
Maximum-Matching based
Maintenance of Structural
Controllability

Shuo Zhang

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

2019

Maximum-Matching based
Maintenance of Structural

Controllability

Department of Mathematics
Royal Holloway, University of London

Young men should prove theorems, old men should
write books.

(G. H. Hardy)

Declaration of Authorship

I, Shuo Zhang, hereby declare that this thesis and the work presented in it is
entirely my own. Where I have consulted the work of others, this is always
clearly stated.

Signed: Shuo Zhang

(Shuo Zhang)

Date:03/03/2020

Abstract

Controllability [63] as a critical property of the dynamical system, validates pro-
posed services, functions and products in human society. To effectively derive
minimum-input control into a continuous time and linear time-invariant (CT-LTI)
system, maximum-matching based method is raised to derive minimum-input struc-
tural controllability [72]. This is because a structurally controllable system is con-
trollable with high probability. As another result, controllability of complex net-
works with CT-LTI dynamics is further studied, where any single network vertex
directly forced by inputs, is called the driver node. Obviously, maliciously attacker
can hijack or damage the control through deriving or sabotaging structural con-
trol into a same system. Therefore, by the maximum-matching based method, this
thesis is highly motivated to maintain minimum-input structural controllability in
two parts. To defend against very limited and severe modification, the first part fo-
cuses on the efficient structural-control recovery. The second part is about efficient
network analysis on all single nodes and edges that are vulnerable to removal in
maintaining current minimum-input structural controllability.

In the first part, the first research question focuses on efficient recovery after
adding a single vertex into an initially minimum-input structurally controllable
network, whose related research paper can refer to [127]. The next one is about
minimum-input structural-control recovery after removing a single system com-
ponent from an initially minimum-input structurally controllable system, whose
research paper can refer to [129]. By contrast, the third question aims at recovery
of structural controllability with a fixed number of given inputs after severe modi-
fication on system components, whose research paper can refer to [126].

In the second part, because removal of single edges or vertices can dramatically
increase the minimum number of inputs to recover structural control into resid-
ual system, another three research questions are defined and solved. The fourth
question is about more efficiently classifying all edges of an initially minimum-
input structurally controllable network into well-defined critical, redundant and
ordinary categories, whose research papers can refer to [130, 128]. After the edge-
based analysis, given a digraph with CT-LTI dynamics, the fifth research question
not only finds single vertices of all minimum sets of driver nodes, but also classi-
fies them by importance of any single driver node in maintaining a minimum set
of inputs, whose research paper can refer to [125]. The last research question ad-
dressed by this thesis proposes to efficiently classify all single vertices of an initially
minimum-input structurally controllable network, according to the importance of
any single vertex in maintaining the current minimum set of inputs.

Generally speaking, compared with related works, those six questions are more
efficiently solved with less assumptions in lower worst-case complexity.

i

Acknowledgments

I would like to sincerely thank my supervisor, Professor. Stephen D. Wolthusen, for
his support and guidance in my entire PhD study. It was a great challenge for me,
who used to study law, to do research mainly based on mathematics. He helped me
with the transition by precisely defining research questions and giving continuous
feedback on my work. Without his supervision, this thesis would not have been
possible. I would also like to thank my advisor, Professor Chris Mitchell, who
accompanied my development via the annual reviews, and recommended math
books for me.

My heartfelt thanks to my parents, for persuading me to take up a PhD pro-
gram, for their financial support over years, and for their thoughtful kindness and
immeasurable care. Simultaneously, I must also thank my grandmother, who is
the mother of my father, and my late grandfather, who is the father of my mother,
for their unconditional love and encouragement. Most impressively, both of them
selflessly gave their savings to me, while they had no regular income for years.
Be loved by these family members via various ways, I therefore had courage and
confidence to overcome difficulties in both study and life in the United Kingdom.
Thousands of words are not enough to express my thankfulness for them.

iii

Contents

I Overture 1

1 Introduction 3
1.1 Overview . 3
1.2 General Motivation . 3
1.3 Research Questions . 10
1.4 Contributions . 15
1.5 Layout . 15

2 Background 19
2.1 Overview . 19
2.2 Controllability of CT-LTI systems . 19
2.3 Structural Controllability . 21
2.4 Derive Structural Controllability . 26
2.5 Strongly Structural Controllability . 33
2.6 Controllability of Complex Network 37

3 Related Works 39
3.1 Overview . 39
3.2 Structural-Controllability Recovery . 39
3.3 Robustness of Network Structural Controllability 42
3.4 Network Analysis for Structural Controllability 45

II Efficient Structural-Controllability Recovery 51

4 Iterative Recovery of Structural Control by the Maximum Matching 53
4.1 Overview . 53
4.2 Problem Formulation . 54
4.3 Solution . 55
4.4 Summary . 61

5 Structural-Control Recovery for Resilient Control Systems 63
5.1 Overview . 63
5.2 Problem Formulation . 64
5.3 Solution . 65
5.4 Summary . 75

6 Structural-Control Recovery via the Minimum-edge Addition 77
6.1 Overview . 77
6.2 Problem Formulation . 78

v

CONTENTS

6.3 Disjoint Cacti Construction . 79
6.4 Summary . 88

III Efficient Network Analysis to Maintain Structural Controllabil-
ity 89

7 Security-Aware Edge Analysis for Structural Controllability 91
7.1 Overview . 91
7.2 Preliminaries & Problem Formulation 92
7.3 Identification of Arcs of Maximum Matchings 94
7.4 Summary . 101

8 Driver-Node based Analysis for Structural Controllability 103
8.1 Overview . 103
8.2 Preliminaries & Problem Formulation 104
8.3 Solution . 106
8.4 Summary . 114

9 Identify Vulnerable Nodes for Network Structural Control 115
9.1 Overview . 115
9.2 Problem Formulation . 116
9.3 Nodal Categories . 117
9.4 A Single-Vertex Classification . 121
9.5 Entire Nodal Classification . 124
9.6 Summary . 133

IV Epilogue 135

10 Conclusion & Future Work 137
10.1 Thesis Summary . 137
10.2 The Future Work . 139

Bibliography 141

vi

List of Definitions

2.1 Controllability [99] . 19
2.2 Controllability of a DT-LTI System [19] . 20
2.3 Structural Controllability [72] . 22
2.4 Digraph G(A, B) . 22
2.5 Stem & Bud[72] . 22
2.6 Dilation of a Digraph[72] . 22
2.7 Inaccessibility [72] . 22
2.8 Cactus[72] . 23
2.9 Maximum Matching of a Digraph[35, 14] 26
2.10 Maximum Matching of a Bipartite or Undirected Graph [35, 14] 26
2.11 Perfect Matching[35, 14] . 26
2.12 Augmenting Path [60] . 26
2.13 A Dominating Set of a Graph [55] . 29
2.14 Domination Number [55] . 29
2.15 Observation Rules of undirected graphs [67] 30
2.16 A Power Dominating Set of an Undirected Graph [59] 30
2.17 Observation Rules of Digraphs . 30
2.18 A Power Dominating Set of a Digraph . 30
2.19 Strongly Structural Controllability . 34
2.20 Bipartite Graph BA . 34
2.21 Constrained t-matching [54] . 34
2.22 Self-less Matching . 35
2.23 Matrix AX . 35
2.24 Bipartite Graph BAX

. 35
4.1 Input Network of chapter 4 . 54
4.2 . 54
5.1 Input Network of chapter 5 . 64
5.2 . 68
6.1 Input Network of chapter 6 . 78
6.2 Scc . 82
7.1 Input Network of chapter 7 . 92
7.2 . 94
7.3 Alternating-Cycle Matchig . 94
7.4 Alternating-Path Matching . 94
8.1 Input Network of chapter 8 . 104
8.2 . 105
8.3 Extra-unmatched Node . 107
8.4 Ordinary & Spare Node . 112
9.1 Input Network of Chapter 9 . 116

vii

CONTENTS

9.2 . 117
9.3 Pre-augmenting path . 118
9.4 Nodal Categories . 121
9.5 G = (VG, EG) . 128

viii

List of Figures

2.1 Cacti . 23
2.2 A digraph of the system of equation (2.1) by definition 2.4. 24
2.3 Digraphs mapped by four simple CT-LTI systems. 24
2.4 Examples of Augmenting Paths . 27
2.5 A Maximum Matching & A Cacti . 28
2.6 A Minimum Dominating Set of an Undirected Graph 30
2.7 A Power Dominating Set of a Digraph . 31
2.8 Relationships among Basic Control Concepts 34
2.9 Examples of constrained t-matchings . 35
2.10 Examples of bipartite graphs for strongly s-controllable systems 36

4.1 An example of bijections of definition 4.2. 55
4.2 . 57

5.1 . 66
5.2 . 66
5.3 . 67
5.4 . 68

6.1 . 85

7.1 An alternating-path matching and an alternating-cycle matching 95
7.2 . 96
7.3 . 98

8.1 . 105
8.2 . 108

9.1 . 118
9.2 Pre-augmenting Paths. 119
9.3 An example of definition 9.5. 129

ix

List of Theorems

2.1 Structural Controllability Theorem [72, 79] 23
2.6 Strongly S-Controllable System Theorem 36
2.8 Minimum Input Theorem [73] . 38
4.1 . 56
5.4 . 68
5.5 . 69
6.8 Edge-addition Scenario . 83
6.9 . 84
7.1 . 93
7.3 . 94
7.4 . 95
7.5 . 96
8.3 . 107
8.6 . 111
9.2 . 118
9.3 . 119
9.4 . 120

xi

List of Lemmas

5.1 . 65
5.3 . 67
6.1 . 79
6.5 . 82
8.1 . 105
8.2 . 106
8.7 . 112
9.1 . 117
9.6 . 121
9.7 . 122
9.8 . 122

xiii

List of Corollaries

2.2 . 24
2.3 . 26
2.4 . 27
2.5 . 29
2.7 . 36
4.2 . 57
4.3 . 57
4.4 Time complexity of algorithm 4.1 . 59
4.5 Time complexity of algorithm 4.3 . 61
5.2 . 66
5.6 Time complexity of algorithm 5.1 . 71
5.7 Time complexity of algorithm 5.2 . 72
5.8 Time complexity of algorithm 5.3 . 74
5.9 Time complexity of solving problem 5.2 74
6.2 . 80
6.3 . 80
6.4 Time complexity of algorithm 6.1 . 81
6.6 . 83
6.7 Time complexity of algorithm 6.2 . 83
6.10 . 85
6.11 Time complexity of algorithm 6.3 . 87
7.2 . 93
7.6 Time complexity of algorithm 7.1 . 97
7.7 Time complexity of algorithm 7.2 . 99
7.8 Time complexity of algorithm 7.3 . 99
8.4 . 109
8.5 Time complexity of identifying all single driver nodes 110
8.8 . 112
8.9 . 113
8.10 . 114
9.5 . 120
9.9 Complexity of algorithm 9.2 . 125
9.10 Complexity of algorithm 9.3 . 126
9.11 Complexity of algorithm 9.4 . 127
9.12 Complexity of algorithm 9.5 . 130
9.13 Complexity of algorithm 9.6 . 132
9.14 Complexity of solving problem 9.2 . 132

xv

List of Algorithms

2.1 Identify V2 and E2 by a maximum matching of G(A). 28
2.2 Identify a power dominating set of G(A). 31
2.3 Identify V2 and E2 by a power dominating set of G(A). 32

4.1 Identify an augmenting path incident to u+ related to MB 58
4.2 Identify a Maximum Matching of (VB ∪ {u−, u+}, EB ∪ EBu). 60
4.3 Identify a maximum matching of digraph (V ∪ {u}, E ∪ Eu). 60

5.1 Find a maximum matching with minimum number of edges incident
to u−. 70

5.2 Derive a maximum matching MM of D. 72
5.3 Derive a matching M(vg ,vf). 73
5.4 Derive a maximum matching of D \ {u}. 74

6.1 The first edge-addition step. 81
6.2 The second edge-addition step. 83
6.3 Construct a digraph spanned by disjoint cacti 86

7.1 Produce a Digraph D0 = (V0, E0). 97
7.2 Identify arcs of directed paths and cycles. 98
7.3 Identify arcs contained by maximum matchings of D. 100

8.1 Find all existing unmatched nodes of V −B 110
8.2 Classify nodes of Sn1 . 113

9.1 Overview of confirming category of each node of D 124
9.2 Find all leading vertices of VB . 125
9.3 Find terminals of pre-augmenting paths 126
9.4 Confirm value of d ∈ {0,−1} . 127
9.5 Set a label on each node of G . 129
9.6 Confirm value of d ∈ {0,+1} for all nodes of S3 131

xvii

Part I

Overture

1

Chapter 1

Introduction

1.1 Overview

This thesis would be systematically introduced in this chapter. In detail, general
reasons for determining our research areas and objectives are shown, in the first
place. Then, dedicated motivation for raising research questions and those ques-
tions themselves are illustrated precisely. Besides, our relevant publications in-
volved into solving those research questions are also listed in this chapter. At the
end of this chapter, the layout of this thesis is given to present what each follow-
ing chapter does for the purpose of solving every research question, where related
contributions are also clarified as well.

1.2 General Motivation

In this section, some fundamental concepts are introduced, which are also research
areas of this thesis. In the following, dynamical system, controllability, structural
controllability, controllability of control systems and complex networks, would be
introduced in detail. Next, with those concepts, objectives of this thesis are indi-
cated in section 1.2.6. Furthermore, in section 1.3, the dedicated motivation for
raising each research question is thus summarized, and each research question is
closely corresponding to a dedicated motivation. For objectives and research ques-
tions, they are primarily about efficient structural-controllability recovery against
the very limited and severe system-component modification in one aspect. Ad-
ditionally, it is also concentrated to efficiently identify vulnerable single vertices
and edges to the removal in terms of maintaining network structural controllabil-
ity with a minimum set of inputs.

1.2.1 Dynamical System

State of a given system is regarded as an abstract quantity. Intuitively speaking,
state is the minimum amount of information about the past history of a given sys-
tem, and it also suffices to predict the effect of past inputs on the future. By contract,
the input of a given system is considered as the force that acts on state of the sys-
tem, while the directly observed state of the system is the output. With the state,
input and output, a dynamical system as a mathematical structure is defined via
following axioms [65]:

1. There are a state set Σ, input set Ω, output set Φ, and a time set Θ. In Θ, {Σ,
Ω,Φ} are defined.

3

1. INTRODUCTION

2. For any initial time t0 ∈ Θ, any initial state x0 ∈ Σ is defined, for any input u ∈
Ω defined at a moment t ≥ t0, the future state xt of the system is determined
by a transition function ϕ : (Ω×Θ)× (Θ× Σ)→ Σ, which is represented as:
ϕu(t; t0, x0) = xt if and only if t ≥ t0. Moreover, for any t0 ≤ t1 ≤ t2 in Θ,
any state x0 ∈ Σ, and any fixed u ∈ Ω defined over [t0, t1] ⊆ Θ, the relations
below hold:

a) ϕu(t0; t0, x0) = x0;

b) ϕu(t2; t0, x0) = ϕu

(
t2; t1, ϕu(t1; t0, x0)

)
.

c) The system must be causality. For example, if the input u, v ∈ Ω and u ≡
v defined on t ∈ [t0, t1] and [t0, t1] ⊆ Θ. Then, ϕu(t; t0, x0) ≡ ϕv(t; t0, x0).

3. Each output of the system is a function ψ : Θ× Σ→ Φ.

A system is said to be controllable within a time interval [t0, tf] ⊆ Θ, for any
initial state x0 ∈ Σ defined at t0, and a proposed state xf ∈ Σ defined at time tf ,
there must be an input set {ut|t ∈ [t0, tf]} that can steers x0 to xf [99]. In terminol-
ogy, a controllable system is said to be equipped with the controllability, and the
state of this system can be transferred from any given initial state to a proposed one
by properly applying inputs within limited time [63]. With various mathematical
models [58, 65] of dynamical systems, controllability as one of system properties
has been studied through different areas, such as control systems [63], complex
networks [73, 75, 110], autonomic computing [66, 107], and so on.

For example, in the area of control systems, in 1960s, Kalman [63, 65] originally
raised an algebraic condition to model, design and analyse a continuous-time and
linear-time invariant (CT-LTI) system by an ordinary differential equation, which
is also called the state equation [65]:

ẋ(t) = Ax(t) + Bu(t) (1.1)

where A ∈ Rn×n is the state matrix, and its every non-zero entry illustrates
which system components interact with each other, and the value represents the
strength of those interactions; here, any component of a system could be a physical
variable, or a physical entity; x(t) ∈ Rn, and x(t) = (x1(t), x2(t), . . . , xn(t))T is the
state vector, and it captures the state of each system component at time t; u(t) ∈ Rm,
u(t) = (u1(t), u2(t), . . . , um(t))T (m ≤ n), is the input vector, and holds external m
inputs at time t; B ∈ Rn×m is the input matrix, and its non-zero entries show which
inputs force or drive which system components directly.

1.2.2 Controllability

In modern control theory [63], to understand if a dynamical system is equipped
with the controllability or not, as mentioned in previous, it depends on whether
the state of this system can be transferred from any given initial state to a proposed
one within limited time by properly applying external inputs. In this thesis, con-
trollability of continuous-time and linear time-invariant (CT-LTI) systems is only
concentrated for following reasons.

4

1.2 GENERAL MOTIVATION

For various dynamical systems studied over years, firstly, this is because the
CT-LTI system is mostly studied, which is modeled by equation (1.1). When the
system described by equation (1.1) is equipped with controllability, if and only if,
the matrix C ∈ Rn×nm, where C = [B,AB,A2B, . . . ,An−1B], has full rank. Partic-
ularly, for this matrix C, B,AB,A2B, . . . ,An−1B are n different submatrices of it.
Clearly, to use this condition in practice, exact values of non-zero entries of ma-
trix A and B of equation (1.1) must be known. For more details about this rank
condition, please see section 2.2 of chapter 2.

The second reason is that the first step in any control challenge is said to es-
tablish the controllability of the locally linearized system [106]. Meanwhile, the
third reason is that the condition of a completely controllable discrete time linear
time invariant (DT-LTI) system is the same as that of a CT-LTI system [19], which
would be clarified in section 2.2.1 of chapter 2. Additionally, the last reason is that
many comprehensive, rigorous and detailed algebraic and graph-theoretical meth-
ods and concepts are created in order to derive controllability of CT-LTI systems,
such as structural controllability [72], and strong structural controllability [80]. By
now, these two control concepts have been widely used to study controllability in
the perspective of graph-theoretical manners, which would be systematically intro-
duced in section 2.3 and 2.5 of chapter 2.

1.2.3 Structural Controllability

One of very useful concepts to study controllability of CT-LTI system is structural
controllability. A structurally controllable CT-LTI system means there must be at
least one completely controllable system that shares the same structure of their both
input and state matrices, so that it is very likely that a structurally controllable sys-
tem is completely controllable. Due to this fact, given equation (1.1), acquiring con-
trollability of CT-LTI system can be done through structural controllability without
concerning those exact values of non-zero entries of A and B, and calculating rank
of C.

Chronologically, in 1970s, by the graph interpretation of A and B of equation
(1.1), Lin et al. [72] raised the structural controllability of a CT-LTI system to acquire
its controllability. The graph interpretation of a given CT-LTI system is a digraph,
whose each arc represents an unique non-zero entry of either A or B, and it is de-
fined by definition 2.4 of section 2.3 of chapter 2. Based on structural controllability,
controllability of the given system can be thus effectively obtained with high prob-
ability in polynomial time. Meanwhile, by contrast, still based on the same graph
interpretation, Mayeda and Yamada [80] defined strongly structural controllabil-
ity of a CT-LTI system for the same purpose. They defined that once a system is
equipped with strongly structural controllability, this system is always completely
controllable without concerning values of non-zero entries of both input and state
matrices.

Obviously, based on the rank condition mentioned in section 1.2.2, verifying a
completely controllable CT-LTI system with a set of inputs might be computation-
ally massive, let along confirming a minimum set of inputs [72] [31]. Fortunately, in
past two decade, two graphic-theoretical methods are created to drive structurally
controllable CT-LTI system with a minimum set of inputs. As a result of using that
two methods, a completely controllable system with a minimum set of inputs can

5

1. INTRODUCTION

be obtained with high probability. On the one hand, Liu et al. [73] achieved this ob-
jective by identifying a maximum matching [60] of that digraph, and the worst-case
execution time is polynomial. Alternatively, another graph-theoretical method is to
identify a power dominating set [59] of a same digraph [12, 6]. Nevertheless, iden-
tifying a minimum power dominating set is a NP-complete problem [59] in general.
Even though, in reality, for different kinds of graphs, a minimum power dominat-
ing set can be identified with various time complexity [12]. Above all, given the
matrix A of equation (1.1), problems about identifying an input matrix to construct
a completely controllable CT-LTI system, can be solved by those graph-theoretic
methods for constructing a structurally controllable CT-LTI system. For those al-
gebraic and graph-theoretical methods to derive controllability, they are shown in
section 2.3, 2.4 of chapter 2.

Due to the time-complexity efficiency of maximum matching based method
that provides structural controllability with a minimum set of inputs, this thesis
only applies this method to not only derive structural controllability with a mini-
mum set of inputs, but also solve all research questions. Those research questions
are primarily about recovering structural controllability, and identifying single net-
work vertices and edges that are vulnerable to the removal in maintaining struc-
tural control with a minimum set of inputs.

1.2.4 Controllability of Control Systems

The control system integrates computing and communication capacities with mon-
itoring and control of entities in the physical world [29, 27]. It can effectively sense,
compute, communicate and control physical systems automatically [82] [69], which
are also called process control systems, cyber-physical systems, distributed control
system and supervisory control and data acquisition (SCADA) systems [26] in dif-
ferent applications [28]. For example, for oil industry, in a same and large area, a
control system could be used to monitor and guide oil flow within the complex and
large-scale oil pipelines. It which contains thousands or even tens of thousands of
sensors, and actuators. Generally, such control systems are called SCADA. By con-
trast, for monitor and optimize interregional railway service, multiple control sys-
tems are arranged hierarchically. In each local railway network, a local control sys-
tem is arranged. Also, those local control systems are interconnected to compose a
larger control system, and such a larger system is called distributed control system.
The physical process [108] or physical system [29] contained by a control system
produces the output, and is the system proposed to be controllable or equipped
with controllability via inputs. Due to the output of a physical system, the desired
service or function is obtained eventually. Also, the physical system can be only
represented by the matrix A of equation (1.1). For instance, given a oil pipeline, it
is the physical system of the control system, and oil flow speed, pressure and other
aspects is composed of the physical process of related control system. Given a con-
trol system, a physical system can be intuitively seen as the “system” of it, and a
controllable physical system is equivalent with being equipped with controllability.
Literally, controllability of a physical system of a control system is referred to the
controllability of this control system in this thesis. To control the physical system,
a control system should also contain other essential parts, including actuators, sen-
sors, controllers and communication infrastructures to effectively measure, assess

6

1.2 GENERAL MOTIVATION

and adjust outputs of the physical system, respectively. Control into the physical
system can be acquired automatically or manually, and a control system can oper-
ate within an open loop, a close loop, or a human mode. For open-loop control sys-
tems, the physical system is forced by pre-defined settings, while the closed-loop
one uses outputs to dynamically force the physical system, so that desired outputs
can be produced at a moment. In the human mode, physical system is completely
forced by humans.

Due to diverse capabilities and environmental coupling, control systems are
pervasively used in controlling critical infrastructures [83], such as electrical, wa-
ter, oil and natural gas, and discrete manufacturing [108]. Nevertheless, once the
critical infrastructure is out of control for some reasons, it may lead unavailability
of purposed products and services. If such unavailablity exists in a large region
for a significant length of time, it would cause serious economic impacts or life
loss [76]. Further, with the interdependenties among critical infrastructures [98], a
single uncontrollable infrastructure may cause severe cascading and escalating fail-
ures. Particuarly, availability of the control into a physical system should be only
dedicated for legal users of the control system. This is becausue control system
might be operated based on the existing control into the physical system to meet
malicious purposes, such as the case called the Maroochy Water Breach [105], and
the Stuxnet attack on the Iranian uranium-processing equipment [36].

1.2.4.1 Attacks on Control Systems

In recent years, more and more research pays attention to securing control systems
[29, 83, 96]. Here, Cardenas et al. [29] summarized few kinds of representative
attacks, such as deception attacks, where adversary sends false information to con-
trollers or sensors; Dos attack, where attacker prevents the controller or physical
system from receiving sensor measurement or actuator signal; and physical attacks,
where the physical system and other devices are directly damaged. In [96], except
for physical attacks, given a cooling control system, other two kinds of attacks are
simulated to observe their harmfulness. For the response to such attacks, state of
the physical system would remain for an extra period of time. By comparison,
once physical components are damaged, the control system would completely lose
its control into the physical system.

Obviously, in addition to IT-based methods about securing control system, it is
still desirable to guarantee the availability of control into a physical system. This
is because control into physical system is necessarily determined by interactions
among components of the physical system and inputs of a same control system,
which might out of the range of IT security. As for an effective method, structural
controllability of the given physical system is helpful to design and analyse inter-
actions among physical system components and inputs.

In summary, it is indispensable to not only maintain the controllability of con-
trol systems continuously, but also recover the controllability of the system after
some changes as soon as possible. And this thesis only concentrates on the recov-
ery after attacks or failures on the physical system.

7

1. INTRODUCTION

1.2.5 Controllability of Complex Networks

Control of complex networks is also an important research area [75, 73, 62, 37], and
this thesis would also concentrate on controlling complex networks with CT-LTI
dynamics according to structural controllability. This is because complex networks
have been studied over decades [4, 87, 15, 119]. Besides, controlling a complex
network is another research area in recent years, which enriches the understanding
of complex networks through control theory.

Here, a CT-LTI dynamical network with inputs is equivalent to the physical
system of a control system, and they can be also modelled by equation (1.1) as
well, where the system component corresponds to a network vertex. In the past
decade, based on structural controllability, Lin’s graphic-interpretation of a given
CT-LTI dynamical system, and Liu’s maximum-matching based method, are both
used to effectively derive the (structural) control into CT-LTI dynamical complex
networks, such as interbank networks [46], and epidemic networks [103]. Particu-
larly, in terms of statistical physics, where types of a given graph is strictly argued,
and the given directed network is quite large in the number of both nodes and
edges. With the background of statistical physics, based on Liu’s scenario, the de-
rived structurally controllable network with a minimum set of inputs is directly
deemed as a completely controllable system. Nevertheless, it is true that a struc-
turally controllable network is not completely controllable. An example is shown
in section 2.3.1 of next chapter. In [117], the structurally controllable network that is
not completely controllable, is further modified to obtain a completely controllable
network, such as adding extra inputs. This finally resulting network is said to be
physically controllable, or equipped with the physical controllability in comparison
of structural controllability.

In this thesis, the aspect of statistical physics in solving research questions is not
considered. The graph is assumed to be the large digraph, and the exact types of
the assumed digraph is also not strictly constrained.

1.2.5.1 Attacks on Network Controllability

Simultaneously, robustness of network (structural) controllability with a minimum
set of inputs against attacks [94] has been studied. Attacks on network control-
lability could be classified into single vertex removal, single edge removal, and
cascading vertex or edge failures, respectively, which are specifically illustrated in
section 3.3 of chapter 3. Nonetheless, with those graph-theoretical methods to de-
rive structural controllability, malicious attackers can also use them to effectively
analyse and damage controllability of CT-LTI networks by analysing vulnerable
single nodes and edges. Therefore, in order to effectively recover and defend con-
trollability against malicious attacks and failures, it is essential that we should fur-
ther study those graph-theoretical methods in terms of recovering and analysing
structural controllability with a minimum set of inputs.

1.2.6 Objectives

From the above, it have been known that structural controllability is useful to study
and solve related problems about controllability of CT-LTI systems. Objectives of

8

1.2 GENERAL MOTIVATION

this thesis are thus based on structural controllability.
Firstly, according to the maximum-matching based method, given a CT-LTI sys-

tem, one objective of this thesis is to efficiently recover its structural controllability
after either a very limited or severe component modification, rather than recom-
puting a maximum matching of the residual system. Also, the inputs for recovery
after severe modification are fixed. Reasons of determining this objective is shown
below:

Generally speaking, recovery of structural controllability attracts increasing at-
tention in recent years, and people implement it by applying those two previously
mentioned graph-theoretical methods [7, 48, 11], where computational efficiency
for entire process of recovery is always considered.

Even though, one reason is that those existing works did not discuss the con-
straint of inputs that are used to recover structural control. Without discussing
such constrains, the simply identified input matrix by those methods might not be
used to recover structural conrollability of the residual system. This is because the
number of simply calculated inputs is more than that of inputs in reality.

Another reason is that the amount of the change on the initial system also seems
to be neglected by related works. Possibly, changes on the system component can
be either very limited, such as adding or removing one single system component;
or very severe, such as cascading failures on a large number of system components.
Furthermore, those very-limited change might periodically emerge, and recovery
of structural control is required per modifying a system. For example, in study
of robustness of network controllability against the single node and edge removal
[115] [100] [88], after a single node or edge removal, the minimum number of in-
puts to structurally control the latest network is calculated. Meanwhile, in terms of
optimizing the minimum number of inputs [78] [118], the effect of optimization is
reflected by calculating the minimum number of inputs per modification.

For those reasons, it is obvious that the recovery of structural controllability
should not just simply identify a set of inputs. Otherwise, unnecessary computa-
tion could be paid in total, or the system might be still structurally uncontrollable
in reality.

After that, the second and the last objective of this thesis is to efficiently ana-
lyze single vertices and edges of a given CT-LTI network in order to identify all
vulnerable single vertices and edges to the removal. The vulnerability is in terms
of maintaining structural control with a minimum set of inputs. As a result, pro-
tection on them can be implemented in advance of attacks or failures. Reasons of
determining this objective are shown below:

On the one hand, given a network with CT-LTI dynamics, network vertices,
which are directly forced by external inputs to structurally control the entire net-
work, are driver nodes [40]. Once a driver node is removed, the entire network
would be structurally uncontrollable immediately. Besides, attackers might hi-
jack structural controllability by affecting identified driver nodes [33]. Even worse,
nodes of all minimum set of driver nodes can have been identified by an existing
method [62] in polynomial time. As a result, the first reason of doing efficient net-
work analysis is that the diver node is easily targeted and identified by malicious
attackers.

On the other hand, in terms of maintaining structural controllability with a min-

9

1. INTRODUCTION

imum set of inputs, because existing related works are unable to effectively iden-
tify vulnerable single vertices and edges to the removal. The robustness of network
structural controllability against node or edge removals is studied according to the
vertex degree distribution, and betweenness [109, 100, 94]. In general, from numer-
ical stimulations, continuously removing either single edges or nodes can dramat-
ically increase the minimum number of inputs to structurally control the residual
network. As a result, the residual network would be more difficult to structurally
control. However, we reviewed those global graph variables to measure robustness
of network structural conrollability against edge and nodal removals. We found
that those variables can not indicate all vulnerable nodes and edges. As a result,
protecting network controllability through those vulnerable nodes and edges by
them is impossible.

Besides, there are more related works to these two objectives, which are system-
atically shown in section 3.2 of chapter 3.

1.3 Research Questions

In accordance of objectives and some literature reviews above, precise motivation
for raising each research question is listed below, which are followed by generic
assumptions and specific research questions later.

1.3.1 Dedicated Motivation

1. Because CT-LTI dynamical systems, especially for networks, could change
over time due to external modification, such as removing or inserting a single
vertex, whereas the harmfulness of these modification on a system vertex or
an edge, might be very limited. Also, efficient recovery of controllability of
each resulting network per such a modification may be essential, which re-
quires iterative recovery of controllability. Therefore, it is helpful to recover
structural controllability efficiently after a single-vertex addition, so that effi-
ciency of entire recovery can be increased. To do this, the research question 1
is raised.

Specifically, given equation (1.1) to represent an initially structural control-
lable network with a minimum set of inputs, after adding a vertex with some
edges into original network, the related state matrix is obtained by adding
one column and one row that contain non-zero entries into matrix A. Then,
the resulting state matrix belongs to R(n+1)×(n+1). With this new state ma-
trix, that original input matrix B may be not proper to construct a structurally
controllable system. It is thus necessary to identify another input matrix with
a minimum number of columns. In particular, it is better to reuse previous
inputs as many as possible.

2. Compared with control recovery after the sabotage of the communication de-
vice, controller, actuator and sensor, a resilient control systems should also
efficiently restore control into physical systems after breaking physical sys-
tems. Such modification could be removal of an already targeted system com-
ponent. To enhance resilience of control systems after some modifications, it

10

1.3 RESEARCH QUESTIONS

is thus useful to recover structural control into the residual physical system
after removing a system component, and research question 2 is raised.

Again, given equation (1.1) to represent an originally structural controllable
system with a minimum set of inputs, after removing a known vertex, the
related state matrix can be obtained by removing a same indexed column
and row from A, and it belongs to R(n−1)×(n−1). Then, B may be not proper to
construct a structurally controllable system. The question is about to identify
an input matrix with a minimum number of columns. Again, it is also much
better to reuse previous inputs, maximally.

3. Because it can be meaningless to recover structural controllability by simply
identifying a set of inputs, when recovery needs more number of inputs than
that of existing ones, for example. Any possible constraints on input ma-
trix should be concerned during the recovery of structural control into the
residual system. As a result, recovery of structural controllability with given
inputs by extra modification is necessary and valuable to study, and research
question 3 is raised.

In this case, given equation (1.1) to represent an originally structurally con-
trollable system, after severe attacks or failures, accordingly, related state ma-
trix can be obtained by removing non-zero entries and the same indexed
columns and rows of A. Besides, constrained input matrix belongs to the
same dimension as current state matrix, while it can not be changed during
the entire recovery, and both of those matrices can not construct a structurally
controllable system. Thus, extra modification on this resulting state matrix is
the key to recover structural controllability.

4. People have used critical, redundant and ordinary categories [73] to concisely
distinguish the importance of any single edge in maintaining network struc-
tural controllability with the minimum number of inputs. In detail, a removal
of a critical edge gains the minimum number of inputs to structurally control
residual network; removing a redundant edge never affects current minimum
set of inputs; removing an ordinary link does not change the minimum num-
ber of inputs, while driver nodes that are currently used would be changed
to structurally control the residual network. Nevertheless, Liu et al. [73] used
the low efficient algorithm of [97] to execute entire edge classification. Given
a digraph with m arcs and n vertices in number, its worst-case execution time
is O(m2 ·

√
n).

It is desirable to more efficiently confirm the edges of each category for fur-
ther edge protection than that method above. Because a certain network
analysis is still uncertain. It is therefore urgent to provide an efficient edge-
classification scenario, and research question 4 is raised, in order to more ef-
ficiently distinguish the category of any given single edge than that existing
result.

5. Given a digraph with m arcs and n vertices in number, because each node
of all minimum set of driver nodes could be identified in O(m · n) steps at
most. Also, since removing any single driver node directly damages current

11

1. INTRODUCTION

structural controllability. It is thus necessary to efficiently identify each node
of all minimum set of driver nodes of a given network with CT-LTI dynamics
than [62]. In consequence, driver nodes can be under protection in advance.
Besides, structural-control recovery could be caused by removing a single
driver node. To more efficiently recover the minimum-input structural con-
trol against single driver node removal, it is helpful to know the harmfulness
of removing a single driver node to the minimum-input structural control.
Above all, research question 5 is raised.

This question is about efficiently identifying nodes of minimum sets of driver
nodes in the first place. Then, it is also proposed to classify them accord-
ing to the single driver-node removal on structurally controlling the residual
network.

6. Because there is no sufficient focus on importance of a single node in main-
taining the current minimum set of inputs to structurally control a given
network, except for the node categories of [113]. Also, there are just some
very limited qualitative descriptions about surge of the minimum number of
inputs after continuously removing single vertices. As a result, vulnerable
nodes to the removal can not be explicitly and effectively identified, let along
maintain network structural controllability and enhance robustness against
node removals. Therefore, research question 6 is raised.

Research question 6 can be seen as an extension to research question 5. To
solve this question, it is firstly distinguished that the importance of each sin-
gle network vertex in maintaining the minimum-input structural conrolla-
bility. As a result, few nodal categories are then defined. Finally, all single
network nodes are classification into those few categories.

1.3.2 Generic Assumptions

Each research question would be modeled into a graphic-theoretical problem and a
network is thus defined as the input network to construct various solutions. Neces-
sarily, some general assumptions for the input network and solution performance
are specified below:

1. The input network is a large and finite digraph, it has no self loops, parallel arcs and
isolated nodes. Vertex set and arc set of the input network are not empty.

2. For any known set of inputs, it means that the input matrix of a state equation like
equation (1.1) is known, and the state matrix is also known as well.

3. To assess the performance of solving any following research question, the worst-case
execution time of each solution is mainly considered.

For the other further assumptions, they would be specifically clarified during
solving a precise question.

12

1.3 RESEARCH QUESTIONS

1.3.3 Questions

Combining motivations of section 1.3.1 with these assumptions above, research
questions are now illustrated. In particular, each question is one-to-one corre-
sponding to a motivation in sequence.

1. Given a network, which is structurally controllable via a known minimum
set of inputs. Next, a single vertex is added into it. The question is raised as
follows:

“ How to efficiently recover the minimum-input structural controllability of
the resulting network without recomputation ? ”

This question is solved in chapter 4 and partially based on our publication
[127].

2. Given a CT-LTI control system, which is structurally controllable via a known
minimum set of inputs. Next, a known system component is removed from
this system. The question is raised as follows:

“ How to efficiently recover the structural controllability of the residual sys-
tem with a minimum set of inputs without recomputation ? ”

This question is solved in chapter 5 and partially based on our publication
[129].

3. Given a structurally controllable CT-LTI control system, which was then ex-
perienced severe malicious attacks or failures. Next, given an input matrix
that is always fixed. The question is raised as follows:

“ How to efficiently recover structural controllability of the residual system
by adding a minimum set of non-zero entries into resulting state matrix ?”

This question is solved in chapter 6 and mainly based on our publication
[126].

4. Given a network, which is structurally controllable via a known minimum set
of inputs. Next, to explicitly understand the importance of any single edge
in maintaining structural controllability with a minimum set of inputs. The
question is raised as follows:

“ How to efficiently classify its all edges into critical, redundant and ordinary
categories ? ”

This question is solved in chapter 7 and partially based on our publication
[130] and [128].

5. To understand the importance of any single node in maintaining a minimum
set of driver nodes, a network with CT-LTI dynamics is given as an input
network. The question is raised as follows:

“Firstly, how to efficiently identify each network vertex of all minimum sets
of driver nodes ?

Secondly, investigate the importance of any single driver node in maintaining
the currently used minimum set of driver nodes. ”

13

1. INTRODUCTION

This question is solved in chapter 8 and partially based on our publication
[125].

6. Given a network, which is structurally controllable via a known minimum
set of inputs. Then, to efficiently identify vulnerable single vertices to the
removal. The question is raised as follows:

“ How to efficiently classify each network single vertices into few categories
according to the importance of any single vertex in maintaining the current
minimum number of inputs ?”

This question is solved in chapter 9 and also partially based on our publica-
tion [128] and 7 of section 1.3.4.

These research questions are categorized into two parts, which are the part II
and part III of this thesis. Part II addresses question 1, 2 and 3, focusing on efficient
structural-controllability recovery. Then, the part III addresses question 4, 5, 6, pay-
ing attention to network analysis to identify vulnerable single vertices and edges
to the removal in terms of maintaining structural controllability with a minimum
set of inputs.

1.3.4 Publications

Above questions are solved according to our following publications:

1. Zhang, S & Wolthusen, S 2018, ’Iterative recovery of controllability via max-
imum matching’ Paper presented at 13th IEEE International Conference on
Automation Science and Engineering, Xi’an, China, 20/08/17 - 23/08/17, pp.
328-333. (DOI: 10.1109/COASE.2017.8256124)

2. Zhang, S & Wolthusen, S 2018, ’Efficient control recovery for resilient con-
trol systems’ Paper presented at 15th IEEE International Conference on Net-
working, Sensing and Control, Zhuhai, China, 27/03/18 - 29/03/18, . (DOI:
10.1109/ICNSC.2018.8361318)

3. Zhang, S & Wolthusen, S 2018, ’Security-Aware Network Analysis for Net-
work Controllability’ Paper presented at AINA-2018 Workshops, Kracow, Pol
and, 16/05/18 - 18/05/18, . (DOI: 10.1109/WAINA.2018.00136)

4. Zhang, S & Wolthusen, S 2018, ’Efficient Analysis to Protect Control into
Critical Infrastructures’ Paper presented at 13th International Conference on
Critical Information Infrastructures Security, Kaunas, Lithuania, 24/09/18 -
26/09/18, pp. 226-229. (DOI: 10.1007/978-3-030-05849-4 18)

5. Zhang, S & Wolthusen, S 2019, ’Structural Controllability Recovery via the
Minimum-edge Addition’ Paper presented at 2019 AMERICAN CONTROL
CONFERENCE, PHILADELPHIA, United States, 10/07/19 - 12/07/19, pp.
1-6. (DOI: 10.23919/ACC.2019.8815176)

6. Zhang, S & Wolthusen, S 2019, ’Driver-Node based Security Analysis for Net-
work Controllability’ Paper presented at 17th European Control Conference

14

1.4 CONTRIBUTIONS

(ECC19), Naples, Italy, 25/06/19 - 29/06/19, pp. 1-6. (DOI: https://doi.
org/10.23919/ECC.2019.8796264)

7. Zhang, S. Wolthusen, S. ’Efficiently Identify Vulnerable Vertices to Maintain
Network Structural Controllability’. (Currently under review of IEEE Trans-
actions on Control of Network Systems)

1.4 Contributions

Aiming at objectives of section 1.2.6, contributions of this thesis are basically sum-
marized as follows :

1. Given an initially minimum-input structurally controllble CT-LTI system, a
single component is either removed from or added into it. Then, to recover
the structural control into the resulting system, an effective recovery method
is designed, which can be executed in the linear time.

2. Given an initially structurally uncontrollble CT-LTI system, and a set of fixed
number of inputs to recover structural controllability. Then, by adding a min-
imum set of edges, recovery of structural controllability is executed in more
efficient polynominal time than the scenario of [37].

3. To identify all vulnerable single network edges to the removal, an initially
minimum-input structurally controllable network is given as the input net-
work. The entire network edges are more efficiently classified into critical,
redundant and ordinary categories, respectively, in linear time.

Besides, to identify all vulnerable single network vertices to the control hijack
attack, an initially minimum-input structurally controllable network is given
as the input network. Vertices of all minimum set of driver nodes are then
more efficiently identified in linear time, and the harmfulness of removing a
single driver node is also systematically explored.

Last but not the least, to identify all vulnerable single vertices to the removal,
an initially minimum-input structurally controllable network is given as the
input network. Three nodal categories are the defined, and all network ver-
tices are classified into them efficiently in linear time.

1.5 Layout

Remaining chapters of this thesis is structured as follows:
Chapter 2 is the background of this thesis. It illustrates existing knowledge that

promotes us to solve all research questions of section 1.3, which includes control-
lability of CT-LTI, DT-LTI systems, two representative graph-theoretical methods
and concepts to construct a controllable CT-LTI system. Particularly, the structural
controllability [72] is primarily presented in detail. Besides, controllability of com-
plex networks is also illustrated. This chapter qualitatively compares those graph-
theoretical methods to derive completely controllable systems.

15

1. INTRODUCTION

Chapter 3 reviews recent works related to solving those research questions. In
one aspect, it contains the literatures about robustness of network structural con-
trollability against both the nodal and edge removal, which are executed by various
scenarios with different network types. Then, this chapter also illustrates exist-
ing works about recovering structural controllability according to the introduced
methods of deriving structural controllability in section 2.4 of chapter 2. Addition-
ally, related works that analyse network vertices and arcs for deriving structural
controllability are reviewed as well. In addition to, some literatures about graph-
theoretical problems are discussed, which are used to model and solve some re-
search questions of this thesis.

Chapter 4 solves question 1. Specifically, a network is given, which is struc-
turally controllable via a known minimum set of inputs. Next, a single vertex is
added into this given network. The minimum-input structural controllability of
the resulting network would be efficiently recovered by identifying a maximum
matching without recomputation.

For the contribution of this chapter, given an initially structurally controllable
network with a known minimum set of inputs, after a single-vertex addition on
it. This chapter efficiently recovers structural controllability of the latest resulting
network in linear time in the worst case. The method is about efficiently finding
a maximum matching of a digraph after adding a single vertex and few arcs. Be-
sides, previous inputs are reused with the maximum number during recovery. This
result reflects that structural controllability recovery should concern the amount of
change on the initial network.

Chapter 5 solves question 2. Specifically, a CT-LTI control system is given,
which is structurally controllable via a known minimum set of inputs. Next, a
known system component is removed from it. The structural controllability of the
residual system with a minimum set of inputs is efficiently recovered by identifying
a maximum matching without recomputation.

For the contribution, given a minimum-input structurally controlled CT-LTI
physical system, structural-control recovery after removing a precomputed system
component is executed in linear time. The method is about efficiently finding a
maximum matching of a digraph after removing a known single node. Also, pre-
vious inputs are reused with the maximum number. Again, this result also reflects
that structural controllability recovery should concern the amount of change on the
initial system.

Chapter 6 solves question 3. Given a structurally uncontrollable CT-LTI sys-
tem, this chapter efficiently recovers its structural controllability with a set of given
inputs. This question is solved by adding a minimum set of edges into the net-
work that represents this given system, so that the final digraph can represent a
structurally controllable system with given inputs.

For the contribution, given a structurally uncontrollable system with fixed in-
puts, let m, n be the number of edges and vertices of the network representation
of this given system. This chapter recovers structural control by minimum-edge
addition in the worst time complexity of O(

√
n ·m). This scenario is executed more

efficient than the latest edge-addition approach of [37], whose worst-time execution
time is O(n3).

Chapter 7 solves question 4. Given a structurally controllable network with

16

1.5 LAYOUT

CT-LTI dynamics by a precomputed minimum set of inputs, this chapter efficiently
classifies edges of this given network into critical, redundant and ordinary cate-
gories respectively by identifying all single edges that are contained by all maxi-
mum matchings based on that precomputed maximum matching.

For the contribution, given a minimum-input structurally controllable network,
this chapter more sufficiently finds all maximally-matchable edges in linear time
than related work of [112]. This chapter also more efficiently classifies edges of a
given network than using the algorithm of [97].

Chapter 8 solves the question 5. Given a CT-LTI dynamic digraph, this chapter
identifies its single vertices of all minimum sets of driver nodes more efficiently
than [62]. Besides, to further understand the harmfulness caused by removing a
single node of a minimum set of driver nodes, this chapter also classifies those
identified nodes based on the importance of any single driver node in terms of
maintaining currently used driver node set. The first issue is solved by finding
each vertex that is an unmatched node related to a maximum matching of this
given digraph. The next issue is solved by classifying those nodes according to
impacts of single driver-node removal on the number of unmatched nodes of the
residual digraph.

For the contribution of this chapter, given any CT-LTI dynamic digraph, letm, n
be the number of its edges and nodes, vertices of all minimum sets of driver nodes
are identified in O(

√
n · m). This complexity is lower than [62] in the worst case.

Then, they are efficiently classified to enrich the understanding of the harmfulness
caused by a single driver-node removal.

