
ROTOR: A Tool for Renaming Values in OCaml’s
Module System

Reuben N. S. Rowe, Hugo Férée, Simon J. Thompson, Scott Owens
School of Computing
University of Kent

Canterbury, UK
{r.n.s.rowe, h.feree, s.j.thompson, s.a.owens}@kent.ac.uk

Abstract—The functional programming paradigm presents its
own unique challenges to refactoring. For the OCaml language
in particular, the expressiveness of its module system makes this
a highly non-trivial task and there is currently no automated
support for large-scale refactoring in the OCaml language.

We present ROTOR, a tool for automatically renaming top-
level value definitions in OCaml’s module system. To compute
the effect of renaming, ROTOR relies on a novel concept which we
call a value extension. This is a collection of related declarations
in a program that must all be renamed at once. In practice,
this leads to a notion of dependency: renaming a function foo
in module A (mutually) depends on renaming function foo in
module B etc.

We describe important aspects of ROTOR’s design, implemen-
tation, and evaluation on two large codebases: Jane Street’s core
library and its dependencies, and the OCaml compiler itself.
In these real-world settings we find that some cases involve a
surprisingly complex network of dependencies, and that the use
of the PPX preprocessor system presents significant challenges.

I. INTRODUCTION

Refactoring is a necessary and ongoing process in both the
development and maintenance of any codebase [1]. Whilst
individual refactoring steps are often conceptually very simple,
applying them in practice can be complex and error-prone.
Since refactorings are context sensitive, text-processing utili-
ties are only effective up to a point: tools for refactoring must
be language-aware.

In this paper, we report on our efforts to build the first large-
scale automatic refactoring tool for the OCaml language [2].
As a first step, we focus on renaming; this is a quintessential
refactoring that often displays much of the complexity inherent
in refactoring more generally. In particular, we implement
automatic renaming of module-level value bindings.

OCaml has a rich and expressive module system, which
makes renaming a particularly complex task. Types for mod-
ules may be independently declared, bound to (module type)
identifiers, modified by various kinds of constraints, and
used as annotations that trigger compiler checks. The use of
functors (i.e. functions at the module level) introduces further
coupling between the modules and module types declared in a
program. Declarations in both modules and module types may
be shadowed, and duplicated through the use of include
statements.

Some of the issues are illustrated by the following example.

module type Stringable = sig
type t
val to_string : t -> string

end
module Pair(X : Stringable)(Y : Stringable) =
struct
type t = X.t * Y.t
let to_string (x, y) =
(X.to_string x) ˆ " " ˆ (Y.to_string y)

end
module Int = struct
type t = int
let to_string i = int_to_string i

end
module String = struct
type t = string
let to_string s = s

end
module P = Pair(Int)(String) ;;
print_endline (P.to_string (5, "Gold Rings") ;;

This program defines a functor Pair that takes two modules
as arguments, which must conform to the Stringable
module type. It also defines two structures Int and String,
using them as arguments in an application of Pair and
binding the result to the module P. Suppose we wanted to
rename the to_string function in the Int module. To do
so correctly, we must take the following into account:

• Since Int is used as the first argument to an application
of Pair, the to_string member of Pair’s first parameter
must be renamed.

• The first parameter of Pair is declared to be of module
type Stringable, so to_string in Stringable must
be renamed.

• The second parameter of Pair is also declared to be of
module type Stringable, so its to_string member must
be renamed.

• The String module is used as the second argument to
an application of Pair, and so its to_string member must
also be renamed.

There are a couple of salient points in this example worth
highlighting. Firstly, computing the desired result requires
knowledge of the (static) semantics of the language. Although
we could correctly rename the to_string function in the
String module by carrying out a global find-and-replace,
this would result in renaming too many things. In particular,
we do not need to rename the to_string function declared
in the body of the Pair functor.

Secondly, renaming value bindings in OCaml is not simply
a matter of α-renaming, à la Lambda Calculus [3]. The
declaration of to_string in the Stringable module type
cannot really be said to bind the declarations of to_string
in the modules Int and String, as the abstraction λx.M
binds occurrences of the variable x in its body M . As a
functional programming language, OCaml does of course
incorporate the notion of binding found in Lambda Calculus.
However here we also observe a separate phenomenon. The
declarations of to_string in the modules Int and String
and the module type Stringable are all related, but in a
different sense to that of (lambda) binding. We call a set of
such related declarations the extension of a value. By this we
mean to express the intuition that each of the declarations is a
syntactic facet of the same underlying concept being modelled
within the program.

