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A dimensional summation account of polymorphous category learning

Andy J. Wills · Lyn Ellett · Fraser Milton · Gareth Croft · Tom Beesley

Received: / Accepted:

Abstract Polymorphous concepts are hard to learn, and this
is perhaps surprising because they, like many natural con-
cepts, have an overall similarity structure. However, the di-
mensional summation hypothesis (Milton & Wills, 2004)
predicts this difficulty. It also makes a number of other pre-
dictions about polymorphous concept formation, which are
tested here. In Experiment 1 we confirm the theory’s pre-
diction that polymorphous concept formation should be fa-
cilitated by deterministic pretraining on the constituent fea-
tures of the stimulus. This facilitation is relative to an equiv-
alent amount of training on the polymorphous concept it-
self. In further experiments, we compare the predictions of
the dimensional summation hypothesis with a more gen-
eral strategic account (Experiment 2), a seriality of training
account (Experiment 3), a stimulus decomposition account
(also Experiment 3), and an error-based account (Experi-
ment 4). The dimensional summation hypothesis provides
the best account of these data. In Experiment 5, a further pre-
diction is confirmed — the single feature pretraining effect
is eliminated by a concurrent counting task. The current ex-
periments suggest the hypothesis that natural concepts might

This work was supported by Grant No. 9/S17109 to A. J. Wills from
the UK Biotechnology and Biological Sciences Research Council.

Andy J. Wills · Gareth Croft
School of Psychology, UK
University of Plymouth
E-mail: andy@willslab.co.uk

Lyn Ellett
Department of Psychology,
Royal Holloway University of London, UK

Fraser Milton
School of Psychology,
University of Exeter, UK

Tom Beesley
Department of Psychology,
Lancaster University, UK

be acquired by the deliberate serial summation of evidence.
This idea has testable implications for classroom learning.

Keywords Categorization · overall similarity · family
resemblance · dual-process theory

A polymorphous concept is one defined by an n-out-of-m
rule (Ryle, 1951). For example, in a set of geometric shapes
that vary in the three stimulus dimensions of size (large or
small), shape (square or triangle), and shade (black or white),
one polymorphous category would be defined by the rule
“category A is at least two of small, square, and white”.
In an undergraduate project subsequently published in Na-
ture, Stephen Lea and colleagues demonstrated that people
found polymorphous concepts harder to acquire than either
conjunctive (e.g. “large AND square”) or disjunctive (e.g.
“black OR triangular”) concepts (Dennis, Hampton, & Lea,
1973).

In a similar vein, Shepard, Hovland, and Jenkins (1961)
had previously demonstrated that three-dimension polymor-
phous concepts (a.k.a. Type IV problems) were harder to
acquire than single dimension concepts (Type I problems,
e.g. “category A is square”), and two dimension exclusive-
or concepts (Type II problems, e.g. “white squares OR black
triangles”). The former of Shepard’s results is easily repli-
cated (e.g. Lewandowsky, 2011; Nosofsky, Gluck, Palmeri,
McKinley, & Glauthier, 1994; Rehder & Hoffman, 2005);
the latter is perhaps more elusive (Kurtz, Stanton, Romero,
& Morris, 2013). Polymorphous concept formation has also
been studied with five dimension stimuli in both people and
pigeons. People took on average 440 trials to reach 85% ac-
curacy on these problems (Wills, Noury, Moberly, & New-
port, 2006); pigeons never came under control of all five fea-
tures (Lea, Lohmann, & Ryan, 1993).

In summary, polymorphous concepts are hard to learn,
for both humans and pigeons. This is perhaps somewhat sur-
prising because, as Dennis et al. (1973) pointed out, many
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everyday concepts seem to be polymorphous in nature. For
example, Wittgenstein (1958) argued that many concepts
have a polymorphous structure, and he described natural cat-
egories as being characterized by a set of “family resem-
blances”. In psychology, a similar point was made and evi-
denced by Rosch (e.g. Rosch & Mervis, 1975). It is perhaps
odd that the human, or pigeon, brain, which has presumably
adapted to learn concepts of the form occurring in their en-
vironment, should find polymorphous concepts so hard to
acquire.

The puzzle appeared to deepen in the 1980s when evi-
dence emerged that people switch from classification by di-
mensional rules, to classification by overall similarity, when
time or cognitive resources are scarce (e.g. Kemler Nelson,
1984; Smith & Kemler Nelson, 1984; Smith & Shapiro, 1989;
Ward, 1983). A polymorphous classification is a form of
overall similarity classification, so it seemed striking that
classification under time pressure, concurrent load, or in-
cidental conditions, should take a form that people appar-
ently found so difficult to master when not under those con-
straints. These results, among others, led to a number of
theorists proposing dual-process accounts of category learn-
ing, in which an implicit system learns by overall similarity
and an explicit system attempts to extract simple rules (e.g.
Ashby, Alfonso-Reese, Turken, & Waldron, 1998).

By the 21st century, this dual-process view of category
learning became sufficiently popular that for some it was
viewed more as an established fact than as a theory (Ashby
& Maddox, 2011). Against this context, our lab reported a
number of cases where overall similarity classification was
more effortful than single dimension classification. Time pres-
sure and concurrent load reduced overall similarity classifi-
cation, and increased single dimension classification (Mil-
ton, Longmore, & Wills, 2008; Wills, Milton, Longmore,
Hester, & Robinson, 2013). Instructions to respond metic-
ulously increased overall similarity classification, and de-
creased single dimension classification (Wills et al., 2013).
Those who employed overall similarity classification had
more frontal lobe activation and larger working memory ca-
pacities than those employing single dimension classifica-
tion (Milton, Wills, & Hodgson, 2009; Wills et al., 2013).

One interpretation of our results is that the relationship
between effort and overall similarity classification depends
on details of the experimental procedure. In other words,
there were differences in our procedures, relative to the ear-
lier work, and these differences led to us failing to observe
low effort overall similarity classification. An alternative in-
terpretation, which we favor, is that results appearing to show
overall similarity classification is a low effort “fall back”
mechanism arise from methodological or analytic confounds.
For example, the conclusions of the Kemler Nelson, Smith,
and Ward procedures cited above can be shown to be arte-
facts of their analysis technique (Wills, Inkster, & Milton,

2015). A range of other results appearing to support overall
similarity classification as a low effort classification mech-
anism (Filoteo, Lauritzen, & Maddox, 2010; Nomura et al.,
2007; Smith et al., 2014; Spiering & Ashby, 2008; Waldron
& Ashby, 2001; Zeithamova & Maddox, 2006), also turn
out to be flawed (Carpenter, Wills, Benattayallah, & Milton,
2016; Edmunds, Milton, & Wills, 2018; Edmunds, Wills,
& Milton, 2019; Le Pelley, Newell, & Nosofsky, 2019; Mil-
ton & Pothos, 2011; Newell, Dunn, & Kalish, 2010; Newell,
Moore, Wills, & Milton, 2013; Tharp & Pickering, 2009;
Wills et al., 2019). In summary, the existing evidence is
largely compatible with the idea that overall similarity clas-
sification is more effortful than single dimension classifica-
tion.

We have previously proposed the dimensional summa-
tion theory (Milton & Wills, 2004) as an account of why
overall similarity classification is so effortful. In brief, the
theory says that when participants classify by overall sim-
ilarity, they engage in an explicit, serial, counting process.
They count up the number of dimensions in the stimulus that
are characteristic of each of the candidate categories, and
pick the category with the highest total. For example, imag-
ine [black, square, large] are characteristic of cate-
gory A, while [white, triangle, small] are character-
istic of category B. The participant is presented with a small
black triangle. They note that one dimension (color) is char-
acteristic of category A, while two dimensions (shape, size)
are characteristic of category B. They therefore conclude
that the stimulus belongs to category B. This dimensional
summation account explains why overall similarity classi-
fication is more effortful and time consuming than single-
dimension classification—overall similarity classification is
in effect the summation of several single dimension classifi-
cations.

