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Abstract

The study of secure computation assesses the ability of one or more entities to securely compute
functions over privately chosen inputs. Numerous different methods of computation exist, rang-
ing from protocols for securely computing functions over data frommultiple entities; to provid-
ing cryptographically obfuscated versions of functions that still evaluate correctly. In the former
case, security guarantees that the inputs are not revealed beyond what is revealed naturally by the
output of the function. In the latter case, the function itself should remain hidden, even when
ran in an adversary-controlled environment.

The vast array of conveyed functionality has led to awealth of research literaturewith varyingmo-
tivations. The theory of secure computationhas existed for around three decades, andmore recent
work has considered the plausibility of developing practical applications based on the underlying
concepts of this theory. In particular, demonstrating how efficiently we can run protocols for se-
curely computing general functions. As always, cryptanalysis also remains useful for establishing
the actual security guarantees that we can expect for those schemes.

In this thesis we provide a study of the feasibility of various forms of secure computation —
through theory, practice and cryptanalysis. Firstly, we give theoretical constructions of general
secure computation protocols for performing set operations whilst maintaining the privacy of
the input sets. Secondly, we provide a new construction of a constrained pseudorandom func-
tion. In comparison to previous work, we achieve stronger security properties frommuch weaker
assumptions. Thirdly, we establish a browser-based implementation of a protocol for anonymous
authentication, built upon the secure computation of a verifiable, oblivious pseudorandom func-
tion between a client and server. Lastly, we give a cryptanalysis of indistinguishability obfuscation
candidates for branching programs, when instantiated under a non-trivial adaptation of an exist-
ing graded encoding scheme.
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Prologue

The “unofficial” sub-title of this thesis may sound alarming. The word “insecurity” has a pretty
concretemeaning in cryptography, though I am not suggesting that any of the results in this work
need to be called into question.

The choice of title was to reflect on the passage of time since September 2014, when I started
this work, and now (September 2018). While my various states and general health respond to a
number of variables, the constant of insecurity has never left. Insecurity that I feel: socially; in
existence; in assessing the quality of my own work; in comparisons with other people; in being
a silent observer to my own life; in rarely showing appreciation to the people that I love; in not
doing enough.

There are opportunities that I feel that I have missed. Occasions where I rushed into making
judgements, based on the perception that I had little time. Rushing during a four year PhD now
seems absurd tome. But I amnot convinced that Iwouldmake different decisions, if I had tomake
them again. Not because I think theywere correct, but rather that the pressure can, at times, be all-
consuming. Not a physical pressure, just like getting a couple of emails that are slightly awkward
to reply to. Or waking up in the middle of the night, convincing myself that I need to be working
on something, and then being unable to get back to sleep.

My only regret regarding the collation of this thesis is that some of the ideas that I really enjoyed
pursuing did not make the final cut. The ideas that I formed myself, where solutions seemed like
they grazed the tips ofmy fingers whilst I paced darkened rooms. One day, I would hope to return
to trying to solve these problems, or others similar. Hopefully I haven’t closed this door formyself.

I’m not sure about the future, but I’m leaving academia, again, for now. I only spent one year
away last time. I hope I spend longer away this time. There are still various things that I do not
understand about myself. I am still not sure who I will become. These are the things I fear. These
are my insecurities. Maybe a change will help.

This prologue is for me. So that after I have stopped obsessing about who I will be, I may realise
who I once was.
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To Grandad:

I hope the hieroglyphs that I have used now make more sense than they have done in the past.
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I Introduction

The capability to communicate messages that are kept secret from malicious eavesdroppers has
been puzzled over for millennia. The scientific pursuit of providing security in such settings is
known as the study of cryptography. Cryptography is primarily concerned with devising ciphers
that can be used to convert messages into unreadable text, using a cryptographic key. The cipher
can then be inverted by anyone in possession of secret components associated with said key.

The usage of cryptography has been an intrinsic part of the formulation of civilisation. The path-
way from the earliest known recordings of the Caesar cipher, to the algorithms of the present
day has been fraught with intrigue, conflict and — ultimately — death and tragedy. However,
it has only been within the last century that cryptographic techniques have been regarded as a
meaningful scientific pursuit. The need for widespread cryptographic assurance has only become
prominent alongside the rise of provisions for global communication.

The contemporary societal impact of cryptographic research is heavily influenced by the wider
implications of widespread encryption of communication. What rights that an individual citizen
has to maintain private, online communications has engendered a wide-reaching and, at times,
frenzied debate. Usually, this debate is co-opted to advance political agendas and interests re-
lated to state security. For instance, encrypted communications are sometimes associated with the
planning phases of acts of terrorism. In the wake of such acts, it is common to find the resulting
national discourse emphasising the negative aspects of message encryption.1

On this topic, there is a well-known fable of the tactics employed by Sir Francis Walsingham to
reverse the weak cipher of Mary Queen of Scots. The cipher was used to communicate words
of ‘treason’ from Mary’s place of imprisonment in the 17

th century; and was eventually used a
piece of key evidence in bringing about her execution.2 We might take this story as an allegory
foreshadowing attempts to dismantle cryptographic privacy in the context of the isolationist (and
nationalist) security debates of the 21st century. It is only in recent times that such connections
have been made.

From out of this long nurturing has come a vibrant research area: moulding aspects of social,
mathematical and computational topics into a broader science. The core that remains is that cryp-
tography seeks to provide secure communication channels for individuals to communicate. Since
the 20

th century, the central question surrounding cryptography is

how can we communicate securely?

A subtle difference that has arisen in more modern studies is that cryptographers have instead
begun to also ask:

what can we communicate securely?

1https://inews.co.uk/news/politics/whatsapps-end-to-end-encryption-must-end/
2http://www.bbc.co.uk/history/british/tudors/spying_01.shtml
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I;1 Secure computation

The practise of cryptography now takes for granted the existence of wide-spread availability of
communication channels ensuring the privacy of communication between two parties.3 Using
these established channels, we can now ask what extended functionality is possible.

In this thesis, wewill concern ourselves with a branch of cryptography known as ‘secure computa-
tion’ that was born over three decades ago. The primary goal of secure computation is to provide
individuals with the ability to compute functions privately, even in the presence of eavesdroppers.
In other words, whereas early-stage cryptography was primarily focused on securing communi-

cation, our work is concerned with securing the computation of functions (over private inputs)
between individuals.

I;1 Secure computation

The study of secure computation startedwith the goal of allowingmultiple participants to engage
in online protocols that allowed them to compute functions over their combined inputs. A vital
requirement of the engagement is that the inputs of each participant stay hidden throughout. The
work of Yao [296] initiated this study in 1982, alongside the growing shift towards developing
provable security in cryptosystems.

Yao’s work introduces the concept of protocols that allow two-parties to interactively compute
general functions (or binary circuits) securely. This important first stepwas soon augmentedwith
works by Goldwasser, Micali andWigderson [165] and Chaum, Damgard and van de Graaf [84]
in 1987, for constructing protocols between N ≥ 2 individuals. These results were developed
further by Ben-Or et al. [38] and Chaum et al. [83].

Let F : ({0, 1}∗)N 7→ ({0, 1}∗)N be a function that is intended to be computed betweenN
participants. Let F (i)(x1, . . . , xN ) denote the ith output of F on some inputs x1, . . . , xN ∈
{0, 1}∗, for i ∈ [N ]. The combination of the above works crystallised the security goals of a
protocol computing F as follows.

Given participants (P1, . . . ,PN ), construct a protocolψF such thatPi inputs xi ∈
{0, 1}∗, and receives yi ∈ {0, 1}∗; for i ∈ {1, . . . , N}. Then ψF is secure if, for

any subset S ⊂ {1, . . . , N}, then the ‘view’ of the protocol for any Pj (j ∈ S) can
be deduced from {xj}j∈[S] and {yj}j∈[S] = F (j)({xj}j∈[S]) alone.

Intuitively, we ask that the protocol itself does not reveal any extra information, beyond what the
known inputs and output reveal. The concept of the view is equivalent to all of the information
that some participant Pj witnesses during the execution. The set S refers to participants that

3TheTLSprotocol and end-to-end encryptedmessaging applications form the backbone ofmost communication
systems.
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are corrupted by some adversary that is looking to subvert the protocol. The capabilities of said
adversary help to determine the level of security that is achieved. A weak adversary only has access
to the protocol ‘transcript’ (i.e. the messages that have taken place); such an adversary is known
as ‘semi-honest’, ‘honest-but-curious’, or ‘passive’. A stronger adversary can run arbitrary code
and has access to protocol outputs for any input of their choice; this type of adversary is known
as ‘malicious’, or ‘active’.

Practical constructions. As the theory of secure computation grew during the 1990s, it
became clear that such functionality would have genuine impact in real-world scenarios. For in-
stance, an individual’s private data has become a highly valued commodity for many different rea-
sons. This value increases especially, for a variety of different stakeholders, if there is the potential
to compute functions over multiple such data sets. In healthcare scenarios, the ability to compute
over data allows for much better statistical analysis of the various treatments and diagnoses that
are performed. In the world of advertising, computing functions over data associated with an in-
dividual’s likes and dislikes opens up a world of targeted advertisement that has been realised into
a multi-billion dollar industry.4 As a final example, contact matching in smartphone applications
allows users to immediately find acquaintances on new social media platforms. If we can render
privacy-preserving variants of these functionalities, then users can be assured that their data is not
being used in potentially harmful ways by computing parties.

While privacy-preserving solutions to theseproblemsundoubtedlyprovidemore security forusers,
the impracticality of such solutions can lead to only sporadic usage in the real-world. Typically,
if the computations are very large already, then adding cryptographic overheads can render them
unreasonably slow or cumbersome. Early secure computation research focused on creating pro-
tocols with little oversight of the overheads that were incurred, typically using slower underlying
techniques. As a result, the development of more practically efficient techniques has been vital
in devising privacy-preserving tools for real-world computations. In turn, this requires deviating
from asymptotic analyses of previous designs and instead considering how to reduce the hidden
constants that arise from the methods of computation that are used.

In the recent past, academic literature has met this demandwith a growing area of research target-
ing very fast and high throughput protocols for solving the problem of multi-party computation
(to name a few [17, 92, 106, 114, 141, 177, 291]). In fact, there are now Python packages that im-
plement generic multi-party computation operations.5 Such work helps to illustrate a decreasing
trend in the performance overheads associated with using MPC, in comparison with solutions
that provide no security guarantees.

4In 2016, Facebook alone valued each users data from the United States at $13.54 https://www.theguardian.
com/technology/2016/jan/28/how-much-are-you-worth-to-facebook.

5https://pypi.org/project/mpyc/
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I;1 Secure computation

Specific functionality. A separate line of inquirywithin the secure computation framework
has been investigating whether protocols for specific and useful functionality can enhance the ef-
ficiency of protocols. This has shown to be the case with recent advances into constructing private
set intersection protocols [214, 215, 258, 260, 266, 267], and computing over genomic data pri-
vately [18]. Such specific protocols have a lot of utility in real scenarios such as those defined above
that require private processing of hidden data sets. The hope is that these custom schemes can be
embedded into existing workflows for many applications.

I;1.1 Non-interactive computation

The binding philosophy of multi-party computation is that the protocol is computed online, in
the presence of all of the participants. As computation gets faster and faster, the bottleneck can
actually be related to the speed of communication. For instance, the speed of light dictates a nat-
ural upper bound on the communication of data between two locations. If those locations are
New York and San Francisco, then that data will take≈ 13ms to arrive. Therefore, any protocol
that requires communication between two individuals at these locations is going to immediately
have a running time that is lower bounded by this time.

To avoid this phenomena, we typically have to replace protocols with non-interactive computa-
tion. In this setting, an individual renders some computation into a program. This program canbe
distributed to other parties who can then evaluate it as they wish. If the lower bound for commu-
nication can be removed then the running time becomes solely dependent on the computational
costs. Unfortunately, current multi-party computation techniques are inherently dependent on
their interactive nature, in terms of the security that they offer.

Program obfuscation. In 2001, Barak et al. [28] established a new line of research in non-
interactive secure computation literature. Their work investigated the possibility for creating
programs that hide their inner workings, but still allow the programs to be evaluated correctly.
Such programs are termed cryptographic obfuscations. These programs inherently allow a non-
interactive method of securely computing functionalities. The ‘obfuscator’ can create an obfus-
cated function with their hidden input embedded. They then send the obfuscated program to
users, who can ‘evaluate’ the program at their own input and learn the corresponding output.
The security of the obfuscation states that the evaluator cannot learn anything about the hidden
information inside.

Initially, the work of [28] served solely to highlight the impossibility of performing black-box
obfuscation for general circuits. By black-box, we mean that the secret information is completely
hidden, i.e. the programcanbe simulatedwithout access to the underlying secrets. However, years
later in 2013, Garg et al. [150] showed that the existence of cryptographic multilinear maps [57]
may lead to candidate obfuscators in a weaker security model (where obfuscations are only indis-
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tinguishable from each other). The utility of IO is not immediately apparent, but circuits satisfy-
ing security in this setting can be shown to hide embedded secret information. This initial result
prompted the construction of various cryptographic primitives that were previously thought im-
possible [100, 151, 272].

Unfortunately, constructions of obfuscators have been subject to a painful cryptanalytic process
that has seen nearly all current candidates deemed insecure. The current standing candidates are
still based on assumptions that are little-understood [2, 13, 224]. Moreover, all constructions are
highly inefficient, to the point where implementing any schemes based on these designs is nigh on
impossible. As such, these schemes have a long way to go before they can be realised to perform
cryptographic tasks in the real-world.

More success has been found recently in achieving obfuscators for very specific functions, both in
terms of security reductions and the speed with which they run [43, 70, 294]. Although, there
has been less work devising practical scenarios where these constructions are indeed useful.

Constrained primitives. A separate area of non-interactive computation that has seen nu-
merous developments is the design of constrained cryptographic primitives. These primitives are
similar to obfuscated programs in that they allow non-interactive evaluation. However they differ
in that the ‘constrainer’ provides a specific key that allows evaluating function on certain types of
input, rather than the whole input space.

For instance, puncturable public-key encryption [127, 173, 175] allows the generation of secret
keys that be can be used to decrypt all but a set choice of ciphertexts. These ciphertexts are ‘punc-
tured’ from the secret key and decryption returns⊥ on these values. Similarly, constrained pseu-
dorandom functions [52, 55, 58] provide keys that can evaluate subsets of the input space; and
puncturable pseudorandom functions [55, 272] provide keys that evaluate the whole space, apart
from a set of ‘punctured’ points.

These primitives fall under the banner of secure computation because they allow computation
of certain functions under certain restrictions. In particular, the constrained keys should not re-
veal the underlying master secret key, and especially cannot be leveraged to gain full access to the
scheme. It has been shown that these primitives imply a number of interesting cryptographic
primitives that were not previously known (such as 0-round-trip-time and identity-based key ex-
changes [58, 127, 175]). Moreover, it was shown by [76] that constrained pseudorandom func-
tions imply obfuscation of general circuits, under certain conditions.
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I;2 Our contributions

In this thesis we provide a body of work that provides solutions to a variety of different problems
within secure computation. Our work demonstrates novel constructions of specific functionali-
ties in both the interactive and non-interactive setting. Additionally, we demonstrate throughout
that our constructions can be run for believable real-world scenarios by implementing each of
them for widely-used cryptographic parameter sets. Our implementations typically represent the
first attempt of practically running the primitives that we are considering. One of our deploy-
ments improves anonymity-preserving internet browsing globally, for over 75000 users. Finally,
we investigate new avenues for cryptanalysis of program obfuscation.

We now explain each of our contributions, and their motivation, individually.

I;2.1 An Efficient Toolkit for Computing Private Set Operations

Chapter III and Chapter IV are based on the following publications.

• A. Davidson and C. Cid. “An Efficient Toolkit for Computing Private Set Operations”.
In: ACISP 17, Part II. ed. by J. Pieprzyk and S. Suriadi. Vol. 10343. LNCS. Springer,
Heidelberg, July 2017, pp. 261–278.

• A. Davidson, G. Fenn, and C. Cid. “AModel for Secure andMutually Beneficial Software
Vulnerability Sharing”. In: Proceedings of the 2016 ACM on Workshop on Information

Sharing and Collaborative Security. WISCS ’16. Vienna, Austria: ACM, 2016, pp. 3–14.
isbn: 978-1-4503-4565-1. doi: 10.1145/2994539.2994547.

Chapter III concentrates on new constructions of atomic private set operations, Chapter IV rep-
resents an application of these new designs.

Motivation. Set operations represent a particular family of functionalities that are typically
computedduringdataminingoperations. If thedatamining shouldbedone in aprivacy-preserving
manner, then this requires protocols that can compute set operations over privately-represented
sets. While such computation can be computed using generic protocols formulti-party computa-
tion, it has been found that specialised protocols for computing private set operations are typically
more efficient [260].

The practicality of such protocols is particularly notable for computing set intersections, as it
makes use of largely symmetric-key basedprimitives for better efficiency. Unfortunately, protocols
for computing other operations such as set union, or computing the cardinality of output sets, en-
dure higher overheads due to sub-optimal asymptotic computational complexities. Moreover, far
less research has been committed to these operations in general.
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Contribution. In Chapter III, we introduce a new technique for computing set union in a
privacy-preserving manner between two participants. Establishing private set union protocols
allows the computation of a union operation over two sets, without revealing additional infor-
mation about the intersection of the sets.

Our technique makes use of Bloom filters and homomorphic encryption to construct the first
protocol with linear computational complexities in the size of the input sets. We can instantiate
our protocol with either somewhat homomorphic encryption, or with additively homomoprhic
encryption,with some extra computational overheads. Moreover,we show that our technique can
easily be adapted so that it can also compute the set intersection and set cardinality operations.

In summary, we demonstrate a ‘toolkit’ for performing set union, intersection and cardinality
operations — the first of its kind that demonstrates linear computational and communication
complexities. Our protocols are proven secure in the semi-honest setting. They can be proven
secure in the malicious setting, where at least one input set is authenticated apriori. We give a
proof-of-concept implementation of our toolkit inGo, and show that it runs efficiently forwidely-
used security parameters and set sizes.

In Chapter IV, we further adapt our union protocol to a specific use case based on information
sharing. A game-theoretic analysis of [208] showed that information sharing in competitive en-
vironments is profitable when there is a trusted third party to negotiate the sharing. We show
that an adapted form of our union protocol, that takes into account the value of the items being
shared, can replace the actions of the mediator. This result enables the competitors to perform a
protocol to share their information fairly, rather than locate and outsource their data to a third
party.

I;2.2 A Constrained PRF for Bit-fixing Predicates with Constant
Collusion-resistance fromOne-way Functions

Chapter V is based on work co-authored with Shuichi Katsumata, Ryo Nishimaki and Shota Ya-
mada under the name: “Constrained PRFs for Bit-fixing from OWFs with Constant Collusion
Resistance”. The work is currently under submission and was completed while the thesis author
undertook a research internship (Feb-May 2018) at Nippon Telegraph and Telephone Corpora-
tion, under the supervision of Ryo Nishimaki. The chpater is based on the pre-print available
at [121].

Motivation. Constrained pseudorandom functions (CPRFs) allow users to learn constrained
keys that can evaluate the PRF on subsets of the input space (more accurately, where an associated
predicate returns true). They have been shown to instantiate a variety of applications includ-
ing multi-party, identity-based non-interactive key exchange (ID-NIKE), length-optimal broad-
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cast encryption and forms of searchable encryption. Unfortunately, all existing constructions of
CPRFs rely on assumptions over multilinear maps (that do not hold for known candidates), or
they only allow one constrained key to be learnt. The most prominent applications need to re-
main secure whenmultiple constrained keys have been learnt from the CPRF, and thus the utility
of these known constructions are reduced significantly.

Contribution.Wedemonstrate the first construction of a CPRF, for bit-fixing predicates, that
allows learning more than one constrained key, from standard assumptions. More precisely, our
construction permits r = O(1) keys to be learnt, and is secure under the existence of one-way
functions. Prior to our work, the weakest assumptions that were known to imply CPRFs were
lattice-basedormade in the traditional group setting. Thereforewemanage a significant reduction
in the strength of assumptions needed to construct CPRFs.

In addition, our construction satisfies 1-key privacy and can be proven secure in the adaptive secu-
rity model. All previous constructions based on standard assumptions (and within the standard
model) can only be proven secure in this model under sub-exponential time reductions.

We show that our CPRF is demonstrably practical for small values of r, via a proof-of-concept im-
plementationof our design inGo. This is the first implementationof a dedicatedCPRF for general
bit-fixing predicates, and previous designs are unlikely to ever reach practical performance due to
unfavourable parameter settings. We hope that optimisations of our construction, or implemen-
tation, may allow us to increase the value of r. Such results may lead to meaningful, real-world
scenarios where we can deploy our CPRF.

I;2.3 Anonymously Authenticating Internet Traffic Using Verifiable
Oblivious PRFs

Chapter VI is based on the publication:

• A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda. “Privacy Pass: By-
passing Internet Challenges Anonymously”. In: PoPETs 2018.3 (2018), pp. 164–180. doi:
10.1515/popets-2018-0026. url: https://doi.org/10.1515/popets-2018-
0026,

that was presented at [PETS18], and won the Andreas Pfitzmann Best Student Paper Award.

Motivation. Content delivery networks (CDNs) are regarded as the gatekeepers to many web-
sites on the internet, particularly those that are visitedmost frequently. Some of the largest CDNs
are Amazon Cloudfront, Akamai, Cloudflare, and Fastly. Themodus operandi of these corpora-
tions is tomake the browsing ofwebsitesmore efficient, by optimising the flowofHTTP requests
and responses between clients (the website users) and hosts (the customers of the CDN).
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Another reason that CDNs are used is to provide security services to their customers. This in-
cludes blocking traffic that appears to be ‘malicious’, before it reaches the customer’s website. As a
consequence, somemethods of detectingmalicious clients lead tomore false-negatives (i.e. honest
users that are deemed to be malicious) than is truly the case. This, in turn, results in a number of
users being blocked from accessingwebsites; or having to solve challenges that canmake browsing
difficult and can potentially lead to implementation issues that also block access.

Thesemeasures typically affect users of anonymity-preserving tools such as Tor and virtual private
networks (VPNs), since various forms of malicious activity is associated with IP addresses used
by these tools. Unfortunately, this means that users who must browse anonymously have their
accessibility reduced through no fault of their own. Moreover, the anonymity-preserving aspects
of these tools means that the use of browser cookies, that can prevent internet challenges from
being burdensome, are inadmissible.

Contribution.We devise a browser-based solution to the problem above; allowing users, who
are incorrectly deemed to be malicious, to anonymously authenticate with CDN services.

Firstly, we demonstrate a new anonymous authentication protocol, based on a cryptographic pro-
tocol for computing a verifiable, oblivious PRF (VOPRF). Our VOPRF design is built upon el-
liptic curves, similarly to previous constructions such as [194, 195]. Secondly, we design a browser
extension (Privacy Pass) and a server that can communicate via HTTP to bypass internet chal-
lenges, if a user has been deemed to be honest in the past. The browser extension acquires signed,
anonymity-maintaining, tokens from the server when an internet challenge is solved by the client.
Such a challenge usually requires some sort of human-interaction, to prevent ‘bots’ from acquir-
ing such tokens. These tokens are then redeemed in the future when a challenge is required.

Weembed theVOPRFserver structure intoCloudflare’s accessmechanismandglobally distributed
the browser extension for usewithChrome andFirefox (and subsequentlyTor browser). We show
that the number of internet challenges significantly decreases when clients use Privacy Pass for
browsing Cloudflare websites. To date, over 75000 users have downloaded the extension and it
continues to make accessing Cloudflare websites an easier experience for honest users. We also
show that installing Privacy Pass adds minimal overheads to the browsing experience.

In the future, we hope to integrate Privacy Pass with more providers and explore different use-
cases altogether for our VOPRF protocol. We are also working on an IETF draft for standardising
our VOPRF protocol.6

6https://datatracker.ietf.org/doc/draft-sullivan-cfrg-voprf/
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I;2 Our contributions

I;2.4 A Security Analysis of the GGH13 Graded Encoding Scheme
Without Ideals

Chapter VII is based on the publication:

• M. R. Albrecht, A. Davidson, and E. Larraia. “Notes on GGH13Without the Presence of
Ideals”. In: 16th IMA International Conference on Cryptography and Coding. Ed. by M.
O’Neill. Vol. 10655. LNCS. Springer, Heidelberg, Dec. 2017, pp. 135–158

This publication appeared at [IMACC2017]. An updated version of the publication is avail-
able [9], with Alice Pellet-Mary as an additional co-author.

Motivation. The GGH13 candidate multilinear map (or graded encoding scheme) of Garg,
Gentry and Halevi [148] was the first to be used to construct candidate program obfuscation for
all circuits [150]. This obfuscator is secure in the indistinguishability paradigm, in an ideal graded
encoding model — where all interactions are replaced with oracle queries, and all encodings are
uniformly random. Since this initial work, there have been a wide range of obfuscators that are
also secure under these conditions [12, 16, 23, 27, 64, 153, 239, 253, 298].

The work of Miles, Sahai and Zhandry [240], along with a variety of subsequent works [15, 87,
90, 256], have shown that security does not hold for some obfuscators, when the ideal model
is replaced with a candidate graded encoding scheme. In particular, for the case of GGH13, the
program evaluator can reveal hidden information about a principal ideal that is common to all
encodings of the value 0.

Once this ideal is revealed, the evaluator can construct evaluations that either belong to the ideal or
not, depending on the program that is obfuscated in the indistinguishability game. Consequently,
the evaluator can win the security game with non-negligible probability — albeit via a heuristic
cryptanalysis.

Contribution.Weinvestigate thepossibility ofmodifying theGGH13graded encoding scheme
to remove thepresenceof commonelements that cause the vulnerability thatwementioned above.
We successfully demonstrate a correct graded encoding scheme resembling the GGH13 scheme,
except that there are no parameters that are common to all encodings. If we use our candidate
scheme to instantiate previously insecure obfuscators, thenwe immediately avoid all knowncrypt-
analyses.

In contrast, we show instead that a new range of cryptanalytic techniques can be used to alge-
braically manipulate our modified encodings to break these obfuscators in the indistinguishabil-
ity game. That is, our modifications introduce some changes to the zero-testing procedure, but
these appear to still be exploitable in a different manner (though still via a heuristic argument).
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We interpret these results as an indication that the GGH13 scheme is inherently vulnerable in its
underlying structure, rather than just via the presence of the ideal that is used by previous attacks.
We offer a counterpoint to a conjecture of Halevi [176] by stating that the hardness of finding
this ideal is a measure of the security of an application that uses GGH13. We hope that further
researchmay indicate exactly how this vulnerabilitymanifests itself, as amethodof devising graded
encoding schemes with more knowledge of the vulnerabilities that should be avoided.

We demonstrate our attacks in a new realisation of the indistinguishability game that reduces the
number of oracles that are required for workingwith. This helps tomake the notation of the ideal
graded encodingmodel more compact, and illuminates the attack techniques in a clearer manner.
We show that our new model is sufficient for demonstrating vulnerabilities by showing that the
previous attacks also fit into it.

Finally, we notice that the full extent of attacks against our scheme are slightly more limited than
against GGH13. We are unable to demonstrate attacks against some branching program represen-
tations of obfuscated circuits, using ourmodified scheme, that previous attacks are able to exploit
using GGH13. In turn, we are unable to transfer this into any meaningful security assumption,
and so it is unlikely that this will result in a secure obfuscation candidate. However, we note that
this may be a reasonable line of inquiry for future research.

