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Highlights

• We build a selection-recombination model conjectured to have stable cycling

• A separation of time-scales is exploited, using a biologically interpretable change

of variables to achieve an explicit fast variable

• An approximate closed-form for a well-known surface, known as the quasilinkage

equilibrium manifold is extracted

• The dynamics are simplified by exploiting the surface and stability of the hetero-

clinic cycle is deduced analytically
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Abstract

Genetic systems with multiple loci can have complex dynamics. For example, mean

fitness need not always increase and stable cycling is possible. Here, we study the dy-

namics of a genetic system inspired by the molecular biology of recognition-dependent

double strand breaks and repair as it happens in recombination hotspots. The model

shows slow-fast dynamics in which the system converges to the quasi-linkage equilibrium

(QLE) manifold. On this manifold, sustained cycling is possible as the dynamics ap-

proach a heteroclinic cycle, in which allele frequencies alternate between near extinction

and near fixation. We find a closed-form approximation for the QLE manifold and use

it to simplify the model. For the simplified model, we can analytically calculate the

stability of the heteroclinic cycle. In the discrete-time model the cycle is always stable;

in a continuous-time approximation, the cycle is always unstable. This demonstrates

that complex dynamics are possible under quasi-linkage equilibrium.

Keywords:

Quasi-linkage equilibrium, Slow manifold, Lyapunov function, Global stability,

Multiple time-scales

1. Introduction
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Genetic equilibrium, the idea that gene frequencies are the same from one generation1

to the next, was the focus of early work on population genetics. The attention shifted2

when it was discovered that one-locus viability models can exhibit cycling behaviour and3

genetic equilibrium does not have to be achieved (Kimura, 1958; Hadeler and Liberman,4

1975; Asmussen and Feldman, 1977; Cressman, 1988). Further investigation showed that5

two-locus viability models with recombination can also exhibit cycling behaviour (Akin,6

1979; Hastings, 1981; Akin, 1982, 1983, 1987).7

The discrete-time selection-recombination equations (Lewontin and Kojima, 1960;8

Bürger, 2000) have provided a determinsitic model for changes in the genetic make up9

of a population. Despite the fact that these equations are often used to study the10

properties of stable equilibria, they are inherently nonlinear, meaning even the most11

simple formulations of the equations can have complex dynamics. Examples include limit12

cycles (Akin, 1983) and heteroclinic cycles (Haig and Grafen, 1991; Úbeda et al., 2019).13

Whether the cycles are maintained indefinitely or eventually die out (i.e. their stability14

properties) is mathematically challenging and of significant biological importance. This15

is the focus of the research we present here.16

Many genetic processes within an interacting population of individuals can be cap-17

tured by the selection-recombination equations, as they allow for arbitrary selection18

regimes defined by model-specific fitness matrices. Here, we investigate the stability19

of cycles in two-locus genetic systems characterised by a specific interaction between20

selection, gene conversion and crossover. This interaction corresponds to a model of21

the evolution of recombination hotspots (Úbeda et al., 2019). However, we re-write22

this model in standard selection-recombination equations form by noticing that the ef-23

fect of conversion in Úbeda et al. (2019) can be split into its effect on selection (and24

incorporated to the selection component of the standard selection-recombination equa-25

tion) and its effect on formation of double heterozygotes (and incorporated into the26

recombination component of the standard selection-recombination equation). Further-27

more, while the model in Úbeda et al. (2019) assumes that the values taken by the28

selection-recombination parameters are constrained by their biological interdependence,29
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here we assume that the parameter values are independent and not limited by biological30

constraints. In doing so, we allow for multiple forms of interaction between selection,31

conversion and crossover, provided they produce the same equations. This formulation32

allow us to focus on the mathematical properties of the generalised model.33

Biologically, the processes in our model are initiated by recognition between a pro-34

tein formed by a modifier gene and a target locus, whereby the protein interacts with35

the target, initiating conversion and potentially crossover (Úbeda and Wilkins, 2011;36

Úbeda et al., 2019). Other than the evolution of recombination hotspots (Úbeda and37

Wilkins, 2011; Úbeda et al., 2019), examples of similar recognition-initiated interactions38

producing sustained cycling include: the evolution of homing endonucleases (Yahara39

et al., 2009), the evolution of meiotic drive (Haig and Grafen, 1991), the evolution of40

host-parasite interactions (Sasaki et al., 2002) and the evolution of altruism via tag based41

recognition (Jansen and Van Baalen, 2006).42

If selection is weak, stable cycling cannot occur within the two-locus selection-43

recombination equations if the equilibria are hyperbolic (Nagylaki et al., 1999; Pontz44

et al., 2018). These conditions produce dynamics which converge to a stable equilib-45

rium. Under weak selection, the argument by Nagylaki et al. (1999) uses the existence46

of an invariant stable manifold which attracts the dynamics. On this attracting manifold,47

the dynamics are gradient-like and converge to equilibrium (Pugh et al., 1977). This48

manifold is known in genetics as the quasi-linkage equilibrium (QLE) manifold (Kimura,49

1965). It is the set of states defined by the property that linkage disequilibrium changes50

an order of magnitude slower than the allele frequencies (Kimura, 1965).51

In geometrical terms, this means that the dynamics approach a manifold after a short52

initial time. If an approximate expression for such a manifold can be found, it can be53

exploited mathematically to simplify the system (Constable and McKane, 2017). This54

is usually done by assuming that selection in the model is weak (Barton, 1995; Nagylaki55

et al., 1999; Kirkpatrick et al., 2002; Lion, 2018). We identify the linkage disequilibrium56

as a fast variable in our model, isolate it using a coordinate transformation and find an57

approximation of the surface to which the dynamics converge. Here we show that the58
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existence of a time-scale separation between variables and hence attraction to the QLE59

manifold is not exclusively associated with simple dynamics which are characterised by60

gradient-like convergence to an interior equilibrium.61

The model presented here has complex dynamics, such as bistability and a global62

bifurcation. We show that, in such a system, it is still possible to find an approximate yet63

accurate explicit expression for the QLE manifold. For analytical tractability, following64

standard methods in population genetics, we derive a continuous-time approximation to65

our discrete-time model (Nagylaki et al., 1999; Bürger, 2000; Pontz et al., 2018). We66

use this continuous-time approximation to find an expression for the QLE manifold.67

We go on to use this to constrain the dynamics analytically to this surface, reducing68

the dimension of the system. We are then able to calculate the stability of the now-69

planar heteroclinic cycle that exists in our model within certain parameter regimes.70

Constraining the dynamics is a powerful step as it allows for the use of the only known71

analytic heteroclinic stability condition in discrete-time for planar cycles (Hofbauer and72

