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GOING BEYOND HOMOLOGY FOR PREDICTING PROTEIN FUNCTION
FOR NEWLY SEQUENCED ORGANISMS
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The computational annotation of proteins has become a crucial step to the func-
tional characterisation of genomes. Many computational methods predict pro-
tein function by exploiting experimental data such as protein-protein interac-
tions and gene expression. For newly sequenced organisms these experiments
are not available, limiting the feasible tools to sequence-based techniques.

In this thesis, I approach the problem of predicting protein function for
newly sequenced organisms in three different ways. First, by exploiting the
“guilt by association” principle in the context of protein-protein networks. Sec-
ond, by elucidating the domain architecture of proteins and associating them
with functions. Finally, by identifying protein complexes and the function en-
riched in every complex. Each approach considers different aspects of the prob-
lem and a wide variety of techniques are applied to address them. These tech-
niques share the fundamental property of transferring information from well-

studied organisms to those that are barely characterised, if at all.
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Introduction

1.1 Motivation

The study of protein function represents a major effort to explain the mech-
anisms behind the processes occurring in the living cell. A thorough under-
standing of such mechanisms will allow us not only to make better decision
with regards to our own biology, but also regarding the biological environment
that surrounds us. With applications possible in industries such as personalised
medicine, food, and energy, there is a strong global motivation to determining
protein function as accurately as possible. This is not an easy task.

The very concept of function is hard to define. Several attempts of character-
ising protein function were made but remained divergent until the creation of
the Gene Ontology (GO) [1], a controlled vocabulary of terms that became the
most widely adopted tool for the functional characterisation of genes and gene
products (proteins). In this context, a functional annotation is the assignment of

a GO term to a protein.
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Experimentally, these associations are discovered by testing whether a par-
ticular protein is involved in the function. These experiments tend to be expen-
sive, time-consuming, and often can handle only one protein at a time. This,
coupled with next generation sequencing (NGS) techniques created a scenario
in which experimental approaches fall short. Even the higher-throughput ap-
proaches for experimental elucidation are unable to cope with the exponential
nature of NGS techniques [2]. In this scenario, computational approaches for
elucidating protein function became a more important step of the process. Pro-
tein function prediction (PFP) is defined as the problem to predict such annota-

tions.

Consider the current portion of annotated protein sequences. Less than 1%
of all available proteins are annotated with reliable experimental annotations.
Moreover, the existing annotations are focused on a relatively small subset of
sequenced organisms. This subset of well-studied organisms are the model
organisms, and the available information ranges from the sequence to the 3D
structure, and even high-quality experimental annotations of GO terms. Con-
versely, the data available for newly sequenced organisms (NSO) is limited only
to the sequence. This means that for the majority of the sequenced organisms,

only sequenced-based methods for PFP are readily available.

When putting this in contrast with the current state of methods available
for PFP, we find ourself facing a regrettable situation. The Critical Assessment
for Functional Annotations (CAFA) [3] shows that PFP methods that exploit in-
formation such as gene expression, protein structure, and protein-protein inter-
action (PPI) networks outperform classical methods based on simple sequence
similarity. This is, the best available methods are essentially unavailable for the

vast majority of sequenced organism.

In this thesis, I delve deep into the current limitations for predicting protein
function for NSOs, and present alternatives that go beyond establishing homol-
ogy relations based on sequence similarity for the prediction of protein func-
tion. These share the core property of transferring useful experimental infor-
mation from well-studied organsism to NSOs, and exploiting these transferred
data with a wide variety of techniques. I show how this transferred knowledge
can be used to predict protein function, but also infer protein complexes and

protein domains.
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1.2 Contributions

e S2F: A state-of-the-art framework for PFP. S2F focuses on the prediction of
protein function for recently sequenced organisms. It is, to my knowledge,
the first one to exploit available information in a way that allows going be-
yond sequence-based techniques for this task. Its three main parts consist
of building a seed, building a network, and propagating the seed into this
network. I report its performance for newly sequenced organisms, as well

as its performance in several CAFA competitions.

e ConSAT: The Consensus Architecture Tool. This consists of both a tool
and web applicaiton for protein function annotation for genome projects
of any scale. It relies on protein domains to infer function. Particularly, it is
focused in the “domain architecture” of proteins. Function is determined

using GO terms as well as English keywords.

e ICrep: A comprehensive protein interaction and complexes repository.
A database that contains protein-protein interactions, inferred interologs
(computationally inferred interactions, derived by comparing the protein
sequences [4]), protein complexes, and functional enrichments for the
complexes. Built by performing a pairwise transference of information
between non-redundant proteomes available in UniProtKB [5].

1.3 Structure of the Book

Chapter 2| consists of a literature review on the core concepts required for the
proper understanding of this book. I attempt to introduce the reader to the state-

of-the-art in PFP, and the relevant tools and methods relevant to this problem.

In chapter 3| I explain the S2F framework in depth. First, I provide an
overview of the state-of-the-art for PFP for newly sequenced organisms. Then,
I delve deep into the definition of the framework, evaluation, and experimen-
tal results. Finally, I discuss S2F for “regular” PFP, not focused only in newly

sequenced organism. I present this in the context of CAFA.

In chapter [4 I introduce the ConSAT tool. First, I explain the methodology
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used to obtain consensus domain architectures. Then, I explain the strategies to
assign function to proteins, both GO terms as well as English keywords. Finally,
I describe the features of the upcoming web tool.

In chapter 5|l showcase the ICrep database. I start with thorough explanation
of the calculations of the interologs, protein complexes, and over-representation
analysis. This is followed by several statistics and options available to the user
of ICrep.

In chapter [ I show my contributions to collaboration projects that do not
have PFP as their main focus. After a quick glance at each project, I proceed to

highlight the functional aspects of each one. These projects are:

e Studying the effects of Rapamycin on Chlamydomonas reinhardtii.

e prot2vec: A tool for the embedding of proteins in a vectorial space.

Finally, appendix|A|contains further S2F performance results.
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Literature Review

2.1 The Gene Ontology

Protein function is predominantly described in the literature using terms from
the Gene Ontology (GO) [1]. The GO is a controlled vocabulary of terms, each
term describing a function in one of three domains: Molecular Function (MF),
Cellular Component (CC), and Biological Process (BP). GO terms are related
to each other with relations that operate between them. The structure can be
described as a graph, in which nodes are GO terms, and edges the relations

between terms. The main relations used in GO are:

1. is a: This is the relation that forms the basic structure of the ontology. If A
is a B, it means that node A is a subtype of node B. For example, in the GO
“mitotic cell cycle” is a “cell cycle”. It does not mean, however, that A is
an instance of B; e.g. a dog is a mammal, but Snoopy is an instance of a dog,
rather than a subtype of dog.

2. part of: This relation is used to represent part-whole relationships. This
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is, if A is part of B, it means that A is necessarily a part of B: wherever A
exists, it is as part of B. The presence of A implies the presence of B, but
not vice-versa. For example, in the GO “receptor ligand activity” is part of

“signal transduction”.

. has part: This is the logical complement of part of, representing the part-
whole relationship, but from the point of view of the parent. In similar
fashion if A has part B, then A necessarily has part B, meaning that if A
exists, then always B exists as part of A, but not vice-versa. i.e. all A have
part B; some B part of A. For example, in the GO “cytokinesis” has part

“membrane fission”.

. regulates: This relation is present when one process directly affects the
manifestation of another process or characteristic. A regulates B means that
necessarily, when both A and B are present, B is regulated by A. But B may
not always be regulated by A, i.e. all A regulate B; some B are regulated by
A. In many occasions, the nature of the regulation (positive or negative)
is added to the relation, e.g. A positively requlates B. For example, in the
GO “regulation of mRNA cleavage” regulates “mRNA cleavage”. How-
ever, annotations to regulation terms modify the relation between the an-
notated protein and the GO term. In this case, a protein X annotated with
“regulation of mRNA cleavage” is considered to be involved in that pro-
cess (the one of regulation). It is not correct, however, to assume that X is

involved in “mRNA cleavage”.

These relations, and in particular the is a and part of relations establish a

structure in which terms are naturally organised with the most general terms at

the “top” and more specific terms at the “bottom”. The former being isolated

without being related with is a or part of to any other GO term. Moreover, these

relations allow for logical transitivity, i.e. if A is a B, and B is part of C, then we

can infer that A is part of C, see Figure Importantly, these relations allow

for the annotations to be propagated through the ontology. This is, if GO Term

A is associated with protein P, because A is a B, then the association between B

and P also exists. The process of “up-propagating” GO annotations follows the

true path rule: if a protein is annotated with a GO term, it is also annotated with

all the ancestors of the GO term. The advantage of this rule is that quite a big

portion of the associations can be transferred by the most specific annotations,
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knowing that the association will be up-propagated to the root of the ontology.

El——E8

Figure 2.1 — Transitivity of relations in the GO. Given that A is a B, and B part of C (repre-
sented by solid arrows), we can infer a new relation A part of C (dashed arrow).

The GO describes and organises the knowledge of the biological in three

sub-domains:

1. Molecular Function: This domain describes molecular-level activities per-
formed by proteins. Examples are “transporter activity” (GO:0005215),
and “catalytic activity” (GO:0003824). MF GO terms describe activities
rather than the entities that perform the actions (molecules or complexes),
and do not specify where, when, or the context in which these actions take

place.

2. Cellular Component: This domain is concerned with the locations rel-
ative to cellular structures in which the actions are performed by pro-
teins. Examples of are “mitochondrion” (GO:0005739), and “ribosome”
(GO:0005840).

3. Biological Process: This domain describes the larger and more complex
processes accomplished by multiple molecular activities. Examples are
“DNA repair” (GO:0006281), or very specific ones such as “pyrimidine
nucleobase biosynthetic process” (GO:0019856). It is important to note
that a biological process is not the same as a pathway, as these terms do
not represent the dynamics and dependencies required to fully describe a

pathway.

The GO is constantly being revised and updated to reflect the latest research on
functional genomics. At the time of writing, there are 44,733 valid terms, that
are distributed in the sub-domains: 29,457 BP terms, 11,093 MF terms, and 4183
CC terms.

21



2.2 The evolution of available sequences and GO annotations

The GO provides an invaluable tool for the functional characterisation of pro-
teins. These come in the form of GO annotations, which are statements about
the function of a particular protein. A very important characteristic of these
annotations is their evidence code, which indicates how the annotation is sup-
ported. Evidence codes are organised as follows:

o Experimental evidence: These codes indicate that there is evidence from
an experiment directly supporting the annotation of a protein. Experimen-
tal evidence codes are:

— Inferred from Experiment (EXP)

— Inferred from Direct Assay (IDA)

— Inferred from Physical Interaction (IPI)

— Inferred from Mutant Phenotype (IMP)

— Inferred from Genetic Interaction (IGI)

— Inferred from Expression Pattern (IEP)
Each of the experimental evidence code have a corresponding high
throughput evidence code (HTP). HTP are a type of experimental evidence
that indicate that the annotation is supported by high throughput method-
ologies. The high throughput evidence codes are:

— Inferred from High Throughput Experiment (HTP)

— Inferred from High Throughput Direct Assay (HDA)

— Inferred from High Throughput Mutant Phenotype (HMP)

— Inferred from High Throughput Genetic Interaction (HGI)

- Inferred from High Throughput Expression Pattern (HEP)

e Phylogenetic evidence: Phylogenetically inferred annotations are derived

from an explicit model gain and loss of function at specific branches in a
phylogenetic tree. Phylogenetic evidence codes are:

- Inferred from Biological aspect of Ancestor (IBA)
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— Inferred from Biological aspect of Descendant (IBD)
— Inferred from Key Residues (IKR)
— Inferred from Rapid Divergence (IRD)

e Computational evidence: A computational evidence code indicates that
the annotation is based on an in silico analysis of the protein. Computa-
tional evidence codes are:

— Inferred from Sequence or structural Similarity (ISS)

— Inferred from Sequence Orthology (ISO)

— Inferred from Sequence Alignment (ISA)

— Inferred from Sequence Model (ISM)

— Inferred from Genomic Context (IGC)

— Inferred from Reviewed Computational Analysis (RCA)

e Author statements: These codes indicate that the annotation was made on
the basis of a statement made by the author(s) in the cited reference:

— Traceable Author Statement (TAS)
— Non-traceable Author Statement (NAS)

e Curator statements: These codes indicate that the annotation was made
on the basis of a curatorial judgement that does not fit into any other evi-
dence code classifications:

— Inferred by Curator (IC)
— No biological Data available (ND)

e Automatically generated annotations: The final evidence code indicates
that the annotation was not manually reviewed. These annotations are
ultimately based on either homology and/or other experimental or se-

quence information, but generally cannot be traced to an experimental

source:

— Inferred from Electronic Annotation (IEA)
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Figure 2.2 — Evolution of the available protein sequences and the experimental GO anno-
tations over the last 20 years. The coverage line corresponds to the axis on the right of the
plot.

To fully grasp the current situation relevant to the PFP problem, it is use-
ful to look at some number. First, the gap between annotated and unannotated
proteins is vast and it is widening steadily. Figure 2.2 depicts the evolution of
available protein sequences in UniProtKB [5] in comparison to the experimen-
tal functional annotations available in the GOA database [6] since the creation
of the GO in 1999. Even though the number of annotated proteins is steadily
increasing, the rate at which new proteins are being sequenced is such that the
percentage of annotated sequences actually decreases. In fact, the peak percent-
age of annotated proteins was 3.23% in 2006. This coincides with the beginning

of the exponential growth made possible by NGS techniques.

Second, the growth is not evenly distributed between taxonomical superk-
ingdoms. As can be seen in Figure the bacterial superkingdom has been
increasing in proportion almost monotonically. This means that the bacterial
kingdom is the one that requires a stronger effort for its functional charac-
terisation, as a direct consequence of the sheer number of sequenced proteins
available. Consider the wide variety of technology in which of bacteria are in-
volved. We use bacterial microorganisms for a lot of applications: food process-
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Figure 2.3 — Distribution of available protein sequenced by superkingdom. Over the last 20
years, the proportion of bacterial proteins has dominated the other super kingdoms. Note:
we include Viruses as a superkingdom even though they represent non-cellular sequences.

ing, medicine, pest control, manufacturing cosmetics, just to name a few. These
applications make of the functional characterisation crucial from an economic
point of view. Additionally, some bacteria are harmful as agents of disease,
and are involved in spoilage of food and other resources. Some harmful bacte-
ria even become antibiotic-resistant, which poses an even greater challenge [7].
This is enough motivation to expand our understanding of the biological pro-
cesses of bacteria. The potential gain from functionally characterising this vast
collection of proteins is almost incalculable.

2.3 The current state of PFP

Over the years, several computational methods for PFP were developed, and
these fall into many categories [2], I will describe the rationale in each category,
and describe representative methods in the following sections.
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2.3.1 Sequence-based methods

Methods in this category use an operational definition of sequence similarity to
determine an homologous relation between two proteins [2]. Although these
methods do not automatically predict protein function, it can be transferred
from an annotated protein to a protein candidate if the similarity is above a
certain threshold [8} 9]. It is a broad category, as it encompasses sub-categories
such as domain-based, motif-based and feature-based methods [10, 11, 12].

The comparison between sequences aims to determine the evolutionary re-
lationship between sequences, and infer whether they are related, i.e. determine
homology between sequences. This is remarkably hard, as high sequence simi-
larity might not be caused by genetic ancestry [2]. Two sequences might be very
similar due to convergent evolution, and short sequences might be very similar
due to change. On top of that, homologous proteins can have notably low se-
quence similarity, e.g. remote homologs with early evolutionary branching [13].
Although the collection of PFP methods that rely on sequence similarity-based
transference of function is vast, I will limit my review to the tools that will be
directly involved in the methods I propose in the next chapters.

BLAST

The indisputably dominant tool for sequence alignment is the Basic Local Align-
ment Search Tool (BLAST) [8]. It is a sequence alignment tool that will detect
biologically significant similarities between sequences. It is famously over 50
faster than earlier sequence alignments, although not as accurate. This is due
the use of a fast heuristic based on dynamic programming. Here I explain only
the calculation of the BLAST e-value, as it is arguably the value that will allow

me to describe operational definitions of homology in later chapters.

