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A two-level quantum system can absorb or emit not more than one photon at a time. Using this
fundamental property, we demonstrate how a superconducting quantum system strongly coupled to
a transmission line can be used as a sensor of the photon flux. We propose four methods of sensing
the photon flux and analyse them for the absolute calibration of power by measuring spectra of
scattered radiation from the two-level system. This type of sensor can be tuned to operate in a wide
frequency range, and does not disturb the propagating waves when not in use. Using a two-level
system as a power sensor enables a range of applications in quantum technologies, here in particular
applied to calibrate the attenuation of transmission lines inside dilution refrigerators.

I. INTRODUCTION

Progress in development of superconducting circuits,
in particular applications in quantum optics, quantum
computing and quantum information, demand calibra-
tion of microwave lines and knowledge of applied powers
to the circuits situated on a chip at millikelvin tempera-
tures. Usually, one resorts to room-temperature char-
acterisation with power meters and spectral analysers
based on semiconductor electronics. However, when the
setup including several microwave components (wiring,
attenuators, circulators, amplifiers, etc.) is cooled down
to millikelvin temperatures, their transfer functions are
changed. Furthermore, the circuits on chip are usually
omitted from room temperature characterisations.

There have been several proposals to tackle this prob-
lem. For instance using Planck spectroscopy [1, 2], the
shot noise of a known microwave component [3], or the
scattering parameters of a device under test compared to
a reference transmission line [4–6]. These methods may
require separate cool-downs or multiple switched cryo-
genic standards, increasing measurement time and un-
certainty due to unavoidable change of parameters when
the microwave lines are reassembled. In experiments with
superconducting qubits or resonators, some physical ef-
fect specific to the circuit is often used for calibration
purposes. For example, photon numbers have been accu-
rately calibrated through the cross-Kerr effect [7] or via
the Stark shift of a qubit-cavity system [8, 9]. The latter
has been extended to multi-level quantum systems (qu-
dits) to deduce the unknown signal frequency and am-
plitude from the higher level AC Stark shift [10]. An-
other method uses a phase qubit as a sampling oscillo-
scope by measuring how the flux bias evolves in time [11].
Other approaches are suitable for correcting pulse imper-
fections [12, 13]. An interesting recent proposal uses a

∗teresa.hoenigl-decrinis@npl.co.uk

transmon qubit coupled to a readout resonator to char-
acterise qubit control lines in the range of 8 to 400 MHz
in situ. Unfortunately it is limited by the decoherence
time of the qubit [14].

In this letter, we present a quantum sensor of absolute
power operating in the microwave range and at cryogenic
temperatures based on a two-level system in a transmis-
sion line. This sensor measures the photon rate (propa-
gated radiation) in a wide frequency range by tuning the
two-level system. Importantly, the sensor itself does not
disturb the transmission line when detuned. The sensor
can be inserted as an additional lossless element into the
transmission line close to the reference plane of another
device of interest or used for calibration of transmission
lines, microwave components or devices within dilution
refrigerators. The working principle is independent of the
two-level system used, its implementation and dephasing
to first order. We implement the absolute power quantum
sensor using a superconducting flux qubit [15] strongly
coupled to a one-dimensional transmission line [7, 16–19],
but in principle it can be implemented with any two-level
system as long as it satisfies the strong coupling con-
dition. We demonstrate several methods for measuring
the absolute power, the fastest relying on the concept of
continuous wave mixing [20, 21]. The accuracy of each
method is evaluated by comparing the absolute power
sensed at the same frequency by four different qubits on
the same chip.

II. DEVICE AND WORKING PRINCIPLE

Our quantum sensor relies on the principle that when a
two-level system is illuminated by coherent electromag-
netic waves V0e

−iωt with incident photon rate, ν, only
a fraction of the incident photons is absorbed with rate
Ω. As illustrated in Fig. 1(a), the incident electromag-
netic wave couples to the two-level system via the dipole
interaction energy, ℏΩ = µV0, where µ is the dipole mo-
ment, and V0 is the voltage amplitude of the microwave
signal we aim to sense. The incident photon rate is
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FIG. 1: a) Schematic of a cryogenic environment together with an illustration of the chip containing a two-level system -
the absolute power quantum sensor - coupled to a transmission line. Knowledge of absolute power W0 supplied to a chip at
cryogenic temperatures, are important for most quantum technologies with superconducting circuits. The two-level system with
dipole moment µ interacts with the field V0 containing many photons giving rise to coherent oscillations at the Rabi frequency
Ω. b) False-coloured SEM image of the sample chip featuring four Al (blue) flux qubits on the undoped silicon oxide substrate
(violet) and Au ground planes, markers and bonding pads (yellow).

