
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Multiple Lexicalisation - A Java Based Study
Anonymous Author(s)

Abstract
We consider the possibility of making the lexicalisation phase

of compilation more powerful by avoiding the need for the

lexer to return a single token string from the input character

string. This has the potential to empower language design

by softening the boundaries between lexical and phrase level

specification. The large number of lexicalisations makes it

impractical to parse each one individually, but it is possible

to share the parsing of common subparts, reducing the num-

ber of tokens parsed from the product of the token numbers

associated with the components to their sum. We report total

numbers of lexicalisations of example Java strings, and the

impact on these numbers of various lexical disambiguation

strategies, and we introduce a new generalised parsing tech-

nique that can efficiently parse multiple lexicalisations of

character string simultaneously. We then use this technique

on Java, reporting on the number of lexicalisations that cor-

respond to syntactically correct Java strings and the degree

to which the standard Java lexer is safe in the sense that it

does not remove all the syntactically correct lexicalisations

of an input character string. Our multi-lexer parser is an

alternative to scannerless parsing of a character level gram-

mar, retaining the separation between grammar terminals

and the corresponding lexical tokens. This has the advan-

tages of allowing the parser to use terminal level lookahead

and keeping lexical level disambiguation separate from the

context free grammar.

Keywords lexicalisation, generalised parsing, syntax anal-

ysis

1 Introduction
Conventionally compiler front ends include a lexical analyser

(lexer), which takes an input string of characters and returns

a string of tokens, and a syntax analyser (parser), which

determines the syntactical structure of the token string with

respect to a given grammar. In almost all cases an input

character string can be lexicalised in many different ways,

and in the conventional set-up the lexer ‘decides’ which

lexicalisation to return before the subsequent compilation

stages are carried out. This can sometimes be inconvenient,

and imposes certain language design constraints.

So called ‘scannerless’ parsers are built from grammars

that are specified at character level, with nonterminals whose

languages are the patterns of the conventional lexer-returned

terminals. This allows all lexicalisations to be considered, but

has some drawbacks. The lexical parts of the character level

SLE 2019, October 20–22, 2019, Athens
2019.

grammar are typically highly ambiguous and disambigua-

tion techniques, such as longest match, which address this

are not safe (in the sense that they can reject all derivations

of a string) for context free grammars in general. Further-

more, traditional parsing techniques gain efficiency by using

lookahead, and lookahead is not effective at character level.

In this paper we present an approach in which a separate

lexer is used but it is permitted to return multiple lexicali-

sations of the character string to the parser. This allows the

lexical level disambiguation techniques to remain separate

from the context free grammar and keywords to be used in

parser lookahead, while also allowing lexical disambiguation

decisions to be made at any stage in the compiler front end.

Thus syntax and semantic information can be used for lexical

disambiguation if desired.

The approach is based on a version of GLL parsing which

is capable of efficiently parsing a set of input strings concur-

rently. In the version presented in this paper our parser will

call the lexer each time it requires an input terminal. This

allows additional use of lookahead because the parser has

grammar defined information which may identify restric-

tions on the possible next terminals (i.e. the so-called local

follow sets for each grammar position). This information can

be passed to the lexer, limiting the potential matches it has

to attempt. We note, however, that the underlying parser can

be written so that it accepts a precomputed set of strings of

terminals, and in fact sets of strings that correspond to the

lexicalisations of many different character strings. But we

shall not discuss this further in the current paper.

We will present a formal description of our algorithm

but this paper is practically focused, based on the analysis

of this approach when applied to Java. First we consider

some data related to the choice of lexicalisations of strings

in Java, in particular the impact of ‘longest match within a

token’ and ‘longest match with priority’ disambiguations.

We then introduce indexed token strings that allow sharing

of parsing between lexicalisations with common substrings.

In Section 3 we give our new multi-parsing algorithm, and in

Section 4 we run the parser on Java examples to investigate

the impact and consequences of using a softer boundary

between lexicalisation and syntax analysis. We conclude

with a brief discussion of related work.

Note on terminology: the terms ‘token’ and ‘terminal’ are

to some degree used interchangeably when discussing com-

piler front ends. The set of terminal names is part of the

specification of the particular grammar on which the com-

piler is based, and they are simply symbols. Lexical analysers

take character strings and test them for membership against

specified sets. Commonly these sets are specified by regular

1
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expressions over the character set, and are often referred to

as tokens. The sets of terminal names and token names in

a particular compiler coincide and thus either term can be

used. In this paper, to support easier reading, we will mainly

use ‘token’ when focusing on lexical activity and ‘terminal’

when discussing parsers.

2 Lexer/parser interface in Java
The particular token sequence delivered to a standard Java

parser is determined by longest match and token priority

rules that can be incorporated in the lexer, and in most cases

this is adequate. However, even in Java there are some lexical-

isations that are rejected but whichwould have corresponded

to syntactically correct sentences, while the selected lexical-

isation is not syntactically correct and is thus rejected by

the parser. For example, Java is a layout insensitive language

in the sense that whitespace can normally be inserted for

readability without changing the semantics of a program and

we expect to be able to leave out whitespace surrounding

operators, brackets and punctuation symbols. However, the

expression x=y--z, for example, will be rejected by a Java

compiler, while the expression x=y- -z will be accepted.

Furthermore, x=y+-z will be accepted by the compiler. The

rejection of x=y--z is a result of a lexer disambiguation deci-

sionwhich returned the postfix decrement operator -- rather
than the binary subtraction operator followed by the unary

minus operator.

The most extreme alternative approach to lexical disam-

biguation is to have none at all and to return all lexicalisa-

tions. While this is typically an impractically large number

of strings, it serves as a bench mark against which partial

disambiguation strategies which eliminate some of the po-

tential lexicalisations can be evaluated. A more viable ap-

proach is to allow partial lexical disambiguation under the

control of language designer. In the main part of this paper

we will introduce a parsing technology that can accept and

efficiently parse multiple input strings, thus returning a set

of lexicalisations to the parser is a practical possibility.

We begin with an analysis of the scale of the problem:

how impractical would it be to simply produce all the lexi-

calisations of an input character string and parse them, and

to what extent do various common disambiguation conven-

tions reduce the number of lexicalisations? To help illustrate

our discussions we shall refer to the following Java program

fragment, Ex1.java,

int x=3;
while(x<10){x+=1}

2.1 Lexicalisation counts
We shall use general rather than Java specific terminology,

and assume we have a specified set of characters, A, and a

set of token (or terminal) names. Each token t denotes a set of
strings of characters, the pattern of t . A string in t is a lexeme

of t . A lexicalisation of a character string u is a string t1 . . . tk
of tokens such that u = u1 . . .uk where ui ∈ ti , 1 ≤ i ≤ k .