Dimensional summation theory also predicts that accu-
rate polymorphous classification should be difficult. In part,
this is because polymorphous concepts are a type of overall
similarity category structure, and hence require summation
across multiple dimensions. Dimensional summation theory
predicts that polymorphous concepts should be particularly
difficult to acquire because it is hard to determine which
stimulus features are characteristic of which categories. For
example, in a five dimension, two category polymorphous
classification problem, such as the one depicted in Figure 1
and Table 1, any given feature occurs 11 times in one cate-
gory and 5 times in the other category. It will therefore take
considerable exposure to the category structure to reliably
determine which category each feature is more characteris-
tic of. This information is required by a dimensional summa-
tion strategy to classify polymorphous concepts accurately.

Dimensional summation theory’s account of the diffi-
culty of polymorphous classification leads to a prediction
— polymorphous classification should become easier if one
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Category A Category B
lines color shape trapezium flankers lines color shape trapezium flankers

horizontal yellow stars long-base fine vertical blue blobs long-top coarse
horizontal yellow stars long-base coarse vertical blue blobs long-top fine
horizontal yellow stars long-top fine vertical blue blobs long-base coarse
horizontal yellow blobs long-base fine vertical blue stars long-top coarse
horizontal blue stars long-base fine vertical yellow blobs long-top coarse

vertical yellow stars long-base fine horizontal blue blobs long-top coarse
horizontal yellow stars long-top coarse vertical blue blobs long-base fine
horizontal yellow blobs long-base coarse vertical blue stars long-top fine
horizontal blue stars long-base coarse vertical yellow blobs long-top fine

vertical yellow stars long-base coarse horizontal blue blobs long-top fine
horizontal yellow blobs long-top fine vertical blue stars long-base coarse
horizontal blue stars long-top fine vertical yellow blobs long-base coarse

vertical yellow stars long-top fine horizontal blue blobs long-base coarse
horizontal blue blobs long-base fine vertical yellow stars long-top coarse

vertical yellow blobs long-base fine horizontal blue stars long-top coarse
vertical blue stars long-base fine horizontal yellow blobs long-top coarse

Table 1 The five dimension two category polymorphous classification employed in the current experiments. Stimulus dimensions are as shown in
Figure 1. The most typical stimuli are shown above the first dotted line. Stimuli that differ by one feature from these are shown between the first
and second dotted line. The remainder of the stimuli, below the second dotted line, differ from the most typical examples of the category by two
features.

first receives deterministic training on each of the stimulus
dimensions. For example, one is first trained that horizon-
tal bars indicate category A, and vertical bars indicate cate-
gory B. Having mastered this simple discrimination, one is
then trained on each of the other four dimensions in turn, be-
fore commencing the polymorphous classification problem.
A participant who is pretrained in this way is then in a po-
sition to immediately apply a dimensional summation strat-
egy, using the knowledge they have already acquired about
each of the constituent features.

This prediction receives informal support from the re-
sults of Wills et al. (2009) where, with this kind of single
feature pretraining, around two thirds of participants (both
pigeon and human) successfully classified a polymorphous
category structure on the basis of overall similarity (see also
Lea et al., 2018). However, these previously reported exper-
iments had no control group against which to compare the
pretrained group. In the current set of experiments, control
participants received an equivalent amount of training on the
polymorphous concept itself.

Outline of the paper

In Experiment 1 we demonstrate that single feature pretrain-
ing increases accuracy on a subsequent five dimension poly-
morphous classification, relative to an equivalent amount of
training on the polymorphous classification itself. It also in-
creases reaction time. Experiment 2 shows, through a partial
reversal procedure, that the pretraining advantage is specific

to the feature-category information learned in pretraining,
and not to some more general strategic or motivational fac-
tor. In Experiments 3 and 4, we demonstrate that, as pre-
dicted by dimensional summation theory, it is the determin-
istic structure of the single feature pretraining that leads to
the advantage, and not a range of other coincidental differ-
ences. Finally, in Experiment 5, we test a prediction of di-
mensional summation theory that the single feature pretrain-
ing advantage should be reduced or eliminated by a concur-
rent counting task — a task that should interfere with the
counting operations assumed to underlie high-accuracy pol-
ymorphous classification. This prediction is confirmed.

Experiment 1

In Experiment 1, we compared single feature pretraining
on a five dimension polymorphous concept to an equivalent
amount of training on the polymorphous problem itself. We
employed a between subjects manipulation, with a yoking
procedure to match overall training length across randomly-
selected pairs of participants.

Method

Participants and apparatus

Twenty-four people participated in this experiment, randomly
allocated to two between subject conditions, with the con-
straint that each condition had twelve participants. The sam-
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Fig. 1 Examples of the stimuli employed in the current experiments. The stimulus on the left is the most typical member of category A; on the
right is the most typical member of category B. Image credit: Andy J. Wills, CC-BY-SA 4.0. https://osf.io/4g6az/

ple size was decided before data collection on the basis that
is was sufficient to detect large between-subject effects (d =
1.2 at 80% power). All participants in the current paper were
undergraduate students from the University of Exeter. In all
experiments, the stimuli were presented on a 17-inch moni-
tor, placed approximately 1 meter from the participant at eye
level. Responses were collected via a standard keyboard.

Stimuli

Two types of stimuli were employed in the current experi-
ment: five feature stimuli and single feature stimuli. Figure
1 shows two five feature stimuli, and Table 1 shows the cat-
egory structure. Each five feature stimulus had five binary
stimulus dimensions: (1) orientation of the center stripes
(horizontal or vertical), (2) background color of the center
stripes (yellow or blue), (3) icon shape (“stars” or “blobs”),
(4) trapezium shape (long-base or long-top), and (5) flanker
texture (fine or coarse). These stimuli were similar to those
used in related experiments in pigeons (Lea, Wills, & Ryan,
2006). Each single feature stimulus comprised just one fea-
ture, selected from the five feature stimuli (e.g. a long-base
trapezium). All stimuli were presented on a mid-gray back-
ground, and the five feature stimuli were approximately 14×
7 degrees of visual angle in size, excluding that background.
The size and location of features in the single feature stimuli
were the same as the corresponding features in the five fea-
ture stimuli, with the remaining four features absent. In the
single feature presentation of the center-stripes’ background
color, the color was depicted as a solid square of the same
dimensions as the center stripes.

Ten single feature stimuli, and thirty-two five feature
stimuli (see Table 1), are possible within this stimulus set.
Five of the single feature stimuli were assigned to category
A (horizontal, yellow, stars, long-base, fine); the remain-

ing five single feature stimuli were assigned to category B
(vertical, blue, blobs, long-top, coarse). The category mem-
bership of the five feature stimuli was determined by the
number of category A and category B features presented
— where the number of category A features exceeded the
number of category B features, the item was assigned to cat-
egory A, otherwise it was assigned to category B. For ex-
ample the stimulus [horizontal, blue, stars, long

top, fine]was assigned to category A because it has three
category A features [horizontal, stars, fine] and two
category B features [blue, long top].

Procedure

Participants were randomly paired for the purposes of yoked
training. In each yoked pair of participants, one was ran-
domly assigned to the single feature condition, and the other
to the control condition. The single feature participant was
trained on the single feature stimuli to an errorless criterion,
and then trained on the five feature stimuli. The yoked con-
trol participant received the same total number of training
trials as the single feature participant, but trained on the five
feature stimuli from the outset.