Renaming the binding to_string in the Int module
thus actually depends on renaming other bindings in the
program: failing to rename any one of them would result
in the program being rejected by the compiler. Moreover,
this is not simply an artifact of choosing to rename this
particular binding; if we were to start with, say, to_string
in String or Stringable we would still have to rename
the same set of bindings. These bindings are all mutually
dependent on each other. Consequently, the phenomenon we
observe here is distinct from the notion of a refactoring pre-
condition [4]. We have formalised the above notions of value
extension and renaming dependency for a large subset of
OCaml using an abstract denotational model [5]. This has
allowed us to characterise when two declarations should be
considered related, and thus need to be renamed together.

An interesting aspect revealed by our analysis is that re-
naming must be careful to maintain any shadowing present
in a program. In some languages, such as Haskell, the scope
of a (top-level) binding is the whole module in which it is
declared; thus redeclaration is simply erroneous. In the ML
family of languages, on the other hand, shadowing is possible
due to its lexical scoping: a binding only comes into scope at
the point it is declared. Consider the following example.

1 module M : sig
2 val foo : bool
3 val foo : string
4 end = struct
5 let foo = 42
6 let foo = "Hello world"
7 end

Here there are shadowed declarations in both the module
and the module type. Outside the module, references to the
binding M.foo resolve to the binding of the string literal
"Hello world", with a declared type of string. If we
rename only these declarations, on lines 3 and 6 respectively,
the result is the unshadowing of the previous declarations on
lines 2 and 5. However, since the unshadowed declaration of
type bool does not match the actual type of the now corre-
sponding unshadowed binding to the value 42, the program
will be rejected by the compiler. That is, the meaning of the
program has been changed.

It is also worth highlighting at this point that there are
alternative refactorings one might wish carry out in order to
localise the changes involved in a renaming. In the example
considered above, we could introduce a new module expres-
sion in the application of Pair that wraps the reference to the
Int module and reintroduces a binding with the old name.

module P =
Pair (struct include Int

let to_string = 〈new name〉 end)
(String)

Currently we do not support such ‘enhanced’ renaming strate-
gies, but this is an objective for future versions of our tool.

II. ROTOR: DESIGN AND IMPLEMENTATION

We have built a tool called ROTOR, which is capable of
automatically renaming value bindings, as illustrated above,
in large multi-file OCaml codebases. It is publicly available
as an open source software project [6]. ROTOR is itself
written in OCaml and is easily installed via Opam, OCaml’s
package manager. Once installed, ROTOR is invoked from
within the directory containing the source code to be refactored
as follows:
> rotor -r rename 〈identifier〉 〈new-name〉

The -r rename option indicates that ROTOR should rename
the value binding denoted by 〈identifier〉 to 〈new-name〉. The
format of 〈identifier〉 is discussed below. ROTOR outputs a diff
patch comprising the changes required to enact the renaming.
This allows ROTOR to be easily integrated with other tools
(e.g. a diff viewer) and for the user to examine the results of
carrying out renaming before applying them to the filesystem.

We now discus aspects of ROTOR’s implementation.

A. Identifying Program Elements

OCaml programs have a hierarchical structure, in which
both modules and module types can be nested within one
another. OCaml uses ‘dot notation’ for identifiers, in which
the infix operator dot (‘ . ’) indicates this hierarchical nesting.
These identifiers can refer to many different sort of elements
in a program (modules, module types, values, etc.). Whilst the
context in which an identifier appears indicates which sort of
element is being referred to, it is always interpreted to be
nested within (sub)modules only. Thus Foo.Bar.S could
refer to a module type S nested in the Bar submodule of the
module Foo. Similarly, Bigarray.Genarray.create
refers to the create function in the Genarray submodule
of OCaml’s standard library module Bigarray.

As we have seen above, ROTOR needs to be able to refer
to elements with a finer degree of structure. For instance,
value declarations (e.g. to_string) within module types
(e.g. Stringable). It also needs to refer to parameters of
functors, and even distinguish between functors and structures
(as well as functor types and signatures).

We therefore had to generalise OCaml’s path notation in
two ways. Firstly, instead of treating the dot as an infix
operator, we use it as a prefix operator on names to indicate
an element of a particular sort and introduce new prefix

operators to express other sorts (e.g. module, module type,
value). Secondly, the hierarchical structure is now represented
by the sequencing of prefixed names. ROTOR currently uses
the operators ‘ . ’, ‘#’, ‘%’, ‘*’, and ‘:’ to indicate structures,
functors, structure types (i.e. signatures), functor types, and
values, respectively. This scheme is extensible: we can easily
add representations for other sorts of OCaml language ele-
ment (e.g. value types, exceptions, classes, objects, etc.) by
adding new prefix operators. We also introduce an indexer
element of the form [i], to stand for the ith parameter of a
functor or functor type. ROTOR’s uses the following syntax
for identifiers.

