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ABSTRACT 

Two-decade-long monitoring studies at Europe’s first statutory marine reserve—Lough Hyne in SW 

Ireland—indicate that benthic communities are rapidly changing. Populations of the ecologically 

important purple urchin (Paracentrotus lividus) have fluctuated widely, most recently with a population 

boom in the late 1990s, followed by a mass mortality that persists to the present day. Eight general 

hypotheses have been proposed to account for the urchin decline including cold temperature limiting 

reproduction, ephemeral algal exudates disrupting urchin fertilization, low larval availability (due to over-

harvesting and/or episodic recruitment), high mortality of settlers and juveniles due to hypoxia, hyperoxia 

or predation (a trophic cascade hypothesis), and increased mortality due to pathogens (stress hypothesis). 

The cold-temperature and the trophic cascade hypotheses appear unlikely. The remaining hypotheses, 

however, all seem to play a role, to some degree, in driving the urchin decline. Ulvoid exudates, for 

example, significantly reduced urchin fertilization and few larvae were found in plankton tows (2012–

2015), indicating low larval availability in summer. Whilst settling urchins regularly recruited under 

shallow-subtidal rocks until 2011, no settlers were found in these habitats from 2011 to 2014 or in field 
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experiments (2012–2018) using various settlement substrata. Seawater quality was poor in shallow areas 

of the lough with extreme oxygen fluctuations (diel-cycling hypoxia), and 1-day experimental exposures 

to DO values <1 mg L-1 were lethal to most juvenile urchins. Multiple increases of the predatory spiny 

starfish (Marthasterias glacialis) population in recent decades may also have contributed to the demise of 

the coexisting juvenile urchins. Finally, urchins of all sizes were seen suffering from dropped spines, 

tissue necrosis, or white-coloured infection, suggestive of stress-related pathogen mortality. There was a 

paucity of broken tests, indicating limited predation by large crustaceans; the large number of adult 

urchins ‘missing’ and few P. lividus tests on the north shore points to possible urchin removal by 

poachers and/or starfish predation. While these ecological, environmental, and anthropogenic processes 

occur on many open coast rocky shores, many are exacerbated by the semi-enclosed nature of this fully 

marine sea lough due to its limited flushing. Multiple factors, including low larval availability and rapidly 

expanding starfish populations, coupled with degraded habitat quality (ephemeral algal mats and extreme 

oxygen fluctuations), indicate that the purple urchin populations will not recover without an improvement 

in the water quality of Lough Hyne Marine Reserve, the restocking of urchins and protection from 

poaching.      

 

Keywords: Paracentrotus lividus, sea urchins, mass mortality, marine reserve, Marthasterias glacialis, 

hypoxia 

 

 

1. Introduction 

Many echinoderms exhibit ‘boom-and-bust’ population dynamics (reviewed by Uthicke et al., 2009), 

exemplified by the European purple urchin (Paracentrotus lividus) which has shown rapid to catastrophic 

decreases in density followed by little recovery (Barnes et al., 2001, 2002; Trowbridge et al., 2011). This 

species has also exhibited intense proliferations, resulting in barren grounds and regime shifts (e.g., in the 

Mediterranean Sea: Sala et al., 1998a; Bonaviri et al., 2009; Agnetta et al., 2013, 2015). Mass mortalities 

of urchins and other marine taxa are becoming better documented and/or more frequent (Feehan and 

Scheibling, 2014a,b; Fey et al., 2015). For example, the green urchin (Strongylocentrotus droebachiensis) 

in maritime Canada, the long-spined urchin (Diadema antillarium) on Caribbean reefs, its congener in the 

Pacific, D. africanum in the subtropical E. Atlantic, the purple urchin (S. purpuratus) in the NE Pacific 

have all exhibited mass mortalities in recent decades (Pearce and Hines, 1979; Miller and Colodey, 1983; 

Lessios, 1988, 1995; Karlson and Levitan, 1990, Benítez-Villalobos, 2009; Girard et al., 2012; Hendler, 

2013; Clemente et al., 2014; Feehan and Scheibling, 2014a,b). Populations of P. lividus have crashed 

within weeks to months on Mediterranean shores and in the Canary Islands and more slowly, over years 
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in Ireland (Boudouresque et al., 1980; Barnes et al., 2002; Boudouresque and Verlaque, 2007; 

Trowbridge et al., 2011; Girard et al., 2012; Yeruham et al., 2015). Furthermore, Jurgens et al. (2015) 

reported mass mortalities of echinoderms (and chitons) across 100 km of NE Pacific shore. The drivers of 

such mass mortality events are understudied although several have been proposed. Outbreaks of 

pathogens or disease, increased seawater temperature, environmental degradation, or a complex 

interaction between multiple stressors have been implicated in the crash of urchin populations (Foster and 

Schiel, 1988; Steneck et al,. 2002; Knowlton, 2004). Given the many factors affecting urchin population 

dynamics (and their additive or multiplicative effects), the timings of mass mortality events are largely 

unpredictable.  

Some studies of the consequent changes that occur in rocky subtidal communities have been based on 

comparisons between pairwise surveys (historical vs. contemporary) made many years apart. For 

example, O’Sullivan and Emmerson (2011) took this approach to suggest marine reserve designation of 

Lough Hyne led to establishment of stronger trophic cascades and altered community structure and 

dynamics. However, as pointed out by Dayton et al. (1998) after a 25-year study of kelp beds, oscillations 

and changes in subtidal communities can exhibit extremely long-term regime shifts. The drivers of 

present-day distributions may lie decades in the past. Without surveys at an appropriate time scale (at 

least annually), it is thus hard to investigate causes and mechanisms of change. Fortunately, there have 

been some long-term subtidal annual surveys, which have noted changes in echinoderm populations. 

Hereu et al. (2012), for example, surveyed populations of P. lividus in the northwest Mediterranean, over 

a period of 20 years, demonstrating changes in relation to habitat and the drastic effect of a violent storm 

which reduced population densities to the lowest levels observed during the study. Filbee-Dexter and 

Scheibling (2014) reviewed long-term studies that monitored changes in the alternation between urchin 

barrens and kelp forests. Their models demonstrated the importance of feedback loops that stabilize each 

state. In some areas, transitions between these states have different thresholds when moving from kelp 

forest to urchin barrens or barrens to kelp forest. In other areas, transitions may be triggered by large-

scale oceanographic changes.   

In the present study, we investigated the causes of changes in the abundance of the urchin P. lividus 

in Lough Hyne, Ireland. Thanks to the work of J.A. Kitching and his collaborators, this lough has been 

one of the sites where experimental studies of marine ecology evolved (over the last 70 years, see, e.g. 

Ebling et al., 1948; Kitching et al., 1952; Hawkins et al., 2016), and where many field techniques were 

pioneered (Paine, 1994; Kearney, 2011). Many of the early measurements of change in the urchin 

populations in the lough were made by Kitching and co-workers (Ebling et al., 1966; Kitching and Thain, 

1983), when ‘drastic falls’ in numbers were observed between years. As well as documenting changes in 

the P. lividus population, we have measured major changes in the abundance of the spiny starfish 
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Marthasterias glacialis, as both have shown extreme fluctuations on similar scales to those discussed by 

Uthicke et al. (2009). In parallel to our studies of the intertidal zone (Little et al., 2017a, 2018), we also 

quantified the abundance of major species of macroalgae and macro-invertebrates in the shallow subtidal 

region over the period 1994-2014, with supplemental species data from 2015 to 2017. 

The loss of ecologically significant species, such as urchins, can have important consequences to 

communities (Personnic et al., 2014; Thibaut et al., 2017), particularly where they are keystone, bolt, or 

rivet species (sensu Power and Mills, 1995; Schiel, 2006). Past research at Lough Hyne indicates that the 

urchin, P. lividus, was ecologically important (Kitching and Ebling, 1961, 1967; Kitching and Thain, 

1983). Furthermore, this species has been described as a keystone species in the Mediterranean region 

(Prado et al., 2009, 2012). Recent research at Lough Hyne on the trophic consequences of losing such a 

major herbivore dismissed the urchin’s importance (O’Gorman and Emmerson, 2009; O’Sullivan and 

Emmerson, 2011); but these researchers investigated an already declining and unhealthy population of 

urchins with insufficient consideration of the spatio-temporal variation in the decline and alternative 

explanations (Trowbridge et al., 2011; this study). While it is unequivocal that the purple urchin 

population in Lough Hyne has declined catastrophically in the last two decades (Barnes et al., 1999, 2001, 

2002; Verling et al., 2002; Trowbridge et al., 2011; this study), the timing and proposed drivers remain 

matters of debate and, in several cases, based on circumstantial evidence. There are at least eight 

published hypotheses that may account for the urchin decline in Lough Hyne and on other Irish shores; 

these are discussed below. This variety of theories suggest that there is no simple, ‘silver bullet’ 

explanation, as sought by previous colleagues (e.g. Barnes et al., 2001, 2002; O’Sullivan and Emmerson, 

2011; Boudouresque and Verlaque, 2013), and the cause of the decline is undoubtedly multi-causal.  

 

2. Hypotheses and alternatives 

2.1. Low temperature limiting reproduction and, hence, larval production  

The purple urchin occurs on NE Atlantic shores from Scotland and Northern Ireland to southern 

Morocco and the Canary Islands as well as throughout the Mediterranean Sea (Boudouresque and 

Verlaque, 2013). However, within Ireland, P. lividus lives at the eastern edge of its range (see Hiscock et 

al., 2004 for range map redrawn from Forbes). The urchins have been reported from Whitehall in County 

Cork to Malin Head (Southward and Crisp, 1956; references therein) with a single verbal record of the 

species outside of Lough Hyne at nearby Baltimore (pers. comm. from Renouf to Southward and Crisp).  

