
Phonons, Defects and the Thermal
Conductivity of ZnO

Timothy Lehner

Royal Holloway, University of London

A Dissertation submitted to the University of

London for the degree of Doctor of Philosophy

August 2019

Declaration of Authorship

I, Timothy Sean Lehner, hereby declare that this thesis and the work presented in it
is entirely my own. Where I have consulted the work of others, this is always clearly
stated.

Signature

Date

2

Abstract

ZnO is an important semiconductor with a wide range of applications. The

high thermal stability, corrosion resistance, non-toxicity and abundance, cou-

pled with excellent charge carrier transport, make it an attractive candidate for

thermoelectric applications, particularly in reducing wasted heat energy in high

temperatures processes. A combination of first-principles calculations using

Density Functional Theory, large-facility neutron scattering experiments and in

situ characterisation experiments were used to investigate the lattice dynam-

ics, intrinsic defect structures and thermoelectric properties of ZnO. Calculated

phonon modes are in excellent agreement with those directly measured using

inelastic scattering. Powder inelastic neutron scattering measurements of bulk

and nano-structured ZnO reveal the presence of anharmonic, multi-phonon scat-

tering processes. A novel model for fitting this multi-phonon density of states is

presented which relies only on the size of the nanocrystals. The calculated ther-

mal conductivity is in excellent agreement with experimental data. Finally, the

intrinsic defect structure was found to be 5% oxygen vacancies with hydrogen

interstitials.

3

Acknowledgements

To my RHUL supervisor Professor J. P. Goff, thank you for your constant support, guidance and

optimism throughout the PhD. I have thoroughly enjoyed working with you, Jon, you were a constant

source of reassurance, laughs and sanity. To Uthay, thank you for all the sample preparation work,

discussions, and phenomenal curries. Professor K. Refson, thank you for your advice and help

understanding the world of DFT.

To those at Johnson Matthey: my supervisor Dr. R. Potter, thank you for your helpful discus-

sions and support of these studies, I hope you have a long and happy retirement. To Chris, thank

you for everything you did to help this project, it was a pleasure working in the lab with you.

To the instrument scientists at ISIS: David Voneshen, Duc Le, Helen Walker and Matthias

Guttmann, thank you for your support during both the experiments and analysis. My fellow neutron

scattering colleagues I met at the Oxford and ISIS schools, particularly Nicolo and Anthony who

helped get me through the stressful moments on the beam, thank you.

My fellow PhD colleagues (there are many and I cannot list you all), but particularly: Toby,

David, Sercan, Jimmy, Alex, Rupert, Stef, Jacob, Saeed and Giriz, you were wonderful officemates

and I thank you for your interesting discussions, and importantly for tea at three.

To my climbing friends, particularly Mitch and Sam, thank you for getting me through the highs

and lows.

To Arianwen, thank you for everything, I would never have achieved this without you.

To Debi, Holly and Angel, thank you for everything. I would not be who I am without you all.

To Owen and James, I love you guys, thank you for always being there. Everything I achieve is,

in part, thanks to you two.

Finally I cannot forget my family, who put up with my grumblings and were there when I needed

them most.

This thesis was funded by an EPSRC CASE grant, and Computing resources were provided by

STFC Scientific Computing Department’s SCARF cluster.

4

Contents

1 Introduction 15

1.1 Defects in ZnO . 16

1.2 Thermoelectricity . 16

1.2.1 Figure of merit . 18

1.2.2 ZnO for Thermoelectric Applications 19

1.3 Synopsis . 20

2 Experimental Techniques 22

2.1 Elastic Scattering . 23

2.1.1 Fundamentals of a Scattering Experiment 23

2.1.2 Scattering from a Single Atom 24

2.1.3 Differences in Scattering for Photons and Neutrons 26

2.1.4 Scattering from Multiple Atoms 27

2.1.5 Scattering in Macroscopic Crystals 29

2.1.6 Bragg’s Law . 31

2.2 Inelastic Scattering . 32

2.3 Neutron Time-of-Flight measurements 34

2.3.1 Time-of-Flight Diffractometers 37

5

2.3.2 Time-of-Flight Spectrometers 38

2.4 Thermal Conductivity – Laser Flash Method 42

3 Phonon Dispersion of ZnO 44

3.1 Modelling . 44

3.1.1 Brief Introduction to Density Functional Theory 44

3.1.2 Phonon Mode Calculations . 47

3.1.3 Calculating Phonons in ZnO 49

3.1.4 Validating Calculations . 50

3.2 Measurements on LET . 54

3.2.1 Experimental Procedure . 54

3.2.2 Experimental Data . 55

3.3 Measurements on Merlin . 59

3.3.1 Experimental Procedure . 60

3.3.2 Experimental Data . 60

3.4 Summary . 73

4 Thermal conductivity of ZnO 74

4.1 INS Measured on MARI . 74

4.1.1 Sample Preparation and Characterisation 75

4.1.2 Experimental Procedure . 77

4.2 Bulk PDOS . 78

4.3 Nanostructured ZnO . 83

4.3.1 Hydroxyl Contaminant . 83

4.3.2 Hydroxyl Corrections . 86

4.3.3 Calculated PDOS . 90

6

4.4 Alternative PDOS Modelling . 90

4.4.1 Calculating the Thermal Conductivity 93

4.5 Single-Crystal Thermal Conductivities 94

4.5.1 Density Measurements . 95

4.5.2 Heat Capacity . 96

4.5.3 Thermal Conductivity . 97

4.6 Summary . 100

5 Defects in ZnO 102

5.1 Experimental Procedure . 103

5.2 Inelastic Scattering on SXD . 105

5.2.1 Origin of Inelastic Scattering 105

5.2.2 Measured Inelastic Scattering 107

5.3 Structural Diffuse Scattering . 112

5.3.1 Defect Modelling . 112

5.3.2 Comparison with Measurements 114

5.4 Intrinsic Defects in ZnO . 118

5.4.1 Fourier Maps . 118

5.4.2 Complimentary X-ray Measurements 120

5.4.3 Structure Refinements . 120

5.5 Summary . 121

6 Summary and Future Outlook 123

Appendices 134

A ZnO Force Constants 135

7

B Python Scripts 137

B.1 AtomicFormFactor . 137

B.2 geometry.py . 148

B.3 Bravais.py . 150

B.4 Atoms.py . 167

B.5 PhononEigencector.py . 171

B.6 PhononQPoint.py . 171

B.7 PhononReader.py . 174

B.8 PlotPhononIntensities.py . 191

C Balls-and-Springs Monte Carlo Structural Diffuse Scattering Simu-

lator 201

C.1 ChainedMutator.cpp . 201

C.2 CrystalMutator.cpp . 203

C.3 CycleSuperCell.cpp . 204

C.4 CrystalEnergyCalculator.cpp . 204

C.5 CrystalFactory.cpp . 218

C.6 RandomGenerator.cpp . 229

C.7 RotationHelper.cpp . 231

C.8 Atom.cpp . 233

C.9 Bravais.cpp . 238

C.10 Crystal.cpp . 243

C.11 SuperCell.cpp . 248

C.12 ChainedMutator.h . 259

C.13 CrystalMutator.h . 260

8

C.14 CycleSuperCell.h . 261

C.15 CrystalEnergyCalculator.h . 262

C.16 CrystalFactory.h . 267

C.17 CrystalMaths.h . 267

C.18 RandomGenerator.h . 268

C.19 RotationHelper.h . 271

C.20 Atom.h . 272

C.21 Bravais.h . 275

C.22 Crystal.h . 278

C.23 FilterableAtoms.h . 279

C.24 SuperCell.h . 281

9

List of Figures

1.1 O vacancies in ZnO from DFT calculations 17

1.2 Schematic depiction of the thermoelectric effect [12] 18

1.3 Carrier concentration dependence of: Seebeck coefficient (S, blue),

thermal conductivity (κ, green) and electrical conductivity (σ, red).

Optimising ZT (cyan) requires a compromise of all three parameters,

S, κ and σ [15]. 19

1.4 Nano-structuring + Al-doping ZnO reduces the thermal conductivity

by a factor 20 at room temperature. The two samples have similar

electrical conductivities due to Al-doping [19]. 20

2.1 Schematic diagram for elastic scattering through an angle of 2θ. Since∣∣∣~ki∣∣∣ =
∣∣∣~kf ∣∣∣, this forms an isosceles triangle. From this, Eq. (2.4) is

found with straightforward trigonometry. 24

2.2 Idealised geometry of plane wave of particles scattered by a fixed atom

at the origin. 25

2.3 Idealised geometry of plane wave of particles scattered by an atom, j,

at position ~Rj. 28

10

2.4 Bragg’s setup showing reflections from uniformly spaced planes (blue)

with inter-planar spacing d. The path difference between subsequent

planes (green) is therefore 2d sin θ . 32

2.5 Velocity selector to fix incident energy 36

2.6 The detectors on SXD [27]. 38

2.7 Distance-time diagram of the 5 choppers on LET 39

2.8 Schematic diagram of the MARI spectrometer [33]. 40

2.9 Schematic diagram of the MERLIN spectrometer [34]. 41

2.10 Schematic diagram of the LET spectrometer and series of choppers [28]. 41

2.11 Schematic diagram of the Xenon LFA 500 apparatus 43

3.1 Comparison of measured and calculated phonon eigenenergies 52

3.2 Preliminary phonon mode comparisons with literature 53

3.3 LET measured and calculated S(~Q, ω) along (H03) 56

3.4 LET measured and calculated S(~Q, ω) along (H02) 57

3.5 LET measured and calculated S(~Q, ω) along (20L) 58

3.6 LET energy cuts at (-1.5, 0, 3) . 59

3.7 Elastic line on Merlin showing misalignment 61

3.8 Merlin Misalignment correction . 62

3.9 Merlin measured S(~Q, ω) along H0X for comparison with LET data . 63

3.10 Merlin measured and calculated S(~Q, ω) along H03 65

3.11 Merlin measured and calculated S(~Q, ω) along H02 66

3.12 Merlin measured and calculated S(~Q, ω) along 20L 67

3.13 Merlin measured and calculated S(~Q, ω) along HH0) 68

3.14 Temperature dependence of S(~Q, ω) along H02 for Ei = 59 meV . . . 69

11

3.15 Phonon line-width temperature dependence through (−2.5, 0, 2) . . . 70

3.16 Phonon line-width temperature dependence through (1.5, 0, 3) 71

3.17 Q dependence of background S(~Q, ω) 72

4.1 Measured XRD of the bulk (a) and FSP (b) samples, used to determine

average crystallite size. Difference between the fitted and measured

peaks can be seen plotted in a dashed green line. Provided by JM. . . 76

4.2 SEM image of FSP powder . 77

4.3 Measured S(Q,ω) for the bulk powder at T = 300 K, Ei = 200 (a), and

40 meV (b). The PDOS can also be seen, for reference on the right,

plotted in blue, which has been computed from these data using the

MARI reduceToDOS tools. 81

4.4 Modelled bulk PDOS, T = 300 K – Damped harmonic oscillator. . . . 82

4.5 FSP Measured S(Q,ω) . 83

4.6 Comparison of the elastic line measured on MARI for FSP and bulk. 84

4.7 Comparison of the measured PDOS for FSP before, and after, annealing. 85

4.8 Difference in FSP S(Q,ω) before and after annealing. 86

4.9 Determination of ω0 for the hydroxyl mode measured in FSP. 87

4.10 Comparison of incoherent scattering measured and modelled on the

contaminated FSP data. 88

4.11 S(Q,ω) before and after hydroxyl corrections 89

4.12 FSP corrected PDOS comparison . 89

4.13 Modelled FSP PDOS, T = 300 K – Damped harmonic oscillator. . . . 90

4.14 Modelled PDOS – Fixed Lifetimes. 91

4.15 Modelled PDOS – Fixed Mean Free Path. 93

12

4.16 Schematic diagram of an Archimedes Balance 95

4.17 ZnO Heat Capacity measured using the LFA 500 (green), and calcu-

lated (blue) from first principles. 96

4.18 Thermal Conductivities of the as-grown and oxygen annealed substrates 99

5.1 Inelastic diffuse scattering from the O-annealed sample measured on

SXD . 108

5.2 Inelastic diffuse scattering from the as-grown sample measured on SXD 109

5.3 Comparison of measured and calculated inelastic scattering on SXD . 110

5.4 Inelastic scattering in the (HK3.7) plane for the large as-grown sample. 111

5.5 Calculated structural diffuse scattering in (h, k, 4) for ZnO with 5% O

vacancies. 115

5.6 Measured structural diffuse scattering for as-grown and O-annealed ZnO

at 300 K in the (h, k, 0) plane. 116

5.7 Line profile comparing diffuse scattering in as-grown and O-annealed ZnO

at T = 30 and 300 K. 117

5.8 Fourier difference maps for the as-grown sample. 119

5.9 Intrinsic defect structure of as-grown ZnO. 122

13

List of Tables

3.1 Results of the geometry optimisation performed by CASTEP. Note the

precision is as reported in the computed output files and does not imply

uncertainty. 50

4.1 Densities and thicknesses of the ZnO substrates 96

5.1 Neutron and x-ray structure refinements for ZnOxHy 121

A.1 The force experienced by an atom in response to a displacement of an

oxygen atom. 135

A.2 Force constants for ZnO calcutated using CASTEP. This matrix shows

the force experienced by an Atom in response to a displacement of a

Zinc atom. 136

14

Chapter 1

Introduction

Zinc Oxide (ZnO) is a non-toxic, abundant semiconductor with a wide range of ap-

plications. It is of particular interest for optoelectronic applications due to its wide

band gap, which has driven much research interest [1]. Other applications of, typi-

cally polycrystalline, ZnO are diverse and include piezoelectric transducers, varistors,

phosphors, transparent conducting films and even facial powders [2].

Compared to similar wide-gap semiconductors, such as GaN, ZnO possesses a

number of ‘fundamental advantages’ whilst having a comparable band-gap and crys-

tallographic structure [3]. Attractive properties of ZnO include its corrosion and

radiation resistance, high thermal stability and a wide range of growth methods al-

lowing low manufacturing costs [1, 3]. Furthermore ZnO is highly tunable via chemical

doping [4].

It is possible to produce large, single crystals of bulk ZnO [5], and these high

quality samples are readily available from commercial suppliers. The high quality

samples allow detailed characterisation using inelastic neutron spectroscopy (INS)

and single-crystal diffraction.

15

1.1. Defects in ZnO 16

1.1 Defects in ZnO

For semiconductor applications, particularly thermoelectric modules, it is important

to be able to dope the semiconductor to be p- and n- type to fabricate p-n devices.

It is difficult to dope ZnO p-type [6] which has been attributed to the nature of its

intrinsic defects [7]. Studies of the structure of ZnO date back to 1935 [8], however

investigation of the intrinsic defect structure is not as well understood and consists

mostly theoretical work.

First-principles DFT calculations show oxygen vacancies that lead to a distortion

of the lattice [9], which can be seen in Fig. 1.1. These calculations suggest oxygen

vacancies as they have the lowest formation energy over a wide of fermi energies. The

+1 charge state is unstable [9]. Furthermore, DFT calculations suggest the presence

of hydrogen interstitials in large concentrations with unexpected consequences, as it

behaves solely as a donor in this case [10].

It is possible to determine the defect structure using a combination of neutron and

x-ray diffraction, and diffuse scattering of neutrons as has been performed previously

for Y2Ti2O7 and Dy2Ti2O7 [11].

1.2 Thermoelectricity

The thermoelectric effect allows the direct conversion of heat to electricity, or vice

versa. The thermoelectric effect describes the set of three distinct phenomena: the

Seebeck, Peltier and Thomson effects. The Seebeck effect describes the electromotive

field, ~Eemf , generated across a temperature gradient, ∇T as:

~Eemf = −S∇T, (1.1)

1.2. Thermoelectricity 17

Figure 1.1: Intrinsic defects structures obtained from DFT cal-
culations using the screened-exchange functional for an oxygen
vacancy with 0, +1 and +2 charge states, reported in ZnO [9].

where S is the Seebeck coefficient. The Seebeck effect can be understood by consid-

ering the behaviour of charge carriers. In the presence of a temperature gradient,

electrons in a material have a shorter mean free path in the higher temperature sec-

tion as they are more energetic. These energetic electrons then diffuse to, and collect

at, the cold side inducing an electric field as depicted in Fig. 1.2 [12].

Alternatively, the application of an electric field gives rise to a temperature gradi-

ent, known as the Peltier effect. A modest improvement in thermoelectric performance

would allow commercially viable applications of these two effects. For example en-

ergy recovery applications, where losses due to waste heat can be salvaged such as

in a car exhaust, as well as solid-state refrigeration, to cool hot spots in computer

chips [13]. Global efforts to reduce carbon emissions has increased interest in methods

to minimise energy waste, and
1

6
of the energy used by UK industry is potentially

recoverable [14].

The Thomson effect is outside the scope of this thesis.

1.2. Thermoelectricity 18

Figure 1.2: Schematic depiction of the thermoelectric effect [12]

1.2.1 Figure of merit

The efficiency of a thermoelectric is determined by the figure of merit, Z; the dimen-

sionless quantity ZT is most often used, where:

ZT =
σS2T

κ
, (1.2)

S is the Seebeck coefficient, σ the electrical conductivity, κ the thermal conductivity

and T the temperature. In order to create thermoelectrics with acceptable efficiencies,

ZT values exceeding 2 are required [13].

From Eq. (1.2), ZT is proportional to the electrical conductivity, whilst inversely

proportional to the thermal conductivity. This conflict is a difficult barrier to over-

come, due to the Wiedemann–Franz law; typically materials that are good electrical

conductors are also good thermal conductors, and materials that are poor thermal

1.2. Thermoelectricity 19

conductors are also poor electrical conductors. The thermal conductivity consists of

two contributions, one from the electrons κe and another from lattice dynamics, κl,

such that κ = κe + κl. κe is strongly correlated with σ as shown in Fig. 1.3, however

κl can be tuned independently of σ through phonon engineering.

Figure 1.3: Carrier concentration dependence of: Seebeck coef-
ficient (S, blue), thermal conductivity (κ, green) and electrical
conductivity (σ, red). Optimising ZT (cyan) requires a com-
promise of all three parameters, S, κ and σ [15].

1.2.2 ZnO for Thermoelectric Applications

For a real-world device, both p- and n- type materials are required. For waste heat

recovery applications, these materials need to be stable at high temperatures; a car

exhaust operating temperature can exceed 1000 K [16].

There exist high-performance thermoelectrics such as PbTe, PbTeSe and Bi2Te3

with reported ZT as high as 1.75 [17]. The materials exhibit rapid degradation at

higher temperatures, and require scarce or toxic materials such as Te and Pb, making

them unsuitable for use in power recovery applications in vehicles.

ZnO is an attractive candidate due to the properties discussed earlier, as well as

1.3. Synopsis 20

its charge carrier transport properties, which are excellent for thermoelectric applica-

tions. Unfortunately the large thermal conductivity leads to a poor ZT value, making

most practical applications unfeasible [1]. The thermal conductivity is dominated by

lattice contributions; between 10 to 100 times larger than κe [18]. A combination of

nanostructuring and Al-doping has been shown to suppress thermal conductivity by

a factor 20 (see Fig. 1.4), whilst maintaining excellent electrical conductivity [19].

Figure 1.4: Nano-structuring + Al-doping ZnO reduces the
thermal conductivity by a factor 20 at room temperature. The
two samples have similar electrical conductivities due to Al-
doping [19].

1.3 Synopsis

In this thesis the thermal conductivity of bulk and nanostructured ZnO is investi-

gated using a combination of inelastic neutron scattering (INS) techniques and first-

principles calculations. The intrinsic defect structure of ZnO is also studied using a

combination of x-ray and neutron diffraction.

In the following chapter, the experimental techniques and background theory is

described, with particular focus on time-of-flight neutron scattering. In Chapter 3,

1.3. Synopsis 21

first-principles DFT calculations of the lattice dynamics are benchmarked and vali-

dated against other calculations in the literature and, more importantly, single-crystal

INS measurements of bulk ZnO performed at ISIS neutron source. Chapter 4 focuses

on the effects of nanostructuring on the phonons in ZnO to determine the conse-

quences on the thermal conductivities. In the final results chapter, Chapter 5, the

intrinsic defect structure of ZnO is determined. Finally the last chapter contains the

summarised main conclusions as well as a discussion on the future outlook.

Chapter 2

Experimental Techniques

In this chapter, the requisite scattering theory for this thesis is presented. The neces-

sary language is introduced and a model describing elastic scattering from a macro-

scopic, ideal crystal built from considerations starting from a single atom is derived

following Ref. [20] and [21]. The generalisation for inelastic scattering of this formal-

ism is then presented without derivation, allowing calculation of S(~Q, ω) from first

principles.

Pulsed neutron spallation sources, and time-of-flight techniques for elastic diffrac-

tion and inelastic spectroscopy are discussed. Following this, the relevant technical

information of the instruments used in this thesis: SXD; MARI; MERLIN; and LET,

are shown.

Finally, the laser flash method and experimental apparatus used to measure the

thermal conductivities of single-crystal samples are described.

22

2.1. Elastic Scattering 23

2.1 Elastic Scattering

2.1.1 Fundamentals of a Scattering Experiment

Scattering of some particle such as a photon or neutron, by a sample, is characterized

by both a change in momentum, ~P , and energy, E. A particle with incident wavevec-

tor, ~ki, and angular frequency, ωi, will have final momentum, ~kf and frequency, ωf

after a scattering event. The momentum transfer can then be expressed as:

~P = h̄(~kf − ~ki) = h̄ ~Q, (2.1)

where h̄ is the reduced Planck constant and the wavevector transfer, ~Q, is, by con-

vention, defined as

~Q = ~kf − ~ki. (2.2)

The energy transfer for neutrons is then

E =
1

2
mv2 =

h̄2

2m
(k2f − k2i). (2.3)

It is helpful to start with the simple case by considering the special case of elastic

scattering. In this case there is zero energy transfer, i.e.
∣∣∣~kf ∣∣∣ =

∣∣∣~ki∣∣∣ = 2π/λ. In this

case, the magnitude of Q can be found as:

Q =
4π sin θ

λ
, (2.4)

through some simple trigonometry, as seen in Fig. 2.1.

2.1. Elastic Scattering 24

2θ
θ

~ki

~kf

− ~Q

Figure 2.1: Schematic diagram for elastic scattering through an

angle of 2θ. Since
∣∣∣~ki∣∣∣ =

∣∣∣~kf ∣∣∣, this forms an isosceles triangle.

From this, Eq. (2.4) is found with straightforward trigonometry.

2.1.2 Scattering from a Single Atom

A steady stream of particles to be scattered, with wavelength λ travelling along ~x,

can be described as a plane wave

~ψ = ~ψ0e
i~k·~x, (2.5)

with particle density
∣∣∣ ~ψ∣∣∣2, where ~k =

2π

λ
. A fixed atom placed at the origin will then

scatter incident particles along a displacement vector ~r, The final wavefunction of the

incident wave is then

~ψf = ~ψ0f(λ, θ)
ei
~kf ·~r

r
, (2.6)

where θ is the angle between ~x and ~r, f(λ, θ) is the probability of incident wave being

scattered in a certain direction, and r = |~r|. This is illustrated in Fig. 2.2.

The form of f(λ, θ) can be examined in two regimes: where λ is of similar size to

the scatterer, and the case where λ is much larger. For the first case, f(λ, θ) will be

maximum for θ = 0 as all path lengths are the same, but as θ → π this will decay to

2.1. Elastic Scattering 25

ei
~k·~x

f(λ,θ)ei
~k·~r

r

~x
2θ

~r

Figure 2.2: Idealised geometry of plane wave of particles scat-
tered by a fixed atom at the origin.

a minimum, as path length differences between the front and back of the atom lead

to interference. In the latter case, f(λ, θ) = b = const; scattering from a single point

is independent of θ.

This function, f(λ, θ), can be related to the scattering cross-section, σ. Consider

a total scattering rate from an atom in all directions, R, due to an incident flux Φ.

Since the scattering rate is the product of the incident flux and cross-sectional area,

the cross-sectional area can be found as:

σ =
R

Φ
. (2.7)

From Eq. (2.6), the scattering rate can also be obtained as the integral over all possible

angles:

R =

∫ π

2θ=0

∫ 2π

φ=0

|ψf |2dA = 2πΦ

∫ π

2θ=0

|f(λ, θ)|2 sin 2θd2θ, (2.8)

where dA = r2 sin 2θdφd2θ is the area element of a spherical surface with radius r.

2.1. Elastic Scattering 26

Hence, by combining Eqs. (2.7) and (2.8) shows σ is defined by f(λ, θ).

2.1.3 Differences in Scattering for Photons and Neutrons

The scattering theory covered so far has made little assumption about the types of

particles being scattered. A range of particles can be used for scattering experiments,

and in this thesis the focus will be on neutron scattering, with a brief discussion on

x-ray scattering.

For neutron scattering the scattering probability is invariant with respect to θ

and λ, i.e. f(λ, θ) = −b, where b is called the scattering length, and negative by

convention. This value is a constant due to the nature of interaction – the neutron

interacts with the nucleus via the strong force. The nucleus, with typical radius

10−14 m, is point-like compared to the wavelength of neutrons used for probing atomic

length scales, ∼ 10−10 m hence there is no angular dependence on the scattering.

For x-ray scattering, the photon interacts with the electrons in an atom through

the electromagnetic force. The electron orbitals are of similar size to λ, hence the

scattering probability f(λ, θ) will vary as discussed in Section 2.1.2, and also scale

linearly with the number of electrons; this is called the x-ray form factor.

This discussion suggests the neutron case is simpler than that of x-rays, however

this is incorrect. The neutron interaction is not well understood, and the scattering

length b: varies for different isotopes or spin orientations; can be positive or negative;

and appears random when compared with an atom’s atomic number, whereas for

x-rays it: decreases monotonically with increasing θ or decreasing λ; has the same

sign for all elements; and is proportional to atomic number [20]. Finally, the neutron

possesses a dipole moment, and scattering from magnetic moments can occur with a

2.1. Elastic Scattering 27

similar angular dependence as x-rays, quantified by the magnetic form factor.

At this point it is helpful to consider the consequences of the neutron scattering

length on the cross-section. The special case f(λ, θ) = −b, allows simplification of σ

obtained from Eq. (2.8) as:

σ = 4π|b|2. (2.9)

It turns out the scattering lengths of isotopes whose nuclei have non-zero spin is

better described by an average value, 〈b〉, and standard deviation, ∆b, as:

b = 〈b〉 ±∆b→
〈
b2
〉

= 〈b〉2 + (∆b)2, (2.10)

such that the total scattering cross-section can be written as the sum of the coherent

and incoherent components [20], i.e.

〈σtotal〉 = 4π
〈
b2
〉

= σcoh + σincoh, (2.11)

σcoh = 4π 〈b〉2 , σincoh = 4π(∆b)2. (2.12)

The incoherent cross-section gives rise to an additional flat background [22] and is

typically a good indicator of hydrogen, which possesses an incoherent cross-section

some 46 times larger than its coherent cross-section [23].

2.1.4 Scattering from Multiple Atoms

A real experiment will not involve scattering from a single atom, but instead a sample

which can be described as an assembly of atoms. An incident beam, a complex plane

wave with wavevector ~ki = (k, 0, 0), is scattered by a particular atom indexed by j

at some arbitrary position ~Rj, as shown in Fig. 2.3. This will contribute to the total

2.1. Elastic Scattering 28

scattered wave with some small change, δψf :

[δψf]j = ψ0e
i~ki·Rjfj(λ, θ)

ei
~kf ·(~r− ~Rj)∣∣∣~r − ~Rj

∣∣∣ , (2.13)

which simplifies to Eq. (2.6) for ~Rj = 0.

~ki

~kf

~x

~Rj

~r −
~R j

~r

2θ

Figure 2.3: Idealised geometry of plane wave of particles scat-
tered by an atom, j, at position ~Rj.

Hence for a large ensemble of atoms, the total, scattered wavefunction can be

written as the sum of these contributions over the N atoms in the ensemble:

ψf =
N∑
j=1

[δψf]j . (2.14)

Using the fact that detector distances are on a completely different length scales to

inter-atomic distances, i.e. ~r− ~Rj ' ~r allows simplifying Eq. (2.14). The probability

2.1. Elastic Scattering 29

of observing a particle is given by the modulus square of the wavefunction, hence:

|ψf |2 =

∣∣∣∣∣ψ0

r

N∑
j=1

fj(λ,Q)ei
~Q· ~Rj

∣∣∣∣∣
2

, (2.15)

where, in the case of neutron scattering, fj(λ,Q) = −b.

2.1.5 Scattering in Macroscopic Crystals

A crystal is defined by a Bravais lattice, B, and basis set, {(aj, ~Rj)} – the set of atoms

of species aj at positions ~Rj. The Bravais lattice can be written in terms of the three

lattice vectors ~a,~b, ~c that define the parallelepiped known as the unit cell,

B = (~a,~b, ~c), (2.16)

It is convenient to express the atomic positions, ~Rj, as their component in terms of

these lattice vectors, (Rj,a~a+Rj,b
~b+Rj,c~c).

With Eq. (2.15), it is possible to calculate the elastic scattering for an ensemble of

atoms, however this involves summing over all atoms which, for macroscopic samples,

is infeasible. The periodicity of the atomic positions allows simplification: at any

position the scattering length density, β(~r), can be expressed in terms of the unit cell,

i.e.

β(~r) ≡ β(~r + n1~a+ n2
~b+ n3~c), (2.17)

where n1, n2, n3 are integer. Hence Eq. (2.15) can be re-written as a sum over Ncells

2.1. Elastic Scattering 30

unit cells with n atoms as:

|ψf |2 =

∣∣∣∣∣ψ0

r

Ncells∑
k=1

n∑
j=1

fj(λ,Q)ei
~Q·(~Rcell,k+rj,a~a+rj,b~b+rj,c~c)

∣∣∣∣∣
2

, (2.18)

|ψf |2 = S(~Q) =
ψ2
0N

2
cells

r2

∣∣∣∣∣
n∑
j=1

fj(λ,Q)ei
~Q·(rj,a~a+rj,b~b+rj,c~c)

∣∣∣∣∣
2

, (2.19)

where in the second equation the sum over unit cells has been extracted as simply an

additional factor N2
cells. The exponential term will cancel out unless the terms over

n1, n2 and n3 sum constructively, or more concretely where ~Q satisfies the equation

[20]:

~Q · (n1~a+ n2
~b+ n3~c) = φ0 + 2πn, (2.20)

where n is an integer. At this point it is convenient to introduce the reciprocal lattice,

a construction that generates ~Q that satisfy Eq. (2.20). Consider a point defined by

integer h, k and l:

~Q = h ~a∗ + k ~b∗ + l ~c∗, (2.21)

where ~a∗, ~b∗, ~c∗ are the reciprocal lattice vectors, related to ~a,~b, ~c by:

~a∗ =
2π

V
(~b× ~c), ~b∗ =

2π

V
(~c× ~a), ~c∗ =

2π

V
(~a× ~b), (2.22)

where V is the unit cell volume, V = ~a · ~b× ~c. It is simple to see these vectors obey

~vi · ~v∗j = 2πδij, (2.23)

where ~v1 = ~a, ~v2 = ~b and ~v3 = ~c, and similarly for the reciprocal vectors. δij is the

Kronecker delta function.

2.1. Elastic Scattering 31

Hence, the elastic scattering for a crystalline sample is a set of sharp peaks located

at well-defined positions; the reciprocal lattice. These are called Bragg peaks due to

their relation to Bragg’s law.

2.1.6 Bragg’s Law

An alternative approach to understanding the elastic scattering in crystals is to con-

sider the lattice as a three-dimensional diffraction grating. Planes of atoms with

inter-planar spacing d lead to constructive interference when:

nλ = 2d sin θ. (2.24)

This result is known as Bragg’s law, and a schematic diagram which demonstrates

the difference in path length is 2d sin θ can be seen in Fig. 2.4. It is helpful to relate

this key equation to the scattering wavevector, ~Q:

|Q| = 2
∣∣∣~ki∣∣∣ sin θ =

4π

λ
sin θ =

2πN

d
. (2.25)

The values h, k, l are related to these planes, referred to as the Miller indices [21].

This result can also be obtained by performing the Fourier transform of the Bravais

lattice convolved with the basis set [24]. Thus it is possible to determine the static

crystal structure by performing a Fourier transform on the scattered wavefunction.

Unfortunately it is only possible to measure |ψf |2, and this is referred to as the phase

problem and discussed in some length in Refs. [20, 24].

2.2. Inelastic Scattering 32

d

θ

θ

Figure 2.4: Bragg’s setup showing reflections from uniformly
spaced planes (blue) with inter-planar spacing d. The path dif-
ference between subsequent planes (green) is therefore 2d sin θ

2.2 Inelastic Scattering

Considerations thus far have neglected to consider any time-dependence, such as the

motion of atoms in solids. Nonetheless this provides an ability to achieve a con-

siderable level of understanding of the static properties of solids [24]. Gaining any

understanding of the thermodynamics of the crystal requires an analysis of the dy-

namics, which will be introduced in this section following Ref. [24].

The atoms in the lattice can be described as having an equilibrium position. A

displacement of the j-th atom along a Cartesian direction denoted by α is given by

uj,α. The energy can then be written as a Taylor expansion:

E = E0 +
1

2

∑
j,j′

α,α′

∂2E

∂uα,j∂uα′,j′
uα,juα′,j′ + ... (2.26)

where the second term is the harmonic energy, and higher-order terms are neglected.

The scattering intensity obtained in Eq. (2.19) assumes scattering from pairs of

atoms at the same time. A more general treatment takes into account the contri-

butions to interference effects from components of the beam that are scattered at

2.2. Inelastic Scattering 33

different times, by including terms of the form:

bjbk exp{i ~Q · [~rj(t)− ~rk(0)]}. (2.27)

In the case of inelastic scattering the neutron beam is subject to a change in energy,

E, before and after scattering, by definition. The scattering function is therefore

modified to be:

S(~Q, ω) =
∑
i,j

bibj

∫ 〈
exp
(

i ~Q · [~ri(t)− ~rj(0)]
)〉

exp(−iωt)dt. (2.28)

Let the instantaneous position of the i-th atom be

~ri(t) = ~Ri + ~ui(t), (2.29)

where ~Ri is the average position and ~ui(t) the instantaneous displacement relative

to the average position. For two variables whose distributions are characteristic of

harmonic motion [24]:

〈exp(i(X + Y))〉 = exp
(〈

(X + Y)2
〉
/2
)
, (2.30)

such that

〈
exp
(

i ~Q · [~ui(t)− ~uj(0)]
)〉

= exp
(
−
〈

(~Q · ~ui)2/2
〉)
× exp

(
−
〈

(~Q · ~uj)2/2
〉)

× exp
(〈

[~Q · ~ui(t)][~Q · ~ui(0)]
〉)
,

(2.31)

The first two terms are the so-called temperature factors obtained during structure

2.3. Neutron Time-of-Flight measurements 34

refinements for a diffraction experiment.

It can be shown that the one-phonon scattering function in the quantum mechan-

ical limit is given by the sum over ν modes and j atoms, i.e. [24]:

S(~Q, ω) =
Nh̄

2

∑
ν

1

ων

∣∣∣∣∣∑
j

bj

m
1/2
j

[~Q · ~ej(~k, ν)] exp
(

i ~Q · ~rj
)
Tj(~Q)

∣∣∣∣∣
2

× ([n(ω, T) + 1]δ(E + h̄ων) + n(ω, T)δ(E − h̄ων)),

(2.32)

where ων is the frequency of the ν-th mode, bj and mj the neutron scattering length

and atomic mass of the j-th atom, ~ej(~k, ν) the eigenvector of the ν-th phonon mode

at reduced wavevector ~k. Tj(~Q) are the temperature factors seen above, and n(ω, T)

the Bose factor which describes the occupation of phonon modes at the given energy,

E. The Dirac delta exists to simply ensure scattering for a mode occurs only at the

allowed energies where there exists a mode. This interaction can either leave the

neutron with less, or more if modes are populated, energy, called the neutron loss and

gain interactions.

The tools required for understanding elastic and inelastic scattering events have

now been presented, and so the discussion turns to the neutron source used and

practical considerations for performing these experiments.

2.3 Neutron Time-of-Flight measurements

It turns out neutrons with wavelengths well-suited to scattering experiments also

have energies of similar scales to the phonon modes, making them a particularly

powerful tool for investigating the dynamics of materials. In this thesis, neutron

scattering measurements were performed at the ISIS neutron source in the UK, a

2.3. Neutron Time-of-Flight measurements 35

pulsed spallation source. Protons are accelerated to energies of 800 MeV and made to

collide with a target made from tungsten clad in tantalum. These collisions produce

a large number of neutrons as the excited tantalum nuclei release energy in order to

return to their ground state. Collisions happen with a frequency of 50 Hz, hence this

is referred to as a pulsed source. At ISIS, once the protons are of sufficient energy

they are directed towards one of two targets, target station 1 (TS1) and 2 (TS2). 1

in 5 pulses are sent to TS2 and the rest sent to TS1.

Since neutrons are produced in pulses at a well-defined time, it is possible to

employ the mass of the neutron to perform time-of-flight measurements. Neutrons

produced have a distribution of energies, and this is reflected in their speed since,

unlike x-rays, the neutron has a non-zero mass. Since the time of creation, flight

path, and the time detected are all known, each individual neutron’s energy can be

calculated, which allows simultaneous measurement of a wide range of wavelengths

for diffraction.

Since the speed of the neutrons is related to their energy, the use of choppers allows

experimental setups where either Ei or Ef is fixed. The time-of-flight technique is

then used to determine the change in energy and hence the inelastic scattering can

be measured. A schematic of a chopper selecting an incident energy can be seen in

Fig. 2.5 [25].

To obtain neutrons that are useful for scattering as described in the previous

section, it is crucial that the neutron wavelengths and energies are well-suited to

studying length scales of the order Å. The neutrons produced are of too high energy,

and are first slowed using a moderator. Moderators used were ambient water at 300 K

producing thermal neutrons for measurements on MERLIN and SXD, liquid methane

at 100 K on MARI and liquid hydrogen 20 K providing cold neutrons on LET. These

2.3. Neutron Time-of-Flight measurements 36

Figure 2.5: Selection of incident energy using choppers. Only
neutrons of a specific speed are selected by the E0 chopper.
After scattering from the sample, the energy change can be
determined based on the time-of-flight. [25]

2.3. Neutron Time-of-Flight measurements 37

machines will be discussed in more details later.

2.3.1 Time-of-Flight Diffractometers

As when introducing scattering theory, it is helpful to begin with the simpler case of

elastic scattering on diffractometers. Recall the Bragg condition, nλ = 2d sin θ, which

shows where Bragg peaks can be found. In a typical x-ray diffraction experiment,

a monochromator is used to set λ, and then a detector measures a range of 2θ to

determine Bragg peak positions.