A character string can be partitioned into substringswhose

lexicalisations are independent of each other. For example,

in Java an opening brace { is not a character in a lexeme

of any token other than itself, and the special cases of string

literals and comments. Thus, in most cases, the positions

immediately before and immediately after a { are partition

divisions.

For a character string u = u1 . . .uk where the position

between each ui and ui+1 is a lexical partition division, the

number of lexicalisations of u is the product of the numbers

of lexicalisations of the ui . If each lexicalisation were to be

parsed separately this product gives an upper bound on the

number of parses required for u. However, if the parsing

of each ui can be shared across the different lexicalisations

then the number of parses can be reduced to the sum of the

numbers required for each ui , and each of these parses only

a substring not the full token string.

For the Java example above we have u1 is the string int
which, using ID for the identifier token and int for the single
lexeme keyword token, has four lexicalisations as

(i) ID (ii) ID ID (iii) ID ID ID (iv) int

Thenu2 is a single space character,u3 is the lexeme x from ID
and so on. We have that u8 is the stringwhile which has six

lexicalisations, u12 is 10 and u16 is + =, both of which have

two lexicalisations. This gives a total of 96 lexicalisations of

the example string.

The lexicalisations of a character string can have different

numbers of elements so simply counting the number of lexi-

calisations does not reflect the fact that parser complexity

is thought of in terms of input string length. In this paper

we will consider the total number of tokens a parser has to

process as a measure of the parsing cost. In particular this is

independent of the efficiency of the parsing technique itself.

For the naive ‘parse each string separately’ approach this

total number of tokens is the sum of the numbers of the

lengths of each lexicalisation. The 96 lexicalisations of the

above example contain 2056 tokens to be processed.

In the next section we shall consider methods which allow

tokens in several lexicalisations to be shared, reducing the

total number to be processed. First we consider the impact

of lexical disambiguation on token numbers.

The number of lexicalisations of ui , and correspondingly

the number of tokens to be parsed, can be reduced by ap-

plying disambiguation criteria. We can simply return the

longest lexeme choice within each token, for example return-

ing ID but not ID ID or ID ID ID against int . This reduces
the number of lexicalisations in our example to eight, with a

total of 148 tokens.

We can also declare priority when the same lexeme be-

longs to two tokens, for example returning just the ‘plus and

2
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becomes’ token against += and not also the two tokens + and
=, and returning just int and not ID against int .

We report lexicalisation data for several examples: Ex1.java

above, for Life.java which is a 217 line, 5859 character is a

model solution to an undergraduate assignment on Con-

way’s game of Life, for Linden.java a 40 line, 961 character

program which implements a Lindenmayer string rewriting

algorithm, and Sand.java which is a parser generator used

as a ‘sandbox’ for exploring backtracking recursive descent

parsers. We also report data for Ex2.java below which is

rejected by the Java compiler as discussed above.

import java.io.*;
class Ex2{

public static void main(String[] args) {
int y=3, z=2;
int x = y--z;
System.out.print("x = " + x + "\n");

}
}

Table 1 gives the number of lexicalisations and the to-

tal number of tokens with no disambiguation applied, with

longest match within tokens, and with longest match and

priority. For a character string u we use NoD(u) to refer to

the set of all lexicalisations. We define the set LM(u) of lexi-
calisations under longest match within tokens recursively.

For a token t and a character string u we denote by ut the
longest prefix of u which is a lexeme of t and we denote the

corresponding suffix of u by u ′
t , so u = utu

′
t . Then

LM(u, t) =


∅ if ut = ϵ

{t} if ut = u

{tt ′ | t ′ ∈ LM(u ′
t ) } otherwise

and LM(u) is the union of all the LM(u, t). We also define the

set LP(u) of lexicalisations under longest match and priority,

assuming that we have a (possibly partial) priority relation

< defined on the token set. (In our examples we have used

the standard Java lexical priorities.) Then LP(u) is the union
of all the LP(u, t) where

LP(u, t) =

{
∅ if ∃(s > t) us = ut

LM(u, t) otherwise

All disambiguation specifications have strengths andweak-

nesses, and the appropriateness of a particular strategy is

application specific. LM(u) and LP(u) are not the only possi-

ble specifications and we are certainly not claiming that they

are necessarily the best. For example, they are defined from

the left, which is natural for a left-to-right string processor,

but defining from the right would give different outcomes.

Our goal here is simply to give an idea of how much the

size of a set of lexicalisations may be reduced by various

disambiguation approaches.

From Table 1 we can see that the number of lexicalisations

is extremely large for reasonably sized programs and pars-

ing each one individually is not likely to be practical. The

longest possible length of a lexicalisation is the length of the

underlying character string, so the total number of tokens is

always bounded by the number of lexicalisations multiplied

by the length of the character string. However, we report

the actual numbers for comparison, in the next section, with

the numbers of tokens parsed by a token-sharing parser.

We also ran all the experiments with longest match across

tokens combined with priority.

LAP(u, t) =


∅ if ∃s us > ut

∅ if ∃(s > t) us = ut

LM(u, t) otherwise

The results were always a single lexicalisation, as is to be

expected as this mimics the behaviour of a classical Java

lexer. The two lexicalisations found for Ex2.java with the

LP disambiguation are the ones associated with the choices

’--’ and ’-’ ’-’ discussed above. The Java compiler selects

the first one using longest match across tokens, but only the

second one is syntactically valid. With LAP disambiguation,

Ex2.java is rejected.

Note on whitespace: our approach permits various treat-

ments of whitespace and comments. However, this paper

focuses on the main idea of multi-lexing and we shall not

discuss whitespace choices. We simply note that, of course,

the separate nature of the lexer allows many alternatives: it

is easy to include whitespace specification in the grammar

and allow the lexer to pass whitespace tokens to the parser,

or to incorporate whitespace into the token immediately

to the left or to the right. We can write custom lexers with

different tokens for layout sensitive languages, and we can

write lexers that handle nested comments. The approach

supports modularity, different whitespace conventions can

be supported in different parts of language/grammar specifi-

cation. In this paper, for data reporting purposes, we simply

assume that there is a token that matches strings of white-

space characters and that just a single token is returned, not

all possible lexicalisations. Effectively sequences of white-

space characters are replaced by a single space. We include

these tokens in our token counts but they don’t change the

number of lexicalisations. For parsing purposes, in our exam-

ples, the whitespace tokens are discarded by the lexer and

not returned to the parser.

