
Feistel Structures for MPC, and more

Martin R. Albrecht1, Lorenzo Grassi2,3, Léo Perrin4, Sebastian Ramacher2,
Christian Rechberger2, Dragos Rotaru5,6, Arnab Roy5, and Markus

Schofnegger2 ?

1 Royal Holloway, University of London, UK
2 IAIK, Graz University of Technology, Austria

3 Know-Center GmbH, Graz, Austria
4 Inria, Paris, France

5 University of Bristol, Bristol, UK
6 imec-Cosic, Dept. Electrical Engineering, KU Leuven, Belgium

Abstract. Efficient PRP/PRFs are instrumental to the design of cryp-
tographic protocols. We investigate the design of dedicated PRP/PRFs
for three application areas - secure multiparty computation (MPC), ZK-
SNARK and zero-knowledge (ZK) based PQ signature schemes. In par-
ticular, we explore a family of PRFs which are generalizations of the
well-known Feistel design approach followed in a previously proposed
application specific design - MiMC. Attributing to this approach we call
our family of PRP/PRFs GMiMC.

In MPC applications, our construction shows improvements (over MiMC)
in throughput by a factor of more than 4 and simultaneously a 5-fold
reduction of preprocessing effort, albeit at the cost of a higher latency.
Another use-case where MiMC outperforms other designs, in SNARK ap-
plications, our design GMiMCHash shows moderate improvement. Ad-
ditionally, in this case our design benefits from the flexibility of using
smaller (prime) fields. In the area of recently proposed ZK-based PQ
signature schemes where MiMC was not competitive at all, our new de-
sign has 30 times smaller signature size than MiMC.

1 Introduction

Computing on Encrypted Data. Due to an increasing maturity of secure
multi-party computation, there are a couple of companies such as Partisia [48],

? L. Grassi has been partialy supported by EU H2020 project Safe-DEED, grant agree-
ment n◦825225. S. Ramacher has been partially supported by the Austrian Research
Promotion Agency (FFG) within the ICT of the future grants program, grant agree-
ment n◦863129 (project IoT4CPS), of the Federal Ministry for Transport, Innovation
and Technology (BMVIT) and by A-SIT Secure Information Technology Center Aus-
tria. D. Rotaru was supported by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) un-
der contract No. N66001-15-C-4070. Arnab Roy is supported by the EPSRC funding
under grant No. EPSRC EP/N011635/1

Sepior [51], Sharemind [16], Unbound [56] which try to incorporate MPC frame-
works into large projects to offer services where the companies do not need to
know the user inputs to be able to compute on them [10]. Since the complexity
of these systems grows, one must be able to incorporate encrypted databases
with an MPC system to deal with data in transit or at rest.

For example, the trivial way of storing outputs to be later used is for each
party in the MPC engine to encrypt their share using a (different) symmetric
key and post it to the database. Later on, when the parties have decided to
carry further computations on these shares they simply decrypt the ciphertexts
using their corresponding keys. Notice that for a given shared secret there are
N ciphertexts where N is the number of parties. This is where cryptographic
primitives such as block ciphers play an important role in storing outputs from
the MPC engine into an encrypted database: parties can engage in an MPC
protocol to compute an encryption of the share using a shared key. In this way,
parties jointly produce a single ciphertext rather than having N ciphertexts per
stored share.

If one chooses AES as the underlying primitive for the encryption scheme then
the share conversions become the bottleneck of MPC procedures when the under-
lying engine performs arithmetic modulo p. This is indeed the case for most of the
frameworks such as MP-SPDZ [7], SCALE-MAMBA [6], BDOZa [13], VIFF [27]
and conversion to their boolean counterpart with same security properties is an
expensive task. Hence, for efficient and secure computation of algorithms modulo
p we would like a blockcipher over the same field. Grassi et al. [35] give several
constructions for lightweight pseudorandom functions (PRFs) when evaluated
in a prime field of large characteristic and concluded that among various other
options MiMC [4] is competitive, which is the starting point of our design as
well.

Besides database storage, MPC-friendly PRFs can cover other use-cases as
well explored in [18,35]. These include searchable encryption, authenticated en-
cryption, oblivious RAM done in a distributed fashion using MPC and an effi-
cient PRF.

(ZK)SNARK. The most well-known use of (ZK)SNARK is in the area
of privacy/anonymity providing cryptocurrency. Zcash [11] is the most popu-
lar cryptocurrency which uses this protocol. Zcoin, Zencash are examples of
cryptocurrencies based on the (ZK)SNARK protocol. One of the performance
bottle-neck in these applications is the lack of “efficient” hash function over suit-
able (prime) field. In cryptocurrency protocols such hash functions are typically
used to insert the (hashed) coin values in a Merkle hash tree. In [4] it was shown
for the first time that a hash function designed over prime field are signifincantly
faster than SHA2 or SHA3 in SNARK setting. This almost directly speeds up
the performance of (ZK)SNARK-based protocols which use SHA2.

ZK-based Signature. Finally, we consider signature schemes based on zero-
knowledge proofs of a preimage of a one-way function. It was recently shown
that such schemes can be viable alternatives [22, 23] when instantiated with
symmetric primitives (to construct a one-way function) that have a low number

2

of multiplications. Public and private keys are minimized and only consist of a
plaintext-ciphertext pair and the secret key, respectively. On top of the post-
quantum security of the zero-knowledge proof system (see [21, 32] for recent
improvenets of its security analysis), the only hardness assumption required to
prove security is the one-wayness of the underlying function. Signature sizes
strongly depend on the product of the number of multiplications of the OWF and
the size of the field in which the multiplications are performed. The signature
and verification times depend on the details of the scheme in a less straight-
forward way. The block size of the instantiations we are interested in is around
256 bits.

