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Abstract. The crystal structure of the low-temperature δ phase of crystalline

malononitrile, CH2(CN)2 (stable phase below 260 K), has been determined using

Rietveld refinement on neutron powder diffraction data. The δ phase has a slightly

lower density than the other three low-pressure phases, and unlike those phases it has

a polar structure. The transition from the β to δ phase involves a major reconstruction

of the structure, including establishing a network of hydrogen bonds. DFT simulations

of the structure and phonon dispersion curves of both α and δ phases give free energy

curves consistent with the phase transitions. It is noted that the transition from the

δ to β phase at 260 K is facilitated by the entropy arising from the low-frequency

phonons associated with the soft mode for the sequence of α–β–γ phase transitions.
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1. Introduction

The existence of phase transitions in crystalline malononitrile, CH2(CN)2, were first

identified by 14N nuclear quadrupole resonance measurements [1, 2] and through

measurements of the heat capacity [3]. These measurements identified second-order

displacive phase transitions at 141 and 295 K on fast cooling from high temperature, and

a first-order reconstructive phase transition at 260 K on slow cooling.‡Malononitrile can

be easily supercooled below the reconstructive phase transition. The startling feature

of the sequence of displacive phase transitions is that the low-temperature α phase

and high-temperature γ phase share the same crystal structure (space group P21/n),

with the intermediate-temperature β phase having lower symmetry (space group P1)

[4, 5]. Measurements by neutron powder diffraction of the variation of the crystal

structure, and hence of the order parameter and coupled symmetry-breaking strains,

have recently been reported [5]. Such a sequence of phase transitions, called ‘re-entrant

phase transitions’, are very uncommon; the best other example is the paraelectric–

ferroelectric–paralectric phase transition in Rochelle Salt [6]. The phase transitions were

also investigated as a function of pressure using Raman spectroscopy [7], finding a new

high-pressure phase. The phase diagram is shown in Figure 1. The outstanding questions

in the study of the phase transitions in malononitrile now concern the crystal structures

of the ambient-pressure δ phase and of the new high-pressure phase [7]. In this paper we

report a solution of the crystal structure of the δ phase by neutron powder diffraction.

The results are supported by ab initio calculations of the structures, energies and phonon

frequencies of the δ and α phases.§ As a result we have added a tentative phase boundary

line for the stability field of the δ phase to the phase diagram in Figure 1. We also used

ab initio lattice dynamics simulations to search for an instability associated with the

high-pressure phase transition, but no indication was found.

There have been two previous, but inconclusive, x-ray powder diffraction studies

of δ-malononitrile [8, 9]. These showed drastic changes in the diffraction patterns,

consistent with a reconstructive phase transitions. However, it was not possible to index

the diffraction patterns, in part perhaps because it was clear that some peaks were

doublets [9]. The NQR results showed that there is only one independent crystallographic

position for the N atom. A spectroscopic study of the four ambient-pressure phases of

malononitrile using partial deuteration [10] showed two distinct C–D vibrations in the

α and γ phases, and three in the β phase, consistent with 2 or 4 symmetrically distinct

sites for the hydrogen atoms. Based on an asymmetric peak shape for the C–D vibration

band in the δ phase it was suggested that there are two symmetrically distinct hydrogen

sites in the δ phase; we will discuss this point below.

‡ The results of the calorimetric study [3] had been interpreted into terms of a possible second-order

λ-type anomaly associated with an order–disorder phase transition at 260 K, but all subsequent work

is inconsistent with such an interpretation.
§ It should be noted that other authors have denoted the α, β, γ and δ phases as IV, II, I and III, or as

T′, F, T and L, respectively. The nomenclature with Greek characters used here and in earlier papers

[4, 5] better reflects the re-entrant sequence.
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Figure 1. Pressure-temperature phase diagram for the five known crystalline phases

of malononitrile. The solid lines represent the phase diagram determined for the α,

β, γ and new high-pressure phase determined by Krauzman et al. [7]. Based on the

new crystal structure reported here, and the experimental determination of entropy

[3], we have estimated the phase boundary line for the thermodynamic stability of

the δ phase, shown as the dotted line. The slope was determined from the standard

thermodynamic identify dP/dT = ∆S/∆V , where ∆S and ∆V and the differences in

entropy and volume respectively between the δ and β phases. The negative slope of the

δ phase boundary arises because of its lower density relative to the other low-pressures

phases.