I;3 Other research

We have chosen to omit an additional publication that the thesis author co-authored:

• M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W. Postlethwaite, F. Vir-
dia, andT.Wunderer. “Estimate All the {LWE,NTRU} Schemes!” In: Security and Cryp-
tography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September

5-7, 2018, Proceedings. 2018, pp. 351–367. doi: 10.1007/978-3-319-98113-0\_19.
url: https://doi.org/10.1007/978-3-319-98113-0%5C_19.

This was because the publication in question does not fit into the remit of secure computation.
However, we will provide a short description of this work here.

Motivation. The National Institute for Standards and Technology (NIST) launched a com-
petition (in December 2016) for standardising algorithms for use in the post-quantum setting. In
this setting, quantum computation is possible and thus polynomial-time cryptanalysis of various
cryptographic assumptions is feasible. For example, using Shor’s algorithm [278], the factoring
and discrete log assumptions can be solved in polynomial-time.

A large portion of post-quantum cryptography is based on a set of assumptions that are derived
from hard problems over high-dimension lattices. These include the learning with errors (LWE)
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problem [264] and the NTRU problem [186]. For the NIST competition, developers of cryp-
tosystems based on these assumptions have to provide parametrisations that demonstrate security
for a variety of different situations.

Unfortunately, the literature on state-of-the-art cryptanalysis of these assumptions is not exactly
unified. That is, there are various algorithms and methods for solving underlying problems such
as the shortest vector problem, that in turn can be used to find solutions to LWE and NTRU.
The ‘cost models’ used to estimate the hardness of solving these problems in turn determines the
size of the parameters that the schemes can tolerate. If a cost model is unnecessarily pessimistic,
then this may lead to schemes that are needlessly inefficient. If a cost model is too optimistic, then
this may lead to a scheme claiming greater security than is actually the case.

Contribution. In this work, we extract the parameters of each of the proposals of cryptosys-
tems to the NIST competition based on variants of LWE or NTRU. We also extract all the cost
models that are used that for estimating the hardness of breaking the given assumptions. We then
conduct a unified analysis that calculates the security of each scheme, against each cost model that
is used. The estimation of the security of these schemes is carried out using the LWE estimator

of [11].

Our results help to provide amore accurate summary and comparison of the hardness of breaking
each scheme. We leave interpretation of these findings up to future research. Instead, we intend
that our findings can be used as a useful point-of-reference for adequately parametrising lattice-
based assumptions.

I;4 Layout

In Chapter II and Chapter IV we will provide the necessary cryptographic background for our
work. Chapter III will focus on our work regarding new protocols for performing private set
operations. Chapter V will demonstrate our new construction of a constrained pseudorandom
function. Chapter VI will describe our research and deployment of new methods for browser-
based anonymous authentication. ChapterVIIwill describe our cryptanalysis of ourmodification
to the GGH13 graded encoding scheme. Finally, we will conclude this thesis in Chapter VIII.
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II;1 Standard notation

In this section, we will cover a large portion of the preliminary material that is necessary for con-
suming this thesis. Somematerials that are specific to a single chapter are deferred until the chapter
itself.

• We provide a list of acronyms that we commonly use throughout on page 354.

• We provide a summary of the notation used here in Table A, on page 352.

II;1 Standard notation

Sampling. Let S be a set, and let |S| denote its cardinality. If we say that X is a uniformly
distributed random variable over S, then we mean that Pr[X = x] = 1/|S|, for all x ∈ S. If
Y is said to be the uniform distribution over S, then the result of sampling elements from Y is a
uniformly distributed, random variable. We may side-step the actual description of distributions
in the uniform case, and write s←$S to indicate that s is sampled via the uniform distribution.

Binary strings and sets. For n ∈ N, we write [n] to represent the set {1, . . . , n}; we also
write [n1, n2] to denote the set {n1, . . . , n2} for n1 < n2 and n1, n2 ∈ N. For a string x =

x1 . . . x` ∈ {0, 1}`, we let x|t = xt . . . x`, x|t = x1 . . . xt, and x|t2t1 = xt1 . . . xt2 , for t2 ≥ t1.
Alternatively, let T ⊂ [`] be some subset of indices, we write x|T to denote the bits xi ∈ {0, 1}
such that i ∈ T . We write x‖y to denote the concatenation of binary strings x, y. Let bitlength
be a deterministic algorithm, where bitlength(x) = ` for x ∈ {0, 1}`. We say that x = ∅ is the
‘empty’ string.

Unless we state otherwise, we assume that all sets are ordered, that is a setS = {xi}i∈[`] where the
ordering of thexi is determined via context.1 For an ordered setS, we define themethodS.pop()

to return the element positioned at the first index of the set before it is deleted; thenS[i−1] is set
to be equal to S[i] — i.e. each element is moved down a position in S (towards the first index).
We also define a method S′ ← S.append(x), where S′ is the concatenation of S and {x}, we
can extend this notation to append entire sets S also. We will writeW ← ∅ to indicate thatW
has been initialised as an ‘empty’ set.

Let L be some domain, and let {xi}i∈[n] be the set of values where xi ∈ L, for each i ∈ [n].
Then we may write {xi}i∈[n] ∈ L.

1Ordered sets are can additionally be known as vectors or lists.
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Equality. We will assume the presence of an equality operator ?
= for two objectsX and Y of

equivalent types, i.e.X,Y ∈ {0, 1}`. This operator converts the data type into binary form and
compares the bits of the objects sequentially, where:

1← (X
?
= Y ) =⇒ (Xi == Yi)∀ i ∈ [`],

and
0← (X

?
= Y ) =⇒ ∃ i ∈ [`] s.t. (Xi 6= Yi).

In this work, we may abuse notation and assume that (X
?
= Y ) outputs ‘true’ rather than 1, and

‘false’ rather than 0.

Whenwriting probability statements, wemaywritePr
[
X

?
= Y

]
to be the probability thatX ?

=

Y returns ‘true’. Likewise, we will write Pr
[
¬(X

?
= Y )

]
to be the probability thatX ?

= Y re-
turns ‘false’. This notation is also used in conditional if statements, during algorithmic execution.

Algorithms and functions. LetD be an algorithm. Then we write a ← D(x) to indicate
that the algorithm outputs a on some input x. If the algorithm is probabilistic then wemaywrite
a←$D(x), or equivalently a ← D(x; r) where r are the explicit random coins that are used in
running the algorithm. If b ← D is output, where b ∈ {0, 1}, then we may take the returned
value to be a boolean expression (i.e. true when b = 1, and false otherwise). We write !D(x) to
indicate that the algorithmD(x) has never been run on input x.

In this work, we say that an algorithm D is efficient if it can be run in polynomial-time, i.e. the
running time is bounded by a polynomial in the size of the input. We use the abbreviation PPT
to refer to probabilistic polynomial time. For a function f : X 7→ Y , we say that it is efficiently
computable if there exists a deterministic poly-time algorithm D, s.t. for all inputs x ∈ X , then
f(x)← D(x).

We commonly use negl(λ) to denote a negligible function. Such a function satisfies the following:
for all possible polynomials poly(λ) there exists a parameter λ0 s.t.

negl(λ) < 1/poly(λ)

for all λ ≥ λ0. Wemay omit the mention of the parameter λ0 in future, since this requirement is
implicitly required in all inequalities of this form.

Circuits and predicates. Throughout this work, we may refer to functionalities through
their expression as a binary circuit. A binary circuits consists of: `in inputwires, `out outputwires;
n binary logic gates; and depth d. We assume that all gates consist of one or two-input wires (fan-
in-one/two) and one output wire. The size of the circuit is the total number of gates, the depth
is the maximum number of gates along a path from an input wire to an output wire. Inputs to
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the circuit are x ∈ {0, 1}`in where each bit of the input is assigned to one of the input wires. The
outputs of the circuit are written as y ∈ {0, 1}`out , where the output bitstring takes each bit from
the `out output wires. We may write C(x) = y or y ← C(x) to associate y with the output of
C(x).

We primarily consider circuits taken from the complexity classes CNC1 and CP/poly. Circuits that
arepart ofCNC1 havedepth that isO(log(`in)). Circuits that are inCP/poly havedepthO(poly(`in )).
We additionally assume that the size of all circuits is poly(`in ).

Predicates for a circuit class C are functionalities of the form PC : {0, 1}`in 7→ {0, 1}, for some
circuit C ∈ C. We say that x ∈ {0, 1}`in satisfies the predicate iff 1 ← PC(x); which occurs iff
1← C(x).

Provable security

The requirement for establishing provable security of cryptosystems has arisen with the large
number of potential constructions that have been developed over the last few decades. Indeed,
this increase has rendered it implausible that cryptanalysts can treat every cryptosystem with the
rigour that is needed to find attacks and breaks.

A proof of security serves to draw together seemingly disparate constructions behind the banner
of a single computational assumption. Such a proof then allows cryptanalysts to target the in-
stances of the assumption, rather than individual schemes. As a second advantage, such proofs
help to segment the cryptographic landscape into clearer divides — highlighting the power and
expressiveness of certain assumptions.

Towrite a proof of security, oneneeds to demonstrate a security reduction from the computational
assumption to the scheme in question. Intuitively, we have a PPT algorithm B known as an ad-
versary, who is attempting to break the computational assumption ex. Let us assume, for the sake
of argument, that this computational assumption is rendered as a pair of decisional experiments,
where B is given a distributionDb and must output b ∈ {0, 1}. Now, letA be a PPT adversary
that is attempting to demonstrate that a scheme sch does not satisfy the security property prop.
This security property is described by decisional experiments defined by the distributionsAc for
c ∈ {0, 1}.2

We say that ‘breaking’ prop for sch is at least as hard as breaking ex ifB can runA as a subroutine
resulting in a valid solution to ex, with advantage εex. By advantage, wemean the probability that
b ← B given thatDb → B, minus the probability that B outputs b when it receivesD1−b. In
the security proof, B uses the output cA ← A to construct its own output bB ← B. If bB

?
= b

with non-negligible probability then B breaks ex.
2We give formalisations of the type of experiments that we consider shortly.
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The original assumption, ex, holds iff B has negligible probability in distinguishing the distribu-
tionsDb for b←$ {0, 1}. Consequently, thenAmust have negligible advantage

max
A

(Adv(A, prop(1λ, sch))) < εex < negl(λ)

in succeeding in distinguishing Ac, for c←$ {0, 1}, by the terms of the reduction. Otherwise,
there is a contradiction wrt the original statement of the assumption ex.

We will write security proofs of this form, when we are required to prove the security of a given
construction. We now formalise the ideas behind writing such security proofs, including the ex-
periments we used above, and the capabilities of adversaries in such settings.

Oracles.WewriteAOY (f(·)) to indicate that a PPT algorithmA has ‘oracle access’ to the func-
tion f with domain Y . During this access, A can submit queries y ∈ Y to a challenger who
returns f(y). If the challenger keeps track of the queries to the oracle using a setϕ, then we write
AOY (f(·),ϕ) where for every queryy ∈ Y , theny → ϕ andϕ is known throughout the game. We
may alsowriteOϕf(·)(Y) as short-hand, unless stated otherwise. If the algorithm is only permitted
to makem ∈ Z calls to the oracle, we will writeAOY (f(·);[m]).

Security experiments. Let sch be some scheme and let prop be some security property that
sch can satisfy. Let λ be a security parameter and, for b ∈ {0, 1}, denote by exppropb,A (1λ, sch) a
pair of decisional experiments. The use ofA is to define an algorithm (known as the adversary)
that interacts with sch in exppropb,A (1λ, sch) and attempts to distinguish the cases where b = 0 and
b = 1. We define decisional experiments such that bA ← exppropb,A (1λ, sch) is the final output,
where bA is the ‘guess’ ofA. We adopt the convention that this guess is returned in the final step
of the game. Let

Adv(A, 1λ, prop(1λ, sch)) =
∣∣∣Pr
[
0← expprop0,A (1λ, sch)

]
− Pr

[
0← expprop1,A (1λ, sch)

]∣∣∣
denote the advantage of the adversary A in distinguishing the two experiments for sch. We say
that expprop0,A (1λ, sch) and expprop1,A (1λ, sch) are computationally indistinguishable if

max
A

(Adv(A, prop(1λ, sch))) < negl(λ) (II;1)

for some negligible function negl where the maximum is taken over all PPT algorithmsA.3 We
may alsowrite expprop0,A (1λ, sch) ≈c expprop1,A (1λ, sch) to signify computational indistinguishabil-
ity. We say that they are statistically indistinguishable if Equation (II;1) holds for allA, regardless

3We sometimes omit explicit mention of the security parameter if the context is obvious.
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exppropb,A (1λ, sch)

1 : pp, sp←$Setup(1λ);

2 : m0,m1 ← A(1λ);

3 : cb ← f(pp, sp,mb);

4 : bA ← AO
ϕ
X (f(pp,sp,·))(1λ, pp, cb);

5 : if (m0 ∈ ϕ) ∨ (m1 ∈ ϕ) :

6 : return ⊥;

7 : return bA;

Figure II;1: Example decisional experiment.

of running time. Similarly, perfectly indistinguishable if the advantage is equal to 0 for unbounded
adversaries. Generally, for two distributions (Z, Y ), we write:

{Z ≈c Y, Z ≈s Y, Z ≈p Y }

ifZ and Y are {computationally, statistically, perfectly} indistinguishable.

Weprovide an example of thenotation thatweuse in decisional experiments in Figure II;1. During
the experiment, the ‘challenger’ computes some function f over one of the adversarial outputsmb

and returns the output toA. In this example, f depends on secret parameters sp that are never
given to the adversary, thoughA has knowledge of the circuitry of f .

The notation in line 5 indicates that the adversary also has oracle access to the function f (though
it cannot ask queries formb). The final returned output is the bit bA that the adversary computes.

In lines 6 and 7, we prevent trivial wins by preventing the adversary from using eithermb as input
to the oracle that they have access to. If we allowed such queries, then A could win the game
trivially.

We can also define computational experiments exppropA (1λ, sch) for determining whether sch sat-
isfies prop. In this case,A outputs a computational guess z; succeeding if the guess is deemed to
be correct by the challenger. We define bA to be the final output of the experiment depending on
the validity of the adversarial guess, i.e. 1 if correct and 0 if not. The advantage of the adversary is
redefined as:

Adv(A, 1λ, prop(1λ, sch)) =
∣∣∣Pr
[
bA = 1

∣∣∣ bA ← exppropA (1λ, sch)
]∣∣∣

and we say that exppropA (1λ, sch) is computationally unsolvable, if

max
A

(Adv(A, prop(1λ, sch))) < negl(λ)
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exppropA (1λ, sch)

1 : pp, sp←$Setup(1λ);

2 : x←$X ;

3 : y←$ f(pp, sp, x);

4 : xA ← AOX (f(pp,sp,·))(1λ, pp, y);

5 : return bA = (x
?
= xA);

Figure II;2: Example computational experiment.

for all PPT adversaries. Again, we say statistically unsolvable if the same bound holds for all A,
regardless of running time. Similarly, perfectly unsolvable if the advantage is equal to 0 for un-
bounded adversaries.

We provide an example of the notation that we use in computational experiments in Figure II;2.
The difference with decisional experiments is that the adversary now guesses a value (e.g. in this
example, returning the pre-image of the function f ). The experiment outputs 1 if A is correct
and 0 otherwise — this is what the expression in the final line refers to. Note that there are no
plausible trivial winning conditions forA in this example, and so we do not have to prevent any
queries as we did in Figure II;1.

Remark II;1.1. We may abuse notation and omit explicit mention of sch if the choice of sch is

obvious from the choice of prop (or, alternatively, if prop refers to some hard mathematical problem

without an associated instantiation). In the context of writing advantages, this would be:

max
A

(Adv(A, prop(1λ))) < negl(λ),

instead of:

max
A

(Adv(A, prop(1λ, sch))) < negl(λ),

and in the context of experiments:

exppropb,A (1λ),

instead of:

exppropb,A (1λ, sch).

Hybrid arguments.Hybrid arguments are vital techniques required in the writing of security
proofs [36, 126, 279]. They help to transition states from those where security cannot be inferred
to states that can be shown to have some concrete security guarantees. Building up these transi-
tions allows us to prove security from a number of different invocations of assumptions.

A hybrid argument is structured as a set of intermediate ‘games’, denoted byH0, . . . ,H`. Broadly,
we assume that in eachHi, the adversary is interactingwith an experiment expi0,A(1λ, sch), where
exp00,A(1λ, sch) ≈p expprop0,A (1λ, sch), and exp`0,A(1λ, sch) ≈p expprop1,A (1λ, sch). By showing
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that expi0,A(1λ, sch) and expi+1
0,A(1λ, sch) are computationally indistinguishable, then we can

gradually show that expprop0,A (1λ, sch) ≈c expprop1,A (1λ, sch), and thus prove security.

LetHi andHi+1 denote consecutive games within a hybrid argument. Define exp
Hi,Hi+1

b,D (1λ) to
be a decisional experiment, where the PPT algorithmD attempts to distinguish betweenHi and
Hi+1. In this situation, bD ← D is such that bD = 0 ifD guesses Hi, and bD = 1 ifD guesses
Hi+1. We define the advantage of an adversaryA in distinguishing two stepsHi andHi+1 by:

max
A

(Adv(A,Hi,i+1(1λ, sch))),

and establish the samenecessity for bounding the advantagebynegl(λ) for thepurpose of proving
security. Again, we may omit the explicit mention of sch if it is obvious from context.

Protocols. Throughout this work, we will make use of a particular communication structure
known as a protocol. Wewill only consider protocols that are carried out between twoparticipants.
During a protocol, there are steps that are carried out by either one or both of the participants. We
provide an example of such a protocol step in Figure II;3. The notation is similar to the crypto-
graphic notation that we described above.

In this example, the communicating parties are C and S. Firstly,ψ1(C, b, x, y, f) is known as the
‘header’.ψ1 signifies that this is the first step in the protocolψ;ψ2 would signify the second, and
so on. The tuple (C, b, x, y, f) is the set of inputs. By convention, the first input is the partici-
pant C, this implies that the computation is carried out by C. If the protocol step involved both
participants, thenwewould also include S (see Figure IV;7 for an example). The remaining inputs
are b, x, y, f . We include f as input even though it is strictly a function. Wemay sometimes write
C[x] if C participates in the protocol with input x.

Lines 3 and 6 are noteworthy as they denotes information that is sent to S. Depending on which
step is run, this indicates that S receives either f(x) or f(y) as input — potentially to use in a
future step. Moreover, line 8 indicates a return statement. This means that C returns the contents
of the setϕ to itself, to use in the future.

An entire protocol is then composed up ofmultiple steps, resulting in both parties receiving some
sort of output from the computation. We typically refer to the participation of an entity within
the protocol as its ‘view’. We will describe this concept more formally in Section II;6.

We may abuse notation when referring to the what is returned by the protocol. Considering the
protocol stepψ1(C, b, x, y, f) in Figure II;3, then we may write

(C : ϕ, S : z)← ψ1(C, b, x, y, f),
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ψ1(C, b, x, y, f)

1 : ϕ← ∅;

2 : if b
?
= 1 :

3 : S← f(x);

4 : ϕ← x;

5 : else :

6 : S← f(y);

7 : ϕ← y;

8 : returnϕ;

Figure II;3: An example protocol step.

where z ∈ {f(x), f(y)}. That is,ϕ is returned but only to C, whereas z is sent to S. We use this
notation to highlight what the outputs of that given step are, because both outputs may be used
in subsequent protocol steps.

Concrete security parameters. Throughout this chapter we will make use of the secu-
rity parameter λ as a crucial indicator of how secure a given parametrisation of a cryptosystem is.
Moreover, all algorithms run in polynomial time corresponding to their dependency on λ. It is
then crucial to discuss potential settings of λ that give adequate security in a variety of situations.
When choosing concrete parameters to establish the security of the scheme, the tightness of the
reduction in the security proof needs to be considered.

For example, suppose that we prove

max
A

(Adv(A, prop(1λ, sch))) < max
B

(Adv(B, ex(1λ)))

for a scheme sch, security property prop, and some known hard problem ex. Then, this suggests
that we can take a concrete setting of λ that ensures security in the case sch. On the other hand,
consider the case where security is only guaranteed when

max
A

(Adv(A, prop(1λ, sch))) < poly(λ) ·max
B

(Adv(B, ex(1λ)))

for some polynomial poly(λ). Then we would need to pick a much larger security parameter to
ensure that security holds. This distinction should be reflected by the concrete choice of λ when
attempting to parametrise the schemes.

When establishing a concrete choice, we discuss the number of bits of security to be the value of
λ ∈ N s.t. maxA(Adv(A, prop(1λ, sch))) < 1/2λ

∗ for some value λ∗. In this work, we will
typically use the guidelines of the National Institute of Standards and Technology for choosing
the bitlength of λ∗; longer bitlengths clearly imply greater security [247]. The minimum setting
of bitlength(λ∗) that we will consider is 80 bits, we will use 112 bits of security for maintaining
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the security of applications in the period 2016 − 2030, and we will use 128 bits as providing
security for the present case and beyond. We regard λ∗ > 128 bits as large enough to guarantee
security for a significant period of time (potentially into the next century). Based on [247], we
assume that for factoring problems (i.e. DCR, Assumption II;3.3) we require 2048 bit moduli to
achieve 112 bits of security. We require 256 bit moduli to achieve 128 bit security in the case of
assumptions made over elliptic curves (e.g. DL, Assumption II;3.1).

II;2 Mathematical preliminaries

We use {R,N,Q,C} to refer to the {real, natural, rational, complex} numbers. For a complex
number c ∈ C, we write<(c) to denote the real component of c, and=(c) to denote the imagi-
nary component.

Cyclic groups. A cyclic group is a commutative, finite group generated by a single element.
LetG(λ) be a cyclic group of order p(λ), where bitlength(p) = poly(λ) and let g ∈ G(λ) be a
generator. Then we can writeG(λ) as {g0, g1, g2, . . . , gp−1}, where g0 is the identity element.
We write ord(g) to denote the order of g. We writeG(λ) if the order of the group is not chosen
explicitly. If bitlength(p) = poly(λ) is explicit, then we may writeG(λ).

Instantiations of cyclic groups. One of the most common ways of instantiating a cyclic
groupG is as amultiplicative subgroupof a finite field. Letpbe someprime integer (usually large),
and s.t. p = 2p′ + 1 for some other prime p′. Then the subgroup of squaresQR∗p (elements of
the form u2 for u ∈ Fp) is a cyclic group of order p′. To pick a generator ofG = QR∗p we pick
u ∈ Fp (resampling if necessary until u /∈ {0, 1}) and let g = u2.

A differentmethod of instantiatingG is to use elliptic curves. We consider elliptic curves inMont-
gomery form: algebraic curves of the form y = x3 + ax + b for a, b ∈ Z, on which an additive
group operation may be defined. These curves have undergone a very rich study and stand as
foundations of a large portion of cryptographic literature and constructions.

Vectorsandmatrices.Wedenotematrices by capitalizedbold-face (i.e.A); wedenote vectors
in lower-case bold-face (i.e. v). We denote the (i, j)

th entry ofA by aij ; and write si to denote
the ith component of the vector s. We write [A1‖A2] to denote the horizontal concatenation
of matrices A1 and A2; and write [A1‖↑A2] to denote the vertical concatenation (sometimes
known as stacking). For a matrixA, we writeAT to denote the transpose.

We use the infinity norm ‖v‖∞ of a vector v (resp. ‖A‖∞ for a matrixA) to denote the overall
magnitude of v (resp. A). Where appropriate, we will also use the `2-norm, denoted by ‖v‖2.
We assume that vectors are written in column notation, unless specified otherwise.
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Schwarz-Zippel lemma. The Schwarz-Zippel lemma is an important result that essentially
states that for any non-degenerate,n-variate function f ; then an evaluation overn random values
is unlikely to be 0whp.

Lemma II;2.1 [Schwarz-Zippel lemma (generalised)]

LetF be a field. Let f be ann-variate polynomial of degree dwhere f 6≡ 0. LetS be a finite
subset of F, and let r1, . . . , rn←$S be sampled uniformly from S. Then:

Pr[f(r1, . . . , rn) = 0] ≤ d/|S|

II;2.1 Lattices

We give an overview of some key concepts related to the usage of lattice-based cryptography.

An n-dimensional lattice Λ is a discrete, additive subgroup ofRn. Given n linearly independent
basis vectorsB = {b1, . . . , bn} ∈ Rn×n, the lattice generated byB is

Λ(B) = {vi | vi =

n∑
i=1

xibi; xi ∈ Z}.

Let Λ + c = {v + c | v ∈ Λ} denote the c coset of Λ. The rank of the lattice is defined to be
the rank of the matrixB. We will only concern ourselves with latticesΛ s.t. qZm ⊆ Λ ⊆ Zm.

Finally, we define the Gram-Schmidt procedure for recovering a basis of orthogonal vectors from
any given basisB.

Definition II;2.1 [Gram-Schmidt orthogonalisation]

For a lattice basisB = (b1, . . . , bn), the Gram-Schmidt orthogonalisation ofB is defined
as the vectors ofB∗ = (b∗1, . . . , b

∗
n), where:

b∗1 = b1, b
∗
i = bi −

i∑
j=1

µi,jb
∗
j

and µi,j =
〈b∗j ,bi〉
〈b∗j ,b∗j 〉

are known as theGram-Schmidt coefficients.
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Gaussian distributions. For any s > 0, define the Gaussian function onRn centred at c ∈
Rn with parameter s to be:

∀x ∈ Rn, ρs,c(x) = e−π‖x−c‖
2
2/s

2
.

Likewise, for any s, c as above and n-dimensional latticeΛ, define the discrete Gaussian distribu-

tion overΛ as:
∀x ∈ Λ, DΛ+c,s(x) =

ρs,c(x)

ρs,c(Λ)
.

The parameter s is referred to as the width of the distribution.

We will state a number of well-known lemmas, the proofs are omitted from this thesis and the
reader should refer to the citations for the full details.

In this work, we will make use of error distributions, samples from this distribution should have
norms bounded below some known value with high probability. We can show such a result for
the Gaussian distributionDΛ,s over the lattice Λ, with parameter s > 0. We also show that it is
efficient to sample from such a distribution.

Lemma II;2.2 [Bounded distributions [238, 254]]

LetB be a basis of an n-dimensional latticeΛ and let B̃ denote the Gram-Schmidt orthog-
onalisation ofB. Let s ≥ ‖B̃‖∞ · ω(log λ) and x←$DΛ,s, then:

Pr
[
(‖x‖∞ ≥ s

√
n) ∨ (x = 0)

]
< negl(λ)

Lemma II;2.3 [Efficient Gaussian sampling [63, 161]]

There is a PPT algorithm that, given a basisB of an n-dimensional lattice Λ(B), c ∈ Rn,
σ ≥ ‖B̃‖∞ ·

√
ln(2n+ 4)/π, outputs a sample fromDΛ+c,σ .

II;2.2 Rings

In this work, we will be working over ringsR := Z[X]/(φ(X)) andRq := R/qR for some
degree n = n(λ) integer polynomial φ(X) ∈ Z[X] and a prime integer q > 0 —notablyRq is
isomorphic to the ringZq[X]/(φ(X)). We letR× denote the ring of invertible elements r ∈ R.

Weperform addition in these rings component-wise in the coefficients of the polynomial elements
andmultiplication is performed via polynomial multiplicationmodulo φ(X) and q. An element
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inR (respectivelyRq) can be viewed as a degree (n−1) polynomial overZ (respectivelyZq). We
can represent such an element using the vector of itsn coefficients (where thesewill be in the range
{−bq/2c, . . . , bq/2c} for elements inRq). Weworkwith the polynomialφ(X) = XN+1with
N a power of two. In particular,Z[X]/(φ(X)) is isomorphic to the ring of integers of the 2N

th

cyclotomic field.

