + . . .

)
, (4.4)

where the negative sign indicates asymptotic freedom. Hence αS decreases with increasing µR,

so smaller values for the renormalisation scale lead to an increase in QCD radiation pT. The

factorisation scale µF parameterises the approximation that the pp collision can be factorised

into partonic hard scattering process and non-perturbative intra-hadronic interactions [293]. µF

refers to the collinear cutoff, used to avoid infrared divergences in the cross section calculation

due to near-collinear gluon emissions, for example. The proton parton density functions and

splitting functions are sensitive to µR [292, 294–296], and it also obeys a renormalisation group

equation [297]. Similarly to the renormalisation scale, increasing the factorisation scale leads to

a decrease in measured QCD radiation pT. For the ‘PWG+PY8 Var. Up’ sample, both energy

scales are halved, hdamp is increased to 3mt , and the ‘Var3cUp’ ATLAS A14 tune is used. For

the ‘PWG+PY8 Var. Down’ sample, the energy scales are doubled, hdamp = 1.5mt , and the

‘Var3cDown’ ATLAS A14 tune is used. These settings are chosen since combined variations

have been shown to cover the envelope of all individual variations [298], hence they provide

suitable coverage for the radiation uncertainty.

All samples are generated at NLO and normalised by a k factor to scale the cross section

to NNLO+NNLL precision. This scales the simulation to the best known cross sections from

theoretical predictions [299], including resummed calculations [300]. The sample size, integrated

luminosity, and k factor are given for each tt sample in Table 4.8.
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4.5 Background estimation

The nominal simulated signal sample indicates that it consists of approximately 5% non-

hadronically decaying tt events, after the selection described in Section 4.1. Less than 2% of the

total data yield originates from single t production events, but since this contamination is well

within the statistical uncertainty for both data and Monte Carlo samples, it is not considered

any further in the analysis.

A significant irreducible background is present in the selected data sample, originating from

multi-jet production from QCD scattering events. It constitutes approximately one third of

the total yield, and therefore must be subtracted from the data before unfolding to the final

cross section results. The contribution from the background is estimated using a data-driven

technique derived from the ABCD method.

4.5.1 The ABCD method

The ABCD method [301] is commonly used in high energy particle physics to determine the

background contribution in a signal region of phase space. It is generally applicable when

events can be divided into regions by two uncorrelated variables which can each provide good

discrimination between signal and background events.

Data are divided into four independent regions of phase space according to values of the

discriminating test variables, denoted i and j:

j fail j pass

i fail A B

i pass C D

The region D is the signal region, where events pass both i and j selections.

The method operates under the criterion that i and j can independently separate signal

from background. This ensures that the event counts in the control regions, A, B, and C, are
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Figure 4.10 Distribution ofmt1 at particle level in data minus non-all-hadronic tt simulated background

events, for different numbers of b-jets after all other selection criteria are applied.

independent from the count in region D. Further to this, it is also required that the i and j

parameters are independently distributed across the background process. This means that the

ratios of background events passing the i and j selections are independent. In other words,

whether an event passes the i selection is not affected by its selection by j.

This gives the relation

D

B
= C

A
, (4.5)

where A, B, C, and D stand for the number of events in that region of phase space after

selection. Therefore the number of events in the signal region is D = BC/A, which can be

calculated directly from data. This procedure is applied differentially for every bin in each

distribution of interest.

4.5.2 Multi-jet background estimation

For the analysis presented in this chapter, the best performing pair of discriminating variables

was found to be the b-jet multiplicity Nb, and the t quark mass window, (mt1 ,mt2). The

distribution of mt1 for Nb = 0, 1, 2 is shown in Figure 4.10. The distributions of mt1 (and mt2)
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are very similar for Nb = 1 and Nb = 2. However for Nb = 0, larger differences are observed,

introducing some residual correlations into the analysis of the background. Therefore a selection

based on Nb = 1, 2 is expected to perform well, with the Nb = 0 region used as validation to

assess the uncertainty in the estimation.

The selection on (mt1 ,mt2) results in three regions:

• Tail: If at least one of mt1 or mt2 is lower than 120 GeV or higher than 250 GeV;

• Peak: If both mt1 and mt2 fall within the range 130 to 200 GeV;

• Gap: Otherwise.

Then when combined with the selections Nb = 0, 1, 2, nine regions are defined:

(mt1 ,mt2)

Tail Gap Peak

Nb

0 A B C

1 D E F

2 G H S

This indicates that an estimate of the number of events from background contributions in

region S is given by

S = F ×G
D

, (4.6)

where the background yields F , G, and D are found by subtracting the simulated non-all-

hadronic tt estimate from the data in those regions. The gap region serves to strongly reduce the

contamination by the signal in the control regions, improving the robustness of the background

estimation. The yields in the gap region are small and it is not otherwise used for the background

estimate. Doing this increases the statistical uncertainty of the measurement by approximately

1%, since events are removed from the control regions.
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Region Nb (mt1 ,mt2) Sig. purity [%] MC bkg. purity [%]

A 0 Tail 1.87 0.19
B 0 Gap 0.45 0.06
C 0 Peak 0.96 0.08
D 1 Tail 3.35 0.69
E 1 Gap 6.86 0.96
F 1 Peak 16.1 1.16
G 2 Tail 16.1 2.90
H 2 Gap 33.9 4.21
S 2 Peak 66.1 3.35

Table 4.9 Purities of simulated signal and non-all-hadronic tt background events in each region used

for the background estimation. The remainder is estimated using the data-driven method presented in

the text.

All other selection criteria described in Section 4.1 are applied and the estimate of the

background yield in the signal region S is given by Equation 4.6. A parallel estimate uses

regions A and C in order to assess the systematic uncertainty in the background estimate, which

could arise due to correlations between the t quark kinematics and heavy flavour composition

of the event. This alternative estimate is given by

S = C ×G
A

. (4.7)

The calculation and effects of the systematic uncertainty from background modelling are

discussed in Section 4.7.3.

The fraction of signal and non all-hadronic tt background in each region is given in Table 4.9.

As expected, the largest degree of contamination from the signal in the control regions is for

Nb > 0.

The signal region distributions of interest for the one-dimensional particle level differential

cross sections, listed in Table 4.4, are shown in Figures 4.11 to 4.16. For each observable, the

distribution of events after selection of reconstruction is shown for tt all-hadronic signal and

non-all-hadronic background events simulated with Powheg+Pythia8, plus the estimation of
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Figure 4.11 Distributions in the signal region for (a) σtt
total and (b) Njets. The shaded area indicates

the total statistical and systematic uncertainty.

the multi-jet background from the method presented in this section. These distributions are

overlaid by the data yields, and good agreement within uncertainties is seen throughout. The

shaded band in each plot represents the total combined statistical and systematic uncertainties,

including the experimental, signal modelling, and background modelling uncertainties discussed

in Section 4.7. The corresponding distributions for parton level observables, and the two-

dimensional distributions at both particle and parton levels, are shown in Appendix A.
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Figure 4.12 Distributions in the signal region for (a) pt1
T , (b) |yt1 |, (c) pt2

T , (d) |yt2 |. The shaded area

indicates the total statistical and systematic uncertainty.
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Figure 4.13 Distributions in the signal region for (a) ptt
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T . The shaded area

indicates the total statistical and systematic uncertainty.
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Figure 4.14 Distributions in the signal region for (a) χtt , (b) Ztt , (c) cos θ?, (d) ∆φ. The shaded area
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Figure 4.15 Distributions in the signal region for (a) |yboost|, (b) |Pcross|, and (c) |Pcross|. The shaded

area indicates the total statistical and systematic uncertainty.
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4.6 Unfolding

A full mathematical treatment of unfolding is presented in detail in Chapter 6. This section

gives an overview of the method used for the analysis presented in this chapter.

To enable comparisons of the measured cross sections to theoretical models and other

experiments, the background-subtracted data are unfolded to two definitions of the t quark.

At particle level, observables are determined from simulated values of the stable products of

in-flight decays and the parton shower and hadronisation processes, before the simulation of

the interaction of the particles with the detector. At parton level, quantities are given by their

simulated values in the final state output of the transition matrix element calculation.

Due to differences in these definitions, some variables are only defined at particle level. For

example, Njets is not used at parton level since the number of outgoing particles is fixed, and

also jets are not defined at this level. Radiative QCD emissions in the parton shower can lead

to multiple jets after hadronisation at particle level, so the variable is well-defined here.

Per-bin corrections for the effects of limited acceptance and efficiency allow the unfolded

spectra to be extrapolated to regions of phase space not directly accessible to the detector.

At particle level, the differential cross sections are unfolded to a fiducial phase space, defined

by cuts on the particle level objects so that their selection closely resembles that of the data

at reconstruction level. This is done to reduce the impact of uncertainties introduced by

extrapolating to poorly measured regions of phase space. At parton level, these selections are

not made and the differential cross section is unfolded to the full phase space. This preserves

generality in the parton level result, permitting direct comparisons to predictions from theory.

The distributions have different numbers and locations of bins at particle and parton levels,

due to the different resolutions of the observables, as shown in Section 4.3.

The unfolding procedure can be summarised in a single expression. For an observable X,

the cross section in the jth bin is given by

dσ
dXj

= 1
L

1
∆Xj

1
εj

∑
i

[
M−1

ij

]T
facc
i

(
N reco
i −Nbkg

i

)
. (4.8)
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Here i = 1, . . . , N indexes the reconstructed bin and j = 1, . . . ,M indexes the unfolded (particle

or parton level) bin. N reco
i is the number of reconstructed events given by data and Nbkg

i is the

corresponding estimate of the background contribution in the ith bin. L is the is the integrated

luminosity of the dataset, and ∆Xj is the bin width.

The effects of limited detector acceptance and efficiency are accounted for by correction

factors, facc
i and 1/εj , respectively. The acceptance correction is applied to the background-

subtracted data in each bin before unfolding to particle level only. It is determined by the ratio

of the number of events passing both the particle-level and reconstruction-level selections to

the number of events passing the reconstruction-level selection:

facc
i = N reco∧particle

i

N reco
i

. (4.9)

This corrects for events that are generated outside the fiducial phase space but pass the

reconstruction level selection. The efficiency correction is applied after the unfolding procedure,

to correct for the inefficiency of reconstruction to the fiducial and full phase spaces. It is given

by the ratio of the number of events passing both the particle- or parton-level (‘part.’) selection

and the reconstruction-level selection criteria to the number of events passing the particle- or

parton-level selection:

εj =
N reco∧part.
j

Npart.
j

. (4.10)

These correction factors are evaluated using the nominal signal Monte Carlo simulation sample.

The termM−1
ij is a proxy for the application of an unfolding procedure to the background-

subtracted data. In lieu of a naive matrix inversion, a regularised approach is preferred in

order to control the variance of the unfolded result. In the analysis presented in this chapter,

the iterative Richardson–Lucy method [302–305] – a form of the expectation maximisation

algorithm [306] – is performed by the RooUnfold [307] software package. In the kth iteration,

the estimation of the ith bin population in background-subtracted data, ν̂(k)
i , is given by the
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folding equation,

ν̂
(k)
i =

∑
j

Rij µ̂
(k)
j , (4.11)

where Rij = (εj/facc
i ) ×Mij is an element of the response matrix formed by the migration

matrix M and efficiency and acceptance factors. The elementMij gives the probability for the

value of the observable of interest to be measured in the ith bin of the reconstructed histogram,

given that its true value lies in the jth bin of the simulated histogram. In the unfolding step,

the value of the estimated true bin population, µ̂(k)
j , is updated by scaling by (N reco

i −Nbkg
i ):

µ̂
(k+1)
j =

∑
i

Rij µ̂
(k)
j

ν̂
(k)
i

(
N reco
i −Nbkg

i

)
. (4.12)

For an increasing number of iterations, the observed data are better reconstructed by applic-

ation of the folding through Equation 4.11. However, the corresponding unfolded distributions

have very large variances and bin-to-bin correlations for a large number of iterations. This

is controlled by limiting the number of iterative steps in the procedure. The total number of

iterations is therefore a regularisation parameter. It was found that using four iterations results

in unfolded differential cross sections with satisfactory properties, and the procedure is robust

to statistical fluctuations. This is demonstrated in the remainder of this section. Additionally,

using three or five total iterations does not significantly affect the conclusions of the analysis,

indicating the unfolding is stable with respect to the regularisation parameter.

For the example of the pt1
T observable, the acceptance correction factor and efficiency when

unfolding to particle level are shown in Figures 4.17a and 4.17b, respectively. The migration

matrix is shown in Figure 4.17c. The same plots are shown for the |Pout| variable, unfolding to

particle level, in Figure 4.18. For the two-dimensional differential cross sections, the histograms

are flattened along the external axis to give a vector of values. The acceptance correction factor,

efficiency, and migration matrix are shown for the unfolding to particle level of the pt1
T cross

section in bins of mtt in Figure 4.19, and for the pt2
T cross section in bins of Njets in Figure 4.20.
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Figure 4.17 (a) Acceptance correction, (b) efficiency, and (c) reconstruction-to-particle-level migration

matrix for the pt1
T observable.

For unfolding to parton level, these plots are shown for the cross section in pt1
T in Figure 4.21

and for pt1
T in bins of mtt in Figure 4.22.
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Figure 4.18 (a) Acceptance correction, (b) efficiency, and (c) reconstruction-to-particle-level migration

matrix for the Pout observable.
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Figure 4.19 (a) Acceptance correction, (b) efficiency, and (c) reconstruction-to-particle-level migration

matrix for the pt1
T observable in bins of mtt .
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Figure 4.20 (a) Acceptance correction, (b) efficiency, and (c) reconstruction-to-particle-level migration

matrix for the pt2
T observable in bins of Njets.
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Figure 4.21 (a) Acceptance correction, (b) efficiency, and (c) reconstruction-to-parton-level migration

matrix for the pt1
T observable.
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Figure 4.22 (a) Acceptance correction, (b) efficiency, and (c) reconstruction-to-parton-level migration

matrix for the pt1
T observable in bins of mtt .
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4.6.1 Closure tests

The unfolding procedure is validated and assessed for stability using closure and stress tests.

For closure, it is required to be able to sufficiently recover the particle level or parton level

distribution, given the reconstructed distribution, from the simulated data with which the

response is formed.

First, the nominal simulated sample is split evenly into two subsamples, ‘half-0’ and ‘half-

1’. The response, formed of the acceptance correction factors, efficiencies, and migrations, is

determined from half-1 by comparing the simulated detector-level distribution to the distribution

at particle or parton level. The half-0 subsample is then regarded as pseudodata and passed

through the unfolding mechanism described above, applying the corrections from half-1. A χ2

test statistic is calculated using the statistical uncertainties of the samples. If the corresponding

p-value is not less than 0.05, the procedure is declared robust. For p < 0.05, the bin edges are

manually adjusted (moved or merged) where there is most disagreement and the procedure is

repeated.

The unfolded pseudodata and particle level distribution is shown for pt1
T in Figure 4.23a

and for |Pout| in Figure 4.23b. They are also shown for pt1
T in bins of mtt in Figure 4.23c, and

for pt2
T in bins of Njets in Figure 4.23d. The same plots for the parton level unfolding are shown

for pt1
T and pt1

T in bins of mtt in Figure 4.24. After appropriate adjustments to the bins, the

closure for all 1D distributions unfolded to particle level give to a mean p-value of 0.57 for

absolute cross sections. For 1D distributions unfolded to parton level, the mean p-value is

0.66. Correspondingly, the mean p-values are 0.59 and 0.67 for for absolute 2D cross sections

unfolded to particle and parton level, respectively. In the case of normalised cross sections, the

level of per-bin agreement is very similar, but the reduced number of degrees of freedom lowers

the p-values by approximately 4% to 7%. No final p-values are below 0.06. The unfolding

procedure, including responses and regularisation, is therefore considered robust in terms of

closure. This means it can appropriately recover particle level and parton level distributions

from data.
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Figure 4.23 Closure tests for (a) pt1
T , (b) |Pout|, (c) pt1

T vs. mtt , and (d) pt
T vs. Njets, unfolded to

particle level.
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Figure 4.24 Closure tests for (a) pt1
T and (b) pt1

T vs. mtt , unfolded to parton level.

4.6.2 Stress tests

Stress tests are performed to assess the degree of bias introduced by the unfolding regularisation.

Similarly to the closure tests described above, half of the nominal simulation sample is used

to calculate the ingredients for the unfolding procedure, and the other half is considered as

pseudodata. Only the nominal simulation sample is used, so that the effects of bias in the

unfolding procedure are isolated. The pseudodata are reweighted to change the shape of the

simulated observed distribution. This distribution is then unfolded and the result is compared

to the reweighted simulated particle or parton level simulated distribution. The disagreement

between these distributions provides an indication of the bias in the unfolding.

The reweighting factor for each bin in a distribution is a multiple k of the ratio of the

reconstructed bin populations from pseudodata to simulation,

fi = k × Npseudodata
i

NMC truth
i

. (4.13)
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This is done with k = −5,−3,−1, 1, 3, 5. It is expected that the closure becomes worse at larger

values of |k|, since the bias is amplified.

The simulated stressed distributions and pseudodata unfolded to particle level are shown for

p
t1
T in Figure 4.25, |Pcross| in Figure 4.26, pt1

T in bins of mtt in Figure 4.27, and for pt2
T in bins of

Njets in Figure 4.28. They are also shown for the unfolding to parton level for pt1
T in Figure 4.29

and for pt1
T in bins of mtt in Figure 4.30. This procedure confirms that the unfolding is able to

successfully recover distributions that are different from those used to form the response.

4.6.3 Bump insertion

The ability of the unfolding procedure to reconstruct an unexpected deviation from the

simulation is also tested. The regularisation used in the unfolding could smooth out these

deviations, which should be able to be resolved by the analysis. To do this, the mtt distribution

is reweighted by a factor

fi = 1 + k exp

−(mtt −m0)2

2σ2

 (4.14)

for the ith bin, where m0 = 900 GeV, σ = 60 GeV and k = −0.35 are chosen for this test. This

inserts a negative bump into the pseudodata around mtt , which should be reconstructed in the

unfolded distribution.

The unfolded pseudodata, stressed according to Equation 4.14, and the original and stressed

simulated mtt spectra are shown at particle level in Figure 4.31a and at parton level in

Figure 4.31b. In both cases, the inserted bump is preserved through the unfolding.