The urchins live in water temperatures that vary from 10° to 15°C in winter and 18° to 25°C in 

summer, although many of the Atlantic locations are cooler. The lethal upper and lower limits for English 

Channel urchins are 29°C and 4°C, respectively (Boudouresque and Verlaque, 2013). The reported 

seawater temperature range in Ireland and, thus, within Lough Hyne fits well into the species’ habitable 
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temperature range. Sea urchin fecundity is known to be temperature-dependent; summer seawater 

temperatures  <13°C inhibit urchin spawning (González-Irusta et al., 2010) although the extent to which 

this varies with acclimatization to local conditions has not been explored. Studies of Irish populations of 

P. lividus have shown that spawning occurred in January – March and August – September in Bantry 

Bay, May – July in Ballynahown, and June – July in Glinsk (Crapp and Willis, 1975; Byrne, 1990) (see 

Fig. 1A for localities).  

Kitching and Thain (1983) suggested that the warm summers of 1975 and 1976 may have led to the 

high urchin recruitment and peak numbers in 1979. Furthermore, Barnes et al. (2001, 2002) suggested 

that the P. lividus population declined in Lough Hyne in response to cooler seawater during years that the 

Atlantic summer temperatures were suppressed by the global effects of a Pacific ENSO event which 

constrained urchin reproduction. However, those latter authors measured seawater temperature at 1-m 

depth at an open-water buoy in the lough, not at the water depth or shore location where urchins were 

actually found. To counter these data, we hypothesized that shallow-water temperatures on the shore 

would be warmer in summer than open-water temperatures, and that temperature thresholds for urchin 

reproduction were met during most Irish summers.  

 

2.2. Extreme weather causing significant mortalities 

Extreme weather phenomena have caused major reductions in P. lividus populations in different parts 

of the species’ range, including: record heat or increasing temperatures, unusually cold temperatures, 

exceptional rainfall, and intense storm winds and waves (Bouxin, 1964; Turon et. al., 1995; Fernandez et 

al., 2003, 2006; Garrabou et al., 2009; Girard et al., 2012; Hereu et al., 2012; Boudouresque and 

Verlaque, 2013; Fey et al., 2015; Yeruham et al., 2015). We, therefore, predicted that harsh winters and/or 

exceptional rainfall would be the most probable mechanism to cause urchin decline at Lough Hyne. If 

extreme weather events were observed in the Met Éireann records for the meteorological station at 

Sherkin Island (Fig. 1A) near the lough, and did cause significant mortalities, we would generally expect 

to see an abundance of intact urchin tests on the seabed (although if high winds were the causal 

mechanism, we would expect a high density of broken tests). Given that urchins have low tolerance of 

reduced salinities, extreme rainfall effects would be localized to the upper edge of the urchin’s tidal range 

and the northern-most area on the western shore where streams and/or seeps flow into the lough. 

Furthermore, such events would cause an acute impact on urchin populations, not a chronic one. 

 

2.3. Reduced urchin fertilization due to ulvoid exudates  

Ephemeral green and brown algae are proliferating on shores worldwide, including Irish shores 

(review by Lyons et al., 2014) and those of Lough Hyne (Trowbridge et al., 2011; Little et al., 2018). 
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Ulvoid algae (e.g. Ulva intestinalis) are opportunistic species that tend to bloom in masses (forming 

‘green tides’), sometimes covering entire shores in many places around the world. Ulvoids contain 

chemicals that can be exuded when the algae encounter stressful conditions during aerial desiccation (e.g. 

Van Alstyne et al., 2011). These exudates—such as dimethylsulfoniopropionate (DMSP), dopamine, 

reactive oxygen species (ROS), and their breakdown products—could have negative effects (e.g. reduced 

fertilization, larval growth and metamorphosis or increased mortality) on the coexisting adult and larval 

stages of marine invertebrates and some macroalgae (Nelson et al., 2003; Van Alstyne et al., 2014, 2015; 

Peckol and Putnam, 2017; Vázquez et al., 2017). The gametes (sperm and eggs) of the Pacific sand dollar 

(Dendraster excentricus) were relatively insensitive to exudates of a related ulvoid (Vázquez et al., 2017) 

but fertilization success and larval development were significantly altered. If reduced fertilization success 

were occurring, we would expect to see a paucity of juvenile benthic urchins in recent years with the 

increase in ephemeral algae. 

 

2.4. Low larval availability  

Paracentrotus lividus gonads are a commercially prized human food through much of the urchin’s 

geographic range, including Ireland (reviewed by Boudouresque and Verlaque, 2013). Moylan et al. 

(1998) reported the over-exploitation of urchins in western Ireland in the 1970s and early 1980s. Declan 

O’Donnell (previous warden of Lough Hyne Marine Reserve; pers. comm.) suggested that the known 

decline in wild urchins may have caused low larval production and supply in SW Ireland, including 

Lough Hyne. Furthermore, residents of southwest Cork have illegally harvested urchins from within the 

lough (confidential pers. comm.), presumably contributing to low local larval levels.  

Low larval availability could also occur if the urchin species experienced recruitment failure within 

the lough for several years and/or episodic recruitment from outside the lough. Many marine invertebrates 

as well as macrophytes exhibit periods of low recruitment followed by episodic pulses of high recruitment 

(e.g., Ebert, 1982; Pearse and Hines, 1987; Menge, 1991; Yoshioka, 1996; Sam and Keough, 2012). 

Many species of sea urchins exhibit highly variable recruitment dynamics (e.g., Ebert, 1982; Pearse and 

Hines, 1987; Turon et al., 1995). For example, Ebert (1982) reported one strong recruitment class in 

Strongylocentrotus purpuratus in Sunset Bay, Oregon during a 20-year study period. Pearse and Hines 

(1987) reported a single strong recruitment pulse of S. purpuratus during a decade-long study in 

California. In neither case was the pulse correlated with water temperatures or upwelling indices (Ebert, 

11982; Pearse and Hines, 1987). Episodic recruitment, whether as a result of oceanographic events 

influencing larval supply or biotic interactions, contributes to high variation in adult abundance.   

Given the longevity of the urchin’s benthic stages ranges from about 6 to 9 years in Ireland (Crapp 

and Willis, 1975) and up to 15 years depending on locality (Boudouresque and Verlaque, 2013), a 
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bottleneck at the larval stage, and thus poor recruitment, would cause a rapid population decline as the 

oldest age-classes senesced.  If this process were occurring, we would expect to see a paucity of juvenile 

benthic stages of urchins in recent years, and an imbalance in the urchin size-frequency distribution. 

 

2.5. Increased predation intensity and/or changed predator guilds  

Changes in predator regimes may significantly affect urchin populations through trophic cascades 

(O’Sullivan and Emerson, 2011; Galasso et al., 2015). Many predators reputedly consume P. lividus in 

different parts of its range, including starfish, crabs, hermit crabs, trigger fish, sparids, Ballan wrasse and 

other labrids (Muntz et al., 1965; Ebling et al., 1966; Kitching and Ebling, 1967; Kitching and Thain, 

1983; Bernárdez et al., 2000; Sala and Zabala, 1996; Sala et al., 1998a,b; Guidetti 2004, 2006; Hereu et 

al., 2005; Figueriedo et al., 2005; Guidetti and Dulčić, 2007; Bonaviri et al., 2009, 2012; Gianguzza et al., 

2009, 2016; Galasso et al., 2015; Boudouresque and Verlaque, 2013; McAllen, pers. comm.). As well 

reviewed by Galasso et al. (2015: 1), however, trophic cascades ‘are no means certain to occur in all 

locations.’ 

By comparing pairwise surveys in 1962/3 and 2010, O’Sullivan and Emmerson (2011) concluded that 

the 1981 marine reserve designation caused an increase in predatory crabs and starfish that in turn led to a 

decline in P. lividus. However, they provided no direct evidence for 1981 (or shortly thereafter) being the 

date for change in ecological regime (e.g., actual change in fishing pressure and/or predation intensity), 

and ignored numerous other alternative drivers (see Trowbridge et al., 2011; references therein). In our 

study, we documented long-term temporal changes in the shallow-water abundances of purple urchins as 

well as the generalist predator, the spiny starfish Marthasterias glacialis. Savy (1987) found that M. 

glacialis in Mediterranean France consumed purple urchins (which constituted approximately half the 

diet); Bonaviri et al. (2009), Galasso et al. (2015), and other researchers have documented this for Italian 

shores. Furthermore, Verling et al. (2003) reported these shallow-water juvenile starfish have an 

opportunist diet and do consume purple urchins in Lough Hyne.  

Based on this predation hypothesis, we would expect to see a decline of large adult urchins and/or an 

increase of smashed or cracked/broken tests (crustacean predators) or intact tests (starfish or stress) on the 

seabed of the lough (see Boudouresque and Verlaque, 2013). Thus, the expected pattern would be similar 

to that produced by severe wind events.  

 

2.6. High mortality of early post-settlement stages  

The high mortality of purple urchin settlers has been well studied in the Mediterranean (López et al., 

1998; Tomas et al., 2004; Prado et al., 2009, 2012; Bonaviri et al., 2012). In addition to the attrition of 

larvae and settlers due to predation, juvenile urchin stages are vulnerable to declining physical conditions 
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which may be exacerbated in the semi-enclosed (though fully marine) Lough Hyne. The development of 

extreme low oxygen conditions in the lough (Trowbridge et al., 2017a; Little et al., 2018), for example, 

may initiate mortality of early urchin life stages; dissolved oxygen (DO) levels <1.5 mg L-1 are lethal to 

larval purple urchins (Saco-Alvarez et al., 2010). Furthermore, low DO values prevent green urchins from 

becoming reproductively mature (Siikavuopio et al., 2007). If this process were occurring, we would 

expect to see a paucity of juvenile stages in recent years (post-2010) at Lough Hyne. The resulting pattern 

of urchin size-frequency distribution would be similar to that expected for the low larval availability 

hypothesis.   

 

2.7. Increased mortality due to pathogens or parasites 

Mass mortality of urchins around the world has occurred due to virus and/or bacteria outbreaks with 

physiological stress (e.g., increased seawater temperatures) being a contributory trigger (e.g. 

