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Abstract
We present an Angluin-style algorithm to learn nominal automata,
which are acceptors of languages over infinite (structured) alphabets.
The abstract approach we take allows us to seamlessly extend
known variations of the algorithm to this new setting. In particular
we can learn a subclass of nominal non-deterministic automata.
An implementation using a recently developed Haskell library for
nominal computation is provided for preliminary experiments.

Categories and Subject Descriptors D.1.1 [Software]: Program-
ming Techniques; F.4.3 [Mathematical Logic and Formal Lan-
guages]: Formal Languages; I.3.2 [Artificial Intelligence]: Learn-
ing

Keywords Active Learning, (Non)Deterministic Finite Automata,
Nominal Automata, Functional Programming

1. Introduction
Automata are a well established computational abstraction with a
wide range of applications, including modelling and verification of
(security) protocols, hardware, and software systems. In an ideal
world, a model would be available before a system or protocol
is deployed in order to provide ample opportunity for checking
important properties that must hold and only then the actual system
would be synthesized from the verified model. Unfortunately, this
is not at all the reality: Systems and protocols are developed and
coded in short spans of time and if mistakes occur they are most
likely found after deployment. In this context, it has become popular
to infer or learn a model from a given system just by observing its
behaviour or response to certain queries. The learned model can
then be used to ensure the system is complying to desired properties
or to detect bugs and design possible fixes.

Automata learning, or regular inference [3], is a widely used
technique for creating an automaton model from observations. The
original algorithm [3], by Dana Angluin, works for deterministic
finite automata, but since then has been extended to other types of
automata [1, 4, 35], including Mealy machines and I/O automata,
and even a special class of context-free grammars. Angluin’s algo-
rithm is sometimes referred to as active learning, because it is based
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on direct interaction of the learner with an oracle (“the Teacher”)
that can answer different types of queries. This is in contrast with
passive learning, where a fixed set of positive and negative examples
is given and no interaction with the system is possible.

In this paper, staying in the realm of active learning, we will
extend Angluin’s algorithm to a richer class of automata. We are
motivated by situations in which a program model, besides control
flow, needs to represent basic data flow, where data items are
compared for equality (or for other theories such as total ordering).
In these situations, values for individual symbols are typically drawn
from an infinite domain and automata over infinite alphabets become
natural models, as witnessed by a recent trend [2, 9, 12, 15, 17].

One of the foundational approaches to formal language theory
for infinite alphabets uses the notion of nominal sets [9]. The theory
of nominal sets originates from the work of Fraenkel in 1922, and
they were originally used to prove the independence of the axiom of
choice and other axioms. They have been rediscovered in Computer
Science by Gabbay and Pitts [36], as an elegant formalism for
modeling name binding, and since then they form the basis of many
research projects in the semantics and concurrency community. In
a nutshell, nominal sets are infinite sets equipped with symmetries
which make them finitely representable and tractable for algorithms.
We make crucial use of this feature in the development of a learning
algorithm.

Our main contributions are the following.
• A generalization of Angluin’s original algorithm to nominal

automata. The generalization follows a generic pattern for
transporting computation models from finite sets to nominal
sets, which leads to simple correctness proofs and opens the
door to further generalizations. The use of nominal sets with
different symmetries also creates potential for generalization,
e.g. to languages with time features [7] or data dependencies
represented as graphs [33].
• An extension of the algorithm to nominal non-deterministic

automata (nominal NFAs). To the best of our knowledge, this is
the first learning algorithm for non-deterministic automata over
infinite alphabets. It is important to note that, in the nominal
setting, NFAs are strictly more expressive than DFAs. We
learn a subclass of the languages accepted by nominal NFAs,
which includes all the languages accepted by nominal DFAs.
The main advantage of learning NFAs directly is that they
can provide exponentially smaller automata when compared
to their deterministic counterpart. This can be seen both as a
generalization and as an optimization of the algorithm.
• An implementation using our recently developed Haskell li-

brary tailored to nominal computation – NLambda [26]. Our
implementation is the first non-trivial application of a novel pro-
gramming paradigm of functional programming over infinite



L? LEARNER

1 S,E ← {ε}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 ∈ S, a ∈ A such that

row(s1a) 6= row(s), for all s ∈ S
6 S ← S ∪ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that

row(s1) = row(s2) and L(s1ae) 6= L(s2ae)
9 E ← E ∪ {ae}

10 Make the conjecture M(S,E)
11 if the Teacher replies no, with a counter-example t
12 S ← S ∪ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

structures, which allows the programmer to rely on convenient
intuitions of searching through infinite sets in finite time.

The paper is organized as follows. In Section 2, we present an
overview of our contributions (and the original algorithm) highlight-
ing the challenges we faced in the various steps. In Section 3, we
revise some basic concepts of nominal sets and automata. Section 4
contains the core technical contributions of our paper: The new
algorithm and proof of correctness. In Section 5, we describe an
algorithm to learn nominal non-deterministic automata. Section 6
contains a description of NLambda, details of the implementation,
and results of preliminary experiments. Section 7 contains a dis-
cussion of related work. We conclude the paper with a discussion
section where also future directions are presented.

2. Overview of the Approach
In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L? provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w ∈ A?, to

which the teacher will reply whether w ∈ L or not;
• equivalence queries, consisting of a hypothesis DFA H , to

which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w ∈ L(H)4L (4 denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

ε a aa
S
∪
S·A

 ε 0 0 1

a 0 1 0
b 0 0 0

S,E ⊆ A?

row : S ∪ S·A→ 2E

row(u)(v) = 1 ⇐⇒ uv ∈ L

This table indicates that L contains at least aa and definitely
does not contain the words ε, a, b, ba, baa, aaa. Since row is fully

determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, δ, F ) where
• Q = {row(s) | s ∈ S} is a finite set of states;
• F = {row(s) | s ∈ S, row(s)(ε) = 1} ⊆ Q is the set of final

states;
• q0 = row(ε) is the initial state;
• δ : Q × A → Q is the transition function given by
δ(row(s), a) = row(sa).

For this to be well-defined, we need to have ε ∈ S (for the initial
state) and ε ∈ E (for final states), and for the transition function
there are two crucial properties of the table that need to hold:
Closedness and consistency. An observation table (S,E) is closed
if for all t ∈ S·A there exists an s ∈ S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a ∈ A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple Example of Execution
Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w ∈ A?, |w| = n}
If the alphabet A is finite then Ln is regular for any n ∈ N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.
Step 1. We start from S,E = {ε}, and we fill the entries of the
table below by asking membership queries for ε, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

ε
ε 0

a 0

b 0

A1 = q0 a, b

q0 = row(ε) = {ε 7→ 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S ← S ∪ {a, aa}.
Step 2. The table becomes the one on the left below. It is closed,
but not consistent: Rows ε and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

ε
ε 0
a 0
aa 1
b 0
ab 0
aaa 0
aab 0

ε a
ε 0 0
a 0 1
aa 1 0
b 0 0
ab 0 0
aaa 0 0
aab 0 0

A2 =

q0 q1

q2

b

a

b

aa, b
a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S ← S ∪ {b, bb}.
Step 3. The new table is the one on the left. It is closed, but ε and
b violate consistency, when b is appended. Therefore we add the



column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

ε a
ε 0 0
a 0 1
aa 1 0
b 0 0
bb 1 0
ab 0 0
aaa 0 0
aab 0 0
ba 0 0
bba 0 0
bbb 0 0

ε a b
ε 0 0 0
a 0 1 0
aa 1 0 0
b 0 0 1
bb 1 0 0
ab 0 0 0
aaa 0 0 0
aab 0 0 0
ba 0 0 0
bba 0 0 0
bbb 0 0 0

A3 =

q0 q1

q2 q3

a

b

ab a

b

a, b
b

b

The Teacher replies no and provides the counterexample babb, so
S ← S ∪ {ba, bab}.
Step 4. One more step brings us to the correct hypothesis A4

(details are omitted).

A4 = q0

q1

q2

q3 q4
a

a

b
b

b

a, b

a

a, b

2.2 Learning Nominal Languages
Consider now an infinite alphabet A = {a, b, c, d, . . . }. The
language L1 becomes {aa, bb, cc, dd, . . . }. Classical theory of
finite automata does not apply to this kind of languages, but one
may draw an infinite deterministic automaton that recognizes L1 in
the standard sense:

A5 =
q0

qa

qb q3 q4

...

a
a

b

b

6= a

A

6= b

A

where A−→ and
6=a−−→ stand for the infinitely-many transitions labelled

by elements of A and A \ {a}, respectively. This automaton is
infinite, but it can be finitely presented in a variety of ways, for
example:

q0 qx q3 q4

∀x∈A

x x A

6= x

A (1)

One can formalize the quantifier notation above (or indeed the
“dots” notation above that) in several ways. A popular solution is
to consider finite register automata [18, 25], i.e., finite automata
equipped with a finite number of registers where alphabet letters
can be stored and later compared for equality. Our language L1 is
recognized by a simple automaton with four states and one register.
The problem of learning registered automata has been successfully
attacked before [21].

In this paper, however, we will consider nominal automata [9]
instead. These automata ostensibly have infinitely many states, but
the set of states can be finitely presented in a way open to effective
manipulation. More specifically, in a nominal automaton the set of

states is subject to an action of permutations of a set A of atoms, and
it is finite up to that action. For example, the set of states of A5 is:

{q0, q3, q4} ∪ {qa | a ∈ A}
and it is equipped with a canonical action of permutations π : A→
A that maps every qa to qπa , and leaves q0, q3 and q4 fixed. Techni-
cally speaking, the set of states has four orbits (one infinite orbit and
three fixed points) of the action of the group of permutations of A.
Moreover, it is required that in a nominal automaton the transition
relation is equivariant, i.e., closed under the action of permutations.
The automaton A5 has this property: For example, it has a transi-
tion qa

a−→ q3, and for any π : A → A there is also a transition

π(qa) = qπ(a)
π(a)−→ q3 = π(q3).