2.2 Indexed token strings
Generalised parsers usually remerge threads that result from

non-deterministic choices by synchronising on positions in

the input token string. This allows them to achieve poly-

nomial rather than exponential complexity. In the previous

section we mentioned that if a character string is partitioned

into lexical divisions then each of these can be lexicalised

3



331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

SLE 2019, October 20–22, 2019, Athens Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

u length lexicalisations total tokens

NoD(u) LM(u) LP(u) NoD(u) LM(u) LP(u)

Ex1 26 96 8 2 2056 148 37

Ex2 169 1 × 10
11

256 2 1 × 10
13

19072 149

Life 5859 2 × 10
387

7 × 10
65

1 × 10
18

8 × 10
390

1 × 10
69

2 × 10
21

Linden 961 3 × 10
72

3 × 10
13

4 × 10
6 1 × 1075 1 × 1016 1 × 109

Sand 5685 7 × 10
369

8 × 10
73

3 × 10
28

2 × 10
373

1 × 10
77

7 × 10
31

Table 1. Lexicalisations

independently and parsed just once. This can be achieved in

practice by synchronising the parser on the input positions

of the character string. In order to do this we use tokens

together with the right hand position of the lexeme to which

they correspond.

An indexed token string is a sequence of pairs of the form
(t ,h) where t is a token and h is an integer. An indexed
lexicalisation of u is a string (t1,h1) . . . (tk ,hk ) such that u =
u1 . . .uk where ui ∈ ti and the length of ui is hi − hi−1,
1 ≤ i ≤ k . (We take h0 = 0.)

For Ex1.java above, int has indexed lexicalisations

(i) (int,3) (ii) (ID,3) (iii) (ID,2) (ID,3)
(iv) (ID,1) (ID,3) (v) (ID,1)(ID,2)(ID,3)

Although only the right end index of the lexeme is stored,

the left hand end is the right index of the previous element

in the string. So each token instance does have a well defined

left and right index.

We can see that in general there are more indexed lexi-

calisations of a string than there are non-indexed ones. In

the above example we can take the first lexeme as in and the

second as t or the first as i and the second as nt . Both choices

generate the lexicalisation ID ID but they generate different

indexed lexicalisations. If each indexed lexicalisation were to

be parsed independently this would be more expensive than

using the non-indexed lexicalisations. However, the indexing

allows common substrings to be parsed only once, which is

ultimately more efficient, and when disambiguation is used

the numbers of indexed and non-indexed lexicalisations are

almost the same.

For the above example, without disambiguation, we have

that int has five indexed lexicalisations, while has 17, and 10

and += both have two. This gives a total of 340 indexed lexi-

calisations of the example string, and 7452 tokens. However,

the processing of tokens whose left and right hand extents

are the same is shared in our LCNP parser (and in a standard

GLL or GLR character level parser) and thus only 43 are

actually processed.

If we use the longest match disambiguation within each

token we get 8 indexed lexicalisations with 148 tokens, the

same as for the non-indexed case, but with only 22 distinct

tokens to be processed.

Table 2 gives the numbers of indexed token strings (ITSs)

for the examples considered in Section 2.1. However, rather

than giving the total number of tokens in these ITSs we

give the number that are actually processed by the parser

as a result of the sharing. We note that, as we would expect,

the numbers of lexicalisations in the presence of the LM

disambiguation are the same as for the non-indexed cases in

Section 2.1.

The data clearly shows the importance of the shared pars-

ing approach in making multi-lexing feasible. The number

of lexicalisations to be parsed without any prior disambigua-

tion, even in the case of non-indexed lexicalisations discussed

in Section 2.1, is very much greater than the current esti-

mated age of the universe (4.32 × 10
17
seconds) for normal

sized programs such as Life.java. However, with shared pars-

ing the number of tokens that need to be considered is in

the low thousands.

3 Parsing with lexical choice
[6] presents clustered nonterminal parsing (CNP), a version

of generalised LL (GLL) parsing that returns a set of binary

subtree representations (BSRs) which encode all the deriva-

tions of an input string. A shared packed parse forest (SPPF)

representation of the derivations can be extracted from the

BSR set in a straightforward way if desired [6].

In this paper we give a new GLL style algorithm, LCNP,

which takes as input a character string and calls a lexer each

time it needs an element of an indexed lexicalisation of the

string. The lexer is an input to the LCNP algorithm and

can be configured in any way a user requires, be based on

any lexical technique, and return either all tokenisations or

a subset determined by any specified disambiguation rules.

LCNP parses all the returned lexicalisations together, sharing

common parts, in timewhich is worst case cubic in the length

of the underlying character string. The output is a BSR set

with respect to the grammar terminals/tokens, and thus the

constructed derivations are, as is conventional, with respect

to the user specified token level grammar not the character

level grammar.

We note here that GLL parsers can in fact be extended, in

a manner similar to LCNP, so that they take as input any set

of indexed token strings, without reference to any particular

character string, and efficiently parse all of the input strings

concurrently [13]. However, in this paper we will focus on

the integrated lexer approach. The important point though

4
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u length total ITS tokens (shared)

NoD(u) LM(u) LP(u) NoD(u) LM(u) LP(u)

Ex1 26 340 8 2 43 22 20

Ex2 169 8 × 10
16

256 2 269 82 75

Life 5859 3 × 10
758

7 × 10
65

1 × 10
18

15183 2370 2210

Linden 961 1 × 10
121

3 × 10
13

4 × 10
6

1961 403 380

Sand 5685 8 × 10
714

8 × 10
73

3 × 10
28

14456 2163 2012

Table 2. Indexed lexicalisations

is that LCNP can accept tokens from different lexicalised

strings, not that the lexer is integrated within the parser.

3.1 Notation and BSR sets
A context free grammar (CFG) consists of a set T of terminal

(token) names, a setN of nonterminals disjoint fromT, a start
symbol S ∈ N, and a set of grammar rules X ::= α1 | . . . | αt ,
one for each nonterminal X ∈ N, where each αk , 1 ≤ k ≤ t ,
is a string over the alphabet T ∪N. We refer to the αk as the

production alternates, or just alternates, of X , and to X ::= αk
as a production rule, or just a production. A derivation step
is an expansion γYβ⇒γαβ where γ , β ∈ (T ∪ N)∗ and α is

an alternate of Y . A derivation of τ from σ is a sequence

σ⇒β1⇒ . . .⇒βn−1⇒τ , also written σ
∗
⇒τ .