Boudouresque et al., 1980; Gilles and Pearce, 1986; Lessios, 1988, 1995; Scheibling et al., 2010; Girard 

et al., 2012; Boudouresque and Verlaque, 2013; Wang et al., 2013; Clemente et al., 2014; Feehan and 

Scheibling, 2014a,b). Semi-enclosed bodies of seawater with low flushing rates (such as Lough Hyne: 

Johnson et al., 1995; Jessopp and McAllen, 2007) would be particularly vulnerable to such pathogen 

outbreaks. Although purple urchins have exhibited population crashes due to bald-urchin disease (or 

something similar) in Mediterranean locations (see Zizzo et al., 2004; Boudouresque et al., 1980; 

Boudouresque and Verlaque, 2013) and the Canary Islands (Girard et al., 2012), the existence of the 

disease has not yet been confirmed for Ireland (but see Trowbridge et al., 2011 for discussion of its 

probable occurrence in Lough Hyne). If pathogens were the cause of mortality in the lough, we would 

expect to see either a variety of sizes of ailing urchins and/or intact tests on the seabed of the lough, or a 

narrow range of sizes if stress were size dependent (as indicated by Girard et al., 2012).  

Parasitic infection is another possibility, although insufficiently studied. In Norway, extensive 

population declines of the green urchin (Strongylocentrotus droebachiensis) were caused by parasitic 

nematodes. In fact, Hagen (1992: 207) suggested the locally distributed nematode ‘could terminate 

population outbreaks of the urchin’ though Skadsheim et al. (1995) questioned the parasite’s importance.   

 

2.8. Mortality due to toxic microalgal blooms  

Dinoflagellate blooms have been well studied around Ireland and their toxic effects have been 

reported for invertebrates (e.g. Cross and Southgate, 1980; Leahy, 1980; Silke et al., 2005).  In particular, 

the dinoflagellate Karenia mikimotoi (formerly called Gymnodinium aureolum) has been implicated in 

repeated shellfish and fish mortalities in Europe (Tangen 1977; Ottway et al., 1979; Cross and Southgate, 

1980; Silke et al., 2005; Davidson et al., 2009) and worldwide (O’Boyle and Silke, 2010; O’Boyle et al., 
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2016). Numerous blooms of this dinoflagellate were recorded in 1978 and 1979 in SW Ireland (O’Boyle 

and Silke, 2010) and around Sherkin Island (Fig. 1A) in Roaringwater Bay in 1985, 1993, 2001, 2004, 

and 2010 (Dale and Murphy, 2014). Leahy (1980) reported that 14% of the Paracentrotus surveyed in a 

belt transect at Dunmanus Bay during a dinoflagellate bloom (K. mikimotoi) were dead; 50% of the 

urchins encountered during the general shore survey were also dead. There was also an exceptional bloom 

of the dinoflagellate in western Ireland in 2005 (Silke et al., 2005; O’Boyle et al., 2016). O’Boyle et al. 

(2016) emphasized how seasonally stratified marine areas are particularly vulnerable to such 

dinoflagellate blooms. Thus, Lough Hyne with its well-established seasonal stratification, particularly in 

the Western Trough (Kitching et al., 1976; McAllen et al., 2009) may be affected by harmful algal 

blooms more than neighbouring coastal areas outside the lough. 

In the Mediterranean Sea, there have been numerous recent reports of blooms of the benthic 

dinoflagellate Ostreopsis ovata. In laboratory experiments, Privitera et al. (2012) demonstrated that this 

species caused significant mortality of Paracentrotus juveniles. This dinoflagellate or its congeners have 

been reported also from Atlantic Portugal and Spain so its spread to SW Ireland is possible. Mass 

mortalities of urchins have occurred in New Zealand and Brazil from Ostreopsis (Shears and Ross, 2009). 

It was beyond the scope of this study to test the ‘toxic bloom’ hypothesis in Lough Hyne.  

These hypotheses are not necessarily mutually exclusive, nor exhaustive. In this review, we document 

the quantitative decline of the purple urchins in Lough Hyne, and then evaluate each of these hypotheses 

as potential causal agents in the context of our long-term, community-level investigation.  

 

 

3. Description of the urchin populations 

3.1. Site description 

Lough Hyne is a semi-enclosed sea-lough in southwest Ireland (Fig. 1A) which is connected to the 

sea by narrow ‘Rapids’ (Bassindale et al., 1948). It was designated as Europe’s first statutory Marine 

Reserve in 1981. In area it measures ~1 km2, and consequent upon the small fetch, all shores are relatively 

sheltered. Most of the lough is less than 20 to 30 m in depth and, until recently, the benthic habitat was 

oxic most of the year. With the exception of three sets of subtidal rocky cliffs, the substrata below 10 m is 

primarily mud.  The Western Trough is 40 to 50 m deep and becomes anoxic in summer and early autumn 

(reviewed by McAllen et al., 2009). No macrofauna dwells within the anoxic habitat until storm events 

disrupt the thermocline seasonally.  

Because of the restricted inflow at the Rapids, the tidal cycle is asymmetrical, and the tidal rise and 

fall is restricted to about 1 m, so the intertidal zones are compressed (Rees, 1931, 1935; Bassindale et al., 

1948; Little, 1991). Much of the intertidal is either bedrock or shingle, and varies from nearly vertical to 
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shallow slopes (Ebling et al., 1960; Williams et al., 1999; Trowbridge et al., 2017b). There are several 

areas where small freshwater flows or seeps enter the lough and locally dilute the surface water (Rees, 

1935). However, there is almost no dilution of the main body of the lough below a salinity of ~34 

(Kitching, 1987). At times of exceptionally high rainfall, a localised, thin freshwater lens may form at the 

surface (Little, pers. obs.). 

 

3.2. Study sites  

Ebling et al. (1960) defined 20 monitoring sites around the lough above the Rapids (Fig. 1B) as part 

of their comprehensive description of the fauna and flora of the lough. Little et al. (1992) resurveyed the 

20 sites in 1990 and 1991. Then 10 of the 20 original sites were selected (Fig. 1B) for annual monitoring. 

Each ‘annual’ site consisted of a 10-m length of rocky shore marked at each end with a stainless steel 

plate to enable exact recognition at future sampling dates. The other 10 sites (‘historical’ sites) were 

surveyed in 2014 as part of a related study (Trowbridge et al., 2017b).  

 

3.3. Methods of monitoring juvenile and adult urchin populations 

Purple urchins are only in a narrow depth range around the lough (low shore to about 5 m). In much 

of the lough, the urchin’s lower depth range is constrained by (1) limited availability of rocky to boulder 

habitat and (2) steep substratum (subtidal cliffs). The centre of the lough does not function as a possible 

reservoir of urchins for two reasons: (1) it is almost exclusively muddy to gravelly substrata and (2) 

becomes seasonally anoxic (Kitching et al., 1970; McAllen et al., 2009). The remaining purple urchins in 

Lough Hyne occur within the interstices of boulders typically dominated by the green alga Codium 

vermilara, brown alga Cystoseira foeniculacea, and ephemeral algae. This ‘cryptic’ behavior such as 

hiding in crevices was noted by other colleagues at Lough Hyne (e.g., Verling et al., 2003) as well as on 

Italian shores (e.g., Sala and Zabala, 1996; Agnetta et al., 2013).    

To monitor purple urchins in Lough Hyne, three different approaches were taken: (1) rock-turning in 

shallow subtidal habitats at ‘annual’ sites, (2) counting urchins along the entire north shore of the lough 

and (3) whole-lough snorkel surveys. The snorkel surveys provide a better estimate of living urchins, and 

estimates can be greater by an order of magnitude, when compared to those from shore-based 

observations (Trowbridge et al., 2011) or from boat-based estimates that have been made periodically for 

decades (e.g., Muntz et al. 1965; Kitching and Thain 1983; Kitching 1987; Barnes et al. 2002). Lough 

Hyne urchins have been shown to be most active during daytime (Ebling et al., 1966; Crook et al. 2000), 

making our urchin counts reliable, whereas the species is nocturnally active in the Mediterranean and 

migrates between habitats (Dance, 1987; Fernandez et al., 2001; Hereu et al., 2005).  
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For over two decades, shallow subtidal rocks were turned over annually to document the juvenile 

urchins that move down through the loosely assembled boulders and rock slabs (Ebling et al., 1966; 

Crook et al., 2000); all rock slabs were put back in their original positions within a few minutes which did 

not appear to significantly affect the benthic macrofauna (see Trowbridge et al., 2017b). This process was 

done in 1990/1991 (Little et al., 1992) and from 1994 to 2014 (this study) at 10 ‘annual’ sites (Fig. 1B) 

each August to September. In addition, rocks were also turned in 2014 at 10 ‘historical’ sites (Fig. 1B) 

that were previously surveyed only in 1955 and 1990/91 (see Trowbridge et al., 2017a). The test 

diameters of all urchins found were measured with calipers (± 0.1 mm). These latter ‘historical’ sites 

could potentially have higher urchin densities than at annual sites as the rock slabs had not been moved 

for two decades (i.e., lower disturbance). High densities of juvenile urchins would serve to reject the low-

recruitment hypothesis and would support post-settlement mortality hypotheses.  

Urchins were counted along the entire north shore of the lough from 1998 to 2014, during late 

August/ early September. Counts were made from the wall that forms the boundary of the lough, using 

binoculars when necessary, during low tide and light winds, and supplemented by counts taken from the 

water’s edge. The entire north shore was typically surveyed on three separate days, though this was not 

always possible because of unfavourable visibility. The highest count was selected as being the best 

estimate of population size.   

During annual snorkel surveys (2006–2017), most of the shoreline of the lough north and west of the 

Rapids was assessed in a non-destructive manner. The sector location and condition (the presence/absence 

of spines and/or lesions) of urchins was noted in the marked 108 sectors (Renouf, 1931; Fig. 1B). For 

dead urchins, the cause of mortality (Boudouresque and Verlaque, 2013) was evaluated based on whether 

the test had peristomial membranes and Aristotle’s lantern present (assumed freshly dead, categorized as 

‘entire’); test ‘intact’ but spines, membranes, and jaws missing (potentially caused by starfish predation or 

lethal stress); or test broken or crushed (potentially by fish and/or crustaceans).  