In the recently reported study of malononitrile by neutron powder diffraction [5]

the δ phase was produced accidentally by maintaining the sample at a temperature just

below 260 K. The lattice parameters determined from an automatic indexing procedure

following by refinement using the Le Bail method [11] were given in the report of that

study [5]. The crystal structure has subsequently been solved and refined by the Rietveld

method, and is reported here. The structural findings here are further investigated using

Density Functional Theoretical calculations of structure and lattice dynamics for both

α and δ phases.

2. Neutron powder diffraction

2.1. Methods and data analysis

As noted above, the data described in this paper were collected as part of our recently-

reported neutron powder diffraction study, and technical details are described there.

Briefly, a commercial hydrogenous sample of malononitrile was purifed by distillation,

ground into a powder, and placed into a vanadium can. Measurements were made on the

D1A diffractometer at the Institute Laue Langevin [12], with neutron beam wavelength

of 1.909 Å. Temperature was controlled by a standard helium-flow cryostat. Data were

collected for a range of scattering angles from 10–156◦. Data reported in this paper were

collected at a nominal temperature of 260 K.

Rietveld analysis was performed using the GSAS code [13] through the EXPGUI
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interface [14]. Data from different detectors were not merged, but instead were treated as

separate data sets. The Bragg peak profiles were described using the standard Gaussian

profile with an asymmetry correction (GSAS line profile 1 [13]). The peak widths were

represented by the standard three parameters U , V and W [15]; the values of these line-

width parameters were constrained to be the same for each set of data in the refinement.

A zero-offset on the 2θ angle was refined separately for each data set. The background

within each diffraction pattern was modelled using a cosine Fourier function (GSAS

background type 2 [13]) polynomials with five refineable parameters.

The lattice parameters from automatic indexing suggested a tetragonal cell. By

using the Le Bail method [11] it was quickly shown that the lattice is body-centred

tetragonal, and inspection of absent reflections initially suggested space group I41/acd,

but this has too much symmetry. A number of space groups were explored with atomic

positions proposed by hand using CrystalMaker visualisation software [16]. The model

that was immediately consistent with data has space group I41cd. The symmetry meant

that the central carbon atom has no fractional coordinates to refine, and it was only

necessary to refine the fractional coordinates of one other C, N and H atom. The quality

of the data was such that the refinement did not require the use of restraints on the

molecular bond lengths or angles.

2.2. Results

The trial crystal structure with space group I41cd was able to fit the experimental

diffraction patterns well, as can be seen in Figure 2. The overall profile R-factor with

background subtraction was 2.7% (that is, summed over all data sets), and the overall

weighted R-factor (also with background subtraction) was 3.2%, with an overall χ2 value

of 1.15. All the peaks in the diffraction patterns were accounted for, and in the lower-

angle region of the diffraction pattern where peak overlap is slight (up to 2θ = 80◦) there

were only four Bragg peaks where the intensity of the Bragg peak (both experimental

and calculated) is less than the level of noise in the data. The refined crystal structure

is shown in Figure 3, and structural parameters are reported in Table 1. Selected bond

lengths and angles are given in Table 2 and are consistent with standard values.

The crystal structure of δ-malononitrile is polar. The central C atoms lie on the

crystal 2-fold axes, and the molecular 2-fold axes are coincident with the crystal 2-fold

axes. Thus all molecules have their dipole moments parallel to the crystallographic z

axis. In addition to refining the atomic coordinates, values of isotropic temperature

factors were also refined, and given in Table 1. Because no attempt was made to take

account of beam attenuation, the absolute values of the refined parameter values may be

subject to a systematic shift towards lower values, but the relative sizes for the different

atoms are reasonable
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Figure 2. [color online] Comparison of measured (points) and fitted (red curve)

diffraction pattern from δ-malononitrile at temperature of 260 K (background

subtracted). The difference between the two is shown as the lower curve. This figure

was constructed by merging the 10 data sets for the different detectors, although these

were treated separately in the actual analysis.

Table 1. Crystal structure of the δ phase of malononitrile (space group I41cd)

from experiment at a temperature of 260 K (top line in each atom entry) and from

DFT calculations (bottom line in each atom entry, section 3.2). Experimental lattice

parameters are a = 7.2918(2) Å and c = 14.4455(4) Å, and from DFT energy

minimisation are a = 7.10009 Å and c = 14.0572 Å. Atomic coordinates are given

as fractional values. Estimated errors in the last significant figures of the experimental

data are given in brackets. C1 has the same coordinates in both experiment and DFT;

symmetry allows the value of the z coordinate to be arbitrary.