Derivations can be represented as ordered rooted trees.

The root node is labelled with the start nonterminal, interior

nodes are labelled with nonterminals and the leaf nodes are

labelled with terminals or ϵ . The children of a nonterminal

node X correspond, in order, to the right hand side of a

production rule forX . To ultimately achieve worst case cubic

size data structures, the derivation trees are binarised to the

left in the standard way by introducing intermediate nodes.

A right child is always labelled with a terminal, nonterminal

or ϵ , but the left child, if it exists, may be an intermediate

node.

In an indexed binarised derivation tree the node labels

have additional integer extents, (x , i, j). The left extent of the
left-most leaf is 0, the left extent of any other leaf is the right

extent of its left sibling, and the right extents of leaves are

defined so that the labels are of the form (ϵ, i, i) or (a, i, i + 1)
if a is a terminal. The left(right) extent of an interior node is

the left(right) extent of its left(right) child.

The indexed binarised derivation trees for all derivations

of a given string can be merged into what is called a shared

packed parse forest, a worst case cubic size representation of

the potentially infinite set of such trees. Shared packed parse

forests were introduced in [3] and a discussion of binarised

SPPFs for GLL parsers can be found in [8].

A binary subtree representation (BSR) is a 4-tuple (Ω, i,k, j),
where Ω is either a production rule X ::= α or a string β of

length at least two such that there is a production rule of

the form X ::= βγ , and 0 ≤ i ≤ k ≤ j. A BSR element corre-

sponds to a subtree, of depth two, of an indexed binarised

derivation tree. The parent of the subtree corresponds to Ω,
its extents are i, j and its children have extents i,k and k, j.
BSR sets are introduced and discussed in detail in [6] and

rather than repeat the definitions we just give illustrative

examples. For a terminal or nonterminal x and non-empty

string γ , the BSR elements (X ::= γx , i,k, j), (γx , i,k, j) and
(X ::= x , i, i, j) correspond, respectively, to the subtrees

X , i, j γ x, i, j X , i, j

x, k, j x, k, j x, i, jγ , i, k γ , i, k

❙
❙✇

❙
❙✇

☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠ ☛✡ ✟✠
✡
✡✢

✡
✡✢ ❄

☛✡ ✟✠
In this paper it is only necessary to have a basic under-

standing of BSR sets as motivation for the functions that

construct them as part of the LCNP specification. The func-

tions themselves are simple and are specified below. BSR

sets can be used directly for semantic analysis and code gen-

eration at later stages in a compiler, but to turn an LCNP

parser into an SPPF builder, if that is desired, then the SPPF

extraction algorithm given in [6] can be called post-parse.

3.2 LCNP: lexical choice CNP parser specification
We now give the specification for a GLL parser for Γ which

takes as input a character string and a lexical function. (The

token string input CNP algorithm is described in [6].) The

input character string will be held in the variable I and is

terminated by the end of string symbol, denoted by $.

3.2.1 Lexical considerations
We require the lexical function to take as input a character

string, u = a0 . . . am−1, and a terminal t and to return a set

of input indices j such that a0 . . . aj−1 ∈ t .

lex(a0 . . . am−1, t) ⊆ {j | a0 . . . aj−1 }

We also need a special end-of-string character $ and a corre-

sponding token and we require

lex($, $) = {1}

The function lex() is called either to compute the next input

position(s) or to check for the existence of lexicalisations

against some ’lookahead’ terminal set, see lexLKH () and

valid() below.
One of the attractions of our LCNP algorithm is that it

makes no assumptions about how lex() is implemented or

5
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what, if any, filtering (disambiguation) methods it has applied

to the set it returns. However, of course, the efficiency of lex()
impacts on the efficiency of the LCNP algorithm that calls

it. Whether or not lexical disambiguation is applied before

lex() returns is a property of the particular function lex()
the language specifier chooses to implement. In Section 4 we

report on the results of running LCNPwith different versions

of lex() which apply each of the disambiguation variations

discussed in Section 2. For illustration of LCNP, we will use

three versions specified as follows.

lexFull(a0 . . . am−1, t) = {j | a0 . . . aj−1 ∈ t }

LetmaxI,t denote the maximum element of lexFull(I , t) if it
exists, otherwisemaxI,t = −1. Then

lexLonд(I , t) =

{
{maxI,t } if maxI,t , −1

∅ otherwise

lexLonдPriority(I , t)

=

{
∅ if, ∃(t ′ > t) maxI,t =maxI,t ′

lexLonд(I , t) otherwise

These essentially implement the three disambiguation speci-

fications NoD, LM and LP discussed in Section 2. However,

a compiler designer can specify any form of lexer they want,

provided it meets the general requirements given at the start

of this section.

Our parsers use one terminal symbol lookahead. For a

grammar position X ::= α · β we define predict(β ,X ), a set

of terminals which can be the first symbol of a string derived

from this point in the grammar:

predict(β,X ) =

{t | t ∈ first(β) or (ϵ ∈ first(β) and t ∈ follow(X ))}

3.2.2 Parser overview
LCNP algorithm itself is similar to the token string input

CNP algorithm and, in recursive descent style, the parsers

have a section of code for each alternate of each nonterminal.

To handle nested nonterminal calls, the call return positions

are recorded in a Call Return Forest (CRF, see below). Global

variables, cI and cU , hold the current input index and the

index of the current CRF node, respectively. The algorithm

is written assuming that the input character string is held

in a global variable I to which all functions have access.

Thus we use a slightly different signature lex(i, t), with the

specification that lex(i, t) gives the same result as lex(Ii , t)
where Ii is the right (postfix) substring of I which starts at

position i .
We also define a predicate valid(i,T ) as the result of a

lexical test against the token set T .

valid(i,T ) =

{
true if ∃(t ∈ T )(lex(i, t) , ∅)

f alse otherwise

Flow of control is handled using an outer descriptor selec-

tion loop together with algorithm line labels.

LCNP descriptors, (X ::= α · β,h, i), comprise a grammar

slot, X ::= α · β , that forms a line label, the integer index of a

CRF cluster node, and an input position. As descriptors are

created they are stored for processing, in a set R. In order to

ensure that repeated computations are not performed, the

set of all descriptors which have been created are also stored

in a set U, and an element is only added to R if it is not

already in U.