 

3.4. Changes in juvenile and adult urchin populations 

The total number of purple urchins recorded at the monitoring sites increased from 1990 to 1995, 

stayed high (maximum total 145) through 1999, then began to decrease until there were only 7 recorded 

in 2014 (end of two-decade survey) (Fig. 2A).  During supplementary sampling in 2015, 5 urchins were 

recorded at the 6 annual sites surveyed and 2 additional specimens at the historical sites surveyed. In 

2016, we recorded 3 specimens: 1 at North Labhra, 1 at South Labhra, and 1 at Graveyard. The boom-

and-bust pattern on the north shore was comparable to the monitoring-site pattern although the timing 

differed: Paracentrotus counts peaked at 2000 (a year later than at the monitoring sites) with 2,110 visible 

individuals, and declined to 0 in 2014 (Fig. 2D). Thus, since marine reserve designation (in 1981), Lough 
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Hyne purple urchins exhibited a population boom before the mass mortality; this boom was not reported 

by colleagues working on the same lough population (Barnes et al., 2002: fig. 1; O’Sullivan and 

Emmerson, 2011). When urchins were relatively common, they were observed on the top of rocks, and 

caused extensive ‘graze patches’ where ephemeral filamentous seaweeds were absent or rare. However, 

when the population declined, urchins were usually seen only underneath rocks, and visible graze patches 

were absent. 

To evaluate the published assertion that the south basin urchins were ‘locally extinct’ (sensu Barnes et 

al. 2002), we divided our counts between north and south basin sites (Fig. 2B). Based on our under-rock 

surveys of shallow subtidal urchins in August/September, there were clearly many urchins present in the 

south basin in the early 2000s, and there was no significant difference in overall counts between the north 

and south basin sites (Student’s t-test, t=0.431, df=38, P=0.669). Thus, our results reject the suggestion 

of local extinction of urchins in either basin in the past 25 years.  

There was immense variation in number of purple urchins among monitoring sites and years (Fig. 3), 

indicating that the population decline was not caused by spatially or temporally discrete events. Based on 

urchin sizes and counts, the individual specimens recorded during one year were not generally the ones 

recorded the subsequent year. Maximum urchin numbers were seen at Westwood North, and minimum at 

North Island (Fig. 3A), but at most sites numbers were very low at the beginning and end of the survey 

period, with highest numbers in the late 1990s and early 2000s.  

Population structure showed high variation in levels of recruitment from year to year (Fig. 2C, 3, 4). 

Maximum overall numbers of recruits (urchins with a test diameter <10 mm) occurred in 1996, but as a 

percentage of the population, maximum recruitment occurred in 2000, when ~30% of the population were 

this size. The lowest percentage (6%) occurred in 2010 and from 2011 to 2014 when there was no 

observed recruitment (Fig. 2C, 3–4). A few urchin recruits were seen in 2015, 2016, and 2017 but urchin 

densities were not increasing. Recruitment appeared spatially variable (Fig. 3B) with only 4 of the 10 sites 

having 5 or more recruits recorded per year. Codium Bay, a site directly north and west of the Rapids, had 

the highest recruitment (40 young-of-the-year urchins from 1996 to 2014). Westwood North, SE Labhra, 

and North Labhra also had similar recruitment (30-32 urchins) during the long-term study.  

Based on two decades of monitoring surveys and a decade of snorkel surveys, we observed that the 

majority of dead urchin tests of P. lividus and the larger common urchin Echinus esculentus (Fig. 5) were 

intact. Most of the mortalities recorded were in the past decade, with a notable onset in 2009 at the 

monitoring sites (Fig. 5A). There was a paucity of urchin tests relative to the number of purple urchins 

disappearing each year on the extremely wave-sheltered shores of Lough Hyne. This absence was 

particularly noteworthy on the north shore where only a single urchin test was noted in a decade of 

snorkelling despite 2,110 living urchins being recorded there in 2000 (Fig. 2D). The majority of P. lividus 
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tests recorded in late summer were on the west shore (Fig. 5B, 5E), where most of the remaining urchins 

live. Partial spine loss was frequently seen during snorkelling in living E. esculentus but not P. lividus; in 

contrast, 6 dead P. lividus were recorded under rocks in this condition (Fig. 5C, 5F). Two subtidal 

specimens were recorded with necrotic patches (Fig. 5F) and four low-shore individuals had white spots 

at the base of their spines (Fig. 5C). Finally, there were no observed cases of P. lividus or E. esculentus 

with broken or crushed tests (Fig. 5C, F) in the two decades of monitoring surveys or decade of snorkel 

surveys. However, the first author saw one case in September 2018 on the western shore close to a lobster 

den. 

The north shore purple urchin population peaked in 2000 with over 1,000 urchins counted each year 

from 1998 to 2001 (Fig. 2D). However, by 2005 the population had declined 10-fold and by 2007, it had 

declined 100-fold. In 2009 and 2014, no purple urchins were seen on the north shore, even by snorkelling. 

It is therefore clear that a near-complete population disappearance had been recorded 10 to 15 years post-

boom. We would not consider the decline to be a local ‘extinction’ per se because we did not turn the 

rocks under which most of the urchins dwell.  

   

3.5. Short-term vs. long-term studies 

Short-term ‘snap-shot’ evaluations of urchin dynamics in the lough (e.g. Barnes et al., 2002) may give 

an inaccurate perspective of the population. Barnes and colleagues suggested that the last population peak 

was in 1979 with no further recovery to 1999; they also suggested that after 2000, the population in the 

south basin was ecologically ‘extinct’ (no recorded urchins)—an extremely strong statement for a 

population that still occurred at most of our study sites. Our results (Fig. 2A) indicate a subsequent 

population peak in 1999 (monitoring sites) or 2000 (north shore). Furthermore, our results (Fig. 2B) show 

no significant difference in purple urchin counts between the north and south basins; thus, local extinction 

had clearly not occurred.  

How do we resolve these dramatically different studies on the same urchin population? First, the two 

research groups surveyed at different times of year with the Barnes’ surveys being conducted earlier in 

the summer than our late-summer surveys. If there were seasonal differences in urchin behaviour and/or 

environmental conditions in the benthos, significantly different patterns might be recorded. For example, 

if dissolved oxygen levels under rocks and in the interstices between rocks declined during the summer, 

the purple urchins would shift upward in the rock matrices or even move out of the cryptic habitats by late 

summer. Second, the differences may be due to the differing methodology of sampling. In order to make 

results compatible with historical data, Barnes et al. followed the methodology of Kitching (1987) which 

involved boat-based visual surveys. As pointed out by Kitching and Thain (1983), however, these surveys 

produced only ‘an indirect indication of the number present. There were probably two to three times as 
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many under rocks…’. In contrast, our studies involved a combination of snorkelling and turning rocks 

(Trowbridge et al., 2011, 2013, this study). Because of this difference, the earlier studies (Barnes et al., 

2002) underestimated urchin numbers, although a population crash did occur years later. 

 

 

4. Hypothesis testing 

4.1. Cold-temperature hypothesis 

4.1.1. Methods 

Seawater temperatures were measured in the habitats and water depths where the urchins occurred. 

Temperature sensors were deployed at multiple locations along the western shore of the lough within the 

shallow (<1 m) subtidal habitats in which urchins occurred (Renouf sectors W9/10 to W22/23, 

Trowbridge et al., 2011). Sensors, attached to bricks with cable ties, recorded temperature every 1 to 2 

hours (Onset Pendants) and every 15 minutes (Onset TidBits) from March 2014 to the present; data were 

downloaded twice a year. Although not every sensor was relocated each time, multiple replicate sensors 

were found and data downloaded each time. HOBO dissolved oxygen and temperature sensors (Onset 

U21-001) were deployed in various shallow locations around the lough (Codium Bay, East Goleen, North 

Labhra, etc.) and in Barloge Creek from September 2013 until the present. The data were downloaded, 

sensor caps replaced, and sensors recalibrated every 6 months.   

In addition to these short-term, high resolution data, the surface water temperatures were measured 

manually (with a hand-held mercury thermometer) in the top 10 cm of the water column at the lough 

several times during every annual visit. Initially this was carried out from the Glannafeen Laboratory 

quay (S4/5); since 2000 to the present, temperatures were taken near the Gate Lodge on the north-east 

shore (N11).  

 

4.1.2. Results 

Since April 2014, seawater temperatures have varied annually by ~10–12°C in shallow subtidal areas 

on the western shore of the lough (Fig. 6) where the remaining urchins live. The mean minimum 

temperature in winter was ~7–8°C and the mean summer temperature was >15°C all three summers. In 

2014 and 2015, the summer water was cooler than normal by about 2-3°C. However, in 2016, the 

seawater was ~15°C for much of the summer. Temperatures remained high until September/October with 

minimum temperatures in February and March. Although the mean values never fell below 5°C, 

individual sensors did record temperatures of 1-2°C. However, there is no strong evidence (since April 

2014) that winter temperatures fell to the reported lethal level for purple urchins (4°C) or that summer 

temperatures rose to lethal limits (29°C) in habitats where urchins actually occurred.  
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How generalizable are these high-resolution values? Our long-term summer lough water temperature 

estimates on the south and north shore (Fig. 7) indicate that these values were typical for the last two 

decades with the exception of 1992 when the summer water temperature was anomalously low. Water 

temperatures were above the 13–15°C urchin spawning threshold for much of the summer and early 

autumn. In terms of the cold temperature in 2010 when the Goleen froze over, no observations were made 

of urchin mortality (larvae or adults) although one author (RM) noted extensive mortality of barnacles (no 

other authors were in Ireland during that time).      

 

4.1.3. Conclusions     

Oceanographic events that cause low seawater temperatures in Lough Hyne during the summer (e.g., 

1992) did occur but the minimum temperature threshold for spawning was still attained in most years 

(Fig. 6-7). Furthermore, since ENSO, NAO or other oceanographic events are periodic and purple urchin 

longevity is ~8 years or longer, one cold winter or summer would not be sufficient to cause a population-

level failure as opposed to a cohort or year-class failure. Thus, the cold-temperature hypothesis suggested 

by Barnes et al. (2001, 2002) would not be sufficient to explain the local situation on Irish shores.   

 

4.2. Extreme-weather hypothesis 

4.2.1. Methods 

Meteorological data were obtained from Met Éireann for the weather station at Sherkin Island (Fig. 

