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Abstract:  

This work uses seismic records to document and classify contourite features around the 

Iberian continental margin to determine their implications for depositional systems and 

petroleum exploration. Contourites include depositional features (separated, sheeted, 

plastered and confined drifts), erosional features (abraded surfaces, channels, furrows and 

moats) and mixed features (contourite terraces). Drifts generally show high to moderate 

amplitude reflectors, which are cyclically intercalated with transparent layers. Transparent 

layers may represent finer grained deposits, which can serve as seal rocks. High amplitude 

reflectors (HARs) likely represent sandier layers, which could form hydrocarbon reservoirs. 

HARs occur on erosive features (moats and channels) and are clearly developed on 

contourite terraces and overflow features. Most of the contourite features described here are 

influenced by Mediterranean water masses throughout their Pliocene and Quaternary 

history. They specifically record Mediterranean Outflow Water following its exit through the 

Gibraltar Strait. This work gives a detailed report on the variation of modern contourite 

deposits, which can help inform ancient contourite reservoir interpretation. Further research 

correlating 2D and 3D seismic anomalies with core and well logging data is needed to 

develop better diagnostic criteria for contourites. This can help clarify the role of contourites 

in petroleum systems. 
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1. INTRODUCTION 

 

The characterization of contourite features has been a critical area of research in 

marine geology over the past three decades due to their implications for stratigraphy, 

sedimentology, paleoceanography, paleoclimatology, sedimentary instability 

processes, and energy resources (Rebesco et al., 2014). Studies have shown that 

contourites are common in deep marine environments, but remain poorly understood 

in terms of their composition, sedimentary processes, origin, sequence, lithology, 

seismic facies, petrophysical characteristics (porosity, permeability, etc.) and role in 

petroleum systems (Viana, 2008; Stow et al., 2011a, b; Shanmugan, 2012; 

Brackenridge, 2014; among others). Advances in understanding of contourites have 

yielded a clearer picture of their lateral and temporal variability as well as their 

relations with along-slope processes. Previous work has helped formalize the terms 

Contourite Depositional System (CDS) and Contourite Depositional Complex (CDC) 

(Hernández-Molina et al., 2003, 2008; Rebesco and Camerlenghi, 2008). 

Contourites however frequently occur interbedded or simultaneously deposited with 

sedimentary facies resulting from down-slope processes. These deposits represent 

mixed turbidite-contourite systems (Faugères et al., 1999; Rebesco and 

Camerlenghi, 2008; Creaser et al., 2017). Mixed systems are common along 

continental margins where bottom currents rework and/or redistribute pre-existing 

gravitational deposits (Marchès et al., 2010; Mulder et al., 2013; Brackenridge et al., 

2013). When down-slope processes dominate along-slope processes, gravitational 

deposits (such as turbidites) may overprint or inhibit the development of contourites. 

When strong along-slope currents dominate, turbidity currents may deviate and feed 

contourite drifts (e.g., Faugères et al., 1999; Mulder et al., 2003, 2006; Viana et al., 

2007).  

This paper follows the contourite drift classification criteria of Faugères et al. (1999) and 

Rebesco (2005). Sediment drifts are commonly bounded by and/or associated with erosional 

contourite features (such as contourite channels or moats). Compared to depositional 

features, these latter erosional features have generally received less attention and their 
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genetic relationships with oceanographic processes remain unclear (Nelson et al., 1993, 

1999; Stow and Mayall, 2000; Hernández-Molina et al., 2006, 2008a, 2015a, 2015b; García 

et al., 2009). Erosional contourite features are clearly identifiable in seismic reflection profiles 

allowing large-scale interpretation (Faugères et al., 1999; Stow et al., 2002; Hernández-

Molina et al., 2008, 2015c; Nielsen et al., 2008; Brackenridge et al., 2013; Llave et al., 2015; 

Kuijpers and Nielsen, 2016; Calvin Campbell and Mosher, 2016; Delivet et al., 2016; 

Gruetzner and Uenzelmann-Neben, 2016, among others). In the past, some contourite 

deposits have been considered as potential (hydrocarbon) source rocks, but ones less likely 

to form reservoirs than turbidites (Pickering et al., 1989; Pickering and Hiscot, 2016). 

Sediments that make up such contourite drifts are typically muddy but can reach substantial 

local thickness and include well-sorted sands, that themselves are thick and laterally 

extensive enough play a role in deep-water petroleum systems. Recent studies have 

interpreted bottom currents as a crucial factor in hydrocarbon reservoir development 

because weak flows enable accumulation of mud-rich deposits (such as contourites). These 

can serve as both caprock (seals) or with deeper burial, as potential source rocks or shale-

gas reservoirs when adequately enriched in organic matter (up to 2 wt.%). On the other 

hand, high velocity flows may represent a mechanism for “mature sand” accumulation in 

deep-water environments. These sands form excellent reservoir units (Enjorlas et al., 1986; 

Colella, 1990; Mutti, 1992; Shanmugam et al., 1993; Viana et al., 1998; Stow and Faugères, 

2008; Viana, 2008; Stow et al., 2011b, 2013a; Shanmugam, 2006, 2012, 2013a, b; Mutti and 

Carminatti, 2012). Sandy contourites and related deposits with good lateral continuity and 

exposed to long-term effects of current winnowing may have greater textural maturity and 

better developed primary interstices than turbidites. Sandy contourites can thus present 

good petrophysical characteristics, including high values for porosity, permeability, and 

lateral and vertical transmissivity of fluids (Shanmugam, 2008; Viana, 2008).  

In spite of the potential role they play in deep-water petroleum systems and by 

extension, their economic significance, contourites and mixed-drift depositional 

systems are not well understood. In particular, the scientific literature on sandy 

contourites, including ancient analogues in outcrop is sparse. Mixed-drift systems do 

not yet enjoy the benefit of well-defined interpretive models. Both of these could help 

refine and direct turbidite exploration.  

Published seismic and sedimentologic data from the Iberian continental margin 

have reported on the interrelations of turbidite and contourite depositional systems, 

especially contourites within mixed turbidite-contourite systems (Mulder et al., 2003, 

2006, 2008; Llave et al., 2006; Marchès et al., 2007; Hernández-Molina et al., 2010; 
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García et al., 2016). The Iberian margin is affected by several vigorous water 

masses interacting along upper and middle continental slopes and by weaker water 

masses moving along the lower slope and abyssal plains (Hernández-Molina et al., 

2011, 2016a) (Fig. 1). Each of these domains hosts extensive and complex 

contourite features of variable dimensions and sedimentary thicknesses that are 

often poorly understood in terms of their oceanographic / depositional contexts 

(Maestro et al., 2013; Llave et al., 2015). Along the Iberian margin, large volumes of 

sand have been efficiently transported, re-deposited or reworked by the persistent 

hydrodynamic regimes of the Gulf of Cadiz (Buitrago et al., 2001; Habgood et al., 

2003; Llave et al., 2005; Hernández-Molina et al., 2006; Akhmetzhanov et al., 2007; 

Brackenridge et al., 2011, 2013). IODP Expedition 339 and and other cores from a 

number of cruises furthered understanding of sand-rich contourite deposits by 

presenting a facies model for sandy contourites (Expedition 339 Scientists, 2012; 

Hernández-Molina et al., 2013; Stow et al., 2013b, Brackenridge et al., 2018). This 

research also considered contourites’ potential role in deep-water petroleum 

systems. A thorough record of these features as they occur around the Iberian 

margin can further understanding of both their scientific significance and their 

economic potential (e.g., Rebesco and Camerlenghi, 2008; Hernández-Molina et al., 

2011 and references therein).  

This study provides a regional review of along-slope processes and their sedimentary 

features around the Iberian continental margin based on 2D seismic profiles from published 

and unpublished sources. This work also discusses sandy contourites and how these 

features can be used to interpret ancient contourite deposits and explore for petroleum in 

deep-water settings. 

2.  DATA AND METHODOLOGY  

This study interprets geophysical surveys of the Iberian continental margin. Surveys used 

acoustic techniques to develop a 2D vertical profile of the structure underlying the seafloor at 

water depths of 200 to 5000 m. This study primarily reviews contourite features as 

characterized by methods and nomenclature described in Faugères et al. (1999) and further 

developed by Rebesco and Stow (2001) and Nielsen et al. (2008). Contourite morphologies 

developed at different depths and under the influence of multiple water masses are defined 

as Contourite Features (CFs). Thickness is expressed in two way travel time seconds (s).  
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The dataset was collected by several Spanish and international research projects as well 

as by commercial petroleum exploration projects. Data were made available through the 

Geophysical Information System (Sistema de Información Geofísico - SIGEOF 

(http://cuarzo.igme.es/sigeco/default.htm), the Institut de Ciències del Mar-CSIC 

(http://www.icm.csic.es/geo/gma/SurveyMaps/) and the Instituto Portugues do Mar e da 

Atmosfera-IPMA (http:// www.ipma.pt). Data were obtained by various seismic reflection 

methods described here. Low resolution methods are commonly used for hydrocarbon 

exploration purposes. These methods record multi-channel seismic profiles penetrating 

several kilometers but provide comparatively low resolution (> 50 m) images. Moderate- 

resolution / penetration methods use air-guns (Uniboom and Sparker) that penetrate from 

100 m to 2 km with a resolution of 1 and 10 m (respectively). High-resolution / low 

penetration seismic methods use 3.5 kHz echo sounders, TOPAS (topographic parametric 

sonar) and Parasound, which penetrate the upper few to tens of meters of the subsurface 

and record it at centimeter resolution. The various penetration depths and resolutions of 

these seismic survey systems record contourite features on different scales. Morphology and 

boundaries of the deposit are recorded at larger scales. The architecture of discrete internal 

depositional units is recorded at medium scales, and seismic facies are recorded at smaller 

scales. These features are referred to as first-, second- and third-order seismic elements in 

Nielsen et al. (2008). 

