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Abstract

Many experimental and theoretical studies suggest that it is difficult to approach

[(FM)|[quantum critical point (QCP)|in real materials. Instead, a variety of escape routes have

been observed, notably the occurrence of a first order transition or superconductivity. The

bulk properties of the C14 Laves phase Nb;_,Fes ., present a third scenario: marginal Fermi

liquid behaviour as expected of a[ferromagnetic quantum critical point (FM QCP)|[1], but also
masking of the [FM QCP)|itself by a |spin density wave (SDW )| order [2].

Polarised neutron diffraction measurements in the [FM] state have shown that the direction

of the magnetic moment is along c.

The ordering wave vector of the[SDW]as well as the temperature 7" and composition
dependence y of [spw]| have been directly observed by elastic unpolarised neutron scattering
on several single-crystalline samples [3].

We also collected and analysed comprehensive inelastic neutron scattering data which reveals
the position in the reciprocal space ¢, T' and y dependence of low-energy excitations in a range

covering the [paramagnetic (PM)| the[SDW]and the [FM]states. Those results show softening of

the low energy magnetic excitations in a broad ¢ range and a divergence of the inverse linewidth
in energy in a considerable region of the phase diagram near the SDW] phase. The observed
excitation pattern reflects the simultaneous proximity of the Nb;_,Fes, system to two types
of magnetic order, which makes this a candidate system for SDW] order emerging from a [FM]

[QCP| We use the models given by the spin fluctuation theory to discuss our observations.
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Chapter 1

Introduction

1.1 Quantum criticality

Since Thomas Andrews observed critical opalescence in carbon dioxide, interest in continuous
phase transitions increased significantly over the last century and is, still today, a main research
topic in condensed matter physics. Continuous phase transitions are observed in many systems,
including the universe itself. Moreover, the theory of continuous phase transitions is ubiquitous
and is observed in various areas, such as string theory, transition to chaos in dynamical systems
[5], and also in biology with transitions between coordinated biological motions [6] or the swarm
model predicting the behaviour of systems with collective intelligence [7]. Therefore continuous
phase transitions are present, not only in condensed matter physics, but in science in general.

During the last decades, research interest focused on a particular type of continuous phase
transitions: quantum critical phase transitions. The latter are observed at 0K, as illustrated
in Figure [I.I] where transitions are driven by quantum fluctuations, rather than thermal
fluctuations. Near a physics of continuous phase transitions combine with quantum
mechanics and give rise to exotic behaviour, such as unconventional superconductivity, non-
Fermi-liquid behaviour or anti-ferromagnetism. Unconventional superconductivity, was, for
instance, observed in CePd;Siy and Celng (Figure ) when tuning the system towards an
lanti-ferromagnetic (AFM)|[QCP]| with pressure [§] or in BaFes(As;_,P,)2 (Figure [[.2b) when
tuning the system towards a [spin density wave (SDW)|[QCP| with chemical substitution of As

with P [9]. Non-Fermi-liquid behaviour, was recorded, for instance, in the pressure [10] or

magnetic field [II] tuned YbRhsSis (Figure ), in doped Ni,Pd;_, [12] or in CeCus 9Aug 1

15



phase A

continuous phase

/ transition line

temperature (T)

quantum critical point

N

tuning parameter (p)

Figure 1.1: Representation of a generic tuning parameter (p)-Temperature (T') phase diagram.
When T > 0K, the continuous transition between Phase A and Phase B is driven by a change
of temperature. At 7" = 0K, the transition line ends in a (green star); at this point the
phase transition is driven by quantum fluctuations rather than thermal fluctuations.

at zero magnetic field [13] (Figure [T.21).

1.2 Ferromagnetic quantum phase transition

The [ferromagnetic (FM){paramagnetic (PM)| transition, the classic example of magnetic con-

tinuous phase transitions, has been intensively studied and experimental results suggest that
M QCPsg| are key to understand new phases such as magnetically mediated superconductivity
(see the review [I4] for examples). However, the themselves are very hard to ob-
serve in real materials; experiments have shown how nature avoids these points with alternative
scenarios, which are illustrated in Figure [I.3]

In one scenario, the second order phase transition turns into first order with wing splitting
at a ending in a[quantum critical end point (QCEP)| as shown in Figure [[.3p. This has
been observed, for instance, in MnSi [I5], in SrsRupO7 [16], in ZrZny [I7] or in UGe, [I8]. For
UGe, Figure shows how the continuous (second order) transition becomes first
order at the [TCP] as the system is tuned with pressure towards a[FM QCP} At the [TCP} the
continuous [FMKHPM] splits in two wings, each ending in a First order transitions and

wing-splitting tri-critical points have been predicted by the Belitz et al. [19, [20].

Another scenario is the emergence of a superconducting dome covering the [FM_QCP)| as

16



Temperature (K)

T (mK)

Celn, . 160
A BaFe (As P),
//\\ e T s it
] 3 3
120 20f, ¥ :
=, < 3t
o 100 15f
=]
0@ 804 10F 3 3
g 00 02 04 06 08 10
5 607 Sbw X'
[t
40
20 \
. sC
0 frent r \ _ T - e
% ] 2 3 0.0 0.2 0.4 06 08 1.0
Pressure (GPa) P content x’
(a) (b)
85 T T T
150 T : T . CeCuggAug ,
.- 75 Bllc Ilib o
L 0 ©
(o]
NFL - °B=0 0%
T —_ | a B=3T [ A i
100 | 1 g g 65 o B-6T , o° . Al
5
g o
T .
N B - ,
£ Iﬁi mA {1{Blc a 55
50 | X7 0,8 Bllc -
1
4 45
AF / LFL
0 1 1 1 1
0.0 05 1.0 15 2.0 25 35
B (T)

Figure 1.2: (a) pressure-temperature phase diagram of Celns featuring unconventional super-

conductivity, where Ty is the

transition temperature and T¢ is the superconducting
transition temperature (figure from [8]). (b) composition (z’)-temperature phase diagram of

BaFey(As)_,/Py/)2 featuring superconductivity, where SDW denotes spin-density-wave, SC' de-

notes superconductivity and n is the fitted temperature exponent of the resistivity (figure from

[9]). (c) magnetic field (B)-temperature (T') phase diagram of YbRhoSi; featuring non-Fermi-
liquid (NFL) and Landau-Fermi-liquid (LFL) behaviour, where AF' is the anti-ferromagnetic
phase, Ty is the Neél temperature and T* is the upper temperature limit of the 72 be-

haviour of the electrical resistivity (figure from [I1])). (d) electrical resistivity measurements of

CeCus.9Aug 1 with different applied magnetic field along the ¢ axis (figure from [I13]).

17



FM

FM

I:l/
modulated magnetic order

(c) P ()

Figure 1.3: Illustration of how nature avoids in temperature (T')-magnetic field
(H)-tuning parameter (p) phase diagrams. (a) the second order phase transition becomes
first order at a with in-field splitting of wings that end in ' (b) emergence of a
superconducting dome masking the (c) in a disordered [FM]| system crossover to a
spin-glass in the tail of the phase diagram at high p. (d) emergence of modulated magnetic
ordered phase in place of the Figure adapted from [14].

T (K)

2" order

=== 1% order

poH (T)

p (GPa)

Figure 1.4: Example of UGey, where a continuous phase transition becomes first order at a
tri-critical point (a) with a wing-splitting ended by two |QCEPs| (b). Figures from [18].
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illustrated in Figure [[.3p. Examples of this have been observed in UGey [2I] or in UCoGe
[22]. Furthermore, in view of the Meissner effect, it was believed that superconductivity and
ferromagnetism could not coexist. However, experimental results, e.g., on UGe, under pressure
showed the contrary. Figure shows a superconducting phase coexisting with the phase

in the d-electron system UGes.

60
I
0 “wl e UGe,
A
< 407 RN
° N
] ] \a
© Ferromagnetism \a
8 \
£ \a
o 2071 L. \
= Superconductivity 4y
\ 10 Tec 4
\
i ¥e
0 = o . =
0 1 2

Pressure (GPa)

Figure 1.5: Pressure (p)-temperature (T) phase diagram of UGes where superconductivity co-
exists with [FM] and how both phases are suppressed at 1.6 GPa as the system is tuned with
pressure towards the [FM QCP} T¢ denotes the Curie temperature and Tgc is the supercon-
ducting transition temperature. Figure from [21].

The third scenario, generally observed in highly disordered systems and illustrated in Fig-
ure [[.3, consists in a freezing spin-glass at the approach of the [FM QCP] which results in
a tail in the phase diagram and a non-Fermi-liquid behaviour above this tail [I4]. Spin-glass
freezing was mainly observed after doping metallic systems such as U;_,Th,NiSiy [23] or
Niy_.V, [24]. Figure shows how the dilution of the magnetic sublattice in U;_,Th,NiSis,
by increasing the doping concentration, reduces the ordering temperature and destroys the long
range order at the critical concentration z.. The disappearance of the long range magnetic order
creates this tail observed in the phase diagram in place of the [23].

The improvement of the experimental techniques and the huge amount of compounds studied
over the past decades showed that the standard model of metals does not describe correctly
second-order [FMIPM] phase transitions at low temperatures in itinerant ferromagnets. Hertz,
in 1976 [25], with Moriya in 1985 [26] and Millis in 1993 [27], developed a theory —the HMM
theory—, based on the generalised Landau-Ginzburg-Wilson functional, to describe in
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X

Figure 1.6: Doping concentration (x)-temperature (T') phase diagram of U;_,Th,NiSiy from
magnetic susceptibility and heat capacity measurements [23]. z. indicates the critical concen-
tration above which the long range magnetic order disappears. Figure from [23].

itinerant ferromagnets. The HMM theory, which builds on two key assumptionsﬂ and several
other proposed theories [29, 28] B0], are proven correct in many situations, but in more recent
studies these assumptions may not be valid [31]. To describe states near a more
accurately, non-analytical contributions of the order parameter to the free energy functional
should be considered [28| [32]; this approach is referred to as order by disorder. The latter
theory suggests that on the approach a[FM QCP} the Fermi surface deforms, which brings new
possibilities for low-energy fluctuations and leads to a phase transition that turns first order
or to the emergence of new modulated magnetic ordered phases [32]. Thus a fourth scenario
is suggested: a new modulated magnetic order that masks the [28] 132] as illustrated
in Figure [[.3d. SrsRupO7 [33], PrPtAl [34], MnP [35] or NbFe, [36] are examples where new
modulated magnetic order has been observed.

The proximity to [FM] quantum criticality seems to be a common factor between numerous
systems featuring exotic behaviour. Pursuing the investigation of such systems could be a rea-
sonable bet for discovering more exciting physics and possibly finding long sought answers to
questions centering, e.g., around magnetically mediated superconductivity. In the framework
of this thesis we investigate magnetic order and excitations at the border of itinerant ferromag-
netism in Nb;_,Fes,, . The phase is suppressed by chemical substitution, but the
(QCP|seems to be masked by an emerging phase as shown in Figure [36].

IThe two assumptions are, first, non-singular coefficients in the expression of the action, and, second, a ¢
momentum dependence of the static susceptibility [28]
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Figure 1.7: Doping concentration (y)-temperature (') phase diagram of Nb;_,Fes,, , which

features a suspected phase masking a [FM QCP| Figure from [36].

1.3 Thesis outline

In Chapter 2, we present the key concepts and the theory that are used throughout this re-
search project. We begin with an introduction to phase transitions, with particular focus on
the ferromagnetic phase transition and [FM] quantum criticality. The second section of this
chapter is a general presentation of the damped harmonic oscillator system and its adaptation
to our neutron scattering results. The third and last section of this chapter presents the spin
fluctuation theory, that we use to discuss our main results and we show how this theory predicts
that an over-damped harmonic oscillator can describe our results.

Chapter 3 is the review of the NbFes compound. We present the crystal and the magnetic
structure of NbFe, , as well as a summary of studies of the doping concentration-temperature
phase diagram of Nby_,Fes,, .

Chapter 4 focuses on the experimental aspect of project. We start with the presentation
of the samples that were measured. We then cover the theory of neutron scattering, including
unpolarised elastic and inelastic scattering as well as polarised neutron diffraction. We end
this chapter with a section on the instrumentation that was used for the measurements. This

includes the two [TASs| 4F2 and Panda, the [multi-choppers spectrometer (MCS)|, LET, and the

[double axis diffractometer (DAD)| POLI, for polarised neutrons measurements.

The next three chapters present the results, which are divided in three parts: polarised
neutron diffraction in Chapter 5, elastic scattering with unpolarised neutrons in Chapter 6 and
inelastic scattering with unpolarised neutrons in Chapter 7. In Chapter 5 we present polarised

neutron diffraction results, which show that the[FM]|state is built of collinear spins pointing along
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the ¢ axis, which is also the easy magnetic axis. Chapter 6 describes unpolarised elastic neutron
scattering results that establish the ordering wave vector and its composition (y) and
temperature (T') dependence. Chapter 7 presents the results of the inelastic unpolarised neutron
scattering measurements, which show the temperature-, composition- and ¢- dependence of the
magnetic excitations in the [FM] the SDW]and the [PM] phase.

Chapter 8 is the closing chapter of this thesis and summarises the main results and findings.
It also provides suggestions for further development of the project or potential improvement of

some results.
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Chapter 2

Theoretical concepts

2.1 Phase transitions

Phase transitions are central in condensed matter physics and there are numerous examples
in everyday life. We can think of ice melting into liquid or a ferromagnet that becomes para-
magnetic when temperature increases. The first example is a structural phase transition and
involves a change in the crystalline structure. The second example, on the other hand, is a mag-
netic phase transition; the magnetic structure changes, but the crystalline structure remains
unchanged. There exist many other phase transitions (e.g. superconducting transitions, ferro-
electric transitions or crystal structure transitions) and what characterise those, is that a tiny
variation of a parameter (such as temperature, pressure or magnetic field) provokes qualitative
changes in the system.

Although phase transitions can be very different, we also notice huge similarities between
them, such as the method applied to study those transitions or the universality of their proper-
ties. Based on these similarities, Ehrenfest assumed that the phase transitions can be reduced

into two types: first order phase transitions or second order phase transitions [37].

2.1.1 Ehrenfest classification of phase transitions

The Ehrenfest classification of phase transitions relies on the analysis of the singularity of
the thermodynamic potential. A phase transition is of first order when physical quantities,
which are linked to the first order derivative of the thermodynamic potential (e.g. entropy),

are discontinuous [37]. A phase transition is of second order when physical quantities, which
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are linked to the second order derivative of the thermodynamic potential (heat capacity), are
discontinuous [37].

Since the Ehrenfest classification is based on thermodynamic properties of the system it
becomes irrelevant in the absence of thermal fluctuations. An alternative approach was taken
by L. D. Landau, who considered the symmetries in the system to propose an other classification

for the phase transitions.

2.1.2 Landau classification of phase transitions
2.1.2.1 The order parameter

L. D. Landau noticed that phase transitions generally involve symmetry breaking in the system,
and that the symmetry group of the low-symmetry phase, usually the low temperature phase,
is strictly included in the symmetry group of the high symmetry phase [37]. Based on this
observation, Landau introduced a new classification for the phase transitions [38].

To describe the less symmetrical phase, Landau introduced a new variable, called the order
parameter (m). The latter is extensive, temperature dependent and non-zero only in the low-
symmetry phase [37]. When the order parameter evolves discontinuously (e.g. with the melting

of ice), the transition is first order, and when the order parameter evolves continuously (e.g.

with the[paramagnetic (PM )jterromagnetic (FM)|transition), the transition is second order [39].

2.1.2.2 The Landau model

Within the different phases the energy, promoting order, competes with entropy, which promotes
disorder. The stable phase observed at thermodynamic equilibrium is the one with the lowest
Helmholtz free energy F' = U — T'S, where U is the energy, T is the temperature and S is
the entropy of the system. From Landau we know that the free energy is a functional of the
order parameter, which is analytical at the transition (when m = 0) and it can be developed as
a Taylor expansion of the order parameter near the transitions [39, [37]. The functional must
have the same symmetries as the most symmetrical phase, which is usually the high-temperature
phase.

When temperature decreases, the system experiences a spontaneous phase transition from a
low-symmetry phase to a high-symmetry phase; the transition involves a spontaneous symmetry
breaking [37]. In the case of the phase transition, spontaneous magnetisation appears
along one direction in the [FM] phase and the global rotation symmetry, observed in the [PM]
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phase, is broken. The broken symmetry is caused by the interactions between the particles. An
important property in the Landau model of phase transitions is that symmetries are not broken
continuously: either a symmetry is present or it is broken, but it cannot be both at the same
time [37].

Landau phenomenological mean field theory requires the order parameter to be small and
it is, therefore, more suitable to study second order phase transitions [39].

The purpose of this project is to investigate the PMIFM] phase transition in the low temper-
ature limit. At 0K there are no thermal fluctuations to move the system between the high and
low temperature phases any more, instead the transition is driven by quantum fluctuations. In
this quantum regime, the Ehrenfest classification is not relevant and the Landau classification
is used instead. Future references to first or second order transitions refer to the definitions

given by the Landau classification.

2.1.3 Ferromagnetic phase transition

In the [FM] phase, the global rotation symmetry of the electron spins is broken. More spins

point along one direction than along the other and a magnetisation M appears:

M = g (ny —ny), (2.1.1)

where pp is the Bohr magneton, n4 is the number of spins up and n, is the number of spins
down. This spontaneous magnetisation is used as the order parameter for the phase
transition. Near the latter, the free energy functional is [40]

F[M(T)) = Fy + %a(T — T, M(T)* + ibM(T)‘l — HM(T), (2.1.2)

where Fj, a and b are positive phenomenological constants, T, is the transition temperature

and H is the applied magnetic excitation.

2.1.3.1 Ferromagnetism in zero magnetic field (H = 0)

In the absence of external magnetic excitation, the expression of the free energy in Equa-
tion [2.1.2] only contains even terms in M, because systems with up or down spins are symmet-
rical and so must be the functional F[M] (M is temperature dependent).

The stable phase at thermodynamic equilibrium minimises the free energy. We see in Fig-
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Figure 2.1: Helmholtz free energy of Landau model of ferromagnetism above, below and at
transition temperature 7T, with zero external magnetic field.

ure that, above T¢, there is only one minimum for F[M] at M = 0, whereas below T, two

values for M minimise the free energy. These minima are given by

OF

sif=M [a(T —T.) + bM?] = 0. (2.1.3)

Thus the functions M (T") that minimise the free energy are

M =0 for T>T,
(2.1.4)

M =+ for T < T,
We see that M (T) is continuous at T, and thus the phase transition is of second order.

2.1.3.2 Ferromagnetism in non-zero magnetic field (H # 0)

If we now apply a magnetic excitation H, the symmetry is broken and the degeneracy of
the minimum energy is lifted as illustrated in Figure 2.2l The expression to minimise the

thermodynamic potential given in Equation becomes

SF

sy = M [a(T = To) +0M?] — H =0, (2.1.5)

and there is a unique value for M that minimises the free energy.
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F(M)

H=0

Figure 2.2: Helmholtz free energy of Landau model of ferromagnetism above, below and at
transition temperature 7, with non-zero external magnetic field.

2.1.3.3 Magnetic susceptibility

The magnetic susceptibility at constant temperature is defined as

oM
X1 = =77 | > (2.1.6)
O0H |,
and differentiating Equation with H gives
a(T — T.)xr + 3bM?*xr — 1 = 0. (2.1.7)
Thus near the transition in the [PM]state, where M = 0,
-1 (2.1.8)
XM= T —T,) -
and near the transition in the ordered phase, where M = + M,
S (2.1.9)
X = ST, —T) -

We saw that the magnetisation varies at M oc (T, —T)?, with 8 = 1/2, and the susceptibility
varies as x < (T — T.) 7, with v = 1. § and ~ are called the critical ezponents, and more
similar critical exponents can be defined to describe continuous phase transitions. However,
the critical exponents given by the Landau model (8 = % for M and v = 1 for xr) deviate

from experimental results. This model, based on mean-field theory, does not properly describe
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continuous phase transitions at T, for dimensions d < 4 [40]. An important hypothesis about
these critical exponents, based on their experimental measurements and known as the hypothesis
of universality, is that they are independent of the type of phase transition, as long as the latter
is continuous. In the static case (no consideration of time), these critical exponents only depend
on the dimensionality d of the system, the symmetry D of the order parameter and the range
(long or short) of the interactions [40]. Thus to characterise a continuous phase transition, one

needs to identify to which universal class the system belongs.

2.1.4 Ferromagnetic quantum critical point

In the previous description, the PMIFM]| phase transition occurs at a finite temperature 7, and
the quantum fluctuations in the system are neglected. This makes sense when the thermal
energy kg7 is much higher than the energy of the excitations fiw. Now lets imagine a system in
which the [PMHFM] transition parameter is not the temperature, but a non thermal parameter
p, such a pressure, doping or a magnetic field. The phase diagram of such a system will look
like the illustration in Figure [2.3] The line, which represents the 7" and p dependent [PMFM]
phase transitions, is suppressed at p = pg and T = 0K. At this suppression point, called a

[quantum critical point (QCP)| the transition is driven by quantum fluctuations and becomes a

quantum phase transition.

T4

PARAMAGNETIC

QUANTUM
CRITICAL
/ POINT

FERROMAGNETIC

>

Po p

Figure 2.3: Schematic representation of a second order PMHFM] phase transition that ends with
a quantum critical point at OK. T is the temperature and p is a non-thermal tuning parameter.

Around the [FM][QCP] the energies of the fluctuating modes are not negligible compared to

the thermal energy and static properties cannot be separated from dynamic properties anymore.

28



Hertz generalised the Landau-Ginzburg-Wilson model to describe quantum critical phenomena
by considering imaginary times to account for the dynamic aspects of the phase transition [25].
Later Millis in [27], uses effective bosonic field theory to describe the fluctuations of the ordering
field at a 0K continuous phase transition.

The second order have attracted huge attention over the past years because possibly
responsible for the emergence of many new exotic quantum phases in itinerant electron systems,
such as non-Fermi liquid behaviour or magnetically induced superconductivity. Many different
systems have been experimentally studied and, near the all showed a deviation from the

standard behaviour of a second order phase transition [17].

2.2 Damped harmonic oscillator

2.2.1 General equation

The general differential equation of a damped harmonic oscillator system with observable w is:

1 d?u  2¢du
— =+ —=—= = 221
w% dr2 +w0 dt +u X0f7 ( )

where wy is the undamped angular frequency of the oscillator, ¢ is the damping factor, f is the
driving force and g is the static gain. To compute the response of the system, we can use the

Laplace transform, which is defined as:

oo
L) = Up) = [ u(t)exp(-pt)dt, (222)
0
with p a complex number. Equation then becomes:

U
*%f) (w§ + 2Cwop + p*) = XoE(p), (2.2.3)
0

where U(p) is the Laplace transform of the observable of the system and F(p) is the Laplace
transform of the driving force. Equation can be written as U(p) = x(p)F(p), with

(p) = _Xowp (2.2.4)

X wi + 2¢wop + p?’

the susceptibility of the system.
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2.2.2 Response to an impulse

Since L[4(t)] = 1, we can directly measure the susceptibility of a system by exciting the latter

with an impulse. With F(p) = L[Fyd(t)] = Fy, Equation [2.2.4] gives:

F 2
U(p) = ——070%0

= - . 2.2.5
w + 2Cwop + p? ( )

When solving the equation w? + 2¢wop + p* = 0 to find the singularities, p; and pg, of U(p), we

identify three regimes:

A=4wi(¢*-1)
¢>1 (over-damped regime): p1 = —wo(C+V¢*—1) p2=—wo(¢—V¢*—1)
¢ =1 (critical regime): p; = ps = —wp

¢ <1 (under-damped regime): p; = —wo(¢ +iv/1—C?) pa = —wo(¢ —i/1—¢3),
(2.2.6)

2.2.2.1 Over-damped regime ({ > 1)

A system is in the over-damped regime when it does not oscillate around its equilibrium state
and approaches the latter from one direction only.

Equation has two real singularity points, which are given in Equation (¢ >1).
We define Ty = —1/p; and To = —1/ps and we can write Equation m

1 1
wo(C+ /2 —1) TQ_wo<<—\/c2—1)' (

After a decomposition in simple elements and reverse Laplace transform, we find the temporal

2
Up) = Xoro with Ty =

(1+Tip)(1 + Tap) 2.2.7)

solution u(t):

u(t) = 200 (e omm)

o (2.2.8)
u(t) = 2Lt/ (1 o2 it = L -
2V -1 wo(¢ — /- 1)

To is the time constant for an exponential decay of the system towards equilibrium in the
over-damped regime.

The yellow line in Figure 2.:h illustrates the response of the over-damped oscillator with
¢ = 2. In the strongly over-damped regime ({ >> 1), the expression of 7, in Equation m
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simplifies and we have

2¢
" (2.2.9)

Q

TO(C)

2.2.2.2 Critical regime (¢ =1)

The critical regime is the transition between over-damped to under-damped regimes. This
regime corresponds the shortest time for the system to go back to equilibrium without pseudo-
oscillations.

When ¢ = 1, we have A = 4w2(¢*~1) =0 in Equationand Equation has a double
real singularity point pg = —wg. We define Ty = —1/pg = 1/wy, which is the time constant for

an exponential decay of the system towards equilibrium, and Equation [2:2.5] becomes

XoFo . 1
Ulp) = —— th Thp = — 2.2.10
i(p) (1 ¥ TOp)2 w1 0 wo ) ( )

which gives the temporal solution

u(t) = L7HU(p)]

(2.2.11)

/T with 7. = —

u(t) = xoFowite o

The brown line in Figure illustrates the response of the critical oscillator ({ = 1). 7. is the

time constant for an exponential decay of the system towards equilibrium in the critical regime.

2.2.2.3 TUnder-damped regime ({ < 1)

A system in the under-damped regime pseudo-oscillates around its equilibrium state and as it
approaches the latter. If ( = 0, the system oscillates indefinitely at angular frequency wy.

In the under-damped regime, equation2.2.5 has two complex singularity points, p; and ps
in Equation (¢ < 1). We can rewrite Equation

Xof*owg .
Ulp) = — 207020 Gith Q= wy/1— 2
i(p) ( C 0)2 02 1 0 <

_ XoFowo Q 9919
V1—=¢2(p+Cwo)? + 02 (2:2.12)
= 7XOFOWO L [e‘cwot sin Qt] ,

Vi@
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and thus
F w
U(t) XoL'owWo —t/Tu

Vi@

Q) is the angular frequency of the pseudo-oscillations.

sinQt with =, = (2.2.13)

CTO.

The blue line in Figure 2:4h illustrates the response of the under-damped oscillator with
¢ = 0.4. 7y is the time constant for an exponential decay of the system towards equilibrium in

the under-damped regime.

2.2.2.4 Discussion

A damped harmonic oscillators has three working regimes: the under-damped ({ < 1), the
critical (¢ = 1) and the over-damped regime (¢ > 1). In the under-damped regime, the
temporal evolution of an observable u(t) oscillates around its equilibrium value, whereas in

the critical and over-damped regimes, u(t) exponentially decays towards its equilibrium value

(Figure [2.4p).

—— under-damped 10T, —— under-damped
XoFo | ’=0.4 — critical e critical /
270 ’ over-damped - over-damped / -
¢=1 2
2 =2 S
E / 25T,
©
X
©
— o
0 L .
(a) Tor’
1 1 1 1 0 o 1 1 1 1 1
0Ty 5To 10Ty 20T, 0 1 2 3 4 5
time 4

Figure 2.4: (a) represents the time evolution in the under-damped (¢ < 1), the critical (¢ = 1)
and the over-damped (¢ > 1) regime of a damped harmonic oscillator, which has been excited
with an impulse (f(¢) = Fod(t)). Tp on the horizontal axis is the oscillating period at zero
damping (i.e. ¢ = 0), xo is the static gain and Fy is the weight of excitation. (b) shows
(-dependence of the relaxation time of the system in the different regimes. The dotted line
of equation 7,1 = 2(Ty is the asymptote of the over-damped relaxation time when ( — oo.

The dashed curve of equation 7,0 = Tp [C +V2(¢— 1)% + % (= 1)% - g (= 1)g is an

approximation of the over-damped 7 when ¢ — 1.

The relaxation time 7 is the time constant for an exponential decay of the system towards
equilibrium. We saw that 7 depends on the damping rate ( and thus on the regime. In

Figure [2:4p, which shows the (-dependence of T, we see that the relaxation time in the under-
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and over-damped regimes converge to a minimum value 7y at { = 1 (the critical regime). For
¢ — 0 and ¢ — oo, on the other hand, 7 — co. This means that with zero or infinite damping,
the system will never reach its equilibrium position (in the first case the system will oscillate
indefinitely, whereas in the second case it will remain immobile). The strongly-damped side of
Figure shows the linear limit of the relaxation time, 7({) = 2¢/wq, given in Equation m
We can see that it is a good approximation when ¢ > 3: Equation m gives 7, (3) =~ % and

Equation m gives 7, (3) = w%.

2.2.3 Permanent regime with harmonic driving force
2.2.3.1 General equation

A harmonic driving force means that f(¢) is sinusoidal:
F(t) = Fo cos (wt + o) = Re{ Fye' %)} — Re{f(1)}, (2.2.14)

where f(t) is the complex form of f(t). To simplify, we take ¢y = 0. We are interested in the

harmonic response of the system and therefore we are looking at the response with the form:
u(t) = U cos(wt + ¢) = Re{Uei(“t+¢)} = Re{Qei(‘”t)} with U = Ue'®. (2.2.15)
The susceptibility is given by Equation [2.2.4] with p = iw:

U(W)M B XOW(Q)

x(w) = Fod = W2 — w2 + 2iCwow
B Xowj (Wi — w? — 2iwow)

~ xowd (w§ — w? — 2iCwow)
 (wE - w?)? 4+ 4Cwiw?

= X'(w) —ix"(w),

wag (Wg - w?)

(w3 — w?)? + 4CPwiw?
Do
(wd — w?)? + 4Pww?’

with  x'(w) =

(2.2.17)

and x"(w) = (2.2.18)
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To study the system we look at its harmonic response, i.e. the frequency dependence of x(w).

The latter is defined by its amplitude and its phase:

X(w) = [x(@)| = /xw)x(w)" = N >§(>)50+4<2 — (2.2.19)
wi —w wiw
B(0) = anglx(w)) = —arctan ( % ) (2.2:20)

2.2.3.2 Application to the neutron scattering measurements

The intensity of neutrons scattered by the system during a neutron experiment is proportional
to the dissipative part of the susceptibility. This is a direct manifestation of the fluctuation-
disspation theorem presented in Appendix [ATI] The dissipated energy is contained in the
imaginary part of the admittance (x”(w)). If we multiply x”(w) with Z—i, then Equation
becomes a function of energies. With F = hw (the energy transfer), Fy = fiwg (the resonance

energy of the undamped oscillator) and D = 2(Ey, Equation [2.2.18| becomes

XoDEGE

1
F) = .
X ( ) (Eg—E2)2+D2E2

(2.2.21)

We see that D is inversely proportional to the under-damped relaxation 7, = 1/(Cwo) (Equa-

tion |2.2.13)):
2
D= —h (2.2.22)

Tu

2
It is also interesting to rewrite Equation |2.2.21| with " = % and A = xoI":

AE
X' (w) = (2 -T2+ B2 (2.2.23)
D

where T is inversely proportional to the strongly over-damped relaxation time 7, = 2(/wq

(Equation [2.2.9)):
r=-—. (2.2.24)

To

2.2.3.3 Asymptotic behaviour

During an energy scan with atriple axis spectrometer (TAS)| we have access to a limited energy

range (0.2meV < AFE < 5meV for our inelastic neutron scattering experiments, on the energy
loss side). Therefore the energy of the magnetic excitations, that we are measuring can be lower

of higher than this range, and we only observe the head or the tail of these out of range signals.
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Figure 2.5: This figure shows the asymptotic behaviour of a damped harmonic oscillator x” (fiw)
in the strongly under-damped regime, around the critical regime and in the strongly over-
damped regime. The small dashes vertical line is the position of the resonance energy Fy. (a)
shows x”(Aw) in the weakly-damped regime (blue curve) and its asymptotic behaviours (big
dashes curves). (b) shows x”(hw) around the critical regime (brown curve) and its asymptotic
behaviours (big dashes curves). (c) shows x”(Aw) in the strongly-damped regime (yellow curve)
and its asymptotic behaviours (big dashes curves).The left and right insets are zoomed-in por-
tions of the head and the tail of x”, respectively. The right side of the equation in the insets
are the approximation functions for ¥’ and the inequalities give the validity domains of those
approximations.
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Figure[2.5]shows the asymptotic behaviours of X, the dissipative part of the general [damped)

[harmonic oscillator (DHO)| where the magnified areas depicted by thin lined black boxes rep-

resent the energy range that is available for the measurement.

