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Notation

We write N for the set of natural numbers and Ny for N U {0}. We
write Z,Q, and C for the set of integers, rationals and complex numbers,
respectively. If p is a prime number, then we write Q, for the field of p-adic
numbers and Z, for the ring of p-adic integers. Also F,, denotes the finite
field with p elements.

Given a set X, we write Sym(X) for the symmetric group on X. Given
n € N, we write S, for the symmetric group Sym({1,2,...,n}).

Given a field F' and a finite group G, we work with left FFG-modules
throughout. Over an appropriate field, Irr(G) denotes the set of ordinary
irreducible characters of G, and Lin(G) denotes the group of degree-one
characters of G.

We write U ® V for the inner tensor product of F'G-modules U and V.
Given a finite group H, if U is an F'G-module and V is an F'H-module, then
U KV denotes the F|G x H]-module given by the outer tensor product of
U and V.

The induction and restriction of modules over finite dimensional group
algebras are denoted by 1 and |, respectively.

Given a subgroup H < G, we write C(H) and Ng(H) for the centraliser
and normaliser subgroups of H in G, respectively.



Abstract

In this thesis we consider problems in the representation theory of S,
and the representation theory of the imprimitive wreath product G.S,, for
a finite group G.

In §1 we give the background from the representation theory of S, re-
quired throughout this thesis. We also collect the required background on
the representation theory of G5, where G is a finite group, noting that, in
most of this thesis, we specialise this background to the case when G = Cj.

In §2 we provide a new proof of the Murnaghan—-Nakayama rule. We
do this by computing the trace of the matrix representing the action of an
n-cycle on the standard basis of a skew Specht module indexed by a border
strip partition. This work in this chapter is joint with Mark Wildon.

In §3 we consider the odd-degree irreducible characters of G 1 Son for
particular groups G. We consider the restrictions of these irreducible char-
acters to the normaliser of a Sylow 2-subgroup for each of these groups, and
give bijective proofs of the McKay conjecture for the groups considered. We
also consider the low degree constituents of the restriction of an odd-degree
irreducible Ssn-character to its Sylow 2-subgroup.

In §4 we consider the modular representation theory of the symmetric
group. We express the F'S,-permutation module M (A1:22) a5 a sum of its
indecomposable summands, where F' is a field of characteristic 3. We do
this using the endomorphism algebra of this permutation module via the
Schur algebra.

From §5 onwards we consider the representation theory of wreath prod-
ucts. In §5 we determine certain decomposition numbers of Cy ¢ S,. We
do this using Brauer reciprocity by determining projective summands of a
module whose ordinary character forms an involution model of C5.5,,.

In §6 we consider C21 S, as the symmetry group of the n-hypercube, and
we determine the homology of the chain complex induced by the boundary
map of the n-hypercube. We do this both in fields of characteristic 0 and in
fields of strictly positive characteristic.

In §7 we consider two generalisations of the Foulkes characters. The
Foulkes characters are the subject of Foulkes’ conjecture, which remains a
fundamental open problem in the representation theory of symmetric groups
and their wreath products.
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CHAPTER 1

Introduction and background

Let G be a finite group, and let F' be a field. Define the group algebra
F'G to be the associative F-algebra with basis

{UQ:QEG}v

and basis multiplication given by vgvj, := vgp, which we extend linearly to
FG. For ease of notation, we write g for the basis vector v,.

Given an F-vector space V, we define a representation of G to be a
homomorphism

p: FG — Endp(V),

where Endp (V) denotes the vector space of all F-linear transformations
from V to itself. Throughout this thesis we write our maps on the left. We
say that V is a left FG-module in this case, and we see that there is an
action of F'G on V given by the linear extension of

gv = p(g)v,

where g € G and v € V. In this thesis we only consider F'G-modules V' that
are finite dimensional.

We say that V is irreducible if it contains no proper non-zero subspace
U such that U is also an F'G-module. The following theorem, known as
Maschke’s Theorem, demonstrates the importance of irreducible modules in
the representation theory of finite groups.

THEOREM (Maschke’s Theorem). Let F' be a field of characteristic p.
Then every FG-module can be written as the direct sum of irreducible FG-

modules if and only if p t |G]|.

Maschke’s Theorem shows that if p { |G|, then irreducible modules are
the building blocks of all F’G-modules. The representation theory of G in
this case is referred to as the ordinary representation theory of G.

We refer to the representation theory in the case when p | |G| as the mod-
ular representation theory of G. Whilst it is no longer true in this setting
that an arbitrary F'G-module can be written as a direct sum of irreducible
modules, it can still always be written as a direct sum of indecomposable
modules, which we now define. We say that an F'G-module M is indecom-
posable if whenever there exists an equality of FFG-modules M = U &V,

9



10 1. INTRODUCTION AND BACKGROUND

then either U = 0, or V = 0. However, as we will see in §4 of this the-
sis, it is a difficult problem in general to write an F'G-module as a sum of
indecomposable submodules.

Fix n € N. A central subject of study in this thesis is the representation
theory of the symmetric group S,. If F' is a field of characteristic p such
that p 1 n!, then the irreducible F'S,-modules are completely understood.
Moreover, we can get a considerable way in understanding the ordinary rep-
resentation theory of S, using ideas from combinatorics (see for instance §2).
Nevertheless there are still many open problems in the ordinary case, an ex-
ample of which we will see in §3. In the modular case, the situation is much
less understood. For instance when p | n!, we are able to construct the irre-
ducible F'S,,-modules, however determining simple properties, such as their
dimensions, remain unknown in general. In this thesis we therefore concern
ourselves with both problems in the ordinary and modular representation
theories of .S,,.

Also of significant interest in this thesis is the representation theory
of the imprimitive wreath product G 1S, for certain finite groups G. In
particular we will see that the representation theory of S, is closely related to
the representation theory of the imprimitive wreath product C5.S,,. However
the representation theory of Cy 1.5, is significant in its own right, and there
remain problems that cannot be approached solely using the representation
theory of S, (see for example Theorem 5.1.1).

We now provide a survey of the chapters and main results of this thesis.
This thesis can be thought of as being made up of two parts. The first part
consists of §2, §3 and §4, in which we consider problems in the representation
theory of S,,. The second part is made up of §5, §6, and §7, in which we
consider the representation theory of G .S, for certain finite groups G. In
particular we consider problems in the representation theory of C2?.5,, in §5
and §6. In §7 we consider problems motivated by the ordinary representation
theory of S, 1.5, where m € N.

In the remainder of this chapter we collect the background that we use
throughout. We start by giving the relevant background on skew partitions,
Young diagrams, and the ordinary representation theory of the symmetric
group in §1.1. In order to state the main theorems from §2 to §7, we require
the following notation from §1.1. Given a skew partition /s, we write x*/#
for the ordinary S,-character afforded by \/u. If 4 = @, then we write x*
for 2.

In §1.2 we introduce the imprimitive wreath product G .S, where G
is a finite group. In particular we define G ! S,,, and we give a complete
description of the irreducible CG 1 S,,-modules. On the way to determining
the irreducible CG1S,-modules, we also give a description of G1S,,-conjugacy
classes.
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In §1.3 we give the background results that we require on the modular
representation theory of finite groups. We then specialise this background
in §1.3.6 to give the required results on the modular representation theory
of S,,. Furthermore, in §1.4 we give the required background on the repre-
sentation theory of C5 .S, thus specialising the results in §1.2 and §1.3 to
this case.

In §2 we provide a new proof of the Murnaghan—Nakayama rule, which is
a combinatorial rule for calculating character values of S,. In order to state
the rule, we require the following elementary definitions. Given partitions A
and p, if p is a subpartition (see §1.1.1) of A, then write u C A. In this case,
write ht(\/u) for one less than the number of non-empty rows of the skew
diagram [A\/p]. If A/p has size n, then we write |A\/u| = n. We also require
the definition of a border strip, which can be found in §1.1.1.

THEOREM 2.1.1 (Murnaghan—Nakayama rule). Let m,n € N, and let A
be a partition of m+n. Let p € Spn be an n-cycle and let m be a permutation
of the remaining m numbers. Then

X Mp) =Y (— )My (),
where the sum is over all i C X such that || = m and A/ u is a border strip.

The proof of the rule that we give requires only the basic definitions of
polytabloids and Garnir relations, and the relatively elementary Young and
Pieri rules. The work in §2 is joint work with Mark Wildon, and is based
on the paper [42], which is to appear in Annals of Combinatorics.

In §3 we consider a problem in the ordinary representation theory of
Sy, surrounding local-global conjectures. An aim of these conjectures is to
understand the representation theory of a finite group by considering the
representation theory of a smaller group. The conjecture that motivates
§3 is the McKay Conjecture, which we now describe. Let G be a finite
group, with Sylow 2-subgroup P. Also let Irry/(G) denote the set of irre-
ducible odd-degree characters of G. Then the McKay Conjecture states that
|Irre/ (G)| = |Irra (N (P))]. Although a proof of the conjecture is known,
finding a canonical bijection between the relevant sets is of increasing inter-
est. Giannelli accomplishes this for S, in [22], and our contribution to this
problem is the following theorem.

THEOREM 3.0.1. Let G be one of the following groups:

e Soa, where a € N

o C9, where a € N

e any finite abelian p-group, where p is an odd prime,
and let P be a Sylow 2-subgroup of G Saon. Given x € Irrg/(G 1 San), the re-
stricted character XichsW (p) has a unique degree-one constituent, denoted
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®(x). Moreover, the map x — ®(x) is a bijection between Irry (G Son) and
Irr(Neisyn (P))-

In §4 we turn to the modular representation theory of S,,. Define M (A1:A2)
to be the F'S,-permutation module corresponding to the action of S, on the
cosets of the Young subgroup Sg12. a} X S{r 41,...n}- A notoriously diffi-
cult open problem is to express M(*1:42) ag a direct sum of indecomposable
F'S,-modules. Previously this problem has only been solved over fields of
characteristic 2, and in §4 we give a complete solution over fields of char-
acteristic 3. We do this by determining a complete set of central primitive
idempotents in the endomorphism algebra Sp(\) := Endpg, (M(*1:22)). The
work in §4 is based on the paper [40].

Over a field of characteristic 2 the primitive idempotents of Sp(\) are
constructed as follows: to each (m,g) € N3 assign an element é,, 4, € Sp()).
Then the set of €, 4 such that g < A2 and the binomial coefficient

B(m7 g) = (m * 29)
g

is non-zero modulo 2 is a complete set of primitive idempotents in Sg(\).

When F has characteristic 3, our construction uses the same idea, and we

assign elements e, 4 € Sgp()\) to the (m,g) € NZ such that B(m,g) is non-

zero modulo 3. For the complete definition of the elements e, 4, we refer

the reader to §4.1.1. Our first main result in §4 is the following theorem.

THEOREM 4.1.3. Given n € N, let A = (A, A2) b n and m = A\; — o.
The set of elements ey, 4, with B(m, g) non-zero modulo 3 and g < X, give
a complete set of primitive orthogonal idempotents for Sg(\).

Our second main result in §4 determines the Young module summand
Y* of M* that the idempotent €m,g corresponds to. For a definition of the
Young module Y#, see §4.1.

THEOREM 4.1.4 Let A = (A1, A2) and p = (u1, u2) be partitions of n such
that Y* is a direct summand of M. Define

m=A1 — Ay and g = Ao — pa.
Then e, g is the primitive idempotent in Sp(\) such that ep, gM* 2 YH.

For §5 onwards we consider problems arising in the representation theory
of G 5,,. Before we continue, we remark that the work in §5 is based on the
paper [41], which is to appear in Algebras and Representation Theory. In
§5 we consider decomposition numbers of Cs?.5,, the definition of which we
give in §1.4.4. Determining decomposition numbers of Cs .S, remains an
open problem. Although this problem can be reduced to the representation
theory of S, our approach relies on first characterising the vertices (see §1.3)
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of the indecomposable summands of the twisted Baddeley module M s, ),
which we define in §5.1.

In order to state our result on vertices, the following preliminaries are
required. Briefly write Sa, for the symmetric group

Sym({1,2,...,n,1,...,7}).

We view C .S, as the subgroup of Sy, generated by the set

{(1D),(12)(T2),(12...n)(TI2...7)}.

Given a € N, define V, to be equal to the subgroup
(1D (a+1a+1),22)(a+2a+2),...,(aa)(2a2a)) x &(S215,),

where £ is as defined in §1.4.1. Also define V), to be the subgroup of V, equal
to

(1D (a+1a+1),22)(a+2a+2),...,(aa) (2 2a)) x £(S225y),

where A is a partition of a, and S) is the corresponding Young subgroup of
S (defined in §1.1.1).
Given a prime p and r € N such that rp < n, define

T :={(\t,u) : A € A(2,s),2s +t+u=7r and sp < a,tp < b,up < c},
where A(2, s) denotes the set of all compositions of s in at most 2 parts.

THEOREM 5.1.1. Let (a,b,c) € N§ be such that 2a + b+ c = n, and let
U be a non-projective indecomposable summand of M(aqp ). Then U has a
vertexr equal to a Sylow p-subgroup of

Vpa % Cy Stp x C2 Supa
for some r € N, where rp < n, and (\,t,u) € T}.

In order to state our second main theorem in §5, the following prelimi-
naries are required. Given a p-core partition 7 (see §1.3.6) and given b € Ny,
let wp(y) be the minimum number of border strips of size p such that when
added to 7y, we obtain a partition with exactly b odd parts. Let & () be the
set of all partitions of || + wy(7)p obtained in this way.

We also require the definition of the dominance order on partitions,
which we give in §1.1.

THEOREM 5.1.2 Let v and § be p-core partitions, and let b,c € Ny. If
b> p (resp. ¢ > p), suppose that w,p(7) # wy(7) — 1 (resp. we_p(8) #
we(0) — 1). Then there exists a set partition of Ey(v) X E:(0), say A1,..., Ay,
such that each A; has a unique pair (v;,v;) with v; and v; both maximal in
the dominance orders on Ey(7y) and E.(9), respectively. Moreover, v; and v;
are p-regular for each i, and the decomposition number dy,, .z, equals one if
(A, p) € Ay, and equals zero otherwise.
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In §6 we consider C31.S,, as the symmetry group of the n-hypercube I,
where I denotes the closed unit interval [0, 1]. In particular we equip the n-
hypercube with an orientation, and we define U; to be the F-span of the set
of oriented i-hypercubes lying on the oriented n-hypercube. We define the
boundary map 0; : U; — U;_1, and we show that §;0,11 = 0 (when composed
from right to left) for all 0 < ¢ < n. Our main result in §6 is the following
theorem.

THEOREM 6.0.6. The chain complex
(6.1) Up 2% Uy 225 200 25 10, 2 Q
1s exact in all places.

The map J; is a natural generalisation of the boundary map of an ori-
ented i-simplex lying on an n-simplex. The symmetry group of an oriented
n-simplex is 5, and so Theorem 6.0.6 is a generalisation of the representa-
tion theory of 5, to that of C51.5,. In fact our proof of Theorem 6.0.6 uses
an analogous result for the simplex, and therefore demonstrates the links
between the representation theories of these groups.

When F' has characteristic 2, we further generalise the boundary maps
to multistep maps @DZ@, which we define in §6.2. The map wz(t) has domain
equal to the F-span of the i-dimensional hypercubes, and range equal to

the F-span of the (i — t)-dimensional hypercubes for ¢ > 2. The multistep
(t)
i+t
chain complex. In particular we demonstrate several differences between

maps satisfy the relation wgt)w = 0, and so we consider the corresponding
these modules and the analogous modules for F'S,,.

In §7 we consider the ordinary representation theory of the imprimitive
wreath product S, ! .S,, where m € N. In particular we define the Foulkes
characters for wreath products of symmetric groups, which are the subject
of the long standing Foulkes’ Conjecture (stated in §7). The main result in
[19] is a recursive formula for the Foulkes characters, which is used to prove
the conjecture in certain cases. Our result is the extension of this recursive
formula to a generalisation of the Foulkes characters, which we now define.

Given partitions ¥ and v of m and n, respectively, define the plethysm

o Xn SmlSn Smn
where the notation in this display is defined in §1.2.

THEOREM 7.1.2 Let m,n € N. Let ¥ = (a,1°) for some a +b =m, and
let v n. If \F mn, then

(¢hx*) = Zzam/uws”“rz DR/ (o XY,

] 1 puCA

where the third sum runs over all p C v such that v/p is a border strip.
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In §7.2 we generalise the Foulkes characters in a different way. The
Foulkes character gog)) is the unique So,-character satisfying the following

two conditions:

e constituents of x |s,,. , are the x* such that p has exactly one o
Ul) th tituents of x ls,, , the x* such that p h tl dd
part, each appearing with multiplicity one,
is a constituent o appearing with multiplicity one.
(U2) x® i tituent of x, appearing with multiplicity

This remarkable fact can be used to give a complete decomposition of the

(n)
(2
main result in §7.2 is the following theorem.

Foulkes character ¢, as a direct sum of its irreducible constituents. Our
THEOREM 7.2.1. There is a unique Sap-character x such that

(U1) the constituents of x ls,, , are the x* such that u has exactly one odd
part, each appearing with multiplicity one,

(U2) x®" is not a constituent of x.
(n)

n
(2)
plete decomposition of y (in the statement of the theorem) as a sum of its

Similar to the case of ¢,,., the proof of this result determines the com-

irreducible constituents.

1.1. The representation theory of the symmetric group

Our exposition in this section follows that of the paper [42]. Given
n € N, we define a composition of n to be a sequence

)‘:(Ala"w)\t)

such that \; € N for all i and 3"/_; \; = n. In this case we write |\| = n. If
the parts A\; of A are non-increasing, then we say that \ is a partition of n,
and we write A - n. We denote by ¢(A) the number of parts of A. In some
places we adopt the usual index abbreviation for partitions, for instance we
write (52,33,1) for (5,5,3,3,3,1). Given r € N such that r < n, we write
A(r,n) for the set of compositions of n with at most r parts.

We define a multi-partition to be a sequence of partitions (A!,..., \f)
such that ', [\| = n. In this case we say that the multi-partition has
length t. We write P*(n) for the set of multi-partitions of n of length t.

We define a partial order, known as the dominance order, on the set of
compositions of n, as follows. We write x> A if and only if ¢(u) < ¢(X) and
Zle Wi > Zle Ai whenever 1 < k < £(p). In the case that u > A, we say
that u dominates A.

The combinatorics of partitions is of fundamental importance in the rep-
resentation theory of the symmetric group, both in the ordinary and modular
cases. A notable example is Theorem 1.1.2 in this section, which shows that
the irreducible Q.S,,-modules are labelled by the set of partitions of n. In or-
der to construct the Specht modules S in the statement of Theorem 1.1.2,
we take the unusual approach of constructing the more general skew Specht
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modules S*#. This is because the skew Specht modules are required in §2,
where we prove the Murnaghan—Nakayama rule. The usual definition of the
Specht modules follows by taking p = @. For details on the representation
theory of the symmetric group, we refer to [33] and [35].

1.1.1. Skew Specht modules. Given partitions pu and A of m and
m + n respectively, we say that u is a subpartition of A\, and write u C A, if
() < L(A) and p; < A; for 1 < i < £(u). We define the skew diagram (or
Young diagram) [A/p] to be the set of boxes

{(i,7): 1 <i<tand p; <j<N\},

and call A/ a skew partition. We define row k (resp. column k) of A/ to be
the subset of [\/u] of boxes whose first (resp. second) coordinate equals k.
Let ht(A/u) be one less than the number of non-empty rows of [\/pu].

In various places in this thesis, we consider skew diagrams that are
border strips. By definition a border strip is a skew partition whose skew
diagram is connected and which contains no four boxes forming the Young
diagram [(2,2)].

Fix m, n € N. Let A be a partition of m+n and let u be a subpartition of
A of size m. We define a \/u-tableau t to be a bijective function ¢ : [A\/u] —
{1,2,...,n}, and call t a skew tableau of shape A\/u. We call t(i, j) the entry
of t in position (7,7). Thus a A/u-tableau can be visualized (see Example
1.1.1) as a filling of the boxes [A/p] with distinct entries from {1,...,n}.
We draw skew diagrams with the largest part at the top of the page: thus
the top row is row 1, and so on.

There is a natural action of S,, on the set of A/u-tableaux defined by
(ot)(i,5) = o (t(i,4)) for o € S,. Given a A\/p-tableau t, let R(t) (resp. C(t))
be the subgroup of S, consisting of all permutations that setwise fix the
entries in each row (resp. column) of t. We define an equivalence relation
« on the set of A\/u-tableaux by ¢ «~ w if and only if there exists m € R(t)
such that u = wt. The A/u-tabloid {t} is the equivalence class of t. A short
calculation shows that there is a well-defined action of S, on the set of
A/ p-tabloids given by o{t} = {ot}.

We say that a A\/p-tableau is row standard if the entries in the rows are
increasing when read from left to right, and column standard if the entries in
the columns are increasing when read from top to bottom. A tableau ¢ that is
both row standard and column standard is a standard tableau. Define ¢ to be
the unique column standard \/pu-tableau whose columns agree setwise with
t. We call ¢ the column straightening of t. We define the row straightening t
of ¢ in the analogous way.
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EXAMPLE 1.1.1. Consider the following (5,4,2,1)/(2, 1)-tableaux:

7[1]4] 1]4]7]
— |2]9]6 — |2]l6]9
v.—53 andw.—35

18] 18]
By definition w is a standard tableau. Also observe that {v} = {w}, and so

w="7.

Let M " be the ZS,-permutation module spanned by the A/u-tabloids.
Observe that as M**# is a permutation module, it is isomorphic to ZT%",
for some subgroup H of S,. Indeed, given a composition A = (A1, A2, ..., A\¢)
of n, define the Young subgroup Sy < .S, to be equal to

5{1,27~--,>\1} X S{>\1+1,>\1+2,m,)\1+/\2} Xoeer X S{)‘1+"'+)\t—1+17~--’n}'

If v is the composition of n recording the lengths of the non-empty rows
of A/, then M M ig the permutation module corresponding to the action
of S, on the cosets of S,. In particular M*/# can be defined over any ring.
If we need to specify the ring R, then we write Mg/ " for RTg: . Taking
pu = @, this is the usual Young permutation module M> corresponding to
the partition .

We define the A/p-polytabloid e(t) € My'" by

e(t) = Y sgn(o)o{t}.
oeC(t)
If ¢t is a standard tableau then we say that e(t) is a standard polytabloid.
The skew Specht module S?z/ *is then the RS,-module spanned by all \/u-
polytabloids. Taking p = @ this is the Specht module Sﬁ, defined over

any ring R. If the ring R is clear, then we omit the subscript R in S]A%/ a

(resp. S3).

Given a skew partition A/u, we write x** for the character of the QS,-
module Sg/ #. Again taking p = @ we write x* for the character of the
Specht module Sa.

THEOREM 1.1.2. Let n € N. Then the set
{Sa : A is a partition of n}

is a complete set of pairwise non-isomorphic irreducible QSy,-modules. Fur-
thermore
Irr(S,) = {x* : \ is a partition of n}.

Let F be a field. Theorem 4.9 in [33] states that if Sy is irreducible, then
S fE‘ is irreducible for any extension field E of F. It follows from Theorem 1.1.2
that S })‘7 is irreducible, where F' is any field of characteristic zero. Moreover,
the irreducible characters y* are integer valued, and so we can write y*
(resp. x**) for the character of S (resp. SIA;/ *) in this case.
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Theorem 1.1.2 implies that there exists a Specht module that labels the
trivial QS,-module. Indeed this is the Specht module labelled by the one
part partition (n).

For all n > 1, there exists exactly one other one-dimensional Specht
module. This is the Specht module corresponding to the partition (1"),
on which every element of the symmetric group S, acts by its sign. We
therefore refer to S(U") as the sign module, and we write sgn,, (or sgn when
the index n is clear) for this module.

It is a basic character theoretic fact that the product of a degree-one
character with an irreducible character is again an irreducible character.
Therefore given a partition v of n, we have x* x xy(I") = x* for some parti-
tion A of n. It is proved in [33, (6.6)] that A is the unique partition such that
the Young diagram [})] is the transpose of the Young diagram [v]. As is usual
we write ¢/ for this partition, and we refer to v/ as the conjugate partition
of v. Observe that multiplying by x(!") is an involution, and therefore so is
conjugating a partition.

1.1.2. Garnir relations and the Standard Basis Theorem. In this
section we consider various relations in the skew Specht modules. If o € 5,
then an easy calculation shows that

(1.1) oe(t) = e(at).

Hence SM* is cyclic, generated by any A/p-polytabloid. Moreover if 7 €
C(t), then

(1.2) Te(t) = sgn(7)e(t).

Therefore S*# is spanned by the A/p-polytabloids e(t) for ¢ a column stan-
dard \/p-tableau. Recall that we define £ to be the unique column standard
A/p-tableau whose columns agree setwise with t. Let g, € {+1, —1} be de-
fined by e(t) = ese(t).

Suppose that (i, 7) and (4, j+1) are boxes in [A/u]. Given a A/ u-tableau ¢,
let X ={t(i,5),t(i+1,7),...} be the set of entries in column j of ¢ weakly
below box (i,7), and let Y = {... ¢(: — 1,5 + 1),t(i,j + 1)} be the set of
entries in column j+ 1 of ¢ weakly above box (i, j +1). Let Cx y be the set
of all products of transpositions (z1,y1)...(zk, yx) for x1 < ... < x and
y1 < ... <yg where {z1,...,21} C X and {y1,...,yx} C Y are non-empty
k-sets. We define the Garnir element for X and Y by

(1.3) Gxy =1+ Y sgu(o)o € ZSxuy.

O’GC}QY
Restated, replacing ideals in the group ring ZS,, with polytabloids, (3.8)
in [20] implies that

(1.4) GX,ye(t) = 0.
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Similarly restated, Theorem 3.9 in [20] is as follows.

THEOREM 1.1.3 (Standard Basis Theorem).

(i) Any M/p-polytabloid can be expressed as a Z-linear combination of
standard \/p-polytabloids by applications of column relations (1.2)
and Garnir relations (1.4).

(ii) The ZS,-module SM* has the set of standard \/u-polytabloids as
a Z-basis.

We remark that the proofs of Theorem 7.2 and 8.4 in [33], for the case
when = @, but defined using polytabloids, generalise easily to prove (1.4)
and Theorem 1.1.3 exactly as stated above. We also remark that the Garnir
relations and therefore the Standard Basis theorem hold over any field. We
give a small example of Garnir relations in Example 1.1.9.

1.1.3. Restricted Specht modules. Fix throughout this section m,
n € N and a partition A of m + n. Recall that the Young subgroup S, »)
is defined to be S19  my X S{m+1,m+2,....,mt+n}- We shall prove the following
theorem, which determines the restriction of a Specht module to S, ). We
will use this result in §2 and §3.

THEOREM 1.1.4. The module S ¢S<m ) has a filtration by ZS(y, n)-
modules whose successive quotients are isomorphic to SHXSMH  where each

subpartition p of X of size m occurs exactly once.

Theorem 1.1.4 is the main result in [36]. The proof in [36] constructs
skew Specht modules as ideals in the group algebra of S, over a field. Our
proof using polytabloids instead generalizes James’ proof of the modular
branching rule for Specht modules [33, Ch. 9]. In this way we obtain a
stronger isomorphism for integral modules that replaces the lexicographic
order used in [33] and [36] with the dominance order. The following pre-
liminaries are required.

Suppose that A has first part c¢. Given a A-tableau t we define the m-
shape of t to be the composition (71,...,7.) such that ; equals the number
of entries in column j of ¢ that are at most m. For each composition v such
that ¢(y) < ¢ we define

VEY = (e(t) : t a column standard M-tableau of m-shape § where & > 4)z.

Note that the definition of the m-shape agrees with the notation b(y) in the
proof of [36, Theorem 3.1]. We require the following total ordering on the
set of column standard A-tableaux, defined implicitly in [33, page 30].

DEFINITION. Let u and ¢ be column standard A-tableaux. We write
u > t if and only if the greatest entry appearing in a different column in u
to t appears further right in u than t¢.
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For instance, the > order on the set of column standard (2, 2)-tableaux
is

13>12>21>12>21>31

214 34 314 413 413 4127
Note that here, as in general, the greatest tableau under > is standard.

Several times below we use that if z > y and zx is to the left of y in the
column standard tableau u then (m > u.

ProposITION 1.1.5. Let uw be a column standard A-tableauw of m-shape
~v. Then e(u) is equal to a Z-linear combination of standard A-polytabloids
e(t) where each t has m-shape i’ for some partition p such that ' > .

ProOF. If u is standard then + is a partition, and there is nothing to
prove. If u is not standard then there exists (i,j) € [A] such that u(i,j) >
u(i,j+1). Let X and Y be as defined in (1.3). By (1.4) we have

O=c(w)+ Y  equsgn(o)e(on)
0eCxy
where ou and €5, € {+1,—1} are as defined at the start of §1.1.2. Let
o € Cxy. Since the minimum of X exceeds the maximum of Y, we have
x > y for each transposition (z,y) in 0. Hence ou > u. Write § for the m-
shape of ou. If there are exactly k transpositions (z,y) such that z > m >y
then 0; = v +k, 6j41 = vj41 — Kk and 05y = ; for j' # 7,7+ 1. Hence § &> .
The lemma now follows by induction on the > and > orders. O

COROLLARY 1.1.6. Let pu be a subpartition of A of size m. Then yew
is a4 LS, ) -submodule of S* with Z-basis given by the standard \-tableaux
of m-shape V' such that v/ > /.

PROOF. Since the standard A-polytabloids are linearly independent by
Theorem 1.1.3(ii), it follows immediately from Proposition 1.1.5 that V=
has a Z-basis as claimed. If m € S, ) and s is a standard A-tableau of
m-shape v/ then 7s also has m-shape 1/, as does 7s. By (1.2) and Propo-
sition 1.1.5, e(ms) = +e(7s) € VB C VB, Hence VE is a ZS (m.n)-
module. O

Given a p-tableau u with (as usual) entries {1,...,m} and a \/u-
tableau v with entries {m + 1,...,m + n}, let u U v denote the A-tableau
defined by
u(i, j) if (i,7) € [p]

v(i,j) i (i,5) € [/ ul.
Clearly every A-tableau of m-shape p’ is of this form. We shall show that the

(uUw)(i,j) = {

action of S(,, ,,) on standard A-polytabloids is compatible with this factoriza-
tion. We require the following lemma and proposition, which are illustrated
in Example 1.1.9.
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In the following lemma, the tableau u and v are as described on the
previous page.

LEMMA 1.1.7. Let p be a subpartition of A of size m. Let u be a column
standard p-tableau and let v be a \/p-tableau. Let (i,7) € [u] be a box such
that

m > u(i,j) > u(i,j+1).

Let r = u;- so (r,7) is the lowest box in column j of u, and define

X ={u(i,j),u@+1,5),...,u(r,j),v(r+1,7),...},
Y={ . u(t—1,j+1),u(i,j+1)},
X*={u(t,j),u(@+1,5),...,u(r,j)}

Let Cx»y ={0 € Cxy :0x =z for allx € X\X*}. Then

0=e(uUv)+ Z sgn(o™)o*e(uUv) + Z sgn(o)oe(uUw)

U*ECX*,Y UECX,Y\C)(*,Y
where

(i) for each o*, we have o*e(uUv) = e(c*uUv) and o*u > u;
(ii) for each o, oe(uUw) is a Z-linear combination of polytabloids e(s)
for standard tableauz s of m-shape V' where V' 1> p'.

PROOF. Since

Gxy =1+ Z sgn(o*)o* + Z sgn(o)o,

O'*ECX*’Y UGCX,Y\CX*,Y

the displayed equation follows from (1.4). Since Cx+y C Sg,. my, (1)
follows from the observation after the definition of the > order. Take
0 € Cxy\Cx+y and let w = o(uUwv). Since o involves a transposition
(z,y) with z > m > y, the statistic k£ in the proof of Proposition 1.1.5
is non-zero. Hence the m-shape of e(w) is § for some composition § with
dr> /. The statement of Proposition 1.1.5 now implies that e(w) is a Z-linear
combination of standard polytabloids e(s) for s of m-shape v/ where v/ > .
Hence v/ > 1/, as required for (ii). O

PROPOSITION 1.1.8. Let p be a subpartition of A of size m. Let u be a
column standard p-tableau and let t be a standard \/u-tableau. If e(u) =

Y- gage(S) where the sum is over all standard p-tableaux S and as € Z for
each S then

e(uUt) € Zase(SUt) + Z Ve
S

v/ >/

PrOOF. If u is standard the result is obvious. If not, there exists a
box (i,j) € [p] such that m > w(i,j) > u(i 4+ 1,7). Let X* and Y be as
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in Lemma 1.1.7. By Lemma 1.1.7(ii) we have
e(uUt) € — Z sgn(oc®)o*e(uUt) + Z Ve
o*€Cxx y v/ >/

Using Lemma 1.1.7(i), the result now follows by induction on the > order.
U

We also need the analogous lemma in which u(i,j) > wu(i,j + 1) >
m, Y* = {u(r,j +1),...,u(i,j + 1)} where now r = “;‘H + 1, and the
relevant sets of coset representatives are C'x y» and Cxy \Cx y+. It implies
the analogous proposition in which e(t Uv) is written as a sum of standard
polytabloids, where ¢ is a standard p-tableau and v is a column standard
A/p-tableau. The proofs are entirely analogous.

ExaAMPLE 1.1.9. Let u, t and u Ut be the skew tableaux shown below.

112 5 11215
u:43,t: 7, uUt=4|3|7].
[6]8] 6]8
As4 = (uUt)(2,1) > (uUt)(2,2) = 3, we define X = {4,6} and Y = {2, 3}.
The relation Gx ye(uUt) = 0 gives

1/3]5 11215
e(uUt)=—el| [214|7|]| +el| |3]4]7
6|8 6|8

1/3]5 11215 114|5

+el |2|6|7]| —¢e||3|6|7]]—€e]|2]|6|7

4|8 4(8 3|8

In the notation of Lemma 1.1.7, we have X* = {4}. The standard poly-
tabloids in the top and bottom lines come from the permutations in Cx«y
and Cx y\Cx+ y, respectively. Furthermore, the 4-shape of each polytabloid
in the top line is (2,2) and in the bottom line is (3,1). Therefore

11315 11215
e(uut)e —el [274]7] | +el [3[a]7] | +VEGD,
6|8 6|8

as expected from Proposition 1.1.8.

ProOOF OoF THEOREM 1.1.4. We start by proving that there exists a
ZS ;,n)-module isomorphism
Ve
2 VE
By Corollary 1.1.6, the module on the left-hand side has a Z-basis given by

4 SH X Sk,

the set of standard A-tableaux of m-shape p/. Therefore the linear extension
¢ of the map ¢e(sUt) = e(s) ® e(t), where s Ut is a standard A-tableau of
m-shape p/, is a well-defined Z-linear morphism. Since the tensors e(s)®e(t)
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for s a standard p-tableau and ¢ a standard A/u-tableau form a basis for
S X SME ¢ is a Z-linear isomorphism.

To show that ¢ is a ZS,, ,,)-module homomorphism, it suffices to con-
sider the actions of Sy ;1 and Sgp,q1,.. m4n) separately. Let m € Spy
and let s Ut be a standard A-tableau. Observe that ﬂm) = 7ms Ut and
Er(sut) = Ems- Suppose that e(ms) = ) g age(S) where the sum is over all
standard p-tableaux S. On the one hand

m(e(s) ®e(t)) = —€ns Z age(S) ® e(t).
S
On the other hand, by Proposition 1.1.8 we have
me(sUt) € —ens Z age(SUt) + Z vy
S VIDM/
The argument is entirely analogous for the action of Sy, 41, min}-

We now write > for the lexicographic order of compositions. We define
V2t in a similar way to VE# | replacing the condition § > z/ with § > 4/
Since v/ > 1/ implies that v/ > 4/, replacing every instance of > with > in
Proposition 1.1.5 and Corollary 1.1.6 implies that V=#' is also a ZS (1 n)-

module. Moreover, V=#" has a Z-basis given by the standard A-tableaux of

m-shape v/ such that v/ > p/, and so there is an isomorphism
V=H Ve
. — = SR S,
ZV/>H/ Vzr ZI/IDH/ V=

Therefore the modules V=#| where p ranges over all subpartitions of A of

size m, give the required filtration. O

COROLLARY 1.1.10. Let p € Syqn be an n-cycle and let m be a permu-
tation of the remaining m numbers. Then

XMrp) =D xH(m)x M (p)
I

where the sum is over all subpartitions p of A of size m.

PRroOOF. By taking a suitable conjugate of mp we may assume that © €
S(1,..my and p € Syi1, . min)- Taking characters in Theorem 1.1.4 gives

L5 A =) xtxxMe
(1.5) s Z;; X" X X
where the sum is over all subpartitions u of A of size m. Now evaluate both
sides at mp. O
The following useful lemma follows from Corollary 1.1.10.

LEMMA 1.1.11. Let A be a partition of m +n and let i be a subpartition
of \ of size m. If 1 is a character of Sy, then

O Y, = <XAvXu X ¢T§:+x7§n>sm+n'
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PRrROOF. By Frobenius reciprocity and (1.5),
O X X T ) = O [ s X! X )

= O X <M Xt x )

where the sum runs over all partitions v of m such that v C A\. The only
non-zero summand is (x* x xM#, x* x 1) = (xM" 1)). O

1.1.4. Pieri’s rule and Young’s rule. In this section we provide
module theoretic proofs of the well-known Pieri and Young rules. These
follow as a consequence of Theorem 1.1.4.

We require the following definition. A skew partition A\/u is a vertical
(resp. horizontal) strip if [\/u] has at most one box in each row (resp. col-
umn).

THEOREM 1.1.12 (Young’s rule). Let A be a partition of m +n. If u is
a subpartition of A of size m then

1 if A is a horizontal strip

<X/\ XM % 1Sn> =
lSmxSn’ 0 otherwise.

PRrROOF. By Maschke’s Theorem and (1.5) it suffices to prove that the
multiplicity of 1g, as a direct summand of Sé/ #'is 1 if A/u has no boxes
in the same column and otherwise 0. For this we use the corresponding
idempotent E = 5> o 7€ CS,.

Suppose that A\/u contains boxes (i, 7), (i+1, j) in the same column. If ¢
is a A/p-tableau then (14 (x,y))e(t) = 0 where z = (i, j) and y = t(i+1, j).
Since E = L (1 + (z,y)) Y., 7, where the sum is over a set of right coset
representatives for the cosets of ((x,y)) in Sy, it follows that ESM# = 0 as
required.

Suppose that A/p has no two boxes in the same column. Let ¢ be a
A/p-tableau. By assumption the column stabiliser C'(¢) is trivial, and so the
tabloid {t} equals the polytabloid e(t). It follows that Mé/ M= Sé/ " and so
Sé/ #is a transitive permutation module. Therefore

A
(5" 15,0 =1,
as required. O

ExaMPLE 1.1.13. The unique submodule of Sg”l)/(l) affording the char-

acter 1g, is spanned by {t} + {(2,3)t} + {(1 2 3)t}, where

t:E 13] (123)t:E2.

Using Lemma 1.1.11 we immediately obtain the more usual statement of

Y=gy

Young’s rule that if v is a partition of n then (x” x1g,) Tg:;%é: > X where

the sum is over all partitions k of n + ¢ such that /v is a horizontal strip.
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Multiplying by the sign character then gives Pieri’s rule: (x” x X(IZ) ) Tg:;"sez

> X" where the sum is over all partitions x of n + £ such that x/v is a
vertical strip.

REMARK 1.1.14. A similarly explicit proof of Pieri’s rule can be given,
using a similar argument to the proof of Theorem 1.1.12. To reduce to
vertical strips, observe that if ¢ is a standard \/p-tableau with boxes (i, j)
and (i,7 + 1) then (1 — (z,y)){t} = 0 where z = ¢(i,j) and y = t(4,j + 1).

1.2. Wreath products and their representations

In this section we describe the representation theory of FG1.S,,, where G
is a finite group and F' is an algebraically closed field. Define the imprimitive
wreath product G1.S,, to be the semidirect product G™ % .S,,, where the action
of S, on G" is given by place permutation. Explicitly the multiplication in
G Sy, is given by:

(9155 gn;0) (M1, s hns T) = (g1ho-1(1), - - -5 Gnho—1(n); OT),

where g;, h; € Gforalll <i <nando,7 € S,. We have that B,, := G"x{1}
is a subgroup of G .S,,. We refer to B,, as the base group, and we remark
that B, is a normal subgroup in G ! S,,. The quotient of G S,, by B, is
isomorphic to 5,. As is usual with semidirect products, the quotient group
Sy, can be realised as a subgroup of G1.5,,. Indeed we have that the subgroup

T, :=((1g,...,1g;0) : 0 € Sy)
of G S, is isomorphic to S,,, and we refer to T}, as the top group.

DEFINITION. Let G be a finite group, and let K < S,,. Define the sub-
group G K of G S5, as follows:

G!K=G"x K.

v = (vq,... ition re i vious 1 r-
Given v v1,...,) a composition of n, there is an obvious isomo
phism

t
G1S, = [G1S.,
i=1

1.2.1. Conjugacy in the wreath product. In this section we de-
scribe the conjugacy classes of G1.S,,. We follow §4.2 in [35].

DEFINITION. Given g := (g1,...,9n;0) € GUSp, let v := (a1 ag...ay)
be a cycle in o, where a; = minj<;<i{a;}. Define the cycle product g, € G
as follows:
9Gv = Yay, - - - YasY9a; -
We refer to g, as the cycle product of g corresponding to v, and we say that
gy has length k.
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DEFINITION. Let C!,...,C? denote the conjugacy classes of G. Given
(915---39n;0) € GUS,, denote by a;x((g1,-..,9n;0)) the number of cycle
products of (g1, ..., gn;0) that have length k£ and lie in the conjugacy class
C* of G. Furthermore, define the cycle product matriz of (g1,...,gn;0) as
follows:

a((g1;- -5 9n;0)) = (air((91; - -+ gn; 0)))-

The following theorem describes the conjugacy classes of G 1.5,.

THEOREM 1.2.1. [35, Theorem 4.2.8] Two elements in G1.S,, are con-
jugate if and only if they have the same cycle product matriz.