Schlag, 2000). In the vicinity of this heteroclinic cycle, strong fluctuations are possible73

on the QLE manifold.74

Finally, we numerically assess the accuracy of our approximation of the QLE man-75

ifold against both sources of error: the quasi steady-state assumption and the use of76

the continuous-time derived manifold within the discrete-time system. We find that the77

manifold is a good approximation for the discrete-time system for both damped oscilla-78

tions towards the unique interior equilibrium and the approach towards the heteroclinic79

cycle.80

2. The model81

We investigate the dynamics of haplotype frequencies of two alleles at two interacting82

loci, in an infinite population, undergoing a specific selection regime (uniquely defining83

the fitness matrix W ), recombination and random union of gametes (panmixia). Once84

the fitness matrix and the parameter δ are defined, the system of equations in question is85

fully defined (A.1). First, we describe the biological processes which justify our selection86
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regime, then we present the resulting fitness matrix (A.5).87

Our model describes the evolution of recombination hotspots by following the dy-88

namics between a modifier gene — producing a recombinogenic protein — and a target89

gene, on which the protein binds to, causing a double-strand break and initiating recom-90

bination (Úbeda et al., 2019). This model is here re-written as a system of selection-91

recombination equations. This system describes the following general processes: a fitness92

benefit derived from recognition between modifier and target (β), a fitness cost derived93

from gene conversion (γ) and the reshuffling of alleles in double heterozygotes caused by94

gene conversion and crossover (δ) (Úbeda et al., 2019). Our original formulation of the95

model included another parameter α, which we have normalised to one (without loss of96

generality) for simplicity.97

The dynamics of the matching process between homozygotes and gene conversion98

leads to the following system of equations describing the frequency of each haplotype in99

the next generation100

x′1 =
1

w̄

(
x1[1 + βx1 − γx2]− δD

)
,

x′2 =
1

w̄

(
x2[1− βx2 + γx1] + δD

)
,

x′3 =
1

w̄

(
x3[1− βx3 + γx4] + δD

)
,

x′4 =
1

w̄

(
x4[1 + βx4 − γx3]− δD

)
,

(1)

where the linkage disequilibrium between alleles is101

D = x1x4 − x2x3, (2)

and the population mean fitness is102

w̄ = x1 + x2 + x3 + x4 + β
(
x21 − x22 − x23 + x24

)
. (3)

Superscript primes indicate the value of the variable in the next generation. The popula-103

tion mean fitness, w̄, ensures that the sum of the haplotype frequencies remains constant104

in time. To ensure the right hand side of the difference equations does not become neg-105

ative, which would imply that the number of gametes produced is negative, we require106
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A1 A2

B1 x1 x3

B2 x2 x4

Table 1: Relations between the haplotype frequencies, x1, x2, x3, x4, the alleles controlling the re-

combinogenic protein type, A1, A2, and the alleles controlling the target site sequence, B1, B2. The

table indicates that the allele frequencies are obtained by summing over the haplotype frequencies in the

corresponding row or column. Explicitly, A1 = x1 + x2, A2 = x3 + x4, B1 = x1 + x3 and B2 = x2 + x4.

that the parameters β, γ can only take values between 0 and 1. This can be justified by107

the fact parameters represent probabilities in the context of the selection-recombination108

equations. The parameter δ can only take values between 0 and 1
2 .109

Our fitness matrix and therefore our model has similarities with that of (Karlin110

et al., 1970). They study symmetric viability, meaning they impose a symmetric fitness111

matrix. Ours is perhaps superficially similar but has a crucial difference; our matrix is not112

symmetric. Our matrix results in certain local symmetries within the resulting equations113

— symmetries which are a hallmark of heteroclinic cycles. In that sense, our model is114

closer to the ones of Haig and Grafen (1991) who also studied a process with a non-115

symmetric fitness matrix also finding a heteroclinic cycle. We choose a specific example116

to study for mathematical tractability and to link it to specific biological examples.117

3. Analysis and Results118

The model has two different qualitative behaviours: convergence to equilibrium and119

sustained oscillations. In both cases, the rate-of-change of D tends towards zero on a120

faster time scale than the rate-of-change of the allele frequencies (see Figure 1). This121

suggests that the system has two separate time scales and that the dynamics converge122

towards the QLE manifold. We will find an approximate expression for this manifold.123

For brevity, we introduce A = A1 and B = B1 to denote the frequency of the first124

recombinogenic protein and its matching target allele, respectively. The frequency of the125

second recombinogenic protein and its target allele can then be written as A2 = 1 − A126
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and B2 = 1−B.127

subsectionChange of variables128

The first step towards finding an approximation of the QLE manifold is changing129

coordinates so that they describe the allele frequencies and linkage disequilibrium. We130

achieve this by transforming variables from haplotype frequencies to allele frequencies131

using132

A = x1 + x2,

B = x1 + x3,

D = x1x4 − x2x3,

(4)

where A and B take values on the interval [0, 1]. D represents linkage disequilibrium133

between alleles and takes values on [−1
4 ,

1
4 ]. If we consider (4) to be the forward trans-134

formation, we arrive at the backward transformation135

x1 = AB +D,

x2 = A(1−B)−D,

x3 = (1−A)B −D,

x4 = (1−A)(1−B) +D.

(5)

Transforming using (4), the discrete-time model becomes136

A′ =
1

w̄
βA(1−A)(2B − 1) +A,

B′ =
1

w̄

[
(γ − β)B(2A− 1)(B − 1) + γ(2B − 1)D

]
+B,

D′ =
1

w̄2

[
(A− 1)A(B − 1)B(β − γ)+

D

(
β[2A(A− 1)(B2 −B)(γ + β)+

A(A− 1)γ − (2A− 1)(δ − 1)(2B − 1)]− δ + 1

)
+

D2

(
β(β + γ)(2A− 1)(2B − 1) + β(−2δ + 3) + γ

)
+

2βD3(β + γ)

]
.

(6)
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Figure 1: Time series showing examples of the two types of behaviour of the discrete-time

model (6). The examples in the top row have initial conditions: A(0) = 0.05, B(0) = 0.95, D(0) =

0.0005 and those in the bottom row have initial conditions A(0) = 0.25, B(0) = 0.75, D(0) = 0.0005.

Trajectories in both rows were solved with the same set of parameters: β = 0.1, γ = 0.13, δ = 0.2.

The top row shows a typical trajectory nearby the heteroclinic cycle. It also shows that after an initial

period of rapid change, the linkage disequilibrium eventually changes relatively slowly (D′ becomes

approximately constant in time), indicating the convergence of the dynamics to QLE manifold. The

bottom row shows a typical orbit exhibiting damped oscillations and convergence to the asymptotically

stable interior equilibrium (9).

