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Abstract

Computational prediction methods that operate on pairs of objects are fundamental tools
for understanding and modelling complex systems in biology, chemistry, and customer
preference in recommender systems. I present four sparse matrix completion models to
learn a sparse representation of objects from data consisting of associations between pairs
of objects. The main goal of my models is to be able to generalise, that is, to predict new
relationships between a pair of objects. This thesis addresses the following problems: (1)
drug-side effect frequency prediction; (2) drug-side effect prediction; (3) disease-gene pre-
diction; and (4) user preference prediction in top-N recommender systems. I show how my
sparse matrix completion models can be effectively used to predict missing relationships in
the data; better than other state-of-the-art methods. My models are designed to favour in-
terpretability. On the task of predicting the frequencies of drug side effects, I show a new
algorithm for non-negative matrix factorisation that learns parts of the human anatomical
system. On the task of predicting the presence/absence of drug side effects, I show a new
algorithm that learns sparse self-representation of objects such that a given object, e.g. a side
effect is represented by the linear combination of few other objects. In addition, my models
naturally integrate structure knowledge in the form of graph networks, adding strong rela-
tional inductive biases without requiring well-defined heuristics or hand-crafted features.
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2.6 Our drug similarity captures drug clinical and molecular activity (a) AUROC
representing the performance of my drug similarity, side effect similarity (Jac-
card) and Tanimoto chemical similarity at predicting whether a pair of drugs
share Anatomical, Therapeutic and Chemical (ATC) category at each level of
the ATC taxonomy. (b) ROC curve representing the performance of my drug
similarity at predicting whether pairs of drugs share a target. Inset AUROC
barplot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
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2.7 Drug self-representation similarity captures drug clinical activity (a) Embed-
ding of drugs in 3D space using t-SNE. Each point represents a drug. Colours
are assigned based on their anatomical category. Distance between points is
related to the cosine distance of the drug clustering similarity SR = R+RT.
(b) Heatmap of mean drug similarities SR per anatomical class. Each (x, y) tile
represents, for each main Anatomical, Therapeutic and Chemical (ATC) drug
category, the mean similarity of drug pairs where one drug belong to category
x and the other to category y. The value ranges from 3×10−4 (Muscular skele-
tal system - Systemic Hormonal and Preparations) to 0.0078 (Muscular skele-
tal system-Muscular skeletal system). The colours range between the minimum
mean similarity and 0.0156, with all values above 0.0156 (In the diagonal: 0.0921
(H), 0.0160 (M)) set to 0.0156. Inset: the average intra-class similarity is sig-
nificantly higher than the average inter-class similarity (t-test Significance, p <
7.12× 10−13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.8 Side effect sparse matrix of coefficients similarity captures human phenotype
similarity (Top) Ability of my side effect similarity (SC = C + CT) and the
Jaccard side effect similarity to predict whether two side effects belong to the
MedDRA class at different levels of the hierarchy. (Bottom) Heatmap of mean
side effect similarities SC per organ class. Each (x, y) tile represents, for each main
MedDRA organ class, the mean similarity of side effect pairs where one side
effect belong to category x and the other to category y. The value ranges from
1.29×10−24 (M21 - M14) to 0.017 (M8-M8). The colours range between the
minimum mean similarity and 0.0062, with all values above 0.0062 (In the di-
agonal: 0.0075 (M4), 0.0098 (M6), 0.0169 (M8), 0.010 (M10), 0.0067 (M11),
0.014 (M13),0.0062 (M16),0.0065( M21), 0.00863 (M23),0.012 (M24); off-diagonal:0.00686
(M24-M21)) set to 0.0062. Inset: the average intra-class similarity is significantly
higher than the average inter-class similarity (t-test Significance, p < 7.14×
10−81). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.9 Example of explainable predictions for the withdrawn drug Lindane (a). His-
togram of predicted scores for Lindane using GSMC-c; (b) Network diagram
depicting how the model generates the predictions for a given target side ef-
fect under study. In the figure,Ω represents the set of known side effects in-
dexed by i, and j is the target side effect. The thickness of the connections are
proportional to the learned coefficients. . . . . . . . . . . . . . . . . . . . 122
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3.1 Overview of the HRMC approach. (A) First, data were integrated from mul-
tiple sources, including disease causing genes (gene-disease associations con-
tained in two chronologically separated snapshots in OMIM: one from 2017
and another from 2018), disease similarities (built from information available
up to 2017), and biological data (protein-protein interaction network from 2010).
(B) Next, matrices of all associations contained in the 2017 database snapshot
was constructed. (C) The matrices were used to train the row and column high-
rank matrix completion models. Each separate model generates a score matrix
for all disease gene associations. These are then linearly combined. (D) Next,
leave-one-out cross validation was used to assess the recall of the method at dif-
ferent top-Ns, for both cases,molecularly characterised andmolecularly unchar-
acterised diseases. (E) Finally, I further validate the predictions by case-studies
of newly reported gene-disease associations in 2018. . . . . . . . . . . . . . 132

3.2 HRMC-r learns an aggregated gene-based guilt-by-association (GBA). (a) The
GBA is established through physical protein-protein interaction; (b) Network
diagram depicting how HRMC-r generates the prediction for a target disease-
gene pair (Z, B). HRMC-r aggregates all the known disease associated genes
(setΩ) and learns the subspace “proximity” between these genes and the tar-
get gene B. The predicted score is the sum of these learned associations. . . 134

3.3 HRMC-c learns an aggregated disease-based guilt-by-association (GBA). (a)
The GBA is established through phenotype similarity between diseases; (b)
Network diagram depicting how HRMC-c generates the prediction for a tar-
get gene-disease pair (A,W). HRMC-c aggregates all the known diseases asso-
ciated to gene A (setΩ) and learns the subspace “proximity” between these dis-
eases and the target diseaseW. The predicted score is the sum of these learned
associations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.4 Gene prioritisation predictions. (a) Predictions from the 2017 snapshot formolec-
ularly characterzed diseases. Bar height corresponds to recall at the Top-N ranked
predictions, forN ∈ {1, 10, 100, 200}. I compared HRMC to the state-of-
the-art methods PRINCE, DIAMonD, Prodige1, Prodige4 and the two base-
lines NMF and Random, by means of leave-one-out cross validation. (b) Pre-
dictions from the 2017 snapshot formolecularly uncharacterised diseases. I com-
pared HRMC to the methods capable of such predictions, by means of leave-
one-out cross validation. . . . . . . . . . . . . . . . . . . . . . . . . . . 139
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4.1 Simulated NSEM objective functionQNSEM(wx,wy). Example for a binary ran-
dom matrix Y100×2 and parameters (β, λ, γ) = (0.1, 0.1, 104). The convex
function is plotted as a function of the off-diagonal elements ofW. The con-
tour is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.2 Heatmaps of the performance sensitivity to model parameters in terms of HR
in the top 10 recommendations. . . . . . . . . . . . . . . . . . . . . . . . 163

4.3 Percentage of the optimal HR at top 10 recommendations, achieved as parameter-
free model (β = λ = 0). Percentages are relative to the optimal performance
of each model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.4 Effect of the covariance-driven regularisation in the Movielens dataset. (a) Learned
weights inW as a function of the covariance values; (b) Mean covariance as a
function of popularity. Inset. Novelty; (c) Mean learned weights inW as a func-
tion of popularity. Inset. Novelty. . . . . . . . . . . . . . . . . . . . . . . 166

4.5 Model parameters effect on recommendation performance and null diagonal
constraint (Movielens dataset) (a) Contrast between HR(N = 10) and Tr(W)
as a function of β. For this experiment, both λ = γ = 0. (b) Contrast be-
tween HR(N = 10) and Tr(W) as a function of γ. For this experiment, both
β = λ = 0. (c) Contrast between HR(N = 10) and distance from triv-
ial solution (defined as ∥ W − I ∥2F) as a function of γ. For this experiment,
both β = λ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.6 Performance of high-rank versus low-rank models in terms of HR in the top
10 recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.1 Venn diagram depicting the different formats for the drug side effect frequen-
cies in SIDER 4.1. In total, 68,514 pairs were found with frequency informa-
tion. There are three overlapping sets of data formats. Set A: contains drug ex-
act (e.g. 1%) and range frequency (e.g. 2-5%); set B contains frequency classes
(e.g. very rare), and set C contains the exact and range placebo frequencies. The
size of the circles is proportional to the number of drug-side effect pairs in each
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
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Is perception of the whole based on perception of its

parts? There ॾ psychological and physiological evidence

for parts-based representations in the brain, and certain

computational theoriॽ of object recognition rely on such

representations. But little ॾ known about how brains or

computers might learn the parts of objects.

Daniel Lee and Sebastian Seung, Nature, 1999

0
Sparse Completion thinking in Matrix

Completion

In many application areas in biology, chemistry and medicine, relationships

between pair of objects are by nature experimentally determined. For instance, whether a
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given drug is associated to a specific side effect is determined in randomised controlled tri-

als in humans, or whether a given mutation in a gene is associated to a suspected genetic

disorder is determined using genome-wide association studies (GWAS). In the past decade,

several computational prediction methods have been developed to operate on pairs of ob-

jects by considering features of each 1. Prominent examples are protein-protein interaction

(PPI) 2, protein-drug interaction 3,4, protein-RNA interaction 5, drug-side effect6 and drug-

indication7 prediction methods. Typically, rich patterns emerge when these objects are ar-

ranged in an incomplete matrix X ∈ Rn×m, where the row elements represent one set of

objects and the column elements represent the other set of objects and an entry xij repre-

sents the measured relationship between the object i and the object j. This representation

of the data appears in a wide variety of disciplines and this thesis presents new methods that

have been developed to address the following problems:

• Predicting the frequenciॽ of drug side effects. In terms of X, a row element is a drug

and a column element is a side effect. A measured association xij between a drug

i and a side effect j correspond to a frequency class — a natural number in the set

xij ∈ {1, 2, 3, 4, 5}— encoding the experimentally obtained frequencies of side

effects in randomised controlled trials (very rare= 1, rare= 2, infrequent= 3, fre-

quent= 4 and very frequent= 5). The remaining associations in X are filled in with

zeros. A xij = 0means that either drug i does not cause side effect j, or that it does,

but it could not be detected. The problem is to predict the frequencies of missing

drug side effect associations. To the best of my knowledge, this is the first attempt

to predict frequencies of drug side effects in the literature. Previous approaches have

focused on predicting the presence/absence of a drug side effect association, but not
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its frequency.

• Predicting the presence/absence of drug side effects. In terms of X, a row element is a

drug and a column element is a side effect. An association xij between a drug i and

a side effect j correspond to a binary value — xij ∈ {0, 1}— encoding whether a

drug has been associated to a side effect. The problem is to predict missing drug side

effect associations. This problem differs from the previous problem in that its main

goal is to detect unknown side effects associated to a drug; regardless of its frequency.

In some cases, when a lethal side effect is detected, new clinical studies needs to be

designed to measure the frequency of the side effect in the relevant clinical cohort.

• Predicting disease-gene associations. In terms of X, a row element is a gene and a col-

umn element is a genetic disorder. An association xij between a gene i and a disease

j correspond to a binary value — xij ∈ {0, 1}— encoding whether a gene has been

associated to a disease. The problem is then to predict genes associated with diseases.

• Predicting user preference in recommendation systems. In terms of X, a row element

is a user and a column element is an item, e.g. a movie. An association xij between

an user i and an item j correspond to a binary value — xij ∈ {0, 1}— encoding

whether an user has a preference towards an item. The problem is then to predict

items likely to be preferred by the user.

The description of these problems illustrates how a matrix, consisting of row and col-

umn elements and associations between them, is a natural mathematical description for

bipartite relationships between objects. Two common characteristics of the above problems

are that: (i) only a small number of entries in X is observed and that; (ii) missing entries in X
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are represented with zero values. The problem of “completing” a partially observed matrix

have been extensively studied in the literature of matrix completion 8,9,10,11,12,13,14,15. However,

a standard matrix completion model does not represent missing values with zero values but

rather performs the learning of the model based on the observed entries only. This typi-

cally means taking as input a sparse matrix X and returning as the output of the model a

dense matrix X̂ ∈ Rn×m such that x̂ij = xij for (i, j) ∈ Ω, whereΩ is the set of indices

of the observed entries. This is how the famous Netflix competition problem was framed

in 2006 16, where the goal was to predict user ratings on films with rating values in the set

xij ∈ {1, 2, 3, 4, 5}. However, in the problems that I addressed in this thesis, a “non-

association” or the lack of association between two objects is a possible outcome, which I

had represented with xij = 0. For example, a drug might not cause a side effect, a disease

might not be associated with a gene and a user might never watch a certain film. I refer to

this idea as the sparse completion assumption. Its immediate consequence is that even the

ideal complete matrix X̂ should remain sparse, with a possible large number of zero values.

This thesis provides new computational prediction models that I called sparse matrix com-

pletion operating under the sparse completion assumption.

At the heart of standard matrix completion models there are two core ideas. Firstly, there

is the assumption that datapoints (row or column elements in X) lie in a lower dimensional-

ity k ≪ min(n,m). Secondly, there is the idea that domain-specific knowledge can be used

as a complementary information to improve the prediction.

In this context, consider that chemically similar drugs tend to have similar side effect pro-

files 17, or that like-minded users tend to like the same films 18 and that genetic disorders with

similar (patho)phenotypes tend to be associated to the same genes in the DNA 19. These are
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examples illustrating how datapoints can be already intrinsically related when building X.

These intrinsic relationships often lead to linear dependencies between datapoints and thus

is natural to assume a low-rank model*. These models, which are at the core of matrix com-

pletion, typically assign a low-dimensional feature vector to each row element and a low-

dimensional feature vector to each column element such that the measured relationship

between a row and a column element is modelled by the dot-product of the two feature

vectors. In mathematical terms, this can be formulated as the following matrix decomposi-

tion model: X̂ = WH, whereW ∈ Rn×k (each row is a feature vector) andH ∈ Rk×m (each

column is a feature vector). The rank of X̂ is k— the number of features assigned to each

row or column element.

Low-rank models can capture well the structure of datapoints that lie in a single low-

dimensional subspace but they are not effective at capturing the structure of datapoints

that lie in the union of low-dimensional subspaces. This latter has been addressed in re-

cent years using self-expressive models 8. A self-expressive model aims to represent each

datapoint as a linear combination of few other datapoints. It aims to learn a sparse zero-

diagonal matrix of coefficientsC ∈ Rm×m such that X̂ = XCwith the constraint that

diag(C) = 0. This model, which often results in a high/full rank matrix, it is known as

high-rank model. Although low- and high-rank matrix completion model are different in

their mathematical formulation, their goal is the same, which is to better capture the in-

trinsic structure of datapoints to predict missing associations between row and column

elements in X. In this thesis, I develop new models using both low- and high-rank matrix

completion models.
*The rank of a matrix X is the number of linearly independent columns in the matrix.
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The distribution of entries for each row and column element in X is typically not uni-

formly distributed. In fact, it has been noticed that the distribution of ratings in the Net-

flix dataset follows a long-tailed distribution with about 80% of the entries involving only

10% of the movies20. If we imagine a bipartite graph where row elements in X are one set

of nodes and column elements in X are another set of nodes and an entry xij is the weight

that is assigned to the edge connecting node iwith node j in the network, then the long-

tailed distribution observed in the Netflix dataset will resemble the preferential attachment

principle of scale-free networks21. Rich nodes in the network, e.g. Star Wars, will always get

richer by gaining links from newcomers. The main implication of this uneven distribution

of the entries in X is that, for a large number of row and column elements, there is little in-

formation in the matrix to obtain a good representation for the prediction. As a matter of

fact, in many cases, there is no information at all about a row or a column element of in-

terest — this is the case of an isolated node in our bipartite graph. For instance, we might

aim to predict the side effects of a novel compound that have not undergone clinical trials

in human, or we might aim to recommend to users a recently released movie. In the recom-

mendation system literature, this scenario is typically known as the cold-start problem 22.

Addressing the cold-start problem often requires domain-specific knowledge to establish

relationships between datapoints that cannot be inferred otherwise. For instance, a gene as-

sociated with a molecularly uncharacterised disease can be predicted by exploiting the sim-

ilarities in (patho)phenotypes between diseases and the connectivity of protein interaction

networks. This complementary information, which is often presented in the form of graph

networks, can incorporate relevant relational prior 23 between datapoints to either learn a

better low-dimensional representation in a low-rank model, or a better self-representation
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in a high-rank model. In this thesis, I showcase how my prediction models can integrate

heterogeneous biological networks that can handle the cold-start scenario. The importance

of integrating graph networks — instead of hand-crafted features or well-defined heuristics

— in my models is inspired by the recent trend on representation learning on graphs 24 and

geometric deep learning 25,26.

It has been recently reported that black-box machine learning models are being used

to make high-stake decisions in society, including in the domains of healthcare and criminal

justice 27,28. Understandably, clinicians, patients and regulators would like to understand,

for instance, how a binary classifier concluded that a drug causes a certain lethal side effect,

e.g. stroke. In this thesis, I have developed sparse matrix completion models that are in-

herently interpretable. To favour interpretability, I imposed non-negative constraints on

the learned sparse representations. In a low-rank model,W,H ≥ 0, while in a high-rank

model,C ≥ 0. This was mainly motivated by the seminal work of Lee and Seung 29 on how

non-negative constraints on matrices learns a parts-based representation of objects.

1 Contributions

My approach to tackling each problem was problem-centred. That is, I studied the prob-

lem, analysed the data — distribution, patterns, etc. — and then I formulated a hypothesis

about the problem that I considered reasonable within its context. The reader may cer-

tainly find distinct interpretations of very similar models in different chapters but under

the light of a different context. Therefore, each chapter in this thesis is self-contained and

divided by problem. I summarised my contributions on each problem in Table 1.
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Problem addressed Existing computational ap-
proaches

Contributions

Predicting frequencies of drug
side effects

n/a General framework, objective
function and multiplicative
algorithm. Pharmacological
interpretation of the model’s
representations and its links to
drug routes of administration 30.
Chapter 1

Drug side effect prediction Network-based6,31, Label prop-
agation and random walks 32,33,
low-rank matrix decomposi-
tion 34,35.

Regularised low-rank matrix
decomposition model 36. Geo-
metric high-rank sparse matrix
completion model: objective
function, algorithm, and phar-
macological interpretation of the
model. Prediction explainabil-
ity 37. Chapter 2

Disease gene prediction DIAMonD 38, Prodige 39,
PRINCE40, Cardigan41.

Graph regularised high-rank
sparse matrix completion: ob-
jective function, algorithm.
Prediction on molecularly char-
acterised and uncharacterised
diseases. Chapter 3

Top-N recommender systems Neighbourhood models42,
low-rank matrix factorization 18,
Sparse Linear Model43.

Multiplicative algorithms for
sparse linear methods: global
optima convergence, covariance-
driven regularisation, model
interpretability in terms of pop-
ularity and novelty. Chapter
4

Table 1: Contribuধons of this thesis. Columns represent the problem addressed in each chapter, the exisধng compu-
taধonal approaches to address those problems, and my contribuধons to each problem, respecধvely. n/a stands for
not available.

1.1 Chapter 1 - Predicting the frequencies of drug side effects

In this chapter, I focused on the problem of predicting the frequencies of drug side effects.

Drug side effects are a leading cause of morbidity and mortality in health care, with an an-

nual cost in the billions of dollars44,45. A wide range of computational approaches has been

proposed to detect side effects of drugs in both pre-market46,47,48,49,50,51,52,53,54,55,56 and post-
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market 57,58,59 stages. However, we still lack computational approaches to predict the fre-

quencies of drug side effects. The frequency of a drug side effect can be critical for the drug

risk-benefit assessment and inaccurate estimations of side effect frequencies represent a po-

tential risk of drug withdrawal from the market. For instance, in 2004, the arthritis drug

Vioxx produced by the pharmaceutical Merk & Co. was withdrawn from the worldwide

market because new data from clinical trials found an increased risk of heart attacks and

stroke. This, and many other such cases60, could have been avoided with accurate methods

that predicts the frequency of specific drug adverse events.

Currently, in the pharmaceutical industry, the frequencies of drug side effects are mea-

sured experimentally in randomised controlled trials, but it is well recognised that these

trials have numerous limitations and might fail to identify important drug side effects. In

this chapter, I present the first purely computational method that can successfully predict

the frequencies of drug side effects. Earlier computational approaches6,32 focused on the

problem of predicting the presence/absence of drug side effects, but could not predict its

frequency. The computational framework I present here further strengthens the collec-

tion of tools available to drug safety professionals taking high-stakes decisions regarding the

risk-benefit of any existing drug.

My contributions to this problem are the following:

• I framed the problem as that of simultaneously predicting frequency classes and the

presence/absence of the associations. From the machine learning standpoint, my

model aims to learn regression on the frequency classes xij ∈ {1, 2, 3, 4, 5}, and to

correctly classify true from false drug side effect associations, where a true class

is any xij > 0 and a false class is a xij = 0. This is important because our model
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generalises over the classic drug side effect prediction6, in which the goal is to classify

true from false associations. In my model, however, the binary classification is as

important as the correct estimation of the frequency class of the drug side effect.

• I proposed a non-negative matrix decomposition model (low-rank model) and de-

veloped a new objective function that considers different levels of uncertainty in the

entries of X. The assumption is that the zero entries in the matrix X have higher un-

certainty than measured associations. Earlier matrix decomposition methods (e.g.

SVD or NMF), do not explicitly account for different levels of uncertainties in the

data.

• I developed a novel multiplicative learning algorithm to solve the objective function.

My algorithm does not require to set a learning rate nor applying projective func-

tions and I proved that it satisfies the Karush-Khun-Tucker (KKT) complementary

conditions of convergence.

• I showed that my method can predict the frequencies of drug side effects in a cross-

validation setting. Through further experiments, I found that my method was able

to predict that post-marketing side effects — those detected after the drug has been

marketed — are very rare (1 in 10,000 cases) in the population. This is in fact a com-

mon belief in clinical medicine61. For selected case studies, I also show that my model

was able to predict the frequency of specific lethal side effects that caused drug with-

drawal from the market.

• I studied the pharmacological interpretability of the learned representations – that I

called signatures – in the model. I show that the similarity between drug signatures
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predict clinical and molecular drug activity. Importantly, I interpreted the specific

components of the signatures in the model, and found that specific components are

related to distinct anatomical activities of drugs and specific drug routes of adminis-

tration.

• I analysed the reproducibility of the signatures. Given that we studied the pharma-

cological interpretation of the signatures, it is important to analysed whether these

signatures are reproducible in multiple runs of the algorithm (non-convex optimi-

sation problem). We found that the majority of the components of the signatures

(8/10) are highly reproducible.

A pre-print detailing my model, algorithm and biological interpretation can be found

in bioRxiv62. I then extended the biological interpretation of the model to include an in-

depth pharmacological analysis of each component of the signatures with the help of Dr

Shantao Li and Prof. Mark Gerstein from the Department of Molecular Biophysics and

Biochemistry at Yale University (presented in section 3.5). Our paper is currently under

review atNature Communications.

1.2 Chapter 2 - Drug side effect prediction

In this chapter, I focused on the problem of predicting the “presence/absence” of drug side

effects. This is typically framed as a binary classification problem for which a wide range

of computational methods has been proposed (see reviews in63,64). Addressing the binary

problem itself is important because the frequency information is only available for about

half of the drugs in SIDER (only 40% of pairs have frequency information in SIDER 4.165).
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Furthermore, the binary problem also allows the use of other reported or post-marketing

side effects for building prediction models.

To predict drug side effects, I proposed two different models. The first model is a regu-

larised low-rank model. The second model is a high-rank model that also integrates mul-

tiple heterogeneous information about drugs in the form of graph networks. The inte-

gration of the geometric graph structure as a regularisation in the high-rank model was in-

spired by the recent trend of deep learning on graphs 25,26,24.

My contributions to this problem are the following:

• As a first attempt to predict drug side effects, I proposed a regularised low-rank ma-

trix decomposition model. I showed that this low-rank model outperforms four

state-of-the-art methods for drug side effect prediction.

• My second attempt was an interpretable high-rank matrix completion model on

graphs that integrates heterogeneous graph networks for drugs and side effects. This

began with the observation that the drug side effect matrix has, in fact, a high-rank. I

called this model Geometric Sparse Matrix Completion (GSMC). To my knowledge,

this is the first high-rank matrix completion model to predict drug side effects.

• To solve GSMC, I proposed a novel objective function and developed a new multi-

plicative learning algorithm. I proved that my learning algorithm convergences to a

globally minimum solution with a first-order convergence rate. This theoretical guar-

antees of convergence is desirable for biological interpretation because it guarantees

that if the same high-rank model is refit to the same data, but with changes in the ini-

tial random values of the weights, there will be the same learned self-representations.
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• Extensive experiments on human clinical trials data show that my GSMC model out-

performs six state-of-the-art methods in drug side effect prediction, including my

low-rank model.

• I also studied the biological interpretability of my GSMC model. I show that the

learned self-representations are informative of the biology underlying drug activity:

these make explicit the similarities between drug activities at the molecular and phe-

notypic level. The learned self-representation matrices can be used for predicting the

shared drug clinical activity, targets of drugs, and even the anatomical/physiological

relationships between side effect phenotypes.

My work on low-rank model was presented in the 2018 International Joint Conference

on Neural Networks (IJCNN) in Rio de Janeiro, Brazil. This paper is indexed by IEEE

Xplore 36. My high-rank model can be found in bioRxiv 37 and it is currently under prepa-

ration for submission at Bioinformatics.