Each training trial began with the presentation of the to-
be-categorized stimulus, which remained on the screen until
the participant classified it as either a member of category
A (by pressing the “X” key) or a member of category B
(by pressing the “>” key). A feedback message immediately
followed, informing the participant whether they were cor-
rect or incorrect, and also giving the correct category mem-
bership (e.g. “Correct. It was category A” or “Wrong! It was
category B”). The next trial began 2000 ms after the onset of
the feedback message. In every block, each presented stim-
ulus occurred with equal frequency and the order of presen-
tation was randomized. Participants were trained in blocks
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of 32 trials, with the opportunity to rest for a few seconds
at the end of each block. The participant’s percent correct
score for the current block was presented to them at the end
of the block, along with a statement that the target accuracy
was 100%.

Each single feature participant trained on one stimulus
dimension at a time, reaching a criterion of one errorless
block on that stimulus dimension before being trained on
the next. The stimulus dimensions were trained in a differ-
ent random order for each participant. After reaching cri-
terion on the fifth stimulus dimension, single feature par-
ticipants were given a 30-item test on all the single feature
stimuli (each feature was presented three times, in a random
order). The procedure for these test trials was identical to
the training procedure above, except that no feedback was
given. One or more errors on this test led to the single fea-
ture training phase being restarted. Once the single feature
participant had achieved errorless performance on each of
the dimensions and on the 30-item test, they were trained
on the five feature stimuli for 8 blocks (receiving feedback,
as before). The yoked control participant received the same
number of blocks of training on the five feature stimuli as
the single feature participant had received on the single fea-
ture stimuli, and then continued to train on the five feature
stimuli for a further 8 blocks.

Results and discussion

The raw data for this experiment are archived along with
the analysis scripts at https://osf.io/4g6az/. All data
analysis was conducted with R (R Core Team, 2019), us-
ing principal packages dplyr (Wickham, Francois, Henry,
& Muller, 2019), effsize (Torchiano, 2019), ggplot2 (Wick-
ham, 2016), and pwr (Champely, 2018). Bayesian analysis
was conducted following the procedure described by Dienes
(2011), with priors as described below. Following Jeffreys
(1961), Bayes Factors exceeding three were considered as
evidence for the experimental hypothesis, while Bayes Fac-
tors smaller than one-third were considered as evidence for
the null.

In this first experiment, the absence of any closely re-
lated previous study led us to adopt quite broad priors for
the effect of single feature pretraining on accuracy and on
reaction time. For accuracy differences (i.e. probability of a
correct response after single feature pretraining minus prob-
ability of a correct response in the control condition), we
assumed a uniform prior ranging for -.5 to .5. Chance per-
formance is .5 on this task, and perfect performance is 1. It
thus seemed unlikely that the difference between conditions
would fall outside this range. Reaction time is not bounded
in this way, but in practice it is very rare for conditions in
lab-based category learning studies to differ in mean reac-
tion time by more than 5 seconds. We thus adopted a uni-

form prior from -5 to +5 seconds for our reaction time anal-
ysis.

Two participants in the single feature condition did not
complete the experiment in the time available. They were
excluded on this basis, along with their yoked participants
in the control condition. The remaining participants took a
mean of 9.60 blocks (range: 7–16, SD = 2.46) to complete
phase one. Median reaction times across phase one were
0.78 s (IQR = 0.16) in the single feature condition, and 2.49
s (IQR = 1.64) in the control condition.

Figure 2 shows the results of principal interest, which
are the phase two accuracy and reaction times. As predicted,
single feature pretraining substantially increased accuracy
on the polymorphmous classification, relative to an equiva-
lent amount of training on the polymorphous problem itself.
Both the unstandardized and standardised effect sizes were
large; there was an increase in accuracy of about .18 on av-
erage, and Cohen’s d (Cohen, 1992) was 1.46. There was
strong Bayesian evidence for the experimental hypothesis,
BF = 29.9. Figure 2B shows that this increase in accuracy
was accompanied by a substantial increase in reaction time,
mean = 1.79 seconds, d = 1.12, BF = 4.03.

In summary, single feature pretraining increased accu-
racy on a polymorphous classification with a large effect
size. This increase in accuracy was accompanied by an in-
crease in reaction time. This pattern of results is consistent
with the idea that single feature pretraining encourages a di-
mensional summation strategy, which takes substantial time
to complete. However, it’s also compatible with a more gen-
eral strategic or motivational account, that the pretraining
causes a general slow down of responding, and this results in
better performance at test. Under this latter account, the spe-
cific content of the pretraining phase should not matter too
much. Under the former account, it’s crucial that the infor-
mation gained in training is compatible with the test phase.

In Experiment 2, we compared these two accounts by in-
troducing a partial reversal between the two phases, where
the valence of three dimensions, but not the other two, was
reversed. For example, in pretraining, horizontal lines indi-
cated category A and vertical lines indicated category B.
In the polymorphous classification phase this might be re-
versed, so that horizontal lines were now characteristic of
category B and vertical lines characteristic of category A.
Two further dimensions (e.g. flankers and trapezium) would
be reversed, while the other two dimensions maintained their
pretraining valence. Under a dimensional summation account,
reaction time in this partial reversal condition should re-
main high, as participants attempted to employ a dimen-
sional summation strategy, but the accuracy benefit observed
under regular single feature pretraining should be reduced
or eliminated. Partial reversal is a superior design to full re-
versal, as humans are readily able to detect a full reversal
of polymorphous concepts and adapt by reversing the cate-
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Fig. 2 Accuracy and reaction time in phase two of Experiment 1, as a function of pretraining condition. Distributional information is shown as a
boxplot, a violin plot, and individual data points. The box plot shows median performance and interquartile range. The violin plot is a density plot,
rotated through ninety degrees, and mirror copied to produce the symmetrical pattern shown; see Hintze and Nelson (1998) for details. The small
gray plot symbols are scores for individuals. Image credit: Andy J. Wills, CC-BY-SA 4.0. https://osf.io/4g6az/

gory labels, leaving the underlying feature-category knowl-
edge intact (Kruschke, 1996; Wills et al., 2006). This strat-
egy does not work when only some of the dimensions have
been reversed.

Experiment 2

In Experiment 2, we conducted a between subjects compar-
ison of (a) single feature pretraining, (b) partially-reversed
single feature pretraining, and (c) pretraining on the poly-
morphous problem itself.

Method

Participants

Sixty people participated in the current experiment, randomly
allocated across three between subject conditions, with the
constraint that each condition had twenty participants. The
sample size for this and all subsequent experiments in this
manuscript was determined after analysis of Experiment 1,
and prior to data collection for Experiments 2–5. It was cho-
sen to provide good statistical power (greater than 90%) to
detect effects of the size seen in Experiment 1.

Procedure

The procedure was identical to Experiment 1, apart from
four changes. First, a partial reversal condition was added.

Participants in this condition received the same pretraining
as participants in the single feature condition. However, at
the end of phase one, and unknown to the participants, the
valence of three of the dimensions was reversed. For exam-
ple, horizontal stripes might become characteristic of cate-
gory B, with vertical stripes now characteristic of category A
(the opposite to phase one). For each participant, three of the
five stimulus dimensions, randomly selected, were reversed.

