
Rotor: First Steps Towards a Refactoring Tool

for OCaml

Reuben N. S. Rowe and Simon J. Thompson

Dedicated tools for automatically performing program refactorings bring
major improvements in productivity and reliability during refactoring [1, 6].
Although some tools provide limited support for localised refactoring tasks
(e.g. merlin’s identifier renaming), there is currently no general purpose au-
tomatic refactoring tool for the OCaml language. In this talk, we report on
our efforts in developing Rotor1, a prototype of such a tool [5]. The OCaml
setting brings its own collection of unique challenges for refactoring, and we
discuss some of these with reference to a concrete refactoring—the renaming of
a value binding in a given module—and in the context of a real-world codebase,
namely Jane Street’s Core library [4].

In the talk, we will discuss the following aspects of our approach.

Leveraging of the OCaml compiler. We use the existing infrastructure
provided by the OCaml compiler in order to create and manipulate the abstract
representation of the code to be refactored. This has the advantage that we
do not (incorrectly) duplicate existing code or functionality, and we obtain ‘for
free’ useful metadata including location, binding, and typing information.

Use of Visitor classes. Visitors are computations that traverse complex data
structures to perform specific operations or produce particular values. The core
functionality that we overlay onto the compiler is a library of generic visitor
classes for the datatypes representing the untyped and typed abstract syn-
tax trees (ASTs), which we generate automatically using the recently released
visitors PPX preprocessor for OCaml [2, 3]. ‘Boilerplate’ code that imple-
ments the traversal of the syntax tree is generated once, and specific behaviour
is obtained by instantiating these classes and overriding the methods for visit-
ing and operating on the particular parts of the AST. In addition to classes for
iterating over and mapping between syntax trees, we can also generates classes
for reducing them to a single value of a desired type. We use such ‘reducers’ to
compute the results of applying refactorings. They are also useful for e.g. finding
a particular value in a tree, such as the last occurrence of an identifier satisfying
some property.

OCaml-specific language features and idioms. Rotor must be aware of
the specifics of the OCaml language. For example, the following must be taken
into account when renaming function foo belonging to module A:

1Reliable OCaml-based Tool for OCaml Refactoring.

1



- OCaml allows the rebinding of identifiers and so when renaming foo we
must be careful to find and rename the appropriate definition, i.e. the correct
binding of the identifier foo.

- OCaml allows punning, meaning that labels for record fields or named
function parameters can be elided when a variable with a matching name is
used an argument for such a field or parameter. So, if foo is used as a pun for a
field or function argument also named foo, we must introduce an explicit field
or parameter label when renaming.

- It is possible to include one (sub)module within another, importing the
values it contains, so if A is included in a second module B we may have to
rename not only uses of A.foo but also those of B.foo.

- OCaml features explicitly named module signatures so, when A is included
in module B and the type of B is declared be an independently defined signature
S exposing the function foo, the renaming should fail since it would also require
the signature S to be modified.

A high-level architecture for refactorings. Rotor implements an exten-
sible architecture for refactorings. Applying a refactoring to a source file results
in a set of textual replacement operations, which our prototype currently uses to
output file diffs. Each refactoring is implemented as a separate top-level mod-
ule conforming to a common signature. This allows client code to interact with
refactorings in a uniform manner whilst also facilitating a clean and modular
implementation style with minimal dependencies. It also enables refactorings
to maintain their own internal state. We make use of OCaml’s support for first
class modules to map between abstract representations of refactorings and the
modules implementing them.

An important aspect of our model of refactoring is the concept of depen-
dencies between refactorings, e.g. above, renaming A.foo may depend on also
renaming B.foo. Such dependencies may be mutual, in that both refactorings
must be applied in order for each individually to be correct. Thus, the concept of
refactoring dependencies generalises that of preconditions for refactoring. Our
architecture allows for refactorings to calculate and return their dependencies
over any given codebase. We also consider the notion of refactoring dependen-
cies as having explanatory power, helping the user to better understand the code
and aiding in verifying the correctness of refactorings. For example, particular
changes resulting from the refactoring can be linked to the particular depen-
dency that generated them, and the graph of such dependencies may provide
insight into both the syntactic and semantic structure of the codebase.

Use of a real-world test bed. We have set up a test bed consisting of a
real-world codebase, namely (the public version of) Jane Street Capital’s core

library and its dependencies. This comprises almost 900 source files, across
nearly 80 individual libraries, and provides a rich and realistic environment for
testing our prototype.

2



References

[1] Martin Fowler. Refactoring - Improving the Design of Existing Code. Addi-
son Wesley object technology series. Addison-Wesley, 1999.

[2] François Pottier. The OCaml visitors Syntax Extension. https://

gitlab.inria.fr/fpottier/visitors.

[3] François Pottier. Visitors Unchained. In Proceedings of the 21st ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2017,
Oxford, United Kingdom, September 3–9, 2017. ACM, 2017.

[4] Jane Street Capital. Standard Library Overlay. https://github.com/

janestreet/core.

[5] Reuben N. S. Rowe. Rotor, OCaml Refactoring Tool. https://gitlab.

com/trustworthy-refactoring/refactorer. Prototype.

[6] Simon J. Thompson and Huiqing Li. Refactoring Tools for Functional Lan-
guages. J. Funct. Program., 23(3):293–350, 2013.

3