REMARK 1.2.2. It follows from Theorem 1.2.1 that the G.S,-conjugacy
classes are in bijection with the elements of P!(n). Indeed given g :=
(915---,9n;0) € GU Sy, let 04y, ...,04, be all the disjoint cycles of o such
that the cycle product 9o, is in C*. Let A’ denote the cycle type of the per-
mutation oy, ...0;, for all i. Then the multi-partition (Al,... \Y) € Pt(n)
labels the conjugacy class of G S,, containing g.

We also prove the following useful lemma, which considers conjugating
subgroups of the top group. We prove the result for semidirect products in

general.
LEMMA 1.2.3. Let G and H be finite groups, and let K < H. Then

NGNH(K) = Cg(K) A NH(K),
Conn(K) = Ca(K) x Cy(K).

PRrROOF. We prove that Ngwg(K) = Co(K) X Ng(K), as the proof for
Caxm(K) is entirely similar. Given g € G and h € H, we write "g for the
image of g under the action of h.

It is clear that Ngyw g (K) contains Cq (K )X Ny (K). Fix elements (g; h) €
Newr(K) and k € K. Define h = hkh™!, and so

(1.6) (GG g5 = (9(hg Y h).

By assumption, (g(i‘gfl); h) € K, and so h € Ny (K).
We now define the group homomorphism ¢ : Ngm(K) — Ng(K) by
(g; h) — h. Therefore ker(9) = Ng(K), and applying (1.6) with h = 1 gives

(g: 1) (13 k) (g7 1) = (9(*g ) k).

If g(Fg~!) = 1, then g € Cg(K). Therefore ker(d) = C(K). As 9 is clearly
surjective, the first isomorphism theorem gives that

[Newr(K)| = |Ca(K)||Nu (K)|. .
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1.2.2. The irreducible representations of G .5,. We remind the
reader that F' is an algebraically closed field. We follow §4.3 in [35].

DEFINITION. Let V be an F'G-module. Then define the F'GS,,-module
V& to be the vector space V&, on which G S,, acts as follows:

(9155 Gn;0) (V1 ® ... @ V) = G1V,-1(1) @ - - - @ GnVp—1()-

We then extend this action linearly to F'G1.S,,. Moreover, if 9 is the character
of V, we write 9*" for the character of V&".

By restricting the action of V& o the base group, we see that Ve ig
an irreducible F'G ! S,-module if and only if V' is an irreducible FG-module.
We can also further extend this module to an irreducible module of G .S,,.
In order to do this we require the following definition using the language of
representations.

DEFINITION. Let p be an F'S,-representation. Define Infgis" p to be the
FG ! Sy,-representation such that

(IS p) (g1, - - - gni o) = p(0).

If W is a module corresponding to p, then we write InfgiS” W for the module

corresponding to Infgis" p. We refer to Infgi‘g” W as the inflation of W from
Sp to GU.S,,.

It is an elementary fact that InfgiS" W is an irreducible F'GS,-module
if and only if W is an irreducible F'S,,-module. We now complete the exten-
sion procedure mentioned above by considering the inner tensor product of
modules V& Infg:g” W. Generally the inner tensor product of irreducible
modules is not irreducible, however the following lemma shows that this
module is.

LEMMA 1.2.4. Let 9 € Irr(G), and let X be a partition of n. Then
9" Infgis" X € Irr(G1 Sy).
Proor. By Frobenius reciprocity
(0", P Inf G ) =3 (1),
It follows from Theorem 1.1.2 and by counting dimensions that

(1.7) PP = 5T AP IS A

AFn
Using (1.7), Frobenius reciprocity and Theorem 1.1.2 once more shows that

TG e = YW =l
AFn
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This implies that

ZX ﬂXnInfGZSn A ZX ﬂxnIHfG ,u,>’
AFn pukn

and so
1 ifA=p

O
0 otherwise.

(9" Infgf" Y, 9% Infgis” X" = {
We have determined certain irreducible F'G ! S,-modules, however this
list is by no means complete. Nevertheless, using the modules that we have
introduced, we can completely describe the irreducible F'G.S,-modules. A
fundamental result in doing this will be Proposition 1.2.5 below, which plays
a central part in the Clifford theory of group representations. We require
the following preliminaries.
Recall that P!(n) denotes the set of multi-partitions of n with length
equal to t.

DEFINITION. Let G be a finite group, and let
{My, My, ..., M}

be a complete set of representatives of the isomorphism classes of irreducible
FG-modules. Given (A1,...,\) € Pt(n) define

®nz GVS,
— t n
My e, = (R, ) Toss

.....

where A\’ is a partition of n; for each i € {1, coth

We now give the background from Clifford theory required to show that
these modules are irreducible. Given K < G, let M be an F'K-module. We
define the inertial group of M to be the subgroup of G consisting of all g € G
such that IM = M.

PROPOSITION 1.2.5. [3, Proposition 3.13.2] Let T' be the inertial group
of M. Suppose that M is indecomposable, and that

Ml =M@ oM,

where each M; is an indecomposable FT-module. Then MZTg 18 indecom-
posable, and MZTg s M]T(T; if and only if M; = M;.

The following theorem completely describes the irreducible F'G { .Sy-
modules.

THEOREM 1.2.6. The set
{M)\lw")\t . ()\1, ey )\t) € Pt(n)}

is a complete set of pairwise non-isomorphic irreducible FG ! .Sy,-modules.
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Proor. It follows from Lemma 1.2.4 and Proposition 1.2.5 that the
modules in this set are irreducible and pairwise non-isomorphic. The result
now follows from Remark 1.2.2. O

1.3. Modular representation theory

In §4 and §5 we study the modular representation theories of F'S,, and
FCN S, respectively. In this section we give the background on the modular
representation theory of finite groups that we use. We start by stating the
following result, which we refer to the Krull-Schmidt Theorem throughout.

THEOREM 1.3.1. [1, §4, Theorem 3| Let F be a field, and let M be an
FG-module such that

M=U® ---®U,
M=Vi& &V,

are two decompositions of M into the direct sum of indecomposable modules.
Then r = s, and, after a suitable renumbering, U; = V; for all i.

1.3.1. Induced modules and relative projectivity. In this section
we state several results from [1] that will be used throughout. A detailed
account on induced modules can be found in [1, §8] and on relative projec-
tivity in [1, §9]. The results in this section highlight that induced modules
are both useful tools in the representation theory of finite groups and are
interesting objects of study in their own right.

A notable case of induced modules is when the subgroup we induce from
is the trivial subgroup. Then the induced module F T? is isomorphic to
the module F'G, where the action is given by the linear extension of the
multiplication of G on itself. An F'G-module that is isomorphic to a direct
sum of r copies of F'G for some r € N is known as a free module of rank r.

We state the following lemma, which gives a very useful characterisation
of induced modules.

LEMMA 1.3.2. Given H < G, let X be an FH-module, and let U be an
FG-module. Suppose that U is generated by X. Then U = XTfI if and only
if dimp U =[G : H|dimp X.

We now define the vertex of an indecomposable module, which will be
the central object of study in §5.

DEFINITION. Let U be an indecomposable F'G-module, and let H < G.
We say that U has vertex H if H is minimal, with respect to inclusion, such
that U is a summand of VTfI, for some indecomposable F'H-module V.

We note that in this definition, we are implicitly assuming that vertices
exist. It is not obvious that this should be true, however Theorem 1.3.3 in
this section shows that it is.
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Before we state this result, we introduce the following special class of
modules, known as projective modules. Suppose that the indecomposable
FG-module M has vertex equal to the trivial subgroup. It follows from the
definition of a vertex that M is a summand of F 1§ . We have seen that
F T? is isomorphic to the free module F'G, and so M is a summand of a
free module. Generally we say that the F'G-module V' is projective if V' is a
summand of a free module of rank r for some r € N. As we will see in §1.3.4,
projective modules are useful objects in relating the modular and ordinary
representation theories of finite groups.

Even more generally, if the indecomposable FG-module U is a summand
of V T%, for some indecomposable F'H-module V, then we say that U is
relatively H-projective. Therefore we can restate the definition of the vertex
of U as the minimal subgroup H of G such that U is relatively H-projective.
In this context we see that vertices of indecomposable modules are of interest
as they provide a measure of ‘how far’ a module is from being projective.

THEOREM 1.3.3. Let U be an indecomposable FG-module, and let F' be
a field of positive characteristic p. Then there exists a p-subgroup P of G
minimal such that U is a summand of STg, for some indecomposable F P-
module S. Moreover, P is unique up to conjugacy in G, and S is unique up
to conjugacy in Ng(P).

We refer to the F'P-module S in the statement of Theorem 1.3.3 as the
source of U. In the case that S is the trivial F'P-module, we say that U is a
trivial source module. We have the following useful result on trivial source
modules.

LEMMA 1.3.4. Let U be an indecomposable FG-module. Then U is a
trivial source module if and only if U is a summand of FT%, for some
subgroup H of G.

It follows from this lemma that trivial source modules are the precisely
summands of permutation modules.

In general, it is difficult to determine the vertex of an indecomposable
module. In the case of trivial source modules, there is an algorithmic de-
scription for determining their vertices. We give details of this method in
§1.3.3 below.

We end this section by stating the following lemma, which gives an

example of when we can immediately determine the vertex of a module.

LEMMA 1.3.5. Let F be a field of characteristic p > 0. Given a p-group
P, let Q < P. Then FTS 1s an indecomposable F'P-module with a verter
equal to P.
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1.3.2. Blocks of the group algebra. Let G be a finite group, and let
F be any field. Unless stated otherwise, the definitions and results in this
section are as given in [1, §13].
The group algebra FG can be written uniquely as a sum of minimal
two-sided ideals
FG=B ® - @B,

and each such B; is referred to as a block of FG. We say that an F'G-module
M lies in the block B; if there exists a unique 1 < ¢ < ¢ such that B;M = M,
and B; M = 0 for all j # i. We have the following result.

LEMMA 1.3.6. Let {Bi,...,B;} be the blocks of FG. If M is an FG-
module, then M has a unique decomposition

such that M; lies in the block B;.

It follows immediately from Lemma 1.3.6 that every indecomposable
FG-module lies in some block B;.

An alternative way to define blocks is by considering F'G as an F[G x G|-
module, by extending the action (g1, 92)g := 91995 ! linearly. The blocks of
F'G are therefore precisely the indecomposable summands of F'G under this
action.

It seems difficult to give a description of the blocks of F'G in general. In
the case of the symmetric group, there is a beautiful combinatorial descrip-
tion of the blocks of F'S,,. This result is known as Nakayama’s conjecture,
which we state in §1.3.6. When F'is a field of characteristic p # 2, the blocks
of the group algebra F'Cs? .S, have a description that closely resembles that
of F'S,,. We state and prove the characterisation of the blocks of F'C5 .5,
in §1.4.4.

It is sometimes useful to relate the blocks of F'G to the blocks of F H,
where H < GG. We do this using the following definition.

DEFINITION. Given H < G, let B a block of GG, and let b be a block of
H. We say that the block B corresponds to b if b is a summand of B | g,
and B is the unique block of F'G with this property. In this case, we write
v¢ = B.

1.3.3. The Brauer morphism. Throughout this section let G be a
finite group, and let F' be a field of characteristic p > 0. Unless stated
otherwise, the definitions and results in this section are as in [8].

Let H < G, and let M be an FG-module. Define M to be the set of
vectors in M fixed by H. Given L < H < G, we define the map

™. MF - MH
T = )9,
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where the sum runs over a transversal of the cosets of L in H.
When P is a p-subgroup of GG, we define

M(P)=M"/ > TrHM©.
Q<P

It is easy to prove that M? is an FNg(P)-module, on which P acts triv-
ially. The same is true for 3 5 _p Tr}Q)M Q and therefore also for M(P). The
quotient map M¥ ~ M(P), is known as the Brauer morphism, and this
map is an F Ng(P)-module homomorphism.

The module M is a p-permutation module if for all p-subgroups of G,
there exists an F-basis of M that is permuted by P. If B is such a basis,
then we say that B is a p-permutation basis of M with respect to P.

LEMMA 1.3.7. The module M is a p-permutation module if and only if
there exists a subgroup H of G such that M is a summand of FTg

It follows that p-permutation modules are the familiar trivial source
modules. We state the following proposition, which allows us to identify
p-permutation modules using existing p-permutation modules.

PROPOSITION 1.3.8.

(1) Suppose that M and N are two p-permutation F'G-modules. Then
the modules M & N and M ® N are both p-permutation modules

(2) Given H < G, if M (resp. N) is a p-permutation FG-module
(resp. FH-module), then M |$ (resp. N 1% ) is a p-permutation
FH-module (resp. FG-module).

(8) Any summand of a p-permutation module is a p-permutation mod-
ule.

We now assume that M is a p-permutation module, and that P is a
p-subgroup of G. The following lemmas show how the Brauer morphism
can be used to determine the vertices of an indecomposable p-permutation
module.

LEMMA 1.3.9. Let M be an indecomposable p-permutation FG-module.

Then M has a vertex equal to P if and only if P is a maximal p-subgroup
of G such that M(P) # 0.

LEMMA 1.3.10. Let B be a p-permutation basis of M with respect to P,
and let BY be the set of points in B that are fized by P. Then BY is a basis

of M(P).

It follows that P is a vertex of M if there exists a vector in a p-
permutation basis of M (with respect to P) that has non-zero P-fixed points,
and P is maximal with this property.
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LEMMA 1.3.11. [24, Lemma 4.7] Let R< P < G, and let K = Ng(R).
Then M(R) is a p-permutation F K-module. Moreover, M(P) = M(R)(P),
where the isomorphism is of F N (P)-modules.

We state the following lemma from [65], which relates the block of FFG
to the Brauer morphism.

LEMMA 1.3.12. [65, Lemma 7.4] Suppose that M lies in the block B of
G. If M(P) has a summand lying in the block b of Ng(P), then b = B.

1.3.4. Relating ordinary and modular representation theory.
In this section we consider how we can use results in ordinary representation
theory to determine information on the modular representation theory of
finite groups. Unless stated otherwise, the background that we give is a
special case of the results in [63, §9.4].

Let F;, denote the finite field with p elements, and let Z,, denote the ring
of p-adic integers. With Q, defined to be the field of p-adic numbers, we
have that the triple (Q,, Z,,F),) is an example of a p-modular system. Note
that the definitions in the next paragraph can be generalised to an arbitrary
p-modular system (O, R, F).

Given a Z,G-module U, we define the reduction modulo p of U to be the
F,G-module equal to

UFP = Fp ®Zp U.

We remark that this notation is consistent with the notations Mé‘g " and

S;lﬁ“ given in §1.1.1. If V' is an FpG-module such that V' = Ug, for some
Z,G-module U, then we say that V' can be lifted to U. Note that it is not
always possible for an F,G-module to be lifted to a Z,G-module. Moreover,
if a module can be lifted then the lift may not be unique.

In §5 we consider the lifts of certain trivial source modules. The following
theorem from [3] shows that trivial source modules can always be lifted;
moreover, the lift of a trivial source module is unique up to isomorphism.
We refer to this result as Scott’s Lifting Theorem.

THEOREM 1.3.13. [3, Corollary 3.11.4] Every trivial source F,G-module
lifts to a trivial source Z,G-module, unique up to isomorphism.

It is an immediate consequence of Scott’s Lifting Theorem that projec-
tive F,G-modules can be lifted uniquely to Z,G-modules. We can use the lift
of a projective module to understand the relationship between Z,G-modules
and F,G-modules.

DEFINITION. Given a finite group G, we say that a field F' is a splitting
field for G if every irreducible FG-module S is such that E ®p S is also an
irreducible module for every field extension E of F.
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EXAMPLE 1.3.14. By the remark immediately after Theorem 1.1.2, the
rational field Q is a splitting field for S,, for all n € N. As stated in the
proof of [33, Theorem 11.5], it follows from [33, Theorem 11.1] that in fact
every field is a splitting field for .S,,.

DEFINITION. Suppose that Q, and F), are splitting fields for G. Let S be
an irreducible Q,G-module, and let D be an irreducible F,G-module. The
decomposition number dgp is equal to the number of composition factors of
Sy, isomorphic to D.

Note that it follows from the Jordan—Holder theorem that decomposition
numbers are well-defined. Determining the decomposition numbers of .S, is
a fundamental open problem. Theorem 1.3.16 below, which we refer to as
Brauer reciprocity, is a tool that enables us to determine decomposition
numbers of finite groups using projective modules. In order to state this
result, we need the following theorem from [1].

THEOREM 1.3.15. [1, §5, Theorem 3] Let G be a finite group, and let F' be
a field. There is a one-to-one correspondence between isomorphism classes
of projective indecomposable modules and isomorphism classes of irreducible

FG-modules given by associating the indecomposable projective F G-module
P to the irreducible module P/ rad P.

THEOREM 1.3.16. [63, Proposition 9.5.1] Suppose that Qp and F, are
splitting fields for G. Write Pp for the projective indecomposable F,G-
module corresponding to the irreducible F,G-module D. Let Pp denote the
Q,G-module that is the lift of Pp. Then

Pp = @ dspsS,
s

where the sum runs over all irreducible Q,G-modules S.

1.3.5. Binomial coefficients modulo p. Throughout this section fix
a prime p, and fix a,b € Ny such that b < a. Let

a=ap’ +aip' + -+ ap’
b=bop® 4+ bip' 4 - + byp'

be the p-adic expansions of a and b, respectively. In §3 and §4 we require the
value of the binomial coefficient (‘g) modulo p. We can compute this using
the p-adic expansions of a and b via the following elementary lemma.

LEMMA 1.3.17 (Lucas’ Theorem). There is a congruence of binomial

WRGEE

coefficients
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We refer to the product HZ:O (‘;Z) in the statement of Lucas’ Theorem
as the p-adic expansion of (Z) Observe that this p-adic expansion is well-
defined since the p-adic expansions of ¢ and b are unique.

Lemma 1.3.18 uses Lucas’ Theorem to give a necessary and sufficient
condition for (Z) to be non-zero modulo p. We require the following notation.

Consider the following representation of the p-ary addition of @ — b and

b:
a—>b|(a—b)y (a—=b)y ... (a=b)y ... (a—0b)
b bo by by, by ,
a‘ agp al oy, a¢

where (a—b) = (a—b)op® + (a—b)1p' +- - -+ (a—b)p' is the p-adic expansion
of a — b. Given 0 < u < t, define ¢, € {0,1,2,...,p — 1} to be such that

(a - b)u + by +Ccu—1 = ay + pcy,

so that ¢, is the carry leaving column u in this addition. We say that the
p-ary addition of a — b and b is carry free if ¢, =0 for all 0 < u < ¢.

LEMMA 1.3.18. The binomial coefficient (Z) is non-zero modulo p if and
only if the p-ary addition of a — b and b is carry free.

PRrROOF. By definition of the carries ¢, the p-ary addition of a — b and
b is carry free if and only if (a — b),, + b, = a, for all 0 < u < t. This occurs
if and only if b, < a,, for all 0 < u < ¢, since 0 < (a — b),, < p for all such u.
The result now follows by applying Lucas’ Theorem. U

COROLLARY 1.3.19. Fix a € Ny such that 0 < a < 2™. The binomial
coefficient (2:) is odd if and only if either a =0, or a = 2™.

PRrROOF. The binomial coefficient is odd if and only if it is non-zero
modulo 2. Now apply Lemma 1.3.18. U

1.3.6. The modular representation theory of S,,. In this section
we assume that F' is a field of positive characteristic p.

Let v be a partition of n. Define (—, —) to be the unique bilinear form
on MY such that

1 if {t1} = {t2}
0 otherwise,

{t1} {t2}) = {

where t; and 9 are v-tableaux.
We then have the following result, known as James’ Submodule theorem.

THEOREM 1.3.20. [33, Theorem 4.8] If U is a submodule of MY, then
either S C U or U C (S¥)*.

We now describe the irreducible F'S,,-modules. We require the following
definition.
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FIGURE 1.1. The two ways in which we can remove border
strips of size 5 from the Young diagram of (4,4,4). In both
cases we first remove the thick red strip followed by the black
strip.

DEFINITION. We say that a partition v is p-regular if there does not
exist ¢ € N such that

Vil = Viga =+ = Vjpp.
For example the partition (5,1,1) of 7 is p-regular if and only if p > 3.

THEOREM 1.3.21. [33, Theorems 4.9, 11.5] Let v be a p-regular partition
of n. Then the submodule S* N (S¥)* is the unique mazimal submodule of
SY. and so DV := S¥/SY N (S¥)* is an irreducible FS,-module. Moreover,
the set

{D" : v is a p-regular partition of n}

is a complete set of pairwise non-isomorphic irreducible F'S,-modules.

Given partitions A and v of n such that v is a p-regular partition, we
specialise the definition in §1.3.4 and write dy,, for the decomposition number
of S, equal to the number of composition factors of S]_f:p that are isomorphic
to D¥.

We now turn to the blocks of F'S,, which are given by Nakayama’s
conjecture. In order to state this result, we require the following definition.

DEFINITION. Given a partition A of n, the p-core of A is the partition
whose Young diagram is obtained by repeatedly removing border strips of
size p from [\].

We remark that implicit in the definition of a p-core is that it is unique,
and so it is independent from the order in which the border strips are re-
moved from [A]. This is proved in [35, Theorem 2.7.16] using the abacus
notation for partitions (see [35, §2.7]).

EXAMPLE 1.3.22. We determine the 5-core of (4,4,4). As shown in
Figure 1.1 above we can remove two 5-strips (highlighted in red), namely
(4,4,4)/(4,3) and (4,4,4)/(3,3,1) from [(4,4,4)]. In the first case removing
the strip (4, 3)/(2) from [(4, 3)] yields the 5-core (2). Similarly, in the second
case removing the strip (3,3,1)/(2) from [(3,3,1)] also yields the 5-core (2),
as claimed.
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THEOREM 1.3.23 (Nakayama’s conjecture). The blocks of F'S, are la-
belled by pairs (vy,v) such that 7 is a p-core partition, and |y| + vp = n.
Moreover, the F'S,-module S lies in the block labelled by the p-core of \.

We remark that Nakayama’s conjecture was first proved by Brauer and
Robinson in [5] and [58]. In [56] O’Donovan gives an accessible proof of the
result using the Brauer morphism (see §1.3.3 above) for p € {2, 3}.

1.4. The hyperoctahedral group C31.5,

In this section we specialise the background given in §1.2 and §1.3 to
the group Cs?.S,. We start by giving the presentation of Cs S, that we
use in §5 and §6, which we have briefly encountered in §1. Write Sy, for the
symmetric group Sym({1,2,...,n,1,...,7}), and define C31 S,, to be the
subgroup of So, generated by the set

(1D),(12)(12),(12...n)(I2...7))}.

In this case the notation in §1.2 becomes

T,=((12)(12),(12...0)12...7)).

1.4.1. Subgroups of C30S,. Given o € Sym({1,2,...,n}), define the
permutation

o € Sym({1,...,m})

to be such that () = o(z). Also write {(H) to be the subgroup of T,
consisting precisely of the permutations oo such that ¢ € H, where H <

Sym({1,2,...,n}).
Given h € (3 5,, we write h for the image of h under the natural
surjection C9! S,, = Sy,. Then for Q) < (515, define

Q\:{ﬁ:hEQ}.

Also given X C {1,2,...,n}, we write C2!Sx for the subgroup of C25,
generated by the set

{(zT):ze X} U{(zy)(TTY): 2,y € X,z #y}.

We now consider p-subgroups of C50.5,, where p is an odd-prime. In this
case the cardinality of a Sylow p-subgroup of C21.5, equals the cardinality
of a Sylow p-subgroup of S,. It follows that C51.S, has a Sylow p-subgroup
contained in 7}, and so any p-subgroup of C3 .S, has a conjugate in T,.
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1.4.2. Conjugacy in the hyperoctahedral group. We have de-
scribed the conjugacy classes of G @S, for a finite group G in Theorem
1.2.1. In Lemma 1.4.2 we see that the conjugacy classes of C51 5, afford a
simpler description than in the general case. Nevertheless, we use Theorem
1.2.1 to prove the result in this special case.

Given i € {1,2,...,n}, we define i = i. Given g € C31.8,, we say that ¢
is a positive r-cycle if

g=(a1,as,...,a.)(a1,az,...,a,),
and that g is a negative r-cycle if

g = (a1,a9,...,a,,a1,a3,...,0,),
where ay,...,a, € {1,1,...,n,7}.

EXAMPLE 1.4.1. Let n = 1. The identity permutation (1)(1) is a positive
1-cycle, and the permutation (1 1) is a negative 1-cycle.

We now have the following lemma, which describes the conjugacy classes
of Co1 S,

LEMMA 1.4.2. Every element of C31Sy, can be expressed uniquely, up to
the order of the factors, as a product of disjoint positive and negative cycles.
Moreover, two elements in C2 1Sy, are conjugate if and only if they have the
same cycle type.

ProoF. Fix g € (91 S, and write g = bt, for some unique b € B, and
t € T,,. Observe that here b and ¢ are unique by the definition of Cy S, as
the semidirect product B,, x T,,. Let

v:=_(ay...a)(ay...ax)

be a cycle in t. Define J(v) to be the set of j € {a1,...,a} such that (a; @;)
is a factor of b, and let
c= ] (a; @)

JEJ(V)

For the first statement, since cv is an element of the symmetric group

on the set
{ai,aq,...,ax,a1,03,...,a5},

it has a unique factorisation into disjoint cycles. Moreover, it follows that
this factorisation is into either positive or a negative cycles in Cy ¢ .S, since
o(i) = (o(i)) for all 1 < i < n.

For the second statement of the lemma, define m(k) to be the cardinality

of J(v). Also define
m(k)

¢ = 1 (a; @)

Jj=1
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Since ¢ and ¢ are conjugate in C5? S,, we determine the cycle type of c'v.
We now distinguish two cases, determined by the parity of m(k).
Case (1). Suppose that m(k) is odd. Then

v = (a1 a1)(ag @2)... (am(k) W)(@l as...a) (a1 3. .. T)

= (a1 az as ... (k) Om(k)+1--- 0k Q1 G2 Q3 ... Qpp(k) Om(k)+1 - - .ak),

which is a negative k-cycle.
Case (2). Suppose that m(k) is even. Then

dv = (a1 a1)(az @)...(am(k) W)(al as...ap)(ay az...ay)
= (a1 @2 a3 ... Ap(k) Tm(k)+1 - - - ) (A1 Q2 T3 - - Ay (k) Cn(k)41 - - - Tk )

which is a positive k-cycle.

It follows that the cycle product matrix of g determines its cycle type.
Furthermore, since the expression of each positive (resp. negative) cycle as
an element cv, for some ¢ € B, and v € T,, is unique, we have that the
cycle type of cv determines its cycle product. O

Given g € C21 S, the number of positive (resp. negative) r-cycles of
g € C31 S, is denoted by p, (resp. n,), and we say that g has cycle type
((pr), (ny))1<r<n. We then have the following lemma.

LEMMA 1.4.3. Let g € C3 Sy, have cycle type ((pr), (nr))1<r<n. Then
the Cy ! Sp-conjugacy class containing g has order equal to
2™n!
H?:1(2T)pT+nT (pr!)(ns!) '
PRrROOF. Let g € C21.5,, have cycle type ((pr), (nr))1<r<n. We count the
number of possible ways to arrange the letters

1,2,...,n,1,2,...,m

in g and obtain a distinct permutation in Cs?.S,,. Since g € C31.5,,, we have
g(i) = g(i) for all 1 < i < n, and so once we have chosen the position of i in
the unique expression of g as a product of disjoint cycles, then the position
of i in g is determined. The analogous statement holds if we first choose the
position of 7 in g. For each 1 < i < n, we therefore have two choices, namely
i or 1, for the element we can place in g. There are then n! ways of arranging
these n chosen elements in g.

Cyclic shifts of letters within any cycle of g leave g invariant. Every
negative r-cycle has length 2r, and so we must divide 2"n! by 2r for each
negative r-cycle to take into account these cyclic shifts. Similarly, each cycle
within a positive r-cycle has length r, and so we also divide by r to account
for cyclic shifts within each positive r-cycle. Moreover, we can transpose
the two cycles within a positive r-cycle and still leave g invariant, and so we
must further divide by 2 for each positive r-cycle.
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Finally, for each 1 < r < n, reordering the p, positive r-cycles or the n,
negative r-cycles leaves g invariant, and so, for each r, we must divide by the
(pr)! ways of ordering the positive r-cycles and the (n,)! ways of ordering
the negative r-cycles.

We therefore have that there are

2"
[Lr=1 2r)Pr 7 (prl) (ng )

possible choices for g, and so the lemma is proved. O

1.4.3. Hyperoctahedral Specht modules. Throughout this section
let F' be a field of characteristic p # 2. It follows that there are exactly
two isomorphism classes of irreducible F'Co-modules. We write N for the
non-trivial irreducible F'Cy-module.

Given z € {1,2,...,n}, we define [z, T] to be the image of (z,T) in the
quotient of the FC5 ! S,-permutation module F[{1,...,n,1,...,7}] by the
submodule generated by the set

{(z,7) + (T, x) : 1 <z < n}.

Therefore the F-span of [z,Z] is isomorphic to N as an F[Sym({z,Z})]-
module.

Given (A, i) € P%(n), let t be the disjoint union of a A-tableau and a
p-tableau, such that

(1) the A-tableau has entries {x,Z}, and the p-tableau has entries [y, 7]
(2) the set {z, T} is an entry of the A-tableau if and only if [z, Z] is not
an entry of the u-tableau, for all 1 <z < n.

In this case we say that t is a (A, p)-tableau. We write ¢* for the A-
tableau, and ¢t~ for the p-tableau.

ExXAMPLE 1.4.4. The following is a ((3), (3, 1))-tableau.

[2.2]|[3.3]|[6.6]

{1,1}{4,4}{55}

Given a (\, p)-tableau t, let R(t) (resp. C(t)) be the subgroup of 7}, con-
sisting of all permutations that setwise fix the entries in each row (resp. col-
umn) of t. We define an equivalence relation « on the set of (A, u)-tableaux
by t v~ w if and only if there exists 7 € R(t) such that u = 7t. The (A, p)-
tabloid {t} is the equivalence class of t. We define the (A, u)-polytabloid e(t)
by

e(t) = Z sgn(o)o{t}.

ceC(t)
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Define the hyperoctahedral Specht module Sg"“) to be the F'C515,-module
spanned by the set of all (A, u)-polytabloids. When the field F' is clear, we
omit the subscript F' in SI(TA’“ ),

In order to describe a basis of S| we order the sets {2, 7} by setting
{z,z} < {y,7y} if and only if x < y. We also define an ordering on the set
of [z,7] in the same way. We say that t is standard if both ¢t* and ¢~ are
standard tableaux with respect to the orders just defined. It follows from
the Standard Basis theorem that over any field S*#) has a basis given by
the set of polytabloids e(t) such that ¢ is a standard (A, u)-tableau.

It follows from [35, Corollary 4.4.11] that the ordinary characters of
(215, are integer valued. This allows us to define X(/\)’”) to be the ordinary

of characteristic zero. By Theorem 1.2.6, we have the following theorem.

character of the hyperoctahedral Specht module SE;\’“ , where F' is any field

THEOREM 1.4.5. Let F' be a field of characteristic zero. The set
{SH) 2 (A, p) € PP(n)}

18 a complete set of pairwise non-isomorphic irreducible F'Cs 1 S,,-modules.
Moreover,
Irr(Ca 2 Sp) = {xM - (A, 1) € P2(n)}.

1.4.4. Modular representation theory of C51S,,. Assume now that
F' is a field of characteristic p > 0 such that p # 2. The main result in this
section is a complete description of the blocks of F'Cy .S, which we give
in Proposition 1.4.8. In order to prove Proposition 1.4.8, we prove the
stronger Theorem 1.4.7 below. We prove Theorem 1.4.7 as it is also used
in this section to describe the irreducible F'Cs ! S,,-modules, and in §5.4 to
determine the blocks of Neys, (Ry), where R, is as defined in §5.3.

We now give the required preliminaries for Theorem 1.4.7. Assume that
G = C§ x H, where a € N and H is a finite group. Recall that Lin(C$)
denotes the set of linear characters of C§. There is an action of G on Lin(CY)
given by conjugation, and we have the following easy lemma.

LEMMA 1.4.6. The G-conjugacy classes of Lin(C$) are labelled by pairs
(a1,az) € N3 such that a; + a2 = a.

Given 0 < ¢ < a, write Lin;(Cg) for the conjugacy class of Lin(C¥)
labelled by (i,a —1). Fix x; € Lin;(C§) and define G; = C§ x H;, where H;
is the stabiliser of x; in H. Given an F'G-module V and x € Lin(C%), let

VX={veV:gv=x(g)vforall g € CS}.

For g € G, we have that gV'X = V9% and so VX¢ is an F'G;-module. Fur-
thermore, V(i) := ®x€Lin¢(C§) VX is an FG-module. Then

(1.8) V=V,
=0
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as a direct sum of FG-modules. We say that V' belongs to i if V = V (i) for
some i. Clearly every indecomposable F'G-module belongs to ¢ for some 1.

Let ¥ € Hompg(U,V). By considering the action of C§, we see that
Y(UX) C VX, Therefore Hompq (U, V) = 0 if U belongs to i and V' belongs
to j for i # j. It follows that the FG-modules belonging to i generate a
subcategory of the module category mod(G). We write mod;(G) for this
subcategory.

THEOREM 1.4.7. The rings FG and @;_, FH; are Morita equivalent.

PROOF. Let M be an F H;-module, and write K; for the one-dimensional
FG;-module on which Cf acts according to x; and H; acts trivially. Define
the functor F; : mod(H;) — mod;(G) by

: G
M — (K; @ Infg M)

It is sufficient to prove that F; is an equivalence of categories, which we do
by showing that it is essentially surjective, full, and faithful.

To prove that F; is essentially surjective, it is sufficient to consider the
case when U is an indecomposable F'G-module. Therefore U belongs to i,
and so by definition

U= @ uvx=uv|g,
X€Lin; (C2)
where the isomorphism follows from Lemma 1.3.2. By definition, UX¢ is
such that C'$ acts according to x;. Therefore UX* is isomorphic to the tensor
product of K; and a module on which C§ acts trivially. This is equivalent
to writing UXi = K; ® Infgi U’, where U’ is an F'H;-module. This proves
that F; is essentially surjective.

Suppose that 0 # 9 € Hompg(U, V'), where V' also belongs to i. Write
 for ¥ restricted to UX¢, which we view as an F'G;-module homomorphism.
We have that U is generated by UX:i, and so ¢(UX¢) # 0. Moreover, let
u € U be such that gu = « for some g € G/G; and v € UX:. By the
remark preceding this proof, we have p(UX') C VXi. Furthermore, by the
discussion in the previous paragraph, we have that UXi = U’ as an F H;-
module. Writing ¢’ for ¢ viewed as an F H;-module homomorphism, we
have

I(u) = d(gu) = gd(u') = go(u') = g ().
It follows from part (4) of [1, §8, Lemma 6] that ¥ = F;(¢’), and so F; is
full. Moreover, ¢’ is determined by the restriction of ¥ to UXi, and so F; is
faithful. O

PROPOSITION 1.4.8. The rings FC21 Sy, and @;_q F'S(; iy are Morita
equivalent. Moreover, the blocks of F'Cy 1Sy, are labelled by pairs

(7, ), (6, w)),
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where v and & are p-core partitions such that |y|+vp+|6|+wp = n. The hy-
peroctahedral Specht module SO lies in the block labelled by ((v,v), (6, w))
if and only if \ is a partition of |y| + vp with p-core v, and w is a partition
of || + wp with p-core 0.

PROOF. Given i € {0,1,...,n}, let x; € Lin(C¥) be such that

xi((11)=--=xi((i4) =1
Xi((i+1i+1))=-=xi((nn)) = -1
In this case H; = S(;,,—;). The first statement of the result is now immedi-

ate using Theorem 1.4.7. The remaining statements then follow from the
definition of S*#) and Nakayama’s conjecture for the symmetric group. [

We write B((vy,v), (J, w)) for the block of F'Cy1 S, labelled by the pair
((y,0), (6,w)).
Given (v,7) € P?(n) such that v and v are p-regular, we define

CQZS| | TCQ?S

P _ (Infgflwsl” D" R N®P @ Inf C2(u1,171)

where DY is defined in the statement of Theorem 1.3.21.
The following proposition follows immediately from Theorem 1.3.21 and
Proposition 1.4.8.

PROPOSITION 1.4.9. Let n € N. The set
{D(”’g) (v, D) € PX(n) and v,V are p-reqular},
is a complete set of pairwise non-isomorphic irreducible F'Cy 1 .Sy, -modules.

It follows from Corollary 4.4.9 of Theorem 4.4.8 in [35] that every field
is a splitting field for C5 ¢ S,,. We can therefore specialise the definition in
§1.3.4 and write dy, 5 for the decomposition number of C3? 5, equal to the
number of composition factors of S™#) that are isomorphic to D®?).






CHAPTER 2

A combinatorial proof of the
Murnaghan—Nakayama rule

Throughout this chapter we fix n € N. Recall from Theorem 1.1.2 that
the ordinary characters of S, are labelled by partitions of n. Moreover,
we have seen that the partitions of n give an explicit construction of the
irreducible QS,-modules using the combinatorics of Young diagrams via
Specht modules.

The well-known Murnaghan—Nakayama rule (see Theorem 2.1.1) further
utilises the combinatorics of Young diagrams by providing a formula for
calculating the character values of x* using only the Young diagram of \.
Moreover, this formula is recursive, and so it provides a computationally
efficient algorithm for calculating single character values. Indeed, it is noted
in the documentation of the computer algebra system MAGMA that the
rule is used in this way, except when computing the value of a character on
the identity element (see [4, §92.3.1]).

In this chapter we give a new combinatorial proof of the Murnaghan—
Nakayama rule. As Stanley notes in [61, page 401], the rule was first proved
by Littlewood and Richardson in [44, §11]. Their proof derives it, essentially
as stated in Theorem 2.1.1 below, as a corollary of the Frobenius formula
for the characters of symmetric groups. For a statement of the Frobenius
formula see [61, (7.77)] or [21, (4.10)]. Murnaghan [54, page 462, (13)]
and Nakayama [55, page 183] gave independent derivations of the rule, still
using the Frobenius formula. James gave a different proof in [33, Ch. 11]
using the relatively deep Littlewood—Richardson rule. More recently, elegant
involutive proofs have been given by Mendes and Remmel [52, Theorem 6.3]
using Pieri’s rule and Young’s rule and by Loehr [45, §11] using his labelled
abacus representation of antisymmetric functions. Our proof identifies the
unique standard polytabloid (see §1.1) that makes a non-zero contribution to
the trace of the matrix representing the action of an n-cycle on the standard
basis of a skew Specht module.

2.1. The Murnaghan—Nakayama rule

We remind the reader that a border strip is a skew partition whose skew
diagram is connected and which contains no four boxes forming the Young
diagram [(2,2)].

45
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F1GURE 2.1. The border strips of size 5 (black and thick
red) and 2 (dashed) removed to compute the character value
xEAD((12)(34567)(8 91011 12)).

THEOREM 2.1.1 (Murnaghan-Nakayama rule). Let m,n € N, and let A
be a partition of m+n. Let p € Spn be an n-cycle and let m be a permutation
of the remaining m numbers. Then

X Mp) =Y (— 1) Ny (),
where the sum is over all i C X such that || = m and A/ u is a border strip.

We provide an example of the Murnaghan—Nakayama rule, showing how
it can be applied recursively to calculate single character values.

EXAMPLE 2.1.2. Let 0 = (1 2)(3456 7)(8 9 10 11 12) € S12. We
evaluate x(4*%(g). Taking p = (8 9 10 11 12), we begin by removing
border strips of size 5 from (4,4,4). As shown in Figure 2.1 there are two
such strips (highlighted in red), namely (4,4,4)/(4,3) and (4,4,4)/(3,3,1),
of heights 1 and 2, respectively. Therefore by the Murnaghan—Nakayama
rule

3449 () = (—x @9 + xE3D) (1 2)(3 45 6 7)).
Two further applications of the Murnaghan—Nakayama rule to each sum-
mand now show that x(*% (o) = (x? + x?)(id) = 1 + 1 = 2, where id
denotes the identity permutation in Sp.

Outline. Recall that Corollary 1.1.10 of Theorem 1.1.4 states that
Xp) =D xM (@M (p),
o

where x* is as defined in §1.1.1. By this corollary, it suffices to show that

if p is an n-cycle then
(—1)M1)if X/ is a border strip of size n

0 otherwise.

(2.1) XM (p) = {

We do this by explicitly computing the trace of the matrix representing the
n-cycle p in the standard basis (see Theorem 1.1.3) of SM#,

In the critical case where A\/u is a border strip, we show that there is a
unique basis element giving a non-zero contribution to the trace. This gives
a new and essentially bijective proof of the Murnaghan—Nakayama rule. To
this end we prove Lemma 2.2.2 in §2.2, which gives a necessary condition for
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a standard polytabloid to appear with a non-zero coefficient when a given
A/ p-polytabloid is written as a linear combination of standard polytabloids.
This generalises Proposition 4.1 in [65] to skew tableaux. In §2.3 we give the
proof of (2.1) when A\/p is a border strip. We then deal with the remaining
case in §2.4 by a short argument using Pieri’s rule and Young’s rule (see
Theorem 1.1.12).

2.2. A dominance lemma for skew tableaux

The dominance order for tabloids is defined in [33, Definition 3.11], or,
in a way more convenient for us, in [59, Definition 2.5.4]. We extend it to
compare row standard skew tableaux of shape a fixed skew partition.

DEFINITION. Let ¢ be a row standard A/p-tableau where |A\/u| = n.
Given 1 <y < n, we define sh<, () to be the composition 5 such that

&:‘{x:xErowioft,:BSy}‘

for 1 <i <{(M). If s is another row standard \/p-tableau, then we say that
s dominates t, and write s > ¢, if sh<y(s) > sh<,(t) for all y € {1,...,n},
where on the right-hand side > denotes the dominance order of compositions
defined in §1.1.3.

EXAMPLE 2.2.1. The > order on the row standard (3,2)/(1)-tableaux is
shown below.

2[3]

14
2] 13\/‘ ™ [2]4]  [3]4]
34 214 13 12
| | — 14‘/\ |

2]3

Recall that given a \/u-tableau ¢, its row straightening ¢ is the unique
row standard \/p-tableau whose rows agree setwise with ¢. We extend the
dominance order to A/u-tabloids by setting {s} > {t} if and only if 5> ¢.