BLAST assesses the statistical significance of its score by exploiting the Gum-
bel extreme value distribution (EVD) as it is proved that the distribution of the
Smith-Waterman alignment [14] between two random sequences follows the
Gumbel EVD. Under this assumption, the probability of observing a score § > x
is given by:

p(S > x) =1 —exp(—e M)
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where
_ log(Kmn)

A

The statistical parameters A4 and K are estimated by fitting the distribution
of the scores before adding gaps to the alignment, of the query sequence and a
lot of shuffled versions of a database sequence to the Gumbel EVD, the values
of these parameters depend upon the substitution matrix, gap penalties and
amino acid (or nucleotide) composition. m and n are the effective lengths of the
query and database sequences, respectively. The expected score E is the number
of times that an unrelated database sequence would obtain a score S > x by
change. obtained in a search for a database of D sequences is:

E~1- e—P(SZX)D

HMMER

Pairwise sequence comparison methods (such as BLAST) assume that all amino
acid positions have the same importance. However, we know that this is not
the case, and a great deal of position-specific information is available for a
protein or protein family. Multiple alignments of proteins, for instance, show
residues that are more conserved than others, and the places of frequent dele-
tions or insertions [15]. A profile HMM will model such multiple alignments,
providing states for insertions, deletions and “emission” states. There is a col-
lection of these three types of state equal to the length of the multiple alignment.
Each “emission” state is additionally associated a distribution over the possible
amino acids that it could emit. Finally, transition probabilities between states
are added to the HMM, which complete the profile. With a collection of pro-
tiles, it is possible to calculate how likely a given sequence matches the set of
sequences described by the profile HMM, and therefore a database search with

sequence alignments can be produced.

HMMER [9] is a tool to search sequence databases for homologs of protein
or DNA, and to make sequence alignments. It builds a profile hidden Markov
model that assigns a position-specific scoring for substitutions, insertions, and
deletions. When compared to BLAST and other sequence alignment scoring
methods, HMMER is aimed to be more accurate and able to better detect re-
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mote homologs. This is possible because of the strength of the underlying pro-
file HMMSs. Moreover, the current version (3.2) is as fast as BLAST for database
search. As with alignment-based sequence methods, function will be trans-

ferred if a threshold for the alignment is met.

InterPro

By a wide margin, the largest source for automatic annotation of sequences
in UniProtKB is InterPro [16]. It compiles the predictions from 13 specialised
databases that rely on different strategies to assign potential function to pro-
teins. The collective expertise of the specialised databases provides a wide range
of functional characterisation of proteins. In addition to the database, Inter-
ProScan [17] is a tool that allows the user to input their own sequences to be
scanned against InterPro.

Here, I provide a simple overview of the member databased that InterPro
aggregates:

e CATH-Gene3D [18]: A pair of databases of globular domain annotations
for millions of available protein sequences. The database uses experi-
mentally determined three-dimensional structures from the Protein Data
Bank (PDB) to determine protein domains using a mixture of automatic
methods and manual curation. The domains are then classified within
the CATH structural hierarchy (Class, Architecture, Topology, Homolo-
gous superfamily). Gene3D then takes CATH domain families and assigns
them to the millions of sequences with no PDB structures using HMMER.
This process provides both structural and functional insight into the pro-
teins classified in the CATH hierarchy.

e Conserved Domain Database (CDD) [12]: This database consists of a col-
lection of well-annotated multiple sequence alignment models for ancient
domains and full-length proteins. CDD provides these as position-specific
score matrices that can be used to identify conserved domains. CDD in-
cludes NCBI-curated domains that use 3D structure information to define
domain boundaries, as well as domains imported from external databases.

e HAMAP [19]: The High-quality Automated and Manual Annotation

28



of Proteins (HAMAP) provides annotations of the same quality as
UniProtKB/Swiss-Prot, using manually curated profiles for protein family
classification and rules for functional annotation of family members. It fo-
cuses on an automatic annotation pipeline that is only applied where it can
produce the same quality as manual annotation would. Originally devel-
oped for the annotation of proteins from completely sequenced bacteria,
archaea, and plastids, they now produce and integrate HAMAP rules and
profiles that target eukaryotic and viral protein families.

PANTHER [20]: The Protein ANalysis THrough Evolutionary Relation-
ships (PANTHER) database contains comprehensive evolutionary and
functional information of protein-coding genes from 104 completely se-
quenced genomes. It is founded on a comprehensive set of phylogenetic
trees that attempt to reconstruct the evolutionary events that led to the
current family members. The trees are used to predict orthologs, par-
alogs, and xenologs, as well as protein families. Hidden Markov models
(HMMs) are built for each family and subfamily. From a functional per-
spective, the trees enable inferences through both expert biocurators for
experimentally-supported annotations, and through inheritance from its

ancestors for uncharacterised sequences.

Pfam [21]: Pfam is a database of protein families. Each entry in this
database is comprised of a seed alignment, which forms the basis to build
a profile HMM using HMMER. This profile is then queried against a se-
quence database called pfamseq. All matches scoring above a threshold
chosen to avoid the inclusion of any know false positive are aligned back
to the profile HMM to generate the full alighment. Entries are coupled
with functional annotations from the literature. pfamseq is derived from
the reference proteomes available in UniProtKB.

PIRSF [22]: The PIRSF (PIR SuperFamily) classification system is defined
as “anetwork classification system based on evolutionary relationships of
whole proteins”. It introduces several levels of curation for the classifica-

tion of proteins in superfamilies, families, and subfamilies'. With respect

A protein family is a group of evolutionarily-related proteins. Proteins in a family descend
from a common ancestor and typically have similar function and structure. A superfamily is
the biggest of such grouping of proteins and a subfamily is the smallest grouping (although
different methods will have a different way of defining exactly what constitutes a subfamily,
family or superfamily) [23]
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to function, the PIRSF system is used to provide standardised and rich
annotations for UniProtKB entries. GO annotations are considered in the
“text annotation” category of the PIRSF system, with emphasis on proteins
in families and subfamilies that share common functions and contain suf-

ficient numbers of experimentally verified members.

e PRINTS [24]: This database is a compendium of protein fingerprints.
These are defined as groups of conserved motifs that characterise a protein
family. The advantages of having these fingerprints are two-fold. First,
new sequences can be scanned against PRINTS to get possible clues about
structure or function. Second, to categorise sequences into superfamilies,

families and subfamilies characterised by common fingerprints.

e ProDom [10]: This database holds a comprehensive collection of protein
domain families generated from the global comparison of all available
protein sequences. It is constructed using iterative PSI-BLAST searches
that yields an automated clustering of homologous domains into families.
Multiple alignments are generated for each domain family. The possible
applications of ProDom are, for instance, analysing protein domain rela-

tionships, and selecting candidate proteins for structural genomic projects.

e PROSITE [25]: This is a database of documentation entries describing pro-
tein families, domains, functional sites, and associated patterns and pro-
files to identify them. The database contributes to InterPro with patterns
and profiles. PROSITE patterns are regular expressions matching short se-
quence motifs that hold biological meaning, they are qualitative, as they
either match or not, although it is possible to evaluate their statistical sig-
nificance. PROSITE profiles (or weight matrices) are quantitative, they are
sequence-like linear structures consisting of alternating match and insert
positions. A match position corresponds to a domain position, typically
occupied by a single amino acid. A PROSITE profile provides weights for

each residue type occupying this position plus a deletion penalty.

e SMART [26]: The Simple Modular Architecture Research Tool (SMART)
allows the identification and annotation of genetically mobile domains?

and the analysis of domain architectures. The tool compares sequences

2A genetically mobile domain is one that can be found associated with different domain
combinations in different proteins [27]
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and multiple alignments while concurrently identifying compositionally
biased regions such as signal peptide, transmembrane and coiled coil seg-
ments. Each alighment is curated to assign appropriate domain bound-
aries and ensure its quality, and each domain is annotated extensively
with respect to cellular localisation, species distribution, functional class,

tertiary structure, and functionally important residues.

e SFLD [28]: The Structure Function Linkage Database (SFLD) is a manually
curated hierarchical classification of enzymes relating specific sequence-
structure features to specific chemical capabilities. It classifies evolution-
arily related enzymes according to shared chemical functions that are then
mapped to conserved active site features. The hierarchy is comprised of

superfamilies, which are subdivided into subgroups and families.

e SUPERFAMILY [29]: This database holds structural and functional an-
notations for all proteins and genomes. These annotations are based on
a collection of HMMs, which represent structural protein domains at the
superfamily level. A superfamily groups several domains that have an
evolutionary relationship. The database is constructed by scanning pro-
tein sequences belonging to completely sequenced genomes against the
HMMs.

e TIGRFAMs [30]: This is a database of protein family definitions. Each en-
try includes a seed alignment of trusted representative sequences, a HMM
built from that alignment, cut-off scores to decide which proteins are mem-

bers, and annotations for transfer onto member proteins.

InterProScan [17] will scan a collection of sequences submitted by the user
against all of these methods, and will be classified into to families, domains,
and also functional categories. Due to the wide range of methodologies that
the member databases follow to classifying proteins, InterPro provides a very
profound insight into the functional characterisation of the provided sequence,

which is focused on being of high precision and quality.
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2.3.2 Function prediction based on Genomic Context

Methods in this category are based on the knowledge that the location of the
coding gene provides important information that can be used for function pre-
diction. Gene neighbourhood® and gene fusion* based methods fall into this
category. The general idea is that DNA with an advantageous organisation of
its genes will be conserved over DNA with less advantageous organisation. For
instance, operons (groups of genes transcribed and regulated as one unit) will
be relevant for performing a particular function, since it makes evolutionary

sense to efficiently transcribe these genes for the same task [2].

A good example of this category is shown by Korbel et al. [33]. In this work,
they use gene expression data to demonstrate two functional implications of
genome organisation. First, chromosomal proximity indicates gene coregula-
tion in prokaryotes independent of relative gene orientation. Second, adjacent
bidirectional transcribed genes (i.e. “divergently” organised coding regions)
with conserved gene orientation are strongly coregulated®. The authors exploit
the fact that the organisation of divergently transcribed gene pairs (DT-pairs)
is widely conserved in prokaryotes, whereas convergently transcribed pairs are
rapidly lost in evolution.

Another example of functional associations based on genomic context is
SNAP [34]. This tool predicts function based on the conservation of gene or-
der®. Even though a genome-wide gene order is poorly conserved between
phylogenetically distant species [35], short conserved strings of genes appear
to be widespread [36]. This enables SNAP and methods based on conserva-
tion of gene order to look for small clusters of functionally related genes that
might not be very close in terms of sequence-similarity. SNAP, in particular,
uses a combination of neighbourhood and similarity relationships. Similarity
relationships (S-relationships) are established by computing the sequence simi-

larity between proteins, and Neighbourhood relationships (N-relationships) can

3Genomic neighbourhood refers to genes that occur repeatedly in close neighbourhood [31]

*A gene fusion event refers to a chromosomal rearrangement event where two genes fuse
together to form a hybrid gene [32]

>Two genes are co-regulated if they are regulated by the same mechanism. This is typically
reflected on a strong correlation in gene expression, and suggest the two genes are involved in
the same processes, and therefore they perform similar function.

®Gene order refers to the possible permutations in the genome of a set of genes.
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be found between pairs of genes that are adjacent in the genome. S-relationships
and N-relationships are then used to build a graph that spans several genomes,
in which the nodes are genes, and the links are S- and N-relationships. The hy-
pothesis in SNAP is that cycles of SN-paths (a path that starts in a protein and
that, following S- and N-relationships can end in the same protein after several
jumps) found in this graph will highlight functional operons conserved over
several genomes. The key assumption is that the combination of the two types
of relationship will help establish functional links undetectable by either type

alone.

The genomic context category also includes methods that exploit gene fusion
events. The assumption that genes involved in fusion events — when two sep-
arated genes in a genome are merged or fused in another one — are expected to
be functionally related. Also known as Rosetta Stone proteins, fused proteins of-
ten present separate domains that are homologous to separate but functionally
related proteins. Marcotte et al. [37] developed a statistical measure for the sig-
nificance of predicted functional linkage between a pair of proteins. The authors
highlight the limitations of looking only for orthologous proteins to look for
meaningful Rosetta Stone proteins, and turn to the broader concept of homol-
ogy for this task. Then, they develop an association scoring function based on
the hypergeometric distribution that measures the probability of a given num-
ber of fusion events between a given pair of proteins.

2.3.3 Function prediction based on phylogenetic trees and pro-

files

Methods in this category exploit evolutionary relationships between organisms
to detect functional similarities between genes.

Some of the methods in this category exploit the concept of a phylogenetic
profile — a binary vector that stores the presence or absence of a particular gene
in a genome. These methods follow the hypothesis that proteins that partici-
pate in the same pathway or molecular complex in the cell are under pressure
to evolve together to preserve their function, and therefore the comparison of

phylogenetic profiles will be informative for functional characterisation. Wu et
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al. [38] present a method for relaxing a previous condition that required that
only identical profile pairs would be used for inference. This is done by calcu-
lating the probability distribution of a given number of chance co-occurrences of
a pair of non-homologous orthologs across a set of genomes, i.e. without biolog-
ical pressure. When inferring functional groups with this probability measure,
they show a 30-fold increase in coverage at the same confidence level when com-
pared to restricting the inference to identical profiles. Enault et al. [39] proposed
extending the definition of phylogenetic profiles to include real values. The new
vectors now encode the normalised BLAST score, denoting the bast match for a
protein in a genome. The new encoding is effectively a relaxation of the profile
to cases in which an exact match cannot be found in a genome, but perhaps rel-
atively close genes are indeed present. This real-valued representation provides

better performance.

Another group of methods that rely on phylogenomics make use of phy-
logenetic trees. There are some difficulties associated with using trees, how-
ever. First, the comparison between trees is very intricate. Second, the way to
“correctly” build a phylogenetic tree is still being debated, and methods that
rely on trees must decide which algorithm to use to define the tree [2]. Nev-
ertheless, some attempts at using phylogenetic trees to elucidate function exist.
Jonathan Eisen [40] reminds us that despite homology being closely related to
sequence similarity, they are not the same. He suggests using phylogenetic trees
in order to identify likely gene duplication, which allows the division between
orthologs and paralogs. Uncharacterised genes can be assigned a likely func-
tion if the function of any ortholog is known. Furthermore, tree reconstruction
techniques can be used to infer the function of uncharacterised genes by identi-
tying the evolutionary scenario that requires the fewest functional changes over
time. By reconstructing the tree in such a fashion, the underlying assumption is
that the most likely evolutionary path is the one that requires the fewest func-
tional changes [40], suggesting the “path of least resistance”. As another exam-
ple, SIFTER [41] builds a phylogenetic tree of homologs, identifying duplication
events in the process. Then, it overlays GO annotations on this tree and it prop-
agates the annotations to the root. Finally, it propagates the annotations to the
leaves, effectively inferring function for the uncharacterised genes.

Phylogenetic profiles and trees can be used together. Vert [42] uses Support
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Vector Machines (SVMs) to learn protein function from phylogenetic profiles,
using the phylogenetic tree to define a kernel that calculates profile similarity.
Narra et al. [43] achieved better performance by extending the profiles with new
bits corresponding to the internal nodes of the trees, which allows the direct use
of e-values instead of having to set cutoffs to derive binary profiles.

2.3.4 Function prediction based on protein structure

Analogously to sequence-based methods, in this category the function is pre-
dicted by establishing a structural similarity between proteins. The idea is that
the structure of a protein is under more biological pressure than the sequence
to preserve function. This is evidenced by the presence of remote homologs,
which have been shown in the 1960s to have different sequences, but similar
structure [44]. Similarity can be calculated by comparing the two structures in
their entirety or only in parts.

In similar fashion to methods based on sequence similarity, many of the
structure-based methods attempt to provide a score to a three-dimensional
alignment between two proteins. Alignment methods attempt to maximise the
number of residues in the alignment while minimising the distance or similar-
ity measure. Some of the most popular alignment-based methods are SALIGN
[45], SSM [46], MAMMOTH [47], CE [48], SSAP [49], VAST [50], SARF2 [51], and
DALI [52]]. For function prediction, the I-TASSER suite [53] provides structure
based functional annotations, which are derived from a structural generative
model in four general steps: threading template identification, iterative struc-
ture assembly simulation, model selection and refinement, and finally func-
tional annotation. The structure models with the highest confidence scores are
matched against the BioLiP [54] database of ligand-protein interactions to detect

homologous function templates.