When the descriptor (X ::= α · β ,h, i) is removed from

R the parser recommences its execution at input position

cI = i and at the line of the code for X ::= α · β .
If β = xγ where x is a terminal then lex(cI ,x) is called.

For each k ∈ lex(cI ,x) there is a lexeme in the pattern of x
between positions cI and j = cI + k in the input character

string I . To incorporate lookahead, we construct the set J of j
such that j−cI ∈ lex(cI ,x) andvalid(j,predict(β ,X )) is true.

This construction is performed by the function lexLKH ()

defined in Section 3.4.1. For each j ∈ J a descriptor (X ::=

αx ·γ , cU , j) is created which, when processed, will cause the

parser to resume at grammar position X ::= αx ·γ and input

position j . The parser execution then continues by removing

the next descriptor from R.1

If β = Zγ where Z is a nonterminal the return position

X ::= αZ · γ , cU and cI are stored. Then, for each rule

Z ::= τ such thatvalid(IcI ,predict(τ ,Z )) is true, a descriptor
(Z ::= ·τ , cI , cI ) is created by ntAdd(), and the next descrip-

tor is removed from R. In general it is possible for a call

to Z to match more than one substring, and for the same

sub-parse from Z to belong to several derivations. So the

return positions are stored in records, indexed by Z and cI ,
containing the entries (X ::= αZ · γ , cU )

X ::= αZ · γ , cU
☛✡ ✟✠ ☛✡ ✟✠Z , cI✛

To keep the size of the records worst case cubic we share

nodes with the same label in a Call Return Forest, CRF, which
takes the role of the GSS in a classical GLL or GLR parser.

An example can be seen in Section 3.3. The building and

reading of the CRF is carried out by stand-alone, grammar

independent, support functions call() and rtn(), which are

called from the main parser. These functions are specified in

Section 3.4.1.

Finally, if we are at the end of a ruleX ::= α · then we have

successfully matched α to the input substring acU . . . acI−1.
For each child (Y ::= νX · µ, l) of (X , cU ), provided that

valid(cI ,predict(µ,Y )) is true, a descriptor (Y ::= νX ·µ, l , cI )
is created so that execution from the corresponding positions

can be continued. There is a potential complication in that

it is possible for additional children to be added to (X , cU )

1
It is possible to avoid creating a descriptor when | J | = 1 by just updating

the value of cI and continuing. However, when there are multiple lexeme

matches it is possible to return to the same algorithm position and repeat

some computation, which is what the set U guards against.
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after a return action has been carried out, and there are cases

where it is not possible to order the descriptor processing

order to avoid this situation. To deal with it, the return action

is recorded as a triple (X , cU , cI ) in the contingent return set

P. This return action is then applied to new children when

they are created.

As the parser proceeds it also builds a set, ϒ, of BSR ele-

ments, using the support function bsrAdd(). When a descrip-

tor is created (X ::= α · β,k, j), if β = ϵ or, if β , ϵ and

|α | > 1, a BSR element (X ::= α ,k, i, j) or (β ,k, i, j), respec-
tively, is created. The integer i is either the current value of
cI or the index of a CRF node (Y , i) where α = γY . For more

discussion on the BSR sets constructed by a CNP algorithm

see [6], and for an example see Section 3.3.

LCNP parsers are specified via a set of templates into

which grammar symbols and production rules are substi-

tuted; these are given in Section 3.4. First we give an exam-

ple.

3.3 Example
To give a small example we consider the alphabet {a,b, c}
which has just three characters, and we consider tokens s, t
where the lexemes of s are the two strings aa and cc and the
lexemes of t are all the nonempty strings of a and b

s = ( aa | cc ) t = ( a | b )+

The LCNP parser for the grammar

S ::= s S | B B ::= t B | ϵ

whose terminals are s, t is as follows.

let I = a0 . . . am−1 denote the input character string and

am = $

letm denote the height of Σ
create CRF node u0 = (S, 0)
U := ∅; R := ∅; P := ∅; ϒ := ∅

ntAdd(S, 0)
while R , ∅ {

remove a descriptor, (L, i,k) say, from R

cU := i; cI := k ; goto L

S ::= ·sS :
for each j ∈ lexLKH (s, cI , S, S) {

bsrAdd(S ::= s · S, cU , cI , j)
dscAdd(S ::= s · S, cU , j) }

goto L0
S ::= s · S :

call(S ::= sS ·, cU , cI ); goto L0
S ::= sS ·:

rtn(S, cU , cI ); goto L0
S ::= ·B:

call(S ::= B·, cU , cI ); goto L0
S ::= B·:

rtn(S, cU , cI ); goto L0

B ::= ·tB:
for each j ∈ lexLKH (t , cI ,B,B) {

bsrAdd(B ::= t · B, cU , cI , j)
dscAdd(B ::= t · B, cU , j) }

goto L0
B ::= t · B:

call(B ::= tB·, cU , cI ); goto L0
B ::= tB·:

rtn(B, cU , cI ); goto L0
B ::= ·:

ϒ := ϒ ∪ {(B ::= ϵ, cI , cI , cI )}
rtn(B, cU , cI ); goto L0

L0: }
if (for some α and l , (S ::= α , 0, l ,m) ∈ ϒ) {report success}
else {report failure}

We can run this algorithm on the character string aaab using
the lexers lexLonд() and lexFull() defined above.

3.3.1 Input aaab and lexLonд()

Effectively when the parser runs lexLonд() will generate the
following two indexed token sequences from aaab.

(t , 4) (s, 2)(t , 4)

The parser constructs the descriptor set

U = {(S ::= .sS, 0, 0), (S ::= .B, 0, 0), (S ::= s .S, 0, 2),
(S ::= .B, 2, 2), (B ::= .tB, 0, 0), (B := t .B, 0, 4), (B ::= ϵ ., 4, 4),
(B ::= tB., 0, 4), (S ::= B., 0, 4), (B ::= .tB, 2, 2), (B := t .B, 2, 4),
(B ::= tB., 2, 4), (S ::= B., 2, 4), (S ::= sS ., 0, 4)}
and CRF

S ::= sS ·, 0

S ::= B ·, 0

S ::= B ·, 2

B ::= tB ·, 0

B ::= tB ·, 2 S, 0

S, 2

B, 0

B, 2

B, 4 ☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

☛✡ ✟✠☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

✛

✛

✛

✛

☛✡ ✟✠
❙

❙♦

It also returns the BSR set

ϒ = {(B ::= ϵ, 4, 4, 4), (B ::= tB, 0, 4, 4), (S ::= B, 0, 0, 4),
(S ::= sS, 0, 2, 4), (S ::= B, 2, 2, 4), (B ::= tB, 2, 2, 4)}
which embeds precisely the indexed derivation trees for the

two ITSs above.