Nominal automata with finitely many orbits of states are equi-
expressive with finite register automata [9], but they have an im-
portant theoretical advantage: They are a direct reformulation of
the classical notion of finite automaton, where one replaces finite
sets with orbit-finite sets and functions (or relations) with equivari-
ant ones. A research programme advocated in [8, 9] is to transport
various computation models, algorithms and theorems along this
correspondence. This can often be done with remarkable accuracy,
and our paper is a witness to this. Indeed, as we shall see, nominal
automata can be learned with an algorithm that is almost a verbatim
copy of the classical Angluin’s one.

Indeed, consider applying Angluin’s algorithm to our new lan-
guage L1. The key idea is to change the basic data structure: Our
observation table (S,E) will be such that S and E are equivari-
ant subsets of A?, i.e., they are closed under the canonical action
of atom permutations. In general, such a table has infinitely many
rows and columns, so the following aspects of the algorithm seem
problematic:
line 3: closedness and consistency tests range over infinite sets;

line 5 and 8: finding witnesses for closedness or consistency viola-
tions potentially require checking all infinitely many rows;

line 12: every counterexample t has only finitely many prefixes, so
it is not clear how one would construct an infinite set S in finite
time. However, an infinite S is necessary for the algorithm to
ever succeed, because no finite automaton recognizes L1.

At this stage, we need to observe that due to equivariance of S, E
and L1, the following crucial properties hold:
(P1) the sets S, S·A and E admit a finite representation up to

permutations;

(P2) the function row is such that row(π(s))(π(e)) = row(s)(e),
for all s ∈ S and e ∈ E, so the observation table admits a finite
symbolic representation.

Intuitively, checking closedness and consistency, and finding a wit-
ness for their violations, can be done effectively on the represen-
tations up to permutations (P1). This is sound, as row is invariant
w.r.t. permutations (P2).

We now illustrate these points through a few steps of the
algorithm for L1.
Step 1′: We start from S,E = {ε}. We have S·A = A, which
is infinite but admits a finite representation. In fact, for any a ∈
A, we have A = {π(a) | π is a permutation}. Then, by (P2),
row(π(a))(ε) = row(a)(ε) = 0, for all π, so the first table can be
written as:

ε
ε 0
a 0

A′1 = q0 A



It is closed and consistent. Our hypothesis is A′1, where
δA′1(row(ε), x) = row(x) = q0, for all x ∈ A. As in Step 1,
the Teacher replies with the counterexample aa.
Step 2′. By equivariance of L1, the counterexample tells us that all
words of length 2 with two repeated letters are accepted. Therefore
we extend S with the (infinite!) set of such words. The new symbolic
table is:

ε
ε 0
a 0
aa 1
ab 0
aaa 0
aab 0

The lower part stands for elements of S·A. For instance, ab stands
for words obtained by appending a fresh letter to words of length 1
(row a). It can be easily verified that all cases are covered. Notice
that the table is different from that of Step 2: A single b is not in
the lower part, because it can be obtained from a via a permutation.
The table is closed.

Now, for consistency we need to check row(εx) = row(ax),
for all a, x ∈ A. Again, by (P2), it is enough to consider rows of the
table above. Consistency is violated, because row(a) 6= row(aa).
We found a “symbolic” witness a for such violation. In order to fix
consistency, while keeping E equivariant, we need to add columns
for all π(a). The resulting table is

ε a b c . . .
ε 0 0 0 0 . . .
a 0 1 0 0 . . .
aa 1 0 0 0 . . .
ab 0 0 0 0 . . .
aaa 0 0 0 0 . . .
aab 0 0 0 0 . . .

where non-specified entries are 0. Only finitely many entries of
the table are relevant: row(s) is fully determined by its values on
letters in s and on just one letter not in s. For instance, we have
row(a)(a) = 1 and row(a)(a′) = 0, for all a′ ∈ A \ {a}. The
table is trivially consistent.

Notice that this step encompasses both Step 2 and 3, because
the rows b and bb added by Step 2 are already represented by a and
aa. The hypothesis automaton is

A′2 = q0 qx q2 ∀x ∈ A
x

6= x
x

A

This is again incorrect, but one additional step will give the correct
hypothesis automaton, shown earlier in (1).

2.3 Generalization to Non-Deterministic Automata
Since our extension of Angluin’s L? algorithm stays close to her
original development, exploring extensions of other variations of L?

to the nominal setting can be done in a systematic way. We will show
how to extend the algorithm NL? for learning NFAs by Bollig et al.
[11]. This has practical implications: It is well-known that NFAs
are exponentially more succinct than DFAs. This is true also in the
nominal setting. However, there are challenges in the extension that
require particular care.
• Nominal NFAs are strictly more expressive than nominal DFAs.

We will show that the nominal version of NL? terminates for
all nominal NFAs that have a corresponding nominal DFA and,
more surprisingly, that it is capable of learning some languages
that are not accepted by nominal DFAs.
• Language equivalence of nominal NFAs is undecidable. This

does not affect the correctness proof, as it assumes a teacher

which is able to answer equivalence queries accurately. For our
implementation, we will describe heuristics that produce correct
results in many cases.

For the learning algorithm the power of non-determinism means that
we can make some shortcuts during learning: If we want to make the
table closed, we were previously required to find an equivalent row
in the upper part; now we may find a sum of rows which, together,
are equivalent to an existing row. This means that in some cases
fewer rows will be added for closedness.

3. Preliminaries
We recall the notions of nominal sets, nominal automata and nominal
regular languages (see [9] for a detailed account).

Let A be a countable set and let Perm(A) be the set of permu-
tations on A, i.e., the bijective functions π : A→ A. Permutations
form a group where the identity permutation id is the unit element,
inverse is functional inverse and multiplication is function composi-
tion.

A nominal set [36] is a set X plus a function · : Perm(A) ×
X → X , interpreting permutations over X . Such function must
be a group action of Perm(A), i.e., it must satisfy id · x = x and
π · (π′ · x) = (π ◦ π′) · x. We say that a finite A ⊆ A supports
x ∈ X whenever, for all π acting as the identity on A, we have
π · x = x. In other words, permutations that only move elements
outside A do not affect x. The support of x ∈ X , denoted supp(x),
is the smallest finite set supporting x. We require nominal sets to
have finite support, meaning that supp(x) exists for all x ∈ X .

The orbit orb(x) of x ∈ X is the set of elements inX reachable
from x via permutations, explicitly

orb(x) = {π · x | π ∈ Perm(A)}
Then X is orbit-finite whenever it is a union of finitely many orbits.

Given a nominal set X , a subset Y ⊆ X is equivariant if it
is preserved by permutations, i.e., π · y ∈ Y , for all y ∈ Y . In
other words, Y is the union of orbits of X . This definition extends
to the notion of an equivariant relation R ⊆ X × Y , by setting
π · (x, y) = (π · x, π · y), for (x, y) ∈ R; similarly for relations of
greater arity. The dimension of nominal set X is the maximal size of
supp(x), for any x ∈ X . Every orbit-finite set has finite dimension.

We define A(k) = {(a1, . . . , ak) | ai 6= aj for i 6= j}. For
every single-orbit nominal set X with dimension k, there is a
surjective equivariant map

fX : A(k) → X .

This map can be used to get an upper bound for the number of orbits
ofX1×· · ·×Xn, forXi a nominal set with li orbits and dimension
ki. Suppose Oi is an orbit of Xi. Then we have a surjection

A(ki) × · · · × A(kn) fO1
×···×fOn−−−−−−−−−→ O1 × · · · ×On

stipulating that the codomain cannot have more orbits than the
domain. Let fA({ki}) denote the number of orbits of A(k1)× · · · ×
A(kn), for any finite sequence of natural numbers {ki}. We can
form at most l = l1l2 . . . ln tuples of the form O1 × · · · ×On, so
X1 × · · · ×Xn has at most lfA(k1, . . . , kn) orbits.

ForX single-orbit, the local symmetries are defined by the group
{g ∈ Sk | f(x1, . . . , xk) = f(xg(1), . . . , xg(k)) for all xi ∈ X},
where k is the dimension of X and Sk is the symmetric group of
permutations over k distinct elements.

NFAs on sets have a finite state space. We can define nominal
NFAs, with the requirement that the state space is orbit-finite and
the transition relation is equivariant. A nominal NFA is a tuple
(Q,A,Q0, F, δ), where:
• Q is an orbit-finite nominal set of states;
• A is an orbit-finite nominal alphabet;



• Q0, F ⊆ Q are equivariant subsets of initial and final states;
• δ ⊆ Q×A×Q is an equivariant transition relation.

A nominal DFA is a special case of nominal NFA whereQ0 = {q0}
and the transition relation is an equivariant function δ : Q×A→ Q.
Equivariance here can be rephrased as requiring δ(π · q, π · a) =
π · δ(q, a). In most examples we take the alphabet to be A = A, but
it can be any orbit-finite nominal set. For instance, A = Act× A,
where Act is a finite set of actions, represents actions act(x) with
one parameter x ∈ A (actions with arity n can be represented via
n-fold products of A).