With a pulsed neutron diffractometer the neutron time-of-flight can be exploited

to simultaneously measure many different λ and hence, access large, three-dimensional

volumes of reciprocal space. The sample is bathed in the neutron white beam, which

is a distribution of neutron energies, and hence wavelengths. When a neutron reaches

a detector, the raw data is the position and time-of-flight. From this it is possible to

map each detected neutron to its wavelength and hence, the intensity measured at a

specific ~Q.

This assumes the only scattering processes involved are elastic, which is not always

a safe assumption. Exactly how measured data is mapped to reciprocal space, and

the limitations of these assumptions, are discussed in greater detail in Section 5.2.

SXD technical information

A comprehensive list of the relevant technical information can be found in [26]. The

key points are that neutrons with incident wavelength 0.2 Å to 10 Å are scattered and

measured by eleven 64×64 pixel detectors, spanning an active area of 192×192 mm2

with resolution 3× 3 mm2. A picture of the detectors can be seen in Fig. 2.6.

2.3. Neutron Time-of-Flight measurements 38

Figure 2.6: The detectors on SXD [27].

2.3.2 Time-of-Flight Spectrometers

As previously mentioned, if the flightpath and either Ei or Ef are known, the others

can be deduced from the time-of-flight. In general, this is achieved either by fixing

Ei (direct geometry), or Ef (indirect geometry), however this thesis focuses on the

direct geometry case. For indirect scattering, the sample is bathed in white-beam and

a monochromator backscatters neutrons with Ef into the detectors.

For the direct geometry case, incident energies are selected using a number of

choppers, and in this thesis two types of choppers were used: disk and Fermi. The

disk choppers are effectively a circular sheet of neutron absorbing material with a

hole, which is rotated such that only neutrons of a specific velocity can pass. Multiple

disk choppers are required to produce a monochromated beam, as only one would

require a prohibitively large angular velocity.

More complicated arrangements of disk choppers can be used to slice each pulse

of neutrons into a number of well-separated bunches. Thus it is possible to perform

measurements for multiple Ei simultaneously, with the caveat that the selection of

2.3. Neutron Time-of-Flight measurements 39

these Ei is somewhat limited; it would not be possible to measure two very similar

incident energies simultaneously, for example, as slicing the pulse into distinct bunches

would not be possible [28]. This can be understood by looking at the distance-time

diagram, shown in Fig. 2.7, detailing the role of 5 choppers on LET.

Figure 2.7: Distance-time diagram showing three separate Ei
measured simultaneously, due to the many choppers that allow
careful slicing of the neutron pulse into 3 bunches with Ei =
5, 1.5 and 0.7 meV [28].

Finally, Fermi choppers are a cylindrical drum with curved slots running across

its diameter [29]. With this design, the neutron absorbing section of the chopper is a

much larger volume than when using disk choppers, which gives very low background.

A comprehensive list of the relevant technical information for the spectrometers

MARI, MERLIN and LET can be found in [30, 31, 32]. The key points relevant to

this thesis are discussed below.

2.3. Neutron Time-of-Flight measurements 40

MARI

Optimised for polycrystalline and powder measurements, neutrons with incident en-

ergies ranging 7 meV to 1000 meV are scattered into the low- and high-angle detector

banks. The low-angle bank comprises an eight fold array of 3He detectors covering

3−13◦. Unlike the other spectrometers, the detectors are not position sensitive hence

the suitability of this instrument for powdered samples, as it is only possible to mea-

sure |Q|. The high-angle bank has detectors covering 12−135◦. For all measurements,

the ”s” Fermi chopper was used, which provides ∆E/Ei between 3 % to 8 % [30]. A

schematic of MARI can be seen in Fig. 2.8

Figure 2.8: Schematic diagram of the MARI spectrometer [33].

MERLIN

Neutrons with incident energies 7 meV to 2000 meV are scattered into a detector bank

of 3 m-tubes, position sensitive 3He detectors (PSD), spanning a huge −45 − 135◦

horizontal angle and ±30◦ vertical angle, with energy resolutions of ∆E/Ei between

4 % to 7 % at the elastic line [31]. A schematic of MERLIN can be seen in Fig. 2.9

2.3. Neutron Time-of-Flight measurements 41

Figure 2.9: Schematic diagram of the MERLIN spectrometer
[34].

LET

The cold neutrons provided on LET have incident energies ranging 0.5 meV to 30 meV.

The detectors are similar to those on MERLIN, this time using PSD of 4 m and

spanning −40 − 140◦ horizontal angle and ±30◦ vertical angle [32]. In the case of

LET, great care has been taken to ensure gaps between detectors are kept to an

absolute minimum [28]. A schematic of LET can be seen in Fig. 2.10

Figure 2.10: Schematic diagram of the LET spectrometer and
series of choppers [28].

2.4. Thermal Conductivity – Laser Flash Method 42

For all measurements performed, except the powder samples on MARI, samples

are mounted on a rod which can be rotated through 360◦. Vanadium measurements

are performed to allow normalising the multiple detectors, as this scatters neutrons

uniformly in all directions due to the Vanadium’s near-zero coherent scattering length.

Background measurements with identical sample environment (e.g. furnace, CCR)

including sample mount were performed, and background subtractions performed in

the time-of-flight domain before reducing the data to S(~Q, ω).

The alignment of single crystal measurements was checked by visualising the mea-

sured elastic scattering. This shows missing Bragg peaks in symmetrically equivalent

regions of reciprocal space if there is a small in-plane misalignment. By integrat-

ing over specific Bragg peaks it is possible to calculate the transformation matrix

required to correct the nominally aligned ~u and ~v. This was performed using the

Horace software to obtain the true values of ~u and ~v.

2.4 Thermal Conductivity – Laser Flash Method

Thermal diffusivity can be directly measured using the Laser flash method. The sub-

strate is mounted horizontally in a furnace and one side irradiated by an energy pulse

provided by the flash lamp. This pulse induces a homogenous rise in the temperature

at the alternate side of the sample, which can be measured using a high-speed IR

detector. A schematic diagram of the apparatus can be seen in Fig. 2.11.

The thermal diffusivity, heat capacity and, hence, thermal conductivity, can then

be computed by the measured temperature rise as a function of time. The furnace

allows measurements over a range of temperatures. A reference standard is used to

calibrate measurements.

2.4. Thermal Conductivity – Laser Flash Method 43

Figure 2.11: Schematic diagram of the Xenon LFA 500 appa-
ratus used to measure thermal conductivities. The sample is
placed in the sample carrier inside the furnace. The xenon
lamp provides an energy pulse which induces heating in the
sample. The IR radiation emitted from the opposing side of
the substrate is measured by the high-speed detector using the
focusing iris. [35]

For these measurements the Linseis LFA 500 was used, which provides a Xenon

lamp pulse source and temperature range of −50 ◦C to 500 ◦C. A calibration reference

with the same dimensions as the substrates, made from the alloy Inconel 600, was

used along with a graphite sample holder. Crystals were made rough with a coarse

sandpaper, and then coated in a thin layer of graphite, to minimise reflections of the

incident xenon flash.

The measured data was analysed by Chris Nuttall at JM, and heat capacities and

thermal conductivities extracted. For each temperature, multiple measurements were

taken and reported values are the average with standard deviations.

Chapter 3

Phonon Dispersion of ZnO

3.1 Modelling

The thermal conductivity of ZnO is dominated by its large lattice contribution [36].

First-principles calculations allow modelling the phonon modes. A detailed derivation

of density functional theory (DFT) is outside the scope of this thesis, nonetheless this

section aims to give a brief introduction. Following this the model used to calculate

phonons in ZnO is presented. Finally, initial benchmarks against other models in the

literature are shown.

3.1.1 Brief Introduction to Density Functional Theory

The Hamiltonian for a system of M nuclei with atomic number Zi at positions ~Ri,

and N electrons at positions ~ri, can be found by solving the many-body Schrödinger

equation:

44

3.1. Modelling 45

Ĥ =−
N∑
i=1

∇2
i

2
+

1

2

N∑
i 6=j

1

|~ri − ~rj|

−
M∑
I=1

∇2
I

2
+

1

2

M∑
I 6=J

ZIZJ∣∣∣ ~RI − ~RJ

∣∣∣ − 1

2

N∑
i

M∑
I

ZI∣∣∣~ri − ~RI

∣∣∣ ,
(3.1)

using Hartree atomic units. Solutions to this exist in a 3(N +M) dimensional Hilbert

space, which leads to equations that quickly become intractable. Using the Born-

Oppenheimer approximation [37], wherein the electronic and nuclear degrees of free-

dom of the wavefunction are separable, an equivalent problem to Eq. (3.1) can be

written as:

Ĥ = −
N∑
i=1

∇2
i

2
+

1

2

N∑
i 6=j

1

|~ri − ~rj|
−

N∑
i

Vn(~ri), (3.2)

for a given nuclear configuration. Here Vn is the external potential the electrons

feel due to the nuclei. Additional terms for the nuclei-nuclei interaction and kinetic

energy of the nuclei would just change E by a constant, for a given equilibrium nuclei

of position. The nuclei are no longer variables but instead parameters that define the

potential.

It is convenient to write Eq. (3.2) as Ĥ = F̂+V̂n, as F̂ is the same for all N -electron

systems. Ground state solutions are therefore determined by N and Vn(~r).

Hohenberg and Kohn showed that the external potential is uniquely determined

by the ground-state electronic density [38], which can be proved by contradiction

starting by assuming there exists some potential V ′ext(~r) with ground state |Ψ′0〉 that

gives rise to the same density n(~r) [39].

3.1. Modelling 46

As a consequence every electron density that is a ground state density, defines a

functional F [n] = 〈Ψ|F̂ |Ψ〉 since n(~r) defines both N =
∫
d~rn0(~r) and the external

potential. Thus there exists some functional of the electron density to obtain the

energies:

E[n] = F [n] +

∫
d~rV (~r)n(~r), (3.3)

where V (~r) is some arbitrary external potential. E[n] ≥ E0 from the variational

principle [39].

Solving the Schrödinger equation can, therefore, be reframed as minimising the

functional E[n] with respect to the potential-generating densities.

The Kohn-Sham equations

The Kohn-Sham equations describe a fictitious system of non-interacting ‘electrons’:

[
−1

2
∇2 + Vn(~r) + VH(~r) + VXC(~r)

]
φi(~r) = εiφi(~r) (3.4)

where:

Vn(~r) = −
M∑
I

ZI∣∣∣~r − ~RI

∣∣∣ , (3.5)

∇2VH(~r) = −4πn(~r) (3.6)

VXC(~r) = −∂EXC [n]

∂n
(~r), (3.7)

and

n(~r) =
N∑
i

|φi(~r)|2. (3.8)

The exchange-correlation term, EXC , represents all of the change in energy due to

electron interactions not accounted for by the Hartree potential and nuclei potential.

3.1. Modelling 47

Since the potentials depend on n(~r), which depends on φ(~r), Eq. (3.4) can be solved

using a self-consistent method. An initial guess at the wavefunction φ(~r) is selected.

n(~r) is then computed and Eq. (3.4) is then solved for φ′(~r). Finally φ′(~r) is compared

to φ(~r) and the process is iterated until convergence is achieved.

It can be shown that there exists an exchange-correlation functional, however

unfortunately it is unknown [40]. A great deal of work has gone into developing

approximate forms of this functional, some highly tailored to a specific system, others

more suitable for a wide range of systems [41].

3.1.2 Phonon Mode Calculations

With the set of solvable equations obtained in Section 3.1.1, a large number of further

calculations are possible. For example the forces on atoms can be calculated by

exploring the energy landscape in response to some displacement, ~uj,α.

~Fj,α = − ∂E

∂~uj,α
, (3.9)

where j labels the atom and α ∈ {~x, ~y, ~z} denotes one of three Cartesian directions.

Nuclear positions can then be tweaked to minimise these forces, a process known as

geometry optimisation.

To calculate lattice dynamics, the harmonic approximation is used. A Taylor

expansion of the total energy yields:

E = E0 +
∑
j,α

∂E

∂~uj,α
· ~uj,α +

1

2

∑
j,α,j′,α′

~uj,α · Φj,j′

α,α′ · ~uj′,α′ + ..., (3.10)

where ~uj,α is a vector of displacements from equilibrium. Since the system is in

3.1. Modelling 48

equilibrium, the second term is zero.

Assuming a plane-wave displacement from a phonon of wavevector ~q and polar-

ization vector ~ej,α(~k, ν):

~uj,α = ~ej,α(~k, ν)ei~q·~rj,α−ωmt, (3.11)

yields the eigenvalue equation:

Dj,j′

α,α′(~q) ~ej,α(~k, ν) = ω2
m,~q ~ej,α(~k, ν). (3.12)

Solving the Kohn-Sham equations yields ground state energies, from which the

Dynamical Matrix, ~D, can be obtained [42] using second order derivatives of the

total energy, E, with respect to two atomic displacements, ~u, i.e.

Φj,j′

α,α′ =
∂2E

∂~uj,α∂~uj′,α′
, (3.13a)

Dj,j′

α,α′(~q) =
1√

MjMj′

∑
j

Φj,j′

α,α′e
−i~q·~rj , (3.13b)

where ~R is the position vector and Mj the atomic mass.

The Hellmann–Feynman theorem makes calculating the first order derivatives of

the total energy a quick calculation [43]. More concretely, for a given displacement λ

the eigenvalue equation is:

Ĥλ |ψλ〉 = Eλ |ψλ〉 . (3.14a)

3.1. Modelling 49

Left multiplying by 〈ψλ| and differentiating yields:

dEλ
dλ

=
d

dλ

〈
ψλ

∣∣∣Ĥλ

∣∣∣ψλ〉 =

〈
dψλ
dλ

∣∣∣∣Ĥλ

∣∣∣∣ψλ〉+

〈
ψλ

∣∣∣∣Ĥλ

∣∣∣∣dψλdλ
〉

+

〈
ψλ

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣ψλ
〉

= Eλ
d

dλ
〈ψλ|ψλ〉+

〈
ψλ

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣ψλ
〉

dEλ
dλ

=

〈
ψλ

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣ψλ
〉

(3.14b)

The Hellmann-Feynman theorem can only be used to obtain first order derivatives.

To compute the Dynamical Matrix requires second-order derivatives. Applying
d

dλ
to

Eq. (3.14b) yields:

d2Eλ
dλ2

=

〈
dψλ
dλ

∣∣∣∣dĤλ

dλ

∣∣∣∣ψλ〉+

〈
ψλ

∣∣∣∣dĤλ

dλ

∣∣∣∣dψλdλ
〉

+

〈
ψλ

∣∣∣∣d2Eλdλ2

∣∣∣∣ψλ〉 . (3.15)

The terms involving
dψλ
dλ

do not cancel and so the linear response of the wave-

function, ψλ, with respect to some displacement, λ, must be computed. This can

be achieved using either finite-displacement routines or using perturbation theory

(DFPT) [44], which is much cheaper computationally [42].

3.1.3 Calculating Phonons in ZnO

ZnO possesses the simple hexagonal wurtzite structure, space group P63mc (186).

The unit cell consists of 4 atoms: two Zn with fractional positions (1/3, 2/3, 0) and

(2/3, 1/3, 1/2); and two O at (1/3, 2/3, 0.375) and (2/3, 1/3, 0.875). CASTEP was

3.1. Modelling 50

Atom w

O1 0.377138
O2 0.877031

Zn1 -0.002026
Zn2 0.497857

a 3.293542
b 3.293625
c 5.316134
α 90.000018
β 89.999979
γ 119.994036

Table 3.1: Results of the geometry optimisation performed by
CASTEP. Note the precision is as reported in the computed
output files and does not imply uncertainty.

used to compute the phonon modes with the Local Density Approximation (LDA)

and Generalized Gradient Approximation (GGA) functionals based on a literature

review [45, 46]. First, a geometry optimisation was performed using the Broyden

Fletcher Goldfarb Shanno (BFGS) algorithm with a total energy convergence toler-

ance of 2× 10−5 eV atom−1. Lattice parameters and atomic fractional ~c positions

were relaxed, and can be seen in Table 3.1.

A phonon calculation was performed using norm-conserving pseudopotentials and

specifying an 10 × 10 × 10 K-point Monkhorst-Pack grid [47]. DFPT [44] was used

to calculate the phonon modes in the first Brillouin zone with a ~Q−spacing of 0.01

reciprocal lattice units. These calculations were performed using the STFC SCARF

compute cluster.

3.1.4 Validating Calculations

As the exchange-correlation functional is not known it is always important to bench-

mark and validate the results of calculations against other calculations and, ideally,

empirical data. Calculated phonon eigenenergies can be plotted against empirical

dispersion curves to give some confidence that the selected functional was suitable

and calculations are physically meaningful. Neutron spectroscopy then allows direct

3.1. Modelling 51

measurement of the phonon modes, and the scattering intensity can be calculated

from the calculated phonon modes as described in Eq. (2.32).

As a first check, a literature review was performed to obtain empirical data of

phonon dispersion energies, as well as first-principles calculations of the phonon eigen-

vectors [45]. These data and calculations were used as a benchmark to test three

potential functionals: LDA; GGA, more specifically Perdew–Burke-Ernzerhof (PBE);

and a screened exchange hybrid functional (sX) which has been shown to be particu-

larly good for calculating the electronic band gap in ZnO [9].

Calculated eigenenergies are very similar for LDA and GGA, however the sX

functional produces very different values that do not agree with experimental data.

Results from the LDA calculation, compared with the reported experimental data,

can be seen in Fig. 3.1. The low energy phonon-modes, which contribute most to the

thermal parameters, show excellent agreement with empirical results. The higher en-

ergy modes are reasonable, however there appears to be a systematic over-estimation

of the calculated energies.

At this point it is possible to dismiss the sX functional as a candidate for modelling

phonon modes. Since LDA and GGA produce similar eigenenergies, selecting one

requires a more stringent test of the calculated phonon modes. Inelastic scattering

facilitates this, as measured intensities depend on the eigenvectors as ~Q ·~ej(~k, ν) from

Eq. (2.32). Figure 3.2 show the calculated phonons using LDA. These calculations

reproduce those in the literature [45], however this is unsurprising as those calculations

use the same functional. This motivates inelastic neutron scattering experiments

to directly measure these intensities. The python implementation of Eq. (2.32) to

produce these plots can be found in Appendix B.

3.1. Modelling 52

Figure 3.1: Comparison of calculated phonon energies (lines)
with experimental data (points) reported in [45]. These phonon
modes were calculated using the LDA functional, and are in
good agreement with the reported data.

3.1. Modelling 53

(a)

(b)

(c)

Figure 3.2: Preliminary phonon mode intensities in the (a) 008,
(b) 009 and (c) 220 Brillouin zone along the Γ − A direction.
Left shows the results found in [45], right the calculated results
for comparison.

3.2. Measurements on LET 54

3.2 Measurements on LET

A large, high-quality crystal (10× 8× 8 mm) of nominally stoichiometric ZnO was

purchased from Goodfellow. Direct measurements of the phonon dispersion then

allow verification of the first principles calculations described in 3.1.

3.2.1 Experimental Procedure

The proposed experiment was to measure the phonons at three temperatures, T = 5,

300 and 600 K to verify first-principles calculations. It is then possible to investi-

gate the temperature dependence of the acoustic modes to attempt to extract phonon

lifetimes for thermal conductivity calculations. During the experiment, there was a

problem sourcing a suitable heat-rod to mount the sample limiting the upper temper-

ature range to 300 K.

The crystal was mounted on aluminium pins and shielded with Cadmium, then

placed in a Closed Cycle Refrigerator (CCR). Measurements were performed at two

temperatures: ‘base’, T = 5 K, where broadening is minimised and line-shapes deter-

mined primarily by instrumental resolution; and room temperature, T = 300 K, to

investigate phonon-phonon scattering processes.

The sample was aligned with the (h, 0, l) crystallographic plane in the horizontal

scattering plane, then rotated through 100◦ in 1◦ steps. Each orientation was mea-

sured for approximately 10 min. To optimize the flux and resolution the choppers

were set to 200 Hz, yielding an incident energy of 30 meV.

The raw measured data was reduced into S(~Q, ω) files for analysis using software

provided by the ISIS excitations group designed for LET. The data were normalised

by beam current, followed by data reduction, background subtraction and vanadium

3.2. Measurements on LET 55

measurements to correct and calibrate the detectors, as described in Chapter 2. Fi-

nally, the data were treated to account for the Bose factor.

The data reduction was performed using the ISIS compute cluster due to the

quantity of data to process.

3.2.2 Experimental Data

These data cover a wide range of reciprocal-energy space, so 1- and 2-dimensional

cuts were obtained using the Horace software [48]. The measured scattering intensity,

S(~Q, ω), obtained at both temperatures was plotted for several slices along high

symmetry directions, [H00] and [00L], then compared with the calculated phonon

modes from Section 3.1.

Figure 3.3 shows the (H03) plane of the measured data for two temperatures, 5 and

300 K, compared with calculated intensities at 5 K. To aid comparison with empirical

results, regions of reciprocal-energy space that were inaccessible in the experiment

were masked in the calculated intensities.

Figures 3.4 and 3.5 show similar plots for two different cuts, the (H02) and (20L)

plane. Calculations are in very good agreement with the measured spectra. In the

[00L] direction, there is a small oscillation in relative intensities calculated in the

brightest mode which is inconsistent with measured data, nonetheless these calcula-

tions do a good job of reproducing the data.

3.2. Measurements on LET 56

(a)

(b)

(c)

Figure 3.3: Empirical, (a, b), and calculated, (c), scattering
intensity along (H03) with resolution ∆x = 0.025 reciprocal
lattice units and ∆E = 0.25 meV for: T = 300 K, (a); and
T = 5 K (b). Inaccessible regions have been masked in both
measured and calculated results.

3.2. Measurements on LET 57

(a)

(b)

(c)

Figure 3.4: Empirical, (a, b), and calculated, (c), scattering
intensity along (H02) with resolution ∆x = 0.025 reciprocal
lattice units and ∆E = 0.25 meV for: T = 300 K, (a); and
T = 5 K (b).

3.2. Measurements on LET 58

(a)

(b)

(c)

Figure 3.5: Empirical, (a, b), and calculated, (c), scattering
intensity along (20L) with resolution ∆x = 0.025 reciprocal
lattice units and ∆E = 0.25 meV for: T = 300 K, (a); and
T = 5 K (b).

3.3. Measurements on Merlin 59

The phonon lifetimes determine their phonon line-widths, Fig. 3.6 shows a typical

1-d cut through an acoustic mode for the two temperatures, specifically at (-1.5,

0, 3). The temperature dependence appears to be dominated only by an increase

in intensity. Measurements suggest the temperature has either little effect on the

phonon line-widths, and thus lifetimes, or the line-widths are limited by instrumental

resolution and not measurable.

Figure 3.6: Energy cuts at (-1.5, 0, 3). Fits for the linewidths
do not show convincing evidence of broadening.

3.3 Measurements on Merlin

In Section 3.2 the low-energy modes were measured and used to validate first-principles

calculations. To further verify the model and investigate the temperature dependence

of phonon lifetimes, measurements were performed on Merlin similar to those in Sec-

tion 3.2. The higher energy neutrons on Merlin allow probing the full dispersion, as

3.3. Measurements on Merlin 60

the calculated phonon modes have energies below 80 meV.

3.3.1 Experimental Procedure

The same large crystal from the LET experiment was measured at three temperatures,

T = 5, 300 and 550 K. Gadolinium was used for shielding to allow the high temper-

ature measurements as cadmium melts at 590 K. The ‘s’ chopper was set to 400 Hz

yielding 3 separate incident energies due to repetition-rate multiplication. Thus si-

multaneous measurements were performed with: Ei = 170 meV, to measure the full

dispersion; 59 meV, with better resolution covering the first band of phonons; and

29 meV, for direct comparison with the LET data.

The sample was, again, aligned with the (h, 0, l) plane horizontal with orthogonal

in-plane vectors, and this time rotated through 120◦ in 1◦ steps. The sample was

mounted on a hot stick in a CCR to measure the three temperatures. Each orientation

was measured for approximately 20 min. Data reduction, background subtraction and

vanadium calibrations were performed as in Section 3.2. The T = 300 K measurement

was only rotated through 77◦ due to beam loss, and so has less coverage.

3.3.2 Experimental Data

Misalignment Correction

To ensure measurements were successful the elastic scattering can be plotted as a

sanity check that the sample was aligned as expected and rotated correctly. The true

rotation of the crystal could be different to the nominal ~u− and ~v− vectors. This

would result in a systematic error in the labelling of ~Q during the data reduction.

Figure 3.7 shows a typical elastic line for the 170 meV before background sub-

3.3. Measurements on Merlin 61

traction. This plot shows there is a small misalignment in plane. Each orientation

measured introduces a segment of the obtained spectra. Initial slices seem reasonably-

aligned for L ≥ −4, although the Bragg peaks are not quite aligned with integer L.

For L ≤ −5 the missing Bragg peaks indicate an in-plane misalignment.

By integrating over specific Bragg peaks it is possible to calculate the transforma-

tion matrix required to correct the nominally aligned ~u and ~v. This was performed

using the Horace software, on the 5 K data to minimise broadening which would in-

troduce error to the correction calculation.

Figure 3.7: Plot of the elastic line obtained on Merlin, before
background subtraction and misalignment corrections. For L ≤
−5 the misalignment is clearly shown with missing Bragg peaks.

The result of applying the correction can be seen in Fig. 3.8. Misalignment cor-

3.3. Measurements on Merlin 62

rections were performed for all temperatures and gave a consistent result, since the

crystal was not removed and remounted during the experiment. After corrections,

there are no more missing Bragg peaks and they are aligned with the axis.

Figure 3.8: Plot of a typical elastic scattering (integrated over
the energy range −0.2 meV to 0.2 meV) after misalignment cor-
rections. There are no more missing Bragg peaks, and they are
well aligned with integer H,L.

Comparisons With LET

To further verify misalignment corrections – as well as the data collection, reduction,

background subtraction and normalisation – equivalent slices were made for the 5 K,

Ei = 29 meV data for comparisons against those discussed in Section 3.2, and can be

seen in Fig. 3.9. These data are consistent with the LET data in Figs. 3.3 to 3.5.

3.3. Measurements on Merlin 63

(a) H03

(b) H02

(c) H01

Figure 3.9: S(~Q, ω) measured on Merlin along [H, 0, 3] (a),
[H, 0, 2] (b) and [2, 0, L] (c). Measured at T = 5 K with Ei =
29 meV. These slices are equivalent to Figs. 3.3 to 3.5, with the
same resolution.

3.3. Measurements on Merlin 64

High Energy Phonons

With the Ei = 170 meV measurements the full dispersion can be sampled and com-

pared against the model discussed in Section 3.1. The dispersion along H03 can be

seen in Fig. 3.10 which is, again, in very good agreement. The lowest energy modes

cannot be distinguished from the background.

In the calculation there is a bright, flat mode present at 70 meV between H=−3.5

and H=−5.5 that does not appear as flat in the data, which immediately draws

the eye, however it follows the measured dispersion quite closely and the changes in

relative intensities are in excellent agreement.

Similar plots for H02 and 10L can be seen in Figs. 3.11 and 3.12. The flat,

additional mode present in calculations is consistently seen along H0X, however absent

along X0L.

Measurements near the elastic Bragg peaks are very noisy due to the energy resolu-

tion for this incident energy, 6.8 meV to 11.9 meV, most clearly seen in Fig. 3.12. The

calculated high-energy modes are in good agreement with the data. The low-energy

data with better resolution, compared with LET measurements, shows excellent agree-

ment with calculations. Since the acoustic modes typically play the largest role in

the thermal conductivities [46], the model is well-suited for further calculations to

investigate the thermoelectric properties of ZnO.

Finally, the [HH0] direction can be seen in Fig. 3.13 and is in equally good agree-

ment with the others.

3.3. Measurements on Merlin 65

(a) Measured

(b) Calculated

Figure 3.10: Phonon intensities measured (a) and calculated (b)
at T = 5 K with Ei = 170 meV. For these plots, the resolution
was changed to ∆E = 1 meV

3.3. Measurements on Merlin 66

(a) Measured

(b) Calculated

Figure 3.11: Phonon intensities measured (a) and calculated
(b) at T = 5 K with Ei = 170 meV. The high energy mode still
has the anomalous feature.

3.3. Measurements on Merlin 67

(a) Measured

(b) Calculated

Figure 3.12: Phonon intensities measured (a) and calculated
(b) at T = 5 K with Ei = 170 meV.

3.3. Measurements on Merlin 68

(a) Measured

(b) Calculated

Figure 3.13: Phonon intensities measured (a) and calculated
(b) at T = 5 K with Ei = 170 meV.

3.3. Measurements on Merlin 69

Temperature Dependence

The H02 slice for the 59 meV data at the three temperatures can be seen in Fig. 3.14.

From this the cut at (2.5, 0, 2), shown in Fig. 3.15, was taken. Initial analysis of

phonon line-widths was performed using a Gaussian to determine if there was de-

tectable broadening.

(a)

(b)

Figure 3.14: S(~Q, ω) measured on Merlin along H02 at T = 5 K
(a) and T = 550 K (b), with Ei = 59 meV.

The lowest energy peak softens, i.e. shifts to lower energy, and broadens by 300 K,

above which it is stable. The smallest peak does not appear to soften as much,

although it does broaden noticeably by 550 K. The highest energy peak is very stable,

3.3. Measurements on Merlin 70

and then softens at 550 K.

Fits were attempted to determine the peak profile using a convolution of a Gaus-

sian, Lorentzian and the nominal instrumental resolution, however it was not possible

to separate broadening due to instrumental resolution from that of the phonons; the

variance of these two fitted parameters was very large and inconsistent across datasets,

and so no reasonable values could be extracted for lifetimes from these data.

Figure 3.15: A slice at constantQ through (−2.5, 0, 2) for 5 meV
to 35 meV at T = 5 K (blue), 300 K (orange) and 550 K (red).
The peak width and positions have been determined by fitting
3 gaussians. The dotted line shows the fitted peak centre, and
the thick solid bar the FWHM.

Figure 3.16 shows a cut at (1.5, 0, 3) at the three temperatures for the 29 meV

data shown in Fig. 3.9a. This region was selected as the data is particularly clean

and strong. The 5 K data was used to benchmark the instrumental resolution, and

then phonon lifetimes extracted from 300 and 550 K. A 0.234 and 0.439 meV phonon

broadening was fitted, from which lifetimes of 1.19 and 0.64 ps are obtained.

When comparing the 170 meV measurements with calculations, a weak, diffuse

signal is noticeable at very high energies of approximately 120 meV. Figure 3.17 shows

3.3. Measurements on Merlin 71

Figure 3.16: A slice at constant Qhkl = (1.5, 0, 3) for 10 meV
to 19 meV at T = 5 K (blue), 300 K (orange) and 550 K (red).
From these measurements the phonon lifetimes were extracted.

a plot along H00 with intensities plotted to emphasise the weak signal present. An

integration over H between 4.5− 5.5 r.l.u. for E ≥ 80 meV can be seen in Fig. 3.17c,

and shows a peak in intensity ∼ 120 meV. This suggests the source of this signal is

phonon-phonon scattering, as the calculated dispersion has no phonons above 80 meV,

and will be further investigated in Chapter 4.

3.3. Measurements on Merlin 72

(a)

(b)

(c)

Figure 3.17: (a, b): S(~Q, ω) along H00 at T = 550 (a) and 5 K
(b). There is a weak, diffuse signal present at E = 120 meV.
(c): Integration over Q of the high-energy diffuse signal against
E for T = 5 K (blue) and 550 K (red). The multi-phonon scat-
tering is also visible at lower energies at 550 K.

3.4. Summary 73

3.4 Summary

The phonon dispersion of ZnO was modelled using Density Functional Theory. A

number of different exchange-correlation functionals were trialled and compared to

measurements performed on Merlin and LET. The LDA functional was selected, which

gives excellent agreement with direct measurements of the phonon dispersion using

INS.

Calculations were performed using CASTEP 17.1 with norm-conserving pseudopo-

tentials and an 8 × 8 × 8 Monkhorst-Pack grid. DFPT was then used to calculate

phonon eigenvectors in the first Brillouin zone.

In the Merlin data, energy broadening corresponding to finite phonon lifetimes are

detected at elevated T . The next chapter explores the consequences of this on the

thermal conductivity.

Chapter 4

Thermal conductivity of ZnO

It is possible to suppress the thermal conductivity in ZnO by a factor 7 through

nanostructuring [19]. In this chapter, the thermal conductivity of ZnO is investigated

in bulk and nanostructured samples using inelastic neutron spectroscopy and laser

flash measurements.

First the sample preparation, characterisation and experimental setup is discussed.

The bulk and nanostructured measurements are presented individually. Following

this, a comparison of a semi-empirical and ab initio model to extract thermal con-

ductivities from the measured phonon density of states (PDOS) are presented.

Finally, thermal conductivities of bulk, single-crystal ZnO are investigated using

laser flash measurements.

4.1 INS Measured on MARI

To investigate the effects of nanosized crystal grains on the lattice dynamics, as well

as the multi-phonon scattering seen in Chapter 3, powder inelastic neutron scattering

74

4.1. INS Measured on MARI 75

measurements were performed on MARI for a range of temperatures on bulk and

nanostructured samples.

4.1.1 Sample Preparation and Characterisation

Two powders were produced by Dr. Chris Nuttall at Johnson Matthey (JM): one

consisting 99.99% pure, ball-milled ZnO purchased from Sigma Aldrich (bulk); and

another with nanosized grains synthesised using flame spray pyrolysis (FSP). For

both, the total sample mass ∼30 g.

Characterisation of these powders was performed by JM. Average crystallite size

was determined using XRD with a Bruker D8 Cu-source diffractometer and the

TOPAS software package. Measured, and fitted, XRD data can be seen in Fig. 4.1,

yielding 117(1) and 15.3(1) nm for bulk and FSP powders respectively. The goodness

of these fits is reported by the so-called R factor, defined as

R =

∑
||Fobs| − Fcalc|∑
|Fobs|

(4.1)

For the fits of the bulk the FSP samples, R factors of 7.218 and 7.898 were obtained,

respectively. The measured peak positions are consistent with the hexagonal wurtzite

structure reported from the bulk sample in [19].

SEM characterisation of the FSP powder was also provided, a typical SEM image

can be seen in Fig. 4.2. From these images, an average particle size of 28(8) nm

was extracted. It should be noted that values obtained from SEM and XRD cannot

be immediately compared, as SEM measures the average particle size, whilst XRD

measures the average crystallite size; these values are only the same if the particles

are all single crystals. Comparison with SEM data from the nano-structured sample

4.1. INS Measured on MARI 76

(a) (b)

Figure 4.1: Measured XRD of the bulk (a) and FSP (b) sam-
ples, used to determine average crystallite size. Difference be-
tween the fitted and measured peaks can be seen plotted in a
dashed green line. Provided by JM.

reported by Jood et al shows a similar size distribution[19], thus this sample was

deemed to be suitable for comparison with that in the reference.

4.1. INS Measured on MARI 77

Figure 4.2: A typical SEM image of FSP powder. The size dis-
tribution extracted from this image can be seen as a histogram
in the inset. Provided by JM.

4.1.2 Experimental Procedure

Powders were initially placed in a cylindrical can made of a thin sheet of aluminium.

The sample can was secured to the mount using screws and a boron nitride piece to

minimise unwanted scattering. The ‘s’ chopper was used at 250 Hz with two incident

energies, 40 and 80 meV at room temperature. Measurement times varied, ranging

12-24 hours to obtain suitable statistics. Background measurements of the empty can,

and vanadium calibrations, were performed as usual.

Data reduction was performed using a number of Mantid scripts developed by the

4.2. Bulk PDOS 78

excitations group. From the initial measurement it became clear some changes were

required for continuation experiments. In the 80 meV data, intensity does not drop off

to zero at high energy as expected from the calculated one-phonon dispersion. This

incident energy was changed to 200 meV to investigate the multi-phonon scattering.

To maintain reasonable resolution, the chopper frequency was changed to 400 Hz for

the 200 meV measurements. The 40 meV measurements were kept to obtain high-

resolution data of the acoustic phonons most involved with heat transport.

Samples were sealed inside annular cylindrical Nb cans with height and outer

diameter of 45 mm. The annular thickness was selected such that the total volume

in the can was only slightly larger than that of the samples. Loading the powdered

samples in this way ensures the entire volume of sample will be bathed in the neutron

beam, maximising scattering. The cans were mounted in a furnace and measured at

300, 500, 700 and 900 K.

4.2 Bulk PDOS

The measured S(Q,ω) can be seen in Fig. 4.3 for Ei = 40 and 200 meV. At energy

transfer near 0 meV the elastic line makes it difficult to investigate phonon modes

due to the instrumental resolution. Data above 85% of Ei are extremely noisy and

removed. As a result, the PDOS is best analysed in the range 5 meV to 35 meV

using the high-resolution 40 meV data, whilst the 200 meV data provides coverage

elsewhere.

The PDOS, g(E), can be calculated from first principles as:

4.2. Bulk PDOS 79

g(E) = B
∑
j

{
4πb2j
mj

}
gj(E), (4.2)

where B is a normalisation constant and bj, mj, gj(E) are the neutron scattering

length, mass and partial density of states of the jth atom [49]. The partial density of

states is obtained by summing the contribution from each phonon mode, ν, i.e.:

gj(E) =
∑
ν

∫
d~k

4π3
|eν(j)|2δ(E − Eν(~k)), (4.3)

where ~k is the phonon’s reduced wavevector, eν(j) the normalised phonon eigenvector

of the νth mode for the jth atom and Eν its associated energy.

The calculated PDOS obtained from Eq. (4.2) is idealised, and the obtained PDOS

consists of only very sharp delta functions. A more realistic PDOS is obtained by

applying broadening to account for the instrumental resolution, finite-size effects,

scattering from phonons, etc.

To account for the phonon broadening, a damped harmonic oscillator model was

used:

f(ω) =
1

πQfω′
1

(ω′/ω − ω/ω′)2 + 1/Q2
f

, (4.4)

where ω′ is the frequency of the phonon mode and Qf the quality factor [50].

The instrumental resolution of MARI is well characterised and can be calculated

using a program called PyChop, provided by the excitations group [51].

In the 200 meV data shown in Fig. 4.3a there is scattering present with energy

transfer up to 120 meV, visible at high Q (12 Å
−1

to 16 Å
−1

); this is most clearly seen

in the PDOS in the right inset.

4.2. Bulk PDOS 80

Since the phonon dispersion calculated in Section 3.1 shows the mode with the

highest energy is approximately 75 meV, and the signal observed gets more intense as

Q increases, this suggests multi-phonon scattering that needs to be accounted for to

properly model these data.