ν = V 2
0 /(2Zℏω), where Z is the impedance of the trans-

mission line that guides the microwave photons to the
two-level system at angular frequency ω.
We start with the ideal case of strong coupling of a two-

level artificial atom to a 1-D transmission line, where non-
radiative relaxation is negligible. Inserting the expression
for the relaxation rate Γ1 = (µ2ωZ)/ℏ [18, 22] gives

ν =
Ω2

2Γ1
. (1)

To sense the incident power W0 = νℏω we need to find
two parameters: the Rabi frequency, Ω, and the relax-
ation rate, Γ1, (or µ). These two quantities may be mea-
sured independently (eg. two separate measurements) as
the relaxation rate Γ1 (or the dipole moment µ) is a prop-
erty of the presented sensor whereas the Rabi frequency
Ω relates to the quantity sensed.
We study different methods of finding the required

quantities Ω and Γ1: (i) by probing the two-level system
for reflection through the transmission line, (ii) quan-
tum oscillations, (iii) the Mollow triplet and (iv) wave
mixing [23]. Note that, Fig. 1(a) shows the cryogenic en-
vironment only, but each method requires somewhat dif-
ferent experimental set-ups at room temperature. Even
though we put effort into keeping the total attenuation
similar, there are some variations across the methods.
For this reason, we benchmark our absolute power sen-

sor at 7.48 GHz to which we can tune each of the four
flux qubits with different parameters available for com-
parison in our device. As seen in Fig. 1(b), each flux
qubit consists of an Al superconducting loop and four
Al/AlOx/Al Josephson junctions fabricated on a silicon
oxide substrate, where one of the Josephson junctions,
the α-junction, has a reduced geometrical overlap by a
factor of α [20]. The coupling capacitance Cc to the 1D
transmission line and α-junction was varied; two qubits
have been designed to have a coupling capacitance of
Cc = 3 fF with α = 0.5, while the remaining two qubits

have Cc = 5 fF, α = 0.45. All qubits have been co-
fabricated on one sample chip using electron-beam lithog-
raphy and shadow evaporation technique with control-
lable oxidation.

Importantly, with the coupling capacitances Cc ≤ 5 fF
at 7.5 GHz, the reflection is negligible when the qubits
are detuned from the resonance. The reflected power Wr

on the two-level system from the propagated microwave
of power W0 is given by Wr/W0 = (ωCcZ0/2)

2, here re-
sulting inWr < 3×10−5W0 and the transmission line can
then be regarded as being a low loss and a well matched
50 Ω line.

The qubits held at 12 mK are revealed through trans-
mission spectroscopy as seen in Fig. 2(a). Although, by
design, two in four qubits should be identical (apart from
their transmission spectrum in magnetic field, since their
loop area was varied), a clear spread of energies is vis-
ible due to technological limitations. We fit numerical
simulations for each qubit to the shape of the transition
frequency (Fig. 2(b)).

To characterise the sensors’ relaxation rates we ad-
just the external field to tune each qubit to 7.48 GHz.
We drive and readout the qubit with energy splitting
ℏωa using a vector network analyser (VNA). The qubit
driven by a microwave tone V0e

−iωt can be described
in the rotating wave approximation by the Hamiltonian
H = ℏδω

2 σz − ℏΩ
2 σx, where δω = ω−ωa is detuning from

the resonance of the qubit and σx,y,z are the Pauli matri-
ces. The dynamics of the system is well described by the
master equation ρ̇ = − i

ℏ [H, ρ] + L̂[ρ] with the Lindblad

term L̂[ρ] = −Γ1σzρ11 − Γ2(σ
+ρ10 + σ−ρ01) where Γ2 is

the dephasing rate. When the artificial two-level atom is
driven close to its resonance, it acts as a scatterer and
generates two coherent waves propagating forward and
backward with respect to the driving field [18]