Atom x y z uiso (Å2)

C1 0 0 0 0.035(3)

C2 0.101(1) 0.124(1) 0.056(1) 0.030(2)

0.1130 0.1271 0.0582

N 0.1950(8) 0.2241(9) 0.1009(7) 0.047(2)

0.2035 0.2294 0.1036

H 0.083(3) −0.081(3) −0.0430(15) 0.055(4)

0.09350 −0.0836 −0.04638

2.3. Discussion of the crystal structure of δ-malononitrile

The crystal structure of δ-malononitrile has much higher symmetry than the other

ambient-pressure phases, and a density that is 5% lower. Unlike the α, β and γ phases

the crystal structure of the δ phase is polar. The crystal structure is consistent with the

NQR results [1, 2], which indicated that all nitrogen atoms within the unit cell occupy

symmetrically equivalent sites. Savoie et al [10] have suggested, based on a measurement

of C–D stretching vibrations in partially deuterated CHD(CN)2 molecules, that the two
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Figure 3. [color online] Two views of the crystal structure of the δ phase of

malononitrile at temperature around 260 K, viewed down the a (left) and c (right)

axes. In both views the origin of the unit cell is in the bottom-left corner, and the x

axis runs from right to left. Carbon atoms are black, nitrogen blue, and hydrogen pink.

Image produced using CrystalMaker software [16]

Table 2. Selected bond lengths and angles of the malononitrile molecule in the δ

phase. Top line, with standard deviation in the last figure given in brackets, is from

the experimental crystals structure, and second line is from the results of the DFT

calculations (section 3.2).

C–C C–N C–H C–C–C H–C–H C–C–N C–C–H

1.46(1) Å 1.16(1) Å 1.05(2) Å 112.5(9)◦ 107(2)◦ 179.1(9)◦ 111(1)◦, 107(1)◦

1.4589 Å 1.1609 Å 1.1037 Å 111.77◦ 107.57◦ 179.24◦ 109.24◦, 109.46◦

hydrogen atoms within the molecule occupy symmetrically different sites, and thus they

proposed that the CH2 group lies within mirror planes in the crystal structure which

might give rise to the equivalence of the sites containing nitrogen atoms. However, the

space group I41cd does not contain mirror planes, and the structure has equivalent sites

for the hydrogen atoms. We note, however, that the splitting of the C–D infrared band

that was cited as evidence for the inequivalent hydrogen sites is tiny compared to the

splitting in other phases, and only appears as the existence of a shoulder in a peak.

The likelihood is that the shoulder reported by Savoie et al [10] is no more than a small

artefact, possibly associated with the rapidly varying background, and is not a true peak

splitting and hence not really an indicator of symmetry proposed by these authors.

One significant difference between the crystal structures of the δ phase and the

other ambient-pressure phases concerns the C–H. . . N linkages. These are compared in

Figure 4. In the α phase each hydrogen atom is virtually equidistant from the nitrogen

atoms in two neighbouring molecules (approximate distance is 2.5 Å) without the C–H

bond pointing towards any particular atom. On the other hand, in the δ phase each
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Figure 4. [color online] Comparison of the C–H. . . N linkages (dashed lines) in the δ

(left) and α (right) phases of malononitrile. Carbon atoms are black, nitrogen blue,

and hydrogen pink. Image produced using CrystalMaker software [16]

C–H bond clearly points towards one specific nitrogen molecule, with the C–H . . . N

angle at 167◦, a nearly-linear alignment characteristic of hydrogen bonds. The H . . . N

distance is not significantly shorter in the δ phase, but is within the range of hydrogen

bond lengths found in organic materials. The distance is 2.47 Å in the refined crystal

structure.

3. Density Functional Theory calculations

3.1. Methods

Density Functional Theory calculations on the crystal structures and lattice dynamics

of malononitrile were performed using the CASTEP code [17], using the Grimme semi-

empirical correction for the dispersion interaction [18], and linear response density

functional perturbation theory for the vibrational dynamics [19]. The generalised

gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional [20]

was used, in conjunction with norm-conserving pseudopotentials. The cut-off energy

was chosen at 1200 eV on the basis of convergence tests. The electronic states with the

Brillouin zone were sampled on a 2×2×2 Monkhorst-Pack grid [21] for all calculations.