Canonical embeddings. Let ζm denote a primitivemth root of unity. Themth cyclotomic
number field K = Q(ζm) is the field extension of Q obtained by adjoining ζm. Let n be the
degree ofK overQ, then there aren embeddingsσi ofK → C. Thesen embeddings correspond
precisely to evaluation in each of the n distinct roots αi of φ(X). In our case,ψ(X) has 2 · s2 =

n complex conjugate roots. Order the roots such that αk = αs2+k for k = 1, . . . , s2. The
canonical embedding σ : K → Cn is defined as

a 7→ (σ1(a), . . . , σss(a), σ1(a), . . . , σs2(a)).

The canonical embedding maps into a spaceH ⊂ Cn given by

H =
{

(X1, . . . , Xn) ∈ Cn : Xj = Xs2+j ,∀1 ≤ j ≤ s2

}
which is isomorphic toRn and we can represent the coordinates of σ(a) by a real vector [78]

(ã1, . . . , ãn) ∝ (<(σ1(a)), . . . ,<(σs2(a)),=(σ1(a)), . . . ,=(σs2(a))).

This naturally induces a geometry onK with `2-norm ‖ · ‖2 and `∞-norm ‖ · ‖∞:

‖a‖2 = ‖σ(a)‖2 =

(
n∑
i=1

|ãi|2
)1/2

and

‖a‖∞ = ‖σ(a)‖∞ = max
i
|ãi|.

We use these norms to denote the norm of the ring elements that we are considering.

Sampling of polynomials. Wemay sample polynomials inR using arbitrary distributions γ
over Z. That is, we denote by z←$R(γn) the sampling of an n-dimensional vector v from γn

and then assigning the value vi to the i
th coefficient of a ring element z ∈ Z[X] and output z.

Notice that, trivially, z ∈ R since the polynomial has degree n− 1.

Ideals. We denote the norm of an ideal I ⊆ R by ‖I‖ = |R/I|. For two ideals I,J ⊆ R,
let I · J be s.t. Z ⊆ I · J , where Z = {z1z2|z1 ∈ I, z2 ∈ J }. In addition, ‖I · J ‖ =

minĨ(‖Ĩ‖) s.t. Z ⊆ Ĩ . An ideal is prime if I 6= R and, if I = J1 · J2, then this implies that
J1 = R orJ2 = R.
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Bounded distributions. We explicitly define (B1, B2)-bounded distributions wrt to rings,
where all elements sampled from this distribution have an l∞-norm that is bounded above byB2,
and below byB1.

Definition II;2.2 [(B1, B2)-bounded element)]

An element p ∈ R is called (B1, B2)-bounded ifB1 ≤ ‖p‖∞ ≤ B2.

We use the convention that (0, B)-bounded refers to an element of magnitude upper bounded by
B, and (B,∞)-bounded if it is lower bounded byB.

Definition II;2.3 [(B1, B2)-bounded distribution]

A distribution ensemble {χλ}λ∈N, supported over R, is called (B1, B2)-bounded (for
B1, B2 = poly(λ)) if for all p in the support of χλ, we haveB1 < ‖p‖∞ < B2. In other
words, a (B1, B2)-bounded distribution overR outputs a (B1, B2)-bounded polynomial.

The magnitude of products of ring elements can now be inferred using the following lemma.

Lemma II;2.4 [Magnitude of ring products [231]]

Let n ∈ N, let φ(X) = Xn + 1 and letR = Z[X]/〈φ(X)〉. For any s, t ∈ R,

‖s · t‖∞ ≤
√
n · ‖s‖∞ · ‖t‖∞ and ‖s · t‖∞ ≤ n · ‖s‖∞ · ‖t‖∞

Thus, the corollary below follows.

Corollary II;2.1 [Bounded distribution products [231]]

Take n, φ(X),R as before. Let s1, . . . , sk←$χ where χ is a (B1, B2)-bounded distribu-
tion over the ringR. Then

s :=

k∏
i=1

si

is (nk−1Bk
1 , n

k−1Bk
2 )-bounded.

Gaussiandistributionoverrings. ByLemma II;2.2, theGaussian distributionDZn,σ over
Zn outputs elements that are bounded by σ

√
n with overwhelming probability. As such, we

can then take the truncated GaussianDZn,σ to be the distribution that outputs in the same way,
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except that for elements with infinity norm greater than σ
√
n it outputs 0. Since this happens

with low probability, the distributions are statistically indistinguishable.

Invertible elements from Gaussians. We finish these preliminaries with a lemma indicat-
ing that a ring element inR sampled from a discrete Gaussian distribution is invertible inRwhp.
This lemma was also used by Brakerski et al. [70] and was first stated in [281].

Lemma II;2.5 [Invertibility of Gaussian-sampled ring elements]

Let n ≥ 8 be a power-of-two s.t. xn + 1 splits into linear factors modulo a prime 5 ≤ q ≤
2n (e.g. q ≡ 1 mod 2n). Let σ = Ω(

√
n log(q) log(n)), then

Pr
[
s←$DZn,σ

∣∣s /∈ R×q ] ≤ O(n/q),

which is clearly negligible in q if q = nO(λ).

II;3 Computational assumptions

Computational assumptions form the bedrock of security proofs in provable security arguments.
Such assumptions are made with the intention of reducing the security of constructions down to
a simple, atomic consideration. Here we list some of the key computational assumptions that we
require.

Discrete logarithm. The discrete logarithm (DL) assumption is one of the most fundamen-
tal cryptographic assumptions. This assumption is believed to be hard to break using classical
algorithms. It was shown by Shor [278] that a polynomial-time quantum algorithm exists for
solving the problem, and thus ensuring that the assumption does not hold in this setting.

expdlA(1λ,G(λ))

1 : g←$G(λ);

2 : r←$Z;

3 : rA ← A(G(λ), g, gr);

4 : return bA = (r
?
= rA);

Figure II;4: Experiments for defining the discrete logarithm assumption.

52



II;3 Computational assumptions

expddhb,A(1λ,G(λ))

1 : g←$G(λ);

2 : c, d←$Z;

3 : z = 0;

4 : if b
?
= 0 :

5 : z = gcd;

6 : else :

7 : z←$G(λ);

8 : bA ← A(1λ, gc, gd, z);

9 : return bA;

Figure II;5: Experiments for describing the DDH assumption.

Assumption II;3.1 [Discrete logarithm]

LetA be any PPT algorithm, and let G(λ) be a finite, prime-order group for some prime
p(λ), where bitlength(p) = poly(λ). The discrete logarithm assumption (or discrete log,
or DL) states that:

max
A

(Adv(A, dl(1λ,G(λ)))) < negl(λ),

for expdlA(1λ,G(λ)) defined as in Figure II;4.

Hardness of DL. The hardness of the DL assumption rests upon the groupG(λ) that is con-
sidered. It is conjectured that, whenG(λ) is a multiplicative subgroup of a finite field, the DL as-
sumption holds as long as the prime p(λ) is chosen s.t. bitlength(p) = poly(λ) is large enough.
Concretely, this is when p is roughly 2048 bits in length.4 If we instantiate G(λ) in the elliptic
curve setting, then we can settle for a much smaller 256-bit prime.5 For up-to-date security es-
timates see [247]. This leads to major efficiency improvements in cryptographic constructions
that use these techniques. Some methods of cryptanalysis seem more suited to the elliptic curve
setting, but the best known attack is still using Pollard’s rho algorithm [41, 212, 241].

DecisionalDiffie-Hellman. The decisional Diffie-Hellman (DDH) assumption is a widely-
used computational assumption (over a pair of decisional experiments) that is a somewhat natural
successor of the DL assumption. The assumption is versatile in the sense that it allows generating
uniform elements in traditional group settings (i.e. groups without associated bilinear maps).

4As mentioned previously, this roughly translates to about 112 bits of security.
5For 128 bits of security.
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expdcrb,A(1λ)

1 : (N, p, q, y)←$ C(1λ);

2 : z = 0

3 : if b
?
= 0 :

4 : z = yN mod N2;

5 : else :

6 : z←$ZN2 ;

7 : bA ← A(1λ, N, z);

8 : return bA;

Figure II;6: Experiments for describing the DCR assumption.

Assumption II;3.2 [Decisional Diffie-Hellman]

LetA be any PPT algorithm, and letG(λ) be a finite, prime-order group. The decisional
Diffie-Hellman assumption (or DDH) states that:

max
A

(Adv(A, ddh(1λ,G(λ)))) < negl(λ),

for expddhb,A(1λ,G(λ)) defined as in Figure II;5.

Decisionalcompositeresiduocity. Paillier [251] introduced thedecisional composite resid-
uocity assumption (DCR) to prove the security of the Paillier cryptosystem (Construction II;5.2).

Assumption II;3.3 [Decisional Composite Residuosity]

LetC be aPPTchallenger that, on input the security parameterλ, outputs (N, p, q, y); such
thatN = pq for primes p, q ∈ Z and y←$ZN2 . Then the decisional composite residuocity,
or DCR, assumption states that:

max
A

(Adv(A, dcr(1λ))) < negl(λ)

holds for all PPT algorithms,A, where expdcrb,A(1λ) is defined as in Figure II;6.

II;4 Symmetric primitives

We first consider cryptographic primitives that are deemed to be symmetric in their design. We
say that a cipher is symmetric if enciphering and deciphering utilise the same key. It is asymmetric

if enciphering uses public components of the key, and deciphering uses secret components.
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expprg0,A(1λ, 1m)

1 : s←$S; prg.Seed(s);

2 : {ci}i∈[m]←$ prg.Eval(x);

3 : bA ← A(1λ, 1m, {ci}i∈[m]);

4 : return bA;

expprg1,A(1λ, 1m)

1 : {ci}i∈[m]←$Ym;

2 : bA ← A(1λ, 1m, {ci}i∈[m]);

3 : return bA;

Figure II;7: Standard PRG indistinguishability game.

II;4.1 Pseudorandom generator

Apseudorandom generator (PRG) is a cornerstone primitive for generating random sequences of
bits from a short, randomly sampled seed.

Definition II;4.1 [Pseudorandom generator]

A pseudorandom generator (PRG) is a tuple of stateful algorithms prg = (Seed,Eval) that
are defined as follows. Let S = {0, 1}`in be known as the seed space, andY = {0, 1}`out as
the output space.

• prg.Seed(1λ, s): Takes as input the security parameter 1λ, and a seed s ∈ S .

• prg.Eval(x): Takes as input x ∈ N; outputs c1, . . . , cm ∈ Ym.

Let expprgb,A(1λ, 1m) denote the decisional experiments in Figure II;7. We say that prg is a
PRG if the properties are true.

• `in ≤ m · `out: i.e. the prg is expanding.

• The inequality:
max
A

(Adv(A, prg(1λ))) < negl(λ)

holds, for all PPT adversariesA.

II;4.2 Pseudorandom functions

A pseudorandom function (PRF) is a tuple prf = (Setup,Eval). The security requirement is
that, forK←$K, then the outputs of the function prf.Eval : K × X 7→ Y onK and adver-
sarial inputs {x} ∈ X are computationally indistinguishable from the evaluations of a random
function f : X 7→ Y on the same set {x}. Pseudorandom functions are achievable fromone-way
functions by the results of Hastad et al. [178] and Goldreich et al. [164].
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expprf0,A(1λ)

1 : (pp,msk)← prf.Setup(1λ);

2 : x† ← AO
prf
X ( · ,ϕ)(1λ, pp);

3 : y† ← prf.Eval(pp,msk, x†);

4 : bA ← AO
prf
X ( · ,ϕ)(1λ, pp, y†);

5 : if x† ∈ ϕ :

6 : return ⊥;

7 : return bA;

expprf1,A(1λ)

1 : (pp,msk)← prf.Setup(1λ);

2 : f ←$ pp.F ;

3 : x† ← AO
prf
X ( · ,ϕ)(1λ, pp);

4 : y† ← f(x†);

5 : bA ← AO
prf
X ( · ,ϕ)(1λ, pp, y†);

6 : if x† ∈ ϕ :

7 : return ⊥;

8 : return bA;

Figure II;8: PRF indistinguishability game.

More formally, letF = {f : f : X 7→ Y}, then the PRF indistinguishability game asks a PPT
adversary to distinguish the two experiments in Figure II;8. All oracle queries, for b ∈ {0, 1},
are handled by prf.Eval; denote this oracle byOX (prf.Eval(pp,msk, ·),ϕ), orOprf

X ( · ,ϕ) for
short.6 At the challenge point, x†, the output is taken from either: the PRF in expprf0,A(1λ); or a
uniform function in expprf1,A(1λ).

Definition II;4.2 [Pseudorandom function]

Let prf = (Setup,Eval) be a tuple of stateful algorithms and let λ be the security param-
eter. Let X be the input space, and let Y be the output space; and define the algorithms as
follows.

• (pp,msk) ← prf.Setup(1λ): On input λ, outputs a pair (pp,msk) consisting of
public parameters and a master secret key, respectively.

• y ← prf.Eval(pp,msk, x): On input (pp,msk) andx ∈ X ; outputs a valuey ∈ Y .

We say that prf is a pseudorandom function, or a PRF, if

max
A

(Adv(A, prf(1λ))) < negl(λ)

holds, whereA is any PPT algorithm and expprfb,A(1λ) is defined as in Figure II;8. We may
equivalently say that prf satisfies pseudorandomness.

Left-right reduction. Amore standard framework for analysing PRF security gives the ad-
versary oracle access to the random function in expprf1,A(1λ), rather than prf.Eval. This formula-

6Recall thatϕ collates the input queries that have been asked byA.
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tion is sometimes known as the ‘left-right’ definition, in the ‘left’ case (b = 0) the adversary has
access to prf.Eval, and in the ‘right’ case (b = 1) access to f .

In the left-right case, there is no specified challenge point x†. Instead, A outputs their guess bA
based on the oracle interactions that it makes. Fortunately, there is fairly simple reduction from
this case to the version that we give in Figure II;8, see Lemma II;4.1.

Lemma II;4.1 [PRF satisfiability]

Let expprf-lrc,B (1λ) denote the decisional experiments for PRF security in the case where the
left-right formulation is used, for PPT algorithms B and c ∈ {0, 1}. Then the inequality:

max
A

(Adv(A, prf(1λ))) < max
B

(Adv(B, prf-lr(1λ))) < negl(λ)

holds, whereA is any PPT algorithm

Proof. Weprove the reductionusing ahybrid argument, startingwith the executionofexpprf0,A(1λ)

and gradually transitioning to a state that is indistinguishable from expprf1,A(1λ).

• H0: This is the real execution of expprf0,A(1λ).

• H1: This is a modified execution expprf0,A(1λ), where all queries x ∈ X are answered with
a uniformly sampled function f ∈ {f | f : X 7→ Y}.

• H2: This is a modified execution ̂
expprf0,A(1λ), where non-challenge queries x ∈ X are

answered by real PRF evaluations, i.e. y ← prf.Eval(K̂, x).

Claim II;4.0.1. maxA(Adv(A,H0,1(1λ))) < maxB(Adv(B, prf-lr(1λ)))

Proof. Note thatH0 andH1 are distributed exactly as in the two experiments that B witnesses in
expprf-lrc,B (1λ) for c ∈ {0, 1}. Therefore all queries made byA can be answered using the oracle
that B has access to. This simulates the view ofHc forA perfectly, and thus B can simply output
cB = bA and succeed with the same advantage.

Claim II;4.0.2. maxA(Adv(A,H1,2(1λ))) < maxB(Adv(B, prf-lr(1λ)))

Proof. B samples a function f ∈ {f | f : X 7→ Y} uniformly. All input queries that are non-
challenge queries x ∈ X are answered by sending x to their oracle and returning the output y
back toA. For the challenge input query x†, B computes y† ← f(x†) and returns y† toA.

57



II Cryptographic preliminaries

Then when c = 1 this is equivalent to H1 since all queries are answered by a uniform function.
When c = 0, this is equivalent to H2, since all non-challenge queries are answered by real PRF
evaluations, and the challenge is answered by a uniform function. Therefore, B outputs cB =

1− bA and succeeds with the same advantage asA.

Notice that the two executions ̂
expprf0,A(1λ) and expprf1,A(1λ) are equivalent in H2 and thus the

advantage of distinguishing the experiments is 0. By the fact that the underlying prf is pseudoran-
dom, then Claims II;4.0.1 and II;4.0.2 show that

max
A

(Adv(A,H0,1(1λ))) < negl(λ) and max
A

(Adv(A,H1,2(1λ))) < negl(λ).

Therefore, we can bound maxA(Adv(A, prf(1λ))) by negl(λ)′ = 2negl(λ), which is also neg-
ligible, and the proof is complete.

II;4.3 The random oracle model and hash functions

Cryptographic hash functions are a key building block inmany cryptographic constructions. The
formulation given in Definition II;4.3 is taken from [201].

Definition II;4.3 [Cryptographic hash function]

LetH be a function family consisting of those functions {H |H : {0, 1}`in 7→ {0, 1}`out}.
We say thatH is a collision-resistant hash family, if for any functionH←$H it is given that:
(1) `out ≤ `in, i.e. the function is compressing; (2) for any PPT algorithmA:

Pr[H(x1) = H(x2)|x1,x2←A(H) ] < negl(λ).

Wemay refer to a hash function sampled from such a family as a cryptographic hash function.

Remark II;4.1. While cryptographic hash functions typically also satisfy guarantees such as first and

second pre-image resistance, we do not need these requirements for our analysis. As such, we will

only consider hash functions that satisfy collision-resistance. Ultimately, collision-resistance is the

hardest requirement to satisfy, and is usually seen as the barometer of a good hash function in the

real-world [282].

Random oracle model

The seminal work of Bellare and Rogaway [35] showed that replacing specific instantiations of
hash functions with the random oracle model (ROM) allowed formuchmore expressive proofs of
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security. The ROM replaces all hash function evaluations with calls to an oracle that implements
a random function. While cryptographic hash functions cannot generically instantiate random
oracles, the paradigm allows for much simpler and intuitive security guarantees.

Consider a security game with a challenger and an adversary, and consider a scheme with some
specific instantiation of a functionH . In the ROM, the oracle has a table and every time an input
is submitted it checks the table and returns the output assigned to each input. If the query’s input
is not already present in the table, then the oracle samples a new random value and returns it;
before adding the input/output pair to the table.

NoPPT function can instantiate a randomfunction efficiently. Therefore, there is a clear disparity
between the model and the real instantiation of a construction. However the paradigm facilitates
the writing of security proofs in the ROM. The actual construction is then instantiated using a
real function (such as a hash function).

Programmability. There are a number of extra properties that we can consider in the ROM.
For this work, we must consider the notion of programmability. During a security proof, we can
consider that the random oracle in an experiment is being answered by the challenger directly.
Then, the challenger can choose to ‘program’ the random oracle, s.t. for a specific choice of input
x, the random oracle always outputs y on x. Providing that y is drawn uniformly from the same
domain, then this should go undetected by the adversary.

Extractability. The extractability property allows the challenger to extract the queries made
by the adversary to the random oracle. This property intuitively follows in the sameway as above,
by allowing the challenger to answer random oracle queries directly. This models the fact that the
adversary cannot learn the value of the random oracle on some input xwithout explicitly making
a query.

Strongly universal hash families

Strongly universal hash families are a sub-class of hash families. They are strictly weaker than
random oracles in that they can be instantiated from standard techniques [283].
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expowfA (1λ, 1r)

1 : for i ∈ [r] :

2 : xi ← {0, 1}λ;

3 : yi ← f(xi);

4 : x† ← A(1λ, {yi}i∈[r]);

5 : if x† ∈ {xi}i∈[r] :

6 : return 1;

7 : else :

8 : return 0;

Figure II;9: Computational experiment for attempting to invert a one-way function f . Commonly, we
choose r = 1.

Definition II;4.4 [Strongly universal hash families]

LetX = {0, 1}`, andY = [m] be an interval of lengthm. We say thatH = {h |h : X 7→
Y} is a strongly universal hash family, if it satisfies:

Pr

[
(y1 ← h(x1)) ∧ (y2 ← h(x2))

∣∣∣∣ x1,x2∈X ; x1 6=x2,
y1,y2∈Y,
h←$H

]
< 1/m2.

This property is sometimes also known as pairwise independence.

Corollary II;4.1 [Uniformity]

LetH be a strongly universal hash family. ThenH satisfies the following:

Pr
[
y ← h(x)

∣∣ x∈X ; y∈Y;
h←$H

]
< 1/m.

Proof. The corollary follows immediately from the statement of Definition II;4.4.

II;4.4 One-way functions

One-way functions represent one of themost fundamental primitives in cryptographic literature.
Such a function allows efficient computation, but is provably difficult to invert. By inversion we
mean that, given an output of the function, then recover the pre-image used to compute it.
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Definition II;4.5 [One-way functions]

Let λ be the security parameter. Let fλ ∈ F = {fλ|fλ : {0, 1}λ 7→ {0, 1}λ} be some
function, and let expowfA (1λ, 1r)be the computational experiment defined in Figure II;9 for
some r = poly(λ). We say thatF is a (strong) one-way function (OWF) family if it satisfies
the conditions:

• fλ is efficiently computable;

• the following inequality:

max
A

(Adv(A, owf(1λ))) < negl(λ),

holds, whereA is any PPT algorithm.

II;4.5 Symmetric-key encryption

Symmetric-key encryption provides two parties, in knowledge of some common secret key sk, to
communicate without revealing the content of their messages. That is, messages are converted
into a garbled representation than can only be inverted using knowledge of sk.7 We use seman-

tic security (also known as IND-CPA security) to elucidate the security guarantee, requiring that
an eavesdropper on the communication channel cannot distinguish between encryptions of two
plaintexts.

Definition II;4.6 [Symmetric-key encryption scheme]

Let ske = (Setup,Enc,Dec) be a tuple of algorithms. We let: K denote the key space;
X denote the plaintext space; Y denote the ciphertext space. Define the algorithms in the
following way:

• sk← ske.Setup(1λ): On input the security parameter λ; outputs sk ∈ K.

• c← ske.Enc(sk,m): On input sk ∈ K, andm ∈ X ; outputs c ∈ Y .

• m← ske.Dec(sk, c): On input sk ∈ K, and c ∈ Y ; outputsm ∈ X .

7These differ fromOWFs since there is a defined way to invert.
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Definition II;4.7 [Correctness]

We say that ske is correct if:

Pr
[
m← ske.Dec(sk, c)

∣∣∣sk←$ ske.Setup(1λ)
c←ske.Enc(sk,m)

]
> 1− negl(λ),

and perfectly correct if the probability is equal to 1.

The security requirement for symmetric-key encryption is very similar to the case of a public-key
encryption scheme (that we give later in Definition II;5.1). We use public-key encryption more
readily throughout this thesis, therefore we defer the actual experiments that expose the security
requirement until later. We will lay out the slight differences in the security models later.

Definition II;4.8 [Security]

Let expindcpab,A (1λ) be the pair of experiments defined in Figure II;11, for b ∈ {0, 1}. We say
that ske satisfies semantic security, or IND-CPA security, if:

max
A

(Adv(A, indcpa(1λ, ske))) < negl(λ)

holds, whereA is any PPT algorithm.

II;4.6 Message authentication codes

Message authentication codes are typically used to enshrine the integrity of data in the symmetric
setting. In addition, they are often used in authentication scenarios.

62



II;4 Symmetric primitives

Definition II;4.9 [MAC]

Letmac = (Setup,Tag,Verify) be a tuple of algorithms, and let λ be the security param-
eter. Amessage authentication code (or MAC) scheme is defined in the following way.

• K←$mac.Setup(1λ): On input the security parameter; outputs a keyK ∈ K.

• τ ← mac.Tag(K,x): On inputK ∈ K and x ∈ X ; outputs a tag τ ∈ Y .

• b ← mac.Verify(K,x, τ): On inputK ∈ K, an input x ∈ X and a tag τ ∈ Y ;
outputs a bit b ∈ {0, 1}.

We refer to: mac.Setup : 1λ 7→ K as setup; mac.Tag : K × X 7→ Y as tagging; and
mac.Verify : K×X ×Y 7→ {0, 1} as verification. We refer to:K as the key space,X as in
the input space andY as the tag space.

Definition II;4.10 [Correctness]

Letmac be a MAC scheme. We say thatmac is correct, if it satisfies the following.

Pr
[
1← mac.Verify(K,x, τ)

∣∣∣K ←$mac.Setup(1λ),
τ←mac.Tag(K,x∈X )

]
< negl(λ)

Definition II;4.11 [Security]

Letmacbe aMACscheme, let expmac
A (1λ)be the computational experiment defined in Fig-

ure II;10. We say that aMAC scheme is secure against existential forgeries (under adaptively-
chosen messages) if

max
A

(Adv(A,mac(1λ))) < negl(λ)

holds, whereA is any PPT algorithm.

The formalisation for the security ofMAC schemes is taken from [201, Definition 4.2]. Note that
we actually use a stronger definition, where the pair (x†, τ †) is included inϕ, rather than just x†.

The hmac algorithm. A popular example of a MAC algorithm is the hmac algorithm, in-
troduced by [33]. The algorithm is standardised by the Federal Information Processing Stan-
dards Publication in FIPS PUB 198-1 [140]. It is also written in the form of an IETF RFC (RFC
2104) [216].
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expmac
A (1λ)

1 : ϕ← ∅;
2 : K ←$mac.Setup(1λ);

3 : (x†, τ †)← AOX ,Y(mac.Tag(K,·),ϕ)(1λ);

4 : if ((x†, τ †) /∈ ϕ) ∧ (1← mac.Verify(K,x†, τ †)) :

5 : return 1;

6 : else :

7 : return 0;

Figure II;10: Existential forgery computational experiments for MAC schemes. Note that the input mes-
sages are chosen adaptively by the adversary. Wemodify the setϕ from the original definition
to also include the output to the query x.

This algorithm is very practical to run, requiring only a few hash function evaluations per output.
Moreover, it enjoys additional security properties that, in the ROM, allow us to show that hmac

is also a viable PRF. As a result, it is common to use hmac with an appropriate choice of hash
function, such as SHA-256, as a PRF in practical cryptographic implementations. In Chapter V,
we use an implementation of hmac as an atomic PRF as part of an experimental analysis.

Construction II;4.1 [hmac]

LetH : {0, 1}` 7→ {0, 1}m be a hash function, and letK = {0, 1}λ, X = {0, 1}` and
Y = {0, 1}m. Additionally, let opad be known as the outer padding, and ipad be known
as the inner padding.
Lethmacbe the construction that implements the algorithms ofMAC in the followingway.

• K←$ hmac.Setup(1λ): Outputs a uniform choice of a keyK←$ {0, 1}λ.

• τ ← hmac.Tag(K,m): Output

τ = H((K ⊕ opad)‖H((K ⊕ ipad)‖m)).

• b← hmac.Verify(K,m, τ): Compute

τ ′ = H((K ⊕ opad)‖H((K ⊕ ipad)‖m))

and output b← (τ
?
= τ ′).

In Construction II;4.1 the outer and inner padding values are deliberately left open to interpre-
tation. In the hmac standard they are set as opad = 0x5c . . . 5c and ipad = 0x36 . . . 36, i.e.
hex-encoded strings of equal length to the block-size of the hash functionH . The block size ofH
refers to the maximum number of input bits processed by the hash function at once. Moreover,
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sometimes it is necessary to replaceK in hmac.Tag and hmac.Verify withK ′, whereK ′ is an
appropriately padded version ofK . The padding procedure is important to maintain security in
practical scenarios.

That hmac is a secure MAC algorithm is shown in [201, Construction 5.7]. That hmac is a PRF
in the ROM is evident from the fact thatH will be a random function in this model.8

II;5 Asymmetric primitives

We secondly consider cryptographic primitives which are deemed to be asymmetric. That is, algo-
rithms are defined wrt a key pair made up of a public component and a secret component. Some
operations canbe carried out using knowledge of only the public component of the key. However,
at least one algorithm requires the secret component as input for security to hold.