This can be calculated by convolving the one-phonon PDOS with itself in order

to get a 2-phonon component, g
(2)
j (E), and then finding the total PDOS as:

g
(total)
j (E) = A(g

(1)
j (E) +Bg

(2)
j (E) + ...), (4.5)

where A is an arbitrary scaling and B the weighting factor of the two-phonon com-

ponent obtained from empirical fits. Thus, the PDOS was calculated as follows:

1. The idealised PDOS is calculated using Eqs. (4.2) and (4.3).

2. The idealised PDOS is convolved with Eq. (4.4) to apply phonon broadening.

3. The multi-phonon scattering is calculated using Eq. (4.5).

4. Finally, the instrumental resolution function obtained from PyChop is applied.

The measured and calculated PDOS at Ei = 40 and 200 meV for the bulk sample

can be seen in Fig. 4.4, with a value of B = 0.8(4). The PDOS has been plotted over

the full range measured, using the high-resolution data in the range 5 meV to 35 meV.

At low energies, the damped harmonic oscillator is in very good agreement with

the data, however this model does not work so well for the optic modes [50] and is

unable to fit the higher energy data. It is noteworthy that this model works very

well for the low-energy acoustic phonons of nanocrystalline Si1−xGex, but the authors

acknowledge that the model fails at higher energies for the optic phonons [52].

4.2. Bulk PDOS 81

(a)

(b)

Figure 4.3: Measured S(Q,ω) for the bulk powder at T =
300 K, Ei = 200 (a), and 40 meV (b). The PDOS can also be
seen, for reference on the right, plotted in blue, which has been
computed from these data using the MARI reduceToDOS tools.

4.2. Bulk PDOS 82

(a) (b)

Figure 4.4: Measured (blue) and calculated (green) PDOS for
the bulk powder at T = 300 K, Ei = 40(a) and 200 meV (b).
The damped harmonic oscillator model works well at lower en-
ergies, but is unable to fit the high energy data. IT should be
noted that the weighting values of the one- and two-phonon
component are fitted parameters in these plots.

4.3. Nanostructured ZnO 83

4.3 Nanostructured ZnO

A comparison of the measured S(Q,ω) for the bulk and FSP powders can be seen in

Fig. 4.5. There is a strong signal clearly visible at 120 meV at lower Q, between 5 Å
−1

to 10 Å
−1

for the FSP sample.

(a) (b)

Figure 4.5: Measured S(Q,ω) for bulk (a) and FSP (b). There
is a clear signal at 120 meV present only in the FSP data.

4.3.1 Hydroxyl Contaminant

Examination of the FSP data shows significantly higher incoherent scattering, seen

most clearly with slices through the elastic line. These slices can be seen for T =

300, 500, 700 and 900 K in Fig. 4.6, and show the difference is eliminated by T = 900 K.

A final measurement was performed on the FSP sample, at 330 K after the sig-

nal was eliminated, and shows the difference originally seen was no longer present.

Comparison of the elastic slice with the bulk 300 K and FSP 330 K data shows little

difference and can be seen in Fig. 4.7. This measurement was performed at 330 K as

a compromise, as it was desired to keep the powder under vacuum making cooling to

4.3. Nanostructured ZnO 84

(a) (b)

(c) (d)

Figure 4.6: Elastic line measured at T = 300 (a), 500 (b), 700
(c) and 900 K (d). At low Q the increased incoherent signal is
clearly present in (a), however this difference is eliminated by
T =900 K.

room temperature infeasible during the remaining beam time.

The original FSP measurement appears to contain some contaminant removed by

high-temperature annealing, which consequently leads to the FSP sample becoming

very similar to the bulk. Understanding the measured FSP data requires correcting

this contaminant. Unexpected hydrogen absorption and surface adsorption have been

reported in metal-oxides, particularly in the case of nano-powders [53], and would

explain the large increase in incoherent scattering.

The two room temperature FSP measurements were subtracted from each other to

4.3. Nanostructured ZnO 85

Figure 4.7: Elastic line measured at T = 330 (red) for the FSP
powder after annealing at 900 K for 24 hours. The original
measured data at 300 K can also be seen for FSP (green) and
bulk (blue) for comparison.

obtain the difference due to annealing, and can be seen in Fig. 4.8. The dominating

feature was identified as an in-plane bend of a surface zinc hydroxyl [54, 55] after

discussions with Dr. Stewart Parker.

The incoherent scattering for a mode with energy, ω0, can be calculated as:

Sinc(Q,ω) ∝ e−〈u2〉Q2

δ(ω) +
〈
u2
〉
Q2e−〈u2〉Q2

δ(ω − ω0) + ..., (4.6)

where 〈u2〉 is the mean square displacement [56].

An estimate of 〈u2〉 can be obtained by fitting the Q dependence of the elastic

scattering measured using the first term in Eq. (4.6). Similarly, the hydroxyl mode

4.3. Nanostructured ZnO 86

Figure 4.8: Result of subtracting S(Q,ω) measured for FSP
before and after annealing.

can be accounted for by first determining ω0, and then fitting the second term.

4.3.2 Hydroxyl Corrections

An energy slice,
∫ 11

5
S(Q,ω)dQ, was computed to obtain an estimate of ω0. The slice

can be seen in Fig. 4.9 and shows one well-defined peak, with ω0 = 112.9(2) meV.

The mean square displacement, 〈u2〉, was fitted from the elastic data and a value

of 1.59× 10−2 Å
2

obtained. The fitted 〈u2〉 and ω0 were used to calculate the inelastic

slice, and is in excellent agreement with the data. Fits of the two constant-energy

slices can be seen in Fig. 4.10.

With the hydroxyl contributions suitably fitted, it is possible to use the model to

4.3. Nanostructured ZnO 87

Figure 4.9: Energy slice at Q = 8 Å
−1

with width 6 Å
−1

of the
data shown in Fig. 4.8. The hydroxyl mode peak position is
determined as 112.9(2) meV using a Gaussian fit with sloped
background.

correct the originally measured S(Q,ω). The corrected 300 K S(Q,ω) can be seen in

Fig. 4.11.

A comparison of the corrected PDOS for the annealed, original and bulk samples

can be seen in Fig. 4.12. The corrected PDOS does show significant differences from

both the bulk and annealed FSP powders most notably in additional broadening. The

similarity in the FSP annealed data, also seen in Fig. 4.7, suggests this sample is now

of similar crystallite size as the bulk sample, however it was not possible to charac-

terise the FSP sample after annealing. A more careful investigation of the effects of

annealing on crystallite size could lead to further insights into potential thermoelec-

tric applications, as this suggests high-temperature use such as in car exhausts would

be infeasible. Multi-phonon scattering seen around 115 meV, previously obscured by

4.3. Nanostructured ZnO 88

(a) (b)

Figure 4.10: Slices of the contaminated FSP data for E = 0 (a)
and 113 meV (b). Calculations for the fitted 〈u2〉 can be seen
in blue.

the hydroxyl mode, is still visible.

4.3. Nanostructured ZnO 89

(a) (b)

Figure 4.11: The 300 K data measured for the FSP sample be-
fore (a) and after (b) corrections for the zinc surface hydroxyls.

Figure 4.12: The PDOS for the FSP data after hydroxyl correc-
tions. The FSP (blue), corrected (red), annealed (green) and
bulk (cyan) PDOS can be seen for comparison. The FSP af-
ter annealing and the bulk samples both look very similar. The
corrected PDOS still has some additional scattering at 115 meV
and shows clear differences from the annealed measurement. It
was unfortunately not possible to empirically characterize the
annealed FSP sample, and it is only suspected the two are now
very similar due to measurements of the elastic line.

4.4. Alternative PDOS Modelling 90

4.3.3 Calculated PDOS

With these corrections it is now possible to model the PDOS, as done in the end of

Section 4.2. A plot equivalent to Fig. 4.4 can be seen in Fig. 4.13. The model is

unable to get good agreement with the FSP data, even for the high-resolution low

energy data.

(a) (b)

Figure 4.13: Measured (blue) and calculated (green) PDOS for
the FSP powder at T = 300 K, Ei = 40(a) and 200 meV (b).

4.4 Alternative PDOS Modelling

It was not possible to get good agreement with the high-energy data using the damped

harmonic oscillator model for any values of Qf for either sample. The 40 meV data

is well-reproduced, however only for bulk. Alternative models are presented which

describe the phonon broadening due to phonon lifetimes.

The simplest, somewhat crude model uses a single lifetime (henceforth the “fixed-

lifetime model”). In this model it is assumed the lifetimes can be described by some

average value, 〈τ〉. Calculating the PDOS is equivalent to the steps described in

Section 4.2, however instead of convolving with Eq. (4.4), a Gaussian was used. An

4.4. Alternative PDOS Modelling 91

(a) (b)

(c) (d)

Figure 4.14: Measured (blue) and calculated (green) PDOS for
the bulk (a, b) and FSP (c, d) powder at Ei = 40 (a) and
200 meV (b) using the fixed lifetimes model.

average phonon lifetime of 0.92 ps was obtained from this fit for the bulk powder,

which is not far from the values obtained from the Merlin data.

Plots of this model for the Bulk, and FSP, samples can be seen in Fig. 4.14 for

both incident energies. The fixed lifetime gives a reasonable fit for the 40 meV Bulk

and FSP data, however it still struggles to fit the higher energy modes. At this point

it is interesting to note that whilst the peak at 70 meV appears well aligned with the

data, the multi-phonon peak measured is clearly softer. An anharmonic model for the

multi-phonon scattering may provide better agreement.

A phonon’s lifetime has associated with it a mean free path (MFP), x̄, which can

4.4. Alternative PDOS Modelling 92

be calculated from the group velocity as:

τ(~k, ν) =
x̄

vg(~k, ν)
. (4.7)

Group velocities can be determined ab initio from the gradient of the dispersion.

From these considerations it is not surprising fits to the higher energy modes are less

successful. The optic modes have low group velocities which may have very different

lifetimes to those of the acoustic phonons.

To capture this a more sophisticated model, the fixed MFP model, was used. The

suppression of thermal conductivity in the nanostructured powders is suspected to be

due to finite-size effects, and so this can be described as the MFP being limited by

the crystallite size: 15.3 nm for FSP and 117 nm for bulk.

In this model, the phonon broadening widths are based on lifetimes determined

from the phonon’s group velocity. As a result acoustic modes with large vg have much

shorter lifetimes than the optic modes. Results using the novel, fixed MFP, model

can be seen in Fig. 4.15.

This model has the most consistent agreement, and is the only model to give rea-

sonable fits for the 200 meV data. The acoustic modes with the greatest vg are not well

described in this model. Fitted parameters from these models can be directly related

to the thermal conductivity, a major advantage over the model used in Section 4.2.

Attempts were made to go beyond the harmonic two-phonon approximation, how-

ever these calculations were difficult and unfruitful, and were not further investigated.

4.4. Alternative PDOS Modelling 93

(a) (b)

(c) (d)

Figure 4.15: Measured (blue) and calculated (green) PDOS for
the bulk (a, b) and FSP (c, d) powder at Ei = 40 (a) and
200 meV (b) using the fixed MFP model.

4.4.1 Calculating the Thermal Conductivity

The lattice contribution to the thermal conductivity can be calculated as:

κL =
∑
ν,Q

cν(Q, T)vg(Q, ν)2τ(Q, T, ν) (4.8)

where vg(Q, ν) is the group velocity, cν(Q, T) the specific heat capacity and τ(Q, T, ν)

the lifetime of the ν-th phonon [57]. From the two models discussed in Section 4.4,

we can approximate Eq. (4.8) in one of two ways using Eq. (4.7), i.e.:

4.5. Single-Crystal Thermal Conductivities 94

κL ≈
∑
ν,Q

cν(Q, T)vg(Q, ν)2 〈τ〉 (4.9)

≈
∑
ν,Q

cν(Q, T)vg(Q, ν) 〈x〉 , (4.10)

where 〈τ〉 and 〈x〉 are the fixed lifetimes or MFP from the model. The average

lifetime, 〈τ〉, must be determined empirically, however in the fixed MFP approach,

〈x〉 is simply a parameter, in this case taken to be the crystallite size. Thus the fixed

MFP model provides an ab initio method for calculating the thermal conductivities.

The specific heat capacity can be calculated from the dispersion assuming Bose

statistics, simply as:

c~k,ν =
kB
V

(
E(~k, ν)

kBT

)2
e
E(~k,ν)
kBT

(e
E(~k,ν)
kBT − 1)2

, (4.11)

where E(~k, ν) is the eigenenergy of the ν-th phonon mode.

4.5 Single-Crystal Thermal Conductivities

Measurements of the thermal conductivity of single-crystal ZnO were performed in

situ using the xenon-flash method described in Section 2.4 at Johnson Matthey with

Dr. Chris Nuttall. The apparatus used provides measurements of the heat capacity

and thermal diffusivity from which the thermal conductivity can be obtained.

Three small, thin (1× 10× 10 mm) single-crystals of ZnO, purchased from Good-

Fellow, were measured. Two of the substrates were left as-grown with [001] and [100]

4.5. Single-Crystal Thermal Conductivities 95

aligned normal to the square face. The third substrate, also with [001] normal, was

given a O-annealing treatment described in more detail in Section 5.1.

4.5.1 Density Measurements

For these measurements the densities of the single-crystal substrates were measured

using an Archimedes balance; for which a schematic diagram can be seen in Fig. 4.16.

Figure 4.16: Schematic diagram of an Archimedes Balance used
for determining the density of materials. There are two trays to
place the sample, labelled the density pan. One tray places the
sample above the liquid whilst the other is submerged. Tem-
perature readings from the thermometer are used to obtain the
density of the liquid, and is the largest source of error in these
measurements. [58]

This technique exploits Archimedes’ principle, which states “a body immersed

(partially or fully) in a liquid (or gas) is subject to an upward force equal to the

weight of the liquid (or gas) it displaces.”, in order to determine the densities of solids

[58]. A well-characterised liquid, thermometer and set of measuring scales are used to

measure the weight of a body both in air and in the liquid. To measure the densities of

the ZnO subtrates, a beaker of ethanol at 19 ◦C was used. All substrates thicknesses

were measured with a vernier caliper at 6 different positions in different directions,

and found to be uniform and very close to the nominal thickness, with a measured

4.5. Single-Crystal Thermal Conductivities 96

range of thicknesses from 0.987 mm to 1.020 mm. Measured thicknesses and densities

can be seen in Table 4.1.

Sample Density (g cm−3) Thickness (mm)
As-grown [100] 5.56(2) 1.020(6)
As-grown [001] 5.55(5) 0.987(5)

O2 [001] 5.54(6) 0.988(4)

Table 4.1: Densities and thicknesses of the ZnO substrates mea-
sured using vernier callipers and the Archimedes balance. Re-
ported values are the aggregate of 6 measurements.

4.5.2 Heat Capacity

The LFA 500 is not optimised for measurements of the heat capacity, particularly for

translucent samples like the single crystals used [35]. Nonetheless the heat capacity

is a straightforward ab initio calculation and this provides another test of the first-

principle calculations. The heat capacity measured, CP , and calculated, CV , for bulk

ZnO can be seen in Fig. 4.17 and shows reasonable agreement to within about 10%.

Figure 4.17: ZnO Heat Capacity measured using the LFA 500
(green), and calculated (blue) from first principles.

4.5. Single-Crystal Thermal Conductivities 97

4.5.3 Thermal Conductivity

The thermal conductivities for the [001], [100] and O2 (also [001]) substrates can be

seen in Fig. 4.18. Whilst there is a clear systematic increase in measured thermal

conductivities in the [001] direction, annealing in oxygen appears to have little effect

on the thermal conductivity. Hence, intrinsic defects have very little effect, but the

thermal conductivity is anisotropic.

In addition, Fig. 4.18 includes a number of thermal conductivities reported in

the literature. The bulk, single-crystal measurements performed are consistent with

those reported for polycrystalline ZnO [36], which lie between the [001] and [100]

measurements due to powder averaging. Calculations of the bulk thermal conductivity

at 300 K using the two models in Eq. (4.9) can also be seen as stars. The fixed

lifetime model gives a reasonable estimate of the thermal conductivity, whilst the

ab initio model performs extremely well. The measurement of the nanostructured

sample reported with ultra-low thermal conductivity [19] is included as a cross, and

the calculation using the ab initio model is in excellent agreement.

It was not possible to perform measurements of the FSP thermal conductivities,

since the FSP sample turns into the bulk after annealing, and measurements require

sufficiently densified pellets [35] which would be fabricated using a hot press, inducing

annealing. Calculating the thermal conductivity using the fixed MFP model is not

helpful without benchmarks, and comparisons with the measured PDOS, as done

for the 300 K data, are not feasible without additional measurements of the powder

after annealing to correctly subtract the hydroxyl contaminant and obtain sensible

estimates of 〈x〉.

It is not possible to calculate the temperature dependence of the thermal conduc-

4.5. Single-Crystal Thermal Conductivities 98

tivities from these data using the fixed lifetime model, as the instrumental resolution

and flux make it difficult to fit phonon lifetimes sufficiently accurately. The phonon

lifetimes extracted from the Merlin data in Section 3.3 were also used to obtained

estimates of the thermal conductivity at 300 and 550 K. The room temperature value

is in good agreement, however this decreases at higher temperatures. It is believed

that at higher temperatures there is more multi-phonon scattering, which this model

does not include. Both values obtained from the Merlin data give good qualitative

agreement, which is as good as one can expect from a single phonon. It would be

more reliable to estimate the average phonon lifetime from many more phonons at

different locations on the dispersion.

4.5. Single-Crystal Thermal Conductivities 99

Figure 4.18: Thermal conductivities of the as-grown substrate
along [100] (green); [001] (blue); and the oxygen annealed sub-
strate (red), also along [001], measured with the LFA-500. Mea-
surements reported for the bulk (triangles) [36] and nanostruc-
tured (X) [19] samples can be seen for comparison and show
these measurements are consistent with those reported. Cal-
culations of the thermal conductivities can be seen (stars) us-
ing the fixed lifetime model, with lifetimes extracted from the
MARI (cyan) and Merlin (purple) data. The Fixed M.F.P.
models for bulk (black) and nanostructured (yellow) ZnO can
also be seen.

4.6. Summary 100

4.6 Summary

Two powders were prepared to investigate the effect of nanostructuring on the lattice

vibrations, and hence thermal conductivities. One powder, named bulk, with nominal

crystallite size of 117 nm was compared with a nano-crystallite powder, named FSP,

with nominal crystallite size 15.3 nm.

Initial measurements show the presence of additional incoherent scattering in the

nano-structured powder which was attributed to zinc surface hydroxyls. These impu-

rities can be completely removed by annealing under vacuum at 900 K for 24 hours,

however this also induces growth of crystallites leading to a very similar PDOS to the

bulk sample. Since any heat treatment changes the nanostructured grain size, leading

eventually towards bulk properties, this is not promising for high temperature ther-

moelectric applications, however this does not rule out uses near room-temperature,

for example personal monitors.

The hydroxyl contaminated data was corrected for by modelling the hydroxyl

contribution as incoherent scattering from a harmonic oscillator. The corrected PDOS

show significant differences from the same sample after annealing at 900 K.

Attempts to fit the PDOS using the dampled harmonic oscillator model work very

well for the low-energy, bulk data, however this model was unable to correctly describe

any of the other datasets, including the low-energy FSP data.

A novel model, based on considerations of the phonon lifetimes from a mean

free path due to crystallite size, was compared and this fixed MFP model shows

the most consistent agreement with all the measured PDOS. The fixed MFP model

allows calculation of the thermal conductivities which are in excellent agreement with

these measurements, and other similar measurements reported in the literature. It is

4.6. Summary 101

difficult to perform these calculations at higher temperatures as it is only possible to

analyse the corrected, room temperature FSP data due to the surface hydroxyls. Since

the fixed MFP model gives such good agreement with measurements, this suggests

the finite-size effects dominate for samples with ultra-low thermal conductivity.

It is worth pointing out that it is possible to lower the thermal conductivity fur-

ther by doping with additional benefits for electrical aspects of the thermoelectric

properties [19]. However, given that doping is accompanied by a change in the aspect

ratio and a reduction in the average grain size, it is likely that nanocrystal size effects

are still the dominant factor in determining the thermal conductivity.

Measurements of the thermal conductivities for the FSP powder could provide

further insight, however it is difficult to obtain sufficiently densified pellets from the

powder without hot-pressing, which could induce similar growing of crystallites as

seen when annealing at high temperature to remove surface hydroxyls.

The thermal conductivities of thin single-crystal substrates were measured, and

showed oxygen annealing has little effect on the thermal conductivity. Thermal con-

ductivities were calculated for the bulk sample using a crude model of a single average

lifetime and show a remarkably good agreement with experimental data given the sim-

plicity of the model.

The observed red-shift of the multi-phonon scattering is a clear indication of an-

harmonic effects, and it is likely that these would need to be taken into account to

obtain a more accurate model of the thermal conductivity. However, the harmonic

model employed here is remarkably successful in describing the experimental thermal

conductivity, and is sufficient to demonstrate the dominance of crystallite size over

intrinsic defects.

Chapter 5

Defects in ZnO

ZnO is an important semiconductor beyond thermoelectric applications, and is widely

used in piezoelectric transducers, acoustooptic media, conductive gas sensors, trans-

parent conductive electrodes and varistors [59]. It can be easily doped n-type, but

p-type doping is difficult [6]. This has been attributed to the nature of its intrinsic

defects [7].

The crystal structure and stoichiometry can be determined using diffraction. Dif-

fuse scattering can be used to better understand defects in the crystal, for example

whether vacancies are randomly distributed or prefer to form superstructures in a

non-stoichiometric system [11]. One-phonon excitations also give rise to a diffuse

signal in Laue neutron time-of-flight experiments [60], which complicates analysis as

separating these two components is not trivial.

The experimental procedure for SXD measurements is outlined in Section 5.1. The

two sources of diffuse scattering, structural defects and mislabelled inelastic processes,

are examined in Sections 5.2 and 5.3. The intrinsic defect structure determined using

a combination of ab initio and semi-empirical classical models is shown in Section 5.4.

102

5.1. Experimental Procedure 103

5.1 Experimental Procedure

Two high quality, thin (2× 8× 8 mm) single crystals were purchased from Goodfellow.

One crystal was annealed in an oxygen atmosphere at 700 K for 24 h, hereafter named

O-annealed , to investigate potential oxygen defects reported from first-principle cal-

culations [9]. The other, left as purchased, was named as-grown . The samples were

measured at two temperatures: T = 30 and 300 K.

The large crystal measured in Section 3.2 was also measured on SXD at three tem-

peratures: T = 300, 600 and 900 K. Inelastic scattering increases with temperature

and structural diffuse scattering remains roughly constant, provided the concentration

of defects is fixed, the diffuse intensity should decrease slightly with the Debye-Waller

factor. Thus measuring the temperature dependence can aid distinguishing inelastic

features from those coming from defects.

Samples were mounted on aluminium pins and secured using a small quantity of

thin aluminium tape for the substrates, and wire for the large crystal. The sample

mount was then shielded using cadmium for T = 30 and 300 K, and gadolinium

for furnace measurements. For the thin crystals, samples were cooled to 30 K using

a CCR. Measurements of the large crystal were performed in a furnace. For all

measurement configurations, a null scattering V sample had been previously measured

to correct for incident flux. Background measurements were performed on the empty

sample mount, including fastening aluminium wire. Typical measurements consist of

five or more orientations for at least three hours per orientation.

These data were processed using SXD2001, software provided by the crystallogra-

phy group at ISIS [61]. This software processes the raw data as follows:

1. Normalise the raw data, V/Nb and background measurements by beam current.

5.1. Experimental Procedure 104

2. Subtract normalised background from the normalised data.

3. Normalise the background-subtracted data with the V data.

4. Pixel detectors’ angular positions and t.o.f. are mapped to reciprocal space

using the modelled geometry of SXD.

5. The volumetric data is exported to allow further analysis and visualisation using

other programs.

For each sample measured at a given temperature, the orientation which led to

the brightest peaks in the high-resolution detectors was used to calculate the UB

matrix. Peak positions were determined using a 3D Gaussian ellipsoid fit and then

used to refine both the instrument model and UB matrix. This UB matrix can be

used for the other orientations using a suitable transformation matrix followed by an

additional refinement iteration to account for any difference between the nominal and

actual orientation.

An obtained UB matrix was determined to be suitable once the following condi-

tions were met:

1. It simultaneously indexes the majority of peaks measured in all detectors.

2. The obtained lattice parameters are suitably close to a = b = 3.2 Å, c =

5.2 Å, α = β = 90◦, γ = 120◦.

3. The above conditions are satisfied starting from the same UB matrix for all

orientations measured of that sample at that temperature.

With a suitable UB matrix, the measured elastic scattering can be plotted in

reciprocal space and compared with calculations. The measurements from different

5.2. Inelastic Scattering on SXD 105

orientations are combined together and symmetrised, a process where symmetrically

equivalent points are folded onto each other to improve counting statistics. Integrated

Bragg peak intensities can be used to perform structure refinements to determine the

stoichiometry of ZnO, as well as to infer the presence of additional scatterers at other

sites in the unit cell. Structural diffuse scattering can then give deeper insight into

the nature of these defects.

5.2 Inelastic Scattering on SXD

5.2.1 Origin of Inelastic Scattering

The inelastic scattering detected on SXD, and other similar diffractometers, has been

well explained in [60] and is detailed here for reference. The geometry of a given

detector pixel is defined by the distance to the sample mount and the angular position

of the pixel: the longitude, δ; and latitude, ν. Let the direction of the neutron beam

be along ~y, such that:

~ki =
2π

λi

0
1
0

 , ~kf =
2π

λf

sin δ cos ν
cos δ cos ν

sin ν,

 (5.1)

where λi, λf are the incident and final wavelengths respectively and, by definition,

equal for an elastic scattering event.

For a single crystal the scattering vector can be obtained as:

~Q = ~kf − ~ki = 2π[T][UB]

hk
l

 , (5.2)

5.2. Inelastic Scattering on SXD 106

where T is a transformation matrix describing the goniometer settings, UB the ori-

entation matrix of the crystal, and h, k, l the Miller indices.

Since SXD is a time-of-flight diffractometer, multiple different wavelengths are

measured simultaneously. Any individual neutron in the beam, labelled i, travels

from the source to the sample in time ti,1, after which it is scattered into a specific

detector. A signal occurs in a detector pixel after some additional time, ti,2, yielding

a total travel time ti = ti,1 + ti,2. The de Broglie wavelength can then be identified,

since:

E =
mv2i

2
=

h2

2m

1

λ2i
, (5.3)

where m is the neutron mass and Ei, vi, λi the energy, velocity and wavelength of any

particular neutron.

Neutrons measured on SXD are placed into histograms based on their time-of-

flight with bin-widths of 1 ms, unlike LET which uses event-mode to not require time-

binning at the expense of larger datasets. Each area detector then has a histogram of

measured intensity, which can be mapped to a volume of reciprocal space and indexed

in terms of (h, k, l) using Eqs. (5.1) and (5.2).

These arguments all hold given the measured scattering is strictly elastic, which

unfortunately is not the case. Inelastic scattering can still occur in the sample and

will lead to changes in the time-of-flight, due to the experimental setup this change

in time-of-flight is indistinguishable from elastic scattering with different wavelength.

These mislabelled neutrons lead to additional, spurious features in the diffraction

pattern, often named thermal diffuse scattering [60]. It is important to account for

this additional signal in order to properly isolate and analyse diffuse scattering from

5.2. Inelastic Scattering on SXD 107

structural defects. It is not feasible to extract the phonon eigenvectors from these

measurements, however it is possible to calculate what the diffuse signal would look

like given a sufficiently well-converged CASTEP calculation and accurately refined

UB matrix.

Using the results of the calculation of the phonon dispersion from Section 3.1, a

program produced by Matthias Gutmann was used to calculate this scattering using

the geometry of SXD. The details of the calculational method can be found in ref

[60] and goes outside the scope of this thesis. However, it is important to note that

these calculations are both extremely computationally expensive and sensitive to the

crystal orientation and scattering geometry.

5.2.2 Measured Inelastic Scattering

The measurements yield large amounts of volumetric data, and 2-dimensional slices

were plotted for visualisation. Arc-like features characteristic of inelastic scattering

can be seen in Fig. 5.1, which shows the plane (h, k, 4) for the thin crystal annealed in

oxygen, measured at 30 K. The reason why arc-like features emerging from Bragg re-

flections is expected for inelastic scattering is because the 1/ω factor in the expression

for the phonon structure factor in Eq. (2.32) is largest here.

In contrast, the same plane can be seen in Fig. 5.2 for the as-grown sample, and

does not have these characteristic arc-like features. In this representation of the data,

the position in ~Q of the inelastic scattering depends upon the particular instrumental

geometry and the orientation of the sample. Hence it is not possible to recombine data

according to the underlying symmetry of the reciprocal lattice for inelastic scattering.

Great care was taken to ensure the orientation of samples were the same for different

5.2. Inelastic Scattering on SXD 108

Figure 5.1: Scattering measured in the (h, k, 4) plane for the O-
annealed sample at T = 30 K. There are arc-like features char-
acteristic of thermal diffuse scattering extending out of Bragg

peaks. Axis units are Å
−1

.

temperatures, so that these features could be compared.

Whilst these arc-like shapes are typical of thermal diffuse scattering, their pres-

ence alone is insufficient to claim they are inelastic in origin. First-principles calcula-

tions that reproduce these signals can give a high level of confidence that the signal

is, indeed, inelastic. Calculating the inelastic contribution from first-principles is a

formidable challenge [60], so the annealed data was examined in order to find a region

with strong, characteristic diffuse scattering that varies with temperature in a single

detector. Calculations for the specific orientation and detector can be seen in Fig. 5.3

5.2. Inelastic Scattering on SXD 109

Figure 5.2: Scattering measured in the (h, k, 4) plane for the
as-grown sample at T = 30 K.

for both temperatures. At 300 K additional arcs appear extending out of Bragg peaks,

which show neutron energy-gain scattering events forbidden at 5 K due to unoccupied

modes.

The diffraction pattern measured for the large crystal in the same region as

Figs. 5.3a and 5.3b at T = 300 and 900 K can be seen in Fig. 5.4 and shows sim-

ilar characteristic features.

Features present only in the thin, oxygen-annealed sample are also visible in the

larger, as-grown sample. Calculations of all detectors were performed at T = 300 K,

and can be seen in Fig. 5.4c.

5.2. Inelastic Scattering on SXD 110

(a) (b)

(c) (d)

Figure 5.3: Inelastic scattering in the (hk3) plane of ZnO. The
data measured at T = 300 K (a) has additional arcs not seen
at T = 30 K (c) due to the occupation of states. These arcs are
well-reproduced from first-principles calculations (b, 300 K; d,
30 K).

5.2. Inelastic Scattering on SXD 111

(a) (b)

(c)

Figure 5.4: The diffraction pattern measured (a, 300 K; and b,
900 K) and inelastic contribution calculated (c, 300 K) in the
(h, k, 4) plane for the large, as-grown sample. Arc-like features
are well reproduced, but diffuse features remain unaccounted
for, for example at (−1, 2, 4). The flat background is notice-
ably higher in the measured data, suggesting the presence of
incoherent scatterers.

5.3. Structural Diffuse Scattering 112

5.3 Structural Diffuse Scattering

The data for the as-grown sample contains diffuse scattering not accounted for by

inelastic scattering, for example at (−1, 2, 4) in Fig. 5.4. A semi-classical ‘balls-and-

springs’ model was used to calculate the structural diffuse scattering. A C++ program

was written which allows investigating potentials defects and implements the ‘ball-

and-spring’ model, which is based on the approach used in ref [11].

5.3.1 Defect Modelling

Given a starting crystal, a large supercell is constructed from periodic repetitions of

the unit cell. Atoms are modelled as points connected by springs to their nearest,

and next-nearest, neighbours. Atoms are defined by their species, position, occupancy

and, optionally, charge. Defects – such as vacancies, inclusions and/or displacements –

can be inserted into the supercell which is then allowed to relax following a ‘balls-and-

springs’ model. A trial displacement is selected at random and the change in Hooke

energy computed as a sum over the displaced atoms and its neighbours, labelled ν,

as:

∆E =
∑
ν

1

2
kν(∆xν)

2, (5.4)

where kν is the spring constant between the displaced atom and its neighbours, and

∆xν the displacement of the atom from its equilibrium position. The trial displace-

ment is then accepted or rejected using the typical Monte-Carlo Metropolis condition

[62].

In the original model presented in ref [11], the spring constants were free variables

in the model that were fitted empirically. In this thesis, the model was modified to

5.3. Structural Diffuse Scattering 113

utilize the calculated phonon modes used extensively in Chapters 3 and 4. With this

modification, the force constants become parameters, obtained from DFT calculations

reducing the degrees of freedom of the model. After the spring relaxation, the elas-

tic scattering is calculated using Eq. (2.19). The force constants obtained for these

calculations are listed in Appendix A.

The O-annealed sample shows mostly inelastic features, whilst the as-grown has

additional structural diffuse scattering which obscures the characteristic arcs from

inelastic scattering. The fact that oxygen annealing appears to eliminate the struc-

tural diffuse scattering suggests that oxygen vacancies are the dominant defects. The

stability of oxygen vacancies is supported by first-principles calculations [63].

The introduction of random oxygen vacancies in the lattice with no other changes

leads to completely flat diffuse scattering. Additional displacements of nearby ions are

required to give diffuse scattering peaks. O vacancies typically induce displacement

of nearby ions due to the change of Coulomb field [11].

The C++ program written was designed to be flexible for a number of potential

defects; it can apply a number of arbitrary changes to the supercell, called muta-

tions, which can have side-effects described by other mutators that are chained to-

gether. The crystal is initialised by specifying atomic species and position to create

an instance of the Crystal class. From the unit cell, helper methods can be used

to create a SuperCell instance which duplicates the unit cell for a number of de-

sired repetitions. The CrystalMutator abstract class allows flexible introduction of

defects. The mutator classes implement two methods: bool filter(Atom) and bool

process(Atom, SuperCell *), which define for which atoms this mutator is valid,

and how to perform the mutation. When performing mutations and relaxations, the

EfficientCrystalRelaxor can be used, which pre-indexes nearest neighbours to min-

5.3. Structural Diffuse Scattering 114

imise computational cost. Example usage, and the C++ source code, can be found

in Appendix C.

5.3.2 Comparison with Measurements

Calculations were performed using a supercell of 64 × 64 × 64 unit cells. O atoms

were selected at random to be removed, and nearest neighbours displaced away from

the vacant site. Calculations were performed for oxygen occupations of 5% vacancies

with initial displacements of 0.1 Å before relaxing, values chosen from structural re-

finements presented later in this chapter. The same plane as in Fig. 5.2 can be seen in

Fig. 5.5 and shows distinct wall-like features, including the diffuse features around the

Bragg peak at (−1, 2, 4). The structural diffuse scattering lies in the same regions as

the inelastic scattering, for example the features at high ~Q, which makes separating

the two more challenging.

Inclusion of H, simply by adding it to assembly of atoms without additional con-

sideration of displacements, does not lead to noticeable changes in the diffraction

pattern. This is due to these calculations not taking incoherent scattering into ac-

count, and the hydrogen inclusion not leading to significant distortions of the lattice

after the Monte-Carlo relaxation.

These wall-like features are similar to the scattering observed in the as-grown

thin samples shown in Fig. 5.2. The non-symmetrised plot of the (hk0) plane can

be seen in Fig. 5.6 for the as-grown and O-annealed samples at 300 K. The as-

grown sample shows strong diffuse scattering, particularly at high Q, however it lacks

the characteristic arcs which can be seen much more clearly in the O-annealed sample.

1-dimensional cuts allow a more quantitative analysis. The integrated intensity for

5.3. Structural Diffuse Scattering 115

Figure 5.5: Structural diffuse scattering calculated for the
(h, k, 3.7) plane for ZnO with 5% O vacancies and nearest-
neighbour displacements of ∼0.1 Å. Wall-like features can be
seen between Bragg peaks.

the dashed red box can be seen in Fig. 5.7 for the as-grown and O-annealed samples at

T = 30 and 300 K. The O-annealed data clearly shows the presence of an additional

signal at 300 K due to occupied phonon modes. In contrast these peaks are not visible

in the as-grown data, instead the overall intensity is increased due to structural diffuse

scattering.

The structural diffuse features are most clearly visible in the as-grown sample.

Annealing in oxygen makes the structural diffuse scattering become negligible, leav-

5.3. Structural Diffuse Scattering 116

(a) (b)

Figure 5.6: The measured diffraction in the (h, k, 0) plane
for the as-grown (a) and O-annealed (b) samples. The as-
grown data has stronger diffuse scattering, particularly wall-
like features at high Q, but lacks the characteristic arcs seen in
the O-annealed sample.

ing diffuse features only from mislabelled inelastic scattering events. The remaining

inelastic signal can be confidently labelled as such, as first-principles calculations re-

produce them very well. Since the thermal diffuse scattering simulations were for

perfect, stoichiometric ZnO this suggests the O-annealed is actually closest to sto-

ichiometric ZnO. Structural diffuse calculations indicate ∼ 5% O vacancies in the

as-grown sample, which is consistent with the idea that O annealing leads to stoichio-

metric ZnO.

5.3. Structural Diffuse Scattering 117

(a)

(b)

Figure 5.7: Line profile of the measured diffraction for O-
annealed (a) and as-grown (b) ZnO along [0.5, Q⊥a∗ , 0]. The
phonon contribution in a) is rather pronounced, particularly in
the 300 K plot. For the as-grown sample the additional struc-
tural diffuse scattering makes it difficult to see the inelastic
contribution as clearly.

5.4. Intrinsic Defects in ZnO 118

5.4 Intrinsic Defects in ZnO

Refinements were performed to determine the crystal structure. Indexed Bragg peaks

and their measured intensities were exported for analysis using the Jana2006 software

package [64]. This program uses atomic coordinates, species and thermal displacement

parameters to model and fit the Bragg peak intensities.

5.4.1 Fourier Maps

An initial model of ZnO1−x was unable to yield convincing refinements. The struc-

ture factor, Fhkl, is the Fourier transform of the atomic scattering length density,

however since only intensities are measured the phase problem does not allow such

straightforward analysis.

In a refinement, the quality is measured by the so-called R-factor (lower is better):

R =

∑
hkl ||Fobs(hkl)| − |Fcalc(hkl)||∑

hkl |Fobs(hkl)|
, (5.5)

where Fcalc(hkl) is the calculated structure factor, |Fobs(hkl)|2 the measured intensity,

and the sum carried out over the measured, indexed Bragg peaks [24].