Our Results. In this article, we continue exploring the construction strate-
gies of symmetric cryptography which benefit MPC, (ZK)SNARK and PQ sig-
nature applications. We generalize the design approach used in MiMC [4]. More
specifically, we use the unpopular design strategy (in symmetric cryptography) –
unbalanced Feistel network, and a new balanced Feistel network, for constructing
a new family of block ciphers – GMiMC (in Section 2.1) and use it to construct
the hash function GMiMCHash (in Section 2.2).
We show the performance of GMiMC in MPC applications based on secret
sharing techniques such as BDOZa [13], SPDZ [28] or VIFF [27]. Previous
works [35,49] did not take into account how to optimize the number of multipli-
cations per encrypted share and treated the PRF as a black-box when extending
to more inputs. We show that using our construction one can choose to encrypt
multiple shares at once thus amortizing the number of multiplications per share
and results in a more efficient preprocessing phase. We consider our work to be
beneficial when there is a large number of blocks to encrypt. From a theoretical
point of view two of our constructions are the first to avoid the linear increase
of time and data sent across the parties in the preprocessing phase with the
number of encrypted blocks (in Fp). Namely, the cost per encrypted share if we
encrypt more shares in one go. Details can be found in Section 6.1.
For (ZK)SNARK applications our design GMiMCHash provides the flexibility of
using prime field for smaller primes. For example, GMiMC can be used to obtain
a permutation of input size ≈ 1024-bit over 128 bit prime field. In MiMC, this
permutation could only be constructed using 1024 or 512-bit primes. Addition-
ally, GMiMCHash shows moedrate improvement in performance (see Section 6.2)
compared to MiMC.
In the case of the PQ signature scheme, LowMC [2,5] was considered to be clearly
the best choice for small signatures and runtimes. MiMC resulted in 10 times
larger and hence unpractical signature sizes. As we have shown in Section 6.3,
GMiMC is competitive with LowMC and far more efficient than MiMC. This
performance is due the flexibility of GMiMC in providing many different field
sizes by choosing different branch numbers.

Related Work. Recently, Agrawal et al. [1] considered the problem of
parties jointly computing a symmetric-key encryption using a distributed PRF
with implications to systems dealing with secret management [47] or enterprise
network authentication. Our approach is slightly different since it evaluates the

3

block-cipher inside the MPC engine. Our result is useful when clients can use it
as a standalone tool to encrypt data on their own to then make the encryption
compatible with the MPC storage as well.
Secure cryptographic primitives that require a low number of multiplications
have many applications. These primitives can reduce the cost of countermeasures
against various side-channel attacks [26, 36], eliminate the ciphertext expansion
in homomorphic encryption schemes [5,20,34,44,45], help dealing with encrypted
data in secure multi-party computation systems [5, 35, 49], increase throughput
or latency in SNARKs [4], and reduce the signature size of signature schemes and
(privacy-preserving) variants, e.g. ring and EPID group signature schemes, based
on one-way functions from symmetric-key primitives and non-interactive zero-
knowledge proofs [17,22,29,30,38]. Research efforts in this area are manifold and
cover questions on finding circuits for concrete mappings such as S-Boxes [19],
foundational theoretical results on the complexity of PRGs, PRFs, and crypto-
graphic hashes [8,9], and new ad-hoc designs of permutations, ciphers and hash
functions tailored for various multiplication-related metrics [4, 5, 20,44].

2 Description of Generalized MiMC

Notation. In a Feistel network, Xi−1 denotes the input to the branch i, where
1 ≤ i ≤ t. Xt−1 and X0 denote the inputs to the leftmost and rightmost branches
respectively. Xi ∈ F for a finite field F. The block size (in bits) of the keyed Feistel
permutation is denoted by N , while n = dlog2 |F|e denotes the branch size (in
bits). We write Fp for the finite prime field of order p. We write F2m for any
finite field of order 2m. The length of the key of a block cipher is given in number
of bits and is denoted by κ. In particular, through the paper we work with two
different cases (depending on the practical implementation), denoted as:

– the univariate case, for which the key-size is κ = n = dlog2 |F|e;
– the multivariate case, for which the key-size is κ = N = n · t = dlog2 |F|e · t .

2.1 The Block Cipher GMiMC

We construct “Generalized Feistel MiMC ” (GMiMC) variants from three gener-
alized Feistel networks, e.g., with contracting round function (CRF), expanding
round function (ERF), which are unbalanced Feistel networks and a new bal-
anced Fiestel network which we call Multi-Rotating (MR). Each of the following
constructions is a keyed permutation over F2n or Fp. The three main parameters
of the block ciphers are denoted by [κ, t, n]. For example, GMiMCcrf [4n, 4, n]
denotes the permutation GMiMC with CRF which has branch size n, key size
4n and number of branches 4. The descriptions of each block cipher over Fp are
obtained by replacing the XOR-sum ⊕ with the corresponding sum + modulo p.
We recall that S-Box(x) = x3 is a permutation in GF (2n) iff n is odd, while it
is a permutation in GF (p) iff p 6= 1 mod 3 (see “Hermite’s criterion” for more
details).

4

Fig. 1: One round UFN with CRF and ERF

FFFF · · ·

(a) UFN with CRF

F
· · ·

(b) UFN with ERF

GMiMCcrf An unbalanced Feistel network (UFN) with a contracting round
function (CRF) can be written as

(Xt−1, . . . , X0)← (Xt−2, . . . , X0, Xt−1 ⊕ F (Xt−2, . . . , X0))

where Xi is the input to the i-th branch of the Feistel network and F (·) is a
key-dependent function in round j, cf. Figure 1a. In GMiMCcrf we define the
j-th round function as

F (xt−2, . . . , x0) :=
(⊕

i

xi ⊕ kj ⊕ cj
)3

where cj and kj are respectively the round constant and the key of the round j
(for 1 ≤ j ≤ r).

GMiMCerf An unbalanced Feistel network with an expanding round function
(ERF) can be written as

(Xt−1, . . . , X0)← (Xt−2 ⊕ F (Xt−1), . . . , X0 ⊕ F (Xt−1), Xt−1)

where Xi is the input to the i-th branch of the Feistel network and F (·) is a
key-dependent function in round j, cf. Figure 1b. In GMiMCerf the j-th round
function is defined as

F (x) := (x⊕ kj ⊕ cj)3

where kj and cj are as in GMiMCcrf .

GMiMCmrf In [54], Suzaki and Minematsu introduced new variants of the GFN
structure where the linear mixing applied after the Feistel functions is a complex
permutation rather than a simple rotation. This allowed them to build GFNs
operating on t = 2b branches such that full diffusion is achieved in 2b rounds
rather than the 2t rounds needed by a Nyberg-style construction [46]. They later
used this approach to build the lightweight block cipher Twine [55].

Here, we introduce the Multi-Rotating structure for generalized Feistel net-
works, which provides full diffusion as quickly as a Twine-like structure without

5

F0

F1

F2

F3

Fig. 2: One round Rs of an 8-branch Multi-Rotating Feistel network with a
rotation by s = 2.

the constraint that the number of branches is a power of 2. It is also conceptually
much simpler and thus easier in practice to apply to a larger number of branches.
These improvements come at the cost of the use of a different mixing layer in
each round which, to the best of our knowledge, has not been considered for a
Feistel or generalized Feistel structure so far. However, we note that previously,
the Serpent designers (of SPN type) considered using different mixing layers in
each round in their design. In particular, they considered using a different linear
transformation for even and odd rounds (see [15, App. A.6]), before settling for
their current design.