II;5.1 Public-key encryption

A public-key encryption (PKE) scheme allows entities to transform messages into some garbled
representation that is plausibly difficult to invert. In fact, it is hard to distinguish the representa-
tions of two different encrypted messages. The scheme includes some secret parameters that are
only known to one user who can then invert the transformation (this is the difference wrt one-
way functions). The public aspect of the scheme allows any entity with access to a set of public
parameters to carry out the transformation, without being able to invert.

8Length-extension properties of hmac mean that this is not immediately obvious, but the outer hash function
evaluation ensures that this is not an issue.
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Definition II;5.1 [Public-key encryption scheme]

Let pke = (KeyGen,Enc,Dec) be a tuple of algorithms, and let λ be the security parame-
ter. A public-key encryption (PKE) scheme is defined in the following way.

• (pk, sk) ← pke.KeyGen(1λ): On input the security parameter; outputs a key pair
(pk, sk) ∈ Kpk ×Ksk. Here, pk is the public key, and sk is the secret key.

• c← pke.Enc(pk,m): Let pk ∈ Kpk,m ∈ X ; outputs a ciphertext c ∈ Y , or⊥.

• m← pke.Dec(sk, c): Let sk ∈ Ksk, c ∈ Y ; outputs eitherm ∈ X , or⊥.

We refer to: pke.KeyGen : 1λ 7→ Kpk×Ksk(∪{⊥}2) as key generation; pke.Enc : Kpk×
X 7→ Y ∪ {⊥} as encryption; pke.Dec : Ksk ×Y 7→ X ∪ {⊥} as decryption. We refer to:
X as the plaintext space; Y as the ciphertext space; Kpk,Ksk as the public/secret key space,
respectively.

We consider all pke schemes to be probabilistic, meaning that the pke.Enc algorithm also implic-
itly takes random coins as input. These random coins essentially distribute the ciphertext ran-
domly in the codomain of all encryptions of the plaintext value x, we denote this codomain by
Yx ⊂ Y . We may sometimes write pke.Enc(pk, x; r) if we want to make the choice of random
coins explicit in the running of the encryption algorithm.

Definition II;5.2 [Correctness of pke ]

Let pke be a PKE scheme. We say that pke is correct, if it satisfies the following

Pr
[
pke.Dec(sk, c) 6= m

∣∣∣ (pk,sk)←pke.KeyGen(1λ);
c←pke.Enc(pk,m∈X )

]
< negl(λ).

Definition II;5.3 [IND-CPA security]

Let pke be a PKE scheme, let expindcpab,A (1λ) be the experiment defined in Figure II;11. We
say that pke is semantically secure, or that it satisfies IND-CPA security, if

max
A

(Adv(A, indcpa(1λ, pke))) < negl(λ)

holds, whereA is any PPT algorithm.

Remark II;5.1. The adversary does not need oracle access to encryption as it possesses the real public
key. In the symmetric case, we give the adversary oracle access to ske.Enc under the challenge key.
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expindcpab,A (1λ)

1 : (pk, sk)←$ pke.KeyGen(1λ);

2 : m0,m1 ← A(1λ, pk);

3 : c← pke.Enc(pk,mb);

4 : bA ← A(1λ, pk, c);

5 : return bA;

Figure II;11: IND-CPA security model.

We also define IND-CPA security wrt allowing the adversary to specify multiple challenge mes-
sages to be encrypted. That is, we allow the adversary to specify a list of plaintexts pairs of length
ρ = poly(λ) to be encrypted. The challenger samples b←$ {0, 1} and encrypts either the left
message in each pair if b = 0, or the right message if b = 1.

Definition II;5.4 [ρ-IND-CPA security]

Let pke be a PKE scheme, let expρ-indcpab,A (1λ) be the experiment defined in Figure II;12. We
say that pke satisfies ρ-IND-CPA security, if

max
A

(Adv(A, ρ-indcpa(1λ, pke))) < negl(λ)

holds, whereA is any PPT algorithm.

Lemma II;5.1 shows that ρ-IND-CPA security is implied by IND-CPA security if the encryp-
tion scheme is stateless. By stateless, we mean that each invocation is independent of all previous
invocations. A proof of this lemmawas also given in [201, Theorem 11.6] and thus we do not give
an explicit proof in this thesis.

expρ-indcpab,A (1λ)

1 : (pk, sk)←$ pke.KeyGen(1λ);

2 : for i ∈ [ρ] :

3 : (mi
0,m

i
1)← A(1λ, pk);

4 : ci ← pke.Enc(pk,mi
b);

5 : bA ← A(1λ, pk, {ci}i∈[ρ]);

6 : return bA;

Figure II;12: ρ-IND-CPA security model.
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Lemma II;5.1 [IND-CPA =⇒ ρ-IND-CPA [201]]

Let pke be a PKE scheme (Definition II;5.1) satisfying IND-CPA security (Defini-
tion II;5.3) and let pke.Enc be a stateless algorithm. Then pke satisfies ρ-IND-CPA security
for ρ = poly(λ).

Additional notation.Wemay sometimes abuse notation and write

{cj}j∈[`] ← pke.Enc(pk, {mj}j∈[`])

to indicate that each message mj is encrypted individually into the ciphertext cj ; and then re-
turned as the ordered set {cj}j∈[`].9

El Gamal encryption scheme

We give an example of a PKE scheme satisfying IND-CPA security, known as El Gamal. This
scheme was introduced in [134].

9When using this notation, we will always assume that sets have an ordering depending on the order on which
elements are added in. This is similar to the notation used by vectors, but we do not use vectors explicitly to avoid
confusion with mathematical vectors that come in later sections.
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expomd
A (1λ,m)

1 : (pk, sk)← elga.Setup(1λ);

2 : {xi}i∈[m+1]←$G;

3 : {(Ci, Di)← elga.Enc(pk, xi)}i∈[m+1];

4 : {x′i}i∈[m+1] ← AOG2 (elga.Dec(sk,·);[m])(1λ, pk, {Ci, Di}i∈[m+1]);

5 : for i ∈ [m+ 1] :

6 : if ¬(x′i
?
= xi) :

7 : return 0;

8 : return 1;

Figure II;13: Decisional experiments for characterising the one-more-decryption security of El Gamal.

Construction II;5.1 [El Gamal]

LetG = G(λ) be a cyclic group of prime order p(λ), where bitlength(p) = poly(λ), and
let g ∈ G be a generator. Let elga denote the El Gamal PKE scheme with plaintext and
ciphertext spaceG, instantiating the required algorithms in the manner shown below.

• elga.Setup(1λ, p): Sample x ∈ Zp uniformly and compute h = gx. Output pk =

(G, p, g, h) and sk = (x).

• elga.Enc(pk,m ∈ Zp):

– Sample y ∈ Zp uniformly and compute c1 = gy , and s = hy .

– Calculate c2 = m · s.

– Return c = (c1, c2) as the ciphertext.

• elga.Dec(sk, c) :

– Parse c as (c1, c2), and calculate s = cx1

– Computem′ ← c2 · s−1 ∈ G.

– Returnm′.

The fact that elga is correct follows trivially from the fact that cx1 = (gy)x = (gx)y = hy = s.
The fact that it is IND-CPA secure follows from the DDH assumption. We now show that elga
satisfies an extra property known as one-more-decryption security.
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Lemma II;5.2 [One-more-decryption security [274]]

The inequality:
max
A

(Adv(A, omd(1λ, elga))) < negl(λ)

is satisfied for all PPT algorithmsA running in the generic group model.

In actual fact, Schnorr and Jakobsson [274] prove that no PPT adversary exists in the generic
groupmodel that has a non-negligible advantage of breaking a strictly weaker version of Assump-
tion II;5.2.10 An adversary who can computationally succeed in the experiments in Figure II;13,
can easily win the weaker game as well. Thus, Lemma II;5.2 holds in the generic group model.
The specification of the generic group model is beyond the scope of this thesis.

II;5.2 Homomorphic encryption

A somewhat homomorphic encryption (SHE) scheme, she, is a standard PKE scheme augmented
with two new algorithms (she.Add, she.Mult). We define such a scheme formally in Defini-
tion II;5.5. For the purpose of this section and when we interact with SHE in the future, we
will always assume that both the underling plaintext spaceX and the ciphertext spaceY are rings.
Therefore, there are well-defined operations+, · that act over the ring elements.

A public-key somewhat homomorphic encryption scheme is constructed wrt to a levelled structure.
That is, the setup algorithm takes an additional parameter 1` that defines the number of homo-
morphicmultiplications that can be computed over the ciphertext. The levels also designate some
extra restrictions on the types of ciphertexts that can be input into the homomorphic algorithms.
We formalise the algorithms below, using the notation c[ι] for an encrypted ciphertext on ‘level’ ι
(i.e. computed via ι invocations of she.Mult). This levelled structure is reflected in the ciphertext
space, where Y[ι] is the space of all ciphertexts on ‘level’ ι. Finally, Y = Y[1] ∪ . . . ∪ Y[`] is the
collection of all levelled ciphertext spaces.

10In their version, the adversary is given d > m ciphertexts, and the correct plaintexts in a permuted order, and
must simply matchm + 1 plaintexts to their corresponding ciphertexts using at mostm queries to the decryption
oracle.
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Definition II;5.5 [Somewhat homomorphic encryption (SHE)]

Let λ be the security parameter and let she = (KeyGen,Enc,Add,Mult,Dec) be a PKE
scheme, augmented with the algorithmsAdd,Mult.

• (pk, sk) ← she.KeyGen(1λ, 1`): On input 1λ and 1` for some ` = poly(λ); out-
puts a key pair (pk, sk) ∈ Kpk ×Ksk.

• c[ι]← she.Enc(pk,m, ι): Let pk ∈ Kpk,m ∈ X ; if ι > ` outputs⊥, else outputs
a ciphertext c[ι] ∈ Y[ι].

• c+[ι1]← she.Add(pk, c1[ι1], c2[ι2]): Letpk ∈ Kpk, cj [ιj ] ∈ Y[ιj ] for j ∈ {1, 2};
if ¬(ι1

?
= ι2) then it outputs⊥, else it outputs c+[ι1] ∈ Y[ι1].

• c×[ι1 + ι2] ← she.Mult(pk, c1[ι1], c2[ι2]): Let pk ∈ Kpk, cj [ιj ] ∈ Y[ιj ]; if
ι1 + ι2 > ` then it outputs⊥, else it outputs c×[ι1 + ι2] ∈ Y[ι1 + ι2].

• m← she.Dec(sk, c[ι]): Let sk ∈ Ksk, c[ι] ∈ Y[ι]; if ι > ` outputs⊥; else outputs
m ∈ X .

We refer to: she.Add : Kpk × Y × Y 7→ Y ∪ {⊥} as homomorphic addition; she.Mult :

Kpk × Y × Y 7→ Y ∪ {⊥} as homomorphic multiplication.

Correctness is the same as that of a PKE scheme, though it is augmented to include requirements
on the homomorphic operations algorithms. Recall that we assume that the plaintext spaceX is
a ring and thus there are natural operations+, · that can be performed over ring elements.

Definition II;5.6 [Correctness of SHE]

Let (pk, sk) ← she.KeyGen(1λ); cj [ιj ] ← she.Enc(pk,mj , ιj) for j ∈ {1, 2}, ιj ∈ [`]

and mj ∈ X . We say that she is correct if it satisfies the standard definition of correct-
ness given in Definition II;5.2 for PKE schemes with the extra requirement that ιj ≤ ` for
decryption to function correctly. It must also satisfy the following requirements.

Pr
[
she.Dec(sk, c+[ι]) 6= m1 +m2

∣∣∣ c+[ι]←she.Add(pk,c1[ι1],c2[ι2]),
ι=ι1=ι2≤`

]
< negl(λ) (II;2)

Pr
[
she.Dec(sk, c×[ι]) 6= m1 ·m2

∣∣∣ c×←she.Mult(pk,c1[ι1],c2[ι2]),
ι1+ι2=ι≤`

]
< negl(λ) (II;3)

We do not extend the correctness clauses to include the case where the ‘level’ of the output cipher-
text ι is greater than `. The reason that somewhat homomorphic encryption schemes demonstrate
such behaviour is because ciphertexts are noisy. If this noise rises above a certain threshold then
the correctness of decryption is lost. Concretely, the parameters of an SHE scheme are chosen
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to allow ` she.Mult operations to be carried out on the ciphertexts. Note we also permit some
negligible chance of failure in decryption when the levelled structure is abided by. If there was no
probability of decryption errors, then these probabilities would be equal to zero instead.

Anadditively homomorphic encryption (AHE) scheme is ahomomorphic encryption schemewhere
only she.Add is defined, and thus only satisfies correctness for Equation (II;2). A multiplica-

tively homomorphic encryption (MHE) scheme is a homomorphic encryption scheme where only
she.Mult is defined, thus only satisfying correctness for Equation (II;3). We denote such schemes
by ahe andmhe instead, respectively.

We define semantic security of she in exactly the same way as a standard public-key cryptosystem
(Definition II;5.3).

Remark II;5.2. If we omit mention of the levelled structure of the scheme, then we assume that the

scheme is noiseless. This means that all ciphertexts live in the same space Y .

Scalar multiplication/exponentiation. It should be noted that we can define a scalar
multiplication algorithm, ScMult(·), for any ahe scheme. In particular, for r ∈ X , then notice
that

cr ← ahe.Add(pk, c, ahe.Add(. . . ahe.Add(pk, c, c)))︸ ︷︷ ︸
(r−1) times

= ahe.ScMult(pk, c, r)

for c← ahe.Enc(pk,m), satisfies ahe.Dec(sk, cr) ∈ {m · r,⊥} by Definition II;5.6.

The method that we have shown here is necessarily naive and it is possible to improve on the ef-
ficiency of this operation by utilising the double-and-add method instead. This reduces the com-
plexity of the scalar multiplication fromO(|X |) toO(log(|X |)). Assuming perfect correctness,
we can successfully induce scalar multiplication for any ahe scheme, using only additive homo-
morphisms. An equivalent notion is true for amhe scheme, allowing scalar exponentiation; we
denote this algorithm by ScExp.

Ciphertext rerandomisation

An important property that we require of ciphertexts output by SHE schemes is that they are
rerandomisable. Informally, for any probabilistic SHE scheme, the ciphertext spaceY is stratified
into rangesYx[ι] for eachx ∈ X and ι ∈ [`]. These ranges essentially correspond to the codomain
of she.Enc(pk, x, ι; r) for all the possible choices of randomness r ∈ {0, 1}∗. Here the notation
Yx[ι] distinguishes the codomain from Yx[ι′] where ι′ 6= ι. Therefore, we only apply ciphertext
rerandomisation on each disparate level of the SHE scheme.
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expcrand0,A (1λ, 1`, ι)

1 : x←$A(λ, 1`, pk, sk);

2 : bA ← AOY(she.CRand(pk,·))(1λ, 1`, pk, sk);

3 : return bA;

expcrand1,A (1λ, 1`, ι)

1 : x←$A(λ, 1`, pk, sk);

2 : bA ← AOY(fx(·))(1λ, 1`, pk, sk);

3 : return bA;

Figure II;14: Experiments for establishingwhether an SHE scheme she satisfies the crand security property
for ciphertext rerandomisation. The function fx : Kpk × Yx[ι] 7→ Yx(ι) is defined as
fx(pk, c[ι]) = she.Enc(pk, x)

For any given ciphertext c ∈ Yx[ι] s.t. x← she.Dec(sk, c), we consider rerandomising c to cor-
respond to choosing a new value r̃ ∈ {0, 1}∗ and producing c̃ ∈ Yx[ι] s.t. x← she.Dec(sk, c̃)

holds. This rerandomisation property is broadly used to destroy the dependence of a ciphertext
on the operations that have been computed over it. In the following wewrite c←$Yx[ι] as short-
hand for writing c← she.Enc(pk, x, ι; r) for a randomly sampled r.

We define the required functionality as an additional algorithm she.CRerand : Kpk × Y 7→ Y
for an SHE scheme she, with ciphertext spaceY . Formally the algorithm works as follows.

• she.CRand(pk, c[ι]): Takes a public key pk, a ciphertext c[ι] ∈ Yx[ι] (where ι ≤ `where
` defines the upper bound on levels for she). Outputs a new ciphertext c′[ι] ∈ Yx[ι].

Correctness of she.CRerand dictates that x′ ← she.Dec(sk, c′[ι]) satisfies x′ ?
= x, where x ←

she.Dec(sk, c[ι]). We denote by crand the security property that she.CRerand has to satisfy. We
give experiments expcrandb,A (1λ, 1`, ι) in Figure II;14 (for b ∈ {0, 1}) that require a PPT adversary
to distinguish between ciphertexts that are output by rerandomisation, and ciphertexts that are
new encryptions of x ∈ X .

We formalise the security requirement for ciphertext rerandomisation in Definition II;5.7. In the
experiments, the adversary samples a valid key pair (pk, sk) and gives pk to the challenger. The
adversary must also specify a plaintext value x ∈ X andmakes ciphertext queries to the oracleO ,
where each ciphertext must be an encryption of x. While this formulation of the game appears to
be contrived, we could get around it by allowing the challenger to have access to the secret key sk.
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Definition II;5.7 [Security]

Let she be an SHE scheme, and for a message x ∈ X , let Yx[ι] define the codomain of the
function c← she.Enc(pk,m, ι) for (pk, sk)←$ she.KeyGen(1λ) and all possible choices
of randomness. Then she.CRerand is a ciphertext rerandomisation algorithm, if:

max
A

(Adv(A, crand(1λ, she))) < negl(λ)

is satisfied for all PPT algorithmsA.

Now for any noiseless11 SHE scheme she, then we show that she.CRerand is a ciphertext reran-
domisation algorithm if all ciphertexts encrypting x ∈ X (at level ι) are distributed uniformly in
Yx[ι].

Lemma II;5.3 [Uniform codomain distributions]

Let c = c[ι] ← she.Enc(pk, x, ι) for (pk, sk)←$ she.KeyGen(1λ), any x ∈ X and any
ι ∈ [`]. Suppose also that all fresh encryptions of any x ∈ X are uniformly distributed in
the subringYx[ι] ⊂ Y . Then c′ ← she.Add(pk, c, c0[ι)] satisfies:

(x← she.Dec(sk, c′)) ∧ (c′ ≈c c̃←$Y0[ι]);

where c0[ι] is a valid encryption of 0 in Y0[ι]. Thus, defining she.CRand(pk, c) =

she.Add(pk, c, she.Enc(pk, 0, ι)) satisfies the ciphertext randomisation property in Def-
inition II;5.7

Proof. The proof is trivial, since if c0 is uniformly distributed in the ring Y0[ι], then c′ ∈ Yx[ι]

must inherit the same distribution (providing that she.Add is implemented as ring operations as
we assume). Moreover, the value of the plaintext associatedwith c0 means that the homomorphic
operation will not change the value of the encrypted plaintext. The result is that the oracles in
expcrandb,A (1λ) output computationally indistinguishable distributions and so

max
A

(Adv(A, crand(1λ, she))) < negl(λ)

as necessary.

Remark II;5.3. Note that the experiments expcrandb,A (1λ) only consider ciphertexts that successfully

decrypt. We do not make security arguments about the ciphertext distribution where correctness

errors can be introduced by the adversary. This rules out instantiating ciphertext rerandomisation

11By noiseless we mean that ` = 1.
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using the multiplicative operation (which is theoretically possible providing that the level bound is

not breached). This prevents the adversary from being able to instigate correctness errors themselves.

Plaintext rerandomisation

Another property that we require is that we can rerandomise the plaintext of an encryption. This
clearly results in a changed plaintext value and so we do not enforce the same correctness require-
ment as in the ciphertext rerandomisation case. The aim is to allow a public-key holder to ‘wash’
ciphertexts s.t. an adversarial secret key holder cannot distinguish the ciphertext from a fresh en-
cryption of a random value.

We define plaintext rerandomisation as an additional algorithm she.PRerand : Kpk × Y 7→ Y
for an SHE scheme she with ciphertext space Y . For this algorithm, we explicitly assumes that
X = Zq is the ring of integers for some integer q > 0 (so that scalar multiplication is intuitively
defined). Formally the algorithm works as follows.

• she.PRand(pk, c[ι], r): Takes a public key pk, a ciphertext c[ι] (where ι < ` where `
defines the upper bound on levels for she) and a random scalar r ∈ Z as input. Outputs a
new ciphertext c′[ι] ∈ Y[ι].

There is no explicit correctness requirement on the output she.PRerand. For security, we use
prand to denote the property that she.PRerand has to satisfy. We give experiments in Figure II;15
that require a PPT adversary to distinguish between ciphertexts that are output by she.PRerand,
and ciphertexts that are simply generated as encryptions of random plaintexts. We formalise the
security requirement in Definition II;5.7.

We define the property formally in Definition II;5.8, in conjunction with the experiments in Fig-
ure II;15.

Definition II;5.8 [Plaintext rerandomisation]

We say that she.PRerand is a plaintext rerandomisation algorithm, if:

max
A

(Adv(A, prand(1λ, she))) < negl(λ)

is satisfied for all PPT algorithmsA.

We can instantiate she.PRerand by computing she.PRand(pk, c, ι) = she.ScMult(pk, c, r).

Rerandomisation for noisy SHE schemes. Almost all known SHE schemes (those that
are lattice-based) incorporate some sort of noise into the encryption. This noise grows by the
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expprand0,A (1λ, 1`)

1 : pk← A(1λ, 1`, pk, sk);

2 : c†[ι]← A(1λ, 1`, pk, sk);

3 : if ι > ` :

4 : return ⊥;

5 : r←$Z;

6 : c′[ι]← she.PRand(pk, c†[ι], r);

7 : bA ← A(1λ, 1`, pk, sk, c†[ι], c′[ι]);

8 : return bA;

expprand1,A (1λ, 1`)

1 : pk← A(1λ, 1`, pk, sk);

2 : c†[ι]← A(1λ, 1`, pk, sk);

3 : if ι > ` :

4 : return ⊥;

5 : r̃←$X ;

6 : c′[ι]← she.Enc(pk, r̃, ι);

7 : bA ← A(1λ, 1`, pk, sk, c†[ι], c′[ι]);

8 : return bA;

Figure II;15: Experiments for establishingwhether an SHE scheme she satisfies the crand security property
for plaintext rerandomisation. Note that the adversary has access to both pk and sk so it can
carry out arbitrary decryptions of its choosing.

homomorphic algorithms, but provided that it doesn’t grow too much then decryption should
compute correctly. However, this poses an interesting problem when performing rerandomisa-
tion because the adversary possesses the secret key. This means that the adversary can observe the
manipulated noise on decryption, which reveals the operations that have been performed on the
ciphertext and allows distinguishing the experiments in Figure II;14 or Figure II;15.

Indeed, a natural way of implementing she.PRerandwithout the additional computational com-
plexity of performing she.ScMult is to instead compute it in the following way:

• c′ ← she.PRand(pk, c[ιc], r): output she.Mult(pk, c, she.Enc(pk, r, [ιr])).

However, the ciphertext c′will nowbe on level ιc+ιr due to themultiplication algorithm and the
adversary with knowledge of sk can now distinguish the experiments in Figure II;15 by observing
the noise distributions in the two experiments.

To get around this we can eithermake amodification to the game itself, or to the SHE scheme. For
the game, the adversary could pro-actively compute she.Enc(pk, r, ιc+ιr) so that the ciphertexts
in both experiments have roughly the same noise-to-modulus ratio. Otherwise, we can utilise the
concept of bootstrapping in SHE literature. This concept is usually used to map SHE schemes to
fully homomorphic encryption (FHE) schemes. More specifically, it takes ciphertexts at level ι >
1 and outputs a new ciphertext encrypting the same value at level 1. The concept of bootstrapping
was first developed by Gentry [156] and has been further developed since [61, 62, 69, 105].

We do not formalise the bootstrapping process in this thesis as it is heavily involved and beyond
the scope of the contributions of our work. Instead we simply argue that we can satisfy the reran-
domisation notions by applying the bootstrapping algorithm to all rerandomised ciphertexts be-
fore they are sent to the adversary in the experiments. In short, when we consider SHE schemes
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going forward, we assume that they satisfy the security notions for both forms of rerandomisa-
tion. In terms of asymptotic efficiency, we consider the bootstrapping operation to be atomic,
and only dependent on the security parameter (i.e. independent of other parameters including
the size of the plaintext/ciphertext spaces).

Recall that we can instantiate ciphertext rerandomisation using an invocation of she.Add. Since
the level ι of the ciphertext does not change, we assume that bootstrapping is not necessary. This
is not strictly true in general, since computing enough homomorphic additions can also increase
the level of noise in actual SHE schemes. However, this can also be solved using a similar boot-
strapping procedure.

Existing SHE schemes

The literature of homomorphic encryption schemes is extensive. Firstly the original definition
of the RSA cryptosystem by Rivest et al. [268] is an example of a mhe scheme. Another well-
knownmhe scheme is theElGamal cryptosystem[134]. Examples ofahe schemes include thePail-
lier [251] and Benaloh [39] cryptosystems, we describe the Paillier scheme below. There are also
examples of cryptosystems that induce binary operations over plaintext, such as the Goldwasser-
Micali encryption scheme [166] and the learning with errors cryptosystems of [233, 264].

Somewhat homomorphic encryption was a highly sought-after paradigm for over three decades
after [268], until the seminal work of Gentry [156] using techniques from lattice-based cryptog-
raphy. Since then there have been a number of steady improvements, mostly using similar tech-
niques and relying on related lattice problems such asNTRU [186] and learningwith errors [233,
264]. Examples of such schemes, include [62, 69, 105, 128, 162], but there are also many more.

Finally, in attempts to bridge the gap between ahe/mhe and she, a number of works managed to
realise a hybrid model of functionality; where a polynomial number of homomorphic additions,
and one homomorphic multiplication, are permitted. Examples of such scheme are the BGN
cryptosystem [51] and the cryptosystem of Gentry et al. [159].12

Paillier encryption scheme

Paillier’s encryption scheme was first introduced in [251], with IND-CPA security relying on the
hardness of DCR (Assumption II;3.3). The Paillier scheme is additively homomorphic, and is
noiseless (i.e. ` = 1). That is, we can compute unbounded numbers of additions over all cipher-

12The BGN cryptosystem [51] does not meet our requirements since the decryption algorithm cannot be com-
pleted in polynomial time. Concretely, the BGN cryptosystem requires solving the DL problem for exponents taken
from the plaintext space, thus decryption is linearly expensive in the size of the plaintext space.
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texts generated by ahe.Enc. For this reason we omit the level parameters from the algorithmic
inputs and outputs in the description of the construction below.

Construction II;5.2 [Paillier encryption scheme]

Let X = ZN where N = pq for large primes p, q where bitlength(p), bitlength(q) =

poly(λ). Let Y = ZN2 ,Kpk = Z × Z∗N2 ,Ksk = Z × ZN . Define ahe in the following
way.

• ahe.KeyGen(1λ): Let ν = LCM(p− 1, q − 1) i.e. ν is the Carmichael function of
N . Sample g ∈ Z∗N2 such that ∃ µ = (L(gν mod N2))−1 mod N whereL(x) =
x−1
N ; else output (⊥,⊥). Output (pk = (N, g), sk = (ν, µ)).

• ahe.Enc(pk,m ∈ X ): Let r←$Z∗N ; output c = gm · rN mod N2.

• ahe.Add(pk, c1 ∈ Y, c2 ∈ Y): Output c1 · c2 mod N2.

• ahe.Dec(sk, c ∈ Y): Outputm = L(cν mod N2) · µ mod N .