From the calculated structure factor it is possible to create Fourier difference maps

which can give insight into the source of features not accounted for in the model, in

real space as a scattering density, ρ(x, y, z). This effectively ignores the phase problem

[20] by using only the calculated phases since they cannot be observed. Furthermore,

in principle the summation in Eq. (5.5) would be over all possible hkl, however only a

finite amount are accessible, thus there are no guarantees on the obtained scattering

density, or other parameters, derived thereof.

5.4. Intrinsic Defects in ZnO 119

To investigate the difference in the as-grown sample, Fourier maps were calculated

by modelling stoichiometric ZnO for calculations of Fcalc(hkl). Fourier maps for T =

30 K can be seen in Fig. 5.8, and show negative scattering lengths both at the oxygen

sites and at an interstitial site. Since Zn and O both have a positive neutron scattering

length [23], this suggests the presence of another scatterer. Hydrogen, with its large

incoherent cross section and negative scattering length, fits this as well as results in

Section 5.2. Discrepancies at the O site can be accounted for equivalently with O

vacancies, as this will lower the effective scattering length of atoms at that site.

Figure 5.8: Fourier difference map for the as-grown sample plot-
ted with the nominal positions of oxygen (red) and zinc (grey).
These were computed against a model of perfect, stoichiomet-
ric ZnO and show negative scattering density in interstitial sites
(cyan). There is also negative scattering density present on the
oxygen sites, suggesting O vacancies.

5.4. Intrinsic Defects in ZnO 120

5.4.2 Complimentary X-ray Measurements

After the measurements on SXD, small pieces (approximately 0.3× 0.2× 0.05 mm)

were cleaved from the samples and the x-ray diffraction patterns measured in-house

using a Xcalibur single-crystal diffractometer.

The diffractometer uses a molybdenum source and monochromator to produce x-

rays of a single wavelength, 0.709 Å. The scattering triangle is then defined by the

4-axis goniometer, and scattered x-rays are collected on a large CCD camera covered

with a scintillation screen.

The diffractometer is mostly automated, data collection and initial analysis is per-

formed using the software CrysAlisPro. The Experiment begins by screening samples

to find a well-diffracting sample, for which the software can automatically determine a

suitable unit cell and UB matrix. A number of possible strategies for orientations can

be calculated to survey reciprocal space efficiently based on the crystal symmetries,

however in this case redundant data were measured to allow advanced absorption cor-

rections calculations provided by the software. Peaks are indexed based on their po-

sitions and goniometer settings, since the incident wavelength is fixed. These indexed

peaks can then be exported for structural refinements using Jana2006, equivalent to

the process in Section 5.3.

5.4.3 Structure Refinements

Since the x-rays scatter off electrons instead of nuclei, the atomic form factor per

atom is proportional to the number of electrons, and thus these measurements are

insensitive to hydrogen, and refinements were performed only on the oxygen stoi-

chiometry. For the neutron data hydrogen interstitials were included with fractional

5.5. Summary 121

position (1/3, 2/3, z) where z is fitted. This position was selected from the Fourier

maps, initially with z = 0.76. The refinements give a good R-factor, the quality of fit,

of approximately 5 for x-rays and 9 for neutrons. Full details of the refined hydrogen

occupation, position and oxygen occupation can be seen in Table 5.1.

AsGrown Annealed
Neutrons Xray Neutrons X-rays

30 K 300 K 300 K 30 K 300 K 300 K
R 8.89 9.94 5.26 9.0 8.26 5.31

x in ZnOxHy 0.963(5) 0.941(7) 0.96(2) 0.992(7) 1.023(12) 1.0(2)
y in ZnOxHy 0.223(5) 0.211(10) N/A 0.191(7) 0.235(12) N/A

Hydrogen z pos. 0.7617(4) 0.7559(11) N/A 0.7599(5) 0.7593(9) N/A

Table 5.1: Structure refinements for ZnOxHy. Oxygen occupa-
tions are consistent between x-ray and neutron measurements
for both samples. The as-grown sample has approximated 95%
O occupancies, consistent with results from Section 5.3. From
the Fourier maps, a hydrogen atom was inserted with fractional
position (1/3, 2/3, z).

As suspected from Section 5.3, the O-annealed sample appears most similar to

stoichiometric ZnO, whilst the as-grown sample has 5% oxygen vacancies. Hydrogen

interstitials appear in both samples, consistent with results from Chapter 4.

5.5 Summary

The intrinsic defect structure of ZnO was determined using neutron diffraction for

three samples: two thin crystals of nominally as-grown and O-annealed ; and a larger

crystal of as-grown at a range of temperatures from 5 K to 900 K.

To properly analyse the structural diffuse scattering, the thermal diffuse scatter-

ing was modelled using the same phonon modes obtained in Chapter 3 and showed

good agreement with measurements. Structural diffuse calculations using a Monte-

5.5. Summary 122

Carlo model show similar structural diffuse features with 5% oxygen vacancies and

displacements of the vacancy’s nearest-neighbours by ∼ 0.1 Å. Refinements of the sto-

ichiometry show as-grown with oxygen occupations of 0.95, verified by independent

x-ray measurements, and consistent with structural diffuse scattering calculations.

Hydrogen interstitials were identified from the presence of incoherent scattering and

negative scattering lengths in the Fourier maps. The intrinsic defect structure of ZnO

can be seen in Fig. 5.9.

Figure 5.9: Final refined structure for as-grown ZnO. The atom
colours are as in Fig. 5.8, with the addition of hydrogen (pink).
The occupation of these sites is represented by how filled the
atom is. Occupations are approximately: Zn, 100%; O, 95%;
and H, 20%.

Chapter 6

Summary and Future Outlook

In this thesis the thermal conductivity and intrinsic defect structure of ZnO has been

studied using neutron scattering techniques and ab initio DFT calculations.

The stoichiometry for oxygen was found to be 95% from x-ray and neutron struc-

ture refinements and is further validated by Monte Carlo simulations of the diffuse

neutron scattering. The Monte Carlo simulations of the diffuse scattering, alone, are

not sufficient to understand the diffuse scattering, as there is additional diffuse scatter-

ing from inelastic excitations. Ab initio simulations of the inelastic diffuse scattering

are in excellent agreement with these data, and are also consistent with INS on LET,

Merlin and MARI.

The presence of hydrogen at interstitial sites was observed in the single-crystal

neutron diffraction data, and again with INS measurements of powders. The phonon

density of states measured is well described by the calculated phonon modes using a

model parametrized by a single mean free path. These mean free paths were used to

calculate the thermal conductivity from first principles and are in excellent agreement

with empirical results.

123

124

Calculations using the crystallite size reported for the nanostructured ZnO sample

with ultra-low thermal conductivity, the original motivation of this thesis, are in

excellent agreement. Aluminium doping leads to a further reduction in average grain

size of approximately a factor 2, thus the further reduction in thermal conductivity

by a factor 2 can be understood as the result, primarily, of finite-size effects. For

the bulk sample, calculated values are extremely close to those measured in situ, and

also in remarkable agreement with calculations assuming a model with a single, fixed

lifetime as a variable instead of the mean free path, which yields an average lifetime

of 0.92 ps.

It is possible to extract the lifetime of one phonon mode in the Merlin data,

which was determined to be 1.19 ps, in reasonable agreement with the value obtained

with the powder data. It was not possible to extract many different lifetimes as the

broadening effects are quite subtle. A mode with particularly clean data, sufficiently

isolated from other modes, and with sufficient intensity and coverage, was the only

region it was possible to extract lifetimes from. It would be interesting to obtain much

higher quality energy cuts to determine phonon lifetimes over a range of different

modes across select positions in the first Brillouin zone, using an instrument like

IN8. These measurements would allow further investigation of the capabilities and

shortcomings of the fixed mean free path model, to give better calculations for the

thermal conductivity, including its temperature dependence. Furthermore it would be

interesting to see how this approach works for similar materials, other semi-conductors

with a relatively simple structure, and with a thermal conductivity dominated by

lattice dynamics, for example GaN.

Measurements of the nanostructured powder at a number of temperatures ranging

from 300 K to 900 K show that crystallite size increases rapidly during annealing and

125

becomes bulk-like by 900 K. Furthermore, any zinc surface hydroxyls in the sample are

removed after this heat treatment. Unfortunately this rules out ZnO for reasonably

high-temperature applications such as the proposed car exhaust. A more careful study

of this behaviour, i.e. how rapidly crystallite size grows with temperature, is required

to better understand the useful temperature range for thermoelectric applications.

Finally, measurements of the inelastic scattering show strong, anharmonic phonon-

phonon scattering which these models do not capture correctly. It would be interesting

to see the effect calculations going beyond the simple harmonic approximation have on

the phonon density of states, particularly for the high energy modes. This could give

further insight into the thermoelectric properties, particularly at higher temperatures

where these effects have been shown to become more pronounced.

Bibliography

[1] Ü Özgür, Ya I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin,

S. J. Cho, and H. Morko̧. A comprehensive review of ZnO materials and devices.

Journal of Applied Physics, 98(4):1–103, 2005.

[2] D.C. Look. Recent advances in ZnO materials and devices. Materials Science and

Engineering: B, 80(1-3):383–387, March 2001.

[3] Robert Triboulet. The scope of the ZnO growth. Proceedings of SPIE, 4412:1–8,

October 2000.

[4] Yuki Orikasa, Naoaki Hayashi, and Shigetoshi Muranaka. Effects of oxygen gas

pressure on structural, electrical, and thermoelectric properties of (ZnO)3In2O3

thin films deposited by RF magnetron sputtering. Journal of Applied Physics,

103(11):113703, 2008.

[5] D.C. Look. Recent advances in ZnO materials and devices. Materials Science and

Engineering: B, 80(1):383 – 387, 2001.

[6] D. C. Look, B. Claflin, Ya. I. Alivov, and S. J. Park. The future of ZnO light

emitters. physica status solidi (a), 201(10):2203–2212, 2004.

126

Bibliography 127

[7] S. B. Zhang, S.-H. Wei, and Alex Zunger. Intrinsic n-type versus p-type doping

asymmetry and the defect physics of ZnO. Phys. Rev. B, 63:075205, Jan 2001.

[8] C W Bunn. The lattice-dimensions of zinc oxide. Proceedings of the Physical

Society, 47(5):835–842, September 1935.

[9] S. J. Clark and J. Robertson. Calculation of semiconductor band structures and

defects by the screened exchange density functional. Physica Status Solidi (B)

Basic Research, 248(3):537–546, 2011.

[10] Chris G. Van de Walle. Hydrogen as a cause of doping in zinc oxide. Phys. Rev.

Lett., 85:1012–1015, Jul 2000.

[11] Gabriele Sala, Matthias Gutmann, D. Prabhakaran, D. Pomaranski, C. Mitche-

litis, J.B. Kycia, Dan Porter, Claudio Castelnovo, and Jon Goff. Vacancy de-

fects and monopole dynamics in oxygen-deficient pyrochlores. Nature Materials,

13:488–493, 5 2014.

[12] Zhen-Hua Ge, Li-Dong Zhao, Di Wu, Xiaoye Liu, Bo-Ping Zhang, Jing-Feng Li,

and Jiaqing He. Low-cost, abundant binary sulfides as promising thermoelectric

materials. Materials Today, 19(4):227–239, May 2016.

[13] Fj DiSalvo. Thermoelectric cooling and power generation. Science,

285(5428):703–6, 1999.

[14] R. Hyde and P. Stevenson. The potential for recovering and using surplus heat

from industry. 2014.

[15] G. Jeffrey Snyder and Eric S. Toberer. Complex thermoelectric materials. Nature

Materials, 7:105 EP –, Feb 2008. Review Article.

Bibliography 128

[16] Joseph McDonald and Lee Jones. Demonstration of tier 2 emission levels for

heavy light-duty trucks. SAE International Technical Paper Series, pages 776–

4841, 06 2000.

[17] Aaron D. LaLonde, Yanzhong Pei, Heng Wang, and G. Jeffrey Snyder. Lead

telluride alloy thermoelectrics. Materials Today, 14(11):526 – 532, 2011.

[18] Yoshihiro Inoue, Masaki Okamoto, Toshio Kawahara, Yoichi Okamoto, and Jun

Morimoto. Thermoelectric Properties of Amorphous Zinc Oxide Thin Films Fab-

ricated by Pulsed Laser Deposition. Materials Transactions, 46(7):1470–1475,

2005.

[19] P Jood, R J Mehta, Y Zhang, G Peleckis, X Wang, R W Siegel, T Borca-Tasciuc,

S X Dou, and G Ramanath. Al-doped zinc oxide nanocomposites with enhanced

thermoelectric properties. Nano Lett, 11(10):4337–4342, 2011.

[20] D.S. Sivia. Elementary Scattering Theory: For Xray And Neutron Users. Oxford

University Press, 2011.

[21] J. R. Hook. Solid State Physics (Manchester Physics Series). Wiley, jun 2013.

[22] Rolf Hempelmann. Quasielastic Neutron Scattering and Solid State Diffusion

(Oxford Series on Neutron Scattering in Condensed Matter). Oxford University

Press, 2000.

[23] Varley F. Sears. Neutron scattering lengths and cross sections. Neutron News,

3(3):26–37, 1992.

[24] Martin T. Dove. Structure and Dynamics: An Atomic View of Materials (Oxford

Master Series in Physics). Oxford University Press, 2003.

Bibliography 129

[25] J. M. Carpenter, C.-K. Loong, and Marie-Louise Saboungi. Neutron-scattering

instruments: spectrometers. In Elements of Slow-Neutron Scattering, pages 204–

236. Cambridge University Press.

[26] SXD technical information. https://www.isis.stfc.ac.uk/Pages/

SXD-technical-information.aspx. Accessed: 2019-09-10.

[27] SXD detectors. https://www.isis.stfc.ac.uk/Gallery/sxd.jpg.

Accessed: 2019-09-10.

[28] R.I. Bewley, J.W. Taylor, and S.M. Bennington. LET, a cold neutron multi-

disk chopper spectrometer at ISIS. Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-

ment, 637(1):128–134, May 2011.

[29] J. Peters, J.D.M. Champion, G. Zsigmond, H.N. Bordallo, and F. Mezei. Using

fermi choppers to shape the neutron pulse. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 557(2):580 – 584, 2006.

[30] MARI technical specification. https://www.isis.stfc.ac.uk/Pages/

MARI-technical-specification.aspx. Accessed: 2019-09-10.

[31] MERLIN technical information. https://www.isis.stfc.ac.uk/Pages/

Merlin-technical-information.aspx. Accessed: 2019-09-10.

[32] LET technical information. https://www.isis.stfc.ac.uk/Pages/

Let-technical-information.aspx. Accessed: 2019-09-10.

[33] MARI schematic diagram. . Accessed: 2019-09-10.

https://www.isis.stfc.ac.uk/Pages/SXD-technical-information.aspx
https://www.isis.stfc.ac.uk/Pages/SXD-technical-information.aspx
https://www.isis.stfc.ac.uk/Gallery/sxd.jpg
https://www.isis.stfc.ac.uk/Pages/MARI-technical-specification.aspx
https://www.isis.stfc.ac.uk/Pages/MARI-technical-specification.aspx
https://www.isis.stfc.ac.uk/Pages/Merlin-technical-information.aspx
https://www.isis.stfc.ac.uk/Pages/Merlin-technical-information.aspx
https://www.isis.stfc.ac.uk/Pages/Let-technical-information.aspx
https://www.isis.stfc.ac.uk/Pages/Let-technical-information.aspx

Bibliography 130

[34] R.I. Bewley, R.S. Eccleston, K.A. McEwen, S.M. Hayden, M.T. Dove, S.M. Ben-

nington, J.R. Treadgold, and R.L.S. Coleman. MERLIN, a new high count rate

spectrometer at ISIS. Physica B: Condensed Matter, 385-386:1029 – 1031, 2006.

[35] Linseis. Light Flash Analysis. Linseis, LINSEIS GmbH Germany, Vielitzer-

str. 43, 95100 Selb, 2019. Accessed online: https://www.linseis.com/

wp-content/uploads/2019/04/LINSEIS-LFA-500_v5_compressed.

pdf.

[36] Toshiki Tsubota, Michitaka Ohtaki, Koichi Eguchi, and Hiromichi Arai. Trans-

port properties and thermoelectric performance of (zn1–ymgy)1–xalxo. J. Mater.

Chem., 8:409–412, 1998.

[37] M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Annalen der

Physik, 389(20):457–484, 1927.

[38] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–

B871, Nov 1964.

[39] Feliciano Giustino. Materials Modelling using Density Functional Theory: Prop-

erties and Predictions. Oxford University Press, jul 2014.

[40] W. Kohn and L. J. Sham. Self-consistent equations including exchange and

correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965.

[41] Veronika Brázdová. Atomistic Computer Simulations: A Practical Guide. Wiley-

VCH, apr 2013.

https://www.linseis.com/wp-content/uploads/2019/04/LINSEIS-LFA-500_v5_compressed.pdf
https://www.linseis.com/wp-content/uploads/2019/04/LINSEIS-LFA-500_v5_compressed.pdf
https://www.linseis.com/wp-content/uploads/2019/04/LINSEIS-LFA-500_v5_compressed.pdf

Bibliography 131

[42] Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso, and Paolo Giannozzi.

Phonons and related crystal properties from density-functional perturbation the-

ory. Rev. Mod. Phys., 73:515–562, Jul 2001.

[43] R. P. Feynman. Forces in molecules. Phys. Rev., 56:340–343, Aug 1939.

[44] K. Refson, P. R. Tulip, and Stewart J. Clark. Variational density-functional

perturbation theory for dielectrics and lattice dynamics. Phys. Rev. B, 73:155114,

2006.

[45] J. Serrano, F. J. Manjón, a. H. Romero, A. Ivanov, M. Cardona, R. Lauck,

A. Bosak, and M. Krisch. Phonon dispersion relations of zinc oxide: Inelastic

neutron scattering and ab initio calculations. Physical Review B, 81(17):174304,

2010.

[46] Xufei Wu, Jonghoon Lee, Vikas Varshney, Jennifer L. Wohlwend, Ajit K. Roy,

and Tengfei Luo. Thermal conductivity of wurtzite zinc-oxide from first-principles

lattice dynamics - a comparative study with gallium nitride. Scientific Reports,

6:22504 EP –, Mar 2016. Article.

[47] Hendrik J. Monkhorst and James D. Pack. Special points for brillouin-zone

integrations. Phys. Rev. B, 13:5188–5192, Jun 1976.

[48] R.A. Ewings, A. Buts, M.D. Le, J. van Duijn, I. Bustinduy, and T.G. Perring.

Horace: Software for the analysis of data from single crystal spectroscopy exper-

iments at time-of-flight neutron instruments. Nuclear Instruments and Methods

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Asso-

ciated Equipment, 834:132 – 142, 2016.

Bibliography 132

[49] R. Mittal, M. K. Gupta, S. L. Chaplot, M. Zbiri, S. Rols, H. Schober, Y. Su,

Th Brueckel, and T. Wolf. Spin-phonon coupling in K0.8Fe1.6Se2 and KFe2Se2:

Inelastic neutron scattering and ab initio phonon calculations. Physical Review B

- Condensed Matter and Materials Physics, 87(18):1–9, 2013.

[50] B. Fultz, C. C. Ahn, E. E. Alp, W. Sturhahn, and T. S. Toellner. Phonons in

nanocrystalline 57fe. Phys. Rev. Lett., 79:937–940, Aug 1997.

[51] PyChop documentaion. https://docs.mantidproject.org/nightly/

interfaces/PyChop.html. Accessed: 2019-09-07.

[52] Zhifeng Ren. High performance bulk thermoelectric materials. Technical report,

March 2013.

[53] M. Wilde, K. Fukutani, M. Naschitzki, and H.-J. Freund. Hydrogen absorption

in oxide-supported palladium nanocrystals. Phys. Rev. B, 77:113412, Mar 2008.

[54] Heshmat Noei, Hengshan Qiu, Yuemin Wang, Martin Muhler, and Christof Wöll.

Hydrogen loading of oxide powder particles: A transmission IR study for the case

of zinc oxide. ChemPhysChem, 11(17):3604–3607, November 2010.

[55] Jennifer Strunk, Kevin Kähler, Xinyu Xia, and Martin Muhler. The surface

chemistry of ZnO nanoparticles applied as heterogeneous catalysts in methanol

synthesis. Surface Science, 603(10-12):1776–1783, June 2009.

[56] J. Tomkinson. Inelastic incoherent neutron scattering spectroscopy of hydrogen

vibrations in metals and molecules. Adam Hilger, United Kingdom, 1988.

[57] D. J. Voneshen, K. Refson, E. Borissenko, M. Krisch, A. Bosak, A. Piovano,

E. Cemal, M. Enderle, M. J. Gutmann, M. Hoesch, M. Roger, L. Gannon, A. T.

https://docs.mantidproject.org/nightly/interfaces/PyChop.html
https://docs.mantidproject.org/nightly/interfaces/PyChop.html

Bibliography 133

Boothroyd, S. Uthayakumar, D. G. Porter, and J. P. Goff. Suppression of ther-

mal conductivity by rattling modes in thermoelectric sodium cobaltate. Nature

Materials, 12(11):1028–1032, August 2013.

[58] A&D Company. AD-1653 Density Determination Kit Instruction Manual. A&D

Company, Limited., A&D Instruments Limited, European Head Office, 2012. Ac-

cessed online: https://www.aandd.jp/products/manual/balances/

ad1653.pdf.

[59] Robert Triboulet. Scope of ZnO growth. Proc SPIE, 4412:1–8, 08 2001.

[60] Matthias J. Gutmann, Gabriella Graziano, Sanghamitra Mukhopadhyay, Keith

Refson, and Martin von Zimmerman. Computation of diffuse scattering arising

from one-phonon excitations in a neutron time-of-flight single-crystal Laue diffrac-

tion experiment. Journal of Applied Crystallography, 48(4):1122–1129, Aug 2015.

[61] M. Gutmann. SXD2001 - a program for treating data from TOF neutron single-

crystal diffraction. Acta Crystallographica Section A, 61(a1):c164, Aug 2005.

[62] Christian P. Robert. The Metropolis–Hastings Algorithm, pages 1–15. American

Cancer Society, 2015.

[63] Anderson Janotti and Chris G. Van de Walle. Oxygen vacancies in ZnO. Applied

Physics Letters, 87(12):122102, 2005.

[64] Petŕıcek Václav, Dusek Michal, and Palatinus Lukás. zkri, volume 229, chapter

Crystallographic Computing System JANA2006: General features, page 345. 2019

2014. 5.

https://www.aandd.jp/products/manual/balances/ad1653.pdf
https://www.aandd.jp/products/manual/balances/ad1653.pdf

Appendices

134

Appendix A

ZnO Force Constants

Atom O1 O2

x y z x y z

O1 x 14.037656 0.003467 -0.103452 -0.22855 0.048834 -0.358682

O1 y 0.003467 14.026205 0.052116 0.048859 -0.1721 0.2072

O1 z -0.103452 0.052116 14.090954 -0.034028 0.019672 -0.469981

O2 x -0.22855 0.048859 -0.034028 14.028913 0.003393 0.103392

O2 y 0.048834 -0.1721 0.019672 0.003393 14.017511 -0.052146

O2 z -0.358682 0.2072 -0.469981 0.103392 -0.052146 13.702774

Zn1 x -0.0497 -0.006475 -0.000134 -6.23803 4.274199 2.974503

Zn1 y -0.00639 -0.057192 0.000198 4.275086 -1.304812 -1.717638

Zn1 z 0.000043 0.000171 -0.487345 2.92105 -1.686601 0.06458

Zn2 x -6.237767 4.274082 -2.974153 1.225213 -0.027753 0.000217

Zn2 y 4.274906 -1.304743 1.717416 -0.027592 1.19278 -0.000326

Zn2 z -2.92103 1.686553 0.06502 -0.000353 0.00008 -9.895889

Table A.1: The force experienced by an atom in response to a
displacement of an oxygen atom.

135

136

Atom Zn1 Zn2

x y z x y z

O1 x -0.0497 -0.00639 0.000043 -6.237767 4.274906 -2.92103

O1 y -0.006475 -0.057192 0.000171 4.274082 -1.304743 1.686553

O1 z -0.000134 0.000198 -0.487345 -2.974153 1.717416 0.06502

O2 x -6.23803 4.275086 2.92105 1.225213 -0.027592 -0.000353

O2 y 4.274199 -1.304812 -1.686601 -0.027753 1.19278 0.00008

O2 z 2.974503 -1.717638 0.06458 0.000217 -0.000326 -9.895889

Zn1 x 11.559857 0.007093 0.104793 0.006727 -0.108457 0.665483

Zn1 y 0.007093 11.556864 -0.053406 -0.108377 -0.118587 -0.384319

Zn1 z 0.104793 -0.053406 11.499448 0.051978 -0.030014 -0.220702

Zn2 x 0.006727 -0.108377 0.051978 11.515479 0.007064 -0.104878

Zn2 y -0.108457 -0.118587 -0.030014 0.007064 11.512572 0.053276

Zn2 z 0.665483 -0.384319 -0.220702 -0.104878 0.053276 11.442804

Table A.2: Force constants for ZnO calcutated using CASTEP.
This matrix shows the force experienced by an Atom in response
to a displacement of a Zinc atom.

Appendix B

Python Scripts

B.1 AtomicFormFactor

1 import numpy as np

2 import matp lo t l i b . pyplot as p l t

3 import os

4

5 ”””

6 This program approximates the atomic form f a c t o r f o r x−ray

↪→ s c a t t e r i n g f o r a number o f e lements and i s o t o p e s

7 For more in fo rmat ion see : http :// lampx . tugraz . at /˜ hadley /

↪→ s s1 / c r y s t a l d i f f r a c t i o n / atomic fo rmfacto r s / f o rmfac to r s .

↪→ php

8

9 The equat ion used :

10

137

B.1. AtomicFormFactor 138

11 sum(i =1 ,4) [a i ∗ exp(−b i ∗ (q/4 p i) ˆ2)] + c

12

13 Where the c o e f f i c i e n t s have been determined e m p i r i c a l l y

14

15 The c o e f f i c i e n t s f o r a wide range o f e lements can be found

↪→ in the accompanying f i l e : c o e f f i c i e n t s . dat

16 In order to add more e lements to th i s , s imply determine

↪→ t h e i r c o e f f i c i e n t s and p lace those in the f i l e

17 format :

18 Symbol (f o r lookup) a1 b1 a2 b2 a3 b3 a4 b4 c

19 note the f i l e i s TAB DELIMITED, no spaces !

20 ”””

21

22 a u t h o r = ’ TimLehner ’

23

24 RESOURCE FOLDER = os . path . j o i n (os . path . dirname (f i l e) , ’

↪→ r e s o u r c e s ’)

25 COEFFICIENTS FILE = os . path . j o i n (RESOURCE FOLDER, ’

↪→ c o e f f i c i e n t s . dat ’)

26

27

28 de f l o a d e q u a t i o n c o e f f i c i e n t s (f i l ename=COEFFICIENTS FILE) :

29 a s s e r t i s i n s t a n c e (f i l ename , s t r)

30

B.1. AtomicFormFactor 139

31 data = np . genfromtxt (f i l ename , d e l i m i t e r=’\ t ’ , dtype=None)

32 r e turn data

33

34

35 de f match element (element symbol , f i l ename=COEFFICIENTS FILE

↪→) :

36 ”””

37 Looks up c o e f f i c i e n t s a i , b i , c from a f i l e f o r a g iven

↪→ element

38

39 : param element symbol : S t r ing − Symbol to search f o r in

↪→ f i r s t column o f f i l ename , e . g . ”H” , ”H1−” e tc

40 : param f i l ename : S t r ing − l o c a t i o n o f symbols and

↪→ r e l a t e d c o e f f i c i e n t s , d e f a u l t : c o e f f i c i e n t s . dat

41 : r e turn : [f l o a t . . .] − Returns the c o e f f i c i e n t s a i

↪→ , b i , c f o r i in [1 , 4]

42 ”””

43

44 a s s e r t i s i n s t a n c e (element symbol , s t r)

45 a s s e r t i s i n s t a n c e (f i l ename , s t r)

46

47 a l l a v a i l a b l e d a t a = l o a d e q u a t i o n c o e f f i c i e n t s (f i l ename)

48

49 f o r current row in a l l a v a i l a b l e d a t a :

B.1. AtomicFormFactor 140

50 i f current row [0] == element symbol :

51 r e turn current row

52

53 # Didn ’ t f i n d i t , prepare e r r o r message . . .

54 message = (”Could not f i n d c o e f f i c i e n t s f o r element \”” +

↪→ element symbol +

55 ”\” , p l e a s e ensure they e x i s t in ” + f i l ename)

56 # Check f o r typos / unmatched element

57 a l t e r n a t i v e s = search e l ement (element symbol)

58 i f l en (a l t e r n a t i v e s) > 0 :

59 message += ”\nDid you mean one o f : ” + ” , ” . j o i n (

↪→ a l t e r n a t i v e s)

60 r a i s e LookupError (message)

61

62

63 de f v e r i f y e l e m e n t i s v a l i d (element symbol , f i l ename=

↪→ COEFFICIENTS FILE) :

64 a s s e r t i s i n s t a n c e (element symbol , s t r)

65 a s s e r t i s i n s t a n c e (f i l ename , s t r)

66

67 a l l a v a i l a b l e d a t a = l o a d e q u a t i o n c o e f f i c i e n t s (f i l ename)

68

69 f o r current row in a l l a v a i l a b l e d a t a :

70 i f current row [0] == element symbol :

B.1. AtomicFormFactor 141

71 r e turn True

72 r e turn Fal se

73

74

75 de f s ea rch e l ement (e l ement symbol pattern) :

76 ”””

77 Returns l i s t o f names o f a l l e lements resembl ing argument .

78 This method a l l ows easy s ea r ch ing f o r supported e lements .

79

80 : param element symbol pattern : S t r ing − As in

↪→ match element () or ElementXRayFormFactor . i n i t ()

81 : r e turn : [S t r ing . . .] − L i s t o f supported

↪→ e lements resembl ing e lement symbol pattern

82 ”””

83

84 a s s e r t i s i n s t a n c e (e lement symbol pattern , s t r)

85

86 e l ement symbol pattern = s t r (e l ement symbol pattern)

87 a l l a v a i l a b l e d a t a = l o a d e q u a t i o n c o e f f i c i e n t s ()

88

89 matches = []

90

91 f o r current row in a l l a v a i l a b l e d a t a :

92 i f e l ement symbol pattern in current row [0] :

B.1. AtomicFormFactor 142

93 matches . append (current row [0])

94 r e turn matches

95

96

97 de f p r i n t a l l a v a i l a b l e e l e m e n t n a m e s () :

98 a l l names = search e l ement (’ ’)

99 pr in t (”The atomic X−ray form f a c t o r can be approximated

↪→ f o r the f o l l o w i n g : ” +

100 ”\n” + ” , ” . j o i n (a l l names))

101

102

103 c l a s s ElementScatterFactor (ob j e c t) :

104 # Wrapper to a l low s e l e c t i o n o f X−rays / Neutrons at

↪→ i n s t a n t i a t i o n .

105

106 de f i n i t (s e l f , e lement symbol , u s ing neut rons=False ,

↪→ coh b=0) :

107 s e l f . s c a t t e r f a c t o r c a l c u l a t o r = ElementXRayFormFactor (

↪→ element symbol)

108 i f u s ing neut rons :

109 s e l f . s c a t t e r f a c t o r c a l c u l a t o r . u se neut rons (coh b)

110

111 de f f (s e l f , q magnitude=0) :

112 r e turn s e l f . s c a t t e r f a c t o r c a l c u l a t o r . f (q magnitude)

B.1. AtomicFormFactor 143

113

114

115 c l a s s ElementXRayFormFactor (ob j e c t) :

116 de f i n i t (s e l f , e lement symbol) :

117 ”””

118 Given element symbol l ook s up the r e l e v a n t c o e f f i c i e n t s

↪→ in c o e f f i c i e n t s . dat]

119

120 Example Usage :

121 H = ElementXRayFormFactor (”H”)

122

123 Errors :

124 Throws LookupError i f g iven symbol does not match

↪→ anything in c o e f f i c i e n t s . dat

125

126 : type s e l f : ElementXRayFormFactor

127 : type element symbol : S t r ing − S p e c i f i e s which

↪→ elements , e . g . ”H” , ”H1−”, ”Zn” etc (s ee c o e f f i c i e n t s .

↪→ dat)

128 ”””

129

130 a s s e r t i s i n s t a n c e (element symbol , s t r)

131

132 data = match element (element symbol)

B.1. AtomicFormFactor 144

133 s e l f . a = [data [1] , data [3] , data [5] , data [7]]

134 s e l f . b = [data [2] , data [4] , data [6] , data [8]]

135 s e l f . c = data [9]

136 s e l f . u s i ng neu t ron s = False

137 s e l f . coh b = 0

138 s e l f . e lement symbol = element symbol

139

140 # pr in t ”Found atom with {0} {1} {2}”. format (s e l f . a , s e l f

↪→ . b , s e l f . c)

141

142 de f use neut rons (s e l f , coh b) :

143 ”””

144 Use t h i s func t i on to re turn neutron s c a t t e r i n g l ength

↪→ only

145

146 examples :

147 Zn : 5 .680

148 O : 5 .803

149

150 : param coh b : f l o a t

151 : r e turn : void

152 ”””

153 s e l f . u s i ng neu t ron s = True

154 s e l f . coh b = coh b

B.1. AtomicFormFactor 145

155

156 de f use xrays (s e l f) :

157 s e l f . u s i ng neu t ron s = False

158

159 de f f (s e l f , q magnitude =0, enab le q=True) :

160 ”””

161 Returns the atomic form f a c t o r f (Q) f o r a g iven Q

162

163 Calcu lated as

164 sum(i =1 ,4) [a i ∗ exp(−b i ∗ (q/4 p i) ˆ2)] + c ,

165 where the c o e f f i c i e n t s have been determined e m p i r i c a l l y .

166 For more i n f o s ee : http :// lampx . tugraz . at /˜ hadley / s s1 /

↪→ c r y s t a l d i f f r a c t i o n / atomic fo rmfac tor s / f o rmfac to r s . php

167

168 : param q magnitude : f l o a t − Magnitude o f Momentum

↪→ Trans fe r Vector

169 : param enab le q : bool − I f False , f (Q) = f (0) f o r a l l

↪→ Q, d e f a u l t : True

170 : r e turn : f l o a t − Atomic Form Factor

171 ”””

172 i f s e l f . u s i ng neu t ron s :

173 r e turn np . z e r o s l i k e (q magnitude) + s e l f . coh b

174 a s s e r t i s i n s t a n c e (enable q , bool)

175

B.1. AtomicFormFactor 146

176 f = 0

177 i f not enab le q :

178 q magnitude = 0

179 f o r i in range (0 , 4) :

180 f += (s e l f . a [i] ∗ np . exp(− s e l f . b [i] ∗ (q magnitude /

↪→ (4 . ∗ np . p i)) ∗∗2))

181 f += s e l f . c

182 r e turn f

183

184

185 i f name == ” main ” :

186

187 xray = ElementScatterFactor (”O”)

188

189 pr in t xray . f (0)

190

191 # Example usage

192

193 # You can f i n d a l l a v a i l a b l e i s o tope s , to add more update

↪→ the c o e f f i c i e n t s . dat f i l e a c co rd ing ly .

194 p r i n t a l l a v a i l a b l e e l e m e n t n a m e s ()

195

196 # simply r e f e r to the element with i t s symbol

B.1. AtomicFormFactor 147

197 # you can use the method search e l ement () or

↪→ p r i n t a l l a v a i l a b l e e l e m e n t n a m e s ()

198 e lements = [”Zn” , ”O1−” , ”O2−”]

199

200 q range = np . l i n s p a c e (0 . , 2 5 . , num=1000) # t h i s equat ion

↪→ i s v a l i d f o r 0 <= q <= 25 Angstromˆ−1

201

202 f o r element in e lements :

203 # load the element

204 cur r ent e l ement = ElementScatterFactor (element)

205 # get the f (q) va lue with the method . . . f (q)

206 # here q can be an array f o r e f f i c i e n c y

207 # no in spec t i on PyTypeChecker

208 f n = cur rent e l ement . f (q range)

209 p l t . p l o t (q range , f n , l a b e l=element)

210

211 p l t . t i t l e (”Atomic form f a c t o r approximation f o r : ” + ” , ” .

↪→ j o i n (e lements))

212 p l t . x l a b e l (r ”$Q / \AAˆ{−1}$”)

213 p l t . y l a b e l (r ” $ f (Q) $”)

214 p l t . l egend ()

215

216 # no in spec t i on PyTypeChecker

217 pr in t ElementScatterFactor (”O”) . f (15)

B.2. geometry.py 148

218

219 p l t . show ()

B.2 geometry.py

1 import numpy as np

2

3

4 de f toRad (degree) :

5 r e turn degree ∗ np . p i / 180 .

6

7

8 de f r o t a t e (theta , a x i s) :

9 n = a x i s / magnitude (a x i s)

10 c = 1 − np . cos (theta)

11 s = np . s i n (theta)

12

13 r e turn np . array ([

14 [1 − c + c ∗ n [0] ∗∗ 2 , c ∗ n [0] ∗ n [1] − s ∗ n [2] , c ∗ n

↪→ [0] ∗ n [2] + s ∗ n [1]] ,

15 [c ∗ n [0] ∗ n [1] + s ∗ n [2] , 1 − c + c ∗ n [1] ∗∗ 2 , c ∗ n

↪→ [1] ∗ n [2] − s ∗ n [0]] ,

16 [c ∗ n [0] ∗ n [2] − s ∗ n [1] , c ∗ n [1] ∗ n [2] + s ∗ n [0] ,

↪→ 1 − c + c ∗ n [2] ∗∗ 2]

B.2. geometry.py 149

17])

18

19

20 de f rotateX (theta) :

21 r e turn np . array ([

22 [1 , 0 , 0] ,

23 [0 , np . cos (theta) , −np . s i n (theta)] ,

24 [0 , np . s i n (theta) , np . cos (theta)]

25])

26

27

28 de f rotateY (theta) :

29 r e turn np . array ([

30 [np . cos (theta) , 0 , np . s i n (theta)] ,

31 [0 , 1 , 0] ,

32 [−np . s i n (theta) , 0 , np . cos (theta)]

33])

34

35

36 de f rotateZ (theta) :

37 r e turn np . array ([

38 [np . cos (theta) , −np . s i n (theta) , 0] ,

39 [np . s i n (theta) , np . cos (theta) , 0] ,

40 [0 , 0 , 1]

B.3. Bravais.py 150

41])

42

43

44 de f magnitude (vec to r) :

45 r e turn np . s q r t (np . dot (vector , vec to r))

46

47

48 de f angle between (v1 , v2) :

49 # a . b = | a | | b | cos (t)

50 r e turn np . a r c co s (np . dot (v1 , v2) / (magnitude (v1) ∗

↪→ magnitude (v2)))

B.3 Bravais.py

1 import numpy as np

2 import math

3 import warnings

4

5 from o b j e c t s . Cry s ta l s . h e l p e r s . geometry import rotateX ,

↪→ rotateY , rotateZ , toRad , magnitude , angle between

6

7 a u t h o r = ’Tim Lehner ’

8

9

B.3. Bravais.py 151

10 c l a s s Bravais (ob j e c t) :

11 ”””

12 The Bravais ob j e c t i s f o r doing c a l c u l a t i o n s concern ing the

↪→ Bravais L a t t i c e .