Furthermore, I have used my high-rank model for drug repositioning in a join work with

Prof. Michael Bronstein’s group at Imperial College London and USI Lugano. This latter

work was accepted at the NeurIPS 2019 Workshop on Graph Representation Learning —

and arxiv version can be found in66.

1.3 Chapter 3 - Disease gene prediction

In this chapter, I focused on the problem of disease gene prediction. The elucidation of

genes associated with genetic disorders is critical for our understanding of the molecular

mechanisms of diseases and the development of effective therapies67. Yet, gene prioritisa-

tion remains a challenge: about 56% of the diseases in the Online Mendelian Inheritance in
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Man (OMIM) database have a single associated gene, and for about 40% of the diseases, the

molecular basis is completely unknown (molecularly uncharacterised).

My contributions to this problem are the following:

• I proposed a high-rank matrix completion model for disease-gene prediction. This

began with the observation that the gene-disease matrix has a high-rank. My model

has two main features, interpretability, and the ability to generate predictions for

diseases with unknown molecular basis.

• My method outperforms state-of-the-art methods such as PRINCE40, DIAMOnD 38

and the Prodige family 39 at predicting the genes for molecularly characterised and

uncharacterised disorders. In the more challenging case of molecularly uncharac-

terised diseases, we can retrieve around 50% of the genes associated with genetic dis-

orders in the top-100 predictions.

• I showed that my model is inherently interpretable as it learns direct associations

between genes and diseases based on an aggregated guilt-by-association principle.

• To provide a more realistic scenario, I validated some of the top predictions by using

a prospective evaluation approach on prediction case studies. This realistic scenario

preserves the chronological order in which information becomes available. That is,

having trained my model with biological data available up to the year 2017, I checked

whether top prediction could be found in a most recent 2018 version of OMIM.

This work was a joint work with Dr Cheng Ye and Prof. Alberto Paccanaro. Cheng

helped me to run the experiments and analysed the results. This work is currently under

preparation for submission at Scientific Reports.
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1.4 Chapter 4 - Top-N recommender systems

In this chapter, I focused on the problem of predicting user preference in top-N recom-

mender systems. Accurate recommendations of products to users is critical for e-commerce

and entertainment platforms such as Netflix 18. A challenge of these platforms is that only

a small number of N-items are shown to the users. In the recommender system literature,

this problem is typically framed as a Top-N recommendation system20.

My contributions to this problem are the following:

• I proposed an algorithmic framework for Top-N recommender systems based on

high-rank matrix completion under self-expressive models. This began with the ob-

servation that several real-world datasets used in recommendation systems have a

high-rank structure — including popular datasets such as Netflix. I connected my

formulations to a group of models called Sparse Linear Method (SLIM)43 and I

showed that my approach can be easily extended to this family of models.

• I provided a strong theoretical foundation regarding the objective function and the

optimality of the solution using novel multiplicative learning algorithms. I showed

that my objective function is smooth and that my learning algorithm converges to a

unique global optimum solution.

• I have tested the performance of my algorithms across several real-world datasets and

found state-of-the-art performance.

• In large-scale applications, fine-tuning model parameters can be prohibited due to

time and space complexity. I empirically show that my algorithms do not require

34



fine-tuning of the model parameters and that they can even be used as a parameter-

free model without great loss in performance. This property of my algorithms can be

explained by its intrinsic regularisation.

• Importantly, the recommendations produced by my models are explainable and my

model is inherently interpretable. I found that the learned self-representations in my

model favours novelty in the recommendations while mitigating the bias of items

popularity.

Several of the algorithmic ideas that are presented in chapter 4 were foundational to the

algorithms presented in Chapters 2 and 3.

This work was a joint work with Ruben Jimenez and Prof. Alberto Paccanaro. Ruben

helped me to run the benchmarks on the different datasets and to set up the cluster for

these experiments. This work is currently under preparation for submission at the IEEE

Transactions on Knowledge and Data Engineering.

1.5 Additional resources

Datasets and code are publicly available for reproducibility.

• Frequency prediction of drug side effects.

Project website: https://paccanarolab.org/drug-signatures/.

GitHub repository: https://github.com/paccanarolab/SEFrequency.

• Geometric Sparse Matrix Completion Model for predicting drug side effects.

GitHub repository: https://github.com/paccanarolab/GSMC
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• High-rank matrix completion for disease gene prediction.

Project website: https://paccanarolab.org/hrmc-gene/.

GitHub repository: https://github.com/paccanarolab/HRMC.

• High-rank matrix completion for Top-N recommender systems.

GitHub repository: https://github.com/paccanarolab/NSEM
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I have not failed. I’ve just found 10,000 ways that won’t

work.

Thomas A. Edison (1847-1931)

1
Predicting the Frequencies of Drug Side

Effects

Drug risk-benefit assessment68,69 requires the experimental measurement of the fre-

quencies of drug side effects. Currently, these frequencies are estimated using intervention

37



and placebo groups during randomised controlled trials. Although these trials are inher-

ently limited by the sample size, time-frame, and lack of accrual70, they are the standard

approach to eliminate selection bias in clinical medicine71,72. However, it is well recognised

that numerous side effects are not observed during clinical trials73, but are identified af-

ter the drug has reached the market74,75,76. For this reason, drug side effects remain a lead-

ing cause of morbidity and mortality in healthcare, with an annual loss of billions of dol-

lars77,45,44. Several computational approaches have been proposed for predicting side effects

of a given drug6,32,78,31,79,80,36. Yet, the application of these methods in drug risk-benefit as-

sessment is limited, as they can only predict the presence or absence of a drug side effect,

not its frequency.

Accurate estimation of the frequencies of side effects is vital to patient care in the clin-

ical practice, but it is also essential for pharmaceutical companies as it reduces the risk of

drug withdrawal from the market 81,82, or of the costly reassessment of side effect frequencies

through new clinical trials 83.

In this chapter, I present a novel approach for predicting the frequencies of drug side ef-

fects. Given a few experimentally determined side effects, my method predicts the frequen-

cies of a broader range of unknown side effects. To the best of my knowledge, this is the

first computational method that successfully addresses the problem of predicting the fre-

quencies of drug side effects. A critical application of my approach is in the early phase of

clinical trials, where computational predictions can be used as complementary hypotheses

to set the direction of the risk assessment in later phases of clinical trials, or after a drug has

entered the market. My method can also be useful in other aspects of clinical trial design,

such as in the estimation of the cohort size required for the detection of the side effect.
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My approach for predicting the frequencies of drug side effects is to use a matrix decom-

position algorithm that learns a small set of latent features (or signatures) that encode the

biological interplay between drugs and side effects. My model is inspired by movie recom-

mendation systems 18,84,85 that recommend movies to users: my recommendation system rec-

ommends side effects to drugs. Importantly, I constraint my matrix decomposition model

to be non-negative; it has the advantage of making explicit the parts-based representation 86

thus offering biological interpretability. In other words, drugs are characterised by a set of

learned non-negative features that, when additively combined, account for the side effect

frequencies across the entire repertoire of drugs. Consequently, my predictions are explain-

able and the individual features can be interpreted in terms of specific human anatomical

systems, and I show that they are related to different routes of administration and are pre-

dictive of shared drug clinical activity, drug targets and anatomy/physiology of side effect

phenotypes.

1 The matrix decomposition model

In drug clinical trials, it is common to use five side effect frequency classes to describe the

occurrence of drug side effects in clinical cohorts 87. By coding these classes with integers be-

tween 1 and 5 — very rare= 1, rare= 2, infrequent= 3, frequent= 4, and very frequent

= 5— I assembled a n× mmatrix Xwith n = 759 drugs andm = 994 unique side effects

containing 37,441 frequency class associations obtained from SIDER 4.165 (see Appendix 1

for details). The remaining entries of the matrix were filled with zeros.

The average frequency value in X is 3.52, indicating that frequencies from clinical trials

are biased towards frequent side effects –– this has been attributed to the limitation of clin-
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ical trials at detecting side effects of rare occurrence61. Popular side effects, such as headache,

account for most of the non-zero entries in X, indicating that specific popular side effects

are reported on most drugs 87. Indeed, my analysis of X showed that drug side effects follow

a long-tailed distribution, where about 30% of the side effects are responsible for 80% of the

associations (Fig. 1.1a). Figure 1.1b shows that the distribution of frequency classes in X is

zero-inflated: about 95% of the associations are unobserved.
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Figure 1.1: Distribution of drug side effects in our dataset. (a) Long-tailed distribuধon of side effects. Side effects
in y-axis are ordered in decreasing order of popularity, i.e. the number of drugs in which a side effect appear. Inset.
Word cloud of the fiđeen most popular side effects. The size of the word is proporধonal to its popularity; the five
most popular ones are coloured in orange (b) Histogram of side effect frequency classes. The frequency of a drug
side effect in the populaধon can be very rare (less than 1 in 10,000), rare (1 in 10,000 to 1 in 1,000), infrequent (1 in
1,000 to 1 in 100), frequent (1 in 100 to 1 in 10) or very frequent (greater than 1 in 10) – shown in shaded red bars.
The remaining of the associaধons are unobserved (grey bar).

The long-tailed distribution of side effects resembles the distribution of the ratings pre-

viously found in movie datasets such as Netflix or Movielens20. Similar to our dataset, in
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Movielens, about 30% most popular movies account for 80% of the ratings, and the distri-

bution of ratings tend to be biased towards high values (Fig. 1.2). One widely studied group

of methods for movie recommendation systems is based on low-rank matrix decomposi-

tion techniques42. Their fundamental assumption is that both users and movies can be

represented as latent feature vectors in a low-dimensional space and that a rating value for a

specific user-movie pair is obtained by the dot product of the corresponding feature vectors.

The assumption is reasonable for movie datasets, where latent features can be thought of as

modelling both movie genres and user preferences (e.g. thriller, romantic, sci-fi).

I realised that this assumption is also reasonable for our task: drugs and side effects can

be represented as latent feature vectors in a low-dimensional space where the latent features

might capture specific molecular or cellular mechanisms that elicit side effects88. Therefore,

my idea is to learn a low-dimensional latent representation for each drug — that we shall

call drug signature,w ∈ Rk — and a low-dimensional representation for each side effect

— side effect signature, h ∈ Rk — such that the frequency of a drug-side effect pair is ob-

tained by the dot product of the two feature vectors. This amounts to decomposing X into

a product of two matrices as X ≃ WH, whereW ∈ Rn×k (each row is a drug signature),

H ∈ Rk×m (each column is a side effect signature) and k ≪ min(n,m) is the number of

latent features in the model. My matrix decomposition algorithm learns the matricesW and

H by minimising the following loss function:

min
W,H
L(W,H) =

1
2
∑
Ω

(Xij − (WH)ij)2 +
α
2
∑
Ωc

(WH)2ij

subject to the non-negative constraints W,H ≥ 0.
(1.1)
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Figure 1.2: The heavy-tailed distribution of drug side effects and two popular movie datasets. (Leđ) Side effects
and movies (items) are ordered according to popularity, most popular at the boħom. Side effects and movie datasets
tend to have a few popular items containing more than 20% of the associaধons (usually known as short-head). How-
ever, most items reside in the long-tail of the distribuধon, populated with items (side effects or movies) with fewer
associaধons. The Movielens dataset contains 943 users and 1682 movies with 100K associaধons ( 6.3% density).
The NeĤlix dataset contains 480,189 users and 17,770 movies with 100M associaধons ( 1.17% density). The density
of the Movielens dataset is more comparable to our dataset of drug side effects ( 4.96% density). (Right) Distribuধon
of raধng values for drug side effect frequency and the raধng values in the Movielens dataset. The distribuধon of fre-
quency values comes from a normal distribuধon (Chi-square goodness-of-fit Significance,p < 2.23× 10−308) and it
is very similar to the distribuধon of raধngs in Movielens (Kolmogorov-Smirnov Significance, p < 2.51× 10−233).

The first summation in my model is the fitting constraint on the observed entriॽwhere

Ω = {(i, j) |Xij ∈ F}withF ∈ {1, 2, 3, 4, 5}, which aims at reconstructing X for
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the known frequency classes. The second term in Eq. 1.1 is the fitting constraint on the ze-

ros whereΩc = {(i, j) |Xij ∈ 0}, which aims at reconstructing the zeros found in X,

and I introduced it here because our dataset is fundamentally different from the movie rat-

ings. While in the movie rating matrix a zero entry is simply a missing value that needs to be

filled in, for our problem, a zero entry indicates that a specific side effect was not detected

for a given drug — which could either mean that the drug does not cause the side effect, or

that it does, but it could not be detected. The parameter α ∈ [0, 1] controls the relative

importance of the zeros; in other words, it represents our confidence in their correctness.

Finally, I impose non-negative constraints on our solution as it favours biological inter-

pretability since only additive combinations of the latent features are allowed29.

1.1 Data-driven regularisation

Observe that the second term in Eq. 1.1 also acts as a regularisation factor, so no additional

regularisation term is required. To understand this, let first consider the matrix formulation

of Eq. 1.1:

min
W,H
L(W,H) =

1
2
∥ IΩ ◦ (X−WH) ∥2F +

α
2
∥ IΩc ◦ (WH) ∥2F

subject to the non-negative constraints W,H ≥ 0.
(1.2)

where IΩ, IΩc ∈ Rn×m are binary indicator matrices for the entries inΩ andΩc, respec-

tively, ◦ is the Hadamard or element-wise product of matrices, and ∥ . ∥F is the Frobenius

norm*.
*The Frobenius norm of a matrix A is defined as ∥ A ∥F=

√
Tr(ATA), whereTr(.) is the trace of A.
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The goal of my objective function in Eq. 1.2 is twofold. The first term aims to fit the

model to the observed entries only, whereas the second term aims to fits the model to the

zero entries. The difference between these two competing constraints lies in the penalisa-

tion parameter α. Let’s consider the effect of this parameter in the learned signatures. In

principle, if α = 0, the solution will be dense, populated by scores that approximates the

values inF ∈ {1, 2, 3, 4, 5}. In this case, our system predictions would mean that a given

drug can be associated with all the side effects but with differences in their corresponding

side effect frequencies. Of course, that is the incorrect assumption for our problem. Intu-

itively, a value of α > 0 affects the sparsity in the solution by raising the importance of the

zeros. A large value of αmust lead to sparser signatures (lower model complexity) while a

small value of αmust lead to denser signatures (higher model complexity). Notice that this

is also a direct consequence of a large number of zeros in X. Given that the complexity of

the solution is controlled by the intrinsic structure of the data (entries in X), I called this

phenomenon data-driven regularisation. This is different from other types of regularisation

such asL1- orL2- norms, commonly used in other state-of-the-art matrix decomposition

models42. WhileL1- orL2- norms constraint the individual latent matricesW andH to

reduce model complexity, the data-driven regularisation constraints a well-defined set of

entries (IΩc) inWH. The sparsity ofW andH is a consequence of the data-driven regular-

isation rather than of a direct penalisation in its entries. Data-driven regularisation is also

different from the most recent nuclear-norm regularisation 11, that constraints the spectra of

singular values in an SVD decomposition of X.
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1.2 Multiplicative algorithm and convergence analysis

To minimise the loss function in Eq. 1.2 subject to the non-negative constraints, I developed

a novel iterative algorithm that uses the following multiplicative update rule:

W = W ◦ XHT

(IΩ ◦WH+ α IΩc ◦WH)HT

H = H ◦ WTX
WT(IΩ ◦WH+ α IΩc ◦WH)

(1.3)

this procedure does not require setting a learning rate nor applying a projection function

and satisfies the Karush-Kuhn-Tucker (KKT) complementary conditions of convergence. I

prove the convergence of my algorithm as follow:

Theorem 1 (Convergence). The cost function L(W,H) in Equation (1.2) convergॽ to a local

minimum under the multiplicative update rule in Equation 1.3.

Proof. From the theory of constrained optimisation 89,90, we know that we need to show

that at convergence, the solution given by the multiplicative learning algorithm satisfies the

well-known Karush-Khun-Tucker (KKT) complementary conditions:

∂L(W,H)
∂W

W = 0;
∂L(W,H)

∂H
H = 0 (1.4)
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The gradients of the loss functionL(W,H) are:

∂L(W,H)
∂W

= −(X− IΩ ◦WH)HT + α(IΩc ◦WH)HT

∂L(W,H)
∂H

= −WT(X− IΩ ◦WH) + αWT (IΩc ◦WH)
(1.5)

At local minimun,W = W∗ andH = H∗ must satisfy KKT condition in Eq. 1.4. There-

fore, replacing Eqs. 1.5 in 1.4 and reordering we can obtain the multiplicative rules in Eq. 1.3.

Therefore, the algorithm satisfies KKT conditions and converges to a local minimum.

For the implementation, I followed the guidelines in91. I added a small number ε ∝

10−16 to the denominators of in Eq. 1.3 to prevent division by zero at each iteration. I ini-

tialisedW andH by sampling from an uniform distribution in the range [0, 0.01]. Further-

more, to avoid the well-known degeneracy29,91 associated with the invarianceWH under the

transformationW → WΔ andH → Δ−1H, for a diagonal matrix Δ ∈ Rk×k, I normalised

H at each iteration as follow†

Hpj ←
Hpj

∥hp∥F

where hp denotes the vector corresponding to the pth row inH. The stopping criteria of

my algorithm was based on the maximum tolerance in the change in the elements ofW and

H, which typically occurred in 2000 iterations.

†Notice that although the productWH = WΔΔ−1H does not changed, different normalisations will lead
to different signatures, that isWΔ1 ̸= WΔ2 and Δ−1

1 H ̸= Δ−1
2 H if Δ1 ̸= Δ2.
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1.3 Maximum likelihood estimation

To predict specific frequency classes, we need a way to assign the learned scores by our

model X̂ = WH to the specific frequency classesF ∈ {1, 2, 3, 4, 5}. Assume for now

that we can estimate, from our model’s predictions, the likelihood functions P(x̂|CF) for

each of the frequency classes inF ‡. Here CF denotes a class inF and x̂ denotes a vector of

predicted scores for a set of entries in X belonging to classF . Then, for a new drug-side ef-

fect pair (i, j)with predicted score x̂ij, we assign a class label ŷ = CF for someF as follows:

ŷ = argmax
F∈{1,2,3,4,5}

P(CF |x̂ = x̂ij) (1.6)

which is amaximum a posteriori (MAP) decision rule that selects the most probable

class. To estimate the posterior, we used a Naive Bayes classifier such that the MAP in Eq.

1.6 can be written in terms of the likelihood functions P(x̂|CF) and the class prior probabil-

ities P(CF), as follows:

ŷ = argmax
F∈{1,2,3,4,5}

P(CF)P(x̂ = x̂ij|CF) (1.7)

Unfortunately, due to incomplete data and biases on the observed entries (recall that in

Fig. 1.1, the observed data is biased towards frequent side effects), we cannot obtain reason-

able estimates for the priors for each class, therefore, we assume uniform priors §. There-

fore, our final MAP rule was simply based on the maximum likelihood estimation, as fol-
‡The procedure is detailed in section 2.2
§To understand this, consider the distribution of classes shown in Fig. 1.1. First, we do not have reasonable

estimation of the number of true zeros, as these are unreported in the databases. Second, as our dataset is
built from data from clinical trials, the distributions of classes based on the observed entries is biased towards
the frequent class. Altogether, missing data and biases represent a challenge for our model.
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lows:

ŷ = argmax
F∈{1,2,3,4,5}

P(x̂ = x̂ij|CF) (1.8)

1.4 Connection with standard matrix completion

The goal of matrix completion is to fully recover a matrix from its observed entries92,11. Ma-

trix completion aims to learn an unknown parameter, a matrix Z ∈ Rn×m, with high di-

mensionality, based on few observations. It is typically assumed that the parameter Z lies in

a lower dimentionality, which translates into a minimisation of the rank of Z as follows:

minimise rank(Z)

subject to
∑
(i,j)∈Ω

(Xij − Zij)2 ≤ δ
(1.9)

where δ ≥ 0 is a regularisation parameter and as before,Ω represent the observed entries in

X. It is common to solve Eq. 1.9 using matrix decomposition techniques, that is, by approx-

imating Z ≃ WH, whereW ∈ Rn×k andH ∈ Rk×m with k≪ min(n,m).

My model presented in Eq. 1.2 can be also written as a matrix completion task, as follow:

minimise rank(Z)

subject to
∑
(i,j)∈Ω

(Xij − Zij)2 ≤ δΩ,
∑

(i,j)∈Ωc

(Xij − Zij)2 ≤ δΩc
(1.10)

whereΩc represents the set of entries corresponding to the zeros in X and δΩ and δΩc are
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regularisation parameters for the observed and unobserved entries, respectively. Assuming

that the unobserved entries are coupled with higher level of uncertainty, we would expect

δΩc ≪ δΩ. Therefore, in terms of standard matrix completion, my model minimises the

rank of Zwhile making specific assumptions about different levels of uncertainty in the

entries of the data matrix X.

1.5 General remarks

Let’s consider the general low-rank model loss function:

L(W,H) =
1
2
∥ ζ ◦ (X−WH) ∥2F +φ(W,H) (1.11)

where ζ ∈ Rn×m,W ∈ Rn×k,H ∈ Rk×m, φ(.) represents an appropriate regularisation

function and ◦ represents element-wise product between matrices.

The loss function in Eq. 1.11 represents a family of low-rank models. The first term is

the fitting constraint, which fits the model to either the entries in X that are defined by an

appropriate selection of ζ. The second term in Eq. 1.11 is a regularisation constraint, which

is typically applied to prevent overfitting in the solution. Therefore, to better understand

how my proposed model connects to the general family of low-rank models, consider the

following remarks:

• ζ is problem dependent. In rating-based recommendation systems 18 where the

goal is to predict the rating that a user will give to movies, ζ is defined as follow:

ζij =

 1 if xij ∈ {1, 2, 3, 4, 5}

0 otherwise
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In this case, the optimisation is performed on the observed entries only. Conversely,

in ranking-based recommendation system20, where the goal is to predict the movie(s)

that the user will watch in a shortlist of top-N recommendations, ζ is defined as fol-

low:

ζij = 1 ∀(i, j)

In this case, the zeros are also considered in the learning.

My formulation to predict the frequencies of drug side effects represents a hybrid

formulation between the rating-based and ranking-based recommendation system.

That is, I defined ζ as follows:

ζij =

 1 if xij ∈ {1, 2, 3, 4, 5}
√
α if xij ∈ {0}

for α ∈ [0, 1].

• Constraints on the learned matricesW andH. The constraints imposed

on the learning of the latent representations can have a significant impact in both

prediction performance and model interpretability. Data sparsity tend to cause over-

fitting, and it is typically avoided by using aL2 regularisation.

Going beyond overfitting, there are additional constraints that can be imposed to

W andH. For instance, orthogonal representations93 for whichWWT = In and

HTH = Im (identity matrices). The most common algorithm to achieve orthogonal-

ity is truncated singular value decomposition (TSVD)94 that finds a decomposition

X ≃ USVT, whereU ∈ Rn×k,V ∈ Rm×k are orthogonal matrices, and S ∈ Rk×k is a
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diagonal matrix containing the kth largest singular values.

In the seminal work of Lee and Seung on non-negative matrix factorisation29, it has

been shown that when negative weights are allowed in the learning of the latent rep-

resentations, these tend to be holistic, non-interpretable representations. Conversely,

only when these representations are constrained to be non-negative, these reflects a

parts-based representation (e.g. parts of faces in images), as only additive combina-

tions of the features are allowed.

2 Empirical evaluation

2.1 Datasets

I used the drug side effect frequencies from the Side effect Resource (SIDER) database ver-

sion 4.165. In the database, around 40% of the pairs have frequency information, whereas,

for the remaining associations, the frequency is unknown. Drugs are indexed by their Pub-

Chem IDs, and side effect terms are mapped to the Medical Dictionary for Regulatory

Activities (MedDRA) taxonomy. I only considered side effect terms that were Preferred-

Terms (PT) in MedDRA. I also kept only the drugs with known monotherapy Anatomical

Therapeutic and Chemical (ATC) classification according to the 2018 World Health Organ-

isation (WHO) release. Side effect frequencies were found in different formats: exact val-

ues, range of values or frequency class labels. I standardised these frequencies to frequency

classes by encoding them as follow: very rare (=1), rare (=2), infrequent (=3), frequent (=4)

and very frequent (=5). Our dataset contains 37, 441 frequency associations that cover 759

drugs and 994 side effect terms (see Appendix 1 for details). Drug protein targets and drug
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SMILES were obtained from Drugbank database v5.0.5 (3). Drug Anatomical, Therapeutic

and Chemical (ATC) codes and the drugs route of administrations (Adm.R) were obtained

from WHO release 2018 (see Appendix 2 for details).

2.2 Cross-validation procedure

I set apart 10% of randomly held-out associations of the observed entries in X for testing

(held-out test set). I then used a standard ten-fold cross-validation procedure on the re-

maining 90% of the associations for the setting of the model parameters k and α. I framed

the problem as simultaneously predicting the frequency classes and the presence/absence of

the associations. Therefore, I used two evaluation metrics:

• Root mean squared error (RMSE). To assess the overall prediction performance of

the frequency class values estimation. RMSE is a standard measure of regression.

RMSE is a non-negative quantity bounded in the interval [0,∞).

• Area Under the Receiver Operating Characteristic Curve (AUROC). Due to the lack

of experimentally validated zeros, I followed previous approaches for binary drug

side effect prediction6 and framed the prediction problem as a binary classification.