Second, phase one now involved a fixed amount of train-
ing, rather than training to criterion. All participants received
twenty blocks of training in phase one. This change was
made to eliminate the possibility that the yoked training pro-
cedure of Experiment 1 might have over-estimated the size
of the single feature pretraining effect, due to the Church ef-
fect (Church, 1964). For those unfamiliar with the Church
effect, a brief summary is provided in the Appendix. In the
single feature and partial reversal conditions, participants
now completed four blocks of training on each of the five
stimulus dimensions before moving on to the next (as in Ex-
periment 1, the order in which the dimensions were trained
was randomized). In the control condition, participants re-
ceived twenty blocks of training on the five feature stimuli.

The third change to the procedure, relative to Experi-
ment 1, was that phase two was shortened from eight blocks,
to four blocks. This was for practical reasons; shortening
phase two reduced the length of the experiment, and hence
allowed us to test participants more efficiently. Analysis of
Experiment 1 indicated that the first four blocks were suffi-
cient to detect the effect of pretraining.
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The fourth and final change was that the single feature
tests right at the end of single feature pretraining in Experi-
ment 1 did not appear in this or any subsequent experiment.
We considered such tests to be superfluous, given that train-
ing in phase one was now fixed in length, rather than to cri-
terion. Participants moved directly from the end of single
feature pretraining to the beginning of phase two without
any intervening tests.

Results and discussion

The raw data for this experiment are archived along with
the analysis scripts at https://osf.io/8nyfw/. Follow-
ing Dienes (2011), Bayesian priors for the effects of single
feature pretraining on accuracy and reaction time were based
on the results of Experiment 1. Specifically, a normally dis-
tributed prior was used, with a mean of the observed effect
in Experiment 1, and a standard deviation of half that. Due
to the lack of previous data on the effects of a partial reversal
on single feature pretraining, we employed the same broad
priors described in Experiment 1 for comparisons involving
this condition (i.e.-.5 to +.5 for accuracy, -5 to +5 for reac-
tion time).

Fixed-length training in phase one of the single feature
and partial reversal conditions elicited accurate, rapid re-
sponding from participants; for both conditions mean accu-
racy was 98% (SD = .01), and median reaction time was
around 0.67 s (IQR = 0.23). Unsurprisingly, phase one per-
formance for participants in the control condition was worse
(mean accuracy = 0.65, SD = 0.05) and slower (median RT
= 1.33, IQR = 0.46)

Figure 3 shows the results of phase two. As observed
in Experiment 1, single feature pretraining substantially in-
creased accuracy on the polymorphous classification, rela-
tive to an equivalent amount of training on the polymorph-
ous problem itself. Both the unstandardized and standard-
ised effect sizes were large, albeit not quite as large as in
Experiment 1 (perhaps indicating that our concerns about
the Church effect were well founded). The mean increase in
accuracy was 0.12, d = 1.01, BF = 45.4. In contrast, the par-
tial reversal pretraining condition reduced accuracy on the
polymorphous classification, relative to the control condi-
tion. The mean decrease was 0.19, d = 2.2, BF = 9× 108.
This pattern of results is not consistent with a general strate-
gic or motivational account of the single feature pretraining
effect. It is, however, predicted by the dimensional summa-
tion hypothesis.

Figure 3B shows the reaction times in phase two. As in
Experiment 1, the increase in accuracy produced by single
feature pretraining was accompanied by an increase in reac-
tion time, mean increase = 2.04 s, d = 1.96, BF = 4× 107.
The partial reversal condition also induced an increase in re-
action time relative to the control condition, mean increase

= 1.44 s, d = 0.79, BF = 3.02, which suggests that partic-
ipants were still attempting to apply the information from
phase one. The reaction time results are predicted by the di-
mensional summation hypothesis

Experiment 3

Having established the presence of a single feature pretrain-
ing (SFPT) effect in polymorphous classification, we then
set about trying to understand why it occurs. One possi-
bility, already mentioned, is that SFPT helps polymorphous
classification primarily because it trains the feature dimen-
sions deterministically. This provides, for the participant,
clear knowledge of the feature-category relationships upon
which a dimensional summation strategy can be enacted.
However, there are a number of other possible explanations,
two of which we examined in Experiment 3.

The first possibility is that SFPT allows participants to
focus on one stimulus dimension at a time, and it is this se-
riality of the learning of the feature-category relationships
which leads to the SFPT advantage, rather than the deter-
ministic presentation of these relationships. One prediction
of this seriality hypothesis is that single feature pretraining
should also increase polymorphous classification accuracy
if dimensions are trained sequentially, but with the feature
→ category associations presented in the same probabilis-
tic manner as they occur in the polymorphous concept itself.
For example, in one block of single feature training, hori-
zontal stripes would be followed by category A on 11 oc-
casions and category B on 5 occasions. In contrast to the
seriality hypothesis, a dimensional summation hypothesis
predicts that probabilistic single feature pretraining should
be less effective than deterministic training. This is because
probabilistic training gives a less clear (albeit more accurate)
indication of the relationship between features and category
labels in a polymorphous concept.

Another prediction of the seriality hypothesis is that the
effectiveness of single feature pretraining should be reduced
if dimensional training is intermixed. So, for example, if all
ten features occur on different, randomly ordered, trials in
the same block then, under a seriality hypothesis, partici-
pants must either attempt to learn several feature-category
relationships concurrently, or ignore all trials but the ones
for the features they have chosen to focus on. Either way,
intermixed single feature pretraining should be less effective
than serial single feature pretraining. Under the dimensional
summation hypothesis, intermixed deterministic training can
be approximately as effective as sequential deterministic train-
ing, because it is the deterministic nature of training, not its
precise sequencing, that is crucial.

In Experiment 3, we added two further single feature
pretraining conditions. In one condition, single feature pre-
training is intermixed but deterministic. In the other, single
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Fig. 3 Accuracy and reaction time in phase two of Experiment 2, as a function of pretraining condition. Image credit: Andy J. Wills, CC-BY-SA
4.0. https://osf.io/8nyfw/

feature pretraining is sequentially-ordered, but probabilistic.
The addition of these two conditions allows a comparison
of the dimensional summation and seriality explanations of
the single feature pretraining effect. The seriality hypoth-
esis was generated prior to data collection in Experiments
2–5, and came from a simple enumeration of the procedu-
ral differences between the single-feature pre-training and
control conditions. In other words, single feature pretrain-
ing is not only deterministic, it is also serial, and thus it is
a logical possibility that it is the seriality of single feature
pretraining, rather than its deterministic nature, that drives
the effect. Thus, the seriality hypothesis was not inspired by
any particular formal theory of classification learning, sim-
ply by the several procedural differences between the phase
one conditions of Experiment 1.

We also examined further a priori, procedurally-inspired
account of the single feature pretraining effect in Experi-
ment 3. Perhaps, by presenting features singly during pre-
training, the dimensional structure of the polymorphous stim-
uli becomes more obvious in phase two, and it is this decom-
position of the stimuli during pretraining that primarily leads
to the single feature pretraining advantage. If this is the case,
it should be possible to produce similar levels of accuracy on
the phase two polymorphous classification by making the di-
mensional structure more obvious during phase one in some
other way. In Experiment 3, we did this through constructed
polymorphous pretraining. In this procedure, the polymor-
phous stimuli in phase one were constructed on screen on
each trial, with each dimension being added every few hun-
dred milliseconds until the stimulus was complete.

Method

Participants

One hundred people participated in the current experiment,
randomly allocated across five between subject conditions,
with the constraint that each condition had twenty partici-
pants. The sample size was set prior to data collection (see
Experiment 2 for details).