• ahe.CRand(pk, c ∈ Y): Compute the ciphertext c0 ← ahe.Enc(pk, 0) and output
ahe.Add(pk, c, c0).

• ahe.PRand(pk, c ∈ Y, r ∈ Z): Compute ahe.ScMult(pk, c, r).

Remark II;5.4. Note that, while the plaintext space is a ring, because all plaintexts live in ZN , the
ciphertext space is actually interpreted as a group, since we only permit additions over the ciphertexts.

Fortunately, this does not change the security analysis of the scheme and is merely a result of the

scheme only being additively homomorphic.

Lemma II;5.4 [Correctness]

Construction II;5.2 satisfies correctness wrt Definitions II;5.2 and II;5.6.

Proof. We refer the reader to [251] for the proof that correctness is satisfied, wrt Definition II;5.2.
Recall that we write ahe.Enc(pk,m; r) to denote that the randomness that is used in the algo-
rithm is made explicit. For Definition II;5.6, notice that:

ahe.Add(pk, c1 ∈ Y, c2 ∈ Y) = c1 · c2 mod N2

= gm1(r1)N · gm2(r2)N mod N2

= gm1+m2(r1r2)N mod N2

= ahe.Enc(pk,m1 +m2; r1r2)
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where cj ← ahe.Enc(pk,mj ; rj) for j ∈ {1, 2}. In the final line, we have a valid encryption of
the messagem1 +m2 with randomness r1r2. Hence correctness is satisfied.

The scheme is proven semantically secure under the assumed hardness of DCR.

Lemma II;5.5 [Security]

Construction II;5.2 is semantically secure under theDCR assumption (Assumption II;3.3).

Proof. Wedefer the reader to the original paper [251] for the security proof. The proof technique
is not important wrt the results in this thesis.

Ciphertext rerandomisation. Notice that c ← ahe.Enc(pk, 0) is uniformly distributed
in Y0 ⊂ ZN2 since ahe.Add is just a ring multiplication. Therefore computing ahe.Add over a
known ciphertext with some new encryption of zero results in a ciphertext encrypting the same
value but with new randomness (r1r2)N . This is uniformly distributed wrt the randomness rN1 .
As a result, we argue that Construction II;5.2 satisfies the requirements for ciphertext rerandomi-
sation via the result in Lemma II;5.3. recall that the Paillier scheme naturally gives secure ways of
achieving ciphertext rerandomisation because there is a complete lack of a levelling structure in the
encryption scheme. Therefore, all encryptions of x lie in the same ciphertext codomainYx ⊂ Y .

Plaintextrerandomisation. For a ciphertext c← ahe.Enc(pk, x), we can compute a scalar
multiplicationof theunderlyingplaintext using theahe.ScMult(pk, c, r) algorithmfor some r ∈
Z. This algorithmmakes underlying calls to the ahe.Add algorithmandusing thedouble-and-add
method for performing scalar multiplications. Notice that ahe.PRerand uses the ahe.ScMult

algorithm for implementing plaintext rerandomisation. On decryption the result is simply r · x.
Since this is the case for any encryption of x, then the Paillier scheme unconditionally satisfies the
plaintext rerandomisation of Definition II;5.8.

Parameter settings. Essentially, the security parameter in this scheme is determined by the
choice of bitlength(p), bitlength(q), when sampling the primes p and q. Clearly it is the case
that bitlength(N) = bitlength(p) + bitlength(q). The bit-security of the Paillier scheme is
decided by the length ofN directly, assuming that theDCR assumption is as hard as factoring for
the purposes of these choices. That is, forλ = 112 (i.e. equivalent 112 bits of security), wewould
roughly need bitlength(N) = 2048; using the recommendations of NIST [247]. Similarly, for
λ = 80, we could use bitlength(N) = 1024. A more detailed outlook on parameter choices for
the scheme is given in [200].
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II;5.3 Digital signature schemes

Digital signature schemes provide an asymmetric variant of the authentication functionality pro-
vided by MACs. We use Definition II;5.9 to define a simple digital signature scheme; we only re-
quire theproperty that the signature scheme is secure against existential forgeries under adaptively-
chosenmessages, as in Definition II;5.11.13 This is commonly known as EUF-CMA security [201,
Definition 12.2]. The correctness requirement is given in Definition II;5.10.

Definition II;5.9 [Signature scheme]

Let dss = (KeyGen, Sign,Verify) be a tuple of algorithms, and let λ be a security param-
eter. A digital signature scheme (DSS) is defined in the following way.

• (vk, sk)← dss.KeyGen(1λ): Outputs a key pair (vk, sk) ∈ Kvk ×Ksk.

• c← dss.Sign(sk,m): Let sk ∈ Ksk,m ∈ X ; outputs a signature ω ∈ Y , or⊥.

• b← dss.Verify(vk, (m,ω)): Let vk ∈ Kvk,m ∈ X , ω ∈ Y ; outputs b ∈ {0, 1}.

We refer to: dss.KeyGen : 1λ 7→ Kvk ×Ksk(∪{⊥}2) as key generation; dss.Sign : Ksk ×
X 7→ Y ∪ {⊥} as signing; dss.Verify : Kvk × X × Y 7→ {0, 1} as verification. We refer
to: X as themessage space; Y as the signature space;Kvk,Ksk as the verification/signing key
space, respectively.

Definition II;5.10 [Correctness]

Let dss be a digital signature scheme. We say that dss is correct, if it satisfies the following.

Pr
[
dss.Verify(vk, (m,ω)) 6= 1

∣∣∣ (vk,sk)←dss.KeyGen(1λ);
ω←dss.Sign(sk,m∈X )

]
< negl(λ)

We define the experiment in Figure II;16 and define the advantage ofA as Adv(A, expeufA (1λ)).
The formalisation of security that we use in Definition II;5.11 is taken from [201]. Like the defi-
nition of security for a MAC, we specify a stronger version of security thatϕ contains (m†, ω†)

(i.e. including the signature ω† as well). The weaker definition would only includem† inϕ.

13The adversary chooses the messages that are signed adaptively.
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expeufA (1λ)

1 : ϕ← ∅;
2 : (vk, sk)←$ dss.KeyGen(1λ);

3 : (m†, ω†)← AOX (dss.Sign(sk,·),ϕ)(1λ, vk);

4 : if ((m†, ω†) /∈ ϕ) ∧ (1← dss.Verify(vk,m†, ω†)) :

5 : return 1;

6 : else :

7 : return 0;

Figure II;16: EUF-CMA security model for a digital signature scheme, defined using the computational
experiment expeufA (1λ). We modify the setϕ so that it also holds the output that is returned
corresponding to a querym

Definition II;5.11 [Existential forgeries]

Let dss be a digital signature scheme, let expeufA (1λ) be the experiment defined in Fig-
ure II;16. We say that dss is secure against existential forgeries under adaptively-chosen mes-

sages, or that it satisfies EUF-CMA security, if

max
A

(Adv(A, euf(1λ, dss))) < negl(λ)

holds, whereA is any PPT algorithm.

II;6 Secure computation

In this work, we will be concerned with both interactive and non-interactive methods of compu-
tation. By interactive secure computation, we are referring to the strand of secure computation
better known as multi-party computation and introduced in [84, 165, 296]. Online protocols
are constructed for computing functionalities betweenmultiple parties. By non-interactive secure
computation, we refer to functionalities that can be evaluated in-person by an evaluator, after
some initial pre-computation. For example, as laid out in the case of program obfuscation [28].

Indeed, inChapter III, Chapter IV andChapterVI,wewill consider interactive protocols between
two participants for learning the outputs of certain functions. In Chapter V and Chapter VII we
will consider non-interactive functionalities.
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II;6.1 Interactive computation

An original goal of cryptography was to protect communications between two or more partici-
pants. The study of secure computation augments this goal with the objective of protecting the
computation between two or more participants. Notice that we can easily protect this computa-
tion if we allow for a trusted third party. This party is given all input data and simply computes
the required function and returns the relevant output to each party. Unfortunately, creating trust
relationships of these kinds between relative strangers can be difficult.

Interactive secure computation seeks to provide privacy-preserving methods of computing func-
tionalities betweenmultiple participants, without theneed for additional trust assumptions. That
is, only the parties that provide input to the functionality take part in the protocol. In this setting,
privacy-preserving means that the inputs of the participants are not revealed to the others. The
study of cryptographic constructions and protocols relies on the key tenet that it is advantageous
to remove as many trust requirements as is possible.14 While there may be some disagreements on
the potential advantage that is gained; we assume that removal of all third party computation is
favourable.

Before we go on to describe the security model for secure computation of this form, we introduce
the formal concept of a protocol.

Definition II;6.1 [Protocol]

Let {Pj}j∈[N ] be a set of participants, with respective inputsxj ∈ Xj . Let auxj be auxiliary
information knownbyPj . LetF : X1×. . .×XN 7→ Y1×. . .×YN be some functionality,
s.t. F (x1, . . . , xN ) = (y1, . . . , yN ).
Then a protocol for F is a set of algorithms denoted by ψF , such that each participant Pj
inputs xj and learns the view:

Viewj = (xj , µj ,msgsj , auxj),

where µj = yj , andmsgsj is the execution of the protocol witnessed by Pj

Remark II;6.1. We use the convention that each participant Pj may learn di�erent output infor-

mation from the associated ranges Yj .

We can now define the correctness and security requirements for such a protocol. These formal-
isations are used widely throughout secure computation literature (for example [226, 243]), but

14Or, in so far as reducing them to trust assumptions on underlying computational assumptions that appear to be
difficult.
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appeared firstly in [165, 296] after generalising similar formalisations of security by Goldreich et
al. [167] for interactive proof systems. A more holistic overview can be found in [107].

Definition II;6.2 [Correctness]

Let F : X1 × . . .×XN 7→ Y1 × . . .×YN be a functionality. LetψF be a protocol that,
on given inputs xj ∈ Xj provided by participants Pj , and returns Viewj → Pj , where
Viewj = (xj , µj ,msgsj , auxj). We say thatψF correctly computes F if:

Pr
[
yj = µj ∈ Viewj

∣∣{yj}j∈[N ] ← F (x1, . . . , xN )
]
> 1− negl(λ),

for all inputs xj ∈ Xj , where j ∈ [N ].

In the above definition, we implicitly assume thatψF is aware of the contents of each auxj .

Security models. To assess the security of a given protocolψF in computing the function F ,
we analyse the plausibility of constructing an adversarial algorithm that ‘corrupts’ one or more
participants and attempts to learn the inputs of any ‘non-corrupted’ participants. A corruption
refers to the event that an adversary receives the entire view of the corrupted participant, and can
possibly even choose their protocol inputs. There are differing security models give the adversary
varying levels of capabilities. The stronger the adversarial assumptions, the weaker the guarantees
thatψF satisfies. Adversarial restrictions can be categorised into the following:

• whether they can divert from the protocol specification;

• the number of allowed corruptions that they can make;

• whether the corruptions are made selectively or adaptively.

An intuitive security model assumes that security is analysed with respect to the ‘ideal function-
ality’ F . In a nutshell, the protocol is deemed to be secure if an adversary, that corrupts one or
more participants, learns as much in the execution ofψF as they would if the participants sent xj
to a trusted party TF . For clarity, TF computes {yj}j∈[N ] = F ({xj}j∈[N ]) and returns yj to
Pj . Formally, the view ofA in the real execution, is indistinguishable from the view in the ideal
setting. A ‘corruption’ in this context allows the adversary to learn the inputs of the corrupted
participants, and further messages that they receive (in other words, the view of that participant,
Viewj inDefinition II;6.2). Corruptions are either chosen ‘selectively’ (specified at the start of the
protocol) or ‘adaptively’ (during the protocol).

The model described above is actually the strongest security model possible, since a proof in this
model implies that any attack against the protocol implies an attack in the ideal setting. Thus, the
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adversary can attempt any arbitrary strategy during the execution of ψF — they do not have to
obey the protocol specification. In other words, the adversary ismalicious.

A weaker security model assumes that the adversary obeys the structure of the protocol, and at-
tempts to learn more by inspecting the view of the protocol that they witness. That is, the adver-
sary receives the views of all the participants that they have corrupted. If the adversary can learn
more about the uncorrupted input sets from their view, than is implied by the knowledge of their
inputs and outputs alone, then the protocol is deemed to be insecure.

Moreprecisely, if the real execution is indistinguishable froma simulation that uses only the inputs
and outputs ofA to simulate the view ofA, thenψF is secure. The adversary here is deemed to
be semi-honest. The adversary is ‘honest’ in the sense that the protocol execution is abided by and
‘dishonest’ in the sense that they still attempt to subvert the security of other participants. The
semi-honest security model is regarded as a plausible adversarial model if the protocol software is
attested regularly, or if it is hosted on externally trusted hardware, for example.

In the following definitions, letF : X1× . . .×XN 7→ Y1× . . .×YN be a functionality. In addi-
tion, letψF be a protocol that computes {yj}j∈[N ] = F (x1, . . . , xN ) on given inputs xj ∈ Xj
provided by participants Pj ; and returns Viewj → Pj , where Viewj = (xj , yj ,msgsj , auxj);
msgsj is the list of messages seen by Pj ; auxj is arbitrary auxiliary data known by Pj . Let J
be the set of indices j ∈ [N ] corresponding to participants that have been corrupted, and let
J ′ = [N ]\J . LetmsgsJ ′←J be the set of messages received by each uncorrupted participantPj′
from each corrupted participant Pj , where j′ ∈ J ′ and j ∈ J .

Firstly, we give the formal security model for analysing the security of protocols in the presence
semi-honest adversaries.

Definition II;6.3 [Semi-honest security]

We say that ψF securely computes F , in the presence of semi-honest adversaries, if there
exists a PPT simulator, Sim, such that:{

Viewj ≈c Sim(1λ, xj , yj , auxj ,msgsJ ′←J)
}
j∈J

for any PPT adversaryA that selectively corrupts one or more participants.

Intuitively, the securitymodel dictates that the protocolmessagesmsgsj should be implied by the
rest of the knowledge given to Sim by the inputs and outputs ofPj . Notice, that Sim still receives
the messages, msgsJ ′←J , that uncorrupted participants Pj′ (for j′ ∈ J ′) would receive during
the protocol from corrupted participants Pj , for j ∈ J .
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Secondly, we give the formal security model for analysing security against malicious adversaries.

Definition II;6.4 [Malicious security]

We say thatψF securely computesF , in the presence ofmalicious adversaries, if there exists
a PPT simulator, Sim, such that:{

Viewj ≈c Sim
OX1,...,XN (F (·,...,·))

(1λ, auxj ,msgsj′)
}
j∈[N ]

for any PPT adversaryA that selectively corrupts one or more participants.

We assume that F takes fixed inputs xj′ for j′ ∈ J ′. That is, Sim, has access to an oracle that
takes fixed inputs for uncorrupted participants and adversarial inputs for corrupted participants
(based on what is received inmsgsj′).

Remark II;6.2. We could be more prescriptive with the requirement on the number and timing

of corruptions. However, this will not feature prominently in our later analysis — we will assume

that all corruptions are made selectively going forwards. By a selective corruption, we assume that

an adversary chooses the subset J of corrupted participants before the protocol takes place. This is

sometimes known as modelling static corruptions. The adversary then learns all the information

that is highlighted above. Equally, we could impose fewer restrictions on the adversary by specifying

that the distributions in Definitions II;6.3 and II;6.4 are statistically close, or even equivalent.

Specific notation. Throughout later chapters, we will generically consider two-party proto-
cols denoted byψ. Inψ, we will denote the two parties by P1 and P2, who have inputs defined
by sets S1,S2 ⊂ S , respectively; where S is some universe that will be defined by context.15 In
the following, wewill sometimes use the notationPj andP2j−3(j−1) to denote the two opposing
participants, where 2j − 3(j − 1) = 2 when j = 1, and 2j − 3(j − 1) = 1 when j = 2. We
will adopt shorter notation and write j and j = 2j − 3(j − 1), instead.

II;6.2 Non-interactive setting

In the non-interactive setting, let PF hold a secret input to the two-input function F . Then we
investigate ways by which PF can encode the partial evaluation F (sp, ·) as some new function
F̃ (·). Then, for correctness we require that:

F̃ (x) = F (sp, x)

15Wewill typically use S = Zq for some integer q > 0.
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for all valid inputs x. The security requirement of the encoding procedure is that the secret in-
put sp is never revealed. Research into constructions of this form has been termed the study of
program obfuscation since the work of Barak et al. [28] — because F̃ represents an obfuscated
form of F . The requirement can be made even stronger, stating that F̃ does not even reveal any
information about F (other than that which is revealed by the output distribution of the func-
tion). Subsequent to this seminal research, there have been a huge number of works claiming to
offer program obfuscation for various functionalities, various definitions of security and under
various assumptions [27, 70, 150, 153, 168, 172, 240, 272, 294]. However, the area is still in its
infancy, much less investigation has been dedicated to realising potentially practical designs or in-
depth cryptanalysis. This setting is considered in Chapter VII, and so we defer the security and
correctness requirements until then.

We also consider slightly different forms of non-interactive computation, where PF can instead
modify the secret input sp to some constrained form s̃p. These constrained parameters allow com-
puting F (s̃p, ·) for some subset of inputs x. Moreover, s̃p does not reveal anything about the
original input sp.16 This setting is considered in Chapter V. Again, we only consider the case of
constrained PRFs, and so we leave the specific formalisation until the chapter itself.

16The function itself is assumed to be known by the adversary.
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Preface

In this chapter we will construct two-party protocols that allow performing a range of operations
over data sets in a ‘secure’ manner. The operations that we consider are set union, intersection
and union/intersection cardinality. Our proposed protocols all use the same cryptographic ‘ma-
chinery’, and thus our constructions can be seen as a generic ‘toolkit’ for computing multiple set
operations between two participants.

Our constructions can be instantiatedwith simple black-box cryptographic primitives; IND-CPA
secure homomorphic encryption schemes (providing, at least, additive homomorphisms over the
ciphertext space) and Bloom filters. The level of homomorphism needed represents a trade-off,
where lower asymptotic complexity can be traded for more requirements on the homomorphic
capability of the encryption scheme. Under additively homomorphic encryption scheme, our
scheme is asymptotically super-linear in the size of input sets; but the primitive is much simpler
and efficient to run. The opposite is true for homomorphic schemes that allow multiplications
over theplaintext space. Specifically theprotocol is asymptotically linear, but theunderlyingprim-
itive ismore complex. Nevertheless, we create the first private set unionprotocol that scales linearly
in the input set sizes; and subsequently for the entire toolkit as a whole.

We give a proof-of-concept implementation of our scheme in the language Go, instantiated using
the Paillier encryption scheme. Our implementation is remarkably simple — with a distinctly
modular design reflecting the reuse of the same primitives for each separate protocol — and is
quick to run for varieties of set sizes, including those containing≥ 100000 distinct elements.

Theworkdisplayed in this chapter is basedheavily on the results of the followingpublication [117]
[ACISP2017], along with the full version of the manuscript [118]. In this thesis we provide more
constructions of our protocols from different primitives — also considering instantiations using
somewhat homomorphic encryption schemes where [117] only considered additively homomor-
phic. In addition, we give more explicit proof arguments that were previously not possible due
to space constraints for the publication. We also provide a more rigorous treatment of the prim-
itives that we use. Finally, we correct an erroneous claim that was made in [117] relating to the
asymptotic complexities of the protocols, later in Section III;7.2.

Overview of original contributions

• Two-party protocols for computing private set {union (Section III;4), intersection (Sec-
tion III;5), union-cardinality, intersection-cardinality (Section III;6)} based on additively
(or somewhat) homomorphic encryption schemes. Security is proven in the presence of
adversaries in the semi-honest security model (Definition II;6.3).
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• The first private set union protocol with linear asymptotic computational complexity in
the size of the sets, based on somewhat homomorphic encryption (Section III;7).

• A practical implementation (in Go) of each of the protocols for real-world parameter sets,
based on the Paillier, additively homomorphic, encryption scheme (Section III;8).

• Variants of our protocols that are secure in an ‘authenticated’ setting, against a malicious
adversary that corrupts one of the participants (Section III;9). This requires an extra as-
sumption on the existence of a digital signature scheme satisfying EUF-CMA security.
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III;1 Introduction

III;1 Introduction

III;1.1 Sets and operations

Consider some universe S of data, and subsets S ⊂ S .1 Naturally, it may be useful to com-
pute functions over multiple subsets to learn some prescribed output from the combined data
sets. Set operations provide the fundamental mathematical basis for the computation of func-
tionalities over data sets. We provide a (somewhat) formal specification of this functionality in
Definition III;1.1.

Definition III;1.1 [Set operations]

Let ` ∈ N; and letS1, . . . ,S` ⊆ S , then a functionF : SL 7→ ∆ is a set operation if it takes
(S1, . . . ,S`) and outputs some result µ ∈ ∆. Common examples of ∆ include: ∆ = S
(i.e. µ is a new subset);∆ = N (i.e. µ is a numerical result).

In practice, there are some very common operations that can form the basis of more complicated
computations. In the following definitions: let ` ∈ N; let S1, S2 ⊆ S ; let nj = |Sj | and let:

Sj = {x(j)
i }i∈[nj ]

for j ∈ {1, 2} and x(j)
i ∈ S .

Now we define the fundamental operations of ‘set union’ and ‘set intersection’.

Definition III;1.2 [Set Union]

Denote by∪ the set union operation, where:

F∪(S1,S2) = S1 ∪ S2 =

{x(1)
i1
}i1∈[n1], {x

(2)
i2
}i2∈[n2],

x
(2)
i2
6=x(1)i1 ∀ i1∈[n1]


and F∪ : S2 7→ S is the functional realisation of this functionality.

1For now we will assume that each element in S is unique, i.e. there are no elements that appear twice. If we
allowed non-distinct elements, then we would refer to subsets S as multi-sets.
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Definition III;1.3 [Set Intersection]

Denote by∩ the set intersection operation, where:

F∩(S1,S2) = S1 ∩ S2 =

{x(1)
i1
}i1∈n1,

∃ i2∈[n2] s.t. x(1)i1 =x
(2)
i2


and F∩ : S2 7→ S is the functional realisation of this functionality.

Remark III;1.1. The reader may notice that the definitions are asymmetric in the sense that S1 is

the ‘dominant’ set in choosing which entries are included. However, the result is identical if S2 is

chosen as the dominant set, and so this is wlog.

Without delving into an extensive review, the union and intersection operations are the set-based
representations of the ‘AND’ (∧) and ‘OR’ (∨) logic gates that, together, satisfy functional com-
pleteness. As a result, it is not hard to see that the operations can satisfy many differing require-
ments when combining and operating over data sets for performing statistical analyses.

We can further define two,more limited, operations that only output the cardinality of the output
sets above. In particular, in practical applications that combine data sets, sometimes it is only
necessary to learn the size of the resulting set after the operation takes place; if the explicit output
set is not required.

Definition III;1.4 [Set Union Cardinality]

Denote by F|∪| : S2 7→ N the set union cardinality operation, where:

F|∪|(S1, S2) = |S1 ∪ S2|.

Definition III;1.5 [Set Intersection Cardinality]

Denote by F|∩| : S2 7→ N the set intersection cardinality operation, where:

F|∩|(S1,S2) = |S1 ∩ S2|.

It is no coincidence that, in this chapter, wewill only be considering set operations taken from the
definitions above (or derived from these with additional, as yet unspecified, characteristics).

92



III;1 Introduction

III;1.2 Private set operations

Let us focus on the case where we have two organisms {Pj}j∈[2] (referred to as the ‘participants’),
respectively controlling sets {Sj}j∈[2]. While we have defined some functions that allow P1 and
P2 to combine their sets, we have not defined any situations where the proposed functions have
any utility. For instance, if the participants want to compute the intersection of their sets, how
can they do this without revealing their entire set to the other participant? Once Sj is revealed to
Pj , then the operation is meaningless since Pj can simply compute anything that they want.2

One trivial solution involves locating and establishing a trusted third party, T. Then Pj sends Sj
toTwho computesµ∗ = F∗(S1,S2) and returnsµ∗ to both participants, for some set operation
∗. This solves the utility issue, since Pj no longer learns the entirety of Sj . However, a more
interesting question can now be asked:

How do we establish and implement the functionality of a trusted third party?

For instance, in a real world scenario, it is likely to be difficult to find a trusted party for any two
individuals on the planet. Not only that, but we require the additional assumption that the trust
dynamic will also not change in the future. In some cases, the ‘privacy’ of the set operation— the
extent to which Sj should be kept secret from Pj —may not be very important. Equally, there
are many scenarios where learning the output of F∗(S1, S2) is valuable, but revealing Sj to Pj is
intolerable. It is these situations in the latter case that we explore further in this work. Commonly,
the assumption that a viable trusted third party exists is too strong for our participants.

In this void, we see the potential for a cryptographic construction to replace the trusted third
party in the computation above. In fact, we will explore the feasibility of constructing a protocol
(Definition II;6.1) that P1 and P2 can participate in, that upholds the utility of the set operation
being considered. Note that we could achieve this with a general secure computation protocol for
computingF∗. However, there are overheads that we can overcome if we target the functionality
of F∗ directly.

We will require that the protocol is secure wrt the security model from Section II;6. In practice,
the protocol should enable the participants to learn the outcome of F∗(S1,S2), while learning
minimal information about Sj beyond what is revealed by the output itself.

It is important to stress this point regarding security wrt the output, because some operations can
reveal almost everything about the unknown set. Consider an extreme case where the two parties
know the cardinality, nj , of the other set Sj . Then if — after computing the intersection of the
sets — the cardinality of the output is n∩ = nj , then Pj knows that it has learnt the entirety of
Sj . Therefore, the security requirement only has utility itself when the output of the function

2Recall that j = 2j − 3(j − 1), so that j = 2 if j = 1, and likewise j = 1 if j = 2.

93



III An Efficient Toolkit for Computing Private Set Operations

does not systematically imply the inputs. We give these requirements formally in Section III;1.4
as adaptations of the security model given in Section II;6.1.

Remark III;1.2. We may generically refer to the PSO for the union operation as private set union

(PSU), and likewise private set intersection (PSI) for intersection; private set union cardinality

(PSU-CA) for union cardinality; and private set intersection cardinality (PSI-CA) for intersec-

tion cardinality. Moreover, we may sometimes combine PSI-CA and PSU-CA into one operation

(PSU/I-CA). Notice that

|S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2|, (III;1)

and thus, as long as the cardinality |Sj | is known to Pj for j ∈ {1, 2}, then PSU-CA =⇒
PSI-CA, and vice-versa.

3

Usefulness of PSU. One subtle point that we should endeavour to clarify is whether a PSU
protocol is useful. For instance, the union of two sets is simply all the elements that appear in
either set at least once. Perhaps it would make sense if the participants simply swapped sets rather
than computing a specific protocol? We answer this question in the negative, pointing out that
theremaybemany situationswhere the intersectionof the two sets shouldbehidden—butwhere
the union of the two sets is required. We give an example in Section III;1.3 of such a real-world
application, but note that this is a plausible scenario necessitating non-trivial functionality.

Roadmap. The study of protocols for computing private set operations, in general, has been an
active area of research for over three decades since the work of Meadows [236]. We summarise
both previous and active work in the area in Section III;2.1. Before that, we consider potential
applications of PSO protocols and clarify the security models that we consider.

III;1.3 Applications of private set operations

The need to ensure the privacy of secret data from foreign systems is a fundamental goal in both
the academic and industrial sectors of cyber security. On the other hand, the utility gained by
computing over combined sets of data is undoubtedly non-negligible. For instance, at the state-
and corporate-level, data sharing is a vital tool for learning more about the scope of common
threat actors and industry competition. The two needs of privacy and sharing are fundamentally
opposed: the first asks that data sets be kept private from foreign agencies; the second asks that the
information in private data sets be shared to enhance collaboration, i.e. gaining shared usefulness
fromcombined knowledge. However, itmaybe possible to undertake some limited sharing, while
keeping certain parts of data secret.