LEMMA 2.2.2 (Dominance Lemma). If ¢t is a column standard \/p-

tableau then t is standard and

e(t) = e(t) + w,
where w is a Z-linear combination of standard polytabloids e(s) such that
tr>s.

Preliminaries for the proof of the Dominance Lemma. We first show
that ¢ is standard. Suppose, for a contradiction, that there exist boxes (i, j)
and (i +1,7) € [\/u] such that ¢(i,5) > t(i + 1, ). Define

R={t(i,k):j <k <\}
S={tli+1,k) : pir1 <k < j}.



48 2. A COMBINATORIAL PROOF OF THE MURNAGHAN-NAKAYAMA RULE

Since

i+ 1Lpip+1) <...<tli+1,7) <t(i,j) <...<t(i,\i)
we have x > y for each x € R and y € S. But since |R|+|S| = A\i — pix1+1,
the pigeonhole principle implies that there exist + € R and y € S lying in
the same column of the column standard skew tableau t, a contradiction.

The following two lemmas generalise Lemmas 3.15 and 8.3 in [33] to
skew tableaux.

LEMMA 2.2.3. Let t be a \/p-tableau. Let x, y € {1,...,n} be such that
x <y. If x is strictly higher than y in t then (z y)t <t.

PROOF. Let x be in row k of £ and let y be in row ¢ of t. By hypothesis,
k<t Let ze{l,...,n}. If x <z <y then

sh<:((z y)t)r = sh<.(t) — 1
Shgz((x y)t)g = Shgz(f)e + 1.

Whenever ¢ € {k,{} or z < z or y < z we have sh<,((x y)t); = sh<,(t);.
It easily follows from these equations and the definition of the dominance

order for compositions that (z y)t < t. O

LEMMA 2.2.4. Let t be a column standard \/p-tableau. Then e(t) =
{t} + w, where w is a Z-linear combination of \/u-tabloids {s} such that

{st <{t}.

PROOF. The proof of Lemma 8.3 in [33] still holds, replacing Lemma
3.15 in [33] with our Lemma 2.2.3. O

PROOF OF LEMMA 2.2.2. Let e(t) = >, ase(s) where the sum is over
all standard A/p-tableaux and a; € Z for each s. Let u be a standard tableau
maximal in the dominance order such that «, # 0. Applying Lemma 2.2.4
to e(u) gives

e(u) = {u} + w3t
where w“} is a Z-linear combination of A/ p-tabloids each dominated
by {u}. By Lemma 2.2.4 and the maximality of u, there is no other standard
A/p-tableau s with o # 0 such that e(s) has {u} as a summand. Therefore
the coefficient of {u} in e(t) is a,,. Applying Lemma 2.2.4, now to e(t), gives

e(t) = {1} + w ',

where w9t} is a Z-linear combination of A/ p-tabloids each dominated by {t}.
In particular {t} > {u}, and so we have that ¢ = u by the maximality of w.
Hence

e(t) = age(t) + w,
where w is a Z-linear combination of standard polytabloids e(v) for standard
tableaux v such that v < ¢. It follows that {¢} cannot be a summand of w
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in the equation immediately above. Since the coefficient of {t} in e(t) is 1,
we have ay = 1. O

We isolate the following corollary of Lemma 2.2.2.

COROLLARY 2.2.5. Let s be a standard \/p-tableau, and let u be a col-
umn standard \/p-tableau. Suppose that there exists © € {1,2,...,n} such
that the boxes containing 1,2,...,x — 1 are the same in s and u, and x s
lower in u than s. If

e(u) = Z aye(v),

where the sum is over all standard A-tableaux v, then as = 0.

PRrROOF. By assumption, sh<,(s) = sh<,(u) if 1 < z < z. As z is
in a lower row in w than in s, we have sh<, (@) ¥ sh<,(s). Now apply
Lemma 2.2.2. U

2.3. The Murnaghan—Nakayama rule for border strips

In this section we give a bijective proof that x*(p) = (—1)**/#) when
A/ is a border strip of size n and p is the n-cycle (12 ... n). This deals with
one of the two cases in (2.1). Our proof shows that the matrix representing
p in the standard basis of S** has a unique non-zero entry on its diagonal.
The relevant standard tableau is defined as follows.

DEFINITION. Let A/u be a border strip of size n. Say that a box (i,7) €
[A/p] is columnar if (i +1,j) € [N/ u]. We define the standard A/u-tableau
tx/u as follows:

(i) assign the numbers {1, ...z} in ascending order to the z columnar
boxes of A/u, starting with 1 in row 1 and finishing with z in the
row above the bottom row;

(ii) then assign the numbers {z + 1,...,n} in ascending order to the
n — z non-columnar boxes, starting with z + 1 in column 1 and
finishing with n in the rightmost column.

For example, t(533)/(2,2); 1(5,3,2)/(2,1) and ¢(5,1,1)/o are respectively

116]7] 116]7] 114]5[6]7]
2 , 215 and |2 ,
13145 (3]4 3]

where 1 and 2 are the entries in columnar boxes in each case. We remark
that there are no columnar boxes if and only if A/u is a horizontal strip, as
defined in §1.1.4.

As useful pieces of notation, we define 2~ and =™ for z € {1,...,n} by
r~ =z —1 and

. {$+1 fl1<z<n
fL‘:

1 if t =n.
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Thus pz = 2% for all z € {1,...,n} and 1~ = 0. Given a \/u-tableau ¢, we
define t* by t* (4, j) = (¢(,5))". By (1.1), e(pt) = e(tT).

A standard \/pu-tableau t such that e(¢) has a non-zero coefficient in
the unique expression of e(t") as a Z-linear combination of standard poly-
tabloids is said to be trace-contributing. Since x*/ H(p) is the trace of the
matrix representing p in the standard basis, it suffices to prove the following
proposition.

PROPOSITION 2.3.1. Let A/p be a border strip. Then the unique trace-
contributing \/p-tableau is ty,,. The coefficient of e(ty;,) in e(t;\r/u) is
(_1)ht(A/u),

The proof of Proposition 2.3.1 is by induction on the number of top
corner boxes of A/u, as defined below. The necessary preliminaries are
collected below. We then prove the base case, when \/u = (n — £,1¢) for
some ¢ € Np; this gives a good flavour of the general argument. In the
remainder of this section we give the inductive step.

We assume, without loss of generality, that p1 < Ay and pyy) = 0, so the
non-empty rows of A/u are 1,...,¢(\) and column 1 of \/u is non-empty.
We can do this since the character indexed by a skew diagram is equal to
the character indexed by the same skew diagram with its empty rows and
columns removed.

2.3.1. Preliminaries for the proof of Proposition 2.3.1. For Z C
{1,...,n} and t a row standard \/u-tableau we define shz(¢) to be the
composition S such that

Bi:}{m:xerowioft,xEZ}‘

for 1 <4 <l(M). Set shey(t) = shy
defined at the beginning of §2.2.

y-1(t). We also use shy(t), as already

-----

DEFINITION. Let A/u be a border strip. We say that column j of A/u
is singleton if it contains a unique box. We define a top corner box to be a
box (i,7) € [A\/p] such that (4,5 — 1), (i — 1,) & [A\/p] and a bottom corner
boz to be a box (i,7) € [N/ u] such that (i +1,7), (4,5 + 1) & [N/ ul.

LEMMA 2.3.2. Let A/ be a border strip and let t be a \/u-tableau. If
columns j and j + 1 of \/u are singleton, with their unique box in row i,
then e(t) = (z y)e(t) where x = t(i,5) and y = t(i,j + 1).

PRrROOF. This follows immediately from the Garnir relation (1.4), taking
X ={z}and Y = {y}. O

In fact, all the Garnir relations that we use in this section can be reduced
to single transpositions. Let x and y be entries in adjacent columns of a
column standard tableau, with x left of y and x > y. We say that (x y) is



2.3. THE MURNAGHAN-NAKAYAMA RULE FOR BORDER STRIPS 51

a Garnir swap if at least one column is not singleton, and otherwise that
(z y) is a horizontal swap.

LEMMA 2.3.3. Let t be a trace-contributing border strip tableau. Then
t can be obtained from t+ by iterated horizontal swaps, Garnir swaps and
column straightenings. If in such a sequence 1 moves, then 1 moves either
left or down.

PROOF. The first claim is immediate from Theorem 1.1.3(i). The second
follows from Corollary 2.2.5 taking = = 1. (]

Given X C {1,2,...,n}, we define X+ = {z" : 2 € X}. We also write
{b+,...,c} for the set {i € N : bT <i < ¢ }. The following combinatorial
result on the map = — zT is used several times to restrict the possible
entries of trace-contributing tableaux.

LEMMA 2.3.4. Let X be a set of natural numbers such that 1,n & X. Also
suppose that b, c are not contained in X. We have {b*}U X T = X U{c} if
and only if b© = min X, c=max X and X = {b*,... . c"}.

PROOF. Since minX ¢ Xt we have minX = b*. Similarly, since
max X & X we have max X+ = c¢. Suppose for a contradiction that X
is a proper subset of {b",... ¢~ }. Setting

d=min({b",..., ¢ }\X)

we see that since b+ = min X € X, we have d > b". The minimality of d
implies that d~ € X and so d € XT; since d < ¢ and {bT}UXT = X U{c},
we have d € X, a contradiction. The converse is obvious. O

Finally, as a notational convention, when we specify a set, we always list
the elements in increasing order. In diagrams the symbol x marks an entry
we have no need to specify more explicitly.

2.3.2. Base case: one top corner box. In this case y = @ and
A = (n—2¢,1%) for some £ € Ng. If £ = 0 then there is a unique standard (n)-
tableau and the result is clear. Suppose that £ > 0 and let ¢ be a standard

(n — £,1%)-tableau with entries {1,y1,...,5_1,¢} in column 1. (By our
notational convention, 1 < y; < ... < yp—1 < ¢.) If ¢ = n then t* is
standard with first column entries {1,17,y;, ...,y ;}. Hence, in order for

t to be trace-contributing, we must have that ¢ < n. After a sequence of
horizontal swaps applied to ¢tT we obtain the tableau shown overleaf.
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A Garnir swap of 1 with 17 or any yf gives, after column straightening
and a sequence of horizontal swaps, a standard tableau having ¢* in its
bottom left position. We may therefore assume, by Lemma 2.3.3, that 1
is swapped with ¢t. After column straightening, which introduces the sign
(—1)6, a sequence of horizontal swaps gives the standard tableau having
{1,159, .. ’3/;71} in its first column. Thus if ¢ is trace-contributing then
{1y, oyl b = {vis -, ye—1. ¢} By Lemma 2.3.4, {y1,...,y—1,¢} =
{2,...,£+ 1}. Therefore t = ¢(,_; ¢ and the coefficient of e(t(,_¢¢)) in

e(th

(n—¢ 1@)) is (—1)5, as required.

2.3.3. Inductive step. Let §(i) € Ng()‘) denote the composition de-
fined by (i); = 1 and (i) = 0 if k& # 1.

PROPOSITION 2.3.5. Let A/u be a border strip, and let t be a standard
A/ p-tableau. Let ¢ € N and suppose that either ¢ = 1 or ¢ > 1 and the
entries 1,...,¢~ and n lie in the same column of t. Let (i,7) be the box
of t containing c, and let (i',j") be the box Of%—: containing c. If t is a
trace-contributing tableau, then i =14,

Before we continue, we mention that we give an example illustrating the
various tableaux in the proof of Proposition 2.3.5 in Example 2.3.6 below.

PROOF. By hypothesis, the highest ¢~ entries in column 5’ of ¢ and
t+ are 1,...,c”. Let s = t+. Setting 8 = sh<.(t) = shc.(5) we have
sh<.(t) = B+ 0(i) and sh<.(3) = 8+ (i'). By Lemma 2.2.2, the hypothesis
that ¢ is trace-contributing implies that sh<.(5) > sh<.(t). Therefore i > 7.

If j = j' then either ¢ =1 and 1 is at the top of the column of ¢ which
has n at its bottom, or ¢ > 1 and c¢ is immediately below ¢~ in both s and ¢.
In either case i = ¢'.

We may therefore suppose, for a contradiction, that ¢ > i’ and j < j'.
By hypothesis the box (7, j) of t containing c is the top corner box in row i.
Let (i,¢) be the bottom corner box in row i; note that ¢ < j/, as shown in
the diagram overleaf.
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(@.3")

By the hypothesis that t is trace-contributing and Lemma 2.3.3 there
is a sequence of horizontal swaps, Garnir swaps, and column straightenings
from ++ to t. Suppose that in such a sequence an entry b < ¢ is moved. If b
is the first such entry moved in this sequence, and u is the tableau obtained
after column straightening, then, by Corollary 2.2.5 applied with z = b, the
coefficient of e(t) in e(u) is zero. Therefore the entries {1,...,¢ } are fixed
and c is the smallest number moved. It follows that the only non-standard
row in t* is the row containing the bottom corner box in column j’, and so
any such sequence starts with boxes in this row.

Take such a sequence and stop it immediately after the first swap in
which ¢ enters row ¢. Let v be the column standard tableau so obtained,
and let u be its immediate predecessor. When c enters row i of v, it is
swapped with the entry, d* say, in box (i,¢ — 1) of u. Indeed c is in column
¢ — 1 in v since Garnir relations are defined on adjacent columns. Observe
that the entries in boxes strictly to the left of column ¢ are the same in t+
and w, since no swap in the sequence from t+ to u involves an entry in these
columns. Let a’ be the entry in box (i,£) of u. Thus the column standard
tableau u is as shown below and v = ((:CF/)u

c

col j

C+ e d+ CL+ TOW 1
col ¢

Note that d* > a™ since otherwise u is standard with respect to all boxes
weakly to the left of column ¢, and so d* cannot be moved in a Garnir swap.

To complete the proof we require the following critical quantity. Let r
be maximal such that entries c,...,r are strictly to the left of column £ in
the original tableau t. If r = d then, since d > a, a is strictly to the left of
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column / in ¢; this is impossible since a™ appears in column ¢ in . Therefore
r < d. Since d is in position (i,¢ — 1) of t and r > ¢, it follows that ¢ # d.
Moreover, the entries ¢, ..., rT are in the same boxes in t* and v.

Claim. We have v t. Proof of claim. Let shy.+  ,+1(u) = 6. By
hypothesis and our stopping condition on swaps, if ¢ < r then the box of
g* in w is the box of ¢ in ¢t. Hence shy. _,y(t) = 4. Since d > r and d is in
position (i,¢ — 1) of t, we see that r* is not in row i of . By maximality
of r, the row of ¢ containing 7+ is row h for some h < i. Clearly the row of
c in v is 4. Therefore shy, ,+}(¥) =6 + (i) and shy, ,+,(t) =6 +6(h).
Since 1,...,c¢” are in the same positions in both v and t, it follows that

she,+ () > she,+ (D)

which implies the claim.
It now follows from Lemma 2.2.2, as before, that e(t) does not appear
in e(v), a final contradiction. This completes the proof. O

EXAMPLE 2.3.6. Let ¢ = 1. Let ¢, t*, and v be the (5,4,1)/(3)-tableaux
shown below.

5/1] 5[7]
t=1[1[3]5 tt=[2]4]6]7 v=[2[4]1]6
2 3 3

In the notation of the proof of Proposition 2.3.5, 1 =2, £ = 4, and r = 3.

417]
6

In the sequence of operations used to straighten e(¢*), the tableau v is
the unique successor of #+ such that 1 enters row 2. Then sh<3(t) = sh<3(v).
However sh<y(t) = (1,2,1) > (0,3,1) = sh<4(v), and so v} t. It follows
that e(t) does not appear in e(v). Therefore ¢ is not trace-contributing, as
expected from the proposition.

COROLLARY 2.3.7. If t is a trace-contributing tableau then either 1 and

n are in the same column of t, or 1 and n are in the top row of t.

PROOF. Let 1 and n be in positions (4, j) of t and (7', j) of ¢, respectively.
If column 5’ is singleton then m is the top right entry of ¢ and, taking
¢ = 1 in Proposition 2.3.5, we get ¢ = 4'; thus 1 and n are in the top row
of t. Otherwise, when we column straighten ¢t* to obtain tAJ:, the entry 1
in position (7, ;') moves up to position (i, ;') where i" < #’. Again taking
¢ = 1 in Proposition 2.3.5, we get ¢ = i”. Since (i”,j') is the top corner box
in its row, and so is (7, j), we see that j = j'. Hence 1 and n are in the same
column of ¢. O

PROOF OF PROPOSITION 2.3.1. We now complete the inductive step of
the proof.

Suppose that A\/u has more than one top corner box, and that ¢ is a
trace-contributing A\/pu-tableau. Let 1 be in position (i, j) of ¢ and in position
(', 5") of t+. By Proposition 2.3.5, we have i = 4'.
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Case (1). Suppose that 1 and n lie in the same row of t. By Corol-
lary 2.3.7, this is the top row. Let the entries in the top row of ¢t be
{1,z1,...,2k_1,n} and the entries in the column of 1 be {1, y1,...,ys_1,c}.

Straightening the top row of t* by a sequence of k — 1 horizontal swaps
moves 17 and 1 into adjacent positions, giving the tableau u shown below.

+ | ... |+
1T 1 | Tp_q

As in the base case, the only Garnir swap that can lead to t is (1,c"),

which introduces the sign (—1)¢. Let v = (1, ¢")u, as shown below.

+ +
1 C+ 1-1 e xk‘—l
1+
+
Y1
+
Y1

By Lemma 2.3.3 and Corollary 2.2.5, v can be straightened by a sequence
of horizontal swaps, Garnir swaps and column straightenings which either
fix 1, and so leave invariant the content of its top row, or move 1 into a
lower row, giving a tableau, w say, such that, e(t) does not appear in e(w).
Since e(t) has a non-zero coefficient in e(v), we have

{ctaf, ..ol } ={z1,...,2k_1, 0}

Lemma 2.3.4 implies that ¢ = 21 = n—k+1, 2 | =nand {21,..., 251} =
{n—k+1,...,n—1}. Thus t and v have top row entries {1,n—k+1,...,n}.

Let T and V be the tableaux obtained from t and v by deleting all but
the top corner box in their top rows. This removes entries {n—k+1,...,n}.
Let A*/p be the common shape of T" and V. Observe that T has greatest
entry n — k = ¢ in the bottom corner box of its rightmost column and that
V is the column straightening of T, where 1 is defined as + on tableaux,

but replacing n with n — k. By induction, T = ¢« and since t has

/1w
n—k+1,...,nin its top row, we have t = t,,,. Moreover, the coefficient
of e(T) in e(T1) is (—1)PN/#) | Since ht(\*/u) = ht(A\/p), the coefficient of

e(t) in e(tt) is (—1)MA/1) | as required.
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Case (2). If Case (1) does not apply then, since ¢ = ¢/, 1 and n are in
the same column of ¢ and so j = j'. Take ¢ maximal such that 1,2,...,¢c”
are in column j of t. Suppose that in column j of ¢, the entry immediately
below ¢~ equals d for some d < n. By Proposition 2.3.5, the row of ¢ in ¢
is the same as the row of ¢ in t+. It follows that ¢ = d, which contradicts
the maximality of ¢ unless column j of ¢ has entries 1,2,...,¢™,n, as shown

below.

C

C n rowi:i’

col j

By Lemma 2.3.3 there is a sequence of horizontal swaps, Garnir swaps
and column straightenings from t+ to t. As seen in the proof of Proposi-
tion 2.3.5, it follows easily from Lemma 2.2.2 that 1,...,¢~ do not move.
Let X be the set of entries of ¢ lying strictly to the right of column j. These
entries become X T in tAJ:, which is standard with respect to these columns.
No permutation in our chosen sequence can involve a entry in one of these
columns. Hence X+ = X, and so X = @.

We have shown that j is the rightmost column of ¢, and that ¢ agrees with
tx/u in this column. Let T' be the tableau obtained from ¢ by deleting all but
the bottom corner box in column j and subtracting ¢~ from each remaining
entry. Thus the top row of T" has entries 1,...,n—c™ and n—c™ is its greatest
entry. Let T have shape \*/p*. By induction, T' = t)«/,», and hence t =
tr/u- Let T' be defined as T, but replacing n with n—c¢~. By induction, the
coefficient of e(T') in e(T), is (—=1)M/#) | Since ht(A\*/p*) +¢~ = ht(\/p),
and the sign introduced by column straightening ¢ is (—1)¢ , the coefficient
of e(t) in e(t) is (—1)MV1)  as required. O

2.4. Proof of the Murnaghan—Nakayama rule

Let A/u be a skew partition of size n and let p € S, be an n-cycle.
Following the outline, to complete the proof of the Murnaghan—Nakayama
rule, we must show that xy»*(p) = 0 if A/ is not a border strip. We require

the following two lemmas.
LEMMA 2.4.1. Let 0 < £ <n. If

A Sm+n
<X ;XM x 15’5 X sghg SmXSgXSn,) >0,

then [A/p] has no four boxes making the shape (2,2).
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PRrROOF. By the versions of Pieri’s rule and Young’s rule given in §1.1.4,
the hypothesis implies that A is obtained from p by adding a horizontal strip
of size ¢ and then a vertical strip of size n —¥¢. If two boxes from a horizontal
strip are added to row ¢ then at most one box can be added below them in
row ¢ + 1 by a vertical strip. The result follows. O

LEMMA 2.4.2. If \ is a partition of n and p is an n-cycle then x*(p) # 0
if and only if X = (n — £,1%) where 0 < £ < n.

PRrROOF. By a column orthogonality relation

> xMp)* = [Cents, (p)| =,
A

where the sum is over all partitions A of n. By (2.1) in the case proved
"_“Z)(p) = (=1)*1 for 0 < ¢ < n. Therefore the
partitions (n — £, 1¢) give all the non-zero summands. O

in §2.3, we have x!

PROPOSITION 2.4.3. Let A/ be a skew partition of size n and let p € Sy,
be an n-cycle. If \/p is not a border strip then x"(p) = 0.

ProOF. If [A\/p] is disconnected then it is clear from the Standard Basis
Theorem (Theorem 1.1.3(ii)) that S** is isomorphic to a module induced
from a proper Young subgroup S, _y x Sy of S;,. Since no conjugate of p lies
in this subgroup, we have y*(p) = 0.

In the remaining case \/u has four boxes making the shape (2,2). By
either Pieri’s rule or Young’s rule, we have

Sn —£, ¢ _
<1Sz X sgng TS[XSn_[aX(n i )> =1

Hence

A Smin A n—0,16) 1Sm+4n
<X ’X,u X 1Se X sgng, ., SmXSZXSn—Z> > <X vX# X X( ) SmXSn>

— <X)\/ILL, X(n7€’1£)>
where the equality follows from Lemma 1.1.11. By Lemma 2.4.1 the left-

hand size is 0. Hence (x*, X(”*E’ll)) =0 for 0 < ¢ < n. By Lemma 2.4.2,
this implies the result. O






CHAPTER 3

Restrictions of odd-degree characters

Let G be a finite group, and let Irro/(G) be the set of ordinary irre-
ducible characters of G that have odd-degree. McKay conjectured in [50)]
that | Irre (G)] is equal to | Irre (Ng(P))|, where P is a Sylow 2-subgroup of
G. The conjecture has recently been proved by Malle and Spéath in [47] using
the classification of finite simple groups. The McKay Conjecture is a partic-
ular example of the more general local-global conjectures, which have become
of significant interest in the representation theory of finite groups. An aim
of these local-global conjectures is to understand the representation theory
of G by considering the representation theory of the smaller group Ng(P),
where P is a p-subgroup of G. Another example of a local-global conjecture
is the generalisation of the McKay Conjecture to all primes. Whilst this
generalisation is easy to state, finding a proof in the odd-prime case is still
an open problem. For further examples of local-global conjectures and the
progress made towards proving these, see [46].

This chapter is motivated by the original statement of the McKay Con-
jecture when p = 2 for the case of the symmetric group of degree a two-
power. Indeed, given n € N, let Pon be a Sylow 2-subgroup of Son. It
follows from [64, Corollary 2] (see also [11, Theorem 5.1.2]) that Pan» is self-
normalising in Son. Therefore in this case the McKay Conjecture states that
[Irro/ (Son )| = |Irrg/ (Pon)|. This equality was first proved by Olsson in [57].

In [22] Giannelli also proves the McKay Conjecture for Son by providing
a bijection between Irry(S2n) and Irre/ (Pon ). We remark that bijective proofs
of local-global conjectures are of interest, as such proofs demonstrate deeper
underlying representation-theoretic connections between G and Ng(P). Gi-
annelli’s proof uses that every x € Irro/(Son) has a unique degree-one con-
stituent upon restriction to Pan, and that every degree-one Pon-character
appears in x |p,., for some x € Irry(Son). Observe that the degree of an
odd-degree irreducible character of Pon necessarily divides |Pon|, which is
a two-power. It follows that an odd-degree irreducible Pon-character has
degree one. Therefore the restriction map

P, : II‘I‘Q/(Sgn) — II‘I"Q/(PQn)

gives a bijection between Irrg/(Son) and Irry(Pan). Furthermore, the map
®,, is extended (see [22, §3]) to give a bijection between Irry(S,) and
Irry (Ng, (P)), where P is a Sylow 2-subgroup of S, for all n € N.

59
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Motivated by [22] we prove Theorem 3.0.1 below, which gives a bijective
proof of the McKay conjecture for certain groups of the form G ?.Son. The
proof of the theorem shows that for the groups G considered, each character
in Irres(G? Son) has a unique odd-degree constituent upon restriction to
Neis,n (P), where P is a Sylow 2-subgroup of Gt So» in each case.

THEOREM 3.0.1. Let G be one of the following groups:

e Soa, where a € N
o (9, where a € N
e any finite abelian p-group, where p is an odd prime.

and let P be a Sylow 2-subgroup of G 1 San, Given x € Irro/ (G Son), the re-
stricted character XiNstw (p) has a unique degree-one constituent, denoted
®(x). Moreover, the map x — ®(x) is a bijection between Irry (G Son) and
Irr(Ngysyn (P)).

As well as proving this theorem, we also make the bijection ®,, in [22]
completely explicit by describing the unique degree-one constituent of x | p,.,
for all x € Irry/(Son). We do this by explicitly constructing the unique one-
dimensional QP,n»-submodule of a chosen Q.Son-module that affords y, and
then determining the ordinary character of this one-dimensional submodule.
Observe that it is possible to work over the rational field Q when construct-
ing the modules affording the characters in Lin(P,n) by using the results of
§1.4.3 and §3.1.1 (see below). Indeed the construction of Pon given in §3.1.1
shows that it is isomorphic to

(... ((C21C9) 1 C) ... 1 Cy).

n times

It therefore follows from the discussion immediately before Theorem 1.4.5
in §1.4.3 that the modules corresponding to the characters in Lin(Psn) can
be realised over Q.

As mentioned above, the bijection ®,, between Irro/(Son) and Irry (Pon )
relies on the remarkable fact that x € Irro/(S2n) has a unique degree-one
constituent on restriction to Pen. We end this chapter by considering the
irreducible constituents of x |p,, of either degree two, or degree four. In
particular we give explicit formulas for the number of such constituents of
X +p,n - We also explain why we only count these low degree constituents,
and not the irreducible constituents of degree at least 8.

Outline. In §3.1 we provide the background required on the set Irro/ (G
Son), where G is any finite group. We begin by considering the case 10 Son
as this is required to describe the results in the general case. In particular
we give a construction of Po» and the odd-dimensional irreducible Q.Son-
modules in §3.1.1 and §3.1.2, respectively. We then describe Irro/ (G 1 San)
in §3.1.3.
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These constructions of the Sylow 2-subgroup and the odd-dimensional
modules are used again in §3.2, where we make completely explicit the bi-
jection ®,, between Irrg/(Son) and Irrg/(Pan). The main results in §3.2 are
Propositions 3.2.4 and 3.2.5. Proposition 3.2.4 constructs the unique one-
dimensional QFP,n-submodule of each odd-dimensional irreducible QSon-
module. In Proposition 3.2.5 we then show that the one-dimensional QFPan-
modules that we have constructed are non-isomorphic by considering the
action of Pon on each of these submodules. In the same spirit of considering
actions on modules, we end §3.2 with Lemma 3.2.6. This determines the or-
dinary characters of the one-dimensional QPsr-modules that we construct,
thereby determining ®,,() for all x € Irry/(San).

In §3.3 and §3.4 we prove that the restriction map gives a bijection when
either G equals S2a, or GG is an abelian p-group, respectively. We will see
in each of these cases that a Sylow 2-subgroup of G Son is isomorphic to a
Sylow 2-subgroup of a symmetric group of degree a two-power. This is not
the case in general for a Sylow 2-subgroup of C§ ! Sa», and so we defer this
case to §3.5.

We end this chapter with §3.6, in which we give explicit formulas for the
numbers of two-degree and four-degree irreducible constituents of i‘;zz,
where x € Irro/(San).

3.1. Odd-degree characters and Sylow 2-subgroups

Throughout this section fix n € N, and fix a finite group G. Following
the outline of this chapter, we describe the set Irro (G .San).

3.1.1. A Sylow 2-subgroup of Son.

DEFINITION. Let ¢ € N be such that 1 < i < n. Define the element o;
of Son by

o= (1274 1)(227 +2)... (2071 29).
The subgroup of Sa» generated by the set
{o;:1<i<n}

is a Sylow 2-subgroup of Son, and for the remainder of this section Pon refers
to this particular subgroup. Observe that

PQTL - (P2n—1 X O-’ILP2"71) A <Un> = P27L71 202,

which is a special case of the construction of Sylow p-subgroups of symmetric
groups given in [35, 4.1.20]. We write Q,, for the base group Pyn—1 X 7™ Pyn—1
of PQTL .
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3.1.2. Odd-dimensional irreducible QSs~»-modules. It is proved
in [57, Lemma 4.1] that Irry(Sen) consists precisely of the irreducible char-
acters labelled by the partitions of the form (2" — k, 1¥), where 0 < k < 2".
Instead of working with the polytabloid construction for the Specht modules
labelled by these partitions given in §1.1.1, we use the construction given by
the following lemma.

LeEMMA 3.1.1. [53, Proposition 2.3(a)] Let 0 < k < n. Then

k
S(n—k,lk) ~ /\S(n—l,l)’
as QSy,-modules. By definition, /\O S=L1) i the trivial QS,-module.

We now identify AFS@"~11) as a submodule of A M"~11. Observe

(2n—1,1)

that the permutation module M is isomorphic to the QSon-module

with basis
{61, vy 62n},
and action given by ge; = e,(;), where 1 < i < 2" and o € Syn. Given
i € {2,...,2"}, define w; = e; — e;. It follows that the Specht module
S(2"=L1) ig isomorphic to the submodule of M?Z"~11 with basis equal to
the set of w; such that 2 < ¢ < 2™. Moreover, /\k S@"=L1) hag a Q-basis
given by
{wil/\~--/\wik :2<n <"'<ik§2n}.

Lemma 3.1.3 below gives a method for determining whether or not a vector
in A" M@"-1L s contained in A¥$@" 1D In order to state this lemma,

we require the following definition.

DEFINITION. Given 0 < k < n, define the boundary map

ok k-1
5 AMOLD o A Mty

by
k

Open Ao Aei) =Y (1) ey Ao A, Ao Aeyy,
a=1
where the hat above the wedge factor e;, denotes that it is omitted.

REMARK 3.1.2. If we regard ej,...,e, as the vertices of an oriented
(n — 1)-simplex S, then the wedge product e;, A--- Ae;, can be viewed as
the oriented (k — 1)-simplex lying on S with vertices e;,,...,¢e;,. If K > 2,
then o), sends a (k — 1)-simplex to its boundary of (k — 2)-simplices, hence
it being named the boundary map.

We have the following useful identity, which is Equation (5) in [23].
Given u € A" M1 and v € A* M1 where 7,5 € N, then

(3.1) Srrs(UWA V) = 0p(u) Av+ (—1)u A bs(v).
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LEMMA 3.1.3. [23, Proposition 5.2] The chain complex

0—>/\M("11 /\M" L) 2l M) 5 Q -0,

1s exact in all places. Furthermore

k
kergk = imgk_H ~ /\S’("_l’l).

It follows from Lemma 3.1.3 that v € /\k ME@"=1LD s contained in
A" S@* =LY if and only if 6;(v) = 0.

3.1.3. The set Irry/ (G Son). Let Irr(G) = {41, ..., ¢} Recall that
Pt(n) denotes the set of multi-partitions of n with length at most t. Given
(AL,... Aty € P4(2"), define

o= (R, g Infg o M) s

XL, )t GUS(n,

where n; := || for each i.
We remind the reader of the following result from §1.3.5, which will be
used in the proof of Lemma 3.1.4 below.

COROLLARY 1.3.19. Fix a € Ng such that 0 < a < 2". The binomial
coefficient (2:) is odd if and only if either a =0, or a = 2™.

The following lemma provides a necessary condition for y1 s+ to have
odd-degree.

LEMMA 3.1.4. Suppose that the character xxi 2 ¢ has odd-degree.
Then exactly one X is non-empty.

PRrROOF. Let d be the degree of the character
><nz G S, i
1t e

where n; := [X| for all i. Then X1 )2 has degree

I

2n
d[SQn:SmxSn2><---><Sm]:d< )
ny,no,...,Nt

We prove that a multinomial coefficient of the form

on
<n1,n2, PN ,ns>

is odd only if at most one n; is non-zero. We proceed by induction on s. The
base case is when s = 1, which is immediate. Suppose that s > 1, and that
the claim holds inductively. The multinomial coefficient can be written as

on 2N\ 2 —m
ni,no,...,ns) \ni)\na,...,ns/)

If the multinomial coefficient is odd, by Corollary 1.3.19 applied to the first
factor on the right hand side either ny = 2™, or n; = 0. In the first case, the
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lemma is proved. In the second case the inductive hypothesis says that at
most one of ns,...,ng is non-zero, as required.

Since n > 1, at least one A" in {A',... A'} is non-empty. However,
we have assumed that xy,, .. ), has odd-degree, and so the induction in the
previous paragraph shows that at most one A’ is non-empty. It follows that
exactly one A\’ is non-empty, as claimed. O

REMARK 3.1.5. It follows from Lemma 3.1.4 that

Irry (G2 San) = {=2" Infgéfw G S PV Irro/(G) and 0 < k < 2"}

3.2. One-dimensional submodules

Fix n € N. Recall from the introduction of this chapter that the odd-
dimensional irreducible QPon-modules are precisely the QPon-modules that
are one-dimensional. In this section we make the bijection

@,y : Trro (Son) 25 Trr(Pon)

completely explicit by constructing the unique one-dimensional submodule
of /\k SE"=LD for 0 < k < 2", and then determining its ordinary character.

In order to state and prove our main propositions, the following prelim-
inaries are required.

LEMMA 3.2.1. Let G be a finite group, and let G' be the commutator
subgroup of G. The degree-one characters of G are precisely the inflations
to G of the irreducible characters of G/G'. Moreover, the group Lin(G) is
isomorphic to G/G'.

The following proposition describes the abelianisation Pan /Py, of Pan.
PROPOSITION 3.2.2. There is an isomorphism of groups
Pon | Py =2 CF.
In order to prove this proposition, we require the following result.
LEMMA 3.2.3. [26, Proposition 3.3] Let G and K be finite groups. Then
(KxG)/(KxG) = (K/K'")/(9kk™'K' . ke K,geG) x G/,
where 9k denotes the image of k under the conjugation action of g.

ProOOF OF PROPOSITION 3.2.2. We proceed by induction on n. The
base case is when n = 1, where P, = Sy = (5. The result in this case
is immediate.

Given n > 1, assume that the result holds inductively. Recall that

PQ”VL — P2n71 X anPanl X <O-TL>'
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Also recall that @, = Pyn-1 X (9" Pyn-1), and so Q), = P2/n—1 X (""Pén_l).
Lemma 3.2.3 applied to Pon states that
Pon /Py 22 (Qu/ @)/ (9kE'Q), |k € Qnyg € (om)) X (0n).
By the inductive hypothesis Pyn-1/Py, , = Cy~1, and so Q,/Q!, = C3" 2,
We therefore need to prove that the subgroup

K, = <gkk_1Q;L ke Qn, g€ <Jn>>

is isomorphic to C’S—l. As Py,—1 is generated by the set {o1,...,0,-1}, the
subgroup K, is generated by the set

{U"ka;1 cked{o,...,on-1,"01,. .. ,U"Un_l}}.

As conjugation by o, is an involution and °"¢; commutes with o;, this set
equals

{U”ka% ke {on,... ,Jn_l}} .

Therefore K, is generated by n—1 elements, each of order two. By definition
of the abelianisation of a group, these generators are pairwise commutative,
and so K, = C4, for some d < n — 1.

Suppose that d <n — 1. Given @ # J C {1,2,...,n — 1}, briefly define

gjJ — H gj.
jeJ
As d < n —1, there exists J C {1,2,...,n — 1}, such that 7 (o;)(0)Q), =
Q... As the factors Pyu—1 and " Pyn—1 of @, commute, we have
o) € Py, and 7 (o) € 7" Ppas.
Then Pyn-1/Py,_,, which is generated by
0']_P2/n_1, e ,O'n_]_PQIn_l,

is isomorphic to a proper subgroup of C’;L_l. However this is a contradiction
to the inductive hypothesis. Therefore K, = C’Q*l, and so

Py [ Ph 2 (C2"72/CH71) % Cy = CF. O

We now define the vectors vy, which are the subject of the main propo-
sitions in this section. Given 0 < k < 27, let 2¥1, ..., 2% be the two-powers
appearing with non-zero coefficient in the binary expansion of k, where the
notation is chosen so that 0 < k1 < --- < k; < n Equivalently the two-
powers 2F1 ... 2k are those that appear with coefficient 1 in the binary
expansion of k. Define V;,, to be /\k S@"-1L1) viewed as a QPyn-module,
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and define vy, ,, as follows:

1, if k=0
) (et Fegno1) = (egn-1yg + oo teen), ifk=1
o = Vk/2,n—1 N\ OnVk/2.n—1, if k=2, where i € N
Vgky p Ao v A Ugky otherwise.

We remark that the notation is chosen such that vy, is contained V},, for
all 0 < k < 2™. Although this is not immediately obvious from the definition
of vy, 5, our first main proposition shows that this is indeed the case.

PROPOSITION 3.2.4. Let 0 < k < 2". Then (vg) is a one-dimensional
submodule of Vi .

PROPOSITION 3.2.5. Let 0 < k <1 < 2". Then (vg,) and (v;,) are not
isomorphic as QPon-modules.

It follows from Proposition 3.2.2 and Proposition 3.2.5 that the set of
isomorphism classes of all (vj,) is a complete set of isomorphism classes
of one-dimensional QPon-modules. This would also follow from either the
bijection ®,, between Irry (San) and Irre (Pon ), or the McKay Conjecture.

PROOF OF PROPOSITION 3.2.4. We prove that vy ,, is contained in V}, ,,,
and that the subspace (v, ) is closed under the action of Pyn. By definition
of the vy, p,, it is sufficient to prove this when either £ = 0, or k = 2% for some
1<t <n.

In the case that k = 0, we have (vg,) = /\0 S =11 — Vo,n, which is
the trivial QPsrn-module. Both claims in the previous paragraph therefore
hold in this case.

Suppose now that k = 2¢, for some 1 < i < n. We proceed by induction
on 7. The base case is when ¢ = 0, in which case k = 1. Then

51 (V1) = 01 ((e1 + -+ 4 €9n1) — (€gn-141 + - +em)) =0,

for all n € N. By the remark immediately after Lemma 3.1.3, v, €
Sn=11) — Vin, and so (v ) is a subspace of Vi .

We now show that (v; ) is closed under the action of o, for 1 <i < n.
It follows from the definition of v, that the generators

01,02,...,0n—1,

all act trivially on vy ,. Furthermore, o, acts with negative sign on vy ,,.
Therefore (vqy,) is closed under the action of Pyn.

Suppose now that ¢ > 0, and assume inductively that the result holds
for all [ < 7. By definition,

Uk;n = Vg/2n—1 "\ OnVk/2.n—1-
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By the inductive hypothesis Sk/g(vk/Zn,l) = gk/g(anvk/zn,l) =0, and so it
follows from (3.1) that

0k (Vkn) = 0 (Vkj2m—1 A OnVkj2m 1)

= 012(Vk/2.n-1) A TV s2n-1 + (=12 (v} 201 A O1j2(0nvkj20-1))
=0.

Once more applying the remark immediately after Lemma 3.1.3 shows that
(V) is a subspace of /\k S@"=11) — Vi

We now consider the action of o; on vy, for each 1 < j < n. First let
J <mn, and so

OjVkn = OjVk/2n—1 N OjOnVk/2 n—1-

As o is a generator for the group P,.—1, the inductive hypothesis says that
v _1) is closed under the action of o;. As o; has support contained in
k/2,n—1 7 j pp
1,2,...,27 1} the action of ¢; on o, _q is trivial. Therefore (v} ,,) is
j k/2,n—1 s
closed under the action of o;.
Consider now the action of o;, on vy ,. We have that

OnVkmn = OnVk/2 n—1 A OnOnUk/2n—1
= OpV;/2n—1 N\ Vk/2n—1-

k/2 §(2"—1,1)

The vector vy, /o ,,—1 is contained in /\ . By the anti-commutativity

of the exterior power, it follows that

k/2

OnVkn = (_1) Vk >y

and so (v ) is closed under the action of Pon. U

PROOF OF PROPOSITION 3.2.5. By definition of the vy, ,,, it is sufficient
to prove that (vyi ,) and (vy; ,,) are non-isomorphic when i # j. Indeed let
xi be the character of (vqi,), where 0 < i < n. Given k € N such that
0<k<2" let k=Fko2°+ k12" +---+k, 127! be the binary expansion of
k. Then by definition (vy,) has ordinary character equal to the product

H Xii-

[N k,‘lil

Moreover, Lin(Pan) = (xo) X -+ X {xn—1) by Proposition 3.2.2. Therefore
if I # k, then there exists some y; that appears as a factor of the ordinary
character of (v;,), but not as a factor of the ordinary character of (v ). It
follows that (v;,) and (v ) are not isomorphic.

We now proceed by induction on n. The base case is when n = 0, for
which the result is immediate.

Suppose now that n > 0, and assume that the result holds inductively.
We distinguish two cases.
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Case (1). Given i, j € N, suppose that (vyi ,,) and (v ,,), are isomorphic
as QPon-modules. By definition the QPyn-1-modules

<UZi*1,n—1> and <U21*1,n—1>7

are isomorphic. By the inductive hypothesis we must have 2=1 = 271 and
S0 7 = j.