The overall performance of my model in the cross-validation was based on the mean

RMSE and AUROC of the ten folds. To select the model parameters, I first chose α based

on a good binary classification performance (AUROC) while ensuring a good RMSE.

To predict the specific frequency classes, for each validation set in the ten-fold cross-

validation, I collected the frequency class values and their corresponding predicted scores.

Then, for each of the five frequency classes, I fitted a normal kernel smoothing function to
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the predicted scores and obtained a probability density function for each of the five classes.

I obtained the following decision thresholds for the predicted scores: 1.26, 2.43, 3.25 and

3.93. Furthermore, due to the lack of experimentally validated zero values, in order to dis-

criminate the zero associations, I followed an approach similar to the one used by Cami et

al.6 and chose a threshold using the ROC curve at a sensitivity of 0.97 given a specificity of

0.57.

2.3 Prediction performance

In the ten-fold cross-validation, I obtained a good performance with α = 0.05 and k = 10

(mean RMSE= 1.372 ± 0.021 and mean AUROC= 0.920 ± 0.003 – Fig. 1.3. The

performance of the algorithm is robust with respect to the setting of the parameters k and α

– Figures 1.4, 1.5.

Figure 1.3: Model selection. Selecধon of the opধmal number of latent features (or signatures components) based
on the RMSE-AUROC trade-off. Here α = 0.05.
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Figure 1.4: Contour plot of mean AUROC of the ten-fold cross-validation performance for the binary side
effect classification problem. The higher the AUROC, the beħer we can correctly idenধfy true associaধons. The
performance is divided, for clarity, into nine contour levels for varying values of the number of representaধons (k)
and the confidence in the zeros (α).
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Figure 1.5: Contour plot of mean RMSE of the ten-fold cross-validation performance for the side effect fre-
quency class value prediction problem. The smaller the RMSE, the beħer we can predict the true frequency value
of the drug side effects. The performance is divided for clarity into nine contour levels for varying values of the num-
ber of representaধons (k) and the confidence in the zeros (α).
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On the held-out test set, my model scored an RMSE of 1.32 and an AUROC of 0.932.

Figure 1.6a shows, for each of the five frequency classes in the test set, the histogram of the

values that were predicted for that class. The Pearson correlation between the predicted

scores and their corresponding frequency classes was ρ = 0.47 (Significance, p < 2.40 ×

10−209); the differences between the distributions of scores for the five frequency classes

were statistically significant (Kruskal-Wallis One way ANOVA Significance at 1%, p <

1.15× 10−193).

Figure 1.7a shows the accuracy at predicting side effect frequency classes. For any given

class, the most predicted class is the correct one, and the prediction accuracy ranges from

55.2% to 75.5%when including the contiguous lower class, and 67.8% to 94%when

both contiguous classes are considered. Looking at the first column in the figure, we notice

how my system rarely (0.72%) fails to detect a very frequent side effect and seldom misses

side effects in the frequent (2.68%), infrequent (2.52%) and rare (3.11%) classes. The

number of undetected side effects only increases for the very rare class (16.94%) — prob-

ably due to the small number of known associations in this class. As illustrative examples,

Figure 1.7c presents the predicted frequency scores for the anticonvulsant drug Gabapentin,

a top 50 prescribed drug in the U.S.95, and the side effect arrhythmia, critical in cardiotoxic-

ity assessment96.
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Figure 1.6: Distributions of scores for held out and post-marketing test sets. (a) Normalized histogram of scores
obtained for each of the five frequency classes in the held out test set. The differences in the distribuধons between
the classes are staধsধcally significant. (b) Normalised histogram of scores obtained for the post-markeধng test set.
Significance levels between the scores are indicated with asterisks (p ≤ 0.001, ***), (p ≤ 0.01, **). Wilcoxon rank
sum test was used in all the cases. Median values are shown as grey verধcal lines.
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I further tested the performance of my system at predicting the frequency of side effects

that were detected after the drugs had reached the market. This amounts to a prospective

evaluation where post-marketing data is used as the test set — it is a realistic scenario that

preserves the order in which the information becomes available. Post-marketing side ef-

fects are typically regarded as side effects of very rare occurrence in the population61,97. I

collected 9, 387 post-marketing associations — these had a value of zero in the correspond-

ing entries in X used for training (Appendix 2). The statistical analysis of the distribution

of scores obtained for these post-marketing associations show no significant differences

with the scores obtained for the very rare class in the held-out test set (Fig. 1.6b, Wilcoxon

Significance, p > 0.936). Fig. 1.7b shows the percentages of post-marketing associations

assigned to each class by maximum likelihood: 55.5% of the post-marketing associations

were predicted to be either very rare or rare, while only 2%were predicted as very frequent.
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Figure 1.7: Evaluation of side effect frequency predictions. (a) Accuracy percentages for the predicধons in the
held-out test set. Frequency classes are predicted by maximum likelihood. Zeros, corresponding to “no side effect”
predicধon, are predicted for score values below 0.42 (corresponding to 0.97 sensiধvity given 0.57 specificity). (b)
Distribuধon of predicted classes assigned to post-markeধng data. (c) Illustraধve examples from the held-out test
set. Twelve randomly-chosen predicধons for the anধconvulsant drug Gabapenধn (leđ) and the cardiovascular side
effect arrhythmia (right) are shown around polar plots, each in a dedicated sector. Gray concentric circles between
frequency classes correspond to thresholds learned by maximum likelihood. The correct class for each associaধon is
coloured in each circular sector, while predicted scores are shown as blue squares.
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3 Biological interpretability of the model

The effectiveness of the model at predicting the frequency of side effects prompted us to

analyse whether the learned signatures are informative of the biology underlying drug ac-

tivity. I began by analysing whether the signatures were reproducible across independent

runs. This is important to ensure that any biological interpretability arising from the latent

representations is reproducible. In the next subsections, I shall present the reproducibility

procedure and the pharmacological interpretation of my model.

3.1 Model reproducibility

Using all the available data in X, I followed the reproducibility procedure used by Alexan-

drov et al. to study cancer mutational signatures98,99. The reproducibility procedure is sum-

marise in the following steps:

• (Step 1) Perform the decomposition for 10, 000 times using all the available data in

the matrix Xwith the optimal parameters k = 10 and α = 0.05.

• (Step 2) Select the best 100 solutions that minimises the cost function and aggregate

them into the matricesW of n× L, andH of L×m, where L = 10× 100 = 1, 000

latent features, n = 759 drugs andm = 994 side effects.

• (Step 3) Apply a partition clustering algorithm on the columns ofW (and rows of

H) using cosine distance as the metric¶. Then, I run k-means++ algorithm 100 with

k = 10 for 10, 000 times to find an optimal solution. The reproducibility of the

¶The cosine distance for two vectorsw1 andw2 is defined as d(w1,w2) = 1 − w1wT
2√

(w1wT
1)(w2w

T
2)
. The cosine

similarity is 1− d(w1,w2).
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representation was then measured by the tightness and separation of the clusters ob-

tained. I used the cosine similarity-based average silhouette width 101 of each cluster

as a measure of reproducibility of each component in the signature. The silhou-

ette width for each component of the signature (a column inW or a row inH) is a

measure of how similar that component is to components in its own cluster, when

compared to components in other clusters. The silhouette width si for the ith com-

ponent of the signature is defined as:

si =
bi − ai

max(ai, bi)
(1.12)

where ai is the average distance from the ith point (i.e. component of the signature)

to the other points in the same cluster as i, and bi is the minimun average distance

from the ith point to points in a different clusters, minimised over clusters. The sil-

houette value ranges from−1 to+1. A value close to+1 indicates that a component

is very similar to other components in its cluster but very dissimilar to neighbouring

clusters.

I found that eight out of the ten components of the signatures have a median repro-

ducibility score above 80% (Figs. 1.8-1.9). Using as a reference the best solution of the 10,000

runs, the highly reproducible components on both drugs and side effect signatures are com-

ponents {1, 2, 4, 5, 6, 7, 8, 10}. Hereafter, I shall report the biological and pharmacologi-

cal analysis found for the best solution.
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Figure 1.8: Reproducibility analysis of the drug signature components for the best 100 runs out of 10,000
runs of my decomposition algorithm. (leđ axis) Reproducibility of each k-means clusters measured using the
cosine-based silhoueħe value. The silhoueħe value for each component is a measure of how similar that compo-
nent is to component in its own cluster when compared to component in other clusters. (right axis) The number of
elements in each cluster. Ideally, we would expect 100 components in each cluster.

Figure 1.9: Reproducibility analysis of the side effect signatures components for the best 100 runs out of
10,000 runs of my decomposition algorithm. (leđ axis) Reproducibility of each k-means clusters measured using
the cosine-based silhoueħe value. The silhoueħe value for each component is a measure of how similar that compo-
nent is to component in its own cluster when compared to component in other clusters. (right axis) The number of
elements in each cluster. Ideally, we would expect 100 components in each cluster.
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3.2 Drug signatures predict drug clinical activity

Having shown that the features were highly reproducible, allowed me to investigate the link

between drug signatures and drug clinical activities. I hypothesised that the signature for

two drugs should be similar when they share clinical activity. Clinical activity for drugs was

defined based on their main Anatomical, Therapeutic and Chemical (ATC) class level –— a

five-level hierarchical organisation of terms where lower levels of the hierarchy contain more

specific descriptors of clinical activity. I quantify the similarity between two drug or side

effect signatures using the cosine similarity over the set of latent features. In detail, given

two drug signaturesw1 ∈ Rk andw2 ∈ Rk (rows inW), the drug signature similarity is

given by the dot product of the vectors divided by the product of the norm of each vector.

S(w1,w2) =
w1wT

2√
(w1wT

1)(w2wT
2)

(1.13)

Therefore, the similarity for non-negative signatures ranges from 0 to 1.

Figure 1.10a shows that the cosine similarity between the signature of drugs within an

ATC class is higher than the similarity between classes. I further checked whether the simi-

larity between drug signatures was predictive of the clinical activity at each level of the ATC

hierarchy. Following the approach by Tattoneti et al.97, I frame it as a binary classification

problem, where the scores are the drug signature similarities and we predict whether pairs

of drugs share or not a given relationship. The performance is measured using the area

under the receiver operating curve (AUROC). Fig.1.10b shows that the prediction perfor-

mance increases when considering terms located lower in the ATC hierarchy. My findings

correctly reflect the fact that drug clinical activity becomes more similar as we move to lower
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(more specific) levels of the ATC hierarchy.

3.3 Drug signatures predict drug molecular activity

Encouraged by these results, I decided to test whether drug signature similarity can even be

used for the prediction of drug targets. I found that drug signature similarities are predic-

tive of shared protein targets between drugs (AUROC = 68.38%) (Fig. 1.10c) and the pre-

dictions are better than baselines previously used elsewhere97,102, such as the 2D Tanimoto

chemical similarity (AUROC = 59.26%) and the Jaccard side effect similarity (AUROC =

61.07%).
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Figure 1.10: Drug signatures capture drug clinical and molecular activity. (a) Heat maps of mean drug
signature similariধes per anatomical class. Each (x, y) ধle represents, for each main Anatomical, Therapeuধc
and Chemical (ATC) drug category, the mean similarity of drug pairs where one drug belongs to category x
and the other to category y. The value ranges from 0.27 (Nervous system - Dermatological) to 0.55 (Ner-
vous system- Nervous system). The colours range between the minimum mean similarity and 0.466, with
all values above 0.466 (In the diagonal: 0.471 (C), 0.512 (D), 0.55 (N), 0.47 (P), 0.52 (R), 0.475 (V)) set to
0.466. Inset: the average intra-class similarity is significantly higher than the average inter-class similarity
(t-test Significance, p < 2.62× 10−13). (b) ROC curve represenধng the ability of the drug signature simi-
larity to predict which pairs of drugs share Anatomical, Therapeuধc and Chemical (ATC) category at each of
the different levels in the ATC hierarchy. (c) ROC curve represenধng the ability of the drug signature sim-
ilarity, side effect similarity and Tanimoto chemical similarity scores to predict which pairs of drugs share
targets.
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3.4 Side effect signatures predict phenotype relatedness

Similarly, I analysed the link between side effect signatures and the anatomy/physiology of

the side effect phenotypes. Side effects were grouped based on their system organ classes

according to MedDRA — the top level of the MedDRA hierarchy. I found that signatures

for two side effects tend to be more similar when they are phenotypically related (Figure

1.11). Moreover, the similarity between side effect signatures is predictive of shared Med-

DRA category at each of the different levels of the MedDRA hierarchy, and predictions

improve as we move to more specific terms in the hierarchy (Fig. 1.12).

Figure 1.11: Side effect signatures encode side effect phenotypes. Each (x, y) ধle represents, for each main Medical
Dicধonary for Regulatory Acধviধes (MedDRA) classificaধon of disorders, the mean similarity of side effect pairs
where one side effect belong to category x and the other to category y. The value ranges from 0.21 (Reproducধve
systems - Invesধgaধons) to 0.58 (Psychiatric – Psychiatric). The colours range between the minimum mean similarity
and 0.45, with all values above 0.45 (In the diagonal: 0.49 (Hepa), 0.55 (Eye), 0.57 (Repro), 0.49 (Blood), 0.58 (Psych),
0.54 (Carc), 0.47 (Nerv)) set to 0.45. Inset: the average intra-class similarity is significantly higher than the average
inter-class similarity (t-test Significance, p < 4.37× 10−16).
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Figure 1.12: Predicting share side effect anatomical/physiological categories for different levels of the Med-
DRA taxonomy using side effect signatures similarity. Level 1 or System Organ class (SOC): 57,076 side effects
that share and 436,445 do not. Level 2 or High-Level Group Term (HLGT): 12,097 shares and 481,424 do not. Level 3
or High-Level Term (HLT): 2,312 shares and 491,209 do not.

3.5 Pharmacological interpretation of the signature components

I have shown that the signatures of drugs and side effects, as a whole, encode meaningful bi-

ological information of drug molecular and clinical activity. A further important question

is whether the individual components of the signatures are interpretable.

I grouped drugs and side effects according to their main anatomical classes, and I looked

for significant activations of individual components of the signatures for each group. The

groups were obtained using top-level terms in ATC and MedDRA hierarchies, respectively.

I observed that, often, specific component(s) of the signatures tended to be significantly

activated for drugs and side effects that were anatomically related – Table 1.1 and 1.2 sum-

marises the correspondences that I found to be statistically significant (one-tailed Wilcoxon

with Benjamini-Hochberg adjusted Significance, p < 0.01).

Let us analyse a few entries of the table in detail. Component 1 of the signature is sig-
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Component Anatomical drug category
(ATC)

Anatomical side effect
category (MedDRA)

Comments

1 Genitourinary and sex hor-
mones (G), Antineoplastic
and immunomodulating
agents (L)

Reproductive system and
breast, Musculoskeletal and
connective tissues

Strongly associated with en-
docrine therapy drugs (L02)
and sex hormones and
modulators of the genital
system (G03) drugs. Weakly
with N06 (psychoanalytic)

2 Cardiovascular (C) Cardiac, Vascular and
Respiratory, thoracic and
mediastinal

Also associated with anaes-
thetics (N01). Strongly
associated with arrhythmias

3 Nervous system (N) Respiratory, thoracic and
mediastinal

A weak, less stable sig-
nature. Associated with
antimycotics (J02) and
psychoanalytic (N06)

4 Dermatological (D), Sen-
sory organs (S)

Skin and subcutaneous
tissue, Eye and immune
system

Strongly related to epider-
mal and dermal conditions,
Ocular infections, irrita-
tions and inflammations,
including allergic condi-
tions. Also associated with
the nasal and transdermal
delivery administration

5 Nervous system (N) Nervous system, Psychiatric
disorders

Specific to Nervous system
drugs. It is associated with
many subcategories of ner-
vous system drugs, except
anaesthetics (N01). Also,
only weakly associated with
psycholeptics (N05). Equal
neurologic and psychiatric
side effects

Table 1.1: Staধsধcally significant associaধons between the components of the signatures 1 to 5 and groups of drugs
and side effects.

nificantly associated with the sex hormone group of drugs and with the breast disorder

group of side effects — these are top-level terms of the ATC and MedDRA hierarchies,

respectively (Wilcoxon rank sum test with Benjamini-Hochberg adjusted significance,

p < 4.01 × 10−12). When I performed a more in-depth pharmacological analysis by

looking at lower levels in the ATC hierarchy (finer granularity), my analysis revealed that
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Component Anatomical drug category
(ATC)

Anatomical side effect
category (MedDRA)

Comments

6 Respiratory system (R) Respiratory, thoracic and
mediastinal, Infections and
infestations

Also associated with drugs
used in diabetes (A01), lipid
modifying agents (C10) and
urological (G04), highlight-
ing some interactions with
metabolism/haemosta-
sis Also associated with
inhalation and nasal admin-
istration

7 Anti-infectives for systemic
use (J)

Gastrointestinal Also linked to drugs for
acid-related disorders (A02)

8 Nervous system (N) Nervous system disorders,
Psychiatric disorders

Specific to Nervous system
drugs. Specifically, an-
tipsychotics and anxiolytics
(N05A/B) More psychiatric
side effects. Prominently
associated with mood and
sleep disorders and distur-
bance. Associated with oral
administration

9 Antineoplastic and im-
munomodulating agents
(L), Anti-infective for
systemic use (J)

Metabolism and nutrition,
Investigations, Blood and
lymphatic system

It is associated with anti-
neoplastic agents (L01),
antimycotics and antivi-
rals, both for systemic use
(J02/05). Also, with im-
munosuppressant drugs
(L04). Associated with
electrolyte and fluid balance
conditions and hepatobil-
iary investigations

10 Antineoplastic and im-
munomodulating agents
(L)

Blood and lymphatic
system, Vascular disorders

Strongly associated with
antineoplastic agents (L01)
and weakly with antithrom-
botic (B01) Associated with
haemorrhagic vascular
disorders

Table 1.2: Staধsধcally significant associaধons between the components of the signatures 6 to 10 and groups of drugs
and side effects.

this component corresponds to sex hormones and modulators of the genital system (G03)

drugs, and endocrine therapy (L02) drugs (adjusted, p < 4.06 × 10−6, p < 1.24 × 10−9,
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respectively).

Another notable example is component 8 of the signatures. This component is specific

to neurological drugs (adjusted, p < 3.48× 10−31, but p > 0.05 for all other drug classes),

and to side effects related to the nervous system and psychiatric disorders. In-depth phar-

macological analysis reveals that this component is linked to antipsychotics and anxiolytics

drugs and with psychiatric side effects (mood and sleep disorders). Conversely, component

5 of the signatures, which is also specific to neurological drugs (adjusted, p < 1.82× 10−12,

p > 0.05 for all other drug classes), has more balanced neurological and psychiatric side

effect profiles.

In some cases, the signature components can be associated with more than one anatom-

ical class, and the connection between the classes becomes apparent after considering the

off-target or off-tissue effect of the drugs. As an example, consider component 2 of the

signatures, which is strongly associated with both cardiovascular system drugs (adjusted,

p < 7.13× 10−10) and cardiac and vascular-related side effects (adjusted, p < 5.24× 10−4,

p < 2.56 × 10−17, respectively). There is, however, an unexpected link with nervous

system drugs. In-depth pharmacological analysis reveals that component 2 is linked to

anaesthetic drugs (N01) — the only neurological drugs associated with this component

(adjusted, p < 1.25× 10−2). Conversely, anaesthetic drugs are not statistically significantly

associated with any other components — including components 5 and 8, which are neuro-

logical specific. Anaesthetic drugs reportedly affect the regular cardiac electrical activity by

interacting with the ion channels — the component 2 of the signatures is indeed strongly

associated with arrhythmias (adjusted, p < 8.88× 10−10).

Furthermore, it is well known that drugs route of administration affects the side effects. I
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tested whether components in the signatures can capture this relation. I found that specific

components of the drug signatures are significantly associated with several routes. Com-

ponent 6 of the signatures —associated with the respiratory system — is associated with

inhalation and nasal administration. Component 4 — associated with the dermatological

system — is also associated with nasal administration and transdermal delivery administra-

tion, which is typically known to cause adverse skin reactions. Finally, I found that compo-

nent 8 — associated with the nervous system — was associated with oral administration (I

note, however, that this association could be due to a large number of nervous system drugs

in our dataset).

4 Conclusions and Discussion

I presented a novel framework for predicting the frequency of drug side effects. My model

learns a low-dimensional representation of drugs and side effects that I called signaturॽ. I

showed that these signatures encode meaningful biological information about drug activity

at the anatomical and molecular level. I envision the use of my system by safety profession-

als during pre-and post-marketing drug development: in the premarketing phase, to assist

in the design of clinical trials by generating a hypothesis on the frequencies of certain side

effects; in the post-marketing phase, to complement surveillance reporting systems in the

early discovery of severe side effects of very rare occurrence — this requires an analysis of

the low scores predicted by my system. Furthermore, my method can be used by health pol-

icymakers and regulatory agencies when assessing the safety of candidate drugs.

An innovative technical aspect of my matrix decomposition algorithm is that it can take

into account different level of uncertainty associated with the data. The underlying as-
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sumption of my model is that the matrix is fully, rather than partially, observed, but that

a well-defined set of entries are noisy – in our problem, these are the zeros, corresponding

to unobserved drug side effect associations. Earlier matrix decomposition methods, such

as singular value decomposition (SVD), or non-negative matrix factorisation (NMF) 29,

did not explicitly account for different levels of uncertainty in the data. My multiplicative

learning rule is simple, computationally efficient and has theoretical guarantees of con-

vergence. I envisage its use for problems that can be framed as predicting the presence or

absence of relationships between pairs of elements where only some entries in the training

data are noisy. This is the case for many problems in different areas of biology, chemistry

and medicine – for example, for the problems of predicting protein-RNA interaction 5 and

disease gene prediction41– as well as in social networks analysis, and recommendation sys-

tems for e-commerce.

To the best of my knowledge, this is the first method that can predict the frequencies of

drug side effects in the population. Other methods had been proposed earlier that were

able to predict the probability of a given drug side effect association, but these probabilities

are only weakly correlated with the side effect frequencies, and therefore cannot be used

effectively for the prediction of frequency classes. I verified this, for example, for the scores

obtained by the predictive pharmaco-safety networks (PPN-NET)6 – their Pearson correla-

tion with the frequency of drug side effects is ρ = 0.08 (significance, p < 1.28 × 10−6 —

Fig. 1.13 compares the scores obtained by PPN-NET and by my method.
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Figure 1.13: Predicted scores by Predictive Pharmacosafety Networks (PPNs) and my method in the held-
out test set. (a) Predicted scores by PPNs are weakly correlated to the frequency of the side effect in the populaধon
(Pearson correlaধon ρ = 0.08, p < 1.28×10−06); (b) Predicted scores by my method are more strongly correlated
to the frequency of the side effect in the populaধon (Pearson correlaধon ρ = 0.474, p < 2.39× 10−209).

The seminal work of Campillos et al. 88 had shown that drug side effects are predictive

of drug targets. More recently, Wang et al.9 had shown that drug side effects are predictive

of therapeutic indications. Therefore, one interesting question was whether my model’s

signatures, learned from side effect data, were associated with molecular and clinical drug

activity. I found that drugs with similar signatures were more likely to share a protein target

and to belong to the same anatomical, therapeutic, pharmacological and chemical category.

Intriguingly, the non-negative constraints in my model favour a “parts-based representa-

tion” 29 of the signatures: the drug activity becomes explainable in terms of the drug effects

on the different “parts” of the human anatomical systems. This representation of drug

activity makes sense in the context of network pharmacology 17: the observed side effect

patterns for a given drug can be explained by a combination of perturbations in distinct or-
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gan system networks. Figure 1.14 shows signature components with significant activations

for groups of drugs and side effects obtained by top-level terms in ATC and MedDRA hi-

erarchies (anatomical level). Specific components of the signatures are strongly associated

with specific anatomical classes. The ability of my model to capture the parts-based repre-

sentation that reflects the human anatomical systems is quite remarkable as signatures are

learned from noisy information about a few drug side effects associations.

These reproducible drug and side effect signatures (summarised in Tables 1.1 and 1.2 and

Figure 1.14) provide insights into how my model works. The signatures encode biologi-

cal information about the drug and side effects interplay, and these relationships can be

exploited to formulate a biological hypothesis for researchers. The signatures can also be

useful in other pharmacological research, such as in the study of frequencies of adverse drug

combinations.

There are limitations and biases in public databases of drug side effects. For instance, I

observed that the frequencies of side effects are biased towards frequent ones (Fig. 1.1b).

Recent reports also indicate that clinical trials are biased towards male gender and certain

ethnicity groups: 86% of clinical trials cohorts were Caucasian-dominated in 2014 103. Nu-

merous previous research also reported divergent drug responses in subjects with a differ-

ent genetic background 104. I envision extending my model and the analysis presented here

to integrate additional metadata from clinical trials to tailor the prediction for gender- or

ethnic-specific intervention groups.
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Figure 1.14: Summary of significant activations of drug and side effect signatures per anatomical classes.
Drugs were grouped based on their main Anatomical, Therapeuধc and Chemical (ATC) classes while side effects
were grouped by their System Organ Class (SOC) categories in MedDRA. Only staধsধcally significant associaধons
(One-Tailed Wilcoxon Sum Rank Test with Benjamini-Hochberg adjusted Significance, p < 0.05) are shown. The
size of the circle represents the significance (p-value), and the colour encodes the effect size of the associaধon — the
difference between median in the group compared to the median of all drugs (or side effects).