3Learning the cardinality of the opposing set is awidely assumednecessity. Preventing learning of this information
is a separate goal for many protocols.
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The use of cryptographic PSO protocols (and secure computation protocols, in general) is mo-
tivated by the above. The functionality that PSO protocols allow make them vital components
of large-scale computations over multiple data sets that are required to enshrine the privacy of
the various input sets into formal guarantees [227]. In particular, in the case of data mining over
multiple data sources, a computation can usually be segmented into the various set operations
that need to take place at each stage. In the end, a final output is derived after each required op-
eration has taken place. This allows a level of ‘data sharing’ that still keeps elements of data sets
private, where they are not part of the output of the operation. In essence, this is the best possible
security that we can hope for in such a situation.

The following scenarios provide a brief, non-exhaustive view of some concrete applications that
PSO protocols may be useful for.

• Lawenforcement: An airlinemust alert law enforcement authorities if anyonewho has
been placed on a no-flight list attempts to board a flight. The airline may not want to give
away customer data unnecessarily, and the authoritiesmust not give away data on criminals
to the airlines. A private set intersection (PSI) protocol allows the two entities to compare
the sets of people they are aware of, and learn only the intersection.

• International crime: Two or more states may want to combine the information they
have about criminals operating on an international scale. It benefits all parties to know
about all the individuals operating at this level, as they could target any of the countries in-
volved. That being said, neither countrieswant to revealmore information than is required.
The entities can use a private set union (PSU) protocol to learn all of their combined data.

• Changes incustomerbase: An industry sectorwants to evaluatewhether the customer
base has grown or declined over a certain time period. To do this, the major entities in the
sector must combine the number of customers they have currently together. The compa-
nies can enact a private set union cardinality (PSU-CA) protocol on their set of customers,
to learn the combined number of customers in the sector.

• Ad-space usage: An online marketplace selling ad-spaces on their web platform seeks to
find out how many new customers current ad-space purchasers gain to give figures out to
prospective buyers. In this case, the marketplace and the prospective buyers can perform
a private set intersection cardinality (PSI-CA) protocol to learn the number of common
customers that they both have.

In terms of the academic literature, PSOs (although mostly PSI) have also been useful in con-
structing solutions for privacy-preserving variants of:

• Proximity-testing [245];
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• Botnet detection [242];

• Detecting genetic relatives using rare variants [188];

• Predictive blacklisting [145].

Again, this list is non-exhaustive, and provides just an idea of the scope of applications that can
be considered.

Efficiency. The applications above are only viable if the PSO protocols are efficient to run,
in comparison with insecure solutions. To achieve this, it is first common to seek cryptographic
solutions with comparable asymptotic efficiency. While asymptotic estimates hide large constants
that can be critical to understanding runtimes, they are a good indication of how cryptographic
designs will scale with increasing security and input length parameters. These considerations will
be fundamental to the contributions that we introduce in this chapter.

III;1.4 Security models for PSOs

We can tailor Definition II;6.3 and Definition II;6.4 for protocol security models so that they are
dedicated specifically to the case where F is computing a set operation. The only modifications
that we essentially consider are that the protocol inputsxj are subsets of some general universeS .
For completeness, we will give explicit formalisations of the definitions for the PSO case, we will
also redefine the notion of correctness given inDefinition II;6.2. The formalisation of the security
models in this way for PSOs was established by the work of Freedman et al. [143] (adapted from
Naor and Pinkas [243]), even though the first construction byMeadows [236] originated in 1986.

In the following definitions, letF∗ : SN 7→ ∆N be a functionality for some generic output space
∆ and a set operation ∗. Letψ∗ be a protocol that computes {µj}j∈[N ] ← F∗(S1, . . . ,SN ) for
µj ∈ ∆; input sets Sj ∈ Xj provided by participants Pj ; and returns Viewj → Pj , where
Viewj = (Sj , µj ,msgsj , auxj); msgsj is the list of messages seen by Pj ; auxj is arbitrary aux-
iliary data known by Pj . We use the set J ⊂ [N ] to refer to all corrupted participants, and
J ′ = [N ] \ J for those that are not. We may also write msgsJ ′←J to denote the messages re-
ceived by uncorrupted participants in J ′ from corrupted participants in J .

Firstly, we give an adapted notion of correctness.
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Definition III;1.6 [Correctness]

We say thatψ∗ correctly computes the set operation ∗, if:

Pr
[
yj = µj ∈ Viewj

∣∣{yj}j∈[N ] ← F (S1, . . . ,SN )
]
> 1− negl(λ),

for all inputs Sj ∈ §j , where j ∈ [N ].

Secondly, we give adapted notions of achieving security in both security models.

Definition III;1.7 [Semi-honest security (PSO)]

We say thatψ∗ securely computes the set operation ∗, in the presence of semi-honest adver-
saries, if there exists a PPT simulator, Sim, such that:{

Viewj ≈c Sim(1λ,Sj , µj , auxj ,msgsJ ′←J)
}
j∈J

for any PPT adversaryA, where |J | ≥ 1.

In our definition Sim receivesmsgsJ ′←J . This is a slight adaptation of the model used in some
previous works [143, 211]. However this extra information is permissible since Sim still only op-
erates with knowledge that is already known to corrupted Pj . We could avoid this convention by
just adding more information to auxj′ .

Definition III;1.8 [Malicious security (PSO)]

We say thatψ∗ securely computes ∗, in the presence ofmalicious adversaries, if there exists
a PPT simulator, Sim, such that:{

Viewj ≈c SimOSN (F∗(·,...,·))(1λ, auxj ,msgsJ ′←J)
}
j∈J

for any PPT adversaryA, where |J | ≥ 1.

We assume that F takes fixed inputs Sj′ for j′ ∈ J ′. That is, Sim, has access to an oracle that
takes fixed inputs for uncorrupted participants and adversarial inputs for corrupted participants.

We will omit the input 1λ to Sim in the future, when the security parameter is obvious from
context. For PSU and PSI we consider ∆ = S × {⊥}, and for PSU/I-CA we consider ∆ =

N ∪ {0} × {⊥}. That is, only P1 receives output in the two-party case.
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III;2 Relatedwork and contributions

Before we move onto describing our solution, we first analyse related work (Section III;2) com-
pleted prior to [117], the publication that this chapter is based on. Secondly, we give a detailed
overview of our contributions (Section III;2.2). Lastly, we analyse related work that originated
after [117], thus providing an up-to-date analysis (as of mid-2018) of the field as a whole.

III;2.1 Previous work

Deterministic PSI.Thework ofMeadows initiated the study of private set operations in 1986,
as a means of constructing a protocol for establishing the intersection of a set of credentials. The
exact problem is known as private matchmaking, but is in fact heavily related to the problem of
private set intersection. To elucidate the basic idea behind the protocol of [236], considerPj with
knowledge of a common cyclic group G and generator g ∈ G, for j ∈ {1, 2}. Then if the set
universe (of credentials) is considered to be S = Zp, for some p > 0, then Pj with credential
xj can compute yj = gxj and send xj to Pj . By the hardness of the discrete log problem, Pj is
unable to learn xj , but if xj = xj , then yj = yj and thus an intersection of credentials can be
established.

While the solution is elegant, it is easy to subvert the protocol if no additional security measures
are imposed. For example Pj could just replay the message of Pj to establish a credential match.
Moreover, if the likelihood is that credentials form a small subspace of the entire universe, then
it could be efficient to check all types of likely credentials against the ones that are received to
learn unknown credentials. In addition, until the group G or generator g ∈ G are changed,
then all credentials are deterministic— ensuring that the schemewould struggle tomeet ‘forward
secrecy’ requirements. In other words, if the value yj is inverted at some point in the future, an
adversary with access to previous exchanges will learn that Pj possessed xj corresponding to yj .
The deterministic nature of the encodingmechanism for set elements seems to be the at the centre
of the various flaws listed above.

A similar hashing-based solution, highlighted much later by [260], provides similar functional-
ity with an increase in speed (where yj = H(xj) for a common hash functionH). Again, the
deterministic nature of the computation means that it has similar flaws to the solution of [236].

PSOs from oblivious polynomial evaluation. Freedman et al. [143] were the first to
demonstrate a solution that uses a probabilistic encodingmechanism for set elements, for comput-
ing PSI between two parties. While this does not immediately solve the forward secrecy problem
above, an adversary would now have to corrupt the secret ‘encoding’ key itself in order to abuse
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security in this manner.4 For deterministic encodings, only the set element is needed to be found
at some future point. Therefore, there is an immediate and concrete improvement in the security
guarantees of the scheme.

Themethodof [143] involves theuseof aprotocol for oblivious polynomial evaluation (OPE) [243].
At a high-level,P1 constructs an ‘encrypted’ polynomial, where the coefficients of the polynomial
are encrypted using an AHE scheme, to which P1 knows a key pair (pk, sk) (P2 also knows the
public key pk). The roots of the polynomial are the elements of the set S1, where S1 ⊆ Zp.

Let P̃ = ahe.Enc(pk, {at}t∈[n1]) be the set of encrypted coefficients of the polynomial P .
Firstly, using the additive homomorphic property it is possible to evaluate scalar multiplications
over ciphertexts c ∈ Y , for some scalar z ∈ Zp, by computing ahe.ScMult(pk, c, z). The result
is an encryption of the plaintext where z · m where c encrypts m. We can evaluate this scalar
multiplication using the double-and-add method that we described earlier, requiring log(z) op-
erations. Then, ‘evaluating’ the encrypted polynomial P̃ at a value x amounts to evaluating

ahe.ScMult(pk, P̃ [t], xt). (III;2)

for each t ∈ [n1], where P̃ [t] is the tth coefficient of P̃ and x ∈ Zp.5

Taking this on board, the second stage of the protocol involves P1 sending the encrypted polyno-
mial P̃ to P2. Now, P2 essentially needs to evaluate the encrypted polynomial for each of their
set elements, along with computing somemasking that prevents P1 learning too much about S2.
That is, P2 essentially computes the pair (r1

i · P (x
(2)
i ), r2

i · P (x
(2)
i + x

(2)
i )), but in encrypted

format andwhere r1
i , r

2
i ←$Zq are random scalars for each i ∈ [n2]. Themasking hides the value

x
(2)
i when it is not in the intersection of the sets since P (x

(2)
i ) 6= 0.

Formally, for i ∈ [n2] and x(2)
i ∈ S2, P2 evaluates the pair:

(ahe.ScMult(pk, P̃ (x
(2)
i ), r1

i ), ahe.Add(ahe.ScMult(pk, P̃ (x
(2)
i ), r2

i ), ahe.Enc(pk, x
(2)
i ))).

(III;3)
Notice, that the terms

ahe.ScMult(pk, P̃ (x
(2)
i ), rl)

will be randomly distributed (for l ∈ [2]) on decryption, unless x(2)
i ∈ S2 is a root of P when it

will decrypt to zero. The pairs in Equation (III;3) are returned as (c̃
(i)
2 , d̃

(i)
2 ) to P1, who can now

compute

(ahe.Dec(sk, c̃
(i)
2 ), ahe.Dec(sk, d̃

(i)
2 )).

4Usually a secret key for an encryption scheme.
5Strictly speaking, we cannot evaluate as this is a set of encrypted coefficients. We abuse notation to take ‘evalua-

tion’ to be the implied
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The second term only decrypts to a non-uniform value when x(2)
i is a root (due to the masking),

which P1 detects if the first entry decrypts to 0. When this is the case, the second entry decrypts
precisely tox(2)

i ∈ S2. In summary,P2 learns the value of those elementsx
(2)
i ∈ S2 iffx

(2)
i ∈ S1,

also. As a consequence, P1 learns the intersection of the two sets.

Subsequently, the works of Kissner and Song [211] and Frikken [146] expanded the use of OPE
techniques to also construct PSO protocols for the PSU and PSU/I-CA operations based on very
similar techniques. Both works actually create protocols in the case of multiple parties. They also
establish protocols for more complicated operations that can impose external thresholds on the
computation (e.g. threshold set intersection that includes elements only if they appear a certain
number of times [211]). While the techniques demonstrate subtle differences, we will neglect to
explicitly define the set of operations due to their similarity with [143].

In terms of the security satisfied by the schemes, semi-honest security is fairly simple to achieve
sinceP2 receives no output andonlywitnesses ciphertexts that are taken froman IND-CPA secure
encryption scheme. For P1, the plaintexts are randomised in the case when x

(2)
i /∈ S1 and thus

these elements are indistinguishable from encryptions of random elements (which the simulator
can generate).

Achievingmalicious security without providing extra structure seems difficult. For example in the
protocol of [143], if an adversary were to corruptP1, then it could simply construct a polynomial
such that all elements were roots (i.e. the zero polynomial). This is possible since the IND-CPA
security of the encryption scheme means that the encrypted polynomials are indistinguishable to
P2. Such a polynomial would allow P1 to learn the entire set of P2. If the adversary corrupts
P2 then, learning anything about S1 is shown to be difficult under the semantic security of the
encryption scheme that is used. However, a corruptP2 could still force the computation tooutput
incorrectly by just evaluating incorrect values, instead of their input set.

The first problem can bemitigated if a limited external certifier is introduced that simply signs the
set ofP1. This techniquewas used by laterworks such as [73, 110, 122, 123, 125, 204] and is known
as the authenticated-PSO (APSO) setting. Unfortunately, this requires that the set be revealed to
some third party but requires less trust assumptions between the twoparticipants becauseP2 only
has to verify the signature of the certifier.

Alternatively, the works of [146, 181, 211] adapt theOPE technique to allow security to be proven
against malicious adversaries without the need for external authentication. In combination, these
works provide protocols for private set union and intersection. They do this by adapting the con-
structions mentioned above to include zero-knowledge proof techniques. Intuitively, these tech-
niques ensure that the participants commit to using fair inputs and, as a result, have a negligible
probability of successfully deviating from the protocol specification. Unfortunately, while these
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solutions are elegant and interesting, they dramatically reduce the efficiency of the protocol de-
signs—making them unsuitable for practical applications.

The OPE techniques are related to the techniques that we eventually detail. We focus on these
designs with greater clarity throughout this chapter.

Practical constructions of PSI and PSU/I-CA. PSI protocols (and, to a lesser extent,
PSU/I-CA) are regarded as cornerstone primitives in many applications. As such, a lot of more
recentwork targets these operationswhen consideringmorepractical proposals. In addition, these
operations are plausibly symmetric in the sense that each input set contains all of the information
that is contained in the output. This has led to the proliferation of a number of protocols that use
symmetric cryptographic with greater efficiency in practical scenarios.

Initially, the works of De Cristofaro et al. [109, 122, 123] established different methods for com-
puting PSI and PSI-CA more efficiently by using blinded variants of the RSA cryptosystem [81,
268]. These methods demonstrate very low communicational overheads since the elements that
are swapped are essentially just group elements. Secondly, the work of Huang et al. [191] estab-
lishes that garbled circuits-based protocols are efficient in settings where high security parameters
are required, outperforming the previous protocols that we have discussed.

A common bottleneck in all of the previous constructions is the requirement for computing
‘public-key’ operations in the computational phases. For instance, the blind-RSA methods re-
quire many modular exponentiations which can be expensive for large sets. The same type of
operations are required for performing the oblivious transfer (OT) phases of garbled circuit eval-
uation. However, the ‘symmetric’ quality of the operations makes them candidates to be imple-
mented using inherently faster, symmetric techniques.

The work of Dong et al. [130] showed that, using a Bloom filter as an underlying data storage
mechanism, it was possible to significantly lower the computational overhead of each participant
in the context of PSI. Using Bloom filters introduces the possibility of errors occurring in the
protocol (we describe Bloom filters in more detail in Section III;3.1). Fortunately, this probability
can be reduced to a negligible cost with careful parameter selection. In this case, there is no effect
on the correctness and security analysis of the resulting protocol.

The technique of [130] modifies the Bloom filter into a garbled representation, where elements
are stored by splitting them into k shares and each share is placed in the Bloom filter at the index
indicated by the hash functions.6 An implementation is provided that demonstrates fast runtimes
and low communication, even in the case of billion-element sets. Similarly, it was shown by Egert
et al. [133] and Debnath and Dutta [125] independently, that it is possible to construct practical
cardinality protocols using an underlying Bloom filter.7

6Shares are reused if the entry of the Bloom filter is already populated.
7Although [125] requires public-key operations and is thus much less efficient.
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Pinkas et al. [258, 260] gave constructions of PSI protocols that utilise the technique of oblivious
transfer [243, 263], without the need for extra circuit computation as in [191]. Their construc-
tions are practical for sets of huge sizes on standard computational systems, with speeds that are
comparable to that of the simple deterministic hashing technique used above. These results help
to reinforce the gains that can be made by eliminating the requirement for public-key operations.
However, the works of [258, 260] only demonstrate security in the semi-honest setting, while
the previous works can all demonstrate in the malicious security model. Fortunately, Rindal and
Rosulek [267] show that malicious variants of these protocols can be achieved using a technique
known as ‘dual execution’.

For PSI/PSU-CA, constructions are less practically efficient than PSI generally; this is largely due
to the prevalence of asymmetric techniques. However, theworks of [109, 133] give asymptotically
optimal designs.

Constructions of dedicated PSU protocols. Focusing on the problem of construct-
ing PSU protocols, the methods are somewhat different. Apart from the original constructions
of [146, 181, 211], constructions have largely been based on inherently asymmetric designs that do
not necessarily lend themselves to practical cryptographic implementation. It seems hard to build
protocols for this functionality from symmetric primitives.

The work of Brickell and Shmatikov [71] establishes a PSU protocol as an application of work
that utilises minimum spanning trees for constructing privacy-preserving versions of classic graph
algorithms. Otherwise, Seo et al. [275] construct a multi-party PSU protocol where the number
of rounds is constant, using reversed Laurent series.

The work of Blanton et al. [47] follows in the footsteps of [211] by constructing protocols for
various different set operations, including the main operations that we consider above. Their
constructions also include similar threshold designs to those discussed in [211]. Their designs use
techniques associated with secret sharing for establishing their protocols, and also accommodate
the possibility of using multisets as input.

The work of [71] only considers semi-honest security, while [47, 275] also consider the malicious
security model.

Othernotableconstructions.Weacknowledge some alternative constructions ofPSIpro-
tocols that are related to the constructions that we eventually give later. Firstly, Hazay [180] gives
an alternative method of constructing OPE and PSI from ‘algebraic PRFs’. The construction
differs from those previously since it makes use of a polynomial evaluation procedure in the ex-
ponent of group elements. To do this, Hazay shows that it is possible to use a multiplicatively
homomorphic encryption scheme in the exponent, rather than an additive scheme as in [143].
Since the OPE techniques of [143] use only additive operations, it is natural to see that such a
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transformation could exist. The work of Jarecki and Liu [197] establishes a protocol for oblivi-
ously evaluating a pseudorandom function, along with the application of describing an efficient
PSI protocol. However, the domain of set elements must be of polynomial size only. Therefore,
we do not consider this work further.

Secondly, theworkofKerschbaum[204] creates an ‘outsourced’PSIprotocol using an ‘encrypted’
Bloom filter— the notion of outsourcing is essentially the model where only P1 receives the out-
put of the computation. The construction uses a Bloom filter in a similar setting and manner to
the way that we use in our constructions in later sections. The key difference is that Kerschbaum
requires the usage of the Goldwasser-Micali [166] encryption scheme, that allows homomorphic
computation over encrypted bits; whereas we require homomorphic computation that essentially
encrypts ring elements. This technique is utilised also byDebnath andDutta in their construction
of protocols for PSI and PSU/I-CA [125], and also by Kerschbaum [205] for protecting supply
chain integrity.

Asymptotic analysis. The two main, asymptotic metrics that are used for calculating the ef-
ficiency of any given scheme are the communication and computational complexities for each
participant. We could also consider the number of rounds needed for the protocol, though this
is more of a concern for protocols withN > 2 participants (we focus primarily onN = 2). In
Table III;1 we provide an asymptotic analysis of selectedworks with respect to the efficiency of the
constructions.8 This does not necessarily take into account the efficiency of the underlying prim-
itives, but provides an accurate measure of the scalability of the designs. We do not consider the
deterministic designs as viablemethods for private set operations functionality, due to the security
flaws that they inherit.

Remark III;2.1. In this chapter, we will be focusing on making asymptotic improvements compared

to already known methods for computing multiple PSOs. The works of [130, 258, 260], amongst

others, establish very fast methods that are adapted specifically to the case of computing PSI (using

symmetric techniques). Asymptotically, they are also comparable to the most efficient schemes given

in Table III;1. However, due to the di�ering goals that are sought, we choose not to explicitly include

these constructions in our complexity analysis.

Computational complexity of OPE techniques. The computational complexity of the
OPE-based techniques in Table III;1 is listed asO(n log log(n)) rather thanO(n2). That is, each
polynomial consists of n encrypted coefficients and P2 must compute n pairs by operating over
each their n set elements once for each coefficient (hence O(n2)). However, it was shown by
Freedman et al. [143] that it was possible to reduce this computational complexity considerably
by using an external hash function for ‘categorising’ the set elements into buckets first.

8We do not consider the multi-party version of [146] since it involves a transformation that is essentially adapted
from the work of [211].
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Cite Communication Computation Participants Operation Primitive
[143] O(n) O(n log log(n) log2(|S|)) 2 PSI OPE
[211] O(N2n log(|S|)) O(n2) N PSO OPE
[71] O(n log(|S|)) O(n log n) 2 PSU Min. span. tree
[146] O(n) O(n log log(n) log2(|S|)) 2 PSU OPE
[181] O(n) O(n log log(n) log2(|S|)) 2 PSO OPE
[47] O(N3n log(Nn) O(N3n log(Nn)) N PSO Secret sharing
[275] O(N3n2) O(N4n2) N PSU Laurent series (DL)

[122, 123] O(n) O(n) 2 PSI RSA
[109] O(n) O(n) 2 PSU/I-CA RSA
[133] O(L) O(L) 2 PSU/I-CA Bloom filter
[204] O(L) O(L) 2 PSI GM
[125] O(L) O(L) 2 {PSI,PSU/I-CA} GM

Table III;1: Asymptotic analysis of selected previous works from Section III;2.1. We assume that n = |Sj |
for all j ∈ [N ]; and |S| represents the size of the domain of set elements that is being consid-
ered, and c < N is the maximum number of corrupted participants (1 for the two participant
setting). For our choice of Bloom filter parameters (Section III;3.1), the length L is equivalent
toO(kn). We use PSO to denote that the proposal consists of designs for all of PSU, PSI and
PSU/I-CA. GM stands for Goldwasser-Micali encryption. We also ignore the multi-party ver-
sion of [146].

Letx(1)
i1
∈ S1, for i1 ∈ [n]. The degree of the polynomials can be reduced significantly by initially

computingH(x
(1)
i1

) = t ∈ [M ] (for a public hash functionH). Thus, we allocate x(1)
i1

to the
binBt for t ∈ [M ]. Let nt = maxt({Bt}t∈[M ]), then P1 createsM polynomials of degree nt
for each binBt and sends these to P2. Then P2 computes t = H(x

(2)
i2

) for each x(2)
i2
∈ S2 and

then proceeds to perform the same computations, as in Equation (III;3), except with the protocol
corresponding to Bt for x

(2)
i2
∈ Bt. This now only requires nt · n operations to be computed

byP2. Furthermore, it is shown by [143] thatmaxt(nt) = O(log log(n))with high probability
(associated with the choice of the hash functionH).

III;2.2 Overview of contributions

In this chapter, we detail a new technique for constructing PSU, PSI and PSU/I-CA protocols
based on the notion of an encrypted Bloom filter, using similar design decisions to those made
in [124, 204]. However, the computations made by both participants more closely resemble the
techniques used inOPEconstructions [143, 146, 180, 181, 211]. Our constructions are proven tobe
secure in the semi-honest security model, primarily. We can also achieve security in the malicious
model in the authenticatedPSO scenario [73, 110, 122, 125, 204], see Section III;9 formore details.

Asymptotically optimal PSO toolkit. In short, rather than P1 constructing an encrypted
polynomial with roots set to be the elements of S1, P1 creates an encrypted Bloom filter repre-
senting the set S1. We use a homomorphic encryption scheme (allowing at least additions over
the plaintext space) that satisfies semantic security to perform the encryption. Now P1 sends the
‘encrypted’ Bloom filter to P2 who makes similar computations to those required in OPE-based
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techniques and returns the results toP1.9 Decryption reveals the correct result, depending on the
operations computed by P2. The actual construction of the protocols are given in Section III;4
for PSU, Section III;5 for PSI and Section III;6 for PSU/I-CA.

Using an underlying Bloom filter instead of the polynomial-based approach yields complexities
that are dependent on the size of the Bloom filter,L. The parameterL is in turn dependent on the
size of the set nmultiplied by the number of hash functions, k, used to evaluate the Bloom filter
(i.e. L = O(kn)). However, we show in Section III;3.1 that we canmake k essentially dependent
only on the false-positive parameter thatwewish the Bloom filter to have (as first acknowledged in
the results of [130]). Treating k as an independent constant in relation ton, our protocols are the
first to demonstrate linear communication and computational complexities in the size of the sets
being considered. By using a Bloom filter, we sacrifice the perfect correctness of our protocol con-
structions. As mentioned previously, we can still ensure all-but-negligible numbers of correctness
errors with explicit parameter choices that we make in Section III;3.1.

Consequently, we give the first construction of a PSU protocol, and subsequently a generic tech-
nique for computing all of the main operations, with linear asymptotic complexities in n. More-
over, we can fix k, for a specific choice of λ, and then the complexities of our protocols grow
linearly wrt to the increasing size of n. We view this as an important result in establishing scalable
designs of toolkits for computing multiple private set operations. Our techniques also represent
a new way of computing complex functionality that was only previously realisable via methods
related to OPE. As such, we think our technique may have impact in other situations where OPE
protocols have already been used as a cornerstone primitive.

It should be noted that our complexities are inherently dependent on the level of homomorphism
acquired from the homomorphic encryption scheme that we use. Indeed, our asymptotic result
only holds in the case of somewhat homomorphic encryption schemes that permit at least one
multiplication (for example [51, 159]). If wewant to use anAHE scheme, then the computational
complexity of our PSU protocol naively increases by a factor of log(|S|) (due to the requirement
to perform scalar multiplications). We should balance this argument that this allows us to more
efficient schemes (such as the Paillier encryption scheme [251]) that are practically efficient to run
on commodity hardware and systems.10 We explicitly correct an erroneous claim made in [117],
stating that these linear complexities also apply in the case of using an AHE scheme — see Sec-
tion III;7.2. The asymptotic analysis of our protocols is given in Section III;7. We provide a sum-
mary of the efficiency of our contributions in Table III;2 (an update of Table III;1 including the
result of our research).

Practical implementation. In terms of practical efficiency, we give a proof-of-concept im-
plementation of our protocols in the widely-used language Go, using the Paillier AHE scheme.