To introduce the Multi-Rotating Feistel network structure, we first give a
general expression of its round function. A rotated Feistel round is a permutation
Rs parameterized by a rotation amount s which operates on an even number of
branches and works as follows:(

Xt−1, . . . , X0

)
←
(
Xt/2−1 + F−s(Xt−1−g(s,0)), . . . ,

X0 ⊕ Ft/2−1−s(Xt−1−g(s,t/2−1)), Xt−1, . . . , Xt/2

)
,

where the index of the function F (·) is taken modulo t/2 and g(s, i) = s + i
mod t/2. This process is summarized in Figure 2. Like in GMiMCNyb, each Fi
in the j-th round of GMiMCmrf is defined as

Fi(x) :=
(
x⊕ ki+j·t/2 ⊕ ci+j·t/2

)3
,

where ci+j·t/2 are distinct constants in round j and ki+j·t/2 are round keys.
By iterating such rounds Rs for varying values of s we obtain a block cipher.
An instance of such an r-round block cipher is specified using the sequence
{s0, ..., sr−1} of the r rotation amounts used. As explained in [3, App. B], it is
possible to build a GFN with optimal diffusion by choosing the sequence {sj}j<r
carefully.

We build a GMiMCmrf instance operating on t branches using a sequence of
rotations {sj}0≤j<r where

s2` = 0 and s2`+1 = 2` (mod dlog2(t/2)e) . (1)

6

For instance, if t = 32, then log2(t/2) = 4 and this sequence can be written
as {0, 1, 0, 2, 0, 4, 0, 8, 0, 1, 0, 2, 0, 4, 0, 8, 0, 1, ...}, i.e. it consists in as many repe-
titions as needed of the pattern {0, 1, 0, 2, 0, 4, 0, 8} of length 2 log2(t/2) = 8.

To better understand the security of GMiMCmrf , we now investigate its dif-
fusion. We borrow our definition of diffusion from [54]: if a variable y intervenes
in the expression of an internal state word X then we say that X depends on y.
If all output words of a (round-reduced) block cipher depend on all input words,
we say that this primitive provides full diffusion.

The diffusion provided by GMiMCmrf using the sequence of rotations from
Equation (1) is quantified by the following Theorem, proved in [3, App. B].

Theorem 1. Let Xi
j denote the word with index j at the input of round i,

so that for example X0
j denotes a plaintext word. Consider a GMiMCmrf in-

stance operating on t branches with the rotation sequence in Equation 1. If
i ≥ 2dlog2(t)e, then Xi

j depends on X0
j′ for any j, j′. The same is true in

the backwards direction. In other words, GMiMCmrf provides full diffusion af-
ter 2dlog2(t)e rounds.

Key Schedule When |k| = n (i.e. the univariate case), then ki = k ∀i. The key
schedule for the multivariate case |k| = t × n is a little more complicated. Let
k = k0||k1|| . . . ||kt−1, and let M be an invertible t × t matrix with elements in
F2n or Fp that satisfies the following condition:

– ∀i : 1 ≤ i ≤ dR/te where R is the number of rounds:7

M i[j, l] ≡ (M ×M ××M︸ ︷︷ ︸
i-th times

)[j, l] 6= 0

for all 0 ≤ j, l < t, where X[j, l] denotes the coefficient in row j and column
l of the matrix X.

For each 1 ≤ i ≤ dR/te let

[ki·t||ki·t+1|| . . . ||k(i+1)·t−2||k(i+1)·t−1]T =

M × [k(i−1)·t||k(i−1)·t+1|| . . . ||ki·t−2||ki·t−1]T .

The second condition on M guarantees that each subkey depends linearly on all
the first t subkeys. This fact has an important consequence. Consider GMiMCcrf

and/or GMiMCerf instantiated with a key schedule that uses the subkeys cycli-

cally, i.e. ki,j = k̂j·t/2+i (mod t). If the attacker guesses t − 1 subkeys, then she
can potentially skip both the first and the last t− 1 rounds. Instead, in the case
in which each subkey depends linearly on all the first t subkeys, this strategy
simply does not apply. As a result, the proposed key schedule allows to save a
certain number of rounds (approximately t − 1) w.r.t. a key schedule that uses
the subkeys cyclically. Similar argumentation holds for GMiMCmrf .

7 If no matrix exists that satisfies such condition, choose a matrix M for which the
total number of zero coefficients for each M i is minimum.

7

Round Constants and Number of Rounds For all the above constructions the
round constants are generated randomly over the suitable field and fixed. The
number of rounds for each of the above block ciphers is chosen to thwart the
cryptanalytic attacks mentioned in Section 4. In this article we only provide the
number of rounds for the variants which are used in the target applications in
Section 6. For the generic formulae of the number of rounds (depending on t, n
or p) we refer to the [3].

2.2 Hash Function

To construct the hash function GMiMCHash (over Fp), we use one of the struc-
tures, e.g. the GMiMCerf , with fixed (arbitrary) subkeys.8 Denoting the fixed key
permutation as GMiMCπerf [κ, t, n], GMiMCHash is constructed by instantiating
a sponge construction [14] with GMiMCπerf [κ, t, n]. The number of rounds of the
permutation GMiMC is chosen according to the univariate case 2κ = 2n ≈ p.

When the internal permutation P of an N -bit sponge function (composed of
c-bit capacity and r-bit bitrate – N = c + r) is modeled as a randomly chosen
permutation, it has been proven by Bertoni et al. [14] to be indifferentiable
from a random oracle up to 2c/2 calls to P. In other words, a sponge with a
capacity of c provides 2c/2 collision and 2c/2 (second) preimage resistance. Given
a permutation of size N and a desired security level s, we can hash r = N − 2s
bits per call to the permutation.

As usual, the message is first padded according to the sponge specification so
that the number of message blocks is a multiple of r, where r is the rate in sponge
mode. For GMiMCHash-l we use a GMiMC permutation where N = n·t = 4·l+1
and s = 2 · l. For GMiMCHash-256 we thus use a GMiMC permutation with
N = n · t = 1024 or 1025. The rate and the capacity are chosen as 512 and
513 respectively. This choice allows for processing the same amount of input
bits as SHA-256 (512 bits) while at the same time offering collision security nd
preimage security of 256 bits. We highlight that while we could use any of the
GMiMC constructions, GMiMCerf turns out to be the most efficient choice in
several settings as shown in Section 6.2.

3 Security Analysis

We have performed an in-depth security analysis of the GMiMC family of block
ciphers (and hash function). In this article we only provide ideas of the most
important attacks (in Section 4) which are decisive to the design. Due to the
page constraint we refer to the extended version [3] of this article for the details
of the analyses.