Additionally, w̄ is transformed into137

w̄ = 1 + β(2A− 1)(2B − 1) + 2βD. (7)

As these coordinates include linkage disequilibrium (D) explicitly, they allow for a138

simple interpretation of the surface of total linkage equilibrium: the Wright manifold.139

This surface can now be written as the part of state space where D = 0 (Rice, 2004).140

3.1. Equilibria and local stability141
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The system has a maximum of ten solutions when solving for potential equilibria.142

Five of these live within the positive state space of the model and are therefore biolog-143

ically feasible. Four of the five biologically realistic equilibria are located at the four144

vertices of the tetrahedron that forms the 3-simplex (in haplotype coordinates). These145

corner equilibria, in allelic coordinates (A,B,D), are146

Φ1 = (1, 1, 0),

Φ2 = (1, 0, 0),

Φ3 = (0, 1, 0),

Φ4 = (0, 0, 0).

(8)

We analysed the linear stability of these equilibria in Úbeda et al. (2019) and we sum-147

marise the main results here. For our choice of parameters the equilibria Φ2 and Φ3 are148

always unstable. Moreover, if β < γ these equilibria are saddles. The equilibria Φ1 and149

Φ4 are stable if β > γ and are saddles, and thus unstable, if β < γ. Note that if A or150

B take values of either 0 or 1 then D = 0. Upon inspection of the transformed models,151

we find that the lines connecting the equilibria Φ1 to Φ2 (A = 1, D = 0), Φ2 to Φ4152

(B = 0, D = 0), Φ4 to Φ3 (A = 0, D = 0) and Φ3 to Φ1 (B = 1, D = 0) are all invariant.153

When all these equilibria are saddles (i.e. when β < γ) a heteroclinic connection exists:154

· · · → Φ1 → Φ2 → Φ4 → Φ3 → Φ1 → · · · .

The fifth equilibrium is positioned in the interior of the simplex. For this interior equilib-155

rium it is easily verified that Ȧ = 0 and Ḃ = 0 for A = B = 1
2 . The interior equilibrium,156

in allelic coordinates, is157

Φ5 = (12 ,
1
2 , D

∗), (9)

where D∗ is the negative root of158

(γ − β)D∗2 − δD∗ − 1
16(γ − β) = 0, (10)

given by159

D∗ =
δ −

√
δ2 + 1

4(γ − β)2

2(γ − β)
. (11)

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The positive root is larger than 1
4 for δ > 0 and therefore the corresponding equilibrium160

has negative haplotype frequencies.161

The multipliers of the discrete-time model (6) at the interior equilibrium Φ5 are given162

by163

λ1 = 1 +
γD∗ +

√
(γD∗)2 + 1

4β(β − γ)

w̄∗
,

λ2 = 1 +
γD∗ −

√
(γD∗)2 + 1

4β(β − γ)

w̄∗
,

λ3 = 1− δ + 2D∗(β − γ)

w̄∗
,

(12)

where w̄∗ = 1 + 2βD∗ denotes the value of w̄ evaluated at the interior equilibrium164

(Úbeda et al., 2019). The eigenvalues λ̂i of the interior equilibrium of the continuous-165

time approximation are given by λ̂i = λi − 1.166

If β > γ then D∗ > 0 and w̄∗ > 0. Therefore, in this region of parameter space,167

it is relatively easy to see that the interior equilibrium is a saddle (both in the discrete168

and the continuous-time models). Specifically, λ1 and λ3 are always negative, and for169

0 < δ < 1
2 , λ3 > −1. λ2 is always positive. If β < γ then D∗ < 0. Eigenvalues λ1 and λ2170

can now form a conjugate pair of complex eigenvalues. For the equilibrium to be locally171

stable in the discrete-time model we require |λ1,2| < 1. This leads to the conditions for172

local stability173

2γw̄∗D∗ <
1

4
β(β − γ). (13)

If δ < 1
2 this condition is always fulfilled (Úbeda et al., 2019). This stability condition174

(13) applies only to the discrete-time model as its continuous-time approximation (15)175

is always locally stable (for β < γ).176

3.2. Global stability: A Lyapunov function and heteroclinic cycle177

3.2.1. A continuous-time approximate model178

These results on asymptotic local stability leave the question of what the global179

dynamics are and, in particular, if the heteroclinic connection is an attractor, or whether180

orbits move away from it. While the focus of this paper is to analyse the global stability181

12
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properties of the discrete-time model (1), we introduce the following continuous-time182

approximation of the discrete-time model (Nagylaki et al., 1999; Bürger, 2000) to aid us183

in this matter significantly184

ẋ1 =
1

w̄

(
x1[1 + βx1 − γx2]− δD

)
− x1,

ẋ2 =
1

w̄

(
x2[1− βx2 + γx1] + δD

)
− x2,

ẋ3 =
1

w̄

(
x3[1− βx3 + γx4] + δD

)
− x3,

ẋ4 =
1

w̄

(
x4[1 + βx4 − γx3]− δD

)
− x4,

(14)

where derivatives with respect to time t are denoted by a dot above a variable. The185

expressions for w̄ and D are given by (2) and (3), the same as in the discrete-time186

model. The continuous-time model written in the transformed variables is187

Ȧ =
1

w̄
βA(1−A)(2B − 1),

Ḃ =
1

w̄

[
(γ − β)B(2A− 1)(B − 1) + γ(2B − 1)D

]
,

Ḋ =
1

w̄

[
(γ − β)

[
D2 −AB(1−A)(1−B)

]
− βD(2A− 1)(2B − 1)− δD

]
.

(15)

It is easy to show that the equilibria for the discrete-time model and its continuous-188

time approximation are the same (Bürger, 2000). Similarly, it is easy to show that the189

eigenvalues of the Jacobian at each equilibrium in the continuous-time model equal the190

discrete-time eigenvalues minus unity — a consequence of the fixed time-step in the191

discrete-time system. We use the continuous-time model in two ways: introducing a192

Lyapunov function for the interior equilibrium, showing it to be globally stable; using193

it to find an analytically tractable version of the approximate QLE manifold, as the194

expression is significantly simpler when derived from the continuous-time model.195

3.2.2. Lyapunov function196

For the continuous-time model it is relatively easy to show that the heteroclinic cycle197

repels orbits using a Lyapunov function. Before we show this, we first observe that for198

any solution of (15) as long as D ≤ 0 at some point in time, D ≤ 0 onwards if β < γ, and199

13
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with equality only if the solution lives on the heteroclinic connection. This can easily be200

seen by inspecting the right hand side of the differential equation describing the change201

in D when β < γ, which is negative everywhere on the Wright manifold, apart from on202

the heteroclinic connection, where it is zero. Therefore, if D(t0) < 0, then D(t) < 0 for203

all t > t0. This means that trajectories can pass through the Wright manifold where204