Chapter 9 solves question 6. This chapter can be seen as an expansion of the sec-
ondly solved issue of chapter 8. Given a structurally controllable network with a
minimum set of inputs, this chapter effectively explores the importance of any sin-
gle vertex in maintaining current minimum set of inputs. Accordingly, this chap-
ter defines few nodal categories. Then, this chapter classifies all single vertices
into those categories. For the solution, importance is confirmed by impacts of any
single-node removal on the unmatched nodes of residual network related to a max-
imum matching. Instead of confirming the category of a single node one by one,
categories of all single nodes of the given network are confirmed by running our
two kinds of graph traversing and labelling algorithms once for entire network.

For the contribution, this chapter quantitatively explains the reason for surge of
the minimum set of inputs during continuous removal of single vertices. Besides,
this chapter also classifies all network vertices accordingly, in order to identify vul-
nerable vertices to the single-node removal. As a result, except for deriving the
initial structural controllability with a minimum set of inputs, the worst-case exe-
cution time of entire operations is linear, which is much more efficient than itera-
tively recomputing a minimum set of inputs after a single node removal to confirm
its category.

Chapter 10 finally summarizes this thesis, and some other things would be em-
phasized to guide the future work, which are still about efficient assurance of struc-
tural controllability in other different aspects.

17

Chapter 2

Background

2.1 Overview

This chapter illustrates existing knowledge that promotes us to solve those re-
search questions of section 1.3 of chapter 1. It mainly elaborates controllability
of continuous-time and linear time-invariant(CT-LTI) systems. Then, this chapter
introduces and quantitatively compares some effective graph-theoretical methods
and concepts to construct a controllable CT-LTI system. After this, structural con-
trollability [72] is primarily presented. In terms of illustration of them, this chapter
omits the process of mathematical derivation for some results. But fundamental
concepts and important results would be shown and used over following thesis.

2.2 Controllability of CT-LTI systems

As mentioned in section 1.2 of chapter 1, a CT-LTI system can be described by an
ordinary differential equation below, which is called the state equation [65]:

ẋ(t) = Ax(t) + Bu(t) (2.1)

where A ∈ Rn×n is the state matrix, and its every non-zero entry illustrates
which system components interact with each other and the strength of those in-
teractions; here, any component of a system could be a physical variable, or a
physical entity; x(t) ∈ Rn, and x(t) = (x1(t), x2(t), . . . , xn(t))T is the state vec-
tor, and it captures the state of each system component at time t; u(t) ∈ Rm,
u(t) = (u1(t), u2(t), . . . , um(t))T (m ≤ n), is the input vector, and holds external m
inputs at time t; B ∈ Rn×m is the input matrix, and its non-zero entries show which
inputs directly force which system components. Here, the state of a dynamic sys-
tem is regarded as the minimal amount of information about the past history of the
system, which also suffices to predict the effect of the past on the future [65].

Controllability is one of system properties, when a system is with controllability,
it is completely controllable or vice versa, and controllability is defined:

Definition 2.1 (Controllability [99])
System described by equation (2.1) is controllable in a time interval [t0, tf], if for any initial
state x0 defined at t0 and a final state xf defined at tf , there are valid inputs ut ∈ {ut|t ∈
[t0, tf]} that can steer x0 to xf .

Furthermore, in the research of canonical structural of linear dynamical systems
[64], given the system described by equation (2.1), all system components can be
classified into either controllable part or uncontrollable part, when its each system

19

2. BACKGROUND

component is controllable via inputs, or n system components are all controllable,
this given dynamical system is said to be completely controllable. Also, the number
of controllable components is proved to be equal to the rank of a matrix, noted by
C, which is defined based on the state matrix A and the input matrix B by following
equation (2.2):

C = [B,AB,A2B, . . . ,An−1B], (C ∈ Rn×nm) (2.2)

We use rank(C) to represent the rank of C. Also, matrices B,AB,A2B, . . . ,An−1B
are n submatrices of matrix C in number, and each of which belongs to Rn×m.
Therefore, when a system described by equation (2.1) is completely controllable,
if and only if matrix C has full rank, which is called the controllability rank condi-
tion, and noted by:

rank(C) = n (2.3)

With controllability rank condition, to construct a completely controllable CT-
LTI system according to a given state matrix, it actually needs to identify an input
matrix, so that the controllability rank condition is satisfied. Also, to verify if a
given CT-LTI system is completely controllable or not, it just needs to calculate if
this system satisfies the controllability rank condition by equation (2.2) and (2.3).

2.2.1 Controllability of DT-LTI systems

As mentioned in section 1.2.2 of chapter 1, the algebraic condition of a CT-LTI sys-
tem and that of a discrete-time and linear time-invariant (DT-LTI) system are com-
pletely same, now this section formally proves this statement.

Generally, a DT-LTI system is described by the following equation:

x(t) = Ax(t− 1) + Bu(t− 1)(t ≥ 1) (2.4)

where state matrix A ∈ Rn×n, input matrix B ∈ Rn×m, state vector x(t) ∈ Rn

and input vector u(t) ∈ Rm here, are completely same as that of equation (2.1).
Firstly, a completely controllable DT-LTI system can be intuitively defined:

Definition 2.2 (Controllability of a DT-LTI System [19])
A system described by equation (2.4) is completely controllable in (n - 1)-time steps, when
there exists a sequence of inputs u(1), u(2) . . .u(n−1), such that x(n) is the obtained, and
it is the proposed state vector regardless of the initial state x(1).

Given a system described by equation (2.4), and a sequence of inputs {u(1), u(2)
. . . u(n − 1)} for (n − 1) − time steps. Then, with initial state x(1), if the given
system is completely controllable in (n−1)− time steps, there are following (n−1)
equations:

x(2) = Ax(1) + Bu(1)
x(3) = Ax(2) + Bu(2)
x(4) = Ax(3) + Bu(3)

...
x(n) = Ax(n− 1) + Bu(n− 1)

20

2.3 STRUCTURAL CONTROLLABILITY

That final equation can be further written by a following one, which represents
the relationship between state x(n) and state x(1) in detail:

x(n)−A(n−1) · x(1) =

n−1∑
r=1

(
Ar−1 · B · u(n− r)

)
(2.5)

Then, let x(n) = 0, and this equation can be also written as:

−A(n−1) · x(1) = [B,AB,A2B, . . . ,A(n−1)−1B] ·

u(n− 1)
u(n− 2)
u(n− 3)

...
u(1)

 (2.6)

because this given DT-LTI system is controllable, there must be a solution for
this equation, and matrix [B,AB,A2B, . . . ,A(n−1)−1B] ∈ Rn×(m×(n−1)) must be in-
vertible and it is thus full rank. By contrast, this result is equivalent to the rank
condition of a CT-LTI system that is represented by equation (2.2). Thus, when a
DT-LTI system is completely controllable, controllability rank condition for CT-LTI
system is also applicable.

Reversely, if matrix [B,AB,A2B, . . . ,A(n−1)−1B] is full rank, given (n−1) inputs
{u(1), u(2) . . . , u(n − 1)} and a system described by equation (2.4). Considering
equation (2.6), because of the same dimension of those two matrices at right and
left side of equal mark, which is Rn×(m×(n−1)). Those (n− 1) equations can be also
deduced, which indicate that this system is controllable in (n−1)− time steps with
these inputs in consequence.

Therefore, controllability rank condition for CT-LTI system is always applicable
for design and analyse DT-LTI systems.

2.3 Structural Controllability

Although controllability rank condition shown by equation (2.2) and (2.3) of section
2.2, offers a comprehensive, rigorous and detailed framework for the design and
analysis of CT-LTI systems, there are two general problems preventing against its
usage in practice. Given a system described by equation (2.1), one problem is that
non-zero entries of both matrix A and B are known with approximation of some
errors of measurement [72]. Another problem is that the computation of rank(C)
is massive, which requires 2n − 1 different combinations in the worst case [73].

To avoid these two problems and still design or analyze controllable CT-LTI
systems, the structured system is concerned. Generally speaking, for any given
system described by equation (2.1), it is a structured system, if entries of both A
and B are either fixed zeros or independent free parameters [49], where such A and
B are called the structured matrices. Besides, given a structured system, one of its
instances is the system, whose non-zero entries of both state and input matrices
are exact values. Then, researchers use a structured system to explore when an
instance of it is completely controllable, or how to derive a completely controllable
instance of a structured system. In recent four decades, for this purpose, various
graph-theoretical methods have been raised, and some representative methods and

21

2. BACKGROUND

concepts are introduced in section 2.3-2.5, of which, the structural controllability
and maximum-matching based method are mainly concentrated in following other
chapters.

Firstly, given a state matrix, it is valid to construct a CT-LTI system described
by equation (2.1) via the structural controllability, so that it is very likely that a
completely controllable system can be obtained. Lin et al. [72][104] initially raised
structural controllability, and it is defined below:

Definition 2.3 (Structural Controllability [72])
Given a structured system described by equation (2.1), then, this structured system is struc-
turally controllable, if and only if there is at least one instance of it satisfying the controlla-
bility rank condition.

According to this definition, given any structurally controllable system, there
must be at least one completely controllable instance of it, and it can be observed
that structurally controllable system is a necessary but not sufficient condition of a
completely controllable system. Even so, the structural controllability is a powerful
concept, because it is proved that once an instance of a structured system satisfies
the controllability of rank condition, almost all instances of a same structured sys-
tem are completely controllable [45]. In other words, given a structurally control-
lable system described by equation (2.1), any instance of it should be completely
controllable with high probability. Further more, conditions of a structurally con-
trollable system are generalized by theorem 2.1 with following definitions:

Definition 2.4 (Digraph G(A, B))
Given matrix A, B of equation (2.1), let G(A,B) = (V1 ∪ V2, E1 ∪ E2) be a digraph,
where V1 = {vi|1 ≤ i ≤ n} and V2 = {uj |1 ≤ j ≤ m} are two vertex sets, and
E1 = {

−−−−→
〈vi, vk〉|vi, vk ∈ V1} and E2 = {

−−−−→
〈uj , vi〉|uj ∈ V2, vj ∈ V1} are two edges sets.

Also, let α : {A,B} → G(A,B) be a bijection. For each non-zero aki ∈ A and bij ∈ B,
there are α : aki →

−−−−→
〈vi, vk〉 and α : bij →

−−−−→
〈uj , vi〉.

Remark 1 In this thesis, sometimes, digraph mapped by a given system state equa-
tion according to definition 2.4, is called the system network of a pair of given state
matrix and input matrix. 2

Definition 2.5 (Stem & Bud[72])
Given G(A,B) of definition 2.4, a stem of it is a directed path starting from a node of V2.
A bud is a directed cycle plus an arc, whose head is shared with this cycle, and this arc is
called the distinguished edge.

Definition 2.6 (Dilation of a Digraph[72])
Given G(A,B) = (V1 ∪ V2, E1 ∪ E2) of definition 2.4, S ⊆ V1 is a set of nodes, T (S) ⊆
V1 ∪ V2 is a set of vertices as tails of arcs whose heads are all vertices of S. Then, G(A,B)
contains a dilation, if and only if |S| > |T (S)|.

Definition 2.7 (Inaccessibility [72])
Given G(A,B) = (V1 ∪ V2, E1 ∪ E2) of definition 2.4, and a node of V1. Then, this single
node is inaccessible, if and only if it can not be visited through directed paths that start from
any node of V2 .

22

2.3 STRUCTURAL CONTROLLABILITY

Figure 2.1: Cacti
According to definition 2.8, here is a set of disjoint cacti, where only the blue vertices are mapped by inputs.

Definition 2.8 (Cactus[72])
Let B1, B2, . . . , Bl be a set of buds, and let S1 be a stem, S1 ∪B1 ∪B2, . . . ,∪Bl is a cactus
if and only if the tail of distinguished edge of Bi(1 ≤ i ≤ l) is not the top node of S1 but
the only common node of S1 ∪B1 ∪B2, . . .∪Bi−1. Besides, a stem of definition 2.5 is also
a cactus. (see an example in figure 2.1.)

Theorem 2.1 (Structural Controllability Theorem [72, 79])
Given system described by equation (2.1), and G(A,B) of definition 2.4, then, following
statements are equivalent:

1. System described by equation (2.1) is structurally controllable.

2. G(A,B) contains neither inaccessible nodes nor a dilation.

3. G(A,B) is spanned by a set of disjoint cacti.

In particular, according to [72, 79], when statement one is satisfied, statement
two implied by it can thus imply statement three, while statement three can always
imply both statement one and two. It means that the second statement can not
be independently used to verify if a system is structurally controllable or not. For
example, given a CT-LTI system described by the following state equation (2.7),
and it is mapped into the digraph of figure 2.2 according to definition 2.4. As we
can observe, this digraph has neither the dilation nor the inaccessible vertices from
u1. But, this digraph is not spanned by a cactus.

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ4(t)

 =

0 0 0 0 0
a21 0 0 0 0
0 a32 0 0 0
0 0 a43 0 a45
a51 0 0 0 0

 ·

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

+

b1
0
0
0
0

 · u(t) (2.7)

Thus, we conclude corollary 2.2 to clarify such relationship among this three
statements of theorem 2.1.

23

2. BACKGROUND

u1

v1 v2 v3 v4

v5

Figure 2.2: A digraph of the system of equation (2.1) by definition 2.4.

a u1

v1

v2

v3

b u1

v1

v2 v3

c u1

v1

v2 v3

d u1

v1

v2 v3

Figure 2.3: Digraphs mapped by four simple CT-LTI systems.

Corollary 2.2
By theorem 2.1, a system described by equation (2.1) is structurally controllable if and only
if the network mapped from it by definition 2.4 not only excludes inaccessible nodes and a
dilation, but also spanned by a set of disjoint cacti.

2.3.1 Simple Examples

This section shows some simple examples to visually clarify the relationship be-
tween structural controllability and controllability of CT-LTI systems. Four di-
graphs of figure 2.3 are mapped by four CT-LTI systems according to the bijection
of definition 2.4, and the controllability and structural controllability of each related
system are discussed.

1. For figure 2.3 a, the related system can be written as:ẋ1(t)ẋ2(t)
ẋ3(t)

 =

 0 0 0
a21 0 0
0 a32 0

 ·
x1(t)x2(t)
x3(t)

+

b10
0

 · u(t)

and the controllability matrix is thus obtained by:

C = [B,A · B,A2 · B] =

b1 0 0
0 b1 · a21 0
0 0 b1 · a32 · a21

By theorem 2.1, this system is structurally controllable due to there is only a
stem of definition 2.5. Also, since rank(C) = 3 is constant, all instances of this
system are always completely controllable.

24

2.3 STRUCTURAL CONTROLLABILITY

2. For figure 2.3 b, the related system can be written as:

ẋ1(t)ẋ2(t)
ẋ3(t)

 =

 0 0 0
a21 0 0
a31 0 0

 ·
x1(t)x2(t)
x3(t)

+

b10
0

 · u(t).

Because the digraph is not spanned by a cacti of definition 2.8, this system
is not structurally controllable. Also, since structurally controllable system
is the necessary but not sufficient condition of a completely controllable sys-
tem, all instances of this system represented by figure (b) are of course not
completely controllable.

3. For figure 2.3 c, the related system can be written as:

ẋ1(t)ẋ2(t)
ẋ3(t)

 =

 0 0 0
a21 0 0
a31 0 a33

 ·
x1(t)x2(t)
x3(t)

+

b10
0

 · u(t)

and the controllability matrix is thus obtained by:

C = [B,A · B,A2 · B] =

b1 0 0
0 b1 · a21 0
0 b1 · a31 b1 · a33 · a31

Obviously, since rank(C) = 3, all instances of this system are thus completely
controllable and thus structurally controllable.

4. For figure 2.3 d, the related system can be written as:

ẋ1(t)ẋ2(t)
ẋ3(t)

 =

 0 0 0
a21 0 a23
a31 a32 0

 ·
x1(t)x2(t)
x3(t)

+

b10
0

 · u(t)

and the controllability matrix is thus obtained by:

C = [B,A · B,A2 · B] =

b1 0 0
0 b1 · a21 b1 · a23 · a31
0 b1 · a31 b1 · a32 · a21

Although the digraph is spanned by a stem starting from u1, once the value
of each non-zero entry of structured matrices is equal to 1, then rank(C) =
2 < 3. Clearly, this system is structurally controllable, but not all instances of
it are completely controllable.

Combining these examples with theorem 2.1, controllability of a given CT-LTI
system can be obtained or analysed by structural controllability with the graphic
interpretation of it. Next, two related methods to derive structural controllability
are systematically shown in section 2.4.

25

2. BACKGROUND

2.4 Derive Structural Controllability

In general, based on theorem 2.1, given a state matrix A of equation (2.1), con-
structing a CT-LTI system containing it with the structural controllability, can be
modelled into a graph problem. Specifically, derive a digraph G(A) = (V1, E1) of
definition 2.4 in the beginning, which is mapped by the given state matrix. Next,
identify a vertex set V2 and an edge set E2 of definition 2.4, whose vertices are
adjacent to nodes of V1 and as tails of arcs of E2. Finally, the resulting digraph
(V1 ∪ V2, E1 ∪ E2) should be spanned by a set of disjoint cacti of definition 2.8. As
a result, the input matrix B can be obtained by mapping V2 and E2 according to
the bijection of definition 2.4. After that, a structurally controllable CT-LTI system
is derived, eventually. Accordingly, given G(A) = (V1, E1), two different graph-
theoretical methods to identify V2 and E2 of definition 2.4 are shown in section
2.4.1 and 2.4.2, respectively.

2.4.1 Maximum-Matching based Method

Definition 2.9 (Maximum Matching of a Digraph[35, 14])
In a digraph, a matching is a set of arcs without common tails and heads, and a maximum
matching is a matching with the maximum cardinality. For any single vertex, it is an
unmatched node with respect to a matching, if and only if it is not the head of any arc of
this matching. Otherwise, it is matched.

Definition 2.10 (Maximum Matching of a Bipartite or Undirected Graph [35, 14])
In a bipartite graph or an undirected graph, a matching is a set of vertex-disjoint edges, and
a maximum matching is a matching with the maximum cardinality. For a single vertex,
it is an unmatched node with respect to a matching, if and only if it is not incident to any
edge of this matching. Otherwise, it is matched.

Definition 2.11 (Perfect Matching[35, 14])
In a graph, which can be directed, undirected, or bipartite, when all vertices are matched
with respect to a maximum matching, this graph is said to have a perfect matching.

Generally, there are multiple maximum matchings within a same graph. Given
a graph and a maximum matching of it, this maximum matching with those un-
matched nodes, can span this given graph. To identify a maximum matching, the
augmenting path of definition 2.12, plays a critical role by following corollaries:

Definition 2.12 (Augmenting Path [60])
Let B0 be a bipartite graph, E0 be the edge set of B0, and M0 be a matching of B0. With
respect to M0, an alternating path is a path alternatively involving edges of M0 and E0 \
M0. An alternating path is an augmenting path with respect to M0, if and only if its two
terminals are not incident to any edge of M0. (See examples in figure 2.4.)

Corollary 2.3
Let B0 be a bipartite graph, M0 be an arbitrary given matching of B0, and Paug be an
existing augmenting path with respect toM0. Then, the symmetric difference between Paug

andM0, noted by Paug⊕M0 and Paug⊕M0 = {Paug\{Paug∩M0}}∪{M0\{Paug∩M0}},
is a matching bigger than M0 by one in cardinality [89, 20].

26

2.4 DERIVE STRUCTURAL CONTROLLABILITY

v+1 v−2

v+2 v−3

v+3 v−4

v+4 v−1

v+1 v−2

v+2 v−3

v+3 v−4

v+4 v−1

Figure 2.4: Examples of Augmenting Paths

In two bipartite graphs, with respect to a matching {v−2 , v+1), (v−3 , v+2), (v−4 , v+3)}, each complete blue path is an
augmenting path.

Corollary 2.4
Let B0 be a bipartite graph, and M0 be an arbitrary matching of B0, M0 is a maximum
matching if and only if no augmenting path related to M0 exists [89, 20].

Therefore, based on these two statements, a maximum matching of a bipartite
graph can be identified by iteratively identifying an augmenting path related to
each latest-identified matching. In detail, given a bipartite graph with m edges
and n vertices in the number, identifying an augmenting path related to the latest-
identified matching costs O(m) steps at most, while the number of iterations is
O(
√
n) maximally [60]. Thus, worst-case execution time of identifying a maximum

matching of a bipartite graph is O(
√
n ·m).

Additionally, because any directed graph can be mapped into a bipartite graph
in linear time, where one vertex set of this bipartite graph corresponds to a set of
all vertices as tails of arcs of the digraph, and another vertex set corresponds a set
of all nodes as heads of arcs of the digraph [86]. Therefore, a maximum matching
of this digraph can be identified through a maximum matching of a bipartite graph
mapped by it. An example of the mapping between a digraph and a bipartite graph
is shown in figure 4.1 with bijection of definition 4.2 of chapter 4.

Besides, given a general graph with m edges and n vertices in the number, a
maximum matching can be also identified in O(m ·

√
n) steps at most [81]. Up

to date, this result is the bound of efficiently finding maximum matching by deter-
ministic algorithms except for approximation, which could be executed much faster
than identifying an exact maximum matching on static graphs [57]. When the given
bipartite graph is dense such as m ≥ n2, time complexity becomes O(m

√
n/logn)

[8]. Besides, for identifying a maximum matching of a sparse Erdős-Rényi random
graph [51], the average case time complexity is just O(m · log(n)) [16].

2.4.1.1 An Algorithm

Above, we show how to use a maximum matching to obtain a cacti, so that struc-
tural controllability can be obtained. Here, given G(A) = (V1, E1) of definition
2.4, let MD be a maximum matching of it, V1MD

be a set of nodes of V1 that are un-
matched related toMD, and cj be a cycle ofMD. Also, let vp, vq be any two different
vertices of V1. Let V2 6= V1 and E2 6= E1 be the initial empty vertex and arc set, and
ui 6∈ V1 be a vertex out of V1. Then, algorithm 2.1 below shows how to use MD to
identify V2 and E2 so that (V1 ∪ V2, E1 ∪ E2) is spanned by a set of disjoint cacti.

27

2. BACKGROUND

Figure 2.5: A Maximum Matching & A Cacti
The digraph only involves all green nodes, black and red arcs, which is mapped by a given state matrix, where

all red arcs construct a maximum matching. Then, two blue nodes represents two identified inputs, and the blue
arcs are either incident to unmatched nodes or a node of a cycle. Finally, all green and blue nodes, red arcs and

blue arcs construct two disjoint cacti by algorithm 2.1.

Algorithm 2.1: Identify V2 and E2 by a maximum matching of G(A).
Input : G(A) = (V1, E1) of definition 2.4, V2, E2.
Output: V2, E2.

1 Identify MD of G(A) = (V1, E1) by the algorithm of [81] or [60];
2 Identify V1MD

; Identify each cj ⊆MD by algorithm of [111];
3 while V1MD

6= ∅ and vp ∈ V1MD
do

4 V
′
1MD

= V1MD
\ vp;

5 V
′
2 = V2 ∪ ui;

6 E
′
2 = E2 ∪

−−−−→
〈ui, vp〉;

7 while for each cj and vq ∈ cj do
8 M

′
D = MD \ cj ;

9 For any ui ∈ V2, E
′
2 = E2 ∪

−−−−→
〈ui, vq〉;

10 return V2, E2;

PROOF Because MD contains disjoint directed paths and cycles, V1MD
∪MD thus

spans G(A). Also, when each node of V1MD
is adjacent to a node of V2 (|V2| =

|V1MD
|) and as the head of E2, stems are produced, which is done by the first while

loop. Then, when any vertex of each cycle of MD is adjacent to a node of V2 and as
a head of E2, a set of disjoint cacti is generated, finally, which is done by the second
while loop. Thus, algorithm 2.1 is correct. Besides, identifying each cycle of MD,
V1MD

and running these two while loops totally cost O(|E1| + |V1|) steps at most.
Time complexity of running this algorithm in the worst case is O(|E1| ·

√
|V1|), so

that the input matrix for a given state matrix can be obtained, and a structurally
controllable system containing the given state matrix can be effectively derived in
polynomial time. An example about this algorithm is shown in figure 2.5.

In this example, although there is a set of disjoint cacti of figure 2.1, another
cacti is also obtained by a maximum matching. �

Besides, V2 identified by algorithm 2.1 is with the minimum cardinality, because

28

2.4 DERIVE STRUCTURAL CONTROLLABILITY

cardinality of V2 is determined by a minimum set of unmatched nodes related to a
maximum matching, and a statement about constructing a structurally controllable
system with minimum set of inputs can be concluded:

Corollary 2.5
Given a state matrix A of equation (2.1), then by a maximum matching of digraph G(A) =
(V1, E1) of definition 2.4, to construct a structurally controllable CT-LTI system involved
A, the minimum number of inputs is equal to one, if this maximum matching is a perfect
matching. Otherwise, it equals to the number of unmatched nodes related to this maximum
matching.

PROOF The correctness of this corollary can be proved by the correctness of algo-
rithm 2.1. �

Simultaneously, the maximum-matching based method can be a useful tool to
analyse controllability of CT-LTI systems, because any structurally controllable CT-
LTI system is very likely to be completely controllable [45]. Thus, in the view
of assuring or securing structural controllability of CT-LTI systems, it is essential
to use more efficient method than simply recomputing a maximum matching to
obtain and analyse structural controllability, so that the structural controllability
can be efficiently assured or protected before or after malicious attacks or random
failures. For those works about structural-controllability assurance, they are com-
pleted from chapter 4 to chapter 9.

2.4.2 Method based on Power Dominating Set

In addition to the maximum-matching based method introduced in section 2.4.1,
given the digraph G(A) = (V1, E1 of definition 2.4 again, in order to also derive V2
and E2 of definition 2.4, an alternative method that is based on the power dominat-
ing set ofG(A) would be shown in this section. As a result, digraph (V1∪V2, E1∪E2)
spanned by a set of disjoint cacti can be also obtained, and a structurally control-
lable system is rendered. In the beginning, some fundamental terminologies are
defined below:
Definition 2.13 (A Dominating Set of a Graph [55])
Let G = (V,E) be an undirected graph, and Vsub ⊆ V be a subset of V . Then, Vsub is a
dominating set of G if each vertex of V is either in Vsub, or adjacent to a vertex of Vsub.
Besides, a vertex is said to dominate itself and all its neighbours.(see an example in figure
2.6).

Definition 2.14 (Domination Number [55])
Let G = (V,E) be an undirected graph, the domination number of G is the minimum
cardinality of a dominating set of G, which is noted by γ(G). And a minimum dominating
set of G is noted by γ(G)− set.(see an example in figure 2.6).

The basic decision problem of a minimum dominating set is NP-complete with
a polynomial-time approximation factor Θ(log(n)) [52], where n is the number of
vertices of the given graph. According to the dominating set, let G = (V,E) be an
undirected graph, v be a vertex of V , and δ(v) be a set of neighbours of v. Haynes
et al. [59] raised the power dominating set according to two following observation
rules:

29

2. BACKGROUND

v1

v2

v3
v4

v5

v6

v7

v8
v9

v10

Figure 2.6: A Minimum Dominating Set of an Undirected Graph
In this graph, one of minimum dominating sets is {v7, v1, v10}, and its domination number is thus 3.

Definition 2.15 (Observation Rules of undirected graphs [67])
1. a vertex of a power dominating set observes itself and all of its neighbours.

2. if an observed vertex v ∈ V with |δ(v)| ≥ 2 is adjacent to |δ(v)|−1 observed vertices
by nodes different from v, the unobserved neighbour of v becomes observed by v as
well.

Definition 2.16 (A Power Dominating Set of an Undirected Graph [59])
Let G = (V,E) be an undirected graph, P ⊆ V be a vertex set. Then, based on two
observation rules of definition 2.15, P is a power dominating set of G if vertices of P
observe all nodes of V . Also, by definition 2.14 the power domination number of G is the
minimum cardinality of P , and it is also noted by γ(G).

Above all, the observation rules are modified for a digraph, and a power domi-
nating set of a digraph is defined:

Definition 2.17 (Observation Rules of Digraphs)
Let D = (VD, ED) be a digraph, vD be a vertex of VD, and δout(vD) be a set of nodes that
are heads of arcs of ED and whose tails are vD.

1. any vD of a power dominating set of D observes itself and all nodes of δout(vD).

2. if vD is observed, |δout(vD)| ≥ 2, and |δ(v)| − 1 vertices of δout(vD) are observed by
nodes different from vD. The unobserved node of δout(vD) becomes observed by vD
as well.

Definition 2.18 (A Power Dominating Set of a Digraph)
LetD = (VD, ED) be a digraph, PD ⊆ VD be a vertex set. Then, PD is a power dominating
set of D, if vertices of PD observe all nodes of VD. And the power domination number of D
is the minimum cardinality of PD, and it is also noted by γ(D).(see example of figure 2.7).

Viewing figure 2.7, a power dominating set can actually observe all vertices
in a given digraph through directed paths of the given digraph. These paths all

30

2.4 DERIVE STRUCTURAL CONTROLLABILITY

Figure 2.7: A Power Dominating Set of a Digraph
This digraph is obtained by partially citing the cacti of figure 2.5. Here all gray vertices are a set of power

dominating set, and all gray arcs are used to observe all nodes of this digraph by observation rules of definition
2.17.

start from vertices of an identified power dominating set, and might only share
the common staring vertices, which depends on the number of out degrees of the
vertex of this chosen power dominating set. Furthermore, a set of disjoint directed
paths can be thus obtained, which can be used to confirm a set of disjoint stems of
definition 2.5 with extra vertices out of the given digraph, so that the final digraph
can be spanned by a set of disjoint cacti. Simultaneously, this final digraph thus
represent a structurally controllable CT-LTI system according to theorem 2.1.

2.4.2.1 Algorithms

Next, given digraph G(A) = (V1, E1) of definition 2.4, algorithm 2.2 identifies a
power dominating set ofG(A) according to definition 2.17 and 2.18. Here, let PG(A),
P0G(A)

be two initially empty vertex sets, and EPG(A)
be an initially empty edge set.

Also, let ei, ej be any two arcs of E1, and let vi, vj , vk be any three vertices of V1,
where vj ∈ P0G(A), and vi is the tail of ei, ifP0G(A) 6= ∅ .

Algorithm 2.2: Identify a power dominating set of G(A).
Input : G(A) = (V1, E1) of definition 2.4, PG(A), EPG(A)

.
Output: PG(A), EPG(A)

.
1 while ∃vi ∈ V1 not coloured do
2 Colour vi into red and P

′

G(A) = PG(A) ∪ vi;
3 while ei ∈ E1 and head of ei not coloured do
4 E

′
PG(A)

= EPG(A)
∪ ei ;

5 Colour head of ei into red and Add head of ei into P0G(A);
6 while P0G(A) 6= ∅ and vj ∈ P0G(A) do
7 P

′

0G(A) = P0G(A) \ vj ;

8 if ∃
−−−−→
〈vj , vk〉 ∈ E1 and vk not coloured then

9 E
′
PG(A)

= EPG(A)
∪
−−−−→
〈vj , vk〉;

10 Colour vk into red;
11 P

′

0G(A) = P0G(A) ∪ vk;
12 return PG(A), EPG(A)

;

31

2. BACKGROUND

PROOF In this algorithm, PGA is a power dominating set of G(A), and EpG(A)
is a

set of arcs used to observe all vertices of G(A). In detail, the first while loop of
line 1 initially chose a vertex as the first node of a power dominating set. Then, the
second while loop of line 3 adds all arcs whose tails are vi into EPG(A)

according
to the first rule of definition 2.17. Also, heads of all added arcs are added into
P0G(A) to keep observing nodes of G(A) according to the second rule of definition
2.17, which is done by the last while loop of line 6. In this loop, because each
node of P0G(A) should only observe one vertex that is not coloured, so that the

second rule of definition 2.17 can be satisfied. For this purpose, once
−−−−→
〈vj , vk〉 is

added into EPG(A)
, vj is removed from P0G(A). After running the third while loop,

we can obtain a set of directed paths starting from vi chosen in line 1. Therefore,
the first iteration of while loop of line 1 is correct. Then, since any node observed
is coloured, there would not be a vertex observed twice. And also, there would
be a moment that all nodes of G(A) are coloured and this algorithm terminates.
This algorithm is correct to identify a power dominating set. Additionally, due to
each arc and vertex of G(A) are coloured and visited once only, this algorithm runs
in O(|V1| + |E1|) steps at most. In particularly, this power dominating set is not
necessarily minimum. �

With PG(A) and EPG(A)
returned by algorithm 2.2, given G(A) = (V1, E1) of

definition 2.4, let V2 6= V1 and E2 6= E1 be the initial empty vertex and arc set, and
ui, uj be two arbitrary vertices out of V1. The following algorithm 2.3 uses PG(A)

and EPG(A)
to identify V2 and E2 so that (V1 ∪ V2, E1 ∪ E2) is finally spanned by a

set of disjoint stems. Besides, let vi be any vertex of PG(A), and δout(vi) be a set of
nodes as heads of arcs whose tails are vi of digraph (PG(A), EPG(A)

), and let vj be
any node of δout(vi).

Algorithm 2.3: Identify V2 and E2 by a power dominating set of G(A).
Input : PG(A), EPG(A)

returned by algorithm 2.2, V2, E2.
Output: V2, E2.

1 while for each vi of PG(A) do
2 V

′
2 = V2 ∪ ui;

3 E
′
2 = E2 ∪

−−−−→
〈ui, vi〉;

4 P
′

G(A) = PG(A) \ vi;
5 while |δout(vi)| > 1 and vj ∈ δout(vi) do
6 V

′
2 = V2 ∪ uj ;

7 E
′
2 = E2 ∪

−−−−→
〈uj , vj〉;

8 δout(vi)
′

= δout(vi) \ vj ;
9 return V2, E2;

PROOF By algorithm 2.2, since PG(A) and EPG(A)
is a set of directed paths that span

G(A) and share nodes of PG(A) as common starting vertices. Thus, algorithm 2.3
sets an element for V2 and E2 according to PG(A). For any vi ∈ PG(A) chosen in line
1, since it has been a root of a stem, its neighbours of δout(vi) with cardinality of
|δout(vi)| − 1 are used to one-to-one set other elements of V2 and E2, so that a set

32

2.5 STRONGLY STRUCTURAL CONTROLLABILITY

of disjoint stems starting from nodes of V2 are obtained before the first iteration.
Then, following nodes of remaining PG(A) are chosen to set V2 and E2 as before.
When PG(A) = ∅ due to line 4, this algorithm terminates. Therefore, this algorithm
is correct. Also, since any single vertex of PG(A) and EPG(A)

is chosen once only, this
algorithm runs in linear time. �

To obtain less number of inputs by these algorithms, it is better to identify a
power dominating set with the minimum cardinality. In the research of Haynes
et al. [59], it has been proved that identifying a power dominating set with the
minimum cardinality of a given undirected graph is a NP-complete problem, where
this conclusion is still valid for some certain classes of graphs, such as bipartite
graphs, chordal graphs. For cubic graphs, identify such a power dominating set
is a NP-hard problem [24]. Similarly, it is also a NP-complete problem to identify
a power dominating set with the minimum cardinality of a given digraph. Also,
Aazami et al. [1] proved that a minimum power dominating set of a given digraph
can not be approximated less than a threshold. And, they showed that this problem
can be optimally solved in linear time if the underlying undirected graph of the
given digraph has bounded tree-width.

Concerning the worst-case execution time of both graph-theoretical method, the
maximum-matching based method of section 2.4.1 is applied to solve some research
questions of section 1.3 of chapter 1. There would be no more discussion about the
method based on the power dominating set.

2.4.3 Other Graph-Theoretic Methods

Focusing on the methods based on the maximum matching and power dominating
set introduced above, an already known state matrix is essential. According to this
known state matrix, an input matrix with less columns in number can be identified.
Nevertheless, they do not consider the number of non-zero entries of each column
of the identified input matrix, which means that each input may not be dedicated
for only one system component.

By contrast, in [92], given a state matrix A of equation (2.1), Pequito et al. de-
signed a framework to construct a structurally controllable CT-LTI system with a
set of dedicated inputs. It proposes that each input can drive only one internal com-
ponent, or each column of the identified input matrix has only one non-zero entry,
and the number of columns should be minimum. Based on theorem 2.1, given the
digraphG(A) = (V1, E1) of definition 2.4, a method based on a maximum matching
and strongly connected components of G(A) is given, while the worst-case execu-
tion time is much higher, which is O(|V1|3). And the specific method is omitted
here, which would be reviewed in section 3.2.2 of next chapter.

2.5 Strongly Structural Controllability

Structural controllability of a CT-LTI system tells us that it is valid to decide the
controllability of a CT-LTI system with a (minimum) set of inputs when we do not
know the exact values of non-zero entries of both state and input matrices. Accord-
ing to this fact, this section introduces strongly structural controllability (strongly

33

2. BACKGROUND

Structural Controllability Strongly S-controllability

Controllability

Figure 2.8: Relationships among Basic Control Concepts
In this figure, each red arrow between two control concepts represents that when the concept at its tail is

satisfied, it implies the concept at its head.

s-controllability) of a CT-LTI system [80], by which one of our future works are mo-
tivated. A system with strong s-controllability is always completely controllable
for any exact values of non-zero entries of its both state and input matrices.

Therefore, given a state matrix, to derive controllability of constructing a CT-
LTI system, in addition of constructing a structurally controllable system as a way,
it is also valid to design a CT-LTI system with the strongly s-controllability. Com-
pared with the definition 2.3 about structural controllability, the strongly structural
controllability can be defined below:

Definition 2.19 (Strongly Structural Controllability)
A structured system described by equation (2.1) is strongly structurally controllable, if and
only if each instance of it satisfies the controllability rank condition.

For example, in section 2.3.1, the first and the third system, whose graphic
representations are a and c of figure 2.3, are strongly s-controllable systems, be-
cause the controllability rank condition is independent with exact values of non-
zero entries of both input and state matrices. Also, it is obvious that a strongly s-
controllable system is a sufficient but not necessary condition of a structurally con-
trollable system, and a strongly s-controllable system is a sufficient but not neces-
sary condition of a completely controllable system, where such relationship among
these three concepts is shown by figure 2.8.

Next, the graph-theoretical condition of a strongly s-controllable CT-LTI system,
which was concluded by Chapman et al. [31, 32], is shown with definitions from
2.20-2.24 in the following:

Definition 2.20 (Bipartite Graph BA)
Given a state matrix A ∈ Rn×n of equation (2.1), let BA = (V +

A ∪ V
−
A , EA) be a bipartite

graph, V −A = {v−i |2 < i ≤ n} V +
A = {v+j |2 < j ≤ n} be two independent vertex sets,

and EA = {(v+j , v
−
i)|v−i ∈ V

−
A , v

+
j ∈ V

+
A } be an edge set. Besides, let β : A → EA be a

bijection. For each non-zero aij ∈ A, there is β : aij → (v+j , v
−
i).

Definition 2.21 (Constrained t-matching [54])
In a non-empty bipartite graph, let M be a matching, and V (M)+, V (M)− be the vertex
sets only containing nodes incident to edges of M , where |V (M)+| = |V (M)−| = t
(t ≥ 1), and V (M)+ ∩ V (M)− = ∅. Then, M is a constrained t-matching (or uniquely
restricted matching), if it is the only matching containing t edges between V (M)+ and
V (M)−.

34

2.5 STRONGLY STRUCTURAL CONTROLLABILITY

B1
v+1 v−1

v+2 v−2

v+3 v−3

v+4 v−4

B2
v+1 v−2

v+2 v−3

v+3 v−4

v+4 v−1

B3
v+1 v−2

v+2 v−3

v+3 v−4

v+4 v−1

Figure 2.9: Examples of constrained t-matchings
The set of all blue edges of each bipartite graph above is a constrained 3-matching between vertices incident to

those blue edges.

Remark 2 A matching in a bipartite graph is said to be uniquely restricted or a
constrained t-matching if there is no other matching with the same cardinality as it
on the vertices spanned by this matching [54]. (See examples in figure 2.9.) 2

Definition 2.22 (Self-less Matching)
In a non-empty bipartite graph, let M be a matching, and V (M)+, V (M)− be the vertex
sets only containing nodes incident to edges of M , where |V (M)+| = |V (M)−| = t
(t ≥ 1), and V (M)+ ∩ V (M)− = ∅. Also, let Vsub(M)− be a vertex set and Vsub(M)− ⊆
V (M)−. Then, M is a Vsub(M)−-less matching, if it excludes edges like (v−i , v

+
i), where

v−i ∈ Vsub(M)−, and v+i ∈ V (M)+. If Vsub(M)− = V (M)−, this Vsub(M)−-less
matching M is a self-less matching.

For example, in the bipartite graph B1 of figure 2.9, the set of blue edges is not a
self-less matching for {v−1 , v

−
2 , v

−
3 } and {v+1 , v

+
2 , v

+
3 }, while the set of red edges is a

self-less matching, and it is also a constrained self-less 3-matching for {v−2 , v
−
3 , v

−
4 }

and {v+2 , v
+
3 , v

+
4 }. Besides, in B2 and B3, the sets of blue edges are also constrained

self-less 3-matchings for the sets of vertices incident to those blue edges. Accord-
ing to definition 2.21 and 2.22, a maximum (constrained)(self-less) t-matching in a
given bipartite graph means that there is no (constrained)(self-less) s-matching in
this given bipartite graph with s > t. For instance, in the bipartite graph B2 of fig-
ure 2.9, {(v+1 , v

−
2), (v+2 , v

−
1), (v+3 , v

−
4), (v+4 , v

−
3)} is a maximum constrained self-less

4-matching. And in B3, {(v+1 , v
−
2), (v+2 , v

−
1), (v+3 , v

−
4), (v+4 , v

−
3)} is also a maximum

constrained self-less 4-matching.

Definition 2.23 (Matrix AX)
Given a state matrix A ∈ Rn×n of equation (2.1), let AX ∈ Rn×n be a matrix, and I ∈
Rn×n be a matrix, where diagonal entries of I are non-zero and others are all zero. Then,
AX = A + I.

Definition 2.24 (Bipartite Graph BAX)
Given a matrix AX ∈ Rn×n of definition 2.23, bipartite graph BA = (V +

A ∪ V
−
A , EA) of

definition 2.20, letBAX
= (V +

AX
∪V −AX

, EAX
) be a bipartite graph, and γ : AX → EAX

be a
bijection. Then, V +

A = V +
AX

, V −A = V −AX
, EAX

= EA∪{(v−i , v
+
i)|v−i ∈ V

−
AX
, v+i ∈ V

+
AX
},

and for any non-zero entry aij or aii of AX, there is γ : aij → (v+j , v
−
i), or γ : aii →

(v+i , v
−
i).

35

2. BACKGROUND

1
v+1 v−1

v+2 v−2

v+3 v−3

2
v+1 v−1

v+2 v−2

v+3 v−3

3
v+1 v−1

v+2 v−2

v+3 v−3

Figure 2.10: Examples of bipartite graphs for strongly s-controllable systems
Given system a, c and d of figure 2.3, three bipartite graphs obtained by definition 2.20 and 2.24, respectively

where each bipartite graph above excluding blue dashed lines are obtained by definition 2.20, while blue dashed
lines are added into them additionally.

With these definitions, a sufficient and necessary graph-theoretical condition of
a strongly s-controllable CT-LTI system is concluded by the following theorem 2.6
and corollary 2.7, which were initially raised by Chapman et al. [32, 31]:

Theorem 2.6 (Strongly S-Controllable System Theorem)
Given a system described by equation (2.1), BA = (V +

A ∪ V
−
A , EA) of definition 2.20, and

BAX
= (V +

AX
∪ V −AX

, EAX
) of definition 2.24. Also, let V −sub = {v−i |bij 6= 0, bij ∈ B} be a

subset of V −A , and |V −sub| = m. Then, the given system is strongly s-controllable if and only
if there is a constrained (n - m)-matching in {“BA”\V −sub}, and a constrained {V −sub}-less
(n - m)-matching in {“BAX

” \ V −sub}.

Further, according to theorem 2.6, corollary 2.7 below can confirm a minimum
cardinality of a set of inputs to derive a strongly s-controllable system.

Corollary 2.7
Given a state matrix A of equation (2.1), and bipartite graph BAX

of definition 2.24. Ac-
cording to theorem 2.6, consider a maximum constrained self-less (n - m)-matching of
BAX

with unmatched nodes of V −A , where the number of unmatched nodes is m. Then, the
minimum number of inputs associated with a strongly s-controllable system containing the
state matrix A is m.

Compared with the way to identify a minimum set of inputs to construct a
structurally controllable system, identifying a minimum set of inputs for a strongly
s-controllable system is a NP-complete problem [31], due to identifying a maximum
constrained self-less t-matching [54]. And a greedy algorithm has been developed
to just identify a set of inputs of a strongly s-controllable system by Chapman and
Mesbahi [31]. Given a state matrix A ∈ Rn×n, this algorithm is executed in O(n2)
steps at most, while the cardinality of the return is not necessarily minimum.

2.5.1 Examples

Here, we use some systems shown in section 2.3.1 as simple examples to under-
stand the statements about strongly s-controllable systems, which are the system a,
c and d of section 2.3.1. The related bipartite graphs are shown in figure 2.10.

1. In the first bipartite graph, based on theorem 2.6 and its notations, V −sub =
{v−1 }, {(v

+
1 , v

−
2), (v−2 , v

+
3)} is a constrained 2-matching in the bipartite graph

after removing v−1 and all blue dashed lines, and it is also a {v−2 , v
−
3 } − less

36

2.6 CONTROLLABILITY OF COMPLEX NETWORK

2-matching in this bipartite graph only after removing v−1 . Thus, the system
represented by a of figure 2.3 is strongly s-controllable.

Also, by corollary 2.7, because {(v+1 , v
−
2), (v−2 , v

+
3)} is still a maximum con-

strained self-less matching in the first bipartite graph of figure 2.10, the mini-
mum input set is thus a single element set.

2. In the second bipartite graph of figure 2.10, by theorem 2.6, V −sub = {v−1 },
{(v+1 , v

−
2), (v−3 , v

+
3)} is a constrained 2-matching in the bipartite graph after

removing both v−1 and all blue dashed lines, and it is also a constrained
{v−1 } − less 2-matching in this bipartite graph only after removing v−1 . Thus,
the system represented by c of figure 2.3 is strongly s-controllable. Further-
more, {(v+1 , v

−
2), (v−3 , v

+
3)} is also a maximum constrained {v−1 } − less match-

ing, the minimum set of inputs is thus one.

3. In the third bipartite graph of figure 2.10, by theorem 2.6, V −sub = {v−1 }. Af-
ter only removing v−1 , there are multiple 2-matchings incident to {v−2 , v

−
3 }:

{(v+2 , v
−
2), (v+3 , v

−
3)}, {(v+2 , v

−
3), (v+3 , v

−
2)}, {(v+1 , v

−
2), (v+3 , v

−
3)}, {(v+1 , v

−
3), (v+3 ,

v−2)}, {(v+1 , v
−
2), (v+2 , v

−
3)}, {(v+2 , v

−
2), (v+1 , v

−
3)}.

Because each of these 2-matchings is not constrained in the bipartite graph
after only removing v−1 , the condition of theorem 2.6 is not satisfied. Thus,
the system represented by d of figure 2.3 is not strongly s-controllable.

Above all, given a state matrix, to construct a CT-LTI system with controllability,
as we can observe from section 2.3 to section 2.5, it can be valid to construct a
structurally controllable system according to the maximum matching of a digraph
that is mapped by the given state matrix. Besides, it can be also valid to construct a
system with strongly s-controllability. In terms of efficiency of identifying an input
set, and the minimality of the derived input set in order to derive a completely
controllable CT-LTI system, this problem might be more likely to use the maximum-
matching based method of section 2.4.1, to obtain the structural controllability of a
CT-LIT system with the minimum set of inputs in polynomial time.