4.7 Systematic uncertainties

The measured differential tt production cross section results shown in Section 4.8 are affected by

several sources of systematic uncertainties. The methods used to estimate these are described

in this section. The dominant sources of uncertainty are related to the modelling of the detector
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Figure 4.25 Stress tests for the unfolding of pt1
T to particle level with stress factors (a) 1, (b) 3, (c) 5.
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Figure 4.26 Stress tests for the unfolding of |Pout| to particle level with stress factors (a) 1, (b) 3, (c) 5.
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Figure 4.27 Stress tests for the unfolding of pt1
T vs. mtt to particle level with stress factors (a) 1, (b) 3,

(c) 5.
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Figure 4.28 Stress tests for the unfolding of pt2
T vs. Njets to particle level with stress factors (a) 1, (b) 3,

(c) 5.
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Figure 4.29 Stress tests for the unfolding of pt1
T to parton level with stress factors (a) 1, (b) 3, (c) 5.
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Figure 4.30 Stress tests for the unfolding of pt1
T vs. mtt to parton level with stress factors (a) 1, (b) 3,

(c) 5.
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Figure 4.31 Bump tests for the unfolding in mtt to (a) particle level and (b) parton level.

and the simulation of signal and background processes. Systematic uncertainties from unfolding

are found to have less impact.

For each source of systematic uncertainty, one or two alternative Monte Carlo samples

are generated using the fast detector simulation described in Section 3.4. An overview of the

samples used is given in Section 4.4. The deviation from the nominal value is recorded for

each bin in a distribution. The absolute systematic variation is given by the difference between

the number of events in the bin for the systematic variation sample and the nominal sample,

∆N = Nsyst.−Nnominal. Where two alternative systematic samples are available, the deviations

are generally asymmetric and recorded as ‘up’ and ‘down’ variations. When only a single

alternative sample is used, the systematic uncertainty is taken as the symmetric deviation from

the nominal value.

Each source of systematic uncertainty is evaluated before and after performing the unfolding

procedure described in Section 4.6, using the acceptance correction factors, efficiencies, and

migrations derived from the nominal signal sample with fast detector simulation. The unfolded

distributions are compared to the ‘true’ distributions (at particle or parton level) for the
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alternative sample. The relative systematic uncertainty is then given by the symmetrised

relative difference between the unfolded and true distributions.

4.7.1 Experimental uncertainties

Systematic uncertainties arising from the experimental method and modelling of the detector

in the simulation are assessed. For detector modelling, they are evaluated in each case by

swapping the signal and non-all-hadronic tt background samples with the systematic variation

samples. The data-driven estimate of the multi-jet background is then recalculated for each

variation using the method described in Section 4.5.

Luminosity

The relative uncertainty of the integrated luminosity of the dataset collected with ATLAS in

2015 and 2016 is 2.9%, taken from data collected with van der Meer scans [308, 309]. In this

procedure, each beam position is scanned across the transverse plane and the distribution of

observed luminosity versus beam position recorded.

Trigger

No uncertainties are typically assigned for the trigger in analyses that work in the plateau

region of the turn-on curve, shown in Figure 4.1 for the analysis presented in this chapter. For

this analysis, the multi-jet trigger efficiency ranges from approximately 94% at the threshold

pT > 55 GeV, to approximately 98% in the high pT region. Since this difference in efficiency is

far smaller than the other effects mentioned in this section, no uncertainty is evaluated. It is

expected that the impact of including such an uncertainty is negligible.

Jet reconstruction

The systematic contributions from the uncertainty of the jet energy scale are estimated by

varying the energies of jets according to uncertainties derived from simulation, test beam data,
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where MJB measurements end and larger uncertainties are
taken from the single-particle response. The uncertainty is
fairly constant as a function of η and reaches a maximum of
2.5% for the most forward jets. A sharp feature can be seen
in the region 2.0 < jηj < 2.6 due to the nonclosure uncer-
tainty of the η-intercalibration.
The complete set of systematic uncertainties provides a

detailed understanding of the many factors that influence
the JES. Uncertainties are generally derived in specific
regions of jet pT and η, and the correlation of uncertainties
between two jets with different kinematics can vary in
strength. For the set of variables fpT; ηg, the Pearson
correlation coefficient (C) between two jets is used to
quantify the correlations, and is defined as

CðfpT;ηg1;fpT;ηg2Þ

¼ CovðfpT;ηg1;fpT;ηg2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CovðfpT;ηg1;fpT;ηg1Þ×CovðfpT;ηg2;fpT;ηg2Þ

p ;

ð3Þ

where Cov is the covariance of the systematic uncertainties
between the two sets of variables.
The jet–jet correlation matrix, including all 80 uncer-

tainties, is shown as a function of jet pT (ηjet1 ¼ ηjet2 ¼ 0)
in Fig. 13(a) and as a function of jet η (pjet1

T ¼ pjet2
T ¼

60 GeV) in Fig. 13(b). Regions of strong correlation
(C ∼ 1) are shown in mid-tone red, and of weak correlation
(C ∼ 0) in dark blue. In the pT correlation map, features are
visible at low, medium, high, and very high pT, corre-
sponding to the kinematic phase space of the in situ pT-
balance calibrations and the single-particle response. In the
η correlation map the correlation is strongest in the central
and forward η regions of the η-intercalibration. Strong
jet-jet correlations are seen as a function of η due to the

dominance of the MC modeling term in the η-intercalibra-
tion. Correlations due to the nonclosure uncertainty, being
most significant for 2.2 < jηj < 2.4, are seen to be local-
ized in a narrow η region, as expected.
While the 80 uncertainties provide the most accurate

understanding of the JES uncertainty, a number of physics
analyses would be hampered by the implementation and
evaluation of them all. Furthermore, many would receive
no discernible benefit from the rigorous conservation of all
correlations. For these cases a reduced set of nuisance
parameters (NPs) is made available that seeks to preserve as
precisely as possible the correlations across jet pT and η.
As a first step, the global reduction [3] is performed

through an eigen-decomposition of the 67 pT-dependent
in situ uncertainties following from the Z=γ þ jet and
MJB calibrations. The five principal components of greatest
magnitude are kept separate and the remaining components
are quadratically combined into a singleNP, treating them as
independent of one another. This reduces the number of
independent in situ uncertainty sources from 67 to 6 NPs,
with only percent-level losses to the correlations between
jets. The difference in correlation, given by Eq. (3), between
the full NP representation and the reduced representation as
a function of jet pT is given in Fig. 14(a), showing the losses
to be small and constrained in kinematic phase space.
A new procedure is introduced for 2015 data to further

reduce the remaining 19 NPs (6 in situ pT-balance NPs and
13 others) into a smaller, strongly reduced representation.
Various combinations of the remaining NPs into three
components are attempted, and NPs within a single
component are quadratically combined. The combinations
attempt to group NPs into pT and η regions where they are
most relevant, thereby minimizing the correlation loss
and reducing the potential for artificial correlation struc-
tures across large regions of jet kinematic phase space.
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FIG. 12. Combined uncertainty in the JES of fully calibrated jets as a function of (a) jet pT at η ¼ 0 and (b) η at pT ¼ 80 GeV.
Systematic uncertainty components include pile-up, punch-through, and uncertainties propagated from the Z=γ þ jet and MJB (absolute
in situ JES) and η-intercalibration (relative in situ JES). The flavor composition and response uncertainties assume a quark and gluon
composition taken from PYTHIA dijet MC simulation (inclusive jets).
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fairly constant as a function of η and reaches a maximum of
2.5% for the most forward jets. A sharp feature can be seen
in the region 2.0 < jηj < 2.6 due to the nonclosure uncer-
tainty of the η-intercalibration.
The complete set of systematic uncertainties provides a

detailed understanding of the many factors that influence
the JES. Uncertainties are generally derived in specific
regions of jet pT and η, and the correlation of uncertainties
between two jets with different kinematics can vary in
strength. For the set of variables fpT; ηg, the Pearson
correlation coefficient (C) between two jets is used to
quantify the correlations, and is defined as
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where Cov is the covariance of the systematic uncertainties
between the two sets of variables.
The jet–jet correlation matrix, including all 80 uncer-

tainties, is shown as a function of jet pT (ηjet1 ¼ ηjet2 ¼ 0)
in Fig. 13(a) and as a function of jet η (pjet1

T ¼ pjet2
T ¼

60 GeV) in Fig. 13(b). Regions of strong correlation
(C ∼ 1) are shown in mid-tone red, and of weak correlation
(C ∼ 0) in dark blue. In the pT correlation map, features are
visible at low, medium, high, and very high pT, corre-
sponding to the kinematic phase space of the in situ pT-
balance calibrations and the single-particle response. In the
η correlation map the correlation is strongest in the central
and forward η regions of the η-intercalibration. Strong
jet-jet correlations are seen as a function of η due to the

dominance of the MC modeling term in the η-intercalibra-
tion. Correlations due to the nonclosure uncertainty, being
most significant for 2.2 < jηj < 2.4, are seen to be local-
ized in a narrow η region, as expected.
While the 80 uncertainties provide the most accurate

understanding of the JES uncertainty, a number of physics
analyses would be hampered by the implementation and
evaluation of them all. Furthermore, many would receive
no discernible benefit from the rigorous conservation of all
correlations. For these cases a reduced set of nuisance
parameters (NPs) is made available that seeks to preserve as
precisely as possible the correlations across jet pT and η.
As a first step, the global reduction [3] is performed

through an eigen-decomposition of the 67 pT-dependent
in situ uncertainties following from the Z=γ þ jet and
MJB calibrations. The five principal components of greatest
magnitude are kept separate and the remaining components
are quadratically combined into a singleNP, treating them as
independent of one another. This reduces the number of
independent in situ uncertainty sources from 67 to 6 NPs,
with only percent-level losses to the correlations between
jets. The difference in correlation, given by Eq. (3), between
the full NP representation and the reduced representation as
a function of jet pT is given in Fig. 14(a), showing the losses
to be small and constrained in kinematic phase space.
A new procedure is introduced for 2015 data to further

reduce the remaining 19 NPs (6 in situ pT-balance NPs and
13 others) into a smaller, strongly reduced representation.
Various combinations of the remaining NPs into three
components are attempted, and NPs within a single
component are quadratically combined. The combinations
attempt to group NPs into pT and η regions where they are
most relevant, thereby minimizing the correlation loss
and reducing the potential for artificial correlation struc-
tures across large regions of jet kinematic phase space.
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FIG. 12. Combined uncertainty in the JES of fully calibrated jets as a function of (a) jet pT at η ¼ 0 and (b) η at pT ¼ 80 GeV.
Systematic uncertainty components include pile-up, punch-through, and uncertainties propagated from the Z=γ þ jet and MJB (absolute
in situ JES) and η-intercalibration (relative in situ JES). The flavor composition and response uncertainties assume a quark and gluon
composition taken from PYTHIA dijet MC simulation (inclusive jets).
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Figure 4.32 Combined systematic uncertainty from the jet energy scale of calibrated jets in ATLAS.

The contributions from categories of components are shown as a function of (a) jet transverse momentum

pT at η = 0, and (b) pseudorapidity η at pT = 80 GeV. Data from pp collisions at
√
s = 13 TeV taken in

2015 were used. From [310].

and in-situ calibration measurements [244, 310]. Contributions from jet flavour composition,

η-intercalibration, punch-through, single-particle response, calorimeter response to different jet

flyovers, and pile-up are taken into account, giving more than 80 separate correlated systematic

uncertainty terms [310]. The contributions to the fractional jet energy scale uncertainty

are shown for the categories as functions of jet pT and pseudorapidity in Figure 4.32. A

reduced set of 29 near-independent components is used in this analysis, derived from the

principal components of eigenbasis decompositions of the set of nuisance parameters within each

category [311–313]. Since the analysis presented in this chapter is performed in the all-hadronic

final state containing many jets, the resulting differential cross section measurements are

dominated by the systematic uncertainty arising from the determination of the jet energy scale,

at approximately 5–10% combined, except for in statistically-limited bins.

The uncertainty due to the difference in jet energy resolution between the data and simulated

events is calculated by applying a smearing to the simulated jet pT according to the resolution

for pT and η [314]. The relative uncertainty from the jet energy resolution is found to be

approximately 1%.
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The systematic uncertainty in the track-based tagging of jets from pileup events is evaluated

by randomly discarding events according to the difference between the data and simulation [315].

b-jet tagging

The systematic uncertainties associated with tagging b-jets are separated by the b-jet tagging

efficiency, the c-jet tagging efficiency, and the misidentified light flavour jet tagging efficiency.

The efficiencies are all estimated from data and parameterised as functions of pT and η [316]. A

systematic uncertainty is assigned for each correction applied to correct the efficiency differences

between data and the simulation. The uncertainties in the simulation modelling of the b-jet

tagging performance are assessed by studying b-jets in dileptonic tt events. While the systematic

uncertainty from the light flavour jet tagging efficiency correction is generally < 1%, the b-jet

tagging efficiency systematic uncertainty can be as large as 5%.

Lepton reconstruction

Uncertainties related to the modelling of the lepton energy and momentum scales and resolution

in simulation are estimated from Z → ee/µµ, J/ψ → ee/µµ, and W → eµ processes [235, 237,

317]. Since the efficiency of the zero lepton selection is very high, the e, µ, and leptonically

decaying τ reconstruction, trigger, and identification are found to contribute negligibly to the

total systematic uncertainties in the results.

The uncertainties relating to the reconstruction of hadronically decaying τ leptons is

estimated from simulations. Only the τ -jet energy scale uncertainties are calculated and are

found to be negligibly small.

4.7.2 Signal modelling

The choice of simulation used to model the all-hadronic tt signal process affects the kinematic

properties of the tt system and its decay products. It also affects the object reconstruction

efficiencies and indirectly the estimate of the non-all-hadronic tt background.
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Matrix element

The uncertainty due to the choice of the matrix element generator is evaluated by unfolding

the MadGraph5_aMC@NLO+Pythia8 sample using the acceptance correction factors,

efficiencies, and migrations from the Powheg+Pythia8 nominal sample. The unfolded

spectra are compared to the particle and parton level spectra from the systematic variation

sample and the difference gives the systematic uncertainty.

Parton shower

The uncertainty due to the choice of the parton shower model is determined by unfolding

the Powheg+Herwig7 sample, again using the ingredients from the nominal sample. The

deviation between the unfolded and true varied spectra is taken as the systematic uncertainty

contribution from the choice of parton shower model. The resulting systematic uncertainties

are found to exhibit strong dependence on the spectrum and bin. In extreme cases, the relative

uncertainties are as large as 30%, although they are 1–5% in most bins.

Initial- and final-state radiation

The level of initial- and final state radiation (IFSR) from QCD effects affects the distribution

of Njets in addition to the kinematics of the tt system. In order to evaluate the uncertainty

due to the choice of IFSR modelling, simulated tt samples with modified settings are used.

The renormalisation, factorisation, and hdamp parameters for these ‘Var. Up’ and ‘Var. Down’

samples are shown in Table 4.8. In each case, the unfolded spectrum from the nominal sample

is compared to the unfolded spectrum from the variation sample and the difference is taken as

the corresponding side of the systematic uncertainty. For most bins, the total IFSR uncertainty

is at the level of a few percent, comparable in magnitude to the parton shower uncertainty.
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Parton distribution functions

The systematic uncertainty due to the choice of PDF set is assessed using the thirty PDF sets

provided by PDF4LHC15 [318]. The choice of PDF impacts the acceptance correction factors,

efficiencies, and migrations used in the unfolding. Therefore the uncertainty from the PDF

choice is assessed by unfolding the nominal tt signal sample using these ingredients reweighted

according to the difference in spectra. The resulting relative systematic uncertainty is found to

be < 1%, with some excesses at 1–2% in statistically limited bins.

Monte Carlo sample size

The limited size of the nominal simulated signal sample contributes a sampling uncertainty to

the unfolded differential cross section results. To estimate the size of this uncertainty, 10 000

alternative samples are generated by sampling from a joint Gaussian with mean given by the

nominal estimated bin counts with their corresponding independent variances. The smeared

spectra are unfolded and the sample standard deviation of their unfolded distributions is used

as the systematic uncertainty due to limited Monte Carlo sample size. The resulting uncertainty

is found to be < 0.5% in most cases, peaking at 1–2% in bins with low population.

4.7.3 Background modelling

The data-driven estimation of the multi-jet background, detailed in Section 4.5, contributes

two sources of uncertainty. The first is a statistical effect, stemming from the limited number

of events used to perform the estimation. This uncertainty is accounted for in the same way as

the Monte Carlo sample size uncertainty above.

The second component of uncertainty is from the assumption of independence used in

the ABCD-inspired method. To calculate this, the same background estimation procedure is

repeated using the alternative ratio, given by S = CG/A from Equation 4.7. This makes use of

the regions with Nb = 0. The systematic error is then taken to be the difference in the unfolded

distributions for the usual and alternative estimates of the multi-jet background.
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Figure 4.33 Uncertainty composition for the normalised cross section as a function of Njets, unfolded

to particle level. The lighter shaded area indicates the total statistical and systematic uncertainty.

The relative systematic uncertainty from background modelling is calculated by this method

to be usually < 5%, and very often smaller than the jet energy scale uncertainty. In some rare

cases, it is found to be the largest uncertainty. This is in regions where the signal purity is very

low, amplifying the effect of the background modelling in the sources of systematic uncertainty.

4.7.4 Total uncertainty composition

For the event yields passing selection, the total uncertainties are given in Table 4.2. The

symmetrised total relative uncertainty is approximately 7.6% for the tt all-hadronic signal

sample, 8.8% for the tt non-all-hadronic background, and 15% for the multi-jet background.

The symmetrised total relative uncertainty on the total Monte Carlo yield is 6.6%.

The compositions of the total uncertainty for the one-dimensional relative differential cross

sections unfolded to particle level are shown in Figures 4.33 to 4.38. The uncertainty breakdowns

for all other cross sections (relative 2D particle level, relative 1D parton level, relative 2D

particle level, absolute 1D particle level, absolute 2D particle level, absolute 1D parton level,

absolute 2D particle level) are shown in Appendix B.
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Figure 4.34 Uncertainty composition for the normalised cross section as a function of (a) pt1
T , (b) |yt1 |,

(c) pt2
T , and (d) |yt2 |, unfolded to particle level. The lighter shaded area indicates the total statistical

and systematic uncertainty.
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Figure 4.35 Uncertainty composition for the normalised cross section as a function of (a) ptt
T , (b) |ytt |,

(c) mtt , and (d) Htt
T , unfolded to particle level. The lighter shaded area indicates the total statistical

and systematic uncertainty.
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Figure 4.36 Uncertainty composition for the normalised cross section as a function of (a) χtt , (b) Ztt ,

(c) cos θ?, and (d) ∆φ, unfolded to particle level. The lighter shaded area indicates the total statistical

and systematic uncertainty.
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Figure 4.37 Uncertainty composition for the normalised cross section as a function of (a) |yboost|,
(b) |Pout|, and (c) |Pcross|, unfolded to particle level. The lighter shaded area indicates the total statistical

and systematic uncertainty.

173



4 Measurements of tt differential production cross sections 4.7 Systematic uncertainties

0 2 4 6 8 10 12 14 16
leading
Wb R

60−

40−

20−

0

20

40

60

F
ra

ct
io

na
l U

nc
er

ta
in

ty
 [%

]

Stat.+Syst. Unc. Stat. Unc.