Residual forces on atoms after energy relaxation were less than 0.001 eV Å−1. Dispersion

curves were drawn using our own software package [22].
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Table 3. Comparison of the crystal structure of the α phase of malononitrile (space

group P21/n) from the DFT calculations reported here (right columns) and experiment

at a temperature of 5 K (left columns, [5]). Experimental lattice parameters are

a = 7.81624(9) Å, b = 7.4227(1) Å, c = 6.01624(9) Å, β = 99.394(1)◦, and

from DFT energy minimisation are a = 7.735 Å, b = 7.416 Å, c = 5.969 Å, and

β = 100.14◦. Atomic coordinates are given as fractional values. Estimated errors in

the last significant figures of the experimental data are given in brackets.

Experimental DFT

Atom x y z x y z

C1 0.5877(3) 0.1211(3) 0.7187(3) 0.5870 0.1215 0.7130

C2 0.4629(3) 0.2689(2) 0.6755(4) 0.4588 0.2671 0.6644

C3 0.2890(3) 0.2172(3) 0.7044(3) 0.2834 0.2135 0.6960

N4 0.6866(2) 0.0051(2) 0.7463(3) 0.6917 0.0080 0.7490

N5 0.1476(2) 0.1770(2) 0.7258(3) 0.1418 0.1750 0.7167

H6 0.4588(6) 0.3152(6) 0.4992(5) 0.4531 0.3104 0.4866

H7 0.5106(6) 0.3847(5) 0.7845(7) 0.5037 0.3836 0.7740

3.2. Crystal structures

The relaxed crystal structure of δ-malononitrile calculated by DFT is reported with

the experimental results in table 1. The two calculated lattice parameters agree with

the experimental data with an underestimate of 2.6% in both cases. We remark

that the experimental data are not for low temperature so there will be an effect of

thermal expansion, which could reasonably account for some of the discrepancy.‖ We

also compare the experimental (5 K) and DFT-calculated crystal structures of the α

phase in Table 3. For the α phase, the calculated values are in closer agreement with

experimental data (maximum error 1%). Experimental and calculated bond lengths and

angles calculated for the δ and α phases are compared in table 2. Bond lengths agree to

within experimental data. Note that the DFT calculations give a distance of 2.28 Å for

the lengths of the hydrogen bonds in the δ phase, shorter than the experimental value

(given above) of around 8%, and which is consistent with the shorter lattice parameters

calculated by DFT.

3.3. Elasticity

The elastic properties of the α and δ phases were obtained by performed energy

minimisation calculations for a range of pressures 0–3 GPa and fitting the V (P ) data

to the third-order Birch–Murnaghan isothermal equation of state. The results gave bulk

modulus values of 3.0 and 3.4 GPa for the α and δ phases respectively, with values of its

derivative of 3.0 for both phases. The higher elasticity of the δ phases 13% greater than

that of the α phase) is in spite of the fact that the δ phase at a temperature of 260 K

‖ We investigated whether any factors such as sample displacement in the experiment might account

for the larger values of the lattice parameters, but including additional factors in the refinement reduced

the difference between refined values and those calculated here by no more than 2%.
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Table 4. Decomposition of the phonons modes for the α and δ phases of malononitrile.

α phase δ phase

Total: 21Ag + 21Au + 21Bg + 21Bu 10A1 + 10A2 + 10B1 + 10B2 + 22E

Internal: 15Ag + 15Au + 15Bg + 15Bu 8A1 + 8A2 + 8B1 + 8B2 + 14E

External optic: 5Ag + 6Au + 6Bg + 4Bu A1 + 2A2 + 2B1 + 2B2 + 7E

Acoustic: Au + 2Bu A1 + E

has lower density (6% lower, data from the previous neutron scattering measurements

[5]). This presumable reflects the stiffening of the structure by the hydrogen bonds.

3.4. Long-wavelength optic phonons

The decompositions of the long-wavelength phonons of both the α and δ phases into

the sets of irreducible representations are given in table 4. Here we separate the internal

molecular vibrations from the lower-frequency vibrations which predominantly consist

of translations and rotations of molecules, and which we call the external modes. The

calculated vibrational frequencies for internal modes for the α and δ phases are reported

in table 5. The data for the α phase are compared with the detailed spectroscopic

measurements of Castellucci and Manzelli [23] obtained in the identical γ phase; data

from polycrystalline phases by Le Calvé et al [24] and Savoie et al [10] are consistent with

the single-crystal data. The agreement between the DFT calculations and spectroscopic

data are generally good.