A digital bathymetric model obtained from Zitellini et al. (2009) and GEBCO (2003) served 

as the base map used in the study. The World Ocean Atlas 2012 provided source data for 

the selected vertical hydrographic profiles. 

3. CONTOURITE FEATURES ALONG THE IBERIAN MARGIN  

The water masses around Iberia control along-slope sedimentation and thus shape 

intermediate- and deep-water bathymetric features (Hernández-Molina et al., 2011 and 

references therein) (Fig. 1 and Table I). In spite of many bottom current measurements, the 

Iberian margin lacks of long-term hydrodynamic records and has many areas with few or no 

measurements. Its mean recorded velocities are commonly low (5 to 15 cm/s), but certain 

water masses can travel across the seafloor at relatively high velocities, exceeding 80 cm/s 

and occasionally reaching almost 300 cm/s, for example within the Strait of Gibraltar 

(Mélières et al., 1970; Madelain, 1970; Ambar and Howe, 1979; Iorga and Lozier, 1999; 

Candela, 2001). These water masses interact along the upper and middle continental slopes 

and with less intensity, along lower slope areas and the abyssal plain (Fig. 1). 

Contourite features with large-scale dimensions and a range of sedimentary thicknesses 

occur at the following locations: the northeast Iberian margin, Alboran Sea, Gulf of Cadiz 
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CDS (well-studied), western Iberian margin, Galician margin, Ortegal Spur, and Le Danois 

Bank or “Cachucho”. These features are complex and poorly understood. The next section 

summarizes the main water masses shaping the Iberian margin and describes contourite 

features formed by their interaction with the seafloor. 

3.1. Mediterranean Sea 

3.1.A. Oceanographic setting  

According to traditional definitions, the Mediterranean Sea hosts three main water 

masses (Fig. 1 and Table I): Atlantic Water, Levantine Intermediate Water and Western 

Mediterranean Deep Water. 

Atlantic Water (AW) or Modified Atlantic Water (MAW) forms due to mixing of North Atlantic 

Surface Water, which enters through the Strait of Gibraltar at a velocity of approximately 1 

m/s (Salat and Cruzado, 1981; Gascard and Richez, 1985). The MAW flows eastwards at a 

depth of 100-200 m and forms two anticyclonic gyres (Fig. 1), a quasi-permanent gyre in the 

western Alboran basin (Western Alboran Gyre; WAG) and a semi-permanent gyre in the 

eastern Alboran basin (Eastern Alboran Gyre; EAG) (e.g., Perkins et al., 1990; Millot, 1999; 

Robinson et al., 2001). The energy of the WAG may exert an effect down to water depths of 

approximately 500-700 m (Cheney and Doblar, 1982; Heburn and La Violette, 1990; Perkins 

et al., 1990; Viúdez et al., 1998). 

Levantine Intermediate Water (LIW) originates in the Strait of Sicily and flows westwards into 

the Western Mediterranean at depths of 200-600 m. After emerging from the Strait of Sicily, 

the LIW flows along the Iberian margin and into the central part of the Alboran Sea at 

velocities of up to 14 cm/s (Fig. 1). 

Western Mediterranean Deep Water (WMDW) forms locally in the Alboran basin and its 

surroundings during winter months and generally flows westwards at water depths down to 

600 m, although it can also reach depths of 2000 m (Fig. 1). Certain WMDW pulses can 

travel at velocities as high as 22 cm/s (Gascard and Richez, 1985; Parrilla and Kinder, 1987; 

Millot, 1999; Fabres et al., 2002).  

In recent studies of the Strait of Gibraltar and nearby Alboran Sea, Millot (2009, 2014) 

proposed a more complex oceanographic structure and defined two additional water masses 

for this area: Western Intermediate Water (WIW; 100 to 300 m), situated between the AW 

and LIW, and Tyrrhenian Dense Water (TDW; variable water depth), situated between the 

LIW and WMDW (Fig. 1). Ercilla et al. (2016) categorized these five Alboran Sea water 

masses as light or intermediate water masses (Light Mediterranean Waters - LMW-; 100 to 

600 m) and dense or deep-water masses (Dense Mediterranean Waters - DMW-; >275 m). 
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3.1.B. Contourite features (CFs) 

The best-studied contourites in the Mediterranean Sea occur in the Alboran Sea. Evidence 

also indicates contourite deposition elsewhere along eastern margins of Iberia. Along the 

continental slope between Cap de Creus and Blanes Canyons (Fig. 2A, Table II), two 

mounded, upward-prograding stratified drifts reach thicknesses of approximately 1 s and 

widths of 5 km at water depths of 1000-2300 m (Barcelona CFs). One of these occurs just 

south of La Fonera Canyon at water depths of 1200-2300 m (Canals, 1985), and another is 

located between La Fonera and Blanes Canyons at depths of 1000-1300 m (Fig. 2B). This 

second drift has not been analysed for specific contourite features but is similar to the one 

studied by Canals (1985).  

Upslope, prograding, mounded, elongated and separated drifts (hereafter referred to 

simply as separated drifts) have been described from several localities. An isolated 

separated drift south Blanes Canyon reaches about 0.8 s thickness and 6 km width (Fig. 

3A). A broad separated drift north of Menorca occurs on the lower slope at depths down to 

2000 m. This drift is approximately 150 km long, 0.5 s thick, 25 km wide and reaches 100 m 

elevation above the seafloor (Menorca CFs) (Fig. 3B). This drift also exhibits sediment 

waves and a contourite moat (200 m deep, 5 km wide) along its seaward margin (Mauffret, 

1979; Velasco et al., 1996; Ercilla et al., 2000). Sediment waves also occur along the Gulf of 

Valencia continental margin (Valencia CFs). One of these situated along the outer 

continental shelf exhibits wavelengths of 400-800 m and heights of 2-4 m. A second 

example at 250 to 850 m water depth exhibits wavelengths of 500 to 1000 m and wave 

amplitudes of 2 to 50 m (Ribó et al., 2016). This latter field of sediment waves is developed 

along a possible prograding plastered drift approximately 0.5 s thick (Fig. 3C, Table II). 

Several separated drifts have also been identified developed locally around seamounts in 

this sector (Fig. 3D). 

Several plastered drifts with upslope-prograding stacking pattern have also been 

reported. These include a 10-km-wide plastered drifts with thicknesses ranging from 1 to 0.5 

s and developed at water depths of 400-800 m and 1100-1400 m (Barcelona CFs) (Fig. 4A) 

and mounded, plastered, shallow-water contourites (Mallorca CFs) in a slope canyon near 

western Cabrera Island (southwest of Mallorca) at water depths of 250-600 m (Fig. 4B, 

Table II). A field of sediment waves is also present at the surface (Vandorpe et al., 2011; 

Lüdmann et al., 2012). Several plastered drifts of approximate 0.5 s thickness also occur 

around seamounts in the Valencia Trough at depths between 500 m and > 1100 m (Valencia 

CFs), in the southern Ibiza Channel and along the SE Iberian margins between depths of 

600 and 900 m (Murcia CFs) (Fig. 3D, Table II). 
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Contourites in the Alboran Sea display a great variety of both depositional and erosional 

features that range from a few to several tens of kilometres in length (Alboran CDS) (Fig. 

5A). Their morphologic and sedimentary characteristics have recently been described by 

Ercilla et al. (2016) and Juan et al. (2016). Depositional features predominate and are 

categorized as different types of drifts (Ercilla et al., 2002, 2012, 2016; Palomino et al., 2011; 

Juan et al., 2012, 2013, 2014, 2016). The largest drifts are plastered and sheeted types (Fig. 

5B-C and 6A, Table II). Plastered drifts occur along the continental slopes of both the Iberian 

and African margins between water depths of 235 and 575-1000 m, respectively. These 

drifts appear in seismic images as upslope onlapping stratified facies that pinch out in both 

upslope and downslope directions (Fig. 5B and C). The sheeted drifts occur along the base 

of the central Iberian slope and in the western and southern Alboran basins at water depths 

below approximately 500 m. These appear as parallel-stratified seismic layers with a sub-

tabular geometry beneath a relatively flat seafloor (Fig. 6A). Several small plastered and 

sheeted drifts occur locally along the flanks and tops of seamounts (Fig. 5C). Smaller drifts 

include separated (Fig. 5B and 6B), channel-related (Fig. 6C) and mounded, confined drifts 

(Fig. 6D) (Palomino et al., 2010, 2011; Ercilla et al., 2012, 2016; Juan et al., 2012, 2013, 

2014). Separated drifts occur along the westernmost upper and lower African slopes, and at 

the foot of structural seamounts and diapirs (Fig. 6B). In seismic images, they show 

onlapping stratified facies with internal discontinuities that display a mounded geometry. 