E < Eg: the excitation is at higher energies than the scanned energy range and we
measure its head. This is represented by the left zooming boxes in Figure [2.5] The most

suitable function to fit the signal depends on the damping regime of the excitation.
i strongly under-damped regime (¢ < 1): x"(F) =~ % represented in Figure ,
where A = xol.
il critically-damped regime (¢ = 1): x"/(FE) ~ % represented in Figure .
iii strongly over-damped regime ({ > 1):

AE

X' (E) ~ T2+ E2 (2.2.25)

represented in Figure [2:5.

E > Ejy: the excitation is within the resolution of the instrument; the signal is part
of the quasi-elastic scattering and we measure its tail. This is represented by the right
zooming boxes in Figure 2.5] Again, the most suitable function to fit the signal depends

on the damping regime of the excitation.

i strongly under-damped regime (( < 1): x"(E) ~ AED; represented in Figure .

ii critically-damped regime (¢ ~ 1): x"(E) ~ A£2 represented in Figure .

iii strongly over-damped regime (¢ > 1):

AD?
" ~ - 2.
X'(B)~ 5 ) (2.2.26)

represented in Figure 2.5.

E = Egy: when the energy of the measured excitation is within the accessible energy

range, we use use the general form of x” given in Equation [2.2.21

2.3 Spin fluctuation theory

At zero temperature, there are no thermal fluctuations and therefore the phase transitions are

driven by fluctuations of other non-thermal degrees of freedom. The spin fluctuation theory
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suggests that the phase transitions is caused by the fluctuation of spins. This model explains
the emergence of new hidden magnetic ordered phases at a quantum phase transition. Here we

present the theory as presented by G.G. Lonzarich in The Magnetic Electron [41].

2.3.1 The limits of the model

In a conductor, electrons can move freely and usually at considerably high velocity, whereas the
spin alignment happens locally due to the Coulomb interaction. In a ‘hidden’ magnetic ordered

phase the spin alignment is not static, but it fluctuates slowly and with large amplitudes,

whereas in a conventional magnetic ordered state such as or [anti-ferromagnetic (AFM)| the

fluctuations have static wave-vectors and amplitude. At OK, the transition from the magnetic
ordered phase to ‘hidden’ magnetic ordered phase happens without any increase of the entropy
and therefore the latter cannot be qualified as disordered state. An intuitive representation
of the phase transition between ordered and ‘hidden’ ordered phases is that the ordered phase
is ‘melting’ to become the ‘hidden’ magnetic ordered phase. This transition is not driven by
temperature change, instead it happens at constant temperature and is provoked by tuning a
non-thermal parameter (e.g. doping [3] or magnetic field [42]).

The goal of the spin fluctuation theory presented here is to find a model for the interaction
field between the spins of the electrons. The main assumption is that the moments p carried
by the electrons are coupled by a potential —pu - by, where by, = Am is the exchange field and
A the phenomenological exchange field parameter.

We consider a homogeneous and isotropic system with cubic lattices and states with no
symmetry-breaking transitions. For simplicity reasons, we consider only low energy (w < w,)
and small wave-vector (g < q.) fluctuations, with w,. small compared to the Fermi energy and

g small compared to the dimension of the Brillouin zone.

2.3.2 The scalar dynamical field

We consider an electron interacting with another through a scattering process with exchange
of a boson with the interaction field. An electron can also interact with itself, by first emitting
and then recapturing a boson. The electrons, which become quasi-particles, are characterised
by their renormalised mass and cross section. The latter can be considered as the size of
the quasi-particle. This model gives a linear temperature dependence for the heat capacity C'

and a quadratical temperature dependence for the resistivity p, in the paramagnetic regime.
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This is known as the Fermi liquid theory and the renormalised quasi-particle’s mass and cross
section (size) may be represented by the constants C/T and p/T? respectively. Near the phase
transition, the Fermi liquid theory does not correctly describe the physical properties anymore
and instead C' o< T'log(T’) (observed in NbFe, for instance [1]) and p o T%/3. The effective mass
and size of the quasi-particles then become proportional to C/T o log(T) and p/T? o« T~1/3,
respectively, and become infinite at 0K. This divergence can be interpreted as a long range
interaction between quasi-particles.

The objective is to find the average magnetisation as a function of space and time M (r,t)
when an external magnetic field Hext (7, t) is applied. To derive the scalar dynamical field, we
start with the static scalar field with a static and uniform applied magnetic field Hex(r,t) =
H.y. The magnetisation M (r,t) is given by the Taylor expansion of H as a function of the
order parameter M. In this case the magnetisation is static and uniform and M (r,t) = M. H
is an odd function and

H = agM + by M?3, (2.3.1)

where 1/ag is the Pauli susceptibility and by is the anharmonicity parameter. Equation m
gives the magnetisation induced by the application of the external field H.y; with no con-
sideration of the feedback from the exchange field AM. Now if we also include the latter,
Equation [2:3.1] becomes

H = aM + bM?, (2.3.2)

where 1/a = 1/(ag — A) = x ! is the enhanced susceptibility (if a > 0), b = by and supposed
positive.

Now we consider non-uniform, but static external field Hex(r). This induces a space-
dependent magnetisation M (r) in the system and H is now a functional of M (7). The induced

magnetisation is given by Ginzburg-Landau equation
H(r) = H[M] = aM + bM?® — ¢V*M, (2.3.3)

where M = M (r) is space dependent and c¢ is a parameter that gives the resistance against
spatial modulations. For a[FM]system, ¢ > 0.

We define an effective field which represents the ‘distance’ of the system to its equilibrium
state:

Heg = H — H[M). (2.3.4)
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At equilibrium, Equation is verified and H.g = 0.
We now include the dynamic aspect by considering the time evolution of the system. In
the paramagnetic state, we expect that the relaxation of the magnetisation M (r,t) towards

equilibrium H.g = 0 satisfies
M(7,t) = ~(r) % Heg(r,t), (2.3.5)

where M is the temporal derivative of M, ~ is the relaxation function and = is the spatial
convolution.
From now on, we look at the scalar dynamical field in leading order in M. This means that

we consider only the terms linear in M and Equation [2.3.3] becomes
H[M(r,t)] = aM(r,t) — cV2M(r,t). (2.3.6)
Using equations [2.3.4] and 2.3.6] in Equation [2:3.5] yields
M(r,t) = y(r) % [Hox(r,t) — (aM(r,t) — cVZM(r,1))] . (2.3.7)

With no external field, taking the spatial Fourier transfornﬂ of this equation and developing
the convolutiorﬂ product gives

M,(t) = — /_O:O e~ /_Z Y(r —u) [aM (u,t) — V2 M (u,t)] dudr (2.3.8)
=— /O:O e~ (r-we—iqu /O:O v(r —u) [aM(u,t) — cV2M(u,t)] dudr  (2.3.9)
= /Z [aM (u,t) — VM (u,t)] e~ “du (2.3.10)
= =7 (a + cg®) M, (), (2.3.11)

where v, and M,(t) are the components of the spatial Fourier transform of v(r) and M (r,t).

Xq_l = a + cq? is the inverse of the static susceptibility. Solving the first order differential
Equation [2.3.11] gives
M,(t) = Moe™ ", (2.3.12)

Li(a) = [%2, fr)etardr
2frg(x) = [T flz—u)qu)du
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where I'; = 7,/x4 is the relaxation rate of the moment to equilibrium without external field.
Thus in zero magnetic field and in leading order in M, the Fourier components of the magneti-
sation have an exponential time-relaxation.

We now consider a non-zero external magnetic field that varies in time and space and thus

H(r,t) # 0. Equation [2.3.11| becomes
Mq(t) =Y [Hq(t) —(a+ CQZ)Mq(t)] : (2.3.13)
And finally, the temporal Fourier transfornﬂ of the latter equation gives

My, = —iwM,,, (2.3.14)

=7y [How — (a+cq®)Myo] (2.3.15)

where H, ., and M, are the Fourier components of, respectively, the equilibrium field and the

magnetisation. The general linearised susceptibility xg,. is defined as

Hq,w = X;iMq,wv (2316)
and from Equation
_ _ o)
Xagw = Xg | (1 - ZF) (2.3.17)
q
Xy =X e’ (2.3.18)
0= YaXg - (2.3.19)

Xq.w is the general susceptibility, x, it the susceptibility at w = 0 and x is the susceptibility
at w =0 and ¢ = 0. 7, are the Fourier components of the relaxation function introduced in

Equation m If the exchange field does not depend on M, then

Vg = 74" (2.3.20)

where 7 is a constant and usually n = 1 for small q. In homogeneous and non-interacting

Fermi-systems, the electron moves almost freely and has a ballistic trajectory. Hence, when the

3f(w) = [, F(t)ei~tdt
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electrons’ mean free path is of the order of the magnetic wavelength )., we have
Yg o T, (2.3.21)

where 7 is the time it takes for the ballistic electron to cover a distance A\, = 27/q (the

wavelength of a magnetic excitation) at Fermi velocity vg:

2w

T (2.3.22)
Thus we find that
Vg X Q;L: (2.3.23)
and
Iyxg (n=1) . (2.3.24)

This is the Landau damping and it is observed in paramagnetic systems for instance.

If now the wavelength of the excitations grows and become much bigger than the electrons’
mean free path, the motion becomes diffusive and 7 o< A2. Thus, near the critical point, the
fluctuations slow down and I'y < ¢*> (n=2)

If we now go back to the generalised linear susceptibility in Equation it can be written

Xqw = [Xgl <1 - z{fqﬂ B (2.3.25)

as

Lyxq
— 2.3.26
Ty —iw ( )
= taxg Tt (2.3.27)
Py—iw Tg+iw
2
YoXa_ ; Doxgw (2.3.28)

= 1 .
2 4+w? T2+ w?

We recognise in Equation [2.3.28| a in the over-damped regime (Equation [2.2.25| in sec-

tion [2.2.3.3). Thus, in the paramagnetic state, near a ferromagnetic quantum critical point,
we expect the dissipation of the magnetic excitations, which is given by the imaginary part of

generalised linear susceptibility, to behave like a[DHO| with infinite damping.
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2.3.3 Temperature dependence

We can define a dimensionless function for the thermal populations of the different modes. In
the limit of the infinitely damped limit obtained in Equation [2.3:28 the dimensionless

thermal population of the different modes is given by

2 [ w
q
T

: (1 + %) , (2.3.30)

~
~

where n,, = W;T)_l is the Bose function. I'; represents the characteristic energy of the
mode q.

Assuming that each modes are statistically independent and that the characteristic energy
I'y of each mode depends on the thermal populations ny of all the other modes, the thermal

correction Aa (or Ax~!) of the 0K coefficient a in Equation is

1 (2.3.31)
= SbZ'yqnq (%(a + Aa + qu)) )

where ~ indicates the sum over the modes per unit volume and a,b are the OK parameters in
Equation From Equation [2.3.30, we see that n, oc 72/T'2 in the low temperature limit,
and ng o< T/T'y in the high temperature limit. Thus, from Equation [2.3.31] away from the

! o T at high temperatures.

critical point, we expect Ax ™! o< T? at low temperatures and Ay~
From Equation 2.3.T9] we expect the same for T'.
The temperature dependence in Equation |2.3.31|is given by /Z\qvqnq, which, in the general

case, becomes

Tc 1,872
n S
> q"ng T /0 il (2.3.32)
q
where z. x T~ is a cut-off and
s = C”T" away from the critical point
(2.3.33)
s = % near the critical point

where d is the dimension of the system and n is the coefficient in Equation 2:3:20 Equa-
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tion gives the asymptotic temperature dependence of the susceptibility in the [PM]state
at low temperatures. Away the critical point, usually s > 2 and evaluating Equation [2.3.32] in
leading order in T gives T2, independently of the dimension, as expected from the Fermi liquid
theory. If we now look near the critical point, usually s < 2, and Equation varies as 1.
For example, a three dimensional system, d = 3, with Landau damping, n = 1, gives s = 4/3

and thus y~! o T'5.
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Chapter 3

Properties of the Nb;_,Fes,, system

3.1 The NbFey; compound

The C14 Laves phase Nby_,Fes,, , an itinerant d-electron ferromagnet, is an ideal study case of

the theoretically predicted scenario in which a[ferromagnetic quantum critical point (FM QCP)|

becomes masked by modulated magnetic order. The system undergoes a continuous

[netic (PM)Hferromagnetic (FM)| phase transition that can be suppressed with substitution of

Fe by Nb. However, a magnetic phase with zero net magnetisation replaces the PMJFM] transi-
tion at lower temperatures. The break down of the Fermi liquid behaviour near stoichiometric

concentrations [I] indicate a masked [FM QCP|at zero magnetic field and at ambient pressure.

3.1.1 Structure of NbFe,

Stoichiometric NbFey forms as a hexagonal Cl14 Laves structure with lattice parameters of
a =b=4.8401(2)A and ¢ = 7.8963(6)A [36] and belongs to the space group P6s/mmec. The
unit cell, represented in Figure [3.1] contains four NbFey units formula and is thus composed of
eight Fe atoms and four Nb atoms.

The Fe atoms are distributed on two different sites, with six atoms on the 6h sites and two
atoms on the 2a sites as shown in Figure [43]. Four Nb atoms occupy the 4f sites, which
are located between the Fe layers [43].

Table gives the nearest neighbour distances for each atom site in the unit cell and we can

see that those distances are very similar. As a consequence, dopant sites are more likely to be

determined by the bonding network between Fe atoms [43]. [Density Functional Theory (DFT)|
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Figure 3.1: (a) shows the crystal structure of NbFey with six Fe atoms on 6h sites (red) and
two Fe atoms on 2a sites (blue). (b) represents the view along the ¢ axis of the structure,
which reveals the stacked Kagome layers. The 6h sites are on the two opposed Kagome layers
and the 2qa sites are on the principal axes of the hexagonal structure. Four Nb atoms (grey) on
4f sites labeled 2, 4, 6, and 8, are located between the five layers of Fe-atoms labeled 1, 3, 5, 7
and 9 in (a). The image is from [43].

Table 3.1 Distance of the nearest neighbour for each atomic site in stoichiometric NbFes . Values

from [43].

sites distance (A)
Fe(6h)-Fe(2a) 2.42
Fe(6h)-Fe(6h) 2.37
Fe(2a)-Fe(2a) 3.95
Nb-Fe(2a) 2.84
Nb-Fe(6h) 2.81
Nb-Nb 2.89

calculations, using the generalised-gradient approximation with the Perdew-Burke-Ernzerhof
correlation functional in the Stoner framework, suggest that for Nb doping with NbFe, the

substitution of Fe(6h) sites is energetically more favourable than the substitution of Fe(2a)
sites [43].
3.1.2 Characterisation of the magnetic phases in Nby_ Fes

In early measurements, Yamada et al. observed the coexistence of ferromagnetism and anti-

ferromagnetism in (Zr;_,Nb,)Fes [44]. Several years later, Yamada and Sakata performed

Nb [nuclear-magnetic resonance (NMR )| and magnetisation measurements in several samples of

Nb;_,Fes, at different concentrations y and reported an janti-ferromagnetic (AFM)|phase near
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stoichiometric concentration [45]. Figure shows the phase diagram made by the authors.
With increase of the Nb concentration, the Néel temperature of the AFM}[PM] phase transition
was observed to quickly decrease to 0K and only the [PM] phase to survive below y =~ —0.006
[45]. Shiga and Nakamura also measured a weak phase in off-stoichiometric samples when
Nb or Fe are significantly in excess [46]. These results lead to the initial temperature-doping

concentration phase diagram shown in Figure [3.2h.
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Figure 3.2: (a) represents the phase diagram of the temperature against the Fe concentration
in Nb;_,Fesy, as observed by Yamada and Sakata in [45] and Shiga and Nakamura in [46].
Picture from [45]. (b) is the expected phase diagram based on the experimental results from

[36], where “QCP” indicates the position of the supposed [FM QCP| Picture from [36]. Nb

atoms are substituted with Fe atoms on the Fe-rich side of the diagram (y > 0) and Fe atoms
are substituted by Nb atoms on the Nb-rich side of the diagram (y < 0).

More recently, Brando et al. measured the magnetic properties in the slightly Fe-rich
Nbj_g.015Fea10.015 polycrystal [I]. The Curie-Weiss behaviour of the inverse susceptibility and
the positive intersects of the Arrott plots (upper inset) at 2K and at 20K, in Figure indicate
a state below 20K. The electrical resistivity measurement (lower inset in Figure has a
T5/3 temperature-dependence, which suggest a break-down of the Fermi liquid behaviour.

Later measurements, by Friedemann et al., of Nb;_,Fes 1, high quality single crystals also

recorded a ground state in Nby_¢ g15Fe210.015 and indications of aspin density wave (SDW)|

state at higher temperature [42]. The real part of the susceptibility, thermal expansion and
resistivity measurements in Figure @ show a Curie temperature of T¢ ~ 24K and a Néel
temperature of Ty ~ 32K. The data also indicates strong thermal hysteresis at the possible

[SDWHFM] phase transition, which is evidence of its 1st order nature..
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Figure 3.3: Magnetic properties of Nbg ggsFes 015. The main figure represents the inverse sus-
ceptibility as a function of the temperature, the upper inset shows the Arrott plots measured
at different temperatures and the lower inset contains a the resistivity measurement. Figure
from [I]

The real part of the susceptibility of the stoichiometric sample and the slightly Nb-rich
sample in Figure [3.4 have only one kink in their temperature dependence, which suggests that
the ground state is a Additionally, a T3/? temperature-dependence of the resistivity
(Figure [3.5h) and a log(T") temperature-dependence of the Sommerfeld coefficient v = C/T
(Figure [3.5p) have been recorded in the slightly Nb-rich Nby o1 Fe; g9 [I]. This fnon-Fermi liquid]
behaviour is the sign of a possible nearby|quantum critical point (QCP)|and experimental

results are consistent with a two-order-parameter Landau theory [42]. The latter finding leads
to a prediction of the precise location of the hidden [FM QCP]in the assumed [SDW] phase and
of the first order nature of the phase transition [42]. Moreover, the T3/2 temperature
dependence of the resistivity is expected for 3D fluctuations, whereas T°/3 temperature
dependence of the resistivity is expected for 3D [FM] fluctuations and thus, the resistivity might
indicate the proximity to two types of magnetic order.

The two low temperature [FM] phases for y < —0.02 and for y > 0.02 are intrinsic to the
Nb;_,Fes;, and are different in nature [36]. Based on magnetisation, resistivity, susceptibility
and heat capacity measurements, Moroni et al. proposed the more complete version of the
Nb; _,Fez,, phase diagram, given in Figure [3.2b. They also speculated that the phase
identified by Yamada and Sakata [45] is a helical or spiral phase [36], which disappears at
y = —0.015 and with a wave vector connecting continuously to the [FM] ordering wave
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Figure 3.4: Temperature dependence of, the real part of the AC-susceptibility measured along
the ¢ axis (a), the thermal expansion along the ¢ axis (b) and the resistivity (c) in single

crystals Nby o1Feq. 99 (blue), NbFes (red) and Nbg ggsFea 015 (black). The inset in (c) gives the

temperature-dependence of %' In (a), the red arrow is for warming and the blue arrow is for

cooling. Results and figure from [42]

vector at the Lifshitz point (Figure [3.2p).

Thus Nby_,Fes 1, has a rich phase diagram, which four different magnetic phases (two
phases, a possible phase and a phase) across a small range of doping concentration.
It is not clear however whether the ground state for |y| > 0.02 is ferromagnetic or ferrimagnetic.
Subedi and Singh performed [DFT]calculations, within the local spin-density approximation and
the general potential linearised augmented plane-wave method [47], to calculate the electronic
structure of stoichiometric NbFes and estimate the energy difference between the non-spin
polarised case (Figure ) and several magnetic configurations. They found that the ener-
getically most favourable ground state is the ferrimagnetic configuration given in Figure [3.6b
with a moment of 1.18up/Fe on the Fe(2a) sites and an opposed moment of —0.75up/Fe on
the Fe(6h) sites [47]. The energy of this ferrimagnetic structure reduces the energy by 0.033eV
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Figure 3.6: (a) shows the non-spin polarised structure of the NbFey unit cell, which is used
as reference energy for the other configurations of the magnetic structure calculated by Subedi
and Singh [47]. (b) shows the spin configuration with the lowest calculated energy. Figure from
|47]

compared to the non-spin polarised configuration. The authors also calculated a Nb-induced
moment of 0.09up /Nb in the same direction as the Fe(2a)-induced moment for the ferrimagnetic
configuration, which is thus significantly weaker than any Fe-induced moment.

The ferrimagnetic spin configuration was later supported by Compton scattering with a
Fe(6h)-induced moment of 0.4up/Fe and a Fe(2a)-induced moment of —0.6up/Fe [48]. How-
ever, muon spin relaxation and Mdssbauer spectroscopy experiments point towards the [FM]
ground state with a magnetic moment carried by the Fe atoms of about 0.15up/Fe [2]. This
contradicts the prior Compton scattering results and there is no definitive answer to how Fe-rich
Nby_,Fes;, orders magnetically in the ground state.

In conclusion, Nby_,Fey_, presents a very good opportunity to study the scenario that pre-
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dicts the emergence of a modulated magnetic ordered phase at the approach of a[FM QCP} The
second-order [FM}{PM] phase transition extrapolates to 0K at zero pressure and zero field, which
makes this compound very convenient to investigate. Many different experimental approaches
were used to study NbFe, , however, until today, neutron scattering measurements have always

failed to detect experimental evidence representing the irrefutable confirmation of the presence

of the [SDWI
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Chapter 4

Experimental

We investigate a possible [ferromagnetic (FM)|lquantum critical point (QCP)[ hidden behind a

fspin density wave (SDW)| phase in NbFes . To do that, we tune the Nby_,Fesy, system across

the temperature (T)-composition (y) phase diagram. The significant advantage with doping is
that measurements are performed in an simpler experimental environment compared to other

tuning parameters such as pressure of magnetic field. The inconvenience is that the

[netic quantum critical point (FM QCP)|is not approached continuously and that adding a new

point across the phase diagram requires a new sample.

In this chapter we introduce the samples that are used to investigate magnetic order and
excitations near the border of ferromagnetism in the Nby_,Fes,, system and the instruments
that we used for this purpose. The latter are all neutron based instruments that use the principle
of neutron scattering. We will start with a presentation of the samples and their characteristics.
Then we will have a look at the theory of neutron scattering, that includes unpolarised and
polarised neutron scattering. Finally we will give an overview of the instruments, with some

more emphasis on the polarised neutron instrument.

4.1 Samples

In the Nb;_,Fey, system the 2nd order [FM] phase transition is tuned to low temperatures by
doping, in particular the replacement of Fe by Nb. Doped samples do not show a significantly
increased level of disorder as the relevant region of the phase diagram is within a 2% range in

the Fe concentration. For this investigation, we have three high quality Fe-rich single crystals
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of NbFe; at different concentrations (Figure [.1): y = 0.002 (Sample A), y = 0.14 (Sample B)
and y = 0.019 (Sample C). These samples were grown by William Duncan, Andreas Neubauer
and Wolgang Miinzer [49] 50] at the E21 institute of the Technical University of Munich.
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Figure 4.1: Temperature (7') - composition (y) phase diagram of Nb;_,Fes, . Nb atoms are
substituted with Fe atoms on the Fe-rich side of the diagram (right) and Fe atoms are replaced
by Nb atoms on the Nb-rich side of the diagram (left). The vertical plain lines labeled A, B
and C indicate the Fe concentrations of Sample A (y = 40.002), Sample B (y = +0.014) and
Sample C (y = +0.019).

Samples A B and C were grown from polycrystalline feed and seed rods that were produced
by William Duncan [51] with the RF furnace at Royal Holloway, University of London. The feed
and seed rod for Sample A was synthesised from annealed 99.95% Niobium (Nb) and 99.99%
vacuum re-melted Iron (Fe), whereas the rods for samples B and C were made of 99.99%
Puratronic Nb powder and 99.995% Puratronic Fe powder. Before melted into rods, the raw
powder compounds were degassed below a pressure of 8mbar. Then the Nb rods were annealed
at 1071%mbar at ~ 2400K.

The polycrystals were then remelted into single crystals in an ultra high vacuum (UHV)
optical floating zone (OFZ) furnace at the E21 institute. The atmosphere pressure in the growth

chamber was maintained, during several days, below 10~%mbar for Sample A and 10~mbar for
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samples B and C and then flushed several time with purified 5N7 Argon. During the growth,
a pressurised atmosphere of purified 5N7 Argon was maintained at 1.5bar. The growth speed
was maintained between 5mm/h and 10mm/h.

The samples were characterised with neutron diffraction measurements and neutron depo-

larisation measurements.

4.1.1 Characterisation of Sample A

The designation for Sample A is OFZ12-x, where OFZ12 is the name of the growth, and its
composition is the nearest to stoichiometric concentration: Nbg gggFes go2. Neutron diffraction

measurements revealed a mosaicity ~ 0.5° [49].

Figure 4.2: Sample A glued on its Aluminium holder with GE varnish for neutron measurements.

Additionally, magnetic susceptibility measurements suggest a [SDWljparamagnetic (PM)|

transition temperature of T = 13K, but no SDW]| transition (down to 2K, which is the
lowest measured temperature with this sample) [3]. Sample A is significantly smaller than

samples B and C.

4.1.2 Characterisation of Sample B

The designation for Sample B is OFZ27.3, where OFZ27 is the name of the growth and 3 is the
section of the growth it has been cut out from. The composition of Sample B is Nbg gsgFes 014

and its mosaicity of ~ 1° is slightly bigger than in Sample A [49].
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Figure 4.3: Sample B attached to its Aluminium holder with Aluminium wires for neutron
measurements.

Magnetisation measurements performed on a fragment cut out of Sample B feature two
anomalies suggesting phase transitions [3]. One anomaly is observed at Tc = 24K and it
is expected to be the [FMISDW]| phase transition. Moreover, previous neutron depolarisation
measurements indicate a depolarisation temperature between 24K and 26K [52]. The other

anomaly is observed at Ty = 30K, which is expected to be the Néel temperature for the

SDW] phase transition.

4.1.3 Characterisation of Sample C

The designation for Sample C is OFZ28.3.2.4, where OFZ28 is the name of the growth and
3.2.4 indicates the part of the growth this sample represents. The composition of Sample C is
Nbyg.os1Fe2 019 and its mosaicity, between 0.3° and 0.4° [49], is the lowest of the three samples.

Depolarisation measurements indicate a depolarising temperature exceeding 30K [49]. AC-
susceptibility measurements have also been done for this sample [48] and show two phase tran-
sition anomalies at Tc = 33K and at T,y = 37K. Diffraction measurements show an onset of

the phase at 34.5K [3].
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Figure 4.4: Sample C attached to its Aluminium holder with Aluminium wires for neutron
measurements.

4.2 Neutron scattering theory

To go further in the investigation of the SDW] phase and the magnetic excitations, we used
different neutron measurement technics: polarised neutron diffraction and unpolarised elastic
and inelastic neutron scattering. Neutron experiments rely on a common principle that consists
in weakly perturbing a system and observe its response. The applied perturbation must be weak
enough not to alter the intrinsic properties of the observed system and to remain in the linear
regime. Neutron scattering is based on this principle, where our system is the sample and the
weak perturbation is the incident neutron, which carries a magnetic moment: its spin.

The most common measurements are done with unpolarised neutron beams, in these ex-
periments we make no use of the spin orientation. However, weak contributions to the overall
neutron signal might be difficult to separate out with unpolarised neutron beam, but not with
polarised neutron beams. First we will see the neutron scattering equations for unpolarised
beams and then we will look at what these equations become when we consider the spin orien-

tation of the neutrons.
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4.2.1 Unpolarised neutron scattering
4.2.1.1 The scattering cross-section

The energy of a neutron E and its momentum fk are linked by

h2k?
E= , 4.2.1
where m isj the neutron mass, k = QT” is the amplitude of the neutron wave-vector and A the

neutron wavelength. When E =~ kgT at room temperature, the wavelength of the neutron is
A~ 2A, which is of the order of the interatomic distance in condensed matter [53).

During a scattering event a neutron with initial (before the event) energy E; = h%k2/(2m)
and momentum fk; will exchange energy and momentum with the system and end up with a
final (after the event) energy Ey = h*k7/(2m) and final momentum hky. If E; and Ey denote

the initial and final energies of the neutrons, the energy conservation law dictates [54]

hw = E; — E; (4.2.2)

hk = hkl - ﬁk}f, (423)

where hw is the energy gained by the sample and Ak is the momentum gained by the sample.

We consider a beam of neutrons of flux ¢(k;) where all particles have a momentum k;. If
o denotes the scattering cross-section, then ¢(k;)o is the scattering rate of neutrons by the
system in all directions and with all final energies. In Figure this would correspond to
counting all the scattered neutrons crossing the sphere (only a fraction of which is depicted
in the figure) surrounding the target. If instead of looking at all scattered neutrons, we only
look at neutrons scattered in one direction delimited by the solid angle d€2, and thus crossing
the infinitesimal surface dS in Figure then the scattering rate is ¢(k;)(do/dQ)dS2, where
do/dS) is the differential cross-section. Finally, if we only look at scattered neutrons in the
restricted direction d€2 and with final energy £y < E < Ey + dEj, then the scattering rate
is ¢(k;)d?c/(dQdw)dQdEs, where d?c/(dQdEy) is the partial differential cross-section. The

cross-section, the differential cross-section and the partial differential cross-section are related
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Figure 4.5: Illustration of scattering of a neutron beam from a target. Picture from [4].

with [4]

do
o= =240 (4.2.4)
/all directions dQ2

do d?c

— = ——dEy. 4.2.5
dQ all energies deEf / ( )

Incident neutrons can be represented by plane waves [4]. If the incident neutron beam
propagates along z, with the origin at the scattering centre, and 1; indicates the wave function
of incident neutrons, then

Pi(z) = e*i, (4.2.6)

Because of the spherical symmetry, the wave function of a neutron scattered by a single

nucleus at distance r is [4]

Yy(r) = *gei’“”, (4.2.7)

where b is the scattering length, which depends on isotope and spin state of the nucleus [4].
If we now consider a targeted system composed of many scattering centres, the number of

transitions per unit time and per solid angle df2 from state A; to Ay is the differential cross-
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section for those states [4]

do
dQy

dQ = i > Weiaiokyags (4.2.8)
Xi—= g QS( ) kg in dQ

where W, \, sk, 2, is the number of transitions per unit time from state k;, \; to state kg, As.

Fermi’s golden rule gives

2
> Widokya, = —plks) (ks V [kaNi)]?, (4.2.9)
ks in dQ

where p(ky) is the density of states at ky and V is the potential though which the neutrons

interact with the system and are scattered. With the box normalisation and a box volume Y

we have [4]
plkg) = (2};) kf— 2 dQ (4.2.10)
(ki) = }1/:; (4.2.11)
P(k;) = ki, (4.2.12)

and the partial differential cross-section becomes [4]

d?o
dQdE;

ki [ mY \?
N kf (2 h2> (kg s |V kiXi)|* 6(Ex, — Ex, + Ei — Ey). (4.2.13)
iTIASf 4

If we now re-define ¢(k;) = e'*i "™ and (kgAf| V |ki ;) as Y (kgAf| V |ki i), the previous equa-

tion becomes

d%c
dQdEy

_ Ky
Tk

m
N ( hz) (kg Ar|V [kiXi)|* 6(Ex, — Ex, + Ei — Ey). (4.2.14)
PiTPAS

lth

If Vi(r — ;) is the interaction potential between a neutron and the nucleus at position

r; in the lattice, then the potential for the entire scattering system is [4]
V=> Vi(r—m). (4.2.15)

Because neutrons are represented by plane waves in the Born approximation, the interaction
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matrix can be written as

(kpAplVIkidi) =D Vi(k) (Al €™ ™ N), (4.2.16)
l
with
K) = /drV(r)e“‘ o (4.2.17)
and the scattering vector k = k; — ky.