The calculated external mode frequencies are given in table 6. All the Raman

frequencies for the α phase at a temperature of 15 K have been measured by Le Calvé

et al [24] and are given in this table for comparison. Infrared spectroscopic data for the

α phase have been reported by Savoie et al [10] and are included in table 6. Savoie et

al [10] have reported both Raman and Infrared spectroscopic data for some external

modes of the δ phase and these are also reported in table 6. In all cases the agreement

is reasonable.

The agreement (or perhaps, lack of any significant disagreement) between the

calculated and measured Raman and Infrared spectroscopy data add strong support

to the proposed crystal structure of the δ phase of malononitrile.

3.5. Phonon dispersion curves

Phonon dispersion curves for the α and δ phases for selected directions of wave vectors in

reciprocal space and frequencies in the range 0–6 THz are shown in figure 5. Although the

structures of the two phases are different, the dispersion curves show some similarities.

In both cases the top four branches, with frequencies between 5–6 THz, are the lowest-

frequency internal modes, corresponding to the C(CN)2 scissor mode, one per molecule.

These branches do show some variation of frequency with wave vector, and in the δ phase

they are more closely bunched together whereas in the α phase these internal modes
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Table 5. Calculated internal molecular vibrational frequencies (units cm−1) for the α

and δ phases of malononitrile, compared with the extensive set of measurements on a

single crystal sample of the monoclinic γ phase at 298 K by Castellucci and Manzelli

[23].

DFT α phase Spectroscopy γ phase DFT δ phase

Ag Bg Au Bu Ag Bg Au Bu A1 A2 B1 B2 E

165 189 171 170 181 181 — — 173 184 190 178 —

345 344 345 344 340 343 342 339 — — — — 352, 355

370 369 370 371 365 365 366 366 379 — — 379 377

380 377 373 376 373 368 372 372 — 379 380 — 379

580 579 579 581 581 578 580 581 585 587 586 583 —

887 879 883 881 895 892 892 890 886 884 886 881 —

891 888 896 898 — 936 937 938 — — — — 893, 894

968 973 967 981 983 983 982 991 — — — — 967, 970

1185 1185 1181 1180 1215 1213 1214 1215 1196 1202 1201 1200 —

1279 1275 1275 1293 1310 1308 1309 1322 — — — — 1290 1295

1361 1362 1348 1346 1391 1386 1393 1387 1347 1354 1350 1356 —

2264 2265 2266 2264 2264 2272 2266 2271 — — — — 2263 2263

2270 2273 2273 2271 2291 2291 2292 2288 2267 2271 2270 2272 —

2938 2941 2938 2937 2928 2930 2932 2929 2909 2918 2909 2919 —

2991 2993 2994 2994 2965 2966 2967 2966 — — — — 2958, 2959

appear to be in two groups with slightly different frequency. There are 24 external modes,

which in both phases are distributed up to around 5 THz. Similarly the top frequencies

of the acoustic modes are similar in both phases, at around 1.3–1.8 THz.

One striking difference between the phonon spectrum of the two phases is that the

lowest-frequency optic mode in the δ phase are at around 2 THz, but are at around 1

THZ in the α phase. The lowest frequency optic mode in the α phase has Bg symmetry,

and is the soft mode for the α–β displacive phase transition, as has been measured

by Raman scattering as functions of temperature at ambient and elevated pressures

[24, 7]. We have calculated this frequency as a function of pressure, showing a clear

softening of the Bg mode as a function of pressure, with the frequency reaching zero at a

pressure of 1.06 GPa. Qualitatively this reflects the experimental situation, where at low

temperature the soft mode induces the α–β phase transition albeit at the lower pressure

of 0.32 GPa by extrapolation. The over-estimate of the phase transition pressure is not

uncommon for DFT calculations, particularly in view of the approximate treatment of

the dispersion interaction and consistent with the known effects of the approximate

nature of the DFT functionals. We also remark that in the dispersion curves, figure 5,

the soft mode appears to soften mostly around zero wave vector rather than across

the whole dispersion curve. On increasing pressure this becomes more apparently, with
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Table 6. Calculated external vibrational frequencies (units cm−1) for the α and δ

phases of malononitrile, compared with spectrosopic measurements. The IR absorption

spectroscopy data in both phases and the Raman scattering data for the δ phase are

taken from Savoie et al [10], and the Raman scattering data for the α phase are taken

from Le Calvé et al [24]