4.1 Prediction case studies: severe side effects that caused drug withdrawal

A critical question to assess the real applicability of my approach is whether my method can

predict the side effects that led to drug withdrawal from the market. Typically, these corre-
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spond to severe side effects which are caused by off-target drug effects, which by their na-

ture are unforeseen from the chemistry and pharmacology. These correspond to the Rums-

feld’s “unknown unknowns”‖, that is, there are severe drug side effects that are unknown to

the investigator but are also unknown in the chemical or pharmacological literature.

I showcase case studies for eight withdrawn drugs from different pharmaceuticals (see

Table 1.3 and Figs. 1.15, 1.16, 1.17, 1.18, 1.19, 1.20, 1.21). To obtain the side effect that caused

drug withdrawal, I accessed the online version of DrugBank v5.1.4 and obtained the side

effects by manual inspection. Note that in most cases, the cause of withdrawal is a general

term, e.g. gastrointestinal disorders, which maps into an entire top MedDRA side effect

category. Therefore, due to the lack of a systematic database on the specific side effect(s)

that led to drug withdrawal, I analysed the top MedDRA categories in each case. The ques-

tion is whether my model’s prediction, that relies on data from clinical trials, can predict the

severe side effects that led to drug withdrawal. These predictions can be helpful as initial

evidence to study off-target mechanism of these drugs.

In general, I found that my model was able to predict severe side effects belonging to the

MedDRA category associated to the cause of withdrawal. Let me analyse few examples in

detail. Fig. 1.15 shows the predicted scores for the drug Alosetron, originally indicated for

diarrhoea-predominant irritable bowel syndrome in women. Alesotron was withdrawn

from the market due to severe gastrointestinal disorders such as ischemic colitis, constipa-

tion and severely obstructed or ruptured vowels 106. Interestingly, many gastrointestinal dis-
‖Rumsfeld is an American politician who once stated: “Reports that say that something hasn’t happened

are always interesting to me, because as we know, there are known knowns; there are things we know we
know. We also know there are known unknowns; that is to say, we know there are some things we do not
know. But there are also unknown unknowns—the ones we don’t know we don’t know. And if one looks
throughout the history of our country and other free countries, it is the latter category that tends to be the
difficult ones.”. The concept of “known unknowns” has been also used in analytical chemistry 105.
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orders shows up in my model predictions either as frequent or infrequent. In another case,

I found that my model was able to retrieved the exact side effect term that was reported as

the cause of drug withdrawal. This is the case of Sitaxentan (see Fig. 1.16), originally indi-

cated for pulmonary arterial hypertension. Sitaxentan was withdrawn due to hepatotox-

icity, which was in fact predicted as a rare side effect by my model. It has been reported

that four deaths and one case of liver transplantation has been observed amongst 2,000

patients treated worldwide 107; this observation counts precisely as a rare side effect for the

drug (4/2,000).

Another example is Pergolide (see Fig. 1.20), originally indicated for Parkinson disease,

which was withdrawn from the market due to heart valve damage. In this case, we can see

that, for instance, cardiac failure is predicted as frequent. Interestingly, cardiac failure is typ-

ically a complication of heart valve damage. This example illustrates how my model might

not necessarily predict the causative side effect but rather other related side effects that are a

consequence (or complications) of the cause. Even in this scenario, multiple evidence might

help to undercover the underlying cause.
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Drug name Indication Severe side effect Year of withdrawal Company
Alosetron severe diarrhoea-

predominant
irritable bowel
syndrome (IBS) in
women

gastrointestinal side
effects

2000 Prometheus Lab
Inc.

Sitaxentan pulmonary arterial
hypertension

hepatotoxicity 2010 Pfizer

Rofecoxib osteoarthritis
rheumatoid arthritis

heart attack and
stroke

2004 Merck & Co.

Colestilan hyperphosphataemia gastrointestinal
disorders (haemor-
rhage)

2013 Mitsubishi Tanabe
Pharma

Valdecoxib osteoarthritis and
dysmenorrhoea

skin disorders 2005 G. D. Seatle & Co.

Pergolide Parkinson disease heart valve damage 2007 Boehringer Ingel-
heim

Tegaserod irritable bowel
syndrome with con-
stipation (ISB-C)

cardiac disorders 2007 Sloan Pharmaceuti-
cals

Table 1.3: Case studies of drugs that have been withdrawn from the market due to severe side effects.
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The remedy ॾ worse than the disease.

Francis Bacon (1561-1626)

2
Drug side effect prediction

Much of the current research on drug side effect prediction focuses on

predicting the presence or absence of side effects (hereafter, side effect identifi-

cation or simply drug side effect prediction), ignoring, owing to lack of systematic data and

well-defined framework, the frequencies of the side effects. Although I dedicated Chapter 1
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to describe a general framework for predicting the frequencies of drug side effects, which

generalises over the (binary) side effect identification, it is important to also address the

problem of side effect prediction. The reason is twofold. First, drug side effect frequencies

can only be predicted for drugs for which at least few frequency associations are available

(this is only for about 50% of the drugs in SIDER 4.165). Second, side effect identification

methods can make use of additional evidence collected in post-market stages from observa-

tional databases — such as spontaneous reports, drug-specific patient registries, administra-

tive claims databases, and electronic health records —, which are continuously monitored

for increased of side effect rates due to a given drug.

A wide range of computational approaches have been proposed for predicting drug side

effects (for reviews see63,64). The common assumption underlying these methods is that

there is biological or pharmacological relational information between drugs, e.g., chem-

ical structure, and between side effects, e.g., phenotype similarity, that can be exploited

for the prediction task. Current methods typically rely on well-defined heuristics and/or

hand-crafted features. For instance, Cami et al.6 extracts several feature covariates from the

bipartite network built by connecting drugs to side effects, including other chemical and

taxonomic covariates obtained for drugs and side effects, and then trains a Bernoulli expec-

tation model based on multivariate logistic regression. Bean et al. 31 built a knowledge graph

by connecting drugs, side effects, protein targets, and indications and then applied enrich-

ment analysis to predict missing links in the network. Other network-based approaches

include random walks and label propagation on side information networks 32,33.

More recently, the drug side effect prediction problem has been framed as a matrix com-

pletion task. For instance, Li et al. 35 proposed a low-rank model called inductive matrix
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completion, that integrates side information using kernel matrices of drugs and side effects.

Similarly, Zhang et al. 34 proposed a low-rank model that incorporates smoothness con-

straints on graphs built from drug side information.

In this chapter, I propose two methods to tackle the side effect prediction problem. The

first approach, which I discuss briefly in section 2.1, is a low-rank model withL2 regularisa-

tion. The second approach, which is the main focus of this chapter, is a self-representation

learning model that is able to overcome the limitations of heuristic-based approaches and

extend the expressiveness of low-rank factorisation models for matrix completion. My

model builds upon the recent development of high-rank matrix completion based on self-

expressive models (SEM) 8, as well as the recent trend of deep learning on graphs 25,26,24. I

propose a geometric SEM model that integrates relational inductive bias about drugs (and

side effects) in the form of drug (and side effect) similarity graphs. Extensive experiments

on a standard benchmark dataset show that my method outperform existing state-of-the-

art approaches in drug side effect prediction, and that the inclusion of relational inductive

bias significantly improves the performance while enhancing model interpretability.

1 Related work

In this section, I introduce several state-of-the-art methods for drug side effect prediction.

One limitation that I encounter on the literature of side effect prediction is the lack of sys-

tematic comparison between state-of-the-art methods on the same benchmark dataset. To

ameliorate this situation, I will compare several state-of-the-art methods that I present in

this section to my proposed models (the comparison is presented in section 3).
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1.1 Predictive Pharmacosafety Networks (PPNs)

PPNs6 is based on the idea that the connectivity patterns in the bipartite network that con-

nects drugs to side effects are important for the prediction of missing links in the network.

PPNs model the binary response variable Xuj, u ∈ {1, ..., n}, j ∈ {1, ...,m}, for n drugs

andm side effects, denoting the presence or absence of drug side effect associations. Us-

ing Logistic Regression (LR), PPNs modelled this response as a Bernoulli random variable

with the following expectation:

E[Xuj] =
1

1+ exp (−
∑

s βsZs(u, j))
(2.1)

Here, βs denotes the model parameter and Zs the model covariate. PPNs considers net-

work covariates, that are extracted from the observed drug-side effect network but not on

from other drug or side effect attributes, as well as other covariates that can be extracted

from side information about drugs or side effects.
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Network Covariates

In the following, let u represent a drug node, and j a side effect node. Then, the degree co-

variates are defined as follow:

Z1(u, j) = deg(u)× deg(j)

Z2(u, j) = |deg(u)− deg(j)|

Z3(u, j) = deg(u) + deg(j)

Z4(u, j) =
deg(u)
deg(j)

(2.2)

Here, deg(u) denotes the degree of node u. The degree product covariate, Z1(u, j), aims

to capture preferential attachment among high-degree drugs and side effects. The degree

difference covariate, Z2(u, j), aims to capture assortativity, i.e. whether high-degree drugs

connects to high-degree side effects or to small-degree side effects.

Further, distance covariates accounts for the set of neighbours of drug u, that we denoted

asN (u), and the set of neighbours of side effect j, denoted asN (j). Let also J(j, k) denotes

the Jaccard similarity between the neighbours setsN (j) andN (k), which is defined as fol-

low:

J(j, k) =
|N (j) ∩N (k)|
|N (j) ∪N (k)|

(2.3)

The Jaccard-based covariates quantify structural similarity between drug pairs and side
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effect pairs:

Z5(u, j) = max
k∈N (u)−{j}

{J(j, k)}

Z6(u, j) = max
k∈N (j)−{u}

{J(u, k)}
(2.4)

Finally, Jaccard-based predictors based on Kullback-Leibler divergence (KL) between

the overall distribution of similarities between a drug (D̄se) and the drugs in its local neigh-

bourhood (Dse(u, j)) or between side effects (D̄se) and side effects in its neighbourhood

(Dse(u, j)) are defined as follow:

Z7(u, j) = KL(Dse(u, j), D̄se)

Z8(u, j) = KL(Ddrug(u, j), D̄drug)

(2.5)

Intrinsic (and other) covariates

Given additional information about drugs (or side effects), these can also be included in the

prediction. Intrinsic covariates are those that are defined based on the intrinsic properties

of drugs, i.e. chemical structure. For instance, let dchem(u, k) represent a chemical distance*

between two given drugs u and k, then, the intrinsic covariate is defined as:

Z9(u, j) = min
k∈N (j)−{i}

{dchem(u, k)} (2.6)

*There are many distances at molecular level, we used the well-known 2D Tanimoto chemical distance 108.
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Other covariates for drugs (or side effects) can also be integrated in a similar fashion, by

considering other drug information — for example, drug-drug interactions, drug targets, or

drug indications.

1.2 Inductive Matrix Completion (IMC)

IMC 35 is a low-rank model that integrates drug and side effect attributes. For the binary ma-

trix X ∈ Rn×m for n drugs andm side effects, letKd ∈ Rn×n represent the kernel similarity

matrix for drugs and, similarly, letKa ∈ Rm×m represent the kernel similarity matrix for

side effects. When only drug or side effect attributes are available, the kernel matrices are

built using similarity measures, e.g. Tanimoto chemical similarity from chemical attributes.

IMC aims to approximate X by:

X ≃ KdWHKa (2.7)

By minimising the following loss function:

min
W,H
L(W,H) =

1
2
∥Ω ◦ (X− KdWHKa)∥2F +

λ
2
(∥W∥2F + ∥H∥2F) (2.8)

Here,Ω represents a projection over the observed entries in X, ◦ is the element-wise

product between matrices,W ∈ Rn×k is the drug latent representation matrix andH ∈

Rk×m is the side effect latent representation matrix. The second term in Eq. 2.8 is aL2 regu-

larisation term applied to the latent matricesW andH, with a positive penalty λ > 0.

Gradient descent-based methods are required to approximate the solution. Thus, the
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derivatives of (2.8) are:

∂L(W,H)
∂W

= −Kd(X− Ω ◦ (KdWHKa))KaHT + λW (2.9)

∂L(W,H)
∂H

= −WTKd(X− Ω ◦ (KdWHKa))Ka + λH (2.10)

1.3 Feature-derived graph regularised matrix factorisation (FGRMF)

The FGRMF 34 integrates several low-rank models, one per side information graph, by us-

ing a logistic regression model. Each low-rank model is optimised independently and then

combined. For the binary matrix X ∈ Rn×m for n drugs andm side effects, FGRMF first

minimises the following loss:

min
W,H
L(W,H) =

1
2
∥X−WH∥2F︸ ︷︷ ︸
low-rank model

+
λ
2
(∥W∥2F + ∥H∥2F)︸ ︷︷ ︸

regularisation

+
α
2
∥W∥2D,G︸ ︷︷ ︸

smoothness

(2.11)

where ∥.∥F denotes the Frobenius norm, and ∥C∥D,G the Dirichlet norm on the graph

G = ({1, . . . , n}, E ,G), i.e. the weighted undirected graph with edge weights gij > 0 if

(i, j) ∈ E and zero otherwise, representing the similarities between drugs.

The second step of FGRMF is to combined the solution from multiple graphs {G1,G2, ...,Gp},

that gives different approximations to X, {X̂1, X̂2, ..., X̂p} as follow:

hθ =
1

1+ exp (−(θ0 +
∑p

i=1 θiX̂i)
(2.12)

where the weights θj are learned for each independent model. hθ is used as a final predic-
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tion model.

1.4 Label propagation using consistency method (LP)

In the seminal work of Atias et al. 32, they proposed a Logistic Function combination of two

models to predict drug side effects: a network-based label propagation model (consistency

method 109) and a Canonical Correlation Analysis (CCA)-based method. Of these, only the

label propagation can be adapted to our setting, as we focus on predicting side effects for

drugs for which few side effects are already available. CCA-based methods, such as Sparse

CCA 110, have been proposed for drug side effect prediction but for a different setting: to

predict side effects for compounds by taking as input, an encoding of the chemical struc-

ture of a compound 111 — these methods assume not known side effect for the compound in

training. The main difference between these two problems is that the first focuses on pre-

dicting new side effect for drugs in the post-marketing period, while the second focuses on

predicting side effects for a lead compound before marketing. In this chapter, we focus on

the first problem.

Label propagation or network propagation is a semi-supervised learning model that

heavily relies on a network structure to make predictions. It has two main components: the

network and the initial labels. The initial labels are superimposed on the nodes on the net-

work such that the knowledge of the initial labels is “spread” or diffuse to the neighbouring

nodes in the network. Label propagation can be formulated either as an iterative sequence

of matrix multiplication similar to random walks on networks, or as a regularisation frame-
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work. Here we show the latter, which minimises the following objective function 109:

arg minF
1
2

m∑
i,j=1

Wij

∥∥∥∥∥ 1√
Dii

Fi −
1√
Djj

Fj

∥∥∥∥∥
2

︸ ︷︷ ︸
smoothness

+
μ
2

n∑
i=1

∥Fi − Yi∥2︸ ︷︷ ︸
initial labels

(2.13)

where μ > 0 is the regularisation parameter, F ∈ Rm×n is the learned matrix of n drugs

(columns) andm side effects (rows), Y ∈ Rm×n is the matrix of initial labels containing

the binary drug side effect associations, andW ∈ Rm×m is the matrix of weights of the

graph G = (V , E)with vertex set V (side effects) and edges E weighted byW. In addition,

diag(W) = 0 is set to avoid self-reinforcement. D is a diagonal matrix with its (i, i)-element

equal to the sum of the i-th row ofW.

In this case, the network is built from side effect similarities and the initial labels are the

known. Label propagation is based on the assumption that drugs tend to cause similar side

effect phenotypes, as reveal by the network structure of side effects phenotype similarity.

Label propagation have been widely used to amplify genetic signals from phenotypic simi-

larities for predicting disease causing genes 112,41.

The label propagation algorithm consists in the following steps 32,109:

1. Build he affinity matrixW using the Jaccard similarity between side effects based on

the set of drugs two side effects share. Then setWi,i = 0.

2. Construct the matrix S = D− 1
2WD− 1

2 .

3. Compute the scores F = (I − αS)−1Y, which is the globally optimal solution of

Eq. 2.13, where I ∈ Rn×n is the identity matrix and α = (1+ μ)−1 is a parameter that

trades between the two constraints in Eq. 2.13.
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1.5 An additional baseline: Side effect popularity (TopPop)

My analysis of the distribution of side effects in Chapter 1 revealed that side effects follows

a long-tail distribution, where the majority of the side effects are associated with only few

drugs. This characteristic of the dataset is not unique to drug side effects but it have been

observed, for instance, also in movie datasets (as I showed in Fig. 1.2). Cremonesi et al. 20

used movie popularity as a baseline to assess the performance of movie recommendation

system algorithms. I adopted the same baseline as comparison. For our binary data matrix

X ∈ Rn×m for n drugs andm side effects, TopPop assigns scores to drug side effect pairs

(i, j) as follow:

TopPopij =
n∑
i

Xij (2.14)

2 Proposed models

In this section, I introduced my two proposed models. The first is a low-rank model while

the second is a high-rank model.

2.1 Regularised low-rank matrix factorisation (MF)

The MF model 36 is based on the assumption that the binary matrix X ∈ Rn×m for n drugs

andm side effects has a low-rank k ≪ min{m, n}, such that X can be expressed as the prod-

uct of two rank-kmatrices, as follow:

X ≈ PQ (2.15)
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where P ∈ Rn×k andQ ∈ Rk×m. This model amounts to assign a low-dimensional fea-

ture vector to each drug and a low-dimensional feature vector to each side effect such that

the dot-product between the features vectors is related to the probability that a drug is as-

sociated to a side effect. The rank of X is k— the number of features of each drug and side

effect. The matrices P andQ are the solution of the following optimisation problem:

min
P,Q
L(P,Q) = 1

2
∥X− PQ∥2F︸ ︷︷ ︸
low-rank model

+
λ
2
(∥P∥2F + ∥Q∥2F︸ ︷︷ ︸

regularisation

) (2.16)

where ∥.∥F is the Frobenius, and the term λ(∥P∥2F + ∥Q∥2F) is aL2 regularisation term with

penalty λ > 0, which is added to the objective function in order to prevent overfitting.

The problem is non-convex in both P andQ. Gradient descent-based optimisation

methods are required to approximate the solution. Thus, the derivatives of (2.16) are:

∂L(P,Q)
∂P

= −(X− PQ)QT + λP (2.17)

∂L(P,Q)
∂Q

= −PT(X− PQ) + λQ (2.18)

I optimise Eq. 2.16 using conjugate gradient descent (see details in section 5).

2.2 Geometric sparse matrix completion model (GSMC)

Self-expressive models

The goal of self-expressive models (SEM) is to represent datapoints, i.e., drugs, approxi-

mately as a linear combination of a small number of other datapoints. Proposed as a frame-
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work for simultaneously clustering and completing high-dimensional data lying over the

union of low-dimensional subspaces 113,9, these models can effectively generalise standard

low-rank matrix completion models.

Let X ∈ Rn×m be the data matrix (each column is a datapoint) and letC ∈ Rm×m

be the coefficient matrix (each column is a coefficient vector). The goal of self-expressive

model is to learn a matrixC such that X ≃ XCwhereC is sparse according to some sparsity

function and diag(C) = 0 113,9. Observe that the last constraint is needed to prevent the

trivial solution of representing each datapoint with itself (C = I).

The regularisation framework

Let me denote our drug side effect matrix for n drugs andm side effects with the binary ma-

trix X ∈ Rn×m where Xij = 1 if drug i is associated with side effect j, or 0 if the association

is unreported. GSMC aims at learning two sparse zero-diagonal self-representation matri-

ces, one for the drugs R ∈ Rn×n and one for the side effectsC ∈ Rm×m. The data matrix X

is then approximated by:

X̂ ≃ pXC+ (1− p)RX (2.19)

where p ∈ [0, 1] is a parameter that controls the balance between the row (drug) and

column (side effect) contributions. In the sequel, I shall refer to the first part of the GSMC

model XC, as GSMC-c, and to the second part, RX, as GSMC-r.

To this end, two cost functions,Qc(C) andQr(R), that takes into account the relational

inductive prior between datapoints — the graph network — for drugs and side effects, are
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minimised with respect toC and R, respectively:

min
C≥0

1
2
∥X− XC∥2F︸ ︷︷ ︸

self-representation

+
βc

2
∥C∥2F + λc∥C∥1︸ ︷︷ ︸

sparsity

+
1
2

P∑
j

αcj ∥C∥2D,Gc
j︸ ︷︷ ︸

smoothness

+ γTr(C)︸ ︷︷ ︸
null diagonal

(2.20)

min
R≥0

1
2
∥X− RX∥2F︸ ︷︷ ︸

self-representation

+
βr

2
∥R∥2F + λr∥R∥1︸ ︷︷ ︸

sparsity

+
1
2

Q∑
j

αrj∥R∥2D,Gr
j︸ ︷︷ ︸

smoothness

+ γTr(R)︸ ︷︷ ︸
null diagonal

(2.21)

where ∥.∥F denoting the Frobenius norm, ∥.∥D,G the Dirichlet norm of the graph G.

Here Gc = ({1, . . . ,m}, E c,Gc) denote the weighted undirected graph with edge weights

gcij > 0 of (i, j) ∈ E c and zero otherwise, representing the similarities between side ef-

fects. Let also Gr = ({1, . . . , n}, E r,Gr) denote the weighted undirected graph with edge

weights grij > 0 of (i, j) ∈ E r and zero otherwise, representing the similarities between

drugs. In the following, I shall provide the rationale behind (2.20) only, as the same applies

to (2.21).

The first term in Equation (2.20) is the self-representation constraint, which aims at learn-

ing a matrix of coefficientsC such that XC is a good reconstruction of the original matrix X.

The second term is the sparsity constraint, which uses the elastic-net regularisation known

to impose sparsity and robustness to noise 114,115. The fourth term is a penalty for diagonal

elements aimed at preventing the trivial solutionC = I by imposing diag(C) = 0 (together

withC ≥ 0). Typically, γc ≫ 0 is used.

My model is called geometric due to the third term in Equation (2.21), the smoothness
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term 85,116,26, which incorporates structure into the sparse coefficient matrixC. This is achieved

by adding smoothness priors from multiple weighted graphs that encode side informa-

tion about the columns. Let me represent one of these graph by its adjacency matrixGc ∈

Rm×m (each node represents a side effect). Ideally, nearby points inGc should have similar

coefficients inC, which can be obtained by minimising:

∑
i,j

Gc
i,j∥ci − cj∥2 = Tr(CLGcCT) = ∥C∥2D,Gc (2.22)

where ci and cj represent column vectors of C, LGc = Dc − Gc is the graph Laplacian, and

Dc = diag(
∑

iGc
i,j) is a diagonal matrix. By extending this formulation to multiple graphs

Gcj , j ∈ {1, 2, ..,P}we obtain the third term in Equation (2.20):†

P∑
j

αcj Tr(CLGc
j
CT) =

P∑
j

αcj ∥C∥2D,Gc
j

(2.23)

where the constant values αcj > 0, j ∈ {1, ...,P}weigh the relative importance of each

graph.

Finally, following29, I impose non-negative constraints onC, as these constraints lead to

more interpretable model since they allow only for additive combinations.

The multiplicative learning algorithm

To minimise Equations (2.20) and (2.21) subject to the non-negative constraints R,C ≥ 0,

I developed efficient multiplicative algorithms inspired by the diagonally re-scaled principle
†Note that for Equation (2.21), the graphs Grj have a different number of nodes (each node represents a

drug) and the Dirichlet norm is applied to the rows of R, i.e. ∥R∥2D,Gr
j
= Tr(RTLGr

j
R).
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of non-negative matrix factorisation29,117. The algorithm consists in iteratively applying the

following multiplicative update rules:

Cij ← Cij
(X⊤X+

∑P
k αckCGc

k)ij

(XTXC+
∑P

k αckCDc
k + βcC+ λc + γcI)ij

(2.24)

Rij ← Rij
(XX⊤ +

∑Q
k αrkGr

kR)ij
(XXTR+

∑Q
k αrkDr

kR+ βrR+ λr + γrI)ij
(2.25)

In the following, I shall prove that the algorithm in Eq. (2.24) converges to a solution;

that the cost functionQc(C) is convex, and therefore the solution found is the global opti-

mum; and that the speed of convergence is first-order. Finally I provide a lower bound for

the value γc. Proofs for Eq. (2.25) are similar and omitted here for brevity.

Lemma 1. The cost function Qc(C) in Equation (2.20) ॾ convex in C.

Proof Sketch. We need to prove that the Hessian is a positive semi-definite (PSD) matrix.

That is, for a non-zero vector h ∈ Rm the following condition is met hT∇2Qc(C)h ≥ 0.

The graph Laplacians are PSD by definition. The remaining terms in the Hessian (X⊤X +

βc) are also PSD. Therefore,Qc(C) is convex inC.

Theorem 2 (Convergence). The cost function Qc(C) in Equation (2.20) convergॽ to a global

minimum under the multiplicative update rule in (2.24).