Vsc(x, t) = i
ℏΓ1

µ
⟨σ−⟩ eik|x|−iωt, (2)
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FIG. 2: a) Transmission spectroscopy, Im[t], of four flux qubits as a function of incident microwave frequency fin and current
I through an external superconducting coil providing the bias flux ϕb. The transition frequencies are revealed as dips in the
transmission spectrum. We benchmark the absolute power sensor at 7.48 GHz. b) Transition frequencies f (top row), and
relaxation rates (bottom row) Γ1/(2π) as a function of flux δϕ/ϕ0 of artificial atoms A,B,C and D where ϕ0 is the flux quantum
and δϕ = ϕb − ϕ0/2. Blue markers are experimental points taken from transmission spectroscopy. Solid lines are numerical
simulations calculated with charging energy EC/h = (2e)2/(2CJh) = 10 GHz (with junction capacitance CJ) and Josephson
energy EJ/h = 53 GHz with α and coupling capacitance Cc shown in the insets.

where ⟨σ−⟩ = ρ10 is found from the stationary solution
of the master equation. We measure transmission coef-
ficients t = 1 + Vsc/V0, where V0 and Vsc are voltage
amplitudes of the incident and scattered electromagnetic
waves respectively [18, 19]. We detect the qubit reso-
nances as a sharp dip in the power transmission coeffi-
cient |t|2, and reach a power extinction (1− |t|2) > 85%
for all qubits at 7.48 GHz, confirming strong coupling to
the transmission line. In what follows we further assume
that the relaxation rate Γ1 is dominated by the radiative
relaxation to the transmission line, an assumption that
is justified in the strong coupling regime.
The reflection coefficient is defined as Vsc = −rV0, us-

ing the relation r = 1− t and Eq. 2 we have [18]

r =
Γ1

2Γ2

1 + iδω/Γ2

1 + (δω/Γ2)2 +Ω2/Γ1Γ2
. (3)

As seen in Eq. 3 (and Fig. 3(a)) the peak in reflection be-
comes insensitive to driving power at weak driving pow-
ers. Fitting the reflection curve in this limit of low driving
power, we find the dephasing Γ2 and radiative relaxation
rate Γ1, which are in good agreement with the numerical
simulations of each qubit. Results are tabulated in Ta-
ble. I where the quoted uncertainties (one standard devi-
ation) of Γ1 and Γ2 are deduced from the covariance ma-
trix of the fit to the data. Other sources of errors include
normalisation errors or drifts in frequency due to qubit
instability. Frequency fluctuations in state-of-the-art-
qubits are typically on the scale of kHz [24, 25]. Here, the
qubit linewidths are several MHz and the contribution of
frequency fluctuations of the qubit to the lineshape is
thus expected to be negligible. Likewise frequency vari-
ations due to instabilities in the flux bias also remain
negligible as we do not observe any increase in fluctua-
tions for the qubits operated away from their degeneracy

points. We normalise the transmission around the qubit
resonance by the transmission away from the qubit reso-
nance. This requires tuning the external magnetic field.
Another likely source of error are temporal variations in
the power generated and measured by the VNA. This was
independently measured to vary ±0.25 dB over an hour
(the typical timescale for measurements). This translates
to a relative uncertainty in ∆r/r = 0.02 and ∆Γ1/Γ1 of
0.03.

Qubit ω0/2π [GHz] 1− |t|2 Γ1/2π [MHz] Γ2/2π [MHz]

A 6.83 92% 8.2± 0.2 5.7± 0.1

B 6.19 87% 7.8± 0.2 6.2± 0.1

C 6.63 93% 16.4± 0.4 10.4± 0.2

D 7.46 94% 18.4± 0.3 11.6± 0.1

TABLE I: Transition frequency ω0/2π (at δϕ/ϕ0 = 0.5),
power extinction 1−|t|2, relaxation and dephasing rates Γ1/2π
and Γ2/2π respectively at ωa/2π = 7.46 GHz (ie. δϕ/ϕ0 ̸= 0.5
for qubits A, B, and C) of the four flux qubits (denoted as A,
B, C, and D).

III. METHODS

Having characterised the four sensors, we now present
different methods of measuring the quantity that relates
to the power. Due to slightly different experimental se-
tups required at room temperature we arrive at some-
what different attenuation values observed across the dif-
ferent methods. We verify that the measured attenuation
and gain is in reasonable agreement with the transmission
measured through the cryostat at room temperature.
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A. Reflection in the transmission line

At δω = 0 the reflection coefficient simplifies to r =
Γ2
1/(2Γ1Γ2 + 2Ω2), and substituting the photon rate

(Eq. 1) gives

W0 =

(
Γ1

4r
− Γ2

2

)
ℏω. (4)

Using a VNA, we measure transmission t around 7.48
GHz for a range of generator input powers Win and de-
duce the reflection via r = 1 − t for all four qubits as a
function of frequency (Fig. 3(a)).