S, 0, 4

B, 0, 4

B, 2, 4

S, 2, 4

B, 4, 4

B, 4, 4

S, 0, 4

ϵ, 4, 4

ϵ, 4, 4

s, 0, 2

t, 0, 4

t, 2, 4

❙
❙✇

❙
❙✇

❙
❙✇

☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠

✡
✡✢

✡
✡✢

✡
✡✢

❄

❄

❄

❄
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Note the syntax grammar is not ambiguous so there is only

one derivation tree for each ITS. If there had been more than

one derivation the BSR set would have embedded all of the

corresponding derivation trees.

3.3.2 Input aaab and lexFull()

Effectively when the parser runs lexFull() will generate the
following 11 indexed token sequences from aaab.
(t , 4) (t , 3)(t , 4) (t , 2)(t , 4) (t , 1)(t , 4) (t , 2)(t , 3)(t , 4)
(t , 1)(t , 3)(t , 4) (t , 1)(t , 2)(t , 4) (t , 1)(t , 2)(t , 3)(t , 4)
(s, 2)(t , 4) (s, 2)(t , 3)(t , 4) (t , 1)(s, 3)(t , 4)
All but the last of these correspond to strings in the grammar.

The parser will reject the last one. The setU and the CRF are

too large to diplay here. For compactness we have combined

some BSRs, so (Ω, i,K , j) represents all the BSRs (Ω, i,k, j)
where k ∈ K .
ϒ = {(B ::= ϵ, 4, 4, 4), (B ::= tB, 0, {1, 2, 3, 4}, 4),
(B ::= tB, 1, {2, 3, 4}, 4), (B ::= tB, 2, {3, 4}, 4), (B ::= tB, 3, 4, 4),
(S ::= B, 0, 0, 4), (S ::= sS, 0, 2, 4), (S ::= B, 2, 2, 4)}
This set has 14 elements and embeds precisely the deriva-

tion trees of the ten syntactically correct ITSs. Of course,

the same BSR element can contribute to several derivation

trees, this is why the BSR set is more efficient than just the

set of trees. For example, the BSR elements (B ::= tB, 2, 4, 4)
and (S ::= B, 0, 0, 4) contribute to the derivations on the left

and right above, respectively, and to the derivation tree for

(t , 2)(t , 4)

B, 0, 4

B, 2, 4

B, 4, 4

S, 0, 4

ϵ, 4, 4

t, 0, 2

t, 2, 4

❙
❙✇

❙
❙✇

☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠☛✡ ✟✠

✡
✡✢

✡
✡✢

❄

❄

(B ::= ϵ, 4, 4) contributes to all three trees above. It would

take too much space here to show the steps the parser takes,

but if the reader walks through the algorithm using lexFull()
they will see that how the parsings of the ITSs are shared. We

can identify the position of a terminal in the string from the

index of the terminal to its left, so (t , 2) appears at positions
0 and 1 and so it is only considered twice even though it

appears fours times in the ITSs.

3.4 LCNP generator specification
Throughout this section the following notation is used.

I : a constant variable containing the input string
m: a constant integer whose value is the length of the input

cI , cU : integer variables

CRF: a digraph whose nodes are labelled (L, j)
where L is either a nonterminal or a grammar slot

P: set of CRF return actions represented as triples (X ,k, j)
ϒ: set of BSRs, (X ::= µ, i,k, j) and (µ, i,k, j)
R: set of descriptors waiting to be processed

U: set of all descriptors constructed so far

$: end-of-string character

The parser has two global variables cU and cI , that hold
the current CRF node index and input position, respectively,

and a set of support functions. The functions ntAdd() and
predict(β ,X ) have to be constructed for a given grammar

Γ by the parser generator, and the latter makes use of the

standard first and follow sets [1] which must also be con-

structed by the parser generator. The other functions are

grammar independent. All functions assume the existence of

a global input string I , global sets ϒ, P,U, R, and a global

CRF graph.

3.4.1 LCNP support functions
ntAdd(X , j) {

for all(grammar rules X ::= τ )) {
if valid(j,predict(τ ,X )) { dscAdd(X ::= ·τ , j, j); } } }

dscAdd(L, i,k) { if (L, i,k) < U {add (L, i,k) toU and R}}

lexLKH (t , i, β,X ) {

let J = ∅

for each k ∈ lex(i, t) {
if (valid(i + k,predict(β ,X ))) add i + k to J }

return J }

rtn(X ,k, j) {
if ((X ,k, j) < P) {

add (X ,k, j) to P

for each child u of (X ,k) in the CRF {

let (Y ::= νX · µ, i) be the label of u
if valid(j,predict(µ,Y )) {
dscAdd(Y ::= νX · µ, i, j)
bsrAdd(Y ::= νX · µ, i,k, j) } } }

call(L, i, j) {
suppose that L is Y ::= νX · µ
if there is no CRF node labelled (L, i) create one
let u be the CRF node labelled (L, i)
if there is no CRF node labelled (X , j) {

create a CRF node v labelled (X , j)
create an edge from v to u
ntAdd(X , j) }

else { let v be the CRF node labelled (X , j)
if there is not an edge from v to u {

create an edge from v to u
for all ((X , j,h) ∈ P) {

if valid(h,predict(µ,Y )) {
dscAdd(L, i,h); bsrAdd(L, i, j,h) } } } }
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bsrAdd(X ::= α · β , i,k, j) {
if(β = ϵ){ insert (X ::= α , i,k, j) into ϒ }

else if(|α | > 1){ insert (α , i,k, j) into ϒ }}

3.4.2 The LCNP templates
Now we give the code templates which specify the LCNP

parser. A parser is obtained by substituting the specific gram-

mar production rules into the templates.

For each nonterminal X in the grammar there is a section

of the algorithm, code(X ), which will be defined below. In ad-

dition to the grammar slot labels, we require a label L0 which
labels the end of the controlling while loop, then the state-

ment goto L0 is equivalent to break in C-style programming

languages.

When the descriptors have all been dealt with, the test for

acceptance is made by checking for the existence of a BSR of

the form (S ::= α , 0, l ,m), for some α and l , wherem is the

length of the input string.