A language L is nominal regular if it is recognized by a
nominal DFA. The theory of nominal regular languages recasts
the classical one using nominal concepts. A nominal Myhill-Nerode-
style syntactic congruence is defined: w,w′ ∈ A? are equivalent
w.r.t. L, written w ≡L w′, whenever

wv ∈ L ⇐⇒ w′v ∈ L
for all v ∈ A?. This relation is equivariant and the set of equivalence
classes [w]L is a nominal set.

Theorem 1 (Myhill-Nerode theorem for nominal sets [9]). Let
L be a regular nominal language. The following conditions are
equivalent:
1. the set of equivalence classes of ≡L is orbit-finite;
2. L is recognized by a nominal DFA.

Unlike what happens for ordinary regular languages, nominal
NFAs and nominal DFAs are not equi-expressive. Here is an example
of a language accepted by a nominal NFA, but not by a nominal
DFA:

Leq = {a1 . . . an | ai = aj , for some i < j ∈ {1, . . . , n}}
In the theory of nominal regular languages, several problems are de-
cidable: Language inclusion and minimality test for nominal DFAs.
Moreover, orbit-finite nominal sets can be finitely-represented, and
so can be manipulated by algorithms. This is the key idea underpin-
ning our implementation.

3.1 Different Atom Symmetries
An important advantage of nominal set theory as considered in [9]
is that it retains most of its properties when the structure of atoms A
is replaced with an arbitrary infinite relational structure subject to a
few model-theoretic assumptions. An example alternative structure
of atoms is the total order of rational numbers (Q, <), with the
group of monotone bijections of Q taking the role of the group of
all permutations. The theory of nominal automata remains similar,
and an example nominal language over the atoms (Q, <) is:

{a1 . . . an | ai ≤ aj , for some i < j ∈ {1, . . . , n}}
which is recognized by a nominal DFA over those atoms.

To simplify the presentation, in this paper we concentrate on the
“equality atoms” only. Also our implementation of nominal learning
algorithms is restricted to equality atoms. However, both the theory
and the implementation can be generalized to other atom structures,
with the “ordered atoms” (Q, <) as the simplest other example. We
leave the details of this for a future extended version of this paper.

4. Angluin’s Algorithm for Nominal DFAs
In our algorithm, we will assume a teacher as described at the start
of Section 2. In particular, the teacher is able to answer membership
queries and equivalence queries, now in the setting of nominal
languages. We fix a target language L, which is assumed to be a
nominal regular language.

The learning algorithm for nominal automata, νL?, will be very
similar to L? in Figure 1. In fact, we only change the following lines:

6′ S ← S ∪ orb(sa)
9′ E ← E ∪ orb(ae)
12′ S ← S ∪ prefixes(orb(t))

(2)

The basic data structure is an observation table (S,E, T ) where S
and E are orbit-finite subsets of A? and T : S ∪ S·A × E → 2
is an equivariant function defined by T (se) = L(se) for each
s ∈ S ∪ S·A and e ∈ E. Since T is determined by L we omit it
from the notation. Let row : S ∪ S·A → 2E denote the curried
counterpart of T . Let u ∼ v denote the relation row(u) = row(v).

Definition 1. The table is called closed if for each t ∈ S·A there is
a s ∈ S with t ∼ s. The table is called consistent if for each pair
s1, s2 ∈ S with s1 ∼ s2 we have s1a ∼ s2a for all a ∈ A.

The above definitions agree with the abstract definitions given in
[24] and we may use some of their results implicitly. The intuition
behind the definitions is as follows. Closedness assures us that for
each state we have a successor state for each input. Consistency
assures us that each state has at most one successor for each input.
Together it allows us to construct a well-defined minimal automaton
from the observations in the table.

The algorithm starts with a trivial observation table and tries to
make it closed and consistent by adding orbits of rows and columns,
filling the table via membership queries. When the table is closed
and consistent it constructs a hypothesis automaton and poses an
equivalence query.

The pseudocode for the nominal version is the same as listed in
Figure 1, modulo the changes displayed in (2). However, we have to
take care to ensure that all manipulations and tests on the (possibly)
infinite sets S,E and A terminate in finite time. We refer to [9]
and [36] for the full details on how to represent these structures
and provide a brief sketch here. The sets S,E,A and S·A can be
represented by choosing a representative for each orbit. The function
T in turn can be represented by cells Ti,j : orb(si)× orb(ej)→ 2
for each representative si and ej . Note, however, that the product
of two orbits may consist of several orbits, so that Ti,j is not a
single boolean value. Each cell is still orbit-finite and can be filled
with only finitely many membership queries. Similarly the curried
function row can be represented by a finite structure.

To check whether the table is closed, we observe that if we have
a corresponding row s ∈ S for some t ∈ S·A, this holds for any
permutation of t. Hence it is enough to check the following: For
all representatives t ∈ S·A there is a representative s ∈ S with
row(t) = π · row(s) for some permutation π. Note that we only
have to consider finitely many permutations, since the support is
finite and so we can decide this property. Furthermore if the property
does not hold, we immediately find a witness represented by t.

Consistency is a bit more complicated, but it is enough to
consider the set of inconsistencies, {(s1, s2, a, e) | row(s1) =
row(s2) ∧ row(s1a)(e) 6= row(s2a)(e)}. It is an equivariant
subset of S × S × A × E and so it is orbit-finite. Hence we can
decide emptiness and obtain representatives if it is non-empty.

Constructing the hypothesis happens in the same way as before
(Section 2), where we note the state space is orbit-finite since it is
a quotient of S. Moreover the function row is equivariant, so all
structure (Q0, F and δ) is equivariant as well.

The representation given above is not the only way to represent
nominal sets. For example, first-order definable sets can be used as
well [26]. From now on we assume to have set theoretic primitives
so that each line in Figure 1 is well defined.



4.1 Correctness
To prove correctness we only have to prove that the algorithm
terminates, that is, only finitely many hypotheses will be produced.
Correctness follows trivially from termination since the last step
of the algorithm is an equivalence query to the teacher inquiring
whether an hypothesis automaton accepts the target language. We
start out by listing some facts about observation tables.

Lemma 1. The relation ∼ is an equivariant equivalence relation.
Furthermore, for all u, v ∈ S we have that u ≡L v implies u ∼ v.

Lemma 1 implies that at any stage of the algorithm the num-
ber of orbits of S/∼ does not exceed the number of orbits of the
minimal acceptor with state space A?/≡L (recall that ≡L is the
nominal Myhill-Nerode equivalence relation). Moreover, the follow-
ing lemma shows that the dimension of the state space never exceeds
the dimension of the minimal acceptor. Recall that the dimension is
the maximal size of the support of any state, which is different than
the number of orbits.

Lemma 2. We have supp([u]∼) ⊆ supp([u]≡L) ⊆ supp(u) for
all u ∈ S.

Lemma 3. The automaton constructed from a closed and consistent
table is minimal.

Proof. Follows from the categorical perspective given in [24].

We note that the constructed automaton is consistent with the
table (we use that the set S is prefix-closed and E is suffix-closed
[3]). The following lemma shows that there are no strictly “smaller”
automata consistent with the table. So the automaton is not just
minimal, it is minimal w.r.t. the table.

Lemma 4. Let H be the automaton associated with a closed and
consistent table (S,E). If M ′ is an automaton consistent with
(S,E) (meaning that se ∈ L(M ′) ⇐⇒ se ∈ L(H) for all
s ∈ S ∪ S·A and e ∈ E) and M ′ has at most as many orbits as H ,
then there is a surjective map f : QM′ → QH . If moreover
• M ′s dimension is bounded by the dimension of H , i.e.
supp(m) ⊆ supp(f(m)) for all Q′M , and
• M ′ has no fewer local symmetries thanH , i.e. π ·f(m) = f(m)

implies π ·m = m for all m ∈ Q′M ,
then f defines an isomorphism M ′ ∼= H of nominal DFAs.

Proof. (All maps in this proof are equivariant.) Define a map row′ :
Q′M → 2E by restricting the language map Q′M → 2A

?

to E.
First, observe that row′(δ′(q′0, s)) = row(s) for all s ∈ S ∪ S·A,
since ε ∈ E and M ′ is consistent with the table. Second, we have
{row′(δ′(q′0, s))|s ∈ S} ⊆ {row′(q)|q ∈M ′}.

Let n be the number of orbits of H . The former set has n
orbits by the first observation, the latter set has at most n orbits by
assumption. We conclude that the two sets (both being equivariant)
must be equal. That means that for each q ∈ M ′ there is a
s ∈ S such that row′(q) = row(s). We see that row′ : M ′ �
{row′(δ′(q′0, s))|s} = H is a surjective map. Since a surjective
map cannot increase the dimensions of orbits and the dimensions
of M ′ are bounded, we note that the dimensions of the orbits in
H and M ′ have to agree. Similarly, surjective maps preserve local
symmetries. This map must hence be an isomorphism of nominal
sets. Note that row′(q) = row′(δ′(q′0, s)) implies q = δ′(q′0, s).

It remains to prove that it respects the automaton structures. It
preserve the initial state: row′(q′0) = row(δ′(q′0, ε)) = row(ε).
Now let q ∈M ′ be a state and s ∈ S such that row′(q) = row(s).

It preserves final states: q ∈ F ′ ⇐⇒ row′(q)(ε) = 1 ⇐⇒
row(s)(ε) = 1. Finally, it preserves the transition structure:

row′(δ′(q, a)) = row′(δ′(δ′(q′0, s), a)) = row′(δ′(q′0, sa))

= row(sa) = δ(row(s), a)

The above proof is an adaptation of Angluin’s proof for automata
over sets. We will now prove termination of the algorithm by proving
that all steps are productive.

Theorem 2. The algorithm terminates and is hence correct.