Procedure

The procedure of the single feature and control conditions
was identical to Experiment 2. Three further between sub-
ject conditions were added. All conditions received the stan-
dard polymorphous classification task in phase two, but dif-
fered in the nature of the phase one pretraining. All condi-
tions contained the same number of trials in each phase. The
three additional conditions were as follows:

Single feature probabilistic pretraining Training in this con-
dition was identical to the single feature pretraining of Ex-
periment 2, except that the feedback was probabilistic rather
than deterministic. In each block, each feature was presented
16 times. On 11 of those occasions, the feedback was given
consistent with the mapping described in the Experiment 1
procedure (e.g. vertical lines→ category A). On the remain-
ing 5 occasions, the opposite feedback was given (e.g. verti-
cal lines→ category B). This probabilistic relationship be-
tween a single cue and the category label is identical to that
observed in the polymorphous classification task. The end-
of-block message still reported percent correct, but partici-
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pants were told the target accuracy was “over 65%” (rather
than 100%, as in the other conditions). The maximum sus-
tained accuracy achievable in this pretraining task is 68.75%.

Single feature intermixed pretraining Pretraining in this con-
dition was identical to the single feature pretraining of Ex-
periment 2, except that in each block, all ten features were
presented, in a random order. In each 32-trial block, eight
features were presented six times, and two features were
presented eight times. The two features to be presented with
slightly higher frequency were randomly selected on each
block, with the constraint that both features came from the
same dimension (e.g. bar orientation). This randomization
procedure allowed us to match the block and phase length
of the other conditions exactly, at the cost of slight random
variations in presentation frequency of each feature across
blocks and participants.

Constructed polymorphous pretraining Pretraining in this
condition was identical to polymorphous pretraining, except
that, on each trial, the stimulus was constructed on screen
over time. Each stimulus presentation began with the cen-
tral lines feature (horizontal or vertical stripes). After 300
ms, the background color was added (blue/yellow), and after
subsequent delays of 300 ms each, the other features were
added in the order: icons (stars/blobs), trapezium, flankers.
Responses made before the stimulus was complete were ig-
nored.

Results and Discussion

The raw data for this experiment are archived along with the
analysis scripts at https://osf.io/vu8ms/. The data for
two participants were lost due to technical errors. Bayesian
priors for the effects of single feature pretraining on accu-
racy and reaction time were based on the results of Experi-
ment 2, in the manner described in Experiment 2. Due to the
lack of previous data on the other hypothesized effects, we
employed the same broad priors described in Experiments 1
and 2 for the remaining comparisons (i.e.-.5 to +.5 for accu-
racy, -5 to +5 for reaction time).

Deterministic single feature pretraining elicited high ac-
curacy, both with sequential ordering (mean accuracy = .98,
SD = .01), and intermixed ordering (mean accuracy = .92,
SD = .10). Probabilistic single feature pretraining led to lower
performance (mean accuracy = 0.56, SD = .05); this is to
be expected given the probabilistic nature of the feedback.
Accuracy in the probabilistic single feature condition was
higher than could be achieved by random responding, BF =

1.6×107 (calculated against a uniform prior of accuracy be-
ing somewhere between 0.5 and 1). Mean accuracy in the
polymorphous pretraining condition was 0.62 (SD = .05),
comparable to the results of Experiment 2. Similar accuracy

was observed under constructed polymorphous pretraining
(mean accuracy = 0.64, SD = .07).

Reaction times in phase one were also as expected on the
basis of Experiment 2, with a median of 0.68 s (IQR = .13)
and 1.23 s (IQR = 0.62) in the single feature and polymor-
phous control conditions, respectively. Reaction times for
the single feature intermixed and single feature probabilistic
conditions were in the same range as the two previously-
mentioned conditions, with median times of 1.03 s (IQR =
0.18) and 0.95 s (IQR = 0.37) respectively. Reaction times
were substantially longer in the constructed polymorphous
condition (median = 2.71 s, IQR = 0.64), but this is to be ex-
pected as the stimulus took time to construct on screen, and
responses prior to the completion of the construction were
ignored. Reaction times as measured from the completion
of the stimulus were similar to the polymorphous control
condition (median = 1.21 s, IQR = .64).

Turning to phase two, Figure 4 shows the key results of
the current experiment:

Deterministic single feature pretraining As previously ob-
served in Experiments 1 and 2, single feature pretraining
substantially increased accuracy and reaction time on the po-
lymorphous classification, relative to an equivalent amount
of training on the polymorphous problem itself. Mean accu-
racy increased by 0.18, d = 1.67, BF = 2.4×105, and mean
reaction time increased by 1.84 s, d = 1.84, BF = 6.8×1010.

Probabilistic single feature pretraining A single feature pre-
training advantage was not observed when the feature →
category associations in pretraining were probabilistic. Ac-
curacy was slightly lower (mean = -.04) after probabilistic
pretraining, than after polymorphous pretraining, d = .44,
but with Bayesian evidence for the null, BF = 0.18. Reac-
tion time was slightly higher, mean = 0.10 s, d = .20, again
with Bayesian evidence for the null, BF = 0.05.

Given these and the deterministic single feature pretrain-
ing results, one would expect accuracy and reaction time to
be lower after probabilistic pretraining than after determin-
istic pretraining. Comparison of the deterministic and prob-
abilistic single feature conditions confirms this expectation;
accuracy is lower, mean = .22, d = 1.79, BF = 6.3× 105,
and reaction time is higher, mean = 1.74 s, d = 1.98, BF =

1.5× 107. The results concerning the probabilistic single
feature pretraining condition are predicted by the dimen-
sional summation hypothesis, but not the seriality hypoth-
esis.

Intermixed single feature pretraining A single feature pre-
training advantage was observed when the single feature
pretraining was deterministic, but with the features presented
in an intermixed order. Accuracy was higher after single fea-
ture intermixed pretraining than polymorphous pretraining,
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Fig. 4 Accuracy and reaction time in phase two of Experiment 3, as a function of pretraining condition. Image credit: Andy J. Wills. CC-BY-SA
4.0. https://osf.io/vu8ms/

mean = .21, d = 1.85, BF = 2.4×106, as was reaction time,
mean = 2.30 s, d = 2.65, BF = 1.2× 1014. Sequential and
intermixed single feature pretraining produced comparable
levels of accuracy on subsequent polymorphous classifica-
tion, mean accuracy difference = .03, d = 0.21, BF = 0.15,
with comparable reaction times, mean reaction time differ-
ence = 0.47 s, d = 0.41, BF = 0.21. These results seem con-
trary to the seriality hypothesis, but can be accommodated
by the dimensional summation hypothesis.

Constructed polymorphous pretraining Constructing the po-
lymorphous stimulus on the screen one feature at a time did
not improve accuracy on a subsequent standard polymorph-

ous classification, relative to an equivalent amount of train-
ing on that standard classification, mean = .02, d = .19, BF
= 0.09; nor did it affect reaction time, mean = .30 s, d =
.48, BF = .15. These results provide no support for the de-
composition hypothesis. They are compatible with the di-
mensional summation hypothesis, because the relationships
between features and category labels are probabilistic, not
deterministic, in the constructed polymorphous pretraining
condition.

Summary The results of Experiment 3 provide further sup-
port for the dimensional summation explanation of the SFPT
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effect, but not for two alternative explanations of this effect
(the seriality, and decomposition, hypotheses).

Experiment 4

In Experiment 4, we considered another alternative expla-
nation of the SFPT effect — the effect of errors during pre-
training. A number of authors have previously argued that
learning can be enhanced through the avoidance of errors
during training (Baddeley & Wilson, 1994; Terrace, 1963).
Although the issue of whether making errors is beneficial or
detrimental to learning remains controversial (Ashby, Mad-
dox, & Bohil, 2002; Edmunds, Milton, & Wills, 2015; Potts
& Shanks, 2014; Seabrooke, Hollins, Kent, Wills, & Mitch-
ell, 2019), it is undeniably the case that, in the current exper-
iments, single feature pretraining is not well matched to the
polymorphous control condition in terms of the number of
classification errors participants produce. It is therefore pos-
sible that the SFPT advantage comes from this difference in
error frequency, rather than from the provision of determin-
istic feature-category associations assumed to be the cause
by the dimensional summation hypothesis.