13 Once i n i t i a l i z e d both the Bravais and Rec ip roca l l a t t i c e

↪→ vec to r s can be acce s s ed as :

14

15 BravaisObject . b rava i s [i]

16 BravaisObject . r e c i p r o c a l [i]

17

18 where i i s a , b , c (∗) r e s p e c t i v e l y (f o r r e c i p r o c a l) .

19

20 Other Bravais c a l c u l a t i o n s supported are :

21

22 BravaisObject . ge t q (h , k , l) − Returns the

↪→ q vec to r [q x , q y , q z]

23 BravaisObject . get q mag (h , k , l) − Returns

↪→ magnitude o f q vec to r from get q (h , k , l)

24 BravaisObject . ge t max imum access ib l e q space (wavelength)

↪→ − Returns [h max , k max , l max]

25

26 ”””

27

28 de f i n i t (s e l f , a , b , c) :

B.3. Bravais.py 152

29 ”””

30 I n i t i a l i z e a new Bravais ob j e c t .

31

32 : param a : array − 3D numpy array o f form [a x , a y ,

↪→ a z]

33 : param b : array − [b x , b y , b z]

34 : param c : array − [c x , c y , c z]

35 ”””

36 s e l f . b rava i s = np . vstack ([a , b , c])

37 s e l f . r e c i p r o c a l = s e l f . c a l c u l a t e r e c i p r o c a l ()

38

39 @classmethod

40 de f fromABCAlphaBetaGamma(c l s , mag a , mag b , mag c , alpha ,

↪→ beta , gamma) :

41 ”””

42

43 : param mag a : double − L a t t i c e parameter a in angstrom

44 : param mag b : double − L a t t i c e parameter b in angstrom

45 : param mag c : double − L a t t i c e parameter c in angstrom

46 : param alpha : double − L a t t i c e ang le alpha in degree

47 : param beta : double − L a t t i c e ang le beta in degree

48 : param gamma: double − L a t t i c e ang le gamma a in degree

49 : r e turn : Bravais ob j e c t

50 ”””

B.3. Bravais.py 153

51

52 r o t mat r i x 1 = rotateZ (toRad (gamma))

53 r o t mat r i x 2 = rotateY (toRad(−alpha))

54

55 a ve c t o r = np . array ([mag a , 0 , 0])

56 b vec to r = np . matmul (ro t matr ix 1 , a ve c t o r) ∗ (mag b /

↪→ f l o a t (mag a))

57 c v e c t o r = np . matmul (ro t matr ix 2 , a ve c t o r) ∗ (mag c /

↪→ f l o a t (mag a))

58

59 r e turn c l s (a vector , b vector , c v e c t o r)

60

61

62 de f ge t q (s e l f , h , k=None , l=None) :

63 ””” Returns the q vec to r f o r a g iven h , k , l in c a r t e s i a n

↪→ coo rd ina t e s

64

65 : param h : i n t

66 : param k : i n t

67 : param l : i n t

68 : r e turn : array − [q x , q y , q z]

69 ”””

70 i f k i s None and l i s None :

71 r e turn np . dot (h , s e l f . r e c i p r o c a l)

B.3. Bravais.py 154

72 e l s e :

73 r e turn (h ∗ s e l f . r e c i p r o c a l [0] +

74 k ∗ s e l f . r e c i p r o c a l [1] +

75 l ∗ s e l f . r e c i p r o c a l [2])

76

77 de f g e t r (s e l f , u , v=None , w=None) :

78 ””” Returns the r vec to r f o r a g iven u , v , w in c a r t e s i a n

↪→ coo rd ina t e s

79

80 : param u : i n t

81 : param v : i n t

82 : param w: i n t

83 : r e turn : array − [r x , r y , r z]

84 ”””

85 i f v i s None and w i s None :

86 r e turn np . dot (u , s e l f . b rava i s)

87 e l s e :

88 r e turn (u ∗ s e l f . b rava i s [0] +

89 v ∗ s e l f . b rava i s [1] +

90 w ∗ s e l f . b rava i s [2])

91

92 de f g e t h k l (s e l f , q ve c to r) :

93 i n v e r s e l a t t i c e = np . l i n a l g . inv (s e l f . r e c i p r o c a l)

94 r e turn np . dot (q vector , i n v e r s e l a t t i c e)

B.3. Bravais.py 155

95

96 de f get uvw (s e l f , r v e c t o r) :

97 i n v e r s e l a t t i v e = np . l i n a l g . inv (s e l f . b rava i s)

98 r e turn np . dot (r ve c to r , i n v e r s e l a t t i v e)

99

100 de f get volume (s e l f) :

101 r e turn np . dot (s e l f . b rava i s [0] , np . c r o s s (s e l f . b rava i s [1] ,

↪→ s e l f . b rava i s [2]))

102

103 de f get q mag (s e l f , h , k=None , l=None) :

104 ”””

105 Returns the magnitude o f the q vector , as de f ined in

↪→ ge t q (h , k , l) above

106

107 : param h : i n t

108 : param k : i n t

109 : param l : i n t

110 : r e turn : f l o a t

111 ”””

112 i f k i s None and l i s None :

113 s e l f . get magnitude (s e l f . g e t q (h))

114 r e turn s e l f . get magnitude (s e l f . g e t q (h , k , l))

115

116 de f get max hkl with qmag (s e l f , qmin=0, qmax=20) :

B.3. Bravais.py 156

117 ”””

118 Returns h max , k max , l max with qmin <= |Q| <= qmax

119

120 : param qmin : i n t

121 : param qmax : i n t

122 : r e turn :

123 ”””

124 i = 0

125 j = 0

126 k = 0

127

128 # We’ re going to encounter warning when we l eave the

↪→ a c c e s s i b l e space

129 # s i n c e t h i s w i l l cause us to compute a r c s i n (x) where | x |

↪→ > 1

130 # we expect t h i s to happen , in f a c t i t w i l l ALWAYS happen

↪→ running t h i s

131 # sec t i on , as a r e s u l t the warning i s suppressed here .

132 with warnings . catch warn ings () :

133 warnings . s i m p l e f i l t e r (” i gnor e ”)

134 whi le qmin <= s e l f . get q mag (i , j , k) <= qmax :

135 i += 1

136 i max = i − 1

137 i = 0

B.3. Bravais.py 157

138 whi le qmin <= s e l f . get q mag (i , j , k) <= qmax :

139 j += 1

140 j max = j − 1

141 j = 0

142 whi le qmin <= s e l f . get q mag (i , j , k) <= qmax :

143 k += 1

144 k max = k − 1

145 r e turn [i max , j max , k max]

146

147

148

149 de f get max imum access ib l e q space (s e l f , wavelength) :

150 ”””

151 Returns the maximum va lues o f h , k , l that w i l l have

↪→ al lowed Bragg r e f l e c t i o n s f o r the g iven wavelength .

152

153 Note [h max , n , n] , [n , k max , n] , [n , n , l max] are

↪→ al lowed ONLY f o r n = 0 .

154

155 : param wavelength : f l o a t − Wavelength , un i t s Angstrom

156 : r e turn : [h max , k max , l max]

157 ”””

158 i = 0

159 j = 0

B.3. Bravais.py 158

160 k = 0

161 # We’ re going to encounter warning when we l eave the

↪→ a c c e s s i b l e space

162 # s i n c e t h i s w i l l cause us to compute a r c s i n (x) where | x |

↪→ > 1

163 # we expect t h i s to happen , in f a c t i t w i l l ALWAYS happen

↪→ running t h i s

164 # sec t i on , as a r e s u l t the warning i s suppressed here .

165 with warnings . catch warn ings () :

166 warnings . s i m p l e f i l t e r (” i gnor e ”)

167 whi le not math . i snan (s e l f . g e t 2 t h e t a (i , j , k ,

↪→ wavelength)) :

168 i += 1

169 i max = i

170 i = 0

171 whi le not math . i snan (s e l f . g e t 2 t h e t a (i , j , k ,

↪→ wavelength)) :

172 j += 1

173 j max = j

174 j = 0

175 whi le not math . i snan (s e l f . g e t 2 t h e t a (i , j , k ,

↪→ wavelength)) :

176 k += 1

177 k max = k

B.3. Bravais.py 159

178 r e turn [i max , j max , k max]

179

180 @staticmethod

181 de f get magnitude (q) :

182 ”””

183 Returns the magnitude o f a g iven vec to r in c a r t e s i a n

↪→ coo rd ina t e s

184

185 : param q : vec to r [v x , v y , v z]

186 : r e turn :

187 ”””

188 r e turn np . s q r t (q [0] ∗∗ 2 + q [1] ∗∗ 2 + q [2] ∗∗ 2)

189

190 @staticmethod

191 de f g e t a n g l e (a , b) :

192 ”””

193 Returns the ang le between given ve c t o r s a , b in c a r t e s i a n

↪→ coo rd ina t e s

194

195 This i s computed us ing the r e l a t i o n :

196

197 A . B = |A | |B | cos (theta)

198

199 theta = arcco s ((A . B) / (|A | |B |))

B.3. Bravais.py 160

200

201 : param a : vec to r [a x , a y , a z]

202 : param b : vec to r [b x , b y , b z]

203 : r e turn :

204 ”””

205 r e turn np . a r c co s ((np . dot (a , b)) / f l o a t (Bravais .

↪→ get magnitude (a) ∗ Bravais . get magnitude (b)))

206

207 de f g e t 2 t h e t a (s e l f , h , k , l , wavelength =0.5) :

208 ”””

209 Returns the 2Theta va lue s f o r a g iven h , k , l at

↪→ s p e c i f i e d wavelength

210

211 : param h : i n t

212 : param k : i n t

213 : param l : i n t

214 : param wavelength : f l o a t − Units Angstrom

215 : r e turn : f l o a t [0 , 180] − 2 Theta in degree s .

216 ”””

217 d i n v e r s e = s e l f . g e t d i n v e r s e (h , k , l)

218 r e turn 2 ∗ (np . a r c s i n (wavelength ∗ d i n v e r s e / 2 .) ∗ 180 .

↪→ / np . p i)

219

220 de f g e t d s p a c i n g (s e l f , h , k , l) :

B.3. Bravais.py 161

221 r e turn 1 . / s e l f . g e t d i n v e r s e (h , k , l)

222

223 de f g e t d i n v e r s e (s e l f , h , k , l) :

224 ”””

225 Returns the d spac ing f o r a g iven h , k , l p lane .

226

227 See https : //www. s c r i b d . com/document /333810781/

↪→ xtalgeometry−pdf f o r more in fo rmat ion on t h i s method

228

229 : param h : i n t

230 : param k : i n t

231 : param l : i n t

232 : r e turn : f l o a t

233 ”””

234

235 volume = s e l f . g e t v o l u m e t r i c l i n i c ()

236 s11 = s e l f . g e t s i i t r i c l i n i c (1)

237 s22 = s e l f . g e t s i i t r i c l i n i c (2)

238 s33 = s e l f . g e t s i i t r i c l i n i c (3)

239 s12 = s e l f . g e t s i j t r i c l i n i c (1)

240 s23 = s e l f . g e t s i j t r i c l i n i c (2)

241 s13 = s e l f . g e t s i j t r i c l i n i c (3)

242

243 r e turn np . s q r t (1 . / volume ∗∗ 2 ∗ (

B.3. Bravais.py 162

244 s11 ∗ h ∗∗ 2 +

245 s22 ∗ k ∗∗ 2 +

246 s33 ∗ l ∗∗ 2 +

247 2 ∗ s12 ∗ h ∗ k +

248 2 ∗ s23 ∗ k ∗ l +

249 2 ∗ s13 ∗ h ∗ l))

250

251 de f c a l c u l a t e r e c i p r o c a l (s e l f) :

252 ”””

253 ! ! ! FOR INTERNAL USE ONLY − Use ob j e c t . r e c i p r o c a l [i]

↪→ i n s t ead ! ! !

254

255 Ca l cu l a t e s the r e c i p r o c a l l a t t i c e v e c t o r s a ∗ , b∗ , c∗

256 This i s automat i ca l l y c a l l e d when the Bravais ob j e c t i s

↪→ i n s t a n t i a t e d and saved as

257

258 BravaisObject . r e c i p r o c a l

259

260 Ca l cu l a t e s as :

261

262 i ∗ = 2 ∗ pi / (i . (j x k)) ∗ (j x k)

263

264 where i , j , k are x , y , z c y c l i c a l l y

265

B.3. Bravais.py 163

266 : r e turn : 3x3 array : [0] = a∗ , [1] = b∗ , [2] = c ∗ , [0] [0]

↪→ = a∗ x etc .

267 ”””

268 a = s e l f . b rava i s [0]

269 b = s e l f . b rava i s [1]

270 c = s e l f . b rava i s [2]

271

272 s c a l i n g = 2 ∗ np . p i / np . dot (a , np . c r o s s (b , c))

273

274 a s t a r = s c a l i n g ∗ np . c r o s s (b , c)

275 b s t a r = s c a l i n g ∗ np . c r o s s (c , a)

276 c s t a r = s c a l i n g ∗ np . c r o s s (a , b)

277

278 r e turn np . vstack ([a s ta r , b s ta r , c s t a r])

279

280 de f g e t s i i t r i c l i n i c (s e l f , i) :

281 c y c l i c l o o k u p l e n g t h s , c y c l i c l o o k u p a n g l e s = s e l f .

↪→ get abc alpha beta gamma ()

282

283 index1 = (i % 3)

284 index2 = ((i + 1) % 3)

285 index3 = ((i + 2) % 3)

286

B.3. Bravais.py 164

287 r e turn (c y c l i c l o o k u p l e n g t h s [index1] ∗∗ 2 ∗

↪→ c y c l i c l o o k u p l e n g t h s [index2] ∗∗ 2 ∗

288 math . s i n (c y c l i c l o o k u p a n g l e s [index3]) ∗∗ 2)

289

290 de f g e t s i j t r i c l i n i c (s e l f , i) :

291 ”””

292

293 : param i : [1 , 2 , 3] maps to S {12} , S {23} , S {13}

↪→ r e s p e c t i v e l y

294 : r e turn : S i j

295 ”””

296 c y c l i c l o o k u p l e n g t h s , c y c l i c l o o k u p a n g l e s = s e l f .

↪→ get abc alpha beta gamma ()

297

298 index1 = ((i + 2) % 3)

299 index2 = (i % 3)

300 index3 = ((i + 1) % 3)

301

302 r e turn (c y c l i c l o o k u p l e n g t h s [index1] ∗

↪→ c y c l i c l o o k u p l e n g t h s [index2] ∗ c y c l i c l o o k u p l e n g t h s [

↪→ index3] ∗∗ 2 ∗

303 (np . cos (c y c l i c l o o k u p a n g l e s [index1]) ∗ np . cos (

↪→ c y c l i c l o o k u p a n g l e s [index2]) −

304 np . cos (c y c l i c l o o k u p a n g l e s [index3])

B.3. Bravais.py 165

305)

306)

307

308 de f g e t v o l u m e t r i c l i n i c (s e l f) :

309 c y c l i c l o o k u p l e n g t h s , c y c l i c l o o k u p a n g l e s = s e l f .

↪→ get abc alpha beta gamma ()

310

311 a , b , c = c y c l i c l o o k u p l e n g t h s [0] , c y c l i c l o o k u p l e n g t h s

↪→ [1] , c y c l i c l o o k u p l e n g t h s [2]

312 alpha , beta , gamma = c y c l i c l o o k u p a n g l e s [0] ,

↪→ c y c l i c l o o k u p a n g l e s [1] , c y c l i c l o o k u p a n g l e s [2]

313

314 r e turn (a ∗ b ∗ c ∗

315 np . s q r t (1 − math . cos (alpha) ∗∗ 2 − math . cos (beta) ∗∗

↪→ 2 − math . cos (gamma) ∗∗ 2 +

316 2 ∗ math . cos (alpha) ∗ math . cos (beta) ∗ math . cos (

↪→ gamma))

317)

318

319 de f get abc alpha beta gamma (s e l f) :

320 a = Bravais . get magnitude (s e l f . b rava i s [0])

321 b = Bravais . get magnitude (s e l f . b rava i s [1])

322 c = Bravais . get magnitude (s e l f . b rava i s [2])

B.3. Bravais.py 166

323 alpha = Bravais . g e t a n g l e (s e l f . b rava i s [0] , s e l f . b rava i s

↪→ [2])

324 beta = Bravais . g e t a n g l e (s e l f . b rava i s [1] , s e l f . b rava i s

↪→ [2])

325 gamma = Bravais . g e t a n g l e (s e l f . b rava i s [0] , s e l f . b rava i s

↪→ [1])

326 r e turn [a , b , c] , [alpha , beta , gamma]

327

328 de f g e t r e d u c e d h k l s (s e l f , hk l s) :

329 ”””

330 Given a r b i t r a r y hkls , r e turn the reduced wavevector k ,

↪→ de f ined as :

331

332 Q = k + v where Q, k , v are a l l 3 d imens iona l vector s ,

↪→ in hkl :

333

334 Q = [h Q , k Q , l Q]

335 k = [h k , k k , l k] h k , k k , l k in [0 , 1]

336 v = [h v , k v , l v] h v , k v , l v a l l i n t e g e r

337 : param qvector :

338 : r e turn :

339 ”””

340 r educed h va l = np . array (hk l s) − np . array (hkls , dtype=i n t

↪→)

B.4. Atoms.py 167

341 de l t a = (−1 ∗ (r educed h va l > 0 . 5)) + (1 ∗ (

↪→ r educed h va l < −0.5))

342 r e turn reduced h va l + de l t a

343

344 de f get reduced wavevector (s e l f , qvector) :

345 r e turn s e l f . g e t q (s e l f . g e t r e d u c e d h k l s (qvector))

B.4 Atoms.py

1 from c a l c u l a t o r s . Scat te r ingLengths . AtomicFormFactor import

↪→ ElementScatterFactor

2 from Bravais import Bravais

3

4 a u t h o r = ’Tim Lehner ’

5

6

7 c l a s s Atom(ob j e c t) :

8 # D e t a i l s atoms (f r a c t i o n a l l o ca t i on , name , s c a t t e r i n g form

↪→ f a c t o r)

9

10 de f i n i t (s e l f , name , s c a t t e r i n g f o r m f a c t o r , po s i t i on ,

↪→ mass=−1) :

11 ”””

12

B.4. Atoms.py 168

13 : param name : S t r ing

14 : param s c a t t e r i n g f o r m f a c t o r : ElementScatterFactor

15 : param p o s i t i o n : [f l o a t , f l o a t , f l o a t] − Frac t i ona l

↪→ coo rd ina te

16 : param mass : Atomic mass in a . u . , l e ave as −1 i f unneeded

17 : r e turn : Atom

18 ”””

19 a s s e r t i s i n s t a n c e (s c a t t e r i n g f o r m f a c t o r ,

↪→ ElementScatterFactor)

20 # a s s e r t i s i n s t a n c e (po s i t i on , l i s t)

21 a s s e r t l en (p o s i t i o n) == 3

22

23 s e l f . mass = mass

24 s e l f . name = name

25 s e l f . f i = s c a t t e r i n g f o r m f a c t o r # Should be o f type

↪→ c a l c u l a t o r s

26 s e l f . l o c = p o s i t i o n

27 s e l f . s c a t t e r F a c t o r S c a l e = 1

28

29 de f g e t l o c (s e l f , b rava i s) :

30 ””” Given a Bravais l a t t i c e (s ee Bravais c l a s s) r e tu rn s

↪→ the c a r t e s i a n coo rd ina t e s o f the atom .

31

B.4. Atoms.py 169

32 e . g . an atom with f r a c t i o n a l coo rd ina t e s (0 . 5 , 0 , 0) in a

↪→ cubic l a t t i c e , a = 10 would re turn (5 , 0 , 0)

33

34 : param brava i s : Bravais ob j e c t

35 : r e turn : Locat ion in c a r t e s i a n (x , y , z) coo rd ina t e s .

36 ”””

37 a s s e r t i s i n s t a n c e (brava is , Bravais)

38 r e turn s e l f . l o c [0] ∗ brava i s . b rava i s [0] + s e l f . l o c [1] ∗

↪→ brava i s . b rava i s [1] + s e l f . l o c [2] ∗ brava i s . b rava i s [2]

39

40 de f s e t s c a t t e r s c a l e (s e l f , s c a l e) :

41 # pr in t ”changed s c a t t e r s c a l e to ” + s t r (s c a l e)

42 s e l f . s c a t t e r F a c t o r S c a l e = s c a l e

43

44 de f g e t f i (s e l f , q magnitude=0) :

45 ”””

46 Returns the atomic form f a c t o r f (Q) f o r a g iven Q

47

48 : param q magnitude : f l o a t − Magnitude o f Momentum

↪→ Trans fe r Vector

49 : r e turn : f l o a t − Atomic Form Factor

50 ”””

51 r e turn s e l f . s c a t t e r F a c t o r S c a l e ∗ s e l f . f i . f (q magnitude)

52

B.4. Atoms.py 170

53 de f d e b y e w a l l e r f a c t o r (s e l f , q ve c to r) :

54 # TODO: Actua l ly implement t h i s

55 r e turn 1

56

57 de f get mass (s e l f , un i t s=” s i ”) :

58 ”””

59 Sometimes i t i s u s e f u l to have the mass o f the atom , but

↪→ t h i s i s not always nece s sa ry

60

61 The opt ion i s a v a i l a b l e , the mass must be s e t at

↪→ i n s t a n t i a t i o n , o the rwi s e t h i s w i l l r a i s e Att r ibuteError

62

63 : param un i t s : I f un i t s = ” s i ” (d e f a u l t) , r e tu rn s kg ,

↪→ otherw i s e atomic mass un i t s .

64 : r e turn : mass (kg or a .m. u .)

65 ”””

66 i f s e l f . mass == −1:

67 r a i s e Att r ibuteError (”The mass o f t h i s atom has not

↪→ been s e t ! ”)

68 a = s e l f . mass

69 i f un i t s . lower () == ” s i ” :

70 a ∗= 1.660539 e−27

71 r e turn a

72

B.5. PhononEigencector.py 171

73 de f use neut rons (s e l f , coh b) :

74 n e w s c a t t e r f a c t o r = ElementScatterFactor (s e l f . f i .

↪→ s c a t t e r f a c t o r c a l c u l a t o r . element symbol , True , coh b)

75 s e l f . f i = n e w s c a t t e r f a c t o r

B.5 PhononEigencector.py

1 import numpy as np

2

3

4 c l a s s PhononEigenvector (ob j e c t) :

5 de f i n i t (s e l f , mode , atom number , x r ea l , x imag ,

↪→ y r ea l , y imag , z r e a l , z imag) :

6 s e l f . mode = mode

7 s e l f . atom number = atom number

8 s e l f . v ec to r = np . array ([x r e a l + 1 j ∗ x imag , y r e a l + 1 j

↪→ ∗ y imag , z r e a l + 1 j ∗ z imag])

9

10 a u t h o r = ’ TimLehner ’

B.6 PhononQPoint.py

1 import numpy as np

2

B.6. PhononQPoint.py 172

3 from PhononEigenvector import PhononEigenvector

4

5

6 c l a s s PhononQPoint (ob j e c t) :

7 ”””

8 PhononQPoint handles a s i n g l e Q point o f a CASTEP . phonon

↪→ f i l e

9

10 There are 3 main parameters o f i n t e r e s t :

11

12 q vec to r − Q vector in c a r t e s i a n co−o r d in a t e s

13 e i g e nv a l u e s − l i s t o f numbers , 1 s t e i g en v a l u e s i s

↪→ acce s s ed with 0 index , as usua l

14 e i g e n v e c t o r d i c t − Dict ionary o f d i c t i o n a r i e s . Accessed

↪→ as e i g e n v e c t o r d i c t [mode number] [atom number]

15 ”””

16

17 de f i n i t (s e l f , hkl) :

18 ”””

19 I n s t a n t i a t e s a PhononQPoint object , ready f o r populat ing

↪→ with e i g enva lue / vec to r p a i r s .

20 ”””

21 s e l f . hkl = hkl

22 s e l f . e i g e n v a l u e s = []

B.6. PhononQPoint.py 173

23 s e l f . e i g e n v e c t o r d i c t = d i c t () # [Mode number] [Atom

↪→ number]

24

25 de f g e t n o r m a l i s e d e i g e n v e c t o r (s e l f , mode number ,

↪→ atom number) :

26 evect = s e l f . e i g e n v e c t o r d i c t [mode number] [atom number]

27 f a c t o r = np . s q r t (np . vdot (evect , evect))

28

29 evect ∗= 1 . / f a c t o r

30 r e turn evect

31

32 de f add e igenva lue (s e l f , e va lu e) :

33 s e l f . e i g e n v a l u e s . append (f l o a t (e va lue))

34

35 de f add e igenvec to r (s e l f , e v e c t o r) :

36 a s s e r t i s i n s t a n c e (e vec to r , PhononEigenvector)

37

38 mode number = e v e c t o r . mode

39 atom number = e v e c t o r . atom number

40 vec to r = e v e c t o r . vec to r

41

42 i f mode number not in s e l f . e i g e n v e c t o r d i c t :

43 s e l f . e i g e n v e c t o r d i c t [mode number] = d i c t ()

44 s e l f . e i g e n v e c t o r d i c t [mode number] [atom number] = vec to r

B.7. PhononReader.py 174

45

46

47 c l a s s SimplePhononQPoint (ob j e c t) :

48 de f i n i t (s e l f , hk l o r phonon q po in t) :

49

50 i f i s i n s t a n c e (hk l o r phonon q po int , PhononQPoint) :

51 a = hk l o r phonon q po in t

52 e l s e :

53 a = PhononQPoint (hk l o r phonon q po in t)

54

55 s e l f . hkl = a . hkl

56 s e l f . e i g e n v a l u e s = a . e i g e n v a l u e s

57 s e l f . e i g e n v e c t o r d i c t = a . e i g e n v e c t o r d i c t

58

59

60 a u t h o r = ’ TimLehner ’

B.7 PhononReader.py

1 import numpy as np

2 import parse

3 from copy import deepcopy

4

5 import matp lo t l i b

B.7. PhononReader.py 175

6

7 f ont = { ’ s i z e ’ : 40}

8 matp lo t l i b . rc (’ f ont ’ , ∗∗ f ont)

9

10 from PhononQPoint import PhononQPoint

11 from PhononEigenvector import PhononEigenvector

12 from c a l c u l a t o r s . Scat te r ingLengths . AtomicFormFactor import

↪→ v e r i f y e l e m e n t i s v a l i d , ElementScatterFactor

13 from o b j e c t s . Cry s ta l s . Bravais import Bravais

14 from o b j e c t s . Cry s ta l s . Atoms import Atom

15

16

17 de f memoize (f) :

18 memo = {}

19

20 de f he lpe r (s e l f , x) :

21 memoize index = ” { 0 : . 3 f } : { 1 : . 3 f } : { 2 : . 3 f }” . format (∗x)

22 i f memoize index not in memo:

23 memo[memoize index] = f (s e l f , x)

24 r e turn memo[memoize index]

25

26 r e turn he lpe r

27

28 c l a s s PhononReader (ob j e c t) :

B.7. PhononReader.py 176

29 de f i n i t (s e l f , f i l ename , mass d i c t=None , cohb d i c t=None

↪→) :

30 ”””

31 PhononReader i s i n s t a n t i a t e d us ing a . phonon f i l e from a

↪→ CASTEP c a l c u l a t i o n

32

33 PhononReader par s e s the f i l e and c r e a t e s an ob j e c t with

↪→ a l l the a s s o c i a t e d e i g e n v e c t o r s / va lue s as we l l as the

34 brava i s l a t t i c e and atom l o c a t i o n s

35

36 You may want to con s id e r us ing PhononFileObject (s ee

↪→ below)

37

38 Example usage :

39 s e e i f name ==” main ” : code block

40

41

42 : param f i l ename : S t r ing − Path to . phonon f i l e from

↪→ CASTEP c a l c u l a t i o n

43 : r e turn : i n i t i a l i z e d PhononReader Object

44 ”””

45

46 f = open (f i l ename , ” r ”)

47

B.7. PhononReader.py 177

48 # Read the f i l e i n to memory

49 s e l f . f i l e c o n t e n t = [x . s t r i p (’\n ’) f o r x in f . r e a d l i n e s ()

↪→]

50 f . c l o s e ()

51

52 # I n i t i a l i z e ob j e c t a t t r i b u t e s

53 s e l f . q po in t s = []

54 s e l f . q p o i n t i n f o = None

55 s e l f . atoms = []

56

57

58 # Now we need to f i n d the Bravais L a t t i c e and Atom

↪→ l o c a t i o n s

59 n e v e r i n i t i a l i s e d = True

60 f o r i in range (0 , l en (s e l f . f i l e c o n t e n t)) :

61 i f ” f r e q u e n c i e s in ” in s e l f . f i l e c o n t e n t [i] . lower () :

62 s e l f . u s i ng f r equency = ”cm−1” in s e l f . f i l e c o n t e n t [i

↪→] . lower ()

63

64 # brava i s l a t t i c e always has exac t l y 3 ve c t o r s

65 i f ” un i t c e l l v e c t o r s ” in s e l f . f i l e c o n t e n t [i] . lower () :

66 v1 = s e l f . f i l e c o n t e n t [i + 1] . s p l i t ()

67 v2 = s e l f . f i l e c o n t e n t [i + 2] . s p l i t ()

68 v3 = s e l f . f i l e c o n t e n t [i + 3] . s p l i t ()

B.7. PhononReader.py 178

69

70 a = np . array ([f l o a t (v1 [0]) , f l o a t (v1 [1]) , f l o a t (v1

↪→ [2])])

71 b = np . array ([f l o a t (v2 [0]) , f l o a t (v2 [1]) , f l o a t (v2

↪→ [2])])

72 c = np . array ([f l o a t (v3 [0]) , f l o a t (v3 [1]) , f l o a t (v3

↪→ [2])])

73 s e l f . b rava i s = Bravais (a , b , c)

74 n e v e r i n i t i a l i s e d = False

75

76 atom info = None

77

78 i f ” f r a c t i o n a l co−o rd in a t e s ” in s e l f . f i l e c o n t e n t [i] .

↪→ lower () :

79 # get a l l l i n e s conta in ing in fo rmat ion on atoms

80 f o r j in range (i , l en (s e l f . f i l e c o n t e n t)) :

81 i f ”end” in s e l f . f i l e c o n t e n t [j] . lower () :

82 atom info = s e l f . f i l e c o n t e n t [i + 1 : j]

83 break

84 i f a tom info i s not None :

85 f o r l i n e in atom info :

86 va lue s = l i n e . s p l i t ()

87 p o s i t i o n = [f l o a t (va lue s [1]) , f l o a t (va lue s [2]) ,

↪→ f l o a t (va lue s [3])]

B.7. PhononReader.py 179

88 ion = s t r (va lue s [4])

89 i f v e r i f y e l e m e n t i s v a l i d (ion) :

90 a tomic f o rm fac to r = ElementScatterFactor (ion)

91 i f (mass d i c t i s not None) :

92 new atom = Atom(ion , a tomic fo rm fac to r ,

↪→ pos i t i on , mass=mass d ic t [ion])

93 e l s e :

94 new atom = Atom(ion , a tomic fo rm fac to r ,

↪→ p o s i t i o n)

95 i f (cohb d i c t i s not None) :

96 new atom . use neut rons (cohb d i c t [ion])

97 s e l f . atoms . append (new atom)

98 e l s e :

99 r a i s e LookupError (”Unsupported atom : ” + ion +

100 ” , p l e a s e put the appropr ia t e data in

↪→ c o e f f i c i e n t s . dat”)

101

102

103

104 i f n e v e r i n i t i a l i s e d :

105 r a i s e LookupError (”Could not f i n d a brava i s l a t t i c e in

↪→ ” + f i l ename)

106

107 s e l f . l o a d a l l q p o i n t s ()

B.7. PhononReader.py 180

108 s e l f . f i l e c o n t e n t = []

109

110 de f g e t a l l q p o i n t i n f o r m a t i o n (s e l f) :

111 ”””

112 Goes through the . phonon f i l e and s p l i t s each q−pt in to

↪→ i t s own array o f s t r i n g s

113

114 : r e turn : l i s t o f array o f s t r i n g s , each array conta in s a

↪→ block o f q−pt in fo rmat ion

115 ”””

116 i f s e l f . q p o i n t i n f o i s not None :

117 r e turn s e l f . q p o i n t i n f o

118

119 s t a r t i n d i c i e s = []

120 f o r i in range (0 , l en (s e l f . f i l e c o n t e n t)) :

121 i f ”q−pt” in s e l f . f i l e c o n t e n t [i] . lower () :

122 s t a r t i n d i c i e s . append (i)

123

124 q p o i n t i n f o = []

125 f o r i in range (0 , l en (s t a r t i n d i c i e s) − 1) :

126 c u r r i n f o = s e l f . f i l e c o n t e n t [s t a r t i n d i c i e s [i] :

↪→ s t a r t i n d i c i e s [i + 1]]

127 q p o i n t i n f o . append (c u r r i n f o)

128

B.7. PhononReader.py 181

129 c u r r i n f o = s e l f . f i l e c o n t e n t [s t a r t i n d i c i e s [−1] :]

130 q p o i n t i n f o . append (c u r r i n f o)

131

132 s e l f . q p o i n t i n f o = q p o i n t i n f o

133

134 r e turn q p o i n t i n f o

135

136 de f l oad new q po int (s e l f , q po int) :

137 ”””

138

139 : param q po int : Array o f s t r i n g s , f i r s t element : l i n e

↪→ s t a r t i n g q−pt ,

140 l a s t element : l i n e be f o r e next l i n e

↪→ s t a r t i n g q−pt

141 : r e turn : PhononQPoint . Also adds PhononQPoint to s e l f .

142 ”””

143 # CASTEP computes e i g e n v a l u e s as frequency , un i t s cmˆ−1

144 # For c a l c u l a t i o n s , i t i s much more u s e f u l to use Energy ,

↪→ un i t s meV

145 # E = hc / lamda −> 1cmˆ−1 = 0.1239842 meV

146

147 va l = s e l f . g e t h k l v a l u e s (q po int [0])

148 q vec to r = np . array ([f l o a t (va l [1]) , f l o a t (va l [2]) , f l o a t (

↪→ va l [3])])

B.7. PhononReader.py 182

149 new q = PhononQPoint (q vec to r)

150

151 need to add e i g enva lu e s = True

152 n e e d t o a d d e i g e n v e c t o r s = True

153

154 i = 1

155 whi le ne ed to add e i g enva lu e s :

156 i f i == len (q po int) :

157 r a i s e LookupError (” Error in f i l e ”)

158

159 i f ” e i g e n v e c t o r s ” in q po int [i] . lower () :

160 i += 2 # sk ip 2 l i n e s to f i r s t e−vec to r i n f o

161 break

162

163 p = parse . s earch (” { : ˆ} { : ˆ} ” , q po int [i])

164 i f s e l f . u s ing f r equency :

165 e i g enva lue = f l o a t (p [1]) ∗ 0.1239842

166 e l s e :

167 e i g enva lue = f l o a t (p [1])

168 new q . add e igenva lue (e i g enva lue)

169 i += 1

170

171 whi le n e e d t o a d d e i g e n v e c t o r s :

172 i f i == len (q po int) :

B.7. PhononReader.py 183

173 break

174

175 p = q po int [i] . s p l i t ()

176 p cas ted = np . z e r o s (8)

177 p cas ted [0] = i n t (p [0])

178 p cas ted [1] = i n t (p [1])

179 f o r j in range (2 , l en (p cas ted)) :

180 p cas ted [j] = f l o a t (p [j])

181

182 e v e c t o r = PhononEigenvector (p cas ted [0] , p cas ted [1] ,

↪→ p cas ted [2] , p cas t ed [3] ,

183 p cas ted [4] , p cas ted [5] , p cas ted [6] ,

↪→ p cas ted [7])

184 new q . add e igenvec to r (e v e c t o r)

185 i += 1

186

187 s e l f . q po in t s . append (new q)

188 r e turn new q

189

190 @staticmethod

191 de f g e t h k l v a l u e s (c u r r e n t l i n e) :

192 p = parse . s earch (”q−pt ={:ˆ} { : ˆ} { : ˆ} { : ˆ} ” ,

↪→ c u r r e n t l i n e)

193 r e turn p

B.7. PhononReader.py 184

194

195 de f l o a d a l l q p o i n t s (s e l f) :

196 a l l q p o i n t s = s e l f . g e t a l l q p o i n t i n f o r m a t i o n ()

197 f o r c u r r e n t q p o i n t in a l l q p o i n t s :

198 s e l f . l oad new q po int (c u r r e n t q p o i n t)

199

200 de f g e t q t u r n i n g p o i n t s (s e l f) :

201 p r e v i o u s d h k l = [−1 , −1, −1]

202

203 i n t e r e s t i n g i n d e x = []

204 i n t e r e s t i n g h k l = []

205 i n t e r e s t i n g d h k l = []

206

207 f o r i in range (1 , l en (s e l f . q po in t s) − 1) :

208 d hkl = s e l f . q po in t s [i] . hkl − s e l f . q po in t s [i − 1] . hkl

209 i f Bravais . get magnitude (d hkl − p r e v i o u s d h k l) > 1e

↪→ −3:

210 i n t e r e s t i n g i n d e x . append (i − 1)

211 i n t e r e s t i n g h k l . append (np . round (s e l f . q po in t s [i − 1] .