Case (2). Let i = 0 and fix 1 < j < n. If j > 1, then o, acts on vy; ,
trivially, whereas o,, acts on vy, with negative sign. Therefore

<'U17n> % <Ul,n> .

If j = 1, then [ = 2, and similarly considering the action of 0,1 on
(vin) and (v2,) shows that these two modules are not isomorphic. O

We now determine the ordinary character of (v ). By construction of
the vy p, it is sufficient to do this when £ is a 2-power.

As Pyn is generated by the oy, it follows from Lemma 3.2.1 and Propo-
sition 3.2.2 that

In particular the character of each (v ,) is determined by the sign with
which each o; acts on (vy; ,,). We determine this sign in the following lemma,
and we give an example of this result in Example 3.2.7 below.

LEMMA 3.2.6. Giwven 1 <1< n and 0 < j <n, we have

Vgin  ifi+jé{n,n+1}
0;V9j =
CE T vy, ifit e nn+ 1)

PROOF. By construction the first factor in the wedge product defining
V95, equals

(e1+ e+ +egn—j-1) — (€gn—i—141 + €gn—j—149 4+ -+ + €gn—j).

The generators o1, ...,0,—j-1 clearly act trivially on vy, ,,, and o,—; acts
with negative sign on vy; ,,. Given i > n—j, the generator o; acts by transpos-
ing the k"™ and (k-+i+j—n)™ wedge factors of vy ,, for each 1 < k < i+j—n.
Therefore in this case o; transposes an even number of pairs of wedge factors
of vy; ,,, except when i + j —n = 1. It follows from the anti-commutativity
of the exterior power that the when ¢ > n — j, 0; acts with negative sign on
Vs , if and only if i +j —n = 1.

It follows that if j > 0 then only o,,_; and 0y, 41_; act with negative sign
on vy; . If j = 0 then only o, acts on vy, with negative sign. O

EXAMPLE 3.2.7. In this example we write 7 : Co — {£1} for the non-
trivial irreducible character of Cy. Let n = 2, and so Py = ((1 2), (1 3)(2 4)).
For each vy such that 1 < k < 3, we determine ®o(vg2) € Irro (Py).
Consider first v1 2 = (e1 + e2) — (e3 + e4). We see that o1 acts with positive



sign on vy 2, and that oo acts with negative sign on vy 2. Therefore using
the notation of §1.2.2, the ordinary character x; of (v12) equals Infg‘; T.
Moreover, ®o(x3) = Infg‘; T.

By similarly considering the actions of o1 and o2 on

V22 = (61 — 62) A (63 — 64),

we see that the ordinary character xa of (v22) equals ?XQInfg‘; 7, and so
<I>2(X(2’12)) = 7x2 Infg‘; T.
Furthermore by the construction of the vy ., the ordinary character of

(v32) equals 7%2, and so Dy (x(1) = 722,

3.3. The case S ! Son

Given a,n € N, counting cardinalities shows that Ssa ! Son has a Sylow
2-subgroup isomorphic to Pya { Pyn. It is shown in [35, 4.1.23] that the im-
primitive wreath product is associative in the following sense: for subgroups
G<S,H<S., K <S8, we have

(GIHNWK G (HK).

It follows that Psal Pon = Pya+n. By the remark at the end of §3.1.1, Pyatn is
self-normalising in Ssa+n. Therefore Pya+n also self-normalising in Sga ! Son.

The main result in this section is Proposition 3.3.1.

PROPOSITION 3.3.1. Let x € Irro/(S2a2S9n). Then xiﬁiiﬁiﬁi has a unique

degree-one constituent, denoted ©(x). Furthermore
Irrgr (Paa 2 Pon) = {O(x) @ x € Irro/(Saa 1 San)},
and the map x — ©O(x) is a bijection.
In order to prove the proposition, the following easy lemma is required.

LEMMA 3.3.2. Let G be a finite group, and let N <1 G. Let N < H < G,
and let x be an ordinary G /N -character. Then

el G/N
(Infg/N X)lH = Infg/N(XlHéN)'

We are now ready to prove Proposition 3.3.1.

PRrROOF OF PROPOSITION 3.3.1. It follows from Lemma 3.1.1 and Re-
mark 3.1.5 that x € Irro/(S2a 1 Son) is of the form

—~— X2"

X = X(Qa—k,lk) InfgzzlSQn X(Qn_l’ll)

Y

for some 0 < k < 2% and 0 <[ < 2". We claim that x|p,.,p,,» has a unique
degree-one constituent. We prove this claim by showing that each of

——— X27

X(Qa—k,lk) and Infgzizszn X(Qn_l’ll)
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has a unique degree-one constituent upon restriction to Psa { Pon. It follows
using the bijection ®,, and Lemma 3.3.2 that

S2alSon (2n7l71l) SgalSon PralPon (anlvll) Son
(InfSQn X ) PyalPon IanQ” X Pon

has a unique degree-one constituent. Let

x2™
_ 2a_k’1k SQG?SQn

¢ - X( ) PyalPon '’

Any constituent of 1 induced from a proper subgroup of Psa ! Pon has de-

gree strictly greater than 1. It therefore follows from Theorem 1.2.6 that

every degree-one constituent of 1 is of the form 7%2", for some degree-

one constituent 7 of X(za*k’lk) L%Z . Therefore 7 is the unique degree-one

constituent of X(2a_k’1k) iizz, and so X lp,uap,, has a unique degree-one

constituent, which equals

%XQ’IL InfgzZZSQTL (bn (X(Q’ﬂ—k,]_k))

Write ©(x) for this unique degree-one constituent of xiﬁiiﬁ}iﬁ . It remains

to prove that the map x — ©(x) is a bijection. Let x1, x2 € Irro/(Saa 2 Son)
be such that

— x2m

a1, 1k SoalSon  (2n—lq,111
X1 = )@ keIt Infgn e 2T

9

—_—~ x 2™

X = x(2*—ka,1*2)  [pfeentSen y (2" —2,1'2)
2n ’
where 0 < k1, ko < 2%, and 0 < 1,13 < 2™. Suppose that ©(x1) = O(x2). If

gt By (x N = T 0, (42 21),

then 1 = [. If

— x2m —— x2™
@ <X(2ak171k1) > = @ <X(2ak271k2) > )

then the action of the subgroup Py« x {1} x --- x {1} is the same on the
representations corresponding to these two characters. It follows that

@ (X ETTE) = B (1),

and so k1 = ka. Therefore the map © is injective. By Remark 3.1.5 | Lin(S2a?
Son)| = 2% and by Lemma 3.2.1 and Proposition 3.2.2 | Lin(Psa ! Pyn)| =
207 This proves that

II‘I'Q/(PQa ZPQn) = {@(X) X € IITQI(SQG ZSQn)},

and that the map © is a bijection. U
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3.4. The case G So» when G is an abelian p-group

Throughout this section, let G be an abelian p-group, where p is an odd
prime, and fix n € N. Then 1? Pa» is a Sylow 2-subgroup of G1.San, which we
denote by Par in this section. The main result in this section is the following
proposition.

GZSQn

has a
NeGisyn (Pon)

PROPOSITION 3.4.1. Let x € Irro/(G 1 San). Then x |

unique degree-one constituent, denoted O(x). Moreover,
Irryr (NySyn (Por)) = {O(X) 1 x € Irra (G2 San) },
and the map x — O(x) is a bijection.
As G is an abelian group, Remark 3.1.5 states that
Irry (G Son) = {1*2" Infg;f2n X(2n_k’1k) cp € Irr(G) and 0 < k < 2™},
The following lemma describes the normaliser of Pyn in G Son.

LEMMA 3.4.2. Let G be a finite group, and let Q be a transitive subgroup
of Sn. Then

Neas, (Q) = A(G) X N, (Q),
where A(G) denotes the diagonal subgroup of G™.

PrOOF. By Lemma 1.2.3, Ngs,, (@) = Ca(Q) % Ng, (Q). It follows that

given g = (g1, ..,9n;0) € Ngs, (@), we have (g1,...,0n;1) € Cq(Q). Then
g; = g; for i and j in the same @-orbit. By assumption () is transitive

and so g1 = g2 = -+ = gn. Therefore Cq(Q) = A(G), and so Ngs, (Q) =
A(G) 1 Ng, (Q). As the place permutation action of S, on A(G) is trivial,
the product is direct. O

It follows from Lemma 3.4.2 that Ngs,, (Por) = G X Pyn, and so there
is a natural correspondence between Irry (Ngs,. (P2r)) and the set

{p x xR € (@) and 0 < k < 2"}
We now prove Proposition 3.4.1.
PROOF OF PROPOSITION 3.4.1. Let x € Irry/(G 1 San) be such that
y=¢*?" Infg;fw X(Qn_k’lk)a

where 1 € Irr(G) and 0 < k < 2". Then the unique degree-one constituent
of X{A(@)x Py €quals
(3.2) D Ly x (xR,
which we denote by O(x). Let x1, x2 € Irra (G 1.San) be such that

X2 (G1Son (27— 1K1
x1 =11 Infg ? X k1t

SX2T L GiSon (27— kg, 1R2
Y2 = s Inf32n2 X( 2, )7
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where 11,199 € Irr(G), and 0 < ki, ke < 2". It follows from (3.2) that if
X14A(G)x Pyn = X24A(G)x Pon » then k1 = kg and

—~x2™" —~x2™

Y1 dae=v2  da) -
Given g € (G, we have that

~ x2™ on

Vi (g, 9:1) =i (g).

As G is abelian, |Lin(G)| = |G|. Moreover p is odd, and so 2" does not
divide |Lin(G)|. Therefore the map 9 + 92" is a bijection. It follows that

X2 £ X" implies that 11 # 19, and so © is injective. As Irry (GSan) =
Qn‘G’ = II‘I‘Q/(G X P2n)7

Irry (Nensgn (Pon)) = {O(X) : x € Trrar (G 2.S2n)},

and the map © is a bijection. O

3.5. The case C§ 1S5

Given a,n € N, counting cardinalities shows that C'§ Pa» is a Sylow
2-subgroup of C§ ! Son. We begin with the following lemma, which shows
that NC;‘ZSQn (Cél ! P2n) = Cg ! P2n.

LEMMA 3.5.1. The subgroup C§ Py is self-normalising in CS§ 1 Son.

ProOF. We prove that Negis,, (C§ 0 Pan) < CF 1 Pon, as the reverse
containment is obvious. By definition of the multiplication in the imprimi-
tive wreath product, it is sufficient to prove that if (1;7) € Sa» normalises
C$ Y Pyn, then (1;7) € Pyn. Given (z;0) € C§ 1 Pon, suppose that

(L;7 N (z;0)(1;7) € CEU Pon.

Then 7107 € Pyn. This argument holds for all elements in C§1 Pon, and so 7
normalises Pon. As Pon is self-normalising in Son, it follows that (1;7) € Pon,
as required. O

The main result in this section is the following proposition.

PROPOSITION 3.5.2. Let x € Irry/(C§1S9n). Then Xigj;;iz: has a unique

degree-one constituent, denoted ©(x). Furthermore
Irro (C5 U Pon) = {O(x) : x € Irror (CF 21.Som) },
and the map x — ©O(x) is a bijection.

As C% is an abelian group, it follows from Remark 3.1.5 that

Irro/ (CF 2 Son) = {QZXTL Infgff?n X(Qn_k’lk) s € Irr(CF) and 0 < k < 2"},

As in §3.2 to count Lin(C§? Pyn) we describe the group (C§1Pan)/(CS1Pan)’.
We do this by proving the following more general result.
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LEMMA 3.5.3. Let H be an abelian group, and let G < S, be transitive.
Then

(H1G)/(H1G) =2 HxG/G.
PROOF. Define
K=0¢0,...;h,...,0)(1,...;h,..., 1)  h € HgeqG).
By assumption H is abelian, and so Lemma 3.2.3 gives that
(H1G)/(H1G) = H" /K x G/

It is therefore sufficient to prove that the quotient group H" /K is isomorphic
to H. As GG is assumed to be transitive, we have that

K={(1,....,h,....,h7 ... 1) : he H).

As H is abelian, the group K is equal to the subgroup of H™ generated
by all elements (hi,...,h,) such that hy...h, = 1. Moreover, the set
{(h,1,...,1) : h € H} is a complete set of coset representatives for K in H".
Indeed the element (x1,...,z,) € H" is contained in (h,1,...,1)K if and
only if z1...2, = h. The map (h,1,...,1)K — h now gives the required
isomorphism. O

It follows Proposition 3.2.2 and Lemma 3.5.3 that
(CS 2 Pyn)/(CH2 Pon) =2 C§ x CF =2 Oy,
We are now ready to prove Proposition 3.5.2.

PROOF OF PROPOSITION 3.5.2. Let x € Irry/(C§ 2 San) be of the form

Y = wa In fC 5U52n (2’L—k,1k)

)

where ¢ € Irr(C§), and 0 < k < 2". To simplify the notation, we write -y for

C§1S9n . . .
X+ p, - Since Cf is abelian,
2

wXZ In fC 1Pon (I)n(X(ank,lk))

is the unique degree-one constituent of ~, which we denote by ©(x). By
Theorem 1.2.6 and using that ®,, is a bijection

——Xx2" Can n_j 1k ——Xx2n C$1Pyn n_yql

Y1 Infpt T B (TTR)) =T Inf T @, (T RY)
if and only if 1 = 12 and k = [. Therefore the map O is injective. By the
sentence immediately after the proof of Lemma 3.5.3 | Lin(C§ Pon )| = 2977,
This proves that

II‘I‘Q/(CQa ZPQn) = {@(X) X € II'I‘Q/(CQG ZSQn)},

and that the map © is a bijection. U
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3.6. Low degree constituents of Xi%z .

Givenn € N and 0 < k < 2™, let Xﬁ denote the Son-character X(Qn_kvlk).
Define a(k,j,n) to be the number of irreducible constituents of degree 27
appearing in the restricted character x% 1P, . The bijection ®,, between
Irro/ (Son) and Irrg/(Pon) shows that a(k,0,n) = 1 for all k,n € N. In this
section we provide explicit formulas «(k, j,n), where 0 < j < 2. Using Frobe-
nius reciprocity and Clifford theory, our approach to determining «(k, j,n)
is by studying the restriction of x* to small index subgroups of Pan.

In order to verify our formulas, we will refer to Tables 1 and 2 on the
following page. Table 1 gives the values of a(k, j,n) for Sg, with k labelling
the rows and j labelling the columns. The entries in the table have been
computed using MAGMA ([4]). The analogous table for Sj¢ is Table 2. Due
to the need to consider symmetric groups of exponentially increasing degree,
we do not provide the analogous tables for S33 onwards. Observe that the
partition (k 4+ 1,12"7%=1) is the conjugate partition of (2" — k, 1¥). By the
discussion following Theorem 1.1.2, it is therefore sufficient to determine
a(k,j,n) for k <21 —1,

Write D,, for Son—1 X Syn-1, and recall that @, = Pon-1 X 77 Pyn-1.
Essential to the proofs of the results in this section is Equation (3.3). We
remark that this equation follows from Corollary 1.1.10 of Theorem 1.1.4:

[y

k k—

(3.3) Xolp =D (1 x0T + Y (X x 1Y)
1=0 ;=0

=

Our starting point is Lemma 3.6.1 below, which determines «(k, 1,n).
The proof of this result was communicated to the author during personal
communication with Eugenio Giannelli.

Using Theorem 1.2.6 observe that any two-degree irreducible constituent
of Xﬁ 1P, is of the form

P27’L

wa,ﬁ = (O[ X /8) Qn

ak,j;4) 01 2 3 4 5
a(k,7,3) 0 1 2 0 100 0 0 O
0 00 1 111 1 0 0

2 1 2 9
! b 3 1 3 152 168 12 g

2 1 2 4

3 13 7 4 1 4 19 36 36 13
5 1 5 24 54 72 41
TABLE 1 6 1 6 28 66 114 79
7 1 7 31 71 148 105

TABLE 2
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where «, 8 € Irr(Pyn—1) are such that o # 5 and «(1) = (1) = 1.

LEMMA 3.6.1. Givenn € N such thatn > 2, firt 0 < k < 2"~1—1. Then
a(k,1,n) = k.

Proor. Using Frobenius reciprocity observe that 1, g is a constituent
of x* lp,, if and only if o X 8+ 8 X « is a constituent of xE 1o, - It is
therefore sufficient to count the number of constituents of x* |, of the
form aw x B+ 8 X «, where o #  and (1) = (1) = 1. As a x § is a
constituent of (sz—l X Xﬁ:il) lg, if and only if 8 x « is a constituent of
(Xfl:il X Xiz—l)‘Lva it suffices to count the number of constituents of

15] 1552
Z(X;q X sz:il) + Z (sz—l X quijii) lQn
=0 =0
of the form a x 3 such that « # 8 and «a(1) = (1) = 1.
We now distinguish two cases, determined by k.
Case (1). If k is even, then the number of constituents of the required
form equals the number of degree-one constituents of

Z (Xn—1 X Xﬁill) + D (a1 X bej_l) lQn'
=0 =0

Observe that ®,_1(x%,_1) # ®n_1(x"}) for each i in the first summation
since ®,,_1 is a bijection and i # k — i. The analogous statement is true for
the second summation, and so the number of required constituents equals
k.

Case (2). If k is odd, then we argue in a similar way by counting the
number of degree-one constituents of the required form appearing in

Sl E Y o L, O
i=0 =0

We now state the following proposition, which determines «(k,2,n)
when k£ < 2n—1 — 1.

PROPOSITION 3.6.2. Givenn € N such thatn >4, let 0 < k <2771 —1.
Then a(k,2,n) equals
k
(1) K2+ &)+ 213 ipp <21 k
(2) 224 pon-ly— (0 4+1)2+ L%J + 2L%J, whenever k = 2""2 4 ( for
some 0 < £ < 22,

In order to prove Proposition 3.6.2, we require Lemma 3.6.3 below. Ob-
serve that the proof of Lemma 3.6.1 and the bijection ®,,_; show that any
two-degree irreducible constituent of x* | P,» appears with multiplicity one.
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Then if ¢ is a two-degree irreducible constituent of both Xﬁ lp,, and sz 1Py s
then we say that x* and x!, have 1 in common.

LEMMA 3.6.3. Let 1 <1 < k < 2" L. Then the characters Xlri lp,n and
XL 1Ipn have a two-degree irreducible constituent in common if and only if
k —1 = 1. Moreover, x*=1 |p,. and x% |p,, have exactly {gj two-degree
irreductble constituents in common.

PROOF. Suppose that 1), g is a constituent of both Xﬁ lp,, and X% Ippn -
Then by Frobenius reciprocity o x 3 is a constituent of both x% |g, and
XL 1@, - Recall that D,, = Son-1 X Son-1. As ®,_1 is a bijection, we can
define x?_, = ® ' (a) and x4, = @, (B), where 0 < a,b < 2" 1. It
follows from the transitivity of restriction that the D,-character ¢ _; xx%_,
is a constituent of both x* |p and X!, |p, . By considering (3.3) we see
that x2_; x x%_, is a constituent of x¥ |p if and only if either a + b = k,
or a4+ b=k — 1. The same argument holds for x!, and so either a + b = [
or a+b=1[0—1. By assumption k£ > [, and so it is necessarily the case that
k—1=a+b=1I.In particular [ = k — 1, which proves the first statement
of the lemma.

We now prove the second statement of the lemma. As1 < k < on—1_1,
the sequence (2"~! — (k — 1),1%¥71) is a partition of 2"~1. The irreducible
D,,-characters appearing in both x,”fL Ip, and Xfl_l Ip, are precisely the
summands of

T
L

(Xn 1 XXITCL % Z)'

<.
Il
o

Every constituent of (% _; x X’;i 1= be 17 X Xi1) b, of the form a x

B+ B x «, where a« #  and «a(l) = B(1) = 1, corresponds to a two-
degree irreducible constituent appearing in both of y* 1p,, and xE1 1Py -
Equivalently each degree-one constituent of

LE5L
(3.4) Z (Xn 1 XXQ T Z) lQn

1=0

of the form « x 3, where a # 8 and «(1) = (1) = 1, corresponds to a two-
degree irreducible constituent appearing in both of Xﬁ lp,, and Xffl 1Py -
It therefore remains to count the number of degree-one constituents in (3.4).
In order to do this, we distinguish two cases.

Case (1). Suppose that k is even. Then the sum in (3.4) becomes

E_ k
(00 +ooe (5 ) Lo,

In this case there are % degree one constituents of the required form.
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Case (2). Suppose that k is odd. Then the sum in (3.4) becomes

k=1_q k=14 k—1

k—1
((Xn X X)) Fo G2 G2 )+ (62 XX 1)) lQn
In this case there are 1 degree-one constituents of the required form. [

PROOF OF PROPOSITION 3.6.2. We begin by considering more closely
the four-degree irreducible characters of Pan, each of which has exactly one
of the following forms:

(1) (@ VT
(2) X2Infgg" 0,
where either ¥, A € Irr(Pyn—1) are such that J(1) = 2 and A(1) = 1, or
w € Irr(Pyn-1) is such that p(1) = 2 and p € Irr(Cy).
If (9 xA\) TPQn" is a four-degree irreducible constituent of x* |p,,, then

¥ X A+ A x ¥ is a constituent of x¥ |, . We therefore count the number of
constituents of the form ¥ x A in

k
(3.5) (Z Xoo1 X Xh” +Z><n L XX Z) Lo,
=0

where 9(1) = 2 and A(1) = 1. Given 1 < i < k, as each of x" ) Ip,, , and
Xﬁ % : Ip,, , has a unique degree-one constituent, it is sufficient to count
the number of two-degree irreducible constituents appearing in x;,_1{p,, ; -

If 1/1“ Ian’"” p is a four-degree irreducible constituent of y* 1p,n, then
P X is a constituent of x¥ 1o, - We are therefore also required to count
the number of constituents of this form that appear in (3.5).

First suppose that &k < 2772 — 1, as in the first case of the proposition.
Consider the constituents in (3.5) of the form ¥ x A, where (1) = 2 and
A1) =1. As k <272 — 1, we have that a(i,1,n — 1) =i for all 0 < i < k.
The number of constituents of the required form in (3.5) therefore equals

k k—1
(3.6) d it > i=k
=1 =1

We now count the number of constituents in (3.5) of the form 1 x ¢ such that
P(1) =2. As k < 2" ! — 1, we have that % <2772 — 1. We now distinguish
two cases, determined by k. If k is even, Lemma 3.6.1 states that

kE k
(i x i) Lo,

has exactly g constituents of the required form. Also by Lemma 3.6.3, the

characters
k

k k E_q
(a1 % Xa-1) g, and (g X2 1) g,

E
each have exactly L(%)j irreducible constituents of the form 1 x ¢ such that
(1) = 2. Summing these values with (3.6) gives the result in this case.
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Similarly if &k is odd, then Lemma 3.6.3 gives that

kS Lip ke
(anl X Xn 1 J,Q and (Xn 1 X anl)lQn

)J constituents of the form v x ¢ such that (1) =
Moreover, Lemma 3.6.1 states that

each have exactly |

k-1 k-1
(Xnil X Xnil)lQn
has exactly ®51 constituents of this form. Once more summing these values

with (3.6) glves the result in this case.
Now let k = 2772 + ¢ for some £ € Ng. Then y2" s Ip, equals

221 221

n—2
(3.7) Z(Xn 1><Xn 1+Z Z)“‘ Z(Xn 1><X7211+€1Z)
i=0 i=0
224y , 2n=240—1 ,
+Z anXXif%Z)"‘ Z (anXXilMlz)

j=2n—2 i=2n—2
Consider the constituents ¥ x A, where 9(1) =2 and A(1) =1, in (3.7). As
a2 2 4+t,1,n—1)=2""2 -1t for each 0 <t < 2" 2 — 1, the number
of constituents of this form appearing in (3.7) is equal to

(-1
221D 42 2V -1+ (27 —1-1)
=0
=22 D2 H 42—+ 1)+ 27— (L +1)
(3.8) =22~ LonTly (04 1)2

The same argument as in the case when k < 2"~! — 1 shows that the
number of constituents in (3.7) of the form 1 x ¢ such that (1) = 2 equals

k
a2l

Summing this with (3.8) completes the proof in this case. O

The following example verifies the second case of the proposition against
the values in Table 2 for k € {4,5,6,7}.

ExAMPLE 3.6.4. Let n = 4.
(1) Let k =4, and so £ = 0. Then

a(4,2,4) = 16+ 8(0) — 1 + 2 + 2(1) = 19.
(2) Let k=5, and so £ = 1. Then

a(5,2,4) = 16+ 8(1) — 4+ 2 + 2(1) = 24.
(3) Let k =6, and so £ = 2. Then

(6,2,4) = 16 + 8(2) — 9+ 3 + 2(1) = 28.
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(4) Let k =7, and so £ = 3. Then
a(7,2,4) = 16 + 8(3) — 16 + 3 + 2(2) = 31.

We have seen that the two-degree irreducible constituents of y* 1P
each appear with multiplicity one. The following example shows that this
is generally not the case for the irreducible constituents of y* 1p,, of degree
at least four.

EXAMPLE 3.6.5. As in Example 3.2.7, we write 7 : Cy — {£1} for the
non-trivial irreducible character of Cy. Let A = (6,1%) I 8. By (3.3)

X(lez)ls4><5’4 = (X(4) X X(2712)) + (X(B’l) X X(?’vl)) _|_ (X(2712) X X(4))
+ (X(4) X X(3:1)) + (X(Svl) X X(4))

The only two-degree irreducible character of Py is (1 x ) TS‘Z , which occurs
with multiplicity one in both y 31 lp, and X(2’12)¢p4 . Then
P
1p, x (1 x71) Qi
is a constituent of (x*) x x(31) | p, and (x*) x X(2’12))¢p4, with multiplicity
one in each case. It follows that the four-degree irreducible Pg-character
Py 4P
(1p, x (1x7) Q4) O
appears with multiplicity two in X(6’12) Ip .

We remark that using the results in this section, it is possible to de-
termine a formula for a(k,3,n). The key observation is that any 8-degree
irreducible character of Pon has exactly one of the following forms:

(1) (%N
(2) Exv)] g
where either ¥(1) =4 and A(1) =1, or {(1) = ¢(1) = 2 and £ # ¢. We can
count the constituents of the first form using Proposition 3.6.2. Similarly we
can count the constituents of the second form by considering the irreducible
constituents of
15] 1534
D G =)+ D) (x| Lo,
i=0 i=0
of the form & x ¢ such that £(1) = ¢(1) = 2 and £ # . This, in turn, can be
done by counting the number of irreducible constituents of the form & x ¢
such that £(1) = (1) = 2 using Lemma 3.6.1, and taking into account that
each constituent of the form (£ x w)Tg";", where £(1) = (1) = 2 and £ # ¥,

appearing in either be/—Ql X be/—Ql if k is even, or Xfljﬂ X Xﬁ:ll/Z if k is odd,

is counted twice. We then subtract the number of constituents of the form
¢ x & such that £(1) = 2 using Lemma 3.6.3.
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A natural question to ask is whether it is possible determine «(k, j, n) for
J > 4. As an example, in order to count the irreducible constituents of x | p,,
of degree sixteen, we need to determine when Xﬁflipw_l and x!,_, Py s
where 0 < k,l < 277!, have a four-degree constituent in common. Moreover,
when such a common constituent arises, we require its multiplicity in each
of xk_, Ip,, , and Xﬁ%lipw_l . As shown in Proposition 3.6.2, this number
will not be a polynomial function in k& due to the different formulas for
0< k<22 _1and 22 < k < 2" ! — 1. Also, due to the differences
in these two cases, a(k,4,n) depends on four cases for 0 < k < 27! — 1,
namely: 0 < k<2" 31,273 << 2_1, 2" 2 << on 321,
and 2773 + 272 < k < 277! — 1. Furthermore, the formulas for a(k,j,n)
that we have given so far depend heavily on each j, and so do not appear
to generalise to a formula for a(k, j,n) for arbitrary j.



CHAPTER 4

Endomorphism algebras of two-row permutation
modules

Fix n € N, and let F' be a field of characteristic p > 0. We consider the
structure of the F'S,-permutation module M* (defined in §1.1.1), where A
is a partition of n with at most two parts. In this case write A = (A1, A2),
and so M(A1:22) corresponds to the action of Sy, on the cosets of the maximal
Young subgroup Sy, ,)-

The Krull-Schmidt Theorem states that M (*1:*2) has a direct sum de-
composition into indecomposable F'S,-modules, and that these indecom-
posable summands are unique up to isomorphism. A natural problem to
therefore consider is to express M*1:22) ag a direct sum of its indecompos-
able summands. We will see in §4.1 below that in this special case such a
decomposition is unique. Moreover, in the case when p does not divide n!,
the decomposition of M*1:22) ag a direct sum of its irreducible submodules
is known. However when p divides n!, expressing M(*1:22) ag the direct sum
of its indecomposable summands remains a notoriously difficult open prob-
lem. A complete solution to this problem was given by Doty, Erdmann and
Henke in [15] when p = 2, and in this chapter we give a complete solution
when p = 3. We remark that some of our methods for constructing the inde-
composable summands of M(142) over a field of characteristic 3 are based
on ideas from [15]. In §4.1.1 we make clear those ideas that are from [15],
and those that are new.

4.1. Indecomposable summands and endomorphism algebras

Although it is difficult in general to express an F'S,,-module as a direct
sum of its indecomposable summands, we have partial information on the
summands of M*, where ) is any partition of n. Indeed let

m
M = Py
i=1

be a fixed direct sum decomposition of M* such that each Y; is indecompos-
able. It follows from James’ Submodule theorem (see Theorem 1.3.20) that
there is a unique Y; containing the Specht module S*. Moreover, it is known
(see [18, Theorem 1]) that Y; is unique up to isomorphism. We write Y for
this summand, and we refer to this module as the Young module labelled

81
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by A. Recall that &> denotes the dominance order for partitions. It is also
known ([18, Theorem 1]) that M* is in general isomorphic to a direct sum
of Young modules Y* such that u > A. We can therefore write
M =Y o @M Yy,
HE=A

where [M? : Y#] denotes the number of indecomposable summands of M*
that are isomorphic to Y#. We refer to the multiplicity [M? : Y*] as a
p-Kostka number.

Although a complete characterisation of the p-Kostka numbers appears
to be out of reach, they are completely understood when A has at most two
parts. Indeed let pu = (u1, p2) be a partition of n such that p > A. Define
m = A1 — Ay and g = Ay — po. Observe that m > 0 as A is a partition,
and g > 0 as p > A. Henke proved in [29] is that the p-Kostka number
[MOuA2) -y (#142)] i non-zero if and only if the binomial coefficient

o= (")

is non-zero modulo p. By Lemma 1.3.18 this is the case if and only if the
p-ary addition of m + g and ¢ is carry free. Henke’s result is proved using
a result of Donkin [13, (3.6)] based on Klyachko’s multiplicity formula [38,
Corollary 9.2]. In the case that Y (#1#2) is a summand of M(*1:*2) Henke
also proved that the corresponding p-Kostka number equals one [29, Lemma
3.2].

Let A denote the endomorphism algebra of an F'G-module M, and let
e be a primitive idempotent in A. Recall that eM is an indecomposable
summand of M, and that every indecomposable summand of M arises in
this way. Therefore in this chapter the central object of study is the en-
domorphism algebra Sp((A, \2)) := Endpg, (M*122)) where F is a field
of characteristic 3. In particular we construct a complete set of primitive
idempotents in Sg((A1, A2)).

We now give the presentation of Sr((A1, A2)) that we use throughout this
chapter, which holds over any field. Given r € N, fix an r-dimensional F-
vector space E with basis {v1,...,v,}. Form the n-fold tensor product E®",
on which S,, acts by place permutation. We extend this action linearly to
the group algebra F'S,, and we define the Schur algebra

Spg(r,n) = Endpg, (E®").

Instead of using the tabloid construction of M* given in §1.1.1, we describe
a submodule of E®" that is isomorphic to M*. Define

I(r,n) = {(i1,...,i) s i; € {1,2,...,7} for all j}.
Given a composition A of n, we say that (i1,...,4,) € I(r,n) has weight \ if

{7 i =k} = A,
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for all 1 <k < ¢(\). For instance, the elements in (2, 3) of weight (2, 1) are
(1,1,2),(1,2,1) and (2,1, 1).
Then M* is isomorphic to the F-span of the set
{vi, ®vj, ® -~ ®@;, : (i1,42,...,1,) has weight A}.

Observe that this defines M when \ is a composition of n. Moreover, there
is a decomposition of F'S,,-modules
B = fH M
AEA(rn)

where, as usual, A(r,n) denotes the set of compositions of n with at most r
parts.

We work with partitions of n with at most two parts, and so we fix
r = 2 throughout the rest of this chapter. The main result in [17] is an
explicit presentation of Sq(2,n) as a quotient of the universal enveloping
algebra U (gl,). This result can be used to give an explicit presentation of the
endomorphism algebra Sg((A1, A2)), which we now describe. Following the
notation in [15] and [17], define e = ey, f = e12, H1 = e11, and Hy = egg,
where e;; is the standard matrix unit in the Lie algebra gly. As in [17, 3.4],
given ¢ € Ny and an element 7' in an associative Q-algebra with 1, define

T(e)szgand <T) _T(T-1)...(T-t+1)

/! 14 14
Then given A = (A1, A2) € A(2,n), define
s= () G)
A1) \ e
It is proved in [14, Lemma 5.3] that 1, is an idempotent in Sq(2,n), and
that 1\ E®" = M?*. Given i € Ny, we define
b(i) = 1, f@e1,.

The following lemma completely describes Sg(A) as an associative F'-
algebra. We remark that this lemma is an equivalent restatement of Propo-
sition 3.6 in [15], chosen to make it obvious that Sp()) is commutative.

LEMMA 4.1.1. [15, Proposition 3.6] Given n € N, let A = (A1, A2) F n,
and define m = Ay — Aa. Then Sp(X\) has an F-basis given by the set

{b(7) : 0 < i< Ao}
Moreover, the multiplication of the basis elements is given by the formula
itj L
N h\ (h\ (m+i+]
b =
= 2. <z> <J> (z‘+j - h)b(h)’
h=max{%,j}

where we set b(a) =0 if a > Aa.
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We refer to the basis given in this lemma as the canonical basis of Sg(\).
We also make some remarks regarding this lemma. The presentation of the
Schur algebra in [17] is over the field Q. Nevertheless b(7) is well-defined over
a field of positive characteristic p. Moreover, the structure constants given in
Lemma 4.1.1 are integers. Therefore the above multiplication formula holds
over a field of characteristic p by reducing the coefficients modulo p. Further-
more, the QS,,-module M*142) is multiplicity free, and so Sq((\1, A2)) is a
commutative algebra. This implies that Sz((A1, A2)) is also a commutative
algebra, and so its primitive idempotents are unique. Therefore the direct
sum decomposition of M *1:22) into its indecomposable summands is unique,
as claimed in the introduction of this chapter. Also a direct computation
using the multiplication formula shows that b(0) is the identity in Sg()),
and we write 1 for b(0).

We also have the following useful lemma from [15], which provides an
easy formula for calculating certain products in Sr((A1, A2)).

LEMMA 4.1.2. [15, Lemma 3.7] Let p be a prime number, and let i € N
be such that i has p-adic expansion i = igp® + i1p* + - . Then b(i) =
[Ti0 b(ic - ).

As a final remark, we note that Lemma 4.1.1 is an example of the various
connections between the representation theories of the symmetric group and
the general linear group via the Schur algebra. For further details, we refer
the reader to [27] and [48].

4.1.1. Main results. The first main result in this chapter is Theorem
4.1.3, which constructs the central primitive idempotents in Sp(\) when F'
is a field of characteristic 3. Our second main result is Theorem 4.1.4, which
determines the Young modules that the primitive idempotents constructed
in Theorem 4.1.3 correspond to. This completes the construction of the
Young modules Y (#1:#2) oyer a field of characteristic 3.

We now state the ideas from [15] that we use to prove our main results.
The basis and corresponding multiplication formula of Sg()) given above is
from [15]. Our construction of the primitive idempotents in Sg(\) uses the
same idea as [15] of giving a correspondence between particular elements
of Sp(\) and the binomial coefficients (§) such that 0 < b < a < p. The
number of binomial coefficients of this form clearly increases with p, and so it
seems difficult to determine such a correspondence for fields of characteristic
p > 5. It is remarked in [15, §1] that explicitly constructing the primitive
idempotents appears difficult even when p = 3. By proving our main results,
we completely solve the problem in this case. We also note that the argument
used to prove that the idempotents we construct are primitive is based on
the counting argument in [15, §2.4]. Moreover, the proof of Theorem 4.1.4
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is taken directly from the proof of Theorem 7.1 in [15]. We repeat the proof
of [15, Theorem 7.1] here in order to make this chapter more self-contained.

We now describe where our ideas differ to those in [15]. We have seen
in Lemma 4.1.1 that the multiplication structure of Sg(\) depends only
on m, whereas our construction of the primitive idempotents depends on
B(m,g). We are therefore required to determine the critical parameter m
given m+ 2g and g. An important observation in [15] is that if g has binary
expansion g = Y ;54 92, then 2g has binary expansion 2g = Y., gi—12".
Furthermore, the proof of the Idempotent Theorem in [15] uses that the
sum of any two idempotents is an idempotent over a field of characteristic
2. These observations only hold when p = 2, and so we take a different
approach when proving the analogous results in our case (see §4.4 and §4.5).

Throughout the rest of this section, we assume that F' is a field of char-
acteristic 3. We now define the elements e,, y € Sp()), which are the subject
of Theorem 4.1.3. Let m,g € Ny be such that B(m, g) is non-zero modulo
3. Define the index sets

12 ={u:gy =0and (m+2g),

_77(3’)9 ={u: g, =0 and (m+ 2g), = 0}
J}r?’)g ={u:g,=1and (m+2g9), = 2}
_77(%’)9 ={u:g, =0and (m+2g9), =
JT(Y}’)Q ={u:g,=2and (m+2g9), =

( Ju =

( Ju =

J2) ={u:gy, =1and (m+29),

The chosen notation for these index sets may not seem intuitive upon first
reading, but the results in §4.4 will make this clear.

Define
emg= J] 1+0b(3")—b(2 - T b — b(3%)
welld, ueJ,Sf)g
I] 1-b2-3%- J] b2-3%
uelly), ueJ,(,f)g
I] 1-b3") +b - I ") —b2-34).
werl?, uGJ,Sf?g

As stated in Lemma 4.1.1, if b(a) in this product is such that a > A9, then
we set b(a) = 0. We give an example of e,, 4 in §4.2. Given t € Ny, define
(emy)gt by taking the products defining e, , over the u in each index set
such that u < t. Also define (e, 4)<; in the analogous way.

We are now ready to state our main theorems, which we do overleaf.
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THEOREM 4.1.3. Given n € N, let A\ = (A1, 2) F n and m = A; — Ao.
The set of elements ey, 4, with B(m, g) non-zero modulo 3 and g < A, give
a complete set of primitive orthogonal idempotents for Sg(\).

THEOREM 4.1.4. Let A = (A1, A2) and p = (u1, u2) be partitions of n
such that Y* is a direct summand of M. Define

m=A1 — Ay and g = Ao — pa.
Then e, 4 is the primitive idempotent in Sp(\) such that ep, gM* 2 YH,

We provide an outline for the remainder of this chapter.

Outline. In §4.2 we introduce some notational conventions that we use.
We also explicitly define the elements e, , using the 3-adic expansion (see
§1.3.5 or §4.2) of B(m,g).

In §4.3 we consider more closely the multiplication structure of Sg(\). In
particular we define the element v, ,, € Sp(X), where u € Ny. The product
of (em,g)<u (defined on the previous page) and ), is fundamental in the
proof of Theorem 4.1.3.

We have seen in Lemma 4.1.1 that the critical parameter in the multi-
plication formula for Endpg, (M()‘h)‘?)) ism := A1 — Ao. In §4.4 we therefore
relate the 3-adic expansion of B(m,g) to the 3-adic expansion of m. We see
that this depends on the carries in the ternary addition of m and g.

In §4.5 we prove Theorem 4.1.3. We prove Proposition 4.5.1, which
states that the elements (e, )<, are idempotents for all v € Ny. Before
we prove Proposition 4.5.1, we show how it implies that the elements e, 4
are idempotent in Sg(\). The proof of Proposition 4.5.1 is by induction
on u. We give the base case of this induction in §4.5.1, and we complete
the inductive step in §4.5.2. In §4.5.3 we show that the elements e, , are
mutually orthogonal. A simple counting argument then shows that these
elements give a complete set of primitive orthogonal idempotents in Sg(A),
thereby completing the proof of Theorem 4.1.3.

In §4.5.4 we consider an application of Theorem 4.1.3. In particular we
prove that, over a field of characteristic 3, the module M (A1:22) ig indecom-
posable if and only if either (A1, A2) = (n,0), or (A1,A\2) = (n—1,1) and 3
divides n.

In §4.6 we prove Theorem 4.1.4. Following the exposition in [15], the
proof of the theorem is by induction on n. Observe that m and g are invari-
ant under adding the partition (12) to both A and . In the inductive step
we therefore prove that if €, ,M* = Y¥, then e,, ;M (%) o yut(®) Wwe
remark that this is an algebraic realisation of the column removal phenom-
enon for the decomposition matrices of symmetric groups proved by James
(see [34]).
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4.2. Primitive idempotents and Lucas’ Theorem

Let p be a prime number. Given ¢ € Ny with p-adic expansion ¢ =
ZZ:O cyp”, we write ¢ =, [co,c1,...,¢]. Given s € N, we also write c<
for ZZ;B cyp”. Given d = [do, d1, ..., ds], Lucas’ Theorem (Lemma 1.3.17)

states that
t
c Cu
(d> EH (d) mod p.

u=0
Recall that we refer to the factorisation on the right hand side as the p-adic

expansion of (2) In this chapter we define factor u in the p-adic expansion

of (2) as the binomial coefficient (gz), and we write (;)u for (cch) for all
0 <u <t Given m,g € Ny, we write B(m, g), for the p-adic expansion of
B(m, g).

Recall from Lemma 4.1.1 that Sp(A) has an F-basis equal to

{(b(i) 1 0 < i < Ao},

and also recall that 1 denotes b(0) = 15, (). Define the order < on the b(i)
by b(i) < b(j) if and only if 7 < j.