8 We emphasize that no key schedule is required in this case, since there is no secret-
key material.

8

Important Remark Due to our target applications, here we limit ourselves to
provide the number of rounds to guarantee security only in the following two
scenarios:

– GMiMC instantiated over Fp with prime size 128 or more (used in SNARKs
and MPC applications);

– GMiMC instantiated over F2n in the low-data scenario (used for application
like PQ-Signature Scheme).

We stress that this choice is motivated by the fact that we focus only on the
scenarios that are useful for our applications.

For some applications like PQ-Signature scheme, the attacker has a limited
access to data (e.g. 1 or 2 (plaintext, ciphertext) pairs) as a result, only few
attacks (e.g. the GCD one) apply to this case. The security analysis for this
particular case is over F2n and proposed in [3, Sect. 5]. As the attacker can have
access to few (plaintext, ciphertext) pairs, only few attacks (e.g. the GCD one)
apply to this case.

Analysis of GMiMCHash over Fp For the hash function GMiMCHash case,
the number of rounds of the inner permutation is chosen according to the cor-
responding univariate case. This is due to the following considerations. First, as
we just recalled in the previous section, when the internal permutation P of an
N = c+r bit sponge function is modeled as a randomly chosen permutation, the
sponge hash function is indifferentiable from a random oracle up to 2c/2 calls to
P. The numbers of rounds of the univariate case is sufficient to guarantee secu-
rity against any (secret-/known-/chosen-) distinguisher which is independent of
the key. Equivalently, this means that such number of rounds guarantee that P
does not present any non-random/structural property (among the ones known
in the literature). It follows that the previous assumption is satisfied. These and
the fact that every key-recovery attack is meaningless in the hash scenario sup-
port our choice to consider the univariate case in order to determine the number
of rounds of the inner permutation.

4 Security Analysis of GMiMC (over Fp)

Almost all the attacks are independent of the fact that (a) the size of the key is
equal to the branch size κ = n (equivalently, 2κ ' p for the Fp case) or (b) equal
to κ = N = t · n (equivalently, 2κ ' pt for the Fp case). Since the cryptanalysis
strategy of the three designs are very similar, in the following we give a complete
analysis only for GMiMCcrf , while we refer to [3, App. C - D] for the analysis of
the other proposals.

4.1 Algebraic Attacks

In this section, we consider algebraic attacks against GMiMC. These attacks are
particularly relevant for applications in which the attacker has access only to a
limited number of (plaintext, ciphertext) pairs available to the attacker.

9

A main element in all these attacks is the degree reached in each of our con-
structions after r rounds. Here we give an idea of the analysis for the GMiMCcrf

(similar for all other constructions).
For all (algebraic) attacks in the following, we only care about the minimum

degree after round r on the t− 1 branch:

dt−1,t−1 = 3r−2t+2.

The degree of each word of the plaintext in the t-branch is given by a similar
formula ([3, Sec. 4.1]) both for the univariate and multivariate cases.

GCD Attack. As for the original MiMC [4], an attack strategy against GMiMC
is to compute the Greatest Common Divisors (GCD). In particular, given more
than one known (plaintext, ciphertext) pair or even working on the output of
different branches of a single known (plaintext, ciphertext) pair, one can con-
struct their polynomial representations and compute their polynomial GCD to
recover a multiple of the key.9 Note that this is a known-plaintext attack, and
not a chosen-plaintext one, and it is one of the few attacks that applies in the
low-data scenario. Since interpolation attack is more efficient than GCD attack
(from the attacker point of view), we discuss all details of this attack in [3, Sec.
5.1 - App. C.4], together with other low-data attacks.

Gröbner Bases. The natural generalization of GCDs to the multivariate case
is the notion of a Gröbner basis [25]. The attack proceeds like the GCD attack
with the final GCD computation replaced by a Gröbner basis computation. Due
to the Feistel structure, we highlight that it is possible to construct multivariate
“meet-in-the-middle” polynomials. Here we only give the summary of the attack.
The details of the attack is given in the extended version [3] of this article.

GMiMCcrf (Case: 2κ ' pt). To prevent the Gröbner basis attack, the minimum

number of rounds r must satisfy pϕ ·
(
t−ϕ+d−1
d−1

)ω ≥ pt, for all ϕ ∈ {0, . . . , t− 2},
where the degree d is a function of the number of rounds r, that is, d = d(r)
and 2 ≤ ω < 3 is the linear algebra constant. For our parameter choices, this
expression is minimized for ϕ = 0. We thus require(

t+ d

d

)ω
=

(
t+ 3r−2t+2

3r−2t+2

)ω
≈ pt.

By setting ω = 2 and after simplifying [3, Sec. 4.1] the above expression we
obtain

r = d2t+ 1/2 log2(p) · log3 2− 2 + log3 te .

To thwart Meet-in-the-Middle attacks, this value is doubled.

9 Improving the computational complexity of this attack using more pairs is an open
problem. Since the cost is dominated by the size of the polynomials involved, it is
not clear if significant improvements are possible.

10

Interpolation Attack. As for the original MiMC, one of the most powerful
attacks against the GMiMC family is the interpolation attack, introduced by
Jakobsen and Knudsen [37] in 1997. This method can be extended to a key-
recovery attack.

GMiMCcrf is secure against interpolation attack if (3r−2t+2)t ≈ 2N ' pt.

Hence, r = log2(p)
log2 3 + (2t− 2) rounds will be secure against the above-mentioned

attacks. Conservatively, 2r+ 2 rounds will be secure against meet-in-the-middle
attacks/distinguishers for the case 2κ ' p, while 2r+ t+ 1 rounds will be secure
against meet-in-the-middle attacks/distinguishers for the case 2κ ' pt.

Higher-Order Differential. Let A be an affine space. Higher-order differential
attacks [41] exploit the fact that

⊕
x∈A P (x) = 0 if the dimension of A is higher

than the degree of P (·). To thwart higher-order differential attacks, the number
of rounds must be chosen in order to ensure that the algebraic degree of the
GMiMC family of block ciphers is bigger than the biggest subspace in F.

Due to the strategy exploited by the higher-order differential attack, there
is a crucial difference between the cases F2N and Fp. In particular, while F2m is
always a subspace of F2n for each m ≤ n, the only subspaces of Fp are {0} and

Fp. It follows that the biggest subspace of
(
Fp
)t

has dimension t, with respect

to the biggest subspace of
(
F2n)t, which has dimension n · t = N . As shown

in details in [3], the number of rounds previously given (necessary to protect
GMiMC w.r.t. previous attacks) guarantees security against this attack.