2.6 Controllability of Complex Network

Over decades, complex networks influence research in various areas [4, 87, 15, 119].
And this phenomenon also promotes us to further control [73] and observe [50]
complex networks and complex systems for more purposes. When a network with
CT-LTI dynamics is given, such as the digraph G(A) = (V1, E1) of definition 2.4,
where the state matrix A of equation (2.1) now shows the interaction among system
internal vertices, and the system state vector x(t) now holds the state of each system
internal vertices at the moment t. Intuitively, a system including CT-LTI dynamical
digraph and the inputs can be also described by equation (2.1), and controllability
rank condition can be also used to analyse its controllability.

To completely control a network such as G(A) = (V1, E1) of definition 2.4 by
a minimum set of inputs, based on above facts about controllability and struc-
turally controllability that are visualized in section 2.3.1, and algorithm 2.1, Liu
et al. solved this problem through a maximum matching of G(A). And vertices

37

2. BACKGROUND

of G(A) that are directly forced by the inputs are called the driver nodes. Gen-
erally speaking, idea of Liu et al. is to structurally control G(A), so that a com-
pletely controllable system containing G(A) could be obtained in aspect of “statis-
tical physics”, which is further generalized by the following theorem:

Theorem 2.8 (Minimum Input Theorem [73])
Given a network, like G(A) = (V1, E1) of definition 2.4, the minimum number of inputs,
or equivalently, the minimum number of driver nodes to completely control G(A) is one, if
it contains a perfect matching, where any vertex can be a driver node and directly driven by
an input. Otherwise, it is the number of unmatched nodes related to a maximum matching,
where only each unmatched node is directly driven by an input.

Currently, because a minimum-input structurally controllable network can be
obtained by the maximum-matching method in polynomial time complexity in the
worst case, this theorem has been widely used to study controllability of complex
networks with LTI dynamics in various areas, such as target drug design [44], in-
terbank networks control [46], epidemic networks [103] and so on. The study of
network controllability is to force all network vertices from any initial state to a
proposed one by properly applying external inputs in finite steps. And also, with
the minimum input theorem [73], research of robustness of network structural con-
trollability against malicious attacks or failures [77, 94] is also further facilitated.
Because of the background of statistical physics, the types of studied networks are
explicitly argued and the number of edges and nodes are also very big, whose
number of nodes or edges might be over tens of thousands, such as Internet. Even
though, there exist some networks that are not completely controllable via the iden-
tified inputs by the minimum input theorem. For such networks, they are called
the pathological cases [104], and further modification is given to make them com-
pletely controllable. In [117], adding extra inputs as a way is implemented, and
the resulting network is said to be physically controllable. Also, such obtained con-
trollability is called the physical controllability. Nevertheless, related methods to
obtain a physically controllable network are not generic, because it is obtained by
severe predefined constraints. Also, the constrained-matching method for driving
strongly structural controllability introduced in section 2.5, can still be applied to
completely control a CT-LTI dynamic network, such as G(A) = (V1, E1) of defi-
nition 2.4. By contrast, this thesis just uses maximum-matching based method to
study the controllability in graph-theoretical aspect, and any minimum set of in-
puts identified by this method is only for structural controllability.

Additionally, the method based on the power dominating set of a digraph in
section 2.4.2, can be also applied to obtain a structurally controllable. Because
of this, robustness of network structural controllability against malicious attacks
for different kinds of graphs is also studied [6]. Nevertheless, after this chapter,
the method based on the power dominating set to derive structural controllability
would be not considered further.

38

Chapter 3

Related Works

3.1 Overview

According to research questions of section 1.3.3 of chapter 1, this chapter firstly
shows recent works about structural-control recovery. Then, this chapter reviews
related works about robustness of network structural controllability against both
nodal and edge removals in various scenarios. Additionally, related works that
analyse network vertices and arcs to maintain structural controllability with a min-
imum set of inputs are also reviewed as well. In particular, some graph-theoretical
problems are also reviewed, which are used to model and solve problems such as
structural controllability recovery and network analysis with different constraints.

3.2 Structural-Controllability Recovery

Structural-controllability recovery is to render a currently structurally uncontrol-
lable system be structurally controllable again, which means the recovered system
was structurally controllable prior to the attack or failure. Generally speaking, it
needs to obtain an input matrix according to the given state matrix, so that the final
system is structurally controllable, and it is desirable to complete such identifica-
tion as soon as possible rather than recomputing an input matrix. Nevertheless, in
special, it is also possible to recover structural controllability based on the given
input and state matrices together.

3.2.1 Recovery without Input Constraints

This section mainly shows previous works related to research question 1 and 2. Ac-
cording to chapter 2, structural controllability could be acquired by several ways.
One is by the maximum-matching based method of section 2.4.1. After malicious
attack or random failure on network vertices, Ding et al. [48] recovered network
structural controllability with a minimum set of inputs by optimally adding ex-
tra input nodes to the residual digraph. However, in their recovery scenario, any
assumptions of the input digraph are not given. After removing some nodes,
they identified a maximum matching to understand how many unmatched nodes
should be forced. Except for those currently identified unmatched nodes that are
also now forced by previously inputs, remaining ones are arranged new input
nodes by the minimum input theorem 2.8. Nevertheless, this scenario does not in-
crease any efficiency compared with the recomputation. Besides, another structural-
controllability revovery method is based on the power dominating set [59], which
is introduced in section 2.4.2. Again, by identifying a minimum power dominating

39

3. RELATED WORKS

set, after removing vertices, Alwasel et al. [12] recovered network structural con-
trollability of Erdős-Rényi(ER) random digraph in LTI model. As we already know,
identifying a minimum power dominiating set of a digraph is a NP-complete prob-
lem. Thus, to enhance the efficiency of recovery, Alwasel et al. assumed that the
input digraph is a weakly connected digraph, excludes self loops, parallel edges
and isolated nodes. In addition to, they also assumed that the input digraph can be
decomposed into trees with bounded tree width. In [9], they reconstructed a mini-
mal power dominating set of a resulting graph with bounded tree width according
to the original work of Aazami, Stilp [1] and Guo [56]. As a result, the worst-case
time complexity is O(nck), average-case time complexity is O(log(nck)), where n
represents the number of nodes of a given graph, c is a constant number, and k is
the bounded tree width. Then, based on the subgraph of the input digraph, which
is identified by using the depth-first search [111], Alwasel et al. proposed a novel
power dominating set algorithm [10] by re-using the left known power dominat-
ing set of previously structurally controlled network. Compared with the previous
result of [9], this novel algorithm based on DFS improves the average-case com-
plexity [10], while the worst-case time complexity is not changed. The average-
case time complexity is represented: O(|V ∪ {Et ∪ Ef [N(v)] ∪ Ec[N(v)]} \ Eb|),
where the single vertex v belongs to the identified power dominating set, Ef , Ec

and Eb are three different types of edges of input network, Ec[N(v)] represents a
set of neighbours of v in Ec, and V is the vertex set of input network. For ex-
act definition of these three kinds of edges, please refer to that paper. After that,
they [11] gave an approximation of an efficiently reconstructed power dominating
set via a block decomposition on the input digraph. In this work, each removed
single node is specially defined, and recovery is executed based on each removed
node. The worst-case time complexity of recovery after removing a set of nodes is
O(ncW), where W is the number of neighbours of a single removed node, and c is
a constant number. Besides, Alcaraz et al. [7] relies on the minimum power domi-
nating set to recover structural controllability of general power-law and scale-free
digraphs in CT-LTI model, which also forbids recomputing a new power dominat-
ing set. Again, those given digraphs have no self loops and must be acyclic and
structurally controllable by a known power dominating set in the beginning. Two
main repair approaches are raised against deletion of already known nodes and
edges. In detail, one approach is to connect unobserved vertices with remaining
nodes of previously known power dominating set. The other one is to use a previ-
ously backup power dominating set that can observe nodes that are unobserved by
the currently remaining power dominating set. These two strategies are executed
in O(|U ||V |2), in which U is the set of nodes out of remaining dominating set and
V is the set of all vertices.

In conclusion, after malicious attacks or random failures on system vertices
or components, structural control recovery can be effectively executed via several
ways in polynomial time. However, these existing structural controllability recov-
ery methods did not consider the amount of attacks or failures. If those methods
above are used to recover structural controllability after very limited modification,
unnecessary computation might be paid. For such a situation, without recomput-
ing a new maximum matching and based on previously identified minimum set of
inputs, chapter 4 and 5 recovers structural controllability with a minimum set of

40

3.2 STRUCTURAL-CONTROLLABILITY RECOVERY

inputs after a single vertex addition and removal, respectively.
Because of the maximum-matching based method to acquire structural con-

trol, after a single network vertex or system component modification, structural
control recovery is thus further modelled into the dynamic graph problem [124].
Such a graph theory problem seeks to efficiently maintain a data structure after a
change rather than recomputing this data structure. A fully dynamic graph prob-
lem addresses the update operations of unlimited insertions and deletions of edges
or vertices, while a partially dynamic only considers either insertions or deletions
of edges or vertices. Fully dynamic approximate maximum-cardinality matching
problem is popular in recent years. In the following, m and n represents the num-
ber of edges and nodes of a given network. In 2010, Rubinfeld et al. [90] designed
a randomized algorithm that maintains a O(1)-approximation maximum matching
in O(log2n) time. Baswana, Gupta and Sen [18] then gave a 2-approximation max-
imum matching in a dynamic graph with O(log n) amortized time. In [21], with a
deterministic data structure, the approximation ratio is (3/2+ ε) and the worst case
time complexity is O(m1/4ε−2.5)(ε > 0). Until now, [23] presented a deterministic
data structure with (2 + ε)-approximation and the worst-case time complexity is
O(log3n). Nevertheless, to derive an exact size of a maximum matching in the fully
dynamic, the best known update time is O(n1.495) [102]. In comparison, research
question 1 solved in chapter 4 is partially dynamic and each update only allows
adding a single node. Besides, algorithms of chapter 4 are deterministic and only
concern the worst-case complexity. On the other hand, because the removed sin-
gle vertex is known, structural-controllability recovery in chapter 5 that addresses
question 2 can not be modelled into a dynamic graph problem.

3.2.2 Recovery with Input Constraints

Nevertheless, related works of section 3.2.1 neglect constraints on inputs during
structural-control recovery. By contrast, this section shows previous works related
to research question 3. It is more realistic and sufficient to concern constraints on
inputs during the process of recovering structural controllability. Constraint on
inputs might be on the number of inputs, or the adjacency between inputs and sys-
tem components. When such requirements are concerned, recovery might require
extra modification, such as adding extra non-zero entries into the given state ma-
trix. And it is more likely to recover structural controllability according to original
graph-theoretic conditions of theorem 2.1 of chapter 2, rather than the minimum
input . In chapter 6, this problem is solved by a minimum-edge addition. As a
related work for this chapter, in [37], Chen et al. proposed to get structural con-
trollability by the minimal edge addition. Their edge-addition scenario is mainly
based on the work of [91] and [92], which obtains the structural controllability with
dedicated inputs by theorem 2.1 of chapter 2. Specifically, they proposed to confirm
a set of disjoint cacti of definition 2.8 within the system network of a given system,
where each input can only force a single system component. And the set of inputs
should be minimum. For their solution, since strongly connected components [42]
of the system network contains all cycles of any identified maximum matching of
this network, the strongly connected components identified by a maixmum match-
ing are used. From directed paths of an arbitrarily identified maximum matching,
they eliminated inaccessible strongly connected componenets that contains disjoint

41

3. RELATED WORKS

cycles, and further confirmed vertices directly forced by dedicated inputs. Those
nodes could be a single node of each inaccessible components, or starting nodes
of those directed paths. Nevertheless, this method directly considers all strongly
connected components, and also uses the Hungarian algorithm [68] to reduce the
number of added edges. As a result, the worst-case execution time is proportional
to the cubic number of vertices of the given system network. In comparison, the
minimum-edge addition scenario of chapter 6 that addresses question 3 is more ef-
ficient, whose time complexity is equivalent to identifying a maximum matching.

3.3 Robustness of Network Structural Controllability

Robustness is the ability to withstand failures and perturbations. It is a critical at-
tribute of complex systems and networks [116]. A fundamental issue concerning
the functioning of a complex network is the robustness of the overall system to
against the failure on its constituent parts [5]. Therefore, intuitively, robustness of
network structural controllability is the ability to keep structural control into the
residual network after malicious attacks or random failures. Robustness of struc-
tural controllability has been widely studied, especially after raising the minimum
input theorem 2.8 of chapter 2. In this section, previous works related to robustness
of network structural controllability against nodal and edge removals are shown,
where the structurally controllability is with a minimum set of inputs. Conclusions
obtained from those works generate the general motivation for the part III of this
thesis, which concentrates on the efficient network analysis to identify vulnerable
single nodes and edges to the removal.

3.3.1 Robustness Against Node Removals

According to the minimum input theorem, robustness of network structural con-
trollability is studied for different kinds of networks against various network-vertex
removal scenarios, which is qualitatively measured by the fluctuation of the mini-
mum number of inputs that structurally control the current residual network. Al-
though there are other measures to quantify robustness against node removals, the
minimum number of inputs is always used as a critical parameter for other mea-
sures [121, 115].

By the simulation results obtained in [94], given the scale-free (SF) [25] and ER
random [51] digraphs, each of which contains 1000 nodes, and with the average de-
gree is 6. The power law parameter is γin = γout = 3. Then, given a set of ordered
time steps, in each step, a network node is randomly removed, while the degree-
based attack removes a node with the largest degree. After removing a node, both
scenarios calculate the minimum number of inputs to structurally control the latest
residual network. For both types of networks, with the increase of the number of
removed single vertices, the minimum number of inputs to structurally control the
current remaining network is dramatically rised. Also, degree-based attacks are
more harmful to network structural controllability than random single-node re-
moval [94] for SF and ER random digraphs. Similarly, in [77], given the ER random
digraph, small world digraph, each of which includes 200 nodes, 400 edges, and
with average degree 4. And given a scale-free digraph with 200 nodes, 591 arcs and

42

3.3 ROBUSTNESS OF NETWORK STRUCTURAL CONTROLLABILITY

average degree 5.91, it also obtained a same conclusion for the same single-node
removal scenario as [94], which means that continuously removing single vertices
harms the minimum-input structural control into both large and small networks.
Further, the degree-based attack was studied through the initially calculated degree
of the original network, and the recalculated one of each current network, respec-
tively. Based on the order of that originally calculated or every recalculated vertex
degree, each removed node is determined. And they also considered the vertex be-
tweenness attack. Given a vertex, its betweenness is the number of shortest paths
through it, and the removed vertex’s betweenness is either initially calculated or
recalculated. The numerical results of [77] illustrate that structural controllability
with a minimum set of inputs of their ER random networks are more robust than
scale-free networks against a same node-based attack.

In addition to single vertex removals, authors of [94] and [109] focused on cas-
cading failures triggered by the removal of the network vertex that has the largest
load [53] [84], where the maximum load of each node is defined as its betweenness.
The removal of a node with the largest load may increase the load of some other
vertice, which might be larger than their capacity, where the overloaded nodes
fail and all their connections with fail nodes are removed as well. The failures
of these overloaded nodes result in a new distribution of load on remaining nodes,
on which some nodes may fail in the existing network for the same reason. The
cascading failures continue until there are no overloaded nodes in the residual net-
work. The results show that cascading failures on the vertex is more harmful to
structural controllability of directed scale-free and ER network than single-node
removals. Besides, from the results of simulation of [109], given networks of 1000
nodes, robustness of ER and scale-free digraphs is proportional to average degree
that belongs to [0, 18], or probability of ER graphs that belongs to [0.05, 0.2], and
power-law parameter of scale-free graphs that belongs [2.2, 4.0].

On the other hand, according to the power dominating set [59], in [6], authors
studied the robustness of structural controllability of networks with ER random
model, scale-free model and small-world model [119]. Different from those pre-
vious works, they did not use the change of the minimum number of inputs to
measure related robustness. Rather, the diameter, density, and average clustering
coefficient of the residual network after removing a vertex are concerned to mea-
sure the robustness of network structural controllability against nodal removals.
Here, the driver node set is derived by a power dominating set, which is iden-
tified through maximum out-degree vertices, minimum out-degree nodes and in
random, respectively. Also, attack model is to remove a single node, based on the
order of the given driver node set, or vertex betweenness, or in random. From their
numerical simulation results, roughly speaking, for the network with the number
of nodes less than 500, those items would be affected heavily, while for networks
with more vertices, they perform stably during the attack.

3.3.2 Robustness Against Edge Removals

The minimum number of inputs for each residual network is also used to measure
the robustness of network structural controllability against single-edge removels.
In [100], given some ER random digraphs, whose number of nodew varies from
200 to 300, and the number of edges is certain, which is 2000. Then, during the

43

3. RELATED WORKS

process of removing single edges from the original network, the minimum num-
ber of inputs to structurally control the latest remaining network maintains stably
for a while. After a certain fraction of removed edges on the original number of
edges, that minimum number of inputs surges rapidly. Notwithstanding, in [77],
for random removal of single edges one by one from the given ER and scale-free
networks that contain hundreds of nodes and edges, the minimum numer of inputs
continuously increases along with increasing fraction of removed single edges on
the original total amount. Besides, it is also concluded by [77] that recalculated edge
betweenness attack are more harmful than edge-degree based attack and initially
calculated degree and betweenness attacks for those given ER random digraphs,
which is reflected by the change on the amount of inputs to structurally control
current residual network. Simultaneously, with ER random networks, small world
networks with 200 nodes and 400 edges, and scale-free networks with 200 nodes
and 591 edges, authors of [77] further observed that the node-based strategies are
often more harmful to the network structural controllability than the edge-based
ones, and so are the recalculated strategies than their counterparts.

Additionally, Nie et al. [88] explored the robustness of network structural con-
trollability against the cascading edge failure. They defined that the maximum
load of an edge is the total number of shortest paths passing it. Then, the first
attack model is the random removal of a set of edges; the second one is the inten-
tional removal of a set of edges in descending order of the initial edge load. From
their numerical results, given ER random directed networks of 10000 nodes, each
of whose average degree is 2, 4, 6, 8, respectively, removing the highest load edge
triggers cascading failures easier in the network with lower average degree, which
is lower than or equal to 6. Further, it is observed that the higher the average de-
gree is, the more difficult to trigger cascading failure by removing the highest load
edge, where the average degree is 10 or larger. Besides, for small average degree
ER networks, which is 2, both the random and intentional attacks cannot cause the
cascading failures in those given ER networks. However, for large average degree
ER networks, the minimum number of inputs decreases initially for intentional at-
tacks, then, it surges. By contrast, for the same large average-degree ER networks,
which is 8, randomly removing edges slowly increases the minimum number of
inputs and decreases then. After a certain point of edge removal amount, it dra-
matically increases a lot.

In summary, it seems that global properties of a network, such as vertex average
degree, betweenness of single vertex and edge, are more likely used to investigate
robustness of network structural controllability against vertex and edge removals.
However, from these results of different vertex and edge removal scenarios, it is
still unknown how each removed single node or edge quantitatively determines
the minimum set of inputs to structurally control the residual network. As one
of possible results, vulnerable single vertices to the removal can not be explicitly
identified, and let along protecting network structural controllability with a min-
imum set of inputs. Also, effectively estimating robustness of network structural
controllability against a kind of removal scenarios, and quantitatively explaining
the fluctuation of the minimum number of inputs is also essential during the pe-
riod of removing vertices or edges. For these desirable works, they would be done
in following chapter 7 that addresses question 4 and 9 that addresses question 6.

44

3.4 NETWORK ANALYSIS FOR STRUCTURAL CONTROLLABILITY

3.4 Network Analysis for Structural Controllability

In general, due to the minimum set of inputs or driver nodes are not unique, what
the role of an individual node or edge plays in structural control motivates people
to analyse and classify network vertices and edges. Following previous works are
all about such related analysis. Particularly, all of them relies on the maximum-
matching based method, or the minimum input theorem to derive structural con-
trollability with a minimum set of inputs.

3.4.1 Edge Based Analysis

This section shows previous works related to the research question 4. To clarify
the importance of an edge in maintaining network structural controllability, Liu et
al. [73] raised critical, redundant, and ordinary categories: a removal of a critical
edge gains the minimum number of inputs to structurally control residual network;
removing a redundant edge never affects currently minimal inputs; removing an
ordinary link changes the control configuration, except for the minimum number
of inputs. Liu et al. claimed that such those three kinds of edges can be effectively
identified by the algorithm of [97]. In detail, to confirm the category of a given
single edge, this algorithm iteratively identifies a maximum matching of a bipartite
graph mapped by the given digraph after removing this edge. To confirm category
of each edge, recomputing a maximum matching would be executed until all edges
are removed once. As a result, given a digraph with n vertices and m edge, time
complexity of this algorithm isO(m2·

√
n+
√
n·m) in the worst case. Obviously, such

algorithm might be infeasible for large-scale networks analysis. Therefore, we are
motivated to efficiently classify all edges of a given network into those categories
in chapter 7, whose worst-case execution time is O(m+ n+

√
n ·m).

The problem of edge classification [2] always attracts the attention of various
research areas, especially in artificial intelligence and data mining over years. Gen-
erally, given a graph G = (V,E) (a social network mostly), where V and E are
vertex set and edge set, a subset E0 ⊆ E has been labelled or classified in advance.
Then, edge classification problem is raised to determine the labels on categories of
edges of {E−E0}. Chronologically, this problem was initially formalized by Liben-
Nowell et al. [71], called the link-predition problem, on which people proposed
to predict new interaction among existing nodes in a social network by analysing
proximity among nodes. And some other recent related works can be found in [70],
[39], [122] and [3]. Yet, it is very seldom to see that there exists the secure-aware
edge classification, let along to protect the network structural controllability against
attack or failure on edges.

Although there have been three lables: critical, redundant and ordinary, de-
fined by Liu et al. [73], there is no previously labelled edges of the given network,
and it is needless to predict the label of each edge. Thus, solution to general edge
classification problems is not suitable for our this classification. Rather, chapter 7
that addresses question 4, accurately and efficiently confirms edges of each cate-
gory by searching each single edge involved into a maximum matching of an input
network, each of which is called the maximally-matchable edge with respect to a
given maximum matching.

45

3. RELATED WORKS

Searching maximally-matchable edges of a general graph has been pervasively
studied over recent decades. Generally, given a maixmum matching, any edge out
of it is said to be maximally-matchable with respect to this maximum matching if
and only if it can construct a different maximum matching by replacing an edge
of it. Initially, Rabin and Vazirani [95] designed a randomized algorithm to find
all maximally-matchable edges in general graphs that contain a perfect matching
with time complexity of O(n2.376), where n is the nummber of graph nodes. Then,
still with general graphs, [38] gave a distinct randomized algorithm to find the
Gallai–Edmonds decomposition, which is also a way to find maximally-matchable
edges in polynominal time ofO(n2.38). For deterministic algorithms, with the same
graph and purpose, Carvalho and Cheriyan [30] found edges in at least one per-
fect matching, called ear decomposition of a matching-covered graph. Their de-
terministic algorithm runs in O(nm) steps at most, and m represents the number
of edges. Besides, Costa et al. [43] solved problems about finding maximally-
matchable edges in a bipartite graph. They identified edges of a bipartite graph
into three partitions: E1 whose edges belonging to all maximum matchings; E0

whose edges out of any maximum matching; edges involved into Ew is neither in
E1 nor E0. By finding E1 and Ew, all maximally-matchable edges are obtained,
and the time complexity is O(nm). Compared with the worst-case execution time,
Tassa [112] claimed that the worst-case execution time of finding all maximally-
matchable edges in a bipartite graph with a known maximum matching is reduced
to O(n+m) time. He classified all maximally-matchable edges into few categories.
Reviewing his method, we found a problem. In detail, Tassa applied the breath-first
search(BFS) [42] to find some arcs in a digraph, which is mapped by the input bipar-
tite graph, as a way to find some kinds of maximally-matchable edges. However,
the BFS algorithm might not traverse all arcs of a digraph except for tree digraphs,
it means that some arcs corresponding to valid maximally-matchable edges of the
input bipartite graph may be missed. As a result, Tassa’s method can not always
find all maximally-matchable edges in a bipartite graph with a known maximum
matching. By contrast, algorithms of chapter 7 are all deterministic and only con-
cern the worst case execution, where all maximally-matchable edges of an input
network can be identified in linear time except for precomputing the known maxi-
mum matching of the input network.

3.4.2 Driver-Node based Analysis

According to the description of section 2.6 of chapter 2, the driver node is signif-
icant in deriving structural control into CT-LTI dynamical networks, and driver
nodes might be easily targeted by malicious attacks, such as control hijack [34],
where attackers influence a set of identified driver nodes by the maximum-matching
based method of section 2.4.1. Thus, this section shows previous works related to
the research question 5, which concentrates on how a network vertex can become
a node of a minimum set of driver nodes. And such identification can be used to
protect driver nodes against malicious attacks and failures in advance.

Jia et al. [62] firstly classified a vertex into critical, redundant or intermittent
categories, if it is always, never or sometimes, included by a mininum set of driver
nodes to control a given network. Based on this network-vertex classification, all
vertices able to be involved into a minimum set of driver nodes are identified with

46

3.4 NETWORK ANALYSIS FOR STRUCTURAL CONTROLLABILITY

time complexity of O(N ·L) in the worst case, where N , L are the number of nodes
and arcs of a given digraph. In detail, they proved that critical node is the vertex
without indegrees, which can be identified in linear time. Then, any intermittent
node can be confirmed by removing it and identifying an augmenting path related
to current matching, which costs O(N · L) steps at most. If so, this node is inter-
mittent, otherwise, it is a redundant nodes. Obviously, critical nodes are the most
vulnerable vertices to control hijack. Even though, critical nodes might be iden-
tified and protected in advance, while intermittent nodes may thus become new
targets of attackers. For this reason, it is desirable to more efficiently identify each
node of all minimum sets of driver nodes than the method of [62]. Fortunately,
chapter 8 can do it with time complexity O(

√
N · L) at most. Meanwhile, Ruths et

al. [101] concluded that any driver node set must contain the nodes without either
indegree or out degree. And nodes having both indegree and outdegree can also
be a driver node. But there was not a method to identify all nodes able to be a
driver node. Recently, Peter, and Cohen et al. [40] analysed driver nodes among
randomized networks, where the randomization does not change the initial graph
degree distribution. They find that some nodes are always driver nodes during
the given network under randomization. In [131], authors claimed that they can
find all nodes able to be driver nodes in linear time. Nonetheless, they did not
prove that the number of those found vertices are maximum, so that if the found
nodes are all nodes of all minimum sets of driver nodes is unknown. Similar to
the classification of Jia et al. [62], Commault et al. [41] classified nodes for network
structural controllability, while each external input is stimulated to be dedicated,
which means that each input can be adjacent to only one node.

Additionally, since single-vertex removals can dramatically increase the mini-
mum set of driver nodes in cardianlity [94] to control the residual network, and
those related works above are all unable to show possible impacts of removing
any single driver node on controlling the residual network with a minimum set of
driver nodes. Therefore, after finding each node involved into all minimum sets of
driver nodes, chapter 8 that solves question 5 is also motivated to explore impacts
of a single driver-node removal on the minimum set of driver nodes to structurally
control the residual network.

3.4.3 Generic-Vertex Based Analysis

Reviewing literatures of section 3.3, it is still unknown how each removed node
determines the minimum set of inputs to structurally control the residual network,
so that vulnerable single vertices to removals can not be explicitly identified, let
along protecting network structural controllability with the minimum set of inputs
against single-node removals. For this reason, it is also urgent to clarify impacts
of an arbitrary single-node removal on the minimum set of inputs to structurally
control the residual network. Then, this section illustrates previous works, which
are also related to the research question 6.

In recent years, various indices or categories for the single vertice have been
created to show the significance of a single node in obtaining controllability of net-
works. Strictly speaking, here, controllability with a minimum set of inputs is ac-
tually derived via the structural controllability by the maximum-matching based
method of section 2.4.1 of chapter 2. Chronologically, Liu et al. [74] introduced

47

3. RELATED WORKS

control centrailty to capture the dimension of structurally controllable subspace
through any given single node. Quantitatively, control centrality of a single vertex
is equal to the maximum number of vertices that are approached by it via existing
directed paths. By the method of [93], such subspace can be identified in linear
time. Meanwhile, Wang et al. [114] also raised a slightly similar single-vertex in-
dex, called control range. Control range of any single node quantifies the number
of nodes approachable through directed paths by it, which are also matched nodes
related to a same maximum matching. However, since there may be multiple sub-
maximum matchings with a same unmatched node in a network, control range of
a same node might have several values. As a solution, control range of a single
node is approximated by a small number of submaximum matchings, where some
vertices that are always contained by maximum matchings are excluded by those
submaximum matchings. In other aspect, Jia and Barabasi [61] introduced control
capacity to quantify the probability of a single node to be directly forced by an in-
put in controlling the whole network, which is the fraction of the number of control
configurations that involve this node, on the total number of control configurations
[61], where the control configuration of a given network is equivalent to an iden-
tified maximum matching of a same network. Although all control configurations
can be obtained by enumerating all maximum matchings of the given network, the
number of maximum matchings grows exponentially with network size [123], and
precisely calculating control capacity of a vertex might be computationally pro-
hibitive and infeasible. They thus created a random samplying algorithm to calcu-
late control capacity of a single node. Also, similar to control capcaity, Ding and
Lu [47] used control backbone to explore the effort of a single node in controlling
the whole network. Control backbone of a single node is the frequency of this node
in all minimal control schemes of the network, where the minimal control scheme
is a minimum set of driver nodes virtually. Hence, for computational efficiency,
Ding et al., designed sampling algorithms to calculate control backbone of each
vertex in order to avoid enumerating all maximum matchings. Additionally, with-
out enumerating maximum matchings of a digraph, Commault et al. [41] classified
all nodes into three categories that are resembling critical, intermediate and redun-
dant categories defined by Jia et al. [62] in polynomial time, while each input can
be adjacent to only one vertex of the given network.

Notwithstanding, we find two problems about above single-vertex indices. One
is massive calculation of those nodal indices of [47, 61] in practice. The other prob-
lem is non-indication of nodal importance. The importance here is about how a
single vertex maintains the control into a network with a minimum set of inputs.
For example, if the value of control backbone or control capacity [61] for a single
node is one, this node looks very important to approach control. In spite of this
result, if this node has no any out degrees, its removal may be benefical to reducing
the minimum number of inputs and ease the control into entire network. On the
other hand, if the control centrality [74] or control range [114] of a single node is
the number of all vertices of the network, this node might be indispensable to con-
trol other nodes. However, if this node is the starting vertex of a directed path, its
removal would not increase any difficulty to control the residual network. Addi-
tionally, in [113], authors classified a single node into indispensable, dispensable or
neutral if its absence increases, reduces or does not change the minimum number of

48

3.4 NETWORK ANALYSIS FOR STRUCTURAL CONTROLLABILITY

driver nodes to structurally control the residual network, while there is no further
quantitative description and method about classifying entire network nodes. And
the only method classifying a single node mentioned in [113] is by recalculating the
minimum number of driver nodes of the residual network.

After reviewing above related works, chapter 9 that solves question 6 is highly
motivated to define new nodal categories to concisely represent the importance of
each involved node in maintaining network structural controllability with a min-
imum set of inputs at the beginning. By the maximum-matching based method,
the impact of any single node removal on the cardinality of a digraph’s maximum
matching is concerned to conclude our nodal categories. Accordingly, by precise
deduction, chapter 9 concludes that a node is critical, redundant or ordinary if its
removal increases, reduces, or keeps the initial number of unmatched nodes related
to the known maximum matching.

To classify vertices of a given network into few categories, it is also necessary
to review existing approaches of the node classification problem. Generally, given
few predefined labels or categories of vertices, and a graph involving a set of pre-
viously labeled nodes, the node classification problem is raised to infer labels on
all currently unalbeled nodes [22]. Solutions are mainly based on the local clas-
sifier method or the random walk method. The local classifier method [85] uses
defined features of edges incident to those initially labelled nodes to construct a
classifier at the beginning. Then, iteratively applying that classifier to determine
labels on existing unlabelled nodes. Besides, the random-walk based method [13]
determines the most likely label as the final label on a given node by the probability
of a random walk starting from this node and ending at an already labelled node.

Because our classifier is based on all numerical impacts of a single node removal
on a digraph’s maximum matching, and there are no already labelled nodes in the
beginning. Neither local classifier nor random walk based methods can precisely
classify each node into one of predefined categories rather than by inference to
illustrate what a role of a node plays in maintaining the structural control with a
minimum set of inputs. By the idea of [113], given a single vertex, after removing it
from the network, recomputing a maximum matching of a digraph can conclude its
category. Specifically, letm, n be the number of edges and nodes of a digraph, since
the category of any node can be confirmed by computing a maximum matching
in the residual network, the time complexity of classifying all vertices would be
O(n1.5 ·m). For identifying all vulnerable vertices to removals, such method is not
applicable in practice. By contrast, chapter 9 would show a process of entire node
classification able to be done in just O(n+m+

√
n ·m) steps at most.

49

Part II

Efficient Structural-Controllability
Recovery

51

Chapter 4

Iterative Recovery of Structural Control by the
Maximum Matching

4.1 Overview

As mentioned in section 1.2.6 of chapter 1 and section 3.2.1 of chapter 3, related
works about recovery of structural controllability did not consider the amount of
modification on the given CT-LIT dynamical system or network. In consequence,
applying those recovery scenarios in practice, might lead unnecessary computa-
tion, when the modification is very limited. Although such modification is very
limited, it could emerge periodically, and iterative recovery of structural controlla-
bility might be indispensable, sometimes. For instance, in the study of robustness of
network structural controllability against continuous single-vertex removals [115]
[100] [88], and the study of optimizing structural controllability [118, 120, 121], af-
ter each network modification, a minimum set of inputs is computed to structural
control the resulting network. Particularly, each single recovery is still proposed to
be done as quick as possible after the latest modification. So that the entire iterative
recovery would be executed more effective, or with lower time complexity.

Therefore, to recover network structural controllability after a very limited mod-
ification on network vertices, and in order to increase efficiency of iterative recov-
ery of structural controllability, this chapter solves research question 1. Specifically,
with assumptions of section 1.3.2 of chapter 1, given a CT-LTI dynamical network
with a precomputed minimum set of inputs as an input network, this chapter seeks
to efficiently recover structural controllability of this input network after adding a
single vertex. In addition, it is assumed that this input network already contains an
pre-identified maximum matching, so that it is initially structurally controllable by
a minimum set of inputs.

According to theorem 2.8 of chapter 2, this question is solved by identifying a
maximum matching of the resulting network without recomputation. Further, with
the pre-identified maximum matching, by corollary 2.4 and definition 2.12 of chap-
ter 2, it is clear and indispensable to find augmenting paths related to it. During
the execution, a bipartite graph that mapped by both input network and added sin-
gle vertex and arcs, is used to ease augmenting-path identification. The problem is
eventually solved by identifying a maximum matching of this bipartite graph with-
out recomputation. As a result, in the worst case, with those assumptions above,
the maximum matching of the resulting network can be identified in linear time
except for computing the minimum set of inputs to structurally control the input
network.

For the contribution, given any initially minimum-input structurally control-
lable network with CT-LTI dynamics, structural controllability with a minimum

53

4. ITERATIVE RECOVERY OF STRUCTURAL CONTROL BY THE MAXIMUM

MATCHING

set of inputs of it after adding a single vertex can be efficiently recovered in lin-
ear time in the worst case, and original inputs are reused with maximum number.
This result further reflects that structural-controllability recovery should concern
the amount of change on the initial network.

Remaining chapter is structured as follows: section 4.2 defines fundamental
graphs and formulates research question; section 4.3 gives solution, and the last
section 4.4 summarizes this chapter.

4.2 Problem Formulation

This section firstly defines the input network of the research question. Then, a
bipartite graph that is mapped by the input network is defined later. With them,
the research question is clearly specified.

4.2.1 Fundamental Graphs

Definition 4.1 (Input Network of chapter 4)
Let D = (V,E) be a large, finite digraph, and D excludes self loops, parallel arcs and
isolated nodes. Also, V represents the vertex set, V = {vi|1 ≤ i ≤ n}(n > 1), and E
represent the edge set, E = {

−−−−→
〈vi, vj〉|vi, vj ∈ V }. Besides, let MD be a fixed and arbitrary

maximum matching of D, identified by the algorithm of [60].

With D = (V,E), a bipartite graph is obtained, which is defined by following
definition 4.2:

Definition 4.2
Given D = (V,E) and MD of definition 4.1, let B = (VB, EB) be a bipartite graph, V +

B

and V −B be two independent vertex sets, and MB be a maximum matching of B, where
|VB| ≤ 2|V |, |EB| = |E|, and |MD| = |MB|. Then, VB = V −B ∪ V

+
B , where V +

B =
{v+i |1 ≤ i ≤ n}, V

−
B = {v−j |1 ≤ j ≤ n}, and V −B ∩ V

+
B = ∅. Besides, let α : E → EB be

a bijection, for each
−−−−→
〈vi, vj〉 ∈ E, there is α :

−−−−→
〈vi, vj〉 → (v+i , v

−
j), where (v+i , v

−
j) ∈ EB .

Also, let MB be mapped from MD.

An example of the bijection is shown by figure 4.1. And there can not be the
edge like (v−i , v

+
i) ∈ EB , because D excludes self loops.

4.2.2 Problem Formulation

By the mapping between a state matrix and a graph of definition 2.4 of chapter 2, it
is assumed that D = (V,E) of definition 4.1 and a minimum set of inputs construct
a structurally controllable system, which is represented by a state equation below:

ẋ(t) = Ax(t) + Bu(t) (4.1)

where A ∈ Rn×n is mapped by D, each arc of E only corresponds a non-zero
entry of A, and the number of columns of matrix B ∈ Rn×m is minimum. Then, let
A
′ ∈ R(n+1)×(n+1) be a state matrix, which is obtained by adding one row and one

column, both of which has at least one non-zero entry into matrix A. Besides, let B
′

be an input matrix. Above all, our research question is defined:

54

4.3 SOLUTION

v1

v2

v3 v4
v5

v6

v+1 v−2

v+2 v−4

v+3 v−1

v+4 v−5

v−3

v+6 v−6

Figure 4.1: An example of bijections of definition 4.2.
A digraph contains a maximum matching that is a red path, which is mapped into a bipartite graph by definition

4.2 with a maximum matching that is all red arcs.

Research Question: Given A, B and A
′
. Then, efficiently identify an input

matrix B
′

with a minimum number of columns, so that the dynamical system de-
scribed by equation:

ẋ(t) = A
′
x(t) + B

′
u(t) (4.2)

is structurally controllable.
From the graph-theoretical aspect, let u be an added single vertex into D =

(V,E) of definition 4.1, and letEu be a finite set of edges incident to u, where |Eu| �
|E|. Then, according to theorem 2.8 of chapter 2, this research question can be
transferred into following problem:

Problem 1: Given D = (V,E) with MD and {u,Eu}. Then, recover structural
controllability of digraph (V ∪{u}, E ∪Eu) by identifying a maximum matching of
it without recomputation.

Given (V ∪u,E∪Eu), andB = (VB, EB) withMB and the bijection of definition
4.2, let EBu be an edge set mapped by Eu and |EBu | = |Eu|, so that there is α :
E ∪ Eu → EB ∪ EBu . Also, let u+, u− be nodes incident to edges mapped by arcs
incident to u, where u− 6∈ ∅ and u+ 6∈ ∅ depends on if u is the head or tail of arcs
of Eu. Besides, it is also assumed that |EBu | � |EB|. Then, Problem 1 is further
transferred into the following problem:

Problem 2: Identify a maximum matching of the bipartite graph (VB∪{u−, u+},
EB ∪ EBu) with a known matching MB , rather than recomputation.

Problem 4.2.2 is solved in following section as a way to address Problem 1 and
the research question from graph-theoretical aspect.

4.3 Solution

4.3.1 Maximum matching Identification

By corollary 2.3 and corollary 2.4 of chapter 2, givenB = (VB, EB) withMB of defi-
nition 4.2, to identify a maximum matching of bipartite graph (VB ∪{u−, u+}, EB ∪
EBu) of problem 4.2.2, it is essential to find augmenting paths related to each latest-
identified matching according to the only known matching MB .

55

4. ITERATIVE RECOVERY OF STRUCTURAL CONTROL BY THE MAXIMUM

MATCHING

In the first place, for the purpose of avoiding unnecessary computation to iden-
tify augmenting paths, following theorem 4.1 clarifies the existence of augmenting
paths related to each latest-identified matching based on MB .

Theorem 4.1
Given bipartite graph (VB ∪ {u−, u+}, EB ∪ EBu) of problem 4.2.2 and matching MB of
definition 4.2. Then, two terminals of any single augmenting path related to the latest-
identified matching through MB can not be two unmatched nodes of VB at the same time.

PROOF Focusing on the latest-identified matching based onMB , correctness of this
theorem is proved through following cases, which are raised by the cardinality of
the latest-identified matching via MB .

1. When the latest-identified matching is MB itself. Because MB is a maximum
matching of B = (VB, EB) of definition 4.2, there is no augmenting path re-
lated to MB in B by corollary 2.4, any pair of unmatched vertices of V −B and
V +
B related to MB in B, can not be the two terminals of an existing augment-

ing path related to MB in (VB ∪ {u−, u+}, EB ∪EBu). Otherwise, maximality
of MB is contradicted.

2. When the latest-identified matching is bigger than MB by one in cardinal-
ity. According to corollary 2.3 of chapter 2, there must be an augmenting
path related to MB . By case one above, this augmenting path must be ei-
ther incident to u+ 6∈ ∅ or u− 6∈ ∅. Hence, let Pu− be an existing augment-
ing path related to MB and incident to u− 6∈ ∅. Then, this latest-identified
matching based on MB is represented by MB ⊕ Pu− . Meanwhile, let Pa be
a path, and assume that Pa is an augmenting path related to MB ⊕ Pu− and
its two terminals are two unmatched nodes of VB . Related to MB ⊕ Pu− , by
case one, Pa can not alternatively only contain edges of MB and EB \MB .
Pa must contain one or more edges of Pu− \ {Pu− ∩ MB}. However, there
would be an augmenting path related to MB in B, which is an contradic-
tion. An example of Pa and Pu− is shown in figure 4.2. In this figure, Pu− =
{(u−, v+2), (v+2 , v

−
3), (v−3 , v

+
4), (v+4 , v

−
5), (v−5 , v

+
6), (v+6 , v

−
7), (v−7 , v

+
8), (v+8 , v

−
9), (v−9 ,

v+10)}, where those blue edges are out of MB , and red edges belong to MB .
Pa = {(v+11, v

−
3), (v−3 , v

+
4), (v+4 , v

−
7), (v−7 , v

+
8), (v+8 , v

−
12)}. Also, path {(v−12, v

+
8), (v+8

, v−9), (v−9 , v
+
10)} is an augmenting path related to MB in B.

Similarly, let Pu+ be an existing augmenting path related to MB and incident
to u+ 6∈ ∅, for the same reason, there can not be an augmenting path related
to MB ⊕ Pu+ , whose two terminals are two unmatched nodes of VB .

3. When the latest-identified matching is bigger than MB by two in cardinality.
Based on case one above and corollary 2.3, this latest-identified matching can
be obtained by either MB ⊕ Pu− or MB ⊕ Pu+ . For MB ⊕ Pu− , u− 6∈ ∅, u+,
according to case two above, u+ must be unmatched by MB ⊕ Pu− , and an
existing augmenting path whose one terminal must be incident to u+ 6∈ ∅.
Thus, let Pu+ be such an augmenting path related toMB⊕Pu− , and the latest-
identified matching is represented by {MB ⊕ Pu−} ⊕ Pu+ . In particular, still
based on case two, any edges of Pu− \ {Pu− ∩MB}must be still excluded by
Pu+ . This is because there would be an augmenting path related to MB in B.

56

4.3 SOLUTION

Pu−

u− v+2 v−3 v+4 v−5 v+6 v−7 v+8 v−9 v+10

v+11 v−12Pa

Figure 4.2:

For example, in figure 4.2, after replacing v+11 with u+, Pu+ is the alternating
path that involves {u+, v−3 , v

+
4 , v

−
7 , v

+
8 , v

−
12}. Clearly, path from v+12 to v+10 is an

augmenting path related toMB inB. Therefore, Pu+ and Pu− are also disjoint.

Next, related to {MB ⊕Pu−}⊕Pu+ , assume that there is an augmenting path,
whose terminals are two unmatched nodes of V −B and V +

B respectively. Be-
cause Pu+ and Pu− are disjoint, and this augmenting path might only contain
edges of Pu+ \ {Pu− ∩MB}, according to case one and two in previous, such
augmenting path can not exist due to the contradiction of the maximality of
MB in B.

Similarly, for MB ⊕ Pu+ , a same result can be deduced as well.

4. By case three, related toMB⊕Pu−⊕Pu+ , there can not be any augmenting path
related to it. Therefore, there would be no more cases to discuss according to
cardinality of the latest-identified matching based on MB .

Through discussing those four cases above, correctness of this theorem is proved.�

By theorem 4.1, corollary 4.2 is concluded to describe distribution of augment-
ing paths incident to u− 6∈ ∅ and u+ 6∈ ∅. Besides, corollary 4.3 is concluded to
identify a maximum matching of (VB ∪ {u−, u+}, EB ∪ EBu) based on MB .

Corollary 4.2
Given (VB ∪{u−, u+}, EB ∪EBu) of problem 4.2.2, and MB of definition 4.2, let Pu− 6= ∅
be an augmenting path related to MB and incident to u−. If u+ 6∈ ∅ is an unmatched node
related to MB ⊕ Pu− , assume there is an augmenting path incident to u+ and related to
MB ⊕ Pu− . Then, this augmenting path and Pu− are vertex disjoint, and versa-versa.

PROOF By case three of proof of theorem 4.1, correctness of this corollary is proved.�

Corollary 4.3
Given (VB ∪ {u−, u+}, EB ∪ EBu) of problem 4.2.2 and MB of definition 4.2, let Pu−

and Pu+ be two vertex-disjoint augmenting paths related to MB incident to u− and u+,
respectively. Then, a maximum matching of (VB ∪ {u−, u+}, EB ∪EBu) is MB ⊕ Pu− ⊕
Pu+ .

PROOF When Pu− = ∅ and Pu+ = ∅, by theorem 4.1, there can not be any augment-
ing path related to MB , so that MB is still a maximum matching. When Pu− 6= ∅

57

4. ITERATIVE RECOVERY OF STRUCTURAL CONTROL BY THE MAXIMUM

MATCHING

and Pu+ = ∅, or Pu− = ∅ and Pu+ 6= ∅,or Pu− = Pu+ , by case two of theorem 4.1,
there would be no augmenting paths related to either MB ⊕ Pu− , or MB ⊕ Pu+ .
By corollary 2.4, MB ⊕ Pu− , or MB ⊕ Pu+ is thus a maximum matching. When
Pu− 6= ∅ and Pu+ 6= ∅, by corollary 4.2, these two paths are disjoint, and by case
three of theorem 4.1, no augmenting paths related to MB ⊕Pu+ ⊕P−u exist. In sum-
mary, by corollary 2.4, MB ⊕Pu+ ⊕P−u can thus represent a maximum matching of
(VB ∪ {u−, u+}, EB ∪ EBu). �

By corollary 4.3, given (VB ∪ {u−, u+}, EB ∪ EBu), it is only needed to identify
augmenting paths twice at most from u− 6∈ ∅ and u+ 6∈ ∅.