We remark that we can define e,, 4 by assigning elements in Sp(\) to all
possible factors of B(m, g)s, and then multiplying these elements of Sp(\)
according to the factors of B(m,g)s (see Example 4.2.1 below). The assign-
ment is as follows:

(g>u & 1+b(3") —b(2-3Y) (i)u & b(2-3%) = b(3")

@ 2 1-b2- 5 @ & b(2-3Y)
<§)u &1 —b(3%) +b(2-3%) G)u o b(3Y) — b(2 - 3),

and assigning zero to any other factor of B(m,g)s. We define factor u of
em,g as the factor of e, 4 corresponding to factor u of B(m, g)3. The factors
not shown in the above display are precisely those (Ccl) with 0 < ¢ < d < 3.
If B(m, g)3 has such a factor, then B(m,g) = 0 modulo 3. Therefore e, 4
is defined and equal to 0 even when it does not correspond to a summand

of M*.

ExXAMPLE 4.2.1. Let A = (36,13), and let p = (49,0). Then m = 23,

e QOONO0-

Therefore ea3 13 equals

(b(1) — b(2))((3) — b(6))(b(18) — b(9))(1 — b(54))(1 + b(81) — b(162)). ...
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As b(a) = 0 for a > 13 in Sp((36,13)), only finitely many factors in this
infinite product are not equal to 1. Then by Lemma 4.1.2

ea3,13 = (b(1) — b(2))(b(3) — b(6))(—0(9))
— —b(13) 4 b(14) + b(16) — b(17)
= —b(13)

in Sp((36,13)).

4.3. Multiplication in Sp()\)

Throughout this section fix m € Ny, and fix a partition A = (A1, A2)
such that m = A1 — Aa. Observe that factor u of e;, 4 can be expressed in
terms of the elements

(4.1) b(2-3%) — b(3%) and b(2 - 3Y),

where u € Np. In the proof of Theorem 4.1.3, we show that (em4)%, =
(em,g)<u- To this end we need to determine the squares of the elements in
(4.1). In this section we therefore assume that Ay > 2-3%, and we determine
the products b(3%)%,b(2 - 3*)2, and b(3“)b(2 - 3*) using Lemma 4.1.1.

DEFINITION. Given u € N, define

3v—1
¢%Lu:: j{: <3leek>b(k)

k=1
Also define ¢, 0 = 0.

We remark that our motivation for defining v, is twofold. The im-
mediate reason is that we can express the products b(3%)%,b(2 - 3%)2, and
b(3“)b(2-3%) in terms of 1y, . Also, as stated in the outline, the product of
Ymu With (€m,g)<u is fundamental in the proof of Theorem 4.1.3.

Consider first b(3%)%. Lemma 4.1.1 gives

2.3v 2
w2 h\ (m+2-3"
b(3%)? = h;)u <3u> <2 g h)b(h).
A direct computation using this formula shows that the coefficient of b(3")
in b(3%)2 equals (m“1+2), and that the coefficient of b(2-3%) always equals 1.
Also observe that in this sum if 3* < h < 2-3%, then we can write h = 3¥+k,

where 0 < k < 3%. Then by Lucas’ Theorem, for all such h we have

m-+2-3% _ My My + 2 _ My
2.3u—p ) 3 \3u_k 0 T \3u k)

and so using Lemma 4.1.2 we can write

(4.2) b(31)2 = b(3Y) [(mu +2

. ) +wm,u] +b(2-3Y).



4.3. MULTIPLICATION IN Sg()\) 89

Consider now
4.3v 2
“we h m+ 3"+ 3ut!
Observe that if A > 3%*1 in this sum, then the ternary addition of 2-3% and
h — 23" is not carry free. It follows from Lemma 1.3.18 that (ggu) =3 0.
Arguing similarly as above, the coefficient of b(2 - 3%) in b(2 - 3%)? equals
(m“+1). Moreover, if 2 - 3% < k < 3%+ then we can write h = 2 - 3% + k,

2
where 0 < k < 3%. Again by Lucas’ Theorem, for all such h

m+ 34+ 3N m 43U 43U Cmey Y (mu+ 1
4-30—p )\ 3u43u—k ) TP \3u—k 1)

Using Lemma 4.1.2 once more we obtain

(4.3) b(2-39)2 = b(2 - 3¥) Km“; 1) + (m“1+ 1>¢m4 .

An entirely similar argument gives

(4.4) b(3U)b(2 - 3Y) = b(2 - 3%) [2 (”i“) - wm,u] .

If j is maximal such that b(j) appears with non-zero coefficient in one of
b(3%)2,b(3%)b(2 - 3%), or b(2 - 3“)2, then (4.2), (4.3) and (4.4) show that
j < 3"t We therefore have the following lemma, which will be used in the
inductive step of the proof of Proposition 4.5.1.

LEMMA 4.3.1. Let u € N be such that 2 - 3% < Xo. Then the F-span of
the set
{b(k) : k < 3"}

is a subalgebra of Sp().

We end this section with the following lemma, which determines when
€m,g is non-zero in Sp(A). We remark that the first statement of the lemma
can be observed in Example 4.2.1.

LEMMA 4.3.2. Let g € Ng be such that B(m,g) is non-zero modulo 3.
Then
em,g = B(m, g)b(g) + Z a;b(7),
i1>g
for some o; € Fs. In particular, e, g is non-zero in Sp(\) if and only if
g < Ao

ProoOF. Write ey, 4 as a linear combination of the canonical basis of
Sp(A) given in Lemma 4.1.1. As the index sets defining e,, 4 are mutually
disjoint, Lemma 4.1.2 implies that the smallest term in e,, 4 is the product
of the smallest term in each factor (see §4.2) of e, 4. By the construction
of e,y immediately before Lemma 4.1.2, the smallest term in factor u of
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em,g is b(g,3") with coefficient ((mzzg)“). It follows that the smallest term

in en 4 is [[, b(gu3") = b(g) with coefficient [], ((mZSQ)“) =3 B(m, g).
The second statement of the lemma now follows as the largest element

in the canonical basis of Sp(\) is b(A2). O

4.4. Analysis of the binomial coefficient B(m,g)

Fix a prime number p, and let m, g € Ng be such that B(m, g) is non-
zero modulo p. In this section we use the p-adic expansion of B(m,g) to
understand m. We do this using the p-ary addition of m and g. Before doing
this we consider Example 4.4.2 below, which demonstrates the link between
B(m, g) and m that occurs in the general case.

For the convenience of the reader, we redefine the carry notation intro-
duced in §1.3.5 in terms of m and g. Consider the following representation
of the p-ary addition of m and g:

m mo mq N my,
g g0 a1 N Ju cee oy
m+g‘(m+g)o (m+g)1 ... (m+g)
where m =, [mg, m1,...], and the analogous statements hold for g and m+yg.

Given u € Ny, define z,, € {0,1,2,...,p — 1} to be such that
(45) My + Gu + Ty—1 = (m + g)u + pxy,

so that xz, is the carry leaving column w in this addition. Therefore for all
u € N, x,—1 is the carry entering column u in this addition. We also define
r—1 = 0.

REMARK 4.4.1. The carries z, serve two purposes in this chapter. The
first, as we will see in this section, is that we can determine m,, using x,_1.
The second is that the product (€m,¢)<u¥m,u can be determined entirely by
the carry z,1 (see Lemma 4.5.3). We admit that it remains mysterious to
us as to why this product depends only on x,_.

EXAMPLE 4.4.2. Let u € Ng and v € N be such that v > u. Let h € N
be such that h < p* and (Zf) is non-zero modulo p.

We consider the case when m = p* and g = p¥ — p* + h. Then z, = 0
for0<u<pu—1l,andxy,=1for p<u<v-—1.

Let h, be the digits in the p-adic expansion of h. The conditions on h

imply that h, < % for all u, and h, = 0 for u > p. Then m + 2g =
m—+2g
g

() () G G20 - G20 )

where the rightmost factor appearing is factor v.

p” + (p¥ — p*) + 2h, and so the p-adic expansion of ( ) equals
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Observe that if u < p then (m+2g), —2g, = 0 = my,. Similarly we have
(m+29), — 29, =p 1 =my. If u> p then (m+2g)y, —2¢, =p 1 =my + 1.
In all cases we can therefore write

(m~+29)y — 2Gy =p My + Ty—1.

The final statement in Example 4.4.2 follows from the more general
property that m,, is determined by factor w in B(m,g), via the carries in
the p-ary addition of m and g. We are able to determine each m, in this
way as the p-ary addition of m + ¢ and g is carry free. Motivated by this,
we determine the possible values of the carry z,,.

LEMMA 4.4.3. Suppose that in the p-ary addition of m and g the carry
Ty 18 non-zero for some u € Ng. Then x,, = 1.

ProOF. We proceed by induction on u. The base case is when u = 0. In
this case

mo+go<p—1l+p—-1=2p—-2=p—-2+p,
and so xg is at most 1.

Let w > 1, and assume inductively that x,_1 < 1. Suppose that xz, > 2.
Then

2p—1Zmu+gu+xu—1:(m+g)u+pxu22pv

which is a contradiction. O

In the following lemma, we determine the possibilities for m,, given factor
u of B(m, g)p.

LEMMA 4.4.4. Let a,b € Ng be such that 0 < b < a < p, and let factor
u of B(m,g), equal (Z) Let z € {0,1,...,p— 1} be the unique integer such
that z =, a — 2b. Then either m, =, z and xy—1 = 0, or my =, 2 — 1 and
Ty—1 = 1. Moreover, x, = 1 if and only if my + gy + Tu—1 > .

ProOOF. It follows from the definition of B(m, g), that (m+2g), = a and
gu = b. As B(m, g) is non-zero modulo p, it follows from Lemma 1.3.18 that
the p-ary addition of m + g and g is carry free. Therefore (m + g), = a — b,
and so by definition of the carries

My +b+xy—1=0a—b+pr, =pa—b.

If z,—1 =0, then m, =, a —2b = z. Similarly if z,—1 = 1, then m,, =, 2 -1,
as required.

The second statement is immediate by definition of the carry x, and
Lemma 4.4.3. O

In particular Lemma 4.4.4 shows that (m +2g), —2g, =p My + <41 for
all u € Ng.
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4.5. The primitive idempotents of Sr())

Fix m,g € Ng such that B(m,g) is non-zero modulo 3, and let A =
(A1, A2) be such that m = A; — Ag. Throughout the rest of this chapter, F' is
assumed to be a field of characteristic 3. We prove the following proposition
by filling in the details in the outline.

PROPOSITION 4.5.1. Fiz u € Ng. Then (emqg)<u 5 an idempotent in
Sp((m + 3utl —1,3uFl —1)).

We remark that Proposition 4.5.1, together with Lemma 4.3.1, implies
that (em,g)<u is also idempotent in Sg((m + a,a)) for all a > 3¥F1.
We prove Proposition 4.5.1 by induction on u, in which the base case is
u = 0. Before we do this, we show how the proposition implies that e, 4 is
an idempotent in Sp(A). Indeed, by Lemma 4.1.1, Sp(X) has a basis given
by the set
{b(7) : 0 < i < Mg}

Let u € Ng be such that 3% < Xy < 3v+1 If €m,g is non-zero in Sp(A),
then by our assumption on B(m,g) and Lemma 4.3.2 we have g < Ao.
Therefore g < 3“T!, and so by construction, (ém,g)<u = €m,g When viewed
as an element of Sp(A). As the multiplication structure of Sg(\) depends
only on m, Proposition 4.5.1 gives

(€m7g)2 = ((em,g)SU)2 = (em,g)<u = em,g € SF(N),
as required

We now proceed with the proof of Proposition 4.5.1.

4.5.1. The base case. By definition _; = 0. In this case Lemma
4.4.4 states that factor 0 of B(m,g)s equals (Z), where a — 2b =3 mgy. We
distinguish three cases, determined by my.

Case (1). Suppose that mg = 0. Then the only possibilities for factor 0

0 2
(o) ()
By definition (e, 4)<o equals either b(2)—b(1) or 1—b(1)+b(2). It is sufficient
to prove that b(2) —b(1) is idempotent when my = 0. Indeed (4.2), (4.3) and
(4.4) applied with u = 0 and my = 0 give
(b(2) = b(1))* = b(2)* + b(1)b(2) + b(1)*
=0+0+0b(2) —b(1) =b(2) —b(1).

of B(m, g)3 are

Case (2). Suppose that mo = 1. Then the only possibilities for factor 0

(o) ()

of B(m,g)s are
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and so (em,g)<o equals either b(2) or 1—5b(2). Applying (4.3) with u = 0 and
mo = 1 shows that b(2) is idempotent in this case.
Case (3). Suppose that mo = 2. Then the only possibilities for factor 0

of B(m, g)s are
) ()

and so (em,g)<o equals either b(1) —b(2) or 1 —b(1) +b(2). Again (4.2), (4.3)
and (4.4) applied with v = 0 and mg = 2 give
(b(1) = b(2))* = b(1)* + b(1)b(2) + b(2)*
=0b(1) +b(2) + b(2) + 0 =3 b(1) — b(2),

as required.

4.5.2. The inductive step. Throughout this section fix v € N. It
follows from Lemma 4.3.1 that ((em,4)<u)? is contained in the F-span of

{b(i) : i < 3ut1y,

and so it is sufficient to prove that (e ¢)<y is an idempotent in Sg((m +
)\2, )\2)), where Ay < 3u+1‘

Assume inductively that (e, 4)<; is an idempotent in Sp(X) for all t < w.
We require the following lemmas.

LEMMA 4.5.2. Let t € Ng be such that t < wu. Suppose that v =
(em,g)<tw, is an idempotent in Sp(X). Then vw =v and v(1 —w) = 0.

PROOF. We have assumed that (e, 4)<; is an idempotent in Sg()), and

SO

vw = (em.g)<tw® = ((emg)<t)'w® = v* = v,

as required. The proof that v(1 —w) = 0 is entirely similar. (]

Recall from §4.4 that x; denotes the carry leaving column ¢ in the ternary
addition of m and g, and that

for t € N and 0 = 0.

LEMMA 4.5.3. Let t € Ny be such that t < u. Then
0 if 241 =0,
(emyg)<t if w1 =1

(em,g) <t7/}m,t - {

ProoF. We proceed by induction on ¢. The base case is when ¢ = 0,
where the product defining (e, g)<o is empty. Therefore (e, 4)<o = 1. By
definition z_; = 0 and %, 0 = 0, and so the result holds in this case.
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Suppose now that ¢ > 1 and that the result holds for all s < ¢t. By
Lemma 4.1.2 we can write

3t-1-1
dme= 3 (4 o)

k=1

o (5 o e

k=1

+h(2-370) (mil> * 322111 <3t - (2@;1 + k)) "

For 1 < k < 3! — 1, Lucas’ Theorem implies that
mep \ (<1 +mgp -3
3t—k) \ 31—k+2.3-1

_ Mc<t—1 mg—1
stk 2 )

Applying entirely similar arguments for all 3= < k < 3! — 1 shows that

(4.6) Pt = Yo [(m;1> + (mt11>b(3t1) + <m61>b(2 : 3“)]
+ <m;‘1)b(3”) + (mfl‘l)b(z .31y,

We now distinguish three cases, determined by m;_1.
Case (1). Suppose that m;—; = 0. Then (4.6) becomes

¢m,t = ¢m,t71b(2 : 3t_1)-

If z;_9 = 0, then the first statement of Lemma 4.4.4 implies that factor
t — 1 of B(m,g)s equals either (8) or (f) As x4_o = my_1 = 0, the second
statement of Lemma 4.4.4 gives that x;—1 = 0. Moreover, the inductive
hypothesis of this lemma gives

(em,g)<t¢m,t - (em,g)<t—1¢m,t—1b(2 . 3t71)w = 07

where w equals either 1 + b(371) — b(2 - 31=1) if factor t — 1 equals (8), or
b(2-311) — b(311) if factor t — 1 equals (f) The result therefore holds in
this case.

If x;_9 = 1, then the first statement of Lemma 4.4.4 implies that factor
t — 1 of B(m, g)3 equals either ((1)) or (g) By construction

(em,g)<t = (em,g)<t—1w7
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where w equals either 1 — b(2 - 371) if factor t — 1 equals ((1)), or b(2-3171)
if factor ¢t — 1 equals (g) Then
(em,g)<t'¢m,t - (em,g)<t—1wwm,t—1b(2 : 3t_1)

= (emg)<t—1wb(2-3"71),
where the second equality holds by the inductive hypothesis of this lemma. If
factor t—1 of B(m, g)s equals ((1))7 then the second statement of Lemma 4.4.4
applied with m;—1 = 0,91 = 0, and z;_9 = 1 gives ;1 = 0. Moreover,
w=1-0b(2-3"1) in this case, and 50 (€m,g)<t¥mt = (€mg)<t(l — w). As
v = (emg)<t = (émg)<t—1w is an idempotent by the inductive hypothesis
of Proposition 4.5.1, it follows from Lemma 4.5.2 that

(em,g)<t¥mt = v(1 —w) = 0.

If factor ¢t — 1 of B(m, g)3 equals (g), then the second statement of Lemma
4.4.4 now applied with m;—1 = 0,¢9:—1 = 2, and zy_o = 1 gives z;_1 = 1.
Moreover, w = b(2 - 3t71) in this case, and s0 (€m.g)<t¥mt = (ém,g)<tw. As
v = (em,g)<t = (émg)<t—1w is an idempotent by the inductive hypothesis
of Proposition 4.5.1, it follows from Lemma 4.5.2 that

(em.g)<tmt = vw = v = (em,g)<t-
Case (2). Suppose that m;—; = 1. Then (4.6) becomes
Ut = Yma—1 (b3 +b(2-371)) + b(2-3°71).
If z;_9 = 0, then the first statement of Lemma 4.4.4 implies that factor
t — 1 of B(m, g)s equals either ((1)) or (;) Again by the construction of e, 4
(em,g)<t = (em,g)<t—1w,

where w equals either 1 — b(2 - 3'=1) if factor ¢t — 1 equals (é), or b(2- 311
if factor ¢ — 1 equals (3) Moreover, the inductive hypothesis of this lemma
implies that

(em,g)<twm,t = (em,g)<t—1b(2 : 3t_l>w7

for both possibilities of w. The argument is now the same as when z;_o =1
in Case (1).

If x;_9 = 1, then the first statement of Lemma 4.4.4 implies that factor
t — 1 of B(m, g)s equals either ((2)) or (}) By construction

(em,g><t = (em,g)<t—1w7

where w equals either 1 — b(3/=1) + b(2 - 3!=1) if factor ¢t — 1 equals ((2)), or
b(3'71) — b(2 - 3171) if factor ¢ — 1 equals (}). Then

(em.g)<tthmt = (emg)<t-1w(Whme—1 (b(3'71) +b(2-3"71)) +b(2-3"71)

= (em,g)<t—1w(b(3t71) —b(2- 3t—1))’
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where the second equality holds by the inductive hypothesis of this lemma. If
factor t—1 of B(m, g)3 equals (g), then the second statement of Lemma 4.4.4
applied with m;—1 = 1,¢9;—1 = 0, and z;_2 = 1 gives x;_; = 0. Moreover,
w=1-=b3"1) +b2-371), and 0 (emg)<t¥mt = (emyg)<t(l —w). As
v = (emg)<t = (Em,g)<t—1w is an idempotent by the inductive hypothesis
of Proposition 4.5.1, it follows from Lemma 4.5.2 that

(em,g)<t¥ms = v(1 —w) = 0.
If factor ¢t — 1 of B(m, g)3 equals G), then the second statement of Lemma
4.4.4 now applied with m;—; = 1,41 = 1, and x;—2 = 1 gives ;1 =
1. Moreover, w = b(3""1) — b(2 - 3'1) in this case. As v = (emy)<t =
(ém,g)<t—1w is an idempotent by the inductive hypothesis of Proposition
4.5.1, it follows from Lemma 4.5.2 that
(em,g)<twm,t =W =v = (em79)<t-
Case (3). Suppose that m;—; = 2. Then (4.6) becomes
Vmit = Yma—1(1 —bB7H) +5(2-371) 463071 —b(2-317h).

If z;_9 = 0, then the first statement of Lemma 4.4.4 implies that factor

t — 1 of B(m, g)3 equals either ((2)) or G) Again by the construction of e, 4
(em7g)<t = (em,g)<t—1w7

where w equals either 1 — b(3=1) + b(2 - 3t=1) if factor ¢t — 1 equals ((2)), or
b(3171) — b(2-3¢71) if factor ¢ — 1 equals (). The argument is now the same
as when z;_5 = 1 in Case (2).

If z;_9 = 1, then the first statement of Lemma 4.4.4 implies that factor
t — 1 of B(m, g)3 equals either (8) or @) By construction

(em,g)<t = (em,g)<t71w7

where w equals either 1 + b(3~1) — b(2 - 31=1) if factor ¢+ — 1 equals (8), or
b(2-371) — b(3t71) if factor t — 1 equals (3) Then (€, g)<t¥m,+ equals

(em,g)<t—1w(¢m,t_1(1 — b(3t71) +b(2 - 3t*1)) + b(3t71) —b(2- 37571))7

which by the inductive hypothesis of this lemma equals (e;,,4)<t—1w for both
possibilities of w. Therefore (em g)<¢¥m,i = (€m,g)<t- As

mi—1+ T—2 + g—1 = 3+ gr—1 > 3,
it follows from the second statement of Lemma 4.4.4 that x;_1 = 1 for both
possible factors. The result therefore holds in this case. O

We now complete the inductive step of the proof of Proposition 4.5.1.

PROOF OF THE INDUCTIVE STEP. Assume that 3% < Ay < 2-3%. If Ay <
2-3", then in the following calculations we regard all terms equal to b(2-3%)
as zero. We consider each possibility for factor u of B(m, g)s in turn.
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Case (la). Suppose that factor u of B(m,g)s equals (?) By Lemma
4.4.4 either m, = 0 and x,_; = 0, or m,, = 2 and x,,—; = 1. By construction
of ep, 4 and the inductive hypothesis

(em.g)Zu = ((emg)<u)(b(2 - 3") = b(3"))?
= (em.g)<u(b(2-3)* + (2 3“)b(3") + b(3")?)

— temgaa- 39| (") + (" o]

+ (emg)<ub(2-3") [2 <’”§) - wm,u}
#eman (06 | ("77) ] 00203

where the final equality holds by (4.2), (4.3) and (4.4). It is now sufficient
to prove that

0 ifm,=0and 2,1 =0

(em,g)<u7pm,u = {

(em,g)<u ifm, =2and z,—1 =1.

This follows from Lemma 4.5.3.

Case (1b). Suppose that factor u of B(m,g)s equals (8). By Lemma
4.4.4 either m, = 0 and x,,_1 = 0, or m,, = 2 and z,,_1 = 1. By construction
of e,,,4 and the inductive hypothesis

(em.g)%u = ((emg)<u)*(1 +b(3") = b(2 - 3"))?
— (emg)<u(1+B(3")2+B(2 - 3%)2—b(3")+b(2 - 3*) +b(2 - 3*)b(3"))
— (emyg)<ull — B(3") + b(2 - 3%))
+empantz 3 [ (") + (M Y]
+ (Em.g)<ub(2 - 3Y) [2 (”;“) — ¢m,u}
T (emg)<u <b(3“) Kmu 1* 2) 4 wm,u] b2 3u)> ,

where the final equality holds by (4.2), (4.3) and (4.4). It is now sufficient
to prove that

0 ifmy =0and z,_1 =0

(em,g)<u¢m,u = {

(ém,g)<u if my =2and x4, = 1.

Again this follows from Lemma 4.5.3.
Case (2a). Suppose that factor u of B(m,g)s equals (3) By Lemma
4.4.4 either m,, = 1 and x,—; = 0, or m,, = 0 and x,,—; = 1. By construction
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of e, 4 and the inductive hypothesis

(em,g)Zu = (em.g)Zub(2 - 3")°

= temgreattz- 3 [ (") (M ]

where the final equality holds by (4.3). It is now sufficient to prove that

0 if my, =1and z,_1 =0,

(em,g)<u ifm, =0and z,—1 =1.

(em,g)<uwm,u = {

This follows from Lemma 4.5.3.

Case (2b). Suppose that factor u of B(m,g)s equals ((1)) By Lemma
4.4.4 either m,, = 1 and x,—; = 0, or m,, = 0 and x,,_; = 1. By construction
of ep, 4 and the inductive hypothesis

(emg)Zu = (emg)Zu(1 —b(2-3%))7
= (emg)2u(1+5(2-3") +b(2-3)?)

= (em,g)<u <1 +b(2-3%) [1 + <m“2+ 1) + <m“ y 1) Y uD :

where the final equality holds by (4.3). It is now sufficient to prove that

0 if m,=1and z,_1 =0,

(em,g)<uwm,u = {

(em,g)<u ifm, =0and z,—1 =1.

Again this follows from Lemma 4.5.3.

Case (3a). Suppose that factor u of B(m,g)s equals G) By Lemma
4.4.4 either m,, = 2 and x,—; = 0, or m,, = 1 and x,,—; = 1. By construction
of ey, ¢4 and the inductive hypothesis

(emg)Zu = (emg)Zu(b(3") — b(2-3"))

R
lonstoe 3 [2(") ]

+(emg)<u <b(3”) Km“1+ 2) +¢m,u} +h(2- 3U)> ,

where the final equality holds by (4.2), (4.3) and (4.4). It is now sufficient
to prove that

0 ifm,=2and 2,1 =0

(em,g)<u7/)m,u = {

(em,g)<u ifm, =1and z,—1 =1.

This follows from Lemma 4.5.3.
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Case (3b). Suppose that factor u of B(m,g)s equals ((2)) By Lemma
4.4.4 either m, = 2 and x,—; = 0, or m,, = 1 and x,,_; = 1. By construction
of ep, 4 and the inductive hypothesis

(em,g>2§u = (em,g)2<u(1 —b(3") +b(2- 34))2
= (em.g)<u(14(3*)+b(2 - 3*)*+b(3*) —b(2 - 3*)+b(2 - 3")b(3"))
= (em,g)<u(1 +b(3") —b(2-3"))

+empran 3| (") + (M Yol

+ (emg)<ub(2- 3") [2 (”}) - wm,u}
+ (emg)<u <b(3“) Km“ 1+ 2) + wm,u] +b(2- 3“)) ,

where the final equality holds by (4.2), (4.3) and (4.4). It is now sufficient
to prove that

0 ifm,=2and z,_1 =0

(em,g)<uwm,u = {

(emg)<u ifmy =1and x4, =1.
This follows from Lemma 4.5.3. O

REMARK 4.5.4. Given t € N, we can generalise the definition of v, ;
when p is an arbitrary prime. Furthermore, the recursive formula in (4.6)
generalises in an entirely similar way. However it is a special feature for
p € {2,3} that we can always write either (€ ¢)<t¥mu = (€m.,g)<tw, or
(em,g)<tVmu = (€m,g)<t(1l — w), where w equals factor ¢t — 1 of (e, )<t
This is not the case when p is at least 5, and so we cannot apply Lemma
4.5.2 to obtain the analogue of Lemma 4.5.3 in general.

4.5.3. The elements ¢,, , are orthogonal and primitive. Let g,d €
Ny be such that both B(m,g) and B(m,d) are non-zero modulo 3, and
suppose that g # d. Write

g =p [907917927 cee 7gt]
d=, [do,dy,da, ... dy).

Let u be minimal such that g, # dy, and so (m + 29)<, = (m + 2d) <y,
and (em,g)<u = (€md)<u. As in §4.4, let z,_1 (resp. y,—1) denote the carry
leaving column u — 1 in the ternary addition of m and g (resp. d), recalling
that the columns in both p-ary additions are indexed starting from 0. It
follows that x,—1 = yy—1, and so (Mmy, Ty—1) = (M4, Yu—1). By Lemma 4.4.4,
factor u of B(m,g)s equals (9‘1) and factor u of B(m,d)s equals (dcu), where
a— 2g, =3 ¢ — 2d, =3 my + Ty—1. Moreover, these factors are unequal
since g, # dy. As there are exactly two choices for a factor (z) such that
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0<y<z<3and x—2y =3 my + xy_1, it follows from the construction of
€m,g that

(em,g)gu = (em,g)<uw and (€m7d)§u = (em,d)<u(1 - w):

where w, 1 — w are as specified in §4.2. By Proposition 4.5.1, (€, 4)<s and
(em,d)<u are idempotents in Sg(), and so it follows from Lemma 4.5.2 that
their product is zero. As Sp(\) is commutative, this implies ey, gepm g = 0.

We now count the number of non-zero e, 4 in Sp(X). By Lemma 4.3.2,
em,g is non-zero in Sp(A) if and only if g < Ay. Therefore the number of
nON-Z€ro €, 4 in Sp(A) equals

{g : g < X2 and B(m,g) is non-zero modulo 3}|.

By Theorem 3.3 in [29] this equals the number of indecomposable summands
of M*. Tt therefore follows that the set of em,g such that g < Ay is a complete
set of primitive orthogonal idempotents for Sg(\).

4.5.4. Indecomposable Young permutation modules. In this sec-
tion let A = (A1, A2) be a partition of n. We use Theorem 4.1.3 to prove that
the only indecomposable Young permutation modules M? in this case are
those such that either A = (n,0), or A = (n—1,1) and 3 divides n. Although
it is well-known that M* is indecomposable in these cases (see for instance
[33, Example 5.1]), these being the only possible cases is a non-trivial result.
Indeed the analogous statement is false over a field of characteristic 2. In
that case when 7 is even, the module M ("/27/2) is indecomposable (see [15,
Example 3.10] or [39, Example 3.8]).

It should be noted that the discussion in the previous paragraph and
the main result in this section are consistent with Theorem 2 in [25]. In
particular [25, Theorem 2] determines precisely when the F'S,-module M*
is indecomposable, where A is any partition of n and F' is of strictly positive
characteristic.

We now state and prove the main result of this section.

ProposITION 4.5.5. Let F' be a field of characteristic 3, and let A =
(A1, A2) be a partition of n. Then M is indecomposable if and only if either
A= (n,0), or A= (n—1,1) and 3 divides n.

PROOF. We prove that if M? is indecomposable, then either A\ = (n,0),
or A= (n—1,1) and 3 divides n. As remarked in the discussion above, the
reverse implication is well-known.

As usual define m = A\; —Ag. Also let m =3 [mg, m1, ..., m¢]. The module
M? is indecomposable if and only if 1 is the only non-zero primitive idem-
potent in Sp((A1,A\2)). Given g € Ny, Lemma 4.3.2 states that if B(m,g)
is non-zero modulo 3, then the smallest term (with respect to the order
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defined in §4.2) appearing with non-zero coefficient in e, 4 is b(g), with co-
efficient B(m,g). Then by Theorem 4.1.3, 1 is the only non-zero primitive
idempotent in Sp((A1, A2)) if and only if exactly one of the following holds:

(i) B(m,g) equals zero modulo 3 for all g € N,
(ii) if ¢ € N is minimal such that B(m,g) is non-zero modulo 3, then
g > Ao.

We first show that (i) can never occur. Indeed Lucas’ Theorem gives
that B(m, 1) is non-zero modulo 3 if either mo = 0 or my = 2, and B(m, 2)
is non-zero modulo 3 whenever mg = 1. Moreover the chosen value of g € N
in each of these cases is minimal such that B(m, g) is non-zero.

Suppose now that (ii) holds. We distinguish two cases, determined by
myg.

Case (1). Suppose that either mg = 0, or mg = 2. If mg = 0, then
Lemma 4.3.2 gives that the smallest term in e, 1 with non-zero coefficient
is b(1). Similarly if mo = 2, then the smallest term in e, ; with non-zero
coefficient is b(1). In either case if ey, 1 is zero in Sp((A1, A2)), then Ay = 0.

Case (2). Suppose that my = 1. By Lemma 4.3.2 the smallest term in
em,2 With non-zero coefficient is b(2). Therefore if e, 2 is zero in Sp((A1, A2)),
then either Ao = 0 or Ay = 1. It remains to prove that if mg =1 and Ay =1,
then 3 divides n. Indeed if mg = Ay = 1, then

n=1+AN=1+0+m)=1+1+ (1 +m3+ - +m3")
=3+m3+-- +m3,

and so 3 divides n, as claimed. O

4.6. The correspondence between idempotents and Young
modules

Throughout this section let A = (A1, A2) and p = (u1, p2) be partitions
of n satisfying the hypothesis of Theorem 4.1.4.

We prove Theorem 4.1.4 by induction on n by following [15, §7]. The
base cases are n = 0 and n = 1. In both cases the only possibility is A =
i = (n,0). Therefore in §4.6.1 we consider the case when y = (n,0) and
A € A(2,n) is arbitrary. We then complete the inductive step in §4.6.2.

4.6.1. The case pu = (n,0). We distinguish two cases determined by
the partition .

If A\ = (n,0), then M (.0) is indecomposable and the only primitive
idempotent in Sp((n,0)) is 1. In this case B(m,g) = (), and so

s =) ()
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where n =3 [ng, ...,n]. By construction, for some «; € Fg,

eno =14 a;b(i) = 1€ Sp((n,0)),
>0

as required. Observe that this proves the base cases of the induction.

Recall from §4.1.1 that 1, is defined to be an idempotent in Sp(2,n)
such that 1)E®" = M*. If A\ = (m+g, g) F n, then we show that there exist
u,v € Sp(2,n) such that uv = ey and vu = 1(;, ). Then e, 4 and 1, )
are idempotents such that ey, = ulg, gv and 1, 0y = vem gu. It follows
from [60, (1.1)] that epgM?* = ep g B¥™ = 1, ) E®" = M0 = y(0) a5
required. Now define

U = B(m,g)l)\f(g)l(mo) and v = 1(%0)6(9)1)\.

In order to calculate wv and vu, we follow parts (b) and (c) in the proof
of [15, Proposition 7.2]. Indeed define the simple root « = (1,—1). By
Theorem 2.4 in [16] if v € A(2,n), then

] {L,Jra e if v 4+ « is a composition,
el, =

0 otherwise
1 1, f if v — ais a composition,
: 0 otherwise.

Moreover, Proposition 3.6 in [16] states that H;1y = A\;1 for i € {1,2}.
Define h = H;y — Ha, and so hly = m1ly. As (n,0) + (1,—1) is not a
composition, the above relations give e(®) L(n,0) = 0 for all a € N. Also with
A=(m+g,9)

A7) D1y = 140D, 140 f9 = D1, (0 1n0 = () 1no)-
It follows from the relations in (4.7) and Lemma 4.3.2 that
uv = B(m, g) 1,\f(9)1(n70)e(9)1>\

= B(m, g) 1nf9el9)

= B(m,9)b(g) = em,g € Sr((m + 9, 9))-
Also it follows from the relations in (4.7) and [31, §26.2] that

vu = B(m, g)l(n’o)e(g)l,\f(g)l(mo)
= B(m, 9)1(n) 6(g)f(g)

g
(m, g 1(n0 Zf h 2g+2j) (9—3)]1(%0)
7=0
h

n
= B(mv.g) <g>1(n,0) = (B(mag))Ql(n,O) =3 1(n,0)7
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where the final congruence holds as B(m, g) is non-zero modulo 3.

4.6.2. The inductive step. Assume throughout this section that the
statement of Theorem 4.1.4 holds inductively for all partitions in A(2,n) for
some n € Ny. Let A and it be partitions of n + 2 with at most two parts
satisfying the hypothesis of the theorem. The argument for the case when
e = 0 is given in §4.6.1, so assume that pio > 0. Then A=A+ (12) and
i = p+ (12), where X and p are the partitions of n such that m = A\; — g
and g = A2 — po. The inductive step is complete once we prove Proposition
4.6.3 below, which is the result of Theorem 7.3 in [15]. To this end define
the map j : E®" — E®"*2 by

T (V1 @V — V2 ® V1) ® T,

where we remind the reader that {vi,v2} is a fixed basis of E. Observe that
j is injective. Also it follows from the definition of M?* given in §4.1.1 that
§(M*) € MM We then have the following lemma.

LEMMA 4.6.1. Given x € M?*, we have jep ¢(z) = em qj().

PrOOF. We prove that jb(a)(z) = b(a)j(x) for all z € M* and a € Ny.
Note that on the left hand side of this equality b(a) is viewed as an element of
Sr()), and on the right hand side it is viewed as an element of Sg(A+ (12)).

The Lie algebra action of e on v; ® vo — vo ® vy is as follows:

e(v1 @ vy —v2 @ 1) = (ev1 ® vy + V1 ® evy) — (evy ® V1 + V2 ® evy)
=1 Qv —v1 Qv =0.

Similarly f(v1 ® vg — vy ® v1) = 0, and so j commutes with the action of

e and f(@ for all a € N. Also considering the Lie algebra action of the

product f@e(® on M* and M) ghows that f@el@) preserves M and

M M%) Ag 1) and 1 2y are the projections onto E®" corresponding to
A+(12)

M? and M ’\+(12), respectively, it follows that

j(b(a)z) = j(1rf@e@1y\2) = j(f@De@z)
=1 Quy—v2®v1) ® f@el@y,

and
b(a)j(x) = (Lapa2)f el 1y 12)) (01 @ vy —v2 @ v1) ® )
=Ly 0+ (n®v -1 ev)® Fl@el@)y)
= ®u—v20v)® f(a)e(a)fl‘-
Therefore jb(a)x = b(a)j(z), as required. O

Before we state and prove Proposition 4.6.3, we give the following pre-
liminaries.
Given ¢ = (i1,12,...,1,) € 1(2,n), define v; = v;, RV, @ -+ ;.
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THEOREM 4.6.2. [33, Theorem 13.13] Let A = (A1, A2) and p = (p1, p2)
be partitions of n such that s < Xo. If F' is a field of characteristic not equal
to 2 and p1 # pa, then Hompg, (S, M?) is one-dimensional as an F-vector
space.

PROPOSITION 4.6.3. Suppose that e, M» =2 Y*. Then 6m7gM’\+(12) =
yu+(1?)

PROOF. It follows from Theorem 4.6.2 that the copy of S* in M? is
unique, and the analogous statement holds for Su+(%) and MATA?), By
the defining property of the Young module Y*#, it sufficient to prove that
if emg(S*) # 0, then emyg(S“HlZ)) # 0. We do this relating the tabloid
definition of M* given in §1.1.1 to the definition introduced in this chapter.

Write u for ug + 1. Let t; and t5 respectively denote the following stan-
dard p and g+ (1%)-tableaux:

3 5 e 2u—112u+1] ... | n+2 1 3 e [2u—112u+1] ... [ n+2
t1 = to = .

4 6 cee | 2u 2 4 cee | 2u

Write R(t;) for the row stabiliser of each ¢;. Also write C(¢;) for the column
stabiliser of each ¢;, and write {C(t;)}~ for >° cc,) sen(m)m. It is easy to
see that {C(t2)}~ = (1 — (1 2)){C(t1)}".

Observe that the column stabiliser of ¢; is a subgroup of the symmetric
group on {3,4,...,n+2}. Thus given o € Sym({3,4,...,n+2}), we define
o* € Sym({1,2,...,n}) to be the permutation such that o*(¢) = o(£+2)—2
for 1 < ¢ < n. Then there is a natural action of o € Sym({3,4,...,n + 2})
on x € M* given by ox = o*x.

Let wy = Y v;, where the sum runs over all ¢ € I(2,n) such that ¢ has
weight A and ¢, = 2 whenever p + 2 is in the second row of ;. Observe
that w; is fixed by R(t1), and so the polytabloid e(¢;) corresponds to &, :=
{C(t1)}~w1. Note that the actions of R(¢1) and {C(t1)}~ on w; are as defined
in the previous paragraph. Then ¢;, generates the unique copy of S* in M?.

Similarly let wy = >  v;, where the sum runs over all ¢ € I(2,n + 2)
such that ¢ has weight A and i, = 2 whenever p is in the second row of 5.
Then ws is fixed by R(t2), and so e(t2) corresponds to &, = {C(t2)}~ wo.
Note that the actions of R(t2) and {C(t2)}~ on we are given by the usual
place permutation defined in §4.1.1. Then &4, generates the unique copy of
Sut(%) iy A% By definition of j

Jley) = (11 @ V2 —va @ 1) R ey,
={C(t1)} (11 ® v2 — V2 ® V1) B wr),

where in the final line the action of {C'(¢1)}~ is again by the usual place
permutation defined in §4.1.1.
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Observe that
w2 =701 QU2 Qw1 +v2 Q@ Va Qw,

for a certain w. Then since v; ® vo —va @ v1 = (1 — (1 2))(v1 ® v2), we have
Jlety) ={Ch} (1 ®va —v2 @ 1) ®w1)
=(1-=12){Ch} (11 @v2 @ wr)
=[1-12){Ch} (M @12@w +1v2®v2Qw)
={Ci,} w2 = eu,

where the third equality holds since (1 — (1 2))(v2 ® v2 @ w) = 0.
If ey, g(S*) # 0, then ey, 4(e¢,) # 0. As the map j is injective, it follows
from Lemma 4.6.1 that

em79(5t2) = em,g(j(€t1)) = j(em,g(5t1)> # 0,

and so em7g(S“+(12)) # 0. Therefore em,g(Y’“(lQ)) # 0, which completes the
proof. O






CHAPTER 5

Twisted Baddeley modules and decomposition

numbers of Cy S,

Let F be a field of odd prime characteristic p, and fix n € N. Recall
that given partitions A and v of n such that v is p-regular, the decompo-
sition number dy, equals the number of composition factors of S*, defined
over a field of characteristic p, that are isomorphic to D”. In [24, Theorem
1.1] Giannelli and Wildon use the ordinary representation theory of S,, to
determine certain decomposition numbers dy,. They do this by describing
the vertices (see §1.3.1) of certain F'S,-modules, and in particular showing
that these modules are projective. The description of the decomposition
numbers then follows using Brauer reciprocity (see §1.3.4). The modules in
question are p-permutation modules, and so the authors make use of the
connections between the Brauer morphism and vertices (see §1.3.3) to show
that these modules are projective.

Recall that the decomposition number dy,, 5 of C21S,, is defined to be the
number of composition factors of S*#) that are isomorphic to D). In this
case both v and v are necessarily p-regular. Motivated by [24], we show that
certain p-permutation F'Cs.S,-modules are projective by considering their
vertices. We also do this using the Brauer morphism. We then use Brauer
reciprocity to understand particular decomposition numbers of C51?.S,,.