Now, to consider all possible scattering processes, we average over the possible initial states

Ai and sum over the compatible final states Ay. This gives

ZVl ) Afl e TN S(Ey, — Ex, + E; — Ef). (4.2.18)

2
dgd;f (%h?) ;f P

Dy, is the statistical weight for state |A;), which is given by the Boltzmann distribution:

1 —F,.
D, = — €Xp ( A") , (4.2.19)

where Z is the partition function:

Z=> exp (_li&) . (4.2.20)

Because the system is generally composed of many atoms, of different isotopes and with
different spins, there is a random distribution of several different scattering lengths . The
partial differential cross-section can be written as a sum of two terms:

d?o
dwd? inc’

d?o B d?o
dwd  dwd® coh

(4.2.21)

where d?0/(dwd)|con contains the information about cooperative effects between the atoms
(Bragg scattering, magnons, etc...) and d?¢/(dwd)|in. contains the information about the
dynamics in the system (e.g. motion or diffusion of individual scattering centre) [54].

The scattering length of an ion varies from one isotope to another or from spin state to
another. If b, denotes the scattering length of one particular isotope-spin state combination, and

that this combination appears at frequency ¢, within the system, then the average scattering
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length b for this system is given by
b= cnbn, (4.2.22)

which is the average of the scattering length of all isotope-spin state combinations present in
the system and weighted by their frequency of apparition.

The average coherent cross-section is
-2
Ocon = 4mh™. (4.2.23)

The total scattering cross-section is [54]

o= Z ci4nh?
]

(4.2.24)
= 47b2
The incoherent scattering cross-section is given by oine = 0 — 0con, and we have
— =2
Oine = 4m(b2 —b")
= 4mb? . (4.2.25)

binc = b7 - 52-

4.2.1.2 Nuclear scattering

In the case of nuclear scattering, the potential can be modelled with a delta function [54]. The
Fourier transform of the potential for the I*" nucleus with scattering length b; then is

B 2 i

Vi) = b, (4.2.26)

Equation [£.2.18 becomes

2
(S(E)\i —E,\f +Ei—Ef). (4.2.27)

> b (Agle™ TN

l

d20' k‘f
AQdE; E;; P
s\ f

Using the fact that b; is real, the integral expression of 6(E), — Ex, + E; — Ey), the closure
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relation for two operators and the Heisenberg representation (Equation [A.1.1)) gives [4]

d*oc Ky 1 be dt i T (0) ik T (1)) it (4.2.28)
A0dE; = ki onh — 101/ , 2.

where w = (E; — Ef)/h and (...) is the thermal average (the average over all initial states).

4.2.1.2.1 Coherent and Incoherent nuclear scattering If we consider many different
copies of a scattering system, all containing the same amount of nuclei with scattering length
by, but each with a different distribution bs and every possible distribution is represented once.
Then for scattering systems with a large numbers of nuclei, the measured cross-section is very

close the the cross-section averaged over all copies [4], and

dQO' k‘f 1
=7 bby dt(l’, I)e~* 4.2.29
AQdE; K 27rh%; i / ye ( )

where <l/,l> _ <€—in-rl/(0)e’in-rl(t)>.

With uncorrelated scattering lengths bs of the different nuclei

byby = (b)? for I' #1, (4.2.30)
byby = b2 for I =1, (4.2.31)

and from Equation [£:2:29] we obtain

2 1 - 0 ) 1 _ _ [} )
Lo _ & )22/ A 2 - (3)?] Z/ dil, 1y
L oo | /oo

deEf k; 27h k; 2mh
coherent scattering cross-section incoherent scattering cross-section
(4.2.32)
Using Equation [£.2.23] gives the coherent nuclear scattering cross-section
d20' Ocoh kf
=N—>>-1L§ 4.2.33
dQdEy co 4 k; (%, ), ( )

with

S(k,w) = 5—rs Z/ dt (e~ T (O gir )y giwt, (4.2.34)
l,l' —0o0

known as the scattering function.
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Equation [4.2.34]is often written as [4]

oo

S(K/7W) = %

dtl (k,t) exp(—iwt), (4.2.35)

where I (k,t) is the intermediate function; its expression is

1

I(k,t) = i Z(exp(—in'rlz(O)) exp(ik - r(t))), (4.2.36)
LU
and it verifies [4]
I(k,t)=1 (—n, —t+ zkth) . (4.2.37)

The incoherent part of the nuclear scattering cross-section is obtained from Equation

dQO' Oinc kf
= N2 5 (k,w), 4.2.
aadg; | = N g i) (4.2.38)
with
1 %0 , , ,
Silk,w) = 5 Z/ dt (e~ 0 gir Tty p—iwt (4.2.39)
l —0o0

known as the incoherent scattering function.

4.2.1.2.2 Principle of detailed balance From Equation |4.2.35] Equation 4.2.36[ and the
property of the intermediate function in Equation we find that

S(k,w) = exp(ﬂ) S(—k, —w). (4.2.40)

Equation is known as the principle of detailed balance, which expresses the equal prob-
ability for a neutron to gain or loose energy fiw to the system; the difference between S(k,w)
and S(—k,—w) is only due to a higher probability for the system to be in the lower energy

state.

4.2.1.2.3 Nuclear scattering by a crystal We consider the case of nuclear scattering
by a non-Bravais crystal, composed of N unit cells of volume vy. The position of a the d*!

scattering centre in the {*® unit cell is given by

Tid = l+d+u (fi) s (4241)
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where I + d is the position at equilibrium of the scattering centre and w is displacement out of

equilibrium. The coherent scattering cross-section in Equation [£.2.33] becomes

d20' kf 1 —_— g > . 14 . l .
_ M bobo ik (I+d—1'—d )/ dtle= " u(d/)(()) iK u(d>(t) —iwt
deEf‘Coh k: 2mh 4~ lzd: ava e it ¢ Je

(4.2.42)

The coherent nuclear scattering can be elasticﬂ when no energy is transferred between the

neutron and the system (E; = Ef), or inelastic, when energy is transferred. The coherent
differential cross-section for the elastic scattering is [4], [54]

do | (2

ENICLN )
., "V %:5(“ - G) [FN(G)[ (4.2.43)

with the nuclear unit cell structure factor

Fy(G) =) bae’® de 1, (4.2.44)
d
and
Wy = %([n -w(0)]);. (4.2.45)

exp(—Wy) is known as the Debye-Waller factor that accounts for the fluctuations of the atoms
around their position at equilibrium.

For incoherent nuclear scattering, the differential cross-section for the elastic scattering is

[54]
do
o

inc 4m

el
N
> Ginc.ae 2. (4.2.46)
d

4.2.1.3 Magnetic scattering

In a magnetic neutron scattering event, the dipole moment of the neutron p,, interacts with
the magnetic field of the unpaired electrons, which for each electron is the combination of the

dipole moment g and the orbital motion of the electron [4].

Lcalled Bragg peaks.
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4.2.1.3.1 The magnetic potential The dipole moment of the neutron (u,) and electron

(ke) are

HUn = —YUNO (4.2.47)
He = —2UBS, (4.2.48)

where pn and pup are the nuclear and Bohr magneton, o and s are the Pauli spin operator and

spin angular momentum operators and v = 1.913 is the gyromagnetic ratio. px and pp are

given by
eh
= 4.2.49
N = G ( )
eh
= 4.2.50
HUB 2me ) ( )

where e is the charge of the proton, m, and m. are the masses of a proton and electron
respectively. If p is the momentum of an unpaired electron, then the magnetic field generated

by the latter at R (unitary vector along R is R) is [4]

B = Bs + By,
o fo o X R _%pXR (4.2.51)
CAn R? h R ([’

where Bs and By, are the magnetic fields generated by the dipole moment and the orbital
motion respectively and ~ is used to represent unitary vectors: # = r/|r|. If we consider the
4t electron in the system, the potential Vin,; of a neutron in the magnetic field, generated by

this j* electron, is then [4]

Vinj(R) = —pn - Bj = —Z*;WN%BUJ' -(Ws,j + WL,5) (4.2.52)
s; xR
Ws,j =V x ( ’R2 ) (4.2.53)
1p; % R
Wi =+~ (4.2.54)

The total interaction is then

V= V. (4.2.55)



4.2.1.3.2 The cross-section For magnetic neutron scattering, we must also take the spin
state of the neutrons in consideration and therefore the partial differential cross-section must
be adjusted. If o; and o ¢ are the incident and scattered neutrons spin states, Equation [£.2.9]

becomes

2T

Wiowrisksopa = 5 [(kgo s Vin ko) |* 8(Ex, — Bx, + E; — Ey), (4.2.56)

and the partial differential cross-section in Equation [4.2.14] becomes [4]

d?o
dQdEy

2
) (kg0 g A f| Vin kigi )2 6(Ex, — Ex, + hw).  (4.2.57)

071)7‘,—>Uf>\f

Using equations 4.2.52] [4.2.53] |4.2.54] and |4.2.55| in Equation [4.2.57| yields [4]

d%o k
dOdE = (W’o)zkff Hoshilo- QLo §(Ex, — By, + hw), (4.2.58)

f OiNi—Of Ay 7

with [4]
po €’ . ,

ro = o classical electron radius (4.2.59)

T Me
Q. :Zj:ein-m {Fax (sj x&)+é(pj x;%)} (4.2.60)

=R %X (Q XR)

Kk =ky —k; (the scattering vector) . (4.2.61)

Q is proportional to the spatial Fourier transform of the total magnetisation operator M (r)
4]

Q(r) = _2%3 M (r)es "dr = —Q%BM(,{), (4.2.62)
which contains the spin and the orbital contributions to the magnetic scattering. This shows
that the neutrons are scattered by the component of the magnetic field, generated by unpaired
electrons, that is normal to the scattering vector <.

If Qt designates the Hermitian conjugate of @, we have

QL QL =) (bop — Kukp)QLQs
af (4263)

with «, 8 € {z,y, 2z},
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with 6,5 the Kronecker delta, and, for an unpolarised neutron beam, the partial differential

cross-section summed over all final states o¢, Ay and averaged over the initial states o;, A;

becomes [4]
d20— 2 kf A +
m = (7o) . Z(CSaﬁ — Kakp) X Z P (N Q4 [Ar) (Ar| Qp [Xi) 6(EN, — Ex, + hw).
v aﬁ /\i)\f
(4.2.64)
Considering that
(B — By 4 hw) = —— [ et ttgmintgy (4.2.65)
PV 5N =55 ' 2.
! 2nh J_ o
and
" BN
et ) =T, (4.2.66)

then, from Equation [£:2.64] the expression of the partial differential cross-section with time-

dependent operators becomes [4]

d%o - (")/7‘0)2 kf ~ A —iw
g, = 2 ) [(@ul-r0)Qas et (4.2.67)

Qs(k,t) is the time dependent operator Qg(k) in the Heisenberg representation (see Sec-

tion [A.1.1)):

iHt iHt

Qp(k,t)=en Qp(r)e” 7 . (4.2.68)
The elastic differential cross-section for magnetic scattering is given by [4]
do SN
Sl = (70)” S B — ki) Q) (Qa()). (4:2.69)
el af

4.2.1.3.3 Spin scattering only We now assume the case where neutrons are only scattered
by the spin of unpaired electrons in the system. We also consider the Heitler-London model,
which supposes that the unpaired electrons are close to their equilibrium position. The quantum
numbers S and L designate the combination of all unpaired electrons’ individual spin s; and
individual orbital angular momentum [;, respectively. We consider the quenched case of the
resultant orbital angular momentum L = 0, which works often well for transition-metal based
d-electron systems such as NbFe, . For a non-Bravais crystal, if R;q is the position of the d*®

lth

ion in the unit cell and r,, is the position of the v*™" electron with respect to the nucleus at
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R;4 and with spin operator s,,, then [4]

= Z gir " Ria Z e T s, (4.2.70)
ld v

With time-dependent operators, the partial differential cross-section becomes [4]

d?o

’77“0
[e] « 4 F/ F
AQdE; ~ 2nh Ky Z 8~ Rakp l%;d ga 9 (R)Fax)
« /OO (e Ruw (0) g=ir Rua(t)y (4.2.71)

X (P (0)Si(t)) e dt,

where wu;(t) is the distance of nucleus [ from its position at equilibrium, g is the Landé splitting
factor (¢ = 2) and Slﬁ is the operator of the spin component along § at ion I. F(k) is the

magnetic form factor

Fy(k) = /p(r)em"“dr, (4.2.72)

which is the Fourier transform of the density p(r) of unpaired electrons on an atom.

4.2.1.3.4 Scattering cross-section and dissipation We will now see how the scattering
cross-section relates to the dissipation in the system. The fluctuation-dissipation theorem (de-
tailed in Appendix links the dissipation in the system —given by the imaginary part of the
admittance (x”)— to the fluctuations in the latter at thermodynamic equilibrium.

If we write

2 2 .
S (k,w) = % / (Qa(—kK,0)Qs(k, 1))~ “dt, (4.2.73)
then Equation [.2.67] becomes
do (o —fz wp — Kakp) S (k,w). (4.2.74)
deEf 2/143 k B

S (k,w) can be separated between a static part, resulting from static magnetic moments in

the system, and a fluctuating part, which describes the inelastic magnetic scattering [55]:

5 (k,w) = 8P (k)6 (hw)+  S*% (k,w) . (4.2.75)
—_——— -
elastic (static) inelastic (fluctuating)
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The elastic part is given by [55]

SeP (k) = (218)(Q% (R)NQ7 (—K)), (4.2.76)

which gives, after using Equation in Equation and integrating over all energies,

the elastic differential cross-section for magnetic scattering already given in Equation [£.2.69}
The inelastic part Sy A (k,w), on the other hand, links the scattering intensity to the dis-

sipation in the system and its expression is a function of the imaginary part of the dynamical

magnetic susceptibility [55]:

" (k,w
S (K, w) = (0 (hw) + 1)%. (4.2.77)
ny, (fw) is the Bose factor and its expression is
1
np (hw) = (4.2.78)

Finally, using S (k) from Equation 4.2.76/and Sio‘ﬂ (k,w) from Equation 4.2.77|into Equa-
tion gives the partial differential cross-section for magnetic neutron scattering:

do (Wo

2
k oo 2 a
s~ () IR ((20m(@° (@ (-r0)3(0) + () + 1)

(4.2.79)

4.2.2 Polarised neutrons scattering

So far we considered scattering events with momentum transfer between the neutron and the
scattering system, but there are also scattering events that change the spin state of the neutrons.
Measuring this change of the polarisation of the neutron beam provides valuable information
about the system.

If we take the z axis as the polarisation axis, with u the spin up and v the spin down state

of the neutrons, then

ou=—+1lu (4.2.80)

o0 =—1lv, (4.2.81)
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where o, is the z component of the Pauli matrix. There are now four cross-sections, one for
each incident-scattered neutron spin configuration, that are the spin state cross-sections. These

four configurations are
with spin flip: v — v and v = u
without spin flip: v — u and v — v.

The cross-sections given before in the case of the unpolarised neutrons are the sum of these

four processes.

4.2.2.1 Nuclear scattering

First we look at the cross-sections for the nuclear scattering case. We consider a sample com-
posed of identical nuclei with spin I. Nucleus spin angular momentum is denoted by operator
I and neutron spin angular momentum is denoted by %0', where o is the Pauli spin operator.
During a scattering event, a neutron and a nucleus form a system with spin ¢, which can have

two values

1
t=1+ 5 if neutron spin is parallel to the nuclear spin (4.2.82)

1
t=1-— 5 if neutron spin is anti-parallel to the nuclear spin . (4.2.83)

Each spin system has a different scattering length (b* if t = I + % and b~ if t =1 — %) We
define |+) and |—) as the states corresponding to the spins ¢t = I+ 4 and t = I — 3, respectively.

The corresponding operator is t = I + 1o, and |+), |—) are eigenvectors of t* [4]

t2|+) =t(t+1) (here t=I+1/2) (4.2.84)
3
_ 72 o
=1"+2I+ 1
t? =) =t(t+1) (here t=1-1/2) (4.2.85)
1
=I’--.
4

We define an operator b such that b* and b~ are eigenvalues for |+) and |—):

bl+) = bt [+) (4.2.86)

bl-)=b"|-), (4.2.87)
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then

b=A+Bo-I
1 _
1
— + _ -
B_21+1(b b7).

and we obtain the matrix elements for the four spin state transitions [4]

4.2.89

>~
o
o
S

A~
N
Ne)
=

~— N S~

4.2.92

~—~ o~ o~

If we use the Fermi pseudo-potential

V(r)= Wbé(r) (4.2.93)

in Equation the partial differential cross-section for transition from state o;A; to ofAs
(with 04,05 € {u,v}) becomes [4]

2
d2o' kf 7 ik R
dQdw Tk D (opAslbge™ B loidi)| 0(Ex, — B, + hw). (4.2.94)

TiNi—Tf Ay ? j

The matrix element for the j** nucleus is [4]
(opAslbye™ R o) = (gl e B 3,) (o by o) (4.2.95)
where (0| Bj |o;) are the matrix elements in equations [4.2.89

4.2.2.1.1 Coherent nuclear scattering The coherent scattering is proportional to the
average of the scattering length b. We must average over the different isotopes composing the

sample, but also over the nuclear spin states:
b= <<b>spin>isotope~ (4296)
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Since I, depends only on the spin states of the nuclei [4]
(Lz)spin = <Iy>8pin = (L2)spin = 0. (4.2.97)

A and B in the expression of b (Equation [4.2.88) depend only on the isotope, and thus

busu = (ul b |u) = (A)isotope (4.2.98)
bysw = (0] b]v) = (A)isotope (4.2.99)
busw = (u|blv) =0 (4.2.100)
by = (0] b|u) = (4.2.101)

This shows that coherent nuclear scattering happens with no spin flip only.

4.2.2.1.2 Incoherent Nuclear scattering We saw in Equation [£.2.25] that incoherent
scattering is proportional to b2 — 52. Thus, from equations [4.2.89

— 2 1

(b2 - b )’U«HU = <A2>isot0pe - <A>i250tope + §<BZI(I + 1)>isotope (42102)
— 2 1

(b2 -b )UAW = <A2>is0t0pe - <A>1250t0pe + §<B2I(I + 1)>isotope (42103)
— 2 2

(bQ -b )U—W = §<B2I(I + 1)>isotope (42104)
— 2 2

(b2 —b )v—>u = §<B21(I + 1)>isotope- (42105)

4.2.2.2 Magnetic scattering

The magnetic scattering partial differential cross-section is given by Equation [£.2.58}

d?o ky 2
4 A2 O(Es, — E
= ka ‘<0’f)\f| Yroo - QJ_(K/) |0’1)\Z>|2 (S(.E)\1 — E)\f + hw) (42106)
k‘f Y7o ?

where M| (k) = M (k) — (M(k)-k)R and M (k) = —2upQ (k) (Equation [4.2.62]). We notice

that —;;g(rM 1 (k) and Bo - I have similar form and replacing B with —27;; and all the

components of I with the components of M and taking A = 0 gives the spin-states matrix
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elements for the magnetic scattering [4]

(Vi () ) = =5 (M2 () (4.2.107)
(0] Vin () [0) = f;7 [~ M. (k)] (4.2.108)
(u] Vi () |0) = —;/% (M4 (K) —iM 1, (K)] (4.2.109)
(0] Vi (1) 1) = —;l% (M (k) +iMy, (k)] (4.2.110)

We see from the equations [£.2.107] that the scattering without spin-flip is only sensitive to
magnetisation components parallel to the polarisation and spin-flip scattering is only sensitive

to magnetisation components normal to the polarisation.

4.2.2.3 Total scattering

Combining the nuclear and the magnetic scattering together gives the matrix elements [56]

"LL> — "LL> = <A>isotope - ﬂMJ_z + BIz (42111)
2/
,
|1)> - ‘U> = <A>isotope + ;JMLZ — BI, (42112)
UB
) — |v) = _% (M, —iM,,) + B(I, —il,) (4.2.113)
B
v) = |u) = *% (Mig +iM1y) + B(I, +ily), (4.2.114)
B

for the coherent neutron scattering, and [56]

1
Ju) = Ju) = (A)isotope — M. + bis + by (4.2.115)
2/,6]3 3
1
[0) = [0) = (Adisotope + o> My, + bis + = by (4.2.116)
2/,6]3 3
2
lu) = |v) = f;/% (Mg = iMiy) + Sbs (4.2.117)
2
lv) = [u) = f;/% (Mg +iM1y) + 3bsi, (4.2.118)

for the incoherent neutron scattering, where b;; = \/<A2>isotope — <A>i250tope and bs; = /B?2I(I +1).
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4.3 Instrumentation

Neutrons are excellent probes to investigate magnetic and nuclear structures in condensed
matter. There are two main types of neutron sources: continuous and pulsed sources. In a
continuous or steady state source the neutron beam is produced with a nuclear reactor (LLB
in Saclay, ILL in Grenoble (France) or FRM2 in Garching (Germany) for instance). A pulsed
source consists in hitting a target (e.g. Tungsten) with a beam of accelerated particles (e.g.
protons) during a very short time (= 1us) and at a frequency between 10Hz and 50Hz. Pulses
of neutrons are then spalled from the target by the incident particles. This source is therefore
also called spallation source (e.g. ISIS in Didcot, UK). The neutrons are then thermalised
in order to bring their energy spectra in an useful range for experiments. Typically thermal
neutrons have an energy of 5-100meV [54]. For experiments that require low energy neutrons,
the neutron source is moderated by a cryogenic moderator, which can be liquid Hs or CHy
at 20K [54]. Low energy neutrons with a typical energy of 0.1 < E < 10meV are called cold
neutrons [54]. When higher energy neutrons are needed (E > 100meV), the neutron source
is moderated with graphite at 2400K like at ILL in Grenoble [54]. The neutron beams at
different energies (cold, thermal and hot) are then directed toward the instruments to perform

various types of measurements. We used atriple axis spectrometer (TAS)|and amulti-choppers

[spectrometer (MCS)| with unpolarised cold neutrons for all the elastic and inelastic neutron

scattering measurements. We also did polarised neutrons diffraction measurements on POLI,

which is a|double axis diffractometer (DAD)|

We can divide our measurements in two categories: measurements with unpolarised neutrons
and measurements with polarised neutrons, which are presented in the following chapters. In
the next section we will have an overview of the instruments that we used for the unpolarised
neutrons measurements (4F2, Panda and LET). Then we will have a brief overview of POLI,
the polarised neutrons instrument and we will finish with the theory of the polarisation with

3He cells and the different cross-sections.

4.3.1 Unpolarised neutrons measurements
4.3.1.1 4F2 and Panda

4F2, operated by CEA-CNRS, at the Laboratoire Léon Brillouin (LLB) and Panda, operated
by JCNS, at the Heinz Maier-Leibnitz Zentrum [57] are instruments. represented
in Figure was invented by Bertram Brockhouse at the NRX nuclear experimental reactor
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in Canada in 1956. The name triple azis comes from the fact that there are three (parallel)
rotation axes perpendicular to the scattering plane: the first axis to select incoming neutron
energy, the second axis to select the q position in the reciprocal lattice and the third axis to
select the energy transfer between the neutrons and the sample. Collimators are used to remove
from the beam the components that are not parallel to the beam axis. The beam shutter cuts
the beam so that we can access the instrument. The adjustable slits act as a diaphragm. The
monochromator sits on the first axis and its function is to deliver a monochromatic neutron beam
to the sample. On 4F2 the monochromation is done with Bragg reflection on two monocrystals
of pyrolytic graphite and k; is chosen by adjusting the beam-monocrystals angle. The monitor,
represented by a small empty rectangle located between the monochromator and the Be-filter in
Figure counts neutrons after the monochromator. The Beryllium-filter (Be-filter) cuts out
the higher k; harmonics that leak through the monochromator. The sample sits on the second
axis. The analyser, which sits on the third axis, does the same work with the scattered beam
ks as the monochromator does with k;. Finally the detector counts the number of neutrons
scattered in its direction with the final energy selected by the analyser.

With a [TAS| we measure the probability that an incident neutron with initial momentum
@ and energy F; scatters with the system into a final momentum and energy F/; as seen
previously. The conservation laws give the momentum and the energy exchange between the
neutron and the sample:

hQ = h(ke — ki)

2my, 2m,

(4.3.1)

where[@)]is the scattering vector. Figure[L.7]shows the connection between real space positioning
of theand reciprocal space scanning position. Selecting and (direction and amplitude)
fixes [@] the position observed in reciprocal space. In the reciprocal space, the right part of
Figure is defined as @ = k¢ — k;, but there is an infinite number of sets that
give the same In inelastic neutron scattering measurements we perform energy scans at a
constant || position by changing the set. Typically, either |ki| or [k¢| is kept constant
and its orientation and the other [k¢| or [k;| (amplitude and orientation) is tuned to select the
transferred energy AF and scattering vector At 4F2 and Panda, we maintain [E¢] constant
and we tune [k} For the elastic measurements, on the other hand, we maintain and
only the relative orientation between the vectors changes, which allows to move [(J]in reciprocal

space. A [TAS| works with three axis when doing inelastic measurements, but we freeze the
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Figure 4.6: Representation of a of the 4F2 experimental line at the LLB in Saclay [58].
analyser axis on zero transferred energy for the elastic measurements.

4.3.1.2 LET

LET is a multi-choppers spectrometer that uses the time of flight principle to measure the

energy of a scattered neutron. It is operated by STFC at ISIS, is connected to the Tungsten

target located in [target station two (TS2)} The pulse frequency of the synchrotron is fsyne =

50Hz and one pulse in five reaches [TS2} LET’s work frequency is therefore frpr = 10Hz.
Neutrons spalling from [TS2] are moderated with solid methane and liquid hydrogen. After
being moderated and while being guided toward the sample with super-mirrors, the neutrons
go through several chopper discs to shape and clean the pulse and to select the incident energies
(see Figure|4.8{(a) [60]). Chopper 1 and 5 are both composed of two high speed counter-rotating
discs that select the incident energy and the energy resolution. Chopper 2 is a slow rotating

disc that prevents the overlapping of two consecutive 10Hz pulses, which happens when slow
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Figure 4.7: Real space and reciprocal space representation of a [TAS| in a specific position
(picture from [59]). One position of the instrument in real space (left part), which sets k;
and kg, corresponds to a @ scattering vector in the reciprocal space (right part). The lattice
invariance allows to define q in the first Brillouin zone such that Q = q + 7, where 7 is a
reciprocal lattice vector.

neutrons from the previous pulse arrive at the same time as neutrons from the new pulse. LET
is able to measure at more than one (usually three or four) incident energy within one single
pulse. It is Chopper 3 that separates (in time) the measurements at different incident energies to
prevent their overlapping in the time of flight. Figure b) illustrates the role of the choppers
in the case of three measured incident energies: Fy = bmeV, EFy = 1.5meV and E3 = 0.7meV.
Chopper 4 cuts out the tail of the signals with the different incident energies. The blue lines
in the figure represent the trajectories of the neutrons through the multiple choppers. The
split of the trajectories observed after the sample comes from the energy transfer between the
latter and the neutrons: the slope increases(decreases) when neutrons gain (lose) energy before
hitting the detectors.

The detector is composed of 384 vertical tubes positioned to form a half circle with the
sample in its centre (red line in Figure [1.8|a)) and those form a detection array covering 180°
in horizontal direction (from —40° to 140°) and and 60° in vertical direction (from —30° to
30°). Each tube, which is 4m long and 1 inch in diameter, is filled with *He at a pressure of
10atm and contains a thin Platinum wire on its axis. A neutron hitting a tube reacts with the
3He:

SHe+in =3 T +1p, (4.3.2)
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where 3 He is an atom of helium 3, 3n is a neutron, $7 is a atom of tritium and 1p is a proton.
The proton hits the Pt-wire at the centre of the tube and generates a current. The vertical
position of the neutron’s hitting point is obtained by resistance calculation from the voltage

amplitude measured at each end of the tube.
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Figure 4.8: Representation of LET spectrometer at ISIS (a) and the chopper system (b). (a)
shows the 25 m primary flight path with the straight super-mirror guide, the five choppers
installed on the beam path, the 110m?® vacuum tank where the sample is installed and the
detector array. (b) illustrates how the chopper system produces three neutron beam with
different incident energies. Figures from [60].

4.3.2 Polarised neutrons measurements

As explained already, neutrons are good probes to measure the magnetic structure and, because
they do not carry any electrical charge, to measure the nuclear structure in a crystal. However
it is often the case that the detected scattering intensity is a superposition of a nuclear intensity
and a magnetic intensity. It would be nice if we could choose what part of the signal we want
to look at and filter out all the uninteresting part. We saw previously that this is made possible
with spin polarised neutrons. We measured with POLI instrument at Heinz Maier-Leibnitz
Zentrum in Garching (Germany) and operated by RWTH Aachen University [61], which uses

Helium 3 (3He) cells to polarise the neutrons.
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4.3.2.1 POLI instrument

POLI, a allows spherical polarisation analysis E| and it uses hot neutrons, and thus covers
a wider range of the reciprocal space. Like in the [TAS] the monochromator sits on the first
axis and the sample on the second axis (Figure . Apart from the absence of the third
axis, the main differences between POLI and 4F2 or Panda are the polariser, the analyser and
the nutators (7, 11 and 8 respectively in Figure . The polariser polarises the incoming
neutron beam into one direction, the nutators orient the beam polarisation in space and the
analyser removes depolarised neutrons from the scattered beam before it reaches the detector.
Neutron beams can be polarised with 3He cells, polarising mirrors or polarising crystals. POLI

spectrometer uses 3He cells, which principle is detailed in next paragraph.

@ Hot source @ Nutator

@ Shutter @ Cryopad

® Monochromator slits @ Cryostat with sample
@ Monochromator @ Analyzer

® Monitor @ Detector

He cell @ Beam stop

@ Polariser

Figure 4.9: Overview of the different parts of the polarized neutrons instrument POLI at FRM2,
Germany (figure from http://www.mlz-garching.de/poli)

4.3.2.2 Polarisation of the neutrons

4.3.2.2.1 Time dependent polarisation POLI uses identical *He cells to polarise the
incident neutron beam and to analyse the scattered beam (see Figure 4.10b). The cells are
placed in magneto-static cavities, where a very uniform and homogeneous magnetic field is

generated. On the incident beam side the *He cell + magneto-static cavity are the polariser

23D polarisation of the neutrons (1D polarisation is called longitudinal polarisation analysis).
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(right side in Figure and it is called the analyser (or Decpol) on the scattered beam side
(left side in Figure [62]. ®He has a very big absorption cross-section for neutrons with
anti-parallel spin (o) & 6000b), whereas this cross-section is very small when the *He and the
neutron spins are parallel ((o44 ~ 5b). Therefore by correctly orienting the spins of 3He atoms
in a cell, one can filter out neutrons with same spin orientation and polarise the beam (the

term cell or filter will be used indifferently to designate a *He cell).

Focused monochromatic Imn:l
from HEiDi monochromato

(b) 3He cells used to polarise incident beam
and analyse scattered beam

Figure 4.10: Incident neutron beam polarisation and scattered beam analysis system on POLI-
HEIDI diffractometers. Figure from [62].