4.3.2 Execution

Given (VB ∪ {u−, u+}, EB ∪ EBu) of problem 4.2.2, and MB of definition 4.2, algo-
rithm 4.1 below identifies an augmenting path related to MB and incident to u+ if
u+ 6∈ ∅. Here, edges of EB ∪ EBu are directed. Then, let EB+

u
⊆ EBu be a set of arcs

whose tails are u+, e be any edge of EB+
u

, and P0 be an initially empty edge set.
Also, when P0 6= ∅, let P (P0) be a set of edges, whose tails are heads of edges of P0,
and let e

′
be any single edge of P (P0). Besides, let Pu+ be an initially empty set of

an augmenting path starting from u+.

Algorithm 4.1: Identify an augmenting path incident to u+ related to MB .
Input : (VB ∪ {u−, u+}, EB ∪ EBu), MB , Pu+ .
Output: An Augmenting path starting from u+.

1 Set direction of edges of MB from nodes of V −B to nodes V +
B and Set

direction of {EB ∪ EBu} \MB from nodes of V +
B ∪ u+ to nodes V −B ∪ u−;

2 while EB+
u
6= ∅ and e ∈ EB+

u
do

3 Pu+ = ∅;
4 P

′

u+ = Pu+ ∪ e; E′
B+

u
= EB+

u
\ e;

5 if head of e is not incident to an edge of MB then
6 Set arcs of Pu+ as undirected edges;
7 return Pu+ ; Algorithm terminates;
8 else if then
9 P

′
0 = P0 ∪ e and Add existing arcs of EB whose tails are head of e
into P (P0);

10 while P (P0) 6= ∅ and e
′ ∈ P (P0) do

11 P
′
0 = P0 ∪ e

′
and Add existing arcs of EB whose tails are head

of e
′

into P (P0);
12 P (P0)

′
= P (P0) \ e

′
; E
′
B = EB \ e

′
;

13 if head of e′ is incident to an edge out of MB then
14 Identify edges of a path ending at e

′
and starting from e;

15 Add identified edges into Pu+ ;
16 Set arcs of Pu+ as undirected edges;
17 return Pu+ ; Algorithm terminates;

58

4.3 SOLUTION

PROOF Initially, to traverse alternating paths from u+, direction of edges is set in
O(|EB ∪ EBu)| steps.

Firstly, if EB+
u
6= ∅, e is randomly selected and removed from EB+

u
. Then, head

of e is verified based on if it is not incident to an edge of MB . If so, e can be used
to augment MB and thus added into Pu+ , where Pu+ = {e} returned and this al-
gorithm terminates. Otherwise, e is added into P0, and the second while loop tra-
verses all paths that start from u+ and alternatively involve edges of EB \MB and
MB , as a way to identify an augmenting path related to MB . When an augmenting
path exists, head of currently selected edge e

′ ∈ P (P0) is not incident to an edge
of MB . And this augmenting path can be identified by traversing edges based on
the depth-first search [111] from e

′
to e in O(|EB| + |VB|) time. Also, this path is

added into Pu+ , and Pu+ is returned. After that, this algorithm terminates. Be-
cause the input bipartite graph is finite and each edge of P (P0) is removed from it,
P (P0) = ∅ happens at a moment and the second while loop terminates. Therefore,
this algorithm is correct in front of the first loop.

After this, during each loop of the first while, Pu+ is emptied in line 3, because
previously added edges into Pu+ can not construct any augmenting path. Then,
following procedure is the same as before.

Finally, due to removal of each edge fromEB+
u

in line 4,EB+
u

= ∅ occurs at a mo-
ment, on which this algorithm can terminate in the end. Therefore, this algorithm
is correct. �

Corollary 4.4 (Time complexity of algorithm 4.1)
Except for obtaining inputs of algorithm 4.1, the worst-case execution time of this algorithm
is O(|EB|+ |VB|+ |EBu |).

PROOF For the worst-case execution time of this algorithm, due to line 12, each
edge of EB can be traversed, and added into P (P0) once at most. Meanwhile, each
edge of EB+

u
is considered once only because of line 4. Besides, based on DFS

algorithm, identifying edges of an augmenting path starting from u+ in line 14
needs to traverse each arc of current P (P0) once at most. Also, remove direction of
identified path costs O(|EB|+ |EBu |) steps at most. Thus, combining the direction
operation in line 1, time complexity of this algorithm is O(|EB| + |VB| + |EBu |)
except for obtaining inputs. �

By running algorithm 4.1, it is possible that u− 6∈ ∅ is another terminal of re-
turned Pu+ . Nevertheless, when u− 6∈ ∅ and it is still an unmatched node related
to MB ⊕ Pu+ , this algorithm can be slightly modified to find an augmenting path
incident to u− and related toMB⊕Pu+ inO(|EB|+ |VB|+ |EBu |) time. In detail, one
of inputs MB is replaced with MB ⊕ Pu+ , which omits the process of dedicatedly
identifying vertex-disjoint augmenting paths related to MB . Besides, let EBu−

be a
set of arcs of EBu that share u− as the common head, and Pu− be an initially empty
set of an augmenting path incident to u−. Then, replace “head” with “tail”, replace
EB+

u
withEB−u

and replace Pu+ with Pu− . Also, in modified algorithm, P (P0) repre-
sents a set of edges whose heads are tails of edges of P0. Additionally, by corollary
4.2, Pu− ∩ Pu+ = ∅.

After that, according to corollary 4.3, with Pu− and Pu+ returned by algorithm
4.1 and the modified one, a maximum matching of (VB ∪ {u−, u+}, EB ∪ EBu) can
be obtained, which is executed by algorithm 4.2 below:

59

4. ITERATIVE RECOVERY OF STRUCTURAL CONTROL BY THE MAXIMUM

MATCHING

Algorithm 4.2: Identify a Maximum Matching of (VB∪{u−, u+}, EB∪EBu).
Input : (VB ∪ {u−, u+}, EB ∪ EBu) of problem 4.2.2, MB of definition 4.2,

Pu+ returned by algorithm 4.1 and Pu− returned by the modified
one.

Output: A maximum matching.
1 if Pu− = ∅ and Pu+ = ∅ then
2 return MB ;
3 else if Pu− 6= ∅ and Pu+ 6= ∅ then
4 return MB ⊕ Pu− ⊕ Pu+ ;
5 else if Pu− = ∅ and Pu+ 6= ∅ then
6 return MB ⊕ Pu+ ;
7 else if Pu− 6= ∅ and Pu+ = ∅ then
8 return MB ⊕ Pu− ;

PROOF Based on existence of two augmenting paths incident to u− and u+, and
according to theorem 4.1, all possible cases are listed and related maximum match-
ing is returned by corollary 2.3. Except for running algorithm 4.1 and the modified
one. The worst-case execution time of this algorithm is O(1). �

4.3.3 Time-Complexity Analysis

Given D = (V,E) with MD of definition 4.1, after adding vertex u with edges of Eu

into D, entire process of identifying a maximum matching of digraph (V ∪{u}, E∪
Eu) or solving Problem 1 can be shown by following algorithm 4.3, where some
notations of previous algorithms are still used.

Algorithm 4.3: Identify a maximum matching of digraph (V ∪{u}, E∪Eu).
Input : D = (V,E) with MD of definition 4.1, {u,Eu} of problem 4.2.2.
Output: A Maximum Matching.

1 Map digraph (V ∪ {u}, E ∪ Eu) with MD into bipartite graph
(VB ∪ {u−, u+}, EB ∪ EBu) with MB by bijection α of definition 4.2;

2 if u+ 6∈ ∅ then
3 Run algorithm 4.1 to identify an augmenting path incident to u− and

related to MB ;
4 if u− 6∈ ∅ and u+ is unmatched related to MB ⊕ Pu− then
5 Run modified algorithm 4.1 to identify an augmenting path incident to

u+ and related to MB ⊕ Pu− ;
6 Run algorithm 4.2 to identify a maximum matching of

(VB ∪ {u−, u+}, EB ∪ EBu);
7 Map derived maximum matching of line 6 by α−1 into an edge set of

(V ∪ {u}, E ∪ Eu);
8 return Mapped edge set of line 7;

PROOF According to the correctness of algorithm 4.1 and 4.2, and the bijection of
definition 4.2, this algorithm is correct. �

60

4.4 SUMMARY

Corollary 4.5 (Time complexity of algorithm 4.3)
Except for identifying MD of D of definition 4.1, the worst-case execution time of identify-
ing a maximum matching of (V ∪ {u}, E ∪ Eu) is O(|E|+ |V |+ |Eu|).

PROOF The worst-case execution of this algorithm is the sum of time complexity
of procedure of each line. In detail, by the bijection, time complexity of line 1 and
7 is O(|E| + |Eu) for each. Then, by algorithm 4.1, time complexity of line 3, 5
respectively is O(|EB| + |VB| + |EBu |). After line 4, time complexity of line 5 by
algorithm 4.2 isO(1). Furthermore, because |EB| = |E| by definition 4.2 and |Eu| =
|EBu |. Except for identifying MD of D of definition 4.1, the worst-case execution
time of identifying a maximum matching of (V ∪ {u}, E ∪Eu) is therefore O(|E|+
|V |+ |Eu|). �

Clearly, the worst-case execution time of solving the problem 4.2.2 is O(|E| +
|V |+ |Eu|), which excludes obtaining MD.

4.3.4 Comparison

Compared with related works about structural-controllability recovery in section
3.2.1 of chapter 3, our assumptions on the input network are contained by them,
while the type of the input network, availability of tree decomposition constrained
by related works [9] are not assumed in this chapter. Also, except for acquiring MD

of D = (V,E) of definition 4.1, as we can see, algorithm 4.3 runs in linear time,
which is a lower time complexity than that of those related works.

Simultaneously, with the assumption that |Eu| � |E| of section 4.2.2, once con-
cerning acquiring the initial structural controllability with a minimum set of inputs,
by finding a maximum matching, the worst-case execution time is justO(

√
|V |·|E|).

Furthermore, referring the result of [17], if D is a sparse ER random digraph, the
average-case time complexity of solving the Problem 1 is O(|E| · log(|V |)).

Additionally, viewing the entire execution process, because the maximum match-
ing of (VB∪{u−, u+, EB∪EBu}) is obtained by augmentingMB ofB through iden-
tifying augmenting path related to MB , according to theorem 4.1 and corollary 4.2.
Unmatched nodes related to MB in B can thus still be unmatched related to the
identified one in (VB ∪ {u+, u−}, EB ∪EBu) with maximum number. Therefore, by
definition 4.2 and the minimum input theorem, the maximum number of previous
inputs would be reused to recover structural control into D after adding a single
node.

4.4 Summary

Focusing on structural-controllability recovery after very limited modification on
system component or network vertex with CT-LTI dynamics, this chapter solves
the problem of recovering structural controllability of an initially minimum-input
structurally controllable CT-LTI network after adding a single vertex. According
to maximum-matching based method of section 2.4.1 of chapter 2, we identify a
maximum matching of resulting graph without recomputation, and the worst-time
execution time is linear except for computing a maximum matching for original

61

4. ITERATIVE RECOVERY OF STRUCTURAL CONTROL BY THE MAXIMUM

MATCHING

minimum set of inputs. Additionally, on the other hand of very-limited modifica-
tion, chapter 5 would concentrate on the recovery after removing a precomputed
system component by identifying a maximum matching without recomputation.

62

Chapter 5

Structural-Control Recovery for Resilient Control
Systems

5.1 Overview

Following chapter 4, this chapter still concentrates on structural-controllability re-
covery after very-limited modification on CT-LTI system components. Through
section 1.2.4 of chapter 1, and the simulation of [96], we already know that once
information communication among sensors, controllers and actuators of a control
system is attacked or failed, this control system could lose control into its phys-
ical system immediately. Nevertheless, because physical system is another most
necessary part of a control system, a control system can still lose its control due to
sabotage of the physical system, even if other parts are still working well. Clearly,
to maintain a resilient control system against malicious attack or random failure on
a single component of a physical system, it is also desirable to recover the control-
lability of the residual physical system with high efficiency.

Therefore, to enhance resilience of a control system, this chapter solves research
question 2. Specifically, with assumptions of section 1.3.2 of chapter 1, this chapter
efficiently recovers structural control into a minimum-input structurally control-
lable physical system, after removing an already known system component. Refer-
ring to related works about robustness of network structural controllability of sec-
tion 3.3.1 of chapter 3, since some removed network vertex can be confirmed by its
importance, such as its degree, betweenness and so on, this removed system com-
ponent can be also confirmed or identified via the similar way, while this confir-
mation is out of discussion of this chapter. Besides, we also assume that structural
controllability of this given physical system is acquired by the maximum-matching
based method of section 2.4.1 of chapter 2.

For the solution, according to Lin’s graphic interpretation of the state matrix,
we define a digraph as our input network to represent the state matrix of the given
control system, which is likeG(A) = (V1, E1) of definition 2.4 of chapter 2. Also, we
assume that this digraph contains a known maximum matching. Then, by corol-
lary 2.5 of chapter 2, this problem is thus transferred into identifying a maximum
matching of the given digraph after removing a known vertex without recomputa-
tion, which is eventually solved in this chapter. Based on our inference, this graph-
theoretical problem is further solved by identifying a maximum matching of the
input network, which must contain the minimum number of edges incident to the
removed vertex. As a result, a maximum matching of the residual network can be
identified in linear time except for computing the known maximum matching of
the input network.

For the contribution of this chapter, given any initially minimum-input struc-

63

5. STRUCTURAL-CONTROL RECOVERY FOR RESILIENT CONTROL SYSTEMS

turally controllable CT-LTI physical system, structural-control recovery to against
a single component removal, can be done in linear time in the worst case. Be-
sides, original inputs can be also reused with maximum number. Again, this result
also reflects that structural-controllability recovery should concern the amount of
change on the initial network.

This chapter is structured as follows: section 5.2 defines an input network and
formulates research question; section 5.3 shows the solution and section 5.4 con-
cludes this chapter.

5.2 Problem Formulation

Given an initially minimum-input structurally controllable physical system, which
is described by following equation:

ẋ(t) = Ax(t) + Bu(t) (5.1)

where, A ∈ Rn×n, and the number of columns of matrix B ∈ Rn×m is minimum.
Then, let A

′ ∈ R(n−1)×(n−1) be a state matrix of the given system after removing a
known system component. Particularly, A

′
is obtained by removing both ith row

and ith column from matrix A above, where 1 ≤ i ≤ n. Besides let B
′

be an input
matrix. Above all, our research question is formally specified:

Research Question: Given A, B and A
′
. Then, efficiently identify an input

matrix B
′

with the minimum number of columns, so that the dynamical system
described by ẋ(t) = A

′
x(t) + B

′
u(t) is structurally controllable.

Then, an input network is defined to model research question:

Definition 5.1 (Input Network of chapter 5)
Let D = (V,E) be a large, finite digraph, and D excludes self loops, parallel arcs and
isolated nodes. Also, V represents the vertex set, V = {vi|1 ≤ i ≤ n}(n > 2), and E
represent the edge set, E = {

−−−−→
〈vi, vj〉|vi, vj ∈ V }. Besides, let MD be a fixed and arbitrary

maximum matching of D, identified by the algorithm of [60].

With D = (V,E) and known maximum matching MD of definition 5.1, assume
thatD is mapped by original state matrix A of equation (5.1) according to definition
2.4 of chapter 2, where any arc of E corresponds to only one non-zero entry of A.
Now, research question of this chapter is modelled by following graph-theoretical
problem:

Problem 1: Given D = (V,E) with MD, let u ∈ V be a vertex that is pre-
identified and to be removed from D, and let Eu be a set of all arcs incident to
u, where |Eu| � |E|. Then, efficiently identify a maximum matching of digraph
D \ {u}without recomputation.

Problem 5.2 is solved in following section as a way to address the research ques-
tion from graph-theoretical aspect.

64

5.3 SOLUTION

5.3 Solution

5.3.1 Maximum-matching Identification within D \ {u}

Without recomputing a maximum matching of digraph D \{u}, if u is neither head
nor tail of an arc ofMD, it is obviously enough to say thatMD is a maximum match-
ing of D \ {u}. Otherwise, we also deduce lemma 5.1 and lemma 5.3 to identify a
maximum matching of D \ {u}when u is incident to an edge of MD.

In the following paper, let MM be a maximum matching of D, and MM con-
tains the minimum number of arcs incident to u. With MM , let l be the minimum
number of edges incident to u. Clearly, there is l ∈ {0, 1, 2}. Besides, let

−−−−→
〈vg, u〉 and

−−−−→
〈u, vf 〉 be two such arcs of MM . When

−−−−→
〈vg, u〉 ∈ MM and

−−−−→
〈u, vf 〉 ∈ MM together,

let M(vg ,vf) be a matching and M(vg ,vf) ∩ MM = ∅, where vg is a tail of an arc of
M(vg ,vf), and vf is a head an arc of M(vg ,vf), respectively. Also, each arc of M(vg ,vf)

shares a common head with an arc of MM , and also shares a common tail with
another different arc of MM .

Lemma 5.1
Given D = (V,E) of definition 5.1, MM with l ∈ {0, 1, 2} and M(vg ,vf) = ∅. Then, the
maximum matching of D \ {u} is the matching that is MM excluding arcs incident to u.

PROOF Correctness of this lemma is proved when l = 0, l = 1, l = 2 respectively:

1. If l = 0, there is no arc of MM incident to u. Then, removing u from D does
not influence MM . Thus, MM still exists in D \ {u} as a maximum matching.

2. If l = 1, it is either
−−−−→
〈vg, u〉 ∈ MM or

−−−−→
〈u, vf 〉 ∈ MM . After removing u, a

matching MM \
−−−−→
〈vg, u〉, or MM \

−−−−→
〈u, vf 〉 is obtained directly. Assume that this

matching is not a maximum matching ofD\{u}, we should be able to identify
a matching with the cardinality of |MM | through matching MM \

−−−−→
〈vg, u〉, or

MM \
−−−−→
〈u, vf 〉. Actually, it needs to identify a matching with bigger cardinality

than a subset of MM , and this matching must be adjacent to edges of MM
at both heads and tails. Otherwise, if this proposed matching excludes any
single edge that is not adjacent to edges of remaining MM , cardinality of
MM would be contradicted. Thus, following two cases are discussed when
l = 1 according to if the purposed matching is incident to vf or vg:

On the one hand, in D \ {u}, there could be a matching that excludes any
edge of MM and only involves edges that are not incident to vf or vg, where
each edge of a subset of MM shares a common head and tail with two arcs of
this matching. For this situation, maximality of MM is thus contradicted. For
example, in figure 5.1, a blue directed path starting from u to v6 is contained
by MM on assumption, where vf is v2, and {

−−−−→
〈v3, v7〉,

−−−−→
〈v6, v4〉} is the proposed

matching. However, the directed path from u to v7 and the directed cycle
containing v4, v5 and v6 is a bigger matching than the blue path in cardinality.

On the other hand, in D \ {u}, there could be a matching excluding any edge
of MM and it contains an arc whose head is vf or whose tail is vg, where
each edge of a subset of MM shares a common head and tail with two arcs

65

5. STRUCTURAL-CONTROL RECOVERY FOR RESILIENT CONTROL SYSTEMS

u v2 v3 v4 v5 v6

v7

Figure 5.1:

u

v6

v2 v3 v4 v5

v7

Figure 5.2:

of this matching. In this case, l = 1 is contradicted. As a simple exam-
ple of this case, in figure 5.2, that blue-colour directed path from u to v5
is a subset of MM and disjoint with other paths and cycles of MM , where
vf is v2, and {

−−−−→
〈v6, v2〉,

−−−−→
〈v3, v7〉} is a proposed matching. However, because

arc
−−−−→
〈u, v2〉 can be replaced with

−−−−→
〈v6, v2〉, which is involved in the matching

{
−−−−→
〈v6, v2〉,

−−−−→
〈v2, v3〉,

−−−−→
〈v3, v7〉}.

Above all, since there can not be such a matching bigger than either MM \
−−−−→
〈vg, u〉, or MM \

−−−−→
〈u, vf 〉 in cardinality, MM \

−−−−→
〈vg, u〉, or MM \

−−−−→
〈u, vf 〉 is thus a

maximum matching of D \ {u}.

3. If l = 2 and M(vg ,vf) = ∅, there are
−−−−→
〈vg, u〉 ∈ MM and

−−−−→
〈u, vf 〉 ∈ MM . Then, a

matching MM \ {
−−−−→
〈vg, u〉,

−−−−→
〈u, vf 〉} is obtained directly. According to those two

discussed situations of case 2 above, and also because of M(vg ,vf) = ∅, it can

be concluded that MM \ {
−−−−→
〈vg, u〉,

−−−−→
〈u, vf 〉} is a maximum matching of D \ {u}.

Above all, because each case indicates that the matching derived by MM ex-
cluding arcs incident to u is a maximum matching of D \ {u}, this lemma is thus
correct. �

According to lemma 5.1, corollary 5.2 is concluded to clarify the identification
of a matching via a subset of MM :

Corollary 5.2
Given D = (V,E) of definition 5.1, MM and u. Then, in D \ u, any existing subset of
MM can not be used to identify a matching that is bigger than it, so that it is impossible to
obtain a bigger matching in this way than remaining MM in cardinality.

PROOF Based on the contradictions of proof of lemma 5.1, which are clearly indi-
cated by case two, correctness of this corollary is thus proved. �

66

5.3 SOLUTION

u

v2 v3

v4

v5v6

v7

v8

v9

v10

Figure 5.3:

Lemma 5.3
Given D = (V,E) of definition 5.1, MM with l = 2, and M(vg ,vf) 6= ∅, let Msub be a
subset of MM , and assume that each arc of Msub shares a common head and tail with two
different arcs of M(vg ,vf) except for vg and vf , where |Msub| = |M(vg ,vf)| − 1. Then, the

maximum matching of D \ {u} is MM \ {{
−−−−→
〈u, vf 〉,

−−−−→
〈vg, u〉} ∪Msub} ∪M(vg ,vf).

PROOF If l = 2, u is either contained by a directed path or a directed cycle of
MM . With M(vg ,vf) 6= ∅ and Msub, a matching MM \ {{

−−−−→
〈u, vf 〉,

−−−−→
〈vg, u〉} ∪Msub} ∪

M(vg ,vf) is directly obtained inD\{u}. Assume that this matching is not a maximum
matching. Nevertheless, since the remaining subset of MM in this matching is
equal to the subset of MM of corollary 5.2. And any subset of MM can not be used
to identify bigger matching that contains edges incident to nodes out of MM in
cardinality than remaining MM that excludes u. It is thus possible to identify a
matching only based on subset of M(vg ,vf), where an edge of M(vg ,vf) should share
common head and tail with two different edges of this proposed matching. In this
case, l = 2 contradicted. For example, in figure 5.3, the blue directed cycle is a
subset of MM and disjoint with other ones, where vg = v6, vf = v2 and M(vg ,vf) =

{
−−−−→
〈v6, v5〉,

−−−−→
〈v4, v2〉} and Msub = {

−−−−→
〈v4, v5〉}. Then, for

−−−−→
〈v8, v2〉 6= ∅ and

−−−−→
〈v4, v7〉 6= ∅, u

as a tail could be excluded by the path from v8 to u, which means l = 1 and is a
contradiction with l = 2. Besides, it is also possible to identify a matching based
on both a subset of MM and M(vg ,vf). Again, by the same contradiction mentioned
before, this case is also impossible. For example, still in figure 5.3, based on the
matching {

−−−−→
〈v6, v5〉,

−−−−→
〈v3, v4〉}, such a proposed matching is {

−−−−→
〈v6, v9〉,

−−−−→
〈v3, v5〉,

−−−−−→
〈v10, v4〉.

Clearly, in this example, l 6= 2.

Above all, with conditions of this lemma, there can not be a matching identi-
fied through a subset of M(vg ,vf) to derive a matching with bigger cardinality than

matching MM \{{
−−−−→
〈u, vf 〉,

−−−−→
〈vg, u〉}∪Msub}∪M(vg ,vf). Thus, MM \{{

−−−−→
〈u, vf 〉,

−−−−→
〈vg, u〉}∪

Msub} ∪M(vg ,vf) is a maximum matching of D \ {u}. �

67

5. STRUCTURAL-CONTROL RECOVERY FOR RESILIENT CONTROL SYSTEMS

v1

v2

v3

v4

v5

v6

v+1 v−2
v+2 v−4
v+3 v−1
v+4 v−5

v−3

v+6 v−6

Figure 5.4:
A digraph contains a maximum matching that is a red path, which is mapped into a directed bipartite graph by

definition 5.2 with a maximum matching involving all red arcs.

5.3.2 Identification of MM

Given D = (V,E) with MD of definition 5.1 and u ∈ V , by lemma 5.1 and 5.3,
identifying MM is the key to confirm a maximum matching of D \ {u}. To identify
MM of D, we use a directed bipartite graph defined below:

Definition 5.2
Given D = (V,E) with MD, let B = (VB, EB) be a directed bipartite graph, V +

B and
V −B be two disjoint and independent sets of VB , where |EB| = |E|, |VB| ≤ 2|V |, and
VB = {{v−i , v

+
j }|v

−
i ∈ V

−
B , v

+
j ∈ V

+
B }. Besides, let MB be a maximum matching of B.

Then, let α : E \MD → EB \MB , and β : MD → MB be two different bijections. For

any
−−−−→
〈vi, vj〉 ∈ E \MD, α :

−−−−→
〈vi, vj〉 →

−−−−−→
〈v+i , v

−
j 〉, where

−−−−−→
〈v+i , v

−
j 〉 ∈ EB \MB ; for any

−−−−→
〈vp, vq〉 ∈MD, β :

−−−−→
〈vp, vq〉 →

−−−−−→
〈v−q , v+p 〉, where

−−−−−→
〈v−q , v+p 〉 ∈MB .

Any edge like
−−−−−→
〈v+i , v

−
i 〉 can not exist in B, otherwise D includes the selfloop,

and an example of bijections of definition 5.2 is shown by figure 5.4:
In B = (VB, EB), let u− ∈ V −B and u+ ∈ V +

B be mapped by u ∈ V through
bijections α or β. Therefore, identifying MM of D can be solved by identifying a
maximum matching ofB that contains the minimum number of arcs incident to u−

and u+. To do this, theorem 5.4 and 5.5 are concluded, where
−−−−−→
〈u−, v+p 〉 and

−−−−−→
〈v−q , u+〉

are defined as two arcs of MB by definition 5.2 in the following paper. Besides, let
M
′
B be any different maximum matching from MB and |MB| = |M

′
B|.

Theorem 5.4
Given B = (VB, EB) with MB of definition 5.2, and {u−, u+} ⊆ VB . Then,

−−−−−→
〈u−, v+p 〉 ∈

MB and
−−−−−→
〈u−, v+p 〉 6∈ M

′
B , if and only if there is a directed augmenting path related to

MB \
−−−−−→
〈u−, v+p 〉, which starts from v+p .

PROOF ⇒: If
−−−−−→
〈u−, v+p 〉 ∈MB and

−−−−−→
〈u−, v+p 〉 6∈M

′
B . Given MB \

−−−−−→
〈u−, v+p 〉, by corollary

2.3, there must be an directed augmenting path related to it, otherwise, M
′
B can

not exist. Since v+p now is an unmatched node related to matching MB \
−−−−−→
〈u−, v+p 〉,

68

5.3 SOLUTION

and any other node of V +
B that are not incident to arcs of MB can not be a starting

node of such an augmenting path, otherwise, maximality of MB is contradicted.
Therefore, v+p must be the only one starting node of such an augmenting path.

⇐: If there is a directed augmenting path related to MB \
−−−−−→
〈u−, v+p 〉, which starts

from v+p . By the symmetric difference between this augmenting path and MB \
{
−−−−−→
〈u−, v+p 〉}, a maximum matching excluding an edge incident to u− can be obtained,

which is thus noted by M
′
B . �

By theorem 5.4, it can be also concluded that
−−−−−→
〈v−q , u+〉 ∈MB and

−−−−−→
〈v−q , u+〉 6∈M

′
B

if and only if there is a directed augmenting path related to MB \
−−−−−→
〈v−q , u+〉 and

ending at v−q .

Theorem 5.5
Given B = (VB, EB) with MB of definition 5.2,

−−−−−→
〈u−, v+p 〉 ∈ MB and

−−−−−→
〈v−q , u+〉 ∈ MB .

Then, in B \ {u−, u+}, related to MB \ {
−−−−−→
〈u−, v+p 〉,

−−−−−→
〈v−q , u+〉}, an available augmenting

path starting from v+p and another different augmenting path ending at v−q must be vertex
disjoint.

PROOF Let M
′
B be a maximum matching of B, and let {u−, u+} be not incident to

any arc of M
′
B . Because M

′
B ⊕MB only includes vertex-disjoint directed paths or

cycles with even length, which alternatively involve arcs of M
′
B and MB . Hence,

within M
′
B ⊕ MB , an available directed path starting from u− and an available

directed path ending at u+ can not share any vertex in B. Then, after remov-
ing {u−, u+}, as a result, two vertex-disjoint augmenting paths related to MB \
{
−−−−−→
〈u−, v+p 〉,

−−−−−→
〈v−q , u+〉} are produced, one of which either starts from v+p or ends at v−q .

For example, in figure 5.4, let v+1 = u+ and v−4 = u−, there are two vertex dis-

joint paths, {
−−−−−→
〈v+6 , v

−
2 〉,
−−−−−→
〈v−2 , v

+
1 〉} and {

−−−−−→
〈v−4 , v

+
2 〉,
−−−−−→
〈v+2 , v

−
3 〉}. After removing {v+1 , v

−
4 },−−−−−→

〈v+6 , v
−
2 〉 and

−−−−−→
〈v+2 , v

−
3 〉 are two vertex-disjoint augmenting paths related to matching

of remaining red arcs. �

5.3.3 Execution

To begin with, a maximum matching ofB = (VB, EB) of definition 5.2 that contains
the minimum number of arcs incident to {u−, u+} is noted by M

′
B , and it would be

identified by following algorithm 5.1. Then, by algorithm 5.2,M
′
B is further used to

identify the maximum matching MM of the digraph D = (V,E) of definition 5.1.
After that, problem 5.2 of section 5.2 is eventually solved by algorithm 5.3 and 5.4.

5.3.3.1 Derive M
′
B

Algorithm 5.1 below would identify a directed augmenting path starting from v+p

and related to MB \
−−−−−→
〈u−, v+p 〉 firstly, when

−−−−−→
〈u−, v+p 〉 ∈MB . And a maximum match-

ing of B contains the minimum number of edges incident to u− can be further
obtained. Here, let EB

v+p
be a set of arcs whose tails are v+p , e be any edge of EB

v+p
,

and P0 be an initially empty edge set. Also, with P0 6= ∅, let P (P0) be a set of edges,

69

5. STRUCTURAL-CONTROL RECOVERY FOR RESILIENT CONTROL SYSTEMS

whose tails are heads of edges of P0, and let e
′

be any single edge of P (P0). Besides,
Pv+p

represents an initially empty set of an augmenting path starting from v+p .

Algorithm 5.1: Find a maximum matching with minimum number of
edges incident to u−.

Input : B = (VB, EB) and MB of definition 5.2, {u−, u+}mapped by u of
problem 5.2.

Output: A maximum matching excluding an arc incident to u−.

1 while
−−−−−→
〈u−, v+p 〉 ∈MB , EB

v+p
6= ∅ and e ∈ EB

v+p
do

2 Pv+p
= ∅;

3 P
′

v+p
= Pv+p

∪ e; E′B
v+p

= E
′
B

v+p

\ e;

4 if head of e is not tail of the arc of MB then
5 return M

′
B = MB ⊕ {

−−−−−→
〈u−, v+p 〉 ∪ Pv+p

}; Algorithm terminates;
6 else if then
7 P

′
0 = P0 ∪ e and Add existing arcs of EB whose tails are head of e
into P (P0);

8 while P (P0) 6= ∅ and e
′ ∈ P (P0) do

9 P
′
0 = P0 ∪ e

′
and Add existing arcs of EB whose tails are head

of e
′

into P (P0);
10 P (P0)

′
= P (P0) \ e

′
; E
′
B = EB \ e

′
;

11 if head of e′ is not incident to the edge of MB then
12 Find a path ending at e

′
and starting from e within P0;

13 Add found path into Pv+p
;

14 return M
′
B = MB ⊕ {

−−−−−→
〈u−, v+p 〉 ∪ Pv+p

}; Algorithm
terminates;

15 return M
′
B = MB ;

PROOF In the beginning, with MB and u−, traversing edges of MB can confirm if
−−−−−→
〈u−, v+p 〉 ∈MB in O(|EB|) steps at most. If so, v+p is used to identify an augmenting

path starting from it and related to MB \
−−−−−→
〈u−, v+p 〉, and the matching obtained by

this augmenting path is a maximum matching by theorem 5.4.
In front of the first iteration of the while loop of line 1, an arc e ∈ EB

v+p
is

randomly selected to identify an augmenting path, on which Pv+p
= {e}. If head

of e is not tail of an edge of MB , e is thus an augmenting path related to MB \−−−−−→
〈u−, v+p 〉, and maximum matching MB \

−−−−−→
〈u−, v+p 〉⊕e is returned, and this algorithm

is terminated. Otherwise, second while loop is triggered to keep searching. During
this procedure, with P0 and P (P0), all arcs of EB that can be approached by v+p can
be traversed once only, because any firstly traversed edge is removed from EB in
line 10. Therefore, second loop can terminate. Until the existence of e

′ ∈ P (P0),
whose head is not incident to an edge of MB , an augmenting path starting from v+p

and related to MB \
−−−−−→
〈u−, v+p 〉 exists. Then, in line 12, identifying a path between e

70

5.3 SOLUTION

and e
′
inO(|EB|) time can obtain such an augmenting path. In detail, it just requires

a depth-first search that starts from e
′

until e is visited. And a maximum matching
not incident to u− is therefore obtained, by which, this algorithm is terminated.
Particularly, such path identification needs to traverse edges of this path twice at
most. Above all, this algorithm is correct before the first iteration.

If this algorithm is not terminated in front of the first iteration, an arc of re-
maining EB

v+p
is chosen to keep searching as before. Because of the line 2, any

Pv+p
operated before this iteration is emptied now, the augmenting-path search is

completely same as before until an augmenting path is found or this algorithm ter-
minates in the end. Moreover, if there is no such an augmenting path starting from
v+p after the last iteration of the first while loop, this algorithm returns MB , which

means that each maximum matching of B must contain
−−−−−→
〈u−, v+p 〉.

Further, because each chosen edge of EB
v+p

and traversed edge of EB from v+p

are all removed directly, this algorithm must terminate when EB
v+p

= ∅. Therefore,

this algorithm is also correct during each iteration. �

Corollary 5.6 (Time complexity of algorithm 5.1)
Except for deriving B = (VB, EB) and MB , the worst-case execution time of running
algorithm 5.1 is O(|EB|).

PROOF For the worst-case execution time, along with paths starting from u−, be-
cause each edge of EB is traversed twice at most. Once is cost by obtaining P0,
another is cost by traversing edges of P0. Running the second while loop thus costs
O(|EB|) time. Combined with other operations mentioned above, time complexity
of this algorithm is O(|EB|) except for deriving MB and {u−, u+}. �

Later, by slightly modifying algorithm 5.1, when
−−−−−→
〈v−q , u+〉 ∈ MB , a maximum

matching ofB that excludes any arc incident to u+ can be identified with the worst-
case execution time O(|EB|). Specifically, let EB

v−q
be a set of arcs of EB whose

heads are v−q , and Pv−q
be an initially empty set of an augmenting path ending

at v−q . Then, given algorithm 5.1, replace “head” with “tail”, replace EB
v+p

with

EB
v−q

, and replace Pv+p
with Pv−q

. Also, in modified algorithm, P (P0) represents a

set of edges whose heads are tails of edges of P0. And the return of this modified

algorithm is either MB ⊕ {
−−−−−→
〈v−q , u+〉 ∪ Pv−q

}, or MB . Additionally, if
−−−−−→
〈u−, v+p 〉 ∈ MB

and
−−−−−→
〈v−q , u+〉 ∈ MB together, by theorem 5.5, related to MB \ {

−−−−−→
〈u−, v+p 〉,

−−−−−→
〈v−q , u+〉},

for any identified two augmenting paths, each of which either starts from v+p or
ends at v−q , must be vertex disjoint.

In summary, M
′
B can be thus represented by one of following equations:

1. M
′
B = MB

2. M
′
B = MB ⊕ {

−−−−−→
〈u−, v+p 〉 ∪ Pv+p

}

3. M
′
B = MB ⊕ {

−−−−−→
〈v−q , u+〉 ∪ Pv−q

}

4. M
′
B = MB ⊕ {

−−−−−→
〈v−q , u+〉 ∪ Pv−q

,
−−−−−→
〈u−, v+p 〉 ∪ Pv+p

}

71

5. STRUCTURAL-CONTROL RECOVERY FOR RESILIENT CONTROL SYSTEMS

5.3.3.2 Derive MM

Above all, algorithm 5.2 returns the matching MM of D = (V,E) of definition 5.1,

which contains the minimum number of arcs incident to u. Here, let e =
−−−−−−−→
〈v∗i , v

−(∗)
j 〉

be any arc of M
′
B , where ∗ represents either + or −.

Algorithm 5.2: Derive a maximum matching MM of D.
Input : D = (V,E) with MD of definition 5.1, u.
Output: maximum matching MM of D.

1 MM = ∅;
2 if there is no arcs of MD incident to u then
3 MM

′
= MM ∪MD;

4 else if then
5 Derive B = (VB, EB) with MB by definition 5.2;
6 Identify M

′
B by using algorithm 5.1;

7 if M
′
B 6= MB then

8 while M
′
B 6= ∅ and e ∈M ′

B do
9 Remove e from M

′
B ;

10 if ∗ is − then
11 MM

′
= MM ∪

−−−−→
〈vj , vi〉;

12 else if then
13 MM

′
= MM ∪

−−−−→
〈vi, vj〉;

14 else if then
15 MM

′
= MM ∪MD;

16 return MM ;

PROOF Initially, MM is set as an empty set. Then, checking if u is incident to arcs
of MD or not, which can be done by checking tail and head of each arc of MD in
O(|E|) time for D = (V,E). If not, MM is directly set as MD in line 3 and returned
in line 16. Otherwise, bipartite graph B with MB are derived in line 5 and 6, in
order to identify M

′
B by using algorithm 5.1. If M

′
B 6= MB , it is used to derive MM

in the while loop. In detail, for each arc of M
′
B , its direction is checked in order

to confirm the relative arc of D in either procedure of line 10 or 12, which is based
on the bijections of definition 5.2. Due to each arc of M

′
B is chosen and removed,

M
′
B = ∅ terminates this while loop. IfM

′
B = MB , it means thatMD is the maximum

matching that contains the minimum number of arcs incident to u. And MM is set
as MD. According to those possibilities, MM is finally returned. �

Corollary 5.7 (Time complexity of algorithm 5.2)
Except for obtaining D = (V,E) and MD, the worst-case execution time of running algo-
rithm 5.2 is O(|E|).

PROOF For the time complexity, except for obtaining u, MD, deriving B and MB

by definition 5.2 costs O(|E|) time. Also, by algorithm 5.1, identifying M
′
B costs

O(|EB|) time. Besides, without repeatedly checking arc of M
′
B , time complexity of

72

5.3 SOLUTION

while loop is O(|E|). Because |E| = |EB| by definition 5.2, time complexity of this
algorithm is O(|E|). �

5.3.3.3 Identify M(vg ,vf)

After that, by lemma 5.3, with MM and l = 2, to obtain a maximum matching
of D \ {u}, it is still essential to confirm if M(vg ,vf) exists or not, when

−−−−→
〈u, vf 〉 ∈

MM and
−−−−→
〈vg, u〉 ∈ MM . This confirmation is done by algorithm 5.3 below. In

this algorithm, by those bijections of definition 5.2, D and MM are mapped into a
directed bipartite graph with a maximum matching, noted by B

′
and MMB , and

there must be
−−−−−→
〈v−f , u

+〉 ∈MMB and
−−−−−→
〈u−, v+g 〉 ∈MMB . Here, let Msub be an initially

empty subset of MM of D, and let M(vg ,vf) be an initially empty set. Besides, let
T (v+g) be a set of arcs whose tails are v+g , and let each arc of T (v+g) be e. Additionally,
P0, e

′ ∈ P (P0) of original algorithm 5.1 are still used here.

Algorithm 5.3: Derive a matching M(vg ,vf).

Input : D = (V,E) of definition 5.1, MM returned by algorithm 5.2, vf , vg,
Msub, M(vg ,vf).

Output: Matching M(vg ,vf).
1 Map D = (V,E) and MM into B

′
with MMB by bijections of definition 5.2;

2 while T (v+g) 6= ∅ and e ∈ T (v+g) do
3 P0 = ∅;
4 T (v+g)

′
= T (v+g) \ e;

5 if Head of e is v−f then

6 return M(vg ,vf) =
−−−−→
〈vg, vf 〉, Msub = ∅; Algorithm terminates;

7 else if then
8 P

′
0 = P0 ∪ e and Add existing arcs of B

′
whose tails are head of e

into P (P0);
9 while P (P0) 6= ∅ and e

′ ∈ P (P0) do
10 P (P0)

′
= P (P0) \ e

′
; Remove e

′
from B

′
;

11 P
′
0 = P0 ∪ e

′
and Add existing arcs of B

′
whose tails are head

of e
′

into P (P0);
12 if Head of e′ is v−f then
13 Find a path starting from v+g and ending at v−f in P0;
14 Map each edge of this found path into an arc of D;
15 Add mapped edges not by MM into M(vg ,vf) and Add

mapped edges by MM into Msub;
16 return M(vg ,vf), Msub; Algorithm terminates;

PROOF Because M(vg ,vf) ⊆ E \MM in D = (V,E), and when |M(vg ,vf)| > 1, there
must be a subset of MM whose each arc shares a common head and a common
tail with two different arcs of M(vg ,vf). Thus, in B

′
, M(vg ,vf) and Msub together are

mapped into a directed path, which starts from v+g and ends at v−f in B
′
, which is

identified by the second while loop.

73

5. STRUCTURAL-CONTROL RECOVERY FOR RESILIENT CONTROL SYSTEMS

Therefore, this algorithm mainly identifies M(vg ,vf) through a directed path of
B
′

that connects v+g and v−f . Based on the correctness proof of algorithm 5.1, cor-
rectness of this algorithm about identifying such a directed path can be proved as
well. �

Corollary 5.8 (Time complexity of algorithm 5.3)
Except for deriving inputs, by corollary 5.6, time complexity of algorithm 5.3 is O(|E|) in
the worst case.

PROOF In detail, except for deriving inputs of this algorithm, running time is cost
by mapping D with MM into B

′
with MMB based on definition 5.2, and running

the path identification based on algorithm 5.1, by which, the worst-case execution
time is O(|E|). �

5.3.4 Time Complexity Analysis

Finally, according to lemma 5.1 and lemma 5.3, a maximum matching of D \ {u}
is identified except for recomputation. This procedure is presented by following
algorithm 5.4, where l = {0, 1, 2} is used again.

Algorithm 5.4: Derive a maximum matching of D \ {u}.
Input : D = (V,E) with MD of definition 5.1, u.
Output: A maximum matching of D \ {u}.

1 Identify a maximum matching MM of D by running algorithm 5.2;
2 if l ∈ {0, 1} then
3 Removing u from D;
4 return Remaining MM ;
5 else if l = 2 then
6 Derive a matching M(vg ,vf) of D by running algorithm 5.3;
7 if M(vg ,vf) 6= ∅ then
8 Removing u from D;

9 return MM \ {{
−−−−→
〈u, vf 〉,

−−−−→
〈vg, u〉} ∪Msub} ∪M(vg ,vf);

10 else if then
11 Removing u from D;
12 return Remaining MM ;

PROOF According to lemma 5.1, 5.3, to derive a maximum matching of D \ {u}, it
needs to identify MM at least. Then, l ∈ {0, 1}, remaining MM can be a proposed
maximum matching. Further if l = 2, M(vg ,vf) should be identified. After that, a
maximum matching of D \ {u} is obtained, and problem 5.2 is solved. �

Corollary 5.9 (Time complexity of solving problem 5.2)
Given D = (V,E) with MD of definition 5.1, the worst-case execution time of solving the
problem 5.2 by algorithm 5.4 is O(|E| ·

√
|V |).

PROOF For the worst-case execution time, except for identifyingMD ofD, and con-
firming the removed vertex u, it is the sum of time complexity of each procedure,

74

5.4 SUMMARY

according to previous algorithm 5.1, 5.2 and 5.3, time complexity of this algorithm
is O(|E|) + O(|EB|). By definition 5.1, due to |EB| = |E|, the worst-case execution
time of solving problem 5.2 is thus O(|E|). When deriving MD is concerned, with
the time complexityO(|E|·

√
|V |) by the algorithm of [60], the worst-case execution

time becomes O(|E| ·
√
|V |). �

Furthermore, referring the result of [17], if D is a sparse ER random digraph,
the average-case time complexity of solving the problem 5.2 is O(|E| · log(|V |)).

5.3.5 Comparison

In the worst case, compared with those existing previous works about structural-
control recovery reviewed in section 3.2.1 of chapter 3, our scenario is more efficient
than them and excludes assumptions, which are about the types of input networks,
tree decomposition and tree width. Additionally, by theorem 5.4, because the max-
imum matching that contains the minimum number of edges incident to u+ and
u− are obtained through two augmenting paths at most, so that MM contains the
maximum number of matched nodes related to MD. As a result, unmatched nodes
with maximum number that related to MD in D are still the unmatched nodes re-
lated to MM of D \ {u}. Furthermore, it means that previous inputs can be reused
to recover structural control into the residual physical system with the maximum
number.

5.4 Summary

After removing a known component of an initially minimum-input structurally
controllable physical system, this chapter efficiently recovers structural controlla-
bility with a minimum set of inputs, so that resilience of the control system con-
taining it can be enhanced. Still based on the maximum-matching based method of
section 2.4.1 of chapter 2, we define a digraph with a known maximum matching to
represent the state matrix after removing the same indexed single column and row.
Then, a maximum matching of this input network is identified, and this maximum
matching is identified in linear time except for computing the known maximum
matching of the input network. As a result, structural control into residual phys-
ical system could be recovered in linear time. After focusing on structural-control
recovery against very-limited modification, next chapter recovers structural con-
trollability of a physical system after severe attacks or failures with fixed input
matrix.

75

Chapter 6

Structural-Control Recovery via the Minimum-edge
Addition

6.1 Overview

After implementing structural-controllability recovery against very limited modi-
fication of system components or network vertices in previous two chapters, it is
also indispensable to concern constraints on inputs that are given to structurally
control the latest residual system. This is because, after severe attacks or failures on
system components, input matrix identified according to the resulting state matrix
might require more number of columns or non-zero entries than the input matrix in
reality. Reviewing related works about structural-control recovery in section 3.2.1
of chapter 3, none of them mentions the constraints on input matrix. As a result,
structural control into residual system may not be effectively recovered in reality,
although those methods and scenarios may be executed more efficient than recom-
puting a power dominating set or a maximum matching. In consequence, given
a constrained input matrix, extra modification on the resulting state matrix is un-
doubtedly essential. Generally, the modification could be replacing zero entries
with non-zero entries, or rearranging some existing non-zero entries into other po-
sitions. Nevertheless, new single column and single row can not be added to the
resulting state matrix, because such addition would require a new input.