4.2 Statistical Attacks

All the statistical attacks which we have considered can be carried out in the
same way over Fp or/and over F2n against reduced round GMiMC. We analyzed
the security of GMiMC against classical and truncated differential, linear, and
impossible differential attacks. Since this type of attacks does not provide more
advantage compared to the algebraic attacks, we skip the details. We refer the
interested readers to the extended version of this article [3] for the details of the
aforementioned analyses.

4.3 Other Attacks

We claim that GMiMC instantiated using the number of rounds of the univari-
ate case10 is secure in the known- and chosen-key model. In particular, such
permutation is used in order to construct the hash function using the sponge
construction. We recall that the (required) indifferentiable of the internal permu-
tation of a sponge function from a random oracle - for a fixed key - is equivalent
to the security of GMiMC in the known- and chosen-key model.

10 The number of rounds in this case is given considering the number of rounds of any
possible distinguisher - which is independent of the secret key - in the MitM scenario
plus a secure margin. Since the key is fixed in the known- and chosen-key model,
this number of rounds provides the security in these scenarios.

11

Finally we explicitly state that we do not have claims in the related-key
model as we do not consider it to be relevant for the intended use case.

Quantum Improvements. In a post-quantum setting, the cost of exhaustive
key search is square rooted by Grovers’ algorithm. Statistical attacks remain
unchanged (except perhaps their computational part). The quantum interpo-
lation attack gives no significant advantage to the adversary since the attack
requires d/2 queries, where d is the degree of the polynomial [24]. It is not clear
that Grover’s algorithm can help to improve the GCD attack. The attack cost
O(d · log2 d) operations on inputs of size d. Thus, even with the square root
reduction the attacker will still need to write the inputs of size d as classically;
a similar argument holds for Gröbner basis attacks.

Finally, since we are here interested in post-quantum security of classical
schemes and not in the security of symmetric primitives running on a quantum
computer themselves, better attacks are known using Simon’s algorithm [33].

5 Parameter-Space Exploration

We compared the effects of different parameters in our Feistel-based construc-
tions with block size N . We compared the parameters of the GMiMC whithin
the range of the values in the three different applications e.g. length of the prime
or n, number of branches t and number of rounds R. The main purpose of this
comparison is to identify the optimal range of values for these parameters when
the block size is fixed.

Both GMiMCcrf and GMiMCerf have only one multiplication at each round
while GMiMCmrf has t/2 multiplications per round. By our analysis, it turns
out that GMiMCerf is always more efficient than GMiMCcrf and GMiMCmrf ,
since it always requires a lower number of rounds to be secure. In this article we
only provide the performance of the best candidate for the target applications.
For a more generic discussion of the different parameters and their effect on the
multiplicative complexity we refer to the [3, Sec. 6].

6 Implementation results

6.1 MPC Setting

Security Model. Our protocols are built to support the SPDZ-family protocols
which guarantee security even when there is a dishonest majority of parties
involved in the computation [13, 28]. This means that we support an arbitrary
number n of computing parties and an adversary can corrupt up to n−1 parties.

The implementation is written in a high-level language similar to Python
[40] and is compatible with MP-SPDZ [7] and SCALE-MAMBA [6]. We have
benchmarked the protocols using the SPDZ framework 11, which provides active
security against multiple malicious parties.

11 https://github.com/bristolcrypto/SPDZ-2

12

https://github.com/bristolcrypto/SPDZ-2

To compute a circuit with secret shared inputs in SPDZ, there are two generic
phases. The first step is to produce random Beaver triples, also called the prepro-
cessing phase, which is independent of the inputs and can be done in advance.
The second step is the online phase, which consumes a triple whenever there
is a multiplication between shared values. Additions of secret values and scalar
multiplications are (almost) for free in SPDZ. The protocols ran across two com-
puters with Intel i7-4790 CPUs at 3.60GHz and 16GB of RAM connected via a
1 GB/s LAN network and an average round-trip time of 0.3 ms (see Table 1).
In our setting, both keys and messages are secret shared between the two par-
ties and each experiment was averaged among five executions with at least 1000
block cipher calls.

Mode (t,R) Online cost Prep (ms)

Comm.
rounds

Openings Latency
(ms)/Fp

Throughput
Fp/s

GMiMCcrf

4

178 534 3.65 15026 2.96

GMiMCerf 172 516 3.55 15669 2.86

GMiMCmrf 175 525 3.62 8194 5.83

MiMC 4 blocks 73 876 1.58 9965 4.86

GMiMCcrf

16

238 714 1.21 39247 0.99

GMiMCerf 208 624 1.06 49006 0.86

GMiMCmrf 183 549 1.02 8440 6.1

MiMC 16 blocks 73 3504 0.47 10780 4.86

Table 1: Two-party costs for MiMC and GMiMC over a 1Gb/s LAN network with
an average ping time of 0.3ms. The variable t denotes the number of branches
for GMiMC and no. of blocks for MiMC, whereas R is the number of cipher
rounds.

For a complete measurement of an MPC protocol, one needs to have in
mind both preprocessing and online phases. The preprocessing phase cost is
determined by the number of secret shared multiplications. Performance of the
online phase is given by the multiplicative depth of the circuit to be evaluated
as well as the number of openings (whenever a party reveals a secret value).
For the online phase we give measurements in terms of latency and throughput.
Latency indicates the minimum time spent for computing one encrypted Fp
block, whereas throughput shows the maximum Fp objects that can be encrypted
in parallel per second. Since the only non-linear operation we use in our block
ciphers is x 7→ x3, this is done with three openings and two Beaver triples
(for details see [49]). We instantiate each block cipher with 8 and 64 input
blocks/branches, where each block lies in Fp and p ≈ 2128. Note that for GMiMC
constructions in MPC we have used an n-bit key. For a fair comparison with
previous evaluations of MiMC in SPDZ, the online phase runs on a single thread.

The preprocessing column (Prep, Table 1) denotes the amount of time re-
quired to generate the triples for a single block cipher evaluation (4 or 16 en-

13

crypted blocks/branches) in a two party SPDZ protocol. The figures for this
column were estimated using the recent protocol by Keller et al. [39] which is
the fastest known protocol for SPDZ triples. We used the LowGear protocol with
computational security 128 and 64 bit statistical security.