We remark that it follows from the Morita equivalence between FCy?.S,,
and @i F'S; n—s) given by Proposition 1.4.8 that

d/\l/,uﬁ = d/\yduﬁa

and so our result on decomposition numbers follows from [24, Theorem 1.1].
However, the vertex of a module is a ring-theoretic property, and so cannot
be determined by this Morita equivalence. This justifies us taking a longer
route to determine the decomposition numbers of C5? S,,.

Outline. In §5.1 we state the two main theorems in this chapter. In
order to do this, we define involution models for finite groups and the twisted
Baddeley module My, ), where 2a + b+ ¢ = n.

In §5.2 we give an explicit combinatorial basis for the module My, ),
specifically in §5.2.1. The basis that we describe is generally not a permu-
tation basis for M4y, ), and so is in general not a p-permutation basis for
an arbitrary p-subgroup of Cs ! S,. In §5.2.2 we show how the given basis

107
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can be used to construct a p-permutation basis of Mg, With respect to
a given p-subgroup of C5.5,.

In §5.3 we prove Theorem 5.1.1, which is the first main result in this
chapter. The proof is technical in areas, and so it is broken down into three
steps. We first consider the Brauer correspondent of Mg, ) with respect
to a particular cyclic group of order p in C3?.5,, denoted R,, where rp < n.
We decompose Mg, as a direct sum of indecomposable F'Ne,,s, (R;)-
modules, denoted N ; ,,), using Clifford theory arguments. We see that each
summand Ny ¢ ,,) of M(24,) has a vertex containing the group R« (defined
in the first step of the proof). In the second step, we therefore consider
the module Ny ; ) (Rw+). We show that Ny ;,y(R.+) is an indecomposable
Negs,, (Ry+)-module, and we determine its vertex. In the third step, we
use the description of the vertices of Ny ;.,)(Rw+) to complete the proof of
Theorem 5.1.1.

In §5.4 we prove Theorem 5.1.2, which is the second main result in this
chapter. We begin by giving details of the correspondence between the
blocks of FC21S,, and the blocks of F'N¢,,s, (R;). This result will be essen-
tial in the proof of Theorem 5.1.2. We show that every summand of M34,c)
in the block B((y,ws(7)), (0, w.(0))) is projective. We then lift these pro-
jective summands of My, ) from F), to Zj, using Scott’s Lifting Theorem,
and thus determine the ordinary characters of these lifted summands. The
characterisation of the decomposition numbers then follows from Brauer
reciprocity.

5.1. An involution model for C5 S,

We say that a finite group G has an involution model if there exists a
set of elements {e1,es,...,¢e;} C G, such that e? = 1 for all 4, and for each
e; there exists a linear character 1; of Cz(e;) such that

¢
D vi= ) v
i=1 Yelrr(G)
The main result of [32] is that the sum of the ordinary characters of the
QS92 +k-modules

2mik) Som+k
H( ) = (QSQZSm X SgnSk) S21Sm X Sj

is an involution model for So,,1 k. These modules are known as the twisted
Foulkes modules. In [2] Baddeley constructs an explicit involution model for
G Sy, using a given involution model for G. In the case that G = Cs, we
refer to the modules constructed by Baddeley as twisted Baddeley modules,
which we now define.

Given a € N, define f, € C5 .59, to be the permutation equal to

(la+1)(2a+2)...(a2a)(1a+1)(2a+2)...(a2a),
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and let V, be the centraliser of f, in Cy1.S9,. Therefore V, is equal to
(1) (a+1a+1),(22)(a+2a+2),...,(aa)(2a 2a)) x&(S21Sa),

where £ is as defined in §1.4.1. Also define V), to be the subgroup of V, equal
to

(1 D(a+1a+1),22)(a+2at2),...,(aa) (2 2a)) x £(S215y),

where A - a, and S) is the corresponding Young subgroup of S,.
Recall that N denotes the non-trivial irreducible F'C-module. Given
(a,b,c) € N such that 2a + b + ¢ = n, we define the module

C21S24

M2q.pc) = (FTVa X Infgjlsb sgny, X(K@C ® Infgfzsc sgnc))TCQZS"

CQZS(Qa,b,c) ’
Theorem 5.1.1 characterises the vertices of the indecomposable summands
of M(24,p,c)- In order to state Theorem 5.1.1, we also require the following
notation. Given r € N such that rp < n, define

T, :={(\t,u) : AN € A(2,5),25s +t+u=r and sp < a,tp < b,up < c},

where we remind the reader that A(2,s) denotes the set of all compositions
of s in at most two parts.

THEOREM 5.1.1. Let (a,b,c) € N} be such that 2a + b+ c = n, and let
U be a non-projective indecomposable summand of M(aqp ). Then U has a
vertex equal to a Sylow p-subgroup of

‘/pk X 02 ! Stp X 02 l Supa
for some r € N, where rp < n, and (\,t,u) € T}.

As stated in the introduction of this chapter, Theorem 5.1.1 does not
follow from Proposition 1.4.8. In Example 5.3.16 we make this explicit by
describing the vertices of the non-projective indecomposable summands of
M 54,0,0) over a field of characteristic 3.

In order to state our theorem on the decomposition numbers of C5S,,,
we require the following notation. Given a p-core partition 7 (see §1.4.4)
and given b € Ny, let wp(y) be the minimum number of border strips of size
p such that when added to 7, we obtain a partition with exactly b odd parts.
Let & () be the set of all partitions of |y| + wy()p obtained in this way.

THEOREM 5.1.2. Let v and § be p-core partitions, and let b,c € Ng. If
b> p (resp. ¢ > p), suppose that wy (1) # wy(7) — 1 (resp. we_p(8) #
we(0) — 1). Then there exists a set partition of Ey(y) X E:(0), say A1,..., Ay,
such that each A; has a unique pair (v;,v;) with v; and v; both maximal in
the dominance orders on Ey(7y) and E.(9), respectively. Moreover, v; and v;
are p-regular for each i, and the decomposition number dy,, ., equals one if
(A, p) € Ay, and equals zero otherwise.
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5.2. A construction of the twisted Baddeley modules

Let a,b,c € Ng be such that n = 2a 4+ b + c. In this section we explicitly
construct the module My, 4). We also provide a p-permutation basis of
M 24,y With respect to an arbitrary p-subgroup of Ca1 S,.

5.2.1. A module isomorphic to M, ). Let C(a45,) be the set

g € C3 1S, has cycle type a positive 2-cycles
{97'}’; 5} : Y= ({‘Z.a-i-lvﬁ}v T {iaer.a@})

o= ([Za+b+172a+b+1 ]7 SRR [l’m Zn])

supp(9) U {iat1,ta41s -« insint = {1,1,...,n, 71}

where [z,7] = —[7, 2] as in §1.4.3.
Let v = {g,7,6} € C(2q,,c) be such that
v = ({ia+1,Gat1}s - {ia-&-b?m})
5 = ([ia+b+17 ia+b+1 ]7 ceey [Znua])

Define

S(v) =supp(g)N{1,2,...,n}
T () ={ta+1,-- - iatn}
UW) = {Gatbi1y---sin}-

As 2a + b+ ¢ = n, these sets are mutually disjoint.

There is an action of h € Cy1 S, on v given by hv = {#g, hy, hd}. With
D(24,p,¢) defined to be F-span of the set

{v — hsgn (ﬁ)v v € Caapbe)s € C2 087y X C2USy ()}
we have the following lemma.

LEMMA 5.2.1. The vector space FDaqy ) is an F'Cy 1 Sy-submodule of
FC2ap.o)-

PROOF. We show that FD(y44 is closed under the action of Co 0 S,.
Fix k € (215, and v —sgn(/l;) hv € D(24,p,c), Where h € Ca0S7 () X CalSy(v)-
With A’ := Fh, it follows that

~

where the third equality holds as h and A’ are conjugate in Co ! S,. By
definition of 7(v), there an equality T (kv) = {kz : € T(v)}, and the
analogous equality holds for ¢(v). The lemma is now proved as supp(h') =
{kz : x € supp(h)}, and so h' € C2 1 S7(kv) X C2 1 Sy(hv)- O
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Let v = {g,7,0} + D(24,5,¢c) be such that

Y= ({ia-‘rla ia+1}7 R {ia-‘y—b) ia+b})
6 = ([fatbr1s latbr1)s - - -» lins in)),
where ig41,...,0, € {1,2,...,n}, with ig41 < -+ <igpp and igiprg < -+ <

in. Write B(gqpc) for the set of all v+ D(gq,) of this form. It follows from
Lemma 5.2.1 that B(aq ) is a basis of FCaqp,c)/D(2a,0,c)- We use this basis
in the following lemma to show that the quotient module F'Caq 5 c)/D(24,b,c)
is isomorphic to M(z4,) as an F'Ca 1 Sp-module. To simplify the notation,
we write (g, s 5) for {g, 7 5} + D(2a,b,c) € B(Qa,b,c)'

LEMMA 5.2.2. The F-span of B(aap,.c) is isomorphic to Mg, ) as an
FC5 S, -module.

ProOOF. Recall that f, is the element equal to

la+1)(2a+2)...(a2a)(Ta+1)(2a+2)...(a2a),

with centraliser V, in C5 0 Sa,. It follows that the module FTCQZSQG has an
F-basis given by the elements in the conjugacy class of f, in C5?S2,. Let
=({2a+1,2a+1},...,{2a + b,2a + b})
0=(2a+b+1,2a+b+1],...,[n,7)),
and define S to be the F-span of {(9fs,7,9) : g € C21S2}. Then S is
isomorphic, as an F[Col(S{12,... 2a} X S{2a+1,....2a-+b} X S{2a-+b+1,....n} ) ]-module,

to
FTCQZSQa IE I fCQZSb Sgnb) |Z (ﬁ@C X Infgjzsc Sgnc)7

where we remind the reader that N denotes the non-trivial one-dimensional
FC5-module. Let

w = (h7 ({jll-i-l?ja—l-l}v R {ja—i—baja-i—b})a ([ja—i—b-i—l:ja—i—b—‘rl ]7 R []najin])%

be a vector in B(a,p ). As the natural action of C31 S, on its blocks

{1,1},{2,2},...,{n, 7},

is transitive, there exists ¢ € C31 .S, such that 7f, = h, and “k = ji
for all k € {a+1,...,n}. It follows that 00 = +w, and so F'S generates
FCa,b,¢)/D(2a,p,c)- Recall that FCoqp.c)/D24,p,c) has a basis indexed by el-
ements of the form (9 f,,7, ) By the remark following Lemma 1.4.2, there

are
2™n!

4aq12bte(h + ¢)!
conjugates of f, in Cy?1 S,. Given any such conjugate there are

(")
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ways to choose the support of 7, which then determines 7 and 5 completely.

Therefore
) 2"n! b+ ¢
dimp Mabe) = Gagigte(y 1oyt ( b )
2% % (2a)! y n!
- 4aq) (2a)!b!c!
=dimp F'S x [C20S, : Ca S(2a,b,c)]'
The result now follows by applying Lemma 1.3.2. U
Consider now the module M, 00) = F T%’ZSQQ, which is a permuta-

tion module and therefore a p-permutation module. The modules Mg o) =
Infg:ZS” sgng, and M) = N®® InfngS“ sgng,_ are one-dimensional mod-
ules. Therefore the action of any p-subgroup of C2 1Sy, or C20.S. on Mg 0
or M(g,0,¢), respectively, is trivial. It follows that both M) and Mg )
are p-permutation modules. By definition
~ CQZSn
Mza,b,0) = (M{(24,0,0) 8 Mo ,0) ® Mg 0.c)) TCQZS(QQ@C)’

and so part (2) of Proposition 1.3.8 gives that My, is a p-permutation
module.

5.2.2. A p-permutation basis of My, ). In this section we assume
that @ is a p-group contained in the top group 7, of Cs?S,. Also given
(9,7,0) € B(2a,,c) such that

7= ({ia+1, ia+1}7 SRR {7;(1—&-1)7@})
(5 = ([ia+b+lu ia+b+l ]7 ey [vaa])a
define J((g,7.0)) = (9,7',9") where

fy/ = {{7;(1"!‘17 ia+1}) RS {/L-a-i-bam}}
5, = {[ia+b+17 ia—l—b—i—l ]7 ey [Znaa]}

LEMMA 5.2.3. Let Q be a p-subgroup of T,,. Then

(1) there is a choice of sign s, for each v € Baqy.c) such that
{8001 v € Baape) }

is a p-permutation basis of Mg,y with respect to @,
(2) the element v is fized by Q if and only ¥(v) is fixred by Q. In this
case, S, = 1.

PROOF. Let H(zqp,) be the set

{19(’0) v E B(?a,b,c)} .

It is clear that there exists a natural bijection between H o4 ) and Bagp,c)-
Since () < Ty, there is a natural action of Q on H(z,p,¢)-
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Let 9(v1),9(v2), . .., ¥(v;) be representatives for the Q-orbits on H(aqp -
Given ¥(v) € H(gqp,), there exists a unique k such that 9(v;) = gi(v) for
some g € . Then gv and v are equal up to some ordering of the elements
in their respective b-tuples and c-tuples. Therefore vy = s,gv, for some
sy € {—1,+1}.

Suppose that there exists some other g € @ such that J(v;) = gd(v).
Then +v = ¢ 'gv, and so the F-span of v is a one-dimensional module
for the cyclic group generated by g~ '¢. The only such module is the trivial
module, and so gv = gv. The sign s, is therefore well-defined.

In order to complete the proof of the first part of the lemma, we need
to check that the set

{sov:ive B(Qa,b,c)}
is a p-permutation basis for Mg, ) With respect to (). Suppose that h € Q)
is such that syhv = +s,w, for v and w in B(yqp,). Then s,v and +s,w lie
in the same Q-orbit, and so there exists some k such that s,v = guvg, and
+5,w = gug. Therefore g~ 'hgv, = +v;. Arguing as before shows that the
sign on the right hand side is positive, and so the first part of the lemma is
proved.

For the second part of the lemma, if

79(”) = (97 {{ia+17m}> EER) {ia-i-bvm}}: {[ia+b+1v Z'a-i-b-l—l ]? SRR [inv in ]})

is fixed by @, then hv = +v for all h € Q. Therefore the F-span of v is a one-
dimensional @-module, and so v is also fixed by @ as required. Moreover,
as ¥(v) is its own Q-orbit representative, we have that s, = 1. O

5.3. The vertices of the summands of M, )

Let U be a non-projective indecomposable summand of M,y ). The
vertex of U is therefore non-trivial, and so it contains a conjugate of the
cyclic group C), (viewed as a subgroup of Cy 1 .S,). By the discussion in
§1.4.1, any copy of C, in C21 S, is conjugate to

R, := (0109...0.),

where o := ((j —Dp+1 ... jp)((j—1p+1 ... jp), for some rp < n. It
follows that U(R,) # 0, and so in the first step of the proof of Theorem 5.1.1,
we completely determine the indecomposable summands of M(y,.¢)(Rr). In
order to do this, we first describe the group Ney,s, (Rr)-

5.3.1. The normaliser of R,. It is clear that there is a factorisation

(5.1) Negs, (Br) = Neogis,, (Br) X C20Sgpit,nys

and so it suffices to describe the group Ncys,, (R;).
Let j € N be such that j < r. Define

= —Dp+1(G—p+1)...(Jp ip).
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The subgroup (71,7, ..., 7) is the full centraliser of R, in the subgroup B,
(see §1.4) of Cy 1 Syp.
Let ¢ € N be such that ¢ < r. Define
pi=((i=Dp+1ip+1)((i —p+1ip+1)...(ip (i + Dp)(ip (i + 1)p).
We note that
Ojy1 J=1
piJj: 0j—1 j=1+1
oj Jjé&{ii+1}.
Let = be a fixed primitive root modulo p. Given 7 € N, let j be the
unique natural number such that (j — 1)p < i < jp. We define z, € C31 S,

to be the permutation such that 2,.(i) = 2,(i) and
zr(1) = z(i — 1) + 1 —ip,

where iy is the unique non-negative integer such that (j — 1)p < z(i — 1) +
1 —ixp < jp for all i. We give an example of z, in the case when p = 3.

ExaMpLE 5.3.1. Let p =3, and let x = 2. Then
2 =1(23)23)(56)(56)...(3r —13r)(3r —1 3r),

and observe that * (o102 ...0,) = (0102...0,)%.

For all 1 <4 < r, the element 2z, commutes with 7;, and **0; = oF. As
R, <T,, applying Lemma 1.2.3 gives the following result.

LEMMA 5.3.2. The normaliser subgroup Ncys,,(R;) is generated by the
set
{riyoi,pi: 1 <i<r—1}U{r,o.} U{z}.
Furthermore, this set without the element z. generates the centraliser sub-
group Ceys,, (Ry).

>~

Observe that there are isomorphisms of abstract groups Ney,s,, (1)
(Cap2 Sr) x Cp_1, and Coys,, (Rr) = Cop1 S,

5.3.2. The proof of Theorem 5.1.1. We are now ready to proceed
with the first step of the proof.

First step: The Brauer correspondent M(2a,b,c)(RT)' Fix r € N such
that rp < n. Define

T" = {(2s,t,u) eNg :2s+t+u=rsp<a,tp<bup<c}.

By the first part of Lemma 5.2.3, for each v € B(yqy,), there exists s, €
{—1,1} such that {s,v : v € Biagp)} is a p-permutation basis of M(aq )
with respect to R,. Moreover, by the second part of Lemma 5.2.3 we can

J— RT
take s, = 1 for all v € B(zsp,tp,up)'
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Given (2s,t,u) € T", define Ay, to be the set

R,
ve B(2a,b,c) .
~ S(v) contains exactly 2s orbits of R, of length p
" T (v) contains exactly t orbits of R, of length p

U (v) contains exactly u orbits of R\r of length p

LEMMA 5.3.3. There is a decomposition of F Ncys, (Ry)-modules given
by the direct sum
M(Qa,b,c)(RT) = @ <A(28,t,u)>)
(2S7t7u)

where the sum runs over all (2s,t,u) € T".

PROOF. Given v € A(g,4.4), let

v = (ga ({ia+17 ia+1}7 SRR {ia+b7 Z.aer})ﬂ ([ia+b+17 ia+b+1]7 SR [im Zn]))

We first prove that the number of é;-orbits contained in §(v) must be even.

R
Ifve B(2a7b70)

blocks for its action, and the same is true for g and ]/%\r As g has order 2

, then g € Ceys,, (Ry). Therefore g permutes the R,-orbits as

and p is odd, the number of R,-orbits contained in S (v) is necessarily even.
Given h € Ngyis, (Ry), let hv = £0, where

v = (hgv ({j(l+17j(l+1}7 ceey {ja+b7ja+b}>a ([ja+b+l7ja+b+1 ]7 R []nuyin]))

The ]/%\T—orbits contained in §(v) are exactly the conjugates by % of the ]/%\T—
orbits contained in S(v). The same argument holds for 7(9) and U(?), and
s0 U € (A2stu))- It follows that (A, ) is a submodule of Mo,y ) (R).
The lemma now follows as Bagp.c) = U A(2s,t,0)- O

In the following lemma, we factorise the module (A ,)) as an outer
tensor product of modules, compatible with the factorisation of Ney,s, (Ry)
in (5.1). By doing this, we see that in order to understand M4 0y (Rr), it
is sufficient to understand the module M oy, 1, ) (Br), Where (2s,t,u) € T".

LEMMA 5.3.4. There is an isomorphism

<'A(25,t,u)> = M(Qsp,tp,up) (RT‘) X M(Q(afsp),bftp,cfup%
of F[Ncys,,(Br) x C2 0S8yt ny]-modules.

+
PRrROOF. Let B(Z(a—sp),b—tp,c—up)

in B(a(q—sp),p—tp,c—up), €ach shifted appropriately by rp or 7p. The F-span of
_l’_
B(2(a—sp),b—tp,c—up)
M2(a—sp)b—tp.c—up)-
Let v € A(g,4,4) be such that

denote the set consisting of the elements

is therefore an F[Ca ! S{ppy1,.. ny]-module isomorphic to

v = (gv <{ia+1a ia+1}7 cey {ia+b7 ia+b})7 ([ia+b+1, ia+b+1 ]7 SRR [im in ]))7
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where S(v) = {i1,...,1,} and the notation is chosen so that
{ih ceey iQSp} U {ia+17 R ia+tp} U {ia+b+17 s 7Z.a+b+up} = {L 27 s ,rp}.
Let v, € Bg;p tpoup) be the unique element such that

S(v1) =S(w)N{1,2,...,rp}
T(v) =T N{L,2,...,rp}
U(v) =U)N{1,2,...,rp}.
By construction, the p-element o105 . ..o, has support {1,1,...,7p,7p}, and

so v is fixed by R, if and only if vy is fixed by R,.. Let v9 € Bé(
be such that

afsp)vbftpchup)

S(vz2) = S(v)\S(v1)
T (v2) = T()\T (v1)
U(ve) =U(W)\U(v7).

It follows that there is a natural bijection © between Bg:l bc) and
Ry +
B(QSP,tp,up) x B(Q(a—sp)vb—tp,c—up)’

defined by O(v) = v1 ® va.

We now show that © is an F[N¢y,s, (R, )]-module homomorphism. Given
g € Neys, (Rr) and v € Biagp o), let v* € Bgq ) be such that the entries in
its b-tuple and c-tuple are those of gv in ascending order (with respect to the
orders in §1.4.3). Let h € ColS7(4y) X C20Sy(4v) be the unique permutation
such that v* = hgv. As g € Neoys,, (Rr) X CalSgrpt1,..n}, it permutes the
elements in the sets {1,2,...,7rp,1,...,7p} and {rp+1,...,n,rp+1,..., 71}
separately. It follows that there is a factorisation h = hihe, where hy €
Co 5{1727.__7,7,} and hy € C2 S{,np_,_l’_”’n}. Therefore

O(gv) = O(sgn(h )v*)

~

= sgn(h) (v} © v})
= sgn(h) sgn(hy ) sgn(hz ) (v1 ® v2)
= v1 ® vy = gO(v),

and so the result is proved. O

In order to express Mo 1pup)(FRr) as a sum of indecomposable mod-
ules, we first write Mo, 1p up) (Rr) as a direct sum of F'Ney,s,, (1)-modules
N(rtu) (defined below), before showing that each of these modules is in-

decomposable. We require a deeper understanding of the fixed points in
R,
8(28p7tp7uz7)
M 2p,0,0)(R;) for all 7 € N. This illustrative example will also be used when
R,
(2sp,tp,up

before we can define N(y ). To do this we consider the example

describing B ) in the general case.
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EXAMPLE 5.3.5. The FCU3S9,-module My, g is a permutation module,
with permutation basis given by the set

By :={"f,:he€CyiSy}.

The set T7 is empty for all j € N such that j # 2, and so we consider
Mi2p,0,0) (R2). Rewrite o109 as follows:

0’10’2:(12 p)(ig ﬁ)(l* 2* p*)(T*F 1?)7

where " :=x +pfor 1 <z <p.

Let g € B, be fixed by Ry. If g(1) =z, then for 1 <i <p—1,
(5.2) g(i +1) = (0102)"(z),
and so g is completely determined by ¢g(1).

Suppose that z € {2,2,...,p,p}. If z € {2,...,p}, it follows from (5.2)
that g(x) = 2z—1 mod p. As p is odd, we cannot have that g(z) = 1, and so
g does not have order 2. It follows that g cannot be a conjugate of f,, which
is a contradiction. An entirely similar argument shows that = & {2,...,p}.

There are now precisely 2p possible choices for x, each of which com-
pletely determines g. Therfore the module M, 0)(R2) has dimension 2p.

Fix (2s,t,u) € T, and let k = t + u. We define Q%) to be the set of
elements of the form

{{ilvill}ﬂ SRR {i87ils}7 {jla cee ij}}a
where {i1,4], ..., 05, 0% j1, -5k} = {1,2,...,7}. Let cop = [QZF)|. Given
w € Q2sK) of the above form, define

Ry = (0i04) X -+ X (03,00) X (0j;) X -+ X (0j;)-

and write B(w) for Bg“;p’ tpup)”

LEMMA 5.3.6. Given v € BYr (2s5k)

(2spotpup)? there exists a unique w € €
such that v € B(w).

PROOF. By the second part of Lemma 5.2.3, the vector v € B(agp,1p,up)
is fixed by R, if and only if ¥(v) is fixed by R,. Let v be such that ¥(v) =
(9,7,6) where

v = {Hiospr1s t2spt1ts -+ {isrops lastop )}
6 = {listoprii@sttyprals- - s [irps irpl}-
By definition there is a factorisation g = g1 ...gs, where each g; has cycle
type p positive 2-cycles. For each 1 < j < s, let {i1,...,i25} be such that
supp(0iy;_, 7iy;) = supp(gy). It follows from Example 5.3.5 that g commutes
with R, if and only if g commutes with o;,; ,0;,; for each j.
Let {j1,...,7¢} be such that

Supp(O'j1 e th) = {i25p+1, i23p+17 oo 7i(2s+t)p> i(25+t)p}-
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As v is fixed by R,, the set T (v) is equal to a union of R,-orbits. The orbits
of R, are equal to precisely the orbits of ¢;, for each 1 <1 < r. Therefore v
is fixed by R, if and only if it is fixed by the group (o;,) x --- X (0},).
Similarly if ¢ is such that
supp(akl e OR,) = {i(25+t)p+17 Z.(2$th)p+l7 B iTp?@}u

then 0 is fixed by the group (og,) X -+ X (0%, )-
Therefore if v is fixed by R,., then v is fixed by R,,, where

w = {{il, ig}, ey {Z'Qs,l,igs}, {jl, e ,jt, k‘l, ey k‘u}}
Moreover, the uniqueness of w follows as it is determined by the fixed sets
supp(g), supp(7), and supp(é). O

Given @ # E C {1,2,...,r}, define 7 = [[.cp 7e. If £ is empty, then
set Tg = 1.

. . R,
DEFINITION. Fix y € {—1,1}*. Given (g,7,0) € By tpup) €8

W = {{il?ill}7 SRR {is7i/s}7 {jl: e 7.7k}}
be the unique element of Q%) such that (g,7,0) € B(w). Define
W@):v0) =Y. (J]w)(™g790).
EC{i1,..,is} e€E
It follows from Example 5.3.5 and Lemma 5.3.6 that 7;; and Ti, act in the
same way on g, and so (y(g),,0) is well-defined.

EXAMPLE 5.3.7. Let r = 4, and consider the element fs € B(120,0),
where we remind the reader that

fo=(17)(2 8)(3 9)(4 10)(5 11)(6 12)(I 7)(2 8)(3 9)(d 10)(5 11)(6 12).
Moreover, fg is contained in B(w), where w = {{1,3},{2,4}}. Define =,y €
{—1,1}? as follows: z = (1,—1) and y = (—1,1). Then

z(fo) =fo+ " fo—Tfo =" f6
y(fe) = fo =" fo + 7 fs — " fe.
Given y € {—1,1}%, if A € A(2,s) is such that A\; (resp. A2) equals the

number of y; equal to +1 (resp. —1), then we say that y has weight \.
We now define N, ;) to be the F-span of

(53)  {(¥(9):7%:0) : (9:7:0) € B, 40y a0l y has weight A}
It is clear that
(5‘4) M(Qsp,tp,up) (RT) = @ N()\,t,u)v

AEA(2,s)

is an equality of vector spaces. We give an example of Ny, in Example
5.3.13 below.
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Observe that N¢,s,, (R;) permutes the R,-orbits as blocks for its action.
It follows that Ngys,, () acts on the set of subgroups of the form R, by
conjugation. We have seen in the proof of Lemma 5.3.6 that the R,-orbits
are the same as the orbits of the subgroup

C:=(o1) X+ X (o),
and we write O; for the union of the non-trivial orbits of (o).

LEMMA 5.3.8. Given w,& € Q%K) let h € Negs,, (Ry) be such that
"R, = Rg. Then h(y(g),7,0) is contained in the F-span of B(X).

ProOOF. Given 1 < i < r, let 7 be such that hO; = O;. It follows from
the definition of (y(g),~,d) that

h(y(g)”% 5) = Z H ye 9,9, )

EC{i1,...,is} e€E

= > (ITw("™g), v, o)

EC{i1,....is} €€E

= Y (T v E(g), by, 1)

EC{i1,...is} €€F
= (5("g), hy, ho),

where E := {i:ie E} and y; = y; for all i € {iy,d2,...,is}. The lemma
is proved once we show that (“g, hvy, hd) is fixed by Rg. As "o; = o; for all
1<i<rforl<j<s
0~035 o; G’,L/
7ty =" g) ="
An entirely similar argument shows that o~hy = hy for s < j < s +t, and
J
that o~hd = ho for s+t <j <. O
J

COROLLARY 5.3.9. Let h € Neys,, (Ry) be such that "r; = 7 and "oy =
of, for 1 < i < r and some x € N. If (g9,7,9) € B(w), then h(g,7,9) is
contained in the F-span of B(w). In particular if h = 7;; for some j €
{1,2,....s}, then h(y(9),7,9) = y;(y(9),7,9)-

PRrROOF. For the first statement, observe that "O; = ©; for 1 < i < r.
Now apply Lemma 5.3.8.

For the second statement observe that if h = 7;, for some j € {1,..., s},
then

@), = > (JJve)(™g,7.0)

EC{i1,...is} €€E

=y, Y, (JTvew)(™9,%,6) = y;(y(g),7.6). O

EC{i1,....is} €€E
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It follows from Lemma 5.3.8 that each N,y is an FNgys,,(R;)-
module, and so the decomposition of Mo, 1 up) (Rr) in (5.4) is as a direct
sum of F'Ngys,, (R)-modules.

Write K, for Cgys,,(Rr). In order to prove that each Ny, ,) is an
indecomposable F'N¢,s,, (R;)-module, we show that it is an indecomposable
an F'K,-module. We do this by filling in the details of the following sketch.

Given 1 < i < r, define D; = (04, 7;), and so Dy x --- x D, is a nor-
mal subgroup in K,. We define an F[D; x --- x D,|-module N;j*, and in
Lemma 5.3.10 we determine its inertial group Y(;,) in K;. Using Lemma

5.3.11 we determine the dimension of N(y;,). In Lemma 5.3.12 we show
Yt

that Ny := N 1 X%’tt’“)) is indecomposable, where Xy ;. is the largest sub-

group in Y(y;,) that N;J* can be extended to. We then also prove that

Novtw)y = Ny T{f&m . It follows using Proposition 1.2.5 that Ny, is an
indecomposable F' K,-module.
Define w* = {{1,s+1},...,{5,25},{2s + 1,...,7r}} € Q@) Let v* :=
(fsp, 7", 0%) € B(w*) be such that
T (v*) = supp(02s41 - - - 0254¢) N {1,2,...,n}
UW*) = supp(o2ssts1 - --0p) N{1,2,...,n}.
Given X € A(2, s), define y) € {—1,1}* to be the tuple of weight A such that

o =] LiIsisa
PIEZY 21 i a+1<i<s.

We now define NZJ* to be the F-span of
{(r(9),7%,6%) : (9,7",0") € B(w")}.
Also let Xy ;) be the subgroup of K, generated by the set
{oi, 7 : 1< i <r}U{pf?* P} U{pipiys : 1 <i<s—1andi+# A}
U{pi:2s+1<i<ri2s+t},
and let Y|, ¢, be the subgroup of K, generated by the set
{oi,7i : 1 <i<r}U{pi:1<i<r—1andi¢{2X\;,2s,25+1t}}.

Similar to the remark following Lemma 5.3.2, there are isomorphisms of
abstract groups X ;) = Cap 0 ((S205)) x Sp x Sy), and Y(y ;) = Cop 2
(52)\ X St X Su)

LEMMA 5.3.10. The vector space N;"* is an F[Dj x --- x D;|-module,

with inertial group Yy ¢4 in K. Moreover, we can extend N‘;* to a module
Jor FX(\tu)

ProoF. That N;’* is an F[Dy x -+ x D,]-module follows by applying
the first statement of Corollary 5.3.9.
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Write T' for the inertial group of N;J*, which permutes the groups D;
by conjugation. The permutations o1, ...,095 act freely on N;"*, whereas
02s+1, - - -, 0p all act trivially on Nz‘j*. Therefore T' must be contained in the
subgroup of K, that permutes the groups Dq,..., Doy amongst themselves
and the groups Dasy1, ..., D, amongst themselves.

For 2s < i < 2s+t, the action of 7; on (yx(g),7*, ") is determined by
its action on

{G—=Dp+1,G—1Dp+1},..., {ip,ip}).

Therefore 7; acts trivially in this case. Similarly for 2s + ¢ < ¢ < r, the
action of 7; on (yx(g),7*,0*) is determined by its action on

([(G=1)p+1,(i = p+1],....[ip,ip]).

It follows that 7; acts with sign (—1)P, which is negative as p is odd. There-
fore T'must be contained in the subgroup of K, that permutes the subgroups
Dogi1,..., Dagyy amongst themselves, and the subgroups Daogqiy1, ..., Dy
amongst themselves.

It follows from the second statement of Corollary 5.3.9 that T must
permute the groups Dy,..., Dy, Dgi1,..., Dy +s amongst themselves, and
the same is true for the groups Dy, 41, ..., Das, Dx,+s41, - - -  D2s. This shows
that 7' is contained in Y(y ;.. Moreover, if h € Y() ; 4, then h(Nz‘j*) = Nz‘f*.
Therefore Y, ;) is contained in 7', which proves the second statement of
the lemma.

For the final statement, it remains to prove that NZJ* is closed under the
action of

ZU{pi:2s+1<i<ri#2s+1t},

where Z = {p{?”* P} U {pipits : 1 <i < s—1andi # A\ }. It is sufficient
to prove that each of

e (*(y(g9)),7*,6%), where z € Z

e (y(g), piv*,0%), where 2s +1 < i <2s+t

e (y(9),7*, pid*), where 25 +t < i <,
is contained in N;J*.

First consider p;v*, where 2s +1 < ¢ < 2s + t. In this case p; per-
mutes precisely those orbits of R+ with support equal to the support of
~*. Therefore p;v* = ++*. The same argument shows that p;0* = +6* for
s+t <i <.

Given z € {p***"*} U{pipi+s : 1 <i<s—1andi# \}, we have

29,76 = > (J]we) ™97 6

EC{l,...s} e€E

= Z (H ye)(TE/ (zg)7/7*a5*)7

E'C{1,..s} e€E
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where B/ = E if z = p*"*"*  otherwise E’ is the subset of {1,...,s}
obtained from E by swapping ¢ and i+ 1 for some 1 < ¢ < s—1. In particular
i is such that y; = y;41, and so in either case it follows that z(y(g),7,0) =
(y(*9),7,9). The lemma is proved once we show that (*g,v,d) € B(w*). This
follows from the first statement of Corollary 5.3.9 as z centralises R,~. U

Before we state and prove our next lemma, we remind the reader that
k=1t+u.

LEMMA 5.3.11. The module M ogp, 1 up)(Rr) has dimension equal to

(2p)® x <IZ> X Cg k-

PRrROOF. By Lemma 5.3.6 every element in Bg;p, tpoup) is fixed by R,,, for
a unique w € Q%K) We therefore count the size of B(w) for each w. Fix
w € Qsk) - and write w = {{i1,3,}, ..., {is, %}, {1, -5 Jr} )

Let (g,7,6) € B(w). Then we can write g = g1 ...gs, where each g; has
cycle type p positive 2-cycles and gj is fixed by o, il foreach 1 < j <s. By
Example 5.3.5, each o;; il has 2p fixed points in Bz ,0). Therefore there
are (2p)® choices for g in this case.

Let v := ({71,971}, {72, %2}, - - {7tp> Tp}) be such that 31 <y < --- <
Yep and supp(oj, ... 05,) = {1, 71, - - - s Vip, Vip}- Then «y is the unique element
of this form with support not disjoint to o, ... o, that is fixed by o, ... 0j,.
Similarly, we define 6 = ([01,01],- - -, [0up, dup)) to be such that §; < dy <
+++ < Oup and {61,061, ..., 04, 0p} = supp(0j,,, - .., ). Then § is the unique
element with support not disjoint to o, , ...o;j, thatis fixed by o, ...0j,.

As there are (]:) ways to choose j1, jo, ..., jt, there are (2p)® x (lz) fixed
points of Ry in B(aep pup)- The statement of the lemma now follows by
definition of ¢y . O

We now prove that Ny, is indecomposable by filling in the sketch
after Corollary 5.3.9. We give an example of the ‘induction’ procedure in
the proof in Example 5.3.13.

LEMMA 5.3.12. The module Ny, is an indecomposable F K;,-module.
PROOF. Define Q(%F) to be the subset of Q(25%) consisting precisely of
the {{il, Z’l}, ceey {i,\l,i/)\l}, {i,\1+1, i,\1+1}, ceey {is, Zg}, {jl, .. ,jk}} such that
{il,’ill,...,i)\l,ii\l} = {1,...,)\1,$—|—1,...,8—|—)\1}
{ingt1, 0 410 isiisy ={ A+ 1,...,8, s+ A +1,...,2s}
{jla"'7jk} = {23+1,...,7’},
_ 102Xk o WY ) R
and define c) j, = |Q*F)|. The module N, := Ny TX(A:“) has a basis given

by the set
{(W(g).7*,0%) : (9,7*,0%) € B(w),w € QM.
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Therefore Ny(R,~) and N;’* are equal as vector spaces. By the second
paragraph in the proof of Lemma 5.3.11, there are (2p)® choices for g in
(g,7*,6%). By definition, (y(g),~v*,0*) is the alternating sum of exactly 2°
elements. Moreover, given E C {ij,... i}, the second statement of Corol-
lary 5.3.9 implies that (y(g),7*,d*) and 7r(y(g),~7*,0*) are equal up to a
sign. As there are 2° choices for F, it follows that N;f* has dimension p°.

Recall that C' = (01,...,0,). The group R, acts trivially on N‘;*, and
so by Lemma 1.3.2

Ny(Ro) | = FT5 -

Therefore Ny(R.+) is an indecomposable F'C-module, and so Ny(R,~) is

an indecomposable F' Ny, R.+)-module. It follows that there exists a

At,u) (
unique summand of N, with vertex containing R, +. Let W be a non-zero

indecomposable summand of N,. As

Nle= @ Flp
weN@Xsk)

the Krull-Schmidt Theorem implies that each indecomposable summand of
W lc¢ is isomorphic to FT%W* . Therefore W (R~) # 0, and so Lemma 1.3.9
states that I/ has a vertex containing R,+. As W was an arbitrarily chosen
summand of IV, it must be the case that N, is indecomposable.

Let (7(g),7,0) € N(xt,) be such that (g,7, 8) € B(@). As 7 has weight
A and K, permutes the R,-orbits transitively, it follows from Lemma 5.3.8
that there exists p € (p1, ..., pr—1) such that +(5(g),7,0) = p(y(*" " g),,0),
where (y(g?'),7,8) € Ny. Therefore N, generates N(y;.) as an FK,-
module.

(2s3k)

By definition there are ¢y choices for w € Q , and there are ( ;1)

choices for y € {—1,1}* of weight \. Therefore N(, ., has dimension

cxsxsxk
s,k )\1 b +)

As Ny has dimension c) ;, X p®, applying Lemma 1.3.2 gives

~J KT‘
Novtu) = NyTY(k,t’u) :

Lemma 5.3.10 states that Y, ;) is the inertial group of the F'[Dy x - - x D;]-
module N?:"*. As N;J* is extended from Dy X - -+ X Dy to X () 1,4), we have that
Ny Dy x..xp, is isomorphic to a direct sum of [Y() ;) 1 X(a¢u)] copies of
N;*. Therefore Proposition 1.2.5 implies that Ny ;) is an indecomposable
FK,.-module. U

EXAMPLE 5.3.13. Let F be a field of characteristic 3, and let r = 4.
Write Ky for Coys,,(R4). In this example we describe the indecomposable
summand N((12)7070) of M(127070) (R4)

Recall that K4 is isomorphic to Cg? Sy, with base group

D:={(oj,1:1<i<A4).
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Let y = (1,—1), which has weight (12), and define w = {{1,3},{2,4}}.

Observe that fg € ng,O,O)' Therefore in this case

Ny =(9+Tg—"9-""g:9€ B, 0)F

which is closed under the action of D, but not under the action of K. Indeed
take
p1:=(14)(25)(36)(14)(25)(36) € Ky,

and observe that

(5.5) P(fe+"fo =" fo — " fe) = (P fo) =™ (" fo) + 2 (P fo) — T2 (P f6),

on which 7 acts with positive sign. However, 79 acts with negative sign on
all elements of Ny’. Furthermore, ! fg € B(w), where w = {{1,4},{2,3}}.
By considering the actions on N, of

(17)(2 8)(39)(T7)(28)(39) and (4 10)(5 11)(6 12)(1 10)(5 11)(6 12),

we see that the inertial group I of N, is isomorphic to Cg2Sy(12). Moreover,
Ny is an FI-module. The final sentence in the previous paragraph shows
that the F'Ky-module generated by N,/ equals

(g+Tg—"9—""g, g=Tg+ g =g g € By o)) Fs

which is isomorphic to Ny’ Tf{“ by Lemma 1.3.2. By definition this equals
N((12),0,0), as expected from Lemma 5.3.12.

By Lemma 1.3.11 the modules Mo, 1 up) (1) and Ny ), for any A €
A(2,s), are p-permutation F'Ng,,s,,(R-)-modules. We briefly write .J, for
Ncys,, (Rr). As R, is a normal subgroup of Ry, it follows from Lemma
1.3.11 that

M(Zsp,tp,up) (RT)(Rw*) = M(2sp,tp,up) (Rw*)7
as F'Nj. (R,»)-modules. Then Lemma 5.3.12 implies that

M(Qsp,tp,up) (Rw*) = @ N(/\,t,u) (Rw*)7
AEA(2,5)
as F'Nj. (R,+)-modules. Moreover, for all A € A(2,s), the basis defining
Nt in (5.3) is a p-permutation basis of Ny ;) with respect to Ry
Recall that U is a non-projective indecomposable summand of Mg, p,¢)-
It follows from the proof of Lemma 5.3.6 that each Ny ;. (Ry+) # 0, and
so by the Krull-Schmidt Theorem U(R,+) # 0. By Lemma 1.3.9 every non-

projective indecomposable summand of M ) therefore has a vertex

2sp,tp,up
containing Rx.
In the second step of the proof of Theorem 5.1.1, we consider the module

N(A,t,u)(Rw*) in order to understand U (R, ).