JES/JER Flavor Tagging

QCD Syst. IFSR, PDF

QCD Stat. MCSignalStat.

Hadronisation Hard Scattering

ATLAS Internal
-1 = 13 TeV, 36.1 fbs

All-had resolved

Fiducial phase-space

Relative cross-section

(a) Rleading
W b

0 2 4 6 8 10 12
subleading
Wb R

60−

40−

20−

0

20

40

60

F
ra

ct
io

na
l U

nc
er

ta
in

ty
 [%

]
Stat.+Syst. Unc. Stat. Unc.

JES/JER Flavor Tagging

QCD Syst. IFSR, PDF

QCD Stat. MCSignalStat.

Hadronisation Hard Scattering

ATLAS Internal
-1 = 13 TeV, 36.1 fbs

All-had resolved

Fiducial phase-space

Relative cross-section

(b) Rsubleading
W b

0 0.2 0.4 0.6 0.8 1 1.2
leading
Wt R

60−

40−

20−

0

20

40

60

F
ra

ct
io

na
l U

nc
er

ta
in

ty
 [%

]

Stat.+Syst. Unc. Stat. Unc.

JES/JER Flavor Tagging

QCD Syst. IFSR, PDF

QCD Stat. MCSignalStat.

Hadronisation Hard Scattering

ATLAS Internal
-1 = 13 TeV, 36.1 fbs

All-had resolved

Fiducial phase-space

Relative cross-section

(c) Rleading
W t

0 0.2 0.4 0.6 0.8 1 1.2 1.4
subleading
Wt R

60−

40−

20−

0

20

40

60

F
ra

ct
io

na
l U

nc
er

ta
in

ty
 [%

]

Stat.+Syst. Unc. Stat. Unc.

JES/JER Flavor Tagging

QCD Syst. IFSR, PDF

QCD Stat. MCSignalStat.

Hadronisation Hard Scattering

ATLAS Internal
-1 = 13 TeV, 36.1 fbs

All-had resolved

Fiducial phase-space

Relative cross-section

(d) Rsubleading
W t

Figure 4.38 Uncertainty composition for the normalised cross section as a function of (a) Rleading
W b ,

(b) Rsubleading
W b , (c) Rleading

W t , and (d) Rsubleading
W t , unfolded to particle level. The lighter shaded area

indicates the total statistical and systematic uncertainty.
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4.8 Results

Unfolded differential tt production cross sections are shown in this section. Selected one- and

two-dimensional distributions are reported, unfolded to particle and parton levels. Each figure

displays the unfolded data with statistical uncertainty and combined statistical and systematic

uncertainties. The data are also compared with multiple predictions from simulations, described

in Section 4.4. The cross sections reported in this section are normalised, relative to the

inclusive tt production cross section. The corresponding absolute differential cross sections are

provided in Appendix C, displayed in the same order as this section. The results are discussed

in Section 4.9.

4.8.1 Particle level 1D differential cross sections

The tt production cross section is reported as a function of the number of jets per event,

Njets, in Figure 4.39. Cross sections are reported as functions of kinematic variables for the

reconstructed t quarks in Figure 4.40, and for the tt system in Figure 4.41. Distributions for

the remaining observables are given in Figures 4.42 to 4.44.
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bottom panels show the ratios of predictions from simulations to the data.
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Figure 4.40 Normalised differential cross sections as functions of (a) pt1
T , (b) |yt1 |, (c) pt2

T , and (d) |yt2 |,
all unfolded to particle level. The bottom panels show the ratios of predictions from simulation to the

data.
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Figure 4.41 Normalised differential cross sections as functions of (a) ptt
T , (b) |ytt |, (c) mtt , and (d) Htt

T ,

all unfolded to particle level. The bottom panels show the ratios of predictions from simulation to the

data.
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Figure 4.42 Normalised differential cross sections as functions of (a) χtt , (b) Ztt , (c) cos θ?, and (d) ∆φ,

all unfolded to particle level. The bottom panels show the ratios of predictions from simulation to the

data.
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Figure 4.43 Normalised differential cross sections as functions of (a) |yboost|, (b) |Pout|, and (c) |Pcross|,
all unfolded to particle level. The bottom panels show the ratios of predictions from simulations to the

data.
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Figure 4.44 Normalised differential cross sections as functions of (a) Rleading
W b , (b) Rsubleading

W b , (c) Rleading
W t ,

and (d) Rsubleading
W t , all unfolded to particle level. The bottom panels show the ratios of predictions from

simulation to the data.
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4.8.2 Particle level 2D differential cross sections

Normalised differential tt production cross sections are reported in two-dimensional distributions

with external variables pt2
T and mtt in Figures 4.45 to 4.49. They are given in distributions in

bins of Njets in Figures 4.50 to 4.55. In each figure, panel (a) shows the value of the normalised

cross section as a function of the internal variable, in bins of the external variable. Panel (b)

compares different predictions by taking the ratio to the unfolded data. This panel also shows

the statistical and combined statistical and systematic uncertainties on the data.
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Figure 4.45 (a) Normalised differential cross section as a function of pt1
T in bins of pt2

T , unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure 4.46 (a) Normalised differential cross section as a function of pt1
T in bins of mtt , unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure 4.47 (a) Normalised differential cross section as a function of pt2
T in bins of mtt , unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure 4.48 (a) Normalised differential cross section as a function of ptt
T in bins of mtt , unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure 4.49 (a) Normalised differential cross section as a function of |ytt | in bins of mtt , unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure 4.50 (a) Normalised differential cross section as a function of pt1
T in bins of Njets, unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure 4.51 (a) Normalised differential cross section as a function of pt2
T in bins of Njets, unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure 4.52 (a) Normalised differential cross section as a function of ptt
T in bins of Njets, unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure 4.53 (a) Normalised differential cross section as a function of ∆φ in bins of Njets, unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure 4.54 (a) Normalised differential cross section as a function of |Pout| in bins of Njets, unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure 4.55 (a) Normalised differential cross section as a function of |Pcross| in bins of Njets, unfolded

to particle level. (b) Ratio of predictions from simulations to data.
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4.8.3 Parton level 1D differential cross sections

Cross sections are reported as functions of kinematic variables for the reconstructed t quarks in

Figure 4.56, and for the tt system in Figure 4.57. Distributions for the remaining observables

are given in Figure 4.58.
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Figure 4.56 Normalised differential cross sections as functions of (a) pt1
T , (b) |yt1 |, (c) pt2

T , and (d) |yt2 |,
all unfolded to parton level. The bottom panels show the ratios of predictions from simulation to the

data.
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Figure 4.57 Normalised differential cross sections as functions of (a) ptt
T , (b) |ytt |, (c) mtt , and (d) Htt

T ,

all unfolded to parton level. The bottom panels show the ratios of predictions from simulation to the

data.
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Figure 4.58 Normalised differential cross sections as functions of (a) χtt , (b) ∆φ, and (c) |yboost|, all
unfolded to parton level. The bottom panels show the ratios of predictions from simulation to the data.
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4.8.4 Parton level 2D differential cross sections

Normalised differential tt production cross sections are reported in two-dimensional distributions

with external variables pt2
T and |yt1 | in Figures 4.59 and 4.60. They are reported in bins of mtt in

Figures 4.61 to 4.66. In each figure, panel (a) shows the value of the normalised cross section as

a function of the internal variable, in bins of the external variable. Panel (b) compares different

predictions by taking the ratio to the unfolded data. This panel also shows the statistical and

combined statistical and systematic uncertainties on the data.
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Figure 4.59 (a) Normalised differential cross section as a function of pt1
T in bins of pt2

T , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure 4.60 (a) Normalised differential cross section as a function of |yt2 | in bins of |yt1 |, unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure 4.61 (a) Normalised differential cross section as a function of pt1
T in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure 4.62 (a) Normalised differential cross section as a function of |yt1 | in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure 4.63 (a) Normalised differential cross section as a function of pt2
T in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure 4.64 (a) Normalised differential cross section as a function of |yt2 | in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure 4.65 (a) Normalised differential cross section as a function of ptt
T in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure 4.66 (a) Normalised differential cross section as a function of |ytt | in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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4.8.5 Comparison to simulations

The measured differential cross sections are compared to theoretical predictions by means of a

χ2 test. Values are calculated using the total experimental covariance matrix for each cross

section. The χ2 test statistic is given by the inner product

χ2 = vTΣ−1v, (4.15)

where v is the column vector of differences between the measured and predicted cross section

values. The experimental covariance matrix Σ is calculated from the sum of contributions,

Σ = Σ1 + ΣME + ΣPS + ΣIFSR + ΣPDF, (4.16)

and its rank gives the number of degrees of freedom (NDF) in the χ2 calculation. The covariance

matrix Σ1 includes covariances from statistical effects, as well as uncertainties in modelling the

detector and background contribution. The statistical uncertainty is calculated by performing

pseudo-experiments, where in each the distribution of data is given by sampling from a Poisson

distribution with expectation values given by the nominal prediction. The bin counts are

modified by adding a contribution from systematic uncertainties discussed in Section 4.7,

sampled from Gaussian distributions. The varied bin counts are limited to be positive and

passed through the unfolding procedure, and the resulting distribution of cross sections is used

to determine Σ1.

The other contributions from signal modelling uncertainties in Equation 4.16, cannot

currently be represented as smooth variations to pass through the unfolding procedure. Therefore

their contribution is added to Σ1 separately. The matrices are calculated independently to

account for systematic modelling uncertainties in the tt matrix element (ΣME), parton shower

(ΣPS), initial- and final-state radiation (ΣIFSR), and parton distribution functions (ΣPDF). Each

is computed by multiplying the measured cross section in each bin by the relative systematic

uncertainty and assuming bin-to-bin correlations of 100%.
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4 Measurements of tt differential production cross sections 4.8 Results

The χ2/NDF values for one-dimensional absolute and normalised differential cross sections

unfolded to particle level are shown in Tables 4.10 and 4.11, respectively. The χ2/NDF values

for the two-dimensional distributions unfolded to particle level are given in Table 4.12. For

differential cross sections unfolded to parton level, the χ2/NDF values are given in Tables 4.13

and 4.14. The tables also show the corresponding p-values, the probabilities that the χ2 are

larger than or equal to their observed values under the Standard Model hypothesis given by the

simulation. The level of compatibility with the various simulations is discussed in Section 4.9.
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Results
PWG+PY8 PWG+PY8 Var. Up PWG+PY8 Var. Down aMC@NLO+PY8 Sherpa PWG+H7

Observable χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value

Njets 7.4/5 0.19 1.0/5 0.96 19.9/5 < 0.01 26.2/5 < 0.01 9.5/5 0.09 6.3/5 0.28
p

t1
T 21.7/11 0.03 18.8/11 0.07 26.5/11 < 0.01 14.5/11 0.21 29.3/11 < 0.01 8.2/11 0.69

|yt1 | 2.8/6 0.83 4.1/6 0.67 3.0/6 0.81 4.6/6 0.59 1.7/6 0.95 4.4/6 0.62
p

t2
T 19.9/9 0.02 10.7/9 0.29 34.7/9 < 0.01 34.4/9 < 0.01 2.7/9 0.98 8.4/9 0.49

|yt2 | 3.4/6 0.76 2.2/6 0.90 4.0/6 0.68 3.1/6 0.80 5.5/6 0.48 7.0/6 0.32
p

tt
T 5.9/8 0.66 58.7/8 < 0.01 7.2/8 0.52 20.1/8 < 0.01 27.8/8 < 0.01 4.6/8 0.80

|ytt | 11.7/18 0.86 12.8/18 0.81 12.9/18 0.80 15.2/18 0.65 23.9/18 0.16 11.9/18 0.85
m

tt 17.6/9 0.04 12.8/9 0.17 23.1/9 < 0.01 22.5/9 < 0.01 10.8/9 0.29 10.9/9 0.29
H

tt
T 24.5/11 0.01 24.3/11 0.01 34.2/11 < 0.01 27.3/11 < 0.01 16.4/11 0.13 9.8/11 0.55

χ
tt 3.6/7 0.83 4.8/7 0.69 7.3/7 0.39 4.2/7 0.76 7.7/7 0.36 5.8/7 0.57
Z

tt 4.1/5 0.53 11.8/5 0.04 5.7/5 0.33 11.9/5 0.04 13.4/5 0.02 5.4/5 0.37
cos θ? 8.3/8 0.41 4.8/8 0.77 13.9/8 0.09 10.0/8 0.27 15.2/8 0.06 8.2/8 0.42
∆φ 4.2/6 0.64 3.9/6 0.69 10.5/6 0.10 31.6/6 < 0.01 3.5/6 0.74 3.9/6 0.69
|yboost| 11.6/15 0.71 12.2/15 0.67 12.8/15 0.61 11.1/15 0.75 16.7/15 0.34 11.5/15 0.71
|Pout| 2.7/7 0.91 28.3/7 < 0.01 6.3/7 0.51 15.1/7 0.03 6.8/7 0.45 3.2/7 0.86
|Pcross| 4.9/10 0.90 2.7/10 0.99 7.3/10 0.69 2.9/10 0.98 2.9/10 0.98 3.2/10 0.98
R

leading
Wb 5.0/6 0.54 3.9/6 0.69 5.5/6 0.48 3.5/6 0.75 8.9/6 0.18 6.5/6 0.37

R
subleading
Wb 4.5/6 0.61 3.8/6 0.71 5.4/6 0.49 2.4/6 0.88 3.2/6 0.78 4.0/6 0.68

R
leading
Wt 12.8/7 0.08 15.1/7 0.04 14.1/7 0.05 12.5/7 0.09 16.8/7 0.02 12.2/7 0.09

R
subleading
Wt 2.5/6 0.86 1.7/6 0.94 3.7/6 0.71 3.4/6 0.76 6.6/6 0.36 5.6/6 0.47

Table 4.10 Comparison of the measured particle level single differential absolute cross sections with the predictions from several simulations. For each

prediction a χ2 and a p-value is calculated using the covariance matrix of the measured spectrum. The number of degrees of freedom (NDF) is equal to

the number of bins in the distribution.
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Results
PWG+PY8 PWG+PY8 Var. Up PWG+PY8 Var. Down aMC@NLO+PY8 Sherpa PWG+H7

Observable χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value

Njets 5.0/4 0.29 0.8/4 0.94 13.7/4 < 0.01 28.2/4 < 0.01 6.5/4 0.17 1.5/4 0.82
p

t1
T 15.3/10 0.12 11.6/10 0.31 21.2/10 0.02 12.7/10 0.24 31.2/10 < 0.01 8.7/10 0.56

|yt1 | 1.1/5 0.96 2.1/5 0.83 0.9/5 0.97 2.0/5 0.85 0.9/5 0.97 2.0/5 0.85
p

t2
T 18.9/8 0.02 9.1/8 0.34 37.7/8 < 0.01 44.9/8 < 0.01 3.4/8 0.91 10.1/8 0.26

|yt2 | 3.8/5 0.57 1.6/5 0.90 4.9/5 0.42 3.1/5 0.68 5.8/5 0.32 4.9/5 0.43
p

tt
T 4.5/7 0.72 18.2/7 0.01 10.2/7 0.18 15.9/7 0.03 13.2/7 0.07 6.4/7 0.49

|ytt | 12.0/17 0.80 13.2/17 0.72 12.7/17 0.76 16.2/17 0.51 22.1/17 0.18 11.8/17 0.81
m

tt 19.9/8 0.01 12.8/8 0.12 26.9/8 < 0.01 26.5/8 < 0.01 9.9/8 0.27 10.3/8 0.25
H

tt
T 22.7/10 0.01 19.3/10 0.04 34.8/10 < 0.01 34.6/10 < 0.01 18.2/10 0.05 12.9/10 0.23

χ
tt 3.4/6 0.76 4.0/6 0.68 6.7/6 0.35 4.5/6 0.61 8.5/6 0.20 3.3/6 0.77
Z

tt 3.8/4 0.43 11.6/4 0.02 4.9/4 0.30 23.2/4 < 0.01 12.7/4 0.01 4.4/4 0.35
cos θ? 7.6/7 0.37 5.8/7 0.57 9.2/7 0.24 8.1/7 0.32 14.9/7 0.04 8.7/7 0.27
∆φ 3.8/5 0.57 2.8/5 0.73 8.3/5 0.14 30.7/5 < 0.01 3.2/5 0.67 3.6/5 0.60
|yboost| 10.1/14 0.76 11.6/14 0.64 9.9/14 0.77 12.8/14 0.55 15.3/14 0.36 11.4/14 0.66
|Pout| 3.4/6 0.76 6.1/6 0.41 7.6/6 0.27 12.4/6 0.05 1.1/6 0.98 2.6/6 0.85
|Pcross| 6.0/9 0.74 3.0/9 0.96 8.2/9 0.52 4.8/9 0.85 1.7/9 0.99 2.5/9 0.98
R

leading
Wb 4.8/5 0.45 2.8/5 0.73 5.4/5 0.37 2.8/5 0.73 6.7/5 0.25 4.1/5 0.54

R
subleading
Wb 4.9/5 0.43 4.2/5 0.52 5.2/5 0.40 2.8/5 0.72 4.1/5 0.54 2.0/5 0.84

R
leading
Wt 14.4/6 0.03 16.2/6 0.01 14.9/6 0.02 16.7/6 0.01 18.8/6 < 0.01 15.8/6 0.01

R
subleading
Wt 3.2/5 0.67 2.7/5 0.75 4.0/5 0.56 4.2/5 0.52 7.5/5 0.18 3.5/5 0.63

Table 4.11 Comparison of the measured particle level single differential normalised cross-sections with the predictions from several simulations. For

each prediction a χ2 and a p-value is calculated using the covariance matrix of the measured spectrum. The number of degrees of freedom (NDF) is

equal to the number of bins in the distribution minus one.
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Results
PWG+PY8 PWG+PY8 Var. Up PWG+PY8 Var. Down aMC@NLO+PY8 Sherpa PWG+H7