We suppose that the nonterminals of the grammar Γ are

A, . . . ,Z , with start symbol S . Then the LCNP parser for Γ
is given by:

let I = a0 . . . am−1 denote the input character string and

am = $

create CRF node u0 = (S, 0)
U := ∅; R := ∅; P := ∅; ϒ := ∅

ntAdd(S, 0)
while R , ∅ {

remove a descriptor, (L,k, j) say, from R

cU := k ; cI := j; goto L

code(A)
. . .
code(Z )

L0: }

if (for some α and l , (S ::= α , 0, l ,m) ∈ ϒ) {report success}
else {report failure}

We give the specification for code(X ) in terms of functions

code(X ::= α · β). We refer to the specifications of code(X ::=

α · β) as the LCNP templates. Suppose that the grammar rule

for X is X ::= τ1 | . . . | τp , we define:

code(X ) = X ::= ·τ1:
code(X ::= ·τ1)
rtn(X , cU , cI ); goto L0
. . .

X ::= ·τp :
code(X ::= ·τp )
rtn(X , cU , cI ); goto L0

Given a slot E we define code(E) as follows, where t is any
terminal and Y is any nonterminal, α and β are (possibly

empty) strings of terminals and nonterminals, and L denotes

the label corresponding to the slot X ::= αY · β .

code(X ::= ·) = ϒ := ϒ ∪ {(X ::= ϵ, cI , cI , cI )}

code(X ::= αt · β) = for each j ∈ lexLKH (t , cI , I , β,X ) {

bsrAdd(X ::= αt · β , cU , cI , j)
dscAdd(X ::= αt · β , cU , j) }

goto L0
X ::= αt · β :

code(X ::= αY · β) = call(X ::= αY · β , cU , cI ); goto L0
X ::= αY · β :

code(X ::= ·x1 . . . xd ) =
code(X ::= x1 · x2 . . . xd )
code(X ::= x1x2 · x3 . . . xd )
. . .
code(X ::= x1 . . . xd ·)

4 Java case study
In this section we use an LCNP multi-parser for Java to

investigate both the numbers of potential lexicalisations that

are syntactically correct and the work required to parse them.

We consider again four of the example programs consid-

ered in Section 2. Ex1.java is not a complete program so we

instead we use Ex3.java which is the same as Ex2.java except

that we replace −− with − − −.

int x = y---z;

In Table 3, we give the number of those lexicalisations that

were successfully parsed (sentences). This gives a measure

of how much lexical disambiguation could be ‘left’ to a post

parse process to resolve.

For Ex3.java the two lexical choices, ’--’ ’-’ and ’-’
’--’, for − − − both give rise to syntactically correct lexical-

isations.

The high numbers for the case of no disambiguation arise

because in many places in Java where an assignment ID
= exp is legal then so is a declaration ID ID = exp. So
without longest match within ID an assignment statement

also lexicalises to a declaration. Because of the nature of

Java the number of instances of ambiguity is approximately

loд(s) where s is the number of sentences. So although the

number of sentences is large, the number of instances of

ambiguity could be manageble. Thus it may be possible, for

reasonably well behaved languages, to dispense with most

lexical disambiguation and pass the valid sentences to a post-

parse disambiguator which could use context information to

resolve any ambiguity. Thismay be useful for domain specific

language applications.Wewill discuss disambiguation before

parsing is complete further in Section 4.2.

4.1 Parser data structure cardinalities
Wall clock times and actual memory usage are implemen-

tation and hardware dependent. We have implemented our
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u total ITS sentences

NoD(u) LM(u) LP(u) LAP(u) NoD(u) LM(u) LP(u) LAP(u)

Ex2 8 × 10
16

256 2 1 8 8 1 0

Ex3 1 × 10
17

384 3 1 16 16 2 1

Life 3 × 10
758

7 × 10
65

1 × 10
18

1 2.0 × 10
39

1.4 × 10
20

1 1

Linden 1 × 10
121

3 × 10
13

4 × 10
6

1 512 32 1 1

Sand 8 × 10
714

8 × 10
73

3 × 10
28

1 4.5 × 10
27

1.1 × 10
20

1 1

Table 3. Syntactically correct lexicalisations

LCNP parser exactly as described in Section 3.2 and we have

not focused on runtime or memory efficiency, (although our

implementation does parse Life.java in under 0.099 seconds).
An implementation independent measure of the work done

by a GLL-style parser is the number of descriptors created,

as there is an execution of the outmost loop of the parser

for each descriptor. Memory usage is dominated by the size

of the output derivation representation, which is worst case

cubic in the length of the input string. So we report the size

of the descriptor sets, |U|, and the size of the output BSR

sets, |ϒ|.
As we have mentioned, an alternative approach to multi-

lexing is to use a character level grammar and require the

parser to directly fulfil the lexer role. So we also report here

the size of the descriptor sets created by a classical GLL

parser, SGLLJ, for the character level Java grammar. Standard

GLL parsers construct SPPF outputs. The size of an SPPF

is worst case cubic if the SPPF is binarised. We give the

number of SPPF nodes for comparison with the size of the

BSR sets produced by the LCNP parser. This data is presented

in Table 4. For the GLL parser, the disambiguation is carried

out post-parse by removing nodes from the SPPF. So the

number |U| of descriptors created is the same for all the

disambiguation strategies and is just quoted once in Table 4.

Aswewould expect, the number of LCNP descriptors is much

less than for SGLLJ. This is partly due to the node clustering

in the LCNP CRF, but also because the LCNP grammar is at

‘token’ level and thus has fewer nonterminals and grammar

rules than the SGLLJ grammar.

The size of the LCNP BSR sets is much less that the cor-

responding SPPF node numbers. This is partly because, as

well as the packed nodes which essentially correspond to

BSR elements, the SPPF has nonterminal and terminal nodes.

However, this only accounts for a difference of about factor

two. The much greater difference is again because the SPPF

has nodes for the character level parts of the derivation.

4.2 Disambiguation before parsing is complete
In a sense, the primary research question addressed in this

paper is what is the impact of allowing more powerful ap-

proaches to lexicalisation? Tables 3 and 4 give data which

can be used to inform our conclusions.

The example LCNP lexical disambiguation specifications

we have considered are all applied before the parsing is

complete. In contrast the SGLLJ versions are applied after

the parser has constructed the SPPF. The latter is safer in the

sense that we can ensure that lexical disambiguation does

not remove all possible syntactically correct lexicalisations.

Table 3 shows that, for the example Java programs and LM

or LP, the former approach is also safe in this sense, but

with LAP it is not. Of course, LNCP can also take the latter

approach by using the NoD specification and carrying out

the required disambiguation on the constructed BSR set.