Second step: The vertices of N(,\7t7u)(Rw*). In this step we show that
Nt (Ro+) is an indecomposable FCf, (R, )-module, where we remind
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the reader that K, = Ccys,, (R;). It follows that Ny ;) (Rw+) is an inde-
composable F'N¢ys,, (R.+)-module, and in Lemma 5.3.15 we determine its
vertex.

Observe that the group Ck, (R.+) is generated by the set

{oi, 7 : 1 <a <r}U{p*** "YU {pipits : 1 <i<s—Tlandi# \}
U{pi:2s+1<i<r},

and so there is an inclusion X (5 ,) < Ck, (Rw+).

LEMMA 5.3.14. Let A € A(2,5). Then Nyt ) (Ru+) is an indecomposable
FNg, (R.+)-module.

PRrROOF. By definition R+ acts trivially on NZ‘/*’*, and so it follows from
Lemma 1.3.2 that N;’* o= F Tgw* . This is indecomposable as an F'C-
module, and so N;* is an indecomposable F X, ; ,)-module.

Fix (7(9),7,0) € Niatu)(Rox). As Ck, (Ry+) permutes the Ry«-orbits
of a fixed size transitively amongst themselves, it follows from Lemma 5.3.8
that there exists some

P2P3---Ps

pe (P y P1Ps+1y -+ 3 Ps—1P25—15 P2s+1, - - - ,pr—1>

such that +(5(g),7,6) = p(y(? ' g),v,d), where (y(*" ' g),7,6) € N;’*. There-
fore N“J* generates N(y ;) (Rw+) as an FCk, (R,»)-module. As there are ex-
actly ( ) tuples of weight A in {—1,1}°, Corollary 5.3.9 and Lemma 5.3.11
imply that the module Ny (/) has dimension

<S>><[St+u:5t><5u]x
A1

By Lemma 1.3.2 we therefore have that
~v CKT(RUJ*
Nixt) (R chT(R = TX(AM)
Using Lemma 5.3.10 we see that the inertial group of NZJ in Ck, (Ry») is
equal to Xy ;.. It follows from Proposition 1.2.5 that Ny ;. (R.+) is an
indecomposable FCF, (R,+*)-module. O

Given X C {1,2,...,sp}, let Co 2 Sx be as in §1.4.1. Also, given = €
{1,2,...,sp}, define z* = x+ sp. We remark that this definition of z* agrees
with that of * in Example 5.3.5, which considers the case when s = 1. Given
g € C205(12,...sp)» let g* be the permutation in C2 2 Sqepi1
g7 (i") = (9(2)".

Also given A € A(2,s), we define J to be the group consisting of all ele-

2sp) such that

-----

ments gg* such that g is contained in a Sylow p-subgroup of C20S¢1, . pa,} ¥
C20S(px, +1,....sp} With base group (o7, ..., 05). Let J* be a Sylow p-subgroup

of CQZS{Qsp—i—l,..,,(Zs—i—t)p} X C'22S{(Zs-l—t)p—i—l,...,7‘p} with base group <02$+17 SRR UT>'
We define Q) = J x J 7.
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By construction, Ry+ < Qy ), and s0 Qi) < Neows,, (Rur). By
Lemma 1.3.11 and Lemma 5.2.3, there exists a choice of signs s, € {—1,1}

such that
R, }
(2sp,tp,up)

is a p-permutation basis for Mo, 1 up) (Rw+) With respect to Q(y ;). Given
v = (g,7,0) € B(w*), let (h,7,0) be a representative for the Q(»t,u)-0rbit
containing v. It follows that for all E C {1,2,...,s}, the representative

{spv:v€EB

for the~ Q(»t,u)-0rbit containing (7 g,~,d) can be chosen to be of the form

(W',4,0). For distinct summands w and w of (y(g),~, d), it follows that s, =
sg- We can therefore write s, 5) in the place of sy, for all such w, and then

{8097.0)W(9),7,0) : (9,7,0) € B(w")}

is a p-permutation basis of N(y ;) (Rw+) with respect to Qx ;u)-
LEMMA 5.3.15. The module Ny 1) (Ru+) has a verter equal to Q¢ )

PROOF. Let y = yx. The element (fsp,v*, %) is a fixed point of Q) 4.)-
As Qutw) < X(atu), the element (y(fsp),7*,0%) is also a fixed point of
Q(xt)- Therefore Ny ;) (Ry+) has a vertex containing Q» ;,)-

The element y(fs,) is an alternating sum of elements conjugate to fs,
in C3 1S, and so any element in Ncys,,(R,-) that fixes y(fsp) under the
conjugacy action must be contained in Vj,. Indeed suppose that there exists
h € Q) such that h € Vg,. Therefore by definition of y(g), it must be the
case that Tgh € V, for some S C {1,2,...,s}. However 7g transposes the
Ros-orbits {(j — )p+1,...,45p} and {(j — 1)p+1,...,jp} for each j € S,
and fixes all other Ras-orbits. As p is odd, h must act trivially on these
orbits. The only such elements in Nc¢ys,,(R,) are also contained in Vyy, a
contradiction.

Since Q(x t,4) is the largest p-subgroup that is contained in both Xy 1)
and V), x C21 .Sy, x C2 1Sy, the result follows from Lemma 1.3.9. O

Third step: Proof of Theorem 5.1.1. Given r € N such that rp < n,
recall that

T, ={(\t,u) : A€ A(2,5),2s +t+u=r and sp < a,tp < b,up < c}.
We now complete the proof of Theorem 5.1.1. We restate the result for

the reader’s convenience.

THEOREM 5.1.1. Let (a,b,c) € N3 be such that 2a+b+c =n, and let U be
a non-projective indecomposable summand of Mz4p.c)- Then U has a vertex
equal to a Sylow p-subgroup of

Vp>\ X C2ZStp X C2ZSupa

for some r € N, where rp < n, and (\,t,u) € T}.
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PrROOF OF THEOREM 5.1.1. Let r € N be maximal such that R, is
contained in a vertex of U. By Lemma 5.3.4, Lemma 5.3.12 and the Krull-
Schmidt Theorem, there is a subset T C T, and for each (A, t,u) € T a
summand Wy ¢ ) of M(2(4—sp) b—tp,c—up), Such that

UR)Z D Novw BWos):
(A tu)eT
where s = |\|.

By Lemma 5.3.15 Ny ) has a vertex equal to Q(y ;.- Let (A, t,u) € T
be such that s := |\| is minimal. Suppose there exists (25,¢,u) € T" such
that § > s. Given \ € A(2,5) and w € Q@2st+u) the vertex Q(X,Eﬁ) of N(X,Z,a)
3Ia) (Ry) = 0.

We therefore consider U(R,,) when w € Q(Z%+%)_ By Lemma 1.3.11 there
is an isomorphism U(R,,) = U(R,)(R.) and so there exists a subset S of T
such that

cannot contain a conjugate of R, and so N, (

UR) = D Nova(Be) MW,
A\ tu)es
where |A\| = s. Let Q(5,) be maximal such that (A, t,u) € S. Another
application of Lemma 1.3.11 gives

UQuitw) =ZURL)(Quntw))

= Ouin Noim (Fe) (Quzn) B Wia,
where that the sum runs over the (X, #,%) € S such that Q(ri,a) Is a conjugate
of Q(x¢u)- By Lemma 5.3.15 N(X,ga)(Rw)(Q(A,t,u)) # 0, and so Lemma 1.3.9
gives that Q) is contained in some conjugate of Q(X,Ea)‘ If Q(X,Eﬁ) is not

(5.6)

a conjugate of Q) then Q) is strictly contained in the appropriate
conjugate of Q(,\7t,u), but this is a contradiction to the maximality of Q(M,u).

As Nix ) (Rw)(Q(A7t7u)) £ 0, it follows from Lemma 1.3.9 that U has a
vertex () containing (Q)(y t,4)- Suppose that @ strictly contains Q(y .. Since
Q is a p-group, there exists some g € Ng(Qxy,)) such that g & Q1)
The orbits of Q) ;) have length at least p on {1,1,...,rp,7p}, whereas the
orbits of Q(» ¢, on

{rp+1,rp+1,...,n,n}

have length 1. As g cannot permute an element in an orbit of length strictly
greater than 1 with elements in an orbit of length 1, we can write g = hh™,
where h € Ngys,, (Qarw) and bt € Gy S{rp+1,..n}- The only elements in
Q(rt,u) With cycle type either one positive p-cycle, or two positive p-cycles
are those contained in R,. Therefore Ncys,,(Qx ) < Nogs,,(Ry), and
80 (Qatw)s M) < NL(Q(atu))s Where L := Ncys,, (Ro).

Let C be a p-permutation basis of Ny 4 ,,)(R.,) with respect to (Q(x ¢,u), 9)-
By Lemma 1.3.9 the group (Q(x ), 9) has a fixed point in C. It follows from
(5.6) that there exists some Ny ; ,,y(Rw) with vertex containing (Q(x ), h)-
However, we have already seen that Ny ;.)(Rw) has vertex equal to Q(x 1)
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Therefore h € Q) t,4), and so h is a non-identity p-element of Q. It follows
that some power of h™ is a product of positive p-cycles with support outside
{1,1,...,rp,7p}. This contradicts the hypothesis that r is maximal, and so
the theorem is proved. O

EXAMPLE 5.3.16. Let p = 3. The module M(s40) is spanned by the
conjugates of

for = (1 28)(2 29) ... (27 54)(1 28)(2 29) ... (27 54)

in Cy1 S54. In the notation of Theorem 1.1, we have that » = 9 and T§ =
A(2,9). By Theorem 1.1, any non-projective indecomposable summand of
M 54,0,0) has a vertex containing a Sylow 3-subgroup of V3y, for some A €
A(2,9). In fact we can say more: for every A € A(2,9), a Sylow 3-subgroup
of V3, contains a conjugate of a Sylow 3-subgroup of V35 4), chosen with the
permutations o101g, ..., 09018 in its center.

5.4. Decomposition numbers of C5.5,

In this section we prove Theorem 5.1.2. We assume that M,y ) is
defined over the field F,, since the results in this section then follow by
change of scalars. We define x(24,,¢) to be the ordinary character of Mz p.c)-
Given (), ) € P%(n), recall that we write Y(*#) for the ordinary character
of the hyperoctahedral Specht module S, In the following lemma we
decompose the character x(2q,,c) into its irreducible constituents.

LEMMA 5.4.1. Let n = 2a + b + c. The constituents of the character
X(2a,b,c) are precisely those XM such that (A, 1) € P%(n) and X has exactly
b odd parts, and p has exactly ¢ odd parts. Moreover each constituent appears

with multiplicity one.

PRrROOF. This follows from Propositions 1 and 2 in [2], and by multiply-
ing through by the ordinary character of the module Infgjzs" sgng, - U

In order to prove Theorem 5.1.2, we need to understand how the blocks
of FC3 S, correspond to the blocks of F Ny, (R,). We therefore require
a description of the blocks of F'N¢,,s, (R;), which we give in the following
section.

5.4.1. The blocks of FN¢,s, (R;). Recall from (5.1) that
NCQZSn (R'f’) = NCZZSTP(RT) X Ca 1 S{rp—i—l,...,n}'
It follows that the blocks of F'N¢,s, (R,) are of the form
b® B((v,v), (6,w)),

where b is a block of F'N¢,s,, (R;), and =, ¢ are p-core partitions such that
|7] + vp + |6] + wp = n — rp. It therefore suffices to describe the blocks of
FNC2lSrp (Rr) °
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PROPOSITION 5.4.2. The blocks of F'Ncys,,(R;) are labelled by pairs
(v,w) such that v +w = r. Moreover, the F'Ncys,,(R;)-module M lies in
the block labelled by (v, w) if and only if exactly v factors of Cy act on M
by positive sign.

PrOOF. Using the presentation of Ncys,,(R,) given in §5.3.1, we see
that Neys,, (Rr) = C3 x N, (R;), where C3 = (71,...,7;) in this case. Let
X7 € Lin(C%) be such that

Xo(m) = = xa(m5) = 1
Xo(Tp1) = - = xal(my) = 1.

The stabiliser of x5 in Ng,,(R;) is isomorphic to Cs; ., (Rr) x Cp—1, which
has a unique block by Lemma 2.6 in [9]. All statements of the result now

follow from Theorem 1.4.7. (]
We write b(v,w) for the block of Ne,s,,(R:) labelled by (v, w).

REMARK 5.4.3. Recall that in the first step of the proof of Theorem 5.1.1

we wrote M (R;) as a direct sum of indecomposable F'N¢,,s,, (R)-

2sp,tp,up)
modules Ny ;). It follows from Proposition 5.4.2 that this is in fact a de-
composition of Mg, i, up) (1) into its block components. In particular the
second statement of Proposition 5.4.2 implies that the module Ny, lies

in the block b(2A1 +¢,2A2 + u) of FNgys,,(R:).

Given a p-core partition v = (71,72, ...,7) and v € Ny, we define y+vp
to be the partition
(71 +vp 2, m)-
It is proved in [65, Lemma 7.1] that the Specht module S7T% is always a
p-permutation F'S),|,,p,-module. Fix a p-core partition 6 and w € Ny such
that |y| + vp + |d] + wp = n. Then part (2) of Proposition 1.3.8 gives that
SOrtvp.dtwp) iy o p-permutation FCs ! Sp-module.

PROPOSITION 5.4.4. Fiz v,w € Ny. Let v,w € Ng be such that v <
v, W < w, and U+ @ = r. The FNg,s, (Ry)-module SOTPITWP)(R ) con-
tains a summand lying in the block

b(v,w) @ B((y,v —0), (6,w —w)).

Moreover the FNgys, (R,)-blocks b such that b¢?n = B((y,v), (6, w)) are
precisely those of this form.

We prove this proposition by applying Lemma 1.3.12 to the module
SO+epdtup)(R ) We first consider S(OHP0+wP) () in a more general case.
Indeed fix a p-subgroup @ of Cs .S, contained, up to conjugacy, in Cs?
S(16|+vp,|y|+wp)- Also let @ have support size 2rp when viewed as a sub-
group of Sa,. Define Ug to be the kernel of the Brauer morphism from
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(SOrtepd+wp))Q o §(rHvrd+wr) ((9). We now describe a polytabloid e;, that
is not contained in Ug. The following preliminaries are required.

Given a (v + vp,§ + wp)-tableau ¢, let t+ denote the tableau obtained
by replacing each entry {z, 7} in t* with z, and define t in the analogous
way. We also require the dominance order on row-standard tableaux, which
is defined in §2.2.

Define ¢, to be the tableau such that t:Jr is the greatest v+ wvp-tableau in
the dominance order with entries in {1,2,..., |y|+vp}, and £, is the greatest
d + wp-tableau in the dominance order with entries in {|y|+vp+1,...,n}.

LEMMA 5.4.5. The polytabloid e(t,) is not contained in Ug.

PROOF. Let t = t,. By definition of the Brauer morphism, we have that
Ug is contained in the subspace

V = (e(s) + ge(s) + - - + g° te(s) : s a standard tableau, g € Q),

of SOr+vp.d+wp) “and so it is sufficient to prove that e(t) € V.

Suppose, for a contradiction, that e(t) € V. Then there exists some
0 < i < p—1 such that e(t) has non-zero coefficient in the expression of
g'e(s) as a linear combination of standard polytabloids. We assume that
every g € () factorises as g = g1 g, for some g € C2 0.8y, 41,... v, +vp} and
g- € C22 S{’y+vp+§1+1,..A,’Y+vp+51+wp}'

Using the bilinearity of the outer tensor product, the polytabloid e,+ has
non-zero coefficient in the expression of (g, )%(s) as a linear combination
of standard polytabloids. The analogous statement also holds for e(¢™) and
(9_)%e(s™) The action of @ on e(t*) (resp. e(t7)) is equivalent to the action
of Q on e(fT) (resp. e(£7)). Therefore it suffices to prove that the polytabloid
corresponding to t* is not contained in the kernel of the Brauer morphism
from (S7vP)Q to SrHvp (@), and that the analogous property holds for the
polytabloid corresponding to ¢ . This follows from Lemma 5.2 in [65]. O

Before we prove Proposition 5.4.4, we introduce one more piece of nota-
tion. Given partitions (X, ) € P?(n), we define

M) — (Tuf25 A g M@l CoUul ppuy 7 C2tSn
M (Infsm MERN ®Inf5w M)TC2?5<|MM)'

PROOF OF PROPOSITION 5.4.4. Let R(7 ) be the conjugate of R, con-
tained in the top group 71, with support such that exactly v non-trivial
orbits of E(g’@) are contained at the end of the first row of Z‘\j, and exactly
w non-trivial orbits of }A?,(g@) are contained at the end of the first row of tA*_

By Lemma 5.4.5, the polytabloid e(t,) is not contained in Ug . There-
fore the submodule of S (7+vp’5+wp)(R(5@)) generated by e(t,), denoted W,
is non-zero.

Let s, be the (y+ (v—10)p, 6+ (w—w)p)-tableau such that 5} and s, are
the greatest v+ (v — v)p-tableau and § + (w — w)p-tableau in the dominance
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orders on the tableaux with entries

{17 2, |7| + Up}\Supp(R(;;ﬂ;)) R

{+vp+1, 7 +op+2,....n}\supp(R5m));
respectively. Let s be the (vp, wp)-tableau with entries in the row of length
Up agreeing with those at the end of the first row of ], and with entries
in the row of length wp agreeing with those at the end of the first row of
t, . The extension of the map {s} ® e(sy) — e(tx) + U, denoted ¢, is an
F[Ncys,,(R@,a)) < C2 1 Sp—rp]-module homomorphism from

M = ]\/‘,'((1719),(1317))(R(qu o) X SO+ (v=0)p,d+(w—w)p)
to W. The extension of the map e(t) + U — {s} ® e(s4), denoted ¢, is a
well-defined morphism of F[Ncys,, (R,a)) X C21Sn—rp]-modules such that
@9 = idy. Therefore SOHPO+wP) (R o) has a submodule isomorphic to
M. By Proposition 1.4.8 and Proposition 5.4.2 M lies in the block
b:= b(57 ﬁ;) ® B((’%'U - ;5)7 ((5,11) - @))7

and so there exists a summand of SUHPOTUP)(R G o) lying in this block,
which proves the first statement of the proposition. That B((v,v), (J,w))
corresponds to b now follows immediately from Lemma 1.3.12.

Observe that we have shown if

(b(v', w') @ B((',0"), (8,w"))) ' = B((7,v), (6, w)),

then v/ +v” = v and W' +w"” = w. In particular v" < v and w’ < w. Moreover
~" =~ and § = §. This completes the proof of the proposition. O

The following example makes explicit the proof of Proposition 5.4.4.

EXAMPLE 5.4.6. Let p = 3, n = 13, and r = 2. Define the 3-core
partitions v = (2) and § = (12). We consider the FN¢,,s,,(R2)-module
S = S((®)(4D)(Ry). By Proposition 1.4.8, S((®)-(41) lies in the block

B = B(((2),2).((1),1)).

In this case t, is ((8), (4,1))-tableau equal to

{1,1} | {2,2}

where the shaded boxes correspond to the parts added to the 3-cores. By
definition the conjugate Ry of Ry equals ((345)(345)(678)(678)). Then
e(t.) generates an F'[Ngyg,(R2) x Co ! S7]-submodule of S((8)7(471))(R(2,0))
isomorphic to F X S((2):(41) which lies in the block

by == b(2,0) ® B(((2),0), ((1*), 1)).
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Consider now the conjugate R 1) of Ry, which by definition equals
((6 78)(678)(10 11 12)(10 11 12)). Observe that R ;) is conjugate to Ry
in Cy 1 S13. Then e(t,) generates an F[N¢y,s,(R2) x C2 ! S7]-submodule of
S((s)’(‘l’l))(R(M)) isomorphic to

2
M(3’3)(R(1,1)) x §((5).(17)
which lies in the block
by := b(la 1) ® B(((Z)v 1)) ((12)a 0))
Since S = S(EEDN(R, ) = SEM(R 1)), it follows that S has
indecomposable summands U and V respectively lying in the blocks b; and

bs. Therefore blcﬂsn = bgﬂsn = B, as expected from the proof of Proposition
5.4.4.

5.4.2. Proof of Theorem 5.1.2. Fix a,b,c € Ny such that n = 2a +
b + c. Following the outline of this chapter, we prove Theorem 5.1.2 using
Scott’s Lifting Theorem and Brauer reciprocity. In order to do this, we
determine certain projective summands of the module My, ). We remind
the reader that given b € Ny and a p-core partition v, we define wy(7y) to
be the minimal number of p-hooks such that when added to ~, we obtain a
partition with exactly b odd-parts.

PROPOSITION 5.4.7. Let b,c € Nqg. Given p-core partitions v and 6, let
n = |y| +wp(Y)p + 6] + we(d)p. Suppose that if b,c > p, then wy_p(7y) #
wy(7y) — 1 and we—p(0) # we(8) — 1. Then every summand of Maq4,c) in the
block B((7y,wp(77)), (0,we(0))) is projective.

PROOF. Suppose that there exists a non-projective indecomposable sum-

mand U of M,y in the block B((v,ws(7)), (6, we(5))). It follows from
Theorem 5.1.1 that U has a vertex equal to a Sylow p-subgroup Q) t,.) of

VZD/\ X CZZStp X CQZSup,

where A = (A1, A2) F s and sp < a, tp < b, up < c.
Let r = 2s + 1 + u, and so R, < Q) 4,)- It follows from Lemma 5.3.4
and Lemma 5.3.11 that

Mzap.e)(Re) = D Nor vy B Mia(a ajp) o—tprc—up)>
where the sum runs over all (\,¢,u) € T).. By the Krull-Schmidt Theorem

we have

(Nt BW) |U(Ry),
for some indecomposable summand W of M o(a—|\|p),p—tp,c—up)- By Lemma
1.3.12 the block B((vy,ws(7)), (6,w(0))) therefore corresponds to the block
containing Ny, X W. The second statement of Proposition 5.4.4 then
implies that W lies in a block of the form

B := B((7, wp(7) = 1), (6, we(d) = (r = 1)),
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for some 0 < i < r. By Lemma 5.4.1 therefore there exists S*#) lying in
B such that X has exactly b — tp odd parts, and i/ has exactly ¢ — up odd
parts. Adding tp parts of size 1 to X results in a partition A\ with p-core 7,
weight wy(y) — i + t and exactly b odd parts. Similarly adding up parts of
size 1 to ' results in a partition p with p-core d, weight w.(6) — (r — i) +u
and exactly ¢ odd parts. This contradicts the minimality of either wy(y) or
we(0) unless (¢t,u) = (i,r — 7).

When (¢t,u) = (i,r — i), we distinguish two cases. First suppose that
i # 0. Then adding (¢ — 1)p parts of size 1 to A’ results in a partition with p-
core 7, weight wy(y) —1 and b—p odd parts. Therefore wy_p,(v) = wp(y) —1,
contradicting the hypothesis of the theorem. In the case that i = 0, we argue
in a similar way by adding (r — 1)p parts of size 1 to p’, and contradicting
the hypothesis that w.—p,(0) # w(5) — 1. O

Given p-regular partitions v; and 7;, recall from Theorem 1.3.15 that
there exists a projective indecomposable module corresponding to the irre-
ducible module D). We denote this module by P**) for the remainder

IZRZ)

of this section. Also let Pép denote the module such that
Péziﬁi) ®z, Fp = p(w,ﬁi)’

which exists by Scott’s Lifting Theorem (see Theorem 1.3.13). Using Brauer

reciprocity (see Theorem 1.3.16) the ordinary character of Pg:’gi) is

¢(Vi:ﬂ) — Zd)\yihuﬁ;x()‘:u)’
A1

where we refer the reader to §1.4.4 for the definition of the decomposition
number dy,, .. Observe that the sum can be taken over the (A, 1) € P2(n)
such that |v;| = |A] with A <v;, and |p| = |75| with p < v;. Indeed suppose
that D7) is a composition factor of S*#) | and so by Proposition 1.4.8
Inf D¥ K (N®V%il @ Inf D”) is a composition factor of

Inf $* K (N®H @ Inf S#).
The claim now follows from [33, Corollary 12.2].

PROPOSITION 5.4.8. Fix b,c € Ny. Given p-core partitions v and 6, let
n = b+ wp(1)p + 18] + we(B)p. Suppose that if bye > p, then wy_p(7) #
wy(y) — 1 and we—p(0) # we(d) — 1. Let X and p be mazximal partitions in
Ev(y) and E.(0), respectively. Then X and p are both p-regular.

Proor. It follows from Proposition 5.4.7 that every summand of the
module Mg, in the block B((v, ws(7)), (6, we(5))) is projective. More-
over, by Lemma 5.4.1 there exists a summand of Mg, in this block.

Let

RN
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be the summands of Mgy in the block B((7,wp(7)), (6, we(d))). Let M
denote M(24,p) when defined over Z,. It follows from Scott’s Lifting Theo-
rem that the summands of M, ) can be lifted to summands of M. The
ordinary character of the summand of Mg, ) in B((7, ws(7)) (8, we(0))) is
equal to 171 ... 4 p(e7) Tt follows from Lemma 5.4.1 that

(57) w(I/LVNl) 4+ .o+ w(llt,VNt) — Z X()\,vﬂl)’

(N
where the sum is over all (XN, i') € &,(v) x £:(0). By Brauer reciprocity the
constituents N #) of ¢p(i7i) are such that N <v; and p/ < D; for each i. As
A and g are maximal, (v, ;) = (A, p) for exactly one i, and so the result is
proved. O

Each pair of maximal partitions in &,(y) x &:(0) therefore labels a sum-
mand of Mo, ¢y lying in the block B((~y, ws(7)), (6, w.(6))); moreover, every
such summand is labelled by a pair of this form. We now prove Theorem
5.1.2.

PROOF OF THEOREM 5.1.2. Let Plgl:’ﬁ), . ,PEQ;E”%) be the summands

of M2q.) lying in the block B((v,ws(7)), (§,we(5))), all of which are pro-
jective. It follows from (5.7) that there exists a set partition Aq,...,A; of
Ep(7y) x E:(6) such that (v4,v;) € A; for each 7 and
MR S NC)
(N w)eA;
The statement of the theorem now follows by another application of Brauer
reciprocity. U



CHAPTER 6

Cubic singular homology and representations of

OQZSn

Throughout this chapter fix n € Ny. Let I denote the closed unit interval
[0, 1], and define the n-hypercube to be I". The hyperoctahedral group C21S,,
arises naturally as the group of symmetries of the n-hypercube, and in this
chapter we consider Cs ! S, in this context. Recall that if n > 1, then we
view Cy 0 S, as the subgroup of Sym({1,2,...,n,1,2,...,7}) generated by
the set

{11),12)(12),12...n)(12...m)}.
We then define face i (resp. i) to be the (n — 1)-hypercube with z; = 0
(resp. z; = 1) for all 1 < i < n.If n =0, then Cy 1Sy is viewed to be the
trivial symmetric group, and the O-hypercube is a point. Therefore in all
cases we regard a symmetry of the n-hypercube as a permutation of its 2n
faces.

ExXAMPLE 6.0.1. Let n = 2. The 2-hypercube is a square, and we label
its faces as follows:

on 2 (11

(0,0) 2 (1,0)

Therefore the reflection through faces 2 and 2 is given by the transposition
(1 1), and the anticlockwise rotation through the centre of the square is
given by (1 2 1 2). Observe that these two elements generate Co ! So.

For our purposes, it is more convenient to redefine the n-hypercube using
a more abstract notation, and then interpret this abstract definition in the
usual geometric setting of the n-hypercube as [0, 1]™.

Indeed we redefine the n-hypercube to be the set

{1, 1},...,{n,n}}.

This is acted on, trivially, by Cs 5, as follows:

o{{L,1}, ... {n,n}} = {{o(1),0(D)}, ..., {o(n),a (M)} }.

135
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The geometric interpretation of this trivial action is that Ca 1S, is the
symmetry group of the n-hypercube.

Given 0 < i < n, we define an i-hypercube lying on the n-hypercube to
be an element of the form

{{{alva}v R {ai’aii}}’ {aiJrl? ceey an}}

such that

{al,...,ai} C {1,2,...,71},
{ait1, .. an} C{1,2,...,n,1,2,... 71},
and {ai1,...,a;,a1,...,a;} N{ait1,...,an} = &. This element has the geo-
metric interpretation as the intersection of the faces of the n-hypercube

labelled by @;41,...,a,. Then there is an action of o € C31.S,, on the set of
i-hypercubes lying on the n-hypercube given by

J{{{alaa}v sy {aivaii}}v {ai+1, s 7an}}
={{{o(ar),e@)},....{o(a:),o(@)}}, {o(air1),...,oan)}}.
We pause to give an example of these definitions and their geometric

interpretations.

ExaMpPLE 6.0.2. Let n = 2. Then according to our definition, the 2-
hypercube is equal to the set {{1,1},{2,2}}. Moroever, setting i = 0, we
see that the 0-hypercubes lying on the 2-hypercube are

(2,{1,2}),(2,{1,2}),(2,{1,2}) and (2,{1,2}).
Returning to the usual geometric construction of the 2-hypercube as the
square:

(0,1) 2 (1,1)

(0,0) 2 (1,0)

we see that the vertex of the square labelled (0,0) is the intersection of
the 1-hypercubes (lines) labelled by 1 and 2. Therefore the vertex (0,0)
corresponds to the O-hypercube (&, {1,2}) lying on the 2-hypercube. The
complete correspondence between the vertices of the square and the 0-
hypercubes lying on the 2-hypercube is as follows:

(0,0) < (2,{1,2})
0,1) & (2,{1,2})
(1,0) < (2,{1,2})
(1,1) < (2,{1,2}).

i
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We now define the boundary map d, on the n-hypercube, which is of
central interest in this chapter. For ease of notation, we briefly write T for
the n-hypercube

H1,1},...,{n,n}}.
If n > 1, then define

5u(T) = S (1 ({({L T {6, i), {0 ), i)}

=1
AT i D)), ),

where the hat over {i,i} in each term indicates that it is omitted. Therefore
0, (T) is formally contained in the vector space spanned by the set of (n—1)-
hypercubes lying on 7. In the case that n = 0, then 6, (T) := @. We refer
to the map 6, as the boundary map, since it sends an n-hypercube to its
boundary of (n — 1)-hypercubes for n > 1.

Given 0 < i < n, we have seen that C5Q S,, permutes the set of i-
hypercubes lying on the n-hypercube. It follows that the Q-span of this
set is a QU9 ! Sp,-permutation module. We can define the boundary map
0; for general i, which sends an i-hypercube lying on I™ to its boundary of
(i — 1)-hypercubes. However, in general the map ¢; does not commute with
the permutation action of QC5s S, on the set of i-hypercubes lying on I™,
as illustrated in the example below.

EXAMPLE 6.0.3. Let n = 2. By definition d5({{1,1},{2,2}}) equals
(({275})7 {1}) - (({275})7 {T}) - (({171})7 {2}) + (({LT})? {5})

Consider the permutation (1 1) € C3 ! Sy, which acts trivially on the 2-
hypercube. However (1 1)d2({{1,1},{2,2}}) equals

—(({2:21), {1) + (({2,2}){1}) = ({1, 1), {2}) + ({1, 1}), {2}),

and so ds is not a QC5 ! S,-module homomorphism.

In order to overcome this obstacle, we define the oriented n-hypercube.
We remind the reader that given 0 < x < n, the Q-span of [z,T] is iso-
morphic to the non-trivial irreducible Q Sym({x,Z})-module N. Also recall
that g denotes the image of g € C3 .S, under the canonical surjection
C51 S, = S,. We then define the oriented n-hypercube to be the tuple

([1,1],...,[n,7]).

We also define the one-dimensional QC5.S,,-module U, to be the Q-span of
the oriented n-hypercube, on which each of (1 1),...,(n ) acts by negative
sign, and each g € T;, acts by sgn(g).

As we have done so above, we discuss the geometric interpretation of
the oriented n-hypercube.
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EXAMPLE 6.0.4. Let n = 2, and so by definition the oriented 2-hypercube
equals

([1,1], 2, 2]).

Then [1, 1] has the geometric interpretation of directing the first interval in
[0,1] x [0,1] from O to 1, which corresponds to the arrows pointing right in
the following figure:

o1 2 (11

0,00 2 (1,0)

Similarly [2,2] has the geometric interpretation of directing the second in-
terval in [0, 1] x [0, 1] from 0 to 1, which corresponds to the upwards pointing
arrows in the above figure.

Moreover, the lines on the oriented 2-hypercube are also oriented 1-
hypercubes. Indeed, the line labelled 1 in the above figure is an oriented
1-hypercube with faces (vertices) (@, {1,2}) and (2, {1,2}).

Given 0 < i < n, define C; to be set of all elements of the form

{(lav, @], ... [as, @i]), {ait, .. an}}
such that
{a,...,a;} < {1,2,...,n},
{aiv1,--,an} C{1,2,...,n,1,2,... 7},
and {a1,...,a;,a1,...,a;yN{ait1,...,a,} = &. Then we define an oriented

i-hypercube lying on the n-hypercube to be an element of C;. Then the Q-span
of C; is a QC5 Sp,-module, with action given by

of{([a1,a1],...,|ai,@)),{qit1,---,an}}
= {(lo(a1), (@], ..., lo(ai), o(@)l), {o(ait1), ..., o(an)}}-
Given v = (([a1,a1l, ..., [ai,@)), {@it1,- .-, an}) € C;, define

Sw) =A{a1,...,a;}.
Also define D; to be Q-span of the set
{v — hsgn (ﬁ)v 1v €Cih € Cal Ss(v) }-

LEMMA 6.0.5. The vector space FD; is an FCo 1 Sy,-submodule of FC;.
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ProOF. We show that F'D; is closed under the action of Cy.5,. Fix
ke (Cy1S, and v — sgn(h)hv € D;, where h € Ca 1 Sg(y)- With b’ := kh, it
follows that

~

k(v —sgn(h)hv) = kv —sgn(h )khv
= kv —sgn( h )R/ (kv)

= kv —sgn( W A (kv),

y S >

where the third equality holds since h and h’ are conjugate in C3? S,. By
definition of S(v), there an equality S(kv) = {kx : z € S(v)}. The lemma is
now proved as supp(h’) = {kz : x € supp(h)}, and so b’ € C22 Sg(ky). O

Let {([a1,a1],--.,[a:, @i]),{a@it1,--.,an}} + D; be such that a; < --- <
a;. It follows from Lemma 6.0.5 that the set of all v + D; of this form is
a basis of the quotient module FC;/D;. To simplify the notation, we write

((lar,a1], .- -, ai,a@5)), {ait1,.--,an}) for
{([abail]v s [aiaaii]% {ai+17 .- 7an}} + D;.

and we also write U; for F'C;/D;. From now on, an oriented i-hypercube refers
to the element (([a1,a1],...,[a:, a@i]), {@it+1,...,an}) in the quotient module
U;. This has the geometric interpretation as the intersection of the oriented
faces ((n — 1)-hypercubes) of the n-hypercube labelled by a;1,. .., an.

We now redefine §,, to be the map

n

on(T) = Z(—l)i_l((([lﬂ,---,[l/i], - [n,m]), {i})

i=1
— (L1, 6vdl, - [n 7)), 7))
and we define §; to be the linear extension of the map that sends
(([1131,1'71], ey ['CCZ?TZ]% {xi-‘rla o 7.Tn})

to

o —

Z(_l)jil ((([xhxil]? cee [‘,L.j?xij]? ce [‘rlvxfl])? {xﬁxi-l-lv s 7$N})
j=1

o —

- (([zlafl]v s [mijL s [zhfl])a{@a Tit1y-- -axn})> .

Under the setup of oriented hypercubes, the map ¢§; : U; — U;_1 is a QC915,,-
module homomorphism for all 0 < i < n. Moreover, a short calculation
shows that 6;6,21 = 0 for 0 < ¢ < n, and in this chapter we prove the
following theorem.

THEOREM 6.0.6. The chain complex
Op—
(6.1) U, 2 U, =5 20 50, 2 Q

1s exact in all places.
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We mention an important motivation for our study of the chain complex
(6.1). Recall from §3.1.2 that there exists a chain complex of QS,-modules

n —~
N NN S VS R U R VTS B NN

The module \" M (n=11) has the geometric interpretation as the Q-span of
the set of all oriented r-simplices lying on the oriented n-simplex. It follows
that the map 5, sends an r- simplex to its boundary of (r —1)- sunphces We
remark that we require oriented simplices so that we also have 5r 15 =0.
Then the chain complex displayed above is exact in all places. For a proof
of this result, we refer the reader to [66, §2]. Therefore Theorem 6.0.6
is a natural generalisation from the representation theory of S, to that of
C5 1 Sy. In fact our proof of Theorem 6.0.6 reduces to the analogous result
in simplicial homology.

It should also be noted that cubic homology is of interest in topology
(see for instance [28], [37], [49]). Indeed, as remarked in [28, page 97], the
homotopy group m,(X) of a CW-complex X is defined in terms of maps
from the n-hypercube I" into X. As well as in this fundamental definition,
cubic homology is preferred by some topologists due to it being more suit-
able than simplex homology in certain applications. For examples of these
applications, we refer the reader to [37, §1].

Let F be a field of characteristic 2. Given 0 < i < n, define £2; to be the
set of all subsets of {1,2,...,n} of size i. The main object of study in [66]

is the multistep map

{ﬁ\ft) : FQl — FQi—t

Observe that when ¢ = 1, the boundary map gz coincides with the multistep
map 1@(1), and so the multistep map is also a natural generalisation of the
boundary map. We define and consider the analogous multistep map wi(t)
for the i-hypercube over a field of characteristic 2 (see §6.2), which provides
the analogous generalisation of the boundary map ;. In particular we give
various differences between the cubic and simplicial homologies in charac-
teristic 2, thereby demonstrating that there are notable differences between
the representation theories of S,, and C2 S,,.

Outline. In §6.1.1 we define a module M; that is isomorphic to U;, and
we give the definition of the boundary map in terms of a fixed basis B;
(defined in §6.1.2) of M;. Our reason for working with the module M; is
that it is easier to reduce from the cubic to the simplicial homology using
this setup. In §6.1.2 we prove Theorem 6.0.6, and in §6.1.3 we show how



6.1. THE BOUNDARY MAPS 4; 141

Theorem 6.0.6 implies that the p-modular reduction of (6.1) is also exact,
where p is a positive prime number.

In §6.2 we define the multistep map 1/12-('5), and we show that wgt)ngi)t = 0.
Therefore the maps wlm give rise to a chain complex, which we present in
(6.6). In Lemma 6.2.1 we show that the module U; is indecomposable over a
field of characteristic 2 for all 4. It follows that (6.6) can never be split exact.
Lemma 6.2.1 is just one example of the differences between the homologies
induced by the maps Q,Z)Z(t) and @t) over a field of characteristic 2. As might
be expected, there are further differences in this case, some of which we
illustrate in §6.2.

We conclude this chapter with §6.3, which explains why we only gener-
alise the boundary map §; to the multistep map wl(t) over a field of char-
acteristic 2. We remark that we do this using the analogous result for @t)
from [66] and the Morita equivalence between FC21 S, and @i F'S(; n—s)
(see Proposition 1.4.8).

6.1. The boundary maps J;

Following the outline of this chapter we define the module M; for all
0 < ¢ < n. Firstly define the module M to be the 2n-dimensional QCs 1 S,
permutation module with basis

{e1,e1,...,en,em},
and action given by the linear extension of
o€ = €5(4)s
foralli € {1,2,...,n,1,...,n} and 0 € C2 1 S,.
Given z € {1,2,...,n}, define
e;r =e, +ex
e, = ey — e,

and briefly define U to be the QC5? S,-module spanned by

{e],e5,...,e,}.
Given 0 < 17 < n, define B; to be the set of elements of the form
i

Cpy N Neg, @eqy 1€py iy Cq, € /\U ® Sym" ™" M,

such that
{.CCl,LUil, e ,a:i,xﬁ} N {:ci+1,mi+2, . ,a:n} =d

and xit; & {Tiyk, Tiyr) for all j and k. Observe that it is entirely possible
to have z;y1,...,2, € {1,...,7} according to this definition. Then M; is
defined to be the QC% S;,-module spanned by B;. We give an example of
Bi1 and By when n = 3 in Example 6.1.3.
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6.1.1. The modules M; and U; are isomorphic. Fix 0 <i < n. We
show that the ordinary characters of M; and U; are equal, from which it
follows that they are isomorphic as QCs S,-modules. Define

H, = (02 ! SZ) x 12 S{i—i—l,...,n}'

We remind the reader that we write x(*#*) for the ordinary irreducible char-
acter of Cy 1S, labelled by (A, 1) € P%(n) (see Theorem 1.4.5).

LEMMA 6.1.1. The module M; has ordinary character equal to

. C21Sn

,,,,,

ProOF. Consider the vector
eg N Ne; ®ejp1€i42...6p,

which spans a one-dimensional QH;-module with ordinary character

X(Q,(li)

Moreover, this vector generates M; as a QU2 .S,-module.
Given

€y N Neg, @€y 1 €ry gy, € B,

there are (7;) ways to choose the set {z1,...,2;}. With x1, ..., z; fixed, there
are 2"~% ways to choose the elements of the set {z;.1,...,7,}, and so

The result now follows from Lemma 1.3.2. O

By definition of the action of C51S,, on U, we see that U,, has ordinary

character x(?:(1")) We use this to determine the ordinary character of U; in

general.

LEMMA 6.1.2. The QC2 S,,-module U; has character equal to

. CSn
(X(z,(l ) x 1 S{H-l,...,n}) Hiz ’

and so there is an isomorphism M; = Us.

ProOF. Consider the oriented i-hypercube in U; given by

(([1,1],...,[4,2),{i + 1,...,n}),

which we denote by z. By the remark immediately before the statement of
this lemma, the vector space spanned by z is a one-dimensional module for
C51S; with character X(@’(li)). Furthermore, the subgroup 121.5¢;;1 . ) acts
trivially on x. Therefore the Q-span of = is a one-dimensional QH;-module
with ordinary character equal to

X(@7(11)) X 1125’{i+1 ,,,,, n}’
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Since Cs S, acts transitively on the set of i-dimensional hypercubes lying
on the n-hypercube, x generates U; as a QCs ¢ S,-module. As in the proof
of Lemma 6.1.1, given

(([I’l,ﬂ], cee [xhxil])a {.’,U7;+1, cee ,.’L‘n})
in the defining basis of U;, there are (7;) ways to choose the set {z1,...,z;}.
With z1, ..., z; fixed, there are 2% ways to choose the elements of the set
{zit+1,..., 2}, and so

dimg M; — 27~ (’;) — [Co2 S+ Hi,

and so the first statement of the lemma follows once more from Lemma

1.3.2.
The second statement is now immediate by Lemma 6.1.1. (]

We remark that it is possible to make the isomorphism between M; and
U; given by Lemma 6.1.1 and Lemma 6.1.2 explicit. Indeed we identify the
vector
ep N Ney, @er 1€y Ca, €B;

1

with the oriented i-hypercube

(([xlaxil]’ R [.TZ,E]), {-Ti+17 cee 73371})

We therefore have the geometric interpretation of

€y N Neg, Qegy€p,05 .-y

as the intersection of the faces labelled z;41, ..., Zy.
We demonstrate this identification in the following example, which also
gives an explicit construction of the sets B; and By when n = 3.