Proof. We need to show that my algorithm satisfies the Karush-Khun-Tucker (KKT) com-

plementary conditions, which are both necessary and sufficient conditions for a global so-

lution point given the convexity of the cost function (lemma 3) 89,90. KKT require Ci,j ≥ 0

and (∇Qc(C))ijCij = 0. The first condition holds with non-negative initialisation of C.
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For the second condition, the gradient is: ∇Qc(C) = −XTX −
∑

j αcjCGc
j + XTXC +∑

j αcjCDc
j + βcC + λc + γcI, and according to the second KKT condition, at convergence

C = C∗ we have (XTXC∗+
∑

j αcjC∗Dc
j +βcC∗+λc+γcI)ijC∗

ij−(XTX+
∑

j αcjC∗Gc
j )ijC∗

ij =

0, which is identical to (2.24). That is, the multiplicative rule converges to a global op-

tima.

Theorem 3 (Rate of convergence). The multiplicative update rule in (2.24) hॼ a first-order

convergence.

Proof Sketch. Following 89,118, we can represent the updating algorithm as mappingCt+1 =

M(Ct)with fixed pointC∗ = M(C∗). Then, when Ct+1 is nearC∗, we haveC ≃

M(C∗) + ∇M(C)(C − C∗) subject toC ≥ 0, and thus ∥Ct+1 − C∗∥ ≤ ∥∇M(C)∥ ·

∥Ct − C∗∥,with ∥∇M(C)∥ ̸= 0 almost surely. That is, the multiplicative update rule is a

first-order algorithm.

Theorem 4 (Lower bounds for the null-diagonal parameter γc). Let ε > 0 be the maximum

tolerable value in diag(C),
√
σ the maximum initial value in diag(C), Nc the total number

of iterations and L = maxi diag(X⊤X). Then, γc = f(ε,Nc) ॾ bounded by ( σ1/(2N
c)L

ε1/Nc ,∞).

Proof. Assuming that γc ≫ maxi diag(XTXC +
∑

j αcjCDc
j + βcC + λc) and that L ≫

maxi diag(
∑

j αcjCGc
j )), then at the jth iteration, ε(j) :=

√
σLj

(γc)j
. At convergence, j = Nc,

and ε =
√
σLNc

(γc)Nc , from which I can obtain the lower-bound for γc. That is, to guarantee at

most ε in diag(C), we need to set a γc(ε,Nc) >
σ1/(2Nc)L
ε1/Nc . The upper bound is obtained

when ε → 0, which causes γc(ε, p) → ∞. In practical applications, the upper bound is

limited by machine precision.
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The most expensive operation in (2.24) comes from the denominator term XTXC for

whichO(Nc × m3) (whereNc is the total number of iterations). The overall complexity

can be reduced by pre-computing the constant covariance matrix X⊤X and the linear com-

bination of graphs. A similar reasoning applies to (2.25), givingO(Nr × n3). Algorithm 1

presents a Matlab pseudo-code for solving GSMC-c that follows the NMF implementation

guidelines in91: (i) Ct=0 is sample from a uniform distribution in the interval (0,
√
σ]; (ii) a

small value ε ≃ 1 × 10−16 is added to the denominator to prevent division by zero. The

stopping criteria for the algorithm is (i) when the number of iterations reaches maxiter or

(ii) when the element-wise change δ(t)C betweenC(t+1) andC(t) is smaller than a predefined

tolerance tolX, with:

δ(t)C = max

(
|C(t+1)

ij − C(t)
ij |

max(i,j) |C(t)
ij |+ ε

)
(2.26)

ALGORITHM 1: GSMC-c
Given the parameters αc ∈ Ra, βc, λc, σ, γc > 0 and the graphs Gc of P
elements in a cell array.

C = rand(m)*sqrt(σ);
I = eye(m);
COV = X’*X;
Dc = zeros(size(C));
Gc = zeros(size(C));
for graph = 1:P do

Dc = Dc + alpha(graph).*diag(sum(Gc{graph}, 2));
Gc = Gc + alpha(graph).*Gc{graph};

end
while convergence criterion ॾ not met do

numer = COV + C*Gc;
den = COV*C + C*Dc + βc.∗C + λc + γc. ∗ I +ε;
C = C .* numer ./ den;

end

The algorithm to solve GSMC-r is similar and omitted for brevity. However, note that
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algorithm (1) can also be used to solve GSMC-r. This can be understood by considering

that the GSMC-r model can be expressed as follow RX = (XTRT)T = (YA)T where Y = XT

and A = RT and thus algorithm (1) can be used to solve A in Ŷ ≃ YA.

3 Experimental Results

3.1 Datasets

Drug side effects were extracted from the SIDER database 87,65. Our matrix X contains

75, 542 known associations for 702marketed drugs (rows) and 1, 525 distinct side effect

terms (columns) (7.06% density). Each drug and each side effect has at least six known as-

sociations. A value Xij = 1 if a drug i is known to be associated with side effect j or Xij = 0

otherwise.

In order to build graphs representing side information for drugs, I assembled binary ma-

trices describing drug target interactions (702 drugs×401 targets), drug indication associa-

tions (702 drugs×5, 178 indications), drug-drug interactions (702 drugs×702 drugs) and

Tanimoto chemical similarity (702 drugs×702 drugs) – these datasets were extracted from

DrugBank 119 and the Comparative Toxicogenomics database 120. I then built the graphs

using the cosine similarity between the rows of: the drug target matrix (I shall call this

graph DT); the drug indication matrix (DInd); the drug-drug interaction matrix (DDI).

The chemical graph (Chem) was built using the 2D Tanimoto chemical similarity from the

SMILES chemical representation. For each graph, I set the main diagonal of the weighted

adjacency matrix to zero. The distribution of similarity scores of each graph is shown in Fig.

2.4. In the experiments, I did not include any graphs representing side information for side

effects.
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Figure 2.1: Normalised histogram of similarities used as graph side information for drugs: chemical similarity
(blue), drug interacধon (orange), drug targets (yellow) and drug indicaধons (purple). All the similariধes are bounded in
the interval [0, 1].

3.2 Experimental setting

Following previous approaches6,32,36,34,35, I frame the side effect prediction problem as a bi-

nary classification problem. I applied ten-fold cross-validation, while optimising the hy-

perparameters using an inner loop of five-fold cross-validation within each of the ten folds

(nested cross-validation for model selection 121). The performance of the classifier is mea-

sured using the area under the receiver operating curve (AUROC) and the area under the

precision-recall curve (AUPRC). I report the mean values of the ten folds for each met-
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ric (AUROC and AUPRC). I compared the performance of my method against Matrix

factorisation (MF) 36, Inductive Matrix Completion (IMC) 35, Predictive PharmacoSafety

Networks (PPNs)6, Label propagation (LP) 32, Feature-derived graph regularised matrix fac-

torisation (FGRMF) 34, and side effect popularity (TopPop)20. While every algorithm used

the drug side effect matrix X, only IMC, PPNs, LP and FGRMF could also make use of the

drug side information graphs. Optimal hyperparameters for each model were optimised to

maximise the AUROC. For GSMC, I optimise both models GSMC-c and GSMC-r inde-

pendently. Then I set only the hyperparameter p using GSMC-c and GSMC-r with their

obtained optimal hyperparameters.

3.3 Performance evaluation

Table 2.1 summarises the performance of the different methods. GSMC greatly outper-

forms the competitors both in terms of AUROC (by 1.3−19.7%) and in terms of AUPRC

(by 4 − 30.9%). It is interesting to note that side effect popularity (TopPop) is highly

predictive of drug side effects – this possibly reflects the fact that clinical reports are bi-

ased towards popular side effects such as headache or diarrhoea65. The optimal value of

p in GSMC was 0.45, indicating that although GSMC-c performs better than GSMC-r

individually, the final model weighs the combination in favour of the latter, which in-

cludes side information about drugs. Our method also informs about the relative contri-

bution of each side information: I found that molecular networks were weighted higher

(αrDT = αrDDI = 1), than networks containing chemical (αrChem = 0.5) or phenotype

(αrDInd = 0.01) information. Importantly, I observed that the performance of my model

is robust with respect to the setting of the model parameters βs and λs (see the heatmaps in
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Figs. 2.2-2.3).

Figure 2.2: Heatmaps of the average performance of GSMC-c during model selection across the five-fold cross-
validation in the validation sets. The performance is consistent across folds (small standard deviaধon) and it is not
very sensiধve to the seষng of the model hyper parameters. Opধmal performance can also be achieved by only using
βc > 0 (with λc = 0).

107



Figure 2.3: Heatmaps of the average performance of GSMC-r (without side graph) during model selection
across the five-fold cross-validation in the validation sets. The performance is consistent across folds (small stan-
dard deviaধon) and it is not very sensiধve to the seষng of the model hyper parameters. Opধmal performance can
also be achieved by only using βr > 0 (with λr = 0).

When comparing my method with competitor approaches, I found that a partial FGRMF 34

model based on the DDI graph only (FGRMF-DDI) performs better than the integrated

model FGRMF – the fact that partial models could outperfom the integrated model had

already been noted in the original publication. Furthermore, in the original publication 35,

the IMC model was optimized using the observed entries only. Although matrix comple-
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Table 2.1: Performance comparison for drug side effect predicধon. Methods are ordered in ascending order of
AUROC.

Method AUROC± s.t.d. AUPRC± s.t.d. Time (s)

IMC 35 0.747± 0.0113 0.016± 0.0011 348.95± 23.71
TopPop20 0.827± 0.0031 0.071± 0.0028 0.010± 0.0014
LP 32 0.888± 0.0021 0.126± 0.0033 0.018± 0.0032
IMCZeros 0.892± 0.0045 0.194± 0.010 317.149± 16.09
FGRMF 34 0.911± 0.0029 0.237± 0.0059 209.27± 9.43
PPNs6 0.923± 0.0020 0.208± 0.0056 186± 5.91
MF 36 0.929± 0.0019 0.274± 0.0071 31.12± 4.73
FGRMF-DDI 34 0.931± 0.0020 0.285± 0.0075 30.41± 1.45
GSMC-r 0.936± 0.0014 0.295± 0.0073 3.19± 0.30
GSMC-c 0.938± 0.0023 0.323± 0.0024 15.29± 1.70
GSMC 0.944± 0.0017 0.325± 0.0063 17.82± 1.95

tion algorithms are predominantly based on this assumption 8,9,10,11,92,12,13,14,15, I found that

taking into account the zeros can greatly improve the performance (I refer to this variant as

IMCZeros in Table 2.1).

High-rank structure of the drug side effects matrix I verified that our

702 × 1, 525 drug side effect matrix X has a high rank – its value is 701‡ (see the spectra

in Fig. 2.4). I observed that the reconstructed matrices also preserve the high-rank struc-

ture, but with smooth filtering of the spectra, indicating that smaller singular values are

important to model weaker regularities in the data (see Fig. 2.5).
‡This was computed using the Matlab built-in function rank.
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Figure 2.4: High rank structure of drug side effects. Boxplots of singular values of the data matrix X of drug side
effects. Singular values were group according to their ordered index. The drug side effects data matrix has a high-
rank: rank(X) = 701. And even the distribuধon of singular values 600th to 702th (the group with smaller singular
values) rank significantly higher than zero (Wilcoxon Signed Rank Significance, p < 1.83× 10−18).
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Figure 2.5: Smooth filtering of the spectra of singular values. Singular values of the original matrix X and the re-
constructed matrices RX, XC and X̂ ≃ 1

2RX+
1
2XC. For this experiment, I did not consider side informaধon graphs.

The models GSMC-r and GSMC-c performs a smooth spectral filtering (de-noising). The density of the reconstructed
matrix by GSMC-r is 47.74% (R has a density of 19.09%) and 48.83% by GSMC-c (C has a density of 5.58%). The
threshold I used to calculate the densiধes was 0.01 for the reconstructed matrices and 1 × 10−4 for the sparse
matrices. Inset. Zoom into a region of the spectra.

111



4 Biological interpretability

The effectiveness of my GSMC model at predicting the presence/absence of drug side ef-

fects prompted me to analyse whether the learned self-representation matrices are informa-

tive of the biology underlying drug activity. For the following experiments, I trained the

models for GSMC using all the available data, fixed parameters (βr = 4, λr = 1, βc =

2, λc = 0.5, γc = γr = 104), and without side information graphs to prevent biases.

I first obtained a symmetry version of the learned matrices R andC, defined as SR :=

R + RT and SC := C + CT, respectively. Drug and side effect similarities were then defined

as the cosine similarity between rows of SR and SC, respectively§.

4.1 Drug self-representation predicts clinical activity and drug targets

I assessed model interpretability by exploring the extent to which drug self-representations

(matrix R) were related to well-known drug clinical activity. Drug clinical activity was de-

fined using the Anatomical, Therapeutic and Chemical (ATC) taxonomy, a hierarchical

organisation of terms describing clinical activity where lower levels of the hierarchy contain

more specific descriptors. I tested whether the similarity between two drugs was higher

when they shared clinical activity. The evaluation was framed as a binary classification

problem where the aim was to predict whether two drugs share an ATC category at dif-

ferent level of the taxonomy.

Figure 2.6a shows that my similarity is predictive of shared drug clinical activity. The

predictions improve as we consider terms located lower in the ATC hierarchy (finer gran-
§I found that using the cosine similarity between the rows of SR, instead of SR directly, slightly improves

the prediction performance. This is probably due to the fact that the cosine similarity is less noisy as it takes
into account the similarity between all the neighbours of each drug.

112



b

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
u
e 

p
os

it
iv

e 
ra

te

Jaccard side effect similarity
Our drug similarity

0.5

0.55

0.6

0.65

A
U

R
O

C 0.
63
2

0.
58
3

a

Anatomical Therapeutic Pharmacological Chemical

Drug ATC classification

0.5

0.55

0.6

0.65

0.7

0.75

0.8
A
U

R
O

C

Tanimoto chemical similarity Jaccard side effect similarity

Our drug similarity

0.
55
0 0.
57
1
0.
60
8

0.
58
4
0.
61
7

0.
67
5

0.
62
9

0.
67
8

0.
73
5

0.
77
2

0.
73
4

0.
78
4

Figure 2.6: Our drug similarity captures drug clinical and molecular activity (a) AUROC represenধng the perfor-
mance of my drug similarity, side effect similarity (Jaccard) and Tanimoto chemical similarity at predicধng whether a
pair of drugs share Anatomical, Therapeuধc and Chemical (ATC) category at each level of the ATC taxonomy. (b) ROC
curve represenধng the performance of my drug similarity at predicধng whether pairs of drugs share a target. Inset
AUROC barplot.

ularity) – this correctly reflects the fact that drug clinical responses become more similar as

we move to lower (or more specific) levels of the ATC hierarchy. The figure also shows a

comparison of the performance obtained for this problem with other methods used else-

where 122,102,97: 2D Tanimoto chemical similarity and Jaccard side effect similarity. The fact

that my similarity performs better than the Tanimoto chemical similarity in the chemical

ATC subclass is quite remarkable, as in my model drugs are characterised only by noisy in-

formation about a few side effects, rather than exact knowledge of chemical structures.

Fig. 2.7 presents the embedding of drugs in 3D based on SR that is obtained applying t-

SNE 123 together with the heatmap of the mean inter- and intra-class similarity SR for each

ATC anatomical classes. The figure shows that anatomically related drugs tend to be signifi-

cantly similar (in their self-representation) that anatomically unrelated drugs.

Encouraged by these results, I decided to test whether my drug similarity could even be
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used for the prediction of shared drug targets. Having framed this as a binary classification

problem, I found that my drug similarities are predictive of shared protein targets between

drugs (see Figure 2.6b). Note that, drug side effect similarity had previously been found to

be predictive of drug protein targets at molecular level88,97, but the fact that my similarity,

that is built using the same data, works better, means that my model is able to exploit the

information more effectively (4% AUROC improvement).
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Figure 2.7: Drug self-representation similarity captures drug clinical activity (a) Embedding of drugs in 3D space
using t-SNE. Each point represents a drug. Colours are assigned based on their anatomical category. Distance be-
tween points is related to the cosine distance of the drug clustering similarity SR = R + RT. (b) Heatmap of
mean drug similariধes SR per anatomical class. Each (x, y) ধle represents, for each main Anatomical, Therapeuধc
and Chemical (ATC) drug category, the mean similarity of drug pairs where one drug belong to category x and the
other to category y. The value ranges from 3 × 10−4 (Muscular skeletal system - Systemic Hormonal and Prepa-
raধons) to 0.0078 (Muscular skeletal system-Muscular skeletal system). The colours range between the minimum
mean similarity and 0.0156, with all values above 0.0156 (In the diagonal: 0.0921 (H), 0.0160 (M)) set to 0.0156.
Inset: the average intra-class similarity is significantly higher than the average inter-class similarity (t-test Significance,
p < 7.12× 10−13).
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4.2 Side effect self-representation predicts phenotype relatedness

I also analysed the link between side effect similarities and the anatomy/physiology of the

side effect phenotypes. Side effects were grouped based on their anatomical class accord-

ing to MedDRA 124. I found that similarities for two side effects tend to be higher when

they are phenotypically related. Figure 2.8 shows that, in most cases, the side effect simi-

larity within system organ classes (top level of the MedDRA hierarchy) is higher than the

similarity between classes. Moreover, side effect similarity is predictive of shared MedDRA

category at each of the different levels and predictions improve as we move to more specific

terms in the MedDRA hierarchy.
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Figure 2.8: Side effect sparse matrix of coefficients similarity captures human phenotype similarity (Top) Abil-
ity of my side effect similarity (SC = C + CT) and the Jaccard side effect similarity to predict whether two side
effects belong to the MedDRA class at different levels of the hierarchy. (Boħom) Heatmap of mean side effect sim-
ilariধes SC per organ class. Each (x, y) ধle represents, for each main MedDRA organ class, the mean similarity of
side effect pairs where one side effect belong to category x and the other to category y. The value ranges from
1.29×10−24 (M21 - M14) to 0.017 (M8-M8). The colours range between the minimum mean similarity and 0.0062,
with all values above 0.0062 (In the diagonal: 0.0075 (M4), 0.0098 (M6), 0.0169 (M8), 0.010 (M10), 0.0067 (M11),
0.014 (M13),0.0062 (M16),0.0065( M21), 0.00863 (M23),0.012 (M24); off-diagonal:0.00686 (M24-M21)) set to
0.0062. Inset: the average intra-class similarity is significantly higher than the average inter-class similarity (t-test
Significance, p < 7.14× 10−81).
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5 Methods implementation and optimisation

For completeness, in this section, I introduce details about the implementation, optimisa-

tion, and hyperparameters tuning for each method. In some cases, I also show the perfor-

mance of the methods using individual graphs. All the models were run in a small cluster

with 32 physical cores and 100GB of RAM. Each processor is a Intel(R) Xeon(R) CPU E5-

2683 v4 @ 2.10GHz. I implemented most of the algorithms in Matlab R2018a 64-bit. The

setting of the model parameters was executed in parallel using the Parallel Computing Tool-

box version 6.12.

Low-rank matrix factorisation (MF) For the optimisation, I used conjugate gra-

dient descent (CGD) and approximated line searches based on polynomial interpolation

with Wolfe-Powel conditions to find the local minima in (2.16). I used the same Matlab

implementation of the Rassmusen minimiser to solve the problem¶. To run my algo-

rithm, I initialise P andQ as normally distributed random variables with small variance

σ2 = 0.01. I tuned both model parameters: the number of latent factors k and the regulari-

sation penalty λ in the grid: k ∈ {10, 30, 50, 70, 90, 100} and λ ∈ {0.1, 1, 5, 10, 15, 20}.

Predictive Pharmacosafety Networks (PPNs) For the optimisation, I used the

Matlab built-in function mnrfit (link function logit) to learn the coefficients estimates

(βs) of the multinomial logistic regression of the nominal responses in X on the predictors

in Z. PPNs does not require parameter tuning.
¶http://learning.eng.cam.ac.uk/carl/code/minimize/
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Inductive Matrix Completion (IMC) For the optimisation, I used conjugate gra-

dient descent (CGD) and approximated line searches based on polynomial interpolation

with Wolfe-Powel conditions to find the local minimum. I initialisedW andH as nor-

mally distributed random variables with small variance σ2 = 0.01. I tuned both model

parameters: the number of latent factors k and the regularisation penalty λ in the grid:

k ∈ {10, 30, 40, 50, 70, 90, 100} and λ ∈ {0.1, 1, 5, 10, 15, 20}.

Feature-derived graph regularised matrix factorisation (FGRMF) For

the optimisation, I used conjugate gradient descent (CGD) and approximated line searches

based on polynomial interpolation with Wolfe-Powel conditions to find the local minimum

in equation (2.11). To optimise equation (2.12), I use the Matlab built-in function mnrfit

(link function logit) to learn the coefficients estimates (θj). I initialiseW andH as nor-

mally distributed random variables with small variance σ2 = 0.01. I tuned the three model

parameters in the grid λ ∈ {1, 5, 10, 15, 20}, k ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100},

and α ∈ {0.1, 1, 2, 3, 4, 5}.

Label propagation using consistency method (LP) For the optimisation, I used

the close form of F to obtain the scores for drug side effects. I tuned α from 0.001 to 0.9 in

steps of 0.01 (90 values).

Geometric sparse matrix completion (GSMC) I followed the recommended

guidelines used to implement non-negative matrix factorization (NMF) in91. R andCwere

initialised with weights from a uniform distribution between (0,
√
σ] for a σ = 0.01.

The maximum number of iterations was set to 100 and tolX = 0.01. With this tolX, con-
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vergence occurs in roughly 50 iterations. To set γc, γr, using our theoretical bounds, I ob-

served that, for GSMC-c Lc = maxi diag(X⊤X) = 602, and for GSMC-r, Lr = maxi

diag(XXT) = 644. Thus, a γc = γr = 104 is enough to obtain an ε ≈ 9.54 × 10−63.

Therefore, γc and γr were set to 104 for all the experiments. For the partial GSMC-c model

I tuned the parameters in the following grid βc ∈ {0, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 20}, λc ∈

{0, 0.5, 1, 2, 3, 4, 5}. For the partial GSMC-r model that integrates side information, I re-

duced the grid due to the larger number of possible combinations: βr ∈ {1, 2, 3, 4, 5, 10},

λr ∈ {0.1, 0.5, 1} and αr ∈ {0.01, 0.1, 0.5, 1}. Finally, to train the GSMC model (the lin-

ear combination of GSMC-c and GSMC-r), I tuned only p ∈ {0, 0.01, 0.02, ..., 1}while

setting the following hyperparameters for the partial models: GSMC-c (βc = 1, λc = 0.5)

and GSMC-r (βr = 2, λr = 0.5, αrchem = 0.5, αrDDI = 1, αrDT = 1, αrDInd = 0.01). These

settings were based on the optimal values during model selection of each partial model.

6 Conclusion and Discussion

In this chapter, I have focused on the problem of drug side effect identification. This prob-

lem is typically framed as a binary classification problem where the goal is to correctly iden-

tify the presence or absence of drug side effect associations. I have introduced two matrix

completion models to solve the problem.

The first model is a simple low-rank model that learns a low-dimensional embedding for

each drug and each side effect. The embedding, i.e. the coordinates of each drug and each

side effect in a space (datapoints), are learned through an optimisation process. These drug

and side effect datapoints are not randomnly placed in a space but rather their relative posi-

tions to each other determines whether a drug might cause a side effect. In effect, the objec-
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tive function tries to ensure that the scalar product between the vector representing a drug,

and the vector representing a side effect, reflects whether the drug is associated to the side

effect. That is, a drug-side effect pair known to be associated will tend to be placed closeby

in this space, whereas a pair not known to be associated will tend to be placed far apart

from each other. Notice that this principle will not always obey due to the dimensional-

ity reduction, i.e. many far-apart datapoints will be placed closeby in the low-dimensional

space; this is indeed the goal of the modelling.

The second model that I presented in this chapter is a high-rank model. In a low-rank

model, we explicitly hard-constrained the rank of the resulting matrix to be low (at most

k); this is why each drug and each side effect are in the same low-dimensional space. In

contrast, in a self-expressive model, which is a high-rank model, not such hard-constrain

exist. Notice that while in a low-rank model both drugs and side effects are represented

with latent components that are not inherently interpretable, in a self-expressive model,

each drug or each side effect will be represented in terms of all the other drugs or all the

other side effects, respectively. It is a re-construction of a datapoint from its neighbours in

a drug-space or a side effect space. This is why I enforce this representation to be sparse,

so that each drug or each side effect is only represented by few of its neighbours, leading

to more interpretable representations. For instance, Fig. 2.9 shows an example using the

GSMC-c model (that learns self-representations for side effects) and Lindane, a drug that

has been withdrawn from the market due to concerns about neurotoxicity. Lindane is

amongst the drugs with the smallest number of side effects in our dataset (1.5th percentile)

– only 10 side effects are present. Figure 2.9a shows the histogram of the values found in

the row corresponding to Lindane in XC. My model predicts that Lindane is likely to cause
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hypotension (the score is in the 98.8th percentile) and indeed this side effect has been re-

peatedly reported 125,126. Figure 2.9b provides the rationale behind this prediction. The

score for Lindane-hypothension is the sum of the (non-negative) coefficients in the col-

umn ofC corresponding to hypotension for the 10 known side effects of Lindane. No-

tice how seizures, a condition normally associated to hypothension, explains 37.92% of

the score strength. It is important to mention that since my algorithm reaches a global op-

tima, this score is the optimal one. As illustrated by this example, an analysis of the self-

representation coefficients learned by my model can potentially provide biological clues to

generate medical and pharmacological hypothesis when assessing the safety of a drug.
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Figure 2.9: Example of explainable predictions for the withdrawn drug Lindane (a). Histogram of predicted
scores for Lindane using GSMC-c; (b) Network diagram depicধng how the model generates the predicধons for a
given target side effect under study. In the figure,Ω represents the set of known side effects indexed by i, and j is
the target side effect. The thickness of the connecধons are proporধonal to the learned coefficients.

