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Abstract

A digraph D = (V,A) has a good pair at a vertex r if D has a pair
of arc-disjoint in- and out-branchings rooted at r. Let T be a digraph
with t vertices u1, . . . , ut and let H1, . . . Ht be digraphs such that Hi has
vertices ui,ji , 1 ≤ ji ≤ ni. Then the composition Q = T [H1, . . . ,Ht] is
a digraph with vertex set {ui,ji | 1 ≤ i ≤ t, 1 ≤ ji ≤ ni} and arc set

A(Q) = ∪ti=1A(Hi)∪{uijiupqp | uiup ∈ A(T ), 1 ≤ ji ≤ ni, 1 ≤ qp ≤ np}.

If T is strongly connected, then Q is called a strong composition and
if T is semicomplete, i.e., there is at least one arc between every pair
of vertices, then Q is called a semicomplete composition.

We obtain the following result: every strong digraph composition
Q in which ni ≥ 2 for every 1 ≤ i ≤ t, has a good pair at every vertex
of Q. The condition of ni ≥ 2 in this result cannot be relaxed. We
characterize semicomplete compositions with a good pair, which gen-
eralizes the corresponding characterization by Bang-Jensen and Huang
(J. Graph Theory, 1995) for quasi-transitive digraphs. As a result, we
can decide in polynomial time whether a given semicomplete compo-
sition has a good pair rooted at a given vertex.
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1 Introduction

We use a standard digraph terminology and notation as in [4, 5]. A
digraph D = (V,A) is strongly connected (or, just strong) if there exists a
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path from x to y and a path from y to x in D for every pair of distinct
vertices x, y of D. An out-tree (in-tree, respectively) rooted at a vertex r is
an orientation of a tree such that the in-degree (out-degree, respectively) of
every vertex but r equals one. An out-branching ( in-branching, respectively)
in a digraph D is a spanning subgraph of D which is out-tree (in-tree,
respectively). It is well-known and easy to show [4,5] that a digraph has an
out-branching (in-branching, respectively) rooted at r if and only if D has a
unique initial strong connectivity component (terminal strong connectivity
component, respectively) and r belongs to this component. Out-branchings
and in-branchings when they exist can be found in linear-time using, say,
depth-first search from the root.

Edmonds [11] characterized digraphs with k arc-disjoint out-branchings
rooted at a specified vertex r. Furthermore, there exists a polynomial algo-
rithm for finding k arc-disjoint out-branchings with a given root r if they
exist [4]). However, it is NP-complete to decide whether a digraph D has a
pair of arc-disjoint out-branching and in-branching rooted at r, which was
proved by Thomassen, see [1]. Following [9] we will call such a pair a good
pair rooted at r. Note that a good pair forms a strong spanning subgraph
of D and thus if D has a good pair, then D is strong. The problem of
the existence of a good pair was studied for tournaments and their gen-
eralizations, and characterizations (with proofs implying polynomial-time
algorithms for finding such a pair) were obtained in [1] for tournaments, [7]
for quasi-transitive digraphs and [9] for locally semicomplete digraphs. Also,
Bang-Jensen and Huang [7] showed that if r is adjacent to every vertex of
D (apart from itself) then D has a good pair rooted at r.

In this paper, we study the existence of good pairs for digraph compo-
sitions. Let T be a digraph with t vertices u1, . . . , ut and let H1, . . . Ht be
digraphs such that Hi has vertices ui,ji , 1 ≤ ji ≤ ni. Then the composition
Q = T [H1, . . . ,Ht] is a digraph with vertex set {ui,ji | 1 ≤ i ≤ t, 1 ≤ ji ≤ ni}
and arc set

A(Q) = ∪ti=1A(Hi) ∪ {uijiupqp | uiup ∈ A(T ), 1 ≤ ji ≤ ni, 1 ≤ qp ≤ np}.

If T is strongly connected, then Q is called a strong composition and if T is
semicomplete, i.e., there is at least one arc between every pair of vertices,
then Q is called a semicomplete composition.