D = 0 in only one direction, and are then confined to the region where D ≤ 0 once they205

have done so.206

With this established, we now consider the function207

V (A,B) = [A(1−A)]γ−β[B(1−B)]β. (16)

This function (16) serves as a natural candidate for a Lyapunov function of system208

(14) as it retains invariance of the system along the boundaries (where either A = 0,209

A = 1, B = 0 or B = 1). Indeed, for β < γ this function takes the value V = 0 along the210

heteroclinic connection, and takes positive values anywhere else in or on the simplex. The211

continuous-time model with D set to zero (15) is equivalent to the replicator equations212

for 2 × 2 games and our Lyapunov function (16) is equivalent to that of this system,213

serving as its constant of motion (Hofbauer and Sigmund, 1998).214

The candidate function V is a Lyapunov function if β < γ for orbits which at some215

point pass through the Wright manifold. To show this, we inspect its time derivative216

along solutions of (15):217

V̇ = −βγD
w̄

(1− 2B)2

B(1−B)
V. (17)

The right hand side of (17) is always less than or equal to zero if D ≤ 0, meaning V is a218

Lyapunov function within this region. For orbits starting in the forward invariant part219

of state space where D < 0 the value of V will thus increase or stay constant over time.220

The ω-limit of these orbits must therefore be invariant sets for which either D = 0 or221

B = 1
2 . If β < γ the only invariant part of the Wright manifold D = 0 is the heteroclinic222

connection, where V = 0. As the value of V cannot decrease and is positive for all points223

in or on the simplex that are not part of the heteroclinic connection, the heteroclinic224

14
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connection cannot be an ω-limit of these orbits, within which the only other candidates225

are the invariant sets contained with B = 1
2 , which is the interior equilibrium Φ5. Any226

orbits starting within the parts of the simplex where D < 0 will therefore move towards227

the interior equilibrium.228

A corollary of this observation is that arbitrarily close to the heteroclinic connection,229

where D = 0, there will be points that are within the region of the simplex where D < 0.230

The Lyapunov function (16) shows that orbits starting at these points will move away231

from the heteroclinic connection, towards the interior equilibrium. The heteroclinic232

connection is therefore not stable. The interior equilibrium clearly is stable and must233

be the attractor for all initial points in the interior of the simplex for which initially234

D < 0. This shows that in the continuous-time model the heteroclinic cycle is unstable.235

Simulations suggest that the interior equilibrium is a global attractor within the simplex.236

3.2.3. Discrete-time heteroclinic cycle237

The Lyapunov argument does not carry over to the discrete-time model. In the238

discrete-time model, does the heteroclinic connection attract or repel? We analytically239

investigate this using the approximate QLE manifold in section 3.5. We also numerically240

investigate the regions of initial condition space in which the cycle is attracting, and241

the results are plotted in Figure 2. In the diagram we can distinguish two regions in242

parameter space with qualitatively different behaviour, and the boundary between them:243

244

1. Within the first region, β < γ, the interior equilibrium is stable and attracts245

nearby orbits. Within this region the heteroclinic connection also attracts. Be-246

tween the two attractors we find the boundary of the basins of attraction. The247

basin boundary moves towards the heteroclinic connection for small β.248

2. Within the second region β > γ. All trajectories converge to one of the corner249

equilibria, Φ1 or Φ4, apart from orbits starting exactly at the unstable interior250

equilibrium Φ5.251
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Figure 2: The basin of attraction of the heteroclinic cycle against β for the discrete-time

model. The diagram shows the different qualitative behaviours of the model resulting from different

initial conditions. The arrows point towards the different attractors. The shaded regions show the basins

of attraction of heteroclinic cycle for varying values of δ (see legend). The diagram was constructed by

starting orbits at different initial conditions, sampled at equally spaced intervals along the line connecting

the equilibria Φ1 and Φ4 for which A = B and D = A(1−A) in allelic coordinates, or (x1, 0, 0, 1−x1) in

gametic coordinates. We determine whether a specific orbit reaches interior equilibrium or a heteroclinic

cycle numerically: if an orbit reaches within ε = 10−12 distance from the equilibrium, it is assumed to

be at equilibrium. The first trajectory moving along the line of initial conditions which does not tend

towards equilibrium is taken to be on the basin boundary. The heteroclinic cycle exists on the left of

the vertical dashed line at β = γ = 0.5. At this point both the interior equilibrium and heteroclinic

cycle lose stability and all trajectories tend toward one of the corner equilibria, Φ1 or Φ4. Parameters:

γ = 0.5, δ as indicated in figure. Dashed lines represent unstable equilibria, drawn lines represent stable

equilibria and small blue circles represent the heteroclinic cycles.
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3. Between these two regions β = γ, all trajectories converge to the Wright manifold.252

On the Wright manifold there is a line of unstable equilibria for which B = 1
2 ,253

D = 0. Orbits starting on the Wright manifold with B < 1
2 converge to the line254

A = 0, D = 0, and those starting with B > 1
2 converge to the line A = 1, D = 0.255

These results show that the heteroclinic connection in the discrete-time model can be256

stable. To find out how general this is we will next analytically determine the stability of257

the heteroclinic connection in the discrete-time model. First, we approximate the QLE258

manifold towards which the trajectories converge.259

3.3. The QLE manifold260

If β = γ the interior equilibrium is degenerate: in the discrete-time model the equilib-261

rium has two real multipliers at unity (whilst the interior equilibrium of the continuous-262

time model has two eigenvalues at zero). Because there are two eigenvalues at unity263

(zero), the equilibrium will have a two dimensional center manifold. If β = γ the cen-264

ter manifold is the Wright manifold, the part of state space where D = 0, and where265

the gamete frequencies are in linkage equilibrium. The third eigenvalue has a modulus266

smaller than one (smaller than zero for the continuous-time model) and the associated267

stable manifold is given by the line A = B = 1
2 . Orbits on this stable manifold move268

towards the center manifold.269

If β < γ these two multipliers become a complex pair with real part smaller than one270

(or negative real part for the continuous-time model). The equilibrium within this region271

is hyperbolic (for all 0 < δ < 1
2) for the ODE (15). The same is true for the map (6)272

when there is not equality in the stability condition (13). The center manifold morphs273

into a two dimensional invariant manifold that is different from the Wright manifold274

and contains the interior equilibrium (9). On this manifold, orbits cycle around the275

equilibrium. The invariant manifold containing the third eigenvector, the line on which276

A = B = 1
2 , remains in existence. Over this line, orbits quickly converge towards the277

equilibrium and as they approach the linkage disequilibrium, D changes rapidly while the278

allele frequencies A and B remain unchanged. Other orbits show a similar behaviour (see279
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Φ4