If 04 = 0¢ £ 0, are the spin dependent cross sections of the absorption processes in a He

cell, then the transmission is also spin dependent and writes [63], 64]

£ = ¢~ Ndoo(1FPue) (4.3.3)
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where N is the atomic concentration of 3He in the cell and d is the thickness of the latter. The

total transmission for an unpolarised neutron beam is given by

(4.3.4)

and using Equation and the absorption parameter of the cell, which is defined as u = Ndoy,
gives [63]
T(t) = e* cosh [ Pe(t)] - (4.3.5)

At POLI, instead of the absorption parameter u, the opacity is used and is defined as [62, [65]

O(A) =0.0732 x I X A X p, (4.3.6)

where 0.0732 is a dimensionless constant, [ is the length of the cell (in ¢cm), A is the de Broglie-
wavelength of the neutrons going through the cell (in A) and p is the pressure of 3He gas (in

bar). The transmission coefficient for an unpolarised neutron beam is then [62] [65]
T(t) = Toe™ cosh [OPye(t)] , (4.3.7)

with
Pi1e(t) = Pio(0)e 5. (4.3.8)

T, in Equation is the transmission of the empty filter. In Equation m Pi1(0) is the

initial polarisation of He and Tj is the relaxation time of the cell’s polarisation (~ 120h).
Two monitors, that are located before (M1) and after (M2) the polariser (Number 5 in

Figure , allow to continuously measure the transmission T, (¢) of the polariser given by

Tp(t) = %jg;?

(4.3.9)

where M;(t) and M (t) are the counting rates of M1 and M2, respectively. Fitting the data
with Equation gives precise values of Pizo(0) and Tj for the polariser.

For the analyser we follow the same procedure, but this must be measured at a pure nuclear
peak, such that no spin flip occurs in the sample, between the monitor and the analyser.
Additionally, this is done without the polariser. Thus we can only measure before the polariser

is inserted (when installing the new cells), and after it is removed at the end of the experiment
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(when we change the cells). This gives only two data points, which we fit with Equation m
and therefore the error on Pg(0) and T; are bigger for the analyser than for the polariser.

The asymmetry is what we measure during an experiment:

nt —n~
A= —— 4.3.10
o (4.3.10)

where nT and n~ are the counting rates for polariser and analyser settings parallel or anti-
parallel to each other. A can also be written as a function of the scattered beam polarisation
P! and analyser efficiency A,, [62]

A=PA,, (4.3.11)

with
A, (t) = tanh [OPye(t)], (4.3.12)

where Pye(t) and O are the 3He polarisation and the opacity, respectively, of the analyser cell.

In the same way, the efficiency of the polariser is
P, (t) = tanh [O Pye(t)] , (4.3.13)

where Pye(t) and O are now the *He polarisation and the opacity, respectively, of the polariser

cell. With equations [£.3.10] and [£.3.11] the polarisation of the scattered beam becomes

’I’L+(t1) - n_(tg) 1
nt(t) +n(t2) An(tm)’

P (ty) = (4.3.14)

where t; is the time of measurement of nt, t5 is the time of measurement of n~ and t,, =

(t1 +t2)/2.

4.3.2.2.2 Cell physical parameters To optimise the physical parameters of a filter (pres-
sure of *He gas, dimensions,etc...), which allows for the most accurate determination of P’, we
use the quality factor. The aim is to maximise the square root of the latter [63]. To achieve
that, we take 3He polarisation constant and we consider the A-dependence of the opacity in

Equation The quality factor @ is given by [63]:

Q\) = P,(N)?°T,(N). (4.3.15)
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For a given *He polarisation Py, (usually 70% is a good value [62]), the optimal opacity is given
by:
Ve _
do
d
ie.) —(PovT,) =0
(o) S (PVT)

( (4.3.16)
(ie.) @(\/Toe—o tanh(O Pye) sinh(OPye)) =0

(i.e.) Pgetanh(OPye)® + tanh(OPyge) — 2Pge = 0

Solving the 2°¢ order equation in tanh(OPg.) (Equation [4.3.16) gives one physical solution for

the optimal opacity as a function of Ppye:

0.0732 1 1
Oopt =~ % arctanh(y |~ +2 — , 4317
ot P arctanh( 1PE. + QPHe) ( )

which gives Oqpe = 0.0732Xlp ~ 26 barcm A for a typical cell polarisation of Py = 70%. On

POLI [ is fixed by the geometrical constraints of the instrument (I = 13cm) and p ~ 3bar.
Figure shows the A-evolution of the quality factor of 3He cells containing 2 bar and 3 bar
of 3He. We measured at A = 1.145 A and we see that p = 3bar is a good pressure to work with.
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Figure 4.11: 3He cell quality factor against neutron wavelength X for py, = 2 bar and py, = 3 bar
(figure from [62])
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4.3.2.3 Measurements

4.3.2.3.1 Coordinates system The coordinate system of POLI instrument is as follow:

z=2

Q
y L & and in the scattering plane (4.3.18)
z=xXy.

The incident neutron beam is polarised parallel to the polarisation of the filter in the polariser
(right side in Figure . This polariser can be rotated by 180° around the beam axis, which
flips the incident polarisation from z to —z. The beam polarisation is then spatially orientated
by the nutator on the polariser side (right side in Figure by applying a magnetic field
in a specific direction, which makes the neutron spin to precess. The same manipulations are
done with the scattered beam (left side in Figure . Like the polariser, the analyser can
also be rotated by 180°. Thus there are four possible configurations for the polariser and the

analyser:
e non spin flip:
- polariser and analyser parallel to z
- polariser and analyser parallel to —z
e spin flip:

— polariser parallel to z and analyser parallel to —z

— polariser parallel to —z and analyser parallel to z

4.3.2.3.2 Spherical neutron polarimetry In Section we saw the polarisation spin
state cross-sections in the case of an uniaxial polarisation analysis. With the latter method,
we cannot measure polarisation scattered in directions perpendicular to the initial polarisation
orientation. Instead the scattered beam appears to be more depolarised, even if it is actually

more polarised, but in different directions. The method that allows to measure the polarisation

of the scattered beam in all directions is called [spherical neutron polarimetry (SNP)|

The total cross-section, that includes polarisations of all directions, was derived indepen-
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dently by Blume [66] and Maleev [67]

NN* nuclear

+M, - M7} collinear magnetic

o= (4.3.19)
—iP- (M x M7}) chiral

+2P - Re{M  N*} nuclear-magnetic interference,

where P is the initial polarisation of the neutron beam. The authors also calculated the

expression for the scattered polarisation

PNN* nuclear
—P(M, -M7)+2ReM, (P-M7 collinear magnetic

bR 1)+ 2Re[M, (P-M})] w0
+i (M, x M?Y) chiral

+2Re{M  N*} + 2P x Im[M | N*| nuclear-magnetic interference,

where P’ is the polarisation of the scattered neutron beam. In the (x,y,z) basis defined

previously, Equation [4.3.20] can also be written in a tensorial form as

P! N2 — M? —1I,. Loy P, —1I,.
P lo= In. N2 — M? + Ry, R,. Py |+ | Ruy |, (4321
P! Iy R., N2 —-M?>+R..|] \P. R
with
N? = NN*
M?> =M, M

Ryi = 2Re[N M
I = 2Im[N M3 ]
Rij = 2R6[MJ_Z‘MIJ»]

Iij = QIm[MJ_zML],

and Py, Py, P, and P;, P,, P. are the x, y and z components of the incident and scattered

polarisations respectively.
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If we define the polarisation tensor P and the created polarisation vector P as

(N? = M?)/o, Inz/os —Iny /o
P= —Inz/oy (N? — M?+ Ry,) /o, R.,/o, (4.3.22)
Iny/o- Ry./o. (N2 - M?>+R..)/o.
—I,.0
P" =R, /o | (4.3.23)
R.y/o

with (from Equation [4.3.19)

oy, =N*+M?*+ P.I,,
oy =N?>+M?>+ PR,

0.=N?>+M?+ P.R,.,
the scattered polarisation in Equation [£.3.21] becomes
P =P'P+ P, (4.3.24)

or in terms of components, with i, 5 € {z,y, z}

P/ =) PP+ P (4.3.25)
J
From Equation for a pure magnetic state, we always have |P’| > |P|. This means
that, with a sample with a single magnetic domain, the polarisation of the scattered beam is
always higher or equal to the one of the incident beam. However in reality, samples can have
multiple magnetic domains, which depolarise the neutron beam and thus |P’| < |P].

A typical [SNP] experiment consists in measuring the polarisation matrix P, with elements

O;i — O~
Py = ——4. (4.3.26)

0ij + 053
0i;, with i, j € {x,y, 2}, is the spin-state cross-section (or theoretical intensity of the ij-channel)

when the incident neutron beam is polarised along ¢ and the scattered beam is polarised along

4, j denotes the direction opposite to j. In practice, we polarise the incident beam along i (i is
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@, y or z) and we measure the asymmetries when the scattered beam polarisation is along j (j
is @, y or z). Repeating the procedure for all possible ij configurations gives the nine elements

of the 3 x 3 polarisation matrix. With the tensorial expression of P’, the polarisation elements

of Equation become
PP + PJ’»’
Pij = <T>domain57 (4327)

where (...)domains denotes the average over the magnetic domains in the sample.

4.3.2.3.3 Scattering cross-sections In a[SND|experiment, to observe a selected spin-state
cross-section, we orient the incident polarisation along one direction and observe the scattered
polarisation along the same or another direction. Since there are six possible orientations
(x,y,z,—x,—y,—z), for either the polariser or the analyser, we can observe thirty-six spin-
state cross-sections or channels and those are given by the I;; in Table @ In consequence,
there are four possible polarisation matrices (two with spin-flip configurations and two with

non-spin-flip configurations), but only two are linearly independent:

Jij — Ji;

Py = 4.3.28
= T (4.3.28)
0= — 044
. A (4.3.29)
05+ 0ij
O'ﬁ — O'Z,:,
=2 U (4.3.30)
05+ 0ij
=Pz, (4.3.31)

and the same with P;j and 735.

When neutrons are scattered by the sample, their spin is either up or down, and therefore
VZ,j S {ZL’, Y, z,—x, Y, 72}) 03 = 045 + O—Z‘;a (4332)

where j = —j. With Equation [4.3.32| we can rewrite Equation [4.3.20] as [65]

Oigx Oix
/ —
P g; = Uiy — Ui@ . (4333)
Oiz Oiz

If we consider the component along j of the matrix P’o; in Equation [4.3.33] then, with Equa-
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Table 4.1 Intensities of the 36 possible channels measured with spherical polarised neutrons

(from [65])

T nuclear magnetic chiral magnetic nuc. magn. nterference

Iz = NN*

U M, - M} — (ML x M),

i = M, M + (M, % M?),

TE = NN*

o= NN* + M, My + 2R(MN)

w o= M M?

T = MM}

B = NN* + MM, - 2R(MN)

B = NN* + MM} + 2R(M:IN)

2 = MMy

= = M,M;

= NN" + MM 55 R(M; V)
Yo NN* + M, - M} — (M| = M}, +2R(MyN) + 23(M;N))
12 NN* + M, - M —i(M, x M}), — IR(MN) - 23(M: )
Ya(NN* + M, - M7 + (M| x M}), + MM N) — 2B(MIN))
12(NN* + M, - M +i(M % M), — IR(M; N} + 23(M; )]
L2 (NN* + M, M — (M, x M7). + 2R(MIN) — 2S(MFN})
Yo NN* -+ M, M — (M % M]), — FR(MIN) + 23(MIN))
i2(NN™ + M, - M? +i(M x MJ): + R{MEN) + 2S(MyNY)
Ya(NN® + M, - M7 + (M % M3), — WR(M;N) - 23(M;N})
1a(NN* + My M+ 2R(M, M) -+ 2R(M;N) + 2R(M2N))
Yo NN M, - MT —2R(M, M) +2R(MN) — 2R(MIN))
12(NN* My M- 2R(M, M) — MMy N} 4 2R( M)
o[ NN* + M, - M} + 2ZR(M,M]) — MMy N} — 2R(MINY)

tion (1332

(Ploi)j =01 — 053

Y (4.3.34)
= 2045 — 0y,
and thus
1 /
0ij = 5 (0i + (P'oy);) (4.3.35)
1
O'ij = 5 (O'i — (PIO'i)j) . (4336)

Equation and Equation are the cross-sections given in Table [{.1]By correctly
combining the channels intensities, one can separate the magnetic scattering from the nuclear

scattering.
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Chapter 5

Polarised Neutron Diffraction

Measurements

In chapter [3| we presented the phase diagram of Nby_,Fes ., (Figure[£.1)), which shows that the

ground state on the iron-rich side is called a [ferromagnetic (FM)| state. There are indications

suggesting that the ground state ordered moments are collinear and point along the c¢* axis,
but this has never been confirmed. With the hope to come up with a definitive answer to the
question of the ordered moments’ direction in the [FM] state and the presence or absence of

any chirality in the magnetic structure, we measured all spin-state cross-sections allowed by

[spherical neutron polarimetry (SNP)|diffraction at a magnetic Bragg position. We now present

this work and the results.

5.1 Data acquisition

We measured the signal in sample C (properties are summarised in Table with the
polarised neutron|double axis diffractometer (DAD)|POLI presented in Section The latter
instrument uses Quartz cells containing polarised 3He gas to perform

We measured all thirty-six polarisation channels allowed by [SNP]at two[FM]Bragg positions:
Q=(102)rlu. and @ = (30 1)r.l.u.. These two positions have a high magnetic over nuclear
intensity ratio and are close enough to the origin of the reciprocal space such that magnetic

form factor is high. For each Bragg position we measured deep in the [FM]state, at 5K, and in

the [paramagnetic (PM)|state, at 40 K. The latter measurements, in addition to doing polarised
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measurements, help to separate the magnetic signals from the nuclear background..

Table 5.1 Summary of the properties of Sample C.

doping concentration y = 0.019

Curie temperature Tc = 33K

Néel temperature TN =37K

space group P63/mmc

crystal structure hexagonal

lattice parameters a=b=484A, ¢c=790A
a=p=90° v=120°

We use the same coordinates system as in Equation

z=2

Q
y L & and in the scattering plane (5.1.1)
z=xXy.

The sample is oriented with the b-axis along z, and a* — ¢* in the scattering plane. We reached
the [FM] state at 5 K with zero field cooling. Each chanel was measured during fifteen minutes:
45s at each background points (two background points, one on each side of the Bragg position)
and 810s at the Bragg positions. Adding two background points to the measurements allows
us to use the software “FileScanner” developed by Henrik Thoma for the data analysis. This
software corrects the measured intensities for the time-dependent efficiencies of the cells and
gives the real intensities of the different physical quantities as well as the polarisation matrix
as we will see in Section

One pair of polarisation cells was used for each measured position. @ = (1 0 2)r.l.u.
was measured with cell HO3 (3He pressure: 2.5bar) for the polariser and H14 (*He pressure:
2.5 bar) for the analyser. @ = (3 0 1) r.L.u. was measured with cell H13 (3He pressure: 2.6 bar)
for the polariser and HL4 (*He pressure: 2.4bar) for the analyser. Table summarises all
the cell characteristics as well as the transmission values at insertion into and removal from the

instrument.
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Table 5.2 Physical characteristics and transmissions of the 3He cells used to measure the
signal at Q@ = (1 0 2)rlu. and Q@ = (3 0 1)r.L.u. in sample C. “T;” and “T}” are the initial
transmission at insertion and final transmission at removal respectively, “7” is the time constant
of the polarisation decay in the cell, and “)\” is the wavelength of the incident neutrons.

Q=(102)r.lu. Q=301)rlu.
position polariser analyser | polariser analyser
name HO03 H14 H13 HIL4
length (cm) 13 13 13 16
pspe (bar) 2.5 2.5 2.6 2.4
7 (hours) 72.45 81.26 93.90 81.97
T; (%) 27.14 30.50 27.90 27.84
Ty (%) 22.14 24.45 22.95 20.49
A (A) 0.714 0.714

5.2 Data correction and analysis

Section describes how different cross-sections are measured depending on the orientation
of the polarisation cells (or channel) in the instrument, which are summarised in Table
However the latter table is true for perfectly polarised cells only and does not take into account

the imperfect polarisation of the cells or the cell decay.

5.2.1 Correction for imperfect polarisation

The polarisation P of the neutron beam is not perfect (P < 1) and the analyser cell does not
absorb all the neutrons with opposite polarity. If, for instance, the polariser is along @, a small
proportion of the beam is still polarised along —, due to the none-zero cell transmission for
the neutrons with spin along —x, and hits the sample. If the analyser is oriented along —x, for
instance, a small proportion of neutrons with polarisation along & go through the analyser cell
and hits the detector. Figure [5.1] summarises the idea; it shows the neutron beam polarisation
at the different stages of the neutron flow. This diagram, shows the real composition of the
intensities measured during the experiments.

The total transmission T'(¢) of a polarisation cell is (Equation 4.3.7):
T, (t) = Tye~© cosh [OPye(1)] (5.2.1)

but if we look at neutrons individually, the transmission is different if the spin is parallel or

90



| |
| |
o ! . |
o . Incoming neutrons . |
| |
5 | 3 b0 3 :
o |
— | |
| |
o Up neutrons | Down neutrons N
(" o7 = 360 | ¢7 = 3%o
g =
.: | |
z + - .
3 : TPol Pol :
ol | |
—_ I
— Transmitted up | Transmitted down »
- 07 = Tea®l | 92 = Tpou®r
o ! |
3 =
|
S Ot 0|t atl ) .
c |
= '
- Scattered up | Scattered down p
Lo ¢35 =ordF +ords | ¢35 =ords +ody |
|
5 |
< ul - !
j : TAn An :
5 : \ :
—_ Transmitted up | Transmitted down »
Ol er=Ther | b5 = Th.05
— ! I
2 I
S | |
= Detected neutrons ,
L + _ |
- ! Pdet = ¢4 + ¢4 I
oo |
> I
| )

Figure 5.1: Neutron beam polarisation at the different stages of the beam flow (figure from

|65])
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anti-parallel to the cell’s polarisation. The spin-dependent transmission is given by [65]

T (t) = Tye O~ Fue(®) (5.2.2)

T~ (t) = Tye O+ Pue®), (5.2.3)

where O(A) = 0.0732 x [ x A x p is the opacity of the cell (Equation and Pue(t) =
Pye(0) exp(—t/Ty) is the time dependent polarisation of the 3He gas contained in the cell
(Equation [4.3.8). Using Equation and the efficiency of the cell P,(¢t) = tanh [O Py ()]
(Equation , we find that T (¢) and T (t) are related to the total transmission of the

cell and the produced polarisation of the beam with

TH(t) =T(t)[1+ P(t)] (5.2.4)

T=(t) =T(t)[1 - P(t)]. (5.2.5)

From the neutron flow diagram in Figure [5.1] we can see the spin composition of the detected
neutron beam. We start with an unpolarised incident beam (I: Source in Figure [5.I]), where
the total flux is ¢9. The beam arrives at the polariser (II:Polariser in Figure with half of
the neutrons with spin parallel to the polariser polarisation (the 4+ proportion) and the other

half with spin anti-parallel to the cell polarisation (the — proportion)

¢f = %% (5.2.6)

o7 = 500 (5.2.7)

The total polarisation is zero. The polarisation asymmetry is created by the different trans-
mission values for ("+') neutrons 7,7 and for ("~") neutrons T, . Since the polarisation of the
polariser is not perfect, T, is not zero and therefore the polarised beam is still composed of 4!

neutrons and '—’ neutrons.

o3 () = T,/ ()7 (5.2.8)
= %Ti(t)aﬁo (5.2.9)
¢ (1) =T, (t)oy (5.2.10)
= %Tp‘ (t)o- (5.2.11)
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The polarised beam is scattered by the sample (III:Sample in Figure[5.1)) and the four scattering
processes (+ — +,— — —, 4+ — —, — — +) can potentially happen and therefore we consider
the four spin-states cross-sections (044,0-_,04_,0_4, where + =1 and — =] in Figure [5.1)).

After the sample, the scattered beam composition becomes

¢35 (t) = 04403 () + 0105 (1) (5.2.12)
= %qﬁo (o4 TN (t) + o1 T, (1)] (5.2.13)
¢35 (t) = o——¢5 (t) + 015 (¢) (5.2.14)
= %% [0 T, (t) + o4 -T,7(1)] - (5.2.15)

After being scattered, the neutron beam goes through the analyser, which filters out the neu-
trons with opposite polarisation (IV:Analyser in Figure [5.1). However, the transmission of the
opposite polarisation direction is not zero and therefore the detected beam is composed of '+’

and '—' polarised neutrons

o1 (t) = T ()93 (1) (5.2.16)
= %aﬁoTJ (t) [o4+T,5 (8) + 01T, (t)] (5.2.17)
by (t) =T, (t)s (1) (5.2.18)
= %%T; () [o-_T, (t) + o1 T, (t)] - (5.2.19)

Finally the scattered beam that hits the detector (V:Detector in Figure is the combination
of ¢ () and ¢; (t)

Gact(t) = & (t) + o5 (1) (5.2.20)

= %% (TS0 [0 T (1) + 0 Ty ()] + T, () [o- T, () + 04 T,7 ()] } . (5.2.21)

We generalise Equation [5.2.20] to the three directions of space i,j € {z,y, z, —z, —y, —z}, and

the detected intensity becomes
I _ ! Tr TF T" T" T TF 2.22
(0 = 500 {TF @ [0 T (0 + 0, T, (0] + Tr () [0 Ty 0 + 05T 0]} (5:222)

where i is the direction of the polariser’s polarisation, j is the direction of the analyser’s po-
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larisation and ¢ = —i and § = —j. The time dependence or the transmissions come from the
polarisation decay of the *He in the polariser and analyser cells.

With Equations[5.2.4 and [5.2.5|for the polariser and the analyser, we rewrite Equation[5.2.22]
as an expression of the total cell transmissions and polarisation efficiency, which are the known

values

I15(8) = ST, (OTu (o {o [1+ Pp(0)] [1 + Pa(e)

+ o3, (1= Py(t)] [1 + Pa(t)]

+ o5 (1= By()][1 - Pa(t)] }.

(5.2.23)

Rearranging the cross-sections and the cell efficiencies in Equation[5.2.23] the intensity becomes

1
Ii;(t) = 2Tp(t)Ta(t)¢o{ (Uij togzto;+ UTj)
+ <Uij tog5— o0y~ UTJ') Pp(t)

(5.2.24)
+ (Uij — O'ﬁ + Ugj — O'E) Pa(t)

(= 0~ 7y o) BOP0) ).

5.2.2 Correction for cell decay

The intensities given by I,;(t) with ¢,j € {z,y, 2, —x, —y, —z} are the real intensities measured
during an experiment at POLI instrument. The time dependence comes from the polarisation
decay of the *He gas contained in the polariser and analyser. This means that if we measure
the same ij configuration at two different times, we will obtain different intensities (if t; < to
we will have I;;(t1 > I;;(t2)).

If we write I;7(t), I

7;(t) and I;(t) in the same way, we obtain a system of four equations and

four variables 0,07, 0;.,077. Solving the system gives the theoretical spin-state cross-sections

7912 057

o;; as a function of the real measured intensities (we omit the (¢) to make the equations more
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readable)

1 1
Oij = W{Pp [(Iij +15)(1+ Pp) — (I;; + I;z)(1 — Pp)}

PplPa [(Iij — 1)+ By) = (5 - L)1 - Pp)] }

1 1
- 8T, T.¢o PP,

(5.2.25)
hm+&m+awwm+am—a>

(1= B+ P+ I(1 = P - P)|
where the second equality is just a re-arrangement of the first equality.
Finally, using Equation [5.2.25] in the equation of the elements of the polarisation matrix:

O — 0%
P, = o9 % (5.2.26)

0ij + 053

gives the polarisation matrix elements (the (¢) are omitted to make the equations more readable)

| (L~ L)+ Py) — (I, — L)(1 - By)
B = B 0y T 1) By — (I, ) By’ (5:2.21)

5.2.3 Correcting and analysing the data

The correction for the imperfect polarisation and for the cell decay is done with “FileScanner”,
a software developed by H. Thoma. The software also computes the real cross-sections with
correcting for the time-dependent polarisation of the cells and provides the physical quantities

and the polarisation matrices.

5.3 Results

This section presents the results of the polarisation measurements at @ = (1 0 2)r.l.u. and at

Q=301)rlu.

53.1 Q= (102)r.Lu

Table gives the polarisation matrices at @ = (1 0 2) r.l.u., measured in the state at 5 K
and in the [PM] state at 40 K. The off-diagonal terms are zero for both temperatures, which
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suggests no rotation of the polarisatiorﬂ Only P,, and P,, are significantly different between
5K and 40 K.

Table 5.3 Polarisation matrices of the Bragg position @ = (1 0 2)r.L.u. measured at 5K 1
state) and 40 K (FM]|state). z, y, z are the polarisation axes of the polariser (left) and analyser

(top).

5K analyser 10K analyser
X vy v/ X vy v/
< 0.8246 | —0.0234 | 0.0028 < 0.9107 | —0.0152 | 0.0108

£0.0237 | £0.0019 | +0.0022
0.0159 0.9424 | —0.0110
£0.0025 | £0.0120 | £0.0027 £0.0025 | £0.0145 | £0.0027
—0.0053 | —0.0063 | 0.8890 —0.0097 | —0.0076 | 0.9555
£0.0025 | £0.0026 | £0.0101 £0.0026 | £0.0026 | £0.0142

£0.0300 | £0.0021 | £0.0024
0.0124 0.9535 | —0.0116

polariser
<

polariser
<

Using the [PM] polarisation matrix as reference and considering the errors, we see that the
depolarisation caused by the state when the initial polarisation is along « (AP, = 0.09) is
not significantly different than when the initial polarisation is along z (AP, ~ 0.07) and that
they are both very low. The polarisation along y remains constant between 40 K and 5 K.

Table [5.4] gives the intensities of the different physical quantities composing the scattered
beam at 5 K and at 40 K. The reason for negative values of some scattering factors in the latter
table (magnetic, chiral magnetic and nuclear-magnetic interference) is because they are not
measured directly. In Table we see that there is no channel that gives directly 2 Re[M, M}],
i(My x M7), or 2Re[NM;], and we obtain those with linear combinations of the intensities
measured through different channels. If the intensity of the calculated scattering factor is of
the order of the uncertainties of the intensities of the other contributions, it is possible that the

former becomes negative. For instance, the intensity for 2Re[NM;] is given by

Ly — Iy
2Re[NM;] = 2,

(5.3.1)
where I, and Iy are the theoretical channels’ intensities given in Table The other contri-
butions to these intensities are NN* (nuclear) and M, M, (magnetic). We see in Table that
the uncertainties of NN* and M, M, are of the order or bigger than the calculated 2 Re[N M ],
which explains its negative value. We consider negative values as zero.

The non-zero magnetic components and the imaginary nuclear-magnetic interference terms

Lif the incident beam is polarised along i (i € @, ¥, 2), the scattered beam may be depolarised along 4, but
the polarisation along j (j # ) remains zero
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Table 5.4 Intensities of the scattering factors at the Bragg position @ = (1 0 2) r.l.u. measured
in the [FM] state at 5 K and in the [PM] state at 40 K.

scattering factors at (1 0 2) r.L.u. 5K 40K
nuclear NN~ 3016.4 +£85.1 | 3127.0 £103.5
M, My 183.0 £21.2 73.0£25.0
magnetic M, M 94.5 +22.0 75.9 &+ 25.5
2Re[M,M?] | —247+47 | —260+59
chiral magnetic (M, x M7), | —125+4.6 2.7+£39
ZRG[NM;] —11.5£6.3 —11.9£54
nuclear-magnetic 2Re[NM}] 4.1+6.0 1.3+5.2
interference 2Im[N M,] 21.7+£4.6 329+5.8
2Tm[N M| 64.1 +4.9 52.4 £ 6.0

at 40 K suggest that we are not in the paramagnetic state at this temperature. However, at 40 K
we are very close to the Curie temperature of sample C, and the two measured temperatures
are sufficiently far apart to discriminate any signal that does not emerge in the [FM] phase. We
observe a significant increase of the intensity scattered by M, between 40K and 5K. The

increase of M , between the latter temperatures is 0 within the error.

53.2 Q= (301)r.lu.

The polarisation matrices for @ = (3 0 1)r.l.u., measured in the state at 5K and in the
state at 40 K are given in Table Like for @ = (1 0 2)r.l.u., the off-diagonal terms of
the polarisation matrices at both temperatures are zero. This suggests that there is no rotation

of the polarisation. Only P,, and P,. change significantly.

Table 5.5 Polarisation matrices of the Bragg position @ = (3 0 1)r.L.u. measured at 5K |
state) and 40K (FM]state). x, y, z are the polarisation axes of the polariser (left) and analyser

(top).

5K analyser 10K analyser
X y Z X v Z
< 0.6414 | —0.0035 | 0.0133 < 0.9026 | —0.0025 | 0.0123

£0.0155 | £0.0019 | £0.0019
—0.0012 | 0.9559 | —0.0127
£0.0024 | £0.0100 | £0.0024 £0.0022 | £0.0108 | £0.0024
—-0.0175 | —0.0123 | 0.6799 —0.0196 | —0.0155 | 0.9501
£0.0023 | £0.0023 | £0.0040 +0.0023 | £0.0023 | £0.0106

£0.0225 | £0.0017 | £0.0019
—0.0070 | 0.9535 | —0.0175

polariser
<

polariser
«
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Again, the depolarisation occurs when the incident polarisation is either along x or z, with
similar values of the depolarisation caused by the state for both directions (AP,, =~ 0.26
and AP,, ~ 0.27). However at Q@ = (3 0 1)r.l.u. the scattered beam is much more depolarised
than at @ = (1 0 2)r.Lu..

Table gives the intensities of the different physical quantities composing the scattered
beam at 5K and at 40 K. Here again, negative values have no physical meaning and are

considered as zero.

Table 5.6 Intensities of the scattering factors at the Bragg position @ = (3 0 1) r.l.u. measured
in the [EM] state at 5K and in the [PM] state at 40 K.

scattering factors at (3 0 1) r.l.u. 5K 40K
nuclear NN* 4302.3 £139.6 | 3796.2 +104.7
My My 737.2 £ 30.7 111.9 £26.5
magnetic M, M} 101.4£254 104.3 - 26.8
2Re[M,M?] | —273+50 | —39.7+6.0
chiral magnetic (M x M7)g 9.3+6.1 —4+£47
ZRe[NMJ] —31.0£8.6 —38.9£6.8
nuclear-magnetic 2Re[NM}] —29.14+78 —295+6.4
interference 2Im[NM] 51.9+4.9 59.3+6.0
2Im[N M}] 25.3+£4.9 7.3+£5.7

The non-zero magnetic components and the imaginary nuclear-magnetic interference terms
at 40 K seem to indicate that we are not in the paramagnetic state at this temperature. However,
there is the possibility that an imperfect correction of finite cell polarisation leads to a systematic
error, which emphasises the importance of the 40 K measurements as background to the 5K
signal. We observe a significant increase of the intensity scattered by the M, between 40K
and 5K, which is much more intense than at @ = (1 0 2)r.L.u., whereas no increase of M ,
has been measured. We also record a slight increase of Im[NM ], but no significant change of
Im[N M;]7 while the real part of the nuclear-magnetic interference is zero at both temperatures.

The nuclear term is slightly more intense than at @ = (1 0 2)r.L.u..

5.4 Discussion

The polarised measurements have been done with zero field cooling and therefore we expect

magnetic domains to have formed in the [FM] state. The polarisation matrices can help to
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identify whether there are such domains in the sample and, if present, what type of domains.
The polarisation matrix, as well as the intensities of the magnetic scattering factors, give the
orientation of the moment in the [FM] phase.