Therefore, this chapter solves research question 3. Specifically, with assump-
tions of section 1.3.2 of chapter 1, there is an initially structurally uncontrollable
CT-LTI system and a known input matrix. Then, this chapter efficiently recovers its
structural controllability by adding a minimum number of non-zero entries into the
residual state matrix. Particularly, the input matrix of this given system is always
fixed during recovery.

According to theorem 2.1 and corollary 2.2 in section 2.3 of chapter 2, given
a system network that is mapped by both residual state matrix and the given in-
put matrix, we define it as an input network of this chapter. Then, our solution
is to add a minimum set of edges into this input network, to eventually construct
a digraph spanned by disjoint cacti of definition 2.8, so that the resulting network
represents a structurally controllable CT-LTI system, which also involves this ini-
tially given input matrix. Additionally, in terms of constructing a structurally con-
trollable system with given inputs, our problem can be alternatively solved by an
existing edge-addition scenario of [37], which is illustrated in section 3.2.2 of chap-
ter 3. However, this scenario is implemented with low efficiency. Let m, n be the
number of edges and vertices of a system network, the worst-case execution time
is O(n3). By contrast, this chapter would give a different minimum edge-addition
scenario with higher efficiency, whose time complexity is just O(

√
n ·m).

77

6. STRUCTURAL-CONTROL RECOVERY VIA THE MINIMUM-EDGE ADDITION

To effectively add edges and ensure that the final digraph is spanned by disjoint
cacti, given the input network, based on a fixed and arbitrary maximum matching
of it, we raise a two-step edge-addition scenario. This scenario detects and removes
the dilation of definition 2.6 in the first step, and then removes inaccessible vertices
of definition 2.7 finally. According to this scenario, it is further discussed when
added edges can be reduced by the most in number. We conclude that the number
of added edges in the first step is a constant value for the given system network,
while the number of added edges in the second step varies. It is thus possible to
achieve the minimum-edge addition for the given system network. Eventually, our
scenario returns a digraph spanned by a set of disjoint cacti, and the time complex-
ity is the same as that of identifying a maximum matching of the input network.

For the contribution of this chapter, given a structurally uncontrollable system
with a fixed input matrix, in order to recover structural controllability, the worst-
case execution time of applying minimum-edge addition is O(

√
n ·m).

This chapter is structured as follows: section 6.2 specifies research question;
section 6.3 constructs disjoint cacti, and the last section 6.4 summarizes this chapter.

6.2 Problem Formulation

Given a CT-LTI system, which was structurally controllable, after severe attack or
failure, its residual system is now structurally uncontrollable with a given input
matrix, and this structurally uncontrollable system is described by a state equation
below:

ẋ(t) = Ax(t) + Bu(t) (6.1)

where A ∈ Rn×n and B ∈ Rn×m. Particularly, matrix B is fixed, which means
that any entries of each column of B can not be changed. Then, research question
of this chapter is formulated:

Research Question: Identify a matrix with the minimum number of non-zero
entries, noted by A

′ ∈ Rn×n, so that the resulting system described by following
equation is structurally controllable:

ẋ(t) = (A + A
′
)x(t) + Bu(t) (6.2)

By corollary 2.2 and definition 2.4 of chapter 2, the input network of this chapter
is defined in definition 6.1, which is assumed to be the system network mapped by
matrix A and matrix B of equation (6.2).

Definition 6.1 (Input Network of chapter 6)
LetD = (V ∪U,E) be a large and finite digraph, which excludes self loops, isolated vertices
and parallel arcs. Also, let V = {vi|1 < i ≤ n} and U = {ur|1 ≤ r ≤ m}(m < n) be
two independent vertex sets, where each node of U has no in degree and it is a tail of the arc
whose head is only a node of V . Besides, let E be a set of edges among vertices of V ∪ U ,
and MD be a fixed and arbitrary maximum matching of D.

For each arc of E, it corresponds to only one non-zero entry of either A or B of
equation (6.1). With D = (V ∪ U,E) of definition 6.1, the research question could
be transferred into the following graph-theoretical problem:

78

6.3 DISJOINT CACTI CONSTRUCTION

Problem 1: Given digraph D = (V ∪ U,E) of definition 6.1. Then, adding a
minimum set of edges only among different nodes of V intoD, so that the resulting
digraph is spanned by a set of disjoint cacti.

Problem 6.2 is eventually solved in following sections as a way to solve the
research question from a graph-theoretical aspect. For the solution, it mainly relies
on the maximum matching of D to identify and construct disjoint cacti.

6.3 Disjoint Cacti Construction

In this section, given D = (V ∪ U,E) of definition 6.1, we show a scenario of con-
structing a graph spanned by disjoint cacti in subsection 6.3.1 and 6.3.2. Based on
this scenario, in subsection 6.3.3, we confirm the minimum number of added edges
into D, and the related algorithms are shown in section 6.3.4 finally.

6.3.1 The first edge-addition step

By theorem 2.1 and corollary 2.2 of chapter 2, we already known if a system net-
work represents a structurally controllable system, it must exclude both the dila-
tion and inaccessible vertices, and this network work should also be spanned by
disjoint cacti. We thus use the dilation of D as a clue to guide our edge addition
in the first step. We conclude lemma 6.1 and corollary 6.2 to detect the dilation of
D = (V ∪U,E) of definition 6.1, by which, we then conclude corollary 6.3 to further
guide and justify the first edge-addition step, which is shown by algorithm 6.1.

Lemma 6.1
Given D = (V ∪U,E) with MD of definition 6.1. Then, with respect to MD, if D contains
the dilation, the number of unmatched nodes that are heads of arcs of E is more than that of
unmatched nodes that are tails of arcs of E.

PROOF Let V (MD) be a set of vertices of V incident to arcs of MD.
Firstly, focusing on the digraph: MD∪U∪{V \V (MD)}, which contains isolated

vertices, vertex-disjoint directed paths or cycles. Then, all heads of arcs of MD ∪
U ∪ {V \ V (MD)} and all tails of arcs of MD ∪ U ∪ {V \ V (MD)} are only from
directed paths and cycles of MD, so that the number of them are same. Besides,
since MD ∪U ∪{V \V (MD)} contains all vertices of V ∪U , MD ∪U ∪{V \V (MD)}
thus spansD. Further, when any arc ofE\MD is added intoMD∪U∪{V \V (MD)},
the added arc can either increase the number of tails, or increase that of heads,
while the newly-increased heads and tails can not be produced at the same time.
Otherwise, maximality of MD of D is contradicted. Moreover, with respect to MD,
during adding edges ofE \MD intoMD∪U ∪{V \V (MD)}, new tails are produced
by isolated unmatched nodes related to MD and endings nodes of directed paths
of MD, while new heads are only produced by unmatched nodes of V . Obviously,
within D and related to MD, these unmatched nodes are either unmatched nodes
that are tails of arcs of E, or unmatched nodes that are heads of arcs of E.

Secondly, if D involves the dilation, according to definition 2.6, the number of
heads of arcs of E must be more than that of tails of arcs of E, and it means that
the number of newly produced heads must be more than that of newly produced
tails, during adding edges of E \MD into MD ∪ U ∪ {V \ V (MD)}. Above all, in

79

6. STRUCTURAL-CONTROL RECOVERY VIA THE MINIMUM-EDGE ADDITION

comparison of the sources of newly generated tails and heads during adding edges
of E \MD into MD ∪ U ∪ {V \ V (MD)}, with respect to MD, unmatched nodes as
heads of arcs of E must be more than that of both unmatched nodes as tails of arcs
of E and ending nodes of directed paths of MD. Because ending nodes of directed
paths of MD are matched nodes related to MD, if D involves the dilation, it is true
that the number of unmatched nodes that are heads of arcs of E must be more than
that of unmatched nodes that are tails of arcs of E. �

According to lemma 6.1, corollary 6.2 is concluded to indicate when a digraph
like D can exclude the dilation.

Corollary 6.2
Given D = (V ∪ U,E) with MD of definition 6.1. If the number of unmatched nodes that
are heads of arcs of E is less than or equal to that of unmatched nodes that are tails of arcs
of E, then D excludes the dilation.

PROOF Given digraph MD ∪ U ∪ {V \ V (MD)} of lemma 6.1, and based on the
source of newly-generated heads and tails during adding arcs of E \MD into it,
when the number of unmatched nodes that are heads of arcs of E is less than or
equal to that of unmatched nodes that are tails of arcs of E, the number of tails of
arcs of E must be more than or equal to that of heads of arcs of E. By definition 2.6,
D excludes the dilation. �

After that, according to corollary 6.2, following corollary 6.3 determines the first
edge-addition step, which is then clearly illustrated by following algorithm 6.1.

Corollary 6.3
Given D = (V ∪ U,E) with MD of definition 6.1, and D contains the dilation, let Ea1 be
a set of added arcs into D to remove the dilation of D, where arcs of Ea1 are only incident
to nodes of V . Then, if each node of V is a matched node related to a maximum matching
{MD ∪ Ea1}, by corollary 6.2, digraph (V ∪ U,E ∪ Ea1) excludes the dilation.

PROOF With respect to maximum matchingMD∪Ea1 , if all nodes of V are matched.
As a result, unmatched nodes that are heads of arcs of E ∪ Ea1 do not exist in
(V ∪ U,E ∪ Ea1). By contrast, unmatched nodes of (V ∪ U,E ∪ Ea1) related to
MD ∪Ea1 are only nodes of U , and they are always tails of arcs of (V ∪U,E ∪Ea1).
After that, it is obvious that the number of unmatched nodes that are heads of arcs
of E ∪ Ea1 is definitely less than that of unmatched nodes that are tails of arcs of
E ∪ Ea1 . By corollary 6.2, digraph (V ∪ U,E ∪ Ea1) must exclude the dilation. �

Based on corollary 6.3, the first edge-addition step is shown in algorithm 6.1.
Here, let VMD

⊆ V be a set of unmatched nodes of V and related to MD. And let
each node of VMD

be vi, and Ea1 be an initially empty arc set, which would collect
all added arcs among vertices of V . Besides, let ei 6∈ E be a single added arc, where
head of ei is vi, and tail of ei is an ending vertex of a path of the currently identified
maximum matching.

PROOF This algorithm firstly identifies a maximum matching MD of D in order
to remove the dilation of D by corollary 6.2, if there is no unmatched node of V
related to MD, D excludes the dilation and Ea1 = ∅. Otherwise, related to MD,

80

6.3 DISJOINT CACTI CONSTRUCTION

Algorithm 6.1: The first edge-addition step.
Input : D = (V ∪ U,E) of definition 6.1, Ea1 .
Output: A digraph excluding the dilation.

1 Identify a maximum matching MD of D;
2 Identify VMD

through each starting node of directed paths of MD and
vertices not incident to any edge of MD;

3 while |VMD
| 6= ∅ and vi ∈ VMD

do
4 V

′
MD

= VMD
\ vi;

5 E
′
a1 = Ea1 ∪ ei;

6 return (V ∪ U,E ∪ Ea1), MD;

this procedure adds a set of edges to make all nodes of V be matched vertices with
respect to a maximum matching of the resulting digraph. Also, by definition 6.1
and corollary 6.3, since any vertex of U can never be a matched node related to any
matching of D or D after adding edges, cardinality of the maximum matching of
resulting digraph obtained by adding edges into D can be |V | at most. Further, in
the while loop, after adding an arc, it is obvious that remaining unmatched nodes
of V and related toMD are still unmatched related to the latest identified maximum
matching, which are then adjacent to the ending node of a directed path of the latest
identified matching by following edge addition. Due to removal of each node of
VMD

, while loop terminates at VMD
= ∅. Until there is no unmatched node of V

related to MD, the resulting digraph is returned. �

Corollary 6.4 (Time complexity of algorithm 6.1)
Except for deriving D = (V ∪ U,E) of definition 6.1, the worst-case execution time of
running algorithm 6.1 is O(

√
|V ∪ U ||E|).

PROOF For the time complexity of this procedure, it is the sum running time of
identifying a maximum matching MD, identifying unmatched nodes of V and re-
lated to MD, and running the while loop. By the algorithm of [60], identifying
MD costs O(

√
|V ∪ U ||E|) steps at most. For unmatched nodes of V and related to

MD, they are identified by scanning each starting node of directed paths ofMD and
nodes of V that are not heads of arcs of MD, in O(|V |) steps at most. Also, running
the while loop costs O(|V |) steps. In total, worst-case execution time complexity of
the first edge-addition step is O(

√
|V ∪ U ||E|). �

One more thing, by lemma 6.1 and corollary 6.2, although purely removing the
dilation of D may not require to make all unmatched nodes of V related to MD be
matched with respect to a maximum matching of the resulting digraph, it is clearly
that the first edge-addition step not only removes the dilation of D, but also make
any single nodes of all directed paths of MD ∪Ea1 be accessible from vertices of U .
Further, given (V ∪ U,E ∪ Ea1) returned by algorithm 6.1, adding more edges into
it can not introduce the dilation, this is because any node of V has been a matched
node, or a head of an arc.

Simultaneously, since the number of unmatched nodes with respect to any max-
imum matching of finite digraph D = (V ∪ U,E) is a constant value, |Ea1 | =

81

6. STRUCTURAL-CONTROL RECOVERY VIA THE MINIMUM-EDGE ADDITION

|V | − |MD| is thus constant according to D, and our first edge-addition step re-
quires a constant number of added edges.

6.3.2 The second edge-addition step

After implementing the first edge-addition step for D = (V ∪ U,E) of definition
6.1, we now detect vertices of V that are inaccessible from nodes of U in digraph
(V ∪ U,E ∪ Ea1). To do this, we conclude lemma 6.5 based on a kind of strongly
connected components, which is defined by definition 6.2. Generally, a strongly
connected component of a digraph is a subgraph whose any pair of vertices are
connected through at least one existing directed path.

Definition 6.2 (Scc)
GivenD = (V ∪U,E) withMD of definition 6.1 andEa1 returned by algorithm 6.1. Then,
let Scc be a set of all strongly connected components that are only spanned by one or more
cycles of MD, and exclude vertices as heads of arcs whose tails are out of Scc in D ∪ Ea1 .

Lemma 6.5
Given D = (V ∪U,E) with MD of definition 6.1 and Ea1 of algorithm 6.1. Then, digraph
(V ∪ U,E ∪ Ea1) contains vertices of V that are inaccessible from nodes of U , if and only
if Scc 6= ∅.

PROOF ⇐: Within (V ∪ U,E ∪ Ea1), if there are strongly connected components
that only involve one or more cycles of MD ∪ Ea1 , and exclude nodes pointed by
vertices out of them. Obviously, vertices of Scc 6= ∅ can not be approached by nodes
out of these components through existing paths. By contrast, after implementing
algorithm 6.1, all vertices of V that are out of cycles of MD must be approachable
from nodes of U . This is because (V ∪U,E ∪Ea1) has no unmatched nodes that are
contained by V , where each node of V is either in a path starting from a node of U
or in the cycle of MD, and any cycle of MD excludes unmatched nodes related to
MD. As a result, nodes of Scc are only inaccessible vertices of V from nodes of U in
(V ∪ U,E ∪ Ea1).
⇒: If (V ∪U,E ∪Ea1) contains inaccessible vertices of V from U . As mentioned

above, inaccessible nodes of V from nodes ofU in (V ∪U,E∪Ea1) are only contained
by inaccessible cycles of MD by nodes of U . Let ci be an arbitrary inaccessible cycle
of MD from nodes of U , then, ci could have no vertices as heads of arcs whose
tails are out of ci, so that nodes of U can not visit ci through existing paths on
the one hand. On the other hand, cycles of MD, which are connected with ci in
(V ∪ U,E ∪ Ea1), must be also inaccessible from nodes of U in (V ∪ U,E ∪ Ea1).
Otherwise, ci can be accessible from nodes of U . Further, either those single ci
or cycles of MD that are connected with ci are all strongly connected component of
finite digraph (V ∪U,E∪Ea1). Therefore, when (V ∪U,E∪Ea1) contains inaccessible
nodes of V from U , there are strongly connected components only involving one or
more disjoint cycles of MD and excluding nodes pointed by vertices out of them. �

After that, if (V ∪ U,E ∪ Ea1) contains the inaccessible nodes of V from U ,
corollary 6.6 is concluded to remove them by adding extra arcs.

82

6.3 DISJOINT CACTI CONSTRUCTION

Corollary 6.6
Given (V ∪ U,E ∪ Ea1) returned by algorithm 6.1, let Ea2 be a set of added arcs into it.
Then, according to lemma 6.5, if Scc = ∅ in (V ∪ U, {E ∪ Ea1} ∪ Ea2), then, inaccessible
vertices of V from nodes of U are excluded by (V ∪ U, {E ∪ Ea1} ∪ Ea2).

PROOF According to the proof of lemma 6.5, since inaccessible vertices of V from
U can only exist in cycles of MD ∪Ea1 . Then, if Scc = ∅ in (V ∪U, {E ∪Ea1} ∪Ea2),
no inaccessible cycles from U can exist, and inaccessible vertices of V from U in
(V ∪ U,E ∪ Ea1) can thus not exist as a result. �

Based on corollary 6.6, the second edge-addition step is shown in algorithm
6.2 below. Here, let Ea2 be an initially empty set, and ej be an added arc into
(V ∪ U,E ∪ Ea1). Also, let si be any element of Scc, and head of ej be a vertex of si
and tail is a node of a directed path of MD ∪ Ea1 .

Algorithm 6.2: The second edge-addition step.
Input : (V ∪ U,E ∪ Ea1) and MD returned by algorithm 6.1.
Output: A digraph without the dilation and inaccessible nodes.

1 Identify Scc through cycles of MD;
2 while Scc 6= ∅ and si ∈ Scc do
3 S

′
cc = Scc \ si;

4 E
′
a2 = Ea2 ∪ ej ;

5 return (V ∪ U, {E ∪ Ea1} ∪ Ea2);

PROOF With (V ∪ U,E ∪ Ea1) and MD returned by algorithm 6.1, Scc is identified
by scanning nodes of cycles of MD based on the depth-first search or breath-first
search [42] in O(|V |+ |E ∪Ea1 |) steps at most. Then, for each element of Scc, an arc
ej is added to make it be accessible from nodes of U . Due to line 3, when Scc = ∅,
the second edge-addition step terminates and the digraph (V ∪U, {E ∪Ea1}∪Ea2)
excludes both inaccessible nodes of V from U and the dilation. �

Corollary 6.7 (Time complexity of algorithm 6.2)
Given digraph (V ∪ U,E ∪ Ea1) returned by algorithm 6.1, the worst-case execution time
of running algorithm 6.2 is O(|V |+ |E ∪ Ea1 |).

PROOF For the worst-case execution time, it is cost by identifying Scc and running
the while loop. Thus, with proof of algorithm 6.2, except for running algorithm 6.1
to obtain (V ∪ U,E ∪Ea1), it is O(|V |+ |E ∪Ea1 |), this is also because |Scc| < |V |.�

According to corollary 6.3 and corollary 6.6, it is clear that Ea1 ∩ Ea2 = ∅ and
the edge-addition scenario is further concluded by theorem 6.8 below:

Theorem 6.8 (Edge-addition Scenario)
Given D = (V ∪ U,E) of definition 6.1, then, after adding arcs by corollary 6.3 and 6.6 in
order, the digraph (V ∪ U, {E ∪ Ea1} ∪ Ea2) is spanned by a set of vertex-disjoint cacti.

83

6. STRUCTURAL-CONTROL RECOVERY VIA THE MINIMUM-EDGE ADDITION

PROOF Firstly, by corollary 6.3, the dilation of D is removed by adding a set of
arcs Ea1 , and all current directed paths of MD ∪ Ea1 must start from nodes of U .
Then, because {MD ∪ U} ∪ Ea1 spans (V ∪ U,E ∪ Ea1), and cycles of MD ∪ Ea1 in
(V ∪U,E ∪Ea1) might already have constructed a set of disjoint buds of definition
2.5 with edges incident to vertices of them. After adding Ea2 into (V ∪ U,E ∪ Ea1)
by corollary 6.6, those previously inaccessible disjoint buds that are span Scc can
be accessible by nodes of U through paths of MD ∪ Ea1 , so that all cycles of MD

are involved into buds. Eventually, (V ∪ U, {E ∪Ea1} ∪Ea2) is spanned by a set of
disjoint cacti, where each cactus starts from a node of U . �

By theorem 6.8, the number of added arcs is represented by |Ea1 | + |Ea2 |. Be-
sides, reviewing algorithm 6.1, because all matched nodes of D and related to MD

can be only contained by V . Thus, |VMD
| = |V | − |MD|. Also, since |VMD

| = |Ea1 |,
and |MD| is a constant value for D. Therefore, |Ea1 | is a constant number according
to the given digraph D. Then, next section explores when |Ea2 | can be reduced by
the most in order to obtain the minimum set of added edges.

6.3.3 The Minimum Number of Added Arcs

Firstly, we conclude theorem 6.9 to indicate how to reduce the number of added
edges by one:

Theorem 6.9
Given D = (V ∪ U,E) with MD of definition 6.1, and Scc 6= ∅, let

−−−−→
〈vi, vj〉 be an arc

of a cycle of an element of Scc, and vk ∈ V be an unmatched node related to MD. Then,
according to MD, by the edge-addition scenario of theorem 6.8, the total number of added
edges into D is reduced by one, if and only if the arc

−−−−→
〈vi, vk〉 ∈ {E \MD} exists, and vj is

an unmatched node related to a different maximum matching from MD.

PROOF Let M
′
D be a maximum matching of D, and M

′
D 6= MD. Since the number

of edges added in the first step is constant, we thus prove that the number of added
edges in the second step according to M

′
D is less than that according to MD by one,

if and only if arc
−−−−→
〈vi, vk〉 exists, and vj is an unmatched node related to M

′
D.

⇐: If arc
−−−−→
〈vi, vk〉 ∈ {E \MD} exists, and vj is an unmatched node related to M

′
D.

Then, in M
′
D, a path can exist, which starts from vj , contains all vertices of a cycle

of MD and involving
−−−−→
〈vi, vj〉, and also includes a path of MD starting from vk. An

example is illustrated in figure 6.1. In this example, the red cycle and the red path
are contained into a same maximum matching, and this cycle is an element of Scc.
Also, due to the existence of the arc

−−−−→
〈v4, v6〉, a directed path starting from v5 and

ending at v10 exists, and it is excluded by the maximum matching containing this
red cycle and path.

After the first edge-addition step by M
′
D, we can observe that all nodes of an el-

ement of Scc, which includes
−−−−→
〈vi, vj〉, is now accessible from nodes of U , and there is

no need for extra edges to make this element of Scc be accessible again by corollary
6.6. Nevertheless, by MD, after the dilation removal step, such same element of Scc
is still inaccessible from nodes of U , which thus requires an edge to make nodes of
it accessible. Hence, the total number of added edges into D according to M

′
D is

less than that according to MD by one.

84

6.3 DISJOINT CACTI CONSTRUCTION

v1

v2

v3

v4

v5 v6
v7

v8
v9

v10

Figure 6.1:

⇒: After the first edge-addition step, based on corollary 6.6, if the number of
added edges to eliminate nodes of V that are inaccessible from U according to M

′
D

is less than that according to MD by one. Let S
′
cc be a set of all strongly connected

components that only involve one or more disjoint cycles ofM
′
D, and exclude nodes

pointed by vertices out of them after removing dilation ofD. Then, because adding
edges according to any maximum matching of D in the first edge-addition step
does not influence any cycle of this maximum matching. The number of elements of
Scc is thus more than that of S

′
cc by one, which can be represented by |S′cc| = |Scc|−1.

Also, since any two maximum matchings of a same digraph can be transformed
into each other by exchanging vertices or edges, it is possible that one element of
Scc should be out of both Scc and S

′
cc by some ways. Based on definition 6.2, for this

purpose, it requires that all nodes of a cycle of this element of Scc must be contained
into a path of M

′
D. In detail, for the element of Scc only involving a single cycle of

MD, we should make its vertices be contained by a path and without changing
the number of unmatched nodes of D. Besides, for the element of Scc involving
multiple disjoint cycles of MD, we can make any involved single cycle’s vertices
be contained by a path and without changing the number of unmatched nodes of
D, so that other cycles of this element would be accessible. Above all, given MD,
nodes of a path of M

′
D that are all vertices of a cycle and a path together of MD,

in which the starting vertex of this path is noted by vk, and an edge of this cycle is
noted by

−−−−→
〈vi, vj〉. Then, there must be

−−−−→
〈vi, vk〉 ∈ M

′
D, and vj is the starting vertex of

this path of M
′
D. �

According to theorem 6.9, corollary 6.10 is concluded to reduce the maximum
number of added edges based on the edge-addition scenario of theorem 6.8:

Corollary 6.10
Given D = (V ∪ U,E) with MD of definition 6.1, Scc 6= ∅, and let Ssub be a subset of
Scc. Also, assume that each element of Ssub have a vertex as the tail of an arc whose head is
an unmatched node of V related to MD. Then, if cardinality of Ssub is maximum, the total
number of added edges into D according to MD is reduced by the most by theorem 6.9.

PROOF Given any element of Ssub, based on theorem 6.9, the number of added
edges into D according to MD can be reduced by one. Also, because elements
of Scc are mutually disjoint components, once a vertex of any element of Ssub is
discovered, which is an unmatched node with respect to a maximum matching
different from MD, there can be a common maximum matching different from MD

for all such vertices. Besides, since D is a finite graph, Ssub ⊆ Scc is a finite strongly

85

6. STRUCTURAL-CONTROL RECOVERY VIA THE MINIMUM-EDGE ADDITION

connected component. Therefore, in aggregation, when cardinality of Ssub is the
maximum, the number of added edges by scenario of theorem 6.8 is reduced by
the most. �

6.3.4 Execution

According to corollary 6.3, 6.6 and corollary 6.10, algorithm 6.3 shows the entire
process of constructing a digraph spanned by a set of disjoint cacti via adding a
minimum set of edges into D = (V ∪ U,E) through MD of definition 6.1. Here, let
vh ∈ V be any vertex not incident to edges of MD. Besides, let si be an element of
Scc, pi be a path of MD, and G be an initially empty set. Also, let vk ∈ V be either
the starting node of pi, or an isolated unmatched node related to MD, and let ci be
a cycle,

−−−−→
〈vi, vj〉 ∈ E be an arc of ci.

Algorithm 6.3: Construct a digraph spanned by disjoint cacti
Input: D = (V ∪ U,E) of definition 6.1, G
Output: A digraph spanned by disjoint cacti

1 Starting from each node of U , find MD by running the algorithm of [60];
2 Identify each ci, pi of MD by depth-first search (DFS) algorithm of [111],

and each vh;
3 Add each vh into G;
4 Identify Scc from each ci in D; G

′
= G ∪ Scc;

5 Remove cycles of Scc from MD;

6 Identify each si ∈ Scc, for ci ∈ si, where
−−−−→
〈vi, vj〉 ∈ ci, and

−−−−→
〈vi, vk〉 ∈ E \MD;

7 for each identified si do
8 G

′
= G \ ci and S

′
cc = Scc \ si;

9 if vk is an isolated unmatched node related to MD then
10 G

′
= G \ vk;

11 Construct a path: {ci \
−−−→
〈vi, vj〉} ∪

−−−−→
〈vi, vk〉;

12 else if then
13 Construct a path: {ci \

−−−→
〈vi, vj〉}∪{pi∪

−−−−→
〈vi, vk〉} and M

′
D = MD \pi;

14 Add this path into G;
15 G

′
= G ∪MD;

16 In G, add arcs into G from each existing zero-outdegree node of V to each
zero-indegree node of V until there is no zero-indegree node of V ;

17 In G, add arcs into G from any node of V and out of Scc to each element of
Scc until each element of Scc has an incoming edge whose tails is out of Scc;

18 return D ∪G;

PROOF Initially, this procedure identifies a maximum matching MD to detect the
dilation and inaccessible nodes of D in line 1. Particularly, MD is identified from
edges incident to vertices of U in order to sufficiently use vertices of U . Then, line
2-4 identifies Scc according to cycles of MD, and Scc is added into G. In procedure
of line 5, cycles of Scc are removed from MD, which results in that current MD

involves disjoint paths and cycles, and those cycles must contain vertices pointed

86

6.3 DISJOINT CACTI CONSTRUCTION

by nodes out of them. By theorem 6.9 and corollary 6.10, procedures of line 6 and
7 modifies some strongly connected components of Scc to reduce the number of
added edges according to MD by the most. Because D is finite, the number of el-
ements of Scc is finite, and each chosen si is removed in line 8, this for loop can
terminate. During the modification, paths obtained through procedure of either
line 9 or 11 are added into G at line 14. After running for loop, current MD only
involves disjoint paths and cycles out of Scc, while current G only contains isolated
single vertices and disjoint paths and remaining elements of Scc. Next, MD is add
into G in line 15, and G thus contains disjoint paths, single vertices not incident to
MD, and remaining Scc whose all elements have no incoming edges from nodes out
of them, which together span original D, and each of them is disjoint with others.
Also, there is no common vertices or edges within G. Clearly, in G, all vertices of
V without indegree are unmatched nodes related to a common maximum match-
ing different from MD. Later, the first edge-addition step is executed by line 16,
which adds edges to remove all unmatched nodes of V and related to a common
maximum matching that is different from MD, so that the resulting digraph has no
dilation and all paths starting from nodes of U . In the following, line 17 removes
inaccessible nodes of V from U . Specifically, those inaccessible nodes are removed
through vertices of remaining elements of Scc in G. After that, G contains all ver-
tices of D, and all remaining elements of Scc are adjacent with disjoint paths that
start from U . Thus, a set of disjoint cacti that start from nodes of U must exist in G.
Eventually, D ∪G is therefore spanned by a set of disjoint cacti that only start from
nodes of U .

Corollary 6.11 (Time complexity of algorithm 6.3)
GivenD = (V ∪U,E) of definition 6.1, the worst-case execution time of running algorithm
6.3 or solving the problem 6.2 is O(

√
|V ∪ U | · |E|).

PROOF For the worst-case execution time of this algorithm, it is the sum of running
time of each line. Identifying a maximum matching of D costs O(

√
|V ∪ U | · |E|)

by algorithm [60], and identifying cycles and paths of MD cost O(|V ∪ U | + |E|)
through executing DFS algorithm. Then, for running line 4, it needs to traverse
each identified cycles ofMD. The worst-case time complexity is thus represented by
O(|V |+ |E|) at most. In detail, treat each cycle as a vertices, and edges among those
cycles are still edges. Then, by using DFS algorithm again, components that only
composed of cycles of MD can be identified and Scc can be obtained, which only
contains components without incoming edges of E. Meanwhile, for each identified
component, the involved cycles are directly removed from MD in line 5 rather than
identifying them again. Next, for running procedure of line 6, it needs to traverse
each node of an element of Scc at most, which thus cost O(|V |) steps at most. For
running the for loop of line 7, since combining nodes of each si with an unmatched
node relatedMD into a path ofE \MD costsO(1), because each ci and paired single
node or path has been known. The worst-case execution time of this procedure
is O(|E|). Later, adding edges of the first step in line 16 needs to identify zero-
indegree and zero-outdegree nodes, which can be done in O(|V |) steps at most
by traversing each node. As for the second edge-addition step of line 17, because
remaining elements of Scc in G has been already known after the for loop, the edge

87

6. STRUCTURAL-CONTROL RECOVERY VIA THE MINIMUM-EDGE ADDITION

addition only depends on the existence of elements of Scc, which thus costs O(|E|)
steps at most. Above all, worst-case execution time of algorithm 6.3 isO(

√
|V ∪ U | ·

|E|) for D = (V ∪ U,E). �

6.3.5 Comparison

Compared with the edge-addition scenario of [37], which is specifically reviewed
in section 3.2.2 of chapter 3, the input network of both this scenario and our input
network of definition 6.1 are same. Nevertheless, for the time complexity of execut-
ing our entire operations in the worst case, it is equivalent to that of identifying a
maximum matching of the system network, and more efficiently than running the
scenario of [37], which is proportional to the cube of the number of vertices of the
input network.

Additionally, our scenario might be executed more efficient, ifD = (V ∪U,E) is
a sparse ER random digraph. Because the average-case time complexity of solving
the problem 6.2 is reduced into O(|E| · log(|V ∪ U |)).

6.4 Summary

Given a structurally uncontrollable system, recovery of its structural controllability
can be done by various methods and requirements. In this chapter, our recovery
is constrained by inputs and time complexity, where the input matrix is fixed. For
our solution, we add a minimum set of edges into the given system network to
obtain a digraph spanned by a set of disjoint cacti, so that the system represented
by this digraph is structurally controllable. Also, the worst-case execution time is
more efficient than existing related works.

88

Part III

Efficient Network Analysis to
Maintain Structural

Controllability

89

Chapter 7

Security-Aware Edge Analysis for Structural
Controllability

7.1 Overview

Related works of section 3.3 of chapter 3 show the robustness of network struc-
tural controllability. And previous works of section 3.4 indicate how single node
and edge obtain network structural controllability with a minimum set of inputs.
However, it is still unknown how each single node and edge quantitatively main-
tain structural control with a minimum set of inputs. As a result, vulnerable single
nodes and edges to the removal can not be explicitly identified, and let along pro-
tecting network structural controllability against removing them. From this chap-
ter to chapter 9, efficient network edge and vertex analysis would be systematically
illustrated.

Given a continuous-time and linear time-invariant (CT-LTI) dynamical network
likeG(A) = (V1, E1) of definition 2.4 of chapter 2, to clarify the importance of a sin-
gle edge in maintaining its structural controllability with a minimum set of inputs,
Liu et al. [73] defined critical, redundant, and ordinary categories. In detail, a re-
moval of a critical edge gains the minimum number of inputs to structurally control
the residual network; removing a redundant edge never affects current minimum
set of inputs; removing an ordinary link does not change the minimum number
of inputs, except for driver nodes forced by inputs. Obviously, exactly knowing
edges of each category is forward-looking to protect structural controllability of a
given network against the single edge removal. Yet, an efficient network analysis to
confirm categories of all edges of a CT-LTI model network is still uncertain, except
for using the low-efficiency algorithm of [97]. Generally speaking, given a digraph
with n vertices andm edge, time complexity of this algorithm isO(m2 ·

√
n+
√
n·m)

in the worst case.
Therefore, this chapter solves research question 4. Specifically, with assump-

tions of section 1.3.2 of chapter 1, this chapter efficiently classifies all arcs of a
minimum-input structurally controllable digraph into critical, redundant and or-
dinary categories, respectively. Besides, the minimum set of inputs is assumed to
be known and obtained by the maximum-matching based method shown in section
2.4.1 of chapter 2. Meanwhile, this digraph is also assumed to contain a precom-
puted maximum matching.

This research question is solved by identifying all single arcs that are contained
by at least one maximum matching of the input network. By theorem 2.8 of chap-
ter 2, this is because a maximum matching of a digraph determines a minimum
set of inputs to structurally control itself. Category of any single edge of the input
network can be confirmed by analysing if it is involved into a maximum matching

91

7. SECURITY-AWARE EDGE ANALYSIS FOR STRUCTURAL CONTROLLABILITY

of the given network. Specifically, in this chapter, it would be explained when an
edge is out of any maximum matching, it is a redundant edge. When an edge is in
some maximum matchings, it is an ordinary edge. When an edge is in all maximum
matchings, it is a critical edge. Simultaneously, given a known maximum matching
of the input network, although algorithms of [112] can identify some edges of max-
imum matchings in linear time, they might not be able to identify all such edges.
Thus, this chapter is highly motivated to design few algorithms to ensure that each
edge involved into a maximum matching can be more explicitly identified in linear
time. For this purpose, the input network is mapped into a bipartite graph to run
various operations.

For the contribution of this chapter, the worst-case execution time of classifying
all edges of a minimum-input structurally controllable network is linear. This is
achieved by efficiently identifying all arcs contained by maximum matchings of
the input network.

Remaining chapter is structured as follows: section 7.2 specifies research ques-
tion with some statements; section 7.3 implements the entire arc identification, and
the last section 7.4 summarizes this chapter.

7.2 Preliminaries & Problem Formulation

7.2.1 Research Question

Firstly, the input network of this chapter is defined below:

Definition 7.1 (Input Network of chapter 7)
Let D = (V,E) be a large, finite digraph, and D excludes self loops, parallel arcs and
isolated nodes. Also, V represents the vertex set, V = {vi|1 ≤ i ≤ n}(n > 2), and E
represent the edge set, E = {

−−−−→
〈vi, vj〉|vi, vj ∈ V }. Besides, let MD be a fixed and arbitrary

maximum matching of D, identified by the algorithm of [60].

Then, assume that this input network and a minimum set of inputs together
construct a structurally controllable system, which is also represented by following
state equation:

ẋ(t) = Ax(t) + Bu(t) (7.1)

where, A ∈ Rn×n, B ∈ Rn×m, and D = (V,E) of definition 7.1 only maps into
the matrix A. For each arc

−−−−→
〈vi, vj〉 ∈ E, it corresponds to only one non-zero entry,

which is noted by aji ∈ A. Also, the number of columns of matrix B is minimum.
With digraph D = (V,E) and precomputed MD, research question of this chapter
is specified:

Research Question: Given digraphD = (V,E) of definition 7.1, then, efficiently
classify all arcs of E into critical, redundant, and ordinary categories, respectively.

7.2.2 Modelling

In order to model this research question into following graph-theoretical problem
7.2.2, theorem 7.1 and corollary 7.2 are deduced.

92

7.2 PRELIMINARIES & PROBLEM FORMULATION

Specifically, in the remaining of this chapter, we define M0 as an another ar-
bitrary maximum matching of D, where M0 6= MD and |M0| = |MD|. Then, let
e be an arbitrary single edge of E, and all possible impacts of removing e on the
maximum matching of D \ e is shown in the first place:

Theorem 7.1
Given D = (V,E) with MD of definition 7.1, and M0. Then, on the one hand, if e 6∈ MD,
MD is still a maximum matching of digraph (V,E \ e); on the other hand, if e ∈MD, and
e 6∈ M0, M0 is still a maximum matching of digraph (V,E \ e); besides, if e ∈ MD and
e ∈M0, a maximum matching of digraph (V,E \ e) is MD \ e or M0 \ e.

PROOF On the one hand, if e 6∈MD, removing e does not influence MD. Thus, MD

is still a maximum matching of (V,E \ e). On the other hand, if e ∈ MD, while
e 6∈ M0. After removing it, M0 can not be influenced, and M0 is thus a maximum
matching of (V,E \ e). Besides, if e ∈M0 and e ∈MD, matching MD \ e and M0 \ e
are obtained. Assume that MD \ e is not a maximum matching in (V,E \ e), and the
cardinality of a maximum matching must be |MD|, it means that removal of e can
not influence a maximum matching ofD. Nevertheless, by the definition ofM0, e is
contained by all maximum matchings of D in this case. Therefore, a contradiction
exists, andMD\emust be a maximum matching of (V,E\e) if e ∈M0 and e ∈MD.�

Next, according to theorem 7.1 and the minimum input theorem 2.8 of chapter
2, corollary 7.2 is concluded below to model a single edge classification:

Corollary 7.2
Given D = (V,E) with MD of definition 7.1, and M0. Then, for any arc e ∈ E, if e ∈MD

and e ∈ M0, it is a critical edge; or if e ∈ MD and e 6∈ M0, it is an ordinary edge; or if
e 6∈M0 and e 6∈MD, it is a redundant edge.

PROOF If e ∈ E is in all maximum matchings of D, where e ∈ MD and e ∈ M0,
by theorem 7.1, its removal leads that MD \ e is a maximum matching of digraph
(V,E \ e). By the minimum input theorem 2.8, the minimum number of inputs to
structurally control (V,E \ e) is increased by one in number, and e is thus a critical
edge. If e ∈ MD and e 6∈ M0, by the minimum input theorem 2.8, removal of e
does not influence M0, by which the minimum number of inputs is still |V |− |MD|,
whereas the minimum set of inputs is not the same as that identified by MD. Thus,
e is an ordinary edge. If e 6∈ MD and e 6∈ M0, after removing e, any maximum
matching of D still exists in (V,E \ e). By theorem 2.8, removal of e can do nothing
on previously identified inputs. Thus, e is a redundant edge. �

By corollary 7.2, the Research question of this chapter is thus modelled into
following graph-theoretical problem:

Problem 1: Given D = (V,E) with MD of definition 7.1. Then, identify each arc
that is contained by at least one maximum matching of D.

Problem 7.2.2 is eventually solved in following sections as a way to solve the
research question of this chapter.

93

7. SECURITY-AWARE EDGE ANALYSIS FOR STRUCTURAL CONTROLLABILITY

7.3 Identification of Arcs of Maximum Matchings

7.3.1 Data Structures

GivenD = (V,E) of definition 7.1, to identify all arcs of E that are contained by the
maximum matching of D, a bipartite graph mapped by D is used, which is defined
below:

Definition 7.2
Given D = (V,E) and MD of definition 7.1, let B = (VB, EB) be a bipartite graph, V +

B

and V −B be two independent vertex sets, and MB be a maximum matching of B, where
|VB| ≤ 2|V |, |EB| = |E|, and |MD| = |MB|. Then, V +

B = {v+i |1 ≤ i ≤ n}, V −B =
{v−j |1 ≤ j ≤ n} and VB = V −B ∪ V

+
B . Besides, let α : E → EB be a bijection, for each

−−−−→
〈vi, vj〉 ∈ E, there is α :

−−−−→
〈vi, vj〉 → (v+i , v

−
j), where (v+i , v

−
j) ∈ EB , v+i ∈ V +

B and
v−j ∈ V

−
B . Also, let MB be mapped from MD.

An example of the bijection is shown by figure 4.1 of chapter 4. And there can
not be the edge like (v−i , v

+
i) ∈ EB , because D excludes self loops. Therefore, edges

of D that are contained by maximum matchings of D can be solved by finding
edges of B that are contrianed by maximum matchings of B.

After that, within B = (VB, EB), two kinds of edge sets with related to MB are
defined in definition 7.3 and 7.4, which exclude any edge of MB . Then, through
theorem 7.3, it is proved that all edges that are involved into at least one maximum
matching different from MB of B, must be only contained by these edge sets.

Definition 7.3 (Alternating-Cycle Matchig)
Given B = (VB, EB) with MB of definition 7.2, let {m1,m2, . . . ,mt} be a subset of MB ,
and {e1, e2, . . . , et} * MB (2 ≤ t ≤ |MB|) be a matching set. Then, {e1, e2, . . . , et} is
an alternating-cycle matching related to MB , if and only if {m1, e1,m2, e2, . . . ,mt, et} is
a cycle of B.

Definition 7.4 (Alternating-Path Matching)
Given B = (VB, EB) with MB of definition 7.2, let {m1,m2, . . . ,mt} be a subset of MB ,
and {e1, e2, . . . , et} * MB (1 ≤ t ≤ |MB|) be a matching set. Then, {e1, e2, . . . , et} is
an alternating-path matching related to MB , if and only if {m1, e1,m2, e2, . . . ,mt, et} is
a path of B.

An example of an alternating-path matching and an alternating-cycle matching
are show in figure 7.1. With the alternating-path matching and alternating-cycle
matching related toMB ofB = (VB, EB) of definition 7.2, theorem 7.3 below shows
how to use them related to MB to identify edges of another different maximum
matching from MB , which is according to relationship between any two different
maximum matchings of B.

Theorem 7.3
Given B = (VB, EB) with MB of definition 7.2. Then, for any single edge of EB \MB ,
it is contained by at least one maximum matching of B, if and only if it belongs to an
alternating-cycle matching or an alternating-path matching with respect to MB .

94

7.3 IDENTIFICATION OF ARCS OF MAXIMUM MATCHINGS

B1
v+1 v−2

v+2 v−3

v+3 v−4

v+4 v−1

B2
v+1 v−2

v+2 v−3

v+3 v−4

v+4 v−1

Figure 7.1: An alternating-path matching and an alternating-cycle matching
The set of all blue edges of each bipartite graph above is a maximum matching, and all red edges is an

alternating-path matching in B1, or an alternating-cycle matching in B2.

PROOF ⇐: If any single edge of EB \MB belongs to an alternating-cycle match-
ing or an alternating-path matching with respect to MB , let {e1, e2, . . . , et} be such
this existing alternating-cycle matching, or an alternating-path matching, which
contains this single edge. By definition 7.3 and 7.4, there must be a subset of MB ,
and edges of this set is adjacent to the same number of edges of {e1, e2, . . . , et}.
Let {m1,m2, . . . ,mt} ⊆ MB be such a set. Then, replacing {m1,m2, . . . ,mt} ⊆
MB with {e1, e2, . . . , et} can generate a maximum matching of B, which is MB \
{m1,m2, . . . ,mt}∪{e1, e2, . . . , et}. Therefore, {e1, e2, . . . , et} is contained by at least
one different maximum matching from MB , let along that single edge.
⇒: If a single edge of EB \MB is contained by a maximum matching of B, let

MB0 be such a maximum matching, and MB0 6= MB . Then, because MB ⊕MB0

must contain vertex-disjoint paths or cycles, which alternatively include the same
number of edges ofMB andMB0 . Therefore, let {m1, e1,m2, e2, . . . ,mt, et} be either
a single path or a cycle of MB ⊕MB0 , where 1 ≤ t,≤ |MB|, {m1,m2, . . . ,mt} ⊆MB

and {e1, e2, . . . , et} ⊆ MB0 . By definition 7.3, and definition 7.4, {e1, e2, . . . , et} is
either an alternating-path matching or an alternating-cycle matching with respect
toMB . And the single edge ofEB\MB contained byMB0 belongs to an alternating-
path matching or an alternating-cycle matching with respect to MB . �

As a result, for any edge of one of these identified edge sets, noted by (v+i , v
−
j) ∈

EB , by the bijection of definition 7.2, arc
−−−−→
〈vi, vj〉 of D = (V,E) of definition 7.1 can

be confirmed as an arc that is contained by at least one maximum matching of D.
Procedure of identification is done in next section 7.3.2.

7.3.2 Execution

Given B = (VB, EB) with MB of definition 7.2, to identify all alternating-cycle
matchings and alternating-path matchings related to MB with lower efficiency, it
is also indispensable to understand the distribution of them within B, which is
clarified by theorem 7.4 and theorem 7.5.

Theorem 7.4
Given B = (VB, EB) with MB of definition 7.2, let v+i ∈ V

+
B , v−j ∈ V

−
B be not incident

to any edges of MB . Then, related to MB , any two distinct alternating-path matchings
incident to v+i and v−j respectively, must be vertex-disjoint.

95

7. SECURITY-AWARE EDGE ANALYSIS FOR STRUCTURAL CONTROLLABILITY

a
v+1 v−2

v+2 v−3

v+3 v−4

v+4 v−1

b
v+1 v−2

v+2 v−3

v+3 v−4

v+4 v−1

Figure 7.2:

PROOF Assume that there exists a node shared by two alternating-path match-
ings incident to v+i and v−j , respectively. And this shared node is involved into
a path incident to v+i and alternatively involving edges of MB and EB \MB . Si-
multaneously, this shared node is also involved into another path incident to v−j
and alternatively involving edges of MB and EB \MB . As a result, these two al-
ternating paths related to MB construct an augmenting path of definition 2.12 of
chapter 2 related to MB , whose existence in B contradicts with the maximality of
MB . For example, in figure 7.2 a, blue lines are a matching, {(v+2 , v

−
4), (v+3 , v

−
1)}

and {(v+4 , v
−
3)} are two alternating-path matchings related to this blue-line match-

ing. Then, {(v+4 , v
−
3), (v−3 , v

+
2), (v+2 , v

−
4), (v−4 , v

+
3), (v+3 , v

−
1)} is an augmenting path.