↪→ hkl , 2) . t o l i s t ())

212 i n t e r e s t i n g d h k l . append (np . round (d hkl , 2) . t o l i s t ())

213

214 p r e v i o u s d h k l = deepcopy (d hkl)

215

B.7. PhononReader.py 185

216 i n t e r e s t i n g i n d e x . append (l en (s e l f . q po in t s))

217 i n t e r e s t i n g h k l . append (np . round (s e l f . q po in t s [−1] . hkl , 2)

↪→ . t o l i s t ())

218 i n t e r e s t i n g d h k l . append (np . round ((s e l f . q po in t s [−2] . hkl −

↪→ s e l f . q po in t s [−1] . hkl) , 2) . t o l i s t ())

219

220 prev i ou s index = −2

221 s p l i t t i n g p o i n t s f o u n d = 0

222

223 f i n a l i n d e x = []

224 f i n a l h k l = []

225 f i n a l d h k l = []

226 f o r i in range (0 , l en (i n t e r e s t i n g i n d e x)) :

227 i f i n t e r e s t i n g i n d e x [i] − prev i ou s index == 1 :

228 s p l i t t i n g p o i n t s f o u n d += 1

229 e l s e :

230 f i n a l i n d e x . append (i n t e r e s t i n g i n d e x [i] −

↪→ s p l i t t i n g p o i n t s f o u n d)

231 f i n a l h k l . append (i n t e r e s t i n g h k l [i])

232 f i n a l d h k l . append (i n t e r e s t i n g d h k l [i])

233 prev i ou s index = i n t e r e s t i n g i n d e x [i]

234 r e turn f i n a l i n d e x , f i n a l h k l , f i n a l d h k l

235

236 de f ge t q mpgr id boundar i e s (s e l f) :

B.7. PhononReader.py 186

237

238 min h , min k , min l = 10 , 10 , 10

239 max h , max k , max l = −10, −10, −10

240

241 f o r qpoint in s e l f . q po in t s :

242 a s s e r t i s i n s t a n c e (qpoint , PhononQPoint)

243

244 i f qpoint . hkl [0] < min h :

245 min h = qpoint . hkl [0]

246 i f qpoint . hkl [1] < min k :

247 min k = qpoint . hkl [1]

248 i f qpoint . hkl [2] < min l :

249 min l = qpoint . hkl [2]

250

251 i f qpoint . hkl [0] > max h :

252 max h = qpoint . hkl [0]

253 i f qpoint . hkl [1] > max k :

254 max k = qpoint . hkl [1]

255 i f qpoint . hkl [2] > max l :

256 max l = qpoint . hkl [2]

257

258 r e turn [min h , min k , min l] , [max h , max k , max l]

259

260 de f g e t q m p g r i d s t e p s i z e (s e l f) :

B.7. PhononReader.py 187

261 min dh , min dk , min dl = 10 , 10 , 10

262 f o r i in range (1 , l en (s e l f . q po in t s)) :

263 cu r r en t qpo in t = s e l f . q po in t s [i − 1]

264 next qpo int = s e l f . q po in t s [i]

265

266 dhkl = np . abso lu t e (next qpo int . hkl − cu r r en t qpo in t . hkl

↪→)

267

268 i f dhkl [0] < min dh and dhkl [0] != 0 :

269 min dh = dhkl [0]

270 i f dhkl [1] < min dk and dhkl [1] != 0 :

271 min dk = dhkl [1]

272 i f dhkl [2] < min dl and dhkl [2] != 0 :

273 min dl = dhkl [2]

274

275 r e turn [min dh , min dk , min dl]

276

277 @ memoize

278 de f g e t n e a r e s t q p o i n t t o h k l s (s e l f , hk l s) :

279 hk l s = np . abs (s e l f . b rava i s . g e t r e d u c e d h k l s (hk l s))

280

281 f u l l l i s t d i s t = [s e l f . b rava i s . get magnitude (np . abso lu te (

↪→ np . abs (va lue . hkl) − hk l s)) f o r va lue in s e l f . q po in t s]

282

B.7. PhononReader.py 188

283 index = np . argmin (f u l l l i s t d i s t)

284 r e turn s e l f . q po in t s [index]

285

286 @ memoize

287 de f g e t n e a r e s t q p o i n t t o q v e c t o r (s e l f , qvector) :

288 h k l i n d i c i e s = s e l f . b rava i s . g e t r e d u c e d h k l s (qvector)

289

290 f u l l l i s t d i s t = [s e l f . b rava i s . get magnitude (np . abso lu te (

↪→ value . hkl − h k l i n d i c i e s)) f o r va lue in s e l f . q po in t s]

291

292 index = np . argmin (f u l l l i s t d i s t)

293 r e turn s e l f . q po in t s [index]

294

295 de f convert to omega (s e l f , e i genenergy) :

296 ”””

297

298 : param e igenenergy : energy to convert to w. Units [meV]

↪→ −> [rad . s ˆ−1]

299 : r e turn : w in rad sˆ−1

300 ”””

301 i nve r s e wave l ength = e igenenergy / 0.1239842 # convert

↪→ meV to cmˆ−1

302

B.7. PhononReader.py 189

303 # w = 2 pi f = 2 pi c / lambda . [c] = cmsˆ−1, [lambda] =

↪→ cm

304

305 r e turn 2 ∗ np . p i ∗ 29979245800 ∗ i nve r s e wave l ength

306

307

308 c l a s s PhononFileObject (ob j e c t) :

309 ”””

310 A reduced ve r s i on o f PhononReader , can be i n s t a n t i a t e d

↪→ us ing e i t h e r a PhononReader or matching PhononReader

↪→ i n i t

311

312 Use fu l parameters :

313

314 PhononFileObject . b rava i s − Bravais object , f o r

↪→ c a l c u l a t i n g r e c i p r o c a l l a t t i c e , q vec to r s , d spac ings

↪→ e t c

315 PhononFileObject . atoms − Atoms object , conta in s

↪→ element name , f r a c t i o n a l po s i t i on , c a l c u l a t i n g f i

316 PhononFileObject . q po in t s − L i s t o f Q−Point

↪→ in format ion , i n c l u d i n g h , k , l value , e i g e n v e c t o r s / va lues

317

318 ”””

319 de f i n i t (s e l f , f i l ename) :

B.7. PhononReader.py 190

320

321 i f i s i n s t a n c e (f i l ename , PhononReader) :

322 a = f i l ename

323 e l s e :

324 a = PhononReader (f i l ename)

325 s e l f . b rava i s = a . b rava i s

326 s e l f . q po in t s = a . q po in t s

327 s e l f . atoms = a . atoms

328

329 s e l f . a = a

330

331 de f g e t q t u r n i n g p o i n t s (s e l f) :

332 r e turn s e l f . a . g e t q t u r n i n g p o i n t s ()

333

334 de f ge t q mpgr id boundar i e s (s e l f) :

335 r e turn s e l f . a . ge t q mpgr id boundar i e s ()

336

337 de f g e t q m p g r i d s t e p s i z e (s e l f) :

338 r e turn s e l f . a . g e t q m p g r i d s t e p s i z e ()

339

340 de f g e t n e a r e s t q p o i n t t o q v e c t o r (s e l f , qvect) :

341 r e turn s e l f . a . g e t n e a r e s t q p o i n t t o q v e c t o r (qvect)

342

343 a u t h o r = ’ TimLehner ’

B.8. PlotPhononIntensities.py 191

344 #”””

B.8 PlotPhononIntensities.py

1 import numpy as np

2 import matp lo t l i b

3

4 f ont = { ’ s i z e ’ : 60}

5 matp lo t l i b . rc (’ f ont ’ , ∗∗ f ont)

6

7 import matp lo t l i b . pyplot as p l t

8 from sc ipy . ndimage . f i l t e r s import g a u s s i a n f i l t e r

9

10 from reade r s . PhononFileReader . PhononReader import

↪→ PhononReader

11 from reade r s . PhononFileReader . PhononQPoint import

↪→ PhononQPoint

12 from o b j e c t s . Cry s ta l s . Atoms import Atom

13

14

15 c l a s s PhononSQWCalculator (ob j e c t) :

16 de f i n i t (s e l f , phonon f i l e , mode=0) :

17 a s s e r t i s i n s t a n c e (phonon f i l e , PhononReader)

18 s e l f . p h o n o n f i l e = p h o n o n f i l e

B.8. PlotPhononIntensities.py 192

19 s e l f . mode = mode

20

21 de f ge tE igenva lues (s e l f) :

22 e i gen = []

23 f o r qpoint in s e l f . p h o n o n f i l e . q po in t s :

24 a s s e r t i s i n s t a n c e (qpoint , PhononQPoint)

25 e i gen . append (np . array (qpoint . e i g e n v a l u e s))

26 r e turn np . array (e i gen) . t ranspose ()

27

28 de f getSQWMeshgrid (s e l f , b r i l l o u i n z o n e o f f s e t , temp=300 ,

↪→ method=0) :

29 ”””

30

31 : param b r i l l o u i n z o n e o f f s e t : some vector , R with i n t e g e r

↪→ hkl , such that Q = R + k , k with in f i r s t BZ

32 : param temp : temperature , in Kelvin

33 : r e turn :

34 ”””

35 cmTomeV = 8.06554

36 hbar = 6.582119514 e−13 # meV s

37 N = 1e23

38 e i g e nv a l u e s = s e l f . g e tE igenva lues () . t ranspose ()

39 qrange = np . l i n s p a c e (0 , 1 , l en (e i g e nv a l u e s))

B.8. PlotPhononIntensities.py 193

40 erange = np . l i n s p a c e (−np . max(e i g e n va l u e s . f l a t t e n ()) ∗

↪→ 1 . 1 , np . max(e i g e n v a l u e s . f l a t t e n ()) ∗ 1 . 1 , 400)

41

42 XX, YY = np . meshgrid (qrange , erange)

43

44 SQW = np . z e r o s l i k e (XX)

45 index q = 0

46 f o r i in range (0 , l en (s e l f . p h o n o n f i l e . q po in t s)) :

47 qpoint = s e l f . p h o n o n f i l e . q po in t s [i]

48 a s s e r t i s i n s t a n c e (qpoint , PhononQPoint)

49 Q = s e l f . p h o n o n f i l e . b rava i s . g e t q (qpoint . hkl +

↪→ b r i l l o u i n z o n e o f f s e t)

50 f o r v in range (0 , l en (e i g e n v a l u e s [0])) :

51 e igenenergy = e i g en v a l u e s [i] [v]

52 omegav = e igenenergy ∗ cmTomeV

53 co n t r i b u t i on = 0

54 f o r j in range (0 , l en (s e l f . p h o n o n f i l e . atoms)) :

55 atom = s e l f . p h o n o n f i l e . atoms [j]

56 a s s e r t i s i n s t a n c e (atom , Atom)

57 coh b = atom . g e t f i (Q)

58 mass = atom . get mass ()

59 eigenvectorORIG = []

60 i f s e l f . mode == 0 :

61 # pr in t ”method 1”

B.8. PlotPhononIntensities.py 194

62 eigenvectorORIG = np . conj (qpoint . e i g e n v e c t o r d i c t

↪→ [v + 1] [j + 1])

63 e l i f s e l f . mode == 1 :

64 # pr in t ”method 2”

65 eigenvectorORIG = (qpoint . e i g e n v e c t o r d i c t [v +

↪→ 1] [j + 1])

66 e i g e n v e c t o r = np . z e r o s l i k e (eigenvectorORIG)

67 i f method == 0 :

68 e i g e n v e c t o r [0] = eigenvectorORIG [0]

69 e i g e n v e c t o r [1] = eigenvectorORIG [1]

70 e l i f method == 1 :

71 e i g e n v e c t o r [0] = eigenvectorORIG [1]

72 e i g e n v e c t o r [1] = eigenvectorORIG [0]

73

74 e i g e n v e c t o r [2] = eigenvectorORIG [2]

75

76 Tj = atom . d e b y e w a l l e r f a c t o r (Q)

77 s t r u c t u r e = np . exp (1 j ∗ np . dot (Q, atom . g e t l o c (s e l f

↪→ . p h o n o n f i l e . b rava i s)))

78 phonon = np . dot (Q, e i g e n v e c t o r)

79 co n t r i b u t i on += coh b / np . s q r t (mass) ∗ phonon ∗

↪→ s t r u c t u r e ∗ Tj

80 co n t r i b u t i on = np . vdot (cont r ibut i on , c on t r i bu t i o n)

81 co n t r i b u t i on ∗= 1 . / omegav ∗ N ∗ hbar / 2 .

B.8. PlotPhononIntensities.py 195

82 co n t r i b u t i on = np . r e a l (c on t r i bu t i on)

83 s e l f . inse r t IntoMesh (qrange [index q] , e igenenergy ,

↪→ co n t r i b u t i on ∗ s e l f . b o s e d i s t r i b u t i o n (e igenenergy , temp

↪→) ,

84 SQW, qrange , erange)

85 s e l f . inse r t IntoMesh (qrange [index q] , −e igenenergy ,

86 co n t r i b u t i on ∗ (s e l f . b o s e d i s t r i b u t i o n (

↪→ e igenenergy , temp) + 1) ,

87 SQW, qrange , erange)

88 index q += 1

89 r e turn XX, YY, SQW[: : −1]

90

91 @staticmethod

92 de f b o s e d i s t r i b u t i o n (energy , T) :

93 boltzmann = 8.6173303 e−2

94 r e turn 1 . / (np . exp (energy / (boltzmann ∗ T)) − 1)

95

96 de f inser t IntoMesh (s e l f , Q, E, i n t e n s i t y , mesh , q range ,

↪→ e range) :

97 index x = np . argmin (np . abs (q range − Q))

98 index y = np . argmin (np . abs (e range − E))

99

100 pr in t ” Target e : {0} , got {1}” . format (E, e range [index y

↪→])

B.8. PlotPhononIntensities.py 196

101

102 mesh [index y] [index x] += i n t e n s i t y

103

104

105 c l a s s PhononPlotter (ob j e c t) :

106 de f i n i t (s e l f , phonon f i l e , mode=0) :

107 s e l f . p h o n o n f i l e = p h o n o n f i l e

108 s e l f . c a l c u l a t o r = PhononSQWCalculator (phonon f i l e , mode)

109

110 de f p l o tE igenva lue s (s e l f , plotObj=p l t) :

111 pass

112 # e v a l s = s e l f . c a l c u l a t o r . ge tE igenva lues ()

113 # f o r i in range (0 , l en (e v a l s)) :

114 # plotObj . p l o t (x range , e v a l s [i , :] , ’ b lack ’ , l a b e l=”mode

↪→ {0}”. format (i))

115

116 de f p l o tE ig envec to r s (s e l f , b r i l l o u i n z o n e o f f s e t , maxlevel

↪→ =1. , temperature =300 , plotObj=plt , no broadening=False ,

117 max energy=80) :

118 x , y , SQWmesh = s e l f . c a l c u l a t o r . getSQWMeshgrid (

↪→ b r i l l o u i n z o n e o f f s e t , temperature)

119

120 # r e s c a l e to max i t n e n s i t y = 1 f o r p l o t t i n g purposes

121 # SQWmesh /= np . max(SQWmesh. f l a t t e n ()) / 1 .

B.8. PlotPhononIntensities.py 197

122

123 # apply gauss ian f i l t e r to smooth image

124 i f not no broadening :

125 SQWmesh = g a u s s i a n f i l t e r (SQWmesh[l en (SQWmesh) / 2 : :] ,

↪→ 1)

126

127 pr in t np . shape (x)

128 pr in t np . shape (y)

129 pr in t np . shape (SQWmesh)

130 plotObj . contour f (SQWmesh, l e v e l s=np . l i n s p a c e (0 , 5e37 ,

↪→ 255) , cmap=’ v i r i d i s ’)

131

132

133 de f p lo t LET l ike (PhononPlotterPos i t ive ,

↪→ PhononPlotterNegative , bzStart=np . array ([2 , 0 , −2]) ,

↪→ bzEnd=np . array ([2 , 0 , 0]) ,

134 bzStep=np . array ([0 , 0 , 1]) , max steps =100 ,

135 maxlevel =1. , temp=300 , plotObj=plt , no broadening=

↪→ False , max energy=80) :

136 s t ep s = 0

137 s t a r t = np . copy (bzStart)

138 pr in tLabe l s = [np . dot (bzStart , bzStep)]

139 whi le (s t a r t != bzEnd) . any () and max steps > 0 :

140 s t a r t += bzStep

B.8. PlotPhononIntensities.py 198

141 s t ep s += 1

142 max steps −= 1

143 pr in tLabe l s . append (np . dot (s ta r t , bzStep))

144

145 i f max steps < 0 :

146 pr in t ”WARNING MANY STEPS REQUIRED ARE YOU SURE?”

147

148 s t a r t = np . copy (bzStart)

149

150 sqwTotal = None

151

152 f o r i in range (0 , s t ep s) :

153 sqwPosMesh = PhononPlotte rPos i t ive . c a l c u l a t o r .

↪→ getSQWMeshgrid (s ta r t , temp=temp) [2]

154 s t a r t += bzStep

155 sqwNegMesh = np . f l i p l r (PhononPlotterNegative . c a l c u l a t o r .

↪→ getSQWMeshgrid (s ta r t , temp=temp) [2])

156

157 i f sqwTotal i s None :

158 sqwTotal = np . hstack ([sqwPosMesh [: , :−1] , sqwNegMesh])

159 e l s e :

160 sqwTotal = np . hstack ([sqwTotal , sqwPosMesh [: , :−1] ,

↪→ sqwNegMesh])

161

B.8. PlotPhononIntensities.py 199

162 # apply gauss ian f i l t e r to smooth image

163 i f no broadening :

164 SQWmesh = sqwTotal [l en (sqwTotal) / 2 : :]

165 e l s e :

166 SQWmesh = g a u s s i a n f i l t e r (sqwTotal [l en (sqwTotal) / 2 : :] ,

↪→ 1)

167

168 plotObj . contour f (SQWmesh, l e v e l s=np . l i n s p a c e (0 , maxlevel ,

↪→ 255) , i n t e r p o l a t i o n=”None”)

169

170 plotObj . y t i c k s (np . l i n s p a c e (0 , l en (SQWmesh [0]) / 80 . ∗

↪→ max energy , 3) , np . l i n s p a c e (0 , max energy , 3))

171 plotObj . yl im ([0 , max energy ∗ l en (SQWmesh [0]) / 8 0 .])

172

173 plotObj . x t i c k s (np . l i n s p a c e (0 , l en (SQWmesh) , s t ep s + 1) ,

↪→ pr in tLabe l s)

174 plotObj . xl im ([0 , l en (SQWmesh)])

175 plotObj . t i t l e (” Simulat ion ”)

176

177

178 i f name == ” main ” :

179 mass d ic t = {”O” : 15 .999 , ”Zn” : 65 .39} # in atomic mass

↪→ un i t s

180 cohb d i c t = {”O” : 5 . 803 , ”Zn” : 5 .680} # For us ing neutrons

B.8. PlotPhononIntensities.py 200

181

182 # Set p h o n o n f i l e to the CASTEP output . phonon f i l e

183 p h o n o n f i l e = ”C:\\ Users \\Tim\\Documents\\PhD\\ S c r i p t s \\

↪→ ZnOMaster\\ c a l c u l a t o r s \\PhononScat te r ing Intens i ty \\ga .

↪→ phonon”

184 phonons = PhononReader (phonon f i l e , mass dict , cohb d i c t)

185

186 f i g = p l t . f i g u r e ()

187 sqw p lo t t e r = PhononPlotter (phonons)

188 BZ OFFSET = [0 , 0 , 8]

189 sqw p lo t t e r . p l o tE i g envec to r s (np . array (BZ OFFSET) , maxlevel

↪→ =1e−3, temperature =10)

190

191 x t i c k l a b e l s = [r ”Γ” , r ”A”]

192 p l t . y t i c k s ([])

193 p l t . x t i c k s ([0 , 5 0] , x t i c k l a b e l s)

194 p l t . show ()

Appendix C

Balls-and-Springs Monte Carlo

Structural Diffuse Scattering

Simulator

C.1 ChainedMutator.cpp

1 //

2 // Created by Tim on 28/03/2018.

3 //

4

5 #include <iostream>

6 #include "ChainedMutator.h"

7

8 void ChainedMutator::mutateCrystal(SuperCell *crystalToModify) {

9 // *crystalToModify* is any FilterableAtoms object that will be

modified by this call

10 // *filter* is some function that takes Atom as argument and returns

201

C.1. ChainedMutator.cpp 202

true is the atom should be selected as an atom to make vacant

11 // *targetOccupation* is the goal occupancy of atoms selected by *

filter*,

12 // e.g. if want ZnO_{0.8}, targetOccupation = 0.8 and *filter*

should select O atoms

13 bool exit = false;

14 while (!exit) {

15 for (Atom &a : crystalToModify->getUnfilteredList()) {

16 if (filter(a)) {

17 if (process(a, crystalToModify) && next != nullptr) {

18 next->process(a, crystalToModify);

19 }

20 if (canFinishEarly() && isFinished(crystalToModify)) {

21 exit = true;

22 break;

23 }

24 }

25 }

26 exit = isFinished(crystalToModify);

27 }

28 }

29

30 void ChainedMutator::setNext(ChainedMutator *next) {

31 ChainedMutator::next = next;

32 }

33

34 bool ChainedMutator::isFinished(SuperCell *crystalToModify) {

35 return true;

36 }

37

C.2. CrystalMutator.cpp 203

38 bool ChainedMutator::canFinishEarly() {

39 return false;

40 }

C.2 CrystalMutator.cpp

1 //

2 // Created by Tim on 14/03/2018.

3 //

4

5 #include "CrystalMutator.h"

6 #include <iostream>

7

8 void

9 CrystalMutator::mutateCrystal(SuperCell *crystalToModify) {

10 // *crystalToModify* is any FilterableAtoms object that will be

modified by this call

11 // *filter* is some function that takes Atom as argument and returns

true is the atom should be selected as an atom to make vacant

12 // *targetOccupation* is the goal occupancy of atoms selected by *

filter*,

13 // e.g. if want ZnO_{0.8}, targetOccupation = 0.8 and *filter*

should select O atoms

14 for (Atom &a : crystalToModify->getUnfilteredList()) {

15 if (filter(a)) {

16 if (process(a, crystalToModify)) {

17 changesMade++;

18 };

19 }

20 }

C.3. CycleSuperCell.cpp 204

21 std::cout << "Made " << changesMade << " changes to the crystals" <<

std::endl;

22

23 }

C.3 CycleSuperCell.cpp

1 //

2 // Created by Tim on 21/03/2018.

3 //

4

5 #include "CycleSuperCell.h"

6

7 void CycleSuperCell::execute(int nCycles, SuperCell &superCell) {

8 Vector3i supercellDims = superCell.getSupercellSize();

9 for (int currentCycle = 0; currentCycle < nCycles; currentCycle++) {

10 for (int n1 = 0; n1 < supercellDims[0]; n1++) {

11 for (int n2 = 0; n2 < supercellDims[1]; n2++) {

12 for (int n3 = 0; n3 < supercellDims[2]; n3++) {

13 process_subcell(Eigen::Vector3i(n1, n2, n3),

superCell);

14 }

15 }

16 }

17 }

18 }

C.4 CrystalEnergyCalculator.cpp

1 #include <chrono>

C.4. CrystalEnergyCalculator.cpp 205

2 #include "../objects/SuperCell.h"

3 #include "CrystalEnergyCalculator.h"

4 #include "../Calculators/SpringEnergy/SpringEnergyStrategy.h"

5 #include "../Calculators/SpringEnergy/ZnOSprings.h"

6

7 //

8 // Created by Tim on 23/04/2018.

9 //

10 EfficientCrystalRelaxor::EfficientCrystalRelaxor(SuperCell &superCell,

SpringEnergyStrategy *strategy, int nneighbours,

11 int numberOfCycles) :

strategy(strategy), nneighbours(nneighbours),

12

numberOfCycles(numberOfCycles) {

13 std::cout << "Allocating memory for MC calculations. This may take a

while..." << std::endl;

14 elementToId = superCell.getTypeIdFromElementMap();

15 idToElement = superCell.getElementFromTypeIdMap();

16 b = const_cast<Bravais * >(&superCell.getBravais());

17 setupArrays(superCell);

18 std::cout << "Ready to calculate" << std::endl;

19 acceptedMoves = 0;

20 rejectedMoves = 0;

21 superCellSize = superCell.getSupercellSize().cast<float>();

22 }

23

24 EfficientCrystalRelaxor::˜EfficientCrystalRelaxor() {

25 free(hAtomX);

26 free(hAtomY);

27 free(hAtomZ);

C.4. CrystalEnergyCalculator.cpp 206

28 free(hAtomType);

29 free(hCharge);

30 free(hOccupancy);

31 free(hNeighbourIndex);

32 free(hElemIndex);

33 free(hOrigAtomType);

34 free(hUnitCellIndex);

35 }

36

37 void EfficientCrystalRelaxor::setupArrays(SuperCell &superCell) {

38 // All the data pertaining to the crystal is loaded into double/int

arrays

39 // This makes calculations and iterating the object lightning quick

40

41 int boxSizeX = superCell.getSupercellSize()[0];

42 int boxSizeY = superCell.getSupercellSize()[1];

43 int boxSizeZ = superCell.getSupercellSize()[2];

44 atoms_per_unit_cell = superCell.getSupercellCrystals()[0][0][0]->

getBasis().size();

45

46 number_of_atoms = boxSizeX * boxSizeY * boxSizeZ *

atoms_per_unit_cell;

47

48 size_t size = number_of_atoms * sizeof(double);

49 size_t size_int = number_of_atoms * sizeof(int);

50

51 hAtomX = (double *) malloc(size);

52 hAtomY = (double *) malloc(size);

53 hAtomZ = (double *) malloc(size);

54 hCharge = (double *) malloc(size);

C.4. CrystalEnergyCalculator.cpp 207

55 std::cout << "Setting up neighbour array for " << nneighbours << "

neighbours" << std::endl;

56 hNeighbourIndex = (int *) malloc(size_int * nneighbours);

57 hAtomType = (int *) malloc(size_int);

58 hOrigAtomType = (int *) malloc(size_int);

59 hElemIndex = (int *) malloc(size_int);

60 hUnitCellIndex = (int *) malloc(size_int);

61 hOccupancy = (double *) malloc(size);

62

63 std::vector <std::vector<NeighbourDirections>> neighbours =

getNeighbourStructure(superCell);

64

65 for (int i = 0; i < boxSizeX; i++) {

66 for (int j = 0; j < boxSizeY; j++) {

67 for (int k = 0; k < boxSizeZ; k++) {

68 for (int l = 0; l < atoms_per_unit_cell; l++) {

69 int address = getAddress(superCell, i, j, k, l);

70 Atom currAtom = superCell.getSupercellCrystals()[i][

j][k]->getBasis()[l];

71 Bravais *bravais = const_cast<Bravais *>(&superCell.

getBravais());

72

73 hElemIndex[address] = currAtom.getElementIndex();

74 hAtomX[address] = currAtom.getAbsolutePosition(

bravais)[0];

75 hAtomY[address] = currAtom.getAbsolutePosition(

bravais)[1];

76 hAtomZ[address] = currAtom.getAbsolutePosition(

bravais)[2];

77 hUnitCellIndex[address] = currAtom.getUnitCellIndex

C.4. CrystalEnergyCalculator.cpp 208

();

78 hAtomType[address] = superCell.getTypeIdFromElement(

currAtom.getAtomType());

79 hCharge[address] = currAtom.getCharge();

80 hOccupancy[address] = currAtom.getOccupancy();

81

82 for (int neighbourIndex = 0; neighbourIndex <

nneighbours; neighbourIndex++) {

83 int newAddress = getNeighbourAddress(superCell,

neighbours[l][neighbourIndex], currAtom);

84 hNeighbourIndex[address * nneighbours +

neighbourIndex] = newAddress;

85 }

86 }

87 }

88 }

89 }

90

91 }

92

93 void EfficientCrystalRelaxor::analyseNeighbourStructure(SuperCell &

superCell) {

94 for (int i = 0; i < atoms_per_unit_cell; i++) {

95 Atom currAtom = superCell.getSupercellCrystals()[1][1][1]->

getBasis()[i];

96 std::vector <NeighbourDirections> atomNeighbours;

97

98 for (Atom a : superCell.getNearestNeighbours(currAtom,

nneighbours)) {

99 atomNeighbours.push_back(NeighbourDirections(currAtom, a));

C.4. CrystalEnergyCalculator.cpp 209

100 }

101 _neighbourStructure.push_back(atomNeighbours);

102 }

103 }

104

105 std::vector <std::vector<NeighbourDirections>> &EfficientCrystalRelaxor

::getNeighbourStructure(SuperCell &superCell) {

106 if (_neighbourStructure.size() == 0) {

107 analyseNeighbourStructure(superCell);

108 }

109

110 return _neighbourStructure;

111 }

112

113 int EfficientCrystalRelaxor::getNeighbourAddress(SuperCell &superCell,

NeighbourDirections &neighbourDirs,

114 Atom &focusAtom) {

115

116 int newSupercellX =

117 (focusAtom.getSupercellIndex()[0] + neighbourDirs.

getSupercellXOffset()) % superCell.getSupercellSize()[0];

118 int newSupercellY =

119 (focusAtom.getSupercellIndex()[1] + neighbourDirs.

getSupercellYOffset()) % superCell.getSupercellSize()[1];

120 int newSupercellZ =

121 (focusAtom.getSupercellIndex()[2] + neighbourDirs.

getSupercellZOffset()) % superCell.getSupercellSize()[2];

122

123 if (newSupercellX < 0) newSupercellX += superCell.getSupercellSize()

[0];

C.4. CrystalEnergyCalculator.cpp 210

124 if (newSupercellY < 0) newSupercellY += superCell.getSupercellSize()

[1];

125 if (newSupercellZ < 0) newSupercellZ += superCell.getSupercellSize()

[2];

126

127 int atomIndex = focusAtom.getUnitCellIndex() + neighbourDirs.

getUnitCellIndexOffset();

128 return getAddress(superCell, newSupercellX, newSupercellY,

newSupercellZ, atomIndex);

129 }

130

131 int

132 EfficientCrystalRelaxor::getAddress(SuperCell &superCell, int

supercellXIndex, int supercellYIndex, int supercellZIndex,

133 int unitCellIndex) {

134 int boxSizeY = superCell.getSupercellSize()[1];

135 int boxSizeZ = superCell.getSupercellSize()[2];

136 int atomsPerUnitCell = superCell.getSupercellCrystals()[0][0][0]->

getBasis().size();

137 int address =

138 (supercellXIndex * boxSizeY * boxSizeZ + supercellYIndex *

boxSizeZ + supercellZIndex) * atomsPerUnitCell +

139 unitCellIndex;

140 return address;

141 }

142

143 void EfficientCrystalRelaxor::relax(double temperature) {

144

145 for (int i = 0; i < numberOfCycles; i++) {

146 int atomToMove = RandomGenerator::instance().rand(

C.4. CrystalEnergyCalculator.cpp 211

number_of_atoms);

147 relax(temperature, atomToMove);

148 }

149

150 // std::cout << "Made " << acceptedMoves + rejectedMoves << "

displacements, of which " << acceptedMoves << " were accepted" << std

::endl;

151 }

152

153 double *EfficientCrystalRelaxor::getHAtomX() const {

154 return hAtomX;

155 }

156

157 double *EfficientCrystalRelaxor::getHAtomY() const {

158 return hAtomY;

159 }

160

161 double *EfficientCrystalRelaxor::getHAtomZ() const {

162 return hAtomZ;

163 }

164

165 double *EfficientCrystalRelaxor::getHOccupancy() const {

166 return hOccupancy;

167 }

168

169 double *EfficientCrystalRelaxor::getHCharge() const {

170 return hCharge;

171 }

172

173 int *EfficientCrystalRelaxor::getHAtomType() const {

C.4. CrystalEnergyCalculator.cpp 212

174 return hAtomType;

175 }

176

177 int *EfficientCrystalRelaxor::getHNeighbourIndex() const {

178 return hNeighbourIndex;

179 }

180

181 std::string getElementFromAtomName(std::string name) {

182 std::string parsed = "";

183 for (int i = 0; i < name.length(); i++) {

184 if (isalpha(name[i])) {

185 parsed += name[i];

186 }

187 }

188 return parsed;

189 }

190

191 Atom EfficientCrystalRelaxor::getAtom(int atomIndex) {

192 Vector3f uvwTot = b->getUVW(hAtomX[atomIndex], hAtomY[atomIndex],

hAtomZ[atomIndex]);

193 Vector3f superCellIndex = uvwTot.array().floor();

194 Vector3f fracPos = uvwTot - superCellIndex;

195 std::string type = idToElement[hAtomType[atomIndex]];

196 std::string element = getElementFromAtomName(type);

197 Atom returnAtom(type, hElemIndex[atomIndex],

198 element,

199 fracPos, superCellIndex.cast<int>(), (int) hCharge[

atomIndex], hOccupancy[atomIndex]);

200 returnAtom.setUnitCellIndex(hUnitCellIndex[atomIndex]);

201 return returnAtom;

C.4. CrystalEnergyCalculator.cpp 213

202 }

203

204 double EfficientCrystalRelaxor::springEnergy(int atomIndex) {

205 Atom focusAtom = getAtom(atomIndex);

206 double totalNeighbourEnergy = 0;

207 for (int neighbourIndex = 0; neighbourIndex < nneighbours;

neighbourIndex++) {

208 int neighbourAddress = atomIndex * nneighbours + neighbourIndex

+ 1;

209 int trueNeighbourIndex = hNeighbourIndex[neighbourAddress];

210 if (trueNeighbourIndex > 0 && trueNeighbourIndex < (

number_of_atoms * nneighbours)) {

211 Atom neighbourAtom = getAtom(trueNeighbourIndex);

212 totalNeighbourEnergy += strategy->calculateNeighbourEnergy(

focusAtom, neighbourAtom);

213 }

214 }

215 return totalNeighbourEnergy;

216 }

217

218 std::list<int> EfficientCrystalRelaxor::getNeighbourAddresses(SuperCell

&superCell, int focusAtomIndex) {

219 std::list<int> neighbourIndecies;

220 Atom focusAtom = getAtom(focusAtomIndex);

221 for (NeighbourDirections dir : _neighbourStructure[focusAtom.

getUnitCellIndex()]) {

222 neighbourIndecies.push_back(getNeighbourAddress(superCell, dir,

focusAtom));

223 }

224 return neighbourIndecies;

C.4. CrystalEnergyCalculator.cpp 214

225 }

226

227 int *EfficientCrystalRelaxor::getHAtomUnitCellIndex() const {

228 return hUnitCellIndex;

229 }

230

231 void EfficientCrystalRelaxor::displace(int atomIndex, double displaceX,

double displaceY, double displaceZ) {

232 hAtomX[atomIndex] += displaceX;

233 hAtomY[atomIndex] += displaceY;

234 hAtomZ[atomIndex] += displaceZ;

235 }

236

237 void EfficientCrystalRelaxor::relax(double temperature, int atomIndex) {

238

239 // get original energy

240 double energy1 = springEnergy(atomIndex);

241

242 // generate random displacement

243

244 double shift = 0.02; // max displacement

245

246 double dx = (2 * RandomGenerator::instance().rand() - 1) * shift;

247 double dy = (2 * RandomGenerator::instance().rand() - 1) * shift;

248 double dz = (2 * RandomGenerator::instance().rand() - 1) * shift;

249

250 hAtomX[atomIndex] += dx;

251 hAtomY[atomIndex] += dy;

252 hAtomZ[atomIndex] += dz;

253

C.4. CrystalEnergyCalculator.cpp 215

254 double energy2 = springEnergy(atomIndex);

255 // std::cout << "Changed energy " << energy1 << " vs " << energy2 <<

std::endl;

256 if (energy2 < energy1) {

257 // This move led to a lower energy, accept the move

258 acceptedMoves += 1;

259 } else {

260 // The move led to a higher energy, accept based on Metropolis

condition

261 double rnum = RandomGenerator::instance().rand();

262 double compareEnergy = exp(-(energy2 - energy1) / (

boltzmannConst * temperature));

263 // std::cout << "Comparing " << rnum << " with " << compareEnergy

<< std::endl;

264 if (rnum <= compareEnergy) // Metropolis Condition !!!

265 acceptedMoves += 1;

266 else {

267 rejectedMoves += 1;

268 hAtomX[atomIndex] -= dx;

269 hAtomY[atomIndex] -= dy;

270 hAtomZ[atomIndex] -= dz;

271 };

272 }

273 }

274

275 void EfficientCrystalRelaxor::printAtomLocs() {

276 for (int i = 0; i < number_of_atoms; i++) {

277 if (hOccupancy[i] != 0) {

278 std::cout << hAtomType[i] << "\t" << hAtomX[i] << "\t" <<

hAtomY[i] << "\t" << hAtomZ[i] << std::endl;

C.4. CrystalEnergyCalculator.cpp 216

279 }

280 }

281 }

282

283 int EfficientCrystalRelaxor::getNumberOfAtoms() const {

284 return number_of_atoms;

285 }

286

287 EfficientCrystalRelaxor::EfficientCrystalRelaxor(SuperCell &superCell) :

EfficientCrystalRelaxor(superCell,

288

new ZnOSprings(

289

&superCell), 4,

290

10) {

291

292 }

293

294 Vector3f EfficientCrystalRelaxor::getSuperCellSize() const {

295 return superCellSize;

296 }

297

298

299 NeighbourDirections::NeighbourDirections(int supercellXOffset, int

supercellYOffset, int supercellZOffset,

300 int unitCellIndexOffset) :

supercellXOffset(supercellXOffset),

301

supercellYOffset(supercellYOffset),

C.4. CrystalEnergyCalculator.cpp 217

302

supercellZOffset(supercellZOffset),

303

unitCellIndexOffset(unitCellIndexOffset) {}

304

305 int NeighbourDirections::getSupercellXOffset() const {

306 return supercellXOffset;

307 }

308

309 int NeighbourDirections::getSupercellYOffset() const {

310 return supercellYOffset;

311 }

312

313 int NeighbourDirections::getSupercellZOffset() const {

314 return supercellZOffset;

315 }

316

317 int NeighbourDirections::getUnitCellIndexOffset() const {

318 return unitCellIndexOffset;

319 }

320

321 NeighbourDirections::NeighbourDirections(Atom focusAtom, Atom

neighbourAtom) {

322 supercellXOffset = neighbourAtom.getSupercellIndex()[0] - focusAtom.

getSupercellIndex()[0];

323 supercellYOffset = neighbourAtom.getSupercellIndex()[1] - focusAtom.

getSupercellIndex()[1];

324 supercellZOffset = neighbourAtom.getSupercellIndex()[2] - focusAtom.

getSupercellIndex()[2];

325

C.5. CrystalFactory.cpp 218

326 unitCellIndexOffset = neighbourAtom.getUnitCellIndex() - focusAtom.

getUnitCellIndex();

327 }

C.5 CrystalFactory.cpp

1 //

2 // Created by Tim on 28/09/2017.