Performing a three-dimensional structural alignment-based database search
is computationally very expensive, especially for large collections of proteins.
This motivated the development of alternative approaches that do not rely on
alignment. Wohlers et al. [55] propose a metric to compare two protein struc-

tures based on their contact map representation. The contact map represents the
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distance between all possible amino acids pairs of a three-dimensional protein
structure using a bi-dimensional matrix. The authors use these matrix repre-
sentation to establish structural similarity [55]. The core of the idea is to exploit
the representation of the structure to optimise database searches by filtering
out structures that are unlikely to share functional features with a query that
does not involve three-dimensional alignment. The main advantage is that a
large corpus (a big database of structures) can be queried using bi-dimensional
alignment techniques after reducing the candidates to a manageable size. The
structural representation is crucial for filtering methods, as it will determine
which metrics can be used to perform the filtering. For example, ProtDex2 [56]
constructs feature vectors of the relationships between secondary structure ele-
ments of all the 3D structures in the database, and then use these feature vectors
to query their database efficiently. FragBag [57] is inspired on the bag-of-words
from natural language processing. It represents the protein structure as a bag-
of-fragments — a vector that counts the number of occurrences of each fragment
— and measures the similarity between two structures by the similarity between
their vectors. YAKUSA [58]] creates a library of substructures based on the pro-
teins backbone internal coordinates (@ angles) to describe protein structures as
sequences of symbols. Proteins are then rapidly queried by searching for the
longest common substructures. PRIDE [59] compares protein structures via an

algorithm based on the distribution of inter-atomic distances.

Another group of approaches use three-dimensional substructures rather
than the structure of the whole protein. A substructure will be conformed of a
particular three-dimensional arrangement of atoms that conforms a part of the
3D structure of the entire molecule. Because some substructures occur often in
many proteins, this fact can be used to search for similarities between proteins
based on their substructures. Structural motifs are used in a similar fashion
to sequence motifs. The idea is to identify common structural components be-
tween sets of functionally related proteins. Then, structure-function signatures
can be collected and proteins are assigned the function of the function-known
motifs present in the protein. Examples of resources that deal with structural
motifs are the Database of Structural Motifs in Proteins (DSMP) [60] and the
Structural Motifs of Superfamilies (SMoS) [61].

With the increasing number of available structural information about pro-
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teins, an increasing number of methods that exploit this data are being created.
Computational efficiency remains a challenge that is bound to increase as the
available data increases. This situation is a motivating factor to keep focusing
research efforts into mapping the sequence to the function without the need to
analyse the three-dimensional structure. Hopefully, future computational ca-
pabilities and improved algorithms will allow the efficient analysis of protein

structure.

2.3.5 Function prediction based on protein-protein interactions

Relationships between proteins present a unique opportunity for function pre-
diction methods. Particularly, when the data is represented in the form of
protein-protein interaction (PPI) networks where the nodes represent proteins
and the links represent binding between the proteins [63]. Graph theoretical
concepts are applied to these networks to predict the function of a query protein

based on its location on the network, a principle known as “guilt by association”
(GBA) [64].

Experimentally, direct binding between proteins can be tested at high
throughput via the yeast two-hybrid system (Y2H) or affinity purification cou-
pled with mass spectrometry [2}65]. Several databases that compile associations
found by such experiments are available in resources such as DIP [66], BioGRID
[67], IntAct [68], MINT [69]. Other resources exist that not only compile exper-
imental interactions, but also predicted ones. The Michigan molecular interac-
tions (MiMI) [70] and STRING [31] databases are prime examples of these.

A simple notion that can be exploited to predict protein function in net-
works is the transference of function to interacting neighbours. An early exam-
ple of PFP predictions based on neighbourhood interactions was published by
Schwikowski et al. [71]. They demonstrate that for a yeast PPI network of 2709
proteins 63% of the interacting proteins have a common functional assignment,
and 76% were found in the same subcellular compartment. A more recent ex-
ample, Guilty by Association in STRING (GAS) [72] performed well in CAFA. In
general, neighbourhood based predictions use diverse metrics to transfer one or

more functional assignments from the neighbourhood, the latter being strictly
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limited to the 1-neighbourhood’, or in some cases a slight relaxation of that lim-
itation. For instance, Chua et al. [73]] extend the GBA principle to level-2 neigh-
bours. Wang et al. [74] propose an iterative algorithm that also exploits unanno-
tated proteins and their interactions for the prediction. Gillis et al. [75] predict
function using indirect connections on a gene co-expression network that is ex-
tended using self-multiplication. This extended co-expression network is then
used to estimate the number of paths of a certain length connect a given pair of
nodes in the network. A neighbourhood-based models that takes into account
the scale-free property of the PPl is the Preferential Attachment based common
Neighbor Distribution (PAND) method [76], in which a probability distribution
of a neighbour-sharing event between any pair of nodes in a network is cal-
culated based on the assumption that neighbour-sharing is constrained by the
preferential attachment property [77]. This distribution is then shown to be very
correlated to the observed probability in simulations of scale-free networks, and
was used to construct new networks with more functionally reliable links than
PPIs.

Another big group of PFP methods use clustering in protein networks to
identify functional modules, which represent protein complexes. The idea be-
hind clustering methods for PFP is to simply assign the most popular function
to members of the cluster. The corpus of clustering algorithms applied to bio-
logical networks is vast. Here, I briefly describe a representative set of clustering
algorithms involved in functional characterisation by protein complex identifi-
cations. MCODE [78] uses vertex weighting based on the clustering coefficient
to measure the likelihood that the neighbourhood of a node is a clique. The
Markov cluster (MCL) [79] clusters a protein network in which the edges repre-
sent the sequence similarity between pairs of proteins. This matrix is then used
to simulate random walks by alternating the “expansion” and “inflation” opera-
tions. The “expansion” operator coincides with taking the power of a stochastic
matrix using the normal matrix product (i.e. matrix squaring). The “inflation”
operation corresponds with taking the power entrywise, and then scaling it so
that the matrix is stochastic again [79]. Frey et al. [80] propose affinity propaga-

71-neighbourhood refers to the set of proteins that are directly connected to a protein i
in a PPI network — i.e., they are one jump away from protein i. Similarly, 2-, 3-, ..., and n-
neighbourhoods refer to the set of proteins that can be found by doing up to 2, 3, ..., or n jumps
in the PPI network starting from protein i.
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tion, which takes as input measures of similarities between nodes. Real-valued
messages are exchanged between nodes until a high-quality set of exemplars
and corresponding clusters gradually emerges. The Restricted Neighbourhood
Search Clustering Algorithm (RNSC) [81], which searches for a low-cost clus-
tering by first composing an initial random clustering, and then moving nodes
to different clusters in a randomised fashion to improve the cost. The cost func-
tion that assigns a cost to each cluster can be user-defined, and the authors show
good results with an integer-valued cost called “naive cost function” followed
by a real-valued “scaled cost function” [81]. CFinder [82] uses the clique per-
colation method to locate the k-clique percolation cluster that it interprets as
protein complexes, and is able to cope with overlapping modules. The cluster-
ing based on maximal cliques method (CMC) [83] first generates all the maxi-
mal cliques from the PPI networks, and then removes or merges highly over-
lapped clusters based on their interconnectivity. Highly interconnected clusters
will be merged together using a user-defined threshold to decide whether at
which level to merge the clusters. Repeated Random Walks (RRW) [84] uses
random walks with restart for finding the highest affinity protein to a given
cluster, and linearly combine precomputed random walks to reduce the com-
putational complexity for large clusters. ClusterONE [85] builds on the concept
of the cohesiveness score and uses a greedy growth process® to find overlapping
groups of proteins in a PPI. It starts by growing groups with high cohesiveness
from selected seed proteins, initially selecting the protein with the highest de-
gree. Whenever the growth process finishes (adding any protein to the cluster
lowers the cohesiveness score), the algorithm selects the next seed by consider-
ing all the proteins that are not included in a cluster, and selecting the one with
the highest degree. The process finishes when there are no proteins remaining

to consider.

Global optimisation-based methods predict protein function by considering
the full topology of the network®. For instance, the bagging Markov random
tield framework (BMRF) [86] follows a maximum a posteriori principle to form
anetwork score that considers pairwise gene interactions in PPI networks, and it

8A greedy algorithm uses a heuristic to determine its next step. It will make the locally
optimal choice with the assumption that it will lead to a global optimum.

The network topology is the arrangement of links and nodes in the network. The topology
is very useful to describe the different properties of the network such as its degree distribution
and regularity.
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searches for subnetworks with maximal scores. Then, a bagging scheme!? based
on bootstrapping samples is implemented to statistically select high confidence
subnetworks. Re et al. [87] proposed a gene ranking algorithm based on ker-
nelised score functions that exploit the topology and structure of the graph, and
also capture functional relationships between genes and provide a method to in-
tegrate a network from multiple biological sources. GeneMANIA [88] proposes
a dedicated label propagation algorithm that can take advantage of negative
annotations — i.e., it can use the knowledge that a protein is NOT involved in
a particular function to make its prediction by down-weighting the association
to a GO term for a particular protein. GeneMANIA builds a network by com-
bining networks using a ridge regression. The COst Sensitive neural Network
(COSNet) [89] predicts protein function by Hopfield networks — a special type of
artificial neural network [90]. This approach is focused on dealing with the the
unbalanced nature of GO annotations, with almost no negatives. The predictive
capabilities of Hopfield networks are then extended in COSNetM [91] to take
multifunctional genes into account. UNIPred [92] combines different biomolec-
ular networks using a supervised algorithm that project nodes into a vectorial
space in which they are linearly separated according to a function-specific score,
once separated, these nodes are reintegrated into a new network. Subsequently,
COSNet is used on this network to predict function. FunctionalFlow [93] uses
an iterative algorithm that effectively performs a label propagation of the func-

tional annotations in the graph.

2.3.6 Function prediction using gene expression data

Methods in this category make use of gene expression data. This data comes
from experiments that measure the expression level of a gene at a given time
under specific conditions. To properly study expression data, the data analyst
must be aware of the challenges inherent to the nature of the experiment use

during measurement. In particular, normalisation and visualisation should be

0Bagging is a technique used in machine learning to improve the stability and accuracy of
algorithms. It is based on several bootstrapped samples that are used for learning and are
subsequently aggregated. Typically, the outputs of running the learning algorithm on the boot-
strapped samples are aggregated using the average for regression and the most popular class
for classification.
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done with care [94] to eliminate discrepancies that may arise in expression data

measured across different labs and under different conditions or time frames.

When it comes to protein function, similarities between expression profiles
of genes can indicate functional similarities. Walker et al. [95] did seminal work
on functional characterisation of genes using GBA on the basis of a combina-
toric metric association of co-expression, i.e. the authors built a binary protein-
protein co-expression network based on gene expression data. They examined
40,000 human genes and discovered several previously unidentified genes as-
sociated with cancer, inflammation, steroid-synthesis and other processes, with
the majority of the genes not showing sequence similarity to known genes.

For gene expression data, many clustering algorithms can be used to organ-
ise gene expression profiles, and many were specifically designed for gene ex-
pression data, such as CAST [96], which proceeds in two phases for building
clusters one by one. In the first phase, elements with high affinity are added to
a cluster (a protein has high affinity to a cluster if it is similar to other proteins
in the cluster). In the second phase, elements with low affinity are removed
from the cluster. The algorithm finishes when no changes are made to any clus-
ter. Clusters built using this heuristic have been shown to preserve functional
categories. Unannotated genes are associated with the function of the major-
ity of genes in the cluster. Many of the developed clustering techniques deal
with the usual challenges associated with clustering, e.g. how to define simi-
larity between expression profiles and how many clusters to extract, or how to
deal with overlapping clusters. For instance, Wu et al. [97] employ different
clustering algorithms and annotates a cluster with the functional class with the
smallest p-value, calculated from the fractions of classes of the different func-
tional classes in the cluster, i.e. the p-value for each class is calculated taking
into account its frequency in the cluster itself (how many proteins in the cluster
are associated with each class), and only classes with the smaller p-value are
used as predictions. Unannotated genes are then assigned the functional class
of the cluster, associated with a confidence value based on the p-value of the
cluster. Similarly, Swift et al. [98] uses consensus clustering, and proposes a

robust clustering that seeks maximum agreement!! between several clustering

'Maximum agreement between several algorithm is achieved by collecting the output of all
the algorithms and picking the output that the majority of the algorithms pick.
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algorithms by reporting only the co-clustered genes that are grouped together
by the different algorithms. An objective function that rewards high agreement
clusters and penalises low agreement ones is optimised using simulated anneal-

ing.

Although clusters of gene expression profiles can be informative about func-
tion, they might not be always coherent, as pointed out by Zhou et al. [99]. They
investigate a graph-theoretic approach, in which genes are encoded as nodes,
and edges connect genes with correlated expression profiles — a co-expression
network. They carry on to conduct a simple experiment in which the short-
est path between genes with the same GO term are analysed to check whether
genes in the path belong to the same GO term, or GO terms that are ances-
tors or descendants in the ontology. The experiment shows high accuracy for
mitochondrial and cytoplasmic genes in S. cerevisiae, but medium accuracy for

nuclear genes.

Supervised learning exploit not only the expression data, but also already
annotated genes. For instance, Brown et al, [100] compare different classifiers to
learn functions from yeast gene expression data. Parzen window, Fisher’s lin-
ear discriminant analysis (LDA), two decision tree classifiers (C4.5 and MOC1),
and SVMs with different kernels were compared. They concluded that SVM
with radial kernel performs the best. Mateos et al. [101] use multilayer percep-
trons'? for functional annotation on MIPS categories, and identify three sources
of error: class size, heterogeneity, and Borges effect — the simultaneous mem-
bership of a gene in several functional classes — which highlights the difficult
nature of PFP for machine learning algorithms. Recently, Makrodimitris et al.
[102] developed a function prediction algorithm called Metric Learning for Co-
expression (MCL), based on the hypothesis that when the purpose is to find sim-
ilarly functioning genes, the co-expression of genes should not be determined
on all samples but only on those samples informative of the GO term of interest.
MCL was used as a baseline for CAFA-r, and outperformed all of the algorithms
submitted by predictors to the challenge.

12A perceptron is a single artificial neuron. It performs a binary classification that maps its
input x and return 1 if w - x + b > 0 and 0 otherwise. w are the parameters or “weights” of the
perceptron and b is its bias parameter.

13As a baseline, MCL [102] was not a competitor in CAFA-r, and had access to the experi-
mental data available well after the prediction deadline.

42



2.3.7 Data Integration methods

Methods in this category exploit and integrate heterogeneous data to improve
the predictions. This is a very broad category that falls under the umbrella of
machine learning algorithms. I will follow the organisation suggested in the
survey published by Shehu et al. [2], as data integration is inherently overlap-
ping with the categories explained before.

An important group of methods for function prediction are based on build-
ing vectors of features from different sources of biological data. These vectors
are subsequently analysed using existing machine learning techniques. Many of
the methods mentioned before follow such an approach. Here, I mention some
methods that also rely on a vector of features from heterogeneous sources, but
that can not be properly classified above. For instance, Lobley et al. [103] predict
protein function by focusing on intrinsically disordered regions'*. Focusing on
disordered regions makes a lot of sense. Their relevance for protein function
comes from the fact that these regions could offer some flexibility to the 3D
structure of the protein. For example, disordered stretches can allow movement
between domains or can be sites of molecular attachment that become ordered
on binding with another protein and give rise to function [103]. Lobley et al.
investigated a total of 122 features extracted from proteins, and these cover 14
different sources of biological information about proteins. CombFunc [104] in-
tegrates sequence-based, PPI and gene co-expression features and these features
are used in three different SVMs for different levels of the GO under the MF and
BP subdomains.

A big group of methods involve combining classifiers. GOPred [105] com-
bines different classifiers and evaluates the performance of different combina-
tion strategies such as majority voting, mean, weighted mean, and addition. Re
and Valentini [106] integrate heterogeneous data sources with different aggrega-
tion techniques and predict function using an ensemble of SVM classifiers. They
also demonstrated that simple ensemble methods are competitive and often out-
perform state-of-the art methods [107]. Obozinski et al. [108] propose “reconcil-
iation” to address the drawback of making predictions for GO terms indepen-

“Disordered regions in proteins are defined as those which lack a stable well-defined 3D
structure
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dently. Several predictions are combined and calibrated into a set of predictions
that is consistent with the GO structure. Schietgat et al. [109] use hierarchical
multi-label decision trees that are combined via bagging, which is shown to bet-
ter combine predictions from decision trees in comparison to random forests
and boosting. Valentini [110] proposes exploiting the true path rule (TPR) that
governs the hierarchical structure of ontologies such as GO and FunCat. The
TPR ensemble technique is a hierarchical ensemble algorithm that obeys TPR.
Classifiers are trained independently and are subsequently combined using an
information propagation mechanism that follows a two-way information flow.
Positive predictions traverse the structure recursively to the ancestors, while

negative predictions affect the offspring.