FIG. 3: Qubit A. a) Reflection as function of frequency for
a set of input powers Win. Markers are experimental data,
solid lines are fits to Eq. 3. b) Reflection at f = 7.485 GHz
versus input powers Win. Markers are experimental data and
solid line is a fit.

In Fig. 3(b)), we plot Re(r) at δω = 0 versus gener-
ator input powers Win and fit this curve to Eq. 3 with
Ω2 = kWin as the only fitting parameter, where k is
an attenuation constant relating the input power to the
Rabi frequency. We then calculate the absolute power
W0 according to Eq. 1 (mutliplied by ℏω). To propagate
errors, we take the uncertainty of Γ1 and Ω from the fits
(see Table I and Fig. 3(b) respectively). These provide
the main source of error in sensing the power. Fluctua-
tions in qubit parameters give a negligible contribution.
In Fig. 4 we plot the absolute power W0 sensed by

qubits A, B, C, and D againstWin (Wout) where the slope
represents the attenuation (gain) in our system. We fit
this slope for each qubit (see solid lines in Fig. 4) and find
that the obtained attenuation and gain coefficients, listed
in Table II, are in agreement within ±0.2 dB, which is
comparable to the temporal variations in the measured
S21 of the VNA, indicating that there is no significant
device dependent systematic error present. Further, the
result is consistent with the expected attenuation of ap-
proximately 100 dB in this particular measurement set-
up: In the input line we had placed 90 dB of attenuators
and the coaxial wiring is expected to add roughly 10 dB
in attenuation, as verified at room temperature.

Qubit Attenuation [dB] Gain [dB]

A −99.8± 0.2 48.1± 0.2

B −99.7± 0.3 48.0± 0.3

C −99.6± 0.4 47.9± 0.4

D −99.8± 0.4 48.0± 0.4

combined −99.8± 0.2 48.0± 0.2

TABLE II: Gain and attenuation coefficients obtained from
qubits A, B, C, and D for the reflection through the trans-
mission line method. Errors were propagated from the uncer-
tainties in Γ1 as listed in Table I and the uncertainties in Ω as
extracted from the fit of r as a function of input power Win.

FIG. 4: The absolute power W0 sensed by qubits A, B, C,
and D (Table I) at 7.48 GHz as a function of (a) input power
Win and as a function of (b) output power Wout. The slope of
the linear fits (solid lines) represent (a) attenuation and (b)
gain in our measurement circuit.

It shall be noted that some power may leak from input
to output of the chip via ground planes or box modes.
This power can interfere with the signal resulting in dis-
tortions in the measured reflection curve, or become ap-
parent as an offset which is subtracted when fitting ex-
perimental points in Fig. 3(b).

B. Rabi oscillations

An alternative method comprises measuring Ω directly
and deducing the absolute power via W0 = ℏωΩ2/(2Γ1).
We obtain Ω for a set of driving powers Win by modi-
fying the measurement circuit and performing quantum
oscillation measurements. At the input, an incident mi-
crowave pulse is formed with varying pulse length from
1.5 ns to 15.5 ns to excite the qubit. We perform Rabi
oscillation measurements for all qubits tuned to 7.48 GHz
for a range of input microwave powers, Win, set at the mi-
crowave generator at room temperature. For each input
power, we extract the period from fits to the measured
Rabi oscillations (Fig. 5(a)). As expected, we observe a
linear relationship between Rabi frequency and driving
amplitude. From this fit, we find that the typical uncer-



5

tainty on the deduced Rabi frequency is ±10 MHz. This
combined with the uncertainty in Γ1 are the main sources
of error in the measured absolute power.

FIG. 5: (a) Rabi oscillations (of qubit B) for input powersWin

ranging from -10 to 8 dBm. The inset shows the normalised
dipole moment ⟨σ−⟩ for an input power of Win = −2 dBm.
(Blue circles are experimental data, red solid line is a linear
fit.) (b) The absolute power W0 sensed by qubits A, B, C,
and D (Table I) at 7.48 GHz as a function of input power Win.
The slope of the linear fits (solid lines) represent attenuation
in our measurement circuit.