In Experiment 4, we tested this possibility by introduc-
ing two further between subject conditions to the basic sin-
gle feature pretraining design. In these additional conditions,
classification errors were essentially eliminated during phase
one by presenting the correct category label a few hundred
milliseconds after the stimulus was presented. This proce-
dure is sometimes referred to as observational training (cf.
Ashby et al., 2002; Edmunds et al., 2015; Wills & McLaren,
1997), as opposed to the more common feedback training
used throughout Experiments 1–3. Phase two of Experiment
4 employed standard feedback training in all conditions, for
comparability with these previous experiments. If the SFPT
advantage is primarily due to the lower rate of participant er-
rors in single feature pretraining, compared to the polymor-
phous classification control condition, then the use of obser-
vational training during phase one should largely eliminate
the SFPT advantage. In contrast, the dimensional summa-
tion hypothesis predicts a SFPT effect should be seen under
both observational and feedback pretraining, because only
in the cases of single feature pretraining is there a deter-
ministic relationship between the features and the category
membership.

Method

Participants and apparatus

Our intention was to test eighty participants, randomly al-
located across four conditions, with the constraint that each
condition had twenty participants. The sample size was set

prior to data collection (see Experiment 2 for details). Due to
an administrative error, data collection in two conditions was
terminated at twenty one rather than twenty participants.
Prior to the analysis of Experiments 2–5, we chose to re-
tain rather than discard these two additional data sets, on
the grounds that this minor and accidental over-collection of
data was unlikely to inflate statistical error rates.

In addition to the apparatus of Experiments 1–3, stereo
on ear headphones were used to present auditory stimuli to
participants. The sounds were digitized and their presenta-
tion was controlled by computer.

Procedure

The procedure of the single feature and control conditions
was identical to Experiments 2 and 3, with the exception that
feature→ category association ratings were taken at the end
of each block. On each rating trial, a single feature was pre-
sented in the center of the screen, with a rating scale directly
above it. At the top of the screen appeared a question asking
how likely it was that category A (or B) would occur when
this feature was present. Participants then had to respond on
a scale from -10 (will never appear) to +10 (will always ap-
pear). Participants were asked to rate each feature presented
in the preceding block for both categories. The ratings part
of the experiment was exploratory in nature, with no clear
predictions considered ahead of data collection. The results
turned out to be largely unremarkable and, for brevity, are
not discussed in the current paper. The interested reader may
find the ratings data in the OSF repository cited below.

The procedure in the single feature observation and con-
trol observation conditions was the same as the correspond-
ing conditions described above, with the following excep-
tion. In phase one, presentation of the stimulus was followed,
after 200 ms, by the category label spoken over headphones
(“A” or “B”). A manual categorization response was still re-
quired, and feedback still given, but with the expectation that
very few errors would be made under such conditions. The
procedure in phase two was identical to the single feature
and control conditions described above; in other words there
was no spoken label, participants had to guess, and received
feedback.

Results and discussion

The raw data for this experiment are archived along with
the analysis scripts at https://osf.io/g3w8a/. Bayesian
priors were determined in the same manner as previous ex-
periments, using mean effect sizes from Experiments 2 and
3 where appropriate, and broad priors otherwise.

As in previous experiments, single feature training in
phase one elicited fast and accurate responding (mean accu-
racy = .98, SD = .02, median RT = 0.73 s, IQR = 0.20), while
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Fig. 5 Accuracy and reaction time in phase two of Experiment 4, as a function of training type and pretraining condition. Image credit: Andy J.
Wills. CC-BY-SA 4.0. https://osf.io/g3w8a/

performance in the control condition was worse (mean accu-
racy = .67, SD = .11, median RT = 1.99 s, IQR = 1.94). Un-
surprisingly, presenting the correct category label resulted
in very few errors in both the single feature observation (ac-
curacy = .98, SD = .02) and control observation (accuracy
= .98, SD = .04) conditions. Reaction times for these con-
ditions were in the same range as the other two conditions,
0.95 s (IQR = 0.35) for the single feature observation con-
dition, and 1.77 s (IQR = .45) for the control observation
condition.

Figure 5 shows the results of phase two. As previously
observed in Experiments 1–3, single feature pretraining sub-
stantially increased accuracy and reaction time on the poly-
morphous classification, relative to an equivalent amount of
training on the polymorphous problem itself. Mean accu-
racy increased by .13, d = .93, BF = 43.0, and mean reac-
tion time increased by 2.22 s, d = 1.31, BF = 2945. Sin-
gle feature pretraining also substantially increased accuracy
and reaction time in the observation conditions, with accu-
racy increasing by .23, d = 2.1, BF = 5.3×108, and reaction
time increasing by 3.38 s, d = 1.8, BF = 1.6×106.

Inspection of Figure 5 suggests the post-hoc hypothesis
that observational single feature training might be more ef-
fective than standard single feature training, but the Bayesian
evidence for this hypothesis is equivocal, BF = 1.13, as is
the evidence for a difference in reaction times, BF = 1.11.
In terms of the two control conditions, there was substan-
tial evidence for the null hypothesis that the two conditions
do not differ, both for accuracy, BF = 0.10, and for reaction
time, BF = 0.14.

In summary, the results of Experiment 4 showed that the
single feature pretraining advantage still occurs in the ab-
sence of any classification errors in phase one. This result is
compatible with the dimensional summation hypothesis, but
is problematic for the idea that the SFPT advantage is caused
by the lower frequency of classification errors in SFPT, rel-
ative to a polymorphous control condition.

Experiment 5

Across Experiments 1–4, we established the presence of a
single feature pretraining advantage in polymorphous cate-
gory learning, and presented a range of findings that were
supportive of a dimensional summation account of this ef-
fect. One further, striking, prediction of the dimensional sum-
mation account is that a relatively simple counting task, if
conducted at the same time as polymorphous classification,
should eliminate the SFPT advantage. This is because a co-
unting task should interfere with the deliberate summation
of characteristic features assumed to underlie accurate poly-
morphous classification. So, while SFPT should provide the
classifier with the constituent knowledge required to sub-
sequently classify a polymorphous category structure effec-
tively, a concurrent counting load should stop the classifier
from applying that knowledge. Such is the idea tested in Ex-
periment 5.
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Method

Participants

Eighty people participated in the current experiment, ran-
domly allocated across four between subject conditions, with
the constraint that each condition had twenty participants.
The sample size was set prior to data collection (see Exper-
iment 2 for details).

Procedure

The procedure in phase one was identical to the single fea-
ture and control conditions of Experiments 2 and 3. The
procedure in phase two was also identical to these condi-
tions, with the exception that each block was accompanied
by an asynchronous stream of spoken two digit numbers.
The numbers ranged from 11 to 98 and appeared in a random
order. Each number had a spoken duration of approximately
one second (achieved using voice synthesis), and there was
a silent gap of 200 ms between the end of each number and
the beginning of the next. The stream of numbers began si-
multaneously with the beginning of each block, and stopped
at the end of each block, in phase two. Participants in the
load conditions were told to keep an exact count of the num-
ber of even numbers in each block, and were asked to state
their total at the end of each block. Participants in no load
conditions experienced the same stimuli, but were told that
we were interested in automatic processing, so they should
ignore the numbers, and just enter their guess of the number
of even numbers at the end of each block. All participants
received feedback on the accuracy of their count/guess.