Proof. Provided that the if-statements and set operations terminate,
we are left proving that the algorithm adds (orbits of) rows and
columns only finitely often. We start by proving that a table can be
made closed and consistent in finite time.

If the table is not closed, we find a row s1 ∈ S·A such that
row(s1) 6= row(s) for all s ∈ S. The algorithm then adds the orbit
containing s1 to S. Since s1 was nonequivalent to all rows, we find
that S ∪ orb(t)/∼ has strictly more orbits than S/∼. Since orbits
of S/ ∼ cannot be more than those of A?/≡L, this happens finitely
often.

Columns are added in case of an inconsistency. Here the algo-
rithm finds two elements s1, s2 ∈ S with row(s1) = row(s2)
but row(s1ae) 6= row(s2ae) for some a ∈ A and e ∈ E.
Adding ae to E will ensure that row′(s1) 6= row′(s2) (row′ is
the function belonging to the updated observation table). If the
two elements row′(s1), row′(s2) are in different orbits, the num-
ber of orbits is increased. If they are not in the same orbit, we
have row′(s2) = π · row′(s1) for some permutation π. Using
row(s1) = row(s2) and row′(s1) 6= row′(s2) we have:

row(s1) = π · row(s1) row′(s1) 6= π · row′(s1)

Consider all such π and suppose there is a π and x ∈
supp(row(s1)) such that π · x /∈ supp(row(s1)). Then we
find that π · x ∈ supp(row′(s1)), and so the support of the
row has grown. By Lemma 2 this happens finitely often. Sup-
pose such π and x do not exist, then we consider the finite
group R = {ρ|supp([s1]∼) | row(s1) = ρ · row(s1)}. We see that
{ρ|supp([s1]∼) | row′(s1) = ρ·row′(s1)} is a proper subgroup ofR.
So, adding a column in this case decreases the size of the group R,
which can happen only finitely often. In this case a local symmetry
is removed.

In short, the algorithm will succeed in producing a hypothesis
in each round. It remains to prove that it needs only finitely many
equivalence queries.

Let (S,E) be the closed and consistent table and H its corre-
sponding hypothesis. If it is incorrect a second hypothesis H ′ will
be constructed which is consistent with the old table (S,E). The
two hypotheses are nonequivalent, as H ′ will handle the counter
example correctly and H does not. Therefore, H ′ will have at least
one orbit more, one local symmetry less, or one orbit will have
strictly bigger dimension (Lemma 4), all of which can only happen
finitely often.

We remark that all the lemmas and proofs as above are close to
the original ones of Angluin. However, two things are crucially
different. First, adding a column does not always increase the
number of (orbits of) states. It can happen that by adding a column a
bigger support is found or that a local symmetry is broken. Second,
the new hypothesis does not necessarily have more states, again it
might have bigger dimensions or less local symmetries.

From the proof Theorem 2 we observe moreover that the way
we handle counterexamples is not crucial. Any other method which
ensures a non-equivalent hypothesis will work. In particular our
algorithm is easily adapted to include optimizations such as the ones
in [37] and [31], where counterexamples are added as columns.



4.2 Example
Consider the target automaton in Figure 2 and an observation table
T1 at some stage during the algorithm. We remind the reader that the
table is represented in a symbolic way: The sequences in the rows
and columns stand for whole orbits and the cells denote functions
from the product of the orbits to 2. Since the cells can consist of
multiple orbits, where each orbit is allowed to have a different value,
we use a formula to specify which orbits have a 1.

The table T1 at some stage of the algorithm has to be checked for
closedness and consistency. We note that it is definitely closed. For
consistency we check the rows row(ε) and row(a) which are equal.
Observe, however, that row(εb)(ε) = 0 and row(ab)(ε) = 1, so
we have an inconsistency. The algorithm adds the orbit orb(b) as
column and extends the table, obtaining T2. We note that, in this
process, the number of orbits did grow, as the two rows are split.
Furthermore we see that both row(a) and row(ab) have empty
support in T1, but not in T2, because row(a)(a′) depends on a′

being equal or different from a, similarly for row(ab)(a′).
The table T2 is still not consistent as we see that row(ab) =

row(ba) but row(abb)(c) = 1 and row(bab)(c) = 0. Hence the
algorithm adds the columns orb(bc), obtaining table T3. We note
that in this case, no new orbits are obtained and no support has
grown. In fact, the only change here is that the local symmetry
between row(ab) and row(ba) is removed. This last table, T3, is
closed and consistent and will produce the correct hypothesis.

4.3 Query Complexity
In this section, we will analyse the number of queries made by the
algorithm in the worst case. Let M be the minimal target automaton
with n orbits and of dimension k. We will use log in base two.

Lemma 5. The number of equivalence queries En,k is
O(nk log k).

Proof. By Lemma 4 each hypothesis will be either 1) bigger in
the number of orbits, which is bounded by n, or 2) bigger in the
dimension of an orbit, which is bounded by k or 3) smaller in local
symmetries of an orbit. For the last part we want to know how long a
subgroup series of the permutation group Sk can be. This is bounded
by the number of divisors of k!, as each subgroup divides the order
of the group. We can easily bound the number of divisors of any m
by logm and so one can at take a subgroup at most k log k times
when starting with Sk.

Since the hypothesis will grow monotonically in the number of
orbits and for each orbit will grow monotonically w.r.t. the remaining
two dimensions, the number of equivalence queries is bound by
n+ n(k + k log k).

Next we will give a bound for the size of the table.

Lemma 6. The table has at most n + mEn,k orbits in S with
sequences of at most length n + m, where m is the length of the
longest counter example given by the teacher. The table has at most
n(k+ k log k+ 1) orbits in E of at most length n(k+ k log k+ 1)

Proof. In the termination proof we noted that rows are added at most
n times. In addition (all prefixes of) counter examples are added as
rows which add another mEn,k rows. Obviously counter examples
are of length at most m and are extended at most n times, making
the length at most m+ n in the worst case.

For columns we note that one of three dimensions approaches a
bound similarly to the proof of Lemma 5. So at most n(k+k log k+
1) columns are added. Since they are suffix closed, the length is at
most n(k + k log k + 1).

Let p and l denote respectively the dimension and the number of
orbits of A.

Lemma 7. The number of orbits in the lower part of the table, S·A,
is bounded by (n+mEn,k)lfA(p(n+m), p).

Proof. Any sequence in S is of length at most n+m, so it contains at
most p(n+m) distinct atoms. When we consider S·A, the extension
can either reuse atoms from those p(n+m), or none at all. Since the
extra letter has at most p distinct atoms, the set A(p(n+m)) × A(p)

gives a bound fA(p(n+m), p) for the number of orbits ofOS×OA,
with OX an orbit of X . Multiplying by the number of such ordered
pairs, namely (n+mEn,k)l, gives a bound for S·A.

Let Cn,k,m = (n + mEn,k)(lfA(p(n + m), p) + 1)n(k +
k log k + 1) be the maximal number of cells in the table. We note
that this number is polynomial in k, l,m and n but not in p.

Corollary 1. The number of membership queries is bounded by
Cn,k,mfA(p(n+m), pn(k + k log k + 1)).

5. Learning Non-Deterministic Nominal
Automata

In this section, we introduce a variant of νL?, which we call νNL?,
where the learnt automaton is non-deterministic. It will be based
on NL?[11], an Angluin-style algorithm for learning NFAs. The
algorithm is shown in Figure 3. We first illustrate NL?, then we
discuss its extension to nominal automata.

NL? crucially relies on the use of residual finite-state automata
(RFSA) [19], which are NFAs admitting unique minimal canonical
representatives. The states of this automaton correspond to Myhill-
Nerode right-congruence classes, but can be exponentially smaller
than the corresponding minimal DFA: Composed states, language-
equivalent to sets of other states, can be dropped. The algorithm NL?

equips the observation table (S,E) with a union operation, allowing
for the detection of composed and prime rows.

Definition 2. Let (row(s1) t row(s2))(e) = row(s1)(e) ∨
row(s2)(e) (regarding cells as booleans). This operation in-
duces an ordering between rows: row(s1) v row(s2) whenever
row(s1)(e) = 1 implies row(s2)(e) = 1, for all e ∈ E.

A row row(s) is composed if row(s) = row(s1) t . . . t
row(sn), for row(si) 6= row(s). Otherwise it is prime. We denote
by PR>(S,E) the rows in the top part of the table (ranging over S)
which are prime w.r.t. the whole table (not only w.r.t. the top part).
We write PR(S,E) for all the prime rows of (S,E).

As in L?, states of hypothesis automata will be rows of (S,E)
but, as the aim is to construct a minimal RFSA, only prime rows are
picked. New notions of closedness and consistency are introduced,
to reflect features of RFSAs.

Definition 3. A table (S,E) is:
• RFSA-closed if, for all t ∈ S·A, row(t) =

⊔
{row(s) ∈

PR>(S,E) | row(s) v row(t)};
• RFSA-consistent if, for all s1, s2 ∈ S and a ∈ A, row(s1) v
row(s2) implies row(s1a) v row(s2a).