Four different types of magnetic domains may form in the ordered phase, depending on the

lost symmetry between the high symmetry phase (here the phase) and the lower symmetry
phase (here the phase) [68]:

e configuration domains: they form when the translation symmetry is lost, and these
domains do not depolarise the scattered beam. Instead new scattering signals appear at

different [@} positions.

e 180° domains: they form when the time reversal symmetry is lost and the direction
of M is inverted. If the nuclear and magnetic structures are centrosymmetric, due
to nuclear-magnetic interference, the total cross-section is polarisation dependent [G§]
and the polarisation is rotated in directions that depend on the sign of Re[M  ,N*]
and Re[M . N*] (if # 0). If the centrosymmetry applies only to the nuclear structure
and the moments of two centrosymmetric atoms are anti-parallel, then the total cross-
section is not polarisation dependent and the scattered polarisation rotates in a direction
perpendicular to P and M [68]. The orientation of M, depends on the domain, and

thus a multi-domain sample will depolarise a neutron beam initially polarised along x.

e orientation domains: they appear when loosing the rotation symmetry. In a multi-
domain sample, the beam depolarises and the depolarisation is maximum for incident

polarisation directions perpendicular to the axes of the lost symmetry [68].

e chirality domains: these domains form when loosing the centrosymmetry. M, in two
different chiral domains are complex conjugates of each other. If the latter are non-zero,
they are not parallel and additional polarisation appears along x [68]. Additionally, the
incident polarisation along y or z are rotated along  and the off-diagonal terms Py, and
P.. are non-zero. In a sample featuring the two chiral domains, the chiral terms in the
polarisation matrix are averaged over the two domains with a weight proportional to the
population of each domain. Because of the opposite signs of the terms in each domain,

scattered beam will depolarise if the incident polarisation is along y or z.

At both positions @ = (1 0 2)r.L.u. and @ = (3 0 1) r.l.u., only the diagonal terms are non

vanishing, which indicates the presence of two opposed 180°-domains in the sample with equal
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population. This also explains the depolarisation of the beam when initially polarised along «.
The depolarisation along y, given by P, is not significant considering the error. This suggests
that the M is parallel to y and with no component along z(= b), which would otherwise
depolarise the beam along y. Since b and a axes are equivalent, there is, a fortiori, no moment
along a either and thus we conclude that the moment points along c¢. We arrive at the same
conclusion with the scattering factors’ intensities: AM, . M7, = 0 and AM LyMJ*_y > 0 when
decreasing the temperature from 40K to 5 K (Table[5.4]and Table[5.6)). At @ = (1 02)r.Lu. the
y axis makes an angle 0192 ~ 50.92° with the ¢ axis and at @ = (3 0 1) r.L.u. this angle is much
smaller with 0391 ~ 11.60°. With the previous conclusion about the magnetic moment pointing
along ¢, the y-component of the moment is bigger at @ = (30 1) r.l.u. than at Q@ = (10 2)r.L.u.
and this explains why AM 1y M7, is much bigger at the former position (Table than at the
latter (Table [5.4).

The absence of depolarisation along y excludes the presence of different equally populated
chiral domains. On the other hand, if only one chiral domain were present, we would observe

off-diagonal terms. Thus we can exclude chirality from the magnetic structure.
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Chapter 6

Unpolarised Elastic Neutron

Scattering Measurements

Preliminary non-neutron-based observations recorded bulk modulated magnetic order in NbFeq

[36, [49], which suggests the presence of a[spin density wave (SDW)|phase. However, there was

no definitive proof of the latter until it has been directly measured with unpolarised elastic
neutrons scattering technics. We then performed additional measurements with unpolarised
elastic neutrons to confirm and complete the already existing dataset and we discovered a

strong temperature hysteresis of the spin density wave ordering wave vector (Qspw]|). In this

chapter we see the evolution of the characteristics as we approach the [ferromagnetic (FM)|

[quantum critical point (QCP)|with measurements of the three samples presented in Chapter
We studied the temperature-dependence of and the intensity of the SDW] phase in all

three samples with neutron diffraction techniques ([3]).

6.1 Data acquisition

We performed elastic neutron scattering = in the a* - ¢* plane of samples A, B and C,

with two [triple axis spectrometers (TASs), 4F2 and Panda. The settings are summarised in
Table 611
The higher order neutrons were filtered out with Be-filters at both instruments. We kept the

monochromator and the analyser with no horizontal focus in order to increase the g-resolution.

We measured the temperature-dependence of the [ SDW]intensity and with increasing
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Table 6.1 Settings of the two TAS used for the neutron diffraction experiments.

4F2 Panda
scattering plane a* -c* a*-c*
monochromator horizontal flat flat
monochromator vertical focused focused
analyser horizontal flat flat
analyser vertical focused focused
ool (—{kesi 1.30A7" | 157477
collimation no no
higher order filter Beryllium | Beryllium

and decreasing temperatures. The latter was initially set such that the measurements start out-
side the hysteresis region described below. This is important because, as we will see later, NbFe,
shows temperature-hysteresis behaviour. The temperature-dependence of the elastic neutron
scattering are determined with 1K temperature-steps. At each temperature step, we first per-
formed a ¢-scan along [ and centred on h = 1 r.l.u., followed by a g-scan along h and centred on
the [ value of maximum measured intensity. The latter gives the I-component of
The steps increments in the I- and h-directions are (AQ), AQy) = (0.004,0.0025) r.l.u. in sam-
ple A, (AQ, AQp) = (0.0025,0.0075) r.l.u. in Sample B and (AQ;, AQy) = (0.003,0.0025) r.1.u.
in Sample C.

6.2 Data analysis

6.2.1 Correction and Normalisation
6.2.1.1 Correction

The monitor, which measures the incoming neutron flux (see Section [£.3.1.1)), is also sensitive
to higher order incident neutrons. We remove the latter from the measured monitor counts by
applying the dependent correction factorsEI given in Figure Since the energy transfer is
AFE = 0meV by maintaining the correction merely consists in applying a constant factor
to all the data measured with a same instrument. Therefore it does not affect the relative

intensities of the SDW] peaks.

1the monitor corrections are obtained experimentally [69] and are specific to each monitor.
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correction factor (no units)

0.5F a
—— correction function 4F2
—— correction function Panda
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1.5 2 2.5 3
ki (A~1)

Figure 6.1: Monitor correction functions for 4F2 (blue) and Panda (brown).

6.2.1.2 Normalisation

In order to safe time but obtain reasonable statistics at all measurement positions, we have
adjusted the counting time to the signal strength; we counted longer where the signal is weaker.
In order to have comparable data, we have normalised those to a unique monitor count, which
we take as the corrected monitor counts that corresponds to approximately 5 minutes of mea-
suring time. For 4F2 the appropriate value is N2'2 = 2500 counts/5min and for Panda it

norm

is NPanda,A — 157000 counts/5min with sample A and NFarda.C — 939000 counts/5min with

Sample C. There are two different normalisation values for Panda because we measured during

two separate beamtimes.

6.2.2 Fitting the data

Due to the resolution of the instruments and the horizontal distribution of the signal, the
detected signal is composed of several Gaussians. Thus nuclear and [SDW]signals in the & and
the [ directions are fitted with either one, two or three Gaussian(s). The equation of a Gaussian
is given by:

g(x) = Aexp (—W) : (6.2.1)

202
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where A is the amplitude of the Gaussian, b its centre, o is the standard deviation, such that

the ffull-width half-maximum (FWHM)|is FWHM = 20v/2In2. From the h- and [l-scans of

the (1 0 1)r.l.u. nuclear peak we deduce the shape of the nuclear signal in sample A, B and
C (Figure . The nuclear signal at = (1 0 1)r.lu. is composed of two non-aligned
Gaussians in samples A and C (the centres are given by the two black crosses in Figure
and Figure ), whereas the signal in Sample B is composed of three Gaussians aligned along
the h axis (the centres are given by the three black crosses in Figure )

x1 Ueso%%.lnts x10e5 counts x10e7 counts

4,302 1,190
|| ||
A SAMPLE A SAMPLE B SAMPLE C

.0,039

I (r.lu)
(a) (b) ©)

h(rlu) 09841 10250067 h
du) 0

Figure 6.2: Fitting of the nuclear signal at [@Q[ = (1 0 1)r.L.u. in samples A (a), B (b) and C
(c). The nuclear signal is composed of two Gaussians in sample A and Sample C, and three
Gaussians in Sample B. The red lines are the axes corresponding to h = 1 and [ = 1 and the
black curves represent the h- and I-scans done with 4F2 (Sample B) and Panda (samples A
and C). The nuclear signals have been deduced from the h- and l-scans and the centres of the
Gaussians composing the signal are depicted by the black crosses.

We expect a similar shape for the SDW]signal and the nuclear signal within a sample, and
that only the overall amplitude and the width of the peaks are changing. Thus, for the analysis,
we consider that the [SDW]signal is composed of two Gaussians along h and [ in sample A and
C, and three Gaussians along h and one Gaussian along [ in Sample B. Only one Gaussian is
fitted with three free parameters (amplitude Ay, centre by and standard deviation og). The
remaining parameters (one or two amplitude(s), one or two centre(s) and one or two standard

deviations) are deduced from the fitted parameters and the nuclear shape:

A

A=A = 6.2.2
"X Ao (6.2.2)

bi = bo + bn,i — bnyo (6.2.3)

0; =00+ 0ni — 0On0, (6.2.4)
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where A, o, by, o0n,o are the parameters of the strongest nuclear Gaussian and Ay, ;, by, Oni

are the parameters of the other Gaussians contributing to the nuclear signal.

25
(a) sample B, T=25.6K (down)| (b) sample C, T=33.9K (up) ‘ (c) sample B, T=25.6K (up)
- - - SDW signal fit - - - SDW signal fit SDW signal fit
20 F background fit e background fit background fit % 4
— full fit — full fit il full fit
—— effective fit —— effective fit <I> &

=
w
T

=
o
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u
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1 1 1 i 1 1 1 L 1
1.08 1.10 1.12 1.14 1.08 1.10 1.12 -1.04-1.02-1.00-0.98-0.96
[-1,0,/ (r.l.u.) [1,0,/ (r.l.u.) [h,0,1.0975] (r.l.u.)

Figure 6.3: This figure shows data sets fitted with one Gaussian (a), two Gaussians (b), and
three Gaussians (c). The up and down between the brackets indicate whether the measurements
are with increasing temperatures (up) or decreasing temperatures (down). The small dashes
line is the background, the large dashes line is the signal fitted with either one (a), two (b)
or three (c) Gaussians, and the plain line is the fully fitted signal and background). The
gray line in (b) and (c) is the effective Gaussian, calculated with the parameters of the fitted
Gaussians (Equations [6.2.5). The background in (a) and (c) is constant over [@Q] whereas in (b)
it also contains the tail of the [ = (1 0 1) r.l.u. nuclear signal. Square markers correspond to
data measured with Panda and circle markers are the data measured with 4F2.

If more than one Gaussian composes the[SDW]signal, then we estimate an effective Gaussian
which parameters are the average of the parameters of each Gaussian composing the signal,

weighted with their intensities:

N AL

Aegt = %:—nl}’ (6.2.5)
1=1"1
» b,

bt = Zi;l = (6.2.6)
=1 "1
I»l_ O'ifl'

Oeff — Zzlnl I s (627)
i=1"1

where n is the amount of Gaussians composing the SDW] signal, A4; is the amplitude, b; the
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centre and o; the standard deviation of the i*" Gaussian. I; is the i*" Gaussian’s intensity,

which we estimate as:

1 =Ax FWHM,;, x FWHM;

(6.2.8)
=Axop x o x (2V21In2)?

where A is the amplitude of the Gaussian, FWHM)}, its along h and FWHM,, its
along [. If the signal is composed by one Gaussian, the effective parameters are the parameters
of the Gaussian. Figure[6.3p and Figure [6.3F show the effective Gaussian calculated for Sample
C along [ and Sample B along h.

Outside of the state, in the and [paramagnetic (PM)| states, we measured non-

zero intensities which suggests significant background signal. We remove those temperature-
independent backgrounds from the [SDW] measurements along i and . When the[SDW]signal is
close to a Bragg position, the background includes the tail of a Gaussian function as illustrated
with an example in Figure [6.3p. This is observed in the results of samples B and C during
the increasing temperature measurements. For the other measurements, the background is a

simple constant as shown in Figure [6.3h.

6.3 Results

In this section we report the observation of SDW order in the three NbFes; samples A, B, C

covering a wide portion of the iron-rich side of the composition-temperature phase diagram.

I
S -

23
13

Laaray

L L

Y

0

= <0000

Figure 6.4: The blue dots indicate the reciprocal lattice positions around which the [SDW]signal
has been measured and the crosses represent those positions where no signal was found. Figure
from [3].

106



Previous to this PhD project preliminary incomplete data sets had been collected (Figure
3a and empty markers in Figure 3b and Figure 3c in [3]), which indicated the existence of a
order at = (1 0 1)r.L.u.. Other lattice positions were measured and Figure
shows where [SDW] order has been detected and where it has not. A particular unusual feature
was the temperature dependence of In order to confirm the results and test the repro-
ducibility of the temperature dependence, we have done comprehensive measurements of the
SDW]| characteristic around the reciprocal lattice position|@Q|= (1 0 1) r.l.u. in all three samples
as described previously. In particular the temperature dependence turns out to be hysteretic

emphasising the first order nature of the SDWHFM] phase transition.

6.3.1 Sample A: Nbg ggsFes 002 (y=0.002)

We measured Sample A with Panda from Tpase= 5.2K to Tn, = 13.4K and Table [6.2] gives all
the measured temperatures. All the data is fitted with two Gaussians, in accordance with the

shape of the nuclear signal represented in Figure [6.2p.

Table 6.2 Measured temperatures in Sample A. T up stands for a measurement sequence with
increasing temperatures and T down for decreasing temperatures. All data have been measured
at Panda, FRM2.

Panda SAMPLE A - measured temperatures
T up 5.2K,6.2K, 7.2K, 8.2K, 9.3K, 10.3K, 11.4K, 12.4K, 13.4K, 14.5K
T down 5.2K,6.2K, 7.2K, 8.3K, 9.3K, 10.4K, 11.4K, 12.4K, 13.4K

Figure shows the temperature dependence of the SDW]signal in Sample A. The h-scans
in Figure and Figure are slightly off centred, and because of the high quality of the
samples, even a slight mis-alignment results in a significant intensity loss. Since we scanned
along [ with h = 1r.l.u., the l-scans are not at optimal positions and the maxima in Figure [6.5p
and Figure are not the [SDW] signal’s maxima. The h-scans, however, are centred on the
maximum intensities measured along [/, thus the maxima in Figure[6.5p and Figure [6.5( are the
SDW]|signal’s maximaﬂ

The I-scans contains more data points than the h-scans and thus the fits along [ are, in
general, more precise.

For measurements with increasing temperatures (Figure , Figure ) or with decreas-

2the datapoint at h = 1 in Figure or in Figure corresponds to the maximum in Figure [6.5h or in
Figure respectively.
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Figure 6.5: Temperature-dependence of the[SDW]signal in Sample A from Tpase= 5.2K to T, =
13K along h and I. (a) and (b) represent the data measured with increasing temperatures. (c)
and (d) represent the data measured with decreasing temperatures. One additional temperature
has been measured at 7' = 14.5K with increasing temperature steps, but no [SDW]intensity was
detected and therefore not represented in (a) and (b). h and [ at T =5.2K in (c¢) and (d) were
measured twice, which gives the doubled points.

ing temperatures (Figure , Figure ) the signal increases continuously when the

temperature decreases from Ty, = 13.4K to Thase= 5.2K. There is no sign of a downturn of
the intensity, which we would expect near the temperature of the strongest [SDW] signal. This
suggests that the Curie temperature is significantly lower than 5.2K. This is consistent with
[49], who did not measure anyordered phase down to 2K. For increasing temperatures, the
[SDW]signal is completely gone at 13.4K, whereas some intensity is still present with decreasing
temperatures scans.

The position of the signal remains relatively constant along h and [, with i ~ 1.00r.l.u. and
1.150 < I < 1.160r.l.u. for increasing and decreasing temperatures. Comparing Figure [6.5h
with Figure and Figure with Figure [6.5 also shows that the [SDW] signal’s width
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remains constant with temperature changes and that the width along [ as it about twice the

width along h (o7 = 20y,).

6.3.2 Sample B: Nb0'986F82_014 (y:0.014)

We measured Sample B with 4F2 from 7" = 17.9K (<T¢,) to T = 33.8K with decreasing
temperatures, and up to 7' = 34.9K (>Ty,) with increasing temperatures. The measured
temperatures are given in Table Figure shows selected h- and [-scans with increasing
and decreasing temperatures. For the same reason as for Sample A, the maxima are given by
the h-scans, which are centred on the maximum intensities measured along [. All the h-scans

are fitted with three Gaussians and the I-scans with one Gaussian.

Table 6.3 Measured temperatures in Sample B. T up stands for a measurement sequence with
increasing temperatures and T down for decreasing temperatures. All data have been measured
at 4F2, LLB.

4F2 SAMPLE B - measured temperatures
17.9K, 18.7K, 19.4K, 20.2K, 20.9K, 21.7K, 22.5K, 23.4K, 24.4K, 25.6K,
27.0K, 28.4K, 30.0K, 31.4K, 32.7K, 33.8K, 34.9K
17.9K, 19.0K, 20.2K, 20.9K, 21.6K, 22.4K, 23.3K, 24.4K, 25.6K,
27.0K, 28.4K, 30.0K, 31.4K, 32.7K, 33.8K

T up

T down

The h-scans (Figure -d and Figure -h) clearly show the three peaks shape of the
nuclear signal along h.

Along h, the position and the width of the signal are relatively constant
with increasing and decreasing temperatures, and the amplitude is maximum at T' = 24.4K for
increasing and decreasing temperatures.

Along I, the width of the [SDW]signal is relatively constant over the temperatures and the
maximum amplitude is also measured at T = 24.4K (Figure a—b for increasing temperatures

and Figure [6.6]e-f for decreasing temperatures). The position of the signal (lspw| shifts

toward higher values with increasing temperatures, with a stronger shift occurring between
24.4K and 27K.

Because the signal along h is composed of three Gaussians, it looks like that signal’s width
is the same along h and along I. However after computing the effective width along h with
Equation [6.2.5] we find that the signal’s width along [ is twice the effective width along h, with

is consistent with our observations in Sample A.
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Figure 6.6: Temperature-dependence of the [SDW] signal in Sample B from 17.9K to 33.8K.
To make the figure more readable, only a selection of temperatures is represented (all the
measured temperatures are listed in Table [6.3). (a) and (b) represent the I-scans and (c)
and (d) represent the h-scans with increasing temperatures (T up). (e) and (f) represent the
l-scans and (g) and (h) represent the h-scans with decreasing temperatures (T down). The
[-scans are centred on h = —1r.l.u. and the h-scans are centred at the [-position of maximum
intensity measured with the l-scans, which gives [l[spw

6.3.3 Sample C: Nb0_981Fe2.019 (yZO.Olg)

We measured Sample C with Panda from 7' = 27.8K (<T¢.) to T = 40.1K (>Ty) with
increasing temperatures, and from 7" = 40.1K to T = 34.9K with decreasing temperatures
(temperatures below 34.9K were measured by [70] before). All the measured temperatures are
given in Table [6.4]

Figure shows selected h- and [-scans with increasing temperatures and all the h- and
l-scans with decreasing temperatures. As shown by the plain black lines in Figure [6.2f, the h-
and [-scans where made at optimal position and across the maximum intensity. Thus the h-

and [-scans have comparable amplitudes. All the data is fitted with two Gaussians along h and
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Table 6.4 Measured temperatures in Sample C. T up stands for a measurement sequence with
increasing temperatures and T down for decreasing temperatures. All data have been measured
at Panda, FRM2.

Panda SAMPLE C - measured temperatures

T up 27.8K, 28.8K, 29.8K, 30.8K, 31.9K, 32.9K, 33.9K, 35.0K, 36.0K,
37.0K, 38.0K, 39.1K, 40.1K

T down 34.9K, 36.0K, 37.0K, 38.0K, 39.1K, 40.1K

[, accordingly to the shape of the nuclear signal represented in Figure [6.2}
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Figure 6.7: Temperature-dependence of the[SDW]signal in Sample C from 27.8K to 40.1K with
increasing temperatures and from 40.1K to 34.9K with decreasing temperatures. (a) and (b)
represent the [-scans and (c) and (d) represent the h-scans with increasing temperatures (T
up). (e) represents the [-scans and (f) represents the h-scans with decreasing temperatures
(T down). To make the figure more readable, only a selection of increasing temperatures
measurements is represented in (a), (b), (¢) and (d) (all the measured temperatures are listed
in Table . The I-scans are centred on h = 1r.l.u. and the h-scans are centred at the
[-position of maximum intensity measured with the [-scans, which gives [lspw
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Along h, the position and the width of the signal are relatively constant with
increasing and decreasing temperatures (h ~ —1 and xpwuwm,, =~ 0.015r.1.u). The amplitude is
maximum at 7" = 33.9K (Figure and Figure [6.611).

Along [, the width of the [SDW] signal is relatively constant over the temperatures with
zrwum, ~ 0.03r.Lu., which is approximately twice the width of the signal along h, and the
maximum amplitude is also measured at T = 33.9K (Figure [6.6h). shifts continuously

towards higher values with increasing temperatures.

6.4 Discussion

Figure [6.§ combines the results of measurements done prior to this PhD project and our latest
results described in the previous section. The temperature evolution of the [FM]intensity at the
nuclear position |Q[ = (1 0 2)r.l.u. is given in Figure , Figure shows the temperature
evolution of the SDW]intensity and Figure shows that the temperature evolution of

spwlis temperature independent. The empty markers correspond to the data measured before
this PhD project and we will refer to those as the previous data. The data that we measured
are consistent with the previous data. This shows a good reproducibility, considering that the
results were measured during different periods and at different instruments.

From the onset of the [FM] signal shown in Figure [6.8h, we record Curie temperatures in
samples B and C, with T¢, ~ 24.4K and T¢, ~ 33.9K. In Sample A, however, no [FM] signal
has been detected.

We observe a temperature hysteresis in the temperature evolution of in Sample B and
Sample C when entering the SDW]state from the [FM] state, which suggests that the [FMISDW]
transition is first order. This is consistent with the AC-susceptibility measurements from [42]
and presented in Figure In Sample A, shows no significant temperature dependence,
whereas in samples B and C (Figure b), the decrease of with decreasing temperature
(i.e. when approaching the phase) indicates that the dependent susceptibility in the
phase x4 is modified near the phase [3]. Also the average in Sample A being

higher than in Sample B, itself higher than in Sample C, indicates an increasing ordering wave

vector as we approach the [FM]|[QCP}
Below 13.4K in Sample A, below 32.6K in Sample B and below 38K in Sample C (vertical

dashed lines on the high temperature side in Figure[6.8p), the intensity grows continuously
with decreasing temperatures until its maximum at T¢, (24.4K) in Sample B and T¢,, (33.9K)
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Figure 6.8: Temperature evolution of the signal and the characteristics. (a) shows
the temperature evolution of the signal measured at @ = (1 0 2) r.l.u. and normalised by
the nuclear intensity measured at T¢. (b) shows the temperature evolution of the normalised
signal intensity in Sample A (yellow), Sample B (blue) and Sample C (brown). The
intensities are normalised with the highest value measured with increasing temperatures (T

up). (c) shows the temperature evolution of (the I-component of in the three
samples. The dashed lines indicate the onset temperatures of the [SDW] signal and the plain
lines are the temperatures of maximum [SDW] intensity, which also corresponds to the onset of
the m signal at T¢. Full markers are the data measured in the framework of this PhD project
and the empty markers represent the previous data [3].

in Sample C (vertical plain lines in Figure ) This suggests that the phase
transition is second order and that Ty, = 13.4K, Tn,= 32.6K and Tn,= 38K. Below T¢, in
Sample B and T¢,, in Sample C, the SDW]intensity decreases when the temperature decreases,
until the signal disappears completely at 19K in Sample B and 30.9K in Sample C (vertical
dashed lines on the low temperature side in Figure a). This suggests that the state
and the [SDW] state coexist over a temperature range of 5.4K in Sample B and 3K in Sample
C, although the SDWHFM] phase transition is first order. We explain this coexistence by a
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distribution of the SDWHFM] transition temperature through the samples due to a gradient in
the Fe concentration. If we refer to the phase diagram of Nb; _,Fes (Figurein Section,
we see that a variation in T¢, of £2.7K and in T¢ of £1.5K originates from a variation in y
of £0.00148 in Sample B and y of £0.00078 in Sample C. This variation in y incurs a variation
in Tn, of £2.1K and in Ty, of £1.1K. Thus the bulk transition temperature (the
bulk Curie temperature) is Tcy ., = 21.7K in Sample B and T¢ ,,, = 32.4K in Sample C,
and the bulk transition temperature (the bulk Néel temperature) is Tny ;.= 30.5K
in Sample B and T = 36.9K in Sample C. This is in good agreement with the transition
temperatures measured with AC-susceptibility and magnetisation measurements, which give
Tey,= 24K [3] and Tc,= 33K [48] for the transition temperatures and Ty, = 13K,
Tnp= 30K [3] and Tn.= 37K [48] for the transition temperatures.
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Chapter 7

Unpolarised Inelastic Neutron

Scattering Measurements

Previously we looked at the characteristics of the |spin density wave (SDW)| which emerges

when approaching the [ferromagnetic quantum critical point (FM QCP)l The question arises

how magnetic excitations evolve in the vicinity of the masked [FM_QCP} Like previously in
chapter @ we approach the [FM QCP| by using our three samples (A, B and C) and we observe
the evolution of the magnetic excitation spectrum around the [FM QCP| with inelastic neutron

scattering experiments.

7.1 Introduction

We measured the magnetic excitations in Sample A, Sample B and Sample C with two
[axis spectrometers (TASs)|—4F2 and Panda— and also, in Sample C only, with amulti-choppers

[spectrometer (MCS)| -LET. The latter instrument allows simultaneous measurements using

neutrons with different Neutrons with higher [incident energy (E;)| are used to observe

higher excitation energies and cover a wider g-range in the reciprocal space, but this comes with
the cost of lower resolution. Therefore measuring with lower [Ef] is necessary to resolve very low
energy excitations. Figure shows the resolution for various For our experiments we
used: E; =9.5meV, E; = 4.35meV, E; = 2.48meV and F; = 1.6 meV. We chose F; = 9.5 meV
and E; = 4.35meV to cover the whole spectrum of the magnetic excitations that we intended to

measure, which we estimated from the results that are presented below. F; = 2.48 meV

115



and E; = 1.6 meV, on the other hand, were chosen to increase the energy resolution to resolve

the softer excitations rather than to the cover a wide energy range.

0.40

— LET_High flux_9.50meV_240Hz_Flux=71487.401130n/cm2/s
— LET_High flux_4.35meV_240Hz_Flux=51614.124294n/cm2/s
0.35 — LET_High flux_2.48meV_240Hz_Flux=29724.096045n/cm2/s
LET_High flux_1.60meV_240Hz_Flux=9512.906073n/cm2/s
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Figure 7.1: Resolution and flux at LET for the energies of the incident neutrons selected during
the experiments. Those values were provided by the instrument software.

The instrument’s software —Horace— automatically corrects and normalises the data after
acquisition and therefore no manual corrections are required before analysis.

Now we discuss the settings of the two instruments: 4F2 and Panda. Measurements
on 4F2 and Panda were made with vertically and horizontally focused monochromator and
analyser. was kept constant and we tuned 1.30A7" for measurements in Sample
B and Sample C with 4F2 and Sample B with Panda, and 1.57A7" for measurements in
Sample A with Pandzﬂ

Before the physical analysis, correction and background substraction of the raw data col-

1 1.30471 corresponds to a final neutron energy of 3.50 meV and 157471 corresponds to a final
neutron energy of 5.11 meV.
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lected with 4F2 and Panda is necessary. These procedures are explained in the following

sections. The resolution of each [TAS] instrument is given in Figure [7.2]
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Figure 7.2: [kjldependent resolution of 4F2 (a) and Panda (b). Collimations in (a) cor-
respond to in-pile/M1-M2/M2-sample/sample-analyser /analyser-counter and in (b) only the
monochromator-sample collimation was 60’ and none elsewhere. In (b), small solid squares
correspond to an analyser scan and large empty squares correspond to a monochromator scan.

Figures from [71] (a) and [72] (b).

7.2 Data correction and analysis

In this section we present the corrections and/or the background subtraction to perform on the

raw data before the physical analysis. We start with [time of flight spectrometer (TOF)| data,

followed by the data . Finally we present the fit functions used to analyse the data.

7.2.1 LET

With LET large ranges of reciprocal space are scanned at once, which gives a four-dimensional
picture of the scattered intensities in reciprocal space (the three reciprocal space directions and
the energy). From this whole data set, we make 1D cuts along the energy dimension at given
position and at a given temperature T. This gives data sets, which are similar to those
obtained with a[TAS] We collected data at four different 9.5meV, 4.35meV, 2.48meV and
1.6 meV. The energy resolution of the instrument decreases as [E;| increases (Figure . Thus
the higher the resolution, the smaller the energy window to look at the magnetic excitations.

The energy resolution of the 9.5meV data is significantly lower than for the three other

117



and results in poor fits. For that reason, we excluded the 9.5 meV data from the analysis. At
base temperature (4K), the energy ranges covered by the neutrons with 1.6 meV and 1.6 meV
are smaller or of the order of the magnetic excitations; therefore we considered only the
4.35meV data. Near Curie and Néel temperatures, we analysed the data with all three
(1.6 meV, 2.48 meV and 4.35meV).

The necessary corrections of the signal have been supplied by the instrument software; how-

ever these corrections exclude the subtraction of the background signal, which we do manually.

7.2.1.1 Background subtraction

Knowing the background during an experiment is important, because it tells us what is relevant
in the detected signal. It mainly depends on the instrument and its environment, including the
temperature of the sample environment. Therefore, we measured the background at 4 K, 32 K,
38K and 211K. For of 9.5meV and 4.35meV we chose the Qp = (£0.23 0 2.68)r.l.u.
position (4 for 4K and 211K, — for 32K and 38K) and for of 2.48meV and 1.6meV we
chose the Qp, = (£0.23 0 1.32)r.l.u. positionﬂ (4 for 4K and 211K, — for 32K and 38K),
far away from the location of any low energy excitations. We measured at h = —0.23r.]l.u. at
32K and 38K because h = +0.23r.l.u. might not properly represent the background due to
the proximity of the scanned limit. The background positions are shown by the yellow markers
in Figure|7.11

Figure shows the fits of the background signals measured with [Ej] 1.6 meV. The figures
for 2.48 meV, 4.35meV and 9.5 meV are given in Appendix [A:2.1.1] Appendix [A:2.1.2] and
Appendix [A72.1.3] respectively.

We fitted the background signals with a Gaussian function for the elastic line and a constant

for the tail of the signal:

: (z —b)?
fit function f:x+— aexp BTy + cst, (7.2.1)
o

where cst is the constant function, a is the amplitude of the Gaussian, b its centre and o is the

standard deviation. The |half-width half-maximum (HWHM)|is proportional to o:

rrwin = 0y/210g(2) (= xFV;HM). (7.2.2)

2Qp = (0.23 0 2.68) r.l.u. is out of reach or only a small energy range is covered for of 2.48meV and
1.6 meV.

118



4 data at 4K {1 dataat 32K data at 38K data at 211K

—— elastic line fit at 4K —— elastic line fit at 32K elastic line fit at 38K elastic line fit at 211K
— - constant fit at 4K — — constant fit at 32K constant fit at 38K constant fit at 211K
T
60 - 4K 3t - 32K e
= i B .
= ] S
c s2f 3 > 2 3 ]
2 40t ) £ £ L ) E £
g =1t 8 3 1 3 =]
5 < o < o
s 0 ‘ 0 LA
> 20f 0.1 JICEIN S 0.1 0.1
2 4 B A [T L
§ 4 M Hﬂk }‘ L ] }\ 14115740 ;{‘\ﬂ‘
D bbby et AT
. i Rl RS A S
1 1 1 1 1 1 1 1 1 1 1 1
60 - 38K 3t - 211K 3t
= i .
= > S
S G2 T 3 G2 3
> a0t D £ £ i Y £ £
£ 21 38 21 32
i) < =} = =]
2 20+ -0.1 0 0.1 |- -0.1 0 0.1
1%}
c
(o]
£
0 L
1 1 1 1 1 1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
energy transfer (meV) energy transfer (meV)

Figure 7.3: Background measured at Qp = (0.23 0 1.32) (r.l.u.) for LET with Sample C and
[Ei] of 1.6 meV. The solid lines represent Gaussian fits. The insets show the elastic lines and the
limits where the Gaussian fits exceed 10 % of their maximum amplitudes (marked by vertical
dotted lines). The parameters of the background fits are given in Table

All the fit parameters of the backgrounds are given in Table [7.1]

7.2.2 4F2 and Panda

Several corrections and normalisation of the raw data measured with are necessary to
identify the magnetic excitations. This is not done automatically with 4F2 or Panda, and

therefore we implement those manually.