In general, there are common cases in which ‘on-the-fly’

lexicalisation disambiguation such as LM is safe. For example,

many programming language specifications require that in

the input character string no identifier can be immediately

followed by a character that can be in an identifier. So in

Java, i f x < 3 cannot be interpreted as beginning with the

keyword token if. In this situation longest match within

the identifier token is safe and, as we can see from the data

in Table 4, applying LM disambiguation during the parse

considerably reduces both the number of parser execution

steps and the size of the data structures, whilst not removing

all possible lexicalisations. The flexibility of the multi-lexer

approach gives LCNP parsers the power to take advantage

of such efficiency options.

In certain circumstances it is possible to modify a GLL

character level parser, such as SGGLJ, so that it carries out

lexical disambiguation during the parse. We say a token t
has the suffix property if, whenever for some u ∈ t we have
ua ∈ t then for allv ∈ t we haveva ∈ t . For example, in Java

the ID token has the suffix property. In the case of a token t
with the suffix property, LM disambiguation can be applied

by a character level GLL parser by preventing returns from

the nonterminal t in the presence of certain lookahead input

characters.

A GLR parser for a character level grammar can similarly

perform LM disambiguation during the parse for tokens t
with the suffix property by removing the reductions associ-

ated with t from certain entries in the LR table.

However, these GLL and GLR modifications are subtle,

somewhat ad hoc, and require changes to the generated

parser or parse table that are not easy to reason about in

general. The multi-lexing approach explicitly separates the
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u LCNP |U| LCNP |ϒ| SGLLJ |U| SGLLJ SPPF nodes

NoD(u) LM(u) LP(u) NoD(u) LM(u) LP(u) all NoD(u) LM(u) LP(u)

Ex2 1346 882 696 421 230 202 7219 2876 1136 1117

Ex3 1367 903 717 433 242 214 7307 2914 1178 1153

Life 48187 33981 28433 15719 8131 7392 303585 114923 46828 46521

Linden 7198 4935 44215 2357 1197 1109 427000 16660 6403 6283

Sand 43435 31234 26010 13841 7468 6830 276080 102681 39063 38812

Table 4. Data structure sizes

lexical activity, allowing it to be specified and reasoned about

independently of the parsing technology.

There are also many cases in which on the fly LP disam-

biguation is safe. However, there are languages, such as PL/1

and the Fortran family, where keywords can be used as iden-

tifiers if the phrase level context ensures that the keyword

would not be valid at that point.

There are also languages where a keyword must be re-

turned even if it occurs in what in Java would be an identifier.

For example DOFRED should be lexicalised as ’DO’ ID. The
data in Table 3 suggests that using LM and not LP would not

result in many sentences that would need disambiguation

post-parse, and Table 4 indicates that the efficiency gain of

LP over LM is less significant than that of LM over NoD.

With the multi-lexing approach a language implementer can

investigate these trade-offs and make informed decisions

about an optimal place to set the divide between lexical and

phrase level disambiguation.

5 Concluding remarks
5.1 Related work
An initial version of multi-lexing and associated GLL pars-

ing is presented in [13]. The thesis includes a discussion of

lexical disambiguation and the GLL parser described accepts

a separately precomputed set of tokens with extents and

constructs an SPPF.

Aycock and Horspool [2] described an approach for deal-

ing with the specific case when two or more tokens share a

common lexeme, the situation that is commonly addressed by

token priority. Their motivating example was the language

PL/I in which keywords such as IF can also be identifier

names. The idea is that when a lexeme that matches more

than one token is found, a so-called Schrodinger token is

returned. When the parser reaches that token it decides, if it

can, which of the actual tokens to use based on the grammar

context. A general parser is used but only one token string

is actually parsed, so this is not multi-parsing.

In [4] and [5] a non-deterministic lexer for French is de-

scribed. The primary motivation is dealing with lexemes,

such as a priori, which can include spaces and may have

more than one lexicalisation. There is some investigation

into handling multiple lexicalisations but there is no for-

mal treatment; the methods used are specific to the French

translation application.

Scannerless parsing, using a grammar defined at charac-

ter level, has also been explored in depth the literature [10].

The tokens from the traditional representation appear as

non-terminals in the character level grammar and, unless on-

the-fly disambiguation is applied, the parser effectively con-

structs and parses all the original lexicalisations. The result-

ing grammar is highly ambiguous but the emergence of prac-

tical general parsing algorithms has allowed this approach

to implemented. For example, it is used in ASF+SDF [9] and

implemented in an SGLR parser [11] which is used in Strat-

ego/XT [12]. Rascal [7] also provides support for character

level parsing.

5.2 Summary
In this paper we have considered the possibility of mak-

ing the lexicalisation phase of compilation more powerful

by avoiding the need for the lexer to return a single token

string from the input character string. The naive approach

is to allow the lexer to return all possible lexicalisations, and

to parse each of them. However, the large number of lexical-

isations makes it impractical to parse each one individually,

but it is possible to share the parsing of common subparts.

This has the effect of reducing the number of tokens parsed

from the product of the number of lexicalisations of the com-

ponents to their sum. Our LCNP implementation used in

Section 4, which has not been optimised, parsed the 3× 10
758

non-disambiguated indexed lexicalisations of Life.java in

0.099 seconds.
A simple way to achieve shared parsing is to specify the

grammar at character level, and effectively use the parser

as the lexer. As we have practical worst case cubic parsers,

this makes the process worst case cubic in the length of the

character string, but in reality this is still very large. To im-

prove execution time some lexical disambiguation could be

applied so only a subset of all lexicalisations has to be parsed,

allowing a trade-off between flexibility and efficiency. This

is somewhat uncomfortable in the character level grammar

approach because lexical disambiguation techniques such as

longest match are hard to reason about in the case of context

11



1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

SLE 2019, October 20–22, 2019, Athens Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

free grammars. In practice what happens is that some non-

terminals are designated as ’lexical’ and the disambiguation

is applied only to their sublanguages. This illustrates the dis-

comfort associated with merging the lexical and phrase level

syntax of a language. Our approach retains the separation

between grammar terminals and the corresponding lexical

tokens but still permits the shared parsing obtained in the

character level parser. This has the advantage of allowing

the parser to use terminal level lookup, keeping lexical level

disambiguation separate from the context free grammar, and

allowing potentially more efficient lexer implementations,

such as linear time finite state automata based techniques.
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