Observables χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value

p
t1
T vs. pt2

T 21.7/12 0.04 25.1/12 0.01 32.0/12 < 0.01 33.2/12 < 0.01 29.8/12 < 0.01 7.3/12 0.83
p

t1
T vs. mtt 26.9/11 < 0.01 18.8/11 0.07 37.9/11 < 0.01 36.9/11 < 0.01 13.7/11 0.25 13.8/11 0.24
p

t2
T vs. mtt 15.3/12 0.23 7.3/12 0.83 31.2/12 < 0.01 26.3/12 < 0.01 10.9/12 0.53 8.4/12 0.76
p

tt
T vs. mtt 35.9/11 < 0.01 96.3/11 < 0.01 35.5/11 < 0.01 33.5/11 < 0.01 48.4/11 < 0.01 17.3/11 0.10

|ytt | vs. mtt 35.3/24 0.06 25.8/24 0.36 46.5/24 < 0.01 38.0/24 0.03 36.5/24 0.05 18.4/24 0.78
p

t1
T vs. Njets 28.4/19 0.08 20.0/19 0.40 47.0/19 < 0.01 60.6/19 < 0.01 38.2/19 < 0.01 22.9/19 0.24
p

t2
T vs. Njets 26.7/14 0.02 22.2/14 0.08 45.7/14 < 0.01 88.2/14 < 0.01 30.1/14 < 0.01 31.5/14 < 0.01
p

tt
T vs. Njets 34.6/11 < 0.01 52.7/11 < 0.01 60.0/11 < 0.01 135.0/11 < 0.01 33.6/11 < 0.01 17.8/11 0.09

∆φ vs. Njets 42.1/12 < 0.01 23.6/12 0.02 77.5/12 < 0.01 120.0/12 < 0.01 20.6/12 0.06 24.7/12 0.02
|Pout| vs. Njets 49.6/14 < 0.01 50.2/14 < 0.01 78.8/14 < 0.01 90.0/14 < 0.01 38.1/14 < 0.01 17.4/14 0.23
|Pcross| vs. Njets 20.5/13 0.08 6.0/13 0.95 43.9/13 < 0.01 44.4/13 < 0.01 23.5/13 0.04 9.4/13 0.74

(a) Absolute

PWG+PY8 PWG+PY8 Var. Up PWG+PY8 Var. Down aMC@NLO+PY8 Sherpa PWG+H7

Observables χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value

p
t1
T vs. pt2

T 16.6/11 0.12 21.7/11 0.03 25.5/11 < 0.01 36.7/11 < 0.01 29.5/11 < 0.01 10.2/11 0.52
p

t1
T vs. mtt 31.6/10 < 0.01 16.8/10 0.08 47.6/10 < 0.01 46.6/10 < 0.01 11.2/10 0.34 15.5/10 0.11
p

t2
T vs. mtt 21.1/11 0.03 6.3/11 0.85 39.8/11 < 0.01 36.0/11 < 0.01 8.9/11 0.64 8.3/11 0.69
p

tt
T vs. mtt 50.6/10 < 0.01 104.0/10 < 0.01 52.8/10 < 0.01 42.1/10 < 0.01 62.3/10 < 0.01 28.1/10 < 0.01

|ytt | vs. mtt 34.0/23 0.07 24.4/23 0.38 43.5/23 < 0.01 40.8/23 0.01 39.6/23 0.02 20.8/23 0.60
p

t1
T vs. Njets 22.5/18 0.21 22.0/18 0.23 34.1/18 0.01 65.5/18 < 0.01 40.1/18 < 0.01 24.9/18 0.13
p

t2
T vs. Njets 25.8/13 0.02 14.6/13 0.34 48.9/13 < 0.01 113.0/13 < 0.01 18.6/13 0.14 23.4/13 0.04
p

tt
T vs. Njets 28.8/10 < 0.01 16.7/10 0.08 55.8/10 < 0.01 144.0/10 < 0.01 21.7/10 0.02 11.9/10 0.29

∆φ vs. Njets 32.3/11 < 0.01 22.6/11 0.02 59.6/11 < 0.01 140.0/11 < 0.01 25.7/11 < 0.01 20.9/11 0.03
|Pout| vs. Njets 53.2/13 < 0.01 35.3/13 < 0.01 85.0/13 < 0.01 111.0/13 < 0.01 28.4/13 < 0.01 26.3/13 0.02
|Pcross| vs. Njets 14.3/12 0.28 6.0/12 0.92 30.4/12 < 0.01 50.4/12 < 0.01 16.9/12 0.15 8.4/12 0.76

(b) Normalised

Table 4.12 Comparison of the measured particle level double differential (a) absolute and (b) normalised cross sections with the predictions from

several simulations. For each prediction a χ2 and a p-value is calculated using the covariance matrix of the measured spectrum. The number of degrees

of freedom (NDF) is equal to the number of bins in the distribution.
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Results
PWG+PY8 PWG+PY8 Var. Up PWG+PY8 Var. Down aMC@NLO+PY8 Sherpa PWG+H7

Observable χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value

p
t1
T 31.2/10 < 0.01 38.0/10 < 0.01 35.4/10 < 0.01 16.7/10 0.08 60.4/10 < 0.01 20.3/10 0.03

|yt1 | 2.8/7 0.91 2.8/7 0.91 2.8/7 0.90 2.8/7 0.90 2.6/7 0.92 2.7/7 0.91
p

t2
T 27.7/8 < 0.01 9.9/8 0.27 56.1/8 < 0.01 32.9/8 < 0.01 27.8/8 < 0.01 17.0/8 0.03

|yt2 | 5.3/6 0.51 5.3/6 0.50 5.1/6 0.53 5.7/6 0.46 5.8/6 0.45 5.2/6 0.51
p

tt
T 6.4/5 0.27 44.4/5 < 0.01 5.8/5 0.32 52.4/5 < 0.01 24.2/5 < 0.01 8.3/5 0.14

|ytt | 8.2/12 0.77 8.0/12 0.79 8.3/12 0.76 8.2/12 0.77 9.1/12 0.69 8.2/12 0.77
m

tt 24.5/9 < 0.01 26.7/9 < 0.01 22.4/9 < 0.01 26.5/9 < 0.01 29.1/9 < 0.01 24.6/9 < 0.01
H

tt
T 35.5/11 < 0.01 25.9/11 < 0.01 53.3/11 < 0.01 33.0/11 < 0.01 49.0/11 < 0.01 24.3/11 0.01

χ
tt 3.5/7 0.84 3.1/7 0.88 5.7/7 0.58 4.7/7 0.69 3.2/7 0.87 3.0/7 0.88

∆φ 5.6/6 0.47 3.0/6 0.81 9.2/6 0.16 21.1/6 < 0.01 14.1/6 0.03 8.4/6 0.21
|yboost| 13.7/15 0.55 13.2/15 0.58 13.7/15 0.55 13.5/15 0.56 15.1/15 0.45 13.5/15 0.56

(a) Absolute

PWG+PY8 PWG+PY8 Var. Up PWG+PY8 Var. Down aMC@NLO+PY8 Sherpa PWG+H7

Observable χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value

p
t1
T 26.5/9 < 0.01 31.4/9 < 0.01 28.8/9 < 0.01 18.3/9 0.03 47.6/9 < 0.01 20.3/9 0.02

|yt1 | 2.6/6 0.86 2.6/6 0.86 2.7/6 0.85 2.5/6 0.87 2.4/6 0.88 2.4/6 0.88
p

t2
T 18.9/7 < 0.01 8.0/7 0.33 38.2/7 < 0.01 22.9/7 < 0.01 18.2/7 0.01 12.8/7 0.08

|yt2 | 5.3/5 0.38 5.3/5 0.38 5.1/5 0.40 5.6/5 0.34 5.9/5 0.32 5.2/5 0.39
p

tt
T 7.1/4 0.13 49.8/4 < 0.01 6.5/4 0.17 59.1/4 < 0.01 27.2/4 < 0.01 9.4/4 0.05

|ytt | 9.0/11 0.63 8.7/11 0.65 9.0/11 0.63 9.0/11 0.62 9.9/11 0.54 8.9/11 0.63
m

tt 34.8/8 < 0.01 38.1/8 < 0.01 31.6/8 < 0.01 38.2/8 < 0.01 41.4/8 < 0.01 35.1/8 < 0.01
H

tt
T 34.0/10 < 0.01 27.0/10 < 0.01 48.1/10 < 0.01 35.4/10 < 0.01 43.4/10 < 0.01 26.4/10 < 0.01

χ
tt 3.9/6 0.69 2.9/6 0.82 6.0/6 0.43 4.6/6 0.60 3.6/6 0.73 3.1/6 0.80

∆φ 5.2/5 0.40 3.2/5 0.67 7.4/5 0.19 22.8/5 < 0.01 14.0/5 0.02 7.4/5 0.19
|yboost| 14.7/14 0.40 14.3/14 0.43 14.6/14 0.40 14.7/14 0.40 16.2/14 0.30 14.6/14 0.41

(b) Normalised

Table 4.13 Comparison of the measured parton level (a) absolute and (b) normalised single differential cross sections with the predictions from several

simulations. For each prediction a χ2 and a p-value is calculated using the covariance matrix of the measured spectrum. The number of degrees of

freedom (NDF) is equal to the number of bins in the distribution.

211



4
M
easurem

ents
oftt

differentialproduction
cross

sections
4.8

Results
PWG+PY8 PWG+PY8 Var. Up PWG+PY8 Var. Down aMC@NLO+PY8 Sherpa PWG+H7

Observables χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value

p
t1
T vs. pt2

T 34.9/12 < 0.01 41.5/12 < 0.01 55.9/12 < 0.01 66.3/12 < 0.01 54.5/12 < 0.01 25.6/12 0.01
|yt2 | vs. |yt1 | 7.6/16 0.96 8.2/16 0.94 7.4/16 0.96 9.5/16 0.89 6.2/16 0.99 8.4/16 0.94
p

t1
T vs. mtt 40.8/10 < 0.01 36.4/10 < 0.01 61.7/10 < 0.01 66.5/10 < 0.01 62.4/10 < 0.01 31.4/10 < 0.01

|yt1 | vs. mtt 23.0/11 0.02 21.5/11 0.03 24.8/11 < 0.01 29.6/11 < 0.01 27.9/11 < 0.01 20.2/11 0.04
p

t2
T vs. mtt 34.4/13 < 0.01 21.1/13 0.07 61.3/13 < 0.01 44.5/13 < 0.01 34.6/13 < 0.01 26.2/13 0.02

|yt2 | vs. mtt 34.9/11 < 0.01 30.6/11 < 0.01 39.5/11 < 0.01 40.7/11 < 0.01 38.2/11 < 0.01 32.9/11 < 0.01
p

tt
T vs. mtt 33.2/12 < 0.01 60.9/12 < 0.01 33.4/12 < 0.01 89.4/12 < 0.01 44.5/12 < 0.01 36.3/12 < 0.01

|ytt | vs. mtt 39.5/11 < 0.01 41.1/11 < 0.01 36.6/11 < 0.01 47.4/11 < 0.01 43.0/11 < 0.01 39.5/11 < 0.01

(a) Absolute

PWG+PY8 PWG+PY8 Var. Up PWG+PY8 Var. Down aMC@NLO+PY8 Sherpa PWG+H7

Observables χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value

p
t1
T vs. pt2

T 34.6/11 < 0.01 55.1/11 < 0.01 52.6/11 < 0.01 78.2/11 < 0.01 62.6/11 < 0.01 28.8/11 < 0.01
|yt2 | vs. |yt1 | 6.6/15 0.97 7.0/15 0.96 6.6/15 0.97 8.2/15 0.92 5.5/15 0.99 7.0/15 0.96
p

t1
T vs. mtt 46.4/9 < 0.01 37.4/9 < 0.01 72.0/9 < 0.01 91.9/9 < 0.01 61.6/9 < 0.01 40.0/9 < 0.01

|yt1 | vs. mtt 24.6/10 < 0.01 23.6/10 < 0.01 25.6/10 < 0.01 33.3/10 < 0.01 30.2/10 < 0.01 22.2/10 0.01
p

t2
T vs. mtt 34.2/12 < 0.01 24.3/12 0.02 54.7/12 < 0.01 46.3/12 < 0.01 34.3/12 < 0.01 28.9/12 < 0.01

|yt2 | vs. mtt 39.9/10 < 0.01 35.3/10 < 0.01 44.5/10 < 0.01 47.5/10 < 0.01 43.9/10 < 0.01 37.9/10 < 0.01
p

tt
T vs. mtt 40.5/11 < 0.01 74.8/11 < 0.01 40.6/11 < 0.01 114.0/11 < 0.01 55.4/11 < 0.01 45.0/11 < 0.01

|ytt | vs. mtt 44.8/10 < 0.01 46.8/10 < 0.01 41.0/10 < 0.01 55.0/10 < 0.01 49.4/10 < 0.01 45.1/10 < 0.01

(b) Normalised

Table 4.14 Comparison of the measured parton level (a) absolute and (b) normalised double differential cross-sections with the predictions from

several simulations. For each prediction a χ2 and a p-value is calculated using the covariance matrix of the measured spectrum. The number of degrees

of freedom (NDF) is equal to the number of bins in the distribution minus one.
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4.9 Discussion

A simulation is said to agree with the observed unfolded data if the p-value is larger than the

conventional cut-off of 0.05. The χ2 test statistics indicate that the absolute and normalised

differential cross section measurements are sometimes contradictory. That is, there are several

cases where the absolute cross section predicted by a simulation agrees with data, but the

corresponding normalised cross section does not, or vice versa.

Particle level

Universally, the Powheg+Herwig7 simulation best agrees with data, with only the normalised

cross section in Rleading
W t showing incompatibility at particle level. However, this cross section

cannot be well-described by any of the simulations tested. H tt
T and mtt are the next-worst

modelled observables, whereas rapidity-based variables such as |yt1 |, |yt2 |, |ytt |, χtt , and |yboost|

show good modelling performance. The best described observable is |Pcross|, which is a new

variable only accessible in this analysis channel.

The nominal Powheg+Pythia8 simulation also shows mostly good agreement with the

data, although it describes the transverse momenta of the t quarks weakly. The predictions

from MadGraph_aMC@NLO+Pythia8 and Powheg+Pythia8 Var3cDown do not agree

with the data in many distributions.

For the double differential cross sections summarised in Table 4.12, there is a larger

discrepancy between the predictions from simulation and the measured data. The Mad-

Graph_aMC@NLO+Pythia8 and Powheg+Pythia8 Var3cDown simulations fail to suffi-

ciently model any of the measured double differential cross sections. Powheg+Herwig7 again

gives the best performance, but it displays discrepancies with both absolute and normalised

cross sections in pt2
T and ∆φ in bins of Njets, plus with normalised cross sections in ptt

T in bins of

mtt and, interestingly, |Pout| in bins of Njets. None of the simulations model the cross sections

in ∆φ vs. Njets or ptt
T vs. mtt to good agreement.
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Parton level

The values for the χ2 test statistic in Table 4.13 show that there is a similar level of (dis)agreement

between each of the simulations and the data for one-dimensional differential cross sections. In

general, the normalised cross sections show worse agreement across all distributions, since the

measurement uncertainty is reduced by the normalisation. Therefore the higher precision of

measurements for normalised differential cross sections means that the data can better discrim-

inate between the simulation models, preferring Powheg+Herwig7 and Powheg+Pythia8

in this case.

Universally, mtt and H tt
T are modelled poorly at parton level. Also the transverse momenta

of the t quarks are poorly modelled at parton level by all generators except for the subleading

t quark pT by Powheg+Pythia8 Var3cUp.

For the two-dimensional differential cross sections at parton level, poor agreement is seen

in all distributions for all simulations except for the cross section in yt2 in bins of yt1 , which

demonstrates excellent agreement with all simulations. This result involves two well-measured

angular observables and agrees with the findings from the results at particle level, that rapidity

is generally modelled well. The simultaneous lack of agreement in the other cross sections

means that the data does not discriminate between the simulation models.

4.9.1 Comparison to measurements in the lepton+jets channel

Many of the differential cross sections presented in this chapter are also measured by a

complementary ATLAS analysis in the lepton+jets tt decay channel [271]. There are several

differences between the analysis strategies. The phase space of the lepton+jets analysis is

significantly larger, since leptons and jets with pT > 25 GeV pass selection, compared to 55 GeV

for the analysis in this chapter. Therefore even with the larger all-hadronic branching ratio for

tt , the lepton+jets channel dataset contains significantly more events after selection. On the

other hand, the analysis presented in this chapter achieves better resolution in many variables,

particularly those involving jet directions due to the lack of missing transverse energy. This
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means that the differential cross sections are often presented with much finer binnings in the

bulk of the distributions. These various effects combine non-trivially, making it difficult to

conclude which analysis provides the better discrimination between theoretical predictions,

without a complex combination of the results.

A preliminary comparison of the results allows a few conclusions to be made. Similar

levels of agreement between data and predictions are seen across both analyses for the and

Powheg+Herwig7 and Powheg+Pythia8 simulations, except for in p
tt
T and Njets for

Powheg+Herwig7. That is, where one analysis demonstrates a good agreement between a

particular model and the data for a distribution, so does the other.

For measurements of two-dimensional differential cross sections, a similar level of com-

patibility is again observed between the two analyses. For example, the cross section as a

function of ∆φ in bins of Njets cannot be described well by any simulation models. Similar

results are obtained for |Pout| and ptt
T in bins of Njets, while the hadronic channel presented

here gives better discrimination between the models for |ytt | vs. mtt . Both analyses indicate

that ptt
T vs. mtt is described poorly by all models.

Consistent mismodelling is observable in both analyses for the cross sections in pt1
T , pt2

T , and

p
tt
T . In bins where the hadronic analysis is statistically limited by the number of events passing

selection, the lepton+jets analysis shows more disagreement between the data and predictions.

While both analyses observe the distribution of mtt to disagree with predictions, they do so

in opposite fashions. In the fully hadronic channel the measured distribution has smaller values

on average than the data, whereas for the lepton+jets analysis mtt is found to be generally

larger than predicted.

At parton level, the analyses are also compatible in suggesting that few observables can

be modelled accurately. For example, the cross section as a function of mtt shows significant

disagreement between data and all the simulated predictions. When considering the double

differential cross section results, both analyses indicate that none of the models is able to

predict the data distribution better than the others.
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Overall, both the hadronic and lepton+jets analyses suggest that the Powheg+Herwig7

and Powheg+Pythia8 simulation models provide the best predictions for tt differential

production cross sections. In some cases the analyses are complementary, with each providing

better power for discrimination between the models in different observable distributions.

4.9.2 Outlook

This chapter presents the first comprehensive measurements of differential tt production cross

sections in the fully hadronic channel in pp collisions at
√
s = 13 TeV. The cross sections are

reported in one- and two-dimensional distributions of multiple observables, unfolded to both

particle level and parton level. Some of the results can provide the power to discriminate

between theoretical predictions from simulated models. These results may also be used to

improve the modelling of t quarks, useful for many other future experiments.

Some of the results presented show poor agreement between predictions and observations,

so can provide an indication of where the most impactful improvements to modelling could

be made. In particular, the two-dimensional differential cross sections unfolded to particle

level will be very useful for improving the modelling in regions of phase space containing many

additional jets from initial- and final-state QCD radiation.

The results at parton level are compared to the most accurate theoretical calculations

currently available. They could be used in the future to perform measurements of parton

distribution functions, and extract a value for the t quark pole mass.