1A). The maximum air temperature, wind speed, gust speed, and rainfall for each month were calculated 

as well as the minimum air temperature.  The wind values would be estimates only, due to the steep hills 

to the west of the lough that shelter the body of water from the south-westerly storm winds.  

 

4.2.2. Results 

There have been several periods in the past few decades with extreme weather. For example, there 

were several hot days in 1995, 1999, 2003 and 2006 (Fig. S1A) with 2003 being the most extreme year. 

During the extremely cold winters of 2010 and 2011 (Fig. S1B), air temperatures did drop well below the 

minimum threshold tolerances of purple urchins (4°C in the English Channel). Winter mortality of 

urchins may have occurred in 1996, 1997 and 1999 as well as 2010 and 2011 but examination of the 

urchin population (Fig. 3A) does not support a lough-wide mortality in any of the hot or cold years. 

Furthermore, the urchin population was extremely low before the 2010 and 2011 cold periods, indicating 

that the low temperature was not the primary causal driver of decline.  

Daily rainfall was extremely variable (Supplemental Fig. 1A) with two days (in July 1997 and August 

1998) with unusually high precipitation. However, urchin counts declined at only 4 of 10 sites in 1997 
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and 3 of 10 sites in 1998 (Fig. 3A). Thus, while rain may have contributed to urchin mortality due to low 

salinity, it may have been localized and acute, depending on the water depth of each sub-population of 

urchins.  

In terms of severe wind, 1998 had the highest gust of wind (at the Sherkin meteorological station) and 

the maximum 10-min period of wind speed (Supplemental Fig. 1B). Hurricane Ophelia in September 

2017 was clearly extreme. However, as noted above, the 1998 and 2017 events did not coincide with clear 

declines in purple urchin counts (Fig. 3A).   

 

4.2.3. Conclusions 

Extreme-weather phenomena have occurred during our long-term study. While such events may 

account for urchin disappearance at individual monitoring sites, they are insufficient to explain the overall 

population decline due to lack of spatial concordance (Fig. 3-4). The extremely cold winters of 2010/2011 

may have killed many of the remaining urchins, but most of the decline occurred within the preceding 

decade.  As most of the remaining urchins were on the partially shaded western shore, extreme hot 

weather effects were probably insufficient to account for the urchin demise; temperature sensors also 

refuted significant high temperatures as a primary causal factor.  Extreme wind could cause waves to 

form in the lough and shift rocks under which urchins lived. However, most of the severe storms came 

from the south-west and the lough was partially protected by steep hills on the western side. Additionally, 

there were very few broken tests observed during subsequent sampling—which further indicates extreme 

wind events were unlikely to result in mass mortality events due to shifting substrata. A comparable 

conclusion was reached by Verling et al. (2005).  

 

4.3. Algal-exudate hypothesis 

4.3.1. Methods 

Two species of green algae (Chlorophyta) proliferating in the lough were evaluated for potential 

effects on purple urchin reproduction. In September 2012, 9 sexually mature Paracentrotus were obtained 

from John Chamberlain’s Dunmanus Seafoods in Durrus, Co. Cork. The ephemeral alga Ulva intestinalis 

was collected from the east shore (Renouf sectors E11 and E19) and the perennial alga Codium vermilara 

was collected from the west shore, near the mouth of the Goleen (sector W24) on the day of the 

experiment or the afternoon before. Algal exudate acquisition was based on methods described by Van 

Alstyne et al. (2011). Ulva intestinalis and C. vermilara were blotted dry. Four pieces of 4.2 g (n=4 per 

algal species) were weighed and placed in small glass bowls. To simulate low tide conditions, bowls were 

placed outdoors in direct sunlight. After 2.5–3 h exposure, 300 mL of filtered seawater (FSW) were added 

to each bowl to simulate an incoming tide. Then, after 5 min, the macroalgae in all the bowls were 



17 
 

removed. The water in all the bowls that had contained U. intestinalis was then mixed together into a 

single container labelled as ‘Ulva exudates’ and the water in all the bowls that had contained C. vermilara 

was then mixed together into a single container labelled as ‘Codium exudates’. This methodology was 

comparable to that of other studies (e.g. Vázquez et al., 2017) where exudate concentrations used were 

determined to be within the natural range of exudation of the ulvoids (Van Alstyne et al., 2011, 2014).  

The wet mass of purple urchins was determined and then individuals were shaken to stimulate natural 

spawning. For urchins that did not release gametes, we followed the standard procedure of inducing 

spawning (Gosselin et al., 2003) by injecting 20 µL of 0.5 M KCl per gram of wet weight through the 

perioral membrane of each urchins. Eggs were collected in beakers filled with cold FSW whereas sperm 

was collected ‘dry’ on Petri dishes; beakers and dishes were held in trays with ice to keep cold. 

To determine the effects of U. intestinalis and C. vermilara exudates on fertilization of P. lividus, ~3 

mL of eggs from 5 females were mixed in a beaker containing 300 mL of FSW. Then, ~3 mL of eggs 

from this stock were added to each of 20 plastic containers. Fifty mL of the Ulva exudate were then added 

to 5 containers (Ulva treatment); 50 mL of the Codium exudate were added to another 5 containers 

(Codium treatment); 10 containers were each filled with 50 mL of FWS (control treatment). The eggs 

were left to soak for 15 min. After the exposure, eggs in the Ulva-exudate and Codium-exudate treatments 

were filtered through a 41-µm mesh and then placed back in their containers with 50 mL of FSW. Sperm 

from two urchin males was mixed in a Petri dish and a drop of the mixture was diluted in 50 mL of FSW 

and well mixed. About 3 mL of the diluted sperm was then used to fertilize each container. After another 

15 min, eggs in each container were filtered through a 41 µm mesh, placed back in the containers, and 

then preserved with 3-5 mL of 10% buffered formalin. All eggs in each sample were counted under a 

compound microscope; the number of fertilized and unfertilized eggs was recorded and then analysed 

with a Likelihood Ratio Chi-square test. Eggs were considered fertilized if a fertilization envelope was 

present.  

 

4.3.2. Results 

In the experiment with Ulva intestinalis, the level of successful urchin fertilization in the exudate 

treatment was significantly lower than the control treatment (Chi-square, χ2 = 14.9, 1 df, P<0.001): there 

were disproportionately fewer fertilized eggs in the presence of algal exudate (Fig. 8) than in the filtered 

sweater control. However, in the experiment with Codium vermilara, the extent of fertilization did not 

differ between the exudate treatment and the control (χ2=2.6, 1 df, P=0.109). Thus, the ephemeral 

macroalga disrupted urchin fertilization success whereas the proliferating perennial C. vermilara did not.  
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4.3.3. Conclusions 

Our results provide definitive evidence that ulvoid exudates reduce fertilization (Fig. 8) and, thus, 

purple urchin production although we have no direct information about environmentally relevant 

concentrations in the lough. Based on the study by Vázquez et al. (2017), we assume that the mechanism 

is disruption of the fertilization membrane rather than reduced viability of gametes.  

In recent years, there has been a proliferation of ulvoids, ectocarpoids, and other ephemeral 

macroalgae in Lough Hyne from March through October (Little et al., 2018) and in other Irish coastal 

waters (Lyons et al., 2014), presumably due to a significant increase in nitrogen (Jessopp, 2011; Jessopp 

et al., 2011; McAllen, unpubl. data). This proliferation is indicative of a bottom-up effect, not a top-down 

effect that would be expected from a trophic cascade. The recruitment failure of urchins from 2011 to the 

present was markedly different from the pattern of recruitment seen in 1994–2010 (Trowbridge et al., 

2011) and coincided with the domination of ephemeral macroalgae. 

A variety of other chemicals (including rare heavy metals, pollutants, etc.) in terrestrial runoff also 

significantly interfere with P. lividus reproduction and development (e.g. Oral et al., 2017).  These 

chemicals should also be assessed in Lough Hyne and other semi-enclosed loughs and bays to determine 

if they were abundant enough to have contributed to the urchin decline.  

 

4.4. Low-larval availability hypothesis 

4.4.1. Methods 

Echinopluteus larval duration in Paracentrotus lividus is about 3-4 weeks (Boudouresque and 

Verlaque, 2013) although it may be shorter if unlimited planktonic food is available. Based on the 

published spawning periods for Ireland (January - March and August - September: Crapp and Willis, 

1975; May - July and June - July: Byrne, 1990) and elsewhere (spring and summer, Boudouresque and 

Verlaque, 2013), we postulated there would be larvae in Lough Hyne in mid to late summer. Past 

spawning observations at Lough Hyne have included 10 mass spawnings of P. lividus in July, 3 in 

August, and 1 in September (Minchin, 1992). Crook (2003) reported July to September spawning in 

urchins held in flow-through aquaria at the lough. Furthermore, the zooplankton study by Greenwood et 

al. (2000) reported that echinoid larvae were present from May through to September in the lough with a 

peak in July and a secondary peak of late-stage larvae in September. They presumed these were 

Paracentrotus larvae based on their own observations of urchins spawning in July (Greenwood et al., 

2000) and July - September (Minchin, 1992). 

To determine if Lough Hyne purple urchins were fertile and both sexes were present, we examined 3 

adult Paracentrotus from the west shore in August 2012; we induced spawning, following methods 

presents above (section 6.1), and examined the colour and relative abundance of gametes. Although it 
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would have been ideal to sample more urchins, we considered disturbing additional specimens would not 

be appropriate, given the conservation objectives of the marine reserve.  

To evaluate the availability of urchin larvae, we performed extensive plankton tows (typically every 

2-3 days) along the western and southern shore of the lough in August and September of 2012, 2013, and 

2014. We used a 130-µm mesh net (50 cm diameter) to sample surface waters where Greenwood et al. 

(2001) found the most larval echinoids. Plankton samples were sieved and examined directly. 

Echinopluteus larvae were collected and photographed.  

On 31 August 2012, we completed a series of 3 horizontal tows from Renouf sector S12/13 to S4, S4 

to S1 (mouth of the Goleen), and from W24/23 to W18/19 (Fig. 1). On 4 September 2012, we performed 

two additional horizontal tows on the west and south shores as well as a vertical tow in the north basin. In 

August - September 2013, a total of 19 separate tows were performed, following the same four paths: two 

along the west shore (W12/13–W18 and W18–W22/23) and two along the south shore (W38–S4 and S5–

S14/15) (Fig. 1B). In August - September 2014, we made an additional 15 horizontal tows on the western 

and southern shore of the lough. Thus, we made a total of 40 tows over three years during late summer.  