Φ3

●

Figure 3: The approximate quasi-linkage equilibrium manifold, and the approach to it by

two typical trajectories of the discrete-time model. Two trajectories, φheteroclinic and φequilibrium,

differing only in initial conditions, of the transformed discrete-time (1) system within the tetrahedron,

both converging quickly to a slow manifold. Here, the small dots are points on the manifold DQLE ,

given by (18). As can be seen, the trajectories converge quickly to this manifold. Parameters and initial

conditions as in Figure 1.
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Figure 3): orbits generally converge towards the two dimensional manifold. Once orbits280

are close to this manifold the orbits move slowly towards either the interior equilibrium281

or the heteroclinic cycle, depending on the initial conditions (see Figure 2).282

To approximate the QLE manifold, we will use a quasi-steady state argument. Specif-283

ically, we say that the change in linkage disequilibrium D(t) occurs on a much faster284

time scale than changes in the allele frequencies and will therefore settle on a quasi-285

equilibrium. This means that we can assume that the allele frequencies A and B are286

effectively constant, as D settles. With this assumption, we then solve the equilibrium287

equation for D as a function of the allele frequencies, DQLE(A,B). It turns out that this288

gives a good approximation for the QLE manifold for the discrete-time model as well as289

the continuous-time approximation.290

Simulations suggest that the gamete frequencies are attracted towards the manifold291

where they are in quasi-linkage equilibrium. We approximate the QLE manifold by292

DQLE(A,B) =
β(2A− 1)(2B − 1) + δ

2(γ − β)

−
√(

β(2A− 1)(2B − 1) + δ

2(γ − β)

)2

+AB(1−A)(1−B).

(18)

As we show in Appendix B the relevant slow time-scale is proportional to (γ − β)−
1
2 .293

3.4. Simplification by reducing to allele frequencies294

Given the tendency of the haplotype frequencies to settle on the QLE, one would295

expect that if γ > β, the dynamics proceed to the QLE manifold, and that the allele296

frequencies then change slowly, either towards, or away from the interior equilibrium.297

This is indeed what happens in the vicinity of the interior equilibrium. Further away298

from equilibrium, and in particular in the vicinity of the heteroclinic cycle, this is not299

necessarily true. It is possible that the manifold D = DQLE(A,B) is situated outside the300

simplex in which all gamete frequencies are positive. If that is the case, the dynamics301

will be constrained by the edges of the simplex.302

Inside the simplex, DQLE ≤ 0 if γ > β. If the manifold, DQLE , cuts through the303

sides of the simplex, it can only be on the faces where D ≤ 0, which is when x1 ≤ 0304
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Φ1
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Φ3

Φ4

Φ1

1
2
(Φ2 + Φ3) Φ4

Figure 4: The fast approach to the QLE manifold shown using a Poincar section. The

dynamics of our model has two different times scales and shows slow-fast dynamics. (a) A typical

trajectory of the model (1), simulated using β = 0.1, γ = 0.13 and δ = 0.11 and initial conditions

(x1(0), x2(0), x3(0), x4(0)) = (0.24, 0, 0, 0.76). To visualise the slow-fast dynamics we following the

Poincaré section x2 = x3 (=A = B) and record every instance where the orbit (shown in red) cuts

through this section. (b) The intersection points for a orbit plotted on the Poincaré section. The points

of intersection of 22 trajectories are shown. The trajectories have initial conditions equally spaced on the

line connecting Φ1 to Φ4. The parameters used are β = 0.3, γ = 0.35 and δ = 0.2. The figure shows the

fast approach towards the slow manifold (the thin, drawn lines connect the points of intersection from

the same initial condition). The slow manifold is visible as the accumulation of points forming a curve.

Although the true slow manifold (blue and green filled lines) and our approximation, DQLE, (purple

dashed line) are distinct from the Wright manifold (dashed grey line) apart from at the corners, where

they intersect, they are very close and the purple curve is covered by the blue and green line in most of

the figure. Green dots are from orbits that end up in the interior equilibrium, Φ5, blue dots from orbits

going towards the heteroclinic cycle. The gap on the slow manifold between the blue and green points

contains the basin boundary. There will be an invariant closed curve located on the slow manifold in

the middle of this gap.
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or x4 ≤ 0. In terms of allele frequencies (A,B,D), that is when D = −AB or when305

D = −(1 − A)(1 − B). The approximate manifold to which the dynamics are drawn is306

thus given by D = DS(A,B), where307

DS(A,B) = max

[
DQLE(A,B),−AB,−(1−A)(1−B)

]
, (19)

and we will use this to simplify the dynamics; in particular we will use it to determine308

the stability of the heteroclinic cycle.309

The system constrained to the attracting manifold is given by just two equations,310

describing the frequencies of A and B on the slow manifold,311

A′ =
1

w̄
βA(1−A)(2B − 1) +A,

B′ =
1

w̄

[
(γ − β)B(2A− 1)(B − 1) + γ(2B − 1)DS(A,B)

]
+B,

(20)

where312

w̄ = β(2A− 1)(2B − 1) + 2βDS(A,B) + 1. (21)

The dimensionality is now reduced and the system is significantly simplified. We can313

now study and depict our model as a two dimensional system (Figure 5). The stability of314

the heteroclinic cycle is governed by the magnitude of the eigenvalues in the connected315

saddles that make up the cycle. In the planar system this is relatively simple to do.316

3.5. Stability of heteroclinic cycle in the discrete-time model317

To study the stability of our heteroclinic cycle, we use the condition derived in Hof-318

bauer and Schlag (2000) which determines whether a planar discrete-time heteroclinic319

cycle is attracting or not. The condition involves the product of the ratio of the logarithm320

of the expanding (ei) eigenvalues and the absolute value of the logarithm of the contract-321

ing eigenvalues (ci) at the saddle equilibria (Φi where i = 1, ..., 4) the heteroclinic cycle322

travels between. We follow their notation and use ρi to denote each individual ratio and323
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Figure 5: The simplification of the system by using the approximate slow manifold, DQLE.

(a) The trajectories of our model represented gamete frequencies as given by eqns (1), plotted on the

3-simplex. The QLE manifold, D = DQLE , is also plotted with a grid of equally spaced points. (b) The

same trajectories and the attracting manifold plotted for the transformed model (20); in both panels

(a) and (b) the fast approach to the slow manifold is visible. (c) The same trajectories but plotted on

the QLE manifold. The system is reduced to a planar system in the allele coordinates. Parameters and

initial conditions as in Figures 1 and 3. Panel (a) is a re-use of Figure 3.
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ρ to denote the product of the ρi,324

ρ =
n∏

i=1

ρi,

ρi =
log ei
|log ci|

, i = 1, ..., n.