Despite non-negligible irreducible background contributions, effective event selection and

background estimation strategies permit state-of-the-art precision measurements, able to

constrain theoretical predictions in events with many hadronic jets. However the analysis

presented here is severely limited by the efficiency of the hadronic trigger used to select events.

Future upgrades to the detector, such as the ability to use tracking information early in the

trigger chain, will improve the efficiency for this trigger strategy. This will also improve the

state of jet energy calibration, pileup suppression, and b-tagging. A multi-jet plus heavy-flavour
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tag trigger strategy is particularly motivated here, which in turn will allow more precise

measurements of tt production cross sections.

While the analysis presented here motivates the definition of the bin edges for the reported

distributions using detector resolution, the procedure still requires a ‘human in the loop’ to

check and modify them at many stages in the analysis. In future versions of this analysis,

an end-to-end binning solution could be developed to adjust the number and locations of the

bins according to the final post-unfolding experimental covariance matrix. This would allow

correlations between bin populations, introduced by the unfolding procedure, to be taken into

account.

Two-dimensional differential cross sections are reported in this analysis, often with Njets as

the external variable at particle level. With the efficiency gains and dataset size increase from

future runs of ATLAS, it may be possible to report two-dimensional kinematic cross sections

(e.g. pt1
T vs. pt2

T ) in bins of Njets. These three-dimensional distributions may be used to more

powerfully discriminate between approaches to tt modelling, especially when including extra

jets.

Similarly, future iterations of the analysis presented in this chapter could make use of

identified radiative ‘extra’ jets in the event. The ability to better determine correlations

between the kinematics of the t quarks, tt system, and extra jets could be used to further

improve future theoretical models. Measurements of some such variables are only possible with

the fully hadronic tt decay mode, since the leading fermion from the decay could be an invisible

neutrino in other channels. Since the initial state radiation scales linearly with the partonic

centre-of-momentum energy, it is possible that the leading extra jet is also the highest-pT object

in the event. This makes it a good candidate for providing a reference for the energy scale of the

event. Additionally, correlations between the extra jets and t quark kinematics are particularly

useful for modelling since the radiative emission is expected to be approximately collinear. The

pT ratios between extra jets in tt events is particularly sensitive to soft gluon emissions that

may not be resolved as jets by the detector. This allows tests of resummation effects.

217



4 Measurements of tt differential production cross sections 4.9 Discussion

Finally, the results presented in this chapter can provide greater power to discriminate

between and improve modelling approaches in combination with the differential cross sections

measured in complementary tt decay channels. While current approaches to combine distribu-

tions from different analyses require the binning definitions to be carefully harmonised, the

novel unfolding method presented in Chapter 6 allows the distributions to be rebinned after

unfolding, thereby providing flexibility in combining differential cross sections from different

analysis or experiments.
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Chapter 5

Gaussian processes

Gaussian processes (GPs) are a general class of descriptions of functions. They have a simple

and compact definition, yet may be used to describe non-parametrically a broad range of

functions. They can be conveniently interpreted as distributions over functions.

As is the case with many machine learning methods, GPs can be used for classification

and regression. For the generally multi-class classification task, the aim is to label data points

according to the category they belong to. An example from high energy physics is the sorting

of particle collision events according to the physical process from which they originate. Another

example is the classification of objects (e.g. tracks, calorimeter hits) in a detector according to

the type of particle that produced them, known as tagging.

The aim of regression is essentially to estimate a function. The task is to predict the

function’s output at values of the input generally not measured before. After defining commonly

used notation in Section 5.1 and a formal definition of a Gaussian process in Section 5.2, the

use of GPs in regression is discussed in Section 5.4. An application of using GP regression for

the optimisation of computer simulations is presented in Section 5.4.5.
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5.1 Notation

Scalar quantities are written as lowercase letters in normal weight, e.g. x. A column vector is

represented by boldface x with its ith element denoted xi. A capital letter is used to represent

a matrix, e.g. X, whose elements are written Xij . The jth column of the matrix Y is the vector

yj , with ith element Yij by definition. Terms and expressions used commonly in this chapter

are listed in Table 5.1.

5.2 Definition of a Gaussian process

A random process is a collection of indexed random variables. In the context of physical random

processes the index is often interpretable as position or time, although in general it may be

any real-valued control variable. A Gaussian process (GP) is therefore a collection of indexed

random variables, any finite subset of which have a joint Gaussian distribution [319].

A GP may be considered as a distribution on an infinite-dimensional space of functions;

a generalisation of a Gaussian distribution over a finite vector space [320]. Consider the set

of d-dimensional indices {x1,x2, . . . ,xn}. Then a GP is a distribution over functions f such

that f(x1), f(x2), . . . , f(xn) are distributed according to a joint Gaussian [321]. In physical

stochastic processes, for example Brownian motion, the index is often time or space, but may

in general be any d-dimensional real variable.

Just as a multivariate Gaussian distribution is entirely defined by a mean vector and

covariance matrix, a GP over f is completely described by a mean function and covariance

function. These are defined as

m(x) = E[f(x)], (5.1)

k(x,x′) = cov[f(x), f(x′)] (5.2)

= E[(f(x)−m(x))(f(x′)−m(x′))]. (5.3)
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Term Description

N (µ,Σ) Multivariate Gaussian distribution with mean µ and covariance Σ

AT Transpose of the matrix A

|A| Determinant of the matrix A

vT Row vector. Transpose of the column vector v

E[x] Expectation value of the random variable x

cov[x, y] Covariance of random variables x and y

cov[x] Shorthand for the covariance matrix with elements Vij = cov[xi, xj ]

x̂ Estimator for the random variable x

x Column vector representing a single d-dimensional index

y Vector of n observations

X d× n matrix of n indices. The jth column represents a single index xj
f(X) Vector of function values with fi = f(xi)

f Mean values of f

x∗ A single prediction point

X∗ Matrix of prediction points

k(x,x′) Kernel function evaluated at x and x′

K(X,X ′) Matrix of kernel values with elements Kij = k(xi,x′j)

K Shorthand for the square matrix K(X,X)

K∗ Shorthand for K(X,X∗)

K∗∗ Shorthand for the square matrix K(X∗, X∗)

Table 5.1 Definitions of commonly used symbols in this chapter.
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Then the GP is written f ∼ GP(m, k), which is understood to mean that the function f is

sampled from the GP defined by m and k. The covariance function is often called the kernel

function (or simply kernel) in the literature, and these terms will be used interchangeably in

this thesis.

5.3 Probabilistic model

Because GPs can be considered as probability distributions, it is useful to derive some common

properties from probability theory. To do this, some notation is first introduced.

Consider the vector of n function values f(X) =
(
f(x1), f(x2), . . . , f(xn)

)T, where X is the

d× n design matrix

X =


X11 X12 . . . X1n

X21 X22 . . . X2n
...

... . . . ...
Xd1 Xd2 . . . Xdn

 =
(
x1 x2 . . . xn

)
, (5.4)

and similarly the mean vector m(X) =
(
m(x1),m(x2), . . . ,m(xn)

)T. The matrix K is defined

with respect to the kernel function as

K(X,X ′) =


k(x1,x

′
1) k(x1,x

′
2) . . . k(x1,x

′
m)

k(x2,x
′
2) k(x2,x

′
2) . . . k(x2,x

′
m)

...
... . . . ...

k(xn,x′1) k(xn,x′2) . . . k(xn,x′m)

 (5.5)

for X containing n indices and X ′ containing m indices.
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The function values f(X) are distributed according to a joint Gaussian with mean vector

m(X) and n× n symmetric covariance matrix K(X,X). This is written

f(X) ∼ N (m(X), K(X,X)
)

(5.6)

and the associated probability density is given by

P
(
f(X) |m(X),K(X,X)

)
= 1√

(2π)n
∣∣K(X,X)

∣∣
× exp

{
−1

2
[
f(X)−m(X)

]T
K(X,X)−1 [f(X)−m(X)

]}
. (5.7)

Since the only design matrix used here is X, this symbol may be dropped to give a more

compact notation: f ∼ N (m,K). Taking logarithms of Equation 5.7, the log prior probability

density is

logP
(
f |m,K

)
= −1

2 (f −m)TK−1 (f −m)− 1
2 log |K| − n

2 log 2π. (5.8)

The term prior probability is used here in the sense that no observations have been included

in the model. In regression, the prior is updated using data to yield a posterior probability, as

discussed in Section 5.4.

5.3.1 Sampling from a Gaussian process

It is sometimes useful to visualise a subset of the functions described by a GP by sampling from

it. A simple and efficient algorithm achieves this [319]. Consider a GP given by m and K (or

equivalently m(x), k(x,x′), and X), where a single sampled function is evaluated at n indices.

Firstly, a sample of n random numbers is drawn from the standard Gaussian distribution:

u ∼ N (0, I). This then undergoes a linear transformation into f = m + Lu, where LLT = K.

The values f = (f1, f2, . . . , fn) are now distributed according to a joint Gaussian with mean

m and covariance matrix K, as desired. The matrix L is usually taken to be the Cholesky

decomposition [322] of the positive semi-definite covariance matrix K, and can informally be

223



5 Gaussian processes 5.3 Probabilistic model

0 2 4 6 8 10

−2

0

2

x

f
(x

)

Figure 5.1 Five functions (solid) randomly sampled from a GP with constant zero mean (dashed) and

the squared exponential covariance function given by Equation 5.10. The functions are evaluated at

200 points distributed linearly along the horizontal axis. The darker shaded area represents the 1σ

uncertainty band (68% confidence region), while the lighter shaded area represents the 2σ uncertainty

band (95% confidence region).

considered the square root of K. As a Cholesky factor, L is a lower triangular matrix and

provides an efficient method to determine 1
2 log |K|,

1
2 log |K| =

n∑
i=1

logLii. (5.9)

This is required in the evaluation of logP
(
f |m,K

)
in Equation 5.8.

As a simple example, this sampling procedure was followed for five draws from a one-

dimensional GP with constant zero mean and kernel function given by a squared exponential,

k(x, x′) = exp
[
−1

2(x− x′)2
]
. (5.10)

This kernel gives a variance of 1 for x′ = x, and a smoothly falling covariance as x and x′ move

further apart. For |x− x′| = 1, the covariance is 1/
√
e ≈ 0.607. A more general version of the

squared exponential, along with other kernels, is given in Section 5.6. The functions sampled

from this GP are evaluated at 200 points spaced evenly in the range [0, 10]. This was done using

the NumPy Python package [323, 324], and the sampled functions are shown in Figure 5.1.
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5.4 Gaussian process regression

The regression task can be stated as follows: given observations of a dependent variable y at

values of the independent variable x, predict the value of the underlying function f(x∗) at some

arbitrary new value x∗ [325].

Section 5.4.1 introduces regression with GPs for the case of noiseless observations, where the

function to be estimated is known exactly at the measured points. This situation is extended

to the case of noisy observations, which is widely discussed in the literature [319, 320, 325], in

Section 5.4.2. Finally, a further generalisation is made to consider the case of correlated data

in Section 5.4.3. This important result is used in Chapter 6.

5.4.1 Noiseless observations

In the case where the n observations are noiseless, the underlying function is known exactly at

those points: f(X) = y. The predictive values of the underlying function at previously unseen

indices are given by f(X∗). Therefore the joint distribution of the observed and predictive

points according to the GP prior is

 y
f(X∗)

 ∼ N

m(X)

m(X∗)

 ,
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)


 , (5.11)

where the K matrices are linked to the kernel function k as defined by Equation 5.5. Using a

compact notation (see Table 5.1), this is written

y
f∗

 ∼ N

m

m∗

 ,
 K K∗
KT
∗ K∗∗


 . (5.12)
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The predictive distribution is the conditional distribution for f∗ given the observations y. It is

said that the prior GP is conditioned on the observations to give the posterior GP. It can be

shown [319, 326] that this posterior distribution is a GP given by

f∗ | y ∼ N
(

f∗, cov[f∗]
)
, (5.13)

where f∗ = KT
∗ K

−1 (y−m) + m∗, (5.14)

cov[f∗] = K∗∗ −KT
∗ K

−1K∗. (5.15)

As an example, a zero-mean GP with squared exponential kernel given by Equation 5.10

was used as a prior. The posterior process, conditioned on an increasing number of noiseless

data points, is shown in Figures 5.2a to 5.2e. The uncertainty of the predictive distribution at

x∗ vanishes approaching an observed point x, reflecting the exact knowledge of the underlying

function at that point. Far away from observations, the uncertainty remains large. This

corresponds to the lack of knowledge of the underlying function in those regions.

5.4.2 Noisy observations

The result from Section 5.4.1 is often extended to the case where the observations yi are subject

to some independent identically-distributed Gaussian noise ε with variance σ2
ε , such that

yi = f(xi) + ε(xi) (5.16)

cov[yi, yj ] = k(xi,xj) + σ2
ε δij , (5.17)

where δij is the Kronecker delta. Since the underlying function f(x) is now hidden from direct

measurement, it is sometimes referred to as the latent function.

Equation 5.12 is modified to reflect this contribution from the noise,

y
f∗

 ∼ N

m

m∗

 ,
K + σ2

ε I K∗
KT
∗ K∗∗


 , (5.18)
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Figure 5.2 Predictive mean f∗ | y (dashed) and functions sampled from the GP (solid). The darker and

lighter shaded areas indicate the 1σ and 2σ uncertainty bands, respectively. The GP prior with constant

zero mean and unit variance is shown in Panel (a). Panels (b) to (e) show the posterior distribution

for the GP conditioned on an increasing number of noiseless data points. The same observations with

Gaussian noise term σε = 0.25 are used to derive the posterior distribution shown in Panel (f).
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and the predictive distribution is therefore given by

f∗ | y ∼ N
(

f∗, cov[f∗]
)
, (5.19)

where f∗ = KT
∗
[
K + σ2

ε I
]−1

(y−m) + m∗, (5.20)

cov[f∗] = K∗∗ −KT
∗
[
K + σ2

ε I
]−1

K∗. (5.21)

The regression example in Section 5.4.1 was repeated with Gaussian noise with standard

deviation σε = 0.25. The predictive distribution given by Equations 5.19 to 5.21 is shown

in Figure 5.2f. Owing to the increased uncertainty on the observations, the predictive mean

function no longer passes exactly through the data points.

5.4.3 Correlated observations

Finally, GP regression may be further generalised to include the case where the observations are

correlated [319, 327, 328]. In this situation, the covariance of two observations can be written

cov[yi, yj ] = k(xi,xj) + Vij , (5.22)

where Vij are elements of the positive semi-definite covariance matrix V . The predictive

distribution is then given by

f∗ | y ∼ N
(

f∗, cov[f∗]
)
, (5.23)

where f∗ = KT
∗ [K + V ]−1 (y−m) + m∗, (5.24)

cov[f∗] = K∗∗ −KT
∗ [K + V ]−1K∗. (5.25)

This important result is used in Chapter 6.
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5.4.4 Smoothing properties

A feature of GP regression is that it smooths out fluctuations in the data, i.e. it is a regulariser.

This can be understood by considering the simple case of observations with Gaussian independent

identically-distributed noise, presented in Section 5.4.2. The same argument applies in the

general case of observations with a general covariance matrix V .

From Equation 5.20, a zero-mean GP regression for noisy observations has the predictive

mean function

f(x∗) = KT
∗
[
K + σ2

ε I
]−1

y (5.26)

= h(x∗)T y, (5.27)

where h(x∗) =
[
K + σ2

ε I
]−1

K∗ is a column vector for a single test point x∗. The vector

of functions h is independent of the data points and is known as the weight function [329].

Equation 5.27 shows that f(x∗) is a linear weighted sum of the data, therefore GP regression is

considered a linear smoother [330].

The smoothing properties of GP regression can be understood through the eigendecomposi-

tion of the matrix K with eigenvalues and eigenvectors {(λi,vi)}:

K =
n∑
i=1

λi vi v
T
i . (5.28)

When trained on noisy data, a zero-mean GP regression gives the predictive mean values

f = K
[
K + σ2

ε I
]−1

y (5.29)

at the training points, where all functions are evaluated at X. The data can be represented

in the eigenbasis of K as y = ∑n
i=1 γi vi with coefficients γi = vT

i y. Substituting this and

Equation 5.28 into Equation 5.29, the predictive mean values can be written as

f =
n∑
i=1

γi λi

λi + σ2
ε

vi. (5.30)
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Since K is a positive semi-definite covariance matrix, its eigenvalues λi are real and non-

negative. Therefore the term λi/(λi + σ2
ε ) < 1 for non-zero noise. This means that f is a

damped representation of the data along the principal components of the covariance matrix K.

Furthermore, most practical kernel functions have larger eigenvalues for more slowly varying

eigenfunctions (i.e. eigenfunctions with fewer roots) [319], so high-frequency components of

the data are damped more strongly. This has the effect of smoothing out fine structure in the

observations. In this sense, GP regression may be considered as a low-pass filter.

5.4.5 Application: Efficient Bayesian optimisation of computer simulations

An example application of the result given by Equations 5.13 to 5.15 is in the optimisation of

a computer simulation [331, 332]. Since the return value of a program is the same each time

it is run, the observations in this case are noiseless. (This assumes identical initial conditions

and the absence of stochastic effects in the simulation, but noisy simulation results can also

be considered and treated using the augmented regression procedure for noisy observations

discussed in Section 5.4.2.)

The problem definition is as follows: find the minimum point of the objective function f(x),

given by

x? = arg min
x

f(x). (5.31)

The objective function is considered a black-box function, with no closed form or gradient

information available. This prohibits the use of gradient-based optimisation algorithms. It is

also very expensive to calculate, in that it uses a large amount of time, energy, or money, and

x often spans a large number of dimensions. For these reasons, standard approaches such as

grid search or random search can be wasteful and time-consuming.

This situation often arises in machine learning research and engineering, with the design of

a neural network, for example. In this case the objective function would be the cross-validation

loss [333], and x is the set of hyperparameters (such as the number of hidden layers) of the
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5 Gaussian processes 5.4 Gaussian process regression

model. The training time can often be a number of hours or days, so it is desirable to minimise

the number of times the objective function has to be evaluated. Another example from high

energy physics is the tuning of a Monte Carlo event generator [334]. Here the objective function

is the chi-square, which summarises the level of agreement between the simulation’s predictions

and experimental data. The number of tuning parameters is large (there are 20 continuous

parameters for Pythia 8.1 [335] used in the Monash tune [334, 336], for example) so x is in

a high-dimensional space, which discourages the use of exhaustive search methods. Again,

this program is expensive to run and the number of iterations used to determine the optimal

parameters should be kept to a minimum.