2.3.8 Function prediction using text mining methods

Many other approaches exist for predicting function. Text-mining methods ex-
ploit the existing corpus of papers that study protein function to make predic-
tions of functional associations. Renner et al. [111] use text mining to perform
document clustering. Documents are compared by looking at terms that oc-
cur in them and then generating clusters of terms. The idea is that if two doc-
uments contain terms that belong to the same cluster, the documents proba-
bly describe the same phenomenon. To cluster the terms, the authors analyze
their co-occurrence in documents, proceeding to build clusters starting at a term
and adding terms that often co-occur with it, recursively. Eskin and Agitech
[112] use an SVM classifier, combining several text and sequence kernels. Their
method starts by learning a text classifier on textual annotations available for
some proteins in the dataset. This classifier is used to predict the functional
information of unannotated sequences. Then, a joint text-sequence classifier is
trained on the expanded dataset using a kernel for both sequences and text.
With this joint kernel, the classifier learns from both sequences and textual an-

notations, and the interactions between them.
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2.4 Over-representation Analysis for protein function

The functional enrichment of sets of genes is a very important part of many
methods in the PFP field [113]. These sets are very often differentially ex-
pressed genes that are up- or down-regulated under certain conditions [114].
The over-representation analysis identifies which GO terms are under- or over-
represented in the selected set. The definition of over-representation varies a
lot. One of the simplest definitions is simply to count the number of times a
GO term occurs in the set (taking into account the duplicates, as these might
contribute to the evidence of an association). Then, divide by the number of
proteins in the set.

More rigorous (and arguably more useful) methods identify a GO term as
over-represented only if the number of proteins associated with the term is en-
riched versus a background model as established by a probability distribution,
i.e. whether the distribution of the associations of proteins to a given term is
very different when compared to the distribution of other terms. Several back-
ground models have been proposed and are exploited by multiple bioinformat-
ics tools for functional enrichment [115]. The most traditional strategy is to
take the set of genes and iteratively test the enrichment of each GO term in
a linear mode. Thereafter, the enriched annotations that pass a threshold on
an enrichment p-value are reported ordered by their enrichment probability
(enrichment p-value). Commonly, the enrichment p-value is calculated using
well-known statistical methods such as Chi-square, Fisher’s exact test, binomial,
and hypergeometric probabilities. Most enrichment tools follow this strategy
[116], 117, 118]. A limitation of such enrichment methods is that the relation-
ships between terms is often diluted in the iterative process.

An increasingly popular strategy follows is the gene set enrichment analysis
(GSEA) [119]. This is, to follow a “no-cutoff” strategy that takes the set and com-
putes a maximum enrichment score (MES) from the rank order of all gene mem-
bers in the GO term. Then, enrichment p-values can be obtained by matching
the MES to randomly shuffled MES distributions. Tools that follow the GSEA
have the nice property that it does not require the user to pre-select a set of in-
teresting genes, and that the expression values present in the experiments are
already integrated into the enrichment p-value [115]. Disadvantages of GSEA-
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like methods are that for many biological studies, establishing the right score
to rank the genes is not an easy task. Another possible disadvantage emerges
when dealing with multiple sources of data. The GSEA strategy is driven mostly
by the fold change of its ranked genes, but biologist know that small changes
on some genes (e.g., those involved in regulatory processes) could lead to big
downstream biological consequences. Conversely, a big change in metabolic

genes may be a consequence of smaller, but important, regulatory events [115].

A third category of enrichment tools follows a modular approach. They fol-
low the traditional motivation for enrichment as in the first strategy, but take
into account gene-gene or term-term relationships, often from the hierarchical
structure of the GO. New versions of widely used tools and newly released en-
richment tools offer the user the option of choosing which analysis to perform
[120,121},[122]]. If possible, a modular approach is preferable to other techniques,
as it better captures the hierarchical nature of the GO, providing a larger biologi-
cal picture with the enrichment [115]. The disadvantage of modular approaches
emerge mainly with GO terms or genes without strong relationships to neigh-
bouring GO terms/genes, as these could be left out of the analysis. Also, like
in the first strategy, the quality of the pre-selected set of genes will impact the
analysis [115].

Unfortunately, there is no single rule of thumb to compare or decide which
strategy to use for a given project. This decision will depend on many factors
such as the heterogeneity (or homogeneity) of the sources of data, whether the
researcher is interested in a group of (already pre-selected) genes, and the IT

expertise required for running the analysis tools correctly.
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Sequence 2 Function

3.1 PFP for newly sequenced organisms

As mentioned in section 2.3} for newly sequenced organisms most of the sophis-
ticated PFP methods are not applicable. This is mostly due to the unavailability
of data for such organisms, which are required by the best performing methods.

Naturally, this results in predicting protein function using simpler methods
that rely exclusively in finding sequence similarities. In this chapter, I show that
by transferring information from well studied organisms, many sophisticated
techniques can be used even for newly sequenced organisms. I focus on how
to enable the use of label propagation in networks for PFP. Methods in this cat-
egory have shown a great potential in many applications, including PFP [123].
In the context of protein networks, these techniques are fundamentally based
on the “guilt-by-association” principle: a protein will share many molecular
and phenotypic characteristics with closely connected proteins in the network.
Function is considered to be such a characteristic.
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For protein function prediction, a label propagation algorithm generally re-
quires two things. First, a protein network, in which nodes are proteins, and
links can be relationships between them of various types. Second, information
about a subset of the proteins in the network in the form of labels associated
to the proteins. These labels will be propagated from their original proteins
(nodes) to other proteins using the edges of the network as the communica-
tion channel [123]. Consider the following diffusion process: a label acts as a
fluid, that will flow to neighbouring proteins with a strength proportional to
the weight of the edge. After some time, the diffusion process will stabilise,
with the label reaching proteins that were previously unlabelled. The amount
of fluid (label) that reaches a previously unlabelled protein will be related to the
probability of the association between the label and the protein.

Despite being conceptually simple, the diffusion process will strongly prop-
agate labels to proteins close to the source. Distant nodes could be reached
in collaboration if the label flows from multiple sources and reaches the same
protein from several different links, capturing the topological features of the
network [123].

S2F (Sequence to Function), is a novel method for the characterisation of
newly sequenced organisms based on network propagation. Our framework
focuses on exploiting functionally relevant data available for model organisms
and transferring it to newly sequenced organisms. S2F uses a novel label prop-
agation algorithm, tackling the lack of data by inferring both the seed and the
networks to propagate them. S2F provides new solutions to the problems of
integrating an initial set of labels (the seed), how to build a network, and how
to propagate the labels on the network.

3.2 The S2F Framework

The framework consists of three main steps:

1. Seed Inference: The first step is to create an initial set of predictions based
solely on the sequence. This is done by combining predictions from Inter-
Pro [16] and HMMER [9].
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2. Network Inference: In the second part, we build a protein-protein net-
work by combining several types of interactions (links) into a single net-
work. Links are transferred from all organisms available in the STRING
database [31]. Known as interologs [4, [124], these transferred interactions
are integrated into a single network.

3. Label propagation: The final step of the process is to propagate the initial
labelling into the network. For this, we propose a new label propagation
algorithm.

These steps are illustrated in Figure and will be explained in detail in this

section.

3.2.1 Building the seed

The emergence of sequence-based function prediction techniques motivated the
development of large pipelines for the functional characterization of newly se-
quenced genomes. These include InterPro [16], HMMER [9] and GenDB [125]
among with the ones specifically designed for microbial gene function charac-
terization such as BASys [126], PUMAZ2 [127], MaGe [128], AGMIAL [129], IMG
[130] and PIPA [131]. Among these, PIPA and InterPro adopt a meta-approach
where the results from various homology and motif search techniques such
as HAMAP [132] and Pfam [21] are systematically integrated to obtain a sin-
gle function prediction. We use InterPro as it provides a very complete set of
sequenced-based tools that can easily be integrated to our framework. Inter-
Pro [16] integrates 13 databases that give functional prediction based only on
sequence data and some trained models over manually curated data. We con-
sider the output of every model as binary, giving the user a set of terms that
have been predicted with probably high precision. For every InterPro model
k €{1,2,...,m}, we have a set of predictions R*. We use these models to obtain
an initial matrix R € [0, 1], where n is the number of proteins in the organism,
and ¢ is the number of GO terms. R is constructed by integrating model R* into
a single matrix

Yy

m

ij
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Figure 3.1 — Diagram of the entire S2F framework. External datasets are STRING, UniPro-
tKB/GOA, and UniProtKB, shown in orange. The leftmost element is the Input of the
system: the set of amino acid sequences of the target organism. Running HMMER using
sequences in UniProtKB/SwissProt with experimental annotations as the database results
into the HMMER seed H. Running InterPro results in a collection of seeds that correspond
to every model, this collection is aggregated and a single InterPro seed R is produced. The
initial guess Y, that will be propagated later on, is calculated by a linear combination of H
and IP. The lower part of the diagram shows the building of the network. A collection of
networks is obtained by finding interologs between the target organism and every organ-
ism with relationships reported in the STRING database. The network collection will be
combined into a single network. The resulting network W and the initial guess Y are finally
fed to our label propagation algorithm that outputs the final prediction F.

After normalising by m (the number of models for which InterPro gives a
prediction for the organism), each value in R represents the likelihood that the
association is present in all models in InterPro. To keep the predictions con-
sistent with the GO structure, all matrices R* are up-propagated using the true
path rule.

The lack of availability of enough training data for some GO terms (only a

few proteins annotated) means the InterPro models are not trained to output
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those terms to avoid false positives. This results into many GO terms (generally
the rare ones) not being predicted by InterPro.

To increase the coverage of the seeds on top of the predictions by InterPro,
we combine its output with the one produced by HMMER [9]. HMMER is a
method based on profile hidden Markov models. It will build profile hidden
Markov models for every sequence in the query, and compare against profiles
found in the database, producing an e-value of the match. We use HMMER
against sequences in UniProtKB/SwissProt [5], which only contains protein se-
quences that have been experimentally validated. For every hit in HMMER
with an e-value < le — 8, we copy any functional annotations from the protein
in UniProtKB/SwissProt to the protein in the target organism. The result, after
up-propagating the assignments with the true path rule, is a matrix H of the
same dimensions as R. We finally combine both seeds into a single matrix that
will be propagated on the network afterwards. We do it using a simple linear
combination, and the initial guess Y is therefore defined as:

Y=aR+(1-a)H
In our experiments, we set @ = 0.9. This gives more importance to InterPro,
a decision justified by the fact that the InterPro predictions contained in R are
made by combining several models, while those in H are a similarity based on

a single method. Developing a stronger analysis of the tuning of the value of

is part of my future work.

3.2.2 Building the network
The strategy to build the protein-protein network is divided in two steps: first,

we transfer interactions from several organisms into several networks, and then

these are combined into a single network.

Interaction Transfer

Several types of protein-protein interactions have been shown to be relevant as

functional associations [31]. We consider the case when the target organism has
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been recently sequenced, and therefore no information is available regarding
any of the interactions between its proteins. Consequently, we propose here a
methodology to transfer interactions from different source organisms for which
information is available. Consider the diagram in Figure the organism la-
bel “NEW” represents a collection of protein sequences (the nodes) without
any interaction information (all links are missing). A source organism, labelled
“SOURCE" in the figure, contains such protein-protein relations. The idea is to
establish a rule that allows us to transfer these links from one organism to the
other. We use STRING [31] as the dataset from which we transfer this informa-

tion.

Figure 3.2 — The network for the target organism (labelled “NEW") starts with no links,
only the nodes are available. A source organism (labelled “SOURCE”) from the STRING
database is used to predict these links.

To transfer interactions, we use the concept of interolog as defined by Yu et
al. [4,1124]. Given a pair of interacting proteins A and B in the source organism,
and a second pair A’ and B’ in the target organism such that A and A’, and B
and B’ are found to be orthologs', we transfer the link in the source organism
to the target organism —i.e., we copy the weight of the link in the source organ-
ism to the target organism (see Figure 3.3). We use this algorithm to transfer
existing interaction evidence from well-studied source organisms to the newly
sequenced target organism. Using organisms with experimentally derived in-
teractions in STRING as source, and the newly sequenced organism as target,

we build one transferred network W’ per interaction type r.

At the time of writing, STRING [31] provides a database that compiles

several types of interaction between proteins for 5090 organisms totalling

!Note: For the link transference, we do not require that the pairs are experimentally validated
orthologs. We simply consider a set of stringent similarity conditions (explained later in this
chapter) and call orthologs to any pair of proteins that meets our similarity conditions.
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Figure 3.3 — The interolog process. A link is transferred between two pairs of proteins
are found to be orthologous. An iterative process can be used to transfer links from all
organisms for which protein-protein relations have been established.

3,123,056,667 interactions divided in 7 types: neighbourhood, fusion, co-
occurrence, homology, experiments, co-expression, textmining, and database.
Each interaction is annotated with a score that ranges from 0 to 1 and repre-
sents the confidence that STRING assigns to the interaction. STRING’s scores
represent the probability of that association which is calculated by combining
the probabilities from all the sources of evidence included the database? [32].
For genomic neighbourhood, gene fusion events, and co-occurrence, periodic
systematic genome comparisons are done against UniProtKB/SwissProt. For
all other types, the confidence scores assigned to each predicted association are
derived by benchmarking the performance of the predictions given a common
reference set of trusted, true (experimentally validated) associations. The bench-
marked scores generally correspond to the probability of finding the linked
proteins within the same pathway in the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) [133]. We aim to transfer high-confidence interactions to the

target organism, while maintaining high-connectivity in the network.

The idea that protein-protein interactions are conserved between species has
been used in different methods, such as [134] and [135]. Prior to the publication
of STRING, Yu et al. [4] did seminal work in the transference of networks. In
their work, interactions are transferred with high precision using the criteria for
interolog-mapping proposed by Walhout et al. [124]: Given an interacting pair
of proteins A and B in the source organism, and two proteins A’ and B’ in the tar-

2The exact calculation adds the probabilities for each source of evidence. To each source of
evidence, a “prior” has been added to account for the probability that two randomly picked
proteins are interacting. This “prior” is subtracted from each score, and then added back after
all the scores are combined [32]]
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get organism, transfer the weight between A and Bto A" and B’ if Aand A’, and B
and B’ are found to be orthologs. Operationally, orthology is considered if some
conditions are met. First, mutual best hit with BLAST, and both e-values less
than 1 x 107'°. Second, at least 80% percent identity in both directions (to avoid
transference between multi-domain proteins with different domain structure).
Finally, an additional condition is introduced in [4] to achieve high precision: a
high threshold on the geometric mean of both percent identities (highest pre-
cision above 80%), which the authors call “joint identity”. The “joint identity”
condition was validated with experimental measurements by Yu et al. and has

proven to achieve very good accuracy [4].

Various approaches for interolog transfer use a variant of this method
[136} [137] where orthologs between source and target are computed, and then
weights are mapped from one organism to the other.

We use these concepts to transfer the likelihood of functional interactions
between proteins reported in STRING. By transferring from several organisms,
we increase the coverage of the target organism. We relax the third condition
on the orthologs (highest precision score above 60%), and we have a criterion to
determine the most suitable edge when multiple candidates exist for a given in-
terolog. Algorithm 1| details our method for building a collection of transferred
networks for the target organism.

To construct the collection of networks to integrate, we consider only those
with at least 3 transferred edges. This is, for every interaction type k in STRING,
if at least 3 edges are transferred, we count with a network W, with interactions

of type k that are collected from every organism in STRING.

Finally, we add a homology network to the collection to make sure the net-
work is connected and make the prediction more stable. This homology net-
work is obtained by calculating a pairwise homology score between all the pro-
teins in our target organism. The motivation for the homology network is that
the label propagation will benefit from a network with a minimal number of
connected components. This is because if the network has isolated “island”
components, a label starting in such an island will have limited reach. The Ho-
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Let T be the target organism

foreach type of network i, initialise G; = 0 do

Score[] = {}

foreach source organism S in the collection do

Find pairs of orthologs proteins (S, T,) and (S, T;,) using mutual
best hit by BLAST subject to:

e e-values<1x107°
e mutual percent identity > 80%

e geometric mean between percent identities > 60%

if 3 weight(S,, S;) € network i in S then
NewScore = max(BLAST(S ., T,,), BLAST(T,, S ),
BLAST(S,, T),), BLAST(T},S}))
if A Score[(T,, T;)] or NewScore < Score(T,, T,) then
Score[(T,, T),)] = NewScore
Set edge(T,, T),) with value weight(S ., S ;) in G;
Add G; to the network collection of organism T

Algorithm 1: S2F interolog transfer

mology matrix W" is defined as:

e-value;;
11

h _
Wl-j = —log(

where e-value;; is the BLAST e-value between proteins i and j. The reason to
divide e-value;; by 11 is that we consider 11 to be an unreasonably high e-value,
and so it is a safe “maximum e-value” for our purpose. The —log operator allow
us to turn the W" matrix from having higher values for more similar proteins

and low values for proteins with low similarity.