Inherently interpretable models are critical for applications involving high-stakes deci-

sions in health care 27. In this context, it is important to mention that I refer to interpretabil-

ity in terms of the learned representations in my machine learning models. Can the learned

representations can be understood in the light of some human rationale?. As discussed be-

fore, when negative weights are allowed in a matrix multiplication, it is unfeasible to obtain

122



interpretability, as the representations tend to be holistic rather than parts-based; the princi-

ple in which human cognition is based 127.

To my knowledge, my work is the first that relies on the high-rank models to predict

drug side effects and also disease genes. I envision the application of my models to other

problems in computational biology and pharmacology with similar high-rank structure,

including in the study of social networks. Interestingly, I observed that many datasets

used in different application domains have a high-rank structure that could be exploited

to improve modelling performance and generalisation capabilities. I will show the use of

self-expressive models for predicting disease genes in Chapter 2 and user preferences in rec-

ommender systems in Chapter 3; in both cases, I compare the performance of high-rank vs

low-rank models.
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Open the book of life and you will see a text of about

3 billion letters, filling about 10,000 copiॽ of the new

York Timॽ Sunday edition. Each line looks some-

thing like thॾ: TCTAGAAACA ATTGCCATTG TTTCTTCTCA

TTTTCTTTTC ACGGGCAGCC

Albert-László Barabási (Linked, 2014)

3
Disease gene prediction

The identification of genes that are associated with common and rare heritable hu-

man diseases* is of central importance for disease prevention, diagnosis and therapy, and

thus has attracted increasing attention over the last decades 128,129,130. Traditional methods
*Common diseases such as diabetes are complex diseases, i.e. there are many factors involved (both genetic

and non-genetic) in their pathogenesis. Whereas rare, heritable diseases are often monogenic, i.e. caused by a
single genetic defect.
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for identifying disease genes have focused on genetic linkage analysis, which uses statisti-

cal tools to discover chromosome regions that are likely to harbour heritable trait genes 131.

However, such type of analysis has been inefficient for complex traits that are caused by

mutations in multiple genes, e.g. diabetes 132. Alternative approaches have recently shifted

the focus to DNA sequencing studies of large case-control populations 133,134. Disease asso-

ciated alleles can then be discovered by measuring their difference in frequencies between

cases and controls. However, such methodologies often result in hundreds of candidate

genes and identifying the particular gene affected by a specific genomic variant remains a

challenging task 135.

Recent network medicine based approaches exploit the fact that genes involved in the

same disease tend to interact with each other 136 and that mutations in interacting proteins

tend to cause similar disease phenotypes 19. These interdependencies between genes and

(patho)phenotypes are essential to several state-of-the-art methods that operates under the

guilt-by-association principle 137,138. The common idea of these approaches is that genes are

prioritised by their functional “proximity” to those genes already known associated to the

disease. Functional proximity is typically quantify in a human Protein-Protein Interaction

(PPI) network, where nodes are proteins and links represent relevant functional relation-

ships between the proteins, such as physical interaction 19. The methods differ in how the

proximity is quantified over the network; by direct neighbours 129, random walks 139, graph

kernels and Markov random fields 140, or propagation flow and clustering techniques 141.

Amongst these, network propagation has emerged as a powerful paradigm to amplify a bi-

ological signal based on the assumption that genes underlying similar phenotypes tend to

interact with one another 112. For instance, PRINCE40 uses a label propagation method to
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“diffuse” the knowledge on gene labels — known disease gene associations— over a PPI

network. ProDiGe 39, which implements a positive-unlabelled learning algorithm, is par-

ticularly powerful because it incorporates information about known disease genes from

multiple sources and shares such information across all diseases to help suggest new can-

didate genes for query diseases. There are four methods in the ProDiGe family, and they

differ in their respective disease sharing kernels. Cardigan41, proposed more recently, uses

the consistency method 109 and enriches the initial gene labels by defining a prior probability

distribution over all known genes associated to diseases using phenotype similarities 142.

In network medicine, genetic diseases are seen as localised perturbations within a neigh-

bourhood of the PPI network 143,19 — the disease module 19. DIAMonD 38 has been devel-

oped to detect disease modules on the PPI network. A disease module is obtained by iter-

atively adding new genes that have the greatest connections with the existing disease genes

into the module. The order in which the genes are added to the disease module can be used

as a ranking that prioritises disease genes.

More recently, the disease gene prediction problem has been framed as a matrix com-

pletion task. This means that the ground truth knowledge about n genes andm diseases

is modelled by a (binary) matrix X ∈ Rn×m which is the product of an n × kmatrixW

whose rows are the gene feature vectors and a k × mmatrixHwhose columns are the dis-

ease feature vectors. The rank of X is k— the number of features assigned to each gene or

disease. For instance, Natarajan et al. 144 proposed an inductive matrix completion model

which integrates gene and disease features in a regularisation framework. Yang et al. 145 ob-

tained low-dimensional embedding of nodes in a heterogeneous network that includes

disease-symptom associations, disease-gene associations, gene-function associations, i.e.
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gene-ontology terms, and PPI network. The low-dimensional embedding was then used

to compute similarity scores for the prediction. The use of matrix completion models

have also been useful in related prediction tasks such as miRNA-disease association pre-

diction 146,147,148,149.

In this chapter, I propose a High-Rank Matrix Completion (HRMC) model with graph

regularisation for prioritising genes for common and rare genetic diseases. The model that

I present in this chapter is similar to the one previously presented for predicting drug side

effects in Chapter 2. My model for disease gene prediction is more interpretable as it learns

sparse self-representations of nodes: each disease is represented by a linear combination

of few other diseases. My self-representation model takes into consideration the relational

graph structure of diseases and genes built from their relatedness in terms of human pheno-

types 142 and physical interactors in the PPI network. The use of complementary informa-

tion is crucial to predict genes for diseases with not known molecular basis 144,41,1. Through

extensive experiments on the Online Mendelian Inheritance in Man (OMIM) database, I

show that my method outperforms state-of-the-art approaches in gene prioritisation. I also

validate the predictions with a prospective analysis of case studies. That is, having trained

my models with data available until 2017, I checked whether some top predictions made by

my model has been associated with diseases in 2018. The prospective analysis is important

to illustrate a realistic use of my approach by preserving the chronological order in which

information becomes available.
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1 The HRMC model

1.1 The HRMC objective function

Let us denote our gene-disease association matrix for n genes andm diseases with the binary

matrix X ∈ Rn×m where xij = 1 if gene i is known to be associated to disease j, or xij = 0

otherwise. The goal of my HRMC model is to learn two sparse matrices of coefficients, one

for the row elements (R ∈ Rn×n) and one for the column elements (C ∈ Rm×m), such that

the data matrix X is approximated by:

X̂ ≃ pXC+ (1− p)RX (3.1)

where p ∈ [0, 1] is a hyperparameter that controls the balance between the row (genes) and

column (diseases) contributions. In the sequel, I shall refer to the first part of the HRMC

model XC, as HRMC-c, and to the second part, RX, as HRMC-r.

To this end, two cost functions,Qc(C) andQr(R), that take into account the relational

inductive prior between datapoints — the graph network — for diseases and genes, are

minimised with respect toC and R, respectively:

min
C≥0
Qc(C) =

1
2
∥X− XC∥2F︸ ︷︷ ︸

self-representation

+
βc

2
∥C∥2F + λc∥C∥1︸ ︷︷ ︸

sparsity

+
αc

2
∥C− Gc∥2F︸ ︷︷ ︸

graph regularisation

+ γTr(C)︸ ︷︷ ︸
null diagonal

(3.2)

min
R≥0
Qr(R) =

1
2
∥X− RX∥2F︸ ︷︷ ︸

self-representation

+
βr

2
∥R∥2F + λr∥R∥1︸ ︷︷ ︸

sparsity

+
αr

2
∥C− Gr∥2F︸ ︷︷ ︸

graph regularisation

+ γTr(R)︸ ︷︷ ︸
null diagonal

(3.3)
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where ∥.∥F denoting the Frobenius norm. and Gc = ({1, . . . ,m}, E c,Gc) denote the

weighted undirected graph with edge weights gcij > 0 of (i, j) ∈ E c and zero otherwise,

representing the similarities between diseases. Gr = ({1, . . . , n}, E r,Gr) denote the binary

undirected graph with edge weights grij > 0 of (i, j) ∈ E r and zero otherwise, representing

the protein interaction network. C and R in Equation (3.1) are learned by minimising Equa-

tions (3.2) and (3.3), respectively. In the following, I provide the rationale behind (3.2) only,

as the same applies to (3.3).

The first term in Equation (3.2) is the self-representation constraint, which aims at learn-

ing a matrix of coefficientsC such that XC is a good reconstruction of the original matrix X.

The second term is the sparsity constraint, which uses the elastic-net regularisation known

to impose sparsity and grouping-effect 114,115. The third term is the graph regularisation con-

straint, which incorporates the structure revealed by the pairwise disease similarities into

the sparse coefficient matrixC. The fourth term is the null-diagonal constraint, which has

the important role of preventing the trivial solutionC = I by imposing diag(C) = 0. This

is achieved through a regularised trace operator γcTr(C). Typically, γc ≫ 0 is used. Fi-

nally, following29, I impose non-negative constraints onC, as these constraints lead to more

interpretable model since they allow only for additive combinations.

It is worth noticing that the main difference between my model presented here and my

geometric model shown in chapter 3 lies in the way the graph structure is incorporated into

the model. In the GSMC model of chapter 3, I used the smoothness constraint that en-

forces each self-representation vector (columns ofC) to reflect the similarities between pairs
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of nodes in the graph, which is obtained by minimising:

∑
i,j

Gc
ij∥ci − cj∥2 (3.4)

However, in the HRMC model, each element in the self-representation vector (an en-

try cij) is enforced to reflect the similarities between pairs of nodes in the graph, which is

obtained by minimising:

∑
i,j

∥cij − Gc
ij∥2 (3.5)

Clearly, the constraint in Eq. 3.5 is different to the constraint in Eq. 3.4. To understand

this, consider that Eq. 3.4 penalises the self-representation vectors of two diseases i and j

by their phenotype similarity inGc
ij; phenotypically similar diseases will have similar self-

representations. Conversely, Eq. 3.5 encourage a single entry cij to reflect the similarity be-

tween diseases i and j. A single entry in C indicates the subspace proximity between disease

i and disease j as revealed by the self-expressive model. The reason to adopt the constraint

in Eq. 3.5 rather than using the geometric constraint in Eq. 3.4 is due to time complexity.

The algorithm derived for the graph regularisation (non-geometric) can be run in parallel

for each disease in the matrix (O(m) vsO(m3)), which benefits the leave-one-out proce-

dure.

1.2 The multiplicative learning algorithm

To minimise Equations (3.2) and (3.3) subject to the non-negative constraints R,C ≥ 0, I

developed two efficient multiplicative algorithms inspired by the diagonally rescaled princi-
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ple of non-negative matrix factorisation29,117. The algorithm consists in iteratively applying

the following multiplicative update rules:

Cij ← Cij
(XTX+ αcGc)ij

(XTXC+ αcC+ βcC+ λc + γcI)ij
(3.6)

Rij ← Rij
(XXT + αrGr)ij

(XXTR+ αrR+ βrR+ λr + γrI)ij
(3.7)

It is straightforward to prove that my objective functions are convex and that my algo-

rithms satisfy the KKT complementary conditions of global minimum convergence. Since

the proofs are very similar to those shown for our geometric model in Chapter 2, I omit the

proofs here.

2 Overview of my approach

At the first stage of the HRMC approach (Fig. 3.1), I integrated data from multiple sources,

including data on gene-disease associations, disease similarities and protein-protein interac-

tion network. Next, I constructed three matrices containing these associations (Fig. 3.1B).

My model generates two score matrices (RX and XC) that are then linearly combined as a fi-

nal prediction score. I performed a systematic evaluation of the model’s performance using

leave-one-out cross-validations. I report the results in two test cases 1: (i)molecularly char-

acterised diseasॽ: if a disease for which a gene is found in the test set has known genes in

the training set; and (ii)molecularly uncharacterised diseasॽ: if a disease for which a gene is

found in the test set does not have any known gene in the training set. I also validate some

of my top predictions with more recent gene-disease associations in the 2018 snapshot.
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Figure 3.1: Overview of the HRMC approach. (A) First, data were integrated from mulধple sources, including
disease causing genes (gene-disease associaধons contained in two chronologically separated snapshots in OMIM:
one from 2017 and another from 2018), disease similariধes (built from informaধon available up to 2017), and bio-
logical data (protein-protein interacধon network from 2010). (B) Next, matrices of all associaধons contained in the
2017 database snapshot was constructed. (C) The matrices were used to train the row and column high-rank matrix
compleধon models. Each separate model generates a score matrix for all disease gene associaধons. These are then
linearly combined. (D) Next, leave-one-out cross validaধon was used to assess the recall of the method at different
top-Ns, for both cases, molecularly characterised and molecularly uncharacterised diseases. (E) Finally, I further validate
the predicধons by case-studies of newly reported gene-disease associaধons in 2018.

3 Data description

The gene-disease associations were obtained from the Online Mendelian Inheritance in

Man (OMIM) at two different points in time: 2017 and 2018. The 2017 snapshot contains

in total 4,027 associations covering a total of n = 9, 670 genes andm = 5, 768 genetic

diseases. In this dataset, only 3,455 (60%) diseases have known associations. Of these, 3,252

diseases have a single known gene, whereas the remaining have not known gene in 2017. A

binary protein-protein interaction network was obtained from the Human Protein Refer-
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ence Database (HPRD) 150. Our PPI covers 9,670 genes with 37,041 known experimental

interactions. Phenotype disease similarity was obtained from Caniza et al. 142. The disease

similarity proposed by Caniza et al. 142 relies on Medical Subject Headings (MeSH) terms as-

sociated with publications. Since MeSH terms are also dynamic — their content and num-

ber depend directly on the publications available in a particular point in time — I also built

our semantic similarity based on MeSH data available up to 2017.

3.1 HRMC learns an aggregated guilt-by-association

I can explain my HRMC model in terms of the guilt-by-association (GBA) principle. The

GBA principle is based on the assumption that genes which are associated or interacting are

more likely to share function 137; thereby, more likely to be involved in the same disease 19.

This principle is illustrated in Figure 3.2a, and I referred to it as gene-based GBA. In this

case, a new disease-gene association is established by relating a known gene to a target gene

through physical interaction. My HRMC-r model can be interpreted as an extension of this

principle (see Figure 3.2b), where a new disease-gene association is predicted by relating the

known genes to a target gene through a learning process that also involves the knowledge of

protein interaction networks†.
†To understand this in detail, consider that HRMC-r generates scores through the product RX. For a

given (RX)ij, the prediction is obtained by the dot product of ri (the ith row of R) and xj (the jth column of
X), as follow: (RX)ij = rixj. Recall that X is binary, therefore (RX)ij =

∑
(k∈Ω)(ri)k,Ω ∈ {k|(xj)k > 0}.
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Figure 3.2: HRMC-r learns an aggregated gene-based guilt-by-association (GBA). (a) The GBA is established
through physical protein-protein interacধon; (b) Network diagram depicধng how HRMC-r generates the predic-
ধon for a target disease-gene pair (Z, B). HRMC-r aggregates all the known disease associated genes (setΩ) and
learns the subspace “proximity” between these genes and the target gene B. The predicted score is the sum of these
learned associaধons.

An analogous idea can be applied to diseases and I shall refer to it as disease-based GBA.

Figure 3.3a illustrates that a new disease-gene association is established by relating a known

disease to a target disease through phenotype similarities. The idea that phenotypically sim-

ilar disease tend to share disease causing genes is also based on the principles of network

medicine. My HRMC-c model can be interpreted as an extension of this principle (see Fig-

ure 3.3b), where a new disease-gene association is predicted by relating the known diseases

to a target disease through a learning process that also involves the knowledge of phenotype

similarities between diseases‡.
‡To understand this in detail, consider that HRMC-c generates scores through the product XC. For a

given (XC)ij, the prediction is obtained by the dot product of xi (the ith row of X) and cj (the jth column of
C), as follow: (XC)ij = xicj. Recall that X is binary, therefore (XC)ij =

∑
(k∈Ω)(cj)k,Ω ∈ {k|(xi)k > 0}.
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Figure 3.3: HRMC-c learns an aggregated disease-based guilt-by-association (GBA). (a) The GBA is established
through phenotype similarity between diseases; (b) Network diagram depicধng how HRMC-c generates the predic-
ধon for a target gene-disease pair (A,W). HRMC-c aggregates all the known diseases associated to gene A (setΩ)
and learns the subspace “proximity” between these diseases and the target diseaseW. The predicted score is the sum
of these learned associaধons.

An interesting observation, based on this interpretation of HRMC, is the implicit model

assumption that each partial model carries. The HRMC-c model can provide scores only

for genes that are known to be associated with a genetic disease. As a consequence, the

HRMC-c imposes a strong prior on the genes that are already known to be associated with

genetic diseases. A limitation of this prior is that not novel gene can be predicted with this

model. Conversely, HRMC-c can predict genes for a molecularly uncharacterised disease,

as long as the target disease can be related to the other diseases through phenotype similari-

ties. Similarly, the HRMC-r model can provide scores only for the diseases that are already

known to be associated with a gene, i.e. molecularly characterised. Conversely, HRMC-r

model can predict novel genes associated with diseases, as long as the target gene can be re-

lated to the known genes by physical interactions. Altogether, the HRMC integrates the

strength of each partial model for the prediction of potential novel genes for characterised

diseases and new genes for molecularly uncharacterised diseases.

So far, I have explained the inner assumptions of the HRMC model, but I have not dis-

cussed how my model generates the learned associations between genes or diseases. Intu-
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itively, we can understand the learned associations by virtue of the two terms in the numer-

ator of the multiplicative learning algorithm (see Eqs. 3.6 and 3.7). Without loss of gener-

ality, I will focus on the HRMC-c model. The first term in the numerator of Eq. 3.6 is the

data covariance, which means that a pair of diseases that are known to share disease genes

would likely remain associated inC, and the strength of their association is related to the

number of genes they share. Since the current gene-disease association matrix is extremely

sparse, with most diseases associated to a single gene,C also needs to learn from the graph

encoding phenotype similarities between diseases. In other words, the update rule incorpo-

rates additional information about diseases via disease phenotype similarities (the second

term in the numerator of Eq. 3.6) and uses this side information to help discover hidden

associations among diseases, which in turn can help identify new disease genes.

4 Experimental settings

4.1 Evaluation procedure

Following previous approaches 141,151,40,39,38 I used leave-one-out cross validations. In this

setting, a single gene-disease association is removed and the model is trained with all the

remaining associations in the matrix X (built using the 2017 snapshot). We have two test

cases. The first test case, which is the typical testing scenario in the literature, assumes that

diseases have known genes even after synthetic removal of a single association — referred

to asmolecularly characterised disease. There are 203 diseases that aremolecularly char-

acterised corresponding to 775 associations (19.25% of the associations in X). The second

test case corresponds to a more difficult scenario, where the synthetic removal of the single

association results in a disease without known genes — referred to asmolecularly unchar-
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acterised. There are 3,252 diseases in this test case scenario with a total of 3,252 associations

(80.75% of the associations in X). In total, the model was trained 4,027 times for each indi-

vidual test set. Each time, my model outputs a score matrix X̂ that I used to ranked all the

genes corresponding to the query disease. Following previous authors40,39,152, the final per-

formance of the algorithm is computed as the recall rate in the Top-N predictions for values

ofN ∈ {1, 10, 100, 200}. The recall rate is defined as follows:

r(N) =
number of gene-disease associations retrieved in top-N predictions

M
.

whereM is the total number of associations to be retrieved. M = 775 for the molecularly

characterised test case, whileM = 3, 252 for the molecularly uncharacterised test case.

4.2 Hyperparameters tuning

The two models HRMC-c and HRMC-r were trained independently. I performed a grid

search for αc, αr ∈ {0.1, 0.5, 1, 2, 3}, and βc, βr ∈ {0.5, 1, 2, 3, 4, 5, 10}. The parameter

p ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1}was then trained using each model optimal hyperparame-

ters. In all the experiments, γc = γr = 10000 and tolX = 0.001. Given a set of hyper-

parameters, my MATLAB implementation can finish in less than 2 hours, on a device with

32 GB RAM and 3.60GHz processor. The optimal hyperparameters found during cross

validation are as follows: αc = 0.5, βc = 1, λc = 0.5, αr = 0.5, βr = 0.5, λc = 0.5 and

p = 0.70.
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5 HRMC yields accurate gene prioritisation

I compared the performance of HRMC against PRINCE40, ProDiGe1, ProDiGe4 39 and

DIAMonD 38, by means of leave-one-out cross-validation. I also include a baseline based on

non-negative matrix factorisation (NMF) 29,127. The reason to include NMF is twofold: (i)

NMF is a well-known matrix decomposition technique based on non-negative constraint;

and (ii) NMF is a low-rank approximation, allowing to display more clearly the advantages

of using a high-rank model versus a low-rank model. Lastly, I also include Random priori-

tisation of genes as a baseline. Figure 3.4a shows the recall rate for distinct values of Top-

N predictions formolecularly characterised diseases in the 2017 snapshot. My approach

outperforms the baselines by 6.45 − 14.45% in the top-1, 0.30 − 27.77% in the top-10,

6.72 − 53.94% in the top-100 and by 11.58 − 62.70% in the top-200 predictions. Even

in the top-1 predictions, HRMC outperforms by 6.45% to the best performing method.

Intriguingly, a simple non-negative matrix factorisation of the matrix X, that does not con-

sider complementary information of genes or diseases, performs slightly better (in the top-

1) than methods based on semi-supervised learning such as PRINCE or Prodige.

Figure 3.4b shows the recall rate for distinct values of Top-N predictions formolecularly

uncharacterised diseases. This corresponds to synthetic removal of diseases with a single

gene in the 2017 snapshot (section 4.1). For this test case, only PRINCE and Prodige4 can

yield predictions. In this case, my approach shows superior performance than these meth-

ods, outperforming the baselines by 6.03 − 9.06% in the top-1, 19.89 − 31.02% in the

top-10, 28.61− 46.99% in the top-100 and by 29.08− 48.48% in the top-200 predictions.

This test case scenario shows more clearly the advantages of my method.
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Figure 3.4: Gene prioritisation predictions. (a) Predicধons from the 2017 snapshot for molecularly characterzed
diseases. Bar height corresponds to recall at the Top-N ranked predicধons, for N ∈ {1, 10, 100, 200}. I compared
HRMC to the state-of-the-art methods PRINCE, DIAMonD, Prodige1, Prodige4 and the two baselines NMF and
Random, by means of leave-one-out cross validaধon. (b) Predicধons from the 2017 snapshot for molecularly unchar-
acterised diseases. I compared HRMC to the methods capable of such predicধons, by means of leave-one-out cross
validaধon.
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6 Prediction case studies

I investigated whether some top predictions made by my model using the 2017 snapshot

could be found in a more recent 2018 snapshot of the database. I trained my model using

all the data in the 2017 snapshot with the optimal hyperparameters set by cross-validation

(see section 4.2). Table 3.1 shows some top predictions made by my model for both molec-

ularly characterised and uncharacterised diseases in our dataset. Additional evidence is

provided for these pairs. For instance, schizencephaly is a congenital brain malformation

characterised by infolding of cortical grey matter along a hemispheric cleft near the pri-

mary cerebral fissures. Previous molecular genetics analysis of the disorder indicates that

schizencephaly is associated with mutations in the EMX2, SHH and SIX3 genes. More re-

cently, Sato et. al., 153 reported that the disorder is also associated with a novel mutation in

COL4A1. My system has indeed reported this association in the top-1 prediction using data

available up to 2017.

Top-N Genetic disease Known genes in
our set

Predicted gene Evidence

1 Schizencephaly EMX2, SIX3,
SHH

COL4A1 Sato et.al.,
2019 153

8 Budd-Chiari
syndome

F5 JAK2 Mukund et. al.,
2018 154

3 Choroidal Dys-
trophy, central
areolar

None GUCY2D Chen et al.
2017 155

24 Focal cortical
dysplasia, type II

None TSC1 Lim et al.,
2017 156

51 Focal cortical
dysplasia, type II

None TSC2 Lim et al.,
2017 156

Table 3.1: Analysis of some top predicধons made by HRMC using the 2017 snapshot. These top predicধons were
found in the 2018 snapshot of OMIM as confirmed genes associated to each corresponding geneধc disorder.
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7 Conclusions and Discussion

The discovery of disease genes has become a research topic gaining increasing attention over

the last decades. Computational methods, based on advanced statistical and machine learn-

ing techniques together with large-scale, complicated human health data, have proven to

outperform traditional approaches for tackling this problem. In this chapter, I have pro-

posed a high-rank matrix completion algorithm for gene prioritisation. The central idea

behind my approach is that high-quality predictions can be produced via an aggregated

guilt-by-association principle where the associations are learned by integrating supplemen-

tary biological information about genes and diseases. The learned matrices are capable of

extracting hidden relations among genes and diseases residing in the data and thus can help

produce accurate and interpretable predictions.