Channel-related drifts make up part of the seafloor within the Alboran Trough, appearing in 

the corridor between the Xauen bank and the African slope. Channel-related drifts consist of 

isolated irregular, stratified layers scattered within the channel floor (Fig. 6C). Confined drifts, 

situated between structural highs, display a mounded morphology, which consists of 

internally stratified layers (Fig. 6D). 

The erosional contourite features are located primarily along the Alboran margin and 

consist of moats, scarps and furrows (Ercilla et al., 2016, and Juan et al., 2016). The moats 

are mostly associated with separated and confined drifts. A few incipient moats also occur 

along the walls of the structural highs, where the slope exhibits changes in bathymetric 

patterns (Fig. 5B and 6B). Scarps are narrow, steep erosional surfaces roughly parallel to 

the margin, which occur in association with landward flanks of terraces and other basal 

features along the slope. Scarps mark the transition between the basin’s 

physiographic/oceanographic provinces. Furrows occur as linear features incised into steep, 

distal erosional escarpments of the African margin, near the Strait of Gibraltar. Extensive 

terraces represent mixed depositional and erosional features. These form the tops of 

plastered drifts along the continental slope. Terraces along the African margin are more 

pronounced (Fig. 5B). Terraces transition seaward into an onlapping, concordant surface. 
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3.2. Gulf of Cadiz  

3.2.A. Oceanographic setting  

The modern hydrodynamic setting of the Gulf of Cadiz is dominated by the exchange of 

water between the Atlantic Ocean and Mediterranean Sea through the Strait of Gibraltar. 

This gateway allows egress of warm, saline Mediterranean Outflow Water (MOW), which 

flows into the Atlantic Ocean, and overlying inflow of the Atlantic Water into the 

Mediterranean Sea (Lacombe and Lizeray, 1959; Ochoa and Bray, 1991; Baringer and 

Price, 1999; Nelson et al., 1999; Iorga and Lozier, 1999; Potter and Lozier, 2004; Lozier and 

Sindlinger, 2009) (Fig. 1 and Table I). The MOW is an intermediate water mass composed of 

waters originating in the Mediterranean Basin (Ambar and Howe, 1979; Bryden and 

Stommel, 1984; Bryden et al., 1994; Millot et al., 2006). The water mass accelerates through 

the narrow Strait of Gibraltar, reaching local velocities as high as 300 cm/s (Ambar and 

Howe, 1979; Mulder et al., 2003) and moves northwestwards along the middle continental 

slope of the Gulf of Cadiz. This MOW flow occurs under the AIW and above the North 

Atlantic Deep Water (NADW). The AIW consists of the North Atlantic Superficial Water 

(NASW) from the surface down to a depth of approximately 100 m and the Eastern North 

Atlantic Central Water (ENACW), which flows between depths of 100 and 600 m. In the Gulf 

of Cadiz, the Modified Antarctic Intermediate Water (AAIW) (Louarn and Morin, 2011) 

circulates above the MOW (Hernández-Molina et al., 2014b). The underlying NADW flows 

southwards from the Greenland-Norwegian Sea region at depths greater than 1500 m 

(Baringer and Price, 1999; Ambar et al., 1999; Serra et al., 2005).  

In the Gulf of Cadiz, the MOW flow is controlled by the complex morphology of the 

continental slope. Flow is locally enhanced where salt tectonics have created diapiric ridges 

oblique to the MOW flow direction (Fig. 1). These ridges are partially responsible for splitting 

the MOW into numerous distinctive cores (Fig. 1), although vertical layering within the main 

MOW core has also been proposed as an alternative controlling mechanism (Sannino et al., 

2007; Millot, 2009; Copard et al., 2011). The main water cores are the Mediterranean Upper 

Core (MU) and the Mediterranean Lower Core (ML), each of whose branches displays 

unique salinity, temperature and average velocity (Madelain, 1970; Zenk, 1975; Ambar and 

Howe, 1979; Gründlingh, 1981; Börenas et al., 2002; Serra et al., 2005) (Fig. 1). The MU 

flows along-slope along the southwestern Iberian margin at depths of 500-800 m, and part of 

its flow is captured by Portimão Canyon along the Algarve margin (Marchès et al., 2007). 

The ML generally flows northwestwards at an average velocity of 20-30 cm/s (Llave at al., 

2007) with the major part of flow concentrated west of 7° W (Madelain, 1970). At this 

longitude, a branch detaches from the south side of the ML and flows southwest. At 

approximately 7° 20’ W, the ML divides into three distinct branches that generally flow 
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northwest: the Southern Branch (SB), the Principal Branch (PB) and the Intermediate Branch 

(IB) (Fig. 1). Portimão Canyon and Cape St. Vincent also create a series of eddies, referred 

to as meddies due to their MOW origins (Ambar et al., 2002, 2008; Serra et al., 2005). 

3.2.B. Contourite features  

Erosional features are common in the Strait of Gibraltar, where high bottom current 

velocities prevent deposition (Kelling and Stanley, 1972; Stanley et al., 1975; Serrano et al., 

2005). Esteras et al., (2000) identified several large channels likely associated with MOW 

circulation as the dominant contourite features. A few isolated plastered drifts also occur 

along the northern continental slope (Fig. 7A and B). 

Beyond where the MOW exits the Strait of Gibraltar, its interaction with the middle slope 

of the southwestern Iberian margin has produced one of the most extensive and complex 

contourite depositional systems ever described. This feature is referred to as the Gulf of 

Cadiz CDS (Fig. 7, Table II) (e.g., Madelain, 1970; Kenyon and Belderson, 1973; Gonthier et 

al., 1984; Nelson et al., 1999; Llave et al., 2015; Stow et al., 2002a, 2002b, 2002c; Habgood 

et al., 2003; Hernández-Molina et al., 2006; Mulder et al., 2006; Hanquiez et al., 2007; 

Marchès et al., 2007; Roque et al., 2012; Brackenridge et al., 2013 and references therein). 

The main depositional features are sediment wave fields, sediment lobes, mixed drifts, 

plastered drifts, separated drifts and sheeted drifts. The major erosional features are 

contourite channels, furrows, marginal valleys and moats (García et al., 2009). All of these 

features occur at specific locations along the margin, and their distributions correspond to 

five morphosedimentary sectors within the CDS. Sector 1 includes proximal scours and 

ribbons. Sector 2 includes overflow sediment lobes. Sector 3 includes channels and ridges. 

Sector 4 includes contourite deposition and Sector 5 includes submarine canyons 

(Hernández-Molina et al., 2003, 2006; Llave et al., 2007). The development of each of these 

five sectors through time is related to an overall systematic deceleration of the MOW along 

the margin, with localised acceleration due to its interaction with irregularities along the 

seafloor. The middle slope of the Gulf of Cadiz is a bathymetrically complex area composed 

of mixed contourite features. This slope hosts four relatively flat contourite terraces with 

gradients of less than 0.5º at average depths of 500, 675, 750 and 850 m (García et al., 

2009; Hernández-Molina et al., 2012, 2014b). These terraces are bounded by relatively 

steep risers with gradients of 1.5-3º. Terraces form by both depositional and erosional 

processes. 

Four sets of separated drifts have been described at water depths of 500 to 700 m along 

the Algarve margin: the Faro-Albufeira, Portimão, Lagos and Sagres drifts (Table II). The 

Faro-Albufeira drifts are the most extensive and best developed. The Álvarez Cabral moat 
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restricts these features to the upper slope. The drifts display asymmetric shapes and 

sigmoidal-oblique, prograding stacking patterns (Fig. 7C). These drifts rise 150-200 m above 

the adjacent moat axis and surrounding deposits, and grade southwards into the Faro and 

the Bartolomeu Dias sheeted drifts, where the seafloor is smooth and almost flat (Fig. 7D). 

The Portimão and Lagos drifts extend approximately 50 km from Portimão Canyon but are 

separated by Lagos Canyon. These display a smooth mounded morphology and categorize 

as sheeted drifts (Hernández-Molina et al., 2003; Marchès et al., 2007, 2010). However, 

Roque et al. (2012) reported that the Lagos drift grades from a sheeted drift near Lagos 

Canyon to a plastered drift near the San Vicente high and finally to a separated drift. The 

Sagres drift occurs at the transition between the southern and western Portuguese margins. 