The homology matrix is important, as it will bring the homology relation
(which has been extensively used in PFP) to the label propagation procedure.
Also, by including this matrix to the combination procedure explained in the
next section, we ensure that the final network will be connected, even if it is by
a very weak link. This will give S2F the change to propagate labels to every part
of the network.
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Figure 3.4 — Overview of the network combination. Several types of relations are trans-
ferred using the method described in the previous section. With the collection of networks
available to the target organism, our network combination procedure is used to build a
single network.

Network Combination

With several networks available, we now face the task of combining them into
one cohesive network in which to diffuse the seeds, as depicted in Figure
This is not a simple task and many methods exist that integrate multiple net-
works [138] 188} [139]]. For example, GeneMANIA [88] integrates its network by
taking a weighted average of the individual functional association networks,
and learns the weights of its combination using a ridge regression on the initial
set of known labels. Since we have no prior functional information, we propose
here a new solution for combining multiple functional networks that does not
rely on a set of known labels. It is important to note that this network combina-
tion is necessary because we are working under the assumption that no exper-
imental link has been discovered for the target organism. Nevertheless, when
this assumption is not true, it is highly likely that performing the combination
described in this section will increase the predicting power of S2F. Importantly,
our network combination is not limited to the networks available in STRING.
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Any protein-protein network can be added to the collection easily.

Given m networks W¢ € R™"(d = 1,2,...,m), where the (i, j)-th entry of W*
represents the strength of the interaction between proteins i and j in network
W4, we aim to build a combined network W that integrates every W¢ by a lin-
ear combination. To determine which coefficient to use for each network, we
use a target network 7', and optimise the coefficients of the combination so that
the difference between T and W is minimal, in a similar fashion to GeneMA-
NIA. Our target network, however, is built taking into account all the GO terms
included in the R matrix (InterPro seed) simultaneously. We define the target
network as the Jaccard coefficient of R after applying a threshold 7:

IN:n |

T, = — 2
IN;UN,|

ij —
where N; = {k|Rix > 7} and N; = {k|R]-k > T} are the sets of all GO terms associated
to proteins i and j respectively. The threshold r on the R matrix allows us to

consider the associations that were found in many InterPro models.

We compute the combined network W by a linear regression, minimising the
following objective function:

m 2
(c 7;) = argmmZ( + Z chd )
ch G =
where b is used to remove the bias in T. This linear regression can be solved ef-
ficiently, and we can interpretc, as representing how much model d contributes
to the combination. To avoid sparsity, a homology network is added to the col-
lection of networks used in the combination.

The target network T can be interpreted as representing functional similarity
between proteins. Note that 7 may lack information about the functional rela-
tionship of proteins, since it contains only information from InterPro and two
proteins that do not have any prediction in R will have a functional similarity of
zero in the target network. Nevertheless, we expect that the combined network
will correct for this since the transferred interactions will inevitably make the

functional similarity different from zero.
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3.2.3 Label propagation

The final step in the framework is our label propagation procedure. Label prop-
agation is at the heart of the procedure. The potential of this technique is made
evident by the number of available methods that have been developed [123].
However, the unavailability of initial information (functional annotations) and
a suitable network (a reasonably well connected protein-protein network) has
limited its use on newly sequenced organisms that do not have either of those

components available until many experiments are performed.

We propose a novel label propagation method inspired by the Consistency
Method (CM) [140]. Our development upon the original CM method is moti-
vated on what we call the “problem with overlapping communities”, described
in the following section.

The problem with overlapping communities

Protein functions are ultimately performed by protein complexes. These com-
plexes can be found in a protein-protein network as communities that often
overlap [85]. Intuitively, one might expect that proteins in the intersection of
two communities share many properties when compared to their neighbours.
Consider the network in Figure 3.5A, where proteins 4 and 5 are the intersec-
tion of the communities formed by nodes 1-5 and 4-11. Notably, nodes 4 and
5 share more communities with each other than any other pair of nodes in the
network (i.e. they conform an “overlapping community”). To our knowledge,
our label propagation method is the first to model overlapping communities,
which avoids the problem of over- or under-propagating labels when commu-

nities overlap.

To demonstrate the problem, we ran three diffusion methods in the toy net-
work depicted in with a fixed smoothness parameter 1 = 1. Here, 1is a
parameter that is used in these label propagation methods to determine how
strong is the “smoothness constraint” of the objective function (see next section
for a full explanation). These methods are the consistency method (CM) [140],
GeneMANIA [88], and S2F. Due to the lack of true negatives in our data (i.e.,
GO annotations with the NOT modifier), we use GeneMANIA without its bias
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C

I 00 @0 00 00 @0
CM 0.0622 0.0558 0.0619 0.0558 0.0632
CM-GeneMANIA 0.0646 0.0497 0.0488 0.0497 0.0619
S2F 0.0677 0.0498 0.0572 0.0498 0.0518

Figure 3.5 — The problem with overlapping communities. A) A simple network that fea-
tures two overlapping communities. Proteins 1-5 conform the first cluster, and proteins
4-11 the second. Our intuition is that in the case in which only protein 4 has a known func-
tion, then an ideal diffusion algorithm should assign a bigger score to protein 5 than any
others because they are the intersection of the communities. In case protein 10 is the only
one with known function, the algorithm should give a bigger score to protein 11 than to
protein 5. All edges are assigned a weight of 1 B) The relations between the labels assigned
to the network C) The resulting scores of running the different diffusion methods on the
toy network, each column represents the direction of the diffusion in which A — B repre-
sents that protein A is the source of the label, and the scores for B are reported. CM and
CM-GeneMANIA give unintuitive results in the case in which protein 4 is the only labelled
protein (highlighted in yellow). Notice how they both give 4 — 5 a lower score than 4 — 1
and 4 — 11 respectively, which is not consistent with the communities arising from the
topology of the network.

setting, and we refer to the modified version as CM-GeneMANIA. Let us assign
a function A to the cluster composed by proteins 1-5, a function B to the cluster
made by proteins 4-11, and a more specific function C to proteins in the inter-
section (4 and 5). Additionally, to better model a plausible situation in GO, C is
a descendant term from both A and B as depicted in Figure 3.5B. We consider
two situations:
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1. If we hide the function of every protein except 4, an ideal diffusion method
should assign protein 5 a higher score compared to other proteins.

2. If we hide the function of every protein except 10, the ideal method should
assign protein 11 a higher score than the one assigned to protein 5.

As shown in Figure 3.5C, we can see that both CM and CM-GeneMANIA
produce unintuitive results in the case when an overlapping protein is the only
one with the label. We observe then that both CM and CM-GeneMANIA suffer
from the problem of ignoring the effect of overlapping communities, as they
assign a greater score to proteins 1 and 11 respectively, and only S2F assigns the
greater score to protein 5 (which shares a greater number of communities with

protein 4).

Objective function of the S2F label propagation

To model the community effect in the interaction network, we use the Jaccard
coefficient in a probabilistic setting:

2 Wa Wi
2k Wik + 24 Wi = 2 Wi Wi

Jij =

An element J;; in matrix J relates to how much elements i and j belong to the
same community in network W. Considering the W in the toy problem above,
we observe some interesting cases®: Ji; = 1, Jis = 3, Jus = 1, Jig = &, Jyo = 1.
When the pair belongs exactly to the same community, they have a 1, (Ji2, Jus,
and Jgo); if the pair share a community, but they do not exclusively belong to it,
the value is smaller (/y4); if the pair does not share any community, the value

becomes significantly small (/).

Formally, our cost function is:

n /l n 1 n
Q(F)=;(Fi—Yi)2+E;d_i;-]ijwij(ﬂ—ﬂ)z

where J; W models the community effect — the more i and j are connected by
their neighbours, the more the diffusion rate;
1 1

di X, J5Wj

3Note that we consider that the diagonal of matrix W is filled with 1 for the calculation.

60



is a normalisation factor that gives every protein the same ability of affecting
others. The closed form solution that minimises Q(F) is:

Fr=U+AL)'Y

where L = Dgyp — Wy,p is the Laplacian of Wy,p,

Waop,, = L(d + ! JiiW,

SZF,‘j - 2 dl dj 1] 17
and Dspr is a diagonal matrix where the i-th element is Dsyp, = 3; Wsop;;. For
organisms for which no functional data is available, we use the initial guess

matrix Ras Y.

This label propagation algorithm has the nice property that unlike other
methods, it gives intuitive predictions when dealing with overlapping commu-
nities. And as the Consistency Method [140], it does not suffer from the incon-
sistency problem. Finally, a property of our diffusion method is its consistency,
ie if Y; > Y, then F; > F,.

Theorem 1. If Y; > Y;, then F; > F..

Proof. First, we show that the matrix (I + L)™' is nonnegative. It is obvious that
B =1+L =1+ D — A satisfies B; > 0 for each i and B;; < 0. Also, for an all-one

vector x, we have
Bx=U+D-A)x>0.

(I+L)~" is nonnegative (see Theorem 2.1 (2¢,2f) in ” A survey on M-matrices”
by Poole and Boullion [141]).

Now we can use this property to show the conclusion. Assuming that ¥; >

Y;, we have (I + L)"'(Y; - ¥;) > 0, which means F; - F; > 0. o

In a similar way, it can be shown that our model and GeneMANIA have the
same property. Furthermore, it can be shown that CM satisfies the property by
that fact that the matrix

(I-aS)"' = Z @Sy
i=0

is nonnegative.
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Let term j be an ancestor of term i in the GO, because we apply the up-
propagation procedure to both InterPro and HMMER, we always have that ¥; >
Y;. By this theorem, our predictions about term i and term j satisty F; > F;, and

thus they are consistent.

Another important property of the diffusion model is that if sum(Y;) >
sum(Y;), then sum(F;) > sum(F;). This is important because in both IP and HM-
MER, there are many false positive GO terms. However, a false positive GO
term i may receive less annotation in both IP component models and HMMER
—i.e. the overall initial guess for i, reflected in the number sum(Y;), is small. On
the contrary, a true positive GO term j may receive more votes, and so sum(Y))
is larger. Therefore sum(F;) > sum(F;) according to this property, which means
that with a higher probability our prediction put j prior to i — this usually results

in a better per-gene performance.

3.3 Evaluation

There are two main testing scenarios for protein function prediction. First, given
a gene, provide a set of functions associated to that gene (per gene prediction).
Conversely, given a function, provide a set of genes which perform that function
(per term prediction). The first case is useful when the objective of the prediction
is to characterise an entire genome. This will give a panoramic view of the func-
tional landscape of the genome. The second case may be more interesting while
studying a particular function, and the objective is to identify which proteins

are involved in performing such function in the studied organism.

3.3.1 Organism Selection

As highlighted in section the overwhelming majority of available sequence
is from the bacterial superkingdom. Thus, we selected 10 bacteria that comply
with the following criterion:

e The selected organism must have at least 10 functional annotations with
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an experimental evidence code. This helps us to properly assess the per-
formance of the method in a per gene setting.

e We need a reasonable diversity (i.e., annotations for multiple proteins in
multiple GO domains) of GO terms to reliably estimate the performance
in a per term setting. The second condition is that for every subdomain:
biological process (BP), molecular function (MF), and cellular component
(CC), we need at least 8 popular terms, i.e. terms that are annotated to at
least 3 genes. This criterion allows us to be fair in determining the perfor-

mance of S2F on every subdomain.

We checked our criteria using the set of annotations made available by
UniProtKB/GOA [6]. The final list of selected organisms for evaluation is
shown in Table

NCBIID  Name Annotated  Popular Popular  Popular

Genes genes BP MF CcC

1111708  Synechocystis sp. 2413 137 103 31 38
122586  Neisseria meningitidis B 1405 16 58 19 16
208964  Pseudomonas aeruginosa 4403 918 719 224 51
223283  Pseudomonas syringae pv. tomato 5063 40 71 44 24
224308  Bacillus subtilis 3393 340 307 114 28
246200  Silicibacter pomeroyi 4094 65 29 42 11
272624 Legionella pneumophila Philadelphia 1 2070 18 33 8 10
83332 Mycobacterium tuberculosis 3287 2204 887 279 63
83333  Escherichia coli 3858 3313 1572 705 139
99287  Salmonella typhimurium 3695 110 190 42 34

Table 3.1 — List of organisms that match the selection criteria selected from UniPro-
tKB/GOA (downloaded on May 2018). Note that the number in popular terms may be big-
ger than the number in “annotated genes” as this criterion is applied after up-propagation.

3.3.2 Black List

For evaluation purposes, and in order to remove any trace of experimental in-
formation associated to the target genome under evaluation, and therefore sim-
ulate it as a newly sequenced genome, we remove experimental data related to
that particular genome from the input databases. Not only data for that particu-

lar specie is removed, but also for phylogenetically close species. Operationally,
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we considered “close” organisms, all of those that have a NCBI taxonomy iden-
tifier that are descendants of the same “grandfather” node of our target organ-
ism. This is, if our target organism is a, we traverse the phylogenetic tree two
levels up, and remove all descendants of the parent of the parent of a. A table
with the blacklist for every organism in Microsoft Excel format can be found
online at https://paccanarolab.org/s2f

3.3.3 Evaluation Metrics

There are many ways to evaluate the performance of predictions of protein func-
tion, which requires measuring the performance using several metrics [142]. We
use these metrics to compare our predictions with a gold standard. For the se-
lected bacteria, we use the available experimental annotations as the ground
truth (see GOA files in Supplementary Data). We follow the analysis used in the
CAFA challenge [3] and measure the performance of S2F using the Fux, S min, the
area under the receiver operating characteristic (ROC) curve (AUC-ROC), and
the area under the precision recall curve (AUC-PR) metrics.

Finax, and S i are described in terms of the precision-recall and uncertainty-

misinformation curves respectively.

The F,,.x metric is defined as:

F.x = max
T

2-pr(r)-rc(r)
{ pr (1) +rc(r) }

where pr(7) and rc(r) are the precision and recall metrics respectively, when
considering a threshold of t for the prediction.

The minimum semantic distance S ,;, is defined:

S min = Min { \/ru (T)Z + mi (T)z}

where ru (1) and mi (1) are the remaining uncertainty and misinformation met-

rics respectively, when considering a threshold 7 for the prediction.

64


https://paccanarolab.org/s2f

@ HMMER
B InterPro
s S2F

AUC per-gene

organism

Figure 3.6 - AUC-ROC for every organism (mean in a per-gene setting). Methods are HM-
MER, InterPro, and S2F (HMMER + InterPro + diffusion). For every organism, S2F gives
the best score, suggesting that the functional knowledge transferred from other organisms
and the network propagation are effective for predicting function of newly sequenced or-
ganism.

3.3.4 Performance

We compare S2F against InterPro and HMMER, two sequence-based meth-
ods widely used in the community for the initial characterisation of newly se-
quenced organisms, as was pointed out in section[2.3.1} As can be seen in Figure
S2F is effective for predicting protein function when no information is avail-
able. Notice how for some organisms the improvement in terms of AUC-ROC
when using the network propagation has significantly more impact than for
other organisms. A possible explanation for this is the fact that the functional
characterisation of organisms is not evenly distributed — i.e. Some organisms
will be closer to “well characterised” organisms than others. For those organ-
isms, it is more likely that S2F can transfer a generous amount of information to
be used for the prediction. Contrastingly, an organism located in a “desolate”
area will receive less information, and the predictions will be closer to the initial

seed.
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Figure 3.7 — AUC-PR for every organism (mean in a per-gene setting). Methods are HM-
MER, InterPro, and S2F (HMMER + InterPro + diffusion). As for the ROC-AUC metric, S2F
gives the best performance.

Figure 3.7 shows the per-gene setting of the evaluation using AUC-PR. We
observe that in both settings we outperform traditional methods. Figure 3.8 A
and B show the performance evaluation using the F, metric in per-gene and
per-term settings respectively. Similarly, Figure 3.9/ A and B show the evaluation
using the S, metric. In this case, the impact of the low coverage of InterPro
becomes apparent in the per-term setting. A possible explanation for this impact
in performance is that because InterPro predictions are very focused on preci-
sion, its low coverage results in a greater remaining uncertainty. An important
thing to notice is that the network combination and label propagation amplify
the predictive power of the original seed. This is reflected in the fact that S2F
performs better for those organism in which HMMER and InterPro also per-
form better when compared to other organisms. Finally, in Figure we can
see a comparison of our label propagation and the Consistency Method. More
results available in Appendix[A.2]or, preferably, an interactive data explorer that
is available on the project’s website: http://www.paccanarolab.org/s2f.
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Figure 3.8 — Performance comparison using the F,x metric A) per-gene setting B) per-term

setting. We observe how S2F performs better for all selected bacteria.
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Figure 3.10 — S i, performance comparison of S2F (our label propagation) and CM. The
diffusion was run using our transferred and combined network, and the same initial seed
(InterPro + HMMER). For this measure, the performance of our label propagation is always
equal or better than CM for predicting protein function. The difference in performance on
these 10 organisms is not statistically significant however, with a p-value of 0.92 using an
independent two-sample t-test.