〈signifier〉 ::= ‘.’ | ‘#’ | ‘%’ | ‘*’ | ‘:’
〈id link〉 ::= 〈signifier〉 〈name〉 | ‘[’ 〈index〉 ‘]’

〈identifier〉 ::= 〈id link〉 | 〈id link〉 〈identifier〉

where the nonterminal 〈name〉 denotes a standard OCaml
(short) identifier, and 〈number〉 denotes a positive integer
literal. So, for example, .Set%S:add refers to the add
value declaration within the S module type within the Set
module. Similarly, .Set#Make[1]:compare refers to the
declaration of the compare value in the first parameter of
the Make functor within the Set module.

B. Reuse of the OCaml Compiler

ROTOR must carry out many common language processing
tasks. For example, it must parse source code into abstract
syntax trees (ASTs). It also relies on binding analysis, to
determine whether an occurrence of an identifier resolves to
the binding to be renamed or not. Rather than reimplement ex-
isting functionality ROTOR uses OCaml’s compiler-libs
package, which provides an interface to the compiler. This
allows it to obtain and manipulate abstract syntax trees di-
rectly, delegating all parsing and type checking to the compiler
itself. Moreover, ROTOR can avoid having to be aware of com-
plex build environments (including passes of preprocessors,
e.g. PPX) by reading the ASTs directly from the .cmt files
produced by the compiler and stored on the filesystem. The
OCaml compiler also stores detailed information in the AST
regarding the source file locations of each syntactic element.
Thus it is very straightforward for ROTOR to generate the diff
patch describing the renaming.

C. Use of Visitor Classes

The core of ROTOR’s operation involves performing traver-
sals of various types over the program’s abstract syntax
trees. For this, we have made use of the recently developed
visitors syntax extension for OCaml [7]. This automati-
cally generates classes whose methods perform a bottom-up
traversal of values of a given set of datatypes. By default,
these visitors do not perform any operation in particular,
beyond the basic traversal. However by overriding particular
methods complex computations can be carried out on these
data values. This extension thus provides a basis in OCaml
for similar capabilities to those found in Haskell’s SYB generic
programming library [8].

D. Computing Renaming Dependencies

For a given value binding, ROTOR computes its set of
renaming dependencies (i.e. the value extension to which it
belongs) using a worklist algorithm, starting with a working
set consisting of the primary binding to be renamed. To process
each dependency in the worklist, ROTOR analyses the AST of
each source file that depends on the module containing the
binding. ROTOR then generates dependencies based on iden-
tifying certain syntactic patterns, with each newly generated
dependency that has not already been processed being added
to the worklist. ROTOR outputs the full list of dependencies
generated, along with provenance information, to a log file.

1) Module and Signature Includes: In renaming a binding
.A:foo, if ROTOR detects that module A is included in
another module B, e.g.

module B = struct include A end

then a dependency .B:foo is generated. Analogously,

module type T = sig include S end

would generate the dependency %T:foo for the binding
%S:foo. The reverse is also true.

2) Module and Module Type Aliases: Dependencies are
generated similarly when module or module types are aliased.

module B = A
module type S = T

Here, the dependencies .B:foo and %S:foo would be
generated for bindings .A:foo and %T:foo, respectively,
and vice versa.

3) Module Type Annotations: In renaming %S:foo, de-
pendencies are generated by module type annotations, e.g.

module A : S = . . .

Here the dependency .A:foo is generated. In the opposite
direction, the dependency %S:foo is only generated for
renaming .A:foo when the module type S actually contains a
declaration of foo (N.B. it need not: module types can be used
to hide sub-components of modules). Module type annotations
on functor parameters also generate dependencies, e.g.

module F (X : S) = . . .

generates #F[1]:foo for %S:foo, and vice versa.
4) Functor Applications: In renaming in functor parame-

ters, e.g. #F[1]:foo, the application

module M = F (N)

generates the dependency .N:foo. In the reverse direction,
.N:foo would only generate #F[1]:foo if the declared
type of F’s first parameter contains a declaration for foo.

5) Module Type Constraints: In renaming .M:foo, if
ROTOR encounters a module type constraint

S with module N = M

a dependency %S.N:foo is generated, but only if N contains
a declaration of foo (the type of module N is only required
to be a supertype of that of module M). A dependency is also
generated in the reverse direction.

E. Modes of Failure

In certain cases, ROTOR may not be able to compute a
renaming and so will exit with an error. These include when it
detects that replacing an identifier at some point in the program
would change the shadowing structure. That is, the new name
would shadow a binding that already exists at that point, or else
replacing the identifier would cause a previous binding to be
unshadowed. It is also possible ROTOR will detect a renaming
dependency requiring changes outside of the codebase that it
knows about (for example, in an external library).