(22)

For our model, n = 4 and therefore ρ = ρ1ρ2ρ3ρ4. We are then able to state the stability325

condition: a planar discrete-time heteroclinic cycle is asymptotically stable if ρ < 1326

and is unstable if ρ > 1 (Hofbauer and Schlag, 2000). The specific eigenvalues for the327

equilibria and their type are given in Table 2. Their derivation can be found in Appendix328

C.

Eigenvalue 1
1+β

1+γ
1+β

1
1−β

1−γ
1−β

Type c1, c4 e1, e4 e2, e3 c2, c3

Equilibria Φ1 & Φ4 Φ2 & Φ3

Table 2: The eigenvalues of the saddle equilibria between which the heteroclinic cycle travels, used to

determine the asymptotic stability of the heteroclinic cycle in discrete-time. Eigenvalues of type c are

contracting (incoming), ones of type e are expanding (outgoing). Due to the symmetries in our system,

the eigenvalues at Φ1 and at Φ4 are equal and the eigenvalues at Φ2 and at Φ3 are equal.

329

Calculating ρ using the eigenvalues in Table 2, we arrive at the condition for stability330

of the heteroclinic cycle331

(
log 1+γ

1+β

|log 1
1+β |

log 1
1−β

|log 1−γ
1−β |

)2

< 1, (23)

which, if β < γ, can be rewritten as332

log(1 + β)

log(1− β)
<

log(1 + γ)

log(1− γ)
. (24)

In this form, it is readily seen that (23) is always satisfied if β < γ. Therefore, in333

our discrete-time model constrained to the QLE manifold (20), the heteroclinic cycle is334

always asymptotically stable if it exists.335
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Figure 6: Relative error of our approximate manifold DS. To justify the use of the manifold

derived from the continuous-time system, DS , we numerically compute the relative error between the

manifold and the D component of an orbit of the discrete time system close to heteroclinic cycle. We

compute both the manifold expression and the orbit at the generation times of the discrete-time model,

n and plot the following error expressions |D(n) − Ds|/max (|D(n), |Ds|). Parameters were set to:

γ = 0.25, δ = 0.3, A(0) = 0.9, B(0) = 0.9, D(0) = 0.05 and the values of β are indicated in the plot

titles. The The insets show the same curves but with finer grain x-axis and y-axis scales allowing the

bursts to be seen in more detail. The magnitude of error is always very low.
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3.6. Justifying the use of DS derived from the continuous-time model336

In Figure 6, we show the relative error between the value of D(n), the linkage disequi-337

librium within the discrete-time model (1), and DS(t), the approximate slow manifold338

derived using the continuous-time approximation of the discrete-time system, finding339

the difference to be small. The error is computed using340

E =
|D(n)−DS |

max (|D(n), |DS |)
, (25)

a modified form of the relative error between the approximate manifold DS , and the341

D-component of a trajectory of the discrete-time system, which aims to avoid division342

by zero when one of the quantities is very small. The standard relative error expression343

could be problematic in this case, since the orbits are close to the manifold. We produce344

a time series of the distance between the D-component of the discrete-time orbit and345

the value of DS evaluated at the values of the other variables along the orbit. This346

indicates that the continuous-time manifold, DS , provides a good approximation for the347

discrete-time dynamics.348

4. Discussion349

We studied a genetic system with viability selection and gene conversion that encom-350

pass a wide range of variants where selection can be derived from different aspects of the351

recombinational process (Úbeda and Wilkins, 2011; Úbeda et al., 2019). We show that352

the selection regime associated with a fitness benefit derived from a sequence recognition353

(β), a fitness cost derived from a gene conversion (γ) altogether with the reshuffling of354

alleles in double heterozygotes induced by gene conversion and crossover (δ), can lead to355

stable cycling dynamics in the two-locus, two-alleles model. Our model is most similar356

to that of Haig and Grafen (1991), because in both models the often assumed symmetry357

of the fitness matrix (Karlin et al., 1970) is broken. The fluctuations that feature in the358

model are caused by selection for one allele burning out a target sequence followed by359

selection for an alternative allele that can burn out the sequence that replaced the old360

one. This pattern can repeat indefinitely and the resulting dynamics form a heteroclinic361
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cycle (Úbeda et al., 2019). To find out if sustained fluctuations are possible in either362

of our model variants we investigated whether the heteroclinic cycle attracts or repels363

(Hofbauer and Schlag, 2000).364

We found that haplotype frequencies settle quickly on a state depending on the allele365

frequencies in the population, and the allele frequencies change on a slower time scale366

than the linkage disequilibrium (Kimura, 1965). After identifying the linkage disequi-367

librium D as a good candidate for the fast variable, we performed the nonlinear change368

of variables from haplotype to allele frequencies, which introduces D(t) as an explicit369

variable. We then apply a quasi-steady state assumption to D(t) and solve the resulting370

algebraic equation for D, which we use to reduce the dimension of our system by remov-371

ing dependency on D altogether (Figure 5) (Kuehn, 2015). We find that the dynamics372

don’t necessarily converge to a single stable interior (polymorphic) equilibrium. We thus373

provide a biological example of a doubly degenerate system that admits cycling.374

After reducing the dimensionality, we found explicit conditions for stability of the375

heteroclinic cycles. Namely, the discrete-time model allows a heteroclinic cycle that is376

stable if β < γ; on the other hand, its continuous-time approximation has a heteroclinic377

cycle that is always unstable and the dynamics eventually settle on an equilibrium.378

Furthermore, we established numerically the basin of attraction for the heteroclinic cycle379

and studied the accuracy of the closed-form approximation DS of the QLE manifold used380

to constrain the dynamics (Figure 6).381

The equilibria of the discrete and continuous-time models are the same (Bürger,382

2000). However, the stability of the heteroclinic cycle differs between the two models: the383

discrete-time model can have an attracting heteroclinic cycle and a stable equilibrium,384

and thus has a region of bistability in parameter space; however, its continuous-time385

approximation has, in the same region of parameter space, β < γ, a globally attracting386

interior equilibrium point. From a dynamical systems point of view this is not a surprise:387

it is well known that similar nonlinear discrete and continuous-time models can differ in388

various ways (May, 1976).389

However, preliminary results show that if the population in the model is finite and390
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multinomial sampling is used to pick the individuals who mate and are replaced (Wright,391

1969; Úbeda et al., 2019) — producing a stochastic and more biologically realistic version392

of our model — we see the gap between the discrete-time model and continuous-time393

approximation bridged. Indeed, similar oscillatory behaviour is now observed in both394

models. In fact, we see the two models behaving almost identically when the population395

is finite, just differing in time scale. We also observe that the deterministic slow manifold,396