Sheeted drifts, with an aggrading stacking pattern and gentle morphology, occur between 

water depths of 600 and 1600 m in the contourite depositional and submarine canyons 

sectors (Vanney and Mougenot, 1981). These were deposited across hundreds of 

kilometres, over which they are crossed by diapiric ridges, deformed and eroded by large 

contouritic channels of Sector 3 (channels and ridges sector) (Fig. 8A-C) (García, 2002; 

Mulder et al., 2002, 2003; Habgood et al., 2003; Hernández-Molina et al., 2003, 2006; Llave, 

2003; Llave et al., 2007).  

Extensive bedforms include ripple marks, sand ribbons and sediment waves (Fig. 8D). 

Longitudinal mounded drifts (Fig. 9A) are well developed in a NW-SE direction in Sector 1 

(proximal scours and ribbons sector) and in Sector 2 (overflow sediment lobes sector) 

(Hernández-Molina et al., 2006; Llave et al., 2007).  

Composite erosional features occur along the Guadalquivir Bank. Along with numerous 

diapiric highs (isolated and ridge-form), these include four types of submarine valleys 

(moats, channels, marginal valleys and furrows) in Sector 3 (García, 2002; Hernández-

Molina et al., 2003, 2006; García et al., 2009) (Fig. 9). The main erosional features along the 

middle slope of the central Gulf of Cadiz (Sector 3) include five major contourite channels 

(Fig. 8A-C). These occur along the southern flanks of the diapiric ridges and the 

Guadalquivir Bank. They include (from north to south) the Diego Cao, Huelva, Gusano, 

Guadalquivir and Cadiz Contourite channels (García et al., 2009). Different channels 

assume different dimensions but all display sinuous trends in the down-slope to along-slope 

directions. The Cadiz and Guadalquivir channels (Fig. 8A) represent the largest features (1 

and 12 km wide, respectively, more than 100 km long, up to 130 m deep). Marginal valleys 

are unique erosional features located along northwest sides of the diapiric ridges and 

isolated diapirs within the channels and ridges sector (Fig. 9E). These features exhibit 

irregular orientations but a locally sinuous morphology with a predominantly NE-SW trend 
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(García et al., 2009). Their incision depths can exceed 250 m at some localities. The most 

prominent example of these features in the Gulf of Cadiz is the Alvarez Cabral contourite 

moat (Fig. 7C), which is associated with the Faro-Albufeira mounded drifts (Sector 4) 

(Gonthier et al., 1984; Llave et al., 2001; García, 2002; Stow et al., 2002c; Hernández-

Molina et al., 2003, 2006; Marchès et al., 2007). This moat (80 km long, 3.5-11 km wide) 

incises the base of the Algarve margin’s upper slope and trends WSW, parallel to the slope. 

Sector 1, located at water depths of between 500 and 1000 m, is where the majority of 

the erosional features occur. This locality hosts abrasive surfaces (Fig. 9B) and several NW-

SE-trending erosional scours (Fig. 9C) formed across an extensive area (90 km long and 30 

km wide) (Kenyon and Belderson, 1973; Habgood, 2002; Hernández-Molina et al., 2003, 

2006). This sector also hosts two main channels (Fig. 9A) (Hernández-Molina et al., 2012, 

2014b). The southern channel forms due to WSW-trending erosion from the Camarinal Sill 

and at 3-4 km width, represents the most significant erosional feature near the Strait of 

Gibraltar. The northern channel is obscured by infill near the Strait but becomes more 

distinct towards the northwest, where it joins the Cadiz and Guadalquivir contourite channels 

(Hernández-Molina et al., 2014b). Both southern and northern channels host an associated 

mounded drift along the seaward side of the channel and numerous small oblique furrows 

(Fig. 9A) (Hernández-Molina et al., 2014b). Several reports have interpreted furrows in the 

overflow sedimentary lobe sector (Sector 2) as erosional features related MOW dynamics 

and gravitational processes (Habgood et al., 2003; Mulder et al., 2003; Hanquiez et al., 

2007; García et al., 2009). The best-developed furrow is the Gil Eanes furrow (Fig. 9D), 

situated at water depths between 900 and 1200 m. Kenyon and Belderson (1973) first 

described this feature while Habgood et al. (2003), Hanquiez et al. (2007) and García et al. 

(2009) published subsequent descriptions. The furrow is approximately 50 km long and has 

a width of 0.8-1.7 km, a sinuous trend, and erosional incision of up 90 m.  

3.3. West Iberia  

3.3.A. Oceanographic setting  

Four main water masses flow along the western Iberian margin at different depths (Fig. 1 

and Table I). As the main shallow currents, (1) the Portugal Current (PC) flows southward 

while the Portugal Coastal Current (PCC) flows towards the north (Fiúza et al., 1998; Pérez 

et al., 2001; Martins et al., 2002; Peliz et al., 2005; Varela et al., 2005). The ENACW (2) of 

subtropical origin extends down to water depths of 600 m (McCartney and Talley, 1982; 

Fiúza, 1984; Pollard and Pu, 1985; Ambar and Fiúza, 1994; Fiúza et al., 1998; Perez et al., 

2001) and moves north from about 200-300 m. A component of ENACW of subpolar origin 

moves south from about 300-400 m (Ambar and Fiuza, 1994; Fiúza et al., 1998). After 
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exiting the Gulf of Cadiz, the MOW (3) splits into three principal branches: a main branch 

flowing northwards, a second branch flowing westwards and a third branch flowing 

southwards towards the Canary Islands before veering westwards (Ambar and Howe, 1979; 

Iorga and Lozier, 1999; Slater, 2003). The northern branch flows along the middle slope of 

the Portuguese margin towards the Galician margin and the Bay of Biscay. This branch 

includes two distinct cores centred at water depths of 800 m and nearly 1200 m. Along the 

Oporto continental slope, the MOW mixes with the ENACW flowing at depths between 250 

and 540 m. At approximately 42°N, the MOW bifurcates intermittently into two branches 

(Mazé et al., 1997). Of these, one branch flows west of the Galicia Bank plateau and the 

other flows north along the continental slope of the Iberian Peninsula (Iorga and Lozier, 

1999; González-Pola, 2006). The deep-water masses (below 2000-m water depth) of the 

western Iberian margin consist of the southwards-flowing NADW and northwards-flowing 

Lower Deep Water (LDW) (4) (van Aken, 2000). This LDW forms primarily from the mixing of 

the deep Antarctic Bottom Water (AABW) and the Labrador Deep Water (LADW) (Le Floch, 

1969; Botas et al., 1989; Haynes and Barton, 1990; McCartney, 1992; Pingree and Le Cann, 

1990; Van Aken, 2000; McCave et al., 2001; Valencia et al., 2004).  

3.3.B. Contourite features  

The Sines drift (a separated drift) represents the main contourite depositional feature of 

western Iberia. Mougenot (1989) first identified this feature as a contourite based on its 

general mounded morphology and wavy seismic patterns (Fig. 10A and B, Table II). The 

Sines drift is bounded by two of the Portuguese margin’s major canyons: Setúbal Canyon to 

the north and San Vicente Canyon to the south (Fig. 10A). Formed by MOW circulation, the 

drift is an elongated, plastered sedimentary body formed below 750 m water depth along the 

gentle (~0.5°) N-S trending continental slope of the Alentejo margin (AM) (Fig. 10B). Roque 

et al., (2015) recently discovered an extensive area (approximately 52 km long and 34 km 

wide) of the Sines drift affected by slope failure and mass wasting.  

Recent reports have documented additional local contourite features occurring around 

structural highs and topographic irregularities associated with the circulation of either the 

MOW (300-2000-m water depth) or LDW (>2000-m water depth). Roque et al. (2015) 

recently identified a new separated drift offshore of Aveiro on the continental rise at a water 

depths of approximately 2500 m (Fig. 10C, Table II. Neves et al. (2009) reported evidence of 

a contourite between water depths of 2300 and 3000 m reaching approximately 1.5 s 

thickness and 2.5 km width. This contourite drift is separated from a structural high by a 

moat (Fig. 10C). Large-scale sediment waves also appear in high-resolution seismic 
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reflection data (Fig. 10D), along with localised synsedimentary deformation and primary 

faulting within contourite drift strata (Alves et al., 2000, 2003).  

Clear examples of both depositional (plastered drift, separated drift, sediment waves) and 

erosional (terraces, moats, furrows) features occur along the Galician continental margin and 

rise (Galicia Bank CFs) (Ercilla et al., 2006, 2008a, 2009, 2011; Bender et al., 2012; 

Hanebuth et al., 2015; Llave et al., 2018; Collart et al., 2018). The plastered drifts occur as 

low-relief mounds of a few kilometres in length, and tens to a few hundred metres in 

thickness. Their internal structure as revealed by high to very high amplitude acoustic 

reflections highlights well-stratified, aggradational-progadational seismic features of good 

lateral continuity (Fig. 10E, Table II). Plastered drifts along the continental slope occur: i) on 

the northwestern flank (2100 m water depth), ii) along the northern scarp (1600 m water 

depth), iii) at the base of certain structural highs (between 1500 and 4980 m deep) within the 

Galicia Bank plateau (Ercilla et al., 2011) and iv) along the distal part of the Ortegal marginal 

platform (OMP) between water depths of 700 and 1100 m (Fig. 10E) (Jané et al., 2012; 

Llave et al., 2013, 2018). These drifts display smooth and terraced morphology (Ortegal 

CDS), a morphology which contrasts the numerous adjacent submarine canyons incised into 

the seafloor. 