3.3.5 Network combination coefficients

A label propagation algorithm can only perform well if the underlying network
has meaningful connections —i.e., links between proteins that are likely to share
function. In our case this depends entirely on the network transference and
combination procedures. Figure 3.11|shows the coefficients learned by the com-
bination procedure. Unsurprisingly, the homology coefficient is the highest in
almost every case. This is expected, since the homology relation is something
that can be calculated for every pair of proteins without further experiments
once the sequences are obtained. Having a value for every pair results into
a fully connected homology matrix. Therefore, this matrix is the most “mal-
leable” one, i.e. it will provide many more links than the other networks in the

collection.
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Figure 3.11 — The learned coefficients for every organism.

3.3.6 S2F for organisms with experimental data

I have shown that S2F is a powerful framework for the functional characteri-
sation of newly sequenced organisms. It is not limited, however, only to these
organisms, and can be used to complement already available experiments. In
the following section, I show the performance of S2F in the context of the CAFA
Challenge.

3.4 The CAFA Challenge

The focus of S2F is on newly sequenced organisms, and thus we compared it
only against sequenced-based methods (InterPro and HMMER). It is, however,
very interesting to compare it against other PFP methods that exploit data other
than the sequence. Although we have not made this comparison ourselves, a
very fair comparison can be found in the context of the Critical Assessment for
Functional Annotation (CAFA) 3, [144].
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3.4.1 Structure of the challenge

CAFA is a community-wide effort to assess the status of computational func-
tional annotation methods. It is run as a timed challenge. First, a collection
of experimentally unannotated proteins are made public by the organisers and
teams of predictors are given time to submit their predictions to the organis-
ers. Then, there is a waiting period while annotations accumulate in databases
such as UniProtKB/Swiss-Prot [5] and GOA [6]. After this waiting period, new
experimental annotations are collected, analysed and finally published.

This structure allows CAFA to fairly compare all submissions on the same
playing field. Because no training data is provided by the organisers, the rank-
ing implicitly evaluates the ability to collect and properly exploit any available

information.

3.4.2 Modifications to S2F

For the challenge, S2F is modified in simple but very important ways. These
changes are motivated by eliminating the assumption that the organism has
been recently sequenced. For our framework, this is a major change, since there
is more data available in every step of the way and, crucially, available GO an-

notations. We now modify the framework in three ways:

1. GOA-Clamping: Due to the availability of GO annotations in the GOA
database [6], the seed is now built, and subsequently “clamped” with
these experimental annotations. This means that after combining the seed,
all available (GO-term, protein) pairs that can be found in the annotations
are set to 1. This clamping is also imposed after running the network prop-

agation procedure.

2. Network: Similarly, due to the availability of protein-protein interactions,
the networks are built giving more importance to the experimentally re-
ported links already available to the target organism

3. Blacklist: Finally, we do not use the blacklist in this scenario, as we are

not validating the framework, and allow S2F to transfer information from
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every source.

The impact of these simple changes has important implications in the predic-
tions. First, because CAFA involves fairly well-studied organisms, the amount
of available data is absolutely not negligible. The available experimental GO
annotations are deeply involved into providing S2F with prediction power, as
they are used not only to build the seed, but also to build the target for the net-
work combination. S2F is able to use the available annotations on top of those
included in the original seed (InterPro and HMMER) through the GOA clamp-
ing step, improving the seeds. Then, it is able to use the existing experimentally
validated PPI on top of its predicted network. This, on top of not using a black-
list, ensures that S2F is using one of the most complete networks possible for
the prediction.

3.4.3 Modifications for CAFA

In addition to the modifications we made for CAFA 2, we introduced a modifi-
cation to the pipeline for CAFA-r, that maps the raw S2F score to the available
set of scores that are allowed for a submission. This modification was motivated
by the rules of this specific version of the challenge, summarised below.

CAFA 7 Rules

The rules were published by the CAFA organisers [145]. The goal of the predic-
tion task is to predict what genes/proteins in a certain organism are associated
with a given function, expressed as a GO term. There are two organisms and
two GO-terms, summarised in Table 3.2

Organism GO-terms

Pseudomonas aeruginosa.  Biofilm formation Go:0042710, Motility: GO:0001539
Candida albicans. Biofilm formation Go:0042710

Table 3.2 — Prediction setting for CAFA-n.

A participant is allowed a maximum of 3 models, i.e. up to 3 different scores

for every protein and GO term. Each model can include one or more of the 3
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possible set of predictions. The submission file should contain a list of protein
targets that the team think are associated with the function designated in the
tilename, followed by a probabilistic estimate of the association (score). The

score must be in the interval (0.00, 1.00] and contain two significant figures.

Score transformations

In order to assess the proper way to transform the scores, we inspected the dis-
tribution of the S2F prediction scores. Figure shows the histogram of the
raw S2F scores for motility on Pseudomonas. In this particular scenario, only
28 out of the 100 possible scores allowed for submission would be used. This
is not ideal, since our method would be penalised for the gaps in the scores,
being assigned a true positive only when reaching lower scores. The idea of
transforming the scores is motivated by the fact that the evaluation metrics will
be affected by the distribution of annotations. This may not be obvious at a
first glance, since the relative order of the predictions appears to be maintained.
This is not true when the precision of the scores is restricted as it is in CAFA. To
demonstrate this, we created a simple array of 100 scores, and then rounded it
to 2 and 1 decimal places, and calculated their respective AUC-ROC and AUC-
PR values. Figures and show the effects of simply rounding the scores
to the closest reduced precision value.

ROC
1.0 —
0.8 1 —
i) ‘f’/
&
v 0.6
2
=
w
&
P 0.4
2
i
0.2 1 —— AUC = 0.91 (no rounding)
—— AUC = 0.89 (2 decimal places)
0.0 AUC = 0.81 (1 decimal place)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 3.12 — ROC curve for a toy prediction problem. The green curve is calculated using
the scores without any rounding. The blue curve is calculated by rounding the original
scores to 2 decimal places, and the orange curve by rounding the original scores to 1 decimal
place.
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Figure 3.13 — PR curve for a toy prediction problem. The green curve is calculated using the
scores without any rounding. The blue curve is calculated by rounding the original scores
to 2 decimal places, and the orange curve by rounding the original scores to 1 decimal place.

GO term: GO:0001539, target: pseudomonas, # of predictions: 5892, # of bins=100

103 4
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# of genes
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0.4 0.6 0.8 1.0
S2F score

Figure 3.14 — A histogram depicting the distribution of raw S2F scores for Motility
(GO:0001539) on Pseudomonas genes. 100 bins were used, which could be mapped one-to-
one to the CAFA scores. This would be a waste, however, since most of the scores would
not be used. This would have an impact in the evaluation of the prediction algorithm, be-
cause for most of the thresholds used to compute the true positives, the “wasted” scores
would not contribute. Only 28 out of the 100 possible scores would have an assignment if
we consider the distribution of the figure.

Moditying the score is not straightforward. Assigning a score that is too
high is associated with the risk of a false positive very early in the tests. Thus,

we decided to use a different binning strategy for the three models we could

submit.

1. Ignore Lowest: This strategy assigns the lowest score (0.01) to the / lowest
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scoring genes, the highest score (1.00) to the experimental annotations and
any annotation that is already scored with a 1, and distributing the rest of
the genes on the remaining 98 scores (0.02 to 0.99).

2. Split Data A: As in the previous strategy, this strategy assigns 0.01 to the /
lowest scoring genes, and maintains the genes with a score of 1.00. The re-
maining scores are divided in 2 groups, the first group of 79 scores (0.21 to
0.99) is distributed between the Ay highest-scoring genes, and the second
group of 19 scores (0.02 to 0.20) is distributed on the remaining genes.

3. Split Data B: This strategy is identical to the previous one, but we increase
the number of genes assigned to the group of 79 scores by increasing the

value of Agpl.

Table 3.3| shows the parameters we used for our submissions. The values of /
were selected so that most of the scores already below 0.01 will be assigned to
the lowest score, and to distribute the remaining scores to the highest-scoring
genes. Figure shows how each strategy affects the original score. In this
section, results for predicting Motility (GO:0001539) on Pseudomonas are in-
cluded, as this is the category in which our method was included in the top-5
on the CAFA 7 manuscript [146]. Other histograms and score distributions can

be found in appendix

Organism [ hpiit Mupper
Pseudomonas 4713 300 600
Candida 10,000 500 1000

Table 3.3 — Parameters used for our submissions to CAFA-r.

Of all the strategies, the one that was highly-ranked on CAFA n was the
“ignore lowest” strategy. This suggests that the original scoring of S2F is rather
conservative, which supports statements in the CAFA 2 case study, in which S2F
predicted the correct leaf GO term, but below its Fy.x threshold.

3.4.4 Performance on CAFA

Our submission for CAFA 2, named “PaccanaroLab”, ranked first for the Bi-

ological Process GO domain on the overall evaluation using the Fy,,x measure
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GO term: GO:0001539, target: pseudomonas, # of predictions: 5892

1.0 4 —— Original Score .
Ignore Lowest
—— Split A
— Split B
0.8
0.6 1 §
o P o
] S £
) 1 @© fo
v (@]
0-41 3 5
E_ <
0.2 A
0.0 ——
0 4600 4800 5000 5200 5400 5600 5800 6000

genes

Figure 3.15 — Score comparison of all strategies for motility (GO:0001539) on Pseudomonas.

(see Figure3.16). On CAFA-r our model, named “PaccanaroLab 1” ranked third
on the AUC for predicting motility for Pseudomonas (see Figure (3.17).

It is relevant to put our method in context with other methods in the CAFA
challenge. Although the exact parameters of every method in CAFA are not
available, their analysis on the keywords of the methods reveals that the inte-
gration of information other than the sequence does outperform by a consider-
able margin when compared to sequence alignment. Moreover, for biological
process overall, where we ranked first in CAFA 2, our method is not similar to
other top ranked methods. This suggests that S2F is doing something different
which leads to better predictions in this category.

3.5 Discussion

We have shown that S2F is capable of leveraging label propagation techniques
and the “guilt-by-association” principle for predicting functionally uncharac-
terised organisms. We propose a framework that can pick up patterns that are
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Figure 3.16 — Overall evaluation using the maximum F measure, Fnay. Evaluation was car-
ried out on no-knowledge benchmark sequences in the full mode. The coverage of each
method is shown within its performance bar. A perfect predictor would be characterized
with Fm,« = 1. Confidence intervals (95 %) were determined using bootstrapping with
10,000 iterations on the set of benchmark sequences. For cases in which a principal in-
vestigator participated in multiple teams, the results of only the best-scoring method are
presented. figure and caption taken from: [3]

relevant for the functional characterisation of proteins by integrating data from
already studied organisms. By focusing our efforts on de novo prediction, we ex-
pect to assist with the annotation process. The main purpose of S2F is to narrow
down the daunting amount of possibilities to consider for experimental annota-
tion. With the proposed framework, we show that we can considerably improve
the predictions of current methods for de novo prediction.

An early version of S2F which is optimised to use existing evidence for the
target organism was submitted to the CAFA2 and CAFA-r challenges [3] [146],
where it ranked as a top performing method. This shows the potential of S2F
to predict function for already characterised organisms, improving the existing
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Figure 3.17 — AUROC of top 5 teams in CAFA-n. The best performing model from each
team is picked for the top five teams, regardless of whether that model is submitted as
model 1. figure and caption taken from: [146]

annotations. An easy-to-run version of this is also provided in the software
linked above.

There is room for improvement for S2F. We are aware that our evaluation
is made possible due to the availability of high-quality data for the bacteria we
selected. Evaluation with organisms with less data is pending. As mentioned
before, we believe that the impact of our framework will be different for organ-
isms depending on their closeness to well characterised organisms. Predicting
such impact could be done by assessing the distance to well-studied organisms
and assessing the quality of the transferred network and the seeds. Both of these
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improvements are not obvious, as there is still no consensus on how to measure
how “well annotated” an organism is. For instance, if we have a metric that can
tell us how “complete” a seed is, we would have an objective way to set our «
parameter and incorporating other sequence-based models to the seed. If, on
top of that, a “functional distance” between organisms was available it would
allow us to assign a confidence score on the predictions for every organism,
which would be really useful to use to guide new experiments. Also pending
are trying other methods for combining the functional network, as well as the
addition of a functional similarity network. We intend to try adding a functional
protein-protein network generated using GOssTo [147, [148].

Additionally, further insight into other kingdoms remains to be done. In
this study we focused or efforts on Bacteria. We expect the impact of S2F to
be similar for other kingdoms. Expanding this analysis will likely expand our
understanding of the landscape of functionally relevant information throughout

species.

3.6 Implementation

From a software engineering point of view, S2F is a very modular, extensible
and versatile tool. It is programmed in Python 3.6, and with the exception of
the external tools it 100% platform independent. Although the main command:
predict requires a UNIX based system, virtually every other command can be
used on Windows if the seed files are provided.

3.6.1 Software Design

The code in which S2F is programmed can be seen as a framework with several
utilities that are not evident from the point of view of the user, but that makes
the software easier to maintain, install, and run.

The architecture divides the software into several components, which are
made available to the user by a collection of commands that can be called from

the command prompt.
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At the time of writing, the available commands are:

e install: It manages the setup of the environment required by S2F.
With configurable options, it will download the latest version of STRING,
UniProtKB, and GOA, and will interactively ask the user to input the lo-
cation of the binaries required for the main prediction command.

e predict: It runs S2F on a given FASTA file. It makes use of the vast ma-
jority of available components in a coordinated way. Highly configurable
in terms of verbosity, and with the ability to resume the computation from
safe points in the pipeline in case of an interrupt. This is the default S2F
pipeline.

e combine: It runs the S2F graph combination algorithm on an arbitrary
collection of graphs provided by the user. This is very useful when the
user has protein networks that might want to add to the ones in STRING.
A seed must be provided, that will be used to build the target network.

e diffuse: It diffuses a user provided seed onto a user provided network.
At the moment, two diffusion algorithms are available: The consistency
method, and S2F.

e hmmer-seed: Given the output of a HMMER search, it will generate a
seed file compatible with S2F.

e combine-seeds: It combines an arbitrary collection of seeds. The user
can provide the coefficients. By default, this command will simply linearly
combine the seeds with equal weights.

e build-clamp: Provided a FASTA file and a list of evidence codes, it will
extract annotations from the GOA database downloaded during installa-

tion into a file which can be used later with the predict command.

The components are in general internal classes that support the functionality
of the commands, but some of them have value on their own, and can be used

in other PFP related programs. Here, I list the ones I consider most useful:

e GOTool: This is a collection of utility classes written for S2F that are
neatly wrapped into as a python library. It provides the importable
GeneOntology module, that provides parsers for OBO and GATF files,
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it builds the Gene Ontology structure from an OBO file into memory, and
the same structure can be used efficiently in memory to load several GAF
tiles, which will be handled separately by the same object. This allows
very versatile analysis of the annotations, with utilities to up-propagate
annotations, compute metrics such as the information content, and ex-
port the annotations to a variety of formats including the very useful
pandas.DataFrame serialised using the pickle algorithm. I intend to

make GOTool available as a stand-alone tool in the future.

e FancyApp: This importable module is inherited by the majority of the
components in S2F. It provides the programmer with a collection of very
useful tools for debugging and notifying the user of the current progress
of the program in an elegant command line interface. Among the utilities
provided are a progress bar, an automatic logger without the need of pre-
vious configuration with different levels of verbosity and colours. Finally,
a twitter notification script can be configured within FancyApp to send
direct messages to the users, alerting them of milestones that can happen

over many hours or even days of computation time.

e Configuration: A simple utility to manage configuration files with
great versatility, it provides a very fast parser and a singleton loader of
the configuration environment that allows the programmer to query any
configured variable in independent runs. It provides functionalities for
easily setting and updating configurations on disk, as well as as friendly
interface with the user, that will prevent a critical component to run in case

of a misconfiguration.