Experiments (Table 1) show that GMiMCcrf and GMiMCerf have a very fast
preprocessing phase because they perform a low number of multiplications. A big
advantage of these two is how well they scale in terms of triples used, since they
require one multiplication per cipher iteration. This is in contrast with MiMC,
where increasing the number of blocks to be encrypted by a factor of c results
in c times more multiplications. We stress that these two constructions are first
to our knowledge which avoid the linear increase of pre-processing data with the
number of blocks. To give an example of this behavior consider the case of 16
blocks for the preprocessing column (Table 1) for GMiMCerf is 5.5 times smaller
than MiMC: 0.86ms vs. 4.86ms. We can see that GMiMCcrf and GMiMCerf have
a higher online throughput compared to the rest of the variants, although they
have a higher larger number of communication rounds. The reason is that fewer
openings - or multiplications in our case - mean less data sent between the parties
so we can batch more executions in parallel. Thus in a LAN network the number
of rounds has a minor impact. As for the WAN results, as expected MiMC pre-
processing phase induces a large cost but the online phase is slightly faster than
our proposed ciphers. The interested reader can find the experiments on a slow
network in the full version of our paper [3].

6.2 SNARKs

The rank-1 constraints (r1cs) in SNARK is defined in [12] as a system of bilinear
equations over a field F. The number of rank-1 constraints (r1cs) for a function
contributes to the efficiency of the SNARK algorithm [4]. In this setting we
count the number of multiplications required to generate the values of witness
variables defined in [12]. We describe the r1cs for GMiMCcrf in Appendix A. For
the other two construction it can be constructed similarly.

We implemented all three constructions in a SNARK setting using NTL [52]
for the permutations and hash functions. GMiMCerf shows the best performance
among the 3 constructions and we only show its performance result in Table 2.
We also compared the performance with MiMC. For N ≈ 1024-bit (prime) block
size GMiMCerf [N, t, n], where t = 8, shows some improvement over MiMC-1025.
For hashing a single message block, GMiMCHash-256 is more than 1.2 times
faster than MiMCHash-256 and is significantly (> 12 times) faster than SHA-
256. We stress that in comparison with MiMCHash the primary advantage of
GMiMCerfHash is that it can be used over 256 bit or smaller field size. For all
the field operations we have used the NTL together with the gf2x library. All
the computations were performed on a system having an Intel Core i7-4790 with
3.6 GHz processor with 16 GB memory. We took the average time over ≈ 2000
iterations. The last column in the Table 2 is mainly to demonstrate the perfor-
mance of the design in a smaller field (below 128 bit prime).

14

MiMC [4] GMiMCerf

(t, log2(p), R) (1, 1024, 646) (2, 513, 647) (4, 256, 332) (8, 128, 178) (16, 64, 141)

constraint generation 4.553 ms 5.077 ms 4.735 ms 4.732 ms 8.057 ms

witness generation 1.079 ms 0.639 ms 0.388 ms 0.296 ms 0.449 ms

total time 5.632 ms 5.716 ms 5.123 ms 5.028 ms 8.507 ms

#additions 646 1293 996 1246 2115

#multiplications 1293 1293 664 356 282

Table 2: Comparison of MiMC with GMiMCerf (with different numbers of
branches) in SNARK in Fp when the block size is 1024 bits.

Note that the number of constraints for GMiMCHash-256 is only one more
than the number of constraints for GMiMCerf . Hence the time taken by the hash
function and the permutation with fixed key are the same (in Table 2).

6.3 Post-Quantum Signatures

Picnic [22] is a new class of digital signature schemes which derive their security
entirely from the security of symmetric-key primitives, have extremely small key
pairs, and are highly parameterizable. The construction is based on a one-way
function f , where for the secret key x the image y = f(x) is published as the
public key. A signature on a message is then obtained from a non-interactive zero-
knowledge proof of the relation y = f(x), that incorporates the message in the
challenge generation. This proof uses ZKB++, a Σ-protocol for statements over
general circuits made non-interactive. When instantiating f with LowMC [2,5],
reducing the signature size by reducing the number of multiplication gates comes
at the cost of a more expensive linear layer, which leads to a runtime vs. signa-
ture size trade-off. Since the security proofs in [22] only require a block cipher
with a reduced data complexity of 1, the overall performance can be greatly
improved as this fact allows to choose instances with less rounds. For the 128-
bit PQ security level (i.e., 256-bit block size and key size) a good trade-off can
be found by using 10 S-Boxes and 38 rounds, resulting in a view size of 1140 bits.

We implemented the signature scheme using GMiMCerf with key size and
block size of ≈ 256 bits to build the one-way function. We consider instances
with a data complexity of 1. The reduction steps of the modular multiplications
were accelerated by using special prime moduli and irreducible polynomials of
special form for prime fields and binary fields, respectively: generalized Mersenne
primes [53] were used for prime fields and trinomials and pentanomials with
middle terms close to each other [50] were used for binary fields.

In Table 3, we compare the circuit runtimes (i.e., runtimes without proto-
col overheads such as pseudo-random number sampling and the computation
of commitments) of MiMC and GMiMCerf with different numbers of branches
benchmarked on an Intel Core i7-4790 with 3.6 GHz. We also include the view

15

Scheme (n, t, R) Sign Verify View size

MiMC [4] (256, 1, 162) 333.97 ms 166.28 ms 83456 bits

(272, 1, 172) 92.45 ms 46.32 ms 94112 bits

GMiMCerf over Fp (3, 86, 261) 97.32 ms 72.06 ms 1566 bits

(4, 64, 196) 62.35 ms 45.16 ms 1568 bits

(32, 8, 55) 4.95 ms 3.05 ms 3520 bits

(136, 2, 163) 67.51 ms 35.21 ms 44336 bits

GMiMCerf over F2n (3, 86, 261) 16.06 ms 10.76 ms 783 bits

(17, 16, 63) 3.73 ms 2.30 ms 1071 bits

(33, 8, 56) 3.34 ms 2.29 ms 1848 bits

LowMC-(256, 10, 38) - 3.74 ms 3.52 ms 1140 bits

LowMC-(256, 1, 363) - 9.55 ms 7.12 ms 1089 bits

Table 3: Comparison of MiMC with GMiMCerf and LowMC [5] when the block
size is ≈ 256 bits in the context of ZKB++. In LowMC-(N,m,R), N denotes
the block size, m is the number of S-Boxes, and R denotes the number of rounds.
Runtimes given for Sign and Verify are for the circuit computations only.

size required per repetition of ZKB++, and numbers for two instances of LowMC
using optimizations for the round key computations and linear layer [31]. Mea-
suring only the circuit runtimes allows us to obtain a more accurate comparison
in terms of computation time, which directly relates to the total runtime of the
protocol, whereas the view sizes directly related and to the signature size.