Major separated drifts occur at four locations. The first location lies along the lower 

continental slope of the western Galician continental margin, specifically at the foot of and 

near highs reaching approximately 2000 m water depth (Ercilla et al., 2006; Bender et al., 

2012). Sediment waves contour the surface of this drift. The second drift occurs in the 

Transitional Zone (TZ: 1600 to 2500 m) (Ercilla et al., 2011). A third occurs along the Galicia 

Bank plateau (GB: 700-800-m water depth), where several moats and associated drifts (15 

to 250 m tall from the moat axis to the top of the drift crest and 1-5 km wide) are developed 

at its foot and around the numerous highs (Fig. 11A). Elongated separated drifts have 

formed on one flank adjacent to three of the aforementioned highs while local plastered drifts 

form on the other flank (Ercilla et al., 2008a, 2011a). As such, these separated drifts form 

part of the Galicia Bank CFs. The fourth separated drift locality occurs at the heads of Ferrol 

and A Coruña canyons at water depths of 500 and 700 m, and as part of the Pardo Bazán 

marginal platform at a depth of 1600 m in the Ortegal CFs (Fig. 11B). These drifts exhibit 

mounded shapes and are 5-22 km long, 2-10 km wide and average 50 m in thickness (Jané 

et al., 2012; Llave et al., 2013, 2018; Collart et al., 2018). A separated drift occurs at the foot 

of the highs across the lower slope of the western Galician continental margin (Bender et al., 

2012). Several of these drifts host sediment waves, which are also developed at the heads 

of Ferrol and A Coruña canyons (Jané et al., 2012; Llave et al., 2018; Collart et al., 2018). 
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Abraded surfaces are tens of metres in relief and several hundreds of metres long. 

Seismic images show reflectors for these features terminating against eroded seafloor 

surfaces that form large-scale contourite terraces. The main abraded surfaces occur along 

the Ortegal, Pardo Bazán and Castro marginal platforms (OMP, PBMP and CMP 

respectively) where they form three contourite terraces at water depths of 200-600 m, 900-

1800 m, and 2000-3500 m, respectively (Ortegal CDS) (Fig. 11C) (Jane et al., 2012; Llave et 

al., 2018). These represent structural highs (Fig. 11D) (Ercilla et al., 2008a, 2011). The 

Ortegal terrace is the most extensive of these highs, spanning approximately 150 km in 

length, up to 70 km in width to the north and approximately 20 km width in the south (Llave 

et al., 2013, 2018). Moats are erosional features that typically occur at the foot of structural 

scarps and highs (Fig. 11A). These can represent tens of metres (depth) and hundreds of 

metres (width) of erosional incision. Their asymmetric, V-shaped cross-sections exhibit 

steeper eastern margins (Ercilla et al., 2011). Several moats occur on the Ortegal terrace 

and at the heads of Ferrol and A Coruña Canyons (Fig. 11B) (Jané et al., 2012; Llave et al., 

2013, 2018; Collart et al., 2018).  

Older contourite deposits may also occur along the western Iberian margin, particularly 

within the Iberian abyssal plain (southern Galicia Bank CFs). Sediment waves occur within 

the upper rise according to Miocene through Quaternary sediments drilled at ODP Site 1069 

(Whitmarsh et al., 1998) and according to middle Eocene deposits offshore of Oporto, drilled 

by ODP Leg 149 and in the DSDP Leg 48B area (Wilson et al., 1996, 2001). Soares et al. 

(2014) have described several Cretaceous drifts consisting of elongated mounded drifts 

along the outer proximal margin. These workers inferred the presence of sheeted drifts along 

the distal margin offshore of northwest Portugal deposited after the Aptian-Albian 

lithospheric breakup. Near the continental margin of the Galicia Bank, deposits drilled by 

ODP-Leg 103 (Boillot et al., 1987; Comas and Maldonado, 1988), DSDP-Leg 47B Site 398 

along the southern margin of the Vigo Seamount (Maldonado, 1979), and ODP-Leg 149 

Sites 897 through 901 (Alonso et al., 1996; Milkert et al., 1996), were also interpreted as 

contourites deposited in the late Miocene.  

3.4. Cantabrian margin  

3.4.A. Oceanographic setting 

Along the Cantabrian continental margin, most of the water masses originate in the North 

Atlantic or result from interactions between waters originating in the Atlantic and 

Mediterranean. The uppermost water mass is the ENACW, which extends to depths of 

approximately 400 to 600 m and flows westwards along the continental margin (Fig. 1 and 

Table I) (González-Pola, 2006). It generally flows at a velocity of 1 cm/s, although it can 
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occasionally reach velocities of up to 10 cm/s (Pingree and Le Cann, 1990). Between water 

depths of 400-500 and 1500 m, the MOW follows the continental slope as a contour current 

(Fig. 1). Seafloor irregularities and the Coriolis effect control the local MOW circulation. 

Although detailed information is lacking on MOW circulation in the Bay of Biscay, it appears 

to split into two branches around the Galicia Bank. One of these continues northwards while 

the other flows eastwards along the Cantabrian margin slope (Iorga and Lozier, 1999; 

González-Pola, 2006). From Ortegal Spur to Santander, the MOW propagates along the 

slope at reduced velocities. Its minimum velocity is around 2-3 cm/s at 8o W and 6o W 

(Pingree and Le Cann, 1990; Diaz del Rio et al., 1998). The NADW occurs between water 

depths of 1500 and 3000 m (Fig. 1) and includes a core of LSW at a depth of approximately 

1800 m (Vangriesheim and Khripounoff, 1990; McCartney, 1992). The LDW forms beneath 

the NADW primarily due to mixing of the deep AABW and the LSW (Botas et al., 1989; 

Haynes and Barton, 1990; McCartney, 1992) (Fig. 1). A cyclonic recirculation cell develops 

over the Biscay abyssal plain. This feature exhibits a characteristic polewards velocity near 

the continental margin of 1.2 (±1.0) cm/s (Dickson et al., 1985; Paillet and Mercier, 1997). 

3.4.B. Contourite features 

The Le Danois CDS has been identified along the Cantabrian margin (Fig. 12, Table II) in 

an area surrounded predominantly by down-slope processes (Ercilla et al., 2008b; Iglesias, 

2009; Van Rooij et al., 2010). This CDS includes both depositional and erosional features 

(separated drifts, plastered drifts, moats and scours) generated by the MOW circulation and 

controlled by seafloor irregularities including two topographic highs, the large Le Danois 

Bank and the smaller Vizco High (Fig. 12A) (Van Rooij et al., 2010).  

The Le Danois CDS includes two separated drifts: the Gijón and Le Danois drifts. The 

Gijon drift occurs along the upper slope at water depths of approximately 400-850 m and has 

a maximum thickness of 0.25 s (Fig. 12B, Table II). The Le Danois drift occurs at the foot of 

the southern side of the Le Danois Bank at water depths between 800 and 1500-1600 m. 

This feature is approximately 0.3 s thick and varies in width, reaching as much as 10 km 

width in its central part but only spanning 3.5 to 4 km to the west and 4.7 km to the east (Fig. 

12B). Three plastered drifts of about 1 s thickness occur along the upper, southern slope of 

the Le Danois Bank (Van Rooij et al., 2010). These appear as mounded relief along the 

western edge between water depths of 600 and 750 m and on the eastern edge at depths of 

750-1100 m and 1100-1550 m (Fig. 12C, Table II).  

Moats and scours are the main erosional features of the Le Danois CDS. The two moats 

identified are referred to as the Gijón and Le Danois moats. As the upslope continuation of 

Gijón Canyon, the Gijón moat trends NW-SE and spans approximately 45 km length and 1-4 
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km width. This feature begins at 1100 m water depth, incises an additional 400 m in the west 

and disappears to the east (Fig. 12B). The Le Danois moat trends in a WNW-ESE direction 

and extends from depths of 800 to 1500 m towards the east. It spans 48 km in length, varies 

from 0.8 to 2.8 km in width and incises 75-105 m of surface (Fig. 12B). Scour alignments 

trending NE and ENE occur on one of the plastered drifts. These span 5.5-28 km in length, 

1250 m in width and run ~5 m deep (Van Rooij et al., 2010). 

3.5. Sedimentology of contourite features 

Contourite deposits along the Iberian margin range in grain size from clay to sand 

but primarily categorize as mud-rich. Deposits include thin, interbedded layers of 

fine-grained sand and silt of terrigenous and biogenic origin. The fine-grained beds 

are predominantly poorly sorted, intensely bioturbated and typically display broad 

rhythmic bedding (Stow et al., 2002a, b).  