Thus, any two alternating-path matchings incident to v+i and v−j respectively, must
be vertex-disjoint. �

After investigating distribution among alternating-path matchings, theorem 7.5
illustrates distribution among both alternating-cycle matchings and alternating-
path matchings with respect to MB .

Theorem 7.5
Given B = (VB, EB) with MB of definition 7.2, let v+i ∈ V

+
B , v−j ∈ V

−
B be not incident to

any edges of MB . Then, related to MB , any two distinct alternating-path matchings inci-
dent to v+i and v−j respectively, can not be adjacent to a same alternating-cycle matching.

PROOF By definition 7.3 and 7.4, any alternating-cycle matching related to MB can
be adjacent to a single alternating-path matching, and any vertex incident to an
edge of an alternating-cycle matching is also involved into a cycle that alterna-
tively includes edges of MB and EB \ MB . Furthermore, any shared vertex by
an alternating-cycle matching and an alternating-path matching must be involved
into an alternating path related to MB . Because of this, such an alternating-cycle
matching can not be adjacent to two distinct alternating-path matching incident
to v+i and v−j respectively. Otherwise, an augmenting path related to MB would
exist. For example, in figure 7.2 b, all blue lines are a matching, with respect to it,
{(v+2 , v

−
4), (v+3 , v

−
2), (v+1 , v

−
3)} is an alternating-cycle matching, while {(v+4 , v

−
3)} and

{(v+3 , v
−
1)} are two alternating-path matchings. Then, {v+4 , v

−
3), (v−3 , v

+
2), (v+2 , v

−
4),

(v−4 , v
+
3), (v+3 , v

−
1)} is an augmenting path. Hence, this theorem holds correctness.�

After this, to identify all alternating-path and alternating-cycle matchings with
respect to MB of B = (VB, EB) of definition 7.2, a digraph is used, which is noted

96

7.3 IDENTIFICATION OF ARCS OF MAXIMUM MATCHINGS

by D0 = (V0, E0) and produced by algorithm 7.1 below, where any alternating-
path and alternating-cycle matching related to MB are corresponding to a directed
path and a cycle of D0. In algorithm 7.1, given B = (VB, EB) with MB , let V0 and
E0 be an initially empty vertex and arc set, respectively. Also, let (v+i , v

−
j) be any

single edge of EB , and (v+p , v
−
q) be any single edge of MB . Besides, S1 represents

an initially empty set of vertices, and let
−−−−→
〈vp, vq〉 and

−−−−→
〈vi, vj〉 be two arcs.

Algorithm 7.1: Produce a Digraph D0 = (V0, E0).
Input : B = (VB, EB) with MB of definition 7.2, E0, V0, S1.
Output: Digraph D0 = (V0, E0).

1 while EB 6= ∅ and (v+i , v
−
j) ∈ EB do

2 E
′
B = EB \ (v+i , v

−
j);

3 if (v+i , v
−
j) = (v+p , v

−
q) then

4 Colour
−−−−→
〈vi, vj〉 into red;

5 E
′
0 = E0 ∪

−−−−→
〈vi, vj〉;

6 V
′
0 = V0 ∪ {vi, vj};

7 while |E0| ≥ |EB \MB| and ∃
−−−−→
〈vp, vq〉 coloured do

8 E
′
0 = E0 \

−−−−→
〈vp, vq〉;

9 Replace {vp, vq}with vpq in V0;
10 Replace arcs whose heads are vq with arcs whose heads are vpq in E0;
11 Replace arcs whose tails are vp with arcs whose tails are vpq in E0;
12 Identify every node of V0 that is not obtained by line 9; and Add it into S1;
13 return D0 = (V0, E0); S1;

PROOF Initially, in the first while loop, each edge of EB is directed from vertices
of V +

B to vertices of V −B , and those arcs are added into E0, where arcs mapped
by edges of MB are marked by colouring. Also, nodes incident to those arcs are
also added into V0. Then, in the second while loop, each arc

−−−−→
〈vp, vq〉 ∈ E0 that is

produced by an edge (v+p , v
−
q) ∈MB is identified and removed from E0. Also, each

vertex pair {vp, vq} is together replaced by a single vertex vpq, so that vpq is the tail
of the arc whose tail was vp, and vpq is also the head of the arc whose head was vq.
Therefore, each arc ofE0 after running the second while loop can construct directed
paths or cycles, each of which is thus corresponding to one exact alternating-path
or cycle matching with respect to MB . Because each considered edge of EB and
MB is removed, the first and the second while loop must terminate at a moment.
An example of this algorithm is shown in figure 7.3. �

Corollary 7.6 (Time complexity of algorithm 7.1)
Given B = (VB, EB) with MB of definition 7.2, the worst-case execution time of running
algorithm 7.1 is O(|VB|+ |EB|).

PROOF Because each considered edge of EB and MB is removed in line 2 and 8,
respectively, the two loops together runO(|EB|) steps. Then, identifying each node
of V0 at line 12 costs O(|V0|). Besides, focusing on line 9, because 2|V0| ≤ |VB|,

97

7. SECURITY-AWARE EDGE ANALYSIS FOR STRUCTURAL CONTROLLABILITY

v+1 v−2

v+2 v−3

v+3 v−4

v+4 v−1

v12

v23

v34v4 v1

Figure 7.3:
The bipartite graph contains a maximum matching of all blue edges, which is on the left and is mapped into a

digraph on the right based on algorithm 7.1.

worst-case execution time of this algorithm is O(|VB|+ |EB|), which excludes time
cost by deriving inputs. �

Additionally, inD0, each alternating-path matching related toMB ofB is mapped
into a directed path starting from or ending at vertices of S1, while each alternating-
cycle matching is mapped into a directed cycle only involving vertices like vpq,
where p 6= q, and any single vertex like vi and vj of V0 can not be connected, oth-
erwise, there would be an augmenting path related to MB . By theorem 7.4 and
7.5, those directed paths corresponding to alternating-path matchings incident to
v+i 6∈ MB and v−j 6∈ MB must be disjoint as well. Also, there could be multiple
paths of D0 sharing a same terminal vertex, which correspond to alternating-path
matchings incident to a same vertex out of MB .

Next, algorithm 7.2 finds all those paths and cycles corresponding to alternating-
path and cycle matchings within D0 = (V0, E0) returned by algorithm 7.1. Clearly,
cycles of D0 are actually contained by strongly connected components of D0. In
this algorithm, for S1 returned by algorithm 7.1, let any single vertex of S1 be vi.
Also, let S2 be an initially empty arc set.

Algorithm 7.2: Identify arcs of directed paths and cycles.
Input : D0 = (V0, E0) and S1 returned by algorithm 7.1, S2.
Output: Arcs of directed paths and cycles.

1 while S1 6= ∅ and vi ∈ S1 do
2 S

′
1 = S1 \ vi;

3 Identify all arcs of E0 through paths that start from or end at vi without
repetition;

4 Add identified arcs into S2;
5 Remove all identified arcs from E0;
6 Identify arcs of strongly connected components of remaining D0 by Tarjan’s

algorithm of [111];
7 Add identified arcs into S2;
8 return S2;

PROOF By running algorithm 7.1, each alternating-path matching related to MB of
B = (VB, EB) of definition 7.2 corresponds to a directed path starting from or end-
ing at a node of S1, while any alternating-cycle matching related to MB is used to

98

7.3 IDENTIFICATION OF ARCS OF MAXIMUM MATCHINGS

construct a directed cycle of D0, which only involves nodes of V0 \ S1. Therefore,
in line 3, starting from each vi ∈ S1, all arcs of paths starting from or ending at
vi can be identified and added into S2. Particularly, this identification process can
not be based on breadth-first or depth-first search, because some arcs might be not
traversed, otherwise. Instead, as long as an arc is involved into a path whose termi-
nal is vi, it should be traversed once and added into S2, whenever its head and tail
have been visited previously or not. Because of line 2, this while loop terminates at
the moment when S1 = ∅. At the same time, each traversed edge is removed from
E0. After this, by the strongly-component identification algorithm, all cycles that
are not joint with paths can be found and added into S2. Therefore, each cycle and
path can be traversed by this algorithm, and this algorithm is correct. �

Corollary 7.7 (Time complexity of algorithm 7.2)
Given D0 = (V0, E0) returned by algorithm 7.1, the worst-case execution time of running
algorithm 7.2 is O(|VB|+ |EB|).

PROOF Due to line 5, each arc of D0 is traversed once only, and the while loop
costs O(|E0|) steps in the worst case. Besides, running Tarjan’s strongly connected-
component identification algorithm can identify all arcs of cycles of D0. For the
worst-case execution time, except for obtaining inputs, it is O(|V0|+ |E0|), which is
cost by line 3 and line 6. Because |E0| < |EB| and |V0| < |VB| according to algorithm
7.1, time complexity of this algorithm is also represented by O(|VB|+ |EB|). �

With S2, the following algorithm 7.3 identifies each arc of D = (V,E) of defini-
tion 7.1, which is contained by a maximum matching, so that categories of all arcs
of D can be confirmed by theorem 7.2. Here, any single arc of S2 is noted by e0.
In notation of e0, according to algorithm 7.1, it could be represented by one of four
cases:

−−−−−→
〈vi, vpq〉,

−−−−−→
〈vpq, vi〉,

−−−−−→
〈vij , vpq〉,

−−−−−→
〈vpq, vij〉where vi, vpq, vij are vertices of V0.

PROOF According to algorithm 7.2, any arc of S2 is involved into either a directed
cycle or a path, which corresponds to an alternating-path or an alternating-cycle
matching related to MB of B = (VB, EB) of definition 7.2 by algorithm 7.1. Also,
by the bijection of definition 7.2 and theorem 7.3, all those alternating-path and
cycle matchings are mapped by arcs of maximum matchings that are different from
MD. Therefore, the remaining MD of line 12 only contains all arcs that are shared
by each maximum matching of D. By contrast, the finally returned E contains arcs
that are out of all maximum matchings of D. Also, because each edge of S2 is
removed, the while loop would terminate when S2 = ∅. Above all, this algorithm
is correct. �

Corollary 7.8 (Time complexity of algorithm 7.3)
Given D = (V,E) with MD of definition 7.1, and S2 returned by algorithm 7.2, the worst-
case execution time of running algorithm 7.3 is O(|E|).

PROOF For the time complexity, since each arc of S2 is removed, and identifying an
arc ofD by any given e0 costsO(1), running the while loop thus costsO(|S2|) steps.
Due to |S2| < E0, |E0| < |EB| by algorithm 7.1, and |EB| = |E| by definition 7.2.
Time complexity of this algorithm can also be presented by O(|E|), which excludes
deriving the inputs of this algorithm. �

99

7. SECURITY-AWARE EDGE ANALYSIS FOR STRUCTURAL CONTROLLABILITY

Algorithm 7.3: Identify arcs contained by maximum matchings of D.
Input : D = (V,E) with MD of definition 7.1, S2 returned by algorithm 7.2.
Output: Arcs of maximum matchings.

1 while S2 6= ∅ and e0 ∈ S2 do
2 S

′
2 = S2 \ e0;

3 if e0 =
−−−−−→
〈vi, vpq〉 or e0 =

−−−−−→
〈vpq, vi〉 then

4 M
′
D = MD \

−−−−→
〈vp, vq〉 ;

5 E
′

= E \ {
−−−−→
〈vi, vq〉,

−−−−→
〈vp, vq〉} or E

′
= E \ {

−−−−→
〈vp, vi〉,

−−−−→
〈vp, vq〉};

6 return {
−−−−→
〈vi, vq〉,

−−−−→
〈vp, vq〉} or{

−−−−→
〈vp, vq〉,

−−−−→
〈vp, vi〉};

7 else if e0 =
−−−−−→
〈vij , vpq〉 or e0 =

−−−−−→
〈vpq, vij〉 then

8 M
′
D = MD \ {

−−−−→
〈vp, vq〉,

−−−−→
〈vi, vj〉};

9 E
′

= E \ {
−−−−→
〈vi, vj〉,

−−−−→
〈vi, vq〉,

−−−→
〈vp, vq} or

E
′

= E \ {
−−−−→
〈vi, vj〉,

−−−−→
〈vp, vj〉,

−−−→
〈vp, vq};

10 return {
−−−−→
〈vi, vj〉,

−−−−→
〈vi, vq〉,

−−−→
〈vp, vq} or {

−−−−→
〈vi, vj〉,

−−−−→
〈vp, vj〉,

−−−→
〈vp, vq} ;

11 E
′

= E \MD;
12 return E, MD;

After that, by corollary 7.2, those returned arcs via each e0 are classified into or-
dinary category, and arcs of returned MD are classified into critical category, while
arcs of returned E are classified into redundant category.

7.3.3 Time Complexity Analysis

Given D = (V,E) and MD of definition 7.1, the entire process of identifying arcs
contained by maximum matchings of D is composed following procedures:

1. Derive B = (VB, EB) with MB of definition 7.2;

2. Run algorithm 7.1, 7.2 and 7.3, in sequence.

Except for deriving D = (V,E) and MD, to solve problem 7.2.2, the worst-case
execution time of entire process is the sum of time complexity of each procedure
above. Obviously, deriving B = (VB, EB) and MB costs O(|E|) based on the bi-
jection of definition 7.2. Then, running those three algorithms costs O(|VB| + |EB)
together. Meanwhile, because |EB| = |E| and |VB| ≤ 2|V |, the worst-case execu-
tion time isO(|V |+ |E|). When identifyingMD ofD is considered, time complexity
becomes O(|V |+ |E|+

√
|V | · |E|).

7.3.4 Comparison

By contrast, with the same assumptions, obviously, performance of procedure shown
above is more efficient than using the algorithm of [97] to identify all arcs of max-
imum matchings of D. Additionally, since all those identified arcs by the process
shown above, are also called the maximally-matchable edges of D, compared with

100

7.4 SUMMARY

algorithms of [112], each arc included by at least one maximum matching ofD is al-
ways identified. In summary, all arcs ofD = (V,E) can be efficiently and accurately
classified into critical, redundant and ordinary categories, respectively.

7.4 Summary

To effectively identify vulnerable edges to the removal and in order to effectively
maintain network structural controllability with a minimum set of inputs, this
chapter efficiently classifies arcs of a minimum-input structurally controllable CT-
LTI network into critical, redundant and ordinary categories. And the solution is to
identify all edges of maximum matchings of the input network, where one bipartite
graph and a directed graph are used and it is mapped by the input digraph. As a
result, this solution can be executed more accurately and efficiently than existing
related works shown in section 3.4.1 of chapter 3. After edge-based analysis, in fol-
lowing chapters, vertex-based security analysis for structural controllability would
be implemented.

101

Chapter 8

Driver-Node based Analysis for Structural
Controllability

8.1 Overview

After implementing the edge-based analysis to maintain structural controllability
with a minimum set of inputs, the vertex-based analysis for the same purpose
would be considered from this chapter onwards. In this chapter, the driver-node
based analysis is executed. As discussed in section 2.6 of chapter 2, to structurally
control a CT-LTI network, such as G(A) = (V1, E1) of definition 2.4, driver nodes
are indispensable network vertices, which are directly forced by external inputs.
Due to such importance, driver nodes would be undoubtedly targeted by mali-
cious attackers. For example, attackers can affect found driver nodes by themselves
to hijack current structural control into the targeted network [34]. Besides, attack-
ers directly damage found driver nodes to disrupt structural control. In particular,
recently, Jia et al. [62] raised an effective method to identify each single network
vertex that is included by all minimum sets of driver nodes in polynomial time. In
detail, given a CT-LTI dynamical network with n vertices and m edges in number,
identifying all nodes of each minimum set of driver nodes costsO(m·n) steps in the
worst case. Clearly, for attackers, compared with identifying only one set of driver
nodes in each time, this method is more efficient and convenient to hijack and dam-
age current structural controllability. Additionally, it is also essential to identify
vulnerable driver nodes to the removal. This is because previous works listed in
section 3.4.2 of chapter 3 did not further investigate the harmfulness caused by
removing a single driver node.

Therefore, this chapter solves the research question 5. In detail, with assump-
tions of section 1.3.2 of chapter 1, it is also assumed there is a CT-LTI dynamical
digraph as an input network. This chapter firstly identifies every vertex of all min-
imum sets of driver nodes,which is executed more efficiently than [62]. Then, in
order to explicitly identify vulnerable driver nodes to the removal, this chapter clas-
sifies each single driver node based on impacts of its removal on structural control
into the residual network. Additionally, the minimum set of driver nodes is ob-
tained by the maximum-matching based method shown in section 2.4.1 of chapter
2, in assumption.

For the solution, this chapter identifies all vertices of minimum sets of driver
nodes by finding each single vertex, which is an unmatched node related to a max-
imum matching of the input network. According to the minium input theorem
[73], this is because any minimum set of driver nodes obtained by the maximum-
matching based method is also a set of unmatched nodes. After this, for the same
reason, each drive node is classified by the impact of its removal on the minimum

103

8. DRIVER-NODE BASED ANALYSIS FOR STRUCTURAL CONTROLLABILITY

set of unmatched nodes with respect to a maximum matching of the residual net-
work. It is concluded that removing a driver node either reduces the original car-
dinality of the minimum set of driver nodes by one, or not change. And those left
driver nodes can still be used to structurally control the residual network. For the
whole operations about identification and classification of all existing single driver
nodes, they are executed within a bipartite graph. This bipartite graph is mapped
by the input network. As a result of running those operations, the worst-case ex-
ecution time is linear to identify each single node that can be a driver node. This
cost is more efficient than the result of running the method of [62].

For the contribution of this chapter, given a CT-LTI dynamical digraph, vertices
of all minimum sets of driver nodes are identified in O(n ·

√
m) steps at most. To

further understand the harmfulness caused by a single driver-node removal, those
identified nodes are also efficiently classified by impacts of any single driver-node
removal on structurally controlling the residual network.

Remaining chapter is structured as follows: section 8.2 specifies research ques-
tion and gives preliminaries; section 8.3 shows related solution; and the last section
8.4 summarizes this chapter.

8.2 Preliminaries & Problem Formulation

8.2.1 Research Question

Firstly, the input network of this chapter is defined below:

Definition 8.1 (Input Network of chapter 8)
Let D = (V,E) be a large and finite digraph, excluding self loops, parallel arcs and isolated
nodes, where vertex set V 6= ∅, V = {vi|1 ≤ i ≤ n}(n > 2), and arc set E 6= ∅, |E| > 2,
E = {

−−−−→
〈vi, vj〉|i 6= j, vi, vj ∈ V }.

Then, assume that D = (V,E) can be represented by following CT-LTI dynam-
ics:

ẋ(t) = Ax(t) (8.1)

where, A ∈ Rn×n and D = (V,E) is assumed to be mapped into the matrix
A. Also, each arc noted by

−−−−→
〈vi, vj〉 ∈ E, only corresponds to one non-zero entry

noted by aji ∈ A. Then, with D = (V,E) of definition 8.1, research question of this
chapter is formally defined:

Research Question: Given D = (V,E) of definition 8.1, efficiently identify each
single vertex that could be included by a minimum set of driver nodes, and also
classify those identified nodes based on how any single driver node maintains the
currently used minimum set of driver nodes.

8.2.2 Modelling

By the maximum-matching based method of section 2.4.1 of chapter 2, or the min-
imum input theorem 2.8 of section 2.6, because each minimum set of driver nodes
could be a set of unmatched nodes related to a maximum matching of a given

104

8.2 PRELIMINARIES & PROBLEM FORMULATION

v1

v2

v3 v4

v5

v6

D
′ v+1 v−2

v+2 v−4

v+3 v−1

v+4 v−5

v+5 v−3

v−6 v−6

B
′

Figure 8.1:

A digraph D
′

is mapped into a bipartite graph B
′

by definition 8.2.

digraph with CT-LTI dynamics. Therefore, Research Question of this chapter is
modelled by following problem:

Problem 1: Within D = (V,E) of definition 8.1, identify each single vertex that
is included by a set of unmatched nodes related to a maximum matching of D, and
also classify them based on how any one of them maintains the currently identified
unmatched nodes with respect to a maximum matching of D.

Furthermore, problem 8.2.2 is modelled by Problem 2 below with a bipartite
graph of definition 8.2 according to lemma 8.1.

Definition 8.2
Given D = (V,E) of definition 8.1, let B = (VB, EB) be a bipartite graph, V +

B and V −B be
two disjoint and independent sets of VB , where |EB| = |E|, |VB| = 2|V |, |V −B | = |V +

B |,
and VB = {{v−i , v

+
i }|v

−
i ∈ V

−
B , v

+
i ∈ V

+
B }. Besides, let β : V → VB , and γ : E → EB be

two different bijections. For any vi ∈ V , β : vi → {v+i , v
−
i }, where v−i ∈ V

−
B , v

+
i ∈ V

+
B ;

for any
−−−−→
〈vi, vj〉 ∈ E, γ :

−−−−→
〈vi, vj〉 → (v+i , v

−
j), where (v+i , v

−
j) ∈ EB , v−i ∈ V −B and

v+j ∈ V
+
B .

An example of bijections above is shown by figure 8.1. And there can not be the
edge like (v−i , v

+
i) ∈ EB , because D excludes self loops.

Then, lemma 8.1 uses B = (VB, EB) of definition 8.2 to identify unmatched
nodes with respect to maximum matchings of D = (V,E) of definition 8.1:

Lemma 8.1
Given D = (V,E) and B = (VB, EB), let vi be a single node of V , and {v−i , v

+
i } be a

pair of nodes of VB and mapped by vi. Also, let MD be a maximum matching of D, and
MB be a maximum matching of B, where MD is assumed to be mapped into MB by γ of
definition 8.2. Then, vi ∈ V is an unmatched node with respect to MD, if and only if v−i is
an unmatched node in V −B with respect to MB .

PROOF ⇒: If vi ∈ V in D is an unmatched node with respect to MD, and MB is
mapped by MD. By definition 8.2, {v−i , v

+
i } ⊆ VB is mapped from vi, and v−i ∈ V

−
B

can not be incident to any edge ofMB . Thus, v−i is unmatched related toMB in V −B .
⇐: If v−i is an unmatched node in V −B related toMB . By definition 8.2, v−i can be

only incident to edges out of MB . Let (v+j , v
−
i) 6∈ MB be such an edge. Then, there

105

8. DRIVER-NODE BASED ANALYSIS FOR STRUCTURAL CONTROLLABILITY

is γ−1 : (v+j , v
−
i) →

−−−−→
〈vj , vi〉, and

−−−−→
〈vj , vi〉 6∈ MD as a result. Thus, vi is unmatched

related to MD in D. �

By lemma 8.1, following problem is defined below to model problem 8.2.2:
Problem 2: Given B = (VB, EB) of definition 8.2, find each vertex of V −B , which

is an unmatched node related to a maximum matching of B. Besides, let {v−i , v
+
i }

be a pair of nodes of VB , where v−i is an unmatched node related to a maximum
matching of B, and then classify those found nodes based on how any {v−i , v

+
i }

maintains the current unmatched nodes of V −B with respect to a maximum match-
ing of B.

Problem 2 is eventually solved in following as a way to solve the problem 8.2.2
and research question of this chapter, further.

8.3 Solution

8.3.1 Unmatched-node Identification

This section identifies all nodes of V −B that are unmatched nodes with respect to
maximum matchings of bipartite graph B = (VB, EB) of definition 8.2. To do this,
lemma 8.2 identifies a vertex of V −B , which is a matched node with respect to a given
maximum matching, but it is also an unmatched node related to another different
maximum matching:

Lemma 8.2
In B = (VB, EB) of definition 8.3, let Mi be a maximum matching of B. With respect
to Mi, let v−i ∈ V −B be a matched node, and v−j ∈ V −B be an unmatched node. Then,
with respect to a maximum matching different from Mi, v−j is matched, while v−i becomes
unmatched, if and only if v−i and v−j are connected by an existing path of B, which alter-
natively involves edges of Mi and EB \Mi.

PROOF Let Mj be a different maximum matching from Mi and involving an edge
incident to v−j .
⇒: Related to Mj , if v−i is an unmatched node, while v−j is matched. Because

Mi⊕Mj contains vertex-disjoint paths, or cycles that alternatively involve the same
number of edges of Mi and Mj , v−i and v−j can be only involved into a path. Oth-
erwise, either v−j is matched related to Mi, or v−i is matched related to Mj , which is
a contradiction. Hence, v−i and v−j are connected by a path alternatively involving
edges of Mi and Mj in B.
⇐: If v−i and v−j are connected by a path alternatively involving edges of Mi

and EB \ Mi. Let P be this path, whose two ending nodes must be v−i and v−j ,
respectively. Then, P must contain the same number of edges of Mi and E \Mi.
Otherwise, v−i and v−j can not be connected. Thus, a different maximum matching
of B can be obtained by: Mi ⊕ P . Meanwhile, with respect to Mi ⊕ P , v−i is an
unmatched node and v−j is matched. �

According to lemma 8.2, let v+i ∈ V
+
B be a matched node related to a maximum

matching, noted by Mi, we can also know how v+i is an unmatched node related to

106

8.3 SOLUTION

a different maximum matching. Then, in remaining parts of this chapter, any single
vertex like v−i of lemma 8.1 is called the extra-unmatched node, which is formally
defined below:

Definition 8.3 (Extra-unmatched Node)
Given B = (VB, EB) of definition 8.2, let Mi, Mj be two different maximum matchings of
B. Then, v−i ∈ V

−
B is an extra-unmatched node of V −B via Mi, if and only if v−i ∈ V

−
B is a

matched node with respect to Mi, while it is also an unmatched node with respect to Mj .

Remark 3 By definition 8.3, with respect to Mi, a matched node of V +
B that is un-

matched node with respect to a different maximum matching fromMi, is also called
an extra-unmatched node of V +

B via Mi accordingly. 2

However, based on the lemma 8.2, an inevitable question emerges:
“GivenB = (VB, EB) of definition 8.2, letMi be a maximum matching ofB, when the

number of all extra-unmatched nodes of V −B viaMi is less than |Mi|, for any node of V −B
that is not an extra-unmatched node of V −B via Mi, whether it is an extra-unmatched
node of V −B via a different maximum matching from Mi, or not?”

Obviously, without clarifying this issue, it is still unknown if all extra-unmatched
nodes of V −B via Mi and all unmatched nodes of V −B with respect to Mi, are all
unmatched nodes related to maximum matchings of B. Hence, theorem 8.3 and
corollary 8.4 below are deduced to make such a clarification:

Theorem 8.3
Given B = (VB, EB) of definition 8.2, let Mi, Mj be any two different maximum match-
ings ofB, and let v−i be a matched node related to bothMi andMj . Besides, assume that v−i
is not an extra-unmatched node of V −B via Mi. Then, v−i is also not an extra-unmatched
node of V −B via Mj .

PROOF Assume that v−i is an extra-unmatched node of V −B via Mj , and let Pj be an
existing path by lemma 8.2, which alternatively involves edges of Mj and EB \Mj

and connects v−i with an unmatched node of V −B related to Mj . Accordingly, by
proving that Pj can not exist, v−i can therefore not be an extra-unmatched node of
V −B via Mj , and correctness of this theorem is proved eventually.

Further, let h(Pj) be a subset of Pj , where |Pj | = 2|h(Pj)| and h(Pj) ⊆ Mj .
Then, by lemma 8.2, an edge of h(Pj) is therefore incident to v−i . Also, since there
are no edges of Mj that are disjoint with edges of Mi, otherwise, maximality of
Mi is contradicted. As results, some edges of Mj either construct disjoint paths
or cycles with the same number of edges of Mi, while other edges of Mj can be
shared with by Mi. Based on these relationships among edges of Mi and Mj , we
next investigate whether h(Pj) exists or not in following representative cases.

1. If h(Pj) ⊆ {Mi∩Mj}. Then, Pj that contains an edge incident to v−i , can alter-
natively contain edges of Mi and EB \Mi, and v−i is thus an extra-unmatched
node of V −B via Mi by lemma 8.2, which contradicts to that v−i is not an extra-
unmatched node of V −B via Mi. Therefore, this case is invalid.

2. If h(Pj) ⊆ {Mj \ {Mj ∩Mi}} and h(Pj) only constructs a path with the same
number of edges of Mi. Also, this path can not connect an unmatched node
of V −B with respect to Mj . Otherwise, v−i is an unmatched node of V −B via Mi.

107

8. DRIVER-NODE BASED ANALYSIS FOR STRUCTURAL CONTROLLABILITY

a

v+1 v−2

v+2 v−4

v+3 v−1

v+4 v−5

v+5 v−3

v+6 v−6
b

v+1 v−2

v+2 v−4

v+3 v−1

v+4 v−5

v+5 v−3

v+6 v−6
c

v+1 v−2

v+2 v−5

v+3 v−4

v+4 v−1

v+5 v−3

v+6 v−6

Figure 8.2:

Let ei = (v+k , v
−
i) be an edge of h(Pj) and ei 6∈Mi. Then, this path that alterna-

tively involves edges of Mi and Mj , can only connect v+k with an unmatched
node of V +

B related to Mj . We denote this path as Pi. Also, since h(Pj) ⊆ Pj ,
vertices of Pj are shared with Pi, Pj and Pi can construct an augmenting path
with respect toMj , so that the cardinality ofMj is augmented by corollary 2.3
of chapter 2, which contradicts the maximality of Mj . Thus, Pi can not exist
and this case is invalid.

For example, in figure 8.2 a, Mj = {(v+1 , v
−
2), (v+2 , v

−
4), (v+3 , v

−
1), (v+4 , v

−
5)}, and

h(Pj) = {(v+2 , v
−
4), (v+3 , v

−
1)}, and Pj = h(Pj) ∪ {(v+2 , v

−
1), (v+3 , v

−
6)}. Also,

Pi = h(Pj) ∪ {(v+3 , v
−
4), (v+6 , v

−
1)}. Obviously, an augmenting path related to

this maximum matching is {(v+6 , v
−
1), (v−1 , v

+
3), (v+3 , v

−
6)}.

3. If h(Pj) ⊆ {Mj \ {Mj ∩Mi}} and h(Pj) only constructs a cycle with the same
number of edges of Mi. Because all vertices of this cycle are connected, nodes
of this cycle and V −B are shared by both Pj and Mi. Thus, there is a path alter-
natively involving edges of EB \Mi andMi, so that v−i is an extra-unmatched
node of V −B via Mi, which is a contradiction, and this case is invalid.

For example, in figure 8.2 b,Mj = {(v+1 , v
−
2), (v+2 , v

−
4), (v+3 , v

−
1), (v+4 , v

−
5)}, and

h(Pj) = {(v+2 , v
−
4), (v+3 , v

−
1), (v+4 , v

−
5)}, andPj = h(Pj)∪{(v+2 , v

−
1), (v+3 , v

−
5), (v+4

, v−6)}. Also, the cycle is h(Pj) ∪ {(v+3 , v
−
4), (v+2 , v

−
5), (v+4 , v

−
1)}. Then, in figure

8.2 c, which is completely same as the graph of b,Mi = {(v+1 , v
−
2), (v+2 , v

−
5), (v+3

, v−4), (v+4 , v
−
1)}. Obviously, due to existence of that cycle, v−5 , v

−
4 , v

−
1 are extra-

unmatched nodes of V −B via Mi, which are contradictions with h(Pj).

4. If h(Pj) ⊆ {Mj \ {Mj ∩Mi}} and h(Pj) constructs both a path and a cycle
with edges of Mi. Because v−i can be incident to an edge of either this cycle
or path, and such a cycle or path is the cycle or path of previous invalid case
two or three. And such path and cycle are also vertex disjoint. As a result,
referring to the contradiction occurring in cases two or three, this case is also
invalid.

5. If h(Pj) contains edges of both Mi ∩Mj and Mj \ {Mi ∩Mj}. For the same
reason of impossibility of case four above, or the contradiction of case one, or
both of them, this case is also impossible.

108

8.3 SOLUTION

Now, we prove that those five invalid cases cover all possible cases that v−i is
an extra-unmatched node of V −B via Mj . Because h(Pj) ⊆ {Mi ∩Mj} or h(Pj) ⊆
{Mi \ {Mi ∩Mj}}, or h(Pj) contains edges of these two independent sets. Also,
because h(Pj) constructs a path or cycle or both path and cycle with the same num-
ber of edges of Mi. Therefore, in combination of those conditions, there might be
nine cases in total, while those five cases above can be further extended to them as
follows with other specific conditions:

1. If h(Pj) ⊆ {Mi ∩Mj}, and

a) h(Pj) constructs a path with edges of Mi; or

b) h(Pj) constructs a cycle with edges of Mi; or

c) h(Pj) constructs a path and a cycle with edges of Mi.

2. If h(Pj) ⊆ {Mj \ {Mj ∩Mi}}, and

a) h(Pj) only constructs a path with edges of Mi; or

b) h(Pj) only constructs a cycle with edges of Mi; or

c) h(Pj) constructs both a path and a cycle with edges of Mi.

3. If h(Pj) contains edges of both {Mi ∩Mj} and {Mj \ {Mi ∩Mj}} and

a) h(Pj) constructs a path with edges of Mi; or

b) h(Pj) constructs a cycle with edges of Mi; or

c) h(Pj) constructs a path and a cycle with edges of Mi.

It is obvious that those nine cases are covered by previous five ones, this is be-
cause case one and five that are previously verified are a condition for the case
(1.a), (1.b), (1.c) and (3.a), (3.b), (3.c), respectively. Simultaneously, case two, three
and four that are verified previously can be used to prove the impossibility of
(2.a), (2.b), (2.c). And they have been proved to be invalid based on how edges
of h(Pj) exist for Mi and Mj . Thus, those nine cases can not be valid as a result of
those five ones.

In summary, after focusing on how edges of h(Pj) exist with Mi, because it is
concluded that h(Pj) can not exist, Pj can not exist, accordingly. And v−i is still not
an extra-unmatched node of V −B via Mj . Eventually, this theorem is correct. �

Above all, corollary 8.4 below is concluded to identify each single vertex of V −B
that could be an unmatched node related to a maximum matching of B = (VB, EB)
of definition 8.2:

Corollary 8.4
By theorem 8.3 and lemma 8.2, given a fixed and arbitrary maximum matching of B =
(VB, EB), each unmatched node of V −B related to a different maximum matching can be
always identified through extra-unmatched node of V −B via this given maximum matching.

109

8. DRIVER-NODE BASED ANALYSIS FOR STRUCTURAL CONTROLLABILITY

PROOF According to lemma 8.2, given a fixed and arbitrary maximum matching
of B, unmatched nodes with respect to other different maximum matchings can
be identified by extra-unmatched nodes via a given maximum matching. Then, by
theorem 8.3, all unmatched nodes with respect to all different maximum match-
ings from this given one can be identified. Therefore, each node of V −B that is an
unmatched node related to a maximum matching of B can be identified. �

Based on the corollary 8.4, algorithm 8.1 thus identifies all single nodes that are
unmatched nodes related to maximum matchings of B. In this algorithm, let MB

be a maximum matching of B, and those identified vertices are unmatched nodes
with respect to MB , and extra-unmatched nodes of V −B via MB , respectively. Also,
let Sn1 be an initially empty node set.

Algorithm 8.1: Find all existing unmatched nodes of V −B
Input: B = (VB, EB) of definition 8.2, Sn1

Output: Single vertices of V −B
1 Identify MB of B by Hopctoft-Karp algorithm [60];
2 Set the direction of each edge of MB from V +

B to V −B ; Set the direction of
each edge of EB \MB from V −B to V +

B ;
3 Identify unmatched nodes of V −B related to MB ;
4 Add identified nodes into Sn1 ;
5 while each unmatched node of V −B related to MB do
6 Run Breath-First Search (BFS) algorithm [42] from it once to visit

matched nodes of V −B related to MB ;
7 Add visited matched nodes of V −B into Sn1 ;
8 return Sn1 ;

PROOF Initially, identifying MB of B costs O(
√
|VB| · |EB|) at most by running

Hopctoft-Karp algorithm [60]. Then, setting directions of edges of EB in O(|EB|)
time ensures that matched nodes related to MB can be visited by unmatched nodes
via paths alternatively involving edges of MB and EB \ MB . Obviously, in the
while loop, BFS algorithm is applied to identify connected nodes of V −B and un-
matched nodes related to MB . Also, each visited node of V −B , which is matched by
MB , is an extra-unmatched node of V −B via MB by lemma 8.2 and definition 8.3. By
running breath-first search algorithm, each extra-unmatched nodes of V −B via MB

can be visited in O(|EB|+ |VB|) time steps. Finally, time complexity of finding each
unmatched node of V −B related to maximum matchings of B is O(

√
|VB| · |EB|) in

the worst case. �

Compared with the method of [62] in the worst-case execution time, which is
represented byO(|VB| · |EB|), with a bipartite graph mapped by the input network,
procedure illustrated by algorithm 8.1 is more efficient. Additionally, according to
lemma 8.1 and algorithm 8.1, corollary 8.5 below is concluded to deduce worst-
case execution time of identifying nodes of all minimum sets of driver nodes of
D = (V,E) is concluded:

110

8.3 SOLUTION

Corollary 8.5 (Time complexity of identifying all single driver nodes)
Given D = (V,E) of definition 8.1, the worst-case execution time of identifying nodes of
all minimum sets of driver nodes of D = (V,E) is O(

√
|V | · |E|).

PROOF By definition 8.2, because mapping D = (V,E) of definition 8.1 into B =
(VB, EB) costs O(|V |+ |E|) time, and |EB| = |E|, 2|V | = |VB|. According to lemma
8.1 and algorithm 8.1, combining with the worst-case execution time of running
algorithm 8.1, identifying nodes of all minimum sets of driver nodes of D = (V,E)
is thus O(

√
|V | · |E|). �

8.3.2 Unmatched-node Classification

Given B = (VB, EB) of definition 8.2, and {v−i , v
+
i } ⊆ VB , let v−i be an unmatched

node with respect to a maximum matching of B. Then, all impacts of removing
{v−i , v

+
i } on unmatched nodes of V −B \ v

−
i with respect to a maximum matching of

B \ {v−i , v
+
i }, are concluded by following theorem 8.6:

Theorem 8.6
Given B = (VB, EB), let Mi be a maximum matching of B, and S be a set of unmatched
nodes of V −B related to Mi, where v−i ∈ S. Also, when v+i is matched by Mi, let e =
(v+i , v

−
j) ∈ Mi and let Pv+i

be a path that leads v+i to be an extra unmatched node of V +
B

via Mi. Then, in B \ {v−i , v
+
i }, one of following cases occurs:

1. if v+i is a matched node related to Mi and Pv+i
= ∅. Then, {S \ v−i } ∪ v

−
j is a set of

all unmatched nodes with respect to the maximum matching Mi \ e;

2. if v+i is either an unmatched node related to Mi, or v+i is matched and Pv+i
6= ∅.

Then, accordingly, S \ v−i is a set of unmatched nodes with respect to either Mi or
Mi ⊕ Pv+i

.

PROOF Since v−i is unmatched related to Mi, its removal does not influence both
Mi and S \ v−i , maximum matching of B \ {v−i , v

+
i } then only depends on v+i .

For the first case, if v+i is a matched node related toMi, (v+i , v
−
j) ∈Mi and Pv+i

=

∅. Then, by lemma 8.2 and theorem 8.3, v+i is also not an extra-unmatched node of
V +
B related to other different maximum matchings of B. Thus, v+i is contained by

all maximum matchings of B, and Mi \ e is a maximum matching of B \ {v−i , v
+
i }.

Further, {S \ v−i } ∪ v
−
j is a set of unmatched nodes of V −B \ v

−
i related to Mi \ e.

For the second case, when v+i is an unmatched node of V +
B with respect to Mi,

removal of v+i can therefore not affect existence of Mi. In B \ {v−i , v
+
i }, Mi is still a

maximum matching and S \ v−i is a set of unmatched nodes related to it.
On the other hand, if (v+i , v

−
j) ∈ Mi and Pv+i

6= ∅, v+i is an extra unmatched
node of V +

B via Mi by definition 8.3. Then, maximum matching Mi ⊕Pv+i
of B \ v−i

can not be effected by removing v+i , and S \ v−i is still a set of unmatched nodes of
V −B \ v

−
i related to a maximum matching of B \ {v−i , v

+
i }. �

Based on theorem 8.6, two categories for single unmatched nodes of V −B are
defined below:

111

8. DRIVER-NODE BASED ANALYSIS FOR STRUCTURAL CONTROLLABILITY

Definition 8.4 (Ordinary & Spare Node)
GivenB = (VB, EB) of definition 8.2, and {v−i , vi+} ∈ VB , let v−i ∈ V

−
B be an unmatched

node related to a maximum matching of B. Then, v−i is an ordinary node if and only if case
one of theorem 8.6 occurs. Otherwise, v−i is a spare node.

Remark 4 Particularly, this definition requires that the node of V −B must be an un-
matched node related to a maximum matching of B. According to categories of
definition 8.4, in B, once any single v−i is known as an unmatched node, or an
extra-unmatched node of V −B via a maximum matching of B, category of v−i only
depends on if v+i ∈ V

+
B is a matched node, extra-unmatched node or an unmatched

node. 2

Nevertheless, for any v+i and v−i of B = (VB, EB), when they are two extra-
unmatched nodes of V −B and V +

B via a same maximum matching, after v−i becoming
an unmatched node related to another different maximum matching, it is essential
to know if v+i is also an extra-unmatched node of V +

B via this maximum matching.
Otherwise, it requires one more time to confirm if v+i is an extra unmatched node
of V +

B via this maximum matching or not. For this purpose of avoiding unnecessary
computation, lemma 8.7 and corollary 8.8 are deduced:

Lemma 8.7
Given B = (VB, EB) of definition 8.2, let Mi be a maximum matching of B, Pv−i

, Pv+j
be

two existing paths, and let v−i ∈ V
−
B , v+j ∈ V

+
B be two extra-unmatched nodes via Mi due

to Pv−i
and Pv+j

, respectively. Then, Pv+j
still exists in Mi ⊕ Pv−i

, or vice versa.

PROOF Because (Pv+j
⊕Mi) and (Mi⊕Pv−i

) are two different maximum matchings
ofB, and (Pv+j

⊕Mi)⊕(Mi⊕Pv−i
) = Pv+j

⊕Pv−i
, where (Pv+j

⊕Mi)⊕(Mi⊕Pv−i
) only

results in vertex-disjoint paths or cycles with even length. It is thus that Pv+j
⊕ Pv−i

can only result in an edge set of disjoint paths with even cardinality, which also
alternatively involves edges of Pv+j

and Pv−i
. Obviously, when Pv+j

and Pv−i
have

no common edges, such edge set can be obtained. Otherwise, when Pv+j
and Pv−i

share common edges, Pv+j
⊕Pv−i

results in disjoint paths with odd cardinality. This
is because shared edges by Pv+j

and Pv−i
can be only from Mi, and the number of

them is equal to the number of edges out Mi in both Pv−i
and Pv+j

. Therefore, there
can not be any common edges of both Pv+j

and Pv−i
, and Pv+j

therefore still exists in
Mi ⊕ Pv−i

. Similarly, Pv−i
therefore still exists in Mi ⊕ Pv+j

. �

Corollary 8.8
According to lemma 8.7, given any pair {v−i , v

+
i } of VB , which are two extra-unmatched

nodes of V −B and V +
B via a same maximum matching. When v−i becomes an unmatched

node related to another different maximum matching. Then, v+i is an extra unmatched node
of V +

B via this maximum matching.

PROOF Based on the proof of lemma 8.7, correctness of this corollary can be proved
when it is set that v+i = v−j of lemma 8.7. Therefore, after v−i becoming an un-
matched node related to another different maximum matching, it is valid that v+i is
an extra unmatched node of V +

B via this maximum matching. �

112

8.3 SOLUTION

Above all, we can further know that if v−i is an unmatched node related to a
maximum matching of B is independent with if v+i is an unmatched node related
to a maximum matching of B, or vice-versa. Therefore, to classify nodes of Sn1

returned by algorithm 8.1 into categories of definition 8.4, we just need to identify
all extra-unmatched nodes of both V −B and V +

B via a fixed and arbitrary maximum
matching of B once only. Also, it is still required to use algorithm 8.1 to return
all vertices of V +

B that are unmatched nodes related to maximum matchings of B.
Particularly, after line 2 of algorithm 8.1, V −B should be replaced with V +

B . Also, Sn1

is replaced with Sn2 that is an initially empty node set, and Sn2 is the return.
Next, algorithm 8.2 below executes nodal classification of Sn1 . Here, let v−i be a

single vertex of Sn1 .

Algorithm 8.2: Classify nodes of Sn1

Input: B = (VB, EB) of definition 8.2,Sn1 , Sn2 returned by using of
algorithm 8.1.

Output: Category of each Single vertex of Sn1

1 In VB , colour each node of Sn2 into red;
2 while Sn1 6= ∅ and v−i ∈ Sn1 do
3 S

′
n1

= Sn1 \ v−i ;
4 if v+i is red then
5 return v−i is a spare node;
6 else if then
7 return v−i is an ordinary node;

PROOF With Sn2 returned by using algorithm 8.1, each node of VB emerging in it is
coloured into red, in order to clearly indicate that this node is an extra-unmatched
node of V +

B via a maximum matching of B. Then, for each node of Sn1 , such as v−i ,
colour on v+i is checked to further confirm category of v−i according to theorem 8.6
and definition 8.4. If so, both v−i and v+i are unmatched nodes related to a same
maximum matching, so that v−i is a spare node. Otherwise, v+i is never an extra-
unmatched node of V +

B related to a maximum matching of B. Thus, case one of
theorem 8.6 occurs, and v−i is an ordinary node. Because each chosen node of Sn1

is removed in line 3, Sn1 = ∅ terminates this algorithm at a moment. For the time
complexity, except for obtaining inputs, colouring operations cost O(|VB|) time,
and the while loop runs in the same steps at most. The worst-case execution time
of this algorithm is O(|VB|). �

Last but not the least, by theorem 8.6 and lemma 8.1, a corollary is deduced
below, to clarify harmfulness of any single driver-node removal on structurally
controlling the residual network:

Corollary 8.9
Given D = (V,E) of definition 8.1, let SD be a minimum set of driver nodes, and vi be a
single node of SD. Then, to structurally control D \ vi, {SD \ vi} could still be a subset of
a minimum set of driver nodes the with cardinality of either |SD \ vi| or |SD|.

113

8. DRIVER-NODE BASED ANALYSIS FOR STRUCTURAL CONTROLLABILITY

8.3.3 Time Complexity Analysis

Corollary 8.10
Given D = (V,E) of definition 8.1, the worst-case execution time of solving Problem 2 is
represented by O(

√
|V | · |E|).

PROOF As clearly illustrated before, Problem 2 contains two parts, one is to iden-
tify each vertex of V −B that is an unmatched node related to a maximum matching of
B, and the other is to classify those identified nodes. More specifically, because clas-
sifying nodes of V −B that are unmatched nodes with respect to maximum matchings
of B = (VB, EB) requires running algorithm 8.1 twice, and running algorithm 8.2
once. Therefore, given D = (V,E) of definition 8.1, solution of Problem 2 contains:

1. derive B = (VB, EB);

2. run algorithm 8.1 twice;

3. run algorithm 8.2 once.