I have formulated gene prioritisation as a high-rank matrix completion task. My model

is motivated by the recent development of self-expressive models 8,113,9. Elhamifar 8 has pro-

posed self-expressive models for simultaneously clustering and completion of incomplete

high-dimensional data. In principle, a self-expressive model presumes that one datapoint

can be efficiently reconstructed by few other datapoints belonging to a common subspace 113,

or equivalently, that each column of the data matrix X can be represented as a combination

of a few other columns9. Such models, therefore, can generalise low-rank approximation

models. Although my model is inspired by self-expressive models, it differs from them as I

assume that our data matrix is fully – rather than partially – observed while its entries are

noisy.

My approach has a number of advantages over many existing gene prioritisation algo-
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rithms. Network-based methods heavily depend on the topology of the protein-protein

interaction networks, so information about gene-disease associations, which is typically

carried by gene labels and random walkers, cannot be effectively transferred between two

genes (or sets of genes) that are not linked. My method, however, is able to produce scores

for genes that share no similarity with other genes, that is, that is not connected with other

nodes in the gene interaction network. Furthermore, the majority of the approaches are not

applicable to predict genes formolecularly uncharacterised diseases since no initial seed is

available. I show that my approach, however, is able to produce accurate predictions in this

more challenging task.

An important aspect of my model is that it favours model interpretability. The predic-

tion can be explained as an extension of the guilt-by-association principle where the asso-

ciations between diseases or genes are learned by the sparse self-representationmatricesC

and R, respectively. Furthermore, due to the fact that my objective function is guaranteed

to converge to a globally optimum solution, these sparse coefficients are also reproducible

under arbitrary random initialisation of the weights: a desirable property for reproducible

biological interpretations. The ability of my model to produce interpretable and repro-

ducible predictions is critical for healthcare 27, since predictions made by the model can be

understood and validated by molecular biologists. Furthermore, my model does not trade

between accuracy and interpretability to produce the predictions. Motivated by my find-

ings, I provided a complete list of predictions made by my model in Tables 1-4 — it includes

novel predictions for over 2,313molecularly uncharacterised genetic disorders. These can be

freely accessed at http://www.paccanarolab.org/hrmc-gene/.
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If we knew how to do it, we’d have already done it

Reed Hastings, chief executive of Netflix, 2006

4
Top-N recommender systems

The advent of e-commerce and the increasing amount of users and products poses a

difficult challenge to recommendation systems. In particular, in this chapter, I focus on the

problem of top-N recommender systems, that aims at accurately predicting user preference

in a small set ofN items 157,20. This setting is common in online entertainment platforms
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such as Netflix as well as in commercial platforms such as Amazon. The problem of top-N

recommender system is often formulated in terms of a high-dimensional user-item feedback

matrix X ∈ Rn×m for n users andm items where the entry xij indicates if the user i has a

preference towards an item j. The goal of a top-N recommender system is to predict – in a

short list ofN items – the missing preference(s) for a given user. Given that X tends to be

highly sparse, it is also common to incorporate domain-specific knowledge about users and

items — side information — to improve the prediction 158,159,26,160. For instance, in movies

recommendation systems, one can exploit the features extracted from movie plots or user

characteristics 161.

Existing algorithms for top-N recommendations can be divided into two main cate-

gories 162,20,163,42,164,165. The first group of algorithms, known as neighbourhood models,

assume that datapoints (rows or columns of X) are locally related according to a specific

definition of proximity, e.g. Pearson correlation. However, the performance of these meth-

ods often depends on how proximity is defined — usually by well-defined heuristics. The

second group of algorithms, known as latent factor models, assume that data lie in a single

low-dimensional subspace. These typically assign a low-dimensional feature vector to each

user and a low-dimensional feature vector to each item such that the dot-product between

these vectors characterise the user-item preference. PureSVD 20, for instance, learns the la-

tent factors via truncated Singular Value Decomposition (SVD).

A novel class of item-based algorithms based on Sparse Linear Method (SLIM)43 have

been recently proposed for top-N recommendations 158,166,167,168,169,170. SLIM aims to learn a

sparse zero-diagonal matrix of coefficientsW ∈ Rm×m for items such that X ≈ XW, where

the null diagonal aims at ruling out the trivial solutionW = I. Several SLIM-based algo-
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rithms have already been proposed. For instance, models that integrate side information 158,

contextual-aware information 167 or those that account for high-order relationships between

items 170. SLIM solves the optimisation problem by a two-metric projection method 171. This

algorithm has two main limitations: (i) it requires to set a learning rate and; (ii) it uses a

projection function to guarantee the non-negative constraint. Furthermore, from the the-

ory of constrained optimisation standpoint, there is no theoretical guarantees of conver-

gence of the algorithm.

I have drawn a connection between SLIM-based models and Self-Expressive Model

(SEM) 8. In fact, SLIM is a SEM that learns items self-representations such that each item

(a column of X) is represented as a linear combination of few other items. SEM has re-

cently been proposed as a framework for simultaneously clustering and completing high-

dimensional data lying in the union of low-dimensional subspaces. Thus, often leading to

a high/full rank matrix. SEM also covers low-rank models as a special case. The difference

between SLIM and previous SEM models 8? ? is that SLIM assumes that X is fully— rather

than partially – observed while its entries are noisy.

Most of the algorithmic developments in this chapter has been used in Chapter 1, for

the drug side effect prediction problem, and in Chapter 2, for the disease gene prediction

problem. In this chapter, I propose a Non-negative Self-Expressive Model (NSEM) starting

from the SLIM formulation. I showcase novel mutiplicative algorithms with globally op-

timal guarantees of convergence, and show results outperforming previous state-of-the-art

formulations. I further show that the items self-representations are interpretable in terms

of popularity and novelty metrics. Theoretical results are supported by empirical evalua-

tions in Movielens, Netflix and three Amazon datasets.
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1 Background

In this section, I introduce Sparse Linear Method (SLIM) from the perspective of Self-

Expressive Models (SEM). The goal of SLIM is to represent each item vector approximately

as a weighted linear combination of a small number of other item vectors. Each item vector

xi ∈ Rm is represented using other item vectors x1, x2, ..., xm ∈ Rm and a sparse vector of

weights or coefficientsw ∈ Rm such that xi ≈
∑

j̸=i xjwj. In matrix form: let X ∈ Rn×m

be the user-item matrix (each column is an item vector), letW ∈ Rm×m be the sparse coeffi-

cient matrix (each column is a coefficient vector). xij = 1 if the user i is associated* to item

j, or zero otherwise. SLIM assigns scores to missing user-item associations by the following

linear model:

X̂ ≈ XW (4.1)

whereW is the solution of the following optimisation problem:

min
W

1
2
∥X− XW∥2F︸ ︷︷ ︸

self-representation

+
β
2
∥W∥2F + λ∥W∥1︸ ︷︷ ︸

sparsity

subject to W ≥ 0, diag(W) = 0.

(4.2)

where ∥.∥F denoting the Frobenius norm, β, λ > 0 are regularisation parameters. I

further denote the cost function in Eq. 4.2 byQSLIM(W).

The first term in Eq. 4.2 is the self-representation constraint, which aims at learning a ma-

trix of coefficientsW such that XW is a good reconstruction of the original matrix X. The

second term is the sparsity constraint, which uses the elastic-net regularisation known to
*In this study, we are limited to an implicit feedback representation of the user-item interactions.
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impose sparsity and robustness to noise 114,115. The norms are defined as follows:

∥ W ∥1=
m∑
i=1

m∑
j=1

|wij|, ∥ W ∥2F=
m∑
i=1

m∑
j=1

|wij|2

Additional constraints are to prevent the trivial solutionW = I by imposing diag(W) =

0 (together withW ≥ 0).

SLIM solves the constrained optimisation problem in Eq. 4.2, for each column ofW

independently, using a two-metric projection method 172. That is, at each iteration, a search

direction is computed that is a combination of a Newton method and a scaled steepest-

descent step. Under this procedure, the update rule takes the formWt+1 = PW(Wt −

ηt(∇2J(Wt))−1∇J(Wt)), where ηt is the stepsize at t iteration andPW(.) is the projection

function required to guarantee non-negativityW ≥ 0 and null-diagonal diag(W) = 0.

SLIM estimates the stepsize at each iteration using the Armijo/backtraking approximation

rule.

One disadvantage of SLIM is that it does not allow to integrate any relational prior

about users or items — side information. cSLIM 158, is a variation that has been proposed

to address this problem. The motivation is that complementary information about items

can help to establish relationships between items that cannot be inferred from past users

behaviour. Typically, this is crucial in a cold-start scenario 161. For instance, let Z ∈ Rp×m

represent a movie side information matrix containing words in a corpus of movie plots de-

scriptions (rows) for each movie (columns). zqj = 1 if the word q appears in the movie plot
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j, or is zqj = 0 otherwise. cSLIM aims to solve the following optimisation problem:

min
W
QSLIM(W) +

α
2
∥ Z− ZW ∥2F

subject to W ≥ 0, diag(W) = 0.
(4.3)

where the regularisation parameter α > 0 is tuned to adjust for the confidence on the

side information. The user-item score matrix is then computed as in Eq. 4.1. cSLIM can

be optimised using the SLIM two-metric projection method by replacing X in Eq. 4.2 by

Y ∈ R(n+p)×m defined as Y = [X,
√
αZ]T.

1.1 Non-negative Self-Expressive Model (NSEM)

My first goal is to obtain a smooth objective function, both continuous and differentiable

in the feasible regionW ≥ 0. To this end, I propose a relaxation of the null-diagonal con-

straint using a regularised trace operator γTr(W) ≡ γ
∑

iWii such that diag(W) → 0

when γ ≫ 0. I shall refer to my model as NSEM, which aims to minimise the following

cost function:

min
W≥0

1
2
∥X− XW∥2F︸ ︷︷ ︸

self-representation

+
β
2
∥W∥2F + λ∥W∥1︸ ︷︷ ︸

sparsity

+ γTr(W)︸ ︷︷ ︸
null diagonal

(4.4)

I denote the cost function in Eq. 4.4 byQNSEM(W). It is straightforward to show that

this function is smooth. I prove the smoothness of my function in the following lemma.

Lemma 2 (Smoothness). The cost function QNSEM(W) in Eq. (4.4) ॾ smooth in the feasible

region W ≥ 0.
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Proof. I need to prove that all the derivatives ΔpQNSEM(W), for any p > 0, exist. ForW ≥

0, we get

Δ1QNSEM(W) = −X⊤(X− XW) + βW+ λ + γI

Δ2QNSEM(W) = X⊤X+ β

Δp>2QNSEM(W) = 0

(4.5)

In the following lemma, I prove that my objective function is strictly convex.

Lemma 3 (Convexity). For a real matrix Y, the objective function in Eq. 4.4 ॾ strongly con-

vex in the feasible region W ≥ 0.

Proof. I need to show that the Hessian of Δ2QNSEM(W) ≻ 0 is a positive definite matrix90.

The Hessian is positive definite iif for a non-zero column vector h ∈ Rm of real numbers

the scalar hT∇2QNSEM(W)h > 0, which can be written as follow:

hT∇2QNSEM(W)h > 0

hT(X⊤X+ β)h > 0

hTX⊤Xh+ βhTh > 0

∥ Xh ∥2 +β ∥ h ∥2 > 0 ∀h, β > 0

(4.6)

That is, my objective function in Eq. 4.4 is strictly convex onW ≥ 0.

I can now prove the following theorem.
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Figure 4.1: Simulated NSEM objecধve funcধonQNSEM(wx,wy). Example for a binary random matrix Y100×2 and
parameters (β, λ, γ) = (0.1, 0.1, 104). The convex funcধon is ploħed as a funcধon of the off-diagonal elements of
W. The contour is also shown.

Theorem 5 (Uniqueness). The objective function in Eq. 4.4 hॼ an unique solution on the

convex set W ≥ 0.

Proof. From lemmas (2) and (3), since my objective function is strictly convex onW ≥ 0

andW ≥ 0 is a convex set, then the optimal solution (assuming it exists) must be unique.

I illustrate a toy problem for a 2 × 2matrixW =

wx 0

0 wy

 in Figure 4.1. In this sim-

ulated example, I evaluated Eq. 4.4 on a gridwx,wy ∈ [0, 1]. The objective function is

convex in the feasible regionwx,wy ≥ 0.
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1.2 NSEM multiplicative algorithm

To solve the NSEM objective function in Eq. 4.4, I propose the following multiplicative

learning algorithm:

wij ← wij
(X⊤X)ij

(X⊤XW+ βW+ λ + γI)ij
(4.7)

The advantage of my algorithm is that it is guaranteed to converge to a global minimun

under the non-negative constraintW ≥ 0. I shall prove this in the following theorem.

Theorem 6 (Global minimum solution). The objective function in Eq. 4.4 convergॽ to a

global minimum under the update rule in Eq. 4.7.

Proof. From the theory of constrained optimisation 89, we need to show that my algorithm

satisfies the Karush-Khun-Tucker (KKT) complementary conditions, which are both nec-

essary and sufficient conditions for a global solution point given the convexity of the cost

function (lemma 3) 89,90:

wij ≥ 0, (∇Q(W))ijwij = 0

The first KKT condition holds ifwt=0
ij ≥ 0. For the second KKT condition, we have

∇Q(W))ijwij = 0

(X⊤XW+ βW+ λ + γI)ijwij − (X⊤X)ijwij = 0
(4.8)

at local minimumW = W∗. From equation (4.7), the multiplicative update rule at conver-

gence is:

w∗
ij = w∗

ij
(X⊤X)ij

(X⊤XW∗ + βW∗ + λ + γI)ij
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which is identical to equation (4.8). That is, the multiplicative rule converges to a global

minimum.

My algorithm in Eq. 4.7 has several advantages over the two-metric projection method

used by SLIM. First, it does not require to set a learning rate nor use projection functions

to guarantee non-negativity. Second, it is guaranteed to converge to a globally optimal solu-

tion point under arbitrary initialisation ofW ≥ 0. Although SLIM’s two-metric projection

might provide an approximation to the solution of the objective in Eq. 4.2, it is unfeasible

to guarantee its optimal convergence in the feasible regionW ≥ 0. Furthermore, similar to

standard optimisation methods such as conjugate gradient descent or gradient ascend, I can

also show that my algorithm is a first-order algorithm.

Theorem 7 (Rate of convergence). The multiplicative update rule in Eq. 4.7 hॼ a first-

order convergence.

Proof. Following the procedure used in 89,118, we can assume that whenW is close to opti-

mal, it has a linear convergence rate and we can represent the updating algorithm as map-

pingWt+1 = M(Wt)with fixed pointW∗ = M(W∗). Then, whenWt+1 is nearW∗, we

haveW ≃M(W∗) +∇M(W)(W−W∗) subject toW ≥ 0, and thus: ∥ Wt+1 −W∗ ∥≤∥

∇M(W) ∥ · ∥ Wt −W∗ ∥with ∥ ∇M(W) ∦= 0 almost surely. That is, the multiplicative

update rule is a first-order algorithm.

At a first glance, the relaxation of the null diagonal constraint in Eq. 4.4 might seem as

a disadvantage as we include an additional hyperparameter that requires proper tuning.

However, I will now show that this is not the case, as there is an approximate lower bound
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for the parameter γ that facilitates its setting. A lower bound can be obtained from my mul-

tiplicative learning algorithm in terms of a maximum tolerable error in the main diagonal of

W, as follow:

Theorem 8 (Theoretical bounds for γ). The null diagonal penalty γ ॾ bounded in terms of

a maximum small value ε > 0 in diag(W) by (σ
1
2NCmax
ε 1N

,∞), where
√
σ ॾ the maximum

initial value of W, N ॾ the maximum number of iterations and C ॾ the maximum value in

the main diagonal of the data covariance, Cmax = max
i

diag(X⊤X).

Proof. From the multiplicative learning rule in Eq. 4.7, we shall notice that for a γ ≫ 0we

can approximate the maximum value of the diagonal ofW at each iteration j as follows:

√
σC jmax
γj

Let’s now assume that at the pth iteration, we tolerate a maximum small value ε → 0 in the

diagonal elements ofW, i.e.

ε =
√
σCpmax
γp

(4.9)

Solving (4.9) for γ provides a lower bound in terms of the tolerable value ε,

γ(ε, p) >
σ

1
2pCmax
ε
1
p

(4.10)

The upper bound can be obtained when ε→ 0, which causes γ(ε, p)→∞.
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1.3 Extending NSEM to collective SLIM

My approach to solve SLIM can be easily extended to cSLIM. I begin by extending the ob-

jective function to my smooth formulation:

min
W≥0
QNSEM(W) +

α
2
∥ Z− ZW ∥2F (4.11)

where Z ∈ Rp×m represent a movie side information matrix containing words in a cor-

pus of movie plots descriptions (rows) for each movie (columns). zqj = 1 if the word q

appears in the movie plot j, or is zqj = 0 otherwise.

I shall refer to the model in Eq. 4.11 as collective NSEM (cNSEM), for which a similar

multiplicative learning algorithm can be obtained:

wij ← wij
(X⊤X+ αZ⊤Z)ij

(X⊤XW+ αZ⊤ZW+ βW+ λ + γI)ij
(4.12)

Ning and Karypis43 hypothesised thatW is learning proximity between items in a similar

fashion than other neighbourhood models such as itemkNN. My algorithm, that learns a

globally optimalW, provides more accurate interpretation of the learned coefficients inW.

At each iteration,W updates proportionally to the items covariance matrix X⊤X. The im-

mediate consequence is that only co-purchased items (X⊤X)ij > 0 can belong to the same

subspace aswij = 0 if (X⊤X)ij = 0; regardless of the regularisation parameters. The prox-

imity between the items then depends on the product between the previouswt−1
ij and a reg-

ularised version of the item covariance matrix. Note also that the sparse self-representation

matrixW is not naturally symmetric (columns are learned independently in Eq. 4.7), which
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means that my algorithm recovers the subspace-sparse representation of each item in each

column ofW. We can now understand how the side information can help to capture hid-

den relationships between items which cannot be inferred from past user behaviors. Look-

ing at the numerator of Eq. 4.12, zero entries in the covariance matrix (X⊤X)ij = 0 are filled

in by the weighted item side information covariance αZ⊤Z. In order to be useful for the

prediction, the item feature vector Zmust encode relevant information about the problem,

e.g. movie plot descriptions.

1.4 Algorithm complexity and stopping criteria

My algorithm is similar to the multiplicative learning rules from non-negative matrix fac-

torisation (NMF) 29. Therefore, for the implementation shown in Algorithm 2, I followed

the recommended guidalines for NMF in91. Wwas initialise with uniformly distributed

random weights in the interval (0,
√
σ). A small value ε ≃ 1× 10−16 was also added to the

denominator to prevent division by zero. My multiplicative algorithm preserves all the de-

sirable properties of the original SLIM algorithm43. First, my multiplicative algorithm can

also be optimised for each column ofW independently. In fact, given that the NSEM up-

date rule in Eq. 4.7 depends on the data covariance X⊤X, we can decouple the optimisation

for each column jth as follows

wj ← wj
(X⊤X)j

X⊤Xwj + βwj + λ + γ1j
(4.13)

wherewj is the jth column ofW, the division is element-wise and the indicator function

1j = 1 for the jth element ofwj (corresponding to the main diagonal ofW), or zero oth-

erwise. This allows for a fast parallel computation of the algorithm for each item indepen-
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dently; or when the recommendations wants to be produced for only a subset of the items.

Second, as it happens for the original SLIM algorithm, my algorithm can also exploit the

sparsity in the data and inW to offer fast recommendations. The complexity to deliver rec-

ommendations for an user u isO(nnzu + nnzw + m logm), where nnzu is the number of

non-zero elements in yu and nnzw is the average number of non-zero elements in the rows

ofW, andm logm is the cost of sorting the items.

ALGORITHM 2: NSEM learning algorithm
Given β, λ, σ, γ, ε > 0
W = rand(m)*sqrt(σ); % initialisation
I = eye(m); % identity matrix
C = X’*X; % numerator
for iter = 1:maxiter do

denominator = C*W + β*W + λ + γ*I + ε;
W = W .* (C ./ denominator);

end

One advantage of my multiplicative algorithm is that it can further exploit the sparsity in

the covariance matrix X⊤X to reduce the computational complexity. From Eq. 4.7 is clear

that given the element-wise multiplication betweenW and X⊤X at each iteration,W can

have non-zero weights only in the entries where the covariance has non-zero values. There-

fore, the entries inW corresponding to the zero elements in X⊤X can be set to zero and thus

reducing the number of operations at each iteration. In fact, the most expensive operation

in my algorithm comes from the denominator term X⊤XW, which can be reduced from

O(m3) toO(m × nnzx × nnzw) by settingwij = 0 for (X⊤X)ij = 0 at t = 0— nnzx is

the average number of non-zero elements per row in the covariance and nnzw is the average

number of non-zero elements per column inW.

The stopping criteria for the algorithm is (i) when the element-wise change δ(t)W between
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W(t+1) andW(t) is smaller than a predefined tolerance tolX; or (ii) when the number of

iterations reaches maxiter. δ(t)W is computed as follow;

δ(t) = max

 |W(t+1)
ij −W(t)

ij |
max
(i,j)∈Ω

|W(t)
ij |+ ε

 (4.14)

2 Empirical results

2.1 Datasets

I used five public datasets, namely Movielens 173, Netflix 174, and three Amazon datasets 175

on different categories: office products, instant video, and sports and outdoors products

(see Table 4.1). For Netflix, I extracted a representative subset while ensuring that each user

and each item had known associations, using a procedure similar to the one used in43,158. In

the Netflix subset, each user rated 10-116 movies and each movie was rated by 5-914 users.

For the Amazon datasets, I used their 5-core subsets where each user and item has at least 5

known associations. Furthermore, following the procedure in43, I transformed explicit feed-

back datasets into implicit feedback datasets. That is, whenever rating value was provided,

e.g. 1-5 stars rating system, I simply use a value of 1 for every rating value or 0 otherwise. To

compare cSLIM and cNSEM, I used the same side information as in the original cSLIM

publication 158 which consisted on movie plots for Movielens. I extracted movie plots from

the Internet Movie Database (IMDb) 176, as summarized in Table 4.1. I then pre-processed

the plots to remove stop words and then converted each word to its stem†. I also considered

only words that appeared in at least five plots.
†i used the Python Natural Language Toolkit (NLTK) 3.2.5 https://www.nltk.org/.

157

https://www.nltk.org/


Table 4.1: Public datasets

dataset #users #items #nnzs density
Movielens 943 1,682 100,000 6.30%
Netflix 9,948 3,995 463,484 1.66%
Office 4,905 2,420 53,258 0.45%
Video 5,130 1,685 37,126 0.38%
Sports 35,598 18,357 296,337 0.045%

side info #movpp #words #nnzs density
IMDb ML 1568 1027 15,131 0.88%

The columns #users, #items and #nnzs indicate the
number of users, items and non-zero entries, respec-
tively. The density is the percentage of #nnzs from
the total number of entries, i.e. density = #nnzs /
(#users×#items). The column #movpp indicates the
number of movies that could be mapped to IMDb
using the movie title provided, #words is the unique
number of words in the corpurs of movies.

2.2 Evaluation procedure

To evaluate the performance of the methods, I followed the standard procedure used to

compare top-N recommendation systems43,158. For each dataset, I applied five times Leave-

One-Out cross validation (LOOCV). In each run, each of the datasets is split into a training

set T train and a testing set T test by randomly selecting one of the non-zero entries of each

user and placing it into the T test. The cardinality of the test set is the total number of users,

|T test| = #users. T train is then used to train a model. Then for each user, a size-N ranked list

of recommended items is generated by the model. The evaluation is performed by compar-

ing the recommendation list of each user and the item of that user in T test. The recommen-

dation performance is then computed using the Hit Rate (HR) and the Average Reciprocal

Hit Rate (ARHR). HR is defined as the fraction of users for which the items in T test were
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retrieved in the top-N recommendations as follows:

HR(N) =
#hits@top-N

#users
(4.15)

ARHR gives importance to the position (rj) at which the recommended item appeared, and

is defined as;

ARHR(N) =
1

#users

#hits@top-N∑
j=1

1
rj
. (4.16)

For both measures, I reported the mean HR (HR) and the mean ARHR (ARHR) of the

five repetitions.

2.3 Hyperparameters tuning

I ran SLIM using the code provided by Ning and Karypis43 172. For both methods, I opti-

mised β, λ ∈ {0, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100} and for

cSLIM and cNSEM I used α ∈ {0.1, 0.3, 0.5, 0.7, 1}. In the NSEM and cNSEM algo-

rithms, I set γ = 104, ε = 10−16, σ = 0.01 for all the datasets. The convergence toler-

ance was set to tolX= 10−2. The convergence occurred in less than 50 iterations in all the

datasets.

2.4 Performance Comparison

Table 4.2 summarises the performance of the methods for the different datasets in the top

ten recommendations (N = 10). We observed that NSEM is consistently better than SLIM

in all the datasets regarding both HR and ARHR. In terms of HR, NSEM is better than
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Table 4.2: Perfomance in the top-N (N = 10) recommendaধons

Dataset params HR ARHR
NSEM SLIM NSEM SLIM NSEM SLIM

Movielens 3, 0 25, 0 0.348 0.32 0.160 0.149
Netflix 1, 0 15, 4 0.171 0.156 0.080 0.069
Office 2, 0.5 15, 0 0.116 0.108 0.056 0.049
Video 2, 0 15, 0 0.346 0.328 0.188 0.171
Sports 0, 2 25, 0 0.082 0.080 0.040 0.036

Columns corresponding to params represent the model param-
eters (β, λ) that were set for the top ten (N = 10) recommenda-
tions. HR indicates the mean Hit Rate, ARHR the mean Average
Reciprocal Hit Rate.