Gonthier et al. (1984) and Faugères et al. (1984) proposed the original contourite facies 

model sequence based on research across the Faro drift along the middle slope of the Gulf 

of Cadiz. Their model consists of two superposed units, including a basal coarsening-upward 

unit grading from homogeneous mud (clay, fine silt) to mottled coarser silt and finally to 

sandy silt/silty sand. This is followed by a fining-upward unit with an inverse facies 

succession. This general ‘bigradational’ model theoretically represents an increase bottom 

current flow followed by a decline in current strength (Stow and Holbrook, 1984; Stow et al., 

2002c; Huneke and Stow, 2008). Stow and Faugères (2008) extended this model to include 

five sedimentary divisions applied to the standard bigradational contourite sequence (C1-C5) 

(Fig. 13). The model can be applied to contourites of siliciclastic, volcanic, bioclastic or 

mixed composition. Bioturbation limits preservation of sedimentary structures but indistinct to 

discontinuous parallel laminations, coarser sand layers or rare cross laminations may occur. 

The facies model interprets the bigradational sequence as two shifts in the strength of the 

bottom-current flow: from weak to strong, and then back to weak. The continued presence of 

coarsening/fining upwards trends in grain size along with strong bioturbation and mottling 

indicates continuous, gradual (relative to gravity flow deposits) deposition of sediments 

through bottom current processes. As the velocity increases, coarser sediment 

predominates as removal of the fine fraction produces coarser, better sorted sedimentary 

packages (Nelson et al., 1993). Stow and Faugères (2008) also described sandy contourites 

that contain an inversely graded lower sub-sequence (mud + mottled silt and mud units), a 

middle sandy silt and an upper, normally graded sub-sequence (mottled silt and mud + mud 

units). Most of these deposits were interpreted as bottom current-modified turbidites 

(Faugères and Stow, 1993, 2008; Stow et al., 2002b, c; Stow and Faugères, 2008). Mulder 

et al. (2013) concluded that contourite sequences record changes in bottom current velocity 
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and flow competency but may also depend on sediment supply. These workers 

hypothesized that increased erosion of mud along the flanks of confined contourite channels 

and moats or increases in sediment supply by rivers and down-slope mass transport along 

the continental shelf and upper slope provided the coarse, terrigenous sediment observed. 

Coarse terrigenous sediment is significant in the Gulf of Cadiz. Research from 

IODP Expedition 339 and other cores from other cruises have detected voluminous, 

mature and well to moderately sorted contourite sands that form laterally extensive 

sheeted drifts, channel-floor cover or patch drifts in contourite channels (Buitrago et 

al., 2001; Viana et al., 2007; Hanquiez, 2006; Hanquiez et al., 2007; Viana, 2008; 

Stow et al., 2011a, 2011b, 2013a; Brackenridge et al., 2013; Hernández-Molina et 

al., 2014a, 2014b, Brackenridge et al., 2018).  

The Ortegal Spur of the Ortegal contourite terrace (Llave et al., 2013) also hosts 

compositionally mature, coarse and silty sands. Sands specifically consist of 

subrounded and well-sorted quartz and glauconite grains with abundant bioclastic 

fragments. The bioclasts include fragments of foraminifera, gastropods, bivalves and 

pteropods (Alejo et al., 2012). 

3.6. Translating seismic facies to sedimentary facies  

Contourite features are described and systematised here according to their seismic 

characteristics. Interpretations therefore depend heavily on external drift morphology, 

internal stacking pattern of depositional units and other aspects apparent in seismic images. 

Local and regional water circulation patterns and paleoceanographic models support these 

interpretations.  

Drift morphologies (i.e., separated, sheeted, plastered and confined drifts) are recognized 

at the scale of the drifts themselves (Fig. 14). Slope-plastered contourite drifts predominate 

upper slope settings. These often occur in the presence of elongated erosional surfaces 

along the uppermost slope and in downslope areas, accompanied by a mounded along-

slope elongated drift, with frequent sediment waves and internal erosional surfaces (Fig. 14). 

In middle and lower slope areas, complex seafloor physiography caused by tectonics 

creates obstacles for current flow. These features induce local acceleration and create a 

considerable variety of drifts and erosional features such as moats, channels and furrows 

(Fig. 14). Middle and lower slope areas also host contourite terraces, which form from both 

depositional and erosional processes (Fig. 14). 

Depositional units within contourites reported around Iberia are generally lenticular in 

shape, and have a well-layered, convex-up seismic units of good lateral continuity along 
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both strike and dip (Figs. 2-12). Stacking patterns show downlapping (onlapping on steep 

slopes) and sigmoidal progradational reflector patterns where downstream and upslope 

migration occurred (Figs. 2-12).  

Table III lists seismic facies most commonly recognized from Iberian contourite drifts. 

Among these are: (a) transparent layers of variable thickness intercalated with zones of high 

to moderate amplitude seismic reflectors, particularly in sheeted drifts (Figs. 6A, 7D, 8A-C), 

(b) smooth, parallel, moderate to high amplitude reflectors typically interbedded with 

transparent zones in plastered drifts and common throughout mounded, confined and 

channel-related drifts (Figs. 2B, 3A-D, 4A-B, 5B-C, 6B-D, 7C 9A, 10 B-C, 11A-B and 12B-C). 

Discontinuous seismic facies include short, discontinuous to chaotic reflectors (c) of 

moderate to high amplitude occurring in most drifts, particularly in mounded drifts and moats 

(Figs. 2A, 3A-and 3D, 6B-C, 7C, 9A, 10C, 11A, 12B). Sigmoid progradational reflectors (d) 

occur in mounded drifts where strong downstream and/or oblique migration has occurred. 

They are also common in separated drifts (Figs. 3B, 7C, 12B). Gently wavy reflectors (e) are 

common over parts of several drifts (Figs. 3C, 8D, 10D). Contourite terraces and practically 

all contourite depositional systems host horizontal and low-inclination (f) reflectors truncated 

at the seafloor or by an internal erosional surfaces (e.g. Figs. 4A-B, 5B, 9A-B, 11B-C).  

Relatively uniform deposits (fine or coarse sediments) tend to exhibit transparent or weak 

seismic facies whereas extensive sheets of interbedded coarse- and fine-grained sediments 

exhibit higher amplitude seismic reflectors with good lateral continuity. The aforementioned 

laterally extensive progradational to aggradational seismic units with sub-parallel, variable 

amplitude reflectors indicate muddy compositions. By contrast, moats within contourite 

channels and many contourite terraces exhibit High Amplitude Reflections (HARs). These 

high amplitude seismic reflections span a few kilometers in width and are interpreted as 

coarse-grained sediments (Deptuck et al., 2003; Posamentier and Kolia, 2003). These facies 

occur in erosional features such as moats and along channels axes (Table III), which 

develop in channels around seafloor irregularities. Contourite terraces (e.g., Alboran, Gulf of 

Cadiz, WIM, Ortegal) (Fig. 14 and Table III) and overflow features can also appear as HAR 

seismic facies. The Gulf of Cadiz’ proximal Sector 1 is an example of an overflow feature 

where an exceptionally thick sandy sheeted drift appears as an extensive HAR unit (Fig. 14).  

Contourite features described here occur at depths corresponding to the principal 

interfaces between MAW-LIW-WMDW in the Western Mediterranean Sea, and between the 

ENACW- MOW-NADW in the Atlantic. The HARs however do not appear to correspond with 

enhanced bottom currents, development of terraces on top of plastered drifts or bottom 

current modification of sand layers exposed at the seafloor surface. Their origin and 
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interpretation remain unresolved in spite of their economic potential as hydrocarbon 

reservoirs.  

4. DISCUSSION 

4.1. Factors influencing contourite seismic /sedimentary facies changes 

Contourite drifts along the Iberian margin exhibit certain stratigraphic patterns in their 

reflection amplitudes (Figs. 2-12). These patterns include a more transparent facies (T) at 

the base, higher amplitude reflections (R) in the upper part and a subtle but continuous high-

amplitude erosional surface at the top. In the case of the Faro Drift (Gulf of Cadiz) these 

variations have been attributed to long-term changes in bottom-current strength at different 

scales through the latest Pliocene and Quaternary (Llave et al., 2001; Stow et al., 2002a, 

2002b, 2002c; Hernández-Molina et al., 2016b). This mechanism creates repeated 

coarsening-upward sequences bounded by erosional surfaces at unit and sub-unit scales. 

In the case of the Gulf of Cadiz CDS, several studies interpreted these facies as reflecting 

changes in MOW bottom current strength (e.g., Gonthier et al., 1984; Faugères et al., 1985a; 

Stow et al., 1986, 2002c; Sierro et al., 1999; Roque et al., 2012) linked to eustatic/climatic 

drivers and MOW variability (Voelker et al., 2006; Toucanne et al., 2007; García et al., 2009; 

Rogerson et al., 2012; Bahr et al., 2014; Hernández-Molina et al., 2014a). IODP Expedition 

339 sampled some of the Gulf of Cadiz CDS seismic facies and found that transparent 

seismic facies corresponded to fine-grained contourites while HARs corresponded to 

mature, well-sorted contourite sands that reached up to 10 m in thickness (Stow et al., 

2013b; Hernández-Molina et al., 2014b, 2016b).  