For all tows, the plankton net was pulled behind the University College Cork inflatable RIB at about 

1 knot (1.852 km h-1) for 5 min. At the end of each tow, the net was pulled out of the water and the 

plankton rinsed down into the end. The concentrated contents of the plankton net bottle were poured into 

a 200-mL bottle, alternating between rinsing and pouring in order to collect all of the plankton. The net 

was cleaned without the cod end attached between each tow to eliminate inter-tow contamination. The 

plankton sample was split into five sub-samples of 10 mL each, using a Hensen Stempol pipette. We 

placed each sample into a zooplankton counting tray, and used a dissection microscope to sort and count 

the plankton.  

To supplement these plankton data, a series of recruitment experiments was conducted in 2012-2018 

to eliminate the possibility that the window of larval seasonality had been missed. ‘Welcome mats’ and 

‘scrub brushes’ —used by juvenile urchin collectors in the Mediterranean populations of P. lividus (Hereu 

et al., 2004; Tomas et al., 2004; Prado et al., 2009)—were deployed as well as pot-scrubbers and acrylic 

plates as settlement substrata.  

Collectors were deployed in multiple blocks with a minimum of 4-5 collectors per block. They were 

positioned around the south basin for 2 weeks to 5 months, retrieved, manually defaunated, and 

quantified. Inter-annual variation in urchin recruitment was expected based on other studies (Hereu et al., 

2004; Tomas et al., 2004; Boudouresque and Verlaque, 2013). Reported survival of settling urchins to 2–

3 mm (test diameter) was <10% (Azzolina and Willsie, 1987) or 0.5–0.7% (López et al., 1998), 

depending on conditions, location, etc.  It was predicted that purple urchin availability and recruitment 

would be higher in the north basin than the south basin based on results of Greenwood et al. (2001) for 
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many invertebrate species. Furthermore, it was predicted that there would be higher recruitment on the 

north end of the west shore than the south end due to the prevailing water current pushing larvae 

northward along the west shore.   

 

4.4.2. Results 

In August 2012, both sexes of urchins were present and all 3 specimens sampled were highly fecund. 

However, in August and September plankton tows, we found no urchin larvae. In 2013 tows, a few 

echinoids were found: one recently metamorphosed urchin and three 4-armed pluteus larvae along the 

west shore. However, it was not possible to know definitively if the larvae belonged to the purple urchin 

Paracentrotus lividus, common urchin Echinus esculentus, or green urchin Psammechinus miliaris. In 

2014, an additional 7 pluteus larvae were found out of 15 tows. Overall, in 40 tows during 3 summers, 

two recently metamorphosed juveniles and 10 larvae were recorded. Thus, there was a paucity of all 

echinoid larvae in the lough during the period in which they were expected to be present.  Based on our 

annual counts of all three urchin species (Trowbridge and Little, unpubl. data), we posit that larvae would 

be primarily those of purple urchins.    

 For the past seven years (2012–2018), no juvenile urchins have been found on numerous settlement 

collectors in the lough (data not shown due to zero values but 40+ scrub brushes per year). A few (<5) 

young-of-the-year were found under shallow subtidal rocks each year, either at monitoring sites or other 

areas in the lough. Thus, there has been minimal urchin recruitment to the adult habitat in the lough since 

2010 (Fig. 3-4); two Paracentrotus recruits were seen in 2017 at 8 monitoring sites surveyed.   

 

4.4.3. Conclusions 

A few echinopluteus larvae were found in the lough surface waters during the 7 years we sampled. 

Furthermore, of the 3 Paracentrotus specimens assessed for fecundity in 2012, all were highly fecund in 

August and both sexes were present. The Lough Hyne purple urchins, therefore, have the ability to spawn 

(historically and currently): we observed spawning urchins in June and September 2017. Thus, some 

external factors must be constraining reproductive stages, including effects on urchin fecundity, 

fertilization success, and pluteus production and survival. At such low urchin densities, the Allee effect 

may be one of the primary factors constraining urchin fertilization. Urchin fertilization success is greatest 

in aggregations; if urchin densities are too low and/or individuals are too distant, fertilization success is 

likely to be low. Furthermore, urchin recruitment is frequently positively correlated with adult density 

(e.g., Ouréns et al., 2014 for P. lividus on Atlantic shores and Miller et al., 2007 for Diadema antillarum 

on Caribbean shores). Additional research should be focused on these vulnerable stages to evaluate 

whether Lough Hyne and Irish purple urchins can recover to form self-sustaining populations.  
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  Because urchin recruitment can often be highly episodic (e.g., Ebert, 1982; Pearse and Hines, 1987), 

our two-decade study may have missed recruitment pulses with longer periodicities. There are known 

long-term cycles (e.g., North Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Russell 

Cycle) in sea surface temperature and currents in the NE Atlantic Ocean (e.g., Cushing and Dickson, 

1976; Garcia-Soto and Pingree, 2012) but evaluating their potential causal role in the supply of pluteus 

larvae (or lack thereof) to Lough Hyne was beyond the scope of our study, particularly given the absence 

of long-term monitoring of purple urchin populations around Ireland.  

 

4.5. High post-settlement predation hypothesis 

4.5.1. Methods 

To evaluate direct predation on juvenile stages of purple urchins, in 2016 young-of-the-year and one-

year-old urchins were obtained from John Chamberlain at Dunmanus Seafoods for use in laboratory 

experiments. In the first trial, 10 urchins (1.0–3.4 mm test diameter) were placed per Petri dish with a 

freshly collected juvenile spiny starfish (Marthasterias glacialis) from the south shore; half the 10 dishes 

had small starfish (4–5 mm centre of disc to tip of longest ray) and the other half had larger ones (15–18 

mm). Urchin survival was monitored every day. Extreme care was taken to ensure that no urchins or 

seawater associated with the urchins entered Lough Hyne due to marine reserve conservation issues.  We 

also monitored the abundance of M. glacialis under rocks at the monitoring sites (Fig. 1B) from 1990 to 

2016 together with experimental substrata on the western shore in August – September 2016 and 2017. 

 

4.5.2. Results 

Marthasterias glacialis 

Although there are many potential predators of purple urchins in the lough (starfish, crabs, and 

fishes), the only species for which we have direct evidence for a predator increase in the same habitat as 

the urchins was the spiny starfish. Urchins and spiny starfish abundances were inversely correlated across 

the 10 sites and 21 years (Spearman’s rank correlation, rs=-0.343, n=210, P<0.001). There were large 

fluctuations in recorded numbers of this starfish at the monitoring sites from year to year but there was 

generally a cyclical pattern until 2015–16 (Fig. 9). Maximum numbers occurred at the SE Labhra 

monitoring site (140 starfish) in 2004. However, in 2007 we recorded only 2 individuals at this site. By 

2008 overall starfish numbers had risen to 58. The trend at several sites was of an increase in starfish from 

very low numbers in the mid-1990s to a peak in the early 2000s, followed by an extreme reduction by 

2014. However, 2015 and 2016 were population-boom years for starfish settlement and growth at the 

monitoring sites (Fig. 9, Trowbridge et al., 2018) and also on deployed experimental substrata. Most of 
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the starfish located on and under shallow subtidal rocks were <60 mm arm length with modal size of 20-

25 mm.  

Do starfish actually consume juvenile urchins? Based on our 2016 experiments, the young-of-the-year 

starfish (4.4 mm from centre of disc to tip of longest ray) do not consume the young-of-the year urchins 

(1–4 mm test diameter). However, slightly larger starfish (16.2 mm)—presumed to be the 2015 recruits—

were able to ingest healthy, hatchery-raised P. lividus, leaving intact empty tests (without spines). Most of 

the urchins consumed were small (1–3 mm). Starfish predation on juvenile stages of urchin could have 

contributed to the paucity of recruiting urchins (Fig. 3-4). Extensive recent research in the Mediterranean 

has demonstrated that M. glacialis does consume purple urchins, adults and juveniles (Guidetti, 2004; 

Bonaviri et al., 2009; Galasso et al., 2015; Gianguzza et al., 2016). Spiny starfish studies conducted in 

Ireland and Portugal (Verlag et al., 2003; Tuya and Duarte, 2012) also support the occurrence of such 

asteroid predation although the ecological significance of it was not entirely clear.  

 

Asterias rubens  

Numbers of this ‘common’ starfish noted during the annual under-rock surveys were usually lower 

than those of Marthasterias, and never reached high levels in two decades of sampling. Overall totals 

across sites were very low from 2006 to 2011, ranging from 4 to 40. From 2012 to 2014, none were found 

in the monitoring sectors. All individuals were small juveniles not capable of predating on adult purple 

urchins although they may have consumed juveniles. 

 

4.5.3. Conclusions 

Predation by the growing population of spiny starfish in the shallow subtidal habitat could have 

caused a total recruitment failure of urchins (if there were any metamorphosing urchins settling). Verling 

et al. (2003) stated that shallow-water starfish were trophically opportunistic but did consume purple 

urchins on the north shore of Lough Hyne. Guidetti (2004) reported that 18 species of fishes in 6 families, 

including sparid and labrid fishes, consumed purple urchins in SW Italy. Furthermore, Bonaviri et al. 

(2009) reported that predation by Marthasterias was a major source of urchin mortality in the marine 

reserve on Ustica Island, SW Italy. Marthasterias ate significantly more female than male Paracentrotus 

in a laboratory experiment and presumably caused the male-skewed sex ratio at Ustica Island (Gianguzza 

et al., 2009). We present compelling, though indirect, evidence that starfish could have been a significant 

contributory factor in the urchin decline around the lough. From our own observations, starfish stomach 

acid weakens the inter-ossicle joints in urchin tests, rendering them extremely fragile. Thus, starfish 

feeding may leave few persisting urchin tests which collapse down to the component ossicles.  
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Crab predation would not sufficiently explain our urchin population results (Fig. 3, 5). High crab 

densities reported by O’Sullivan and Emmerson (2011) did not persist (Matthams, 2015) and few broken 

tests (indicative of crustacean feeding: Boudouresque and Verlaque, 2013) were seen during our extensive 

snorkel surveys. Crab abundances fluctuated in relation to parasite-host cycles (Matthams, 2015) and not 

necessarily to marine conservation policies. Poaching of crabs and lobsters may be important influences 

on subsequent predation levels. Although such poaching was frequently observed by the first four 

authors, we have no evidence concerning the scale of such activities. 