Current efforts of S2F involve the addition of the CAFA-r specific re-scoring,
commands for InterPro seeds and the integration of the testing and plot genera-
tion scripts used in this chapter and the upcoming publication. A very thorough
documentation of the software and libraries is currently being written and is
available at https://github.com/paccanarolab/s2f/wiki, where also
issues and questions regarding the software are actively monitored.
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ConSAT

Gene duplication, divergence and rearrangement have been predominantly re-
sponsible for the expansion of a species” protein complement during evolution
[149]. Consequently, several PFP methods exploit protein domains identified
by resources either looking for conserved similar protein sequences or similar
structural units. From a functional perspective, however, the function of a pro-
tein might not be the union of the individual member domain functions. The
combination of several domains might add, eliminate, or modify the functions
[150, 151]. Therefore, the elucidation of the domain arrangement of a protein,
its domain architecture, is critical in deciphering its role at the biological, molecu-
lar, and cellular levels. The Consensus Architecture Annotation Tool (ConSAT)
consists of both a tool and web application for protein function annotation for
genome projects of any scale. The annotation method in this case relies on pro-

tein domain architectures to assign function to proteins.

Obtaining the domain architecture of a protein is difficult due to the di-
vergent agreement of different methods on the domains they detect and their

positions in the sequence [11]. ConSAT aims at identifying consensus domain
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architectures; that is, a unified domain arrangement derived from the different
domain detection methods in a way that avoids representing the same underly-
ing domain with assignments from two or more methods at the same time, and
where no overlap is present, except for domain insertions (see Figure 4.1 for a
schematic of a consensus architecture and its construction). Important aspects
that are taken into account are the N terminal to C terminal order of identified
domains, the accurate relative organisation in complicated cases of non con-
tiguous domain arrangements, and finally a computer parsable representation
of such domain arrangement. To our knowledge, there is no single method that
addresses this issue. Typically, non contiguous domain arrangements (domain
insertion, circular permutation, etc.) are considered problematic and excluded
or ignored.

Once the consensus domain architectures are obtained, we assign func-
tions to every architecture. Directly, by associating the domain with the over-
represented GO terms of its component domains. Indirectly, by “annotation
transfer” from the set of proteins associated with the architecture, where the
over-represented GO terms are associated to the architecture itself. Finally, we
associate English keywords to the architectures by mining the PubMed abstracts
associated to proteins associated with the architecture. These complementary
approaches provide a wide variety of functional assessments of every architec-
ture, not only in the context of GO terms, but also the natural language com-
monly used to the characterisation of the domains involved.

4.1 Obtaining the ConSAT architectures

Consensus architectures are obtained through a two-step process. First, we esti-
mate preliminary domain architectures through a modified version of the GFam
algorithm [152]. Second, these preliminary architectures are broadened by us-
ing the ConSAT Putative Protein Domain (CPPD) database. In this section, I
describe the two steps in detail.
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4.1.1 Preliminary Architectures

The method starts with the set of domains that InterPro assigns to a sequence
and creates a preliminary consensus architecture. This is done by incrementally
adding domains from the different models in InterPro. We allow a minimal
level of overlap between domains to overcome the fact that the different models
might diverge in the location of the boundaries for the same domain. By default,
the allowed overlap is 20 residues. We also allow domain insertions (a domain
inside another domain) to account for cases in which a domain assigned by a

model A is found into a domain found by model B.

A B

Consensus Consensus ——— 1 —
HMMPfam ——— 1 _ 2 — HMMPfam ——— 1 _— 2 —
FPrintScan — 3 4 - FPrintScan — 3 4 -
PrfScan - 5 6 PrfScan - 5 6

C D

Consensus  — B 1 — Consensus  — B -— —
HMMPfam  ——— 1 — . — HMMPfam  ——— 1 ——1— . —

FPrintScan — 3 ><— FPrintScan — 3 4 -
PrfScan >< 6 PrfScan - 5

Figure 4.1 — The detection of consensus architectures. A) Three InterPro sources (HMMP-
fam, FPrintScan and PrfScan) find domains (1 to 6) in the sequence; the consensus archi-
tecture is empty. B) Domains from HMMPfam (1 and 2) are added to the consensus archi-
tecture as they cover more residues than any other source. C) The remaining domains are
processed in decreasing order of length (5, 4, 3, and 6). Domains 5 and 4 are discarded as
they overlap with 1 and 2, respectively. Domain 3 is added to the consensus architecture.
Finally, domain 6 is added as an insertion in 2, completing the preliminary consensus do-
main architecture. D) After the scan with the CPPD data source, a new domain (purple) is
added, completing the final consensus architecture.

o

Figure 4.1 shows the different phases of the procedure for a protein. Only
three InterPro models (HMMPfam, FPrintScan and PrfScan) are shown to make
the process easy to visualise. For a given protein, we begin by choosing the
InterPro model that covers the most residues in the sequence (Figure [.1B). The
remaining domains are integrated into the architecture in descending order of

length. Some domains that would largely overlap with the architecture built
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so far are discarded. The size of the allowed overlap as well as the e-value
thresholds for the different methods can be defined by the user. Default values
for these parameters are 20 residues for the overlap and 1 x 10~ for e-values,
with the exception of Superfamily, HMMPanther, Gene3D, and HMMPIR for
which the default e-value threshold is used.

4.1.2 Refinement of the architectures

A central part of ConSAT is its database of Putative Protein Domains (CPPDs).
To build this resource, we run the first stage of ConSAT (building the prelim-
inary consensus domain architectures) over the reviewed UniProtKB/Swiss-
Prot. Unassigned protein fragments of length greater than or equal to 30
residues (based on the distribution of domain lengths of the included domain
databases) are then extracted and clustered using a procedure similar to that of
GFam [152].

First, a pairwise BLAST [8] alignment is run on all the unassigned sequence
fragments. Only significant hits are kept (BLAST e-value <= 1 x 107, percent
identity of at least 45%, minimum normalised alignment of at least 0.7). This
results in a binary graph where the nodes represent the fragments, and the links
denote a high quality pairwise similarity between the fragments it connects.

This binary graph is used to derive a new weighted graph, where the nodes
are still the sequence fragments and a link between two nodes is weighted by
the Jaccard coefficient between the sets of neighbours of those two nodes in the
binary graph. This operation has the effect of reducing the noise in the sin-
gle link between the two nodes in the binary version by “averaging” it over
the nodes” neighbourhoods. This network is subsequently binarised by keep-
ing only the links with a weight greater than 2. The Connected Components
Algorithm (CCA) is the applied to the new binary graph to obtain clusters con-
taining fragments from at least four different protein sequences. Each cluster is
then labelled as a ConSAT Putative Protein Domain (CPPD).

Finally, we run Clustal Omega [153] to obtain a multiple alignment of the
sequence contained in a putative domain. This alignment is used to build a
Hidden Markov Model with HMMER [154]. Those models constitute the CPPD
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database.

In the second stage of ConSAT, the aim is to refine the preliminary consen-
sus domain architecture and increase its coverage by dealing with sequence
fragments that were not covered by any InterPro model. First, low complex-
ity regions are estimated using the SEG algorithm [155] and discarded. The re-
maining fragments are scanned against the CPPD database of putative domains
using HMMER [154] and all hits are added to the consensus domain architec-
ture. This stage is depicted as the purple domain transferred in Figure §.1D. It
is important to note that for cases in which no InterPro model assigns domains
to a protein, putative domains are still available. This increases the number of

characterised sequences.

4.2 Functional assignment

ConSAT uses the consensus domain architectures to assign function to proteins.
This is, functional terms are assigned to the architecture, and proteins are asso-
ciated with all the functional terms of its architecture. Two types of functional

terms are assigned: GO terms, and English words.

GO terms are assigned using two approaches:

e Direct method: We obtain GO terms associated with each domain in the
architecture using InterPro2GO [156]. Then, we perform an over represen-
tation analysis followed by a multiple hypothesis correction (Benjamini-
Hochberg [157]) to obtain a p-value for each GO term.

e Indirect method: Go terms are assigned by “annotation transfer”. We
start from the set of proteins associated with the architecture. Then, all
the GO terms associated with this set are retrieved from UniProt-GOA.
Importantly, we restrict these associations to the ones with experimental
evidence codes, plus Traceable Author Statement and Inferred by Curator.
Finally, an over representation analysis of these terms and the Benjamini-

Hochberg correction are used to obtain a p-value for each term.
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4.2.1 GO terms, direct method

This method uses the set of GO terms associated to each of the individual do-
mains of the architecture. InterPro2GO [156] provides a set of GO terms for
most domains. We augment these assignments by up-propagating them using
the true-path rule.

Following Cho et al. [158], we run a binomial test find statistically signifi-
cant GO terms associated to an architecture. For each GO term T we compute
its probability pr = 7%, where nr is the number of domains mapped to T in
InterPro2GO, and M the total number of domains in InterPro2GO. For a given
architecture A, let K be the total number of domains (considering repeats) and
let k7 be the number of domains annotated with term 7. The p-value for assign-
ing term T to architecture A is the probability of observing kr domains out of K.
Under the null hypothesis, the number of domains mapped to T follows a bino-
mial distribution with parameter pr, and thus the p-value for overrepresented

terms is given by:
K

p-value = 3 (Z)pT"(l - pr)*

x=k;

Given an architecture, we carry out a test for each GO term, and therefore
correcting for multiple hypothesis testing is needed. We apply the Benjamini-
Hochberg correction method [157], and terms with corrected p-value below 0.05

are finally assigned to the architecture.

4.2.2 GO terms, indirect method

This method uses the set of GO terms associated with proteins that are covered
by the architecture for at least 80%. First, we identify these proteins and re-
trieve their associated GO terms from GOA [6]]. The associations we consider
are restricted to those with experimental evidence codes, plus those inferred by
curators or with traceable authors. As for the direct method, we up-propagate
these associations with the true path rule. We then test whether a GO term T
found k7 times in the annotations of a set of n proteins is statistically significant.
Let N be the total number of proteins, of which K are annotated with term 7.
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The p-value for term T is calculated as the probability of finding each GO term
at least k; times out of n draws (hypergeometric distribution):

KT KT N—KT
p-value = Z M
x=kr (n)
As in the previous case, we correct p-values with the Benjamini-Hochberg

method and terms with corrected p-value below 0.05 are assigned to the archi-
tecture.

4.2.3 Combined p-value

Our system provides the p-values obtained by the direct and indirect method
separately. It also provides a combined p-value for the combination of func-
tional assignments, which is computed using Fishers method [159]. A test statis-
tic is computed using:

—2(log(p1) + log(p2))
where p, is the p-value obtained by the direct method and p, is the one given by

the indirect method. The combined p-value is obtained knowing that the previ-
ous statistic has a chi-squared distribution with 2n degrees of freedom (where n

is the number of combined p-values, in this case n = 2).

4.2.4 English Keywords

For each protein, we can retrieve textual information from both UniProtKB and
PubMed. UniProtKB provides a natural language description of each protein,
and PubMed provides the abstracts in which each protein is explicitly men-
tioned. We put together these texts to assign a set of weighted words to each

architecture.

Our procedure begins by tokenising, then removing non-alphabetical sym-
bols, stop words (e.g. prepositions, articles), numerals, and applying Porter’s
stemming algorithm [160]. We then represent each protein as a bag of words
[161], that is a high-dimensional vector where each keyword represents a di-

mension. Vector coordinates are computed following a tf-idf scheme [162]: the
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value of term i for protein j is the product of the absolute frequency of that term
in the text that describes the protein, zf;;, and its inverse document frequency,
idf;, defined as log(N/N;), where N is the total number of protein sequences and
N; is the number of sequences containing that keyword. For each architecture A,
the vectors of the associated proteins are then summed up into a single vector.

The (unnormalised) weight w;, for keyword i and architecture A is given by:

Wia = Z tfij-idfi = Z i - log (%)

Jje€proteins(A) Jjeproteins(A) !

Following Joachims [163], the vector is then normalised by their Euclidean
length in order to obtain weights that are comparable across architectures. The
weight for keyword i and architecture A, w, is:

Wi
n 2
\ 2j=1 Wja

Only the top 100 words are shown on the web server, while we keep the top

Wia =

500 for each architecture in our database.

4.3 Notation for protein domain architectures

We have developed a notation to uniquely represent the domain ordering of an
architecture using a simple string of text. We use it both in the stand-alone as
well as in the web application, alongside with the graphical depiction to denote
the architectures. With this notation it is possible to characterise any possible
complex domain arrangement constituted by any combination of the two op-
erations of domain juxtaposition (a domain places after another) and domain
insertion. Juxtaposed domains are represented by separating them with semi-
colons:
IPRO02885; IPR013498

represents an architecture composed of domain IPR002885 followed by do-

main IPR013498. Domain insertions are represented using curly braces:

IPR002885{IPR013498}
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represents that the domain IPR013498 is inserted within domain TPR002885.
In this notation, nesting of insertions is allowed by different levels of curly
braces:

IPR002885{IPR013498; IPR0O12456{CPPD00001}}

means that the architecture is composed of the domain IPR002885, which has
inserted juxtaposed domains IPR013498 and IPR012456, where the latter has
domain CPPD0O0001 inserted.

4.4 The ConSAT web server

We have run ConSAT on the entire UniProtKB [5] protein sequences database.
The results are available through the ConSAT web server. This web application
provides a user friendly interface to all the functional predictions as well as the
protein architectures for all UniProtKB sequences. Importantly, the web server
also allows users to submit their own set of sequences, which makes of ConSAT
a fully-fledged online function prediction system.

In addition to the web application, ConSAT is available as an easy-to-run
stand-alone command-line Python application. The entire source code is re-
leased under the GPLv3 licence. processing pipelines. The entire software to-
gether with its manuals is available at https://www.paccanarolab.org/

consat_resourcel.
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ICrep

Another way to approach the functional characterisation of an organism is by
studying its protein complexes. The complexes are after all the structures that
ultimately perform these functions. In this chapter, I present ICrep: a pro-
tein interaction and complexes repository that encompasses every sequenced
organism. In similar fashion to S2F, ICrep builds on top of the interolog con-
cept [124} 4] to infer protein protein interaction networks. The goal is different,
however, as the main focus is not to predict protein function, but to infer pro-
tein complexes. A functional interpretation of the complexes is provided by an

over-representation analysis.

5.1 The ICrep idea

The core idea of ICrep is to build a resource that compiles protein complexes for
all available organisms. At a first glance, this idea seems fairly simple. It gets
complicated, however, when making decision about the particular details of the
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implementation such as the operational definition of orthology, and which set
of genes to use for a particular organism. The idea can be broken down into 3
major steps for every organism:

1. Compile a protein-protein network of experimental and predicted interac-
tions.

2. Identify protein complexes, leveraging the PPI network.

3. Provide a functional interpretation to every identified complex.
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Figure 5.1 — The ICrep core concept is to transfer links between organisms. Most organisms
do not have experimentally reported interactions (Red {O+1 — O, }). We transfer all experi-
mental interactions between organisms, even to those that already count with interactions
({01 — Ot}). In the end, we expect to have one PPI network per organism, in which some
will be experimental (solid links), and some will be interologs (dashed links). The figure
shows k steps, which correspond to the k organisms that count with experimental interac-
tions. In every step, a different organism is used as “source”, and every other organism is
considered a “target”.

Figure5.1|illustrates the first step of the pipeline. Here, we transfer informa-
tion from all organisms with experimental PPIs to every other organism. This
allowed us to build a database of PPI networks for virtually every sequenced
organism. Figure |5.2|shows the process of identifying a protein complex. The
ClusterONE [85] algorithm is used to cluster every PPI, resulting on a database
of predicted complexes.
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Figure 5.2 — Given a PPI network, we cluster it to find protein complexes using ClusterONE.
This will allow us to find protein complexes, even if they overlap.

The final step of the process is to provide functional context to the predicted
complexes. This is done by doing an over-representation analysis of GO terms
of the member proteins. In the following sections, I go in detail about each one
of these steps, finalising with some screenshots of the web interface that allows
for easy navigation of the database.

5.2 Interaction transfer

As a source for experimental interactions, we collected PPIs from the following
datasets:

e BioGRID [67]: The Biological General Repository for Interaction Datasets.
It is a public database of genetic and protein interaction data for model
organisms and human. Currently holding over 1,400,000 interactions cu-

rated from other datasets and the literature.

o IntAct [68]: A molecular interaction database holding over 785,000 inter-
actions. Curated by the European Bioinformatics Institute (EBI) and col-

laborators.

e MINT [69]: The Molecular INTeraction database, focused on experimen-

tally verified protein-protein interactions mined from the scientific litera-
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ture by expert curators. Currently holds over 125,000 high quality interac-

tions.

e DIP [66]: The Database of Interacting Proteins. It catalogues experi-
mentally determined protein-protein interactions, currently holding over

81,000 interactions.

The starting point of inferring PPIs is to put together the interaction datasets.
Because of the several existing methods of detecting protein-protein interac-
tion, not every reported PPI has the same quality. Therefore, we filter the ini-
tial datasets using the Molecular Interaction Ontology (PSI-MI) [164]. We allow
only interactions that are in both the “molecular association” and “experimental
interaction detection” categories and their respective children categories. The
complete list of valid terms is available in the Downloads page of the tool:

https://paccanarolab.org/icrep/downloads/.