III. EXPERIMENTAL EVALUATION

We evaluated ROTOR on two substantial, real-world code-
bases. Firstly, Jane Street’s standard library overlay [9], com-
prising 869 source files in 77 libraries. Secondly, part of the
OCaml (4.04.0) compiler itself [10] consisting of 502 source
files. We analysed each codebase to extract sets of around
3000 and 2600 value bindings, respectively, which we used as
test cases. We selected a fresh name not occurring in either
codebase; for each test case, we ran ROTOR to rename the
binding to this new name and tested the result by applying
the resulting patch and attempting to re-compile.

A. Jane Street Codebase

For the Jane Street testbed, we found that ROTOR’s success
rate was limited. About 3% of the test cases fail because
they have dependencies outside the codebase, namely they
require renaming functions in OCaml’s standard library. This
is perhaps unsurprising since this codebase is designed as an
overlay of the standard library. A further 6% fail because they
require changes in source files that are automatically generated
by the build system (i.e. they are not part of the source code).

A large portion of cases (40%) fail because of the heavy use
of the PPX preprocessor system made by this codebase. Most
of these involve names which are automatically generated
via meta-programmatic means. Thus, renaming them would
involve complex reasoning (e.g. renaming parts of string
literals), which is beyond the current state of our research.
Other of these cases fail because the preprocessor code reuses
source code location information but does not always properly
set a flag indicating the code is automatically generated. Thus
ROTOR generates changes to the source code which should
not be applied, resulting in syntax or typing errors.

A small number (5%) fail due to language extensions to
OCaml that ROTOR does not yet handle. These include local
module bindings (inside expressions), first-class modules, and
module type extraction. 9% of cases fail due to implementation
bugs in ROTOR. However recompilation succeeds for 37% of
test cases. For these, we observe the following:

Max Mean Mode
Files 50 5.0 3
Hunks 128 7.5 3
Dependencies 1127 24.0 19

These statistics reveal the potential complexity of carrying
out renaming in real-world code. The maximum number of

renaming dependencies observed is over a thousand, and
involve a footprint of 128 changes in 50 individual files.

B. OCaml Compiler Codebase

For the compiler testbed, the success rate is much more
promising at almost 70%. This is primarily due to the fact
that this codebase does not use PPX preprocessing at all. The
statistics that we observe from the compiler are as follows.

Max Mean Mode
Files 19 3.8 3
Hunks 59 5.9 3
Dependencies 35 1.6 1

The test cases in the OCaml compiler are clearly simpler
than in the Jane Street codebase, involving fewer renaming
dependencies and smaller footprints. Nonetheless, about thirty
of these cases generate sets of 5 or more dependencies, and
over 100 have non-trivial sets of dependencies.

IV. CONCLUSIONS AND FUTURE WORK

We have presented ROTOR, the first fully automatic refac-
toring tool for multi-file OCaml code. Currently, ROTOR
performs renaming of module-level value bindings. The so-
phistication of OCaml requires a general strategy for iden-
tifying program components, and a notion of dependency
between renamings. Our evaluation of ROTOR on two large,
real-world codebases shows that this is a difficult task in
practice. Language preprocessors, e.g. PPX, present significant
challenges to automation. In future, we would like to extend
ROTOR to automatically rename other identifiers, such as those
for modules, module types, value types, and constructors. We
would also like to implement more complex refactoring tasks,
and integrate ROTOR further with other tools.

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1999.

[2] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and
J. Vouillon. (2018) The OCaml System Release 4.07 Documentation
and User’s Manual. [Online]. Available: http://caml.inria.fr/pub/docs/
manual-ocaml/

[3] H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics,
2nd ed., ser. Studies in Logic and the Foundations of Mathematics.
North-Holland, 1984.

[4] W. F. Opdyke, “Refactoring Object-Oriented Frameworks,” Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, 1992.

[5] R. N. S. Rowe, H. Férée, S. J. Thompson, and S. Owens, “Characterising
Renaming within OCaml’s Module System: Theory and Implementa-
tion,” submitted (2019).

[6] (2018) ROTOR: A Prototype Refactoring Tool for OCaml. [Online].
Available: https://gitlab.com/trustworthy-refactoring/refactorer/

[7] F. Pottier, “Visitors Unchained,” PACMPL, vol. 1, no. ICFP, pp. 28:1–
28:28, 2017.

[8] R. Lämmel and S. Peyton Jones, “Scrap Your Boilerplate: A Practical
Design Pattern for Generic Programming,” in Proceedings of TLDI’03:
2003 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, New Orleans, Louisiana, USA, January 18,
2003. New York, NY, USA: ACM, 2003, pp. 26–37.

[9] Jane Street. (2018) Standard library overlay. [Online]. Available:
https://github.com/janestreet/core

[10] (2016) The Core OCaml System: Compilers, Runtime System, Base
Libraries (version 4.04.0). [Online]. Available: https://github.com/
ocaml/ocaml/tree/4.04.0