Interacting factors determine the degree to which bottom currents can influence the 

morphology of the Iberian margin. At longer time scales, tectonic factors determine the role 

that downslope sediment transport plays in margin development. Tectonics also influence 

contourite sedimentation as the mechanism producing remnant marginal platforms, 

structural highs and the opening of the Gibraltar Strait itself (i.e., northwestern Iberian 

margins, Maestro et al., 2015; Llave et al., 2018). On shorter time scales, climate and sea-

level changes cause deepening or shoaling of water masses. This in turn controls the 

vertical distribution of sand and mud deposits, associated acoustic facies, stratigraphic 

stacking patterns and thicknesses. Climate and sea-level changes also drive the general 

behavior of the water masses and influence depositional styles along the margins. In the 

Gulf of Cadiz and west of Iberia, Mediterranean water masses flowed more swiftly and at 

greater depths during glacial periods (Schönfeld and Zahn, 2000; Rogerson et al., 2005; 

Llave et al., 2006; Voelker et al., 2006; Ercilla et al., 2016). This would favor local 
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development of sandy contourites at intermediate to lower water depths along the 

continental slope. These factors explain the Iberian margin’s overall sedimentary evolution 

from dominantly downslope or mixed along-slope/down-slope sedimentary processes at the 

beginning of the Pliocene to more along-slope sedimentation with the Quaternary opening of 

the Strait of Gibraltar (Roque et al., 2012; Brackendridge et al., 2013; Hernández-Molina et 

al., 2016b; Ercilla et al., 2016). 

The relationship between oceanographic processes and the depositional, erosional and 

mixed features observed among Pliocene and Quaternary contourites allows for 

interpretation of similar features in the ancient record. Ancient oceans consisted of different 

water masses and circulation regimes than those observed today (e.g., Hay, 2009). The 

most discernible patterns belong to extreme glacial maxima and greenhouse conditions 

(Pickering and Hiscott, 2016). Records left by ancient water masses should nevertheless 

resemble sandy and muddy deposits described here.  

4.2. Implications for petroleum exploration 

Thick and widespread progradational to aggradational depositional units characterized 

by sub-parallel reflectors of varying amplitude in seismic images are interpreted to represent 

fine-grained drifts occurring throughout the Iberian margin. Continuous high-amplitude 

reflections (HARs) indicative of sandier contourites occur in moats and channels, in 

contourite terraces and in sectors with sheeted drifts affected by overflows. IODP Expedition 

339 drilled several of these drifts around the Gulf of Cadiz and western Iberian Margin. 

These features exhibit seismic facies similar to those observed in other sectors of the Iberian 

margin. Sampling of these drifts showed that sub-parallel reflectors of variable amplitude 

corresponded to muddy contourites that were sometimes enriched in organic carbon (up to 2 

wt.%). These units could therefore serve as both seals and potential source rocks (Stow et 

al., 2013b; Hernández-Molina et al., 2013). Sampling of seismic features associated with 

sandy contourites also suggests extensive distribution of mature, well-sorted Pliocene to 

Quaternary sands (Expedition 339 Scientists, 2012; Stow et al., 2013b; Hernández-Molina et 

al., 2013). HARs indicate sandy contourites for example, in southeasterly areas of the Gulf of 

Cadiz (affected by the overflow processes), where Brackenridge et al. (2013, 2018) identified 

a tabular, aggradational sedimentary stacking pattern associated with a buried, mixed, 

contourite-turbidite succession. This feature includes a sand- and clay-rich interval between 

925 and 1740 m reaching 815 metres thickness. With 600 m of sand alone, this contourite 

could serve as a potential reservoir unit (Buitrago et al., 2001; García-Mojonero and Olmo, 

2001). Cakebread-Brown et al. (2003) have also interpreted HARs and AVO anomalies from 

this unit as high-porosity (30%), gas-bearing contourite sands.  
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The Santos Drift in the northern Santos Basin includes > 600 m of fine-grained Neogene-

aged sand and silt and thus acts as seal rock for Paleogene oil-bearing sandstones (Duarte 

and Viana 2007). Similar sandy contourites have been described along the Uruguayan 

margin (Hernández-Molina et al., 2016c), within the Pliocene sedimentary record of the Gulf 

of Mexico (Shanmugam et al., 1993), in Eocene deposits of the Campos Basin, Brazil (Mutti 

et al., 1980; Viana and Rebesco, 2007) and in the northeastern Atlantic (Nelson et al., 1993; 

Howe et al., 1994; García-Mojonero and Martínez del Olmo, 2001; Habgood et al., 2003; 

Stow et al., 2002a, 2002b, 2013a, 2013b; Akhmetzhanov et al., 2007; Hernández-Molina et 

al., 2014a, 2014b). In these cases, HARs record contourite deposits mainly composed of 

medium- to fine-grained sand with common bedforms, such as mega-ripples and sand 

waves (Viana et al., 1998, 2002; Stoker et al., 1998; Masson et al., 2004; Shanmugam, 

2006, 2012a, 2013b; Mutti and Carminatti, 2012). 

Similarities between these features and those described from the Gulf of Cadiz 

(Hernández-Molina et al., 2016b) and Iberian continental margin indicate the economic 

potential of sandy contourites from these areas. The occurrence of coarse to fine grained 

sedimentary materials associated with contourites around Iberia could inform interpretation 

of deeper-water sedimentary facies from the ancient record. Emerging information on 

contourites could also facilitate innovations in deep-water petroleum exploration strategies. 

5. CONCLUSIONS AND FUTURE AREAS OF STUDY 

Contourite features of the Iberian continental margin include extensive 

depositional, erosional and mixed (depositional and erosional) features developed 

along the continental slope due to bottom current dynamics. Depositional features 

include mounded, elongated and separated, sheeted, plastered, confined and 

channel-related drifts. Erosional features include moats, channels and furrows while 

terraces are interpreted as mixed erosional/depositional features. Large mud-

dominated contourite drifts with good, along-slope continuity could serve as 

petroleum source rocks. Moats, channels and sheeted drifts proximal to overflows 

and contourite terraces exhibit high amplitude reflections (HARs) in seismic images. 

These are interpreted as extensive sandy contourites that could also serve as 

potential hydrocarbon reservoirs.  

The muddy/sandy contourites described here, along with the overall deep water 

morphology of the Iberian margin generally record intermediate to deep water 

masses and their interfaces from the Pliocene to Quaternary. The connection 

between observed features and mechanisms makes these features good analogs for 
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interpreting recent or ancient deep water environments and useful in identifying 

potential seals and reservoir rocks. Similar contourite features in deeper or older 

sediments could represent future petroleum exploration opportunities. Advances in 

geophysics, offshore 3D seismic imaging and robust correlation with well-log and 

borehole data will help further understanding of contourites and their role in 

petroleum systems.   
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FIGURE CAPTIONS 

Figure 1. Surficial, intermediate and deep-water circulation around the Iberian continental 

margin (modified from Hernández-Molina et al., 2011); digital bathymetric model 

obtained from Zitellini et al. (2009) and GEBCO (2003). Vertical hydrographic profiles: 

(A) East Iberian margin, (B) Gulf of Cadiz and (C) Galician margins (source data from 

the World Ocean Atlas, 2012). Locations of the study areas are also shown. 
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Figure 2. (A) Digital bathymetric model of the northeast Iberian margin and location of the 

main water masses and seismic profiles. (B) Multichannel seismic profile showing a 

mounded drift example as well as erosive features. 

Figure 3. (A) Multichannel and (B) Sparker seismic profile (modified from Velasco et al., 

1996) showing mounded separated drifts and moats. (C) Multichannel seismic profile 

where sediment waves are developed on a plastered drift. (D) Multichannel seismic 

profile showing mounded and plastered drifts as well as erosional features around 

submarine highs. For location of the seismic profiles see Figure 2. 

Figure 4. (A) Multichannel and (B) Sparker seismic profile (modified from Vandorpe et al., 

2011) showing plastered drifts. For location of the seismic profiles see Figure 2. 

Figure 5. Map of the Alboran Sea continental margin and locations of the main contourite 

features based (A) Digital bathymetric data and (B) Airgun and (C) Sparker seismic 

profiles (modified from Juan et al. 2012, 2013; and Ercilla et al. 2016) showing 

examples of plastered and mounded and separated drifts as well as erosive features. 

Figure 6. (A) Airgun seismic profile showing an example of sheeted drift. (B) Airgun seismic 

profile showing an example of channel-related drift. (C) Sparker seismic profile 

showing a mounded separated drift and moat. (D) Airgun seismic profile showing a 

confined drift (modified from Juan et al., 2012, 2013; and Ercilla et al., 2016). For 

location of the seismic profiles see Figure 5. 

Figure 7. (A) Digital bathymetric model of the Gulf of Cadiz continental margin and location 

of the main water masses. (B) Airgun seismic profile showing contourite drifts close to 

the Strait of Gibraltar. (C) and (D) Sparker seismic profiles showing mounded 

elongated and separated drift and its basinward prolongation as sheeted drift (modified 

from Llave et al., 2001).  