Digraph compositions generalize some families of digraphs. In particu-
lar, semicomplete compositions generalize strong quasi-transitive digraphs
as every strong quasi-transitive digraph is a strong semicomplete compo-
sition in which Hi is either a one-vertex digraph or a non-strong quasi-
transitive digraph. To see that strong compositions form a significant gen-
eralization of strong quasi-transitive digraphs, observe that the Hamiltonian
cycle problem is polynomial-time solvable for quasi-transitive digraphs [13],
but NP-complete for strong compositions (see, e.g., [6]). When Hi is the
same digraph H for every i ∈ [t], Q is the lexicographic product of T and
H, see, e.g., [15]. While digraph compositions has been used since 1990s to
study quasi-transitive digraphs and their generalizations, see, e.g., [3, 4,12],
the study of digraph decompositions in their own right was initiated only
recently in [16].
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In the next section, we obtain the following somewhat surprising result:
every strong digraph composition Q in which ni ≥ 2 for every i ∈ [t], has a
good pair rooted at every vertex of Q. The condition of ni ≥ 2 in this result
cannot be relaxed. Indeed, the characterization of quasi-transitive digraphs
with a good pair [7] provides an infinite family of strong quasi-transitive
digraphs which have no good pair rooted at some vertices. In Section 3,
we characterize semicomplete compositions with a good pair generalizing
the corresponding result in [7]. This allows us to decide in polynomial time
whether a given semicomplete composition has a good pair rooted at a given
vertex. In Section 4, we discuss some open problems and a recent related
result.

Let p and q be integers. Then [p..q] := {p, p + 1, . . . , q} if p ≤ q and ∅,
otherwise. In particular, if p > 0, [p] will be a shorthand for [1..p].

2 Compositions of digraphs: T arbitrary

A digraph D = (V,A) has a strong arc decomposition if A has two disjoint
sets A1 and A2 such that both (V,A1) and (V,A2) are strong. Sun et al. [16]
obtained sufficient conditions for a digraph composition to have a strong arc
decomposition. In particular, they proved the following:

Theorem 2.1 Let T be a digraph with t vertices (t ≥ 2) and let H1, . . . ,Ht

be digraphs. Then Q = T [H1, . . . ,Ht] has a strong arc decomposition if T
has a Hamiltonian cycle and one of the following conditions holds:

• t is even and ni ≥ 2 for every i = 1, . . . , t;

• t is odd, ni ≥ 2 for every i = 1, . . . , t and at least two distinct subgraphs
Hi have arcs;

• t is odd and ni ≥ 3 for every i = 1, . . . , t apart from one i for which
ni ≥ 2.

Lemma 2.2 Let Q = T [H1, . . . ,Ht], where t ≥ 2. If T has a Hamiltonian
cycle and H1, . . . ,Ht are arbitrary digraphs, each with at least two vertices,
then Q has a good pair at any root r.

Proof: For the case that t is even, by Theorem 2.1, Q has has a pair of
arc-disjoint strong spanning subgraphs Q1 and Q2. Observe that in Q1 (Q2,
respectively), we can find an out-branching (in-branching, respectively) at
r (in polynomial time), as desired.

Now we assume that t is odd. Without loss of generality, let u1,1 be the
root. Let T ′1 be the path u1,1u2,1 . . . ut,1u1,2u2,2 . . . ut,2, and let T ′2 be the
in-tree rooted at u1,1 with arc set {ui,2ui+1,1 | 1 ≤ i ≤ t − 1} ∪ {ui,1ui+1,2 |
2 ≤ i ≤ t − 1} ∪ {ut,1u1,1, ut,2u1,1}. By definition, V (T ′1) = V (T ′2) = {ui,j |
1 ≤ i ≤ t, 1 ≤ j ≤ 2}. For any vertex ui,j with 1 ≤ i ≤ t and j ≥ 3, we
add the arcs ui−1,1ui,j and ui,jui+1,1 to T ′1 and T ′2, respectively. Note that
here u0,1 = ut,1 and ut+1,1 = u1,1. Observe that the resulting two subgraphs
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form a pair of out-branching and in-branching rooted at u1,1, which are arc-
disjoint. 2

We will use the following decomposition of strong digraphs. An ear de-
composition of a digraph D is a sequence P = (P0, P1, P2, · · · , Pt), where P0

is a cycle or a vertex and each Pi is a path, or a cycle with the following
properties:
(a) Pi and Pj are arc-disjoint when i 6= j.
(b) For each i ∈ [0..t], let Di denote the digraph with vertices

⋃i
j=0 V (Pj)

and arcs
⋃i

j=0A(Pj). If Pi is a cycle, then it has precisely one vertex in
common with V (Di−1). Otherwise the end vertices of Pi are distinct ver-
tices of V (Di−1) and no other vertex of Pi belongs to V (Di−1).
(c)

⋃t
j=0A(Pj) = A(D).

The following result is well-known, see, e.g., [4].

Theorem 2.3 Let D be a digraph with at least two vertices. Then D is
strong if and only if it has an ear decomposition. Furthermore, if D is strong,
every cycle can be used as a starting cycle P0 for an ear decomposition of
D, and there is a linear-time algorithm to find such an ear decomposition.