3 //

4

5 #include "CrystalFactory.h"

6

7 Crystal CrystalFactory::ZnO() {

8 Bravais b(3.35, 5.22);

9 return ZnO(b);

10 }

11

12 Crystal CrystalFactory::Y2Ti2O7() {

13 std::vector<Atom> atoms;

14

15 Bravais b(10.120);

16

17 atoms.push_back(Atom("Y", 1, "Y", Vector3f(0.125, 0.625, 0.125), 3))

;

18 atoms.push_back(Atom("Y", 2, "Y", Vector3f(0.375, 0.875, 0.125), 3))

;

19 atoms.push_back(Atom("Y", 3, "Y", Vector3f(0.625, 0.125, 0.125), 3))

;

20 atoms.push_back(Atom("Y", 4, "Y", Vector3f(0.875, 0.375, 0.125), 3))

;

C.5. CrystalFactory.cpp 219

21 atoms.push_back(Atom("Y", 5, "Y", Vector3f(0.125, 0.875, 0.375), 3))

;

22 atoms.push_back(Atom("Y", 6, "Y", Vector3f(0.375, 0.625, 0.375), 3))

;

23 atoms.push_back(Atom("Y", 7, "Y", Vector3f(0.625, 0.375, 0.375), 3))

;

24 atoms.push_back(Atom("Y", 8, "Y", Vector3f(0.875, 0.125, 0.375), 3))

;

25 atoms.push_back(Atom("Y", 9, "Y", Vector3f(0.125, 0.125, 0.625), 3))

;

26 atoms.push_back(Atom("Y", 10, "Y", Vector3f(0.375, 0.375, 0.625), 3)

);

27 atoms.push_back(Atom("Y", 11, "Y", Vector3f(0.625, 0.625, 0.625), 3)

);

28 atoms.push_back(Atom("Y", 12, "Y", Vector3f(0.875, 0.875, 0.625), 3)

);

29 atoms.push_back(Atom("Y", 13, "Y", Vector3f(0.125, 0.375, 0.875), 3)

);

30 atoms.push_back(Atom("Y", 14, "Y", Vector3f(0.375, 0.125, 0.875), 3)

);

31 atoms.push_back(Atom("Y", 15, "Y", Vector3f(0.625, 0.875, 0.875), 3)

);

32 atoms.push_back(Atom("Y", 16, "Y", Vector3f(0.875, 0.625, 0.875), 3)

);

33

34 atoms.push_back(Atom("Ti", 1, "Ti", Vector3f(0.125, 0.125, 0.125),

4));

35 atoms.push_back(Atom("Ti", 2, "Ti", Vector3f(0.375, 0.375, 0.125),

4));

36 atoms.push_back(Atom("Ti", 3, "Ti", Vector3f(0.625, 0.625, 0.125),

C.5. CrystalFactory.cpp 220

4));

37 atoms.push_back(Atom("Ti", 4, "Ti", Vector3f(0.875, 0.875, 0.125),

4));

38 atoms.push_back(Atom("Ti", 5, "Ti", Vector3f(0.125, 0.375, 0.375),

4));

39 atoms.push_back(Atom("Ti", 6, "Ti", Vector3f(0.375, 0.125, 0.375),

4));

40 atoms.push_back(Atom("Ti", 7, "Ti", Vector3f(0.625, 0.875, 0.375),

4));

41 atoms.push_back(Atom("Ti", 8, "Ti", Vector3f(0.875, 0.625, 0.375),

4));

42 atoms.push_back(Atom("Ti", 9, "Ti", Vector3f(0.125, 0.625, 0.625),

4));

43 atoms.push_back(Atom("Ti", 10, "Ti", Vector3f(0.375, 0.875, 0.625),

4));

44 atoms.push_back(Atom("Ti", 11, "Ti", Vector3f(0.625, 0.125, 0.625),

4));

45 atoms.push_back(Atom("Ti", 12, "Ti", Vector3f(0.875, 0.375, 0.625),

4));

46 atoms.push_back(Atom("Ti", 13, "Ti", Vector3f(0.125, 0.875, 0.875),

4));

47 atoms.push_back(Atom("Ti", 14, "Ti", Vector3f(0.375, 0.625, 0.875),

4));

48 atoms.push_back(Atom("Ti", 15, "Ti", Vector3f(0.625, 0.375, 0.875),

4));

49 atoms.push_back(Atom("Ti", 16, "Ti", Vector3f(0.875, 0.125, 0.875),

4));

50

51 atoms.push_back(Atom("O2", 1, "O", Vector3f(0, 0.79515, 0), -2));

52 atoms.push_back(Atom("O2", 2, "O", Vector3f(0, 0.20485, 0), -2));

C.5. CrystalFactory.cpp 221

53 atoms.push_back(Atom("O2", 3, "O", Vector3f(0.20485, 0, 0), -2));

54 atoms.push_back(Atom("O2", 4, "O", Vector3f(0.25, 0.25, 0.04515),

-2));

55 atoms.push_back(Atom("O2", 5, "O", Vector3f(0.29515, 0.5, 0), -2));

56 atoms.push_back(Atom("O2", 6, "O", Vector3f(0.5, 0.29515, 0), -2));

57 atoms.push_back(Atom("O2", 7, "O", Vector3f(0.5, 0.70485, 0), -2));

58 atoms.push_back(Atom("O2", 8, "O", Vector3f(0.70485, 0.5, 0), -2));

59 atoms.push_back(Atom("O2", 9, "O", Vector3f(0.79515, 0, 0), -2));

60 atoms.push_back(Atom("O2", 10, "O", Vector3f(0.75, 0.75, 0.04515),

-2));

61 atoms.push_back(Atom("O2", 11, "O", Vector3f(0, 0, 0.20485), -2));

62 atoms.push_back(Atom("O2", 12, "O", Vector3f(0, 0.5, 0.29515), -2));

63 atoms.push_back(Atom("O2", 13, "O", Vector3f(0.04515, 0.25, 0.25),

-2));

64 atoms.push_back(Atom("O2", 14, "O", Vector3f(0.25, 0.04515, 0.25),

-2));

65 atoms.push_back(Atom("O2", 15, "O", Vector3f(0.25, 0.45485, 0.25),

-2));

66 atoms.push_back(Atom("O2", 16, "O", Vector3f(0.5, 0.5, 0.20485), -2)

);

67 atoms.push_back(Atom("O2", 17, "O", Vector3f(0.45485, 0.25, 0.25),

-2));

68 atoms.push_back(Atom("O2", 18, "O", Vector3f(0.5, 0, 0.29515), -2));

69 atoms.push_back(Atom("O2", 19, "O", Vector3f(0.54515, 0.75, 0.25),

-2));

70 atoms.push_back(Atom("O2", 20, "O", Vector3f(0.75, 0.54515, 0.25),

-2));

71 atoms.push_back(Atom("O2", 21, "O", Vector3f(0.75, 0.95485, 0.25),

-2));

72 atoms.push_back(Atom("O2", 22, "O", Vector3f(0.95485, 0.75, 0.25),

C.5. CrystalFactory.cpp 222

-2));

73 atoms.push_back(Atom("O2", 23, "O", Vector3f(0, 0.29515, 0.5), -2));

74 atoms.push_back(Atom("O2", 24, "O", Vector3f(0, 0.70485, 0.5), -2));

75 atoms.push_back(Atom("O2", 25, "O", Vector3f(0.20485, 0.5, 0.5), -2)

);

76 atoms.push_back(Atom("O2", 26, "O", Vector3f(0.25, 0.25, 0.45485),

-2));

77 atoms.push_back(Atom("O2", 27, "O", Vector3f(0.29515, 0, 0.5), -2));

78 atoms.push_back(Atom("O2", 28, "O", Vector3f(0.25, 0.75, 0.54515),

-2));

79 atoms.push_back(Atom("O2", 29, "O", Vector3f(0.5, 0.20485, 0.5), -2)

);

80 atoms.push_back(Atom("O2", 30, "O", Vector3f(0.5, 0.79515, 0.5), -2)

);

81 atoms.push_back(Atom("O2", 31, "O", Vector3f(0.70485, 0, 0.5), -2));

82 atoms.push_back(Atom("O2", 32, "O", Vector3f(0.75, 0.75, 0.45485),

-2));

83 atoms.push_back(Atom("O2", 33, "O", Vector3f(0.75, 0.25, 0.54515),

-2));

84 atoms.push_back(Atom("O2", 34, "O", Vector3f(0.79515, 0.5, 0.5), -2)

);

85 atoms.push_back(Atom("O2", 35, "O", Vector3f(0, 0.5, 0.70485), -2));

86 atoms.push_back(Atom("O2", 36, "O", Vector3f(0, 0, 0.79515), -2));

87 atoms.push_back(Atom("O2", 37, "O", Vector3f(0.04515, 0.75, 0.75),

-2));

88 atoms.push_back(Atom("O2", 38, "O", Vector3f(0.25, 0.54515, 0.75),

-2));

89 atoms.push_back(Atom("O2", 39, "O", Vector3f(0.25, 0.95485, 0.75),

-2));

90 atoms.push_back(Atom("O2", 40, "O", Vector3f(0.5, 0, 0.70485), -2));

C.5. CrystalFactory.cpp 223

91 atoms.push_back(Atom("O2", 41, "O", Vector3f(0.45485, 0.75, 0.75),

-2));

92 atoms.push_back(Atom("O2", 42, "O", Vector3f(0.5, 0.5, 0.79515), -2)

);

93 atoms.push_back(Atom("O2", 43, "O", Vector3f(0.54515, 0.25, 0.75),

-2));

94 atoms.push_back(Atom("O2", 44, "O", Vector3f(0.75, 0.04515, 0.75),

-2));

95 atoms.push_back(Atom("O2", 45, "O", Vector3f(0.75, 0.45485, 0.75),

-2));

96 atoms.push_back(Atom("O2", 46, "O", Vector3f(0.95485, 0.25, 0.75),

-2));

97 atoms.push_back(Atom("O2", 47, "O", Vector3f(0.25, 0.75, 0.95485),

-2));

98 atoms.push_back(Atom("O2", 48, "O", Vector3f(0.75, 0.25, 0.95485),

-2));

99

100 atoms.push_back(Atom("O1", 1, "O", Vector3f(0, 0.5, 0), -2));

101 atoms.push_back(Atom("O1", 2, "O", Vector3f(0.5, 0, 0), -2));

102 atoms.push_back(Atom("O1", 3, "O", Vector3f(0.25, 0.75, 0.25), -2));

103 atoms.push_back(Atom("O1", 4, "O", Vector3f(0.75, 0.25, 0.25), -2));

104 atoms.push_back(Atom("O1", 5, "O", Vector3f(0, 0, 0.5), -2));

105 atoms.push_back(Atom("O1", 6, "O", Vector3f(0.5, 0.5, 0.5), -2));

106 atoms.push_back(Atom("O1", 7, "O", Vector3f(0.25, 0.25, 0.75), -2));

107 atoms.push_back(Atom("O1", 8, "O", Vector3f(0.75, 0.75, 0.75), -2));

108

109 return Crystal(b, atoms);

110 }

111

112

C.5. CrystalFactory.cpp 224

113 Crystal CrystalFactory::_Y2Ti2O7_broken(){

114 std::vector<Atom> atoms;

115

116 Bravais b(10.120);

117

118 atoms.push_back(Atom("Y", 1, "Y", Vector3f(0.124123, 0.625, 0.125),

3));

119 atoms.push_back(Atom("Y", 2, "Y", Vector3f(0.375, 0.875, 0.125), 3))

;

120 atoms.push_back(Atom("Y", 3, "Y", Vector3f(0.625, 0.125, 0.125), 3))

;

121 atoms.push_back(Atom("Y", 4, "Y", Vector3f(0.875, 0.375, 0.125), 3))

;

122 atoms.push_back(Atom("Y", 5, "Y", Vector3f(0.125, 0.875, 0.375), 3))

;

123 atoms.push_back(Atom("Y", 6, "Y", Vector3f(0.375, 0.625, 0.375), 3))

;

124 atoms.push_back(Atom("Y", 7, "Y", Vector3f(0.625, 0.375, 0.375), 3))

;

125 atoms.push_back(Atom("Y", 8, "Y", Vector3f(0.875, 0.125, 0.375), 3))

;

126 atoms.push_back(Atom("Y", 9, "Y", Vector3f(0.125, 0.125, 0.625), 3))

;

127 atoms.push_back(Atom("Y", 10, "Y", Vector3f(0.375, 0.375, 0.625), 3)

);

128 atoms.push_back(Atom("Y", 11, "Y", Vector3f(0.625, 0.625, 0.625), 3)

);

129 atoms.push_back(Atom("Y", 12, "Y", Vector3f(0.875, 0.875, 0.625), 3)

);

130 atoms.push_back(Atom("Y", 13, "Y", Vector3f(0.125, 0.375, 0.875), 3)

C.5. CrystalFactory.cpp 225

);

131 atoms.push_back(Atom("Y", 14, "Y", Vector3f(0.375, 0.125, 0.875), 3)

);

132 atoms.push_back(Atom("Y", 15, "Y", Vector3f(0.625, 0.875, 0.875), 3)

);

133 atoms.push_back(Atom("Y", 16, "Y", Vector3f(0.875, 0.625, 0.875), 3)

);

134

135 atoms.push_back(Atom("Ti", 1, "Ti", Vector3f(0.125, 0.125, 0.125),

4));

136 atoms.push_back(Atom("Ti", 2, "Ti", Vector3f(0.375, 0.375, 0.125),

4));

137 atoms.push_back(Atom("Ti", 3, "Ti", Vector3f(0.625, 0.625, 0.125),

4));

138 atoms.push_back(Atom("Ti", 4, "Ti", Vector3f(0.875, 0.875, 0.125),

4));

139 atoms.push_back(Atom("Ti", 5, "Ti", Vector3f(0.125, 0.375, 0.375),

4));

140 atoms.push_back(Atom("Ti", 6, "Ti", Vector3f(0.375, 0.125, 0.375),

4));

141 atoms.push_back(Atom("Ti", 7, "Ti", Vector3f(0.625, 0.875, 0.375),

4));

142 atoms.push_back(Atom("Ti", 8, "Ti", Vector3f(0.875, 0.625, 0.375),

4));

143 atoms.push_back(Atom("Ti", 9, "Ti", Vector3f(0.125, 0.625, 0.625),

4));

144 atoms.push_back(Atom("Ti", 10, "Ti", Vector3f(0.375, 0.875, 0.625),

4));

145 atoms.push_back(Atom("Ti", 11, "Ti", Vector3f(0.625, 0.125, 0.625),

4));

C.5. CrystalFactory.cpp 226

146 atoms.push_back(Atom("Ti", 12, "Ti", Vector3f(0.875, 0.375, 0.625),

4));

147 atoms.push_back(Atom("Ti", 13, "Ti", Vector3f(0.125, 0.875, 0.875),

4));

148 atoms.push_back(Atom("Ti", 14, "Ti", Vector3f(0.375, 0.625, 0.875),

4));

149 atoms.push_back(Atom("Ti", 15, "Ti", Vector3f(0.625, 0.375, 0.875),

4));

150 atoms.push_back(Atom("Ti", 16, "Ti", Vector3f(0.875, 0.125, 0.875),

4));

151

152 atoms.push_back(Atom("O2", 1, "O", Vector3f(0, 0.79515, 0), -2));

153 atoms.push_back(Atom("O2", 2, "O", Vector3f(0, 0.20485, 0), -2));

154 atoms.push_back(Atom("O2", 3, "O", Vector3f(0.20485, 0, 0), -2));

155 atoms.push_back(Atom("O2", 4, "O", Vector3f(0.25, 0.25, 0.04515),

-2));

156 atoms.push_back(Atom("O2", 5, "O", Vector3f(0.29515, 0.5, 0), -2));

157 atoms.push_back(Atom("O2", 6, "O", Vector3f(0.5, 0.29515, 0), -2));

158 atoms.push_back(Atom("O2", 7, "O", Vector3f(0.5, 0.70485, 0), -2));

159 atoms.push_back(Atom("O2", 8, "O", Vector3f(0.70485, 0.5, 0), -2));

160 atoms.push_back(Atom("O2", 9, "O", Vector3f(0.79515, 0, 0), -2));

161 atoms.push_back(Atom("O2", 10, "O", Vector3f(0.75, 0.75, 0.04515),

-2));

162 atoms.push_back(Atom("O2", 11, "O", Vector3f(0, 0, 0.20485), -2));

163 atoms.push_back(Atom("O2", 12, "O", Vector3f(0, 0.5, 0.29515), -2));

164 atoms.push_back(Atom("O2", 13, "O", Vector3f(0.04515, 0.25, 0.25),

-2));

165 atoms.push_back(Atom("O2", 14, "O", Vector3f(0.25, 0.04515, 0.25),

-2));

166 atoms.push_back(Atom("O2", 15, "O", Vector3f(0.25, 0.45485, 0.25),

C.5. CrystalFactory.cpp 227

-2));

167 atoms.push_back(Atom("O2", 16, "O", Vector3f(0.5, 0.5, 0.20485), -2)

);

168 atoms.push_back(Atom("O2", 17, "O", Vector3f(0.45485, 0.25, 0.25),

-2));

169 atoms.push_back(Atom("O2", 18, "O", Vector3f(0.5, 0, 0.29515), -2));

170 atoms.push_back(Atom("O2", 19, "O", Vector3f(0.54515, 0.75, 0.25),

-2));

171 atoms.push_back(Atom("O2", 20, "O", Vector3f(0.75, 0.54515, 0.25),

-2));

172 atoms.push_back(Atom("O2", 21, "O", Vector3f(0.75, 0.95485, 0.25),

-2));

173 atoms.push_back(Atom("O2", 22, "O", Vector3f(0.95485, 0.75, 0.25),

-2));

174 atoms.push_back(Atom("O2", 23, "O", Vector3f(0, 0.29515, 0.5), -2));

175 atoms.push_back(Atom("O2", 24, "O", Vector3f(0, 0.70485, 0.5), -2));

176 atoms.push_back(Atom("O2", 25, "O", Vector3f(0.20485, 0.5, 0.5), -2)

);

177 atoms.push_back(Atom("O2", 26, "O", Vector3f(0.25, 0.25, 0.45485),

-2));

178 atoms.push_back(Atom("O2", 27, "O", Vector3f(0.29515, 0, 0.5), -2));

179 atoms.push_back(Atom("O2", 28, "O", Vector3f(0.25, 0.75, 0.54515),

-2));

180 atoms.push_back(Atom("O2", 29, "O", Vector3f(0.5, 0.20485, 0.5), -2)

);

181 atoms.push_back(Atom("O2", 30, "O", Vector3f(0.5, 0.79515, 0.5), -2)

);

182 atoms.push_back(Atom("O2", 31, "O", Vector3f(0.70485, 0, 0.5), -2));

183 atoms.push_back(Atom("O2", 32, "O", Vector3f(0.75, 0.75, 0.45485),

-2));

C.5. CrystalFactory.cpp 228

184 atoms.push_back(Atom("O2", 33, "O", Vector3f(0.75, 0.25, 0.54515),

-2));

185 atoms.push_back(Atom("O2", 34, "O", Vector3f(0.79515, 0.5, 0.5), -2)

);

186 atoms.push_back(Atom("O2", 35, "O", Vector3f(0, 0.5, 0.70485), -2));

187 atoms.push_back(Atom("O2", 36, "O", Vector3f(0, 0, 0.79515), -2));

188 atoms.push_back(Atom("O2", 37, "O", Vector3f(0.04515, 0.75, 0.75),

-2));

189 atoms.push_back(Atom("O2", 38, "O", Vector3f(0.25, 0.54515, 0.75),

-2));

190 atoms.push_back(Atom("O2", 39, "O", Vector3f(0.25, 0.95485, 0.75),

-2));

191 atoms.push_back(Atom("O2", 40, "O", Vector3f(0.5, 0, 0.70485), -2));

192 atoms.push_back(Atom("O2", 41, "O", Vector3f(0.45485, 0.75, 0.75),

-2));

193 atoms.push_back(Atom("O2", 42, "O", Vector3f(0.5, 0.5, 0.79515), -2)

);

194 atoms.push_back(Atom("O2", 43, "O", Vector3f(0.54515, 0.25, 0.75),

-2));

195 atoms.push_back(Atom("O2", 44, "O", Vector3f(0.75, 0.04515, 0.75),

-2));

196 atoms.push_back(Atom("O2", 45, "O", Vector3f(0.75, 0.45485, 0.75),

-2));

197 atoms.push_back(Atom("O2", 46, "O", Vector3f(0.95485, 0.25, 0.75),

-2));

198 atoms.push_back(Atom("O2", 47, "O", Vector3f(0.25, 0.75, 0.95485),

-2));

199 atoms.push_back(Atom("O2", 48, "O", Vector3f(0.75, 0.25, 0.95485),

-2));

200

C.6. RandomGenerator.cpp 229

201 atoms.push_back(Atom("O1", 1, "O", Vector3f(0, 0.5, 0), -2));

202 atoms.push_back(Atom("O1", 2, "O", Vector3f(0.5, 0, 0), -2));

203 atoms.push_back(Atom("O1", 3, "O", Vector3f(0.25, 0.75, 0.25), -2));

204 atoms.push_back(Atom("O1", 4, "O", Vector3f(0.75, 0.25, 0.25), -2));

205 atoms.push_back(Atom("O1", 5, "O", Vector3f(0, 0, 0.5), -2));

206 atoms.push_back(Atom("O1", 6, "O", Vector3f(0.5, 0.5, 0.5), -2));

207 atoms.push_back(Atom("O1", 7, "O", Vector3f(0.25, 0.25, 0.75), -2));

208 atoms.push_back(Atom("O1", 8, "O", Vector3f(0.75, 0.75, 0.75), -2));

209

210 return Crystal(b, atoms);

211 }

212

213 Crystal CrystalFactory::ZnO(Bravais &b) {

214 std::vector<Atom> atoms;

215

216 Atom O1("O1", 1, "O", Vector3f(1./3., 2./3., 3./8.), -2);

217 Atom O2("O2", 2, "O", Vector3f(2./3., 1./3., 7./8.), -2);

218 Atom Zn1("Zn1", 1, "Zn", Vector3f(1./3., 2./3., 0), 2);

219 Atom Zn2("Zn2", 2, "Zn", Vector3f(2./3., 1./3., 0.5), 2);

220

221 atoms.push_back(Zn1);

222 atoms.push_back(Zn2);

223 atoms.push_back(O1);

224 atoms.push_back(O2);

225

226 return Crystal(b, atoms);

227 }

C.6 RandomGenerator.cpp

C.6. RandomGenerator.cpp 230

1 //

2 // Created by Tim on 14/03/2018.

3 //

4

5 #include <iostream>

6 #include <sstream>

7 #include "RandomGenerator.h"

8

9 RandomGenerator::RandomGenerator(unsigned int seed) {

10 // std::cout << "PRNG seeded with " << seed << std::endl;

11 this->seed = seed;

12 _reseed(seed);

13 _legacy_init();

14 }

15

16 RandomGenerator::RandomGenerator() : RandomGenerator(12345) {}

17

18 int RandomGenerator::_legacy_rand() {

19 // Do not use this method, only exists for legacy testing purposes

20 // use rand() instead;

21 return std::rand();

22 }

23

24 double RandomGenerator::rand() {

25 std::uniform_real_distribution<double> dis(0.0, 1.0);

26 return dis(engine);

27 }

28

29 void RandomGenerator::_legacy_init() {

30 for (int i = 0; i < 1; i++) {

C.7. RotationHelper.cpp 231

31 _legacy_rs[i] = _legacy_rand();

32 _legacy_rnums[i] = 0;

33 }

34 }

35

36

37 double RandomGenerator::_legacy_marsaglia() {

38 return _legacy_marsaglia(0);

39 }

40

41 double RandomGenerator::_legacy_marsaglia(int whichR) {

42 // whichR should be between 0-5 to select r1-r6 appropriately

43 _legacy_rs[whichR] = _legacy_MWCcoeff * (_legacy_rs[whichR] &

4294967295) + (_legacy_rs[whichR] >> 32);

44 return (double) _legacy_rs[whichR] / 4294967295. / _legacy_MWCcoeff;

45 }

46

47 int RandomGenerator::rand(int max) {

48 // generatures uid random numbers in [0,max)

49 return (int) std::floor(rand() * max) % max;

50 }

51

52 std::string RandomGenerator::writeReport() {

53 std::stringstream sstream;

54 sstream << "# PRNG SEED : " << seed;

55 return sstream.str();

56 }

C.7 RotationHelper.cpp

C.7. RotationHelper.cpp 232

1 //

2 // Created by Tim on 26/09/2017.

3 //

4

5 #include "RotationHelper.h"

6

7 Matrix3f RotationHelper::rotateX(double theta) {

8 // Returns a 3d Rotation Matrix to perform rotation about cartesian

x

9 Matrix3f m;

10 m << 1, 0, 0,

11 0, std::cos(theta), -std::sin(theta),

12 0, std::sin(theta), std::cos(theta);

13 return m;

14 }

15

16 Matrix3f RotationHelper::rotateY(double theta) {

17 // Returns a 3d Rotation Matrix to perform rotation about cartesian

y

18 Matrix3f m;

19 m << std::cos(theta), 0, std::sin(theta),

20 0, 1, 0,

21 -std::sin(theta), 0, std::cos(theta);

22 return m;

23 }

24

25 Matrix3f RotationHelper::rotateZ(double theta) {

26 // Returns a 3d Rotation Matrix to perform rotation about cartesian

z

27 Matrix3f m;

C.8. Atom.cpp 233

28

29

30 m << std::cos(theta), -std::sin(theta), 0,

31 std::sin(theta), std::cos(theta), 0,

32 0, 0, 1;

33 return m;

34 }

35

36 float RotationHelper::magnitude(Vector3f vect) {

37 return std::sqrt(vect.dot(vect));

38 }

39

40 float RotationHelper::angleBetween(Vector3f vectA, Vector3f vectB) {

41 return std::acos(vectA.dot(vectB) / (magnitude(vectA) * magnitude(

vectB)));

42 }

43

44 float RotationHelper::toRad(double thetaDegree) {

45 return thetaDegree * M_PI / 180.;

46 }

47

48 float RotationHelper::toDegree(double thetaRads) {

49 return thetaRads * 180. / M_PI;

50 }

C.8 Atom.cpp

1 //

2 // Created by Tim on 27/09/2017.

3 //

C.8. Atom.cpp 234

4

5 #include <iostream>

6 #include "Atom.h"

7

8 #include "Bravais.h"

9

10 Atom::Atom(const std::string &atomType, int atomIndex, const std::string

&elementType,

11 const Vector3f &fractionalPosition, const Vector3i &

supercellIndex, int charge, double occupancy) :

12 elementType(elementType), fractionalPosition(fractionalPosition)

, supercellIndex(supercellIndex),

13 charge(charge), occupancy(occupancy), atomType(atomType) {

14 atomName = atomType;

15 _atom_index = atomIndex;

16 _unit_cell_index = 0;

17 setUID();

18 }

19

20 Atom::Atom(const std::string &atomType, int atomIndex, const std::string

&elementType, const Vector3f &fractionalPosition, int charge)

21 : Atom(atomType, atomIndex, elementType, fractionalPosition,

Vector3i(0, 0, 0), charge, 1.0) {}

22

23

24 const std::string &Atom::getAtomName() const {

25 return atomName;

26 }

27

28 const std::string &Atom::getElementType() const {

C.8. Atom.cpp 235

29 return elementType;

30 }

31

32 const Vector3f &Atom::getFractionalPosition() const {

33 return fractionalPosition;

34 }

35

36 void Atom::setSupercellIndex(int supercellA, int supercellB, int

supercellC) {

37 Atom::supercellIndex[0] = supercellA;

38 Atom::supercellIndex[1] = supercellB;

39 Atom::supercellIndex[2] = supercellC;

40 }

41

42 Vector3f Atom::getAbsolutePosition(Bravais *ref) {

43 return ref->getPosition(fractionalPosition) +

44 ref->getPosition(supercellIndex[0], supercellIndex[1],

supercellIndex[2]);

45 }

46

47 const Vector3i &Atom::getSupercellIndex() const {

48 return supercellIndex;

49 }

50

51 double Atom::getCharge() const {

52 return charge;

53 }

54

55 bool Atom::operator==(const Atom &rhs) const {

56 return atomName == rhs.atomName &&

C.8. Atom.cpp 236

57 atomType == rhs.atomType &&

58 elementType == rhs.elementType &&

59 fractionalPosition == rhs.fractionalPosition &&

60 charge == rhs.charge &&

61 occupancy == rhs.occupancy;

62 }

63

64 bool Atom::operator!=(const Atom &rhs) const {

65 return !(rhs == *this);

66 }

67

68 const std::string Atom::getUID() const {

69 return UID;

70 }

71

72 void Atom::setUID() {

73 std::stringstream sstream;

74 sstream << atomName << "_" << _atom_index << "_"

75 << supercellIndex[0] << "_"

76 << supercellIndex[1] << "_"

77 << supercellIndex[2];

78 UID = sstream.str();

79 }

80

81 void Atom::setFractionalPosition(const Vector3f &fractionalPosition) {

82 Atom::fractionalPosition = fractionalPosition;

83 }

84

85 void Atom::setSupercellIndex(const Vector3i &supercellIndex) {

86 Atom::supercellIndex = supercellIndex;

C.8. Atom.cpp 237

87 }

88

89 void Atom::setCharge(double charge) {

90 Atom::charge = charge;

91 }

92

93 void Atom::setOccupancy(double occupancy) {

94 Atom::occupancy = occupancy;

95 }

96

97 const std::string &Atom::getAtomType() const {

98 return atomType;

99 }

100

101 double Atom::getOccupancy() const {

102 return occupancy;

103 }

104

105 void Atom::setElementType(const std::string &elementType) {

106 Atom::elementType = elementType;

107 }

108

109 void Atom::setAtomName(const std::string &atomName) {

110 Atom::atomName = atomName;

111 }

112

113 int Atom::getUnitCellIndex() {

114 return _unit_cell_index;

115 }

116

C.9. Bravais.cpp 238

117 void Atom::setUnitCellIndex(int newIndex) {

118 _unit_cell_index = newIndex;

119

120 }

121

122 int Atom::getElementIndex() const {

123 return _atom_index;

124 }

C.9 Bravais.cpp

1 //

2 // Created by Tim on 26/09/2017.

3 //

4

5 #include <iostream>

6 #include "Bravais.h"

7

8

9 // Helper functions

10

11 float TOLERANCE = 1e-3;

12

13 bool almostEqual(float lhs, float rhs) {

14 return std::abs(lhs - rhs) < TOLERANCE;

15 }

16

17 // Bravais Class

18

19 Bravais::Bravais(const Matrix3f &bravais) : bravais(bravais) {

C.9. Bravais.cpp 239

20 initialiseReciprocalsInverses();

21 }

22 Bravais::Bravais(const float aMag, const float bMag, const float cMag,

const float alpha, const float beta,

23 const float gamma) {

24

25 Vector3f aVect(aMag, 0, 0);

26

27 Matrix3f rotVect = RotationHelper::rotateZ(RotationHelper::toRad(

gamma));

28

29 Vector3f bVect = rotVect * aVect;

30

31 rotVect = RotationHelper::rotateY(RotationHelper::toRad(-alpha));

32

33 Vector3f cVect = rotVect * aVect;

34

35 while (!almostEqual(RotationHelper::toRad(alpha), RotationHelper::

angleBetween(bVect, cVect))) {

36 std::cout << "rotating" << std::endl;

37 rotVect = RotationHelper::rotateX(RotationHelper::toRad(1));

38 cVect = rotVect * cVect;

39 }

40

41 aVect *= aMag / RotationHelper::magnitude(aVect);

42 bVect *= bMag / RotationHelper::magnitude(bVect);

43 cVect *= cMag / RotationHelper::magnitude(cVect);

44

45 bravais.row(0) = aVect;

46 bravais.row(1) = bVect;

C.9. Bravais.cpp 240

47 bravais.row(2) = cVect;

48

49 // Verify obtained vectors match input requirements

50 assert(almostEqual(aMag, RotationHelper::magnitude(aVect)));

51 assert(almostEqual(bMag, RotationHelper::magnitude(bVect)));

52 assert(almostEqual(cMag, RotationHelper::magnitude(cVect)));

53 assert(almostEqual(RotationHelper::toRad(alpha), RotationHelper::

angleBetween(bVect, cVect)));

54 assert(almostEqual(RotationHelper::toRad(beta), RotationHelper::

angleBetween(aVect, cVect)));

55 assert(almostEqual(RotationHelper::toRad(gamma), RotationHelper::

angleBetween(aVect, bVect)));

56

57 initialiseReciprocalsInverses();

58 }

59

60 Bravais::Bravais(const Vector3f aVect, const Vector3f bVect, const

Vector3f cVect) {

61 bravais.row(0) = aVect;

62 bravais.row(1) = bVect;

63 bravais.row(2) = cVect;

64 initialiseReciprocalsInverses();

65 }

66

67 Matrix3f Bravais::getReciprocal() const {

68 return reciprocal;

69 }

70

71 Bravais::Bravais(const float aMag) : Bravais(aMag, aMag, aMag, 90, 90,

90) {

C.9. Bravais.cpp 241

72 // Constructs a cubic bravais lattice with lattice parameter aMag

73 }

74

75 Bravais::Bravais(const float aMag, const float bMag) : Bravais(aMag,

aMag, bMag, 90, 90, 120) {

76 // Constructs a hexagonal bravais lattice with lattice parameter

aMag

77 }

78

79 Vector3f Bravais::getQ(float h, float k, float l) const {

80 Matrix3f recip = getReciprocal();

81 return Vector3f(h, k, l).transpose() * recip;

82 }

83 Vector3f Bravais::getQ(Vector3f hkls) const {

84 return getQ(hkls[0], hkls[1], hkls[2]);

85 }

86

87 Vector3f Bravais::getPosition(float u, float v, float w) const {

88 return Vector3f(u, v, w).transpose() * getBravais();

89 }

90

91 Vector3f Bravais::getPosition(Vector3f fractionalPosition) const {

92 return getPosition(fractionalPosition[0], fractionalPosition[1],

fractionalPosition[2]);

93 }

94

95 bool Bravais::operator==(const Bravais &rhs) const {

96 return bravais == rhs.bravais;

97 }

98

C.9. Bravais.cpp 242

99 bool Bravais::operator!=(const Bravais &rhs) const {

100 return !(rhs == *this);

101 }

102

103 const Matrix3f &Bravais::getBravais() const {

104 return bravais;

105 }

106

107 Vector3f Bravais::getUVW(float rx, float ry, float rz) const {

108 return Vector3f(rx, ry, rz).transpose() * getBravaisInverse().matrix

();

109 }

110

111 Matrix3f Bravais::getBravaisInverse() const {

112 return bravaisInverse;

113 }

114

115 Matrix3f Bravais::getReciprocalInverse() const {

116 return reciprocalInverse;

117 }

118

119 Vector3f Bravais::getHKL(float qx, float qy, float qz) const {

120 Vector3f qvect(qx, qy, qz);

121 return qvect.transpose() * getReciprocalInverse().matrix();

122 }

123

124 Vector3f Bravais::getHKL(Vector3f qVector) const {

125 return getHKL(qVector[0], qVector[1], qVector[2]);

126 }

127

C.10. Crystal.cpp 243

128 std::string Bravais::writeReport() const{

129 std::stringstream report;

130

131 Matrix3f recip = getReciprocal();

132

133 report << "# A : " << bravais(0,0) << " "<< bravais(0, 1) << " "<<

bravais(0, 2) << " " << std::endl;

134 report << "# B : " << bravais(1,0) << " "<< bravais(1, 1) << " "<<

bravais(1, 2) << " " << std::endl;

135 report << "# C : " << bravais(2,0) << " "<< bravais(2, 1) << " "<<

bravais(2, 2) << " " << std::endl;

136 report << "# A* : " << recip(0,0) << " "<< recip(0, 1) << " "<<

recip(0, 2) << " " << std::endl;

137 report << "# B* : " << recip(1,0) << " "<< recip(1, 1) << " "<<

recip(1, 2) << " " << std::endl;

138 report << "# C* : " << recip(2,0) << " "<< recip(2, 1) << " "<<

recip(2, 2) << " ";

139

140 return report.str();

141 }

142

143 Vector3f Bravais::getUVW(Vector3f position) const {

144 return getUVW(position[0], position[1], position[2]);

145 }

C.10 Crystal.cpp

1 //

2 // Created by Tim on 28/09/2017.

3 //

C.10. Crystal.cpp 244

4

5 #include <iostream>

6 #include <map>

7 #include "Crystal.h"

8

9

10 Crystal::Crystal(const Bravais &bravaisLattice, const std::vector<Atom>

&basis) : bravaisLattice(bravaisLattice) {

11 for (int i = 0; i < basis.size(); i++) {

12 Atom newAtoms = basis[i];

13 newAtoms.setUnitCellIndex(i);

14 this->basis.push_back(newAtoms);

15 }

16 }

17

18 std::string Crystal::writeCellFile() {

19 std::stringstream sstream;

20

21 sstream << "%BLOCK lattice_cart\n\tANG\n";

22

23 sstream << "\t\t" << std::fixed << std::setprecision(14) <<

getBravaisLattice().getBravais().row(0) << "\n";

24 sstream << "\t\t" << std::fixed << std::setprecision(14) <<

getBravaisLattice().getBravais().row(1) << "\n";

25 sstream << "\t\t" << std::fixed << std::setprecision(14) <<

getBravaisLattice().getBravais().row(2) << "\n";

26 sstream << "%ENDBLOCK lattice_cart\n\n%BLOCK positions_frac\n";

27

28 for (Atom currentAtom : basis) {

29 sstream << "\t" << currentAtom.getElementType() << "\t" << std::

C.10. Crystal.cpp 245

fixed << std::setprecision(15) << currentAtom.getFractionalPosition()

.transpose() << "\n";

30 }

31 sstream << "%ENDBLOCK positions_frac\n";

32 return sstream.str();

33 }

34

35 std::vector<Atom *> Crystal::findNeighbours(const Atom &toAtom, int

numberOfNeighbours, bool (*filter)(Atom)) {

36 // TODO : implement this....