Fig. 5(b) shows the absolute power W0 sensed by
qubits A, B, C, and D (Table I) as a function of input
power Win. We fit the slope for each qubit individually
and find a spread of 0.1 dB in the obtained attenuation
coefficients. We expect the mixers and filters that were
added to the experimental set-up for the creation of the
excitation pulse to contribute around 2.5 dB, measured
at room temperature. Taking this additional attenua-
tion into account, the obtained attenuation coefficients
are also in agreement with the ones extracted using the
previous method.

Qubit Attenuation [dB]

A (−102.2± 0.4)

B (−102.2± 0.3)

C (−102.1± 0.4)

D (−102.1± 0.2)

combined (−102.1± 0.2)

TABLE III: Attenuation coefficients extracted from measur-
ing Rabi oscillations of qubits A, B, C and D. The uncertain-
ties were obtained by propagating the error in Γ1 as listed in
Table I and the uncertainties in Ω as extracted from the fit
of the Rabi Oscillations, which constitute the main sources of
error for this method.

A disadvantage of this method is that the measurement
time of Rabi oscillations is limited by dephasing and that
the combinations of mixers forming the pulse can exhibit
non-linear behaviour. At high input powers the oscilla-
tions may distort due to interference with leaked power.
It may then become necessary to record the power leak-
age detuned from the qubit to subtract the background,

doubling the already long total measurement time. At
relatively low input powers it may not be possible to
measure many periods, and the Rabi frequency has to be
deduced through linear interpolation.

C. Mollow triplet

A more robust way to deduce the Rabi frequency Ω
is to measure the artificial atom’s incoherent spectrum
under strong drive. The two-level system coupled to a
strong driving field (Ω2 ≫ Γ2

1) can be described by the
dressed-state picture in which the atomic levels are split
by Ω. Four transitions between the dressed states are al-
lowed giving rise to the Mollow or resonance fluorescence
triplet [18, 26, 27]. The side peaks of the triplet are sep-
arated by 2Ω. To observe the Mollow triplet we measure
the power spectrum around 7.48 GHz using a spectrum
analyser under a strong resonant drive (Fig.6). To re-
solve the side peaks we rely on many averages, making
this the slowest method. The expected spectral density
of the incoherent emission is [18]

S(ω) ≈ 1

2π

ℏωΓ1

8

( γs
(δω +Ω)2 + γ2

s

+

2γc
δω2 + γ2

c

+
γs

(δω − Ω)2 + γ2
s

)
,

(5)

where half-width of the central and side peaks are γc =
Γ2 and γs = (Γ1 + Γ2)/2, respectively.

FIG. 6: a) Mollow triplet (of qubit B) as a function ofWin and
frequency. b) Linear frequency spectral density of emission
power under a resonant drive with fixed driving power Win =
0.73 mW forming the Mollow Triplet. Experimental data is
presented by blue circles. The red solid curve presents the
fit of the emission spectrum according to Eq.5 with Γ1 =
7.8 MHz, Γ2 = 6.2 MHz (as in Table I). From the fitting
parameters we obtain the Rabi frequency as a function of the
external input power.

We deduce Ω from fitting the resonance fluorescence
emissions spectrum. The fit gives a relative uncer-
tainty ∆Ω/Ω ≤ 0.01, where ∆Ω is the uncertainty of
Ω. We calculate the absolute power according to W0 =
Ω2/(2Γ1)ℏω, where we use the relaxation rates as tabu-
lated in Table I. Again, we plot Win against W0 and fit
to a straight line for each qubit individually, as seen in
Fig. 7. The resulting attenuation coefficients are listed in
Table. IV. Here, the measurement set-up at room temper-
ature is the same in terms of the attenuation compared
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to the one used for the reflection method. We roughly
estimate the gain of the output line in our measurement
circuit from the amplitude of the Mollow triplet to be
∼ 45 dB. The main contributing factor to the error bars
in Fig. 7 is the uncertainty of Γ1.

FIG. 7: The absolute power W0 sensed using method III C by
qubits A, B, C, and D (Table I) at 7.48 GHz as a function
of input power Win. The slope of the linear fit (solid lines)
represent attenuation in our measurement circuit.