α phase δ phase

DFT Raman IR DFT Raman IR

Bg (R) 27 13 B2 (R) 62 50

Ag (R) 59 59 E (R,IR) 71 68

Bu(IR) 69 69 A1 (R,IR) 72 77

Au(IR) 71 74 A2 80

Ag (R) 71 69 E (R,IR) 104 90

Au(IR) 84 79 E (R,IR) 107 100

Ag (R) 87 80 B1 (R) 108

Bg (R) 96 93 E (R,IR) 111 115

Ag (R) 105 98 E (R,IR) 129 126

Au(IR) 113 107 A2 133

Bg (R) 112 104 E (R,IR) 136 138

Bu(IR) 114 B1 (R) 137

Bg (R) 118 110 B2 (R) 145 142

Ag (R) 124 113 E (R,IR) 149 146

Bg (R) 128 124

Au(IR) 134 126

Bu(IR) 135

Bu(IR) 141

Ag (R) 142 136

Bg (R) 146 150

Au(IR) 150

softening only occurring at zero wave vector and not at the Brillouin zone boundaries.

The comparison between the phonon spectra of the α and δ phases is highlighted in

the calculation of the phonon density of states at zero pressure, as shown in figure 6. This

was constructed from calculations of the phonon frequencies at 500 random wave vectors

in each phase. The difference in the distribution of external modes for frequencies in the

range 5–6 THz described above can be seen as a single peak in the density of states for

the δ phase and as two peaks for the α phase. The other clear difference is that there is

an enhancement in the number of modes between 1–2 THz in the α phase as highlighted

in the phonon dispersion curves in the regime of the soft mode. The importance of this

difference will be discussed below.

One final remark is that we searched for additional softening of phonons under

pressure as precursors of the phase transition to the high-pressure phase [7]. However,

calculations at all the symmetry points on the surface of the Brillouin zone of the α

phase failed to show any significant phonon softening up to a pressure of 3 GPa.¶ This

¶ Strictly speaking the transition is from the lower-symmetry β phase, but we can reasonably expect

that we should see the same instability in the α phase given that the soft modes for the α–β phase
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Figure 5. Lower-frequency dispersion curves of the α phase (left) and δ phase (right)

of malononitrile calculated by DFT as described in the text. The Brillouin zone labels

in the α phase as given by the Bilbao Crystallographic Server [25] are Γ = (0, 0, 0),

Z = (0, 0, 0.5), Y = (0.5, 0, 0), A = (±0.5, 0, 0.5), and B = (0, 0, 0.5). The Brillouin

zone labels in the δ phase are Γ = (0, 0, 0), M = (0, 0, 1), and N = (0.5, 0, 0.5).

may be rather surprising since the experimental evidence suggests the transition is of

displacive kind [7].

3.6. Calculations of lattice energy and phonon free energy

The optimised lattice energies (no vibrational energy) of the two phases show that the

value for the δ phase is lower than that for the α phase by 1.77 kJ/mol. Experimentally

this difference at 260 K been determined as 1.26 kJ/mol [3]. Given the approximations

within DFT, and the use of approximations in the dispersion interaction, the calculation

of this small energy difference is satisfactory.

We have calculated thermodynamic functions of the α and δ phases from a phonon

calculation using the same set of random set of 500 wave wave vectors as used in the

calculation of phonon density of states. The phonon entropy curves calculated from the

phonon frequencies used in the density of states are shown in figure 7, and compared

with experimental data [3]. As expected, the α phase has a higher entropy at each

transition and β to high-pressire phase transition will have different symmetry and thus no low-order

coupling.
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Figure 7. Calculated entropies of the α (top continuous curve, blue) and δ (lower

continuous curve, red) phases of malononitrile, compared with the experimental data

[3] shown as filled circles with corresponding colours.

temperature, consistent with having a higher zero-temperature energy and thus required

for the existence of the phase transition to the β/γ phases at temperatures above 260 K.