At the nth iteration, the objective function is estimated by a probabilistic surrogate model

formed of a GP conditioned on the observations {(xi, yi)} for i = 1, . . . , n. This model is

calculated from Equations 5.13 to 5.15. For each step, an inexpensive acquisition function is

evaluated to determine the value of xn+1, the next point to be evaluated. One such acquisition

function is the expected improvement [337–340] over the minimum value evaluated so far, ymin,

aEI(x; ξ) = E
[
ymin − f(x)− ξ] (5.32)

= σ(x)
[
γ(x; ξ) Φ

(
γ(x; ξ)

)
+ φ

(
γ(x; ξ)

)]
, (5.33)

where γ(x; ξ) = ymin − f(x)− ξ
σ(x) . (5.34)

Here f(x) and σ(x) =
√

cov[f(x), f(x)] are the mean and standard deviation of the surrogate

GP model evaluated at x. φ(x) and Φ(x) are the probability density function and cumulative

distribution function of the standard Gaussian distribution, respectively. The next sample point

is then chosen as the value of x that maximises the acquisition function,

xn+1 = arg max
x

aEI(x; ξ). (5.35)

The parameter ξ determines the trade-off between exploration and exploitation: larger values

assign more importance to areas of high uncertainty (exploration), whereas smaller values

increase the relative importance of areas of potentially closer to the true minimum of the

objective function (exploitation). It is typically set to approximately 0.01 [339].
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The procedure performs a Bayesian update step at each iteration. To start, the unconditioned

prior probability distribution is chosen to be a sufficiently uninformative GP, with mean and

covariance functions covering the expected range of the objective function. At the nth iteration,

Bayes’ theorem is applied to derive the posterior probability distribution, given a Gaussian

likelihood for the observed point (xn, yn), to obtain the posterior GP given by Equations 5.13

to 5.15. At each iteration the hyperparameters of the surrogate model are also adjusted to the

point that maximises the marginal likelihood, as defined in Equation 5.47. This GP model

is then used as the prior for the n + 1th step, where it is updated with the measured point

(xn+1, yn+1).

In addition to finding a good estimate for x? in the parameter space, it is often desirable to

find a solution that is efficient to compute in terms of CPU time, energy consumption, monetary

cost, or some other quantity under budget. For the case of reducing CPU walltime, this is done

by penalising points in parameter space that yield a long evaluation time for f(x). Along with

the objective function f(x), a duration function c(x) can be estimated by a GP model at each

iteration of the optimisation algorithm [338]. Assuming that f(x) and c(x) are independent, it

is simple to compute the expected improvement per second, aEI(x; ξ)/c(x). The maximum of

this quantity then gives the next point to evaluate.

As an illustrative example, a simple analytic function was used as a proxy for a black-box

objective function, shown in Figure 5.3. GP-based optimisation was performed using the

Scikit-Optimize [337] Python implementation with aEI(x, 0.01), defined in Equation 5.32, as the

acquisition function. This algorithm found an acceptable global minimum in 15 iterations.

5.5 Mean function

In the context of regression, it is common to use a GP with constant mean function m(x) = 0 as

the prior over functions [319, 341]. This is because in practical applications the kernel function

(described in Section 5.6) provides enough flexibility to adequately update the prior given the

data, resulting in a posterior process with non-zero mean function.
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Figure 5.3 One-dimensional toy example of optimisation of a black box function with GP regression.

The goal is to find the global minimum of the hidden truth function (dashed line), while minimising the

number of function evaluations. A GP (solid line and shaded regions) conditioned on the observations

so far (circles) is used as the surrogate model, updated at each step. At each iteration, the acquisition

function (bottom panels) is evaluated and its maximum (vertical line) is chosen as the next function

evaluation point.
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Additionally, any desired structure or behaviours in the functions described by the GP can

be specified by the kernel function. Therefore the vast majority of the interesting behaviour of

a GP for regression is described by its covariance, and the mean function has little impact in

most situations.

It is illuminating to note that the results given by Equations 5.13 to 5.15, 5.19 to 5.21,

and 5.23 to 5.25 are identical to those obtained by modelling the residuals y −m with a

zero-mean GP, then adding m∗ to the predictive mean. This means that for regression, a global

mean function can be subtracted from the data before modelling the residual process with a

zero-mean GP.

5.6 Kernel function

The kernel function is crucial to the definition of a GP as it encodes prior knowledge and

assumptions of the underlying objective function [319]. It does this by describing the similarity

of two points x and x′ in the index space. For example, a reasonable assumption may be

that points that are close in x will also be close in y, and therefore will be highly correlated.

Conversely, points that are distant might be assumed to be independent and will therefore

have a small correlation. The distance metric and characteristic length scales are provided in

the kernel function, so it wholly encapsulates the meaning of similarity for the model. In the

context of Bayesian regression, the kernel function can be interpreted as the covariance of the

prior process.

A kernel function k(x,x′) is said to be stationary if it is a function of only x− x′; that is,

it is invariant to translations in the continuous index space. Kernel functions of only ‖x− x′‖

are isotropic and are classed as radial basis functions. It is possible that the kernel function is

parameterised by some set of parameters θ. This is denoted by kθ(x,x′). The contents of θ are

referred to as the hyperparameters of the GP model.

In the definition of a GP, the kernel function provides the covariance of the joint Gaussian

distribution for f . Therefore there are constraints on its form such that it corresponds to a valid
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covariance. Since for any covariance function cov[x,x′] = cov[x′,x], k must also be symmetric.

The Gram matrix, with elements Kij = k(xi,xj), is a valid covariance matrix if it is positive

semi-definite, i.e. vTK v ≥ 0 for all v ∈ Rn. This constrains k to functions which give a Gram

matrix with non-negative eigenvalues.

5.6.1 Examples of kernels

In this section, some examples of commonly encountered kernel functions are presented. Func-

tions drawn from a zero-mean GP corresponding to each kernel, using the sampling procedure

described in Section 5.3.1, are shown in Table 5.2.

Constant

The constant kernel has a single parameter and is given by

k(x,x′) = σ2
0. (5.36)

Processes with this kernel describe a family of constant functions with a fixed covariance between

them. On its own, the constant kernel is not particularly interesting or useful. However, it may

be combined with other kernels to give an overall amplitude (via multiplication) or bias (via

addition) [321].

Linear

Linear kernels are defined by functions that only depend on their arguments through the inner

product, x · x′. The homogeneous linear kernel is given by k(x,x′) = x · x′. Allowing for a

general covariance matrix Σ and combining this with a constant kernel results in the general

inhomogeneous linear kernel,

k(x,x′) = σ2
0 + xTΣ x′. (5.37)
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A zero-mean GP regression with this kernel function is identical to the result obtained with

Bayesian linear regression [341]. That is, this is the covariance relation for estimators at

x and x′ given by the linear regression ŷ(x) = wTx + ε with priors w ∼ N (0,Σ) and

ε ∼ N (0, σ2
0). Polynomial kernels, k(x,x′) = (σ2

0 + xTΣ x′)p for integer p, are also valid

covariance functions [319].

Matérn

The Matérn kernels are a class of stationary kernel functions, expressed in terms of r = ‖x−x′‖.

A general expression is given by [319, 342]

kν(r) = 21−ν

Γ(ν)

(√
2νr
l

)ν
Kν

(√
2νr
l

)
, (5.38)

where Γ is the gamma function [343], Kν is a modified Bessel function [344], and ν and l

are positive real parameters. These covariance functions relate to processes with spectral

density Sν(ω) = (1 + ω2)
1
2−ν [345], which are the solutions to general Laplacian stochastic

partial differential equations [346]. The Matérn family of kernel functions are therefore widely

applicable to many natural random processes.

The parameter l may be interpreted naturally as the characteristic length scale of the

random process described by the corresponding GP. Special cases are encountered for ν =

p+ 1
2 , p = 0, 1, 2, . . ., when Equation 5.38 becomes [319, 347]

kν=p+ 1
2
(r) = exp

(
−
√

2νr
l

)
p!

(2p)!

p∑
q=0

(p+ q)!
i! (p+ q)!

(√
8νr
l

)p−q
. (5.39)

The cases where ν = 1
2 ,

3
2 ,

5
2 are expanded upon below. For values of ν > 5

2 , the resulting GP is

often indistinguishable [319] from that which uses the squared exponential kernel obtained in

the limit where ν →∞, also included here.
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• (ν = 1
2) Ornstein–Uhlenbeck

k 1
2
(r) = exp

(
−r
l

)
(5.40)

This kernel is named after the work of Ornstein and Uhlenbeck [348] in the mathematical

modelling of Brownian motion. Specifically, it models mean-reverting Gauss–Markov

processes [349], and has applications in the modelling of financial markets [350].

• (ν = 3
2 ,

5
2)

k 3
2
(r) =

(
1 +
√

3r
l

)
exp

(
−
√

3r
l

)
(5.41)

k 5
2
(r) =

1 +
√

5r
l

+ 5r2

3l2

 exp
(
−
√

5r
l

)
(5.42)

The Matérn-3
2 and Matérn-5

2 kernels are commonly used in applications of machine

learning [319, 327] and spatial statistics [351], owing to their properties under differ-

entiation [342]. They do not make as strong smoothness assumptions as the squared

exponential kernel (below), but provide ample flexibility for most practical datasets.

• (ν →∞) Squared exponential

lim
ν→∞ kν(r) = exp

− r2

2l2

 (5.43)

The squared exponential kernel is obtained from the Matérn class in the limit as ν →∞.

Since the kernel function has infinitely many derivatives, functions sampled from a GP with

this kernel are smooth. The squared exponential covariance function is used expansively

in the literature.

Gibbs

An extension to the squared exponential kernel function can be made to account for a varying

length scale li(x). This is given by the Gibbs kernel [352], with positive length functions
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li(x), i = 1, . . . , d (one for each axis of x),

k(x,x′) =
d∏
i=1

√√√√ 2 li(x) li(x′)
l2i (x) + l2i (x′)

exp

− |xi − x′i|2

l2i (x) + l2i (x′)

 (5.44)

Here the first multiplicative term in the product is for normalisation, so that k(x,x) = 1 and

the kernel function is positive semi-definite.

5.6.2 Combining kernels

Kernel functions may be combined under certain normalisation rules to describe various

behaviours in the resulting GP [321]. Most commonly, the constant kernel is used as a

multiplicative factor to give an overall amplitude to the covariance function. For example,

combining the constant and squared exponential kernels results in

k(x,x′) = σ2
0 exp

−‖x− x′‖2

2l2

 . (5.45)

This kernel function describes a GP with characteristic length scale l, and variance cov[x,x] = σ2
0.

The set of hyperparameters is the union of the hyperparameters of the constituent kernels, in

this case θ = {σ2
0, l}.

5.6.3 Kernels for applications in high energy physics

In limited applications to date, Gaussian processes have been used in high energy physics to

perform efficient and robust background modelling [353] and unfolding [354, 355], which is the

focus of Chapter 6. Combinations of kernel functions are used to specify an adequate prior

probability distribution for the data. In the stationary case, the kernel function in Equation 5.45

is mostly used. For non-stationary problems, the Gibbs kernel in Equation 5.44 (including

an amplitude factor) is used to allow a varying length scale, usually with a simple linear

parameterisation l(x) = bx+ c.
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Kernel name k(x, x′) Covariance Samples from GP Stationary

Linear σ2
0 + x · x′

0

x
′ = 1, σ

2
0 = 0.1

x

0

x

No

Ornstein–Uhlenbeck exp
(
−|x− x

′|
l

)
0

l = 1

x − x′

0

x

Yes

Squared exponential exp

−|x− x′|2
2l2


0

l = 1

x − x′

0

x

Yes

Gibbs

√√√√ 2 l(x) l(x′)
l2(x) + l2(x′)

exp

− |x− x′|2

l2(x) + l2(x′)


0

l(x) = 0.5|x| + 0.1

x
′ = 0

x
′ = 1

x ′
=

3

x 0

0

x

No

Table 5.2 Properties of common kernel functions in one dimension and GPs defined by them.239
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Empirically, the choice of such standard kernels with sensible hyperparameters often leads to

a sufficiently noninformative prior probability distribution for the problem at hand. Additionally,

there exist methods to inform the selection of a suitable kernel function, such as nested Bayesian

search [319] or automatic model search [321].

In certain cases, it may be appropriate to assign a systematic uncertainty for the kernel

choice. Here the difference in marginal likelihood from Equation 5.47 can be used to quantify

the uncertainty.

5.7 Hyperparameter optimisation

In machine learning, the aim of model selection is to minimise the generalisation error. This in

turn maximises the ability of a particular model to make accurate predictions that agree with

previously unseen data. There is therefore a natural desire to simultaneously minimise both

bias and variance of the resulting estimator. For many families of models, including GPs, it is

not possible to simultaneously minimise these two properties. Instead, there is a bias–variance

trade-off whereby they are antagonistic properties and a penalty is paid for highly prioritising

one over the other. The choice of the optimal trade-off is an open problem, and there are many

approaches taken in the literature [319, 356–358]. There are many choices pertaining to model

selection; the decision to use a GP is the first, if the setting is appropriate. Then the mean and

kernel functions must be chosen. If the kernel is parameterised, as is usually the case, these

hyperparameters must be chosen to optimise the bias–variance trade-off with respect to some

predefined criteria. In this section, focus is placed on an approximate Bayesian method to

determine the optimal hyperparameters for a particular choice of kernel.

Bayesian statistics, combined with the simple algebra of GPs, provides a convenient and

efficient method for model selection. This is based on the marginal likelihood, obtained by

integrating the likelihood for Gaussian-distributed data, y | f ∼ N (f , V ), times the prior
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(Equation 5.8), over the latent function f(x) of the GP,

P (y |m,K) =
∫
P (y | f)P (f |m,K) df . (5.46)

Here all the indices used are the training set, X. After taking logarithms and writing the

covariance matrix’s dependence on the hyperparameters as Kθ = kθ(X,X), the log marginal

likelihood is given by

logP
(
y |m,Kθ

)
= −1

2(y−m)T [Kθ + V ]−1 (y−m)− 1
2 log |Kθ + V | − n

2 log 2π. (5.47)

The method of maximum marginal likelihood [319] is an approximate approach for finding

an optimal set of hyperparameters θ. The proper Bayesian treatment of hyperparameters

would integrate θ out of any expressions used for prediction [359], but this integral is usually

intractable. The evidence approximation [360, 361] uses Laplace’s method [362–364] to replace

the integral with the value of the marginal likelihood at its maximum, which is valid for

suitably peaked P (θ |y). Then the optimal hyperparameters are those which maximise the

marginal likelihood, or logP (y |m,Kθ) given by Equation 5.47. This method is also known as

type-II maximum likelihood [365] or empirical Bayes [366], and has a long-standing history of

applications in statistical inference and machine learning.

It is possible to interpret separately each of the terms in Equation 5.47. The first term

−1
2(y−m)T [Kθ + V ]−1 (y−m) is the least-squares log likelihood, and it quantifies the fit to

data of the GP model. That is, models with greater flexibility to describe the observed data give

larger values for this term. The second term is related to the simplicity of the model. Models

with higher variance give larger values for |Kθ|, so −1
2 log |Kθ + V | penalises over complex

models. In this sense, the balance between the first two terms of Equation 5.47 represents the

bias–variance trade-off involved in model selection. The −n
2 log 2π term is for normalisation.

An example of performing this procedure for one hyperparameter is shown in Figure 5.4.

Data points were generated by sampling from a one-dimensional GP with the squared exponential

kernel (Equation 5.10) with l = 1.0 and Gaussian noise V = σ2
ε I with σε =

√
0.25. GP regression
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was performed for these data points, following Section 5.4.2. In Figure 5.4a, a short length

scale of l = 0.25 was used. Here the fit to data is good, but the variance at points away from

the observations is large and the model is overly flexible. In contrast, GP regression with

a long length scale of l = 3.0 is shown in Figure 5.4b. While the complexity of the model,

and accordingly the variance, is greatly reduced, the fit to data is now poor. A numerical

maximisation of the marginal likelihood given by Equation 5.47 was performed using the

SciPy [367] Python implementation of the Brent–Dekker method [368, 369]. This found that a

value of l = 0.90 gives the maximum marginal likelihood, close to the original generating value

of l = 1.0. GP regression with this value is shown in Figure 5.4c, and displays an agreeable

trade-off between bias and variance. In Figure 5.4d, the marginal likelihood and its constituent

terms are shown as functions of l.

242



5 Gaussian processes 5.7 Hyperparameter optimisation

0 2 4 6 8 10

−2

0

2

x

f
(x

)

(a) l = 0.25

0 2 4 6 8 10

−2

0

2

x

f
(x

)

(b) l = 3.0

0 2 4 6 8 10

−2

0

2

x

f
(x

)

(c) l = 0.90

10−1 100
−100

−50

0

l

lo
g

pr
ob

ab
ili

ty

Marginal likelihood
Data fit
Simplicity

(d)

Figure 5.4 Effect of the length scale hyperparameter. Panels (a)–(c): Noisy data (σε =
√

0.25) are

generated by sampling from a one-dimensional GP using the squared exponential kernel (Equation 5.10)

with l = 1.0. A GP regression is fit to the data points using short and long length scales in Panels (a)

and (b), respectively. In Panel (c), the length scale hyperparameter is set to the value which maximises

the marginal likelihood (Equation 5.47). The log marginal likelihood is shown as a function of l in Panel

(d) (solid). Its components, the data fit term − 1
2 yT[K + σ2

ε I]−1y (dashes) and the simplicity or negative

complexity term − 1
2 log |K + σ2

ε I| (dots), are also shown. The point of maximum marginal likelihood is

indicated with a vertical mark ( ).
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Chapter 6

Unfolding with Gaussian processes

The contents of this chapter have also been written in a paper [354] and submitted for peer-

reviewed publication.

6.1 Introduction

The distribution of an experimentally measured random variable is distorted by the effects of

limited detector resolution, acceptance, and efficiency. This distortion can be in the form of

random noise and bias in the distribution. In order to compare measurements of the same

underlying physical distribution with different detectors, or to compare to theoretical predictions,

it is sometimes desirable to unfold the measured distribution.

In high energy particle physics, there is an established literature of a variety of approaches

and implementations of unfolding [307, 370–372]. In other fields, the statistical techniques used

for unfolding are often called deconvolution or restoration [373–376]. Universally they aim to

solve an inverse problem, loosely defined as inference of an a priori unknown function which is

related to the observed data through a convolutional model.

In this chapter, a newly proposed method for unfolding in particle physics is described. The

unfolding problem is defined in in Section 6.2. Section 6.3 presents the maximum likelihood

solution, and the need for regularisation. In Section 6.4, a connection is made between the
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maximum a posteriori estimator for unfolding and the solution of a regression problem which

conditions prior knowledge encoded in a Gaussian process on the maximum likelihood solution.

Two example applications are shown in Section 6.5.

6.2 Problem definition

In particle physics, distributions of measured random variables are often reported as binned

histograms, rather than continuous functions. Therefore the method presented here will deal

with discretised bin populations, where the probability for a measurement to land in bin i is

given by

Pi =
∫

bin i

g(x) dx. (6.1)

Here the continuous random variable x is distributed according to the probability density

function g(x). It is important to note that the process of discretisation introduces a source

of implicit regularisation. The method presented in this chapter can be generally applied to

continuous, unbinned distributions, but this form of data representation is less common in

particle physics.