Figure 8. (A), (B) and (C) Sparker seismic profiles showing deformed sheeted drifts as well 

as contourite channels around diapiric ridges. (D) Sparker seismic profile showing 

sand waves (modified from Llave et al., 2001; Hernández-Molina et al., 2006, 2014b; 

and García et al., 2009). For location of the seismic profiles see Figure 7. 

Figure 9. (A) Airgun seismic profile where mounded drifts and contourite channels is 

described. (B-E) Sparker seismic profiles showing examples of contourite erosional 

features such as an abraded surface, an erosive scour, a furrow and a marginal valley 

(modified from Llave et al., 2001; Hernández-Molina et al., 2006, 2014b; and García et 

al., 2009). For location of the seismic profiles see Figure 7. 

Figure 10. (A) Digital bathymetric model of the Western Iberian continental margin and 

continental rise, and location of the main water masses and seismic profiles. (B-C) 

Airgun and Sparker seismic profiles showing examples of mounded separated drifts 

and moats, and (D) sediment waves (modified from Alves et al., 2003, 2006; Pereira 

and Alves, 2011, and Roque et al., 2012). (E) TOPAS seismic profile where it is shown 

an example of plastered drift (modified from Llave et al., 2013). AM: Alentejo Margin; 

GB: Galicia Bank; GIB: Galicia Interior Basin; TZ: Transitional Zone; OMP: Ortegal 

Marginal Platform; PBMP: Pardo Bazán Marginal Platform; CMP: Castro Marginal 

Platform. 
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Figure 11. (A-B) TOPAS seismic profiles showing examples of mounded separated drifts 

and moats (modified from Ercilla et al., 2011 and Llave et al., 2013). (C) Airgun 

seismic profile showing the distribution three contourite terraces (modified from Llave 

et al., 2013). (D) TOPAS seismic profile where an abrasion surface is shown on a 

plastered drift (modified from Ercilla et al., 2011). For location of the seismic profiles 

see Figure 10. 

Figure 12. (A) Digital bathymetric model of the Le Danois continental margin, and location of 

the main contourite features based on and location of the main water masses and 

seismic profiles. (B and C) Airgun seismic profiles where mounded separated drifts 

and moats, as well as a plastered drift are shown (modified from Van Rooij et al., 

2010). 

Figure 13. Standard contourite sequence of facies model, linked to variation in contour-

current velocity (from Stow and Faugères, 2008, based on the original figure from 

Gonthier et al., 1984).  

Figure 14. Locations and depths (in m) of the main types of drifts along the Iberian margin: 

C: confined; Ch: channel related; M: mound; P: plastered; S: separated; Sh: sheeted; 

Sw: sediment waves. Image also shows contourite features (red), erosive features 

(purple) and unpublished features (orange). See Table I for more detail regarding their 

characteristics. 

Table I. Acronyms of the main water masses present along the Iberian margin. 

Table II. Acoustic facies, morphology and location of the main contourite features along the 

Iberian margin. 

Table III. Main HARs for contourite features along the Iberian margins. 
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Mediterranean Sea 

AW Atlantic Water 

MAW Modified Atlantic Water 

EAG Eastern Alboran Gyres 

WAG Western Atlantic Gyre 

LIW Levantine Intermediate Water 

WMDW Western Mediterranean Deep Water 

WIW Western Intermediate Water 

TDW Tyrrhenian Dense Water 

LMW Light Mediterranean Waters 

DMW Dense Mediterranean Waters 

Gulf of Cadiz and West Iberia 

AIW Inflow of the Atlantic Water 

PC Portugal Current 

PCCC Portugal Coastal Counter Current 

ENACW Eastern North Atlantic Central Water 

AAIW Modified Antarctic Intermediate Water 

MOW Mediterranean Outflow Water 

MU Mediterranean Upper Core 

ML Mediterranean Lower Core 

NADW North Atlantic Deep Water 

LDW Lower Deep Water 

LADW Labrador Deep Water 

AABW Antarctic Bottom Water 

Galicia and Cantabrian 

LSW Labrador Sea Water 
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Main 

depositional 

features 

Acoustic Facies Shape/Dimensions Location 

Mediterranean Sea: Barcelona CF 

Mounded drifts Prograding upslope 
High mound shape, ~5 km wide, few hundreds of m 

of relief 
Middle-lower slope 

Separated drifts Prograding upslope 
High mound shape, ~6 km wide, few tens of m of 

relief 
Middle slope-lower slope 

Plastered drifts 
Prograding upslope-

downslope 

Low mound shape, ten km wide, few tens of m of 

relief 
Upper-Middle slope 

Mediterranean Sea: Valencia and Balearic Islands CF 

Plastered 
Prograding upslope-

downslope 
Low mound shape, ten km wide, few tens of m of 

relief 
Middle slope 

Mediterranean Sea: Murcia CF 

Plastered 
Prograding upslope-

downslope 
Low mound shape, ten km wide, few tens of m of 

relief 
Middle slope 

Mediterranean Sea: Alboran CDS 

Plastered drifts 
Prograding upslope-

downslope 

Low to high mound shape, up to few hundreds of km 
long (< 300 km), 5.5 to 40 km wide, tens to a few 

hundreds of m of relief 

Large drifts: Spanish and Moroccan 
slopes; Small drifts: seamounts 

flanks, Spanish base-of-slope 

Sheeted drifts 

Aggrading 
subaparallel 

stratified facies 

Subtabular geometry; < 100 km long, 15 to 50 km 

wide 

Large drifts: Spanish base-of-slope 
and subbasins; Small drifts: Alboran 

Ridge, seamounts tops 

Channel-related 

drifts 

Aggrading and 
prograding 

downward 

Low mound shape. ~ 10 km long, <5 km wide Alboran Trough 

Mounded 

confined drifts 

Prograding 

dowmward 

High mound shape; Few to tens of km long and wide, 

100 to 300 m of relief 
Marginal shelf banks 

Separated drifts Prograding upslope 
Low to high mound shape; < 40 km long, 20 km 

wide, few tens of m of relief 

Moroccan slope and shelf-break 

scarp; Locally at the foot of 
seamounts and diapirs 

Atlantic: Gulf of Cadiz CDS 

Plastered drifts 

Prograding and 

aggrading 

downward  

Low mound shape; ~ 10 km long, 5 km wide, few m 
of relief 

Upper-middle slope 

Separated drifts Prograding upslope 
High mound shape; 90 km long, 10-20 km wide, 150-

200 m of m of relief 
Middle and Lower slope  

Sheeted drifts 

Aggrading 

subaparallel 

stratified facies 

Subtabular geometry; hundreds of km long, tens km 
wide 

Middle slope 

Atlantic: Western Iberian Margin CDS 

Mounded drift Prograding upslope 
Low mound shape; ~ 10 km long, ~ 10 km wide,  few 

m of relief 
Middle-Lower slope 

Separated drifts Prograding upslope 
High mound shape; 5 km long, 5 km wide, few 

hundreds of m of relief 
Middle-Lower slope; around 

structural high continental rise 

Atlantic: Galicia & Ortegal CDS 

Plastered drifts 

Prograding-
aggrading upslope-

downslope 

Low mound shape, few km long, tens to few hundreds 

of m of relief 

Middle-lower slope; at the base if 

structural highs slope-abyssal plain 

Separated drifts Prograding upslope 
Low to high mound shape; 5 22 km long, 1-10 km 

wide, few tens to few hundred of m of relief 
Middle-lower slope 

Atlantic: Le Danois CDS 

Plastered drifts 
Prograding upslope-

downslope 
Low mound shape, 10-20 km long, ~ 6 km wide, few 

m of relief 
Upper southern slope of Le Danois 

Bank 

Separated drifts Prograding upslope  
High mound shape; 10-45 km long, 3-10 km wide, 

few tens of m of relief 
Middle slope 
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Seismic section 
Seismic facies 
characteristics 

Depositional setting Location 

 

Transparent layers 
intercalated with 
high/moderate 
amplitude reflectors 

Sheeted drifts 
Proximal sector Gulf of 

Cádiz CDS 

 

Smooth, parallel 
moderate to high 
amplitude reflectors 
typically interbedded 
with transparent 
zones 

Plastered drifts and 
throughout mounded, 
confined and channel-

related drifts 

Around Iberia middle 
continental slopes 

 

Short, discontinuous 
to chaotic reflectors of 
moderate/high 
amplitude reflectors 

Moats, Channels, 
Furrows 

Around Iberian 
continental slope 

bathymetric irregularities 

 

Sigmoid and/or 
oblique progradational 
reflectors with strong 
downstream migration 

Mounded drifts 
Around Iberia middle 

continental slopes  

 

Gently wavy reflectors 
Over parts of several 

drifts 

Around Iberia middle 
continental slopes and 

rise 

 

Horizontal or low-
inclination 
high/moderate 
amplitude reflectors 
truncated by HARs 
erosional surfaces 

Contourite terraces 
Alboran Sea, Gulf of 

Cadiz, Galician margin 
(marginal platforms) ACCEPTED M
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