If (S,E) is not RFSA-closed, then there is a row in the bottom
part of the table which is prime, but not contained in the top
part. This row is then added to S (line 5). If (S,E) is not RFSA-
consistent, then there is a suffix which does not preserve the
containment of two existing rows, so those rows are actually
incomparable. A new column is added to distinguish those rows
(line 8). Notice that counterexamples supplied by the teacher are
added to columns (line 12). Indeed, in [11] it is shown that treating
the counterexamples as in the original L?, namely adding them to
rows, does not lead to a terminating algorithm.



q0 q1,x

q2,x,y

x

x

yy
x

z

T1 ε
ε 0
a 0
ab 1
aa 0
aba 0
abb 0
abc 1

T2 ε a′

ε 0 0

a 0
{

1 a′ 6= a
0 else

ab 1
{

1 a′ 6= a,b
0 else

aa 0 0
aba 0 0

abb 0
{

1 a′ 6= a
0 else

abc 1
{

1 a′ 6= a,b
0 else

T3 b′a′

ε 1

a
{

1 a 6= a′,b′

0 else

ab
{

1 (b′ 6= a,b ∧ a′ 6= a,b) ∨ (b′ = b ∧ a′ 6= a)
0 else

aa 1
aba 1

abb
{

1 a 6= a′,b′

0 else

abc
{

1 (b′ 6= a,b ∧ a′ 6= a,b) ∨ (b′ = b ∧ a′ 6= a)
0 else

Figure 2. Example automaton to be learnt and three subsequent tables computed by νL?. In the automaton, x, y, z denote distinct atoms. In
T3 we only show a relevant column.

NL? LEARNER

1 S,E ← {ε}
2 repeat
3 while (S,E) is not RFSA-closed or not RFSA-consistent
4 if (S,E) is not RFSA-closed
5 find s ∈ S, a ∈ A such that

row(sa) ∈ PR(S,E) \ PR>(S,E)
6 S ← S ∪ {sa}
7 if (S,E) is not RFSA-consistent
8 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that

row(s1) v row(s2) and
L(s1ae) = 1, L(s2ae) = 0

9 E ← E ∪ {ae}
10 Make the conjecture N(S,E)
11 if the Teacher replies no, with a counter-example t
12 E ← E ∪ suffixes(t)
13 until the Teacher replies yes to the conjecture N(S,E).
14 return N(S,E)

Figure 3. Bollig et al.’s algorithm for learning NFAs [11]

Definition 4. Given a RFSA-closed and RFSA-consistent table
(S,E), the conjecture automaton is N(S,E) = (Q,Q0, F, δ),
where:
• Q = PR>(S,E);
• Q0 = {r ∈ Q | r v row(ε)};
• F = {r ∈ Q | r(ε) = 1};
• the transition relation δ ⊆ Q × A × Q is given by
δ(row(s), a) = {r ∈ Q | r v row(sa)}.
As observed in [11], N(S,E) is not necessarily a RFSA, but it

is a canonical RFSA if it is consistent with (S,E). If the algorithm
terminates, then N(S,E) must be consistent with (S,E), which
ensures correctness. The termination argument is more involved
than L?, but still it relies on the minimal DFA.

Developing an algorithm to learn nominal NFAs is not an obvious
extension of NL?: Non-deterministic nominal languages strictly
contain nominal regular languages, so it is not clear what the
developed algorithm should be able to learn. To deal with this, we
introduce a nominal notion of RFSAs. They are a proper subclass of
nominal NFAs, because they recognize nominal regular languages.
Nonetheless, they are more succinct than nominal DFAs.

5.1 Nominal Residual Finite-State Automata
Let L be a nominal regular language and let u be a finite string.
The derivative of L w.r.t. u is u−1L = {v ∈ A? | uv ∈ L}. A
set L′ ⊆ A∗ is a residual of L if there is u with L′ = u−1L. Note

that a residual might not be equivariant, but it does have a finite
support. We writeR(L) for the set of residuals of L. Residuals form
an orbit-finite nominal set: They are in bijection with the state-space
of the minimal nominal DFA for L.

A nominal residual finite-state automaton for L is a nominal
NFA whose states are subsets of such minimal automaton. Given a
state q of an automaton, we write L(q) for the set of words leading
from q to a set of states containing a final one.

Definition 5. A nominal residual finite-state automaton (nominal
RFSA) is a nominal NFA A such that L(q) ∈ R(L(A)), for all
q ∈ QA.

Intuitively, all states of a nominal RSFA recognize residuals, but
not all residuals are recognized by a single state: There may be
a residual L′ and a set of states Q′ such that L′ =

⋃
q∈Q′ L(q),

but no state q′ is such that L(q′) = L′. A residual L′ is called
composed if it is equal to the union of the components it strictly
contains, explicitly

L′ =
⋃
{L′′ ∈ R(L) | L′′ $ L′} ;

otherwise it is called prime. In an ordinary RSFA, composed
residuals have finitely-many components. This is not the case in a
nominal RFSA. However, the set of components of L′ always has a
finite support, namely supp(L′).

The set of prime residuals PR(L) is an orbit-finite nominal
set, and can be used to define a canonical nominal RFSA for L,
which has the minimal number of states and the maximal number
of transitions. This can be regarded as obtained from the minimal
nominal DFA, by removing composed states and adding all initial
states and transitions that do not change the recognized language.
This automaton is necessarily unique.

Lemma 8. Let the canonical nominal RSFA of L be (Q,Q0, F, δ)
such that:
• Q = PR(L);
• Q0 = {L′ ∈ Q | L′ ⊆ L};
• F = {L′ ∈ Q | ε ∈ L′};
• δ(L1, a) = {L2 ∈ Q | L2 ⊆ a−1L1}.

It is a well-defined nominal NFA accepting L.

5.2 νNL?

Our nominal version of NL? again makes use of an observation table
(S,E) where S and E are equivariant subsets of A∗ and row is
an equivariant function. As in the basic algorithm, we equip (S,E)
with a union operation t and row containment relationv, defined as
in Definition 2. It is immediate to verify that t andv are equivariant.



Our algorithm is a simple modification of the algorithm in
Figure 3, where a few lines are replaced:

6′ S ← S ∪ orb(sa)
9′ E ← E ∪ orb(ae)
12′ E ← E ∪ suffixes(orb(t))

Switching to nominal sets, several decidability issues arise. The
most critical one is that rows may be the union of infinitely many
component rows, as happens for residuals of nominal languages,
so finding all such components can be challenging. We adapt the
notion of composed to rows: row(t) is composed whenever

row(t) =
⊔
{row(s) | row(s) @ row(t)} .

where @ is strict row inclusion; otherwise row(t) is prime.
We now check that relevant parts of our algorithm terminate.

Row Containment Check. The basic containment check
row(s) v row(t) is decidable, as row(s) and row(t) are
supported by the finite supports of s and t respectively.
Line 3: RFSA-Closedness and RFSA-Consistency Checks. We
first show that prime rows form orbit-finite nominal sets.

Lemma 9. PR(S,E), PR>(S,E) and PR(S,E) \ PR>(S,E)
are orbit-finite nominal sets.

Consider now RFSA-closedness. It requires computing the set
C(row(t)) of components of row(t) contained in PR>(S,E)
(possibly including row(t)). This may not be equivariant under
permutations Perm(A), but it is if we pick a subgroup.

Lemma 10. The set C(row(t)) has the following properties:
1. supp(C(row(t))) ⊆ supp(row(t)).
2. it is equivariant and orbit-finite under the action of the group

Gt = {π ∈ Perm(A) | π�supp(row(t))= id}
of permutations fixing supp(row(t)).

We established that C(row(t)) can be effectively computed, and
the same holds for

⊔
C(row(t)). In fact,

⊔
is equivariant w.r.t the

whole Perm(A) and then, in particular, w.r.t. Gt, so it preserves
orbit-finiteness. Now, to check row(t) =

⊔
C(row(t)), we can

just pick one representative of every orbit of S·A, because we have
C(π · row(t)) = π ·C(row(t)) and permutations distribute over t,
so permuting both sides of the equation gives again a valid equation.

For RFSA-consistency, consider the two sets:

N = {(s1, s2) ∈ S × S | row(s1) v row(s2)}
M = {(s1, s2) ∈ S × S | ∀a ∈ A : row(s1a) v row(s2a)}

They are both orbit-finite nominal sets, by equivariance of row, v
and A. We can check RFSA-consistency in finite time by picking
orbit representatives fromN andM . For each representative n ∈ N ,
we look for a representative m ∈M and a permutation π such that
n = π ·m. If no such m and π exist, then n does not belong to any
orbit of M , so it violates RFSA-consistency.
Lines 5 and 8: Finding Witnesses for Violations. We can find
witnesses by comparing orbit representatives of orbit-finite sets, as
we did with RFSA-consistency. Specifically, we can pick represen-
tatives in S × A and S × S × A× E and check them against the
following orbit-finite nominal sets:
• {(s, a) ∈ S ×A | row(sa) ∈ PR(S,E) \ PR>(S,E)};
• {(s1, s2, a, e) ∈ S × S × A × E | row(s1a)(e) =

1, row(s2a)(e) = 0, row(s1) v row(s2)};

5.3 Correctness
Now we prove correctness and termination of the algorithm. First,
we prove that hypothesis automata are nominal NFAs.

Lemma 11. The hypothesis automaton N(S,E) (see Definition 4)
is a nominal NFA.

N(S,E), as in ordinary NL?, is not always a nominal RFSA.
However, we have the following.

Theorem 3. If the table (S,E) is RFSA-closed, RFSA-consistent
andN(S,E) is consistent with (S,E), thenN(S,E) is a canonical
nominal RFSA.

This is proved in [10] for ordinary RFSAs, using the standard
theory of regular languages. The nominal proof is exactly the same,
using derivatives of nominal regular languages and nominal RFSAs
as defined in Section 5.1.

Lemma 12. The table (S,E) cannot have more than n orbits of
distinct rows, where n is the number of orbits of the minimal nominal
DFA for the target language.

Proof. Rows are residuals of L, which are states of the minimal
nominal DFA for L, so orbits cannot be more than n.