DQLE , is a good approximation for the dynamics of the stochastic model, as shown to397

be possible in some systems by (Constable and McKane, 2017). An in depth analysis of398

the stochastic model however, is beyond the scope of this paper. Further work could use399

DQLE to simplify the dynamics of the stochastic implementation of the model. Globally400

attracting invariant QLE manifolds have recently been found to exist under certain401

parameter regimes in the continuous-time two locus-two allele selection-recombination402

equations by Baigent and Seymenoglu (2018).403

Similar analyses using quasi-equilibria involving variables other than linkage dise-404

quilibrium have been conducted (Van Baalen and Rand, 1998; Day et al., 2011; Lion405

and Gandon, 2016; Lion, 2018). These models are evolutionary-ecological rather than406

population genetic models, and rely on the weak selection approximation, but they still407

observe a rapid convergence to quasi-linkage equilibrium. Our approach to studying the408

QLE manifold is very general, applicable to any system showing a significant separation409

of time-scales. Any genetic system of this sort converges to quasi-linkage equilibrium410

and therefore under an appropriate transformation of variables — one which isolates the411

fast subsystem — can be analysed in a similar fashion. Therefore, treating the QLE412

manifold as an slow manifold and using linkage disequilibrium as a coordinate to ap-413

proximate this surface explicitly, is a powerful technique for other genetic systems and414

even evolutionary ecological models.415

Multi-locus models can have complex dynamics (Hastings, 1981; Hofbauer and Iooss,416

1984; Haig and Grafen, 1991; Úbeda et al., 2019). It appears that most analyses of multi-417

locus models have been carried out under weak selection assumptions, in which case the418

dynamics are relatively simple: stable cycling is generally not possible and the dynamics419
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go to an equilibrium (Nagylaki et al., 1999). The weak selection assumption allows420

for general analytic results (Akin, 1982; Hofbauer, 1985; Barton, 1995; Nagylaki et al.,421

1999; Kirkpatrick et al., 2002), often invoking the use of the QLE. Under weak selection,422

stable cycling and complex dynamics do not occur if the equilibria are not degenerate and423

therefore complex dynamics are not observed under QLE. This association of QLE with424

weak selection and stability might have led to the impression that complex dynamics are425

not compatible with quasi-linkage equilibrium (Pomiankowski and Bridle, 2004). What426

we have shown here is that complex dynamics are possible and, furthermore, are played427

out in a state of quasi-linkage equilibrium showing the association between QLE and428

convergence to equilibrium to not be true in general: it is possible to find continued429

fluctuations and sudden changes in the genetic make up in a population at quasi-linkage430

equilibrium.431
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Appendix A. Deriving the discrete-time model516
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Our model (Úbeda et al., 2019) can be written as a particular case of the model517

known as the selection-recombination equations presented in (Lewontin and Kojima,518

1960; Nagylaki et al., 1999; Bürger, 2000; Ubeda and Haig, 2005) and many other papers519

(Nagylaki et al., 1999). In the general model, haplotype frequencies evolve according to520

w̄x′i(n) =

m∑

j=1

wi,jxixj + εiδ (w1,4x1x4 − w2,3x2x3) , (A.1)

where xi denotes the frequency of haplotype i, m is the number of alleles and n ∈ N+521

represents the discrete time step. The recombination terms δ (w1,4x1x4 − w2,3x2x3) have522

different signs depending on the haplotype, provided by εi for haplotype i. Specifically,523

for a two-locus two-allele implementation of the model, ei is defined as524

εi =




−1 for i = 1, 4

1 for i = 2, 3.

(A.2)

The marginal mean fitness of a haplotype whose frequency is xi is given by525

wi =

n∑

j=1

wi,jxj , (A.3)

and the mean fitness of the population is given by526

w̄ =
n∑

j=1

wjxj . (A.4)

Due to the normalisation of the right hand side of the governing equations of the model527

by the mean fitness of the population, the sum of the haplotype frequencies is always528

one. This means the state space of the model is the simplex of dimension nm− 1, where529

n is the number of alleles and m is the number of loci.530

Fitnesses for the two-locus two-allele version of our model are derived by computing531

all of the frequencies of offspring given by each possible mating combination. Due to532

the symmetries on the allele types determining when recombination occurs, the linkage533

disequilibrium D is the same for each haplotype and therefore can be taken out of the534

fitness matrix. This is clearly true in the more general versions of the model, meaning535

the linkage terms are separate in the statement of the general model equations (A.1).536
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After this, and other simplifications which are possible due to symmetries in the gene537

conversion process and the viability benefits derived from crossover, we arrive at the538

following fitness matrix for the two allele two loci version of the model539

W =




1 + β 1− γ 1 1

1 + γ 1− β 1 1

1 1 1− β 1 + γ

1 1 1− γ 1 + β



. (A.5)

Applying our specific fitness matrix to the general model given gives the following system540

of equations541

w̄x1(n+ 1) = (1 + β)x21 + (1− γ)x1x2 + x1x3 + x1x4 − δD,

w̄x2(n+ 1) = (1− β)x22 + (1 + γ)x2x1 + x2x3 + x2x4 + δD,

w̄x3(n+ 1) = (1− β)x23 + (1 + γ)x3x4 + x3x1 + x3x2 + δD,

w̄x4(n+ 1) = (1 + β)x24 + (1− γ)x4x3 + x4x1 + x4x2 − δD.

(A.6)

Expanding the brackets in system (A.6) and applying the conservation law for the total542

population,
∑4

i=1 xi = 1, we can simply the system to543

w̄x1(n+ 1) = x1(n)[1 + βx1(n)− γx2(n)]− δD,

w̄x2(n+ 1) = x2(n)[1− βx2(n) + γx1(n)] + δD,

w̄x3(n+ 1) = x3(n)[1− βx3(n) + γx4(n)] + δD,

w̄x4(n+ 1) = x4(n)[1 + βx4(n)− γx3(n)]− δD,

(A.7)

where w̄x(n+ 1) = f(x) and n ∈ N+ and the population mean fitness is544

w̄ =
4∑

i=1

fi(x) = x1 + x2 + x3 + x4 + β(x21 + x24 − x22 − x23). (A.8)

Appendix B. Isolation of the multiple time-scales545

The region of parameter space for which the following arguments hold is where the546

heteroclinic cycle exists and is attracting in the discrete-time model, i.e. β < γ.547

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Appendix B.1. Time-scale separation nearby the interior equilibrium548