To transfer the interactions, we use the method proposed by Yu et al. [4].
In this case, we have a small difference when compared to the S2F transfer-
ence. For ICrep, we use less stringent conditions for homology, setting a thresh-
old of 1x 10™* on the e-value reported by BLAST [8]. The motivation behind
this relaxed condition is that since we are not focusing exclusively on recently
sequenced organisms, we prioritise a more “complete” picture of the PPI net-
works. Furthermore, we are not transferring STRING interactions, but exper-
imental PPI from 4 databases that, if transferred, will probably map to high-
quality interologs. Another difference in comparison to the S2f interolog is that
instead of using the geometric mean of the percent identities as a condition, we

use it to assing a “quality score” of the interolog. This is:

VPas Ppp

where ps4 and pgp are the percent sequence identities of pairs of proteins
(A,A”) and (B, B') respectively. This quality score can be used by the users to
tilter ICrep, which effectively allows to restrict ICRep to using only interologs
with the desired quality or better. The interologs for ICrep are computed on
both UniProtKB/SwissProt and UniProtKB/TrEMBL, this is to allow the users
to decide whether to include elements from the curated and automatically an-
notated sections of UniProtKB.
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5.3 Complex prediction

From a networks perspective, a protein complex can be seen as a community in
a PPInetwork. We used the ClusterONE [85] algorithm to identify such commu-
nities. This algorithm works very well with weighted networks, and is capable
of detecting overlapping communities. To build the network, we assigned a
probability to each interolog by using the resulting mapping from joint identity
and percentage of verified interologs by Yu et al. [4]. Figure 5.3[shows the curve
we use to assign the weights to the network. This curve represents the per-
centage of experimentally verified interactions with respect to the joint identity
of transferred interologs. The mapping is between interactions in S. cerevisiae,
C. elegans, D. melanogaster, and H. pylori onto the S. cereviciae genome, assessed
against a gold standard [4]. We have used only this mapping for ICRep. Using
a different mapping that is better suited for each organism would probably im-
prove the quality of the trasnferred interactions, but to our knowledge no such
resource exists at the time of writing.

5.4 Over-representation analysis

The final step of the ICrep procedure is to provide a functional context to each
predicted complex. We do so by conducting a GO over-representation analysis
on the components of each complex. We check each term using a hypergeo-
metric test to determine whether it is overrepresented within the annotations

available for the members of the complex.

5.5 Web tool

Once all the components of the database are computed, we compile them into a
PostgreSQL database with a user friendly web interface. The resource is avail-
ableathttps://paccanarolab.org/icrep/. From the website, all the data
can be downloaded in text format, and is totally browsable by searching for the

organism of interest.
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Figure 5.3 — Recreation (the data to create this chart is taken from the interolog paper by Yu
et al. [4], and used to create a bigger, vectorised chart.) of the joint sequence identity and
percentage of verified interactions mapping by Yu et al. [4]. For ICrep, we use this curve to
determine the weights of the network before the clustering procedure. The joint sequence
identity is defined as the geometric mean of the percent identities. The joint identity is used
solely as a confidence level or measure of the “quality” of the transferred interaction. The
weight of the link itself is still the one reported in the STRING database.

5.5.1 Organisation of the website

The website is organised in pages that links to entries relevant from a particular
element. For instance, the user might be interested on a particular interaction,
or a particular organism. The ease of use makes it simple to the user to start
from an element (e.g., an organism) and inspect it in details, moving to the in-
teractions, interologs, complexes, and even organisms that are related through
the interactions or interologs.

The home page features a simple organism search box with auto-completion.
This is to easily navigate to what we consider the most informative starting
point. On the top of the website, the user has easy access to the Download page,
in which all the data can be downloaded in text format.
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Organism page

The organism page is the most central part of ICrep. It compiles all the interac-
tions, interologs, and complexes related to the queried proteome. By default, the
web interface lists experimental interactions, interologs, and protein complexes
involving proteins from both UniProtKB/Swiss-Prot and UniProtKB/TrEMBL.
A toggle button is provided on the top of the organism page to include only
reviewed proteins from UniProtKB/Swiss-Prot.

In each section of the organism page, there is a download button that will

download the relevant data in text format.

The interaction and interolog pages

We provide a particular interface to explore entries related to a particular exper-
imental interaction. On this page, the user will find a link to the relevant article
in PubMed, and the interologs that are a result of this interactions, that may be-
long to other organisms. We also report “sibling interactions”, which are those
experimental interactions who could have been the source of the interaction be-
ing looked at. This is, if evidence was not available, this would have been an
interolog coming from the sibling interaction. Finally, the interaction page links

to all predicted complexes that include this interaction.

In a similar way, the interolog has a page to allow easy navigation to the
related source experimental interaction, and the predicted complexes in which

it is involved. The interolog quality is reported in this page as well.

The protein complex page

The central piece of the resource is the protein complex page. It links to every
included protein, all experimental interactions, all interologs, and a list of over-
represented GO terms. It also provides a downloadable figure of the network.
A screenshot of the complex page can be seen in Figure
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Figure 5.4 — A Screenshot of ICRep showing the GUI when exploring a predicted complex.
For every complex, an interactive image of the network is built, which also allows easy nav-
igation to the relevant PPIs. The image is colour-coded according to the type of interaction
(pink for interolog or blue for experimental interactions)

5.6 Discussion

ICRep is, to our knowledge, the most complete resource for predicted interac-
tions and complexes. Table 5.1/ shows a breakdown of the available data with
respect to the number of organisms in the UniProtKB non-redundant list of pro-
teomes. To have an idea of the magnitude of the task, it is useful to look at other
numbers. ICrep features a grand total of 711,892 experimental interactions com-
piled from all the datasets, 501,529,053 interologs, and 2,747,765 predicted pro-
tein complexes. All of these are distributed over 16,742 proteomes. Importantly,
we have identified 57,635,339 homologs with our criterion, and although these
are not directly available for download on ICrep, the full BLAST matrix will be
made available. This matrix is a very useful resource for network-based com-
putational biology, and due to the immense computational cost to produce such
a matrix, a future work is to keep an updated pairwise BLAST matrix available
for download.
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Number of
organisms in

Number of
organisms with

Number of
organisms in ICRep

Number of
organisms in ICRep

UniProtKB experimental PPIs with predicted or with predicted
(non-redundant (from BioGRID, experimental complexes

proteomes) MINT, IntAct, DIP) interactions
Eukaryota 1494 67 1470 1439
Bacteria 25,893 153 22,491 12,612
Archaea 953 18 953 610

Table 5.1 — Information contained in the ICrep database for organisms in the UniProtKB

non-redundant proteomes.
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Future work and collaborations

In this chapter, I will summarise collaborations that are related to my work in
protein function prediction. Also, I will introduce the preliminary work done in
current projects.

6.1 Chlamydomonas reinhardtii cell cycle

A collaboration project with the Biology Department at Royal Holloway is
aimed at understanding the behaviour of Chlamydomonas reinhardtii cells over
time. Proteomics data was sampled every 2 hours for one day with 6 replicates
per sample. One cell line is used as control, and the second cell line is exposed
to Rapamycin. Please refer to our collaborators’ paper [165] for details on the
experimental setup.

My involvement in the current stage of the project is to provide both a func-
tional analysis over the time points. In particular, the analysis that I have per-

formed are:
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1. Protein function prediction of all proteins in the organism.

2. Functional analysis of periodic proteins clustered by their expression pro-
files.

3. Prediction of a PPI network.
4. Prediction of protein complexes.

5. Analysis of the effect of Rapamycin on the complexes.

Function prediction was performed using S2F. All experimental annota-
tions were retrieved from GOA [6] and Phytozome [166]. After running the
S2F framework, we keep the top-10 predictions for the rest of the analysis,
which involves the periodic proteins. The periodicity of these proteins is de-
termined by a colleague using the Perseus Framework [167]. I performed an
over-representation analysis to determine the functional context of each group
of periodic proteins. Figure |6.1| shows the over-representation results for the
biological process subdomain. Figures for the other domains are shown at the
end of this section.

For the PPI and complexes prediction, we follow the procedure used for
ICRep: we compute align all proteins using BLAST, and we transfer interologs
to Chlamydomonas reinhardtii. Then, we cluster the inferred PPI using Clus-
terONE. Finally, every predicted complex is used as a group of genes for a GO
over-representation analysis. Furthermore, we created a score that is intended
to measure the difference in the expression profile of a whole complex in a con-
trol versus Rapamycin setting. The score takes into account the connections
in the inferred PPI and the relative “amount” of the protein found in the pro-

teomics data. Given a weighted PPI network w, the score is defined as:
g A Wi
|E|
where E is the set of edges in network w, A; is the amount of protein i and w;; is
the weight between proteins i and j in the network.

While inferring the complexes, we do not take into account the gene expres-
sion data, and this creates a small complication to the interpretation of the score.
Some complexes have among its component proteins for which we do not have

the expression amounts. This reduces the number of complexes for which we

101



biological_process

ion transmembrane transport -
protein modification by small protein conjugation -
protein modification by small protein conjugation or removal -
protein ubiquitination -
regulation of biosynthetic process -
regulation of cellular metabolic process -
regulation of macromolecule metabolic process -
regulation of nitrogen compound metabolic process -
regulation of primary metabolic process -
dephosphorylation
establishment of protein localization
response to abiotic stimulus
protein-containing complex assembly
establishment of localization in cell
intracellular transport
response to oxidative stress
cellular developmental process
cellular macromolecule localization
cellular protein localization

regulation of nitrogen utilization

conjugation

conjugation with cellular fusion
multi-organism cellular process
multi-organism reproductive process
reproduction

reproductive process

sexual reproduction

RNA metabolic process

RNA phosphodiester bond hydrolysis

RNA phosphodiester bond hydrolysis, endonucleolytic
carbohydrate derivative metabolic process
carbohydrate phosphorylation

catabolic process

cation transport

cell wall organization or biogenesis

glucose 6-phosphate metabolic process
monovalent inorganic cation transport
organic substance catabolic process
plant-type cell wall organization or biogenesis
positive regulation of ATPase activity

positive regulation of catalytic activity
positive regulation of hydrolase activity
positive regulation of molecular function
regulation of ATPase activity

regulation of hydrolase activity
microtubule-based movement

sulfur compound metabolic process

system development

cell communication

endocytosis

import into cell

oxoacid metabolic process

regulation of conjugation

regulation of multi-organism process
signaling

-10

goterm

1
FANMNMSNDONOO O
R R =
LLLLL&_LLLII
VOUVOUVUVOOLOOUOUC o
R R IRTIRTIRTIRT EC
22323333333 uuw
OUo0ouuvovouuu323

O O

Figure 6.1 — Over-representation analysis for the periodic proteins. A highly overrepre-
sented function is assigned a clearer score. The over-representation score is similar to that
of ICRep, with significant associations set at p-value > 0.05

102



can accurately compute the score without making assumptions over the real
distribution of the data.

Furthermore, This score might be modified in the future to better reflect
topological properties of the graph. For instance, dividing by |E| might be too
stringent. Using this denominator hints at the presumption that all of these
edges are binary, which is not the case due to the presence of interologs in the
set of edges. A possible improvement is to redefine the score as:

2 AiAjwij
2EWij
This change implies that the topology of the network considers the weights of
the edges and not merely the number of links within the complex. We are cur-

rently working on properly interpreting such modifications to the score.

6.2 prot2vec

In many fields such as natural language processing (NLP) and network sci-
ence, a high-dimensional embedding has been useful to describe relevant com-
ponents such as words or nodes [168, [169]. These dense embeddings, if done
correctly, allow the use of arithmetic manipulation of the vectors that represent
such elements.

Figure 6.2 — The skip-gram architecture. The training objective is to learn vectors that are
good at predicting the nearby context. Originally, the input would be a word, and the
context will be the surrounding words in the sentence. node2vec changed the configuration
so that the context are close nodes in the network.
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Word2Vec [168, 170] introduces the skip-gram, a neural network architec-
ture that has proven very useful for embeddings in NLP (Figure[6.2). With this
architecture, they embed words in a way that words with similar meaning are
group together, and they discovered that the dense embeddings encode many

linguistic regularities and patterns.

node2vec [169] extends the use of this architecture to a network setting, in
which they embed nodes. A very important concept when dealing with skip-
grams is the context of the object being embedded. In NLP, this is naturally the
surrounding words in a sentence. In node2vec, the context is determined by a
random walk in the graph that can be tuned to favour a breadth-first (BFS)! or

depth-first (DFS)?> manner, or a combination of these two.

An application of node2vec is the prediction of PPI. It is important to notice
that node2vec will use only the topological information of current PPI, or will
need a modification to the meaning of the edges in the network to integrate
other characteristic of the proteins. In other words, from the point of view of
node2vec, every node is an abstract object that is characterised solely by its place
on the network. We think that adding information from the sequence to the
node2vec embedding can improve the performance by adding more features to
the nodes.

We extended the skip-gram architecture so that the input and output layers
take into account the sequence of amino acids of the proteins involved. This
means that the architecture is expanded. First, the input layer now starts from
a one-hot encoded representation of the sequence. Then, the output layer now
attempts to recover the sequence of the neighbouring proteins. These changes
are depicted in Figure We follow the node2vec method to build the context
of every protein.

Preliminary results show that our modifications to the architecture make a
slight improvement to the performance of predicting PPI. However, many as-

pects remain to be tested. In particular, we are testing which search strategy

IBFS is a traversing algorithm that will visit every node in a “breadth first” basis. This is,
starting from a node g, visit the first child of node a, and then visit subsequent children of a, and
only carry on to “deeper” nodes after every children of a was visited.

2DFS is a traversing algorithm that will visit nodes in a “depth first” basis. This is, starting
from a node q, it will visit the first child of a, and then the first child of that node, and it will
carry on until it finds a leaf node before carrying on to the secong child of a.
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(BFS or DFS) works better for this application. Also, what is a possible inter-
pretation of vector operations done in the embedding space, and their potential
applications. The functional characterisation of proteins could be achieved in
this vectorial space, as not only the topological features of the network would
be encoded, but also the sequence itself. The rationale behind expecting func-
tional groups of proteins to be embedded together is that the local context will
be “seen” by prot2vec, reinforcing the unique features that are related to the col-
lection of sequences that form a community that can be topologically similar to
a different community, but that has a unique set of members, which should set
them apart.

Other areas of explorations for prot2vec have to do with the possibility of
extending the information associated with the proteins to be embedded by the
system. As evidenced by a lot of well-performing algorithms, extra informa-
tion about the genes such as expression profiles and domain architectures can
increase the performance of a predictor. I think that such side information, if en-
coded and treated correctly, can greatly contribute to a general characterisation
of the genes in a vectorial space. As a first step, homology relations could be
somewhat encoded by prot2vec by simply training it with proteins from mul-
tiple organisms. Similar sequences will tend to cluster together in the vectorial
space, and their interacting neighbours too. This will also make of prot2vec a
promising tool for predicting protein-protein interactions.
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Figure 6.3 — The prot2vec architecture in its current form. In comparison to the original
skip-gram architecture, the input and output layers are expanded to accommodate for the
sequence of aminoacids of a target protein p, and its context {p.,, pc,,* - » De,} Context pro-
teins are chosen using in the same way node2vec chooses context nodes.

6.2.1 Implementation

The current implementation of prot2vec is done using the tensorflow library
and the keras API. The code structure shares the same versatility of S2F, as the
same conventions and tools are used. The current stage of the implementation
is still in its early evaluation phase. Several modifications to the architecture are
still in need of exploration:

e Use a recurrent unit such as the long short term memory (LSTM) to better

model the order of the sequence.

e See if performing data augmentation on the padding improves perfor-
mance. This is, instead of padding all the sequences to the right, create
new samples with different padding.

e Evaluate prot2vec on other tasks that are not related to protein function

such as PPI prediciton and network combination.

A new module developed specifically for prot2vec is FASTATool. In sim-
ilar fashion to GOTool, this library provides a fast parser for FASTA files an
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provides useful utilities to dealing with this format in a deep learning context.
FASTA files can be translated into one-hot encoded versions of the sequences,
with a vocabulary that comprises every amino acid and a stop token. It also
provides a generator compatible with the keras API, that can be used for effi-
ciently training a tensorflow model without the need to pre-process files in bulk.

I intend to release FASTAToo1 as a stand-alone tool alongside GOTool.

The source code will be made available upon publication.
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Figure A.1 - Histogram of S2F scores and comparison of all strategies for biofilm formation
(GO:0042710) on Pseudomonas.
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A.2 Detailed performance results
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