Even if crab or starfish predation pressure were higher in recent years than before 1981, we strongly 

refute the suggestion by O’Sullivan and Emmerson (2011) that marine reserve designation was the 

driving factor for several reasons. There is no evidence (scientific or local knowledge) that fishing 

pressure was ever intense on the lough, even before 1981. In addition, there were no pre- and post-1981 

surveys of predators that were free of the confounding factors such as severe winters of 1978/1979, 1985, 

1989 (Trowbridge et al., 2013) and harmful algal blooms of dinoflagellates near the lough (and probably 

in the lough) in 1978 and 1979 (O’Sullivan, 1978; Cross and Southgate, 1980; Ottway et al., 1980; Pybus, 

1980; Southgate et al., 1984). While there may have been a trophic shift and/or a trophic cascade, we do 

not agree that the Irish marine conservation efforts were to blame.  

Human removal of urchins (either for consumptive or scientific purposes) remains a strongly 

persuasive mechanism of urchin demise. Our review of scientists’ collection accounts from the North 

Wall (e.g. Crook et al., 1999; Crook 2003) could contribute to some of the ‘missing’ urchins. However, 

the researchers stated they returned the urchins to the same habitat which would indicate the tests should 

have been present even if the urchins were in poor condition. Human ‘poaching’ for food and/or for 

nursery stock is a much more convincing explanation. It would account for the between-site variation in 

urchin declines (Fig. 3) and the temporal variation between the decline at our monitoring sites and at the, 

much more accessible, north shore populations (Fig. 2A vs. 2D). We have certainly seen, first-hand, the 

poaching of crabs, lobsters, snails, and mussels during the day as well as numerous clandestine scuba 

divers accessing the lough from the north shore or Goleen at night.    

 

4.6. High post-settlement mortality hypothesis 

4.6.1. Methods 

Mortality of benthic stages could also be due to abiotic factors. Extreme dissolved oxygen (DO) 

conditions (hyperoxia and hypoxia) could be lethal to benthic stages of urchins. To quantify DO levels, 

HOBO data loggers were deployed in 5 different locations in the shallow subtidal areas of the lough 

(North Labhra, Westwood South, SE Labhra, Sector S1 at the mouth of the Goleen, and Westwood 

North) where urchins had occurred historically. Data loggers recorded every 15 minutes from early June 
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to September 2017. The duration that DO levels were continuously hypoxic (<2 mg L-1) or suboxic (<6 

mg L-1) was calculated for each location and results pooled as the frequency of continuous exposure to 

hypoxic or suboxic conditions.   

To evaluate how low DO levels affected Paracentrotus lividus, a series of 1-day experiments were 

conducted in 2016 and 2017 with urchins of test diameter of 1-4 mm and 8-10 mm obtained from John 

Chamberlain’s Dunmanus Seafoods in Durrus, Co. Cork. One-litre jars of seawater were placed in a cold-

water bath using seawater from the lough and compressed nitrogen gas was bubbled into them to set a 

particular DO concentration in each jar.  Using a YSI oxygen probe, nitrogen gas was added until the 

probe read the desired oxygen concentration.   

In the first trial of 2016, 5 DO treatments (8.2, 4.0, 2.9, 1.0, 0.17 mg L-1) were established, ranging 

from normoxic to low hypoxic with 2 replicate jars per treatment. Ten small urchins were added for 1 

day; they were then removed and examined to determine whether they were alive and if so, the movement 

of their spines, podia, and pedicellariae were noted.  In the second trial, 9 urchins (1 year olds) were 

added to each jar and set up 4 DO level treatments (8.1, 2.0, 1.0, 0.2 mg L-1) with 2 replicates per 

treatment. In the third trial, 7 urchins (1 year olds) were used per jar, set up 2 DO treatments (normoxic 

8.7 vs hypoxic 0.17 mg L-1), and had 3 replicates per treatment. In all cases, after 1 day the seawater was 

replaced with normoxic water and the urchins that recovered (based on spine, podia, and pedicellariae 

movements) or died were noted. For all experiments, urchin survival was predicted to be low under 

suboxic to hypoxic conditions, relative to normoxic controls (~8-9 mg L-1).  

In 2017, three additional trials were conducted. In the first, urchin survival and performance were 

compared in normoxic vs. low hypoxic conditions as well as in Lough Hyne seawater vs. Dunmanus 

Seafoods seawater (n= 4 replicates of this two-way factorial design). In the second experiment, there were 

4 dissolved oxygen treatments (normoxia, suboxia, hypoxia, and low hypoxia: see Table 1) with 5 

replicates per treatment. In the final experiment, the time of exposure to low-hypoxic seawater (<0.2 mg 

L-1) varied: 0, 4, 8, and 10 hours; the duration of the 24-hour experiment was in full normoxic seawater 

(24, 20, 16, and 14 hours, respectively).    

 

4.6.2. Results 

In the 2016 DO laboratory experiments, after 1-day exposure to 0.2 mg L-1 seawater, 10 (100%) of 

the young-of-the-year urchins were dead in one replicate and 5 (50%) in the other. After the 1-day 

‘recovery’ period in normoxic seawater, 2 of the remaining urchins were dead. In the 2017 trial, 6 

individuals (33%) were dead in the low DO treatment, 56% were not attached to the substrata and 11% 

were only loosely attached; in the normoxic treatment, all were firmly attached with their podia to the 

sides of the glass jars. After the 1-d ‘recovery’ period, 9 of 21 (43%) urchins were dead in the 0.16 mg L-1 
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seawater. These results collectively demonstrate that even 1-d exposures of hypoxic (<2 mg L-1) seawater 

was lethal or sublethal to juvenile urchins. In 2017, 1-day exposures to DO values <1 mg L-1 were lethal 

to sublethal to urchins (Fig. 10A). Even 8 to 10-h exposures were lethal to many juvenile urchins (Fig. 

10B).  

In the summer of 2017, at five sites where urchin recruitment had historically been high, the dissolved 

oxygen (DO) levels on the benthos (above the rocks) varied from hyperoxia (supersaturation) to anoxia 

(no oxygen) (Fig. 10A). At two sites (North Labhra and Westwood North, both in the north basin), the 

dissolved oxygen levels were repeatedly hypoxic to anoxic at night and hyperoxic in daytime (i.e. diel-

cycling hypoxia). However, the duration of extreme conditions was brief, with daily fluctuations between 

the two extreme levels. DO levels under rocks typically were hypoxic and anoxic in the daytime (Fig. 

11A). Thus, the duration of the poor conditions would vary from 15 min to 8-10 hours a day above rocks 

(Fig. 11B) (and presumably 24 hours a day for under rocks). The duration of suboxia ranged up to about 

16 hours a day (Fig. 11C). At other sites and in other years (particularly 2014 and 2015), DO conditions 

were even lower (detailed results to be reported elsewhere, Plowman et al., unpublished data).   

 

4.6.3. Conclusions 

Measurements of nitrogen inside and outside the lough (Jessopp et al., 2011; McAllen et al., 

unpublished data) indicate nutrient enhancement and, consequently, eutrophication in the past decade, 

presumably due to agricultural runoff regionally in SW Ireland. Whether eutrophication was the driver of 

urchin mass mortality and/or partially a consequence of it cannot be unequivocally determined.   

Given the recent phenomenon of frequent hypoxia and anoxia on the shallow subtidal sea bed of 

Lough Hyne (Trowbridge et al., 2017a; Plowman et al., unpublished data), on top of and underneath 

shallow subtidal rocks, mortality of settling juvenile urchins may now be a major cause of the decline of 

purple urchins in Lough Hyne. Certainly, research by Saco-Alvarez et al. (2010) and this study would 

indicate that the urchin habitat quality in Lough Hyne is frequently inadequate for urchin persistence. The 

demise of sponges, bryozoans, and other invertebrates in the lough (Little et al., 2017b; J. Bell, pers. 

comm.) support the poor-habitat scenario.  

Reviews by Vaquer-Sunyer and Duarte (2008), Diaz and Breitburg (2011), and others have reported 

the significantly increased frequency of hypoxia in marine coastal waters. Thus, what is happening in 

Lough Hyne with extreme dissolved oxygen fluctuations (Trowbridge et al., 2017a) is a worldwide 

problem although it may be exacerbated in areas with limited seawater flushing due to coastal 

configuration. Furthermore, the lethal and sublethal DO levels of invertebrates varied widely among taxa, 

and mass moralities of several groups occurred at DO values well above the hypoxia/suboxia transition 

(Vaquer-Sunyer and Duarte, 2008). 
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4.7. High-pathogens hypothesis 

4.7.1. Methods 

To estimate pathogen levels within the lough, visual surveys of sea urchins were made during our 

snorkel surveys by pairs of snorkelers in August/September each year (2006–2017). Data were recorded 

by Renouf sector without disturbing the benthic habitat. The condition of all urchins found was typically 

recorded, and photographs were made of any deleterious conditions such as spine loss, lesions, etc. 

Furthermore, all urchins found under low-shore rocks during the two-decade monitoring at 10 ‘annual 

sites’ were examined, and any abnormal condition noted.  

 

4.7.2. Results 

Unhealthy urchins were frequently observed in the lough (Supplemental Fig. 2). There were three 

general categories of ailments: (1) partial to total spine loss in live and dead urchins, (2) epidermal 

lesions, and (3) white coating of urchin surface usually near the base of spines but occasionally extending 

up individual spines. These issues occurred in P. lividus as well as in the ‘common’ urchin Echinus 

esculentus (Fig. 5). Furthermore, juvenile purple urchins obtained from the Dunmanus Hatchery died in 

<1 week when being held in buckets of aerated seawater from Lough Hyne in September 2016; this was 

not an experiment so there was no control. Thus, the water quality itself or pathogens in the water may 

have contributed to urchin stress and/or mortality. In June 2017, urchin survival did not differ 

significantly when held in Lough Hyne vs. Dunmanus Bay seawater.  