Four histograms are defined:

• n: Data counts, i.e. ni is the number of events in bin i for i = 1, . . . , N ;

• ν: The reconstruction histogram, ν = E[n], the expected histogram of measured data;

• µ: The truth histogram with discretisation µj =
∫

bin j f(x) dx, j = 1, . . . ,M ;

• µ̂: The unfolded histogram, an estimator for µ.

The truth and observed histograms are related through the effects of limited detector

response, acceptance, and contributions from background processes. For simplicity, the back-

ground is taken to be zero here, although this assumption is relaxed in Section 6.6. In the
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unfolding problem, µ and ν are modelled as being linearly related by

ν = Rµ, , (6.2)

where R is an N ×M response matrix., defined to have elements

Rij = P (measured value in bin i | true value in bin j). (6.3)

The response matrix can be constructed from simulation. This is done by using Monte Carlo

sampling methods, as described in Section 3.4, to generate ‘true’ values for the variable of

interest. The same simulated event is also passed through a model of the detector, giving a

simulated ‘measured’ value. The events fill a two-dimensional histogram of true versus measured

values of the variable of interest, in N and M bins, respectively.

The elements of the response matrix are taken from the counts of the bin populations after

scaling such that

N∑
i=1

Rij = εj , (6.4)

where εj is the efficiency of bin j, j = 1, . . . ,M . Limited efficiency causes events to not be

detected. The efficiency of bin j, εj , is equal to the proportion of events with true values in

that bin which also appear in the simulated measurement. Written another way, 1− εj is the

proportion of events that are lost by the detector model. The effects of limited acceptance can

be handled in a similar manner.

The goal is to construct a vector of estimators µ̂(n) for the unfolded histogram, given the

observed data. This is an ill-posed inverse problem with no unique solution [377]. There exists

a bias–variance trade-in the family of acceptable solutions, and this is typically handled through

regularisation.

In a counting experiment, commonly encountered in particle physics, the population of

the ith bin ni is an integer random variable which is distributed according to the Poisson
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distribution with expectation value νi. The probability mass function is given by

f(ni; νi) = ν
ni
i e
−νi

ni!
. (6.5)

The ni are mutually independent for all i. For large values, ni can be approximated as a

real random variable distributed according to a Gaussian distribution with probability density

function

f(ni; νi) = 1√
2πni

exp

−(ni − νi)2

2ni

 . (6.6)

, where the variance has been estimated by the observed bin count. For the entire histogram,

the joint probability density for all N bin populations is given by

f(n;ν) =
[
(2π)N |V |

]− 1
2 exp

[
−1

2(n− ν)TV −1(n− ν)
]
, (6.7)

where

V =


n1 0 · · · 0
0 n2 · · · 0
...

... . . . ...
0 0 · · · nN

 (6.8)

is a diagonal covariance matrix, since the bin populations are independent random variables.

The findings presented in this chapter apply when bin counts are approximately Gaussian,

e.g., for large νi in the case of Poisson-distributed data.
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6 Unfolding with Gaussian processes 6.3 Maximum likelihood estimator

6.3 Maximum likelihood estimator

Since the data n are modelled as being Gaussian-distributed around ν, the likelihood is given

by

P (n |ν) =
[
(2π)N |V |)

]− 1
2 exp

[
−1

2(n− ν)TV −1(n− ν)
]

(6.9)

and hence the log-likelihood may be written

logP (n |µ) = −1
2 (n− ν)T V −1 (n− ν)− 1

2 log |V | − N

2 log 2π (6.10)

= −1
2 (n−Rµ)T V −1 (n−Rµ)− 1

2 log |V | − N

2 log 2π, (6.11)

where in the last line ν = Rµ has been substituted, by Equation 6.2, and |V | is the determinant

of the covariance matrix V .

It can be shown that the maximum likelihood solution for ν is given by [356]

ν̂ML = n. (6.12)

Rearranging Equation 6.2 gives

µ = R−1ν (6.13)

for invertible R. Therefore the maximum likelihood estimator for the truth histogram is given

by

µ̂ML = R−1n. (6.14)

µ̂ML may be obtained by explicit matrix inversion for invertible R when N = M or by alternative

methods, such as numerically maximising Equation 6.11 or singular value decomposition [].
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6 Unfolding with Gaussian processes 6.3 Maximum likelihood estimator

The covariance matrix for the maximum likelihood estimator is given by [356]

UML = R−1V
(
R−1

)T
. (6.15)

6.3.1 Regularisation

The detector response acts to smear out fine structure in the truth distribution, so statistical

fluctuations in the data can lead to a large amount of fine structure in the unfolded result.

This effect yields large local fluctuations in the maximum likelihood estimator when the typical

bin width is not much larger than the detector resolution. The high-frequency nature of these

fluctuations often lead to strong negative correlations between estimators for neighbouring bin

counts.

These undesired false features are typically reduced by a technique known as regularisation.

An explicit regularisation may be introduced beyond the initial discretisation of the distribution

by minimising a cost functional,

Φ(µ) = −α logP (n |µ) + S(µ), (6.16)

where S(µ) penalises high-variance distributions, effectively constricting the space of possible

unfolded solutions. Multiple measures of smoothness may be used, such as those based on

derivatives [378, 379] or entropy [380]. The ML solution has the minimum variance for an

unbiased estimator, so any reduction in variance must be balanced by introducing some bias.

The regularisation parameter α controls this bias–variance trade-off.

An unfolded distribution may alternatively be obtained by iterative techniques, which

converge on the ML solution (expectation maximisation) [302–304]. Stopping after a fixed

number of iterations can yield a solution with the desired properties, although the fact that

the bias–variance trade-off is controlled by a discrete parameter, rather than a continuous one,

limits the possibility to tune the parameter values. Modifications to the unfolding function in

the iteration are available to overcome such limitations, for instance by introducing another
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6 Unfolding with Gaussian processes 6.4 Gaussian process method

tunable continuous hyperparameter that reduces the convergence speed [381]. Fully Bayesian

unfolding [382] addresses regularisation through a non-constant prior distribution, and performs

the unfolding by sampling from the posterior distribution. The method presented in the next

section mirrors the fully Bayesian technique when the prior and posterior distributions are

Gaussian.

6.4 Gaussian process method

6.4.1 Maximum a posteriori estimator

From Bayes’ theorem, the log posterior probability is given by

logP (µ |n) = logP (n |µ) + logP (µ)− logP (n), (6.17)

where P (µ) is the prior probability. The last term P (n) (the evidence) may be ignored since it

does not depend on µ.

The prior probability is taken to be given by a GP with mean vector m (the values are the

bin contents of a reference histogram) and covariance matrix Kij = k(xi,xj) where x is the

vector containing the values of bin centers of the truth histogram. From Equation 5.8, the log

prior probability is then given by

logP (µ) = −1
2 (µ−m)TK−1 (µ−m) + . . . , (6.18)

where the unwritten terms do not depend on µ. Substituting the likelihood from Equation 6.11

and prior from Equation 6.18 into Equation 6.17, the posterior is given by

logP (µ |n) = −1
2 (n−Rµ)T V −1 (n−Rµ)− 1

2 (µ−m)TK−1 (µ−m) + . . . , (6.19)

again dropping terms which do not contain µ.
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6 Unfolding with Gaussian processes 6.4 Gaussian process method

The maximum a posteriori (MAP) estimator µ̂MAP is defined as the mode of the posterior

probability distribution given by Equation 6.19. The derivative for the first and second terms

on the right hand side are given by

∂

∂µ

[
−1

2 (n−Rµ)T V −1 (n−Rµ)
]

= (n−Rµ)T V −1R, (6.20)

∂

∂µ

[
−1

2 (µ−m)TK−1 (µ−m)
]

= − (µ−m)TK−1, (6.21)

respectively. Combining these and taking the transpose (V −1 and K−1 are symmetric), it is

therefore required that µ̂MAP satisfies

0 = RTV −1 (n−Rµ̂MAP)−K−1 (µ̂MAP −m) (6.22)

= RTV −1n−
[
RTV −1R+K−1

]
µ̂MAP +K−1m (6.23)

at the extremum. The covariance of the ML solution from Section 6.3 is given by UML =

R−1V (R−1)T by Equation 6.15, so RTV −1R = U−1
ML. Substituting into Equation 6.23 and

rearranging for µ̂MAP,

µ̂MAP =
[
K−1 + U−1

ML
]−1 (

U−1
MLR

−1n +K−1m
)

(6.24)

= K [K + UML]−1R−1n + UML [K + UML]−1 m (6.25)

= K [K + UML]−1
(
R−1n−m

)
+ m, (6.26)

where from Equation 6.24 to Equation 6.25,
[
A−1 +B−1

]−1
B−1 = A [A+B]−1 is used, valid

for invertible matrices A and B.

The matrix acting on (R−1n −m) is expected to have eigenvalues that are bounded to

be less than unity (from Section 5.4.4). The resulting summary statistic µ̂MAP is a linear

smoother [329, 383] of the term (R−1n−m). The choice of the kernel function is discussed in

Section Section 6.4.2 below.

By comparing the MAP estimator from Equation 6.26 to that obtained from GP regression

in Equation 5.24, the important result that µ̂MAP is the posterior mean of a GP regression
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6 Unfolding with Gaussian processes 6.4 Gaussian process method

whose observations are the ML solution is obtained. Since the posterior distribution is a product

of Gaussians, it is also a Gaussian and therefore the mode is identical to the mean. The

connection to GP regression gives that the covariance of the MAP estimator is given by

U = K −K
[
K +R−1V (R−1)T

]−1
K. (6.27)

Furthermore, if the observation (training) indices X = (x1,x2, . . .) are different from the

prediction (testing) indices X∗ = (x∗1,x∗2, . . .), and the reference histogram can be obtained

for bins defined by X∗, then the standard results from GP regression can be used to generalise

the MAP solution to

µ̂MAP = KT
∗ [K + UML]−1 (µ̂ML −m) + m∗, (6.28)

U = K∗∗ −KT
∗ [K + UML]−1K∗, (6.29)

where [K∗]ij = k(xi,x∗j), [K∗∗]ij = k(x∗i,x∗j), and m∗ is the mean histogram at X∗ bin

positions.

This is the method of unfolding with GPs. Its novelty derives from including the detector

convolution in a GP regression. The generalised results in Equation 6.28 and Equation 6.29 are

simple, linear algebraic expressions once the ML solution is known. Therefore the unfolded

estimator and its covariance are efficient to compute and this is an advantage over other,

more computationally intensive unfolding methods. Additionally, the covariance matrix for the

unfolded histogram is easily calculated as part of the result.

6.4.2 Kernel choice and optimisation

In the proposed unfolding method using GPs, the explicit regularisation is introduced via

the kernel function k(x,x′) which constricts the space of possible solutions to those with a

particular covariance. A common choice for the kernel function is the squared-exponential,
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6 Unfolding with Gaussian processes 6.4 Gaussian process method

which in one dimension has the form

k(x,x′) = τ2 exp

−(x− x′)2

2l2

 . (6.30)

This kernel function is stationary in the sense that it is a function of only the distance between

the inputs, |x − x′|. It is parameterised by the amplitude τ2 and length scale l, which form

the set of hyperparameters, θ = {τ2, l}. In this treatment, the method of maximum marginal

likelihood, as described in Section 5.7, can be used.

The kernel function in Equation 6.30 is smooth and has other desirable properties that

lead it to be very widely used in the literature [319]. Also the hyperparameters τ2 and l are

readily interpretable. Other kernel functions, however, may be more suitable for describing

the truth distribution. An attractive feature of the approach presented here is that one may

encode knowledge of the underlying physical process to derive a physically-motivated kernel

[353] which may better describe the truth distribution.

The mathematics of reproducing kernel Hilbert spaces formalises the link between the

kernel and the traditional explicit regularisation approach used in some particle physics results.

For example, a thin plate covariance [384] leads to a solution equivalent to that of spline

regularisation, known as Tikhonov regularisation in particle physics [356, 378, 379, 385]. In

one dimension, this stationary kernel may be written k(r) = τ2(2r3 − 3Dr2 + D3), where

r = |x− x′| ≤ D and D is determined by boundary conditions. This kernel contains a single

parameter τ2, which controls the global strength of the regularisation, as is the case with

Tikhonov regularisation in its usual implementation. In contrast, an advantage of the GP

approach presented in this paper is that the explicit regularisation may be varied locally along

the spectrum by using a non-stationary kernel function. An example of this, using the Gibbs

kernel [352], is provided in Section 6.5.2.
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6 Unfolding with Gaussian processes 6.5 Example applications

6.5 Example applications

Examples are given here of a bimodal distribution in Section 6.5.1, and a falling spectrum in

Section 6.5.2. They were generated using a Python framework developed for this project [386].

6.5.1 Bimodal distribution

A set of 200 000 simulated ‘truth’ events is obtained by sampling from two Gaussian distributions

for x with mean values 0.3 and 0.7, both with standard deviation 0.1. These truth events are

histogrammed in µ. They are then smeared with a zero-mean Gaussian resolution of σ = 0.075

to generate the histogram ν. Events are accepted in the region 0 < x < 1 and both the µ

and ν histograms use 20 constant bins of constant width. The truth and smeared events are

used to determine the square response matrix R from a 2D histogram, normalised such that∑N
i=1Rij = 1, as detailed in Section 6.2. A large number of events are used to reduce the impact

of statistical fluctuations in R. Finally, the observed histogram n is generated by applying

the same smearing process to an independent sample of 20 000 events drawn from the truth

distribution. The histograms µ and ν are scaled so that they contain the same number of

events as n. The three histograms are shown in Figure 6.1.

A GP with the squared-exponential kernel function given by Equation 6.30 is used as the

prior. The reference histogram, m, is taken to be zero for all bins. After setting the GP kernel

and mean, the values for the two hyperparameters τ2 and l are chosen to be those that maximise

the log marginal likelihood, given by Equation 5.47. The maximum point and contours of the

log marginal likelihood are shown in Figure 6.3.

The estimator for the unfolded histogram, µ̂MAP given by Equation 6.26, is shown in

Figure 6.2. The covariance matrix U is defined by Equation 6.27, and the correlation matrix

with elements ρij = Uij/
√
UiiUjj is shown in Figure 6.4. The mean correlations for the first,

second, and third neighbouring bins are 0.360, −0.453, and −0.566, respectively.

The pull is defined to be given by the normalised residual, pi = (E[µ̂i]− µi)/σ̂i, where the

elements of E[µ̂] are obtained by unfolding the histogram ν and σ̂2
i = Uii(ν). This quantity
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Figure 6.1 Truth (µ), expected reconstruction (ν), and observed (n) histograms for the bimodal

example. The histogram definitions are reported in the text. The error bars on n represent their Poisson

uncertainties.
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Figure 6.2 Truth (µ) and unfolded (µ̂MAP histograms for the two-peak example. The error bars on

µ̂MAP represent the standard deviations obtained from the covariance matrix as defined by Equation 6.27.
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Figure 6.3 Contours of the log marginal likelihood, given by Equation 5.47, for the two-peak example

as a function of the parameters for the squared-exponential kernel, τ2 and l. The cross indicates the

point of maximum marginal likelihood. The contour labels are the depth of the contour below the

maximum.

0.0 0.2 0.4 0.6 0.8 1.0
j

0.0

0.2

0.4

0.6

0.8

1.0

i

Correlation matrix

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.4 Correlation matrix for the unfolded truth estimators µ̂MAP for the bimodal example.
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Figure 6.5 Pulls of the unfolded estimators µ̂MAP for the bimodal example.

provides an indication of the bias of the unfolded estimator, and is shown for the present

example in Figure 6.5.

6.5.2 Falling spectrum

For the second example, 200 000 ‘truth’ events are sampled from an exponential distribution

f(x) = e−x in the region 1 < x < 5 and accumulated in 20 bins of equal width to form the

histogram µ. These events are smeared according to a Gaussian distribution with variance

corresponding to a resolution of 0.2
√
x. The smeared events are placed in the histogram ν with

30 bins of equal width in the region 0.5 < x < 5. The observed histogram n is generated by

applying the same smearing to 1000 independent events generated in the truth region from

the same exponential distribution. The histograms µ and ν are scaled to contain 1000 events.

These three histograms are shown in Figure 6.6.

In this example, N > M so while the problem is well-constrained, the N ×M response

matrix R is not directly invertible. To mitigate this, a form of the posterior distribution that
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Figure 6.6 Truth (µ), expected reconstruction (ν), and observed (n) histograms for the falling spectrum

example. The error bars on n represent their Poisson uncertainties.
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Figure 6.7 Truth (µ) and unfolded histograms (µ̂MAP) for the falling spectrum example.
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Figure 6.8 Correlation matrix for the unfolded truth estimators µ̂MAP for the falling spectrum example.
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Figure 6.9 Pulls of the unfolded histogram µ̂ for the falling spectrum example.
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does not rely on R−1 [387], obtained by rearranging Equations 6.26 and 6.27, can be used:

µ̂MAP = KRT
[
RKRT + V

]−1
(n−Rm) + m (6.31)

U = K −KRT
[
RKRT + V

]−1
RK. (6.32)

In an example such as this (e.g., an invariant mass spectrum of a background process), it

might be expected that there is fine structure present in the bulk of the truth distribution, but

not the tail. A kernel with constant length scale, such as the squared-exponential Equation 6.30,

is unsuitable in this case. A more suitable choice is given by a kernel function with variable

length scale, such as the Gibbs kernel [319, 352],

k(x, x′) = τ2

√√√√ 2l(x)l(x′)
l2(x) + l2(x′)

exp

− (x− x′)2

l2(x) + l2(x′)

 , (6.33)

in 1D, where l(x) is an arbitrary positive function of x, here chosen to be l(x) = bx+ c. This

allows for a linearly-changing length scale. The reference histogram, m is taken to be zero for

all bins as in the previous example. The increased flexibility afforded by this kernel function is

realised by introducing more regularisation parameters, θ = {τ2, b, c}. For a large number of

such parameters, it can become increasingly difficult to choose the optimal point.

The resultant unfolded histogram is compared with the truth histogram in Figure 6.7. Once

the GP kernel and the reference histogram are set, the parameters θ for this example are chosen

with the maximum log marginal likelihood prescription given in Section 6.4.2, corresponding

to log τ2 = 9.62, b = 2.89, c = −0.858. As expected, b > 0 so the length scale increases with

x. The correlation matrix for the unfolded truth estimators is shown in Figure 6.8, and the

pulls in Figure 6.9. The binning with N > M introduces a source of implicit regularisation,

and therefore bias in the estimator for the unfolded histogram.
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6.6 Discussion

This chapter presents a method of unfolding using GP regression. Conditioning a GP prior

on the maximum likelihood solution to the inverse problem is equivalent to constructing the

MAP estimator. In this way, the use of GP regression provides regularisation to the maximum

likelihood solution.