37

38 std::multimap<double, const Atom*> allNeighboursMultiMap;

39

40

41 for (const Atom &atom : getBasis()) {

42 if (atom != toAtom && filter(atom)) {

43 allNeighboursMultiMap.insert(std::pair<double, const Atom*>(

distance(toAtom, atom), &atom));

44 }

45 }

46

47 std::vector<Atom*> neighbours;

48

49 for (std::pair<double, const Atom*> candidate :

allNeighboursMultiMap) {

50 Atom *newNeighbour = const_cast<Atom*>(candidate.second);

51 neighbours.push_back(newNeighbour);

52 if (neighbours.size() == numberOfNeighbours) break;

53 }

54

C.10. Crystal.cpp 246

55 return neighbours;

56 }

57

58 std::vector<Atom *> Crystal::findNeighbours(const Atom &toAtom, int

numberOfNeighbours) {

59 auto nofilter = [](Atom a) { return true;};

60 return findNeighbours(toAtom, numberOfNeighbours, nofilter);

61 }

62

63 double Crystal::distance(const Atom &atom1, const Atom &atom2) {

64 Vector3f cartesian1 = bravaisLattice.getPosition(atom1.

getFractionalPosition());

65 Vector3f cartesian2 = bravaisLattice.getPosition(atom2.

getFractionalPosition());

66

67 return RotationHelper::magnitude(cartesian2 - cartesian1);

68 }

69

70 void Crystal::setSuperCellIndex(int supercellA, int supercellB, int

supercellC) {

71 for (Atom &a : basis) {

72 a.setSupercellIndex(supercellA, supercellB, supercellC);

73 a.setUID();

74 }

75

76 }

77

78 bool Crystal::operator==(const Crystal &rhs) const {

79 if (basis.size() != rhs.basis.size()) {

80 return false;

C.10. Crystal.cpp 247

81 }

82

83 for (int i = 0; i < basis.size(); i++) {

84 if (basis[i] != rhs.getBasis()[i]) {

85 return false;

86 }

87 }

88

89 return bravaisLattice == rhs.bravaisLattice;

90 }

91

92 bool Crystal::operator!=(const Crystal &rhs) const {

93 return !(rhs == *this);

94 }

95

96 const Bravais &Crystal::getBravaisLattice() const {

97 return bravaisLattice;

98 }

99

100 const std::vector<Atom> &Crystal::getBasis() const {

101 return basis;

102 }

103

104 void Crystal::updateAtom(const Atom &newAtom) {

105 Atom mutableAtom = newAtom;

106 for (Atom &a : basis) {

107 if (a.getUID() == newAtom.getUID()) {

108 a = newAtom;

109 return;

110 }

C.11. SuperCell.cpp 248

111 }

112 mutableAtom.setUnitCellIndex(basis.size() + 1);

113 basis.push_back(mutableAtom);

114 }

115

116 std::vector<Atom> Crystal::getUnfilteredList() {

117 return getBasis();

118 }

C.11 SuperCell.cpp

1 //

2 // Created by Tim on 08/10/2017.

3 //

4

5 #include <iostream>

6 #include <algorithm>

7 #include "SuperCell.h"

8 #include "../helpers/CrystalMaths.h"

9

10 SuperCell::SuperCell(Crystal baseCrystal, int size_a, int size_b, int

size_c) {

11 if (size_a < 3 || size_b < 3 || size_c < 3) {

12 throw SUPERCELL_TOO_SMALL;

13 }

14

15 this->size_a = size_a;

16 this->size_b = size_b;

17 this->size_c = size_c;

18

C.11. SuperCell.cpp 249

19

20 supercellCrystals.resize(size_c);

21 for (int i = 0; i < size_c; i++) {

22 supercellCrystals[i].resize(size_b);

23 for (int j = 0; j < size_b; j++) {

24 supercellCrystals[i][j].resize(size_a);

25 }

26 }

27

28 for (int i = 0; i < size_a; i++) {

29 for (int j = 0; j < size_b; j++) {

30 for (int k = 0; k < size_c; k++) {

31 supercellCrystals[i][j][k] = new Crystal(baseCrystal);

32 supercellCrystals[i][j][k]->setSuperCellIndex(i, j, k);

33 }

34 }

35 }

36

37 int uniqueTypesFound = 1;

38 for (Atom a : supercellCrystals[0][0][0]->getBasis()) {

39 if (!_legacy_type.count(a.getAtomName())) {

40 _legacy_type.insert(std::pair<std::string, int>(a.

getAtomName(), uniqueTypesFound));

41 _legacy_type_map.insert(std::pair<int, std::string>(

uniqueTypesFound, a.getAtomName()));

42 uniqueTypesFound++;

43 }

44 }

45 }

46

C.11. SuperCell.cpp 250

47 const std::vector<std::vector<std::vector<Crystal *>>> &SuperCell::

getSupercellCrystals() const {

48 return supercellCrystals;

49 }

50

51 std::string SuperCell::writeToFile() {

52 std::stringstream sstream;

53

54 sstream << "%BLOCK lattice_cart\n\tANG\n";

55

56 Vector3f aVect = supercellCrystals[0][0][0]->getBravaisLattice().

getBravais().row(0);

57 Vector3f bVect = supercellCrystals[0][0][0]->getBravaisLattice().

getBravais().row(1);

58 Vector3f cVect = supercellCrystals[0][0][0]->getBravaisLattice().

getBravais().row(2);

59

60 aVect *= size_a;

61 bVect *= size_b;

62 cVect *= size_c;

63

64 sstream << "\t\t" << std::fixed << std::setprecision(14) << aVect.

transpose() << "\n";

65 sstream << "\t\t" << std::fixed << std::setprecision(14) << bVect.

transpose() << "\n";

66 sstream << "\t\t" << std::fixed << std::setprecision(14) << cVect.

transpose() << "\n";

67 sstream << "%ENDBLOCK lattice_cart\n\n%BLOCK positions_frac\n";

68

69 for (int i = 0; i < size_a; i++) {

C.11. SuperCell.cpp 251

70 for (int j = 0; j < size_b; j++) {

71 for (int k = 0; k < size_b; k++) {

72 for (const Atom &a : supercellCrystals[i][j][k]->

getBasis()) {

73 Vector3i supercellIndex = a.getSupercellIndex();

74 sstream << "\t" << a.getElementType() << "\t" << std

::fixed << std::setprecision(15)

75 << (a.getFractionalPosition()[0] +

supercellIndex[0]) / size_a << "\t"

76 << (a.getFractionalPosition()[1] +

supercellIndex[1]) / size_b

77 << "\t" << (a.getFractionalPosition()[2] +

supercellIndex[2]) / size_c << "\n";

78 }

79 }

80 }

81 }

82 sstream << "%ENDBLOCK positions_frac\n";

83 return sstream.str();

84 }

85

86 std::vector<Atom> SuperCell::getAllAtomsInNearbyCells(Atom toAtom) {

87 return getAllAtomsInNearbyCells(toAtom, [](Atom a) {

88 return true;

89 });

90 }

91

92 std::vector<Atom> SuperCell::getAllAtomsInNearbyCells(Atom toAtom, std::

function<bool(Atom)> filterFunc) {

93 Vector3i centralIndex = toAtom.getSupercellIndex();

C.11. SuperCell.cpp 252

94

95 int cellsToVisitA[3] = {mod((centralIndex[0] - 1), size_a),

96 (centralIndex[0]),

97 mod((centralIndex[0] + 1), size_a)};

98

99 int cellsToVisitB[3] = {mod(centralIndex[1] - 1, size_b),

100 (centralIndex[1]),

101 mod(centralIndex[1] + 1, size_b)};

102 int cellsToVisitC[3] = {mod(centralIndex[2] - 1, size_c),

103 (centralIndex[2]),

104 mod(centralIndex[2] + 1, size_c)};

105

106 std::vector<Atom> atoms;

107 Bravais bravais = getBravais();

108 Vector3f supercellDims = bravais.getPosition(size_a, size_b, size_c)

;

109

110 for (int i : cellsToVisitA) {

111 for (int j : cellsToVisitB) {

112 for (int k : cellsToVisitC) {

113 // std::cout << "checkign neighbours in " << i << j << k

<< std::endl;

114 std::vector<Atom> filtered = supercellCrystals[i][j][k

]->filter(filterFunc);

115

116 for (std::vector<Atom>::iterator it = filtered.begin();

it != filtered.end(); it++) {

117 Vector3f delta = distance(*it, toAtom);

118 if (true || (

119 std::abs(delta[0]) < std::abs(supercellDims

C.11. SuperCell.cpp 253

[0]) / 2. &&

120 std::abs(delta[1]) < std::abs(supercellDims

[1]) / 2. &&

121 std::abs(delta[2]) < std::abs(supercellDims

[2]) / 2.

122)) {

123 atoms.push_back(*it);

124 } else {

125 // std::cout << "rejected " << delta[0] << ", "

<< delta[1] << ", " << delta[2] << " not " << supercellDims[0] << ",

" << supercellDims[1] << ", " << supercellDims[2] << std::endl;

126 }

127 }

128 }

129 }

130 }

131

132 return atoms;

133 }

134

135 std::string SuperCell::write_legacy() {

136 // superIndexX+1 superIndexY+1 superIndexY+1 imole

atom_index_unitcell itype x y z spinx spiny spinz

charge

137 std::stringstream sstream;

138

139 for (int i = 0; i < size_a; i++) {

140 for (int j = 0; j < size_b; j++) {

141 for (int k = 0; k < size_b; k++) {

142 for (int atomIndex = 0; atomIndex < supercellCrystals[i

C.11. SuperCell.cpp 254

][j][k]->getBasis().size(); atomIndex++) {

143 const Atom &a = supercellCrystals[i][j][k]->getBasis

()[atomIndex];

144 std::string final_spacer = " ";

145 if (a.getCharge() > 0) {

146 final_spacer += " ";

147 }

148

149 int itype = _legacy_type.find(a.getAtomName())->

second;

150

151 if (a.getOccupancy() == 0) {

152 itype = 5;

153 }

154

155 sstream << i + 1 << " " << j + 1 << " " << k + 1

156 << " " << 1 << " " << atomIndex + 1 << " "

<< itype

157 << std::setprecision(6) << std::fixed

158 << " " << a.getFractionalPosition()[0] <<

" " << a.getFractionalPosition()[1] << " "

159 << a.getFractionalPosition()[2]

160 << " " << 0. << " " << 0. << " " << 0.

<< final_spacer << a.getCharge() << std::endl;

161 }

162 }

163 }

164 }

165 return sstream.str();

166 }

C.11. SuperCell.cpp 255

167

168 std::vector<Atom> SuperCell::getAllAtoms() {

169 std::vector<Atom> atoms;

170 for (int i = 0; i < size_a; i++) {

171 for (int j = 0; j < size_b; j++) {

172 for (int k = 0; k < size_b; k++) {

173 for (int atomIndex = 0; atomIndex < supercellCrystals[i

][j][k]->getBasis().size(); atomIndex++) {

174 atoms.push_back(supercellCrystals[i][j][k]->getBasis

()[atomIndex]);

175 }

176 }

177 }

178 }

179 return atoms;

180 }

181

182 void SuperCell::updateAtom(const Atom &newAtom) {

183 Vector3i superCellIndex = newAtom.getSupercellIndex();

184 supercellCrystals[superCellIndex[0]][superCellIndex[1]][

superCellIndex[2]]->updateAtom(newAtom);

185 }

186

187 std::vector<Atom> SuperCell::getUnfilteredList() {

188 return getAllAtoms();

189 }

190

191 Vector3i SuperCell::getSupercellSize() {

192 return Eigen::Vector3i(size_a, size_b, size_c);

193 }

C.11. SuperCell.cpp 256

194

195 Vector3f SuperCell::distance(Atom &a1, Atom &a2) {

196 // Calculates the distance, implementing Periodic Bounday Conditions

(PBC)

197

198 Bravais b = getBravais();

199

200 Vector3f pos1 = a1.getAbsolutePosition(&b);

201 Vector3f pos2 = a2.getAbsolutePosition(&b);

202

203 Vector3f delta = pos2 - pos1;

204

205 Vector3f boxlength = b.getPosition(size_a, size_b, size_c).cwiseAbs

();

206

207 // Implement PBCs

208 if (delta[0] > boxlength[0] * 0.5) delta[0] -= boxlength[0];

209 if (delta[0] <= -boxlength[0] * 0.5) delta[0] += boxlength[0];

210

211 if (delta[1] > boxlength[1] * 0.5) delta[1] -= boxlength[1];

212 if (delta[1] <= -boxlength[1] * 0.5) delta[1] += boxlength[1];

213

214 if (delta[2] > boxlength[2] * 0.5) delta[2] -= boxlength[2];

215 if (delta[2] <= -boxlength[2] * 0.5) delta[2] += boxlength[2];

216

217 return delta;

218 }

219

220 const Bravais &SuperCell::getBravais() {

221 return supercellCrystals[0][0][0]->getBravaisLattice();

C.11. SuperCell.cpp 257

222 }

223

224 std::vector<Atom>

225 SuperCell::getNearestNeighbours(Atom toAtom, int numberOfNeighbours, std

::function<bool(Atom)> filterFunc) {

226 std::vector<Atom> neighbours = getAllAtomsInNearbyCells(toAtom,

filterFunc);

227

228 auto comparator = [&](Atom a1, Atom a2) {

229 double distance1 = magnitude(distance(a1, toAtom));

230 double distance2 = magnitude(distance(a2, toAtom));

231 return distance1 < distance2;

232 };

233

234 int numberFound = neighbours.size();

235 int trueNumberOfNeighbours = std::min(numberFound,

numberOfNeighbours);

236

237 std::sort(neighbours.begin(), neighbours.end(), comparator);

238

239 // Avoid the nearest neighbour as this is actually the atom itself

with distance 0

240 std::vector<Atom> returnAtoms(neighbours.begin() + 1, neighbours.

begin() + trueNumberOfNeighbours + 1);

241 return returnAtoms;

242 }

243

244

245 const bool defaultCompare(Atom a) {

246 return true;

C.11. SuperCell.cpp 258

247 }

248

249 std::vector<Atom> SuperCell::getNearestNeighbours(Atom toAtom, int

numberOfNeighbours) {

250 std::vector<Atom> neighbours;

251

252 // for (int i = 0; i < numberOfNeighbours; i++) {

253 // neighbours.push_back(getAllAtoms()[i]);

254 // }

255 // return neighbours;

256 //

257 return getNearestNeighbours(toAtom, numberOfNeighbours,

defaultCompare);

258 }

259

260

261 int SuperCell::getTypeIdFromElement(std::string element) {

262 return _legacy_type[element];

263 }

264

265 std::string SuperCell::getElementFromTypeId(int elementId) {

266 return _legacy_type_map[elementId];

267 }

268

269 const std::map<std::string, int> &SuperCell::getTypeIdFromElementMap()

const {

270 return _legacy_type;

271 }

272

273 const std::map<int, std::string> &SuperCell::getElementFromTypeIdMap()

C.12. ChainedMutator.h 259

const {

274 return _legacy_type_map;

275 }

C.12 ChainedMutator.h

1 //

2 // Created by Tim on 28/03/2018.

3 //

4

5 #ifndef TBALLSNSPRINGS_CHAINEDMUTATOR_H

6 #define TBALLSNSPRINGS_CHAINEDMUTATOR_H

7

8

9 #include "CrystalMutator.h"

10

11 class ChainedMutator : public CrystalMutator {

12 public:

13 void mutateCrystal(SuperCell *crystalToModify) override;

14 void setNext(ChainedMutator *next);

15

16 virtual bool isFinished(SuperCell *crystalToModify);

17 virtual bool canFinishEarly();

18

19 ChainedMutator *next = nullptr;

20

21 };

22

23

24 #endif //TBALLSNSPRINGS_CHAINEDMUTATOR_H

C.13. CrystalMutator.h 260

C.13 CrystalMutator.h

1 //

2 // Created by Tim on 14/03/2018.

3 //

4

5 #ifndef TBALLSNSPRINGS_VACANCYCREATOR_H

6 #define TBALLSNSPRINGS_VACANCYCREATOR_H

7

8

9 #include "../objects/FilterableAtoms.h"

10 #include "../objects/SuperCell.h"

11

12 class CrystalMutator {

13 // Allows for arbitrary crystal processing based on some seletion

criteria (filter function) and some

14 // process to do to the crystal on all filtered atoms (process

function)

15

16 // See SimpleO1Vacancy for examples

17

18 public:

19 virtual void mutateCrystal(SuperCell *crystalToModify);

20 virtual bool filter(Atom) { return true; }

21

22 virtual bool process(Atom, SuperCell *) = 0;

23

24 int changesMade = 0;

25

26 };

C.14. CycleSuperCell.h 261

27

28

29 #endif //TBALLSNSPRINGS_VACANCYCREATOR_H

C.14 CycleSuperCell.h

1 //

2 // Created by Tim on 21/03/2018.

3 //

4

5 #ifndef TBALLSNSPRINGS_CYCLESUPERCELL_H

6 #define TBALLSNSPRINGS_CYCLESUPERCELL_H

7

8

9 #include "../objects/SuperCell.h"

10

11 class CycleSuperCell {

12 public:

13 // This class allows iterating over every subcell in a super and

performing some action

14

15 // Method runs over all subcells in a Supercell and performs the

process_subcell operation on them

16 void execute(int nCycles, SuperCell &superCell);

17

18 // Implement this method for the given crystal

19 virtual void process_subcell(Vector3i supercellIndex, SuperCell &

superCell) = 0;

20 };

21

C.15. CrystalEnergyCalculator.h 262

22

23 #endif //TBALLSNSPRINGS_CYCLESUPERCELL_H

C.15 CrystalEnergyCalculator.h

1 //

2 // Created by Tim on 23/04/2018.

3 //

4 #ifndef TBALLSNSPRINGS_CRYSTALENERGYCALCULATOR_H

5 #define TBALLSNSPRINGS_CRYSTALENERGYCALCULATOR_H

6

7 #include <iostream>

8 #include "../objects/FilterableAtoms.h"

9 #include "RandomGenerator.h"

10 #include "../objects/SuperCell.h"

11 #include "CrystalMaths.h"

12 #include "../Calculators/SpringEnergy/SpringEnergyStrategy.h"

13

14 #include <Eigen/Dense>

15

16 using Eigen::Vector4i;

17

18 class NeighbourDirections;

19

20 class EfficientCrystalRelaxor {

21 public:

22 const double boltzmannConst = 8.6173e-5;

23

24 explicit EfficientCrystalRelaxor(SuperCell &superCell);

25

C.15. CrystalEnergyCalculator.h 263

26 EfficientCrystalRelaxor(SuperCell &superCell, SpringEnergyStrategy *

strategy, int nneighbours, int numberOfCycles);

27

28 virtual ˜EfficientCrystalRelaxor();

29

30 std::vector<std::vector<NeighbourDirections>> &getNeighbourStructure

(SuperCell &superCell);

31

32 double *getHAtomX() const;

33

34 double *getHAtomY() const;

35

36 double *getHAtomZ() const;

37

38 double *getHOccupancy() const;

39

40 double *getHCharge() const;

41

42 int *getHAtomType() const;

43

44 int *getHNeighbourIndex() const;

45

46 int *getHAtomUnitCellIndex() const;

47

48 int getAddress(SuperCell &superCell, int supercellXIndex, int

supercellYIndex, int supercellZIndex, int unitCellIndex);

49

50 int getNeighbourAddress(SuperCell &superCell, NeighbourDirections &

neighbourDirs, Atom &focusAtom);

51

C.15. CrystalEnergyCalculator.h 264

52 std::list<int> getNeighbourAddresses(SuperCell &superCell, int

focusAtomIndex);

53

54 int getNumberOfAtoms() const;

55

56 Vector3f getSuperCellSize() const;

57

58 Atom getAtom(int atomIndex);

59

60 void relax(double temperature);

61 void relax(double temperature, int atomIndex);

62

63 void displace(int atomIndex, double displaceX, double displaceY,

double displaceZ);

64

65 double springEnergy(int atomIndex);

66

67 void printAtomLocs();

68

69 private:

70 void analyseNeighbourStructure(SuperCell &superCell);

71

72 void setupArrays(SuperCell &superCell);

73

74 SpringEnergyStrategy *strategy;

75

76 double *hAtomX, *hAtomY, *hAtomZ, *hOccupancy, *hCharge;

77 int *hAtomType, *hNeighbourIndex, *hElemIndex, number_of_atoms,

atoms_per_unit_cell, nneighbours, *hOrigAtomType, *hUnitCellIndex;

78

C.15. CrystalEnergyCalculator.h 265

79 int rejectedMoves, acceptedMoves, numberOfCycles;

80

81 Vector3f superCellSize;

82

83 std::vector<std::vector<NeighbourDirections>> _neighbourStructure;

84 std::map<int, std::string> idToElement;

85 std::map<std::string, int> elementToId;

86 Bravais *b;

87

88 };

89

90

91 class NeighbourDirections {

92 public:

93 NeighbourDirections(int supercellXOffset, int supercellYOffset, int

supercellZOffset, int unitCellIndexOffset);

94 NeighbourDirections(Atom a1, Atom a2);

95

96 int getSupercellXOffset() const;

97

98 int getSupercellYOffset() const;

99

100 int getSupercellZOffset() const;

101

102 int getUnitCellIndexOffset() const;

103

104 private:

105 int supercellXOffset, supercellYOffset, supercellZOffset,

unitCellIndexOffset;

106 };

C.15. CrystalEnergyCalculator.h 266

107

108

109 //double calculateSpringEnergy(SuperCell &superCell, Vector4i atomCoord,

SpringEnergyStrategy *strategy) {

110 // int i = atomCoord[0];

111 // int j = atomCoord[1];

112 // int k = atomCoord[2];

113 // int l = atomCoord[3];

114 //

115 // Atom focusAtom = superCell.getSupercellCrystals()[i][j][k]->

getBasis()[l];

116 //

117 // double totalEnergy = 0;

118 // for (Atom a : superCell.getNearestNeighbours(focusAtom, 20)) {

119 // for (SpringEnergyClauses clause : strategy->getClauses()) {

120 // if (clause.validate(a, focusAtom)) {

121 // totalEnergy += clause.calculateNeighbourEnergy(a,

focusAtom);

122 // break;

123 // }

124 // }

125 // }

126 //

127 // return totalEnergy;

128 //}

129

130

131 #endif //TBALLSNSPRINGS_CRYSTALENERGYCALCULATOR_H

C.16. CrystalFactory.h 267

C.16 CrystalFactory.h

1 //

2 // Created by Tim on 28/09/2017.

3 //

4

5 #ifndef EIGENTUT_CRYSTALFACTORY_H

6 #define EIGENTUT_CRYSTALFACTORY_H

7

8

9 #include "../objects/Crystal.h"

10

11 class CrystalFactory {

12 public:

13

14 static Crystal ZnO(Bravais &b);

15 static Crystal ZnO();

16 static Crystal Y2Ti2O7();

17

18 // For testing

19 static Crystal _Y2Ti2O7_broken();

20

21 };

22

23

24 #endif //EIGENTUT_CRYSTALFACTORY_H

C.17 CrystalMaths.h

1 //

C.18. RandomGenerator.h 268

2 // Created by Tim on 21/03/2018.

3 //

4

5 #ifndef TBALLSNSPRINGS_CRYSTALMATHS_H

6 #define TBALLSNSPRINGS_CRYSTALMATHS_H

7

8 inline int mod(int a, int b) {

9 // Returns a % b with negatives rolling back around

10 // e.g. mod(-1, 4) = 3

11

12 if (a < 0) a += b;

13 return a % b;

14 }

15

16 inline double magnitude(VectorXf v) {

17 double sqSum = 0;

18 for (int i = 0; i < v.size(); i++) {

19 sqSum += std::pow(v[i], 2);

20 }

21 return std::sqrt(sqSum);

22 }

23

24 #endif //TBALLSNSPRINGS_CRYSTALMATHS_H

C.18 RandomGenerator.h

1 //

2 // Created by Tim on 14/03/2018.

3 //

4

C.18. RandomGenerator.h 269

5 #ifndef TBALLSNSPRINGS_RANDOMGENERATOR_H

6 #define TBALLSNSPRINGS_RANDOMGENERATOR_H

7

8

9 #include <random>

10

11 class RandomGenerator {

12 // Random generator ensures singleton access to PRNG

13

14 public:

15 static RandomGenerator& instance(unsigned int seed)

16 {

17 static RandomGenerator INSTANCE(seed);

18 return INSTANCE;

19 }

20

21 static RandomGenerator& instance() {

22 return instance(12345);

23 }

24

25 void _reseed(unsigned int seed) {

26 engine.seed(seed);

27 std::srand(seed);

28 }

29

30 static RandomGenerator* _getTestingInstance(unsigned int seed) {

31 // THIS METHOD OVERRIDES DESIRED SINGLETON BEHAVIOUR

32 // This method should only be used for testing purposes.

33

34 RandomGenerator *inst = new RandomGenerator(seed);

C.18. RandomGenerator.h 270

35 return inst;

36 }

37

38 // Delete unacceptable methods to avoid accidental copies of

singleton.

39 RandomGenerator(RandomGenerator const &) = delete;

40 void operator=(RandomGenerator const &) = delete;

41

42 int _legacy_rand();

43 void _legacy_init();

44 double _legacy_marsaglia();

45 double _legacy_marsaglia(int whichR);

46

47

48 virtual double rand();

49 int rand(int maxN);

50

51 std::string writeReport();

52

53 protected:

54 RandomGenerator();

55 explicit RandomGenerator(unsigned int seed);

56

57 private:

58

59 std::mt19937 engine;

60

61 int seed;

62

63 unsigned long long int _legacy_rs[6];

C.19. RotationHelper.h 271

64 double _legacy_rnums[6];

65 const unsigned long long int _legacy_MWCcoeff = 2141354214;

66 };

67

68 #endif //TBALLSNSPRINGS_RANDOMGENERATOR_H

C.19 RotationHelper.h

1 //

2 // Created by Tim on 26/09/2017.

3 //

4

5 #ifndef EIGENTUT_ROTATIONHELPER_H

6 #define EIGENTUT_ROTATIONHELPER_H

7

8 #include <Eigen/Dense>

9 #define _USE_MATH_DEFINES

10 #include <cmath>

11

12 using namespace Eigen;

13

14 class RotationHelper {

15

16 public:

17

18 static Matrix3f rotateX(double theta);

19 static Matrix3f rotateY(double theta);

20 static Matrix3f rotateZ(double theta);

21

22 static float angleBetween(Vector3f vectA, Vector3f vectB);

C.20. Atom.h 272

23 static float magnitude(Vector3f vect);

24

25 static float toDegree(double thetaRads);

26 static float toRad(double thetaDegree);

27

28 };

29

30

31 #endif //EIGENTUT_ROTATIONHELPER_H

C.20 Atom.h

1 //

2 // Created by Tim on 27/09/2017.

3 //

4

5 #ifndef EIGENTUT_ATOM_H

6 #define EIGENTUT_ATOM_H

7

8 #include <Eigen/Dense>

9

10 using Eigen::Vector3f;

11 using Eigen::Vector3i;

12

13 class Bravais;

14

15 class Atom {

16 public:

17 // TODO: Implement spin

18 Atom(const std::string &atomType, int atomIndex, const std::string &

C.20. Atom.h 273

elementType, const Vector3f &fractionalPosition,

19 const Vector3i &supercellIndex, int charge, double occupancy);

20

21 Atom(const std::string &atomType, int atomIndex, const std::string &

elementType, const Vector3f &fractionalPosition, int charge);

22

23 const std::string &getAtomName() const;

24

25 const std::string &getElementType() const;

26

27 const Vector3f &getFractionalPosition() const;

28

29 const Vector3i &getSupercellIndex() const;

30

31 Vector3f getAbsolutePosition(Bravais *ref);

32

33 int getElementIndex() const;

34

35 void setSupercellIndex(int supercellA, int supercellB, int

supercellC);

36

37 bool operator==(const Atom &rhs) const;

38

39 bool operator!=(const Atom &rhs) const;

40

41 double getCharge() const;

42

43 void setUnitCellIndex(int newIndex);

44

45 const std::string &getAtomType() const;

C.20. Atom.h 274

46

47 double getOccupancy() const;

48

49 const std::string getUID() const;

50

51 void setUID();

52

53 void setFractionalPosition(const Vector3f &fractionalPosition);

54

55 void setSupercellIndex(const Vector3i &supercellIndex);

56

57 void setCharge(double charge);

58

59 void setOccupancy(double occupancy);

60

61 void setElementType(const std::string &elementType);

62

63 void setAtomName(const std::string &atomName);

64

65 int getUnitCellIndex();

66

67 private:

68 std::string atomName, atomType, elementType;

69 std::string UID;

70 Vector3f fractionalPosition;

71 Vector3i supercellIndex;

72 double charge;

73 double occupancy;

74 int _atom_index, _unit_cell_index;

75

C.21. Bravais.h 275

76 };

77

78

79 #endif //EIGENTUT_ATOM_H

C.21 Bravais.h

1 //

2 // Created by Tim on 26/09/2017.

3 //

4

5 #ifndef EIGENTUT_BRAVAIS_H

6 #define EIGENTUT_BRAVAIS_H

7

8

9 #include <Eigen/Dense>

10 #include <Eigen/LU>

11 #include "../helpers/RotationHelper.h"

12

13 using namespace Eigen;

14

15 class Bravais {

16 public:

17

18 Bravais(const Matrix3f &bravais); // Explicit constructor

19 Bravais(const Vector3f aVect, const Vector3f bVect, const Vector3f

cVect); // constuctor given 3 vectors

20

21 // given arbitrary lattice parameters

22 Bravais(const float aMag, const float bMag, const float cMag, const

C.21. Bravais.h 276

float alpha, const float beta, const float gamma);

23

24 // cubic

25 Bravais(const float aMag);

26

27 // hexagonal

28 Bravais(const float aMag, const float cMag);

29

30 void initialiseReciprocalsInverses() {

31 bravaisInverse = bravais.inverse();

32

33 Vector3f aVect = bravais.row(0);

34 Vector3f bVect = bravais.row(1);

35 Vector3f cVect = bravais.row(2);

36

37 double volume = aVect.dot(bVect.cross(cVect));

38 double prefactor = 2 * M_PI / volume;

39

40 Vector3f aStar = prefactor * bVect.cross(cVect);

41 Vector3f bStar = prefactor * cVect.cross(aVect);

42 Vector3f cStar = prefactor * aVect.cross(bVect);

43

44 reciprocal.row(0) = aStar;

45 reciprocal.row(1) = bStar;

46 reciprocal.row(2) = cStar;

47

48 reciprocalInverse = reciprocal.inverse();

49 };

50

51 const Matrix3f &getBravais() const;

C.21. Bravais.h 277

52 Matrix3f getBravaisInverse() const;

53 Matrix3f getReciprocal() const;

54 Matrix3f getReciprocalInverse() const;

55

56 Vector3f getQ(float h, float k, float l) const;

57 Vector3f getQ(Vector3f hkls) const;

58 Vector3f getHKL(float qx, float qy, float qz) const;

59 Vector3f getHKL(Vector3f qvector) const;

60 Vector3f getPosition(float u, float v, float w) const;

61 Vector3f getPosition(Vector3f fractionalPosition) const;

62

63 Vector3f getUVW(float rx, float ry, float rz) const;

64 Vector3f getUVW(Vector3f position) const;

65

66 bool operator==(const Bravais &rhs) const;

67

68 bool operator!=(const Bravais &rhs) const;

69

70 std::string writeReport() const;

71

72 private:

73 Matrix3f bravais;

74 Matrix3f reciprocal;

75 Matrix3f bravaisInverse;

76 Matrix3f reciprocalInverse;

77

78 };

79

80

81 #endif //EIGENTUT_BRAVAIS_H

C.22. Crystal.h 278

C.22 Crystal.h

1 //

2 // Created by Tim on 28/09/2017.

3 //

4

5 #ifndef EIGENTUT_CRYSTAL_H

6 #define EIGENTUT_CRYSTAL_H

7

8 #include <list>

9 #include <Eigen/Dense>

10 #include <iomanip>

11 #include <vector>

12

13 #include "Bravais.h"

14 #include "Atom.h"

15 #include "FilterableAtoms.h"

16

17 class Crystal : public FilterableAtoms {

18 public:

19 Crystal(const Bravais &bravaisLattice, const std::vector<Atom> &

basis);

20

21 std::string writeCellFile();

22

23 const Bravais &getBravaisLattice() const;

24

25 const std::vector<Atom> &getBasis() const;

26

27 std::vector<Atom> getUnfilteredList();

C.23. FilterableAtoms.h 279

28

29 Atom* getAtomByUID(std::string UID) const;

30

31 std::vector<Atom*> findNeighbours(const Atom& toAtom, int

numberOfNeighbours, bool (*filter) (Atom));

32 std::vector<Atom*> findNeighbours(const Atom& toAtom, int

numberOfNeighbours);

33

34 void updateAtom(const Atom& newAtom);

35

36 double distance(const Atom& atom1, const Atom& atom2);

37

38 void setSuperCellIndex(int supercellA, int supercellB, int

supercellC);

39

40 bool operator==(const Crystal &rhs) const;

41

42 bool operator!=(const Crystal &rhs) const;

43

44 private:

45 Bravais bravaisLattice;

46 std::vector<Atom> basis;

47

48 };

49

50

51 #endif //EIGENTUT_CRYSTAL_H

C.23 FilterableAtoms.h

C.23. FilterableAtoms.h 280

1 //

2 // Created by Tim on 14/03/2018.

3 //

4

5 #ifndef TBALLSNSPRINGS_FILTERABLEATOMS_H

6 #define TBALLSNSPRINGS_FILTERABLEATOMS_H

7

8

9 #include <vector>

10 #include "Atom.h"

11

12 class FilterableAtoms {

13 public:

14 virtual std::vector<Atom> getUnfilteredList() = 0;

15

16 virtual void updateAtom(const Atom &a) = 0;

17

18 std::vector<Atom> filter(std::function<bool(Atom)> filterFunc) {

19 return filter(filterFunc, getUnfilteredList());

20 }

21

22 static std::vector<Atom> filter(std::function<bool(Atom)> filterFunc

, std::vector<Atom> listToFilter) {

23 std::vector<Atom> filteredList;

24 for (Atom a : listToFilter) {

25 if (filterFunc(a)) {

26 filteredList.push_back(a);

27 }

28 }

29 return filteredList;

C.24. SuperCell.h 281

30 }

31

32 };

33

34

35 #endif //TBALLSNSPRINGS_FILTERABLEATOMS_H

C.24 SuperCell.h

1 //

2 // Created by Tim on 08/10/2017.

3 //

4

5 #ifndef EIGENTUT_SUPERCELL_H

6 #define EIGENTUT_SUPERCELL_H

7

8

9 #include <map>

10 #include "Crystal.h"

11

12

13 class SuperCell : public FilterableAtoms {

14 // Given a Crystal, creates an nxmxl supercell of the crystal

15 public:

16 SuperCell(Crystal baseCrystal, int size_a, int size_b, int size_c);

17

18 const std::vector<std::vector<std::vector<Crystal *>>> &

getSupercellCrystals() const;

19

20 enum errors {SUPERCELL_TOO_SMALL, ATOMS_CLOSE_TO_EDGE, NUM_ERRORS};

C.24. SuperCell.h 282

21

22 std::vector<Atom> getAllAtomsInNearbyCells(Atom toAtom);

23 std::vector<Atom> getAllAtomsInNearbyCells(Atom toAtom, std::

function<bool(Atom)> filterFunc);

24

25 std::vector<Atom> getNearestNeighbours(Atom toAtom, int

numberOfNeighbours, std::function<bool(Atom)> filterFunc);

26 std::vector<Atom> getNearestNeighbours(Atom toAtom, int

numberOfNeighbours);

27

28 std::string writeToFile();

29

30 std::string write_legacy();

31

32 std::vector<Atom> getAllAtoms();

33

34 void updateAtom(const Atom &newAtom);

35

36 std::vector<Atom> getUnfilteredList();

37

38 Vector3i getSupercellSize();

39

40 Vector3f distance(Atom &a1, Atom &a2);

41

42 const Bravais &getBravais();

43

44 int getTypeIdFromElement(std::string element);

45 std::string getElementFromTypeId(int elementId);

46

47 const std::map<std::string, int> &getTypeIdFromElementMap() const;

C.24. SuperCell.h 283

48

49 const std::map<int, std::string> &getElementFromTypeIdMap() const;

50

51 private:

52 int size_a, size_b, size_c;

53

54 std::map<std::string, int> _legacy_type;

55 std::map<int, std::string> _legacy_type_map;

56

57 std::vector<std::vector<std::vector<Crystal*>>> supercellCrystals;

58 };

59

60

61 #endif //EIGENTUT_SUPERCELL_H

	Introduction
	Defects in ZnO
	Thermoelectricity
	Figure of merit
	ZnO for Thermoelectric Applications

	Synopsis

	Experimental Techniques
	Elastic Scattering
	Fundamentals of a Scattering Experiment
	Scattering from a Single Atom
	Differences in Scattering for Photons and Neutrons
	Scattering from Multiple Atoms
	Scattering in Macroscopic Crystals
	Bragg's Law

	Inelastic Scattering
	Neutron Time-of-Flight measurements
	Time-of-Flight Diffractometers
	Time-of-Flight Spectrometers

	Thermal Conductivity – Laser Flash Method

	Phonon Dispersion of ZnO
	Modelling
	Brief Introduction to Density Functional Theory
	Phonon Mode Calculations
	Calculating Phonons in ZnO
	Validating Calculations

	Measurements on LET
	Experimental Procedure
	Experimental Data

	Measurements on Merlin
	Experimental Procedure
	Experimental Data

	Summary

	Thermal conductivity of ZnO
	INS Measured on MARI
	Sample Preparation and Characterisation
	Experimental Procedure

	Bulk PDOS
	Nanostructured ZnO
	Hydroxyl Contaminant
	Hydroxyl Corrections
	Calculated PDOS

	Alternative PDOS Modelling
	Calculating the Thermal Conductivity

	Single-Crystal Thermal Conductivities
	Density Measurements
	Heat Capacity
	Thermal Conductivity

	Summary

	Defects in ZnO
	Experimental Procedure
	Inelastic Scattering on SXD
	Origin of Inelastic Scattering
	Measured Inelastic Scattering

	Structural Diffuse Scattering
	Defect Modelling
	Comparison with Measurements

	Intrinsic Defects in ZnO
	Fourier Maps
	Complimentary X-ray Measurements
	Structure Refinements

	Summary

	Summary and Future Outlook
	Appendices
	ZnO Force Constants
	Python Scripts
	AtomicFormFactor
	geometry.py
	Bravais.py
	Atoms.py
	PhononEigencector.py
	PhononQPoint.py
	PhononReader.py
	PlotPhononIntensities.py

	Balls-and-Springs Monte Carlo Structural Diffuse Scattering Simulator
	ChainedMutator.cpp
	CrystalMutator.cpp
	CycleSuperCell.cpp
	CrystalEnergyCalculator.cpp
	CrystalFactory.cpp
	RandomGenerator.cpp
	RotationHelper.cpp
	Atom.cpp
	Bravais.cpp
	Crystal.cpp
	SuperCell.cpp
	ChainedMutator.h
	CrystalMutator.h
	CycleSuperCell.h
	CrystalEnergyCalculator.h
	CrystalFactory.h
	CrystalMaths.h
	RandomGenerator.h
	RotationHelper.h
	Atom.h
	Bravais.h
	Crystal.h
	FilterableAtoms.h
	SuperCell.h