 

4.7.3. Conclusions 

Surprisingly little research has focused on the role of pathogens and/or dinoflagellate blooms 

contributing to urchin mortality in Ireland compared with other regions such as Nova Scotia, the 

Caribbean, and the Mediterranean Sea. The role of bald-urchin disease or comparable syndromes in the 

shift from high-density populations of urchins to low-density ones is well established for Mediterranean 

urchin populations (Boudouresque and Verlaque, 2013) as well as mass mortalities elsewhere (e.g. Girard 

et al., 2012). In particular, high temperatures are known to facilitate disease outbreaks by increasing 

pathogens and reducing host resistance in urchins, corals, and many other organisms. Jones and 

Scheibling (1985) suggested that Paramoeba spp. may have been the causative agent in the mass 

mortality of green urchins (Strongylocentrotus droebachiensis) in Nova Scotia. Bacterial agents were 

implicated in mass mortalities of Caribbean and California urchins. Hagen (1992) reported that population 

reductions of green urchins in parts of central Norway may have been related to an infestation by the 
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endoparasitic nematode Echinomermella matsi or other waterborne agents. Regretfully, these factors have 

not been investigated for urchins in Lough Hyne.  

The paucity of such research in Europe’s first and undoubtedly best-studied marine reserve is 

concerning from a conservation perspective, particularly given that Girard et al. (2012) demonstrated that 

large urchins were infected significantly more frequently than juveniles: the mortality of Paracentrotus 

large enough to be sexually mature would significantly curtail larval production. Furthermore, the first 

author’s (C.D. Trowbridge) periodic observations of seawater exchange (dumping and replacement) from 

trucks of imported seafood with lough seawater should be stopped due to the strong probability of point-

source introductions of pathogens.  

Similarly, the fact that Lough Hyne has not yet been incorporated by the Irish EPA as a regular 

monitoring site for harmful algal blooms, nutrients, dissolved oxygen, etc. is unfortunate. An EPA-funded 

study by Jessopp et al. (2011) was a notable exception. SW Ireland, including Lough Hyne, has 

experienced increased nutrient-enhancement in many catchments and coastal areas (Jessopp, 2011; 

Jessopp et al., 2011) compared to two decades ago (Johnson and Costello, 2002). Furthermore, starting in 

the late 1970s, harmful algal blooms (particularly the dinoflagellate Karenia mikimotoi) have occurred in 

western and southern Ireland (O’Sullivan, 1978; Pybus, 1980; O’Boyle et al., 2016). Many of these 

blooms caused significant mortalities of fishes and/or invertebrates (Cross and Southgate, 1980; Leahy, 

1980; Southgate et al., 1984; Silke et al., 2005), particularly in seasonally stratified coastal waters. In 

particular, Cross and Southgate (1980) reported the loss of spines by Paracentrotus and the urchins’ 

departure from rockpool depressions to lie on the bottom of pools. Yet, only two studies have evaluated 

dinoflagellate populations in Lough Hyne (Johnson and Costello, 2002; Jessopp et al., 2011) and none 

have evaluated faunal mortalities during/after blooms. There are extensive possibilities for future 

environmental research in Ireland and the role of coastal configuration on eutrophication, extreme DO 

fluctuations and biotic mortalities.   

 

Conclusions: multiple stresses and feedback loops 

The current situation in the shallow subtidal of Lough Hyne can be represented by a feedback loop 

(Fig. 12). We suggest that multiple factors including human collection, starfish predation, and declining 

habitat quality due to coastal eutrophication were all causal factors in urchin population decline.  

Ephemeral algal growth reduces water movement, allowing algal decay and promoting hypoxic to anoxic 

conditions. Hypoxia in turn promotes death or stress of adult urchins and reduces larval recruitment. 

Reduction in the urchin population in turn promotes further growth of filamentous algae. This feedback 

loop can be accelerated by external influences such as increases in predation level, nutrient supply and the 

disruptive effects of weather conditions such as storms. Climatic change could exacerbate the interactions 
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in several ways: (1) increasing the frequency or magnitude of toxic algal blooms (e.g., Karenia or 

Ostreopsis), pathogen outbreaks, or extreme weather, (2) increasing the seasonal appearance of warm-

water triggerfish known to consume urchins, and (3) increased proliferation of the spiny starfish which 

spawn during warm-water periods (Minchin, 1992). The anthropogenic effect of increased fertilization of 

Irish coastal pastures will cause continued nutrient enhancement, ephemeral macroalgal proliferation, and, 

eventually, eutrophication of coastal waters. Without human intervention to improve water quality and 

replaced lost urchins, it seems unlikely that the situation will change in the near future. 
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FIGURE CAPTIONS 

 Fig. 1. A, Location of Lough Hyne in SW Ireland, showing places mentioned in the text. B, Map of 

Lough Hyne, showing 10 long-term monitoring sites (10 m wide on shore) that were surveyed annually 

for 2 weeks in late August to early September for 21 years (‘Annual’ sites), and 10 sites that were 

surveyed in 2015 to compare with older surveys (‘Historical’ sites). Annual site names are abbreviated as 

follows: BB, Boundary Bay; CB, Codium Bay; EC, East Castle; EG, East Goleen; GY, Graveyard; NI, 

North Island; NL, North Labhra; WWN, Westwood North; WWS, Westwood South. Historical site names 

are abbreviated as follows: BH, Bohane Harbour; GQ, Glan Quay; NC, North Castle; NWC, Northwest 

Castle; RN, Rookery Nook; SC, South Castle; SL, South Labhra; WC, West Concrete; WL, West Labhra; 

WP, Whirlpool Point). 

 

Fig. 2. A, Counts of the purple urchin Paracentrotus lividus at the 10 monitoring sites showing the 

population peak in late 1990s. B, urchin counts pooled by basin (north vs. south basin sites). C, Counts of 

the urchins large enough to be sexually mature (black bars) and small enough to be considered young-of-

the year (recent recruits) (grey bars). D, Visible purple urchins (on logarithmic scale) on north shore of 

lough. Black bars indicate counts based on the road or wall above the shore and grey bars indicate while 

snorkeling. In 2009 and 2014, there were no visible urchins remaining on north shore.  

 
Fig. 3. Kite diagrams indicating (A) urchin abundance (counts per 10-m long site) from 1994 to 2014 and 

(B) recruits (urchins < 10 mm test diameter) from 1996 to 2014 at 10 study sites. Site names abbreviated 

as in caption of Fig. 1.  Maximum sample sizes indicated for each kite distribution. 

 

Fig. 4. Size-frequency distributions of test diameters of Paracentrotus lividus from 1996 to 2014. Sample 

sizes indicate the number of measured urchins at 10 monitoring sites. Black bars indicate the young-of-

the-year (recruits), hatched bars indicate intermediate-sized urchins, and gray ones indicate potential 

sexually mature individuals (based on test diameter).  

 

Fig. 5. Number of urchin tests recorded during the shore surveys at the monitoring sites (A-C) and during 

the whole-lough snorkel surveys (D-F). Mortalities were categorized by year (A, D), site or shoreline (B, 

E), or apparent cause (C, F).     

 

Fig. 6. Seawater temperatures from various TidBit sensors deployed in the shallow subtidal zone on the 

western shore since spring 2014. Each panel represents output from multiple sensors downloaded 

approximately every 6 months; thus, the x-axis scaling varies among panels. Each sensor recorded every 
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15 minutes during the survey period; the values represent means and standard deviations among sensors. 

The two summers indicated as cool had extremely negative North Atlantic Oscillation values in July 

(Trowbridge et al., 2018). 

 

Fig. 7. Late summer surface temperatures measured with a thermometer at Lough Hyne. The Gate Lodge 

readings were taken offshore from the promontory located in Renouf sector N12; the Glan Lab readings 

were taken from the quay at the Glannafeen Laboratory, which was at the intersection of sectors S4 and 

S5. Other includes North Quay, center of north basin, etc. The arrow indicates the 1992 summer which 

was the only cool summer data recorded.  

 

Fig. 8. Urchin fertilization experiment results with Ulva intestinalis in September 2013. 

 

Fig. 9. Temporal changes of spiny starfish (Marthasterias glacialis) at 10-m wide monitoring sites in 

Lough Hyne.  

 

Fig. 10. A, Movement of juvenile purple urchins exposed to varying dissolved oxygen levels for 24 hours 

in June 2017 at Lough Hyne. Attached indicated the percentage of urchins that were attached to the side 

of the glass jar; righting refers to the percentage of urchins that could right themselves after being flipped 

upside down. B, Survival of juvenile urchins exposed to anoxic conditions for 10, 8, or 4 hours vs. 

normoxic control conditions. Spines, pedicellariae, and podia refer to the percentage of urchins that were 

moving those body parts at the end of the experiment.  

 
Fig. 11. A, Box and whisker plots of dissolved oxygen values recorded in the shallow subtidal habitats at 

5 sites with known past urchin recruitment. Data were recorded every 15 min from June to Sep 2017. 

Normoxic levels varied between 8 and 10 mg L-1 (temperature dependent); hypoxic levels are <2 mg L-1.  

B, Frequency of DO being <2 mg L-1 (hypoxic) vs. duration of time (in 15 min intervals). C, Frequency of 

DO being <6 mg L-1 vs. duration of time (in 15 min intervals). 

 

Fig. 12. Schematic feedback loop of interactions in Lough Hyne occurring since 2010.  

 
Supplemental Fig. S1. Extreme weather in terms of air temperature from the Sherkin Island recording 

station. C, Rainfall and D, wind speed at Sherkin. Dashed horizontal lines (A-C) are heuristic tools to 

draw attention to the circled (A) hot, (B) cold, and (C) wet outlying values. 
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Supplemental Fig. S2. Paracentrotus lividus with spine loss (A), spine loss and necrosis (B), and white 

patches around base of spines (C). The coexisting pink or common urchin Echinus esculentus exhibiting 

similar spine loss.   
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