By definition 8.2, time complexity of mapping D into B is O(|V | + |E|). And
the worst-case execution time of solving Problem 2 is O(|V |+ |E|+

√
|VB| · |EB|).

Also, due to 2|V | = |VB| and |E| = |EB|, the worst-case execution time is also
represented by O(

√
|V | · |E|). �

8.4 Summary

To protect structural control into networks with CT-LTI dynamics against control
hijack and disruption through driver nodes, and further understand the harmful-
ness of single driver-node removal, this chapter proposes to efficiently identify each
vertex involved into all minimum sets of driver nodes, and classify it by impacts
of its removal on the minimum set of driver nodes to structurally control the resid-
ual network. Based on the minimum input theorem, this problem is modelled into
identifying each node that is an unmatched node related to a maximum matching
of the given network, and classifying it by impacts of its removal on the unmatched
nodes related to the residual digraph’s maximum matching. With a bipartite graph
mapped by the input network, this graph problem is eventually solved with the
same time complexity as finding a maximum matching of a digraph in total.

By contrast, to identify vulnerable single nodes to the removal, next chapter
would extend the work of this chapter and classify all network vertices by impacts
of any single-node removal on the structural control into the residual network with
a minimum set of inputs.

114

Chapter 9

Identify Vulnerable Nodes for Network Structural
Control

9.1 Overview

According to corollary 8.9 of chapter 8, it is already known that removing any single
driver node can not increase the minimum number of driver nodes or inputs to
structurally control the residual CT-LTI dynamical networks. However, through
related works of section 3.3.1 of chapter 3, continuously removing single network
vertices can dramatically increase the minimum number of inputs to structurally
control the residual network. By contrast, the driver-node based classification of
chapter 8 should be further extended to all general network vertices, essentially.

As shown in section 3.4.3 of chapter 3, many nodal indices have been raised
to qualitatively reflect importance of each indexed single vertex in terms of “ob-
taining” the structural controllability with a minimum set of inputs. But they are
difficult to compute for entire network vertices, and none of them can explicitly
indicates the importance of any single node in“maintaining” the structural control
with a minimum set of inputs. Besides, even some indices of [113] show the impor-
tance of single nodes in maintaining structural controllability, an efficient classifi-
cation scenario is still in lack.

Therefore, this chapter solves the research question 6. With assumptions of
section 1.3.2 of chapter 1, a minimum-input structurally controllable network with
CT-LTI dynamics is assumed as an input network. This chapter efficiently classifies
its all single vertices according to the importance of any single vertex in maintain-
ing the current minimum number of inputs. Besides, the minimum set of inputs is
assumed to be obtained by the maximum-matching based method of section 2.4.1
of chapter 2. Also, this input network is also assumed to contain a precomputed
maximum matching.

According to corollary 2.5 and theorem 2.8 of chapter 2, because each minimum
set of inputs to structurally control a CT-LTI dynamical network is directly adjacent
to the same number of unmatched nodes with respect to a maximum matching.
Research question of this chapter is thus modelled into a graph-theoretical prob-
lem: given the input network, classifying its all single vertices according to the
importance of any single vertex in maintaining current unmatched nodes related
to a maximum matching. For the solution of this problem, the input network is
firstly mapped into a directed bipartite graph. Then, we define the so-called pre-
augmenting path of this bipartite graph, in order to confirm all numerical impacts
of a single node removal on the number of unmatched nodes of the residual input
network. Accordingly, this chapter concludes that a node of the input network is
critical, redundant or ordinary, if its removal increases, reduces, or does not change

115

9. IDENTIFY VULNERABLE NODES FOR NETWORK STRUCTURAL CONTROL

the initial number of unmatched nodes related to a maximum matching of the in-
put network. To confirm the category of a single node, in a straightforward man-
ner, people can recompute a maximum matching of the network after removing it.
However, to classify all vertices of a network with n vertices and m edges in num-
ber, the worst-case execution time would be O(n1.5 ·m) by iterative computation.
By contrast, based on the pre-augmenting path, some algorithms that label vertices
are designed. As a result, the worst-case execution time of implementing entire
nodal classification is O(m + n) steps at most. Also, the space-complexity cost by
entire classification is also linear.

For the contribution of this chapter, given a minimum-input structurally con-
trollable CT-LTI dynamical network, it quantitatively explains the surge of the min-
imum number of inputs to structurally control each residual network during con-
tinuous single-vertex removals. Besides, this chapter also efficiently classifies all
single network vertices accordingly in linear time and space, so that each vulnera-
ble single vertex to the removal can be explicitly identified.

Remaining chapter is structured as follows: section 9.2 specifies the research
question; section 9.3 defines all nodal categories; 9.4 confirms the categories of a
single vertex; 9.5 shows algorithms to execute the entire nodal classification; the
last section 9.6 summarizes this chapter.

9.2 Problem Formulation

In the beginning, the input network of this chapter is defined:

Definition 9.1 (Input Network of Chapter 9)
Let D = (V,E) be a large and finite digraph, excluding selfloops, parallel arcs and isolated
nodes. Also, let MD be a fixed and arbitrarily precomputed maximum matching by the
algorithm of [60], where V 6= ∅, V = {vi|1 ≤ i ≤ n}(n ≥ 3), and E 6= ∅, |E| ≥ 2,
E = {

−−−−→
〈vi, vj〉|i 6= j, vi, vj ∈ V }.

Then, assume that this input network and a minimum set of inputs together
construct a structurally controllable system, which is represented by following state
equation:

ẋ(t) = Ax(t) + Bu(t) (9.1)

where, A ∈ Rn×n, and D = (V,E) of definition 9.1 only maps into the matrix
A. For each arc

−−−−→
〈vi, vj〉 ∈ E, only one non-zero entry of noted by aji ∈ A exists

correspondingly. Also, the number of columns of matrix B ∈ Rn×m is minimum.
With D = (V,E) of definition 9.1, research question of this chapter is formally
defined:

Research Question: Given D = (V,E) and MD. Then, efficiently classify all
single nodes of D according to the importance of any single node in maintaining
the current minimum set of inputs.

By the maximum-matching based method of section 2.4.1 of chapter 2, or the
minimum input theorem 2.8 of section 2.6, because each minimum set of inputs is
directly adjacent to a set of unmatched nodes related to a maximum matching of a

116

9.3 NODAL CATEGORIES

given digraph with CT-LTI dynamics. Therefore, research question of this chapter
is modelled into a graph-theoretical problem:

Problem 1: Given D = (V,E) and MD of definition 9.1, classify all single nodes
of D according to the importance of any single node in maintaining the current
unmatched nodes with respect to a maximum matching of D.

Problem 9.2 is eventually solved in following sections as a way to solve the
research question of this chapter. In detail, following chapter mainly defines nodal
categories in section 9.3 and then classifies all nodes accordingly in section 9.4 and
9.5.

9.3 Nodal Categories

In this section, three kinds of nodal categories are defined, which can be further
used to explicitly distinguish the importance of each involved node in terms of
maintaining structural controllability with a minimum set of inputs. Necessarily,
in section 9.3.1, a directed bipartite graph of definition 9.2 is used for the reason
implied by lemma 9.1. Then, in section 9.3.2, within this bipartite graph, the so-
called pre-augmenting path is defined in definition 9.3, in order to further conclude
all numerical impacts that are shown in section 9.3.3.

9.3.1 Preliminaries
Definition 9.2
Given D = (V,E) with MD of definition 9.1, let B = (VB, EB) be a directed bipartite
graph, V +

B and V −B be two independent sets of VB , where |EB| = |E|, |VB| = 2|V |,
|V −B | = |V

+
B |, and VB = {{v−i , v

+
i }|v

−
i ∈ V

−
B , v

+
i ∈ V

+
B }. Besides, let MB be a maximum

matching of B. Then, let β : V → VB , γ : E \MD → EB \MB , and η : MD → MB be
three different bijections. For any v ∈ V , β : v → {v+, v−}, v− ∈ V −B , v+ ∈ V

+
B ; for any

−−−−→
〈vi, vj〉 ∈ E \MD, γ :

−−−−→
〈vi, vj〉 →

−−−−−→
〈v+i , v

−
j 〉, where

−−−−−→
〈v+i , v

−
j 〉 ∈ EB ; for any

−−−−→
〈vp, vq〉 ∈MD,

η :
−−−−→
〈vp, vq〉 →

−−−−−→
〈v−q , v+p 〉, where

−−−−−→
〈v−q , v+p 〉 ∈MB .

Any edge like
−−−−−→
〈v+i , v

−
i 〉 can not exist in B, otherwise D includes the self loops,

and an example of bijections of definition 9.2 is shown by figure 9.1:
In remaining parts of this chapter, let v ∈ V be a single vertex of D = (V,E)

of definition 9.1, based on definition 9.2, removing v ∈ V in D corresponds to
removing {v+, v−} ⊆ VB in B, where {v+, v−} is mapped by v. Similarly to the
lemma 8.1 of chapter 8, the following lemma 9.1 illustrates how to use B with MB

to find unmatched nodes of D with respect to MD:

Lemma 9.1
Given D = (V,E) and MD of definition 9.1, B = (VB, EB) and MB of definition 9.2, and
{v−, v+} ⊆ VB mapped from v ∈ V . Then, v ∈ V in D is an unmatched node with respect
to MD, if and only if v− ∈ V −B is unmatched with respect to MB .

PROOF ⇒: If v ∈ V inD is an unmatched node with respect toMD, and {v−, v+} ⊆
VB is mapped from v. By definition 9.2, v− ∈ V −B can not be the tail of any arc of
MB , but head of arcs of EB \MB . Thus, v− is an unmatched node related to MB in
V −B .

117

9. IDENTIFY VULNERABLE NODES FOR NETWORK STRUCTURAL CONTROL

v1

v2

v3

v4

v5

v6

D
′ v+1 v−2

v+2 v−4

v+3 v−1

v+4 v−5

v+5 v−3

v+6 v−6

B
′

Figure 9.1:

A digraph D
′

contains a maximum matching that is a red path, which is mapped into a directed bipartite graph
B

′
by definition 9.2 with a maximum matching involving all red arcs.

⇐: If v− is an unmatched node in V −B and related to MB , in B = (VB, EB). v−

is a head of an arc out of MB . By definition 9.2, let
−−−−−→
〈v+i , v−〉 6∈ MB be such an arc,

and there must be γ−1 :
−−−−−→
〈v+i , v−〉 →

−−−→
〈vi, v〉, and

−−−→
〈vi, v〉 6∈ MD. Thus, v is unmatched

related to MD in D. �

By lemma 9.1 and definition 9.2, it is true that the number of unmatched nodes
ofD\v with respect to a maximum matching is the same as that of V −B \v− related to
a maximum matching ofB\{v−, v+}, where v maps into {v−, v+} by definition 9.2.
Furthermore, numerical impacts of removing v of D on unmatched nodes of D \ v
are thus equivalent to numerical impacts of removing {v−, v+} of B on unmatched
nodes of V −B \v−. Clearly, it needs to know the cardinality of a maximum matching
of B \ {v−, v+}.

Obviously, if {v−, v+} * MB , |MB| must be the cardinality of the maximum

matching ofB\{v−, v+}. Yet, in another aspect, if there is an arc noted by
−−−−−→
〈v−, v+i 〉 ∈

MB or
−−−−−→
〈v−j , v+〉 ∈MB , without recomputation, referring to the augmenting path of

definition 2.12 of chapter 2, we would use the path defined in section 9.3.2 below
to efficiently confirm the cardinality of a maximum matching of B \ {v−, v+}.

9.3.2 Pre-augmenting Path

Definition 9.3 (Pre-augmenting path)
Given B = (VB, EB) with MB of definition 9.2, with respect to MB , a pre-augmenting
path is a path alternatively involving edges of MB and EB \MB , and only one of its two
terminals is not incident to an edge of MB(See examples in figure 9.2).

Next, when
−−−−−→
〈v−, v+i 〉 ∈ MB , the following theorem 9.2 indicates how to use a

pre-augmenting path that starts from any node v− ∈ V −B to confirm the cardinality
of the maximum matching of B \ v−.

118

9.3 NODAL CATEGORIES

v+1 v−2

v+2 v−3

v+3 v−4

v+4 v−1

v+1 v−2

v+2 v−3

v+3 v−4

v+4 v−1

Figure 9.2: Pre-augmenting Paths.
Fig 2. In two bipartite graphs obtained by definition 9.2, with respect to a maximum matching

{
−−−−−→
〈v−2 , v+1 〉,

−−−−−→
〈v−3 , v+2 〉,

−−−−−→
〈v−4 , v+3 〉}, each complete blue path is a pre-augmenting path.

Theorem 9.2
In B = (VB, EB) of definition 9.2, given any single arc

−−−−−→
〈v−, v+i 〉 ∈ MB . Then, |MB| is

still the cardinality of the maximum matching of B \ v−, if and only if v− is the starting
vertex of an existing pre-augmenting path with respect to MB .

PROOF ⇐: Let P be a pre-augmenting path that starts from v− related toMB . Then,

in B \ v−, v+i is not incident to any arc of the matching MB \
−−−−−→
〈v−, v+i 〉. Thus, by

definition 2.12, P \ v− is an augmenting path with respect to MB \
−−−−−→
〈v−, v+i 〉. By

corollary 2.3, we obtain a matching: {MB \
−−−−−→
〈v−, v+i 〉}⊕{P \v−}with the cardinality

|MB|. Assume that there is at least one augmenting path with respect to {MB \−−−−−→
〈v−, v+i 〉} ⊕ {P \ v−}. On the one hand, if this augmenting path excludes arcs of
P \ v− and it is related to arcs of MB , the maximality of MB is contradicted. On the
other hand, if this augmenting path includes arcs of P \ v−, an augmenting path
would exist in B with respect to MB , which contradicts the maximality of MB .

Therefore, by corollary 2.4 of chapter 2, {MB \
−−−−−→
〈v−, v+i 〉} ⊕ {P \ v−} is a maximum

matching in B \ v− with cardinality |MB|.
⇒: If |MB| is the cardinality of the maximum matching ofB\v−, by corollary 2.3

and corollary 2.4 of chapter 2, there should exist an augmenting path with respect

to matching MB \
−−−−−→
〈v−, v+i 〉. Because any two vertices that are not incident to edges

of MB can not be the two terminals of an augmenting path related to MB \
−−−−−→
〈v−, v+i 〉

at the same time. Otherwise, cardinality of MB is contradicted. Thus, v+i is the
only possible starting vertex of any augmenting path with respect to the matching

MB \
−−−−−→
〈v−, v+i 〉, and v− is therefore the starting vertex of an existing pre-augmenting

path with respect to MB . �

In a similar way, when
−−−−−→
〈v−i , v+〉 ∈ MB , we can also conclude that |MB| is still

the cardinality of the maximum matching of B \ v+ if and only if v+ is the ending
vertex of an existing pre-augmenting path with respect to MB . Additionally, the
distribution of multiple pre-augmenting paths in B = (VB, EB) with respect to MB

is clarified by following theorem:

Theorem 9.3
Given B = (VB, EB) and MB of definition 9.2, and let v+p ∈ V +

B , v
−
q ∈ V −B be any two

nodes that are not incident to edges ofMB . Also, let Pv+p
be a pre-augmenting path starting

119

9. IDENTIFY VULNERABLE NODES FOR NETWORK STRUCTURAL CONTROL

from v+p , and let Pv−q
be a pre-augmenting path ending at v−q . Then, when Pv−p

and Pv+q

exist simultaneously in B, they are vertex disjoint.

PROOF Assume there is a node shared by Pv−p
and Pv+q

inB. Then, from this shared
node, an alternating path involving edges ofEB \MB andMB and starting from v+q
can be obtained, which is the subpath of Pv+q

. Simultaneously, another alternating
path involving edges of EB \MB and MB and ending at v−p can be also obtained,
which is the subpath of Pv−p

. As a result, an augmenting path with respect to MB is
constructed by these two alternating paths. By corollary 2.3 of chapter 2, maximal-
ity of MB is thus contradicted. Therefore, when Pv−p

and Pv+q
exist at the same time

in B, they must be vertex disjoint. �

9.3.3 Define Nodal categories

GivenB = (VB, EB) withMB of definition 9.2, and any {v+, v−} ⊆ VB , theorem 9.4
below concludes all numerical impacts of removing {v−, v+} fromB on unmatched
nodes of V −B \ v− compared with that of V −B .

Theorem 9.4
In B = (VB, EB), let N1 be the number of unmatched nodes of V −B with respect to a
maximum matching of B, and N2 be the number of unmatched nodes of V −B \ v− with
respect to a maximum matching ofB\{v−, v+}. Also, let d be an integer, and d = N2−N1.
Then, there must be d ∈ {+1, 0,−1}.

PROOF In B, N1 = |V −B | − |MB|. Since there can not be a maximum matching
of B \ {v−, v+} with the cardinality bigger than |MB|, the lower limit of N2 is ob-
tained: |V −B \ v−| − |MB|, and the minimum value of d is thus −1. For instance,
when {v−, v+} * MB , MB is still a maximum matching of B \ {v−, v+}. Besides,

given {
−−−−−→
〈v−, v+i 〉,

−−−−−→
〈v−j , v+〉} ⊆ MB , it is possible that MB \ {

−−−−−→
〈v−, v+i 〉,

−−−−−→
〈v−j , v+〉} is a

maximum matching of B \ {v−, v+}. For example, if
−−−−−→
〈v−, v+i 〉 and

−−−−−→
〈v−j , v+〉 are not

adjacent to any other edges. Further, the upper limit of N2 is thus |V −B \v−|− |MB \
{v−, v+}|, and the maximum value of d is +1. Because d is an integer, and it is

possible that d = 0 in reality. For example, given {
−−−−−→
〈v−, v+i 〉,

−−−−−→
〈v−j , v+〉} ⊆ MB , by

theorem 9.2, v− is a starting node of a pre-augmenting path, whilst v+ is not the
ending node of any pre-augmenting path. In summary, the value domain of d is
{+1, 0,−1}. �

Above all, corollary 9.5 is concluded to clarify quantitative impacts of removing
any v ∈ V in D = (V,E) of definition 9.1 on the unmatched nodes of D \ v.

Corollary 9.5
GivenD = (V,E) withMD of definition 9.1, after removing any v ∈ V and compared with
|V | − |MD|. Then, by definition 9.2, lemma 9.1 and theorem 9.4, the number of unmatched
nodes of D \ v would increase one, or decrease one, or not change.

According to corollary 9.5, nodal categories are eventually defined to illustrate
all quantitative impacts of removing any single node on unmatched nodes of the
residual network:

120

9.4 A SINGLE-VERTEX CLASSIFICATION

Definition 9.4 (Nodal Categories)
Given D = (V,E) with MD of definition 9.1, and any single vertex v ∈ V , compared
with |V | − |MD|, with respect to a maximum matching of D \ v, v is classified into one of
following categories:

1. Critical category, if the number of unmatched nodes of D \ v is increased by one;

2. Redundant category, if the number of unmatched nodes of D \ v is reduced by one;

3. Ordinary category, if the number of unmatched nodes of D \ v does not change.

According to the minimum input theorem 2.8 of section 2.6, it has been enough
to say that critical nodes are the most vulnerable vertices to the single-node re-
moval. In next section, we classify any single vertex of D = (V,E) of definition
9.1 into one of these categories efficiently. And then all nodes of D would be also
efficiently classified in section 9.5.

9.4 A Single-Vertex Classification

9.4.1 Solution

Given any single node v ∈ V of D = (V,E) of definition 9.1, this section classifies
it into one of three categories of definition 9.4. Let {v−, v+} be two vertices of
B = (VB, EB) of definition 9.2 and they are mapped by v ∈ V in D = (V,E), based
on lemma 9.1, and theorem 9.4, this problem would be solved by confirming the
value of d ∈ {+1, 0,−1} after removing {v−, v+}.

Then, the pre-augmenting path of definition 9.3 related to a given maximum
matching is used to deduce all necessary and sufficient conditions of d = +1, d = 0,
and d = −1 respectively, which are concluded by lemma 9.6, 9.7, and 9.8. With these
deduced statements, we can not only avoid recomputing a maximum matching of
B \ {v+, v−}, but also confirm value of d in linear time. In the following paper, we
define V (MB) ⊆ VB as a set of vertices incident to edges of MB .

Lemma 9.6
Given B = (VB, EB) with MB of definition 9.2, and {v−, v+} ⊆ VB . After removing
{v−, v+}, then, d = −1 if and only if one of cases holds:

1. {v+, v−} * V (MB);

2. v− ∈ V (MB) or v+ ∈ V (MB), any v− ∈ V (MB) or any v+ ∈ V (MB) must be a
terminal of a pre-augmenting path related to MB .

PROOF ⇒: By theorem 9.4, if d = −1, |MB| is the cardinality of the maximum
matching ofB\{v−, v+}. On the one hand,MB could still be a maximum matching
of B \ {v−, v+}. Thus, in direct, {v−, v+} * V (MB). On the other hand, when |MB|
is still the cardinality of the maximum matching of B \ {v−, v+}, and MB can not
exist in B \ {v−, v+}, by theorem 9.2 and 9.3, with respect to MB , v− ∈ V (MB)
must be the starting vertex of a pre-augmenting path, or v+ ∈ V (MB) must be the
ending vertex of a pre-augmenting path.

121

9. IDENTIFY VULNERABLE NODES FOR NETWORK STRUCTURAL CONTROL

⇐: If {v−, v+} * V (MB), removing {v−, v+} from B can not influence MB ,
MB is still a maximum matching of B \ {v−, v+}, and d = −1. Alternatively, if
v− ∈ V (MB), or v+ ∈ V (MB). By theorem 9.2, each of them must be a terminal of
an existing pre-augmenting path related to MB . Also, by theorem 9.3, both existing
pre-augmenting paths starting from v− and ending at v− are vertex disjoint, so that
|MB| as the cardinality of the maximum matching of B \ {v−, v+}, and d = −1. �

Lemma 9.7
Given B = (VB, EB) with MB of definition 9.2, and {v−, v+} ⊆ VB . After removing
{v−, v+}, then d = +1 if and only if:

1. v+ ∈ V (MB) and v− ∈ V (MB) are not connected in B, and the terminal of any
pre-augmenting path related to MB is neither v+ nor v−.

PROOF Assume there is an arc set {
−−−−−→
〈v−, v+i 〉,

−−−−−→
〈v−j , v+〉} ⊆MB .

⇒: If d = +1, by theorem 9.4, |MB| − 2 is the cardinality of the maximum

matching ofB\{v−, v+}, and {v−, v+} ⊆ V (MB). Clearly,MB \{
−−−−−→
〈v−, v+i 〉,

−−−−−→
〈v−j , v+〉}

could be such a maximum matching, and there can not be any augmenting paths
with respect to it. By theorem 9.2, both v− and v+ can not be the terminal of any
pre-augmenting path with respect to MB , in one aspect. Besides, since v−i and v+j

are both unmatched nodes with respect to matching MB \ {
−−−−−→
〈v−, v+i 〉,

−−−−−→
〈v−j , v+〉}, and

they can not construct an augmenting path together related to MB \ {
−−−−−→
〈v−, v+i 〉,−−−−−→

〈v−j , v+〉}. v− and v+ can not be connected through a path starting from v− in B.
⇐: If both v+ ∈ V (MB) and v− ∈ V (MB) are not terminals of pre-augmenting

paths related to MB , and they are also disconnected in B. Then, a matching MB \
{
−−−−−→
〈v−, v+i 〉,

−−−−−→
〈v−j , v+〉} is obtained in B \ {v−, v+}. Assume that it is not a maximum

matching. By corollary 2.3 of chapter 2, at least one augmenting path related to it
should exist. For terminals of such augmenting path, both of them can not be out
of MB . Otherwise, maximality of MB is contradicted. Thus, at least, one terminal
should be a vertex incident to an edge of MB and adjacent to either v− or v+. And
such vertex can be either v−i or v+j . Now, reviewing those given conditions above,

no augmenting path related to MB \ {
−−−−−→
〈v−, v+i 〉,

−−−−−→
〈v−j , v+〉} exists. By corollary 2.4 of

chapter 2, it is a maximum matching of B \ {v−, v+} and d = +1. �

Lemma 9.8
Given B = (VB, EB) with MB of definition 9.2, and {v−, v+} ⊆ VB . After removing
{v−, v+}, then d = 0, if and only if one of following cases holds:

1. a terminal of any pre-augmenting path related to MB is never from {v−, v+} ⊆
V (MB), and v− and v+ are connected;

2. a terminal of a pre-augmenting path related to MB is from {v−, v+} ⊆ V (MB), of
which, other vertex is not terminal of any pre-augmenting path;

3. a pre-augmenting path related to MB includes {v−, v+} ⊆ V (MB);

4. either v− ∈ V (MB), v+ 6∈ V (MB) or v+ ∈ V (MB), v− 6∈ V (MB), and no pre-
augmenting path related toMB either starts from v− ∈ V (MB) or ends at v+ ∈MB .

122

9.4 A SINGLE-VERTEX CLASSIFICATION

PROOF Assume there is an arc
−−−−−→
〈v−, v+i 〉 ∈ MB if v− ∈ V (MB), and there is an arc

−−−−−→
〈v−j , v+〉 ∈MB if v+ ∈ V (MB).
⇒: By theorem 9.4, d = 0 means that |MB| − 1 is the cardinality of the max-

imum matching of B \ {v−, v+}. Obviously, MB \
−−−−−→
〈v−, v+i 〉 or MB \

−−−−−→
〈v−j , v+〉 can

be a valid case, so case four holds. When {v−, v+} ⊆ V (MB), matching MB \
{
−−−−−→
〈v−, v+i 〉,

−−−−−→
〈v−j , v+〉} is obtained in B \ {v+, v−}. By theorem 9.2, one of node of

{v−, v+} ⊆ V (MB) must be a terminal of a pre-augmenting path related to MB .
Thus case two and three hold. Besides, by lemma 9.7, v− ∈ V (MB) and v+ ∈
V (MB) could be connected through a path, while none of them can be a terminal
of a pre-augmenting path related to MB . Thus, case one holds.
⇐: If one of those four cases is valid, we can obtain the matching with cardi-

nality of |MB| − 1. In particular, we then should prove that such a matching is the
maximum in B \{v−, v+}. By lemma 9.7, it can be proved that case one is sufficient
to d = 0. Also, since other three cases all uses the pre-augmenting path related to
MB , by theorem 9.2, d = 0 can be obtained by them in sufficiency. �

According to lemma 9.6, 9.7, and 9.8, for any {v−, v+} ⊆ VB , confirming the
value of d needs to investigate if v− ∈ V (MB) and v+ ∈ V (MB) at the begin-
ning. Then, if so, it should be known as well whether or not that v− ∈ V (MB) or
v+ ∈ V (MB) is a terminal of a pre-augmenting path with respect to MB . If not, it
should be further confirmed whether v− ∈ V (MB) and v+ ∈ V (MB) are connected
through a path starting from v−, or not. By definition 9.2, MB is known by map-
pingMD ofD = (V,E) of definition 9.1, inO(|EB|) time, and finding a path starting
from or ending at any given vertex can be done by the breadth first search or the
breadth first search [42] in O(|VB| + |EB|) steps at most. Finally, given D = (V,E)
with MD, value of d can be eventually confirmed in linear time O(|VB| + |EB|) to
classify a single vertex of D.

9.4.2 Expanding

For the problem of classifying all nodes of D = (V,E) with MD of definition 9.1
into categories of definition 9.4, by lemma 9.1 and theorem 9.4, it can be solved
by confirming the value of d ∈ {+1, 0,−1} for each vertex pair {v−, v+} ⊆ VB
in B \ {v−, v+}. Nevertheless, iteratively finding pre-augmenting paths for each
{v−, v+} would result in the time complexity O((|VB|+ |EB|)2). However, it is not
what this chapter proposes, definitely.

Instead, because multiple nodes of either V −B or V +
B can exist in same pre-

augmenting paths related to MB . Therefore, we just need to traverse vertices once
and identify traversed vertices of V (MB). Based on this idea, by lemma 9.6 and 9.7,
we can confirm if d = −1 or d = 0 by traversing B once in linear time.

On the other hand, given {v−, v+} ⊆ V (MB), which are not terminals of any
pre-augmenting paths related to MB , to confirm value of d ∈ {0,+1}, by lemma 9.6
and 9.7, it is essential to know if such v− and v+ are connected through a path start-
ing from v−. By running our label operations shown by algorithm 9.5 on vertices
of VB once in linear time, we can confirm such connectivity between v− and v+ by
checking label on v+ in O(1) time. Therefore, excluding deriving MD, classifying
all nodes of D is efficiently executed in linear time as a result.

123

9. IDENTIFY VULNERABLE NODES FOR NETWORK STRUCTURAL CONTROL

Above all, section 9.5 gives related algorithms to systematically confirm the
value of d ∈ {+1, 0,−1} after removing each {v−, v+} from B in the worst case.

9.5 Entire Nodal Classification

This section confirms the value of d after removing each {v−, v+} fromB = (VB, EB)
of definition 9.2, so that category of every node ofD = (V,E) of definition 9.1 can be
known eventually. The worst-case execution time and space complexity consumed
to implement following algorithms are concerned. Moreover, the time complex-
ity of running each algorithm excludes the time cost by deriving inputs. Also, the
space arranged for the commands of each algorithm is also not considered. The
overview of entire process of solving problem 9.2 is shown by following procedure
9.1. In following all algorithms, let v be a single vertex of D and {v−, v+} be a pair
of nodes of B, which is mapped by v according to the bijection of definition 9.2.

Algorithm 9.1: Overview of confirming category of each node of D
Input: D = (V,E) with MD of definition 9.1.
Output: Category of each node of D

1 Derive bipartite graph B = (VB, EB) with MB of definition 9.2;
2 Find vertices of pre-augmenting paths with respect to MB by algorithm 9.2

and 9.3;
3 Confirm value of d ∈ {0,−1} in B \ {v−, v+} by algorithm 9.4;
4 if ∃{v−, v+} unable to confirm value of d ∈ {0,−1} then
5 Derive directed acyclic graph G = (VG, EG) of definition 9.5;
6 Set labels on nodes of VG by algorithm 9.5;
7 Confirm value of d ∈ {0,+1} in B \ {v−, v+} by algorithm 9.6;

9.5.1 Find vertices of pre-augmenting paths

By definition 9.3, one of terminals of any pre-augmenting path with respect to MB

in B = (VB, EB) of definition 9.2 is the vertex not incident to edges of MB . We
call such a vertex the leading vertex, and they can be used to visit other nodes of
pre-augmenting paths either starting from or ending at it.

Our first algorithm below finds all leading vertices of VB . Here, let e =
−−−−−→
〈v+x , v−y 〉 ∈

EB \MB . And let S1, S2 be two initially empty vertex sets.

PROOF Firstly, any e ∈ EB \MB is chosen to obtain a leading vertex incident to
it. For e, by definition 9.3, procedure of line 4-7 tests if e is incident to a leading
vertex of a pre-augmenting path. If so, one of nodes incident to e is not coloured
into red, which are then added into either S1 or S2. Thus, this algorithm is correct
before the first iteration. Then, another single edge of left EB \MB is chosen to find
another leading vertex as before. Due to the edge removal in line 3, each chosen
edge can be tested once, so that this procedure is also correct during each loop. For
the same reason, this algorithm terminates when EB \MB = ∅, and we obtain S1
and S2, which store all leading vertices related to MB . Hence, this algorithm is able
to identify all leading vertices with respect to MB . �

124

9.5 ENTIRE NODAL CLASSIFICATION

Algorithm 9.2: Find all leading vertices of VB
Input: B = (VB, EB) with MB of definition 9.2, S1, S2.
Output: All leading nodes of VB

1 Colour nodes of MB into red;
2 while EB \MB 6= ∅ and e ∈ EB \MB do
3 E

′
B = EB \ e;

4 if v+x is red and v−y is not red then
5 S

′
1 = S1 ∪ v−y ;

6 else if v+x is not red and v−y is red then
7 S

′
2 = S2 ∪ v+x ;

8 return S1; S2;

Corollary 9.9 (Complexity of algorithm 9.2)
Given B = (VB, EB) with MB of definition 9.2, the worst-case execution time and space
cost by running algorithm 9.2 is O(|VB|+ |EB|), both.

PROOF For the running time, colouring nodes of MB costs O(|VB|) time, by which,
testing if each chosen edge incident to a leading vertex thus costs O(1) time. Also,
each chosen edge is tested once because it is removed in line 3, total time to test all
edges of EB \MB is O(|EB|). Time complexity is O(|VB|+ |EB|).

Also, O(|VB|) space is cost by coloring nodes of MB . Another space is cost by
inputs, S1 and S2, which is alsoO(|VB|) totally. Space complexity isO(|VB|+|EB|).�

Next, given S1 returned by algorithm 9.2, algorithm 9.3 identifies starting nodes
of all pre-augmenting paths with respect to MB , which end at nodes of S1. Here,
let lp be a label to indicate that the labelled vertex is a starting node of a pre-
augmenting path that ends at a node of S1. We also let v−y be a single vertex of
S1, and P0 be an initially empty nodal set, while P (P0) represents a set of nodes of
VB \ P0, which are all tails of arcs whose heads are nodes of P0. Besides, let

−−−−→
〈v∗j , v∗i 〉

be an arc of EB , where v∗i ∈ P0, v∗j ∈ P (P0) and ∗ is either + or −.

PROOF Firstly, a vertex v−y ∈ S1 is chosen and added into P0, leading P0 = {v−y }
and P (P0) 6= ∅. Then, the second while loop of line 5-14 finds and label all nodes
connected with v−y via pre-augmenting paths that end at v−y . And those visited
nodes of V −B are finally found and labelled with lp. In the second while loop, each
newly visited node is added into P0 to keep searching through pre-augmenting
paths ending at v−y , while each node without incoming arcs is also removed from
P0 in line 8 to avoid repetition. Therefore, any node approaching v−y via paths can
be thus visited and labelled once only, and the second while loop terminates when
P (P0) = ∅ due to line 6. Further, this algorithm is correct prior to the first iteration.

Then, another vertex of left S1 is chosen and added into P0, to identify and
label all nodes connected with it through pre-augmenting paths ending at it, where
this newly-chosen node is the one and the only vertex of P0 that may be visited
by nodes unlabelled after previous iterations via paths. After this, edge traversing
starts from it in the remaining B. Besides, although there may be pre-augmenting
paths overlapped at vertices of MB , for any vertex labelled with S1 previously, the

125

9. IDENTIFY VULNERABLE NODES FOR NETWORK STRUCTURAL CONTROL

Algorithm 9.3: Find terminals of pre-augmenting paths
Input: B = (VB, EB) of definition 9.2, S1 returned by algorithm 9.2.
Output: V −B after label operations

1 Colour nodes of MB into red;
2 while S1 6= ∅ and v−y ∈ S1 do
3 P

′
0 = P0 ∪ v−y ;

4 S
′
1 = S1 \ v−y ;

5 while P (P0) 6= ∅ and v∗j ∈ P (P0) do
6 E

′
B = EB \

−−−−→
〈v∗j , v∗i 〉;

7 if v∗j is the last node adjacent to v∗i then
8 P

′
0 = P0 \ v∗i ;

9 if v∗j not labelled with S1 or lp then
10 P

′
0 = P0 ∪ v∗j ;

11 if v∗j ∈ V
−
B then

12 Label v∗j with lp;
13 else if v∗j ∈ V

+
B then

14 Label v∗j with S1;
15 return V −B ;

second while loop has visited all nodes of directed path or pre-augmenting path
ending at it, the vertex involved into any pre-augmenting path is labelled with lp
during each iteration. Thus, this algorithm is also correct during each iteration.

Due to line 4, this algorithm terminates when S1 = ∅. This algorithm is correct.�

Corollary 9.10 (Complexity of algorithm 9.3)
Given B = (VB, EB) of definition 9.2 and S1 returned by algorithm 9.2, the worst-case
execution time and space cost by running algorithm 9.3 is O(|VB|+ |EB|), both.

PROOF Because of line 6, and line 9,10, any node of VB can be visited and added
into P0 once at most, traversing all nodes approaching each chosen vertex of S1
via pre-augmenting paths runs in O(|EB|) time, and colouring nodes of MB costs
O(|VB|) time. Time complexity is O(|VB|+ |EB|) totally.

Besides, space arranged for auxiliary variables isO(1). Since each node of V −B is
arranged one label at most, label operation costs space O(|VB|). For P0, P (P0) and
the return, each of them costsO(|VB|) space, respectively. In total, space complexity
is O(|VB|+ |EB|), which also contains inputs space. �

Given S2 6= ∅, algorithm 9.3 can be slightly modified to derive all ending nodes
of pre-augmenting paths that start from nodes of S2. Here, let v+x be any node of S2,
P (P0) ⊆ VB \ P0 now be a nodal set involving heads of arcs whose tails are nodes
of P0. Then, S1, v−y and V −B are replaced with S2, v+x and V +

B , where V +
B is finally

returned and V +
B of line 13 is replaced with V −B . Also, replace

−−−−→
〈v∗j , v∗i 〉 with

−−−−→
〈v∗i , v∗j 〉

in line 6 of algorithm 9.3. Because of the correctness of algorithm 9.3, the modified
one is correct and run in linear time and space with given inputs.

126

9.5 ENTIRE NODAL CLASSIFICATION

9.5.2 Confirm value of d ∈ {0,−1}

Next, algorithm 9.4 below confirms the value of d ∈ {0,−1} after removing any
{v−, v+} ∈ VB . Here, let S3 be an initially empty node set.

Algorithm 9.4: Confirm value of d ∈ {0,−1}
Input: V −B returned by algorithm 9.3, V +

B returned by the modified one
Output: value of d

1 while V +
B 6= ∅ and v+ ∈ V +

B do
2 if {v+, v−} coloured then
3 if v+ and v− labelled with lp then
4 return d = −1; v of D is Redundant node;
5 else if v+ or v− labelled with lp then
6 return d = 0; v of D is Ordinary node;
7 else if v+ and v− not labelled with lp then
8 S

′
3 = S3 ∪ v−;

9 else if only v+ coloured or only v− coloured then
10 if v− or v+ labelled with lp then
11 return d = −1; v of D is Redundant node ;
12 else if v− or v+ not labelled with lp then
13 return d = 0; v of D is Ordinary node;
14 else if {v+, v−} not coloured then
15 return d = −1; v of D is Redundant node;

16 V +
B

′
= V +

B \ v+;
17 return S3 ;

PROOF Prior to the first iteration, any v+ ∈ V +
B is chosen to confirm the value of

d ∈ {0,−1} after removing {v−, v+} ∈ VB . Procedure considers two aspects, one is
that if {v−, v+} ⊆ V (MB) or not, and another is to check if v−, v+ are labelled with
lp, respectively. By algorithm 9.3, all nodes ofMB are coloured into red. By theorem
9.3 and algorithm 9.3, any vertex of V −B and labelled with lp is a terminal of a pre-
augmenting path related to MB , this pre-augmenting path must be vertex disjoint
with a pre-augmenting path involving a terminal of V +

B and labelled with lp. Once
these two aspects are confirmed, value of d ∈ {0,−1} can be finally confirmed and
returned according to lemma 9.6, 9.8. Accordingly, by definition 9.4, category of v
of D, which maps into {v−, v+} is also confirmed as well. Nevertheless, by lemma
9.7 and lemma 9.8, in line 7, 8, it is possible that either d = +1 or d = 0. In this
case, v− is added into S3, and value of d in this case is confirmed by following
algorithms. Hence, this algorithm is correct before the first iteration.

Then, this algorithm is also correct in each iteration, because those two aspects
for each vertex pair are concerned by lemma 9.6,9.8 to confirm value of d ∈ {0,−1}.
Due to vertex removal of V +

B , this algorithm terminates when V +
B = ∅. Since value

of d ∈ {+1, 0,−1} for each {v−, v+} is returned along with each v+ ∈ V +
B , this

algorithm is correct. �

127

9. IDENTIFY VULNERABLE NODES FOR NETWORK STRUCTURAL CONTROL

Corollary 9.11 (Complexity of algorithm 9.4)
Given V −B and V +

B returned by using algorithm 9.3, the worst-case execution time of algo-
rithm 9.4 is O(|VB|) and the space complexity is O(|VB|).

PROOF For the running time, confirming if any {v+, v−} ⊆ V (MB) or not can be
done in O(1) time, and confirming value of d ∈ {0,−1} for each {v−, v+} costs
O(1) time with existence of lp. And also each v+ is concerned only once with v−.
Time complexity is thus O(|VB|). Also, space complexity is also O(|VB|), which is
arranged for returns, inputs and auxiliary variables in total. �

9.5.3 Confirm value of d ∈ {0,+1}

Given B = (VB, EB) of definition 9.2, by lemma 9.7 and 9.8, for each node v− ∈ S3,
which is returned by algorithm 9.4, to understand the value of related d ∈ {0,+1},
it needs to confirm if v− and v+ are connected or not by a directed path starting
from v− in B, where v+ and v− are mapped by v of D. For this purpose, we use a
digraph defined by following definition 9.5, noted by G = (VG, EG):

Definition 9.5 (G = (VG, EG))
Given B = (VB, EB) of definition 9.2, let G = (VG, EG) be a directed acyclic graph and
it excludes parallel arcs, and C = {ci|1 ≤ i ≤ l}(l ≥ 0) be a set of all strongly connected
components of B. Also, VG = {v∗i |v∗i ∈ VB, v∗i 6∈ C} ∪ {vc1 . . . , vci , . . . vcl}, where any
vci corresponds to ci of B. Besides, EG is a non-empty edge set. EG excludes edges of EB

that are incident to two vertices of any ci of B, while any edge of EG incident to vci in G
corresponds to an edge of EB that is incident to a vertex of ci of B.

By the algorithm of [111], given B = (VB, EB) of definition 9.2, C and G =
(VG, EG) can be obtained in O(|VB|+ |EB|) time and space in the worst case, both.
An example of definition 9.5 is shown in figure 9.3. In the following, algorithm 9.5
sets the label on each vertex of G = (VG, EG) of definition 9.5, so that we can then
efficiently know if a vertex is connected with any given vertex via directed paths in
G by just checking its label. In this algorithm, for convenience of description, we
use ux to represent any vertex of VG, and let Lux be the label on ux. Particularly,
Lux is a single linked list, where Lux .head is the first element of Lux , Lux .tail is a
set of last elements, called the tail set of Lux , while ux.next is a pointer on a vertex
pointed by ux via an arc of G. Also, let P0 be an initially empty node set, and us be
a vertex of P0 when P0 6= ∅. Besides, let δ(us) be a set of nodes pointed by us, and
let ut be a vertex of δ(us), where ∃

−−−−→
〈us, ut〉 ∈ EG.

PROOF When the first vertex ux is chosen in line 1, this algorithm starts to identify
and labels all vertices connected with it through paths of G, which is done by the
second while loop from line 4 to 15. By definition 9.5, such connectivity in G is
equivalent with that in B. In detail, after adding ux into P0 and setting Lux in
line 3, P0 = {ux} and ux ≡ us. If δ(ux) 6= ∅, the label on a node pointed by
ux through existing paths are set by line 12 and 15. Also, procedure from line 8
to 11 ensures that P0 only contains vertices of G that are currently pointing other
nodes. Particularly, by line 15, for any vertex connected with ux, its label’s tail
set is configured to contain Lux .tail, which is then critical to confirm value of d.
Thus, given ux, prior to the first iteration of the second while loop, this algorithm

128

9.5 ENTIRE NODAL CLASSIFICATION

B1

v+1 v−2

v+2 v−4

v+3 v−1

v+4 v−5

v+5 v−3

v+6 v−6

G1

v+6

v−2
v+1

vc1

v−3

v−6

Figure 9.3: An example of definition 9.5.
A bipartite graph B1 has a strongly connected component:

{
−−−−−→
〈v−4 , v+2 〉,

−−−−−→
〈v+2 , v−5 〉,

−−−−−→
〈v−5 , v+4 〉,

−−−−−→
〈v+4 , v−1 〉,

−−−−−→
〈v−1 , v+3 〉,

−−−−−→
〈v+3 , v−4 〉}. By definition 9.5, a digraph G1 is obtained.

Algorithm 9.5: Set a label on each node of G
Input: G = (VG, EG) of definition 9.5
Output: Labels on vertices of VG

1 while ux ∈ VG not coloured do
2 Colour ux into red and P

′
0 = P0 ∪ ux;

3 Lux .head = ux;Lux .tail = {ux};
4 while P0 6= ∅ and ∃ut ∈ δ(us) do
5 E

′
G = EG \

−−−−→
〈us, ut〉 ;

6 if ut not coloured then
7 Colour ut into red;
8 if ut is the last vertex pointed by us then
9 P

′
0 = P0 \ us;

10 if δ(ut) 6= ∅ then
11 P

′
0 = P0 ∪ ut;

12 Lut .head = ut;ut.next = Lus .head;
13 if Lut .tail = {ut} then
14 Lut .tail

′
= Lut .tail \ ut;

15 Lut .tail
′

= Lut .tail ∪ Lus .tail;
16 return Labels on all nodes of VG;

129

9. IDENTIFY VULNERABLE NODES FOR NETWORK STRUCTURAL CONTROL

is correct. Then, if P0 6= ∅, due to procedure of line 10 and 11, other vertices of
P0 approached by ux are used to continuously identify and label nodes as before,
where the tail set of a label on a node still involves Lux .tail. Hence, this algorithm
can identify and label all nodes approached by ux during iterations of the second
while loop. Because each vertex of P0 that has no neighbours pointed by it would
be removed in line 9, P0 = ∅ terminates the second while loop, and all nodes
approached by ux are labelled, whose tail sets must involve Lux .tail.

Next, during each iteration of the first while loop, the vertex of G that is not
coloured is chosen and added into P0, which is the only element of P0 by now.
Similarly, the second while loop is triggered to identify and label all nodes con-
nected with it through existing paths starting from this newly-chosen node in line
1. In particular, because a node chosen in previous iteration of the first while loop
might be approached by currently chosen vertex via paths, to guarantee that tail set
of this currently chosen node of line 1 is involved by the tail set of each currently
traversed single vertex of line 4, procedure of line 13, 14 is thus given. Because each
labelled vertex of VG is coloured in either line 2 or line 7, all vertices of VG would be
coloured into red at a moment, on which this algorithm terminates and all vertices
of VG are labelled. In consequence, this algorithm is correct. �

Corollary 9.12 (Complexity of algorithm 9.5)
Given G = (VG, EG) of definition 9.5, the worst-case execution time and space cost by
running algorithm 9.5 is O(|VG|+ |EG|), both.

PROOF For the running time, it is cost by colouring, visiting and labelling all ver-
tices of VG. Because each node is coloured once, visited once only, and the label op-
eration on a currently traversed node is triggered by an existing incoming edge of
currentEG and line 1. Visiting and colouring vertices of VG thus costsO(|VG|+|EG|)
at most. Also, by line 3, 12-15, because each label operation on a single vertex costs
O(1) time, and there areO(|EB|) label operations at most. Therefore, the worst-case
execution time of this algorithm is O(|VG|+ |EG|).