EXAMPLE 6.1.3. Let n = 3. By definition

e; Neg Res, e Ney Qeg
By =4 e Neg @ez, e] Neg Reg ¢,
€y Neg @e1, e Neg Qe

and the faces of the 3-hypercube are labelled as follows:

where the arrows demonstrate that each factor of

[0,1] x [0,1] x [0, 1]
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is directed from 0 to 1. Then, for instance, the vector

ey Neg ® e

in By corresponds to the face labelled 1.

Similarly, by definition

e ® eges,
e; ® ezes,
e; ® esgeq,
61_ ® €563,

B =

e, @ eqes,
€y @ eges,
€y ® eges,
62_ ® €13,

e3 ®ereo
es @ egez
e3 ®eley
63 X €T€§

Let (15 denote the line given by the intersection of the faces 1 and 2,

indicated by the dashed arrow in the figure on the previous page. Then
es ® egez € By can be identified with 515.

6.1.2. The boundary maps in characteristic 0. Using the corre-

spondence between i-hypercubes and elements in ;, we redefine the bound-

ary map 6; : M; — M;_1 to be the linear extension of the map that sends

the basis vector

gy N Neg Dy €y Cay

to
i

—

Z(_l)j_16;1 Ao Neg A

=1

where 1 <1 < n. Also given e, ..

Ney; @€p Caip1Caypy - Cap,

. €z, € Bp, we define

do(ex ---€x,) = 9.

For the remainder of this section we study the chain complex

On—
(6.2) My, 2 Moy 225 2 a2 vy 2 Q.

Our main result is the following proposition, which shows that this chain

complex is exact in all places, and therefore proves Theorem 6.0.6.

PROPOSITION 6.1.4. The chain complex

(Sn 6n—1
M, = M, 1 —

1s exact in all places.

1 1 o
NN VARG VA N

As mentioned in the outline, we prove this result by reducing to the

homology of the simplex. We therefore remind the reader of the following

result from §3.1.2, which is required in the proof of Proposition 6.1.4.

LEMMA 3.1.3. The chain complex

r—1

n —~ ~
0— A\ M@-LD Ony . Ory A Mt Or-1,

c= MUY 4 Q — 0,
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1s exact in all places. Furthermore

k
kergk = imgk+1 ~ /\S("fl’l).

ProoOF OoF PROPOSITION 6.1.4. We distinguish two cases, determined
by 1.

Case (1). Suppose that i = 0. For each 0 < j < n, the module M, has
a submodule spanned by the set

{ez, ez, - .e;je;jﬂ...e;n Az, oz ={1,...,n}},

which we denote by W;. Since each W; has dimension (;‘), counting dimen-
sions shows that there is direct sum decomposition

My=EPw;
=0

of QC%1S,,-modules. Moreover, Lemma, 1.3.2 shows that for each 0 < j <n
there is an isomorphism W; = § ((n=3),0)),
We have that W is contained in ker(dp) if and only if j # 0. Furthermore,

- - - R N A — o+ +
€21 €y €a,Cq - Cq, =01(€g Deqy o €p  ooeq ).

It follows that

ker(dp) = @ W; =1im(d1).

Case (2). Suppose that i > 0. We start by writing the ordinary character
of M; as a sum of its irreducible constituents. By Lemma 6.1.2 and the
transitivity of induction, the ordinary character of M; equals

,(1¢ CSn ,(1¢ CQZS,”l i) +C215n
(x@I) x1g ) o= (x@ ) x lg, ( TCQZS(i,n_i)

n—1i

_ 1 (2,(1%) (n—i—j), C2Sn

- (X X Z TCQZS(,LH i)
=0

where the final equality holds by the previous case. If j > 1, then by the
transitivity of induction and Young’s rule (see Theorem 1.1.12)

i n—i—j),(J €215
(X(®7(1 ) % X(( J)’(])))Tciisu,n—n

i n_/l_ . y C STL
— (@) (((n=i=)2) o X(g’(])))Tczis(i,n_i_j,ﬂ

= y((n=i=4),(3.1 ) 4+ y(n=i=d),(G+1, =1
Similarly if j = 0, then

(X(;a,(y')) x X((n*i)ﬂ) T?;gn = (=9, (19).
200(i,n—1)
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It follows that the ordinary character of M; equals

n—i

X((n—iL(li)) + Z(X((n—i—j)(j,li)) + X((n—i—j)v(jﬂali’l)))‘
j=1
Fix j € Ng such that j < n — i. We consider the action of d; on the
unique submodule of M; isomorphic to

S((n_i_j)v(jvli)) EB S((n_i—j),(j-i-l,li_l)) 7

disregarding the second summand when j = 0. Define V; ; to be the Q-span
of the set of vectors of the form

e N Nep @ep e e

— +
1 Tit1 Titj 6i—l—j-&-l s €

no

where zp € {1,2,...,i4 j} forall 1 < ¢ < i+ j. With M;; defined to be
the QC21 S,-module generated by V; ;, there is a direct sum decomposition

%
(6.3) M; = M,
§=0

of QCy 1 Sp-modules. Moreover, V; ; is a Q[C2 S(Hj’n_i_j)]—module with
ordinary character equal to

i ] C2S; 45 n—i—j
(x@ (1) % (20D Czss(x) x x(( 0:2)

which, by the same application of Young’s rule, equals

(@01 @Gy o ((n=izi).2)

It follows that M; ; is the unique summand of M; isomorphic to

(6.4) §((n=i=),(1Y) gy Gl(n—i=4),(+1,171)

where we once more disregard the second term if j = 0. Define the map

191.7]. . ‘/;,j N /\M(i+j—1,1)

€x N Neg Qe ...€ +

- +
- Tit1 xiﬂ_eiﬂ.ﬂ...en = Vg A A Vg, s

where {v1,...,v;+;} is the natural basis of the QS;4;-module M(+i=11),
Let K;y; be the subgroup of C3 ¢ S,, generated by the set

{12)T2),(12...i+5)T2...i+))},

which is isomorphic to S;y;. Then /\l MOHI=1L1) g o QK j-module, with
action given by

0(Vgy A Ng,) =0 (Vg A+ Avg,),
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where, as usual, o denotes the image of o € C91S,, under the natural surjec-
tion Cy 0 S, — S,. With this action, 9; ; is a QK;4 ;-module isomorphism.
Moreover, the square

0;
Vij —— Vicj+1

ﬁi,jl lﬂi—ly]‘rl

/\i M i+i—11) _ /\i—l M E+i—1,1)

2,

is commutative. Indeed, with

Ti=ey N Ney, Qe ...€ ’

- +
T1 Tit1 Titj ei+j+1 €

n
we have that
i
Oi1416i(2) = Y (=1)7 gy Ave Algy Ao Ay, = 0130 5().
j=1
Since j > 0, there is an isomorphism of QK ;-modules
V22 SO @ UL,

Moreover, by Lemma 3.1.3 (S/i,\j(S(j’li)) = 0 and (S/ZTj(S’(j*'l’lFl)) # 0. Since
¥;,; is an isomorphism, we have that

~

0i(Vig) =0 5110i59:5(Vij)

= 0, 510i5(S01) @ STFLITY)
= g;}l,jﬂ(g(jﬂ,li*l)) ~ ¢(@,G+117Y) g g((n—i—4),2)

Therefore there is an isomorphism of Q[C2 ¢ S(,—;—;i+4)]-modules
ker(8;) N Vi; = §@01) & §(n=i=0).2) =~ im(5,,1) N V; 5,
and so _
ker(8;) N M; ; = S(=1=0:019) = i (65,,1) N M; .
Furthermore, if j = 0, then
ker(d;) N M; j = {0} = im(d;41) N M; ;.
It follows from (6.4) that

ker(6;) = @ §(n=i—=7),(,1%)) ~ im(6;1).
j=1

Since the ordinary character of M; is multiplicity free for 0 < i < n, we have
ker(d;) = im(d;+1) in all cases, as required. O

The proof of Proposition 6.1.4 shows that ker(d;) N M; ; is the QC21.S,-
module generated by ﬂgjl(ker(&j)). Equation (4) in [23] states that the
set

Dij:={0(ex Neay N---Neg;) 11 <ay <---<a; <n}
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is a basis for A7 =1, Recall that given H < Sym({1,...,n}), we write
&(H) for the subgroup of T), consisting precisely of the permutations 0@ such

that o € H, where ¢ € Sym({1,...,n}) is such that (i) = (0(i)). Then the
set

Ei’j = {019,:]1 (’U) Ve Di,ja g c Tn\f(S(l+J7n_z_]))}
is a basis of ker(d;) N M; ;, and so U;:o E; j is a basis of ker(¢;).

EXAMPLE 6.1.5. Let n = 4. We give a basis of ker(d2) in My, by giving
a basis of im(d3) in M.
The vector space V3o is the QU215 (2 2)-module generated by the vector

e; Ney ®edey,

and V21 is the QU2 53 1)-module generated by the vector
ep Ney ®eg ej.

Furthermore, V32 is the QC5 ! Sy-module generated by the vector
€1 Ney @egey,

and V39 = Ms 2. Therefore there is an equality

(6.5) My = Mooy @® Moy @ Ma o

of QCy 1 Sy-modules. Since My ) Nim(d3) = 0, it is sufficient to determine
a basis of im(d3) N My ; for each j > 1.

Consider first the case when j = 1. Then V5 ; is isomorphic to /\2 M2D)
as a QK3-module. Observe that

/5\3,1(61/\62/\63)261/\62—61/\63+€2/\63

spans im(d3 1) in A? M. The inverse image of 831 (e1 A ez A e3) under the
map 21 is
61_/\62_®e§e;f—61_/\(3;@62_62'4—62_/\63_@)61_61.
Therefore im(d3) N My 1 has a basis equal to
e; Ney ®63_61' —el_/\eg®62_e;f—1—62_ Nes ®61_6j1_,
eqs Ney ®e§ef —el/\eg®e2_ei"—1—62_ Neg ®6Zef,
er Ney ®8§62+ —eIAez,j@eZe;—i—eZ Nes ®6I62+,
ef/\eQ@eZeg—ef/\el@e;e;+eg/\el®efe;

Esy =

Now let j = 2. Then V55 is isomorphic to /\2 MG as a QK -module. We
see that

{03201 A ea Aey) : (a,b) € {(2,3),(2,4), (3,4)}}
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is a basis of im(ggg) in A\? M®D . The inverse image of this set under the
map V2 is equal to
e; Ney ®ezey —ef Neg Rejey +e9 Neg Qejey,
Eso = ep Ney ®ezey —ef Ney Regeg +e9 Ney ®ejeg,
e; Neg ®eqey —ef Ney Rejgeq +e3 Ney ®ej ey
Since Voo = Ma o, the set Es o is a basis of im(d3) N Ma 2, and Ea 1 U Ey 9 is
a basis of im(d3) = ker(d2).

6.1.3. The boundary map in positive characteristic. In this sec-
tion assume that F' = F),, where p is a prime number. Proposition 2.5.2 in
[3] states that if

0->M —-M->M'—-0

is a short exact sequence of Z,-modules, then there is a long exact sequence
. Tor? (F, M) — Tor (F, M") — M’ — M — M" — 0,

where X denotes the p-modular reduction of the module X (defined in
§1.3.4). In particular, if M"” is a free Z,-module, then the quotient M /M’
has no torsion. Equivalently Tor1Zp (F, M") =0, and so the sequence

0— M — M— M'"—0

is exact.

Specialising to our case, given 0 < ¢ < n and taking M equal to M;
defined over the ring of p-adic integers Z,,, Proposition 6.1.4 gives that there
is a short exact sequence of Z,-modules

By the discussion after the proof of Proposition 6.1.4, the module im §; has a
Z,-basis, and so it has no torsion. The discussion in the previous paragraph
therefore gives the following lemma.

LEMMA 6.1.6. Given a prime number p and 0 < i < n, let §; p denote
the p-modular reduction of the map 6;. Then the chain complex

On,Fp = On_1,F do,F —= O01,F —= do,F

M, 25 M, RSN VARRLiNG VALIN o)

1s exact in all places.

6.2. The multistep maps 1[)1@

In this section let F' be a field of characteristic 2. In this case all ir-
reducible F'Cy ! Sp-modules contain F'CJ in their kernel. Therefore the
2-modular reduction M; of M; is isomorphic to the permutation module

PG
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We consider the the multistep map wgt) : ]\Z — ]\//.71-_,5 in this section.

In order to define this map the following preliminaries are required. Given
X C {1,2,...,n}, define X = {T : # € X}. Let M denote the natural

FC3 Sy, permutation module with basis {ej, eq, ..., ey, ex}. Define
e} = H er e Sym! Xl M
zeX

for X € {1,2,...,n}. Then Z\/ZZ has a basis given by all elements of the form
ek ® ey - €z, € Sym' M ® Sym™ " M,
where X C {1,2,...,n} is such that |X| =4, and the subset
{Tit1, Tivo, ..., xn}
of {1,2,...,n,1,2,...,n} is such that
(XUX)N{xit1,Tir2, -, Tn} = T,

and x;4; # Tty for all j and k. We denote this basis by B;.
Fix ¢t € N such that ¢ < n. Given ¢ > t, define the multistep map

%@ 1 ]\//fz - ]\/Zz‘—t

e} @ egipy - Cxy, Ze¢ ® e;r(\yeml,rl )
where the sum runs over all Y C X such that |Y| =17 —t.
Suppose that 7 > 2¢t. Observe that
) (t t
1/)§3t z( )(e} @ €zypy - - Cpy) = z/JE_)t( Z ey ® e}\yezi+1 eq)

yCX
Y |=i—t

— Z + et ot

= e; & ey\zEX\y Ezit1 - - - En-
ZCYCX
|Z]|=i—2t

As argued in [66, §1], given a fixed Z C X such that |Z| =i — 2¢, there are
(2:) choices for Y € X such that |Y| =i —tand Z C Y C X. It therefore

follows from Lucas’ Theorem (see Lemma 1.3.17) that 1/12-(t_)t1/11-(t) =0, and so
we can ask when the sequence

S A
(66) M’H—t — Mz — Mz’—t
is exact. Observe that ¢§1) is the 2-modular reduction of the boundary map
di, and so it follows from Lemma 6.1.6 that (6.6) is exact when ¢ = 1.
Over the rational field, we have seen that the homology of the chain
complex

On On— 1) ) 1)
M, 2% M,_1 =% o 2 M 2 My 2% Q

can be reduced to that of the chain complex

n—1 . 1

/\M(n—l,l) 5_n> /\ M(n=1,1) E:l_) N /\M(”_Ll) El—) Q.
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In this section we show that there are various differences between the cubic
and simplicial multistep homologies over a field of characteristic 2, and so
there does not appear to be a reduction analogous to the characteristic 0
case.

6.2.1. Non split-exactness. Let 27 be the least two-power appearing
the binary expansion of . Suppose that either n = 2a + t, for some a < 27;
or t is a two-power and n = 2a +t mod 2¢ for some a € N. If ¢ € Ny is
maximal such that a 4+ ¢t < n, then Theorem 1.3 in [66] states that the
chain complex

{/"\(2 t {p\t(zi(cfl)t 12(2215 {Z)\(:).t
0— FQatct — FQqpc—1) e FQuyy —— FQ, — 0

is exact in every degree if and only if it is split-exact in every degree. The
following lemma shows that (6.6) can never be split exact.

LEMMA 6.2.1. The module ]\Z is indecomposable for all 0 < i < n.

Proor. It follows from Mackey’s Theorem that
T CQZS’IL
Milcg - FTH lcg

~ o3
= EB Flg(Hi)ngT :
gEH;\C2Sn /CY
We require a set of (H;, C%')-double coset representatives. Since F' is a field
of characteristic 2, the permutation basis B; of M; corresponds to a set of

H;-coset representatives. It is clear that
ot
v i=ex Qeg .-,

— ot
V2 =€y ey .- €y

in B; lie in the same C%-orbit whenever X =Y. Moreover, given x € X, the
element (z T) acts trivially on e} ® €z, - - €x,. Therefore if v; and vy lie
in the same C3-orbit, then X =Y.

We have shown that v; and vy in the previous paragraph lie in the C3-
orbit if and only if X =Y. It follows that we can take a set of S(; ,_;-coset
representatives in S, as the (H;, C§)-double coset representatives. Moreover,
we can take Sy, to be the top group 7T),, and we can assume that S; ,_; is
contained in 7),. For each g € H;\C2 S,,/C¥ in this case it follows that
9(H;) N CH = 9(C%). Therefore

Mley= @D Fligy
geH\C2Sy /CY
~ P )
gEH;\C21S, /CY

Let U be a non-zero summand of ]\/4\z Observe that by the first statement

of Lemma 1.3.5 each summand in the final line is indecomposable. By
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the Krull-Schmidt Theorem the module U |cp therefore has a summand
isomorphic to 9(F ng), for some g € H;\C2 1 S,,/C%. Since U is closed
under the conjugacy action of C2 15y, it follows that U ¢y has a summand
isomorphic to 9 (F ng) for all ¢ € S;,\S(; n—i). Therefore

]\/Zilc; = Ulc;“

and in particular dimp U = dimpg ]\/4\Z It follows that U = ]\/ZZ-, and so the
result is proved. O

6.2.2. Non-exact sequences. The second main theorem in [66] gives
a complete description of when the sequence
o, DR
(6.7) FQiyp — FQ — FQ,4
is exact. Let 27 be the least two-power appearing in the binary expansion
of t. Then [66, Theorem 1.2] states that (6.7) is exact if and only if exactly
one of the following conditions holds:
(i) t=1
(i) i<2andi+t<n—diorn—i<2" andn—i+t<i
(iii) t is a two-power and n > 2i +t or n < 2i — t.
In particular for the i € Ny either in the first case of (ii) or in (iii), [66,
Theorem 1.2] shows that there exists a large enough n such that (6.7) is
exact. In the following example we show that the analogous result does not
hold for (6.6) in general.

EXAMPLE 6.2.2. Suppose that t > 1 and ¢ = t. Assume that n > ¢+ 1.
In this case

+ + o ot + + .+ +
€1 ... € ®€t+1€t+2..-6n+€1 ...6t71€t+1®6t €t+2...€n

is contained in ker(qﬁt(t)). This vector is clearly not contained in im(wé?),

and so the sequence
O 0

Moy 225 M, 2 My
is never exact.

6.2.3. Composition factors modulo 2. Implicit in the proof of [66,
Theorem 1.2] is that (6.7) is exact if and only if every composition factor of
FQ; is a composition factor of the direct sum of modules FQ ;B FQ_;. In
the following example we show that this is not the case for (6.6) in general.

EXAMPLE 6.2.3. Let n = 5, and consider the sequence

B P
M5L)M3—>M1.

By definition of the multistep map wéz), the vector

e;eje; @ efegL + efeje; ® e%“e{f + e;ez}fe; @ ef’e}f + efe;e; & e%“e;f.
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is contained in ker( §2))\ im(¢é2)), and so this sequence is not exact. How-
ever computations in MAGMA ([4]) show that the composition factors of
the permutation module M3 are
o Infg?* DO) with multiplicity 8;
o nf$>™ DY with multiplicity 4;
5
e and Imfgﬂs5 D32 with multiplicity 4.
5
Moreover, the composition factors of the permutation module M; are
o Inf$?"" DO) with multiplicity 16;
5
. Infgszs5 DY with multiplicity 8;
e and Imfgszs5 DG2) with multiplicity 8.

Therefore every composition factor of ]\//73 appears in ]\/4\5 o M 1, even though
the sequence in question is not exact.

REMARK 6.2.4. The differences demonstrated in this section show that
there does not appear to be a reduction from the cubic homology to the
simplicial case in characteristic 2. Also it should be noted that several
results in [66] are proved using the duality between the homologies of the
sequences

B o B
FQH_t Z—+>FQ7, — FQi_t

Uiy s
Fanith —)FQn,IL —_— Fanift-
This duality holds since F€2; and F§2,,_; are isomorphic as F'S,,-modules for
all 0 < i < n. However ]\Z and M\n,i are not isomorphic as F'C21S,,-modules,
except for the case when n is even and i = n — i = 5. Therefore there does
not appear to be a natural choice for a sequence whose homology is dual to
that of (6.6) in our case.

6.3. Multi-step maps in fields of characteristic p # 2

In this section let F' be a field of characteristic p # 2. Recall that N
denotes the non-trivial irreducible F'Cy-module. We once more write ]\/4\1
for the p-modular reduction of the QC51.S,-module M;. The main result in
this section is Proposition 6.3.1 below, which shows that there are no non-
zero F'Cy 1 S,-module homomorphisms between ]\/4\1 and ]\/J\i_t when ¢t > 2.
This shows that it is only possible to define multistep maps over fields of
characteristic 2.

PROPOSITION 6.3.1. Let i,t € Ny be such thati >t > 2, and let ' be a
field of characteristic not equal to 2. Then Hompcy,s, (M;, M;—t) = 0.

We remark that we prove Proposition 6.3.1 by reducing the argument to
the case of the simplex, which we are able to do since p # 2. The following
preliminaries are required.
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LEMMA 6.3.2. Fiz i,j € Ng, and let F' be a field of characteristic not
equal to 2. Then there is an isomorphism of F'S;j-modules

(S(Ii) X 50)) ng;jsjg /Z\M(z‘+j—1,1).
PRrROOF. Let the set
{et, . ek,
be the natural basis for M+7=11) We then have that
B:i={ez N Neg, : 1 <ax1 <a9<---<x; <i+j}

is a basis for /\’ M+i=L1) Using the anti-commutativity of the exterior
power, the F-span of the vector

vi=erNex N Neg;

is isomorphic to S X S as an FS(; j-module.
Let

w::egﬁl/\em/\'--/\eggj7

be a vector in B. Also let o € S,, be any permutation such that o(t) = x¢
for all 1 <t < 4, and so ov = w. Since w was chosen arbitrarily in B, it
follows that (v) generates A\' M(+7=11) as an FS;,;-module. Since

dimF/\M(Hj*l’l) = [Si+j : Stz
the result follows from Lemma 1.3.2. (]
The following lemma is a corollary of Proposition 2.1 in [66].

LEMMA 6.3.3. Let k,l € Ny be such that 0 < k,l <n. If |k—1| > 2, then
Homps, (A* M, \' M) = 0.

PROOF. By definition there is an isomorphism of F'Cs? S,-modules

C2ZS’I’L

M; = (N® Inf$?% 50 ® F) 25

and we begin by determining the indecomposable summands of ]\Z First
observe that by the transitivity of induction

AT o ( N®i T #0208 o(19) C21Sn—i\ 1 C21Sn
M; = (N InfSi SV FTSn—i )TCQZS(,"H_I').

As F'is a field of characteristic p # 2, the argument in the first case in the
proof of Proposition 6.1.4 still holds, and so there is an isomorphism

Catns m 1T q((nmig) (s
FTSi; o @ S 3),(7)
=0
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Therefore

M, (N G215 S & @S((”*i*j%(ﬂ))nggj )
j=0 o

1%

Jan (n—i—j) g N@i+i (1) 51 Gy 15i3 ) 4Cat5n
690 (Infs RN dnf ((S b5 )TSU;))> Tcﬂsm—i—j«iﬂ)
J=

(6.8) ~ @ (Inf G(n—i—j) g N®i+i Inf/\M(iJrjl,l)) TCQZSTL

CS(n—i—jit+s)’
j=0

where the final isomorphism holds by Lemma 6.3.2.
It follows from Proposition 1.2.5 that no two summands in (6.8) are
isomorphic. Write 7; ; for the unique summand of M; isomorphic to

i
(n—i—j) [g N®it+i (i+j=11) | 7€2n
(Inf S X N Inf /\ M ) TC2ZS(n—i—j,i+]')‘

Proposition 1.4.8 implies that T; ; has no composition factors in common
with any summand of ]\Z_t other than T;_; ;4. Therefore it is sufficient to
show that
Hompcys, (15,5, Ti-t,j+t) = 0.
Suppose, for a contradiction, that there exists a non-zero module homo-
morphism ¥ € Hompceys, (15,5, Ti—t,j+¢)- It follows from the proof of Propo-

sition 1.4.8 that there exists
i—t

04V € Homps,.,, (/\ ]\4(z'+j71,1)7 /\ M(i+j—171))'

This is a contradiction to Lemma 6.3.3. O






CHAPTER 7

Generalisations of Foulkes Characters

In §5 and §6 we considered the representation theory of C5:.S,. Given
m,n € N, in this chapter we consider characters related to an important
open problem in the ordinary representation theory of Sy, ! .S,, known as
Foulkes” Conjecture. In order to state the conjecture, we define a Foulkes
character to be a character of the form

n Smn
soﬁm)) = 1gms, ] "

CONJECTURE 7.0.1 (Foulkes” Conjecture, 1950). Let m,n € N be such
that m < n, and let A\t mn. Then

(P X = (2l ).

Although a proof of the conjecture is yet to be found in general, it has
been proved in some special cases. In [6] Brion proved that Foulkes’ conjec-
ture is true when n is very large relative to m using connections between the
representation theories of the symmetric group and the general linear group.
As remarked in [6], the proof is non-constructive in the sense that it does
not give a lower bound for n. Nevertheless Brion later found a lower bound
for n in terms of m in [7]. In [12] Dent and Siemons proved the conjecture
when m = 3 by proving that

(n)
(3

for all m > 3 and A - 3n. Using [12] and a conjecture of Howe in [30], McKay
proved Foulkes’ Conjecture when m = 4 in [51]. Cheung, Ikenmeyer and

(3) )

dimc Homcs3n(S)‘, @Yray) > dimc Homgg,, (SA, Pln)

Mkrtchyan proved the conjecture when m = 5 in [10] using a theorem of
McKay. Most relevant to this chapter, and indeed our primary motivation,
is Theorem 1.5 in [19], which provides a recursive formula for computing
the constituents of a Foulkes character. This recursive formula is used to
verify Foulkes’ Conjecture for m,n € N such that m +n < 19. This first
main result in this section is a generalisation of the recursive formula in [19,
Theorem 1.5] to certain plethysms, which by definition are characters of the

form
X

v_ [0
Py = <X S lSn’

where ¥ - m and v  n. For definitions of the notations in the above display,

we refer the reader to §1.2. Observe that taking ¥ = (m) and v = (n) in the
definition of the plethysm gives the Foulkes character gognm)).

Infg™™™" x

157
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The multiplicities of the irreducible constituents of ¢} are known as
plethysm coefficients. Stanley identifies determining a combinatorial de-
scription of the plethysm coefficients in his list of major open problems
in algebraic combinatorics (see [62, Problem 9]). Our first main result in
this chapter provides a recursive formula for the plethysm coefficients cor-
responding to gol(’ajlb), for a,b € Ny such that a + b= m.

In §7.2 we continue the theme of generalising the Foulkes characters. It

is known that the Foulkes character cpgg)) is multiplicity free and equal to

S,
AFn
where 2\ denotes the partition of 2n equal to (2A1,2Ae,... ,2)\%)). This
decomposition can be proved, see for instance [35, Theorem 5.4.23] or [32,

Lemma 1], by showing that cpgg)) satisfies the following two conditions:

(U1) the constituents of x|s,, , are the x* such that x has exactly one odd
part, each appearing with multiplicity one,
(U2) x(" is a constituent of .

It is then proved that any character satisfying these two conditions must
equal 37y, x*.

Motivated by the remarkable fact that there is a unique So,-character
satisfying conditions (Ul) and (U2), we prove that there is a unique So,-
character x satisfying the following conditions:

(U1) the constituents of x|s,, , are the x* such that x has exactly one odd
part, each appearing with multiplicity one,

(U2) x®" is not a constituent of .

We remark that the method of comparing coefficients in restricted char-
acters used in §7.2 is an example of Littlewood’s ‘third method’ for decom-
posing plethysms (see [43, page 349]). This method is in fact that used
in the proof of [32, Lemma 1] to decompose the Foulkes character cpg))
Moreover, Littlewood’s ‘third method’ can also be used to decompose the
Foulkes character cpég)) . However, the method cannot be used in general for

(n)

decomposing ¢,

) when m > 4.

7.1. Recursive formulas

In this section we provide a recursive formula for computing the plethysm
coefficients of Sp?a,lb)’ where a,b € Ny are such that a + b = m, and A Fn
is arbitrary. This recursive formula depends on a certain combinatorial ob-
ject, known as an (a, 1°)-like border strip n-diagram, which was introduced
in [19]. In order to state the definition of this combinatorial object, the
following preliminaries from [19] are required.
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We start by reminding the reader that given a skew diagram [A/p],
we define ht(A/p) to be one less the number of non-empty rows of [A/ul.
Also recall that we refer to a border strip as a skew partition whose Young
diagram is connected with no four boxes forming the Young diagram [(2, 2)].
We define a border strip diagram to be the Young diagram of a border strip.

DEFINITION. Given partitions A and g such that p C A, let kK = [A\/p].
Then define the initial box of k to be the box (i, jx) in k such that, for all
i <, and j > ju, if (i,7) € k then i =i, and j = jj.

Similarly define the terminal boz of k to be the box (kg,lx) in k such
that, for all k > k. and | <, if (k,l) € k then k = k,, and | = [,.

For example, the following are the skew diagrams of [(5,3,3)/(2,1)],
[(5,3,2)/(2,1)] and [(5,1,1)/@], respectively.

1 1] | [ 1]

T T T

In each case the entries in the initial and terminal boxes are I and T, re-
spectively.

As remarked in [19, page 24] skew diagrams are convex, and so their
initial and terminal boxes always exist.

DEFINITION. Define a border strip n-diagram D to be a skew diagram
such that D is a disjoint union of finitely many border strip diagrams, each
of size n. Moreover D is a horizontal border strip n-diagram if, for every
initial box (i,,j,) of each p € D, we have (i, j,) ¢ D for all i < i,. Similarly,
D is a wertical border strip n-diagram if, for every terminal box (k,,{,) of
each p € D, we have (k,,1) ¢ D for all I <1,.

DEFINITION. Given partitions A and p such that p C A, suppose that
[A/u] is a border strip n-diagram. We define the n-sign of [A\/p], denoted
en(A/1), to be (—1)" where h is the sum of the heights of the border strip
diagrams forming [A/pu].

We remark that there may be more than one choice for a border strip
n-diagram of fixed shape A/u. Nevertheless, as remarked after Definition 3.2
in [19], the n-sign of [A/u] is well-defined.

We are now ready to define an (a, 1°)-like border strip n-diagram.

DEFINITION. Given partitions A and p such that pu C A, let K = [\/p]
and mn = |A/u|. Let a,b € N be such that a + b = m, and let D and E be
two border strip n-diagrams such that k = (D U E). We say that the pair
(D, E) is an (a, 1°)-like border strip n-diagram of shape k if

(1) |D|=a and |E| =b+1,
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(2) DN E = {o}, where o is the border strip diagram of size n that
contains the initial box of k,

(3) D is a horizontal border strip n-diagram, and F is a vertical border
strip n-diagram,

(4) there do not exist disjoint pp € D and pg € E with boxes (21, 22) €
pp and (wy,ws) € pg such that wy < z; and wg < 2.

EXAMPLE 7.1.1. Let A = (3,1%), p = @, and n = 2. Then [(3,1%)] is a
border strip 2-diagram, uniquely formed by the three border strip diagrams

{11, (2,1}, {(1,2),(1,3)}, and {(3,1), (4,1)}.
As can be seen from the diagram below, as a border strip 2-diagram [(3, 13)]
has 2-sign (—1)170+1 = 1.
The unique (2, 1)-like border strip 2-diagram of shape (3, 13) is

I1T |1

The border strip diagrams in the horizontal 2-diagram are shown in white
and light grey, with their initial boxes labelled I. Similarly the border strip
diagrams in the vertical 2-diagram are shown in light grey and dark grey,
with their terminal boxes labelled T.

Given a skew shape x, we write By, for the set of (a, 1°)-like border strip
n-diagrams of shape k.
We are now ready to state the main result of this section.

THEOREM 7.1.2. Let m,n € N. Let a,b € Ny be such that a+b =m
and let vEn. If A\ = mn, then

(Fraa ) = 53 S B S (1)

] 1 puCA

where the third sum runs over all p C v such that |p| =n —j and v/p is a
border strip.

The main tool that we use to prove our recursive formula is the deflation
map of Sy, ! Sp-characters, introduced in [19], which we now define.

DEFINITION. Let m,n € N, and let ¥ be an irreducible S,,-character.
Let & be an irreducible S, ! S,,-character. Then

Def} € = { X

0 otherwise.

voife= Pxn Infg’:ls" x", for some partition v of n
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We extend this map linearly to the integral span of the irreducible S,,-
characters, and we write Defgn for this morphism.
Furthermore, given x € Irr(Sp,y,), we define

Sm’ﬂ
Defresgn (x) = Defgn (XlszSn)’

which we once more extend linearly to the integral span of the irreducible

Smn-characters.

The following lemma allows us calculate inner products of Sy, ! Sy-
characters using inner products of S,,-characters via the deflation map.

LEMMA 7.1.3. Let m,n € N. Let ¥ be an irreducible character of S, let
x be a character of Sy, and let ¢ be a character of Sy, 1.S,. Then

(Def 1, x) = (), 9" Infg;”zs" X)-

TS" XA in

PrOOF. Given A F n, write a) for the multiplicity of gxn Infg
1. By definition of the deflation map

(7.1) (Def%, b, x) = O axx™ x)-
AFn

Let x =Yy, bxx*, and so the right hand side of (7.1) equals D abn @b
We now consider the inner product (¢, #*" Infgn’"ZS" X). Since inflation
is an exact functor, this inner product becomes

<77ZJ7 Z b}\,gxn Infgnmzsn X>\>-
AFn

As X7 Infg:ZS" x* is an irreducible character of Sy, 1Sy, this inner product
also equals ) )., axby, and so the lemma is proved. O

We also require the following results from [19].

PROPOSITION 7.1.4. Given m,n € N, let A/ be a skew partition of mn.
Let x be an irreducible character of Sn,. Let g € Sy, be such that g = xh,
where x € Sy and h € S;,_y, for some 1 < £ < n. Then

(Defresén X)‘/“) (9) = Z(Defreséz XT/“) (x) (Defresiénie X’\/T) (h)

T

where the sum is over all partitions T such that u C 7 C X\ and |7/u| = md.

THEOREM 7.1.5. Given m,n € N, let \/u be a skew partition of mn.
Let a,b € N be such that a +b=m. Let g € S,, be an n-cycle. Then

(a,1%)
(Defresfén X/\/“)(g) = 5n()\/ﬂ)|82,/bu )

We are now ready to prove Theorem 7.1.2.
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PRrROOF OF THEOREM 7.1.2. It follows from Frobenius reciprocity and
Lemma 7.1.3 that

(a,1%)
<s0(”a,1b)7xk> = <x”7DefreS>s‘n X/\>

(a,1?)
== Z (Defres$, "~ xM)(9)x"(9)-
gES

We can write g € S, as a product of a j-cycle containing 1, say x, and some
h € S,—; acting on the remaining numbers. The number of possible such
j-cycles is (n — 1)!/(n — j)!. Therefore

(etunyx) = n.Z E S ety ah) (o).

h€Sn_;

By Proposition 7.1.4, we have

y(@1® _ X@1 A/ x@1”
(Defres§ " x*)(zh) = > (Defres§ " x*)(x)(Defresy ~ ~x*)(h),

where the sum runs over all u C A of size m(n — j). As x is a j-cycle,
Theorem 7.1.5 gives

(1)
Defres¥, " ¥ () = & (M) By

Now consider x”(xh), which by the Murnaghan-Nakayama rule (see The-

D (=DM (h),

where the sum runs over all p C v such that |p| = n—j and v/p is a border
strip. It follows that (¢” Pty ,x) equals

1 a,1t)
P 2 X SN mIB I Defresy ) () 31 (),

Jj=1 heSn j HCA

1y A/ h(u/)#
;Z SOIIBL D)

)t

orem 2.1.1) equals

:r—l

a,1b
3 (Defresy ") (Wx? (h),
hESnfj

:7226] MBS (- ht(u/p>< 0 b)’xu>'
J=1pCA

where the third sum on the final line runs over all p C v such that [p| = n—j
and v/p is a border strip. O

COROLLARY 7.1.6. Let m,n € N. Let a,b € Ny be such that a +b=m
and let A\ mn. Then

<90Ea 16y’ > Z_;;;% A w)|B <w§Zli )X >

PROOF. Observe that, for all 1 < j < n, the only subpartition of (n) of
size n — j is (n — j). Moreover, [(n)\(n — j)] is a border strip diagram of
height zero, and so applying Theorem 7.1.2 gives the result. U
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ExXAMPLE 7.1.7. Let m = 3, and let n = 2. We determine the multiplicity

3
(ol X*1).

We consider the subpartitions of (3, 1%) of sizes 3(2 — j) for each 1 < j < 2
in turn.

In the case that j = 1, every partition of 3 is a subpartition (3, 1%). More-
over, in this case @E;?l) is the irreducible S3-character x(1). As <X(2’1)7X“>

is non-zero if and only if © = (2,1), it suffices to count |B§1’13)/(2’1)]. There

is a unique (2, 1)-like border strip 1-diagram of shape (3,13)/(2,1), given by

,,,,,,,,,

The boxes forming the horizontal 1-diagram are shown in white and light
grey, and the boxes forming the vertical 1-diagram are shown in light grey
and dark grey. The boxes formed by dashed lines indicate those removed
from [(3,1%)] to form the skew diagram [(3,13)/(2,1)]. It follows that

e1((3,1%)/(2,1) = (-0 =1,

In the case that j = 2, the empty partition @ is the only subpartition
of (3,13) of size 0. In this case 801(5271) is the trivial So-character. The unique
(2,1)-like border strip 2-diagram of shape (3,13)/@ = (3,13) is shown in
Example 7.1.1, and €2((3,1%)/@) = 1 in this case. Applying Theorem 7.1.2
(or Corollary 7.1.6) shows that

2,1 3 1 1
(el 1) = S (11 (ol x®D) +1-1- (06 X)) = 1.

7.2. A unique restriction

Throughout this section fix n € N. The main result of this section is the
following result.

THEOREM 7.2.1. There is a unique San-character x such that
(U1) the constituents of x ls,, , are the x* such that p exactly one odd
part, each appearing with multiplicity one,

(U2) x®" is not a constituent of x.

We prove the result by giving a complete description of the irreducible
constituents of any Sa,-character y satisfying conditions (U1) and (U2'). We
see that these constituents are completely determined by the two conditions,
which proves the theorem. The only prerequisites for the proof are the
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following definition and lemma. The latter is known as the branching rule
for restriction, which is an immediate corollary of Theorem 1.1.4.

DEFINITION. Let A be a partition. We define a corner boz to be a box
(i,7) € [A] such that (i +1,7),(i,7 + 1) & [A].

LEMMA 7.2.2 (Branching rule for restriction). Let A+ n. Then

Mg =D X

where the sum runs over all partitions p of n — 1 such that [u] is obtained
by removing a corner box from [\].

We are now ready to prove Theorem 7.2.1.

PROOF OF THEOREM 7.2.1. Let x be an Sy,-character satisfying the
hypothesis of the proposition. As xls,, , is multiplicity free, it follows that
X is necessarily multiplicity free. Given a partition A of 2n, we determine
precisely when x* is a constituent of y. We distinguish two cases, determined
by the number of parts £(\) of A.

Case (1). Suppose that £(\) > 2. Since 2n is even, if A has an odd part
Ai, then there exists some j # ¢ such that ); is odd. Define

)\/ = ()\1,...,)\]9—1,-“’)\5()\))’

where k ¢ {i,j} and (k, A\;) is a corner box in [A]. Observe that such a corner
box exists as £(\) > 2 and 2n is even. As every constituent of x* |s, _,
appears in x ls,, ,, it follows from the branching rule for restriction that
X’\/ appears in x ls,, , . However A\ has at least two odd parts, \; and
Aj, which is a contradiction to condition (Ul). It follows that if x* is a
constituent of x in this case, then A can have no odd parts.

However every partition p of 2n — 1 with exactly one odd-part is such
that x* is a constituent of x ls,, , . It follows from the branching rule for
restriction that for every partition A\ of 2n with strictly more than two parts
and all parts even, x” is necessarily constituent a of y.

Case (2). Suppose now that ¢(\) < 2. We prove by induction on [ that
Y@L g a constituent of , for all I odd.

The base case is when [ = 1. As y(2»—1

2n)

is a constituent of xlg,, , and
x2") is not a constituent of y, the branching rule for restriction gives that
x2=11) g a constituent of .

Suppose that [ is odd and that [ > 1, and assume inductively that
x(27=3:9) is a constituent of y for all j < [ such that j is odd. As y(2n—1+21-2)

is a constituent of y, the branching rule for restriction gives that

X(Qn_l+2’l_2)l52n,l _ X(2n—l+2,l—3) i X(2n-l+1,l—2)
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is a constituent of x|sg,, , . As x(2n=hl=1) g 4 constituent of X 45,5, 4, it must
be that x* is a constituent of x, where p is one of the following partitions:

2n—1,1—-1,1),2n—1+1,1—-1),(2n —,1).

By the previous case, the first of these partitions cannot index a constituent

2n—I4+1,1-1) 2n—1+1,1-2)

of x. If x( is a constituent of x, then x! is a constituent

of x ls,, , with multiplicity strictly greater than 1. This contradicts the

2n=bl) is a constituent of .

condition (U1), and so we must have that x(
This completes the inductive step.

Combining the two cases shows that the constituents of x are the even
partitions of 2n with strictly more than two parts, and the two-part par-
titions of 2n with both parts odd. Therefore conditions (Ul) and (U2)

determine y uniquely, and so the theorem is proved. U
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