7.2.2.1 Monitor correction

As previously mentioned in Subsection [6.2.1.1] the monitor is also sensitive to higher order
incident neutrons, which we remove from the readings by applying the correction factors given

in Figure [6.1] Our energy scans are made by sweeping [k and therefore the correction factors
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Table 7.1 Fit parameters of the different backgrounds measured in Sample C with LET. The
first column gives the of the neutrons, the second column gives the temperatures of the
measurements and the last column gives the fit parameters. a is the amplitude of the Gaussian,
b its centre, o its standard deviation and cst is the constant fit. The values in brackets are the
errors of the fit parameters.

IK | a=3172(159), b = —0.0205(6), o = 0.0134(4), cst = 5.77(40)
Lomey | 32K | a=20695(114), b= —0.0130(4), o = 0.0124(3), cst = 7.69(73)
' 38K | a=2609(153), b= —0.0135(6), o = 0.0125(4), cst = 6.41(38)
211K | a = 2662(149), b= —0.0137(6), o = 0.0126(4), cst = 9.45(63)
4K | a=3532(159), b= —0.0312(9), o = 0.0247(7), cst = 7.08(46)
o ugmey | 32K | a=3254(119), b= —0.0170(7), o = 0.0226(5), cst = 8.87(57)
' 38K | a=3375(116), b= —0.0174(7), o = 0.0228(5), cst = 7.52(44)
211K | a = 2935(137), b= —0.0192(9), o = 0.0233(6), cst = 14.32(97)
4K | a=2941(80), b= —0.0533(13), o = 0.0578(9), cst = 9.96(71)
135 mey | 32K | a=2584(86), b= —0.0214(14), o = 0.0522(9), cst = 10.19(75)
' 38K | a=2568(80), b= —0.0204(13), o = 0.0526(8), cst = 8.57(38)
211K | a = 2169(97), b= —0.0197(19), o = 0.0536(13), cst = 18.94(96)
4K | a = 1508(63), b= —0.1365(79), o = 0.1728(60), cst = 2.47(15) x 107
05mey | 32K | a=1462(80), b= —0.0439(76), o = 0.1562(54), cst = 2.80(13) x 10!
' 38K | a=1480(67), b= —0.0373(66), o = 0.1668(51), cst = 2.51(13) x 10
211K | a =1291(92), b= —0.0434(103), o = 0.1659(83), cst = 5.72(39) x 10!

are energy-dependent.

7.2.2.2 Attenuator correction

For the measurements at [ferromagnetic (FM)|position (00 2) (r.l.u.) with Sample B on

Panda, the scattered signal was too intense for the detectOIﬂ and we attenuated the incoming
signal. Attenuators consist of plates of Schott glass inserted between the monitor and the

sample. The attenuation factor (F,(d, k;)) depends on the thickness of theses plates and on

2

(7.2.3)

ki

2 —0.11
Fatt(d’ki):exp<7rd(m 0 07))7

where d is the total thickness of the attenuation plates and m is a fit constant. To correct the
signal we multiply the detected signal with this factor Fu(d, k).

However the factor given by Equation [7.2.3] does not account for neutrons that are reflected
back through the monitor by the attenuation plates and which are counted twice.

Figure shows count rates measured with (blue) and without (brown) attenuation. Al-

though the monitor is placed before the attenuation plates, a straight line fit over the attenuated

3attenuation is necessary on Panda when the detection rate of scattered neutrons exceeds 100000s~!
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O—Owith attenuation
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Figure 7.4: [kijdependent count rate of Panda monitor with (blue) and without (brown) at-
tenuation. The attenuator is only activated near the elastic line (JAE| $ 0.175meV). The
insert, which is a zoom-in around the elastic line, shows an increase of the count rate when
attenuation is active. The plain blue line is a linear fit of the count rates over energies with
active attenuation and the plain brown line is a linear fit over the same energies but without
attenuation.

energies (—0.175meV < AE < 0.176 meV) shows a sudden increase in the monitor count rates
when attenuation is active. Therefore the detected signal in an under-estimation of the detected
intensity because of the over-estimated monitor count rate. Since the count rate is indepen-
dent of the measured position and temperature, we compensate for this reflection effect by
re-evaluating the monitor counts with the count rates of a non-attenuated scan done at the
position and at the same temperature (brown data points in Figure . Using the non-
attenuated count rates and the counting durations, we compute the real monitor counts, which

are used to normalise the data.

7.2.2.3 Data normalisation

During a scan, different measuring times were set, depending on the intensity of the detected
signal: longer counting times were set at energies where the signal was weaker. We then
normalise the data to a unique monitor count value Nyo.m corresponding to approximately

5min of counting time. For our experiments the following normalisation values have been
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chosen:

NAF2 3775 counts

norm

(7.2.4)
NPanda — 499967 counts

norm

7.2.2.4 Energy shift

Typical magnetic excitations observed in this study have resonance energies of the order of
0.5meV with an error of the order of 0FE, =~ 5%. The energy shift observed by the shift of
the elastic line from the nominal energy position at 0 meV is of the order of 0.02meV |, i.e. of
the same order of magnitude as the error of the observed excitation energies. AFE values have

therefore been corrected to compensate for the shift.

aH T 4 T O—O0corrected
| O—Onot corrected

intensity (x1000 counts/5min)

Rt

o o R
v 0 o e e e e e e S Qg a - o 5 o
O i 1 — — seue =5 = = I = = = = =

0 1 2 3 4 5
energy transfer AE (meV)

L

Figure 7.5: Energy scan with (blue) and without (brown) correction for energy shift. The insert
is a zoom-in of the elastic line and the solid lines are Gaussian fits. The Gaussian fit of the
corrected data is centred on 0 meV —blue dashed line— and the Gaussian fit of the raw data is
centred on Eg —brown dashed line—, which is also the energy shift.

Figureillustrates the energy shift correctionlﬂ which consists of fitting the non-corrected

data (brown points in Figure [7.5) with a three parameters Gaussian function (brown line in

4Figure shows the energy scan of Sample C at reciprocal position (0 02.1)r.l.u. and temperature
T = 31.8 K measured with 4F2.
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Figure :

. . (x —b)?
Gaussian function f:x+— aexp sy b (7.2.5)
o

where a is the amplitude, b is the centre and o is the standard deviation. The centre of the
Gaussian b gives the energy shift (Es = +0.049 meV in our example). We correct the data by
adding an offset of —FE5 to the energy transfer values AFE.

7.2.2.5 Background substraction

Figure [7.6] shows the background of 4F2 and Panda at several temperatures, that we mea-
sured during the different experiments and with all three samples. We chose the Qp, =

(0.85 0 1.4) r.l.u. position, far away from the location of any low-energy excitations.
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Figure 7.6: Background measured at Qp = (0.85 0 1.4) (r.l.u.) for Panda and 4F2 with Sample
A, Sample B and Sample C. The solid lines represent Gaussian fits of the elastic line and the
dashed lines are the constant background fits. The insets show the elastic lines and the limits
where the Gaussian fits exceed 10 % of their maximum amplitudes (marked by vertical dotted
lines). The parameters of the background fits are given in Table
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We fitted the background signals with the same function as the one used for LET, which is
given in Equation (Gaussian + constant). The fit parameters, which are given in Table[7.2]

indicate that the constant is temperature independent.

Table 7.2 Fit parameters of the background measured during the experiments on instru-
ments. I are the instruments, S are the samples and T are the temperatures of the measure-
ments. a is the amplitude of the Gaussian, b its centre, o its standard deviation and cst is the
constant fit.

I S| T fit parameters

g | 52K | a=T208(308), b= 0.0001(17), o = 0.0495(12), cst = 9.95(90)
34.1K | a = 7182(290), b= —0.0001(16), o = 0.0486(11), cst = 12.86(96)

4F2 51K | a =1623(216), b= 0.0009(52), o = 0.0469(38), cst = 6.82

100.3K| a = 1549(192), b = 0.0000(51), o = 0.0507(37), cst = 6.99

(290)

(216) (75)
C | 32K | a=1473(201), b= 0.0001(59), o = 0.0518(41), cst = 5.98(73)

E ) (71)

13.8K | a = 1920(82), b = —0.0018(20), o = 0.0576(13), cst = 7.53(71)

Panda 100K | a = 1791(78), b= 0.0001(21), o = 0.0596(14), cst = 8.61(76)

5K | a=12065(502), b= 0.0002(13), o = 0.0369(9), cst = 1.42(11) x 107
32K | a=8942(420), b= —0.0005(14), o = 0.0358(10), cst = 1.43(12) x 10

7.2.3 Data fitting
7.2.3.1 Fitted energies

Whenever possible, we fit the whole signal, including the elastic line; however that is not possible
for intensities of the latter too high compared to the intensities of the excitations because of
the high error on the fitted parameters of the excitations. This happens when the measured
position is near the (0 0 2) r.l.u. Bragg peak (i.e. positions (0 0 2)r.l.u. and (0 0 2.05)r.l.u. or
equivalent). In these situations we cut out part of the elastic line and fit its tail only. The cut
out region corresponds to the energy range where the Gaussian fit of the background exceeds
10% of its maximum amplitude (marked by vertical dashed lines in the insets of Figure

Figure Appendix [A.2.1.1] Appendix|A.2.1.2|and Appendix|A.2.1.3|). Excluding part of the

elastic line gives two energy intervals over which the data is simultaneously fitted.

7.2.3.2 Fit functions

After removing the background from the detected signal, we fit the magnetic excitations with

an jover-damped harmonic oscillator (ODHO )| function for temperatures above T, as suggested
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by the spin fluctuation theory (see Section [2.3)):

EXOF

over-damped: fodno(E) = E2 412’

(7.2.6)

where FE is the neutron energy loss to the sample (in meV), I' is the line width (in meV) and
Xo is the resonance amplitude or static susceptibility (in counts). T

In the [FM] regime, the [ODHO] does not fit the data well and we use the three parameters

[damped harmonic oscillator (DHO)| function instead:

ExoDE§
(EZ _Eg)2_|_E2D2’

fano(E) = (7.2.7)

where Ejy is the resonance energy (in meV) and D is the damping factor (in meV).

In the over-damped regime (D >> Ej), the function does not fit the data when
the signal is within the resolution of the instrument. We then used an alternative fit function
derived from Equation [7.2.7] and Equation [7.2.6] depending on the value of D. The validity
of the fit is checked a posteriori by comparing the fitted parameter D with the fitted energy
range.

If D ~ E, taking the limit of Equation [7.2.7] gives

AD?

soft over-damped: fiodqno(E) = m

(7.2.8)

We refer to this function as [soft over-damped harmonic oscillator (SODHO)| This case was
encountered at 25K for position (0 0 2)r.l.u. in Sample B and at 32.1K for position
(0 0 2)r.l.u. in Sample C.

7.2.3.3 Detailed Balance

As we saw in Section [4.2.1.2.2] the imbalance due to the principle of detailed balance must be
considered. This is done by multiplying the previous fit functions with the Bose factorﬂ

exp (ka)

exp (kBLT) —1

5the absolute value in Equation is to account for the energy gain side.

db(E,T) =

: (7.2.9)
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where F is the neutron energy loss to the sample, kg is the Boltzmann constant, 7' the tem-

perature in Kelvin.

7.2.3.4 Fitting examples

Figure [7.7] shows two examples of data fits for Sample B measured with Panda. The mag-
netic excitation in Figure [7.7h is fitted with the [DHO] function and the magnetic excitation in

Figure [7.7p is fitted with the [ODHO] function.
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Figure 7.7: Magnetic excitation fitted with a harmonic oscillator in (a) the damped regime and
(b) the over-damped regime. The dashed curves represent the background. The continuous
lines indicate the fitted data. The black dotted vertical lines delimit the cut out energy interval
excluded from the fit range. The full range of scanned energies are shown in the insets (same
units as the main axes).

In the damped regime the magnetic excitation is separated from the elastic line and forms
a distinct peak (Figure ) In the over-damped regime, on the other hand, the signature of

the excitation is much closer to the elastic line and the resonance energy is of the order of the
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instrument’s resolution; one only sees a broadening of the elastic line (Figure )
When the scanned position is in the vicinity of the Bragg position [Qgnf= (0 0 2) r.l.u., the
instrument’s resolution ellipsoid hits the latter and the detected signal features an additional

peak. An example is represented in Figure [7.8

41 —&— fitted data
_ - — Bragg signal - Sample C with 4F2
£ 3t | elastic line + excitation | £ Q=(002.093) at 50.3K
) 0 (over-damped regime)
S % Sample C with 4F2 S
X 2t - Q=(002.093) at 24.3K x
= | %’é; (damped regime) P
(%2} H (%)
c l %) t c X
g 1r | / :"v <DCD "2 i
= nNREE ¢ @D‘I’ = %
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[ CE; O, \ ®@®®®
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Figure 7.8: Signal featuring an additional peak measured with 4F2 in Sample C. (a) shows a
magnetic excitation in the damped regime and (b) in the over-damped regime. This additional
peak is observed when the scanned position is within close range of which crosses the
instrument’s resolution ellipsoid during the energy scan. The blue dashed lines are the fits of
the additional peaks coming from the nuclear signal and the yellow dashed lines are the fits of
the elastic line and the excitation together, with a function in (a) and an function
in (b). The grey lines are the fits of the overall signals.

When such a peak is observed, we add a Gaussian function to the fit function, which becomes:

E—b.)’ E —by)*
fﬁt(E) = odho/dho(E)db(Ea T) + ac exp <(20_2)> + ap exp ((20_2b)> ) (7210)
e b

where a., b, and o, are the parameters of the elastic line Gaussian, and ayp, by and o, are the
parameters of the additional peak Gaussian. The additional signal is not centred on £ = 0 meV
because the resolution ellipsoid usually hits the Bragg position when the instrument is measuring
at none-zero energies. When the additional peak is on the edge of one of the fit intervals, the
fit may fail. If this occurs, we exclude the interval containing the peak and use the fit function

without the additional Gaussian on the other interval.
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7.3 Results

Our investigation of the magnetic excitations near the masked [FM QCP]is divided in two parts.
First we look at the temperature dependence of the [FM] and [SDW] magnetic excitations as we
approach the FM QCP} Then we observe the dispersion along [ and h deep in the [FM]state, at
the transition, and at the [SDW}paramagnetic (PM)| transition as we approach the

3 T T T T T T T T T T T T T T T T __200
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Figure 7.9: 2D cuts of LET data of Sample C in the h-l plane. The colour scale, which
represents the intensity of scattered neutrons, is saturated at 200(a.u.) in order to make the
magnon signals visible. The [Ej] of the neutrons is 9.5 meV, the h and [ resolutions are 0.02r.l.u.,
the third direction () normal to h and [ is integrated over [—0.1,0.1]r.l.u. and the energy is
integrated over [0.5,5] meV (cutting out most of the elastic line). The red dashed ellipse shows

the position of magnons near (002)rlu.

Figure [7.9] shows two large range reciprocal space scans at 4K and at high tempera-
ture Tinax = 211 K measured in Sample C with LET. To see the weak magnon signals, the color
scale on the right side is saturated at 200 (a.u.). By comparing Figure with Figure , we
can distinguish phonons from magnons; the latter are weakened at high temperatures whereas
phonons increase in intensity. In particular we see that the strongest observed magnons are
at (0 0 2)(rlu.) (red dashed ellipses in Figure [7.9), which weaken and broaden at
Tax = 211K where a weak phonon becomes visible (Figure [7.9p).

Figure[7.10] gives the [-dispersion of the magnetic excitation centred on[@gm}= (0 0 2) (r.L.u.)
at 4K, 32K, 38 and 211 K, measured in Sample C with LET. The latter results were obtained
with 2D cuts along the (0 0 [) axis and the energy. At 4K sample C lies deep in the state
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Figure 7.10: 2D cuts along the [ direction and the energy showing the ! dependence of the

magnetic excitation energies near (002)(rlu) at 4K, near T¢, at T = 32K,
near T, at 7' = 38K and at Thhax = 211 K. (0 0 2)r.l.u. is given by the red dot and

(002.09)rlu. at 4K, and (0 0 2.109) r.l.u. at the other temperatures, is
given by the red cross. The [E;| of the neutrons is 2.48 meV, the [ resolution is 0.02r.l.u., h and
7 directions are integrated over [—0.2,0.2]r.l.u. and the energy resolution is 0.01 meV. The
colour scale, which represents the intensity of scattered neutrons, is saturated at 1000(a.u.) in
order to make the magnetic excitations visible. At Ti,.x, the magnon dispersion disappears
completely and a weak phonon becomes visible.

and we expect the excitation at (00 2)r.L.u. (red dot on the 0 meV axis in Figure
to have the lowest energy. However Figure[7.10]shows that the minimum energy is obtained for
magnetic excitations near (red crosses on the 0meV axis in Figure instead. We
also see a that the energy gap observed in the [FM] state reduces as the temperature increases
and disappears in the instrument resolution around near Tq. It is only near Ty that
the gap seems to close at At 211 K the magnetic excitations have disappeared.

To characterise the | dependence of magnetic excitations measured with LET in Sample
C, we make 1D cuts in the energy direction at different positions and temperatures, which
are represented with red dots in Figure [7.9] The integration widths are dh = 0.04r.Lu., on =
0.3r.L.u., 8 = 0.08r.l.u. and de = 0.04 meV.
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Figure 7.11: Positions that we analysed in Sample C from the data measured with LET at
4K, near T¢,, at T = 32K, near Tx, at T'= 38K and at Tiyax = 211 K. The[Ej] in the
figure, is F; = 9.5meV, the h and [ resolutions are 0.02r.l.u., the third direction (n) normal to
h and [ is integrated over [—0.1,0.1]r.l.u. and the energy is integrated over [0.5, 5] meV (cutting
out most of the elastic line). The colour scale represents the intensity of scattered neutrons.
The red dots are the different measured positions with [Ei| of 4.35 meV and the red crosses are
the different measured positions with [ of 2.48 meV and 1.6 meV. The yellow dot and cross
give the positions of the measured background signals with of 4.35meV and 2.48 meV or
1.6 meV respectively.

Appendix [A72:2.7] Appendix [A2.:2:2] Appendix [A22:2:3] and Appendix [A:2:2.4] list all the

positions and temperatures that we measured in Sample A, Sample B and Sample C, respec-
tively, as well as the functions used to fit the excitation and the instruments used for the
measurements.

Additional data, which was previously measured with Sample C at 4F2 by [70] and given in
Table has been included in the present study. However, the energy scans in the latter do
not cover the elastic line and therefore correction for the energy shift cannot be implemented.

To compensate for the unknown energy shift, we enhance the error of all the resonance energies
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Table 7.3 Additional data of the temperature dependence of the excitations at measured
with Sample C. dho or sodho near the hkl-positions indicates whether the data is fitted with a
DHO| or a|[SODHO| function. This data was measured by J. Poulten at 4F2 [70].

SAMPLE C

77K (00 2): dho 349K (0 02): dho
85K (00 2): dho 37.8K (00 2): odho
18.8 K (00 2): dho 504K (0 0 2): odho
245K (00 2): dho 93.8K (00 2): odho
293K (00 2): dho 194.3K (00 2): odho
32.1K (0 0 2): sodho

FE)y fitted within this data set with a systematic error equal to

(SEO = 5E0,i + 30 (6E07i)
(7.3.1)
= 0.0258 meV,

where dEy ; is the mean value and o (0E) ;) the standard deviation of all energy shift corrections
applied to measurements performed with 4F2 instrument. The error propagates to the FEj

dependent parameters I' and A as:

o1 = ryalLo (7.3.2)
Eq
6A = A%F. (7.3.3)

7.3.1 Temperature dependence of the magnetic excitations

First we look at the temperature dependence of the excitations at and its evolution as
we approach the [FM QCP| Then we do the same with the excitations at

7.3.1.1 Temperature dependence of the excitations at

Figure shows the temperature evolution of the magnetic excitations at 002+
lspw) r.l.u. measured with Sample A, Sample B and Sample C. The figure also shows the fits

of the magnetic excitations (solid lines) with either a[DHO|or an [ODHO| function.

In the [FM] state in Sample B and Sample C, the magnetic excitation has a distinct peak
outside the elastic line and can be described with a resonance energy parameter. The latter

gets softer as the temperature increases. At T¢ and above, in the [SDW] and states, the
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Figure 7.12: Temperature dependence of the excitations measured at 002+

Ispw)r.lu. and fitted with the [DHO| or [ODHO| model (solid lines).

S

quares represent data

measured with Panda and circles represent data measured with 4F2. Only a selection of scans
is represented.

signal becomes quasi elastic in all three samples.

The fitted parameters describing the temperature dependence of the magnetic excitations

measured at in Sample A, Sample B and Sample C are shown in Figure To

simplify comparisons between the samples, the temperatures have an offset of Ty (Tn, = 134K,

Tn
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dependence of the line width I" and the resonance amplitude x¢ of the excitations at in
all three samples down to base temperature Thase =~ 5 K. xg is normalised with the values at
AT ~ 15K, which is the highest AT at which measurements have been performed in all three
samples.

In the [FM] state, with increasing temperatures, the resonance amplitude increases slowly in
Sample B and Sample C, whereas the line with and the resonance energy decrease. In Sample B,
the maximum resonance amplitude xg = 4 is measured between 22 K and 29 K, the minimum
line width I' ~ 0.1meV is measured near Ty, between 25K and 35K and the minimum
resonance energy Fp ~ 0.5meV is measured near T, at 22.4 K. In Sample C, the maximum
resonance amplitude yo ~ 3 is measured at 32K, the minimum line width I' ~ 0.1 meV is
measured between 32 K and 38 K, and the minimum resonance energy Fy ~ 0.5 meV is measured
between 24.3 K and 32 K. The damping factor of the excitation at is fairly constant at
D = 1meV and begins to increase steeply at T¢. In Sample A, which shows no m state in
the measured temperature range, the maximum resonance amplitude xg = 3.43 is measured at
5K and the minimum line width I' = 0.18 meV is measured at 5 K. Because of the absence of
[FM] state, neither the resonance energy nor the damping factor have been fitted. The minimum
line width measured in all three samples is within the resolution of the measuring instruments.

In the [PM] state, with increasing temperatures, the resonance amplitude decreases and the
line width increases in all three samples. The decrease of the resonance amplitude is relatively
slow, which is surprising as we would expect it to diverge at the second order SDWHPM] phase
transition. The big error bars for the line width at high temperatures are due to the weakness

of the fitted signal.

7.3.1.2 Temperature dependence of the excitations at

Figure shows the temperature evolution of the[FM]signal measured at (002)r.Lu.
(only a selection among all the measured temperatures is represented). We fitted the

magnetic excitations with either a or an function (solid lines in the figure).

In the [FM] state in Sample B and Sample C, the magnetic excitation has a distinct peak
outside the elastic line and can, again, be described with a resonance energy parameter. The
latter gets softer and broadens as the temperature increases. At T¢ and above, in the |SD_W|
and [PM] states, the signal becomes quasi elastic in all three samples.

At 85K, 18.8K, 24.5K, 29.3K, 32.1 K and 34.9K, the additional data presented in Table[7.3]

has not been measured over the elastic line and thus the tail of the latter cannot be fitted. At
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Figure 7.13: Temperature dependence of the parameters of the excitation at 002+
Ispw) in Sample A (yellow), Sample B (blue) and Sample C (brown). To simplify comparison
between samples, the data is plotted against AT = T—Ty (Néel temperatures are given in the
legend). (a) shows the temperature dependence of the line width (full markers and solid lines)
and the resonance amplitude (normalised with the value at AT = 15K) (empty markers and
dashed lines). (b) shows the temperature dependence of the resonance energy (full markers
and solid lines) and the damping factor (empty markers and dashed lines). Solid and dashed
lines are guide to the eye. Squares represent data measured with Panda, circles represent data
measured with 4F2 and triangles represent data measured with LET (up, down and left triangles
for data measured with [E;| of 4.35 meV, 2.48 meV and 1.6 meV respectively). The vertical solid
lines labelled Ty, and T¢,, indicate the Curie temperatures of Sample B (T¢,= 21.7K) and
C (Te.= 32.4K) respectively. The inset shows the line width and the resonance amplitude (a)
of all measured temperatures. The large error-bar for I at AT = 186.2 K is because of the very
weak signal intensity.
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Figure 7.14: temperature dependence of the excitations measured at (00 2)r.lu. and
fitted with the[DHO] [ODHO]or[SODHO|model (solid lines). The dotted line is the prolongation
of the fitting curve over non-fitted energies. Squares represent data measured with Panda and
circles represent data measured with 4F2. Only a selection of scans is represented. Apart from
32.0K, all the data related to Sample C has been measured by J. Poulten and P. Niklowitz (see
Table [7.3]).

the other temperatures listed in Table the energy scans include the elastic line. For those
latter points the data is fitted on [—0.12meV;0.12meV]. We use the Gaussian tail that fitted
the elastic line of the 7.7K data as a constant background in the fit function to fit the data
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without the elastic line. To assess the validity of these fits, we also used this same constant
Gaussian background fit function to fit the data measured at 37.8 K, 50.4 K, 93.8 K and 194.3 K,
which include the elastic line, and we compare compare those results with the fits made with

the normal function that includes a free Gaussian for the tail of elastic line.

Table 7.4 Fit parameters of the additional data given in Table |7.3] D, xo, Eg, I' and A are
the fit parameters of the different [DHO] functions used to fit the excitations. The free column
indicates if the Gaussian in the fit function was free (meaning that the normal fit function was
used to fit the data) or not (meaning that the constant Gaussian background function was used
to fit the data).

T D X0 Ey T A free
77K 059(2) ] 166(9) [ 0.37(d) 10937 | 154(1d) | yes
R5K 0.64(6) | 200(18) | 0.54(10) | 0.75(15) | 150(31) | mo
88K | 052(d) | 118(7) | 0.30(3) | 0.60(i1) | 82(13) | mo
205K | 0.44(4) | 221(12) | 0.50(6) | 0.44(7) | 97(15) | mo
203K | 042(4) | 219(9) | 0.61(6) | 0.29(5) | 64(9) 1o
321K | x x 2.1(3) x 32(2) 1o
349K | 049(5) | 159(7) | 1.8(2) 0.14(2) | 22(2) 1o
sk | % 137(239) | x 0.053) | 22(1) ves
’ X 170(10) X 0.16(2) 27(2) no
X 110(d) | x 0.20(1) | 22(0) es
SUAK ) 103(4) | x 0.23(2) | 24(2) "o
x 53(1) X 0.37(2) | 20(1) es
938K o 54(2) X 0.35(2) | 19(2) "o
x 33(1) X 041(1) | 14(1) o
a3k ) o 33(1) X 0.42(3) | 14(1) "o

Appendix [A72.3] shows the fits of the additional data, where the dotted curves indicate the
non fitted energies. One sees the absence of elastic line on the negative energies at 8.5 K, 18.8 K,
24.5K, 29.3K, 32.1K and 34.9K, whereas it is present and fitted at the other temperatures.
The black dashed line at 37.8 K, 50.4 K, 93.8 K and 194.3 K represents the fit made with the
constant Gaussian background fit function, using the tail of the elastic line fitted at 7.7 K. The
solid coloured lines, at these same temperatures, represent the fits made with the normal fit
function, using a free Gaussian for the tail of the elastic line. Table[7.4] gives the fit parameters
for the additional data. At 50.4K and above, one sees that the parameters fitted with the
two different functions agree within the errors. At 37.8 K, however, the fit parameters are very
different, but the errors of the parameters fitted with the normal function are also very high.
This is due to the proximity to the second order SDWHPM] phase transition at this temperature.

We also notice that the fitting errors are much smaller with the constant Gaussian background
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fit function.

The fitted parameters describing the temperature dependence of the magnetic excitations
measured at in Sample A, Sample B and Sample C are shown in Figure [7.15 The
temperatures are shifted by T¢ for Sample B and Sample C. For Sample A, we shift the data
by —2 K such that the line widths overlap with the line widths measured in Sample B and Sample
C. We refer to that temperature as Tc,= —2K. In Figure [7.I5h, the resonance amplitudes xo
measured in Sample B and in Sample C are normalised with the values measured at the highest
temperature (120K in Sample B and 211 K in Sample C). At these temperatures, xo is almost
constant, which justifies the normalisation.

In the [FM] state, with increasing temperatures, the resonance amplitude and the damping
factor remain fairly constant in Sample B and Sample C until it diverges around T¢. The
line with and the resonance energy both decrease, the former quickly and the latter slowly. In
Sample B, the maximum resonance amplitude xo &~ 9 is measured in the [SDW] state at 25K,
the minimum line width T’ ~ 0.1 meV is measured between 25K and 29K, also in the [SDW]
state, and the minimum resonance energy Ey ~ 0.5 meV is measured near T, at between 19K
and 25 K. In Sample C, the maximum resonance amplitude xo ~ 13 is measured near T¢, at
32K, the minimum line width I' = 0.12meV is measured near the SDW]state at 32K, and the
minimum resonance energy Fy ~ 0.4 meV is measured at the same temperature. The damping
factor of the excitation at is fairly constant at D =~ 1meV and diverges in the [SDW]
state. In Sample A, the maximum resonance amplitude yo = 7.1 and the minimum line width
I' = 0.15meV are measured at 5K, the lowest measured temperature. Again, the minimum
line width measured in all three samples is within the resolution of the measuring instruments.

In the [PM] state, with increasing temperatures, the resonance amplitude decreases and the
line width increases in all three samples. Although the error bars are significant, one sees an
enhancement of the resonance energy near the [FMHSDW] phase transition in Sample B and in
Sample C.

7.3.2 | dependence of the magnetic excitations

We measured the [ dependence and h dependence of the magnetic excitations at base, Curie

and Néel temperatures. These results are presented in the following sections.
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Figure 7.15: Temperature dependence of the parameters of the excitations at
(0 0 2)r.lu. in samples A (yellow), B (blue) and C (brown). To simplify comparison be-
tween samples, the data is plotted against AT = T—T¢ (Curie temperatures are given in the
legend). Data points represented with brown circles, except at AT = —0.2K, correspond the
additional data measured by J. Poulten [70] and given in Table (a) shows the temperature
dependence of the line width (full markers and solid lines) and the normalised resonance am-
plitude (empty markers and dashed lines). For samples B and C, the latter is normalised with
the value at the highest measured temperature. For Sample A the normalisation factor is such
that xo at 13.8 K (the highest measured temperature with Sample A) equals xo in Sample C at
50.4 K (the closest data point). (b) shows the temperature dependence of the resonance energy
(full markers and solid lines) and the damping factor (empty markers and dashed lines). Solid
and dashed lines are guide to the eye. Squares represent data measured with Panda, circles
represent data measured with 4F2 and triangles represent data measured with LET (up, down
and left triangles for data measured with [Ej| of 4.35 meV, 2.48 meV and 1.6 meV respectively).
The vertical solid lines labeled Ty, , Tn, and Ty, indicate the Néel temperatures of Sample
A (Tn,=13.4K), B (Tn,=30.5K) and C (Tx,= 36.9K) respectively. The inset shows I" and
Xo over the whole measured temperature range.

7.3.2.1 [ dependence in the [FM] state

The purpose of these measurements is to look at the low energy magnetic excitations deep in

the [FM] state. These excitations have been measured in Sample B at 5.2K and in Sample C

138



at 4K. Sample A, however, was still in the SDW] state at the lowest measured temperature of
5K and results will be presented in a later section. Figure shows the signal measured in
Sample B and in Sample C.