9We defer the actual specifics of our constructions until Section III;4 and onwards.
10This trade-off applies to the OPE-based technique, also.
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Cite Communication Computation Participants Operation Primitive
[143] O(n) O(n log log(n) log2(|S|)) 2 PSI OPE
[211] O(N2n log(|S|)) O(n2) N PSO OPE
[71] O(n log(|S|)) O(n log n) 2 PSU Min. span. tree
[146] O(n) O(n log log(n) log2(|S|)) 2 PSU OPE
[181] O(n) O(n log log(n) log2(|S|)) 2 PSO OPE
[47] O(N3n log(Nn) O(N3n log(Nn)) N PSO Secret sharing
[275] O(N3n2) O(N4n2) N PSU Laurent series (DL)

[122, 123] O(n) O(n) 2 PSI RSA
[109] O(n) O(n) 2 PSU/I-CA RSA
[133] O(L) O(L) 2 PSU/I-CA Bloom filter
[204] O(L) O(L) 2 PSI GM
[125] O(L) O(L) 2 PSI GM

Construction III;4.1 O(L) O(L) 2 PSU SHE
Construction III;5.1 O(L) O(L) 2 PSI SHE
Construction III;6.1 O(L) O(L) 2 PSU/I-CA SHE
Construction III;4.1 O(L) O(L log2(|S|)) 2 PSU AHE
Construction III;5.1 O(L) O(L log2(|S|)) 2 PSI AHE
Construction III;6.1 O(L) O(L log2(|S|)) 2 PSU/I-CA AHE

Table III;2: Updated table to include the complexities in this work.

Our implementation operates with realistic security parameters and shows that our protocol can
be run for large set sizes— after allowing for a computationally expensive, offline setup phase for
P1. Concretely, we show that the expensive encryption of the Bloom filter can be handled offline;
moreover, it can be used for multiple protocol instantiations and updated to include new set el-
ements. In fact, we actually maintain the entire functionality of the original Bloom filter. As a
consequence, this expensive phase can be amortised overmultiple protocol instantiations and can
be used for all of the different PSOs, since each PSO is completely determined by the single step
ofP2. This amortisation is not possible withOPE-based techniques since altering the roots of the
polynomial requires modifying all of the encrypted coefficients whp. See Section III;8 for more
detailed analysis, along with the discussion of our implementation.

Achievingmalicioussecurity. The final part of outwork shows thatwe can achieve security
against a malicious corruption of P1, in the authenticated PSO model [73, 110, 122, 125, 204].
We stop short of proving malicious security in the standard (non-authenticated) model since it
would likely involve constructing complicated zero-knowledge mechanisms for proving security.
Such mechanisms do not fit with our mantra of constructing simple-to-use toolkits for designing
PSO protocols. In addition, the impact on any eventual deployment would be noticeable.

Adaptingthetoolkit.Our final contribution is to show that our generic ‘toolkit’ ismalleable
and that it can be used to construct much more complex functionality. This is afforded by the
simplicity of the original protocols that we develop. In particular, in Chapter IV we adapt the
PSU protocol given in Section III;4 to settings where the union output is limited by a threshold
over associated data for each set element. The motivation that we consider is where set elements
have externally (and canonically) allocated values— the threshold allows learning the union until
the value of the elements in the output exceeds it. The protocol is an instantiation of an even-
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handed mediator, who facilitates full-sharing in an information sharing scenario considered in
the game-theoretic analyses of [119, 208].

III;2.3 Concurrent and subsequentwork

Finally, before detailing the particulars of our construction, we give a brief review of recent con-
structions that appeared subsequent to our contribution.

Kolesnikov et al. [214] showed that it was possible to construct more practical techniques for set
intersection using an application of an oblivious PRF, based on the techniques of [198, 258, 260].
Otherpractical PSIdesignshave included [215, 267]where [267] gives amaliciously-secure variant
of the OT-based protocols of [258, 260]. Similarly, Pinkas et al. [259] demonstrate a practical
solution to circuit-based PSI using similar hashing techniques to those considered in [258, 260].

The work of [131] gives a PSI protocol with logarithmic complexities when the correctness is re-
laxed so that the output is only approximately equal to the ideal functionality. In a similar vein,
it is shown in [86] that PSI can be made fast, even using homomorphic encryption as a primitive,
when the size of the inputs is structured so that one player has a much smaller set (the player who
undergoes the most computation). This is an interesting observation that also applies to our de-
signs, since most of the computational work depends on the size of the set S1. See Section III;7
for more details.

Finally, Cerulli et al. [80] give the first construction of a PSI functionality that allows hiding the
cardinality of the input sets. This contribution is part of a wider effort to prove security inmodels
that incorporate multiple protocols runs (using the same inputs).

As with previous work, most of this recent research is focused on giving very practical solutions
to problem of constructing PSI protocols. There is still a gap in the academic literature for con-
structing generic toolkits using primarily symmetric techniques, while maintaining asymptotic
optimality. Research that filled this gap would undoubtedly lead to a solution that would have
demonstrable practical efficiency for all of the main set operations.

III;3 Preliminaries

In this section, we will formalise the primitives that we need for constructing our PSO protocols.
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III;3.1 Formalisation of Bloom filters

Bloom filters were first defined by Bloom [49] in 1970. They are a space- and time-efficient data
structure expressed as a binary string, allowing for simple and quick mechanism for storing and
checking items. We give a formalisation in Definition III;3.1.

Definition III;3.1 [Bloom filter [49]]

Let L, k, n > 0 be parameters, and let S ⊆ S be a set such that n = |S|. Let H =

{h |h : S 7→ [L]} be a family of hash functions, and sample h̃ = (h1, . . . , hk)←$Hk. In
addition, we abuse notation and write h̃(x) = (h1(x), . . . , hk(x)) for x ∈ S.
Then we define a Bloom filter of lengthL as the tuple

BF = (arr, Store,Query, h̃,SBF),

where BF.arr ∈ {0, 1}L, SBF ⊆ S (s.t. max(|SBF|) = n). Let BF.pp =

(BF.arr,BF.Store,BF.Query, h̃) be the public parameters of BF, and BF.sp = SBF be
the secret parameters. Define BF.Store andBF.Query in the following way.a

• BF.Store(BF.pp,BF.sp, x ∈ S): Let (y1, . . . , yk) = h̃(x) ∈ [L]k, set
BF.arr[yj ] = 1 for j ∈ [k] and add x→ BF.sp.

• BF.Query(BF.pp, x ∈ S): Let (y1, . . . , yk) = h̃(x) ∈ [L]k. Output∧k
j=1 BF.arr[yj ].

aWe use the notation S∗ to indicate that the length of this output is variable.

Wewill assume thatH is a family of hash functions, such that for h←$H, y ← h(x) and x ∈ S,
then y is uniformly distributed in [L]. We can achieve this under the assumption thatH is a family
of universal hash functions over the space [L] (Definition II;4.4 andCorollary II;4.1), or under the
much stronger assumption that h is a random oracle.

Optimalparametersettings. Amajor constraint ofBloom filters is that they tolerate a prob-
ability of false-positives that is determined solely by the parametersL, k, n. Thismeans that, with
probability ε, then BF.Query(BF.pp, x ∈ S) = 1 for (x ∈ S) ∧ (x /∈ BF.sp). On the other
hand, false negatives are never possible, since the hash function evaluations are deterministic.

According to [59, 130], the probability that the bit corresponding toBF.arr[i], for i←$ [L], is set
to 1 is p = 1− (1− 1/L)kn. Therefore, an upper bound of the false-positive probability can be
inferred to be

ε = pk

(
1 +O

(
k

p

√
ln(L)− k ln(p)

L

))
, (III;4)
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which is negligible in k.

Again, as noted by [59, 130], and by Equation (III;4), we can impose a lower bound on the size of
L and infer the size of the parameter k:

L ≥ n log(e) log(1/ε); k = (L/n) ln(2). (III;5)

Finally, choosingL optimally (wrt the lower bound) renders:

k = log(1/ε) (III;6)

as the optimal choice of k. Notice that, in this setting, k is completely independent of the choice
of the rest of the parameters, including the size of the set that is stored. In fact, ε is now negligible
directly in the choice of k (rather than via Equation (III;4)). Therefore, if we have a security pa-
rameter λ and set k = poly(λ), then ε < negl(λ). The choice of n is thus made independently
of k.

The above is important for establishing the asymptotic complexity of our protocols later, and
the favourable comparisons with prior work. In all of the subsequent work, we assume that the
optimal parameter choices from Equations (III;5) and (III;6) are always used.

Additional notation.Wemay sometimes abuse notation and writeBF.Store(pp, sp, S) for
some subset S ⊆ S , rather than storing each element individually. We use the notation

BF← BF.init(1L, 1n, 1k)

to denote the act of initialising an empty Bloom filter: sampling h̃←$Hk; SBF ← ∅; arr← 0L;
and setting

BF = (arr,Store,Query, h̃,SBF).

We say that a newly initialisedBF is empty untilBF.Store is run for the first time.

For ease of exposition in later sections, we define a distribution BF [L, n, k] s.t. sampling uni-
formly from BF [L, n, k] is the same as running the following steps

• initialiseBF← BF.init(1L, 1n, 1k);

• uniformly sample a set S ⊆ S , s.t. n = |S|;

• runBF.Store(pp, sp,S);

• outputBF.
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III;3.2 Encrypting Bloom filters

Let BF = (arr,Store,Query, h̃,SBF) be a Bloom filter as defined in Definition III;3.1. We ex-
plicitly define the notion of inverting and encrypting of a Bloom filter. Similar techniques were
also introduced in the works of [125, 204], albeit with different encryption schemes.

A notion of encrypted Bloom filters is also given in [127], for constructing a forward-secure,
0-RTT key exchange. The encryption mechanism that they use is an identity-based encryption
scheme and the entries of the Bloom filter are populated with identities. In this work, we encrypt
each of the entries directly with standard pke or she schemes.

Definition III;3.2 [Inversion]

We denote an inverted Bloom filter for BF by IBF, where IBF is the same as BF, except
that IBF.arr = 1L − BF.arr ∈ {0, 1}L. For a Bloom filter BF, we denote the inversion
procedure by invert(BF) = IBF. We modify IBF.Query(·) to output 1 iff

k∧
i=1

IBF.arr[yj ] = 0,

for (y1, . . . , yk)← h̃(x), and j ∈ [k].
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Definition III;3.3 [Encryption]

Let pke be a public-key encryption scheme. We say that EBF is an encryption ofBF if it is a
tuple of the form EBF = (arr, Store,Query, h̃,SBF), where

pke.Dec(sk,EBF.arr[i]) = BF.arr[i]

for all i ∈ [L]. Additionally, we redefine EBF.Store and EBF.Query as:

• EBF.Store(EBF.pp,EBF.sp, x ∈ S): Let {yj}j∈[k] = h̃(x). Let cj ←
pke.Enc(pk, 1), set EBF.arr[yj ] = cj and add x→ EBF.sp.

• EBF.Query(EBF.pp, x ∈ S): Let {yj}j∈[k] = h̃(x) and output
{EBF.arr[yj ]}j∈[k]

for some subset S ⊆ S . The rest of the tuple components are the same as BF.
For a Bloom filterBF, we define the encryption procedure to be

encrypt(pk,BF) = EBF

where encrypt computes arr[i]← pke.Enc(pk,BF.arr[i]) for each i ∈ [L] and setting

EBF = (arr,BF.Store,BF.Query,BF.h̃,BF.sp)

as the output.

Remark III;3.1. We typically use EIBF, when denoting EIBF← encrypt(pk, invert(BF)).

Interestingly, the encrypted Bloom filter retains the ability to publicly store items since only the
public key is required for runningEBF.Store. This is an important consideration in Section III;8
whenwe consider amortising the encryption of Bloom filters as an optimisation of our implemen-
tation. The algorithmEBF.Query algorithm appears redundant if the evaluator does not hold sk
for the encryption scheme. But, if pke = she, then such an evaluator can still homomorphically
compute over the ciphertexts.

Finally, we prove the following lemma— essentially stating that if pke satisfies IND-CPA secu-
rity, then EBF is indistinguishable from an encryption of the bitstring 0L.
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expebfb,A(1λ, 1L, 1n, 1k)

1 : BF←$BF [L, n, k];

2 : (pk, sk)←$ pke.KeyGen(1λ);

3 : W ← ∅
4 : if (b = 0) :

5 : EBF← encrypt(pk,BF)

6 : W = EBF.arr

7 : else :

8 : {cj}j∈[L] ← pke.Enc(pk, 0L);

9 : W = {cj}j∈[L];

10 : bA ← A(1λ, pk,W );

Figure III;1: Experiments expebfb,A(1λ, 1L, 1n, 1k) for describing the security of an encrypted Bloom filter.
We may sometimes shorten the notation and write expebfb,A(1λ), when BF has already been
specified.

Lemma III;3.1 [Security of EBF ]

LetBF be a Bloom filter, and let pke be a public-key encryption scheme satisfying semantic
security (Definition II;5.3). For experiments expebfb,A(1λ) (Figure III;1):

max
A

(Adv(A, ebf(1λ,EBF))) < negl(λ)

holds for all PPT adversariesA.

Proof. Firstly, recall the definition of ρ-IND-CPA security from Definition II;5.4. Denote the
experiments by expρ-indcpab,A′ (1λ)whereA′ is a PPT algorithm, and ρ = poly(λ) is a bound on the
number of queries thatA′ can make.

Secondly, set L = ρ and considerA′ acting against the expL-indcpab,A′ (1λ) game, we show that the
experiments expebfb,B(1λ, 1L, 1n, 1k) are computationally indistinguishable for b ∈ {0, 1} and
any PPT algorithm B. Our proof takes the form of a standard security reduction, whereA′ runs
B as a subroutine.

A′ receivespk from the challenger in expL-indcpab,A′ (1λ), and assumes the role of the challenger in the
experiments expebfb,A(1λ, 1L, 1n, 1k). First it samples BF←$BF [L, n, k] and a string 0L. Then,
A′ setsM0 = BF.arr andM1 = 0L and sends (M0,M1) to its challenger in the expL-indcpab,A′ (1λ)

game. The challenger returnsWb ← pke.Enc(pk,Mb) toA′ andA′ returns this result directly
to B.
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Notice that,W0 = pke.Enc(pk,BF.arr) = EBF.arr for EBF ← encrypt(pk,BF), which is
what B receives in expebf0,B(1λ). Also,W1 = pke.Enc(pk, 0L) which is exactly the form of what
B receives in expebf1,B(1λ). Finally,A′ outputs bB ← B(1λ, pk,Wb) directly. Notice that, if B is
successful in distinguishing the two cases, then so isA′.

Therefore, ifmaxB(Adv(B, ebf(1λ,EBF))) = ε, then we have that

ε ≤ max
A′

(Adv(A′, indcpa(1λ, pke)))),

since each successful output from B is a successful output forA′. However, by the semantic se-
curity of pke, we know that

max
A

(Adv(A, indcpa(1λ, pke))) < negl(λ),

thus implying that ε < negl(λ); for all PPT adversaries B.

III;4 A protocol framework for private set union

In this section, we give our first construction of a PSOprotocol, specifically targeting the function-
ality provided by PSU. We give slightly different constructions in the case where the underlying
encryption scheme is an she schemeor anahe scheme. Bothprotocols are similar, differing slightly
in the method of computation.

Lethe ∈ {she, ahe}be ahomomorphic encryption scheme, satisfying at least additive homomor-
phism. We require that he satisfies the ciphertext rerandomisation property of Definition II;5.7.
The individual steps of our PSU protocol,ψ∪, are found in Figures III;2, III;3 and III;4. We de-
note step i ∈ [3] by ψi∪(Pj , he), where the step is computed by Pj for j ∈ {1, 2}. Recall that
we use the notationX → Pj in a protocol step to indicate thatX is sent to participantPj . More
precisely,X → msgsj ∈ Viewj .

In the following, let P1 and P2 be the two participants in the protocolψ∪, with respective input
sets S1, S2 ⊆ S = he.X and auxiliary input data aux1, aux2. Let F∪ : S2 7→ S2 be the
functionality that computes:

(µ1, µ2)← F∪(S1, S2) (III;7)

where (µ1, µ2) = (S1 ∪ S2, ∅) and sends µj to Pj for j ∈ {1, 2}.11 Let ψ∪ be the protocol
that intends to compute F∪ and returns Viewj = (Sj , µj ,msgsj , auxj) to Pj . We let Sj =

{x(j)
i }i∈[nj ] for nj = |Sj |.

11This scenario is commonly referred to in the literature as the ‘client-server’ model, whereP1 is the ‘client’ andP2

is the ‘server’ (although we will not use this convention).
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ψ1
∪(P1, he)

1 : BF← BF.init(1L, 1n, 1k);

2 : (BF.arr,BF.SBF)← BF.Store(BF.pp,BF.sp,S1);

3 : EIBF← encrypt(pk, invert(BF));

4 : EIBF.pp← P2;

Figure III;2: Step one, computed by P1 in our PSU protocol. In this step, P1 constructs an encrypted,
inverted Bloom filter from their input set and sends it to P2. The steps are the same for he ∈
{she, ahe}.

We define aux1 = (n2, (pk, sk)) and aux2 = (n1, pk); where (pk, sk)←$ he.KeyGen(1λ).
Clearly, Pj knows the cardinality, nj , of set Sj for j ∈ {1, 2}. This is necessary as our protocols
give away the size of the sets, which is a standard limitation of most PSO protocols. The only
protocols to avoid this limitation are the PSI protocol of [80], and the PSU protocol of [71].

Our protocol is given in Construction III;4.1. In the ahe version of this protocol, we explicitly
assume that the set elements x(2)

i can be used as scalar values (i.e. members of Zp).

Construction III;4.1 [PSU protocol]

Let ψ∪ be a protocol for the functionality F∪ (Equation (III;7)) and let
he,BF,Pj , Sj ,S, auxj ,msgsj ,Viewj be described as above.
We constructψ∪ as a composition of the steps

• (P2 : EIBF.pp)← ψ1
∪(P1, he) [Figure III;2];

• (P1 : W )← ψ2
∪(P2,EIBF.pp, he) [Figure III;3];

• (P1 : S∪)← ψ3
∪(W,P1, he) [Figure III;4].

We set µ1 = S∪ and µ2 = ∅.

Theorem III;4.1 [Correctness]

Let ψ∪ be defined as in Construction III;4.1; let BF be the Bloom filter used in ψ∪, with
parameters k = poly(λ) and L, n1 chosen optimally. Then ψ∪ correctly computes the
functionality F∪ (Equation (III;7)), with probability greater than 1− negl(λ).

Proof. We consider the set S∪ returned by P1 in ψ3
∪(P1,W, she). We have, (c̃+

i , d̃
+
i ) ∈ W re-

ceived by P1, for i ∈ [n2]; and (zi,1, zi,2) ← (he.Dec(sk, c̃+
i ), he.Dec(sk, d̃+

i )). Furthermore,
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ψ2
∪(P2, she)

1 : W ← ∅;
2 : for i ∈ [n2] :

3 : {cli}l∈[k] ← EIBF.Query(EIBF.pp, x
(2)
i );

4 : c+i ← c1i ;

5 : for l ∈ [2, k] :

6 : c+i ← she.Add(pk, cli, c
+
i );

7 : d+
i = she.Mult(pk, c+i , she.Enc(pk, x

(2)
i ));

8 : (c̃+i , d̃
+
i )← (she.CRand(pk, c+i ), she.CRand(pk, d+

i ));

9 : (c̃+i , d̃
+
i )←W [i];

10 : W ← P1

ψ2
∪(P2, ahe)

1 : W ← ∅;
2 : for i ∈ [n2] :

3 : {cli}l∈[k] ← EIBF.Query(EIBF.pp, x
(2)
i );

4 : c+i ← c1i ;

5 : for l ∈ [2, k] :

6 : c+i ← ahe.Add(pk, cli, c
+
i );

7 : d+
i = ahe.ScMult(pk, c+i , x

(2)
i );

8 : (c̃+i , d̃
+
i )← (ahe.CRand(pk, c+i ), ahe.CRand(pk, d+

i ));

9 : W [i]← (c̃+i , d̃
+
i );

10 : P1 ←W

Figure III;3: Step two, computed by P2 in our PSU protocol. In this step, P2 combines ciphertexts asso-
ciated with queries to the encrypted Bloom filter (using the homomorphic operations) and
sends the result back to P1. The setW is shuffled before it is returned to P1.
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ψ3
∪(P1, he)

1 : S∪ ← ∅;
2 : for i ∈ [n2] :

3 : (c̃+i , d̃
+
i )←W [i];

4 : (zi,1, zi,2)← (he.Dec(sk, c̃+i ), he.Dec(sk, d̃+
i ));

5 : if zi,1 6= 0 :

6 : S∪ ← (zi,1)−1 · zi,2;

7 : S∪ ← S1;

8 : return S∪;

Figure III;4: Step three, computed by P1 in our PSU protocol. Finally, P1 decrypts the combined cipher-
texts and outputs the values that are non-zero. These should correspond to values that are not
already contained in S1. The steps are the same for he ∈ {she, ahe}.

c̃+
i ← he.CRand(pk, c+

i ) and likewise for d̃+
i . Recall that ciphertext rerandomisation does not

change the value of the underlying plaintext by Lemma II;5.3. Therefore

zi,1 =
k∑
l=1

BF.arr[yi,l],

where {yi,l}l∈[k] ← BF.h̃(x
(2)
i ), and zi,2 = zi,1 · x(2)

i ; since

c+
i = he.Add(pk, c+

k , he.Add(pk, c+
k−1, ahe.Add(. . . , ahe.Add(pk, c+

2 , c
+
1 )))),

d+
i = he.Mult(pk, c+

i , he.Enc(pk, x
(2)
i )),

and by the correctness of he (Definition II;5.6). Notice that, with probability (1− ε),

BF.Query(EIBF.pp, x
(2)
i ) = he.Enc(1) =⇒ x

(2)
i ∈ SBF.

Thus the same implication holds with IBF.Query(EIBF.pp, x
(2)
i ) = he.Enc(0), instead. Con-

sequently, with probability (1− ε), zi,1 = 0 iff x(2)
i ∈ SBF = S1.

When zi,1 = 0 then zi,2 = 0. So P1 adds x
(2)
i to S∪ when x

(2)
i /∈ S1 (with probability (1− ε)).

Therefore, with the same probability, µ1 = S∪ contains all elements in S1 and those in (S2 \S1)

— this is precisely the union of the two sets.

Finally, since k = poly(λ) and ε = negl(k) by Equation (III;6), then 1− ε > 1− negl(λ).

The case where he = ahe is identical, except that

d+
i = he.ScMult(pk, c+

i , x
(2)
i )
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which does not change the result. Thus, the proof is complete.

If we tolerated non-negligible ε, thenψ∪would approximately computeF∪with probability only
(1 − ε) > 1 − poly(λ). Such a notion has been used in recent works for constructing more
efficient PSI [131, 265] constructions. This would also help to make our scheme more efficient,
sinceL could be smaller. However, for the security proof below, we require that k = poly(λ), as
above. The security notion for approximate PSOwould have to change to allow incorporation of
non-negligible false-positive rates. In particular, larger probabilities will impact the distinguishing
probability of the simulations in the proofs that we write.

Theorem III;4.2 [Security]

Letψ∪ be defined as in Construction III;4.1. Thenψ∪ securely computes the functionality
F∪ in the presence of PPT semi-honest adversaries, under the semantic security of he.

Proof. For the proof of security, we define a simulator Sim who simulates Viewj using only the
inputs and outputs witnessed by Pj . That is,msgsj can be completely inferred by Sj and µj . To
complete the proof, we show that the view of the protocol in the real execution is computationally
indistinguishable from both of the simulations for j ∈ {1, 2}. We first consider the case where
P1 is corrupted by a PPT adversaryA (writing PA1 ), defining the simulator, Sim1, as follows.
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Simulation III;4.1 [Sim1(S1,S∪, aux1)]

• Sim1 computes the set SSim = S∪ \ S1 and receives EIBF.pp from PA1 .

• For each x(Sim)
i ∈ SSim where i ∈ [|SSim|], it computes:

c+
i ← he.Add(pk,EIBF.Query(x

(Sim)
i , h̃)).

• Let gi = he.Enc(pk, x
(Sim)
i ) for i ∈ [|SSim|], then Sim1 stores

(he.CRand(pk, c+
i ), he.CRand(pk, he.Mult(pk, c+

i , gi)))→WSim[i].

• For the remaining |S∪ \ SSim| elements, it sets

(c+
i′ , d

+
i′ )← (he.Enc(pk, 0))2

and adds (c+
i′ , d

+
i′ )→WSim[i′].

• Finally, Sim1 shufflesWSim and sends it to PA1 , i.e.WSim → msgsSim.

• Let ViewSim = (S1, S∪,msgsSim, aux1) be the view that PA1 witnesses.

Lemma III;4.1 [View1 ≈p ViewSim]

ViewSim in Simulation III;4.1 is computationally indistinguishable fromView1 inψ∪ if he
satisfies the ciphertext rerandomisation property of Definition II;5.7.

Proof. The only difference between View1 in the real world execution and ViewSim in Simula-
tion III;4.1 is the way thatWSim is constructed inmsgsSim, fromW inmsgs1. Specifically, the
protocolmessages differ in theway that the ciphertext pairs (c+

i′ , d
+
i′ ) are constructed for elements

in the intersection of the two sets. The rest of the view is constructed the same in both executions.

Firstly, he.Dec(sk, c+
i′ ) = he.Dec(sk, d+

i′ ) = 0 for i′ ∈ [|SSim|, |S∪|], since x2
i′ /∈ S1 (and ε

is negligible in k). Then, the only difference is the structure of the ciphertexts themselves. In the
real execution they are rerandomised ciphertexts from EBF.arr (after performing homomorphic
operations). In the simulation, they are simply new encryptions of 0.

LetA be an adversary that is attempting to distinguish between View1 and ViewSim. Let B at-
tempting to distinguish the experiments expcrandω,A (1λ, 1`, ι) for ω←$ {0, 1} where ι is the im-
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plicit choice of level for encrypting the ciphertexts that we consider.12 Then B when constructs
W , it uses knowledge of the set SSim to construct the messages:

(he.CRand(pk, c+
i ), he.CRand(pk, he.Mult(pk, c+

i , gi)))

for gi ← he.Enc(pk, x
(Sim)
i ) and i ∈ [SSim]. For the remaining set elements, B uses (mi′ , ci′)

as its input in expcrandω,A (1λ, 1`, ι)wheremi′ = 0 for each i′ ∈ [|SSim|+ 1, |S∪|]. For each oracle

output c̃+
i′ ← OY(c̃+

i′ ) (and likewise for d̃
+
i′ ) it setsW [i′] ← (c̃+

i′ , d̃
+
i′ ). It finally addsW to the

output distribution seen byA.

Note that in the casewhereω = 0 thenA receives new encryptions of 0 at level ι. Therefore this is
identical to the real execution of the protocol (by the fact that the rest ofView1 is identical in both
executions). When ω = 1, then A receives random elements from Y0[ι] which are identically
distributed to fresh encryptions of 0 at level ι. Therefore, this is identically distributed toViewSim

in the simulation. As a consequence, B can use the output of A as ω and distinguish the two
ciphertext rerandomisation experiments with the same probability. Transitively, this shows that
Ahas advantageboundedbyB and, sincehe satisfies ciphertext rerandomisation, this is negligible.

The output does not change if he = ahe, the only part that does — the use of the he.ScMult

algorithm— changes functionality only cosmetically. We also do not have to consider the level of
the ciphertext encryption, ι. Therefore the proof of Lemma III;4.1 is complete.

We now define the action of Sim2, in the case when P2 is corrupted (denoted PA2 ) by a PPT
adversaryA.

Simulation III;4.2 [Sim2(S2, aux2)]

Sim2 runs BF← BF.init(1L, 1n, 1k) and simply computes

EBF← encrypt(pk,BF)

and sends EBF.pp→ PA2 (adding tomsgsSim).
Let ViewSim = (S2, ∅,msgsSim, aux2) be the view that PA2 witnesses in the simulation.

Lemma III;4.2 [View2 ≈c ViewSim]

The view ViewSim in Simulation III;4.2 is computationally indistinguishable from View2

inψ∪, by the semantic security of he.