For participants in the load conditions, phase one was
preceded by one block (thirty two trials) of practice on the
counting task. Participants were asked to keep count of the
number of even numbers, but the categorization stimuli were
replaced by a large letter “A” or “B”, making that part of
the task very easy. Participants in the no-load conditions did
not receive practice on the counting task, as this might have
undermined the later instruction that they were to ignore the
digits and just make a guess.

Results and Discussion

The raw data for this experiment are archived along with
the analysis scripts at https://osf.io/fdm8r/. Bayesian
priors were determined in the same manner as previous ex-
periments, using mean effect sizes from Experiments 2–4
where appropriate, and broad priors otherwise. As in previ-
ous experiments, single feature training in phase one elicited
fast and accurate responding (mean accuracy = .98, SD =
.02, median RT = 0.57 s, IQR = 0.11), while performance in

the control condition was worse (mean accuracy = .64, SD
= .06, median RT = 1.52 s, IQR = 0.96).

Figure 6 shows the results of phase two. As previously
observed in Experiments 1–4, single feature pretraining sub-
stantially increased accuracy and reaction time on the poly-
morphous classification, relative to an equivalent amount of
training on the polymorphous problem itself. Mean accuracy
increased by .11, d = .97, BF = 46.3, and mean reaction
time increased by 1.29 s, d = 1.78, BF = 1.4×106.

Concurrent load in phase two eliminated the single fea-
ture pretraining advantage; mean accuracy differed by less
than .01, d = .08, with Bayesian evidence for the null, BF
= .08. Reaction time increased by 0.49 s, d = 0.58, with
weak Bayesian evidence for the null, BF = 0.36. Given these
results, one would expect performance to be worse in the
single feature load condition than the single feature no-load
condition, and this is indeed the case; mean accuracy dropped
by 0.15, d = 1.18, BF = 101.7. There was Bayesian evidence
that the two conditions did not differ in reaction time; on av-
erage reaction time was 0.50 s shorter under load, d = 0.49,
BF = 0.27. In the polymorphous pretraining conditions, load
had no effect on accuracy, with Bayesian evidence for the
null; mean accuracy drop = .04, d = 0.48, BF = 0.22. The
effect of load on reaction times in the polymorphous condi-
tions was inconclusive, mean increase = 0.30 s, d = 0.69, BF
= 0.38.

In summary, Experiment 5 demonstrated that the single
feature pretraining advantage in polymorphous classifica-
tion was eliminated by the concurrent presence of a coun-
ting task. This result is predicted by the dimensional sum-
mation hypothesis. It is also congruent with another exper-
iment from our lab, in which the prevalence of overall sim-
ilarity classification in a different procedure (the match-to-
standards task) was reduced by a concurrent counting load
(Wills et al., 2013).

General Discussion

Polymorphous concepts are those defined by an n-out-of-m
rule. Such concepts are hard to learn and, from some per-
spectives, this is surprising because polymorphous concepts
have an overall similarity structure — a type of structure
assumed to be commonplace in real-world categories. How-
ever, the difficulty of acquiring polymorphous concepts is
predicted by the dimensional summation theory of overall
similarity classification (Milton & Wills, 2004). This the-
ory states that overall similarity classification is achieved
through the deliberate counting of the number of stimulus
features characteristic of each of the candidate categories.
This strategy is hard to apply to polymorphous concepts be-
cause each feature, taken individually, only probabilistically
predicts the category label. This explanation, in turn, leads
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Fig. 6 Accuracy and reaction time in phase two of Experiment 5, as a function of load and pretraining condition. Image credit: Andy J. Wills.
CC-BY-SA 4.0. https://osf.io/fdm8r/

to the prediction that deterministic pretraining of the charac-
teristic feature-category associations should facilitate subse-
quent classification of a polymorphous category structure.

In Experiment 1, we demonstrated the presence of such
a single feature pretraining advantage, relative to a control
of an equivalent amount of training on the polymorphous
problem itself. In Experiment 2, we employed a partial re-
versal manipulation to demonstrate this advantage critically
depended on the information learned in pretraining being
applicable to the subsequent polymorphous classification,
and hence eliminated a more general strategic or motiva-
tional account of the effect. In Experiments 3 and 4, we
eliminated a number of other possible accounts of the single
feature pretraining effect, and in Experiment 5 we demon-
strated that the single feature pretraining effect was elimi-
nated by the presence of a concurrent counting load during
the subsequent polymorphous classification phase. Overall,
the results of these five experiments provide strong support
for the dimensional summation account.

Future research

There are several ways in which the current investigations
could be extended to further investigate the dimensional sum-
mation hypothesis. For example, the stimulus dimensions in
the current experiments are easy to verbalize, highly percep-
tually discriminable, and mostly spatially separated. Ease of
verbalization seems likely to facilitate rule-like processing
(see e.g. Kurtz et al., 2013), which seems relevant given that
the dimensional summation hypothesis is a rule-like account
of behavior. Hence, future work might productively investi-

gate whether the effects of single feature pretraining (SFPT)
persist where the stimulus dimensions are harder to verbal-
ize.

It might also be informative to investigate the effects
of SFPT with spatially integrated and/or perceptually sub-
tle stimulus dimensions. Other work we have done demon-
strates that such stimuli are less likely to be sorted sponta-
neously into overall similarity groups than the current stim-
uli (Milton, Copestake, Satherley, Stevens, & Wills, 2014;
Milton, McLaren, Copestake, Satherley, & Wills, 2020; Mil-
ton, Viika, Henderson, & Wills, 2011; Milton & Wills, 2004,
2008). Thus, our prediction is that SFPT of such stimuli
would be particularly beneficial to subsequent polymorph-
ous classification of them. This is because induction of an
overall similarity strategy is particularly likely to be required
for such stimuli and, under our account, SFPT is an effective
way of inducing such a strategy.

The prevalence of spontaneous overall similarity sorting
is also affected not only by stimulus properties, but also by
the underlying category structure (Pothos & Close, 2008). It
might therefore be worthwhile examining whether the ben-
efits of SFPT generalize to category structures other than
the polymorphous structure considered here. For example,
in a polymorphous category structure, all category members
are presented with equal frequency. This leads to partici-
pants encountering low typicality category members more
frequently than high typicality category members. This is
because, with a polymorphous category structure, there are
more low typicality members than high typicality members
(see Table 1). It might be argued that, in more naturalistic
categories, the reverse is likely to be true — in other words,
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that participants are more likely to encounter high typicality
members than low typicality members. For this reason, one
might wish to consider extending the current investigation
to category structures where high typicality items dominate.

Dimensional summation theory predicts that the accu-
racy benefits of SFPT would be present but smaller for such
structures. They would be smaller because single-dimension
responding leads to high accuracy in such structures anyway,
so there is less to be gained by switching to a dimensional
summation strategy. For example, in a case where only the
high-typicality members are presented (the first six rows of
Table 1), participants can achieve .83 accuracy by using any
one dimension and ignoring all the others. At limit SFPT,
even if completely effective in inducing overall similarity re-
sponding in all participants, can only lead to an increase in
accuracy of .17. This is substantially smaller than the upper
limit improvement of .31 possible with the current category
structure.