6l is defined as 6l = Q) — 2r.l.u., where @ is the amplitude along [ of a reciprocal lattice
vector. In both samples, the signal forms a distinct peak, which is shifted to lower energies as
ol increases until 0/ = 0.2r.L.u.. The intensity of the signal decreases and its width increases.
As |6l] increases further, the signal broadens and shifts to higher energies, while its intensity
decreases, in both samples.

Figure[7.17]shows the [ dependence of the parameters of the[DHO|or models obtained
by fitting the magnetic excitations in Sample B and Sample C at base temperature (Figure.
The resonance amplitude is normalised to the value measured at (0 0 2)r.l.u. for both
samples.

As 6l increases until 6/ = 0.2r.l.u. in Sample B and until 6/ = 0.15r.L.u. in Sample C, the
resonance amplitudes increase until maximum values of yg &~ 1.6 in Sample B and xq =~ 1.3
in Sample C. The line widths decrease continuously until minimum values of I' ~ 0.3 meV in
Sample B and I = 0.5meV in Sample C. In a similar fashion, the resonance energies decrease
slowly towards a minimum of Ey ~ 0.5meV in Sample B and Ey ~ 0.9meV in Sample C
measured at 6/ = 0.15r.L.u.. The damping factor increases slowly from a minimum value of
D = 0.48meV in Sample B, whereas it remains fairly constant at D =~ 2meV in Sample C.
When 4l increases further, the resonance amplitudes decrease, and the line widths increase,
rapidly in both samples. The resonance energies increase in both samples, as well as the

damping factor in Sample B, whereas the damping factor in Sample C remains constant.

7.3.2.2 | dependence near Curie temperature

Here we look at the magnetic excitations near the [FMHSDW] transition. Figure [7.1§ shows the
signals measured in Sample B at 22.4 K and in Sample C at 32K. |dl|, which is the absolute
value of 4/, is convenient to use for comparing the data, since LET data with of 1.6 meV
and 2.48 meV was measured at Q < 2r.L.u., whereas Q > 2r.l.u. for all other data.

As |6l] increases, the signal moves to lower energies in Sample B, with the peak of the signal
disappears in the quasi-elastic scattering at [6l] = 0.15r.L.u., and the intensity of the signal
increases. In Sample C, the peak of the signal remains at the same position until |§!/| = 0.15r.1.u.,
and the intensity of the signal increases. When |0]| increases further, the signal moves to higher

energies and broadens in both samples.
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Figure 7.16: [ dependence of the excitations measured deep in the state in Sample B and
Sample C, and fitted with the [DHO| or [ODHO] model (solid lines). Circles represent data
measured with 4F2 and triangles represent data measured with LET.
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Figure 7.17: Parameters of the model used to fit the [ dependence of the magnetic
excitations at base temperature in samples B (blue) and C (brown). (a) shows the line width
(full markers and solid lines) and the resonance amplitude (empty markers and dashed lines).
(b) shows the resonance energy (full markers and solid lines) and the damping factor (empty
markers and dashed lines). The resonance amplitude is normalised to its value measured at
[ = 2r.l.u.. Solid and dashed lines are guides to the eye. Circles represent data measured with
4F2 and triangles represent data measured with LET.

Figure[7.19shows the [ dependence of the parameters of the[DHO|or[ODHO|models obtained

by fitting the magnetic excitations in Sample B and Sample C near the Curie temperature (Fig-

ure|7.18]). The resonance amplitude is normalised to the value measured at (002)r.lu.

for both samples.

As |0l| increase until |§l| = 0.15r.1.u., the resonance amplitudes increase until their maxima:
in Sample B, the maximum is yp =~ 1.5 and in Sample C xo =~ 1.6. The line width decreases
continuously in Sample B from I' = 0.34meV (above the resolution of the instrument) to a

minimum value of I' = 0.17meV (below the resolution of the instrument). In Sample C, the
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Figure 7.18: [ dependence of the excitations measured near the Curie temperature and fitted
with the [DHO| or [DDHO] model (solid lines). The dotted lines are extensions of the fits over
non-fitted energies. Circles represent data measured with 4F2 and triangles represent data
measured with LET.

LET data shows that the line width remains fairly constant at I' &~ 0.3 meV, with, however, a
weak minimum of I' = 0.24meV at 6l = —0.15r.L.u. for By = 1.6 meV or E; = 2.48 meV, whereas
the data measured with 4F2 gives a constant line width of I" &~ 0.13 meV, within the resolution
of the instrument. The jump at §/ = 0.05r.l.u. in the line width values measured in Sample C

with 4F2 remains within the resolution of the instrument and is therefore considered irrelevant.
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Figure 7.19: Parameters of the model used to fit the [ dependence of the magnetic
excitations near the Curie temperature in samples B (blue) and C (brown). (a) shows the
of the line width (full markers and solid lines) and the resonance amplitude (empty markers
and dashed lines). (b) shows the resonance energy (full markers and solid lines) and the
damping factor (empty markers and dashed lines). For Sample B the resonance amplitude is
normalised to the value measured at [ = 2r.l.u.. For Sample C, we first multiplied the resonance
amplitude of the data measured on 4F2 and on LET with of 4.35meV and 1.6 meV by
Xar2(l = 2.15)/xLET,2.48(1 = 1.85), XLET4.35(] = 2.15)/XLET,2.48(l = 1.85) and xrLET,1.6(] =
1.85)/xLET,2.48(1 = 1.85) respectively, and then we normalised the data to xrer24s5(l = 2).
Solid and dashed lines are guides to the eye. Circles represent data measured with 4F2 and
triangles represent data measured with LET (up, down and left triangles for data measured
with of 4.35meV, 2.48 meV and 1.6 meV respectively).
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The resonance energy remains fairly constant at Fy =~ 0.5meV in Sample B and in Sample C
measured with 4F2. LET data with [E;] of 2.48 meV also suggests a rather constant resonance
energy of Fy ~ 1.0meV, but with significant error bars, whereas data measured with of
1.6 meV indicates an increase of the resonance energy from a minimum FEjy ~ 0.28 meV measured
at 6l = —0.05r.L.u. (the fit at 6/ = 0.0r.l.u. was unsuccessful, because the magnetic excitation
was outside of the scanned energy range), which is above the resolution of the instrument. The
damping factor increases with |§{|. In Sample B the minimum D = 0.71 meV was measured at
[6]] = 0.0r.l.u. and in Sample C the minimum D = 0.24 meV was measured at 6l = —0.05r.l.u.
with [Ej| of 1.6 meV. When |6§l] > 0.15r.L.u. and increasing, the resonance amplitudes decrease
quickly and the line widths increase rapidly in both samples. The resonance energies and the

damping factors follow a similar rapid increase.

7.3.2.3 [ dependence in the [SDW]state

This section presents the results of the low energy magnetic excitations observed in the [SDW]
state. Only Sample A has been measured in this state at 5K and Figure [7.20] shows the scans.

The signal is included in the quasi-elastic scattering and its intensity and width increase as
|0| increases until |0l| = 0.2r.L.u.. When |dl| increases further, the signal broadens and shifts
to higher energies, while its intensity decreases.

Figure shows the ! dependence of the parameters of the model obtained by
fitting the signals presented in Figure The resonance amplitude is normalised to the value
measure at (002)rlu.

As |0l] increase until |[6l|] = 0.2r.].u., the resonance amplitude first decreases to a local
minimum of xo ~ 0.9 at |§l] = 0.1r.l.u. before increasing to its maximum value xo ~ 1.7 at
[6l] = 0.2r.].u.. The line width is relatively constant and minimum with T' ~ 0.17 meV, which

is within the resolution of the instrument.

7.3.2.4 | dependence near the Néel temperature

Now we look at the magnetic excitations near the SDW}PM] transition. Figure [7.22] shows the
signals measured in Sample A at 13.8 K, in Sample B at 34.1 Kﬁ and in Sample C at 38 K.
In all three samples, the excitations at 6/ = Or.L.u. are within the energy resolution of the

instrument and lead to quasi-elastic scattering. As &l increases, the intensities of the signals

6The temperature at which we measured Sample B is slightly higher than the bulk Néel temperature Tng=
30.5 K. The reason is that the inelastic experiment was prior to the elastic scattering measurements and we only
had an estimate of the real bulk Néel temperature in Sample B.
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Figure 7.20: [ dependence of the excitations measured in the SDW]state in Sample A, and fitted
with the (ODHO| model (solid lines). All the data has been measured with Panda.
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Sample A, T=5K
2 +— --> 72

in the SDW state
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Figure 7.21: Parameters of the model used to fit the [ dependence of the magnetic
excitations the state in Sample A. The line width on the left (full markers and solid lines)
and the resonance amplitude on the right (empty markers and dashed lines). The resonance
amplitude is normalised to its value measured at [ = 2r.l.u.. Solid and dashed lines are guides
to the eye. All the data was measured with Panda.

increase in all samples until 6/ = 0.2r.l.u., and then the signals loose their intensities, broaden
and move to higher energies.

Figure shows the | dependence of the parameters of the models obtained by
fitting the magnetic excitations in Sample A, Sample B and Sample C near the Neél tem-
perature (Figure . The resonance amplitude is normalised to the value measured at
(0 0 2)r.l.u. for the three samples.

As |6l] increase until |6l] = 0.15r.L.u., the resonance amplitudes increase until maximum
values of yo ~ 1.9 in Sample A and yo ~ 1.3 in Sample C. In Sample B, the resonance
amplitude remains constant at yg ~ 1 with a dip to xo ~ 0.7 around &/ = 0.05r.l.u.. The
line widths is minimum at § = 0.151r.L.u. in Sample A with I" & 0.2 meV, whereas it remains
fairly constant at I' ~ 0.2 meV in Sample C with [E;| of 1.6 meV and 2.48 meV, and at xg = 0.3
in Sample C with [E] of 4.35meV. In Sample B, the line remains within the resolution of the
instrument (0.22meV) for §1 < 0.15r.l.u.. When |§l| > 0.15r.1.u. and increasing, the resonance

amplitudes decrease quickly and the line widths increase rapidly in all three samples.
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Figure 7.22: [ dependence of the excitations measured near the Néel temperature and fitted
with the [DHO| or [ODHO| model (solid lines). Squares represent data measured with Panda,
circles represent data measured with 4F2 and triangles represent data measured with LET.

7.3.3 h dependence of the magnetic excitations

We also measured the h dispersion of the magnetic excitations at [ = 2r.l.u. in samples B and
C and at | = 2+ Igpw r.l.u. in samples A, B and C. These measurements show all very similar
results and therefore only the h dispersion at | = 2 + Igpw r.l.u. in Sample C at base, Curie

and Néel temperatures shown in Figure will be presented. The other fit parameters are
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near Néel temperature (Ty)
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© Sample B, T=34.1K l
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Figure 7.23: Parameters of the model used to fit the I dependence of the magnetic
excitations near the Néel temperature in samples A (yellow), B (blue) and C (brown). (a)
shows the of the line width (full markers and solid lines) and the resonance amplitude (empty
markers and dashed lines). For samples A and B the resonance amplitude is normalised to
their value measured at [ = 2rlu. (xa(l = 2) and xg(l = 2)). For Sample C, we first
multiplied the resonance amplitude of LET data measured with of 4.35meV and at 1.6 meV

by XLET,4.35(l = 2-15)/XLET,2.48(l = 185) and XLET,I.G(1-85)/XLET,2448(Z = 185) respectively,
and then we normalised the data to xpeT 2.48(! = 2). Solid and dashed lines are guides to the
eye. Squares represent data measured with Panda, circles represent data measured with 4F2
and triangles represent data measured with LET (up, down and left triangles for data measured
with of 4.35meV, 2.48meV and 1.6 meV respectively).

given in appendix 0h is defined as 6h = @y, — Or.l.u. (= Qy), where @), is the amplitude
along h of a reciprocal lattice vector.

Only the data measured at 4K shows peaks in the signals within the fitted range and
thus separated from the elastic line. At 32K and 38K the peaks of the signals are within
the resolution of the instrument. At all the measured temperatures, the signal decreases in
intensity, broadens and moves to higher energies as §h increases.

Figure[7.25]shows the h dependence of the parameters of the[DHO|or[ODHO]models obtained
by fitting the magnetic excitations in Sample C at base temperature, near Curie and Neél
temperatures (Figure and one point has also been measured at 211 K. The resonance
amplitude is normalised to the value measured at (00 2+ Igpw)r.lu.
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Figure 7.24: h dependence of the excitations measured at [ = 2 + Isdw in Sample C with
of 4.35meV and fitted with the [DHO| or [ODHO| model (solid lines). All the data has been
measured with LET.
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Figure 7.25: h- and T-dependence of the [DHO| model’s parameters used to fit the magnetic
excitations. (a) shows the of the line width on the left (full markers and solid lines) and the
resonance amplitude on the right (empty markers and dashed lines). Solid and dashed lines
are guides to the eye. (b) shows the resonance energy on the left (full markers and solid lines)
and the damping factor on the right (empty markers and dashed lines). All the data has been
measured with LET.
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When §h increases, the resonance amplitudes decrease rapidly and monotonously in com-
parison to the [ dependences at the same temperatures. The line widths increase from minimum
values of I' = 0.53meV at 4K, I' = 0.21meV at 32K and I' = 0.34meV at 38K, above the
resolution of the instrument. The increase in the state is steeper than near Curie and Néel
temperatures. The big error bars at §h = 0.08r.L.u. at 4K and at 6h = 0.1r.l.u. at 32K
come from the weakness of the signal. The same explains the big error bars of the parameters
measured at 211 K. The resonance energy measured at 4 K increases slightly from a minimum
FEy = 1.0meV and so does the damping factor from a minimum D = 1.9 meV, but, due to the

significant error bars, the intensity of the increase is hard to assess.

7.4 Discussion

The damping regime boundaries of the magnetic excitations measured at (00 2)r.Lu.
and at (0 0 lspw)r.lou. seem to correspond to the phase boundaries. Magnetic
excitations are well fitted with the [DHO] model in the under-damped or critical regime up to
Tc. Above the latter, the damping factor D increases and the magnetic excitations are well
fitted with the[DDHO|model in the over-damped regime at Ty and above. In the [FM]state, the
[-dependent resonance energy Ej is gapped with a minimum around 6/ ~ 0.15r.l.u.. The gap
reduces as temperature increases and although Figure [7.10] suggests a first closure of the gap
near T around §/ ~ 0.15r.l.u. and a closure at (002)r.l.u. near Ty, this is less obvious
from the fit parameters due to their significant error bars. In the [FM] state, at 6l ~ 0.2r.L.u.,
the line width T' approaches the resolutions of the instruments and the resonance amplitude
X0 is maximum. At T, I is within the energy resolution of the for ol € [0.1,0.2] r.L.u.,
and this range extends to 6l € [0,0.2]r.l.u. around Ty in Sample B. The maximum resonance
amplitude stays at §l € [0.1,0.2]r.l.u., but it decreases in intensity in comparison to the other

positions at T¢ and Ty.

7.4.1 Damping factor and relaxation time of the excitations

The resonance energy Ey and the damping factor D are not fitted in the over-damped regime.
Therefore, only the line width I'" and the resonance amplitude x( are available at almostﬂ all

scanned positions to compare the magnetic excitations throughout the different regimes. In the

T and xo are not available at position (0 0 2)r.l.u. at 29.3K and 32.1K, at positon (0 0 2.1)r.l.u. at 32K
and at all positions where fits where unsuccessful
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over-damped regime, 1/T is proportional to the relaxation time of the excitations. However, this
is not the case in under-damped regime, where the line width has no evident physical meaning.
To allow comparison between the different damping regimes, we compute the relaxation time 7
of the magnetic excitations. The equation used to compute 7 depends on the damping regime,

which is identified with the value of the damping ratio (.

7.4.1.1 Temperature dependence
In Section [2.2.3.2| we saw that D = 2(Ey, which gives

D

CZE.

Since ( is given by D and FEjy, it can only be calculated in the under-damped regime. Equa-
tion [2.2.22] and D = 2(E, give the relaxation time of the excitations in the under-damped

regime:
b
CEo’

Tu

(7.4.1)

In the strongly over-damped regime, we use Equation [2:2.24] to calculate the relaxation time of
the excitations:

(7.4.2)

o
o =

In the slightly over-damped regime (1 < ¢ < 3) we use the approximation of 7 in Equationm

Ta2 given in Figure 2:4p:

— To

N <+\/§¢¢—71[1+%1—%}

To

(7.4.3)

h
B [c+VavTT 1+ 5 - G

Figure [7.26| shows the damping ratio ¢ and relaxation time of the excitations at
calculated from the fit parameters presented above.

In the [FM] state, the excitations at are under-damped in samples B and C with
a damping ratio ¢ < 1. The relaxation time is constant with 7 ~ 2 x 107125, At T¢ and
above, ( > 1 and the excitations are over-damped. The relaxation time increases until a
maximum 74 = 3.6 x 10725 in Sample A at 5K, 75 = 4.9 x 10725 in Sample B at 32K and
Tc = 5.43 x 10725 in Sample C at 38 K. Above Ty, in the state, the relaxation time of
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Figure 7.26: Temperature dependence of the damping ratio ¢ (a) and relaxation time 7 (b) of
the excitations at in samples A, B and C. Data measured with Panda, 4F2 and LET are
represented with squares, circles and triangles respectively. The horizontal violet dashed line
in (a) shows the transition limit between the damped and the over-damped regime, the dashed
curves in (a) and (b) are guides to the eye and the crosses on the horizontal axis place the Curie
temperature for each sample. The inset shows the whole measured temperature range for 7.

the excitations decreases slowly.
Figure shows that the excitations at are under-damped in the [FM] state and
the relaxation time at is close to 7 =~ 3 x 107125. In the state, the damping ratio

increases suddenly and the regime becomes over-damped. The relaxation time increases to a

maximum value 7 ~ 5.9 x 1071?25 at 34.1K in Sample B and 7¢ ~ 5.4 x 107"%s at 32K in

Sample C. In the[PM]state, the damping ratios decrease slowly and consequently the relaxation
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Figure 7.27: Temperature dependence of the damping ratio ¢ (a) and relaxation time 7 (b)
of the excitations at in samples A, B and C. Data measured with Panda, 4F2 and LET
are represented with squares, circles and triangles respectively. The brown circles with AT €
[—24.3K, —23.5K, —13.2K, —7.5K, —2.7K, 0.1K, 2.9K, 5.8K, 18.4K, 61.8K, 162.3K] represent the
additional data measured by J. Poulten [70] and given in Table The horizontal violet
dashed line in (a) shows the transition limit between the damped and the over-damped regime.
The dashed curves in (a) and (b) are guides to the eye and the crosses on the horizontal axis
place the Néel temperature for each sample. The insets in (a) and (b) show the whole measured
temperature range for ¢ and 7 respectively.

time of the excitations at reduces as the temperature gets higher.
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7.4.1.2 | dependence

Figure [7.28h shows the ! dependence of the damping ratio ¢ and the relaxation time 7 of the
magnetic excitations deep in the state. Until 6/ = 0.2r.]l.u., the excitations are under-
damped in Sample B and critical in Sample C. For 6/ > 0.2r.l.u., excitations in Sample B
become over-damped, whereas the damping ratio decreases in Sample C. In Sample B, the
relaxation time of the magnetic excitations is maximum at [ = 2r.l.u. and drops by almost an

order of magnitude when [ increases to [ = 2.4r.l.u., whereas it remains constant in Sample C

(Figure [7.28p).
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Figure 7.28: [ dependence of the damping ratio ¢ (a) and the relaxation time 7 (b) of the
magnetic excitations deep in the state in samples B (blue) and C (brown). ¢ and 7 are
calculated with the equations detailed in Section [7.3.1.1] Circles represent data measured with
4F2 and triangles represent LET data measured with [Ej] of 4.35meV.

Figure [7.29] shows the I-dependence of ¢ and 7 near the phase transition. Only
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Sample B at (002)r.l.u. is under-damped. As 6l increases, ¢ increases rapidly in Sample
B and Sample C. The relaxation time is maximum around |§/| = 0.15r.L.u., with 7 & 3.2x107'%s
in Sample B, 7 ~ 5.4 x 10725 in Sample C measured with 4F2 and 7 ~ 2.6 x 10~'2 s in Sample
C measured with LET. As |0l increases further to 0.4r.l.u., 7 decreases towards 0.

Figure shows the [-dependence of 7 in the[SDW]phase in Sample A. The excitations are
in the over-damped regime and only the relaxation time could be computed. 7 has two maxima,
one at [ = 2r.l.u. with 7 = 4.2 x 107'2 s and another at [ = 2.2r.1.u. with 7 = 4.0 x 107 '2s. 7
then drops to almost zero when [ increases to [ = 2.4r.1.u.

Figure shows the relaxation time near the [SDWHPM] phase transition in Sample A,
Sample B and Sample C. The excitations are in the over-damped regime and only the relaxation
time could be computed. In Sample B and Sample C 7 seems constant within the error bars
until I = 2 + Igpwr.l.u., whereas it increases to a maximum near Ispw in Sample A. For

|6l] > lspw, the relaxation time decreases linearly towards 0.

7.4.1.3 h dependence

Figure shows the h dependence of the damping ratio ¢ and the relaxation time 7 of the
magnetic excitations in Sample C at Tpase, near T, near Ty and at high temperature. The
function was used for dh € [0,0.02,0.04,0.06] at Thase. All other data points were fitted
with the function.

The damping ratios in Figure remain relatively constant with { ~ 1, indicating that
the excitations are in the critical regime. At each temperature the relaxation time of the
magnetic excitations follows a similar trend, with a shift to higher values as the temperature
increases. The longest living excitations are at h = Or.l.u. and as we move to higher h the

relaxation time decreases until almost zero at h = 0.1r.l.u. (Figure ).

7.4.2 Models from the spin fluctuation theory

We saw, in Section that the inverse static susceptibility erl has a quadratic g-dependence,
and that the line width I'; has a cubic q—dependencdﬂ

Xg' =a+c(qg—2)? (7.4.4)

Ty =7(g—2)x; (7.4.5)

8here ¢ is replaced by (g — 2), because we measured around [Qenf= (0 0 2) r.Lu..
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Figure 7.29: | dependence of the damping ratio ¢ (a) and the relaxation time 7 (b) of the
magnetic excitations near the Curie temperature in samples B (blue) and C (brown). Circles
represent data measured with 4F2 and triangles represent data measured with LET (up, down
and left triangles for data measured with of 4.35 meV, 2.48 meV and 1.6 meV respectively).
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Figure 7.30: [ dependence of the relaxation time 7 of the magnetic excitations in the[SDW]state
in Sample A. 7 are calculated with the equations detailed in Section All the data was
measured with Panda.
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Figure 7.31: [ dependence of the relaxation time 7 of the magnetic excitations near the Néel
temperature in samples A (yellow), B (blue) and C (brown). Squares represent data measured
with Panda, circles represent data measured with 4F2 and triangles represent data measured
with LET (up, down and left triangles for data measured with of 4.35meV, 2.48 meV and
1.6 meV respectively).

where a, ¢ and v are experimental parameters.
From these models we would expect the static susceptibility to be maximum and the line
width to be minimum at ¢ = Or.l.u.. However, we saw in Figure Figure [7.19] Figure

and Figure [7.23] that the susceptibility is maximum, and the line width minimum, near [[spw
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Figure 7.32: h- and T-dependence of the damping ratio ¢ (a) and the relaxation time 7 (b)
of the magnetic excitations at base temperature (dark blue), near Curie temperature (light
blue) and near Néel temperature (orange) in Sample C. The horizontal dotted line indicates

the under-damped/over-damped transition of the regime. All the data has been measured with
LET.
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Figure 7.33: Fit of the magnetic excitations measured along I, deep in the [FM]state, in samples
B and C with the model (a) and the model (b). The full markers repre-

sent the line width and the empty markers represent the resonance amplitude. For Sample
B the resonance amplitude is normalised to its value measured at [ = 2r.l.u.. For Sample
C, we first multiplied the resonance amplitude of the data measured with LET at 4.35 meV
by XLET4.35(2.15)/XLET,2.48(1.85), and then we normalised the data to xpLgT2.45(2). Circles
represent data measured with 4F2 and triangles represent data measured with LET (up and
down triangles for data measured with [Ej| of 4.35 meV, and 2.48 meV respectively).

Figure [7.33h, Figure [7.34h, Figure and Figure show the g-dependence in the [
direction of the static susceptibility and the line width that are fitted with the [FM] model of
the spin fluctuation theory. The latter model only considers the excitations at

If we also include the excitation at in the model, the static susceptibility, which is
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Figure 7.34: Fit of the magnetic excitations measured along [ near the Curie temperature in
samples B and C with the model (a) and the model (b). The full markers
represent the line width and the empty markers represent the resonance amplitude. For Sample
B the resonance amplitude is normalised to the value measured at [ = 2r.l.u.. For Sample
C, we first multiplied the resonance amplitude of the data measured with 4F2 and with LET
at 4.35meV and 1.6 meV by X4F2(2-15)/XLET,2.48(1-85)7 XLET,4.35(2~15)/XLET,2.48(1-85) and
XLET,1.6(1.85)/XLET,2.48(1.85) respectively, and then we normalised the data to xrET,2.45(2).
Circles represent data measured with 4F2 and triangles represent data measured with LET
(up, down and left triangles for data measured with of 4.35meV, 2.48meV and 1.6 meV
respectively).

the sum of the and the [SDW] susceptibilities, is given by

Xgq = XqFM T XqSDW (7.4.6)
1 1

= + . 7.4.7

arm + crv(q —2)?  aspw + cspw (g — 2 — lspw)? ( )

161




L (a) i
2.5 in the SDW state .
FM MODEL 12
20F 2
Feny Q
g 25
C 15f s
e ©
g -
= T c &
é: 1.0 g ~
(%]
¢
0.5}
0 1 1 1 1 1 0
2.5L(b) Sample A, T=5K
FM + SDW
MODEL 12
2.0+ =
S S
: ES
C 15f 22
- ©
g -
= 7 c &
g Lor g=
(%]
¢
051
%60 0.1 0.2 03 0.4°
[0 0 2+5/] (r.l.u.)

Figure 7.35: Fit of the magnetic excitations measured along [ in the SDW]state in Sample A
with the model (a) and the model (b). The full markers represent the line
width and the empty markers represent the resonance amplitude. The resonance amplitude is
normalised to the value measured at [ = 2r.l.u.. All the data was measured with Panda.

The line width in Equation then becomes

larm + (g — 2)?] [aspw + cspw (g — 2 — lspw)?]
arm + aspw + crm(q — 2)% + cspw (g — 2 — lspw)?

Tg=7(¢—2+qc) ; (7.4.8)

were ¢. is a cut-off frequency that we add to accounts for the finite relaxation time of the
excitations.

Figure [7.33p, Figure [7.34p, Figure [7.35b and Figure [7.36p show how the [FM] model of the
spin fluctuation theory is modified when considering the excitation at One sees that
the [FEMIHSDW] model fits much better the data than the [FM] model.

Figure [7.37] shows all the parameters of the [FMH{SDW] model that have been fitted in the
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Figure 7.36: Fit of the magnetic excitations measured along [ near the Néel temperature
in samples A,B and C with the model (a) and the model (b). The full
markers represent the line width and the empty markers represent the resonance amplitude.
For samples A and B the resonance amplitude is normalised to their value measured at
I =2rlu (xa(2) and xB(2)). For Sample C, we first multiplied the resonance amplitude of
the data measured with LET at 4.35meV and 1.6 meV by XrgT,4.35(2.15)/XLET,2.48(1.85) and
XLET,1.6(1.85)/XLET,2.48(1.85) respectively, and then we normalised the data to xrET,2.45(2).
Squares represent data measured with Panda, circles represent data measured with 4F2 and
triangles represent data measured with LET (up and down triangles for data measured with
of 4.35meV, and 2.48 meV respectively).

different temperature regimes. The intensity of both the[FM]static susceptibility xo, s and the
[SDW] static susceptibility xo,spw decrease systematically as the Fe concentration y increases,

with xo,ram near Ty at y = 0.002 as the only exception. There is no clear temperature

163



@O in the FM state A/ near T¢ in the SDW state €O near Ty

_ 15
:‘é’
35
8 <
£ F o E
~ Q o
> 5F o
a
5
P
0
12+
= 9r
5 b
S g o
s =
>
3 -
0.10 e-_l____l___ T—_\AI(C)O 0 L 1 1 I(d)
70 0.005 0.010 0.015 0.020 0 0.005 0.010 0.015 0.020
y (Fe in excess) y (Fe in excess)

Figure 7.37: Composition dependence of the different parameters of the FMH[SDW] model of
the spin fluctuation theory fitted in the state (dark blue circles), near T¢ (light blue
triangles), in the state (orange squares) and near Tx (red diamonds). xorm (left axis
in a) is the dependent susceptibility and xo spw (right axis in a) is the dependent
SDW|susceptibility. corm (left axis in b) is the stiffness of the magnetic excitation at and
co,spw (right axis in b) is the stiffness of the magnetic excitation at lspw (left axis in
c)is the I component of the [SDW] wave vector [Qspw|and ges; (right axis in c) is the constant
cut-off frequency added in Equation [7.4.8 v (left axis in d) is the relaxation function. Solid
markers correspond to the parameters given on the left axis and empty markers correspond to
the parameters of the right axis.

dependence of x¢ rar and xo,spw-

The stiffness of the excitations at co,ru 1s significantly higher than at and
again, there is no clear temperature dependence for these parameters.

The fitted [SDW] wave vectors indicate higher values than the wave vectors suggested
by the elastic neutron scattering results presented in Section [6] which gave 0.091r.L.u.<{[spwl<
0.158 r.l.u., whereas the values shown in Figure (left axis) suggest 0.16 r.l.u.<spw|
0.22r.Lu.. A possible reason could be that[[spw] measured with elastic neutron scattering exper-

iments are underestimated because of the system’s proximity to the[FM]state. Figure[7.38shows
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a calculated [,y (solid markers), which is the average of [Fps and the fitted lspy, weighted with
the fitted intensities of the static susceptibilities xo,rar and xo,spw, respectively. The empty
markers correspond to the values of measured with elastic neutron scattering lspw,e and
presented in Section @ We see that [, is fairly consistent with the measured values of Ispw el,
which could indicate that the actual values correspond more to the values fitted by the
[FMHSDW] model and that those are of the order of 0.2r.L.u. rather than 0.1r.L.u. as suggested

by the elastic neutron scattering data.

@O in the FM state in the SDW state
near T¢ €O near Ty
0.16 - 40.16
0.14F 10.14 ~
—_ 3
3 =
£ 012t 1012 ®
3 N
= 8
0.10 + 40.10
0.08 40.08
1 1 1 1
0 0.005 0.010 0.015 0.020

y (Fe in excess)

Figure 7.38: Solid markers correspond to the left axis and show the average l,, of Ipp; and
lspw weighted with the fitted intensities of the static susceptibilities xo,rar and xo,spw shown
in Figure [7.37h. Empty markers corresponding to the right axis, represent the ! components
of the [SDW] wave vectors measured with elastic neutron scattering experiments and
presented in Section [f]

The cut-off constant ¢. added to the model to account for the finite relaxation time of
the excitations decreases in the higher temperature phases. The parameter shows a strong
composition dependence in the [FM] state with higher values at higher concentrations of Fe.
This y-dependence seems to be gone near Ty.