Theorem 4. The algorithm νNL? terminates and returns the canon-
ical nominal RFSA for L.

Proof. If the algorithm terminates, then it must return the canonical
nominal RFSA for L by Theorem 3. We prove that a table can
be made RFSA-closed and RFSA-consistent in finite time. This is
similar to the proof of Theorem 2 and is inspired by the proof [10,
Theorem 3].

If the table is not RFSA-closed, we find a row s ∈ S·A
such that row(s) ∈ PR(S,E) \ PR>(S,E). The algorithm
then adds orb(s) to S. Since s was nonequivalent to all upper
prime rows, and thus from all the rows indexed by S, we find
that S ∪ orb(t)/∼ has strictly more orbits than S/∼ (recall that
s ∼ t ⇐⇒ row(s) = row(t)). This addition can only be
done finitely-many times, because the number of orbits of S/∼ is
bounded, by Lemma 12.

Now, the case of RFSA-consistency needs some additional
notions. Let R be the (orbit-finite) nominal set of all rows, and
let I = {(r, r′) ∈ R × R | r @ r′} be the set of all inclusion
relations among rows. The set I is orbit-finite. In fact, consider

J = {(s, t) ∈ (S ∪ S·A)× (S ∪ S·A) | row(s) @ row(t)}
This set is an equivariant, thus orbit-finite, subset of (S ∪ S·A)×
(S ∪ S·A). The set I is the image of J via row × row, which is
equivariant, so it preserves orbit-finiteness.

Now, suppose the algorithm finds two elements s1, s2 ∈ S with
row(s1) v row(s2) but row(s1a)(e) = 1 and row(s2a)(e) = 0
for some a ∈ A and e ∈ E. Adding a column to fix RFSA-
consistency may: C1) increase orbits of (S ∪ S·A)/∼, or; C2)
decrease orbits of I , or; C3) decrease local symmetries/increase
dimension of one orbit of rows. In fact, if no new rows are added
(C1), we have two cases.
• If row(s1) @ row(s2), i.e., (row(s1), row(s2)) ∈ I , then
row′(s1) 6@ row′(s2), where row′ is the new table. There-
fore the orbit of (row′(s1), row′(s2)) is not in I . Moreover,
row′(s) @ row′(t) implies row(s) @ row(t) (as no new rows
are added), so no new pairs are added to I . Overall, I has less
orbits (C2).
• If row(s1) = row(s2), then we must have row(s1) = π ·
row(s1), for some π, because line 5 forbids equal rows in
different orbits. In this case row′(s1) 6= π · row′(s1) and we
can use part of the proof of Theorem 2 to see that the orbit of
row′(s1) has bigger dimension or less local symmetries than
that of row(s1) (C3).

Orbits of (S∪S·A)/∼ and of I are finitely-many, by Lemma 12 and
what we proved above. Moreover, local symmetries can decrease



finitely-many times, and the dimension of each orbit of rows
is bounded by the dimension of the minimal DFA state-space.
Therefore all the above changes can happen finitely-many times.

We have proved that the table eventually becomes RFSA-closed
and RFSA-consistent. Now we prove that a finite number of equiv-
alence queries is needed to reach the final hypothesis automaton.
To do this, we cannot use a suitable version of Lemma 4, because
this relies on N(S,E) being consistent with (S,E), which in gen-
eral is not true (see [10] for an example of this). We can, however,
use an argument similar to that for RFSA-consistency, because the
algorithm adds columns in response to counterexamples. Let w
the counterexample provided by the teacher. When 12′ is executed,
the table must change. In fact, by [10, Lemma 2], if it does not,
then w is already correctly classified by N(S,E), which is absurd.
We have the following cases. E1) orbits of (S ∪ S·A)/∼ increase
(C1). Or, E2) either: Orbits in PR(S,E) increase, or any of the
following happens: Orbits in I decrease (C2), local symmetries/
dimension of an orbit of rows change (C3). In fact, if E1 does not
happen and PR(S,E), I and local symmetries/dimension of orbits
of rows do not change, the automaton A for the new table coin-
cides with N(S,E). But N(S,E) = A is a contradiction, because
A correctly classifies w (by [10, Lemma 2], as w now belongs to
columns), whereas N(S,E) does not. Both E1 and E2 can only
happen finitely-many times.

5.4 Query Complexity
We now give bounds for the number of equivalence and membership
queries needed by νNL?. Let n be the number of orbits of the
minimal DFA M for the target language and let k be the dimension
(i.e., the size of the maximum support) of its nominal set of states.

Lemma 13. The number of equivalence queries E′n,k is
O(n2fA(k, k) + nk log k).

Proof. In the proof of Theorem 4, we saw that equivalence queries
lead to more orbits in (S ∪ S·A)/∼, in PR(S,E), less orbits in I
or less local symmetries/bigger dimension for an orbit. Clearly the
first two ones can happen at most n times. We now estimate how
many times I can decrease. Suppose (S ∪ S·A)/∼ has d orbits and
h orbits are added to it. Recall that, given an orbit O of rows of
dimension at most m, fA(m,m) is an upper bound for the number
of orbits in the productO×O. Since the support of rows is bounded
by k, we can give a bound for the number of orbits added to I:
dhfA(k, k), for new pairs r @ r′ with r in a new orbit of rows and
r′ in an old one (or viceversa); plus (h(h−1)/2)fA(k, k), for r and
r′ both in (distinct) new orbits; plus hfA(k, k), for r and r′ in the
same new orbit. Notice that, if PR(S,E) grows but (S ∪ S·A)/∼
does not, I does not increase. By Lemma 12, h, d ≤ n, so I cannot
decrease more than (n2 + n(n− 1)/2 + n)fA(k, k) times.

Local symmetries of an orbit of rows can decrease at most k log k
times (see proof of Lemma 5), and its dimension can increase at
most k times. Therefore n(k + log k) is a bound for all the orbits
of rows, which are at most n, by Lemma 12. Summing up, we get
the main result.

Lemma 14. Let m be the length of the longest counterexample
given by the teacher. Then the table has:
• at most n orbits in S, with words of length at most n;
• at mostmE′n,k orbits inE, with words of length at mostmE′n,k.

Proof. By Lemma 12, the number of orbits of rows indexed by S
is at most n. Now, notice that line 5 does not add orb(sa) to S if
sa ∈ S, and lines 12 and 9 cannot identify rows, so S has at most
n orbits. The length of the longest word in S must be at most n, as
S = {ε} when the algorithm starts, and line 6′ adds words with one
additional symbol than those in S.

For columns, we note that both fixing RFSA-consistency and
adding counterexamples increase the number of columns, but this
can happen at most E′n,k times (see proof of Lemma 13). Each time
at most m suffixes are added to E.

We compute the maximum number of cells as in Section 4.3.

Lemma 15. The number of orbits in the lower part of the table,
S·A, is bounded by nlfA(pn, p).

Then C′n,k,m = n(lfA(pn, p) + 1)mE′n,k is the maximal
number of cells in the table. This bound is polynomial in n,m
and l, but not in k and p.

Corollary 2. The number of membership queries is bounded by
C′n,k,mfA(pn, pmE′n,k).

6. Implementation and Preliminary Experiments
Our algorithms for learning nominal automata operate on infinite
sets of rows and columns, and hence it is not immediately clear
how to actually implement them on a computer. We have used
NLambda [26], our recently developed Haskell library designed
to allow direct manipulation of infinite (but orbit-finite) nominal
sets, within the functional programming paradigm. The semantics of
NLambda is based on [8], and the library itself is inspired by Fresh
O’Caml [39], a language for functional programming over nominal
data structures with binding.

6.1 NLambda
NLambda extends Haskell with a new type Atoms. Values of this
type are atomic values that can be compared for equality and have
no other discernible structure. They correspond to the elements of
the infinite alphabet A described in Section 3.

Furthermore, NLambda provides a unary type constructor Set.
This appears similar to the the Data.Set type constructor from
the standard Haskell library, but its semantics is markedly different:
Whereas the latter is used to construct finite sets, the former has
orbit-finite sets as values. The new constructor Set can be applied to
a range of equality types that include Atoms, but also the tuple type
(Atoms, Atoms), the list type [Atoms], the set type Set Atoms, and
other types that provide basic infrastructure necessary to speak
of supports and orbits. All these are instances of a type class
NominalType specified in NLambda for this purpose.

NLambda, in addition to all the standard machinery of Haskell,
offers primitives to manipulate values of any nominal types τ, σ:
• empty:Set τ , returns the empty set of any type;
• atoms:Set Atoms, returns the (infinite but single-orbit) set of

all atoms;
• insert : τ → Set τ → Set τ , adds an element to a set;
• map : (τ → σ)→ (Set τ → Set σ), applies a function to ev-

ery element of a set;
• sum : Set Set τ → Set τ , computes the union of a family of

sets;
• isEmpty : Set τ → Formula, checks whether a set is empty.

The type Formula takes the role of a Boolean type. For technical
reasons it is distinct from the standard Haskell type Bool, but it
provides standard logical operations such as

not : Formula→ Formula

or : Formula→ Formula→ Formula,

as well as a conditional operator ite : Formula→ τ → τ → τ
that mimics the standard if construction. It is also the result type of a
built-in equality test on atoms, eq : Atoms→ Atoms→ Formula.