The GP is entirely described by mean and kernel functions. While the mean function has

little impact on the result, the kernel function prescribes the covariance of the estimator for the

unfolded solution. By choosing an appropriate kernel function, the smoothness in the unfolded

estimator can be controlled both globally and locally. This approach allows the regularisation

to be finely controlled and can be naturally motivated by knowledge of the underlying physics.

Traditional unfolding methods operate with fixed definitions for the binning of the his-

tograms involved. No such restrictions exist for the method of unfolding with GPs. The

posterior distribution is itself a GP, and can therefore be evaluated at arbitrary indices, X∗, by

Equations 6.28 and 6.29. This means that the unfolded distribution can be re-binned at will,

so long as the kernel function is known, and therefore the direct comparison of results from

different detector apparatus is more easily achieved.

GPs have been introduced to a number of scientific fields to improve their statistical

procedures [375, 376]. They have not, however, traditionally been used in particle physics,

although recent developments in this area have shown promise [353]. This chapter demonstrates

that the presented novel unfolding method is generally applicable to problems of different shapes

and sizes, that the regularisation can be controlled naturally, and that the result – including

the unfolded covariance matrix – can be obtained conveniently.

Non-zero background

In Section 6.2, contributions to the measured bin populations from background processes are

taken to be equal to zero for simplicity. Background contributions, with expectation values

given by the N -dimensional vector β, can be simply included by modifying the folding equation,
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given by Equation 6.2, to

ν = Rµ+ β. (6.34)

Then for the estimators used in the method presented in this chapter, the data histogram is

substituted for the background-subtracted data, n→ n− β, throughout.

Gaussian approximation

In this chapter, it is assumed that the data may be approximated as distributed according

to a Gaussian. However, this is not universally the case in particle physics. The choice of

unfolding method depends on the analysis being done and should be tested against simulation.

This is also the case for the traditional unfolding methods, when deciding on an acceptable

regularisation scheme to control the bias–variance trade-off. In any analysis making use of the

techniques presented in this chapter, it is recommended that the unfolding is tested to ensure it

acceptably meets the requirements of the analysis under consideration. This is to be done with

simulated pseudo-data, before the real data are unblinded, to avoid biasing the final result.

Future work

The statistical properties of the MAP estimator for the unfolded histogram are probed by the

distributions of the pulls in Figures 6.5 and 6.9. Further studies are also possible. In particular,

the frequentist properties of µ̂MAP could be investigated, for example its coverage. This would

assess the suitability of the method for use in hybrid frequentist–Bayesian analyses often seen

in particle physics [388].

The treatment of systematic uncertainties is envisaged for future work on this topic.

Approximate variational approaches, as used in published particle physics analyses [389, 390],

may still be employed for the unfolding method presented here. Also as an extension to this

work, further research into the applications of Student-t processes [391] for unfolding in particle

physics could be carried out.
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Chapter 7

Conclusion

The Standard Model has a remarkable history of successful prediction and agreement with

observations from measurements in the field of high energy particle physics. However, it is also

known to be incomplete and extensions or alternatives to it must therefore exist.

One of the areas this could occur in is the physics of the t quark, one of the most exotic and

exceptional particles in the Standard Model. As the most massive particle, it could provide a

window into effects beyond the Standard Model. Additionally, measurements of the properties

and production cross sections of t quarks are essential for characterising background processes

relevant in explicit searches for exotic phenomena.

This thesis presents measurements of tt production cross sections at the Large Hadron

Collider, using the state-of-the-art ATLAS detector. The analysis uses collisions which result

in decays to a fully hadronic final state, where the jets of hadronic particles can all be resolved

in the detector. This particular decay channel corresponds to t quarks with relatively low

transverse momentum, and the tt system can be fully reconstructed with good resolution. The

cross sections are reported differentially as functions of kinematic variables of the t quarks and

of the combined tt system. They are unfolded to definitions of the t quark at particle level and

parton level. Good agreement with predictions from the Standard Model, through Monte Carlo

simulations, is seen across the results. Some alternative simulations are found to deviate from

the data.
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7 Conclusion

The use of Gaussian processes in high energy particle physics is discussed in Chapter 5.

As simple and interpretable, yet flexible, non-parametric models of families of functions, GPs

can be used in many areas in the field. One such applicable use case is in unfolding. A novel

method of unfolding using GP regression is presented in Chapter 6. Here it is seen how the

regularisation can be prescribed in a flexible manner, informed by the underlying physics.

A connection is made to Bayesian statistics and the maximum a posteriori estimator. The

performance of the method is illustrated and evaluated in two toy examples.
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Appendix A

Background compositions

The background composition distributions for one-dimensional observables to be unfolded to
particle level are shown in Figures 4.11 to 4.16 in the main text.
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Figure A.7 Distributions in the signal region for (a) pt1
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(d) |yt1 | vs. mtt . The shaded area indicated the total statistical and systematic uncertainty.
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Figure A.8 Distributions in the signal region for (a) pt2
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Appendix B

Uncertainty compositions

Normalised cross sections

The uncertainty compositions for one-dimensional normalised cross sections unfolded to particle
level are shown in Figures 4.33 to 4.38 in the main text.
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Figure B.1 Uncertainty composition for the pt1
T cross section in bins of pt2

T , unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.2 Uncertainty composition for the pt1
T cross section in bins of mtt , unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.3 Uncertainty composition for the pt2
T cross section in bins of mtt , unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.4 Uncertainty composition for the ptt
T cross section in bins of mtt , unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.5 Uncertainty composition for the |ytt | cross section in bins of mtt , unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.6 Uncertainty composition for the pt1
T cross section in bins of Njets, unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.7 Uncertainty composition for the pt2
T cross section in bins of Njets, unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.8 Uncertainty composition for the ptt
T cross section in bins of Njets, unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.9 Uncertainty composition for the ∆φ cross section in bins of Njets, unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.10 Uncertainty composition for the |Pout| cross section in bins of Njets, unfolded to particle

level. The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.11 Uncertainty composition for the |Pcross| cross section in bins of Njets, unfolded to particle

level. The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.12 Uncertainty composition for the normalised cross section as a function of (a) pt1
T , (b) |yt1 |,

(c) pt2
T , and (d) |yt2 |, unfolded to parton level. The lighter shaded area indicates the total statistical and

systematic uncertainty.
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Figure B.13 Uncertainty composition for the normalised cross section as a function of (a) ptt
T , (b) |ytt |,

(c) mtt , and (d) Htt
T , unfolded to parton level. The lighter shaded area indicates the total statistical

and systematic uncertainty.
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Figure B.14 Uncertainty composition for the normalised cross section as a function of (a) χtt , (b) ∆φ,

and (c) |yboost|, unfolded to parton level. The lighter shaded area indicates the total statistical and

systematic uncertainty.
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Figure B.15 Uncertainty composition for the pt1
T cross section in bins of pt2

T , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.16 Uncertainty composition for the |yt2 | cross section in bins of |yt1 |, unfolded to parton

level. The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.17 Uncertainty composition for the pt1
T cross section in bins of mtt , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.18 Uncertainty composition for the |yt1 | cross section in bins of mtt , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.19 Uncertainty composition for the |yt2 | cross section in bins of mtt , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.20 Uncertainty composition for the ptt
T cross section in bins of mtt , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.21 Uncertainty composition for the |ytt | cross section in bins of mtt , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.22 Uncertainty composition for the absolute cross section as a function of Njets, unfolded to

particle level. The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.23 Uncertainty composition for the absolute cross section as a function of (a) pt1
T , (b) |yt1 |,

(c) pt2
T , and (d) |yt2 |, unfolded to particle level. The lighter shaded area indicates the total statistical

and systematic uncertainty.
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Figure B.24 Uncertainty composition for the absolute cross section as a function of (a) ptt
T , (b) |ytt |,

(c) mtt , and (d) Htt
T , unfolded to particle level. The lighter shaded area indicates the total statistical

and systematic uncertainty.
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Figure B.25 Uncertainty composition for the absolute cross section as a function of (a) χtt , (b) Ztt ,

(c) cos θ?, and (d) ∆φ, unfolded to particle level. The lighter shaded area indicates the total statistical

and systematic uncertainty.
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Figure B.26 Uncertainty composition for the absolute cross section as a function of (a) |yboost|, (b) |Pout|,
and (c) |Pcross|, unfolded to particle level. The lighter shaded area indicates the total statistical and

systematic uncertainty.

322



B Uncertainty compositions

0 2 4 6 8 10 12 14 16
leading
Wb R

60−

40−

20−

0

20

40

60

F
ra

ct
io

na
l U

nc
er

ta
in

ty
 [%

]

Stat.+Syst. Unc. Stat. Unc.

JES/JER Flavor Tagging

QCD Syst. IFSR, PDF

QCD Stat. MCSignalStat.

Hadronisation Hard Scattering

ATLAS Internal
-1 = 13 TeV, 36.1 fbs

All-had resolved

Fiducial phase-space

Absolute cross-section

(a) Rleading
W b

0 2 4 6 8 10 12
subleading
Wb R

60−

40−

20−

0

20

40

60

F
ra

ct
io

na
l U

nc
er

ta
in

ty
 [%

]
Stat.+Syst. Unc. Stat. Unc.

JES/JER Flavor Tagging

QCD Syst. IFSR, PDF

QCD Stat. MCSignalStat.

Hadronisation Hard Scattering

ATLAS Internal
-1 = 13 TeV, 36.1 fbs

All-had resolved

Fiducial phase-space

Absolute cross-section

(b) Rsubleading
W b

0 0.2 0.4 0.6 0.8 1 1.2
leading
Wt R

60−

40−

20−

0

20

40

60

F
ra

ct
io

na
l U

nc
er

ta
in

ty
 [%

]

Stat.+Syst. Unc. Stat. Unc.

JES/JER Flavor Tagging

QCD Syst. IFSR, PDF

QCD Stat. MCSignalStat.

Hadronisation Hard Scattering

ATLAS Internal
-1 = 13 TeV, 36.1 fbs

All-had resolved

Fiducial phase-space

Absolute cross-section

(c) Rleading
W t

0 0.2 0.4 0.6 0.8 1 1.2 1.4
subleading
Wt R

60−

40−

20−

0

20

40

60

F
ra

ct
io

na
l U

nc
er

ta
in

ty
 [%

]

Stat.+Syst. Unc. Stat. Unc.

JES/JER Flavor Tagging

QCD Syst. IFSR, PDF

QCD Stat. MCSignalStat.

Hadronisation Hard Scattering

ATLAS Internal
-1 = 13 TeV, 36.1 fbs

All-had resolved

Fiducial phase-space

Absolute cross-section

(d) Rsubleading
W t

Figure B.27 Uncertainty composition for the absolute cross section as a function of (a) Rleading
W b ,

(b) Rsubleading
W b , (c) Rleading

W t , and (d) Rsubleading
W t , unfolded to particle level. The lighter shaded area

indicates the total statistical and systematic uncertainty.
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Figure B.28 Uncertainty composition for the pt1
T cross section in bins of pt2

T , unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.29 Uncertainty composition for the pt1
T cross section in bins of mtt , unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.30 Uncertainty composition for the pt2
T cross section in bins of mtt , unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.31 Uncertainty composition for the ptt
T cross section in bins of mtt , unfolded to particle level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.32 Uncertainty composition for the |ytt | cross section in bins of mtt , unfolded to particle

level. The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.33 Uncertainty composition for the pt1
T cross section in bins of Njets, unfolded to particle

level. The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.34 Uncertainty composition for the pt2
T cross section in bins of Njets, unfolded to particle

level. The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.35 Uncertainty composition for the ptt
T cross section in bins of Njets, unfolded to particle

level. The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.36 Uncertainty composition for the ∆φ cross section in bins of Njets, unfolded to particle

level. The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.37 Uncertainty composition for the |Pout| cross section in bins of Njets, unfolded to particle

level. The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.38 Uncertainty composition for the |Pcross| cross section in bins of Njets, unfolded to particle

level. The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.39 Uncertainty composition for the absolute cross section as a function of (a) pt1
T , (b) |yt1 |,

(c) pt2
T , and (d) |yt2 |, unfolded to parton level. The lighter shaded area indicates the total statistical and

systematic uncertainty.
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Figure B.40 Uncertainty composition for the absolute cross section as a function of (a) ptt
T , (b) |ytt |,

(c) mtt , and (d) Htt
T , unfolded to parton level. The lighter shaded area indicates the total statistical

and systematic uncertainty.
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Figure B.41 Uncertainty composition for the absolute cross section as a function of (a) χtt , (b) ∆φ,

and (c) |yboost|, unfolded to parton level. The lighter shaded area indicates the total statistical and

systematic uncertainty.
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Figure B.42 Uncertainty composition for the pt1
T cross section in bins of pt2

T , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.43 Uncertainty composition for the |yt2 | cross section in bins of |yt1 |, unfolded to parton

level. The lighter shaded area indicates the total statistical and systematic uncertainty.

0.
0 

- 
18

5.
0

18
5.

0 
- 

30
5.

0

30
5.

0 
- 

10
00

.0

40−

30−

20−

10−

0

10

20

30

F
ra

ct
io

na
l U

nc
er

ta
in

tie
s 

[%
]

 700≤ tt0 < m  700≤ tt0 < m

0.
0 

- 
29

5.
0

29
5.

0 
- 

38
5.

0

38
5.

0 
- 

10
00

.0

 970≤ tt700 < m  970≤ tt700 < m

0.
0 

- 
27

5.
0

27
5.

0 
- 

36
5.

0

36
5.

0 
- 

46
5.

0

46
5.

0 
- 

10
00

.0

t1
T

p

 3000≤ tt970 < m  3000≤ tt970 < m

Stat.+Syst. Unc. Stat. Unc.

JES/JER Flavor Tagging

QCD Syst. IFSR, PDF

QCD Stat. MCSignalStat.

Hadronisation Hard Scattering

-1 = 13 TeV, 36.1 fbs

ATLAS Internal

All-had resolved

Full phase-space

Absolute cross-section

Figure B.44 Uncertainty composition for the pt1
T cross section in bins of mtt , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.45 Uncertainty composition for the |yt1 | cross section in bins of mtt , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.46 Uncertainty composition for the |yt2 | cross section in bins of mtt , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.47 Uncertainty composition for the ptt
T cross section in bins of mtt , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure B.48 Uncertainty composition for the |ytt | cross section in bins of mtt , unfolded to parton level.

The lighter shaded area indicates the total statistical and systematic uncertainty.
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Figure C.1 Absolute differential cross section as a function of Njets, unfolded to particle level. The

bottom panels show the ratios of predictions from simulations to the data.
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Figure C.2 Absolute differential cross sections as functions of (a) pt1
T , (b) |yt1 |, (c) pt2

T , and (d) |yt2 |, all
unfolded to particle level. The bottom panels show the ratios of predictions from simulation to the data.
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Figure C.3 Absolute differential cross sections as functions of (a) pt1
T , (b) |yt1 |, (c) pt2

T , and (d) |yt2 |, all
unfolded to particle level. The bottom panels show the ratios of predictions from simulation to the data.
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Figure C.4 Absolute differential cross sections as functions of (a) ptt
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T ,

all unfolded to particle level. The bottom panels show the ratios of predictions from simulation to the

data.
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Figure C.5 Absolute differential cross sections as functions of (a) χtt , (b) Ztt , (c) cos θ∗, and (d) ∆φ,

all unfolded to particle level. The bottom panels show the ratios of predictions from simulation to the

data.
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Figure C.6 Absolute differential cross sections as functions of (a) |yboost|, (b) |Pout|, and (c) |Pcross|,
all unfolded to particle level. The bottom panels show the ratios of predictions from simulations to the

data.
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Figure C.7 Absolute differential cross sections as functions of (a) Rleading
W b , (b) Rsubleading

W b , (c) Rleading
W t ,

and (d) Rsubleading
W t , all unfolded to particle level. The bottom panels show the ratios of predictions from

simulation to the data.
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Figure C.8 Absolute differential cross section (a) as a function of pt1
T in bins of pt2

T , unfolded to particle

level. (b) Ratio of predictions from simulations to data.
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Figure C.9 Absolute differential cross section (a) as a function of pt1
T in bins of mtt , unfolded to particle

level. (b) Ratio of predictions from simulations to data.
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Figure C.10 Absolute differential cross section (a) as a function of pt2
T in bins of mtt , unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure C.11 Absolute differential cross section (a) as a function of ptt
T in bins of mtt , unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure C.12 Absolute differential cross section (a) as a function of |ytt | in bins of mtt , unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure C.13 Absolute differential cross section (a) as a function of pt1
T in bins of Njets, unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure C.14 Absolute differential cross section (a) as a function of pt2
T in bins of Njets, unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure C.15 Absolute differential cross section (a) as a function of ptt
T in bins of Njets, unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure C.16 Absolute differential cross section (a) as a function of ∆φ in bins of Njets, unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure C.17 Absolute differential cross section (a) as a function of |Pout| in bins of Njets, unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure C.18 Absolute differential cross section (a) as a function of |Pcross| in bins of Njets, unfolded to

particle level. (b) Ratio of predictions from simulations to data.
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Figure C.19 Absolute differential cross sections as functions of (a) pt1
T , (b) |yt1 |, (c) pt2

T , and (d) |yt2 |,
all unfolded to parton level. The bottom panels show the ratios of predictions from simulation to the

data.
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Figure C.20 Absolute differential cross sections as functions of (a) ptt
T , (b) |ytt |, (c) mtt , and (d) Htt

T ,

all unfolded to parton level. The bottom panels show the ratios of predictions from simulation to the

data.
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Figure C.21 Absolute differential cross sections as functions of (a) χtt , (b) ∆φ, and (c) |yboost|, all
unfolded to parton level. The bottom panels show the ratios of predictions from simulation to the data.
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Figure C.22 (a) Absolute differential cross section as a function of pt1
T in bins of pt2

T , unfolded to parton

level. (b) Ratio of predictions from simulations to data.
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Figure C.23 (a) Absolute differential cross section as a function of |yt2 | in bins of |yt1 |, unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure C.24 (a) Absolute differential cross section as a function of pt1
T in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure C.25 (a) Absolute differential cross section as a function of |yt1 | in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure C.26 (a) Absolute differential cross section as a function of pt2
T in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure C.27 (a) Absolute differential cross section as a function of |yt2 | in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure C.28 (a) Absolute differential cross section as a function of ptt
T in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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Figure C.29 (a) Absolute differential cross section as a function of |ytt | in bins of mtt , unfolded to

parton level. (b) Ratio of predictions from simulations to data.
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