For the space complexity, obviously, the whole linked lists of labels generated
by this algorithm contains all vertices of VG, and the number of labels is |VG|. Also,
the number of next pointers is |EG|. Thus, space arranged for labels should be
O(|EG| + |VG|). Besides, space is still cost by colouring operation, inputs and all
auxiliary variables, such as P0, which cost O(|VG|) in total. Therefore, space com-
plexity of this algorithm is O(|EG|+ |VG|). �

Because D = (V,E) of definition 9.1 is a finite digraph, B = (VB, EB) of def-
inition 9.2 is a finite bipartite graph, and so that G = (VG, EG) of definition 9.5 is
a finite directed acyclic graph. Therefore, after running algorithm 9.5, vertices of
VG that exclude incoming arcs of EG must be involved into all tail sets of all labels
on vertices of VG. Above all, based on lemma 9.7,9.8, algorithm 9.6 below confirms
value d ∈ {0,+1} for all nodes of S3 returned by algorithm 9.4.

Here, let v− be a vertex of S3, ci, cj be two strongly connected component of B,
vci , vcj be two vertices of G corresponding to ci and cj by definition 9.5. Besides, let
T be a set of labels on nodes of G that have no incoming edges, and we also define
T0 as a set storing T , and it is possible that ci = cj . Also, if v− or v+ is contained by
a strongly component, we assume that this component is ci or cj .

130

9.5 ENTIRE NODAL CLASSIFICATION

Algorithm 9.6: Confirm value of d ∈ {0,+1} for all nodes of S3
Input: All labels returned by algorithm 9.5, S3 returned by algorithm 9.4,

B = (VB, EB) of definition 9.2.
Output: Value of d for each node of S3

1 Derive T ; Find each ci of B by the algorithm of [111];
2 Label vertices of each ci with ci;
3 while S3 6= ∅ and v− ∈ S3 do
4 S

′
3 = S3 \ v−;

5 T0 = T ; T = ∅;
6 if v+ and v− not labelled with ci then
7 Lv− .tail

′
= Lv− .tail ∪ v−;

8 if v− ∈ Lv+ .tail then
9 return d = 0; v of D is Ordinary node;

10 else if then
11 return d = +1; v of D is Critical node;
12 Lv− .tail

′
= Lv− .tail \ v−;

13 else if v− labelled with ci and v+ labelled with cj then
14 Lvci

.tail
′

= Lvci
.tail ∪ vci ;

15 if vci ∈ Lvcj
.tail then

16 return d = 0; v of D is Ordinary node;
17 else if then
18 return d = +1; v of D is Critical node;
19 Lvci

.tail
′

= Lvci
.tail \ vci ;

20 else if then
21 Lv− .tail

′
= Lv− .tail ∪ v− or Lvci

.tail
′

= Lvci
.tail ∪ vci ;

22 if v− ∈ Lvcj
.tail or vci ∈ Lv+ .tail then

23 return d = 0; v of D is Ordinary node;
24 else if then
25 return d = +1; v of D is Critical node;
26 Lv− .tail

′
= Lv− .tail \ v− orLvci

.tail
′

= Lvci
.tail \ vci ;

27 T = T0;

PROOF Initially, T can be derived by finding nodes of VG without incoming edges
in O(|VG|) steps at most. Simultaneously, all strongly connected components of B
are identified by the algorithm of [111] with time complexity O(|VB| + |EB|), and
each vertex of any strongly connected component is labelled with the notation of
this component, which costs O(|VB|) time mostly. After this, any vertex v− ∈ S3 is
chosen to consider if v+ is approached by it in B, and related value of d ∈ {0,+1}
is confirmed by lemma 9.7, 9.8 eventually. According to line 15 of algorithm 9.5,
because the tail set of a label on any given vertex of G involves tail sets of labels
on all nodes approaching it via paths, it means that if Lv− .tail ⊆ Lv+ .tail, v+ is
approached by v− ∈ S3. Therefore, with returns of algorithm 9.5, this algorithm
considers three cases according to if v− and v+ are involved into the strongly con-
nected component, where line 20 is set for the situation when v− and v+ are not
involved into strongly connected compnent of B at the same time. Further, T is

131

9. IDENTIFY VULNERABLE NODES FOR NETWORK STRUCTURAL CONTROL

set as empty and v− is added into Lv− .tail, so that any tail of label on the node
approached by v− only contains v−. Based on definition 9.5 and algorithm 9.5, be-
cause any two vertices of a strongly connected component can visit each other via
exisitng paths [42], if v− is involved into ci, vci is used to identify if it is connected
with v+ via paths of G, where paths also exist in B. Consequently, before the first
iteration, this algorithm is correct.

After this, the initially chosen v− is removed from S3. During each iteration,
a vertex is chosen from the remaining S3 to confirm value of related d as before.
After each iteration, since T and changed tail sets are all restored, this algorithm is
correct during each iteration.

Because each element of S3 is removed from S3 in line 4, S3 = ∅ terminates this
algorithm, on which related vale of d for each vertex of S3 is confirmed respectively.
Above all, this procedure is correct. �

Corollary 9.13 (Complexity of algorithm 9.6)
Given labels returned by algorithm 9.5, S3 returned by algorithm 9.4, andB = (VB, EB) of
definition 9.2, the worst-case execution time and space of running algorithm 9.6 isO(|VB|+
|EB|), respectively.

PROOF For the worst-case execution time, running time is firstly cost by deriving
T , identifying all strongly connected components of B and label nodes in line 1, 2.
By definition 9.5, |VG| ≤ |VB|, time complexity of such initialization isO(|VB|+|EB).
Besides, running time is also cost by executing the while loop, reviewing the oper-
ation on each vertex of S3 , which involves checking if v− and v+ are involved into
strongly connected components, updating tail sets and the final comparison, whose
time complexity is thus O(|VB|). Due to line 15 of algorithm 9.5, we can know that
the tail set of each visited node of G only contains entities that are vertices without
any incoming arcs, and also, tail sets of different nodes may share common subsets
on other vertices. After line 5, those sets exclude any entities until running proce-
dures from line 6, during which, each tail set can contain only one entity at most.
As a result, the operation on each vertex of S3 costs O(1) time steps. In total, time
complexity of this algorithm is O(|VB|+ |EB|).

For the space complexity, space is mainly arranged for T , T0, all identified
strongly connected components, and labels on nodes of strongly connected com-
ponents, which totally cost space O(|VB| + |EB|) at most. For other auxiliary vari-
ables and returns, they cost O(1) space. Thus, space complexity of this algorithm is
O(|VB|+ |EB|). �

9.5.4 Complexity Analysis

Corollary 9.14 (Complexity of solving problem 9.2)
GivenD = (V,E) withMD of definition 9.1, the worst-case execution time cost by solving
the problem 9.2 is O(|V | + |E| +

√
|V ||E|), where O(

√
|V ||E|) is cost by deriving MD.

And the space complexity is O(|V |+ |E|).

PROOF Through running those algorithms from 9.2 to 9.6 above, category of each
v of D = (V,E) is identified by confirming the value of d ∈ {0,+1,−1} with each
{v−, v+} ∈ VB in B = (VB, EB) of definition 9.2. In aggregation, the worst-case

132

9.6 SUMMARY

execution time of running algorithm 9.1 is the sum of each operations. In detail,
derivingB fromD, and derivingG = (VG, EG) of definition 9.5 fromB costs |VB|+
|EB|) steps in total. By algorithms from 9.2 to 9.6, time complexity of comfirming
the value of d ∈ {0,+1,−1} with each {v−, v+} ∈ VB in B = (VB, EB) is thus
O(|VB| + |EB|). By definition 9.2, |VB| = 2|V | and |EB| = |E|, total running time
of classifying vertices of D = (V,E) into categories of definition 9.4 is O(|V | +
|E| +

√
|V ||E|), where deriving the maximum matching MD of D = (V,E) costs

O(
√
|V ||E|) by algorithm of [60].

Similarly, space complexity is also concerned. Total space is arranged for the in-
put networkD = (V,E), obtainingB = (VB, EB),G = (VG, EG), and implementing
those five algorithms, which is still the sum of the space arranged for each of them.
By definition 9.2, 9.5, space arranged for B and G is O(|EB| + |VB|), respectively.
Referring the space complexity of previous algorithms, and due to |VB| = 2|V | and
|EB| = |E|, space complexity is also O(|V |+ |E|) totally. �

In summary, problem 9.2 is efficiently solved in linear time and space, except
for deriving MD of D. Furthermore, based on all numerical impacts of removing
any single vertex on the minimum set of driver nodes, classifying all nodes of an
initially minimum-input structurally controlled CT-LTI network can be done in lin-
ear time. As a result, we can thus efficiently identify all vulnerable single vertices
to malicious removals or failures.

9.6 Summary

In this chapter, based on all possible numerical impacts of removing a single net-
work vertex on the minimum set of inputs to structurally control a network, three
nodal categories are concluded to explicitly identify vulnerable single vertices to
malicious removals and failures. According to the minimum input theorem, we
firstly investigate all possible impacts by exploring all numerical impacts of a sin-
gle vertex removal on the minimum number of unmatched nodes of a residual di-
graph. Then, accordingly, within a bipartite graph mapped by the input network,
we classify all vertices of a given system network into them by identifying pre-
augmenting paths and confirming connectivity between some pairwise vertices
that is completed by some label operations. As a result, excluding pre-computing
the minimum set of inputs of the input network, the entire nodal classification can
be executed in linear time and space.

133

Part IV

Epilogue

135

Chapter 10

Conclusion & Future Work

After systematized narration of previous parts, this chapter summaries them, and
then illustrates other different things to guide the future research work.

10.1 Thesis Summary

To effectively maintain controllability of continuous time and linear time-invariant
(CT-LTI) dynamic systems, this thesis concentrates on efficiently maintaining struc-
tural controllability with a minimum set of inputs. It solves six research questions,
which are systematically introduced and defined with various motivations in chap-
ter 1 of part I. In general, given a (minimum-input) structurally controllable system
or network with CT-LTI dynamics, as the input. Then, main contributions of this
thesis are summarized below:

1. Efficient recovery of structural controllability with a minimum set of inputs
after very limited and severe modification, respectively. Particularly, very
limited modification means either removing or adding a system component,
and inputs are strictly constrained for the recovery against severe modifica-
tion.

2. Efficient network analysis that accurately identifies vulnerable single vertices
and edges to the removal, according to the importance of single node and
edge in terms of maintaining structural control with a minimum set of inputs.

Viewing these two contributions, six questions are classified into two aspects
correspondingly. In detail, the first aspect contains previous three research ques-
tions, which are addressed in part II and focus on efficient recovery of the struc-
tural controllability with a minimum set of inputs to against very limited and se-
vere modification on an initially minimum-input structurally controllable system.
After this, the second aspect contains the last three research questions, which are
addressed in part III and concentrate on the efficient network analysis to explicitly
identify vulnerable single vertices and edges to the removal.

More specifically, in chapter 2, some knowledge and technologies are clearly
presented and compared, which are indispensable to define, analyse and solve
those six research questions and our future works. This chapter mainly describes
and explains what the controllability is, and how to acquire controllability through
the structural controllability with graph-theoretical methods, by which, control-
lability of complex networks is also discussed. During the description, those two
graph-theoretical methods that can effectively derive structural controllability with
a minimum set of inputs are systematically shown. Besides, the relationship among

137

10. CONCLUSION & FUTURE WORK

controllability, structural controllability and strongly structural controllability is
compared as well. Additionally, from the perspective of graph theory and alge-
bra, the development of the study on acquiring controllability of CT-LTI systems
over the last half century could be also directly appreciated in this chapter.

Based on the known knowledge to acquire structural controllability with a min-
imum set of inputs, chapter 3 scrutinises works related to all research questions.
Those reviewed works are about structural-control recovery, robustness of network
structural controllability and network analysis to maintain structural controllabil-
ity. Besides, related graph-theory problems that can model and solve some research
questions are also reviewed as well. In the most case, in this chapter, aiming at each
research question, existing issues of related works are precisely indicated to justify
why those six research questions are raised and addressed in part II and III.

After that, well solving each research question formally starts from chapter 4
and ends at chapter 9 in order. Particularly, for questions about recovery of struc-
tural controllability with a minimum set of inputs, it is always assumed that the
given system or network with CT-LTI dynamics is initially structurally controllable
by a minimum set of inputs, and such inputs are identified through the maximum-
matching based method of section 2.4.1 of chapter 2. Besides, each research ques-
tion is modelled into a graph-theoretical problem in chapter 4, 5 and 6, respectively.
As a result of solving these research questions in part II, compared with existing
works shown in section 3.2 of chapter 3, the worst-case execution time of our every
recovery scenario is more efficient and our solutions contain less constrains. From
those results, it is reflected that structural-controllability recovery should not only
consider the execution efficiency, but also concern the amount of modification on
the given CT-LTI system or network and constrains on the input to recover.

In the following, for questions solved in part III, according to impacts of a single
edge or vertex removal on the minimum set of inputs to structurally control the
residual network, they are modelled into problems about classifying either single
edges in chapter 7 or vertices in 8 and 9. Specifically, chapter 8 focuses on single
vertices that could be contained by a minimum set of driver nodes, while chapter
9 considers all kinds of single nodes of the given network. As a result, the worst-
case execution time of each solution is the same as the running time of identifying
a maximum matching at most. Additionally, due to more efficient average-case
time complexity of identifying a maximum matching of an ER random graph, once
the input network of solution of each research question is ER random model and
sparse, those network analysis might be further executed with lower average-case
time complexity.

Furthermore, with those efficient analysis methods and nodal categories, for
the study on robustness of network structural controllability against the nodal re-
moval, the surge of the minimum number of inputs to structurally control the resid-
ual network can be better explained than using global network properties, such as
vertex average degree, vertex betweenness and so on. In comparison of related
works about robustness of network structural controllability shown in section 3.3
and network analysis for structural controllability in section 3.4 of chapter 3, it is
to say that study on recognising how each single vertex maintains the structural
controllability with a minimum set of inputs can be more practically addressed
through related graph-theoretical problems.

138

10.2 THE FUTURE WORK

10.2 The Future Work

In this section, to address limitations of our work, the research still undertaken in
the future is illustrated. Generally speaking, following those illustrated research
method in previous chapters, our future work still rely on graph-theoretical prob-
lems to model and solve corresponding research questions out of this thesis.

10.2.1 Further Study of Maximum Matching

Throughout this thesis, we can directly feel how the significant role of the maxi-
mum matching plays in promoting research on CT-LTI system controllability and
solving those six research questions. And the key to those results is the efficiency of
existing maximum-matching identification algorithms. Over the last half century,
although there have not been a novel scenario to improve the worst execution time
of identifying a maximum matching for general networks, it is still meaningful to
explore improvements through any possible clues. For example, given a general
digraph as an input, reviewing the output of a maximum (cardinality) matching al-
gorithm, it is a set of disjoint cycles or paths. Nevertheless, because the breadth-first
and depth-first search on a digraph can also produce disjoint cycles and paths. In
order to identify a maximum matching, an interesting problem is raised here: how
to use those disjoint paths and cycles returned by breadth-first or depth-first search
to construct a maximum matching of a given digraph with lower time complexity.

10.2.2 Study of Strongly Structural Controllability

In section 2.5 of chapter 2, we have known the strongly s-controllability through a
graph theoretical manner . For any given CT-LTI system, strongly s-cntrollability is
a powerful system property to acquire controllability without to know exact values
of non-zero entries of both state and input matrices. Also, according to [33], because
it might be possible that attackers maliciously infiltrate interactions among system
components or network edge, where the value of some non-zero entries of input
or state matrix are changed, so that system might be no longer controllable as a
result of that malicious infiltration. For such attacks, compared with our current
research, because there is no physical damage but exact parameters, the strongly
s-controllability is obviously desirable to acquire as soon as possible.

To do this, we would like to consider how to acquire strongly s-controllability
with lower time complexity than the existing result of [32]. By theorem 2.6 of chap-
ter 2, it is already known that acquiring strongly s-controllability should obtain a
constrained matching of bipartite graph BA = (V +

A ∪ V
−
A , EA) of definition 2.20

and a constrained self-less matching of bipartite graph BAX
= (V +

AX
∪ V −AX

, EAX
)

of definition 2.24, respectively. More specifically, by definition 2.22, a constrained
{V −sub}-less (n - m)-matching in “BAX

”\V −sub is actually a constrained self-less (n - m)-
matching in “BA” \ V −sub. This is because a constrained {V −sub}-less (n - m)-matching
in {“BAX

” \ V −sub} excludes any edge like (v−i , v
+
i), and it is the only one matching

whose edges incident to V −A \ V
−
sub.

Above all, compared with a general maximum matching and a constrained self-
less matching within a same bipartite graph, a constrained self-less matching can
be obtained by eliminating vertices contained by cycles that alternatively involves

139

10. CONCLUSION & FUTURE WORK

edges of this general maximum matching and edges out of it. From this aspect, it
can be explained why the cardinality of a constrained self-less maximum match-
ing is less than that of a general maximum matching. Therefore, the inputs for a
strongly s-controllable system might be more than that of a structurally controllable
system.

Also, the alternating-cycle matching of 7.2 of chapter 7 could be used to derive
a constrained self-less matching, because the existence of any single alternating-
cycle matching would generate two matchings with the same vertex sets, which
is a contradiction with the constrained matching. Therefore, it is effective to ac-
quire a constrained self-less matching by removing nodes of identified alternating-
cycle matching related to a given maximum matching. And the finally resulting
matching is thus a constrained self-less matching. As mentioned previously, since
a strongly s-controllable system might require more number of inputs than a struc-
turally controllable system, derive the strongly s-controllability with a minimal
number of inputs is desirable. Therefore, we would address the problem about
identifying a constrained self-less matching through a given maximum matching
of bipartite graph BAX

= (V +
AX
∪ V −AX

, EAX
) of definition 2.24.

Additionally, for the purpose of optimizing strongly srtuctural control, we still
purpose to approach a constrained self-less matching with the maximum cardinal-
ity in the future. Although identifying a maximum constrained self-less matching
is said to a NP-complete problem [31], it is still valuable to explore good results
with some reasonable assumptions.

10.2.3 Further Network Analysis

With existing works in part III, we have used several nodal categories and efficient
nodal classification to explicitly identify vulnerable single vertices to the removal.
Even though, focusing on how a single vertex maintains the current structural con-
trollability should be further developed. When combining related works of section
3.2.2 of chapter 3, which focus on robustness of network structural controllability
with a minimum set of inputs, it can be clearly found that different kinds of nodal
removals can result various kinds of surges of the minimum set of inputs to struc-
turally control the residual network. It means that the removed nodes can influence
the category distribution of remaining nodes. Therefore, it is interesting to explore
how each single vertex influences vertices of other categories after removing it,
such as the number of other category nodes. And the network analysis is devel-
oped from single isolated vertex to single related nodes, by which, the robustness
against continuous single node removals can be more precisely estimated. Simi-
larly, we would also do the same analyse on network edges, to investigate how a
single edge influences other category edges after removing it. Additionally, to suffi-
ciently develop network analysis for the purpose of maintaining network structural
controllability with a minimum set of inputs, those global graph properties, such
as vertex degree, betweenness, and so on, would be used to assist corresponding
investigation and distinguish for related impacts.

In other words, this future work proposes to explore harmful edge or vertex
removal scenarios according to global graph properties. By contrast, in the given
time slots, such network analysis can better explain the continuous change of the
increase of the minimum number of inputs during edge or nodal removals.

140

Bibliography

[1] AAZAMI, A., AND STILP, K. Approximation algorithms and hardness for
domination with propagation. SIAM Journal on Discrete Mathematics 23, 3
(2009), 1382–1399. 33, 40

[2] AGGARWAL, C., HE, G., AND ZHAO, P. Edge classification in networks.
In Data Engineering (ICDE), 2016 IEEE 32nd International Conference on (2016),
IEEE, pp. 1038–1049. 45

[3] AGRAWAL, P., GARG, V. K., AND NARAYANAM, R. Link label prediction in
signed social networks. In IJCAI (2013). 45

[4] ALBERT, R., AND BARABÁSI, A.-L. Statistical mechanics of complex net-
works. Reviews of modern physics 74, 1 (2002), 47. 8, 37

[5] ALBERT, R., JEONG, H., AND BARABÁSI, A.-L. Error and attack tolerance of
complex networks. nature 406, 6794 (2000), 378–382. 42

[6] ALCARAZ, C., MICIOLINO, E. E., AND WOLTHUSEN, S. Structural controlla-
bility of networks for non-interactive adversarial vertex removal. In Interna-
tional Workshop on Critical Information Infrastructures Security (2013), Springer,
pp. 120–132. 6, 38, 43

[7] ALCARAZ, C., AND WOLTHUSEN, S. Recovery of structural controllability
for control systems. In International Conference on Critical Infrastructure Protec-
tion (2014), Springer, pp. 47–63. 9, 40

[8] ALT, H., BLUM, N., MEHLHORN, K., AND PAUL, M. Computing a maximum
cardinality matching in a bipartite graph in time o (n 1.5 mlog n). Information
Processing Letters 37, 4 (1991), 237–240. 27

[9] ALWASEL, B., AND WOLTHUSEN, S. D. Reconstruction of structural control-
lability over erdős-rényi graphs via power dominating sets. In Proceedings of
the 9th Annual Cyber and Information Security Research Conference (2014), ACM,
pp. 57–60. 40, 61

[10] ALWASEL, B., AND WOLTHUSEN, S. D. Recovering structural controllabil-
ity on erdős-rényi graphs via partial control structure re-use. In Interna-
tional Conference on Critical Information Infrastructures Security (2014), Springer,
pp. 293–307. 40

[11] ALWASEL, B., AND WOLTHUSEN, S. D. Recovering structural controllabil-
ity on erdős-rényi graphs in the presence of compromised nodes. In Interna-
tional Conference on Critical Information Infrastructures Security (2015), Springer,
pp. 105–119. 9, 40

141

BIBLIOGRAPHY

[12] ALWASEL, B., AND WOLTHUSEN, S. D. Structural controllability analysis via
embedding power dominating set approximation in erdhos-rènyi graphs. In
Advanced Information Networking and Applications Workshops (WAINA), 2015
IEEE 29th International Conference on (2015), IEEE, pp. 418–423. 6, 40

[13] AZRAN, A. The rendezvous algorithm: Multiclass semi-supervised learning
with markov random walks. In Proceedings of the 24th international conference
on Machine learning (2007), ACM, pp. 49–56. 49

[14] BANG-JENSEN, J., AND GUTIN, G. Z. Digraphs: theory, algorithms and applica-
tions. Springer Science & Business Media, 2008. vii, 26

[15] BARABÁSI, A.-L., AND ALBERT, R. Emergence of scaling in random net-
works. science 286, 5439 (1999), 509–512. 8, 37

[16] BAST, H., MEHLHORN, K., SCHAFER, G., AND TAMAKI, H. Matching algo-
rithms are fast in sparse random graphs. Theory of Computing Systems 39, 1
(2006), 3–14. 27

[17] BAST, H., MEHLHORN, K., SCHAFER, G., AND TAMAKI, H. Matching algo-
rithms are fast in sparse random graphs. Theory of Computing Systems 39, 1
(2006), 3–14. 61, 75

[18] BASWANA, S., GUPTA, M., AND SEN, S. Fully dynamic maximal matching
in o(\logn) update time. SIAM Journal on Computing 44, 1 (2015), 88–113. 41

[19] BAY, J. Fundamentals of linear state space systems, ser. Elect. Eng. New York:
McGraw-Hill (1998). vii, 5, 20

[20] BERGE, C. Two theorems in graph theory. Proceedings of the National Academy
of Sciences 43, 9 (1957), 842–844. 26, 27

[21] BERNSTEIN, A., AND STEIN, C. Faster fully dynamic matchings with small
approximation ratios. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms (2016), Society for Industrial and Applied
Mathematics, pp. 692–711. 41

[22] BHAGAT, S., CORMODE, G., AND MUTHUKRISHNAN, S. Node classification
in social networks. In Social network data analytics. Springer, 2011, pp. 115–148.
49

[23] BHATTACHARYA, S., HENZINGER, M., AND NANONGKAI, D. Fully dynamic
approximate maximum matching and minimum vertex cover in o (log3 n)
worst case update time. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms (2017), SIAM, pp. 470–489. 41

[24] BINKELE-RAIBLE, D., AND FERNAU, H. An exact exponential time algorithm
for power dominating set. Algorithmica 63, 1-2 (2012), 323–346. 33

[25] BOLLOBÁS, B., BORGS, C., CHAYES, J., AND RIORDAN, O. Directed scale-
free graphs. In Proceedings of the fourteenth annual ACM-SIAM symposium on
Discrete algorithms (2003), Society for Industrial and Applied Mathematics,
pp. 132–139. 42

142

BIBLIOGRAPHY

[26] BOYER, S. A. SCADA: supervisory control and data acquisition. International
Society of Automation, 2009. 6

[27] CÁRDENAS, A. A., AMIN, S., LIN, Z.-S., HUANG, Y.-L., HUANG, C.-Y.,
AND SASTRY, S. Attacks against process control systems: risk assessment,
detection, and response. In Proceedings of the 6th ACM symposium on informa-
tion, computer and communications security (2011), ACM, pp. 355–366. 6

[28] CÁRDENAS, A. A., AMIN, S., AND SASTRY, S. Research challenges for the
security of control systems. In HotSec (2008). 6

[29] CARDENAS, A. A., AMIN, S., AND SASTRY, S. Secure control: Towards sur-
vivable cyber-physical systems. In Distributed Computing Systems Workshops,
2008. ICDCS’08. 28th International Conference on (2008), IEEE, pp. 495–500. 6,
7

[30] CARVALHO, M. H. D., ET AL. An o (ve) algorithm for ear decompositions of
matching-covered graphs. ACM Transactions on Algorithms (TALG) 1, 2 (2005),
324–337. 46

[31] CHAPMAN, A. Strong structural controllability of networked dynamics. In
Semi-Autonomous Networks. Springer, 2015, pp. 135–150. 5, 34, 36, 140

[32] CHAPMAN, A., AND MESBAHI, M. On strong structural controllability of
networked systems: A constrained matching approach. 34, 36, 139

[33] CHAPMAN, A., AND MESBAHI, M. Security and infiltration of networks: A
structural controllability and observability perspective. In Control of Cyber-
Physical Systems. Springer, 2013, pp. 143–160. 9, 139

[34] CHAPMAN, A., AND MESBAHI, M. Security and infiltration of networks: A
structural controllability and observability perspective. In Control of Cyber-
Physical Systems. Springer, 2013, pp. 143–160. 46, 103

[35] CHARTRAND, G., LESNIAK, L., AND ZHANG, P. Graphs & digraphs. CRC
Press, 2010. vii, 26

[36] CHEN, T., AND ABU-NIMEH, S. Lessons from stuxnet. Computer 44, 4 (2011),
91–93. 7

[37] CHEN, X., PEQUITO, S., PAPPAS, G. J., AND PRECIADO, V. M. Minimal edge
addition for network controllability. IEEE Transactions on Control of Network
Systems (2018). 8, 15, 16, 41, 77, 88

[38] CHERIYAN, J. Randomized o(m(—v—)) algorithms for problems in matching
theory. SIAM Journal on Computing 26, 6 (1997), 1635–1655. 46

[39] CHIANG, K.-Y., NATARAJAN, N., TEWARI, A., AND DHILLON, I. S. Exploit-
ing longer cycles for link prediction in signed networks. In Proceedings of
the 20th ACM international conference on Information and knowledge management
(2011), ACM, pp. 1157–1162. 45

143

BIBLIOGRAPHY

[40] CHIN, S. P., COHEN, J., ALBIN, A., HAYVANOVYCH, M., REILLY, E.,
BROWN, G., AND HARER, J. A mathematical analysis of network controlla-
bility through driver nodes. IEEE Transactions on Computational Social Systems
4, 2 (2017), 40–51. 9, 47

[41] COMMAULT, C., AND VAN DER WOUDE, J. A classification of nodes for
structural controllability. 47, 48

[42] CORMEN, T. H. Introduction to algorithms. MIT press, 2009. 41, 46, 83, 110,
123, 132

[43] COSTA, M.-C. Persistency in maximum cardinality bipartite matchings. Op-
erations Research Letters 15, 3 (1994), 143–149. 46

[44] CSERMELY, P., KORCSMÁROS, T., KISS, H. J., LONDON, G., AND NUSSINOV,
R. Structure and dynamics of molecular networks: a novel paradigm of drug
discovery: a comprehensive review. Pharmacology & therapeutics 138, 3 (2013),
333–408. 38

[45] DAVISON, E. J. Connectability and structural controllability of composite
systems. Automatica 13, 2 (1977), 109–123. 22, 29

[46] DELPINI, D., BATTISTON, S., RICCABONI, M., GABBI, G., PAMMOLLI, F.,
AND CALDARELLI, G. Evolution of controllability in interbank networks.
Scientific reports 3 (2013), 1626. 8, 38

[47] DING, J., AND LU, Y.-Z. Control backbone: An index for quantifying a node
s importance for the network controllability. Neurocomputing, 153 (2015), 309–
318. 48

[48] DING, J., LU, Y.-Z., AND CHU, J. Recovering the controllability of complex
networks. IFAC Proceedings Volumes 47, 3 (2014), 10894–10901. 9, 39

[49] DION, J.-M., COMMAULT, C., AND VAN DER WOUDE, J. Generic properties
and control of linear structured systems: a survey. Automatica 39, 7 (2003),
1125–1144. 21

[50] DOOSTMOHAMMADIAN, M., AND KHAN, U. A. On the genericity proper-
ties in distributed estimation: Topology design and sensor placement. IEEE
Journal of Selected Topics in Signal Processing 7, 2 (2013), 195–204. 37

[51] ERDDS, P., AND R&WI, A. On random graphs i. Publ. Math. Debrecen 6
(1959), 290–297. 27, 42

[52] FEIGE, U. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM) 45, 4 (1998), 634–652. 29

[53] GOH, K.-I., KAHNG, B., AND KIM, D. Universal behavior of load distri-
bution in scale-free networks. Physical Review Letters 87, 27 (2001), 278701.
43

[54] GOLUMBIC, M. C., HIRST, T., AND LEWENSTEIN, M. Uniquely restricted
matchings. Algorithmica 31, 2 (2001), 139–154. vii, 34, 35, 36

144

BIBLIOGRAPHY

[55] GROSS, J. L., YELLEN, J., AND ZHANG, P. Handbook of graph theory. Chapman
and Hall/CRC, 2013. vii, 29

[56] GUO, J., NIEDERMEIER, R., AND RAIBLE, D. Improved algorithms and com-
plexity results for power domination in graphs. Algorithmica 52, 2 (2008),
177–202. 40

[57] GUPTA, M., AND PENG, R. Fully dynamic (1+ e)-approximate matchings. In
Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on
(2013), IEEE, pp. 548–557. 27

[58] HADDAD, W. M., AND CHELLABOINA, V. Nonlinear dynamical systems and
control: a Lyapunov-based approach. Princeton University Press, 2011. 4

[59] HAYNES, T. W., HEDETNIEMI, S. M., HEDETNIEMI, S. T., AND HENNING,
M. A. Domination in graphs applied to electric power networks. SIAM
Journal on Discrete Mathematics 15, 4 (2002), 519–529. vii, 6, 29, 30, 33, 39, 43

[60] HOPCROFT, J. E., AND KARP, R. M. An nˆ5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on computing 2, 4 (1973), 225–
231. vii, 6, 26, 27, 28, 54, 64, 75, 81, 86, 87, 92, 110, 116, 133

[61] JIA, T., AND BARABÁSI, A.-L. Control capacity and a random sampling
method in exploring controllability of complex networks. Scientific reports
3 (2013). 48

[62] JIA, T., LIU, Y.-Y., CSÓKA, E., PÓSFAI, M., SLOTINE, J.-J., AND BARABÁSI,
A.-L. Emergence of bimodality in controlling complex networks. Nature
communications 4 (2013). 8, 9, 12, 17, 46, 47, 48, 103, 104, 110

[63] KALMAN, R. On the general theory of control systems. Automatic Control,
IRE Transactions on 4, 3 (1959), 110–110. i, 4

[64] KALMAN, R. E. Canonical structure of linear dynamical systems. Proceedings
of the National Academy of Sciences 48, 4 (1962), 596–600. 19

[65] KALMAN, R. E. Mathematical description of linear dynamical systems. Jour-
nal of the Society for Industrial and Applied Mathematics, Series A: Control 1, 2
(1963), 152–192. 3, 4, 19

[66] KEPHART, J. O., AND CHESS, D. M. The vision of autonomic computing.
Computer, 1 (2003), 41–50. 4

[67] KNEIS, J., MÖLLE, D., RICHTER, S., AND ROSSMANITH, P. Parameterized
power domination complexity. Information Processing Letters 98, 4 (2006), 145–
149. vii, 30

[68] KUHN, H. W. The hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97. 42

[69] LEE, E. A. Cyber physical systems: Design challenges. In Object oriented
real-time distributed computing (isorc), 2008 11th ieee international symposium on
(2008), IEEE, pp. 363–369. 6

145

BIBLIOGRAPHY

[70] LESKOVEC, J., HUTTENLOCHER, D., AND KLEINBERG, J. Predicting posi-
tive and negative links in online social networks. In Proceedings of the 19th
international conference on World wide web (2010), ACM, pp. 641–650. 45

[71] LIBEN-NOWELL, D., AND KLEINBERG, J. The link-prediction problem for
social networks. journal of the Association for Information Science and Technology
58, 7 (2007), 1019–1031. 45

[72] LIN, C. T. Structural controllability. Automatic Control, IEEE Transactions on
19, 3 (1974), 201–208. i, vii, xi, 5, 15, 19, 21, 22, 23

[73] LIU, Y.-Y., SLOTINE, J.-J., AND BARABÁSI, A.-L. Controllability of complex
networks. Nature 473, 7346 (2011), 167–173. xi, 4, 6, 8, 11, 21, 37, 38, 45, 91,
103

[74] LIU, Y.-Y., SLOTINE, J.-J., AND BARABÁSI, A.-L. Control centrality and hi-
erarchical structure in complex networks. Plos one 7, 9 (2012), e44459. 47,
48

[75] LOMBARDI, A., AND HÖRNQUIST, M. Controllability analysis of networks.
Physical Review E 75, 5 (2007), 056110. 4, 8

[76] LOPEZ, J., SETOLA, R., AND WOLTHUSEN, S. Critical Infrastructure Protection:
Advances in Critical Infrastructure Protection: Information Infrastructure Models,
Analysis, and Defense, vol. 7130. Springer Science & Business Media, 2012. 7

[77] LU, Z.-M., AND LI, X.-F. Attack vulnerability of network controllability.
PloS one 11, 9 (2016), e0162289. 38, 42, 43, 44

[78] LVLIN, H., SONGYANG, L., JIANG, B., AND LIANG, B. Enhancing complex
network controllability by rewiring links. In Intelligent System Design and
Engineering Applications (ISDEA), 2013 Third International Conference on (2013),
IEEE, pp. 709–711. 9

[79] MAYEDA, H. On structural controllability theorem. IEEE Transactions on
Automatic Control 26, 3 (1981), 795–798. xi, 23

[80] MAYEDA, H., AND YAMADA, T. Strong structural controllability. SIAM Jour-
nal on Control and Optimization 17, 1 (1979), 123–138. 5, 34

[81] MICALI, S., AND VAZIRANI, V. V. An o (v— v— c— e—) algoithm for finding
maximum matching in general graphs. In Foundations of Computer Science,
1980., 21st Annual Symposium on (1980), IEEE, pp. 17–27. 27, 28

[82] MO, Y., AND SINOPOLI, B. Secure control against replay attacks. In Com-
munication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton
Conference on (2009), IEEE, pp. 911–918. 6

[83] MOHOLKAR, A. V. Security for cyber-physical systems. International Journal
of Computing and Technology 1, 6 (2014). 7

[84] MOTTER, A. E., AND LAI, Y.-C. Cascade-based attacks on complex net-
works. Physical Review E 66, 6 (2002), 065102. 43

146

BIBLIOGRAPHY

[85] NEVILLE, J., AND JENSEN, D. Iterative classification in relational data. In
Proc. AAAI-2000 Workshop on Learning Statistical Models from Relational Data
(2000), pp. 13–20. 49

[86] NEWMAN, M. Networks: an introduction. OUP Oxford, 2010. 27

[87] NEWMAN, M. E. The structure and function of complex networks. SIAM
review 45, 2 (2003), 167–256. 8, 37

[88] NIE, S., WANG, X., ZHANG, H., LI, Q., AND WANG, B. Robustness of con-
trollability for networks based on edge-attack. PloS one 9, 2 (2014), e89066. 9,
44, 53

[89] NORMAN, R. Z., AND RABIN, M. O. An algorithm for a minimum cover of
a graph. Proceedings of the American Mathematical Society 10, 2 (1959), 315–319.
26, 27

[90] ONAK, K., AND RUBINFELD, R. Maintaining a large matching and a small
vertex cover. In Proceedings of the forty-second ACM symposium on Theory of
computing (2010), ACM, pp. 457–464. 41

[91] PEQUITO, S., KAR, S., AND AGUIAR, A. P. A structured systems approach
for optimal actuator-sensor placement in linear time-invariant systems. In
American Control Conference (ACC), 2013 (2013), IEEE, pp. 6108–6113. 41

[92] PEQUITO, S. D., KAR, S., AGUIAR, A. P., ET AL. A framework for structural
input/output and control configuration selection in large-scale systems. IEEE
Trans. Automat. Contr. 61, 2 (2016), 303–318. 33, 41

[93] POLJAK, S. On the generic dimension of controllable subspaces. IEEE Trans-
actions on Automatic Control 35, 3 (1990), 367–369. 48

[94] PU, C.-L., PEI, W.-J., AND MICHAELSON, A. Robustness analysis of net-
work controllability. Physica A: Statistical Mechanics and its Applications 391,
18 (2012), 4420–4425. 8, 10, 38, 42, 43, 47

[95] RABIN, M. O., AND VAZIRANI, V. V. Maximum matchings in general graphs
through randomization. Journal of Algorithms 10, 4 (1989), 557–567. 46

[96] RASHID, N., WAN, J., QUIROS, G., CANEDO, A., AND AL FARUQUE, M. A.
Modeling and simulation of cyberattacks for resilient cyber-physical systems.
In Automation Science and Engineering (CASE), 2017 13th IEEE Conference on
(2017), IEEE, pp. 988–993. 7, 63

[97] RÉGIN, J.-C. A filtering algorithm for constraints of difference in csps. In
AAAI (1994), vol. 94, pp. 362–367. 11, 17, 45, 91, 100

[98] RINALDI, S. M., PEERENBOOM, J. P., AND KELLY, T. K. Identifying, un-
derstanding, and analyzing critical infrastructure interdependencies. Control
Systems, IEEE 21, 6 (2001), 11–25. 7

[99] RUGH, W. J., AND RUGH, W. J. Linear system theory, vol. 2. prentice hall
Upper Saddle River, NJ, 1996. vii, 4, 19

147

BIBLIOGRAPHY

[100] RUTHS, J., AND RUTHS, D. Robustness of network controllability under edge
removal. In Complex Networks IV. Springer, 2013, pp. 185–193. 9, 10, 43, 53

[101] RUTHS, J., AND RUTHS, D. Control profiles of complex networks. Science
343, 6177 (2014), 1373–1376. 47

[102] SANKOWSKI, P. Faster dynamic matchings and vertex connectivity. In Pro-
ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms
(2007), Society for Industrial and Applied Mathematics, pp. 118–126. 41

[103] SÉLLEY, F., BESENYEI, Á., KISS, I. Z., AND SIMON, P. L. Dynamic control of
modern, network-based epidemic models. SIAM Journal on applied dynamical
systems 14, 1 (2015), 168–187. 8, 38

[104] SHIELDS, R., AND PEARSON, J. Structural controllability of multiinput linear
systems. IEEE Transactions on Automatic control 21, 2 (1976), 203–212. 22, 38

[105] SLAY, J., AND MILLER, M. Lessons learned from the maroochy water breach.
In International Conference on Critical Infrastructure Protection (2007), Springer,
pp. 73–82. 7

[106] SLOTINE, J.-J. E., LI, W., ET AL. Applied nonlinear control, vol. 199. Prentice
hall Englewood Cliffs, NJ, 1991. 5

[107] SOLOMON, B., IONESCU, D., LITOIU, M., AND ISZLAI, G. Autonomic
computing control of composed web services. In Proceedings of the 2010
ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems
(2010), ACM, pp. 94–103. 4

[108] STOUFFER, K., FALCO, J., AND SCARFONE, K. Guide to industrial control
systems (ics) security. NIST special publication 800, 82 (2011), 16–16. 6, 7

[109] SUN, P. G., AND MA, X. Controllability and observability of cascading fail-
ure networks. Journal of Statistical Mechanics: Theory and Experiment 2017, 4
(2017), 043404. 10, 43

[110] SUN, S., MA, Y., WU, Y., WANG, L., AND XIA, C. Towards structural control-
lability of local-world networks. Physics Letters A 380, 22 (2016), 1912–1917.
4

[111] TARJAN, R. Depth-first search and linear graph algorithms. SIAM journal on
computing 1, 2 (1972), 146–160. 28, 40, 59, 86, 98, 128, 131

[112] TASSA, T. Finding all maximally-matchable edges in a bipartite graph. Theo-
retical Computer Science 423 (2012), 50–58. 17, 46, 92, 101

[113] VINAYAGAM, A., GIBSON, T. E., LEE, H.-J., YILMAZEL, B., ROESEL, C.,
HU, Y., KWON, Y., SHARMA, A., LIU, Y.-Y., PERRIMON, N., ET AL. Control-
lability analysis of the directed human protein interaction network identifies
disease genes and drug targets. Proceedings of the National Academy of Sciences
113, 18 (2016), 4976–4981. 12, 48, 49, 115

148

BIBLIOGRAPHY

[114] WANG, B., GAO, L., AND GAO, Y. Control range: a controllability-based in-
dex for node significance in directed networks. Journal of Statistical Mechanics:
Theory and Experiment 2012, 04 (2012), P04011. 48

[115] WANG, B., GAO, L., GAO, Y., AND DENG, Y. Maintain the structural con-
trollability under malicious attacks on directed networks. EPL (Europhysics
Letters) 101, 5 (2013), 58003. 9, 42, 53

[116] WANG, H. Robustness of networks. 42

[117] WANG, L.-Z., CHEN, Y.-Z., WANG, W.-X., AND LAI, Y.-C. Physical control-
lability of complex networks. Scientific reports 7 (2017), 40198. 8, 38

[118] WANG, W.-X., NI, X., LAI, Y.-C., AND GREBOGI, C. Optimizing control-
lability of complex networks by minimum structural perturbations. Physical
Review E 85, 2 (2012), 026115. 9, 53

[119] WATTS, D. J., AND STROGATZ, S. H. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440–442. 8, 37, 43

[120] XIAO, Y.-D., LAO, S.-Y., HOU, L.-L., AND BAI, L. Edge orientation for
optimizing controllability of complex networks. Physical Review E 90, 4 (2014),
042804. 53

[121] YAN-DONG, X., SONG-YANG, L., LV-LIN, H., AND LIANG, B. Optimization
of robustness of network controllability against malicious attacks. Chinese
Physics B 23, 11 (2014), 118902. 42, 53

[122] YANG, S.-H., SMOLA, A. J., LONG, B., ZHA, H., AND CHANG, Y. Friend or
frenemy?: predicting signed ties in social networks. In Proceedings of the 35th
international ACM SIGIR conference on Research and development in information
retrieval (2012), ACM, pp. 555–564. 45

[123] ZDEBOROVÁ, L., AND MÉZARD, M. The number of matchings in random
graphs. Journal of Statistical Mechanics: Theory and Experiment 2006, 05 (2006),
P05003. 48

[124] ZHANG, P. Handbook of graph theory. Chapman and Hall/CRC, 2013. 41

[125] ZHANG, S., AND WOLTHUSEN, S. Driver-node based security analysis
for network controllability. pp. 1–6. 17th European Control Conference
(ECC19), ECC 2019 ; Conference date: 25-06-2019 Through 29-06-2019. doi:
10.23919/ECC.2019.8796264. i, 14

[126] ZHANG, S., AND WOLTHUSEN, S. Structural controllability recovery via the
minimum-edge addition. pp. 1–6. 2019 AMERICAN CONTROL CONFER-
ENCE ; Conference date: 10-07-2019 Through 12-07-2019. i, 13

[127] ZHANG, S., AND WOLTHUSEN, S. D. Iterative recovery of controllability via
maximum matching. In Automation Science and Engineering (CASE), 2017 13th
IEEE Conference on (2017), IEEE, pp. 328–333. doi:10.1109/COASE.2017.
8256124. i, 13

149

http://dx.doi.org/10.23919/ECC.2019.8796264
http://dx.doi.org/10.23919/ECC.2019.8796264
http://dx.doi.org/10.1109/COASE.2017.8256124
http://dx.doi.org/10.1109/COASE.2017.8256124

BIBLIOGRAPHY

[128] ZHANG, S., AND WOLTHUSEN, S. D. Efficient analysis to protect control
into critical infrastructures. In International Conference on Critical Informa-
tion Infrastructures Security (2018), Springer, pp. 226–229. doi:10.1007/
978-3-030-05849-4_18. i, 13, 14

[129] ZHANG, S., AND WOLTHUSEN, S. D. Efficient control recovery for resilient
control systems. In Networking, Sensing and Control (ICNSC), 2018 IEEE 15th
International Conference on (2018), IEEE, pp. 1–6. doi:10.1109/ICNSC.
2018.8361318. i

[130] ZHANG, S., AND WOLTHUSEN, S. D. Security-aware network analysis for
network controllability. In 2018 32nd International Conference on Advanced In-
formation Networking and Applications Workshops (WAINA) (2018), IEEE. doi:
10.1109/WAINA.2018.00136. i, 13

[131] ZHANG, X., HAN, J., AND ZHANG, W. An efficient algorithm for finding all
possible input nodes for controlling complex networks. Scientific Reports 7, 1
(2017), 10677. 47

150

http://dx.doi.org/10.1007/978-3-030-05849-4_18
http://dx.doi.org/10.1007/978-3-030-05849-4_18
http://dx.doi.org/10.1109/ICNSC.2018.8361318
http://dx.doi.org/10.1109/ICNSC.2018.8361318
http://dx.doi.org/10.1109/WAINA.2018.00136
http://dx.doi.org/10.1109/WAINA.2018.00136

	Overture
	Introduction
	Overview
	General Motivation
	Research Questions
	Contributions
	Layout

	Background
	Overview
	Controllability of CT-LTI systems
	Structural Controllability
	Derive Structural Controllability
	Strongly Structural Controllability
	Controllability of Complex Network

	Related Works
	Overview
	Structural-Controllability Recovery
	Robustness of Network Structural Controllability
	Network Analysis for Structural Controllability

	Efficient Structural-Controllability Recovery
	Iterative Recovery of Structural Control by the Maximum Matching
	Overview
	Problem Formulation
	Solution
	Summary

	 Structural-Control Recovery for Resilient Control Systems
	Overview
	Problem Formulation
	Solution
	Summary

	Structural-Control Recovery via the Minimum-edge Addition
	Overview
	Problem Formulation
	Disjoint Cacti Construction
	Summary

	Efficient Network Analysis to Maintain Structural Controllability
	Security-Aware Edge Analysis for Structural Controllability
	Overview
	Preliminaries & Problem Formulation
	Identification of Arcs of Maximum Matchings
	Summary

	Driver-Node based Analysis for Structural Controllability
	Overview
	Preliminaries & Problem Formulation
	Solution
	Summary

	Identify Vulnerable Nodes for Network Structural Control
	Overview
	Problem Formulation
	Nodal Categories
	A Single-Vertex Classification
	Entire Nodal Classification
	Summary

	Epilogue
	Conclusion & Future Work
	Thesis Summary
	The Future Work

	Bibliography