Qubit Attenuation [dB] Gain [dB]

A (−100.7± 0.1) 44± 1

B (−100.7± 0.1) 45± 1

C (−100.8± 0.1) 45± 2

D (−101.1± 0.1) 45± 2

combined (−101.0± 0.1) 45± 2

TABLE IV: Line calibration using the Mollow triplet method.
The errors were propagated using the uncertainties in Γ1 as
listed in Table I and the uncertainties in Ω as extracted from
the fit of the resonance fluorescence triplet.

D. Wave mixing

FIG. 8: a) Schematic of the mixing processes with 2p + 1
interacting photons on a single artificial atom with transition
frequency ω0 resulting in b) spectral components V sc

±(2p+1) at
ω±(2p+1) = ω0 ± (2p+ 1)δω, where p ≥ 0 is an integer.

Some of the methods described above share the poten-
tial issue of distortions in the measurements due to in-
terference with leaked power. An elegant solution to this
problem is to decouple the input driving powers from the
read-out signal in the frequency domain.

We drive the artificial atom by two continuous tones
with frequencies ω− = ω0 − δω and ω+ = ω0 + δω where
ω0 = 7.48 GHz and negligible detuning δω = 5 kHz
≪ Γ1. The mixing processes can be described in terms of
multi-photon elastic scattering. For example, a photon
at 2ω− − ω+ is emitted as a result of absorption of two
photons from the ω−-mode and emission of a single pho-
ton from the ω+-mode. Similarly a photon at 2ω+ − ω−
is created due to absorption of two photons from the ω+-
mode and emission of a single photon from the ω−-mode.
As long as the two driving modes consist of many prop-
agating photons in timescales comparable to relaxation
and dephasing rates, Γ1 and Γ2 respectively, higher-order
processes of wave mixing will be present. As illustrated
in Fig. 8, 2p + 1 interacting photons result in spectral
components at ω±(2p+1) = (p+1)ω±− pω∓, where p ≥ 0
is an integer. An analytical formula for the amplitude of
the scattered spectral components is [20]

V sc
±(2p+1) =

(−1)pΓ1 tan θ tan
p θ

2

Λ
(V∓ tan

θ

2
− V±). (6)

For equal driving amplitudes Ω+ = Ω− = Ω, θ =

arcsin
(

2Γ2Ω
2

Γ1|λ|2+2Γ2Ω2

)
, Λ−1 = λΓ1

4Ω2 with λ = Γ2 + i∆d

where ∆d is detuning from the central frequency.
We denote the spectral components measured at the

frequencies of our driving tones as V
′

± since they consist
of the scattered spectral component V sc

± and the driving
amplitude V±.

Having already characterised relaxation rates Γ1, we
only need to record amplitudes of the wave mixing peaks
V

′

± and V sc
∓3 for a set of powersWin. Since drive and read-

out signals are decoupled in frequency in this method,
we do not need to measure the power leakage detuned
from the qubit to subtract the background, significantly
decreasing the total measurement time.

As seen in Fig. 9, we measure the spectral compo-
nents as a function of detuning of the central frequency
ω′
0 = ω0 ± ∆d while keeping δω, the separation be-

tween the two drives ω± = ω′
0 ± δω, constant and ob-

serve an Autlers-Townes-like splitting. Fitting this split-
ting to Eq. 6 we extract Ω and its relative uncertainty
∆Ω/Ω < 0.03. We calculate the absolute power W0 ac-
cording to Eq. 1. Again, we propagate the errors using
the uncertainties in the relaxation rate Γ1, as listed in Ta-
ble I and the relative uncertainty ∆Ω/Ω as found from
the covariance matrix of the fit to the Autlers-Townes
like splitting.

To measure the mixing it is necessary to modify the
experimental set-up at room temperature and include a
microwave combiner, leading to a slightly higher attenu-
ation of ≈ 3 dB as seen from the absolute power quan-
tum sensor compared to the reflection or Mollow triplet
method. We obtain attenuation and gain coefficients for
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FIG. 9: Qubit A. a) Autler-Townes-like splitting of the spectral component of the first order (p = 1) side peak V sc
+3, that appears

at ω+3 = ω′
0 + 3δω due to continuous wave mixing with two drives of equal amplitudes ranging from 1 to 0.1 (mW )1/2. b)

The ratio α = V sc
+3/V

′
− as a function of detuning ∆d. The Autlers-Townes-like splitting grows with driving power (arb.units).

Markers are experimental points; solid lines are fits.

each sensor with a spread of 0.2 dB by fitting to a straight
line.