Another category structure that might be interesting to
investigate is Sephard et al.’s Type VI structure, which is
well known to be particularly hard to learn, and certainly
harder than the polymorphous (Type IV) structure used in
the current studies (Nosofsky et al., 1994). In a five dimen-
sional version of the Type VI problem, and using the cur-
rent stimulus set as an illustration, a stimulus belongs to
category A if it contains one, three, or five of the features
[horizontal, yellow, stars, long base, fine],
and category B otherwise. This results in two 16-item cat-
egories for which no feature, considered individually, has
any diagnostic value. The dimensional summation hypoth-
esis therefore correctly predicts that a Type VI problem is
very hard to learn — no feature is characteristic of either
category, and hence there are no single dimension rules that
can be derived from Type VI training. With no single dimen-
sion rules, there is nothing to summate.

The core concepts of the dimensional-summation hy-
pothesis also predict that SFPT could, in principle, be ef-
fective in increasing the accuracy of Type VI classifications,
particularly if that pretraining involved different category la-
bels to the subsequent Type VI phase. This is because such
pretraining would facilitate the application of a parity rule
(e.g. “It’s category C if it has 1, 3, or 5 category A features,
otherwise it’s category D”). We describe this as an “in prin-
ciple” accuracy benefit because it’s an open question how
often such a parity rule would spontaneously occur to par-
ticipants under these conditions, and how effortful it would
be to apply if it did occur to them. The counting rule for pol-
ymorphous problems, in contrast, seems very likely to occur
to participants and to be rather easy for them to apply, as it is
essentially the same as a simple majority voting system (or,
equivalently, a simple “pros and cons” comparison). In the
case of Type VI problems, it may be that some pretraining in
parity rules would be required in order SFPT to be effective.

Future research might also investigate whether the cur-
rent results are specific to the binary-valued stimulus dimen-
sions we used (e.g. horizontal versus vertical). The dimen-
sional summation hypothesis is also applicable to continu-
ous dimensions (e.g. line orientation in degrees rather than
just 0 versus 90 degrees). SFPT in which participants learn
the boundary between category A and B on each contin-
uously varying dimension separately, should be beneficial
to subsequent polymorphous classification for the same rea-
sons it is beneficial for binary valued dimensions.

However, perhaps the biggest question left unanswered
by the dimensional summation hypothesis is how one recon-
ciles the idea of a slow deliberative summation of evidence
with the fact that natural categories, which are assumed to be
polymorphous, can be classified extremely rapidly (Thorpe
& Imbert, 1989). Of course, there may be a big difference
between how we act when we are first learning a new cate-
gory, compared to how we act after the thousands of hours of
practice we all have on familiar real-world concepts. Clearly
there is a set of methodologically difficult experiments that
could be performed here to look at the effect of very ex-
tended practice on unfamiliar polymorphous concepts (c.f.
Logan & Klapp, 1991; Soto, Waldschmidt, Helie, & Ashby,
2013). We suggest that such experiments might be an inter-
esting topic for future research.

Alternative theoretical frameworks

It is possible to express the essence of the dimensional sum-
mation account in a variety of alternative theoretical frame-
works. For example, an anonymous reviewer argued that
the critical component of single-feature pretraining might
be that it helped emphasize the within-category correlations
between stimulus features. We agree. It is a central part of
the dimensional summation account that, after SFPT, partic-
ipants know that [horizontal, yellow, stars, long

base, fine] are the characteristic features of category A.
In other words, we argue that it is critical they discover that
these features go together; that they discover that the fea-
tures correlate within the category.

The same reviewer argued that single feature pretrain-
ing might encourage participants to move away from single
feature rules in phase two, because the pretraining makes it
clear that all of the features have diagnostic value, and be-
cause in phase two it becomes rapidly apparent that no sin-
gle feature is a perfect predictor. Again, we agree — these
are the reasons dimensional summation theory predicts sin-
gle feature pretraining is effective. We note that the results
of the probabilistic single feature condition in Experiment 3
directly support this interpretation.

Finally, one might question the centrality of counting in
our dimensional summation hypothesis. The concurrent load
manipulation of Experiment 5 provides good evidence that,
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whatever is going on in phase two after SFPT, it is somewhat
effortful. However, it is of course possible that this effortful
process is something other than counting. Researchers may
wish to specify an alternative account, and test it empirically.

Applications

By understanding the single feature pretraining effect in pol-
ymorphous classification, we perhaps better understand how
people learn polymorphous concepts, and it is widely be-
lieved that many natural concepts are polymorphous. On that
basis, our hypothesis is that natural concepts are learned by
effortful combination of information, compiling evidence to
support one classification over another.

Of course, as discussed, this hypothesis requires further
investigation with a broader range of stimulus types than the
single set employed in the current work. However, if our
results turn out to have some generality, one potential ap-
plication would be to use an analog of the single feature
pretraining procedure to speed the training of natural con-
cepts in the classroom. This idea goes beyond the old adage
to split complex problems into simple ones, and adds that it
might be productive to caricature probabilistic relationships
as deterministic. In that regard, there are parallels to transfer
along a continuum procedures, which exaggerate perceptual
differences to speed learning, and which have been shown
to be advantageous in the training of difficult real-world dis-
criminations (Hornsby & Love, 2014; McClelland, Fiez, &
McCandliss, 2002).

Concluding remarks

Although the dimensional summation account of overall sim-
ilarity classification is at variance with some older ideas about
how overall similarity classification works (e.g. Ashby et al.,
1998; Kemler Nelson, 1984; Smith & Shapiro, 1989; Ward,
1983), it is fully consistent with a substantial body of more
recent work, across several different procedures. For exam-
ple, it is consistent with results from the match-to-standards
procedure (Milton et al., 2008; Milton & Wills, 2004; Mil-
ton et al., 2009; Wills et al., 2013), the triad procedure (Wills
et al., 2015), the criterial-attribute procedure (Wills et al.,
2015), and information-integration category learning proce-
dure (Carpenter et al., 2016; Edmunds et al., 2015, 2018,
2019; Newell et al., 2013). It finds support from not only hu-
man behavioral data, but also from comparative work with
rats and pigeons (Lea et al., 2018, 2006; Wills et al., 2009)
and from functional imaging data in humans (Carpenter et
al., 2016; Milton et al., 2009). In conclusion, the dimen-
sional summation hypothesis is a plausible account of over-
all similarity classification in a wide variety of lab-based

conditions, and the current experiments add the acquisition
of polymorphous concepts to that growing evidence base.
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Appendix: Explanation of the Church effect

The Church effect (Church, 1964) concerns a potential confound in
yoked designs. The problem is that yoked designs can lead to arti-
factual differences between groups if there are individual differences
across participants. For the purposes of illustration, imagine a simpler
version of Experiment 1 in which both conditions receive single feature
pretraining. One would not expect to find a difference between these
two conditions, as they differ only in whether they contain yoked or
non-yoked participants. In the Experimental group, each participant is
trained to an errorless criterion (as we did in Experiment 1, SFPT con-
dition). In the Control group, each participant receives exactly the same
number of trials of single feature pretraining as one randomly selected
participant in the Experimental group (a yoking procedure). Now, con-
sider those pairs of participant, and imagine that the two members of
the pair learn at different rates. If the yoked participant learns faster
than the experimental participant, the yoked participant will also reach
an errorless criterion, and so their terminal performance as measured
by percent correct will be the same. However, if the yoked partici-
pant learns slower than the experimental participant, then they may
not reach an errorless criterion and their terminal percent correct will
be lower than the participant to which they are yoked. So, when we
work out the mean performance of the yoked group, we will average
together some people who are worse than the Experimental group, and
some who are the same. This will of course lead to a lower mean in
the yoked condition. So, the yoking procedure has been ineffective in
matching learning in the two conditions, as measured by percent cor-
rect. This problem can be avoided by giving everyone the same number
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of training trials, assuming random allocation of these individual dif-
ferences across the two conditions. This is the procedure we use from
Experiment 2 onwards.
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