Lemma 2.4 Let Q = T [K2, . . . ,K2], where |V (T )| = t ≥ 2 and K2 is the
digraph with two vertices and no arcs. If T is strong, then Q has a good pair
at any root r.

Proof: Without loss of generality, let r = u1,1. Since T is strong, u1
belongs to some cycle C in T . By Theorem 2.3, T has an ear decomposition
P = (P0, P1, P2, · · · , Pp), such that P0 = C is the starting cycle. Let Ti

denote the subgraph of T with vertices
⋃i

j=0 V (Pj) and arcs
⋃i

j=0A(Pj).
We will prove the lemma by induction on i ∈ {0, 1, . . . , p}. For the base

step, by Lemma 2.2, the subgraph P0[K2, . . . ,K2] has a good pair rooted
at u1. For the inductive step, assume that Ti[K2, . . . ,K2] has a pair of
arc-disjoint out-branching B′+r and in-branching B′−r rooted at r. Without
loss of generality, let Pi+1 = usus+1 . . . u`. The following argument will be
divided into two cases according to whether Pi+1 is a cycle.

Case 1: Pi+1 is a cycle. In this case us = u` ∈ V (Ti). By Lemma 2.2, in
the subgraph Pi+1[K2, . . . ,K2], there is a pair of arc-disjoint out-branching
B′′+r and in-branching B′′−r rooted at us,1. Let B+

r = B′+r ∪B′′+r and B−r =
B′−r ∪B′′−r . Observe that B+

r is an out-branching and B−r is an in-branching
rooted at r in Ti+1[K2, . . . ,K2]. Since Pi+1[K2, . . . ,K2] and Ti[K2, . . . ,K2]
are arc-disjoint, B+

r and B−r are also arc-disjoint.

Case 2: Pi+1 is a path. In this case, us, u` ∈ V (Ti) and s 6= `. We
just consider the case that ` − s ≥ 2 since the remaining case is trivial (no
need to change the current pair of out- and in-branchings). Let B+

r be the
union of B′+r and the two paths us,ius+1,i . . . u`−1,i where 1 ≤ i ≤ 2. Let
B−r be the union of B′−r and the two paths us,1us+1,2us+2,1us+3,2 . . . u`,i and
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us,2us+1,1us+2,2us+3,1 . . . u`,j , where {i, j} = {1, 2}. Observe that B+
r is an

out-branching and B−r is an in-branching rooted at r in Ti+1[K2, . . . ,K2],
moreover, they are arc-disjoint.

Thus, by induction, we are done. 2

Theorem 2.5 Let Q = T [H1, . . . ,Ht], where t ≥ 2. If T is strong and
H1, . . . ,Ht are arbitrary digraphs, each with at least two vertices, then Q has
a good pair at any root r. Furthermore, this pair can be found in polynomial
time.

Proof: Without loss of generality, let r = u1,1. Let Q′ be the subgraph of
Q induced by the vertex set {ui,j | 1 ≤ i ≤ t, 1 ≤ j ≤ 2}. In Q′ delete arcs
between vertices ui,1 and ui,2 for every i ∈ [t]. By Lemma 2.4, Q′ contains
a pair of arc-disjoint out-tree T ′1 and in-tree T ′2 rooted at r. By definition
of out-tree, there is an arc upi,qiui,2 in T ′1 for every i ∈ [t]. For every i ∈ [t]
and j ∈ [3..ni], add upi,qiui,j to T ′1. This results in an out-branching T1. By
definition of in-tree, there is an arc ui,2uai,bi in T ′2 for every i ∈ [t]. For every
i ∈ [t] and j ∈ [3..ni], add ui,juai,bi to T ′2. This results in an in-branching
T2. Observe that T1 and T2 are arc-disjoint since T ′1 and T ′2 are arc-disjoint
and the added arcs have heads and tails from {ui,j | 1 ≤ i ≤ t, 3 ≤ j ≤ ni},
respectively, in the arcs added to T ′1 and T ′2, respectively. Note that the
proofs of Theorem 2.1, Lemmas 2.2 and 2.4, and this theorem are construc-
tive and can be converted into polynomial-time algorithms. This fact and
the polynomial-time algorithm of Theorem 2.3 imply that T1 and T2 can be
constructed in polynomial time. 2

3 Compositions of digraphs: T semicomplete

We use N−(v) (N+(v), respectively) to denote the set of all in-neighbours
(out-neighbours, respectively) of a vertex v in a digraph D.

The next result was obtained by Bang-Jensen and Huang [7].

Theorem 3.1 Let D be a strong digraph and r a vertex of D such that
V (D) = {r} ∪ N−(r) ∪ N+(r). There is a polynomial-time algorithm to
decide whether D has a good pair at r.