SLIM by 6.1% in Movielens, 9.62% in Netflix, 7.41% in Office, 5.49% in Video and 2.5% in

Sports. Similar percentage improvements are observed in terms of ARHR: by 7.38% in

Movielens, 15.94% in Netflix, 14.29% in Office, 9.94% in Video and 11.11% in Sports. This

implies that NSEM ranks relevant items significantly higher than SLIM in all the datasets.

In models that integrate side information (cNSEM vs cSLIM), we obtained similar perfor-

mance gains. In terms of HR, cNSEM is better than cSLIM by 12.14% (0.351 for cNSEM

and 0.313 for cSLIM). In terms of ARHR, cNSEM is better than cSLIM by 19.85% (0.163

for cNSEM and 0.136 for cSLIM).

2.5 Recommendation at different Top-N

To verify whether the improvements were consistent for different top-N recommendations,

I tested the performance of the algorithms for different values ofN ∈ {5, 10, 15, 20, 25}.

Table 4.3 shows the performance of the methods. We observe that at different top-N rec-

ommendations, NSEM performs significantly better than SLIM in earlier retrieval of rele-

vant items: by 5.26-11.21% better across datasets in the top-5 recommendations, by 2.5-9.62%
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across datasets in the top-10 recommendations, and by 0-8.81% across datasets in the top-15

recommendations. The performance improvement was consistently better across top-Ns in

the Netflix dataset: by 7.17-11.21% better, while slightly decreasing in the Sports dataset as N

increased.

3 Sensitivity analysis of hyperparameters

A critical question is whether the model’s performance is robust with respect to the specific

choice of the model parameter. This was only partially addressed in43 and for one small

dataset only. I have extensively studied this for both algorithms NSEM and SLIM for an

initial grid of β, λ ∈ {0, 0.1, 0.5, 1, 2, 3, 4, 5}. Figure 4.2a compares the performance

of NSEM and SLIM for the top-10 recommendations in the different datasets. At a first

glance, one can observe that the performance of NSEM is very robust to the specific setting

of the parameters β and α. Optimal performance with NSEM is obtained for small values

of β and α and equally accurate models can be obtained for a wider range of parameters.

This is not the case for SLIM, whose optimal performance seems not near to be found —

possibly in β > 5 and λ ≥ 2. By increasing the grid search for SLIM (Figure 4.2b), we can

find that its optimal performance across datasets lie in a specific window of 10 ≤ β ≤ 40

and 0 ≤ λ < 5. SLIM thus requires a much finer tuning of model parameters to achieve

optimal recommendation performance.

3.1 Parameter-free model

Furthermore, while both β > 0 and λ > 0 are critical for obtaining a good recommen-

dation performance in SLIM, in NSEM, even if one (or both) parameters are zero, the
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performance of the model seems unaffected. In detail, when β = λ = 0, NSEM pre-

vents over-fitting without great loss in performance (Fig. 4.3) which ranges between 75.33%

and 96.11% of the optimal performance in Movielens, Netflix, Office and Video, while for

the sparser Sports dataset, NSEM achieves 57% of its optimal performance. Conversely,

SLIM performs poorly without regularisation parameters, with performance ranging be-

tween 0.07% and 46.99% of the optimal performance in all the datasets. When only β is

set (λ = 0), the performance of NSEM ranges between 87.66% and 100% of its optimal

performance in all the datasets (at the different top-Ns), while the performance of SLIM

only ranges between 40.4% and 97.5% of its optimal performance. When only λ is set (β =

0) the performance NSEM ranges between 95.78% and 100% of its optimal performance

in all the datasets (for the different top-Ns), while the performance of SLIM only ranges

between 65.5% and 96.09% of its optimal performance. This suggests that while SLIM de-

pends heavily on both regularisation parameters to achieve optimal performance, this is not

the case for NSEM, for which only λ could be used to enforce sparsity in the solution.

3.2 On the importance of the parameter γ

At a first glance, it may seem that the regularisation terms (in particular theL2 norm) could

be enough to satisfy the null-diagonal constraint diag(W) = 0 ≡ Tr(W) = 0. This is

due to the fact that when β ≫ 0, all the values inW shrink down to zero. However, large β

does not imply good recommendation performance. I illustrate this point on the Movielens

dataset (Fig. 4.5a). The figure shows that although β reduces the trace, it also exerts a detri-

mental effect on the recommendation performance. There is in fact, a strong correlation

between the recommendation performance and theTr(W) (Pearson correlation, ρ > 0.95,
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Figure 4.3: Percentage of the opধmal HR at top 10 recommendaধons, achieved as parameter-free model (β = λ =
0). Percentages are relaধve to the opধmal performance of each model.

Significance p < 8.753× 10−9). This implies that the term γTr(W) has an important role

to guarantee the null diagonal constraint without trading recommendation performance.

Figure 4.5b shows how the recommendation performance improves when γ increases and

plateaus for a large enough γ. This is related to the fact that large γ guarantees a divergence

from the trivial solutionW = I (Fig. 4.5c). In fact, the HR is moderately correlated to the

distance from the trivial solution (Pearson correlation, ρ > 0.598, Significance p < 0.015).

Importantly, these observations are supported by my theoretical guarantees given in Eqs.

4.9 and 4.10, that indicates a lower bound for γ but not an upper bound.
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4 Model interpretability

One important feature of my model is that it is inherently interpretable 27. This is because a

given item, e.g. a movie, can be explained as a linear combination of few other items. This

facilitates the explainability of how my model arrived to a given recommendation for an

user. Furthermore, thanks to the theoretical guarantees of uniqueness and global minimum

solution of my algorithm, the learned representations are reproducible under different ran-

dom initialisation of the weights. I analysed the intrinsic algorithmic properties to under-

stand both: (i) why my algorithm is less sensitive to the regularisation parameters and; (ii)

how a particular regularisation in my algorithm drives the learning ofW towards a solution

that increases novelty in the recommendations.

4.1 Covariance-driven regularisation

To understand the reason why the NSEM is less sensitive to the model parameters, we

need to look in detail at the multiplicative learning algorithm in Eq. 4.7. Observe that

all the regularisation terms appear in the denominator of the algorithm. There is, how-

ever, an additional term in the denominator: X⊤XW. This term is de facto performing

an additional regularisation forW, as it changes the amount by whichW is updated at

each iteration. The values of X⊤XW rank significantly higher than zero at each iteration

(Wilcoxon Signed Rank test with Bonberroni correction Significance, p < 2.22 × 10−306,

in all the datasets). The same term also ranks significantly higher than the other regular-

isation terms (βW + λ) at each iteration (Wilcoxon Signed Rank Test with Bonberroni

correction Significance, p < 2.22 × 10−306). To understand better the nature of this

covariance-driven regularisation, let’s consider the symmetric positive definite covariance
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matrix C = X⊤X = [c1, c2, ..., cm] given by its column vectors cj ,∀j ∈ {1, 2, ...,m} and

the learned matrixW = [w1,w2, ...,wm] given by its column vectorswj , ∀j ∈ {1, 2, ...,m}.

The regularisation term X⊤XW can be written as follows:

CW =



c1Tw1 c1Tw2 . . . c1Twm

c2Tw1 c2Tw2 . . . c2Twm

...
...

... . . .

cmTw1 cmTw2 . . . cmTwm


, (4.17)

which indicates that the amount of regularisation for a pair of items (i, j) is proportional

to the dot product between the item i in the covariance (ci) and an item j inW (wj). This

suggests that the values ofW corresponding to items that co-occur with many other items

(popular items) are penalised the most, whereas the values ofW corresponding to items

with low co-occurrence are allowed to grow. This may in principle seem counter intuitive.

To understand this empirically, I analysed the regularisation term in the Movielens dataset

by setting β = λ = 0. Fig. 4.4a shows that indeed the relationship between the covariance

andW is non-linear: smaller values in the covariance correspond to higher weights inW

(movies that are ranked first) and vice-versa, higher values in the covariance are related to

smaller weights inW. In other words,W gives importance to relationships with possibly

unpopular movies (from the long-tail) thanks to its regularisation.

4.2 W learns novel item-item relationships

To further investigate the relationship between the learned weights inW and the movie

popularity and novelty, I analysed the correlation of C andWwith the popularity and nov-
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elty metrics‡. The values in the covariance are positively correlated with the popularity - see

Fig. 4.4b - (Pearson correlation ρ = 0.96, p < 2.22 × 10−308), and negatively correlated

with the novelty (Pearson correlation ρ = −0.83, p < 2.22 × 10−308). While the weights

inW are only moderately correlated to the popularity - see Fig. 4.4c - (Pearson correlation

ρ = 0.51, p < 5.42× 10−112), and less negatively correlated with novelty (Pearson correla-

tion ρ = −0.70, p < 8.89× 10−250). I observed similar trends across all the other datasets.

For example, in the Netflix dataset,W is significantly correlated to the novelty (Pearson cor-

relation ρ = 0.41, p < 3.46 × 10−160), whereas the covariance is negatively correlated

to novelty (Pearson correlation ρ = −0.88, p < 2.22 × 10−308). These findings suggest

that the reason behind the good performance without regularisation is due to the fact that

NSEM multiplicative algorithm mitigates the bias of movie popularity and thus increases

novelty.

5 High-rank vs Low-rank model

In the original SLIM publication43, it is shown that SLIM outperforms several low-rank

matrix decomposition techniques. The reason, however, has remained unclear. Low-rank

matrix decomposition typically assigns a low-dimensional feature vector to each user and

a low-dimensional feature vector to each item so that the user-item preference is modelled

by the dot-product of the two feature vectors. This means that the n × mmatrix X is the

product of an n × kmatrixWwhose rows are the user feature vectors and a k × mma-

trixHwhose columns are the items feature vectors. The rank of X is k— the number of

features assigned to each user or item. I compared the performance of NSEM and SLIM
‡Popularity of a movie jwas defined as the number of user that rated movie j 20. Novelty was defined as

− log2(popularity/#users) 177.
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Table 4.4: High/Full rank structure of datasets

Dataset (X) density rank of X Comment
Movielens 6.3% 943 full rank matrix
Netflix 1.66% 3995 full rank matrix
Office 0.45% 2420 full rank matrix
Video 0.38% 1685 full rank matrix
Sports 0.045% 18387 full rank matrix
The column corresponding to rank was calculated
using the built-in Matlab R2018a function rank(X)
using all the available data in each dataset. The rank
of a matrix X is computed as the number of singular
values that are larger than a predefined tolerance.

versus two popular matrix decomposition techniques: PureSVD 20 and NMF 117 across all

the datasets. Figure 4.6 shows the performance of the methods in the top 10 recommen-

dations. We can observe that while for the Movielens dataset the performance of low-rank

vs high-rank models is only comparable, for Netflix, Amazon Office, Amazon Video and

Amazon Sports, high-rank models are significantly better. The difference in performance

between low-rank vs high-rank models seems to be related to the density of X (see Table

4.4). The sparser the dataset the more advantage there is in using a high-rank model rather

than a low-rank model. This is possibly due to the fact that high-rank models capture high-

level features in the data by exploiting weaker regularities (small singular values) which is

normally ignored by low-rank models.

6 Conclusions and Discussion

I have introduced a novel algorithmic framework for high-rank matrix completion under

self-expressive models. I have provided strong theoretical foundations regarding the objec-

tive function and the optimality of the solution using my multiplicative learning algorithm.
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Figure 4.6: Performance of high-rank versus low-rank models in terms of HR in the top 10 recommendaধons.

I show that my objective function is smooth and that my learning algorithm converges to

a unique global optimum solution. I also show that my NSEM algorithm, that improves

upon the Sparse Linear Method (SLIM) formulation, performs better than SLIM across

several real-world datasets. Finally, I have analysed the inner working of my algorithm

when learning the non-negative matrix of coefficientsW. I found that a covariance-driven

regularisation was responsible for the robustness in performance of my algorithm and that

it accounts also for learning aW that favours novelty in the recommendations.

Algorithmically, my NSEM algorithm is closely related to non-negative matrix factori-

sation (NMF) 29,117. Lee and Seung 117 have shown that, by diagonally rescaling the learning

rate at each iteration the resulting matrices are non-negative and that the cost function con-
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verges monotonically. My algorithm is inspired by the principles of non-negative matrix

factorisation. As it happens with NMF, my formulation does not requires setting a stepsize

parameter nor applying a projection function to guarantee non-negativity at each iteration.

One of the limitations of NSEM (and SLIM) is that it can be slower in large-scale ap-

plication that other low-rank matrix decomposition techniques. I have not addressed this

problem in this chapter. However, to reduce time complexity, Ning and Karypis43 pro-

posed to applied feature selection when learningW. This procedure can possibly be also

applied in my algorithm (using Eq. 4.13). I have shown that NSEM provides additional ad-

vantages over SLIM. For instance, when analysing the sensitivity of my algorithm under

changes of the hyperparameters, I found that there is a particular type of regularisation

—that I called covariance-driven regularisation — responsible for the robustness in per-

formance observed in the experiments. This feature of my algorithm reduces the need for

parameter tuning in online applications, where re-training a model under a large grid of hy-

perparameters can be prohibited. Conversely, I observed that SLIM requires a fine-tuning

of its parameters to achieve optimal recommendation performance.

One of the main advantages of my formulation is the ease of adding additional con-

straints in the objective function. To preserve convexity, it is important that any new con-

straint on the objective function is convex term (positive semi-definite matrix). This is the

case, for instance, of our models shown in chapters 2 and 3.

The main difference between my algorithm and previous high-rank matrix completion

models 8 is based on the model assumption. Standard high-rank matrix completion typ-

ically assume that X is partially observed, and thus the learning is performed on the well-

defined set of observed entries only. This is in fact, the most common assumption in matrix
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completion92,178. However, since Cremonesi et. al. 20 showed that significant performance

improvements can be obtained by simply representing missing user-item entries in Xwith

zero values, this has become the de facto data representation for models in top-N recom-

mendation systems. This means that both NSEM and SLIM operates on the assumption

that X is fully observed while its entries are noisy§.

There is a growing concern in the literature about model reproducibility 179. Dacrema

et. al. 180 have recently shown that less than half of deep learning models presented in top

conferences could be reproduced. Of these, only one deep learning model (Mult-VAE 181)

performed better than simple heuristic methods such as those based on nearest-neighbours

or graph-based models. However, even Mult-VAE did not consistently outperform SLIM

in the different scenarios. Therefore, SLIM and therefore NSEM, are competitive state-of-

the-art methods for top-N recommender system.

§The use of the Frobenius norm in the term ∥X− XW∥2F (in Eq. 4.4) implies that the noise is bounded.
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To myself I am only a child playing on the beach, while

vast oceans of truth lie undiscovered before me.

Sir Isaac Newton (1643-1727)

5
Conclusions

In this dissertation, I have addressed several important problems across

distinct domains, ranging from healthcare to recommender systems. The algorithms that

I presented here were mainly motivated by characteristics and limitations observed in the

data. I have developed novel low-rank and high-rank models and optimisation algorithms
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for completing an incomplete matrix. Throughout the chapters of this dissertation, the pri-

mary connection between the models was interpretability. I believe interpretability is one

of the bridges that is needed to connect the current machine learning research to the clinical

practice. Ideally, this will help scientists, doctors and policymakers to make informed deci-

sions. I found that one way of favouring interpretability in my matrix completion models

was by learning non-negative sparse representations. Sparsity is often a useful measure of

interpretability, because humans can handle at most 7±2 cognitive entities at once 182.

I will conclude by briefly summarising the key contributions once more, followed by

future (some ongoing) research directions.

1 Summary of contributions

• In chapter 1, I have addressed the problem of predicting the frequencies of drug side

effects. I proposed a novel non-negative matrix decomposition model that accounts

for different levels of uncertainty in the data. To my knowledge, this is the first at-

tempt to predict the frequencies of drug side effects. Importantly, I show that the

signatures (or learned low-dimensional representations) of drugs and side effects are

pharmacologically interpretable: they encode specific chemical perturbations at hu-

man anatomical and organ-system level.

My novel machine learning approach can be used in the early phase, small-size clini-

cal trials to set the direction of the risk assessment in later clinical trials or after a drug

has entered the market. It can also be used in other aspects of clinical trial design,

such as in the estimation of the cohort size needed for the trials. I show that the sig-

natures of my model can be exploited to formulate a specific biological hypothesis
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on the drug mechanism of action at both molecular and organ-system levels. For in-

stance, a specific component in the signature in my model is significantly associated

with arrhythmias, and therefore, can be useful for cardiotoxicity assessment.

• In chapter 2, I have addressed the problem of predicting the presence or absence

of drug side effects. I proposed a low-rank model and a novel geometric high-rank

model based on self-representation. Through extensive experiments, I show that my

model consistently outperforms the baselines. My self-representation model also

favours model interpretability: two drugs with similar self-representations tend to be

clinically related or they share common protein targets.

• In chapter 3, I have addressed the problem of disease gene prediction. The disease-

gene prediction problem it was a natural target of my high-rank model given that

it shares many characteristics of other datasets such as sparsity and skewed distribu-

tion of diseases, in which my model have shown to work well. An important con-

tribution of this chapter is the fact that my model can predict genes for molecularly

uncharacterised diseases.

• In chapter 4, I have addressed the problem of top-N recommendation systems. Most

of the theoretical development of my high-rank model is explained in this chap-

ter. I showed that my high-rank model is motivated by the development of self-

expressive models and sparse linear method. I proposed novel algorithms that can

be used to solve SLIM-based objective functions. I also show that the learned self-

representations can be interpreted in terms of popularity and novelty metrics.
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2 Future directions

There are several research avenues for future work regarding the problems that I addressed

in this dissertation, as well as follow-up ideas on the algorithmic developments presented. I

summarised some of these ideas here:

• Predicting the frequenciॽ of side effects for novel compounds. It would be interest-

ing to extend the work presented here to predict the side effect of drugs by relying

solely on molecular or cellular features, for instance, by exploiting the similarities in

chemical structure or the activity across cell lines. A similar problem has been already

addressed in the literature but to predict the presence/absence of drug side effects 111.

• Predicting polypharmacy drug side effects using the signaturॽ. Recent work 183,184 have

addressed the problem of predicting specific side effects that two drugs cause when

taken in combination. However, these black-box approaches are far from providing

any biological interpretability. It would be interesting to analyse whether my drug

signatures can be used to predict polypharmacy side effects while enhancing model

interpretability. Ruben Jimenez has started this work and so far, preliminary results

are encouraging.

• Drug repositioning. Another important research avenue is drug repositioning, that

is, finding new indications for old drugs 185,186. It would be interesting to explore the

power of the drug signatures to predict new drug indications. In Chapter 1, I have

shown that drug signatures encode the main drug therapeutic indication. This result

already indicates the potential of using drug signatures to predict new drug indica-

tions. Another idea is to apply my geometric high-rank model to drug reposition-
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ing: work of Fabrizio Frasca62, performed under my direct supervision. Our prelim-

inary results will be presented at the Graph Representation Learning Workshop at

NeurIPS 2019*.

• Learning sparse self-representations by neural networks. In this dissertation, I focused

on developing inherently interpretable models. These are unfeasible to achieve with

neural nets because the learned representations depend on uninterpreted features in

other layers28. However, interpretability, which is always domain-specific notion 27,

is only required in certain situations, for instance, when the decision suggested by a

model can influence human-level decisions. It would be interesting to develop neural

network models capable of learning self-representations by also considering struc-

tured data such as graph networks. There has been a recent work on low-rank matrix

completion using neural networks26,187, but we still lack high-rank matrix completion

models using neural networks. Interestingly, self-representations learned by neural

networks might offer the first opportunity to built more interpretable neural net-

works.

*https://grlearning.github.io/papers/
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A
Appendix

1 Collection of the side effect frequencies

We started with 1,556 marketed drugs listed in the Side effect Resource Database (SIDER)

4.165 that contains 4,251 side effect terms mapped in the Medical Dictionary for Regulatory

Activities (MedDRA) v20.0. In SIDER 4.1, around 40% of the drug-side effect pairs con-

tains frequency information, whereas for the remaining 60% the frequency is unknown.
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Side effect terms in SIDER were annotated with their MedDRA lowest level term (LLT)

and preferred term (PT). Many LLTs may correspond to the same PT. For instance, the

MedDRA LLTs Creatinine increased (C0151578), Blood creatinine increased (C0235431),

Serum creatinine increased (C0700225) and Plasma creatinine increased (C0858118) corre-

sponds to the same MedDRA PT Blood creatinine increased (C0235431). Therefore, we

used PT side effect terms to collect the pair-input associations between drugs and side ef-

fects. Side effect frequencies were listed in SIDER as exact frequencies, e.g. 1%, range of

frequencies, e.g. 2-5% or as frequency class e.g. very rare, rare, infrequent, frequent and very

frequent. Placebo frequencies were sometimes provided as exact frequency value or range

of values. Fig. A.1 summarizes the types of frequency formats in a Venn diagram depicting

the three different sets of data format found. For a given input pair, multiple frequencies

might also be available, for example, from clinical trials for different indications 87. For con-

venience, we standardise all the frequencies into frequency classes. Exact frequencies and

range of frequencies were mapped to frequency classes. The mapping between the range of

side effect occurrences and the classes are regulated by the Council for International Orga-

nizations of Medical Sciences (CIOMS). For the different subsets depicted in Figure A.1, we

pre-processed the frequency data as follow;

• Subset A − (A ∪ B). When only the exact or range frequency was available, we

compute the median frequency and then map to a frequency class.

• Subset B−(A∪C). When only the frequency class label was available, we kept the la-

bels but normalised the following terms: very rare, rare, infrequent (or uncommon),

frequent (or common) and very frequent (or very common).
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• SubsetC − (A ∪ B). We have found 215 pairs for which the placebo frequency was

found, but the drug frequency was not listed in SIDER 4.1. We manually checked

several pairs to confirm that the drug frequency was indeed missing in the database.

We discarded these pairs.

• Subset A ∩ C. We retained pairs for which the median frequency in the intervention

cohort was higher than the median frequency in the placebo cohort. For 2,474 pairs,

the median frequency in both groups was comparable and for 403 out of the 2,474

pairs, the placebo frequency was higher. These associations are likely to be caused

by the disease or by the so-called nocebo effect (14), i.e. patients that anticipate a side

effect on medication are more likely to report it (2). We discarded these pairs to avoid

possible confounders in the associations.

• Subset A∩B. We compute the median frequency value and map to a frequency class.

We also kept the frequency class from set B.

• Subset B ∩ C. We discarded the placebo frequencies for which not intervention

frequency was found. We kept the frequency class from set B.

• Subset A ∩ B ∩ C. We retained pairs for which the median frequency was higher

in the intervention cohort than the placebo cohort. We also kept the frequency class

from set B.

After mapping all the values to frequency class values, for around 13% of the associations,

we could have more than one rating value for a given drug side effect due to the multiple

intersections in the data. 8% of these frequency classes were inconsistent (different). These
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Figure A.1: Venn diagram depicধng the different formats for the drug side effect frequencies in SIDER 4.1. In total,
68,514 pairs were found with frequency informaধon. There are three overlapping sets of data formats. Set A: con-
tains drug exact (e.g. 1%) and range frequency (e.g. 2-5%); set B contains frequency classes (e.g. very rare), and set C
contains the exact and range placebo frequencies. The size of the circles is proporধonal to the number of drug-side
effect pairs in each set.

might be due to clinical trials from different indications for the same drug 87. For these cases,

we average the rating values and then round them to the nearest highest integer. Until here,

we have extracted 41,546 frequency class associations for 860 marketed drugs with around

1,011 unique side effect terms. Furthermore, we kept only drugs with known monotherapy

Anatomical Therapeutic and Chemical (ATC) category according to the 2018 World Health

Organization (WHO) release. Similarly, we kept only side effects with known MedDRA

category of disorders. In total, our final dataset contains 759 marketed drugs with 994 side

effect terms with 37,441 known rating values.
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2 Additional datasets used in our study

Post-marketing side effects For our dataset of 759 drugs with 994 side-effect terms,

we retrieved the binary drug-side effect associations with unknown frequencies from SIDER

4.1. We found 55,382 binary associations in SIDER. These binary associations are either

from clinical trials with unreported frequency or from post-marketing reports added to

drug leaflets (2). We collected 9,387 pairs with an explicit post-marketing label in SIDER.

This set constitutes our post-marketing test set.

Protein targets We retrieved the known drug-target interactions from DrugBank

release 5.0.5 (2016-08-17) (3). We mapped the drugs from SIDER to DrugBank using the

PubChem IDs and the mapping provided in DrugBank. We retrieved molecular targets

(with known or unknown pharmacological action) for 435 drugs in our dataset. In total,

1,759 associations were found between the 435 drugs and 590 unique protein targets.

Chemical fingerprints We retrieved the known drug SMILES fingerprint from

DrugBank release 5.0.5 (2016-08-17) (3). 442 drugs in our dataset were mapped. We then

computed the 2D Tanimoto chemical similarity based on the fingerprint using the Open-

Source Cheminformatics (RDKit) (15) in python.

ATC codes and route of administration Drugs ATC codes and drugs route

of administration (Adm.R) were obtained from the ATC codes WHO 2018 release. The

routes of administration of the drugs can be implant, inhalation, instillation, nasal (N), oral

(O), parenteral (P), rectal (R), sublingual/buccal/oromucosal (SL), transdermal (TD) and

vaginal (V).
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