The calculated values of the entropies of the two phases correspond reasonably well to

the experimental measurements, albeit with the experimental entropies being slightly

higher. For example, at the temperature of 120 K the calculated values of entropy of the

α and δ phases are 53.2 and 50.5 J/mol/K respectively, with corresponding experimental

values of 57.8 and 53.1 J/mol/K [3]. The discrepancy, aside from small inherent errors in

the DFT calculations, is likely to be exacerbated by not taking into account the effects

of thermal expansion in the calculation, and in the case of the α phase also by neglecting
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the effect of the phase transitions in lowering of the frequencies of the phonons associated

with the soft mode on heating, consistent with the fact that the larger discrepancy is

for the α phase.

The free energies of the α and δ phase were constructed from the lattice energy

and entropy. Their curves cross – the point of the phase transition – at a temperature

of 567 K, which is more than twice the actual phase transition temperature of 260 K. If

the full free energy curves are made to cross at the experimental transition temperature

we need an energy difference of 0.697 kJ/mol. However, since this is around half the

experimental energy difference, it is probably the case that the mismatch between the

experimental and theoretical transition temperature is mostly due to the underestimate

of the entropy difference, again by around a factor of 2.

4. Conclusion

This paper has reported the last unknown information concerning the ambient-pressure

phase transitions in the molecular crystal malononitrile, namely the crystal structure of

the δ phase, following the recent report of the crystal structure of the α phase and of the

temperature dependence of the crystal structure through the α–β–γ re-entrant sequence

of phase transitions. The crystal structure of the δ phase appears to be consistent with

previous experimental data, including the empirical observation that the transition into

the δ is accompanied by a significant volume increase [3]. The phase transition to the δ

phase is reconstructive rather than displacive type, which is most clearly seen through

changes in C–H. . . N bonding.

DFT calculations of the lattice energies and lattice dynamics have expanded the

picture and confirmed that the zero-temperature energy of the δ phase is lower than that

of the α phase, and that the entropy of the α phase is higher, both of which are consistent

with the existence of the reconstructive transition between the two phases. The DFT

calculations show that the origin of the extra entropy in the α phase is associated

with the low-frequency soft mode associated with the α–β–γ phase transitions, and the

softening of this mode to zero frequency has been seen in the calculations performed

with different pressures. The key finding of this work is that the existence of the α–β–γ

phase transitions have directly given these phases the stability over the lower-energy δ

phase at high temperatures as an entropic effect. In the study of organic polymorphism,

it is known that many potential different crystal structures may have similar energies,

and in thus the entropic contribution to the free energy is important.

The main remaining question regarding the phase transitions of malononitrile

concerns the crystal structure of the high-pressure phase [7]. Surprisingly no onset of

this phase transition could be seen through any pressure-induced instabilities in the

phonon spectrum.
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5. Postscript: a brief personal reflection

This paper has been written towards the close of the career of the corresponding author,

and the main topic of this paper, the phase transitions in the molecular crystal of

malononitrile, was also the topic of his PhD thesis [4, 9, 26, 27]. Gratifyingly this paper

now answers some of the questions left unanswered by that and subsequent works, up to

a new analysis of the crystallography of the α–β–γ phase transitions [5]. Given that the

topic of this paper spans the larger part of a scientific career, it is interesting to reflect on

three significant differences between then and now. First is the use of computer graphical

visualisation of crystal structures. From figure 4 it is easy to quickly see the change in the

hydrogen-bonding network, but back in the early 1980s such structures had to be drawn

by hand, as in earlier references [4, 26].+ Second is the considerably-enhanced capability

of the Rietveld method, as highlighted in our study of the α–β–γ phase transitions [5].

The Rietveld refinements reported here were carried out within seconds as an interactive

task, but during the PhD of the corresponding author, Rietveld analysis could only be

performed as batch jobs with each cycle of refinement lasting several minutes, and with

rather lower capabilities (such as the restriction of having a linear sloping background

functions, and fitting to a single histogram of data). Third is the massive developments

in computer modelling seen over this period of time. In the 1980s we were restricted to

calculations with empirical potentials [26], and to a large extent researchers had to write

their own modelling programs.∗ The capability to perform accurate ab initio calculations

of phonon spectra for such systems is truly impressive. All of these developments reflect

the exponential increased in computer capability over the past 40 years, and looking

back over a career it seems that it is the computer that both gives the potential for

many exciting developments and which now determines the rate of progress.
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