Instantiations using F2n tend to perform better than the comparable param-
eterizations in Fp for mainly two reasons: in F2n additions do not require reduc-
tions, the cubing operation can be implemented with only one multiplication.
In any case, even for very small fields with slower runtime, GMiMCerf performs
significantly better in terms of view size and runtime than MiMC. Compared to
LowMC, choosing an instance over F23 allows us to beat the smallest signatures
sizes obtainable using LowMC with one S-Box by 306 bits in terms of view size.
We also note that both signing and verification times are smaller when using
instances providing a good trade-off (i.e., setting n = 17 or n = 33), and view
sizes can be kept small too.

7 Discussion and Open Problems

One key take-away of this work is that, when it comes to building structures in
symmetric cryptography with MPC and related applications in mind, there are
old and prematurely discarded ideas that are worthwhile to revisit.

Unbalanced Feistel networks appeared in the late 1980s and have rarely been
used in recent designs. As an illustration, consider that among all the lightweight

16

block cipher designs listed on the CryptoLux lightweight block cipher wiki,12 7
are Type-II GFNs and 10 are balanced Feistel networks, whereas none is of the
UFN or ERF type. And yet exactly those types turn out to be the best in our
setting. The structure of MiMC is strongly related to a design from the mid
1990s, which in recent textbooks [42, Sect. 8.4] was even shown as an example
of how not to design a cipher. However, it has turned out to be very good
in many applications where multiplicative complexity matters. It may well be
that the Cryptographers had lost interest in the UBF or never considered it
a reasonable option and yet it is the best in several of our specific use cases.
This naturally raises the question: What are other known but out-of-fashion
structures which might be very suitable for MPC, SNARKs, PQ signatures or
related applications?

In this paper our focus was on constructions that can natively deal with
elements of fields in large characteristic. For other use-cases, binary extension
fields may be interested. For this, we leave a general security analysis (especially
concerning higher-order differential attacks) as an open future problem.13

References

1. S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal. DiSE: Distributed
symmetric-key encryption. In Lie et al. [43], pages 1993–2010.

2. M. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers
for MPC and FHE. Cryptology ePrint Archive, Report 2016/687, 2016. http:

//eprint.iacr.org/2016/687.
3. M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru,

A. Roy, and M. Schofnegger. Feistel structures for mpc, and more. Cryptology
ePrint Archive, Report 2019/397, 2019. https://eprint.iacr.org/2019/397.

4. M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In
J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 191–219. Springer, Heidelberg, Dec. 2016.

5. M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers
for MPC and FHE. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 430–454. Springer, Heidelberg, Apr. 2015.

6. A. Aly, M. Keller, E. Orsini, D. Rotaru, P. Scholl, N. Smart, and T. Wood. Scale-
mamba v1.3 : Documentation, 2018. https://homes.esat.kuleuven.be/~nsmart/
SCALE/.

7. N. Analytics. MP-SPDZ, 2019. https://github.com/n1analytics/MP-SPDZ.
8. B. Applebaum, N. Haramaty, Y. Ishai, E. Kushilevitz, and V. Vaikuntanathan.

Low-Complexity Cryptographic Hash Functions. In 8th Innovations in Theoretical
Computer Science Conference – ITCS 2017, volume 67 of LIPIcs, pages 7:1–7:31.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

9. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM J.
Comput., 36(4):845–888, 2006.

12 https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers
13 Our ZKBoo use-case uses such fields, but the analysis we provide is rather specific

to the needed low data-complexity security requirements

17

http://eprint.iacr.org/2016/687
http://eprint.iacr.org/2016/687
https://eprint.iacr.org/2019/397
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://github.com/n1analytics/MP-SPDZ
https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers

10. D. W. Archer, D. Bogdanov, L. Kamm, Y. Lindell, K. Nielsen, J. I. Pagter, N. P.
Smart, and R. N. Wright. From keys to databases – real-world applications of
secure multi-party computation. Cryptology ePrint Archive, Report 2018/450,
2018. https://eprint.iacr.org/2018/450.

11. E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Sympo-
sium on Security and Privacy, pages 459–474. IEEE Computer Society Press, May
2014.

12. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In R. Canetti and
J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108.
Springer, Heidelberg, Aug. 2013.

13. R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryp-
tion and multiparty computation. In K. G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 169–188. Springer, Heidelberg, May 2011.

14. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability
of the sponge construction. In N. P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 181–197. Springer, Heidelberg, Apr. 2008.

15. E. Biham, R. Anderson, and L. Knudsen. Serpent: A new block cipher proposal.
In FSE 1998, pages 222–238, 1998.

16. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-
preserving computations. In S. Jajodia and J. López, editors, ESORICS 2008,
volume 5283 of LNCS, pages 192–206. Springer, Heidelberg, Oct. 2008.

17. D. Boneh, S. Eskandarian, and B. Fisch. Post-quantum EPID signatures from
symmetric primitives. In CT-RSA, volume 11405 of Lecture Notes in Computer
Science, pages 251–271. Springer, 2019.

18. D. Boneh, Y. Ishai, A. Passelègue, A. Sahai, and D. J. Wu. Exploring crypto dark
matter. In Theory of Cryptography Conference, pages 699–729. Springer, 2018.

19. J. Boyar, R. Peralta, and D. Pochuev. On the multiplicative complexity of Boolean
functions over the basis (cap, +, 1). Theor. Comput. Sci., 2000.

20. A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier,
and R. Sirdey. Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In T. Peyrin, editor, FSE 2016, volume 9783 of LNCS,
pages 313–333. Springer, Heidelberg, Mar. 2016.

21. A. Chailloux. Quantum security of the fiat-shamir transform of commit and open
protocols. IACR Cryptology ePrint Archive, 2019:699, 2019.

22. M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Sla-
manig, and G. Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In B. M. Thuraisingham, D. Evans, T. Malkin, and
D. Xu, editors, ACM CCS 17, pages 1825–1842. ACM Press, Oct. / Nov. 2017.

23. M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Sla-
manig, and G. Zaverucha. The Picnic Signature Algorithm Specification, 2017.
https://github.com/Microsoft/Picnic/blob/master/spec.pdf.

24. A. M. Childs, W. van Dam, S. Hung, and I. E. Shparlinski. Optimal quantum
algorithm for polynomial interpolation. In ICALP, volume 55 of LIPIcs, pages
16:1–16:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

25. D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms - an in-
troduction to computational algebraic geometry and commutative algebra (2. ed.).
Undergraduate texts in mathematics. Springer, 1997.

26. J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen. Nessie Proposal:
NOEKEON, 2000. http://gro.noekeon.org/Noekeon-spec.pdf.

18

https://eprint.iacr.org/2018/450
https://github.com/Microsoft/Picnic/blob/master/spec.pdf
http://gro.noekeon.org/Noekeon-spec.pdf

27. I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous multiparty
computation: Theory and implementation. In S. Jarecki and G. Tsudik, editors,
PKC 2009, volume 5443 of LNCS, pages 160–179. Springer, Heidelberg, Mar. 2009.

28. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In R. Safavi-Naini and R. Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, Aug.
2012.

29. D. Derler, S. Ramacher, and D. Slamanig. Generic double-authentication pre-
venting signatures and a post-quantum instantiation. In J. Baek, W. Susilo, and
J. Kim, editors, ProvSec 2018, volume 11192 of LNCS, pages 258–276. Springer,
Heidelberg, Oct. 2018.

30. D. Derler, S. Ramacher, and D. Slamanig. Post-Quantum Zero-Knowledge Proofs
for Accumulators with Applications to Ring Signatures from Symmetric-Key Prim-
itives. In Post-Quantum Cryptography – PQCrypto 2018, volume 10786 of LNCS,
pages 419–440. Springer, 2018.

31. I. Dinur, D. Kales, A. Promitzer, S. Ramacher, and C. Rechberger. Linear equiv-
alence of block ciphers with partial non-linear layers: Application to lowmc. In
EUROCRYPT (1), volume 11476 of Lecture Notes in Computer Science, pages
343–372. Springer, 2019.

32. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the fiat-shamir transfor-
mation in the quantum random-oracle model. IACR Cryptology ePrint Archive,
2019:190, 2019.

33. X. Dong, Z. Li, and X. Wang. Quantum cryptanalysis on some generalized Feistel
schemes. Cryptology ePrint Archive, Report 2017/1249, 2017. https://eprint.

iacr.org/2017/1249.
34. Y. Doröz, A. Shahverdi, T. Eisenbarth, and B. Sunar. Toward practical homomor-

phic evaluation of block ciphers using prince. In R. Böhme, M. Brenner, T. Moore,
and M. Smith, editors, FC 2014 Workshops, volume 8438 of LNCS, pages 208–220.
Springer, Heidelberg, Mar. 2014.

35. L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart. MPC-friendly
symmetric key primitives. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.
Myers, and S. Halevi, editors, ACM CCS 16, pages 430–443. ACM Press, Oct.
2016.

36. V. Grosso, G. Leurent, F.-X. Standaert, and K. Varici. LS-designs: Bitslice encryp-
tion for efficient masked software implementations. In C. Cid and C. Rechberger,
editors, FSE 2014, volume 8540 of LNCS, pages 18–37. Springer, Heidelberg, Mar.
2015.

37. T. Jakobsen and L. R. Knudsen. The interpolation attack on block ciphers. In
E. Biham, editor, FSE’97, volume 1267 of LNCS, pages 28–40. Springer, Heidel-
berg, Jan. 1997.

38. J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge
with applications to post-quantum signatures. In Lie et al. [43], pages 525–537.

39. M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ Great Again.
In Advances in Cryptology – EUROCRYPT 2018, volume 10822 of LNCS, pages
158–189. Springer, 2018.

40. M. Keller, P. Scholl, and N. P. Smart. An architecture for practical actively secure
MPC with dishonest majority. In A.-R. Sadeghi, V. D. Gligor, and M. Yung,
editors, ACM CCS 13, pages 549–560. ACM Press, Nov. 2013.

41. L. R. Knudsen. Truncated and higher order differentials. In B. Preneel, editor,
FSE’94, volume 1008 of LNCS, pages 196–211. Springer, Heidelberg, Dec. 1995.

19

https://eprint.iacr.org/2017/1249
https://eprint.iacr.org/2017/1249

42. L. R. Knudsen and M. J. B. Robshaw. The Block Cipher Companion. Springer
Publishing Company, Incorporated, 2011.

43. D. Lie, M. Mannan, M. Backes, and X. Wang, editors. ACM CCS 18. ACM Press,
Oct. 2018.

44. P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet. Towards stream ciphers
for efficient FHE with low-noise ciphertexts. In M. Fischlin and J.-S. Coron, edi-
tors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 311–343. Springer,
Heidelberg, May 2016.

45. M. Naehrig, K. E. Lauter, and V. Vaikuntanathan. Can homomorphic encryption
be practical? In Proceedings of the 3rd ACM Cloud Computing Security Workshop,
CCSW 2011, pages 113–124, 2011.

46. K. Nyberg. Generalized Feistel networks. In K. Kim and T. Matsumoto, editors,
ASIACRYPT’96, volume 1163 of LNCS, pages 91–104. Springer, Heidelberg, Nov.
1996.

47. I. S. M. S. Overview. https://gist.github.com/maxvt/

bb49a6c7243163b8120625fc8ae3f3cd.
48. Partisia. https://partisia.com/.
49. D. Rotaru, N. P. Smart, and M. Stam. Modes of operation suitable for computing

on encrypted data. IACR Trans. Symm. Cryptol., 2017(3):294–324, 2017.
50. M. Scott. Optimal irreducible polynomials for GF(2m) arithmetic. Cryptology

ePrint Archive, Report 2007/192, 2007. http://eprint.iacr.org/2007/192.
51. Sepior. https://sepior.com/.
52. V. Shoup. Number Theory Library 5.5.2 (NTL). http://www.shoup.net/ntl/.
53. J. A. Solinas. Generalized mersenne numbers. Technical report, NSA, 1999.
54. T. Suzaki and K. Minematsu. Improving the generalized Feistel. In S. Hong

and T. Iwata, editors, FSE 2010, volume 6147 of LNCS, pages 19–39. Springer,
Heidelberg, Feb. 2010.

55. T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi. twine : A lightweight
block cipher for multiple platforms. In L. R. Knudsen and H. Wu, editors, SAC
2012, volume 7707 of LNCS, pages 339–354. Springer, Heidelberg, Aug. 2013.

56. Unbound. https://www.unboundtech.com/.

A R1CS for GMiMCcrf

For GMiMCcrf the rank-1 constraints are as follows:

t−1∑
i=0

Xi + U + kr + Cr = 0, U · U = Y , U · Y +Xt−1 = Z,

where kr and Cr are round keys and round constants respectively. For GMiMCcrf

Hash the round keys are fixed to a constant. The number of multiplication for
GMiMCcrf Hash is 2 per round. Therefore the total number of multiplications is
2R where R is the number of rounds in the block cipher GMiMCcrf . Each round
also requires t− 1 field additions.

20

https://gist.github.com/maxvt/bb49a6c7243163b8120625fc8ae3f3cd
https://gist.github.com/maxvt/bb49a6c7243163b8120625fc8ae3f3cd
https://partisia.com/
http://eprint.iacr.org/2007/192
https://sepior.com/
http://www.shoup.net/ntl/
https://www.unboundtech.com/

	Feistel Structures for MPC, and more