FIG. 10: Mixing method with equal driving powers: The ab-
solute power W0 sensed by qubits A, B, C, and D (Table I)
at 7.48 GHz as a function of (a) input power Win and as a
function of (b) output power Wout. The slope of the linear fit
(solid red line) represents (a) attenuation and (b) gain in our
measurement circuit.

Finally, the total measurement time can be signifi-
cantly decreased by measuring a single slice at ∆d = 0.
We introduce the following variables: αm = V sc

∓3/V
′

± and
x = Γ1/Ω at the exact resonance when ∆d = 0. We
set Γ2/Γ1 = χ, which reaches minimal value 1/2 in the
absence of pure dephasing. Using the variables, we now
express the photon emission rate as ν = Γ1

2 x−2. With

Eq. 6 we expand αm in series: αm = x2

4 + o(x3), and

therefore x−2 = 1
4αm

+ o(α
3
2
m) and ν = Γ1

8αm
η, where

Qubit Attenuation [dB] Gain [dB]

A −102.0± 0.1 44.9± 0.1

B −102.1± 0.2 45.0± 0.2

C −101.9± 0.4 44.8± 0.4

D −101.8± 0.3 44.8± 0.3

combined −102.0± 0.1 44.9± 0.1

TABLE V: Attenuation coefficients extracted from measuring
wave mixing of qubits A, B, C and D. The errors were prop-
agated using the uncertainties in Γ1 as listed in Table I and
the uncertainties in Ω as extracted from the fit of the Autler-
Townes-like splitting of the spectral components of the first
order side peak (Fig. 10(b)).

η = 1 − 3
√
χαm + (1 − χ

2 )αm + o(α
3/2
m ). To first order

the photon rate,

ν1 =
Γ1

8

V
′

±
V sc
∓3

, (7)

does not contain a dephasing term (χ). To correct for
higher orders ν1 is multiplied by the correction term η,
such that ν = ν1η.

For example, for αm = 10−4, the approximation of
Eq. 7 gives the result with an accuracy of ∼ √

αm, which
is about 2%. Accounting the correction terms will reduce

the derivation error down to ∼ α
3/2
m ≈ 10−6. Using this

simplified method we can arrive at attenuation and gain
values with errors of the same magnitude as the other
methods within minutes, greatly speeding up the total
measurement time.
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IV. CONCLUSION

To summarise, we have developed an absolute power
quantum sensor based on a superconducting qubit op-
erating in a wide gigahertz range at millikelvin temper-
atures. Our work addresses the current lack of devices
optimised for low-temperature microwave calibration.
We have shown that the absolute power is determined
by two quantities only, the Rabi frequency Ω and device-
dependent relaxation rate Γ1. The presented methods
are based on measuring spectra of scattered radiation
through a transmission line, however, the fastest and
most promising technique, from our point of view, re-
lies on a recently demonstrated effect of wave mixing on
a quantum system.

For each method, we find that the power sensed by dif-
ferent qubits with different relaxation rates are in agree-
ment. We do not see qubits with similar relaxation rate
group, ruling out significant systematic errors in the mea-
surement of the relaxation rate. We analyse our results
for the attenuation and gain in our measurement set-up
with a spread smaller than 0.4 dB across all methods and
find that they are in good agreement with our expecta-
tions. Table VI shows a comparison of the average atten-
uation for each method where the measured attenuation
has been adjusted to reflect the difference in attenuation
introduced by the slightly different setups for the differ-
ent methods. The spread in this scaled attenuation is less
than ≈ 1.4 dB giving an upper limit to any systematic
error of any method.

Method Attenuation [dB] Gain [dB]

Reflection (sec. IIIA) (−99.8± 0.2) (48.0± 0.2)

Rabi osc. (sec. III B) (−99.6± 0.5) -

Mollow triplet (sec. III C) (−101.0± 0.1) (45± 2)

Mixing (sec. IIID) (−99.0± 0.5) (44.9± 0.1)

TABLE VI: Summary of attenuation and gain coefficients of
the input and output microwave lines in our dilution refrig-
erator obtained by the different methods and scaled to the
reflection setup parameters.

Our sensor does not affect the transmission of mi-
crowaves when detuned in frequency, enabling its use in
combination with other microwave devices and allowing
the sensor to be incorporated on chip or plugged into the
transmission line at a point of interest. We expect this
to be useful for applications in quantum information pro-
cessing, as well as for fundamental research applications
in cryogenic environments.
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