We find three distinct time-scales in the dynamics of the linearised system nearby549

the interior equilibrium. Recall that the eigenvalues of the interior equilibrium of the550

continuous-time model are given by551

λ1 =
γD∗ +

√
(γD∗)2 + 1

4β(β − γ)

w̄∗
,

λ2 =
γD∗ −

√
(γD∗)2 + 1

4β(β − γ)

w̄∗
,

λ3 = −δ + 2D∗(β − γ)

w̄∗
,

(B.1)

where w̄∗ = 1 + 2βD∗. If β > γ then D∗ > 0. The interior equilibrium in that case is a552

saddle. If β < γ then D∗ < 0. Eigenvalues λ1 and λ2 then are complex with negative553

real parts and the interior equilibrium is always locally stable.554

We introduce the parameter555

ε =
√
γ − β, (B.2)

which is small near the boundary of the region of parameter space in which we observe556

time-scale separation, β < γ. We substitute this definition into the equations and557

compute the eigenvalues at the interior equilibrium (9). For 0 < ε� 1, the eigenvalues558

satisfy the identities559

w̄∗λ1 = −ε2 γ
8δ

+ iε

√
γ

2
+O(ε3),

w̄∗λ2 = −ε2 γ
8δ
− iε
√
γ

2
+O(ε3),

w̄∗λ3 = −δ +O(ε3).

(B.3)

The dynamics of the system linearised around the interior equilibrium (9) operate on560

three distinct time-scales: w̄δ−1, 2w̄ε−1γ−
1
2 and 8δw̄ε−2γ−1. If 0 < ε

√
γ � 2δ < 1 the561

time scales separate as δ−1 � 2ε−1γ−
1
2 � 2δ

(
2ε−1γ−

1
2

)2

. The second and third time-562

scales are associated with the motion within the QLE manifold, while the first relates to563

the approach towards the QLE manifold. Under this condition, the approach is very fast564

compared to the dynamics on the manifold, which justifies making a quasi-steady state565
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assumption. This behaviour can be observed in Figure 3 where the approach to QLE566

is very fast with associated time-scale w̄δ−1, and much faster than the cyclic behaviour567

on the manifold, which acts on time-scale 2w̄ε−1γ−
1
2 , which in turn is faster than the568

approach to equilibrium which acts on time-scale 8δw̄ε−2γ−1.569

Note that the separation of time-scales is a direct consequence of the double degen-570

eracy of the interior equilibrium (9). Specifically, when β = γ, and hence ε = 0, two571

eigenvalues are zero. If the third eigenvalue is much smaller than zero, for small ε and572

continuous dependence of the eigenvalues on ε, the separation of time scales follows.573

This implies that the existence of a two-dimensional slow manifold is a generic result in574

the proximity of a double degeneracy and independent of the details of the model.575

Appendix B.2. Time-scale separation in the full system576

We introduce the new variables577

X =
√
γ − β ln

(
A

1−A

)
+
√
β ln

(
B

1−B

)
,

Y = (γ − β) ln
(
A(1−A)

)
+ β ln

(
B(1−B)

)
,

Z =
D

γ − β .

(B.4)

If γ 6= β, these definitions implicitly define A and B locally as functions of X and Y and578

therefore the inverse transformation exists.579

Rewriting the continuous-time model (15) in the new variables (B.4),580

dX

dt
=

√
β(γ − β)

w̄

(√
β(2B − 1) +

√
γ − β(2A− 1) +

γ
√
γ − β(2B − 1)Z

B(1−B)

)
,

dY

dt
= −β(γ − β)

w̄
γ

(1− 2B)2

B(1−B)
Z,

dZ

dt
=

(γ − β)−1

w̄

[
(γ − β)

[
(γ − β)2Z2 −AB(1−A)(1−B)

]

− (γ − β)Z(β(2A− 1)(2B − 1) + δ)

]
.

(B.5)
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Using (B.2), this can be written as581

1

ε

dX

dt
=

√
β

w̄

(√
β(2B − 1) + ε(2A− 1) +

γε(2B − 1)

B(1−B)
Z

)
,

1

ε2
dY

dt
= −βγ

w̄

(1− 2B)2

B(1−B)
Z,

dZ

dt
=

1

w̄

[
ε4Z2 −AB(1−A)(1−B)− Z (β(2A− 1)(2B − 1) + δ)

]
.

(B.6)

When ε is small, the form of (B.6) isolates three distinct time-scales. The variable Z is582

changing at the fastest time-scale, and for Z small the variables X and Y (and A and583

B) are effectively constant. If A and B are constant, the variable Z has an equilibrium584

at585

Z∗ =ε−2
β(2A− 1)(2B − 1) + δ

2ε2

− ε−2
√(

β(2A− 1)(2B − 1) + δ

2ε2

)2

+AB(1−A)(1−B).

(B.7)

The linearised dynamics around Z∗ are given by586

d(Z − Z∗)
dt

= − 1

w̄
(Z−Z∗)

√(
β(2A− 1)(2B − 1) + δ

)2

+ 4ε4AB(1−A)(1−B) (B.8)

which always converges to the equilibrium Z = Z∗. Based on this we choose DQLE =587

ε2Z∗. If DQLE is situated outside the simplex this argument is not relevant but a similar588

argument can be applied for attraction to the state Z = ε−2DS .589

Appendix C. Determining the eigenvalues of the corner equilibria590

In the vicinity of the origin (Φ4), we find by Taylor expanding to second order that591

the QLE manifold is approximately defined by DQLE(0, 0) ≈ −γ−β
β+δAB. The attracting592

manifold D = DS(A,B) in the vicinity of the origin is approximately593

DS(A,B) ≈
{ −AB if δ ≤ γ − 2β,

DQLE(A,B) if δ > γ − 2β.
(C.1)

We then find for the eigenvalues594
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Eigenvalue 1− β
1+β 1 + γ−β

1+β 1− β
1+β 1 + γ−β

1+β

Type cj ej cj ej

Condition δ ≤ γ − 2β δ > γ − 2β

Table C.3: The eigenvalues of the equilibria Φ1 and Φ4. The eigenvalues do not depend on the condition.

Likewise, in the vicinity of the equilibrium Φ2 and Φ3 the QLE manifold is approxi-595

mately596

DQLE(A,B) ≈




− β−δ
γ−β + 2β

γ−βA+ 2β
γ−β (1−B) + (γ−ββ−δ + 4β

γ−β )A(B − 1) if δ < β,

−γ−β
δ−βA(1−B) if δ > β,

(C.2)

and hence597

DS(A,B) ≈





max(−AB,−(1−A)(1−B)) if δ ≤ β,
DQLE(A,B) if δ > β,

(C.3)

We then find for the eigenvalues

Eigenvalue 1− γ−β
1−β 1 + β

1−β 1− γ−β
1−β 1 + β

1−β

Type cj ej cj ej

Condition δ ≤ β δ > β

Table C.4: The eigenvalues of the equilibria Φ2 and Φ3. The eigenvalues do not depend on the condition

598
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