Finally, the relaxation function + shows a strong composition dependence with a strong
enhancement at lower y. I should go to 0 and 1/T" should diverge in the quantum critical region.
However, v could be linked to the Fermi velocity (i.e. it expresses how fast the electrons and

their spins move to cancel any excitations) and therefore, since the doping range is small and
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big changes in the bare electronic structure are not expected, we expect this latter parameter

to be fairly constant, which is not what we observe.
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Chapter 8

Summary and Outlook

The characteristic behaviour observed in Nby_,Fes, as the second order [ferromagnetic (FM)f

[paramagnetic (PM)| phase transition is suppressed towards 0K, make of this compound a

promising candidate to study the theoretically predicted scenario of alspin density wave (SDW)|

masking a [ferromagnetic quantum critical point (FM QCP)l In this thesis we used different

neutron scattering techniques on NbFes to investigate the nature of the order and excitations
near the border of ferromagnetism. To approach the latter we used three high quality single
crystal with different compositions. We moved across the temperature T-composition y phase
diagram of Nb;_,Fes,, by using Sample A with y = 0.002, Sample B with y = 0.014 and
Sample C with y = 0.019. The positions of the samples in the phase diagram are shown in
Figure [81]

We used spherically polarised neutron diffraction to establish the nature of the [FM] phase
at two Bragg peaks: (1 0 2)rlu. and (3 0 1)r.L.u.. The goal was to address the pending
question of the direction of the magnetic moment in the ordered phase. At both positions,
only polarisation-matrix elements P, and P,, showed a small increase between the |F_M| state,
measured at 5K, and the [PM] state, measured at 40 K; all off-diagonal terms are zero. Further
considerations of the elements of the polarisation matrix, indicated the presence of two opposed
and equally populated 180°-domains, and excluded the present of chiral domains. Additionally,
the intensities of the physical quantities showed an increase for M, ,, but not for M, ,, and
considering the hexagonal structure of the crystal, we could conclude that the moment points
along c in the [FM] state.

Interesting measurements for the future would be the [FM] and the [SDW] structure refine-
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Figure 8.1: T-y phase diagram of Nb;_,Fes,, . Nb atoms are substituted with Fe atoms on the
Fe-rich side of the diagram (right) and Fe atoms are replaced by Nb atoms on the Nb-rich side
of the diagram (left). The vertical plain lines labeled A, B and C indicate the Fe concentrations
of Sample A (y = 4+0.002), Sample B (y = 40.014) and Sample C (y = +0.019).

ments, by measuring polarisation matrices at more Bragg positions and by measuring the full
polarisation matrix at the [SDW] position, respectively. It would be useful to apply a small
magnetic field along the easy axis ¢* during cooling to suppress the magnetic domains, this
could give non-zero off-diagonal terms in the polarisation matrix, which are not be observed
with zero-field cooling. We could also suggest to measure again the positions where no [SDW]
signal has been detected (e.g. (1 00), (10 1), (10 2) and (1 0 3)) with polarised neutrons in
order to confirm the absence of [SDW] signals.

We used unpolarised elastic neutron scattering to measure the temperature 7" and compo-
sition y dependence of the intensity and the wave vector of the [SDW]signal. The synthesis of
the results is contained in Figure [8.2 From these results we estimated bulk Curie tempera-
tures of Te,= 21.7K for Sample B, Tc,= 32.4K for Sample C and bulk Neél temperatures
of Tn,= 13K for Sample A, Tn,= 30.5K for Sample B and Tn,= 36.9K for Sample C. No
ferromagnetism was measure in Sample A down to 2K. The temperature hysteresis of
observed in Sample B and Sample C in Figure [8:2k, confirmed the first order nature of the
phase transition. The change of with temperature in Sample B and Sample C
indicated that the [@}dependent susceptibility in the [SDW]state changes when approaching the
[FM] state. We also observed that is the highest in Sample A and the lowest in Sample
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Figure 8.2: Temperature evolution of the signal and the characteristics. (a) shows
the temperature evolution of the signal measured at @ = (1 0 2)r.l.u. and normalised by
the nuclear intensity measured at T¢. (b) shows the temperature evolution of the normalised
signal intensity in Sample A (yellow), Sample B (blue) and Sample C (brown). The
intensities are normalised with the highest value measured with increasing temperatures (T

up). (c) shows the temperature evolution of (the l-component of in the three
samples. The dashed lines indicate the onset temperatures of the [SDW] signal and the plain

lines are the temperatures of maximum [SDW] intensity, which also corresponds to the onset
of the m signal at T¢. Solid markers are the data measured in the framework of this PhD
project and the empty markers represent the previous data [3].

C; increases as we approach the [FM QCP| The continuous growth of [SDW] intensity in-
dicated a second order [PMHSDW] phase transition. We also observed a coexistence of the [FM]
and the [SDW] states, which we explained by a possible composition gradient in the samples.
Finally, we used unpolarised inelastic neutron scattering to measure the T, y and || depen-
dence of the low energy magnetic excitations in the different sections of the T'—y phase diagram
of NbFey , and we tested our results with the spin fluctuation theory. From the over-damped
harmonic oscillator model derived in the latter theory and applied near the SDWHPM] phase
transition, we extrapolated the damped harmonic oscillator model for the [FM] state and near
the FMHSDW] phase transition. Then, to compare the different regimes, we derived two physical
parameters from the fitted parameters: the damping ratio ¢, which provides information of the

damping regime of the magnetic excitations and the relaxation time 7, which is the lifetime

169



T T T — 1000
: 4K

15 : o
_ S (002+6/)
= :
<1
£ 10 800
=
5]
& 05

0.0 600

1.5
- 400
=
[<1)
E 10
>
2
® 05 200

0.0

04 06-06 -04 0.2 0 0.2 0.4
&l (inr.l.u.) ol (inr.lu.) 0

Figure 8.3: 2D cuts along the ! direction and the energy showing the ! dependence of the
magnetic excitation energies near (002)(rlu) at 4K, near Tq, at T' = 32K,
near Tn, at T = 38K and at Tiax = 211 K. (0 0 2)r.l.u. is given by the red dot and
(002.09)rlu. at 4K, and (0 0 2.109) r.l.u. at the other temperatures, is
given by the red cross. The [E;| of the neutrons is 2.48 meV, the [ resolution is 0.02r.l.u., h and
n directions are integrated over [—0.2,0.2]r.l.u. and the energy resolution is 0.0l meV. The
colour scale, which represents the intensity of scattered neutrons, is saturated at 1000(a.u.) in
order to make the magnetic excitations visible. At Ty,.x, the magnon dispersion disappears
completely and a weak phonon becomes visible.
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of the magnetic excitations. A general observation that we made is that unusual excitations
spectra were observed along [ only; spectra observed along h were as expected with a minimum
at h = Or.l.u. and a decreasing static susceptibility xo with increasing h. We first looked at the
temperature dependence of the magnetic excitations at and The damping regime
correspond to the phase boundaries, with under-damped or critical damping regimes in the [FM]
state and over-damped in the [SDW] and [PM] states. The lifetime of the magnetic excitations
at and at are enhanced around Ty and T, respectively. We then looked at the
[-dependence of the magnetic excitations in the different phases and at their transitions. In the
[FM]state in Sample B and Sample C, we observed an energy gap with minimums closer to
than to Or.l.u. where we would have expected the minimum for the spectrum of the exci-
tations in the [FM]state. An illustration of this energy gap is shown for Sample C in Figure B3]
at 4K. The calculated 7 showed an enhancement of the lifetime of the excitations around
Near the [FMISDW] phase transition, we observed a closure of the gap around as
shown for Sample C in Figure [8.3] at 32 K. Longest lifetimes were still observed around [[spw]
Near the SDWHPM] phase transition the energy gap seemed to have closed at as shown for
Sample C in Figure 833 at 38 K. In the [SDW] state and near the SDWHPM] phase transition,
lifetimes of excitation at and at were similar. The last step was the comparison of
the results with two models derived from the spin fluctuation theory: the [FM] model and the
[FM}{SDW] model. In the [FM] model we considered magnetic excitations only at whereas
in the [FMHSDW] model we considered coexisting magnetic excitations at and We
fitted the [-dependent linewidths I' and static susceptibilities xq, that were obtained from fitting
the neutron data, and we arrived at the conclusion that the describes much better
our results. Spin-fluctuation spectrum reflects the proximity to two types of magnetic order.
The intensities of [FM] and [SDW] excitations are similar, which points to a common origin. The
findings are a testing ground for theories of masked like quantum order by disorder
[32].

Particular challenge for any theories will be to explain unusual observations like the min-
imum of the gap in the [FM] state away from and the closure of the gap at near
Ty and not T¢. It is also not expected to find a whole range in reciprocal space with closed
gap. A path for the near future would be to perform spin echo measurement for high energy
resolution, which would more information about the observed energy gap and its closure. An-
other interesting direction would be in field measurements. By applying a field H || a allows to

reach an unmasked [FM QCP|and by applying a field H || ¢ (along the easy axis) one can hit

171



the tricritical line at finite temperature. Finally, in a more further future, one could consider

growing a new sample in order to search for the predicted |quantum tricritical point (QTCP)|
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Appendix A

APPENDIX

A.1 Fluctuation-dissipation theorem

The common way to measure a system is by observing its response to a weak perturbation
field. Three different information can be extracted from this: the response function (¢), the
relaxation function (®) and the admittance (x).

The response function gives the temporal evolution of the system.

The relaxation function is the evolution of the system towards equilibrium after turning off
the perturbation field.

The admittance is the behaviour of the system when the perturbation is harmonic.

We will see that these quantities are linked together by the different correlation functions

I73].

A.1.1 Heisenberg representation

In quantum mechanics any observable physical quantity has an associated hermitian operator.
Let A be such an operator. In the Heisenberg representation the time-dependence of A is given
by [53]:

iHgt —iHgt

At)=e 7 Ae 7 | (A.1.1)
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where Hj is the time-independent Hamiltonian of the system at thermodynamical equilibrium.

The time-evolution of A(t) is given by the Heisenberg equation [53]:

dA(t)

ih=—= = [A(t), Ho, (A.1.2)

where the square brackets represent the commutator.

A.1.2 Density matrix

We cousider [1);), a wave function describing a microscopic state of a quantum system. [1);) is

a linear combination of the eigenvectors of the system:
i) =) cni [dn) - (A.1.3)
If A is a quantum operator associated to an observable, the average value of A is given by
(A) = Zpi (il A lhs)
i
=0 ) {Oml Aln) chuicar

m,n

(A.1.4)

where p; is the probability of observing the microscopic state 7. The density matrix is defined

as

p= Z [Vs) pi (Vi (A.1.5)

and the average value of A becomes
(A) = Tr (pA), (A.16)
Where Tr is the trace. The element at the m™ row, n'" column in p is :

Pmn = <¢m| P |¢n>

E3
= E PiCmiCpj-
i

(A.1.7)

Using the Schrodinger equation for vy,

ih

] (AL8)

d
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where H is the Hamiltonian of the system, and the definition of the p in Equation[A.T.5|gives the

equation of evolution of the density operator is given by the Liouville-von Neumann equation

op i
Y [Hap]
o h (A.1.9)

where the square brackets represent the commutator and % is the quantum Liouville operator

defined as
1

ZLp W

[H,p]. (A.1.10)

A.1.3 Response function

We consider a system, initially at thermodynamical equilibrium and Hamiltonian Hy. At t =
—oo we turn on a weak perturbation field a and A is the operator conjugated to the perturbation
(e.g.: if a is a magnetic field, then A would be the magnetisation). The response function ¢p4
gives the change observed on the physical quantity B when the system is perturbed by the field

a.

A.1.3.1 First order correction of the density matrix

The Hamiltonian of the system at equilibrium is Hy and the density matrix is pg. When the
weak perturbation a(t) with Hamiltonian H;(t) = —a(t)A(¢) is turned on, at first order the

Hamiltonian and the density matrix of the perturbed system become [74] 53]

H(t) = Ho+ H (2) A

p(t) = po +dp(t),

where dp(t) is the first order correction to the perturbation field a.
Using the Equation in first order approximation, the correction of the density matrix
is [74]

t
5p(t) = % / eI L0=) [ 4 () po] At (A.1.12)

— 00
where %) and %, are the quantum Liouville operators, introduced in Equation for H,
Hamiltonian of the system at equilibrium and H7, the Hamiltonian of the perturbation. Using

Hy(t) = —a(t)A(t) and the time evolution of an operator in the Heisenberg representation
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(Equation [A.1.1)) [53]

1 t
() = = / alt') [po, AR (¢ — 1)) d’ .
iHgt —ié—[ot o

with  A%(t) =e 7 A(0)e

A.1.3.2 Response function ¢

In the Schrédinger representation, the time dependence of an observable B perturbed by a(t)

is carried by the density operator p [53]:

(B(t))a =Tr (p(t)B)
=Tr(poB) + Tr (dp(t)B) .

(A.1.14)

Tr (poB) is the average value of B of the unperturbed system at thermodynamical equilibrium,
which is null if B is centred. The change of the physical quantity B due to the perturbation
a(t) is

(A.1.15)
=Tr (dp(t)B).

Replacing dp(t) in Equation |A.1.15| by the expression derived in Equation |A.1.13| yields:

S(B(t))s — %/ a(t'YTr ([po, AN(E — £)] B(0)) dt’

= % _t a(t')Tr (AM(t' —t),[B(0)] po) dt’

(we used Tr(ABC) = Tr(CAB) = Tr(BC A)) (A.1.16)

- % /_Oo a(t')([A(0), B"(t — t')])d’

(we used the invariance by time shift at equilibrium)

BY(t—t') is the time dependence of B in the Heisenberg representation (Equation|A.1.1)), which
only depends on the Hamiltonian of the system at equilibrium Hy. We will refer to BY(t) as

B(t). Equations [A.1.16show that the time evolution of 6(B(¢)), only depends on properties of

183



the non-perturbed system. The response function is defined as [74]

1
¢pa(t) = = Tr (po [A(0), B()])
21 (A.1.17)
= —([A4(0), B(t
(1A4(0), B,
and it is called the Kubo response function. d(B(t)), becomes
t
3{(B(t))e = / a(tYppa(t —t")dt'. (A.1.18)
If we use the spectral function, which is defined as [53]
1
¢pa(t) = — 5 ([A(0), B(®)]), (A.1.19)
then the Kubo response function becomes
¢Ba(t) = 2i€pa(1). (A.1.20)
A.1.4 Relaxation ¢
For a system in which a perturbation is switched on at ¢ = —o0, the relaxation of a physical

quantity B is its evolution back to equilibrium after that the perturbation is turned off. For
instance, if a magnetic field (the perturbation) is applied to a paramagnetic system, when
we turn off the field the magnetisation relaxes back to zero, its equilibrium state. It the
perturbation a(t) is applied to the system at t = —oo, and A its conjugated physical quantity,
the relaxation of §(B(t)), after the perturbation is switched off (at ¢ = 0) is [73]

6<B(t)>a:/ a(tYppa(t —t")dt'. (A.1.21)

—00

If we consider the example of a constant perturbation (a(t) = ag,Vt < 0), then, by posing
T=1t—1t, we have

§(B(t))a = ag /too dpa(r)dr for t>0 (A.1.22)

and the relaxation function is given by [73]

Bpa(t) = lim / " dpa(r)e<dr. (A.1.23)
t

e—0t
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A.1.5 Admittance x

When the perturbation a(t) is harmonic, it can be written as a(t) = Re[a(w)], where a(w) =

ape™*. Using this harmonic perturbation in Equation [A.1.16| yields

(B0 = [ Re[aue ] opate — ) .
T A1.24

=Re [aoei‘“t/ ¢BA(T)€_iWTdT:| .
0

The admittance is defined as (theorem 1 in [73])

e—0t

XBA(w) = lim /OOO ¢BA(t)67i‘”te%tdt
= /OOO dpa(t)e”“tdt (A.1.25)
=2 /OOO Epa(t)e”™tdt.
Thus we can write Equation [A1.2]

§(B(t))a = Re [age™ xpa(w)] . (A.1.26)

The admittance can also be derived from the relaxation function given in Equation [A:1.23]
(theorem 2 in [73]):
oo
XpA@) = ®pa(0) — iw / Bpat)eitdt. (A.1.27)
0
From the Kubo response function in Equation and the invariance of the trace with

cyclic permutations, ¢pp(t) rewrites

Spalt) = %Tr([pO,A] B(1)), (A.1.28)

where B(t) is the time dependent operator in the Heisenberg representation and A = A(0). We
consider the following identity [73]:

B
[0, A] = po / Ao (A, Hol e MHod)
0 (A.1.29)

B .
:ihpo/ e Mo fe=Mog)
0
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where 8 = kB% and A is the time derivative of A at t = 0 (ihA = [A(t), Ho),_,) and we find
that 5
[po, A] = ih / dApo A(—ihN), (A.1.30)
0

where A(—ih)\) is a Heisenberg operator as in Equation with an imaginary time ¢ = —ihA\.
Using in Equation yields

B
bpalt) = / (A(—iBN) B())d\. (A.1.31)
0
If we use the canonical correlation function of X and Y
1 [P
(X:Y) = 3 / dATr (poe* o Xe oY) (A.1.32)
0
introduced by Kubo in [74] and Equation |A.1.30} we find that
([A(0), B(t)]) = ihB{A(0); B(t)) (A.1.33)

and, with the spectral function:

i

5 (A(0); B(1). (A.1.34)

Epa(t) =

Thus the response function and the admittance become

dpa(t) = BA(0); B(t)) (A.1.35)
0

xBa(W) :ﬂ/ (A(0); B(t))e™™“"dt. (A.1.36)

A.1.6 Correlation functions
A.1.6.1 Fourier transform

In this section, we choose the following convention for the Fourier transform and its reciprocal:

flw) = /_oo ft)e ™tdt (A.1.37)

f@) = % /jo f(w)e™'dw, (A.1.38)
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where f is the Fourier transform of the function f.

A.1.6.2 Symmetric correlation function

The symmetrised correlation function of two quantum operators A and B is [74]:
({AB}) = Tr [% (AB + BA)|, (A.1.39)

where pg is the density matrix of the system at thermodynamical equilibrium. A and B can be
time and space dependent (A = A(r,t) and B = B(r,t)). If A= B, ({AB}) = ({A?}) is called
the auto-correlation function and ({A?}) > 0 |74].

A.1.6.3 Properties of the correlation functions

If the system is at equilibrium, then ({AB}) is stationary and [74]
{A)B(1)}) = ({A(to) B(t +to)})- (A.1.40)

({AB}) depends only on the distance between the times ¢ and tg.
In general [74]
({AB}) = ({BA}), (A.1.41)

and thus, with the stationary property

{A)B()}) = ({B(0)A(=)}) (A.1.42)
{A(0)A(1)}) = ({A0)A(=1)}). (A.1.43)

({A(0)A(¢)}) is the symmetric auto-correlation function. Those properties also apply to the

canonical correlation function introduced in Equation [AT1.32]

A.1.6.4 Spectral density and correlation spectrum

The spectral density or power spectrum of A(0) and B(¢) is the Fourier transform of the spectral

function £pa(t) = — 55 ([A(0), B(t)]) defined in Equation [A.1.19

Epa(w) = [ h Epa(t)e ™ dt. (A.1.44)
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If we use the canonical or the symmetric correlation functions, we find that the correlation

spectra areﬂ [74]

¢ (W) = [ T A0); B(t)e—tat (A.1.45)
hae) = [ T A B®))e . (A.1.46)

where G% 4(w) is the canonical correlation spectrum and G 4(w) the symmetric correlation
spectrum of A(0) and B(t).

The Fourier transform of the canonical and symmetric correlation functions are:

(A(w); B(w")) = 218 (w 4+ w")GF 4 (w) (A.1.47)

{A(w)B(W)}) = 2m0(w 4+ w")GH 4 (w). (A.1.48)

A.1.6.5 Relationship between G§ ,(w) and G% 4 (w)

If A and B are two quantum operators, which do not commute in general ((A(0)B(t)) #
(B(t)A(0))), we have [74]

/ (A(0)B(t))e~™!dt = e / (B(t)A(0))e™™"dt. (A.1.49)
From Equation we find that
~ w s
Ealw) = “3E,) Gpalw), (A.1.50)

where Eg(w) = 1w coth (%) If we use property |A.1.42 on (A(0); B(t)) in Equation [A.1.34

and then take the Fourier transform, we find that

Epa(w) = f%w G a(w). (A.1.51)

And finally Equation [A-T.50] and Equation [A-T.51] yield

c _ 1 s
Balw) = WGBA(LL;). (A.1.52)

Lhere again, we use the convention given in Equation for the Fourier transform.
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A.1.7 Fluctuation-dissipation theorem

The fluctuation-dissipation theorem is the relationship between the correlation spectra and
the dissipation of the admittance. Equation [ATT.50] for the symmetric correlation and Equa-
tion for the canonical correlation, are two formulations of the theorem. The latter can

be used in two ways:

1. to predict the characteristics of the fluctuation or the noise intrinsic to the system from

the response function, which is known (|75])

2. to predict the response function by observing the thermal fluctuations of the system

(I76, I77).

A classic example used to illustrate the theorem is the Brownian (stochastic) movement of
a pollen particle in water. The pollen particle is brought into motion by the water molecules
hitting it. The pollen particle, which is the receptor of the motion, moves randomly and is
fluctuating (Brownian motion). If now the pollen particle becomes motor, it transmits its
motion to the surrounding water molecules, generating friction. Thus we see that collisions
between the pollen and the water molecules create either a fluctuating driving force if the
pollen is receptor or a dissipative frictional force if the pollen is motor. Both forces have the

same origin and are related by the fluctuation-dissipation theorem.
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A.2 Inelastic chapter

A.2.1 Background signal of LET with Sample C

A.2.1.1 Incident neutron energy of 2.48 meV

4 data at 4K 4 dataat 32K data at 38K {1 data at 211K

—— elastic line fit at 4K —— elastic line fit at 32K elastic line fit at 38K —— elastic line fit at 211K

— - constant fit at 4K — - constant fit at 32K constant fit at 38K — - constant fit at 211K
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Z e0f 3 L ; 3 )
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g =4 S 4 I S «
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A.2.1.2 Incident neutron energy of 4.35 meV

A data at 4K L data at 32K data at 38K /. dataat 211K
— elastic line fitat 4K —— elastic line fit at 32K elastic line fit at 38K —— elastic line fit at 211K
— - constant fit at 4K — - constant fit at 32K constant fit at 38K — - constant fit at 211K
100 - 4K 3 ] 32K 3f
= . .
S sop 21 3Lz 2 33
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S 60f 21 S 5 - 31 o8 o
s 4 S = = pa
5 N .
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A.2.1.3 Incident neutron energy of 9.5 meV

I data at 4K  dataat 32K data at 38K I dataat 211K
— elastic line fitat 4K —— elastic line fit at 32K elastic line fit at 38K —— elastic line fit at 211K
— - constant fit at 4K — - constant fit at 32K constant fit at 38K — - constant fit at 211K
4K 2 32K 2t
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A.2.2 Measurements summary

A.2.2.1 Measurements of Sample A

Exhaustive list of measured positions in r.l.u. and temperatures in Samples A. All the signals

were measured with Panda and fitted with an jover-damped harmonic oscillator (ODHO)| func-

tion.

SAMPLE A
(002) (0 0 2.05) (002.2) (0 0 2.25)
(002.1) (0 0 2.158) 13.8K |(0 0 2.3) (002.4)

5K (002.2) (0 0 2.25) (0.025 0 2.158) (0.05 0 2.158)
(0023) (002.4) 30K (0 0 2.156)
(0.025 0 2.158) (0.05 0 2.158) 50K (0 0 2.156)

13K (0 0 2.157) 100K [ (0 0 2.156)

13.8K (002) (0 0 2.05) 200K | (0 0 2.156)
(002.1) (0 0 2.151)

A.2.2.2 Measurements of Sample B

Exhaustive list of measured positions in r.l.u. and temperatures in Sample B. d, o or so near the

hkl-positions indicates whether the data is fitted with a |[damped harmonic oscillator (DHO)|

an [ODHO)| or a|soft over-damped harmonic oscillator (SODHO )| function. The symbols 0O and

O indicate which instrument we used (O for Panda and O for 4F2).
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SAMPLE B (d: [DHO|fit function, o: [ODHO)|{it function, so: [SODHO)|fit function)

5K0 | (002): d (00 2.094): d (0.02502):d  (0.0502): d
22 4KO
(002): d (002.05): d (0.102): o
(002.092): d  (002.15): d 25K0 | (0 0 2): so (00 2.095): d
o (002.2): d (002.25): d 20KO | (002): d (002.108): d
2KO
(0023): d (0024): o 32KO |(002): o (002.11): o
0.02502):d  (0.0502): d (002): o (002.05): o
(0.102): 0 (00 2.109): o (002.15): o
12K0 [ (002): d (00 2.094): d (0022): o (002.25): o
34.1KO
15Ko [(002): d (00 2.094): d (0023): o (0024): o
19K0 | (002): d (00 2.087): d (0.025 0 2.109): o (0.05 0 2.109): o
22Ko [(002): d (002.088): d (0.1 0 2.109): o
(002): d (00 2.05): d 35K0 |(002): o (002.111): o
(002102):d  (002.15): d 50KO |(002): o (002.111): o
22 4KO
(002.2): d (00 2.25): d 120K | (00 2): o
(002.3): o (0024): o

A.2.2.3 Measurements of Sample C with 4F2

Exhaustive list of measured positions in r.l.u. and temperatures in Sample C with 4F2 instru-
ment. d or o near the hkil-positions indicates whether the data is fitted with a [DHO] or an
IODHOI function.

SAMPLE C (d: IDHO|fit function, o: [ODHO| fit function)

51K | (00 2.093): d K (0.02502):d  (0.0502): d
18.6K | (00 2.093): d (0.102): o
24.3K | (00 2.093): d 34.8K [ (00 2.093): o
(002): d (002.05): d sk (00 2.093): o (0.025 0 2.093): o
(002.093):d  (0021):d (0.05 0 2.093): o (0.1 0 2.093): o
32K [(002.15): o (0022): o 42.2K | (0 0 2.093): o
(002.25): o (0023): o 50.3K | (0 0 2.093): o
(002.35): o (002.4): o 100.3K | (0 0 2.093): o
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A.2.2.4 Measurements of Sample C with LET

Exhaustive list of measured positions in r.l.u. and temperatures in Sample C with LET instru-
ment and for incident neutrons energy of 1.6 meV and 2.48 meV. d or o near the hkl-positions

indicates whether the data is fitted with a[DHO]or an [DDHO] function, with the left character

referring to the 1.6meV data and the right character referring to the 2.48meV data. () indicates

an unsuccessful fit.

SAMPLE C: 1.6 and 2.48meV (d: [DHO|fit function, o: [ODHO|fit function, : no fit)

002): 0 (001.95): 0,d K (00 1.7): o (00 1.65): 0,0
- (001. 91) pd  (001.85): 0.d (00 1.6): 0

(001.8): 0.d (00 1.75): 0,d (002): 0 (00 1.95): 0,0

(0017) 0.d (001891) (00 1.85): 0,0

002): 0 (001.95): d,d [38K |(001.8): 0 (00 1.75): 0,0
32K |(001. 891) dd  (001.85): do (00 1.7): o (00 1.65): 0,0

(001.8): d (00 1.75): 0,0 (00 1.6): o
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Exhaustive list of measured positions in r.l.u. and temperatures in Sample C with LET

instrument and for incident neutrons energy of 4.35 meV. d or o near the hkl-positions indicates

whether the data is fitted with a or an [ODHO] function and @ indicates an unsuccessful

fit.

SAMPLE C: 4.35meV (d:

DHO| fit function, o:

ODHO

fit function, @: no fit)

002): d (00 2.05): d 32K [(0.102): 0 (0.1 0 2.109): o
(002.09): d (00 2.15): d 002): 0 (00 2.05): o
(0022): d (002.25): d (00 2.109): o (002.15): o
(0023): d (00 2.35): d (002.2): o (00 2.25): o
(0024): d (002.3): o (00 2.35): o
" (0.0202): d (0.02 0 2.09): d (0024): o
(0.02502): d  (0.025 0 2.09): d K (0.0202): o (0.02 0 2.109): o
(0.04 0 2): d (0.04 0 2.09): d (0.025 0 2): o (0.025 0 2.109): o
(0.05 0 2): d (0.05 0 2.09): d (0.04 0 2): o (0.04 0 2.109): o
(0.06 0 2): d (0.06 0 2.09): d (0.05 0 2): o (0.05 0 2.109): o
(0.0802): d (0.08 0 2.09): o (0.06 0 2): o (0.06 0 2.109): o
0.102): d (0.1 0 2.09): ¢ (0.08 0 2): o (0.08 0 2.109): o
(002): d (00 2.05): o (0.102): o (0.1 0 2.109): o
(00 2.109): (00 2.15): o 002): 0 (00 2.05): o
0022): o (00 2.25): o (00 2.109): o (00 2.15): ¢
(002.3): o (00 2.35): o (0022): 0 (002.25): ¢
32K [(0024): o (0023): 0 (00 2.35): 0
(0.02 0 2): o (0.02 0 2.109): o K (002.4): 0
(0.025 0 2): o (0.025 0 2.109): o (0.02 0 2): o (0.02 0 2.109): 0
(0.04 0 2): o (0.04 0 2.109): o (0.025 0 2): o (0.025 0 2.109): 0
(0.0502): o (0.05 0 2.109): o (0.04 0 2): o (0.04 0 2.109): 0
(0.06 0 2): o (0.06 0 2.109): o (0.05 0 2): o (0.05 0 2.109): 0
(0.08 0 2): o (0.08 0 2.109): o
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A.2.3 Fit of the additional data measured with Sample C

intensity (x103/5min)

T=7.7K, dhoT

energy (meV)

intensity (x103/5min)

T=29.3K, dho]

T=32.1K, sodho]

T=34.9K, dho]

| | T=37.8K, odho’
.
-
.
A

energy (meV)
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intensity (x103/5min)

"1 T=50.4K, odho?
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T

T=93.8K, odho]

w o
T

energy (meV)
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A.2.4 h-dependence of the magnetic excitations

A.2.4.1 Sample B at the [ferromagnetic (FM)| position

line width T (meV)

resonance energy Eg (meV)

Sample B

1
0.02

1 1
0.04 0.06
[0+6h 0 2] (r.l.u.)

1
0.08

1
0.10

resonance amplitude o
(normalised)

damping factor D (meV)
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damping ratio ¢

relaxation time T (x10712 s)

2

r(c) © measured at 5.2K
measured at 22.4K
measured at 34.1K

1 1 1 © @

1 1
0.0 0.02 0.04 0.06 0.08 0.10
[0+6h 0 2] (r.l.u.)



A.2.4.2 Sample C at the [FM] position

line width T (meV)

resonance energy Eqg (meV)

1 1 1 1
0.04 0.06 0.08 0.10

[0+6h 0 2] (r.l.u.)

1
0.02

0.0

0.6

0.4

resonance amplitude o

damping factor D (meV)

(normalised)

damping ratio

relaxation time T (x10712 s)

(c) A measured at 4K
measured at 32K
measured at 38K

A measured at 211K
¢=1

L - - - - -]

A
i
A
Vi
A
1 1 1 1 1 1
(d)
i
1
I %* 3 .
A A
a 4
A
1 1 1 1 1 1
0.0 0.02 0.04 0.06 0.08 0.10
[0+6h 0 2] (r.l.u.)

A.2.4.3 Sample A at the|spin density wave

line width T (meV)

(SDW)| position

[0+8h 0 2+/sqw] (r.l.U.)

_(a) 412
. Sample A
X 11.0
AN
B AN
Q -40.8
E\
L N 10.6
N
. 0.4
= 40.2
,/'—/‘
T 1 1 1 1 1
0.0 0.02 004 0.06 0.08 0.10

resonance amplitude o
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(normalised)

relaxation time T (x10~12 s)

| (b) I measured at 5K |
measured at 13.8K
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2F i
1+ T i
0 1 1 1 1 1 1

0.0 0.02 0.04 0.06 0.08 0.10
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A.2.4.4 Sample B at the [SDW] position

(a) | (b)
4 «— _ > 112 5k © measured at 5.2K
T Sample B @ measured at 22.4K
qLo0= o measured at 34.1K
S : 3 o 4r i
v 3fF S _ =
£ 10827 X
[ g—g o3 i
< 5®© @
3 2+ 1069 E £
. e 2 ¢ 2F © B
[J] © — o
£ 104 § =]
r g 5
- 0 2 ?,_J 1 r -
o .
O 1 1 1 1 1 1 0 0 1 1 1 1 1 1
0.0 0.02 0.04 0.06 0.08 0.10 0.0 0.02 0.04 0.06 0.08 0.10
[0+6h 0 2+/sqw] (r.l.u.) [046h 0 2+/sqy] (r.l.U))
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