Using these primitives, one builds more functions to operate on
orbit-finite sets, such as a function to build singleton sets:

singleton : τ → Set τ

singleton x = insert x empty

or a filtering function to select elements that satisfy a given predicate:

filter : (τ → Formula)→ Set τ → Set τ

filter p s = sum (map(λx.ite (p x) (singleton x) empty) s)

or functions to quantify a predicate over a set:

exists, forall : (τ → Formula)→ Set τ → Formula

exists p s = not (isEmpty (filter p s))

forall p s = isEmpty (filter (λx.not (p x)) s)

and so on. Note that these functions are written in exactly the same
way as they would be for finite sets and the standard Data.Set
type. This is not an accident, and indeed the programmer can use
the convenient set-theoretic intuition of NLambda primitives. For
example, one could conveniently construct various orbit-finite sets
such as the set of all pairs of atoms:

atomPairs = sum (map (λx.map (λy.(x, y)) atoms) atoms),

the set of all pairs of distinct atoms:

distPairs = filter (λ(x, y).not(eq x y)) atomPairs

and so on.
It should be stressed that all these constructions terminate in finite

time, even though they formally involve infinite sets. To achieve this,
values of orbit-finite set types Set τ are internally not represented
as lists or trees of elements of type τ . Instead, they are stored and
manipulated symbolically, using first-order formulas over variables
that range over atom values. For example, the value of distPairs
above is stored as the formal expression:

{(a, b) | a, b ∈ A, a 6= b}
or, more specifically, as a triple:
• a pair (a, b) of “atom variables”,
• a list [a, b] of those atom variables that are bound in the expres-

sion (in this case, the expression contains no free variables),
• a formula a 6= b over atom variables.

All the primitives listed above, such as isEmpty, map and sum,
are implemented on this internal representation. In some cases,
this involves checking the satisfiability of certain formulas over
atoms. In the current implementation of NLambda, an external SMT
solver Z3 [34] is used for that purpose. For example, to evaluate the
expression isEmpty distPairs, NLambda makes a system call to
the SMT solver to check whether the formula a 6= b is satisfiable in
the first-order theory of equality and, after receiving the affirmative
answer, returns the value False.

For more details about the semantics and implementation of
NLambda, see [26]. The library itself can be downloaded from [40].

6.2 Implementation of νL? and νNL?

Using NLambda we implemented the algorithms from Sec-
tions 4 and 5. We note that the internal representation is slightly
different than the one discussed in Section 4. Instead of representing
the table (S,E) with actual representatives of orbits, the sets are
represented logically as described above. Furthermore the control
flow of the algorithm is adapted to fit in the functional programming
paradigm. In particular, recursion is used instead of a while loop. In
addition to the nominal adaptation of Angluin’s algorithm νL?, we
implemented a variant, νL?col which adds counterexamples to the
columns instead of rows.

DFA νL? (s) νL?col (s) RFSA νNL? (s)
FIFO0 2 0 1.9 1.9 2 0 2.4
FIFO1 3 1 12.9 7.4 3 1 17.3
FIFO2 5 2 45.6 22.6 5 2 70.3
FIFO3 10 3 189 107 10 3 476
FIFO4 25 4 370 267 25 4 1230
FIFO5 77 5 1337 697 ∞ ∞ ∞
L0 2 0 1.3 1.4 2 0 1.4
L1 4 1 29.6 4.7 4 1 8.9
L2 7 2 229 23.1 7 2 84.7
L′0 3 1 4.4 4.9 3 1 11.3
L′1 5 1 15.4 15.4 4 1 66.4
L′2 9 1 46.3 40.5 5 1 210
L′3 17 1 89.0 66.8 6 1 566
Leq n/a n/a n/a n/a 3 1 16.3

Table 1. Results of experiments. The column DFA (resp. RFSA)
shows the number of orbits (left sub-column) and dimension (right
sub-column) of the learnt minimal DFA (resp. canonical RFSA). We
use∞ when the running time is too high.

Target automata are defined using NLambda as well, using the
automaton data type provided by the library. Membership queries
are already implemented by the library. Equivalence queries are
implemented by constructing a bisimulation (recall that bisimulation
implies language equivalence), where a counterexample is obtained
when two DFAs are not bisimilar. For nominal NFAs, however, we
cannot implement a complete equivalence query as their language
equivalence is undecidable. We approximated the equivalence by
bounding the depth of the bisimulation for nominal NFAs. As an
optimization, we use bisimulation up to congruence [13]. Having
an approximate teacher is a minor issue since in many applications
no complete teacher can be implemented and one relies on testing
[2, 12]. For the experiments listed here the bound was chosen large
enough for the learner to terminate with the correct automaton.

We remark that our algorithms seamlessly merge with teachers
written in NLambda, but the current version of the library does not
allow generating concrete membership queries for external teachers.
We are currently working on a new version of the library in which
this will be possible.

6.3 Test Cases
To provide a benchmark for future improvements, we tested our
algorithms on a few simple automata described below. We report
results in Table 1. The experiments were performed on a machine
with an Intel Core i5 (Skylake, 2.4 GHz) and 8 GB RAM.
Queue Data Structure. A queue is a data structure to store el-
ements which can later be retrieved in a first-in, first-out order.
It has two operations: push and pop. We define the alphabet
ΣFIFO = {push(a), pop(a) | a ∈ A}. The language FIFOn
contains all valid traces of push and pop using a bounded queue of
size n. The minimal nominal DFA for FIFO2 is

q0 q1,x q2,x,y

⊥

push(x)

pop(x)

push(y)

pop(x) to q1,y
pop(A)

pop(6= x)

pop( 6= x)/push(A)
?

The state reached from q1,x via
push(x)−−−−−→ is omitted: Its outgoing

transitions are those of q2,x,y , where y is replaced by x. Similar
benchmarks appear in [2, 23].
Double Word. Ln = {ww | w ∈ An} from Section 2.
NFA. Consider the language Leq =

⋃
a∈A A

?aA?aA? of words
where some letter appears twice. This is accepted by an NFA which



guesses the position of the first occurrence of a repeated letter a and
then waits for the second a to appear. The language is not accepted
by a DFA [9]. Despite this νNL? is able to learn the automaton:

q′0 q′1,x q′2

x

A

x

A to any q′2,x

A

A A

y to q′2,y

A

where the transition from q′2 to q′1,x is defined as δ(q′2, a) = {q′1,b |
b ∈ A}.
n-last Position. A prototypical example of regular languages which
are accepted by very small NFAs is the set of words where a
distinguished symbol a appears on the n-last position [11]. We
define a similar nominal language L′n =

⋃
a∈A aA

?aAn. To
accept such words non-deterministically, one simply guesses the
n-last position. This language is also accepted by a much larger
deterministic automaton.

7. Related Work
This section compares νL? with other algorithms from the literature.
We stress that no comparison is possible for νNL?, as it is the
first learning algorithm for non-deterministic automata over infinite
alphabets.

The first one to consider learning automata over infinite alphabets
was Sakamoto [38]. In his work the problem is reduced to L? with
some finite sub-alphabet. The sub-alphabet grows in stages and L?

is rerun at every stage, until the alphabet is big enough to capture the
whole language. In Sakamoto’s approach, any learning algorithm
can be used as a back-end. This, however, comes at a cost: It has to
be rerun at every stage, and each symbol is treated in isolation,
which might require more queries. Our algorithm νL?, instead,
works with the whole alphabet from the very start, and it exploits
its symmetry. An example is in Sections 2.1 and 2.2: The ordinary
learner uses four equivalence queries, whereas the nominal one,
using the symmetry, only needs three. Moreover, our algorithm is
easier to generalize to other alphabets and computational models,
such as non-determinism.

More recently papers appeared on learning register automata [15,
21]. Their register automata are as expressive as our deterministic
nominal automata. The state-space is similar to our orbit-wise
representation: It is formed by finitely many locations with registers.
Transitions are defined symbolically using propositional logic. We
remark that the most recent paper [15] generalizes the algorithm to
alphabets with different structures (which correspond to different
atom symmetries in our work), but at the cost of changing Angluin’s
framework. Instead of membership queries the algorithm requires
more sophisticated tree queries. In our approach, using a different
symmetry does not affect neither the algorithm nor its correctness
proof. Tree queries can be reduced to membership queries by
enumerating all n-types for some n (n-types in logic correspond to
orbits in the set of n-tuples). Keeping that in mind, their complexity
results are roughly the same as ours, although this is hard to verify,
as they do not give bounds on the length of individual tree queries.
Finally, our approach lends itself better to be extended to other
variations on L? (of which many exist), as it is closer to Angluin’s
original work.

Another class of learning algorithms for systems with large al-
phabets is based on abstraction and refinement, which is orthogonal
to the approach in the present paper but connections and possible
transference of techniques are worth exploring in the future. In [2],
the alphabet is reduced to a finite alphabet of abstractions, and L?

for ordinary DFAs over such finite alphabet is used. Abstractions are

refined by counterexamples. Other similar approaches are [20, 22],
where global and local per-state abstractions of the alphabet are used,
and [30, 32], where the alphabet can also have additional structure
(e.g., an ordering relation). We can also mention [14], a framework
for learning symbolic models of software behavior.

In [5, 6], authors cope with an infinite alphabet by running L?

(adapted to Mealy machines) using a finite approximation of the
alphabet, which may be augmented when equivalence queries are
answered. A smaller symbolic model is derived subsequently. Their
approach, unlike ours, does not exploit the symmetry over the full
alphabet. The symmetry allows our algorithm to reduce queries and
to produce the smallest possible automaton at every step.

Finally we compare with results on session automata [12].
Session automata are defined over finite alphabets just like the work
by Sakamoto. However, session automata are more restrictive than
deterministic nominal automata. For example, the model cannot
capture an acceptor for the language of words where consecutive
data values are distinct. This language can be accepted by a three
orbit nominal DFA, which can be learned by our algorithm.