For a path P = x1x2 . . . xp and 1 ≤ i ≤ j ≤ p, let P [xi, xj ] := xixi+1 . . . xj .
We now prove the following result on semicomplete compositions which gen-
eralizes a similar result for quasi-transitive digraphs by Bang-Jensen and
Huang [7].

Theorem 3.2 A strong semicomplete composition Q has a good pair rooted
at r if and only if Q′ = Q[{r}∪N−(r)∪N+(r)] has a good pair rooted at r.

Proof: Let Q = T [H1, . . . ,Ht] and A = V (Q) \ V (Q′). Without loss of
generality, assume that r ∈ V (H1). By definitions of a semicomplete com-
position and Q′, we have A = V (H1) \ {r}.

5



Assume that Q′ has a good pair rooted at r, an out-branching B′+r and
an in-branching B′−r . Starting with B′+r , we can construct an out-branching
B+

r in Q as follows. Let v be a vertex such that vr ∈ B′−r . Then add the arc
vu to B′+r for each u ∈ A. Similarly, starting with B′−r , we could construct
an in-branching B−r in Q as follows: for each u ∈ A, add the arc uv′ to B′−r ,
where rv′ ∈ B′+r . Observe that B+

r and B−r are arc-disjoint, as desired.
Now we prove the other direction. Assume that Q has a good pair, an

out-branching B+
r and an in-branching B−r , rooted at r. If B+

r [V (Q′)] and
B−r [V (Q′)] are branchings, then we are done. Otherwise, we will obtain
an in-branching (out-branching, respectively) from B−r (B+

r , respectively)
using the following procedure.

Choose a maximal path P of B−r to r, which contains a vertex w ∈ A,
and assume that w is furthest from r among vertices in A ∩ V (P ). If w is
the first vertex of P , then delete it. Otherwise, the previous vertex u on P
has an arc ur to r (the arc ur exists since A ⊆ V (H1)), and we replace P in
B−r by two paths: one is P [p, u]r, where p is the first vertex of P , and the
other is P [w, r].

Note that the in-degree d−(w) of w has decreased by one. Thus, after
d−(w) such replacements the in-degree of w becomes equal to zero, i.e., w is
the first vertex on its maximal path Q to r and therefore w will be deleted
when we consider Q. This means that after a finite number of replacements,
we will delete all vertices of A in B−r and obtain an in-branching B′−r of Q′

rooted at r. Similarly, we can construct an out-branching B′+r of Q′. Note
that to build B′−r we add only arcs to r and to build B′+r we add only arcs
from r. This fact and the fact that B−r and B+

r are arc-disjoint, imply that
B′−r and B′+r are arc-disjoint, too.

2

By Theorems 3.1 and 3.2, we immediately have the following:

Theorem 3.3 Given a semicomplete composition and a vertex r, we can
decide in polynomial time whether D has a good pair rooted at r.

4 Open Problems and Related Results

Theorem 3.2 provides a characterization for the following problem for
semicomplete compositions: given a digraph D and a vertex r ∈ V (D)
decide whether D has a good pair rooted at r. The theorem generalizes a
similar characterization by Bang-Jensen and Huang [7] for quasi-transitive
digraphs. Strong semicomplete compositions is not the only class of digraphs
generalizing strong quasi-transitive digraphs. Other such classes have been
studied such as k-quasi-transitive digraphs [12] and it would be interesting
to see whether a characterization for the problem (or, at least non-trivial
sufficient conditions) on k-quasi-transitive digraphs can be obtained. As we
mentioned above, Bang-Jensen and Huang [9] obtained a characterization
for the problem for locally semicomplete digraphs. It would be interesting
to see whether a characterization for the problem on in-locally semicomplete
digraphs [2, 4] can be obtained.
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An out-branching and in-branching B+
r and B−r are called k-distinct if

B+
r has at least k arcs not present in B−r . The problem of deciding whether

a digraph D has a k-distinct pair of out- and in-branchings is NP-complete
since it generalizes the good pair problem (k = |V (D)|−1). Bang-Jensen and
Yeo [10] asked whether the k-distinct problem is fixed-parameter tractable
when parameterized by k, i.e., whether there is an O(f(k)|V (D)|O(1))-time
algorithm for solving the problem, where f(k) is an arbitrary computable
function in k only. Gutin, Reidl and Wahlström [14] answered this open

question in affirmative by designing an O(2O(k log2 k)|V (D)|O(1))-time algo-
rithm for solving the problem.

Acknowledgement. We are very thankful to the reviewer for the sugges-
tions, which improved the presentation.
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