We implemented our algorithms in the nominal library NLambda
as sketched before. Other implementation options include Fresh
O’Caml [39], a functional programming language designed for
programming over nominal data structures with binding, and
LOIS [27, 28], a C++ library for imperative nominal programming.
We chose NLambda for its convenient set-theoretic primitives, but
the other options remain to be explored, in particular the low-level
LOIS could be expected to provide more efficient implementations.

8. Discussion and Future Work
In this paper we defined and implemented extensions of several
versions of L?and of NL? for nominal automata.

We highlight two features of our approach:
• it has strong theoretical foundations: The theory of nominal

languages, covering different alphabets and symmetries (see
Section 3.1); category theory, where nominal automata have
been characterized as coalgebras [16, 29] and many properties
and algorithms (e.g., minimization) have been studied at this
abstract level.
• it follows a generic pattern for transporting computation models

and algorithms from finite sets to nominal sets, which leads to
simple correctness proofs.

These features pave the way to several extensions and improvements.
Future work includes a general version of νNL?, parametric in

the notion of side-effect (an example is non-determinism). Different
notions will yield models with different degree of succinctness w.r.t.
deterministic automata. The key observation here is that many forms
of non-determinism and other side effects can be captured via the
categorical notion of monad, i.e., an algebraic structure, on the
state-space. Monads allow generalizing the notion of composed and
prime state: A state is composed whenever it is obtained from other
states via an algebraic operation. Our algorithm νNL? is based on
the powerset monad, representing classical non-determinism. We
are currently investigating a substitution monad, where the operation
is “applying a (possibly non-injective) substitution of atoms in the
support”. A minimal automaton over this monad, akin to a RFSA,
will have states that can generate all the states of the associated
minimal DFA via a substitution, but cannot be generated by other
states (they are prime). For instance, we can give an automaton over
the substitution monad that recognizes L2 from Section 2:

q0 qx qxy qy q1 q2x
y

x, [y 7→ x]

x

6= x

y

6= y

A
A



Here [y 7→ x] means that, if that transition is taken, qxy (hence
its language) is subject to y 7→ x. In general, the size of the
minimal DFA for Ln grows more than exponentially with n, but an
automaton with substitutions on transitions, like the one above, only
needs O(n) states.

In principle, thanks to the generic approach we have taken, all
our algorithms should work for various kinds of atoms with more
structure than just equality, as advocated in [9]. Details, such as pre-
cise assumptions on the underlying structure of atoms necessary for
proofs to go through, remain to be checked. For an implementation
of automata learning over other kinds of atoms without compromis-
ing the generic approach, an extension of NLambda to those atoms
will be needed, as the current version of the library only supports
equality and totally ordered atoms.

The efficiency of our current implementation, as measured in
Section 6.3, leaves much to be desired. There is plenty of potential
for running time optimization, ranging from improvements in the
learning algorithms itself, to optimizations in the NLambda library
(such as replacing the external and general-purpose SMT solver
with a purpose-built, internal one, or a tighter integration of nominal
mechanisms with the underlying Haskell language as it was done
in [39]), to giving up the functional programming paradigm for an
imperative language such as LOIS [27, 28].
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9. Omitted proofs
9.1 Section 4
Lemma (1). The relation ∼ is an equivariant equivalence relation.

Proof. Since the language L is equivariant, so is row. The relation
∼ is defined as kernel of row and is hence equivariant and an
equivalence relation.

Lemma (1). For all u, v ∈ S we have that u ≡L v implies u ∼ v.

Proof. If u ≡L then L(uw) = L(vw) for all w ∈ A?. In particular
row(u)(e) = L(ue) = L(ve) = row(v)(e) for all e ∈ E. Hence
row(u) = row(v).

Lemma (2). We have supp([u]∼) ⊆ supp([u]≡L) ⊆ supp(u) for
all u ∈ S.

Proof. By Lemma 1 we have an equivariant function S/≡L →
S/∼ sending [u]≡L to [u]∼. Since equivariant functions preserve
supports (Lemma 4.8 in [9]) we have supp([u]∼) ⊆ supp([u]≡L).

9.2 Section 5
Lemma (8). The canonical nominal RFSA is a proper nominal
NFA.

Proof.
• Q is orbit-finite, as PR(L) is an equivariant subset of R(L),

which is orbit-finite. We now show equivariance of PR(L).
Suppose L′ ∈ PR(L) but π · L′ /∈ PR(L). We have π · L′ ∈
R(L), by equivariance of R(L), so π · L′ is the union of the
finite residuals it strictly contains. By equivariance of R(L), L′
is composed: its components are those of π · L′ permuted via
π−1. This is a contradiction.
• Q0 is an equivariant, orbit-finite subset of PR(L). We have
supp(L) = ∅ and L =

⋃
Q0 so supp(Q0) = ∅, i.e., Q0

is equivariant. Being an an equivariant subset of Q, which is
orbit-fine, it is itself orbit-finite.
• F is equivariant. In fact, take L′ ∈ F . By equivariance of Q,
π · L′ ∈ Q, and we have ε = π · ε ∈ π · L′, so π · L′ ∈ F .
Orbit-finiteness follows from the usual argument.
• δ is an equivariant relation, i.e. (L1, a,L2) ∈ δ implies (π ·
L1, π · a, π · L2) ∈ δ. Suppose L2 ⊆ a−1L1, i.e., v ∈ L2

implies av ∈ L1. Take w ∈ π · L2. Then π−1 · w ∈ L2, so
a(π−1w) ∈ L1, and then (π · a)w ∈ π · L1, as required.

Lemma (9). PR(S,E), PR>(S,E) and PR(S,E)\PR>(S,E)
are orbit-finite nominal sets.

Proof. We prove that PR(S,E) is equivariant. We know that the set
R(S,E) of rows of (S,E) is an orbit-finite nominal set. Suppose
by contradiction that row(t) ∈ PR(S,E) but π · row(t) ∈
R(S,E) \ PR(S,E), so

π · row(t) =
⊔
{row(s) | row(s) @ π · row(t)} .

Then, by equivariance of @, row(t) is the union of π−1 · row(s),
with row(s) in the equation above, so it is composed, a contra-
diction. Since PR(S,E) is an equivariant subset of an orbit-finite
nominal set, it is orbit-finite. A similar argument gives PR>(S,E)
orbit-finite. Finally, PR(S,E) \PR>(S,E) is obtained by remov-
ing some orbits from PR(S,E), so it is orbit-finite.

Lemma (10). The set C(row(t)) has the following properties:
1. supp(C(row(t))) ⊆ supp(row(t)).
2. it is orbit-finite under the action of the group

Gt = {π ∈ Perm(A) | π�supp(row(t))= id}
of permutations fixing supp(row(t)).

Proof.
1. We prove that permutations fixing supp(row(t)) also fix
C(row(t)). Take π such that π�supp(row(t))= id and row(s) ∈
C(row(t)). We want to prove that π ·row(s) ∈ C(row(t)). We
have row(s) v row(t) and, by equivariance ofv, π ·row(s) v
π · row(t). But π · row(t) = row(t), as π fixes supp(row(t)),
so π · row(s) v row(t), as required.

2. In the previous point we proved that C(row(t)) is equivariant
w.r.t. permutations in Gt. To show that it is orbit-finite, it is
enough to show that PR>(S,E) is orbit-finite w.r.t. Gt; orbit-
finiteness of C(row(t)) will follow by equivariance.
We call Gt-orbit (resp. Perm(A)-orbit) an orbit w.r.t. the
group of permutations Gt (resp. Perm(A)). Each Gt-orbit
of PR>(S,E) is clearly included in one of its (Perm(A)-
)orbits, so we show that each orbit of the latter type contains
finitely-many orbits of the former type. Every Perm(A)-orbit of
dimension k in PR>(S,E) is image of A(k) via an equivariant
surjective function. Such functions can only decrease the number
of orbits, so we prove that A(k) is orbit-finite w.r.t. Gt. Take
(a1, . . . , ak) ∈ A(k). Then (a1, . . . , ak) and (a′1, . . . , a

′
k) are

in the same Gt-orbit if and only if ai ∈ supp(row(t)) implies
ai = a′i. Hence, the number of Gt-orbits of PR>(S,E)
contained in one of its Perm(A)-orbit is at most the number of
subsets of size k of a set of size |supp(row(t))|.

Lemma (11). The conjecture automatonN(S,E) (see Definition 4)
is a nominal NFA.

Proof. Let N(S,E) = (Q,Q0, F, δ). Then:
• Q = PR(S,E) is an orbit-finite nominal set (Lemma 9);
• Q0 is an equivariant, thus orbit-finite, subset of Q. In fact
supp(row(ε)) ⊆ supp(ε) = ∅ (Lemma 2), so supp(Q0) = ∅
by Lemma 10(1), i.e., it is equivariant.
• F is an orbit-finite, thus orbit-finite, subset ofQ. Suppose r ∈ F ,

i.e., r(ε) = 1. Then

(π · r)(ε) = π · r(π−1 · ε) = π · r(ε) = 1

where the second equation uses the action of permutations over
functions 2E . Therefore (π · r) ∈ F .
• The transition relation δ is equivariant. To prove this, we need to

show that (row(s), a, r′) ∈ δ implies (π · row(s), π(a), π ·
r′) ∈ δ. By definition, (row(s), a, r′) ∈ δ only if r′ v
row(sa). Using equivariance of v, π · r′ v π · row(sa)
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and, using equivariance of row, π · row(sa) = row((π ·
s)π(a)). Therefore π · r′ v row((π · s)π(a)), which gives
(π · row(s), π(a), π · r′) ∈ δ.
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