12Since we have one multiplication over the ciphertexts in the SHE case, then ι = 1.
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Proof. Theoutput received byPA2 is empty, so the only thing required to simulate is the encrypted
Bloom filter that it receives inmsgs2, at the end ofψ1

∪(P1, he). The difference between the real
execution and Simulation III;4.2 is that: in the former EBF.arr is created by encrypting the real
entries of BF; and in the latter EBF.arr is an encryption of the string 0L.

These opposing executions are exactly in the form received by the adversary B in Lemma III;3.1
(expebfb,B(1λ)). Therefore, we can use B as the simulator where it sets EBF.arr to be the challenge
sample that it receives in the game expebfb,B(1λ). When b = 0, the encrypted Bloom filter is as in
the real execution, and when b = 1 it is as in Simulation III;4.2. Therefore, we can bound the
advantage ofA by the advantage of B, which is negligible by the statement of Lemma III;3.1 (by
the semantic security of he). The proof is the same for he ∈ {she, ahe} and thus the proof of
Lemma III;4.2 is complete.

The proof of Theorem III;4.2 can be concluded by Lemmas III;4.1 and III;4.2.

III;5 A protocol for private set intersection

Following on from Construction III;4.1, we give an adapted construction that allows P1 and P2

to compute the intersection of S1 and S2. In other words, we use the protocol ψ∩ to compute
the functionality:

(µ1, µ2)← F∩(S1,S2) (III;8)

where µ1 = S1 ∩ S2 and µ2 = ∅, as before. We adopt the same conventions for

he,BF, Sj ,S, auxj ,msgsj ,Viewj

as we did in Section III;4, and let nj = |Sj |. Step one of the protocol does not change from
Figure III;2, we provide the PSI versions of steps two and three in Figures III;5 and III;6.
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ψ2
∩(P2, he)

1 : W ← ∅;
2 : for i ∈ [n2] :

3 : {cli}l∈[k] ← EIBF.Query(EIBF.pp, x
(2)
i );

4 : c+i ← c1i ;

5 : for l ∈ [2, k] :

6 : c+i ← he.Add(pk, cli, c
+
i );

7 : ri,1, ri,2←$X ;

8 : ĉ+,1i ← he.PRand(pk, c+i , ri,1);

9 : ĉ+,2i ← he.PRand(pk, c+i , ri,2);

10 : d̂+
i = he.Add(pk, ĉ+,2i , he.Enc(pk, x

(2)
i ));

11 : (c̃+i , d̃
+
i )← (he.CRand(pk, ĉ+,1i ), he.CRand(pk, d̂+

i ));

12 : W [i]← (c̃+i , d̃
+
i );

13 : P1 ←W ;

Figure III;5: Step two, computed by P2 in our PSI protocol. This step is similar to Figure III;3, we expect
that the output (c̃+i , d̃

+
i ) are encryptions of (random, random) when x(2)

i is not in the in-
tersection. The steps only differ for he ∈ {she, ahe} depending on the implementation of
he.PRerand. We assume that the setW is shuffled randomly before it is sent to P1.

ψ3
∩(P1, he)

1 : S∩ ← ∅;
2 : for i ∈ [n2] :

3 : (c̃+i , d̃
+
i )←W [i];

4 : (zi,1, zi,2)← (he.Dec(sk, c̃+i ), he.Dec(sk, d̃+
i ));

5 : if zi,1 = 0 :

6 : zi,2 → S∩;

7 : return S∩;

Figure III;6: Step three, computed by P1 in our PSI protocol. This step sees P1 output the intersection
of the two sets. If an element is not in the intersection then the plaintext rerandomisation
procedure prevents it from being learnt. The steps are the same for he ∈ {she, ahe}.
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Construction III;5.1 [PSI]

Let ψ∩ be a protocol for the functionality F∩ (Equation (III;8)) and let
he,BF,Pj , Sj ,S, auxj ,msgsj ,Viewj be described as above.
We constructψ∩ as a composition of the steps

• (P2 : EIBF.pp)← ψ1
∩(P1, he) [Figure III;2];

• (P1 : W )← ψ2
∩(P2,EIBF.pp, he) [Figure III;5];

• (P1 : S∩)← ψ3
∩(P1,W, he) [Figure III;6].

We set µ1 = S∩ and µ2 = ∅.

Theorem III;5.1 [Correctness]

Let ψ∩ be defined as in Construction III;5.1; let BF be the Bloom filter used in ψ∩, with
parameters k = poly(λ) and L, n1 chosen optimally. Then ψ∩ correctly computes the
functionality F∩ (Equation (III;8)), with probability greater than 1− negl(λ).

Proof. Similarly to the proof of Theorem III;4.1, we consider the set S∩ that is output by P1. Let
IBF.pp be the same as EIBF.pp, except that IBF.arrhe.Dec(sk,EIBF.arr). We have that

zi,1 =
(
IBF.Query(IBF.pp, x

(2)
i ))

)
· ri,1;

zi,2 =
((

IBF.Query(IBF.pp, x
(2)
i )
)
· ri,2

)
+ x

(2)
i ;

where x(2)
i ∈ S2 and i ∈ [n2], by the correctness of he and by Lemma II;5.3 (rerandomisation

does not affect the plaintext value). Since ε = negl(k), and k = poly(λ), then zi,1 = 0 implies
that x(2)

i ∈ S1 with all but negligible probability. Moreover, in these cases we have that x(2)
i =

zi,2 since (
IBF.Query(IBF.pp, x

(2)
i )
)
· ri,2 = 0

with the same probability. We add zi,2 → S∩ directly for each i ∈ [n2], meaning that we add
x

(2)
i to S∩ iff x

(2)
i ∈ S1 (with all but negligible probability ε). This is exactly the intersection of

the two sets and thus S∩ = S1 ∩ S2. This also follows in the same way if he = ahe since zi,j is
the same in both cases for j ∈ {1, 2} (since ahe.ScMult induces the same plaintext value).
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Theorem III;5.2 [Security]

Letψ∩ be defined as in Construction III;5.1. Thenψ∩ securely computes the functionality
F∩ in the presence of PPT semi-honest adversaries, under the semantic security of he.

Proof. The simulation in the case ofP2 being corrupted is exactly the same as Simulation III;4.2 in
the proof of Theorem III;4.2. For the case whenP1 is corrupted (writtenPA1 for a PPT adversary
A) then the manner of Sim1 changes slightly.

Simulation III;5.1 [Sim1(S1, S∩, aux1)]

• Sim1 uses the input set SSim = S∩ and receives EIBF.pp from PA1 .

• For each x(Sim)
i ∈ SSim where i ∈ [|SSim|]; it computes:

(c̃+
i , d̃

+
i )←

(he.CRand(pk, he.Enc(pk, 0)), he.CRand(pk, he.Enc(pk, x
(Sim)
i ))),

and adds (c̃+
i , d̃

+
i )→WSim[i].

• For the remaining |S2 \ SSim| elements, it sets

(c̃+
i′ , d̃

+
i′ )←

(he.CRand(pk, he.Enc(pk, ri′,1)), he.CRand(pk, he.Enc(pk, ri′,2)))

for ri′,1, ri′,2←$X , and adds (c+
i′ , d

+
i′ )→WSim[i′].

• Finally, Sim1 shufflesWSim and sends it to PA1 (i.e.WSim → msgsSim).

• Let ViewSim = (S1,S∩,msgsSim, aux1) be the simulated view for PA1 .

Lemma III;5.1 [View1 ≈p ViewSim]

ViewSim in Simulation III;5.1 is computationally indistinguishable from View1 in ψ∩,
where he satisfies the plaintext rerandomisation property of Definition II;5.8.

Proof. The viewsView1 andViewSim in the real executionψ∩ and Simulation III;5.1 differ only
inmsgs1 andmsgsSim; in the way that the plaintexts are created for each of the encryptions. By
a similar argument to the proof of Lemma III;4.1, the ciphertext rerandomisation means that the
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ciphertexts are indistinguishable from all other ciphertexts in the same codomain inferred by the
plaintext value.

For the case of (c̃+
i , d̃

+
i ), corresponding tox(Sim)

i ∈ SSim = S∩. Notice that the plaintexts inψ∩
are the same as the plaintexts in Simulation III;5.1 with probability (1− ε) ≈ 1 by ε < negl(λ).
Therefore, we focus on the cases of (c̃+

i′ , d̃
+
i′ ) for x

(2)
i /∈ S1 (not in the intersection). In the real

execution, the plaintexts take the form:

(ri′′,1 · ki, (ri′′,2 · ki) + x
(2)
i ) = (he.PRand(pk, ĉ+,1

i , ri′′,1), he.PRand(pk, ĉ+,2
i , ri′′,2))

(III;9)
for ri′′,j←$X (j ∈ {1, 2}) and where ki ∈ [1, k], since they are outputs of the plaintext reran-
domisation algorithm he.PRerand. In the simulation the plaintexts are simply the random ele-
ments

(ri′,1, ri′,2)←$X 2. (III;10)

These distributions can be trivially constructed from the outputs of expprandω,A (1λ, 1`) for ω ∈
{0, 1}. Therefore, any adversaryA attempting to distinguish between the two views immediately
leads to an adversary B that attempts to break plaintext rerandomisation for he. By the plaintext
rerandomisation security of he, we infer that A has negligible advantage of distinguishing the
views and the proof is complete (for he ∈ {she, ahe}).

The proof of Theorem III;5.2 is completed by the proof of Lemma III;5.1.

III;6 A protocol for private set union/intersection
cardinality

We give a further adaptation of our framework that allows P1 and P2 to compute the cardinality
of either the intersection, or the union, of S1 and S2. In other words, we use the protocolψ|∩| to
compute the functionality:

(µ1, µ2)← F|∩|(S1, S2) (III;11)

where µ1 = |S1 ∩ S2| and µ2 = ∅, as before. Using the relation in Equation (III;1), we can
compute

F|∪|(S1,S2) = |S1|+ |S2| − |S1 ∩ S2|

using only knowledge of |Sj | for j ∈ {1, 2} (where |Sj | is provided in auxj , and thus both values
are known to both players). Therefore, wewill only focus on the case of giving a protocol forF|∩|.

We adopt the same conventions for

he,BF, Sj ,S, auxj ,msgsj ,Viewj
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ψ2
|∩|(P2, he)

1 : W ← ∅;
2 : for i ∈ [n2] :

3 : {cli}l∈[k] ← EIBF.Query(EIBF.pp, x
(2)
i );

4 : c+i ← c1i ;

5 : for l ∈ [2, k] :

6 : c+i ← he.Add(pk, cli, c
+
i );

7 : ri←$X ;

8 : ĉ+i ← he.PRand(pk, c+i , ri);

9 : c̃+i ← he.CRand(pk, ĉ+i );

10 : c̃+i ←W [i];

11 : W ← P1

Figure III;7: Step two, computed by P2 in our PSU/I-CA protocol and similar to the approach in Fig-
ure III;5. We assume that the setW is shuffled randomly before it is sent to P1.

ψ3
|∩|(P1, he)

1 : n∩ = 0;

2 : for i ∈ [n2] :

3 : c̃+i ←W [i];

4 : zi ← he.Dec(sk, c̃+i );

5 : if zi = 0 :

6 : n∩ = n∩ + 1;

7 : return n∩;

Figure III;8: Step three, computed byP1 in our PSU/I-CA protocol. Here,P1 decrypts non-zero plaintext
values if the element sent in step twowas taken from outside of the intersection. The steps are
the same for he ∈ {she, ahe}. Forψ|∪|, return n∪ = n1 + n2 − n∩.

as we did in the previous sections, and let nj = |Sj |. Step one of the protocol does not change
from Figure III;2, we provide the PSU/I-CA versions of steps two and three in Figures III;7
and III;8.
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Construction III;6.1 [PSU/I-CA]

Let ψ|∩| be a protocol for the functionality F|∩| (Equation (III;7)) and let
he,BF,Pj ,Sj ,S, auxj ,msgsj ,Viewj be described as above.
We constructψ|∩| as a composition of the steps

• (P2 : EIBF.pp)← ψ1
|∩|(P1, he) [Figure III;2];

• (P1 : W )← ψ2
|∩|(P2,EIBF.pp, he) [Figure III;7];

• (P1 : n∩)← ψ3
|∩|W, (P1, he) [Figure III;8].

We write µ1 = n∩ and µ2 = ∅.
We defineψ|∪| in the same way, except that µ1 = n∪ = n1 + n2 − n∩.

Theorem III;6.1 [Correctness]

Letψ|∩| be defined as in Construction III;6.1; letBF be the Bloom filter used inψ|∩|, with
parameters k = poly(λ) and L, n1 chosen optimally. Then ψ|∩| correctly computes the
functionality F|∩| (Equation (III;11)) with probability greater than 1 − negl(λ). Respec-
tively,ψ|∪| correctly computes F|∪|, with the same probability.

Proof. By the correctness of he and Lemma II;5.3, then

zi =
(
IBF.Query(IBF.pp, x

(2)
i )
)
· ri

for i ∈ [n2]. Thus, zi = 0 with probability (1− ε) ≈ 1 iff x(2)
i ∈ S1 (by ε = negl(k)). When

zi = 0 then n∩ is incremented, thus n∩ is incremented when x
(2)
i ∈ S1 which is a count of

the intersection of the two sets. The same applies if he = ahe by the same arguments as before.
Moreover, n∪ is a count of the union of the two sets by Equation (III;1). Therefore the proof of
correctness is complete.

Theorem III;6.2 [Security]

Letψ|∩| be defined as in Construction III;6.1. Thenψ|∩| securely computes the function-
alityF|∩| in the presence of PPT semi-honest adversaries, under the semantic security of he.
Respectively,ψ|∪| securely computes F|∪| under the same assumption.

Proof. The proof of the case when P2 is corrupted does not change at all. The proof of the case
when P1 is corrupted changes slightly from Theorem III;4.2. We define the simulator, Sim1,
below.
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Simulation III;6.1 [Sim1(S1, n∩, aux1)]

• Sim1 receives EIBF.pp from PA1 .

• It computes
c̃+
i ← he.CRand(pk, he.Enc(pk, 0)),

for i ∈ [n∩], and adds c̃+
i →WSim[i].

• For the remaining set elements, it sets

c+
i′ ← he.CRand(pk, he.Enc(pk, ri′))

for ri′ ←$X , and adds c+
i′ →WSim[i′].

• Finally, Sim1 shufflesWSim and sends it to PA1 (WSim → msgsSim).

• Let ViewSim = (S1,SSim,msgsSim, aux1) be the view that PA1 witnesses.

Lemma III;6.1 [View1 ≈p ViewSim]

ViewSim in Simulation III;6.1 is perfectly indistinguishable fromView1 inψ∩.

Proof. The proof of this lemma is a subset of the proof of Lemma III;5.1, therefore we refer the
reader to that proof for the explicit details. Notice that the ciphertext rerandomisation procedure
distributes ciphertexts across the codomain of ciphertexts with the same plaintext value. More-
over, the plaintext rerandomisation hides the information that decryption reveals to PA1 for ele-
ments that are not in the intersection.

The proof of Theorem III;6.2 follows directly from the proof of Lemma III;6.1. The proof in the
case ofψ|∪| is exactly the same.

III;7 Asymptotic analysis

To finish the analysis of ourprotocols in the semi-honest securitymodel, wediscuss the asymptotic
complexity of our designs. For this analysis, we use the optimal parameter settings for a Bloom
filter setup, that are given in Equations (III;5) and (III;6); that is L = log(e) · k · n1, where
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nj = |Sj | and k = log(ε) for the false-positive probability ε = negl(λ). Our only requirement
is that k = poly(λ), so that ε = negl(λ).

The following lemmas establish the complexities for both communication and computation for
all of our protocols. Our complexities are calculated wrt the black-box definition of she given in
Definition II;5.5. Hence, this analysis ignores the practical advantage of using ahe over she. We
ignore λ factors in our complexity analysis as we focus on the relationship of our overheads to
the input sizes, rather than the security parameters that are chosen (which is consistent over all
protocols).

Lemma III;7.1 [Communication complexity]

The communication complexity inψ∪,ψ∩,ψ|∩| andψ|∪| isO(kn1 +n2) (in terms of the
number of ciphertexts that are sent).

Proof. In ψ1
∪(P1, he), P1 sends O(L) = O(kn1) ciphertexts in EBF.arr to P2 (the rest of

EBF.pp can be persisted elsewhere). In ψ2
∪(P2,EIBF.pp, he), P2 sends 2 ciphertexts for each

x
(2)
i ∈ S2 to P1, which isO(n2). Thus the complexity follows. The asymptotic complexities are

the same forψ∩,ψ|∩|,ψ|∪| (the concrete cost for P2 is lower inψ|∩| andψ|∪|).

Lemma III;7.2 [P1 computational complexity]

The asymptotic runtime of P1 inψ∪,ψ∩,ψ|∩| andψ|∪| isO(kn1) encryptions for he ∈
{she, ahe}.

Proof. Inψ1
∪(P1, he), P1 first computesO(n1) BF.Store operations (one for each x(1)

i ∈ S1).
They computeL = O(kn1) encryptions in the computationEIBF = encrypt(pk, invert(BF)).
The total number of operations for step one is therefore bounded byO(kn1+n2). This is exactly
the same in the protocolsψ∩,ψ|∩|,ψ|∪|, as well.

For ψ3
∪(P1,W,he)

, P1 computes O(n2) decryptions, two for each x(2)
i ∈ S2 (one in the case of

ψ|∩| andψ|∪|). Inψ∪, P1 computes an additional n2 − |S1 ∩ S2|modular inversions and mul-
tiplications. Thus the total complexity for this step isO(n2).

The total complexity for the whole ofP1’s operations isO(kn1 +n2), in all of the protocols.
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Lemma III;7.3 [P2 computational complexity]

The asymptotic runtime of P2 inψ∪,ψ∩,ψ|∩| andψ|∪| isO(kn2), where he = she, and
O(kn2 log2(|X |)), where he = ahe.

Proof. Inψ2
∪(P2, she),P2 computes k homomorphic additions for eachx

(2)
i ∈ S2, i.e.O(kn2).

On top of this, P2 also computes O(n2) ciphertext rerandomisations, n2 encryptions of each
x

(2)
i ∈ S2 and n2 homomorphic multiplications. This is the same in ψ2

∩(P2,EIBF.pp, she);
and in ψ2

|∩|,EIBF.pp(P2, she) the number of fresh encryptions of 0 is reduced but is stillO(n2).
Thus the total number of operations isO(kn2).

In ψ2
∪(P2, ahe), P2 computes k homomorphic additions for each x

(2)
i ∈ S2, i.e. O(kn2). On

top of this, P2 also computes O(n2) fresh encryptions of 0 (two for each x(2)
i ∈ S2 for cipher-

text rerandomisation), and n2 homomorphic scalar multiplications (one for each plaintext reran-
domisation invocation). Each scalar multiplication requires sampling a random mask ri for each
x

(2)
i and thus computing log2(|X |) homomorphic additions. In total, for the entirety of S2,

this requires O(n2 log2(|X |)) operations. This is the same in ψ2
∩(P2,EIBF.pp, ahe), and in

ψ2
|∩|(P2,EIBF.pp, ahe) the number of fresh encryptions of 0 is reduced but is stillO(n2). Thus

the total number of operations isO(kn2 log2(|X |)).

Lemma III;7.4 [Total computational complexity]

The total asymptotic computational complexity for all of our protocols isO(k(n1 + n2))

when he = she, andO(k(n1 + n2) log2(|X |))when he = ahe.

Proof. By the results of Lemma III;7.2, P1 computes O(kn1 + n2) operations in both cases of
he ∈ {she, ahe}. By Lemma III;7.3, P2 computes O(kn2) operations when he = she, and
O(kn2 log2(|X |)) when he = ahe. The total complexity follows immediately by taking the
dominant terms in both cases.

III;7.1 Comparisonwith previous work

In this comparison, we will naturally be targeting previous work that constructs protocols for all
of the three set operations that we consider. As such we will draw comparisons with the works of
Kissner and Song [211], Blanton and Aguiar [47] and a combination of Freedman et al., Frikken,
and Hazay and Nissim [143, 146, 181] (since the constructions are very similar). We will also as-
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sume that we have equal set sizes (i.e. n1 = n2 = n) for ease of exposition. This is a fair assump-
tion, since the smaller set can be padded to the size of the bigger set generically.

Complexities of previous toolkits. As we mentioned previously (Table III;1), the con-
structions based on OPE [143, 146, 211] have an inherent reliance on complexities that are super-
linear inn. Without optimisations, all of these proposals demonstrate complexities that areO(n)

for communication, andO(n log logn) for computation (when he = she).

For [47], they use amuch different technique that works formultiple parties andmultisets. How-
ever, their method (when reduced to the two-party case) requiresO(n log(n)) for both commu-
nication and computation, which is sub-optimal in comparison with the OPE techniques. Of
course, the use of secret-sharing operations (rather than ahe and public-key techniques) means
that their method is likely to perform better in a practical scenario, since they use inherently sym-
metric techniques. However, we are focusing only on the asymptotic scalability of the proposals
for now. Furthermore, the proposal of [47] does not currently provide experimental analysis of
their constructions.

Our complexities. The idea behind the improvement that we make is that we are able reduce
the dependence of the computational complexity on the size of the set to a linear relation, in each
of our protocols. A Bloom filter query requires k hash function evaluations and this determines
that only k homomorphic additions have to be made by P2. By Equation (III;6), k is only chosen
so that ε is negligible and thus has no dependence on n. Thus our complexities can be expressed
asO(kn) = O(L), where L is the length of the Bloom filter. We reiterate that we have linearity
in the number of ciphertexts that are sent.

The costs of our findings is that we introduce the possibility (with probability ε = negl(λ))
of false-positives, and our complexities are now effectively ‘quadratic’ in two variables (n and k)
rather than just n. For the former consideration, it is simply a matter of choosing k = poly(λ)

appropriately. For the latter point, we note that k can effectively be fixed for some setting ofλ. As
such, increasing the set size will still only have a linear effect on the runtime of the protocols that
we have constructed.

With this in mind, and practically speaking, the effect of k on our complexities is essentially as a
constant, where typical parameter settings have that k � n. Therefore, fixing k for a particular
choice of λ, we obtain complexities that areO(n) for both communication and computation; in
the case where we use an SHE scheme for encryption.

In the case where we use an AHE scheme, the complexities increase by a factor of log2(|X |),
since we require sampling a random element from X and scalar multiplying by this value. Typi-
cally, we would expect there to be a dependence between n and |X |. Additionally, we require the
invariant that n < |X | (even if X is fixed). Therefore, this change affects the scalability consid-
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erably. This change also affects the complexities of the OPE-based protocols. The advantage of
using AHE schemes is that they are much simpler to implement, and are typically far more effi-
cient than an SHE scheme. In our proof-of-concept implementation in Section III;8, we choose
to implement our scheme using the Paillier ahe scheme due to its simplicity. Future work, would
establish whether the improved scalability of protocol in the she case translates to amore efficient
scheme (especially for larger sets).

Ineffectiveness of bucket-hashing. Using the bucket-hashing optimisation of [143], for
reducing computational OPE costs, does not result in the same reduction for our protocols. In
particular, while hashing the set elements into buckets is likely to result in Bloom filters that are
much shorter (Lt = O(k log log(n)) for each bucketBt), the overall effect is that P2 would still
have to computeO(kn2) operations, since k is not dependent on the set size n.

III;7.2 Correction of claims in [117]

In [117], it was erroneously claimed that the complexities for the scheme in the case where he =

ahe areO(kn). We would like to make explicit that the complexities are onlyO(kn)when he =

she. As noted above, the complexities areO(kn log2(|X |)) in the case where he = ahe due to
the usage of scalar multiplication. This does not affect the experimental results from [117]; we
only correct the claims of the asymptotic efficiency of the protocols.

III;8 Toolkit implementation

While the asymptotic efficiency of our protocols differ quite starkly depending on the choice of
he scheme, it is not clear how the relative efficiency of ahe schemes (against more complex she
alternatives) could potentially lead to comparably efficient schemes. To this end, we demonstrate
an implementation of our scheme using the Paillier AHE scheme (Definition II;5.2).

The aimwith this implementation is to demonstrate that our scheme performs favourably against
the following criteria.

1. easy to implement;

2. minimal differences in implementations of different protocols;

3. practical to run for large set sizes and believable security parameters.

We believe that satisfying these criteria makes a protocol framework developer-friendly, in that it
should facilitate the writing of efficient implementations with limited scope for errors. Currently,
the available implementations of PSO protocols: only satisfy PSI and PSU/I-CA functionality;

131



III An Efficient Toolkit for Computing Private Set Operations

they arewritten in highly optimised formats that are difficult to understand for non-experts [260].
To the best of our knowledge, this represents the first attempt at formally implementing a toolkit
that computes PSU, PSI and PSU/I-CA using a unified design technique.

Our implementation helps us to answer in the affirmative for our criteria. Firstly for (1), we show
that our scheme can be implemented easily providing knowledge of a suitable AHE scheme im-
plementation. To expose this advantage, we give an implementation of our protocol in the lan-
guage Go [285]. Go is a popular language with performance that is not too far away from older
languages like C. As such, it provides a valuable middle-ground between the use of performance-
focused programming languages, and the ease-of-use of languages like Python. We use an im-
plementation of the Paillier AHE scheme for implementing our protocols, the performance of
which has been benchmarked favourably against other high-performance implementations [40].
The code is open-source.13 The mathematical operations that we require are written in the Go
native math/big library. Another reason that we chose Go is that it demonstrates features that
make implementing concurrency simple (using goroutines). This is beneficial for our design as
there are a lot of operations that can be run in parallel (such as the encryption and homomorphic
operations).

For (2), since the protocol only deviates from step 2, we can reuse much of the same computa-
tion methods (with minor mathematical differences that are illustrated in the previous sections).
Therefore, the toolkit that we propose results in a clean code-base of only 281 lines for the PSO
computation. We include a separate implementation of the API between the protocol and the
encrypted Bloom filter that is used. The number of lines used to implement the Bloom filter
framework is 432, and thus still very concise.

For (3), our experimental data supports the assertion that our toolkit can be run efficiently, even
for large set sizes. While our design is much slower than dedicated protocols for computing PSI,
our techniques provides much greater PSO functionality. Moreover, much of the runtime (≈
90%) of our design is contained in the initial encryption of the Bloom filter. We show later
that this encryption can be precomputed offline, at any time. Moreover, as we showed in Def-
inition III;3.3, the functionality of the Bloom filter is preserved after encryption. This allows
further precomputation that allows the holder to keep updating the Bloom filter after encryption
has already taken place. For instance, one can precompute encryptions of 0 for rerandomising the
Bloom filter between protocol instances. Once this initial cost is removed, our protocols can be
run very efficiently.

All the code for our toolkit is open-source including code for the PSO toolkit;14 and the imple-
mentation of the encrypted Bloom filter API.15 The implementation is a proof-of-concept in the
sense that the experiments merely test the functionality and do not implement fully operational

13https://github.com/snipsco/paillier-libraries-benchmarks
14https://github.com/alxdavids/pso-toolkit
15https://github.com/alxdavids/yabf
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clients for performing thePSOprotocol. Ourmain focus is on exploring the efficiency of theprim-
itive that we built. Additionally, mapping our implementation into a fully-operational design is
simply a matter of writing trivial servers and clients, that communicate using the same messages
in our proof-of-concept proposal.

III;8.1 Parameter choices

All experiments16 have been run on hardware with 256GBRAMwith an Intel(R) Xeon(R) CPU
E5-2667 v2 @ 3.30GHz and utilising a maximum of 8 cores (when parallel computation is re-
quired). We examine running times for sets sizes ranging from 28 to 218 elements; this includes
sets of the same size as shown in the comparison of [260] (the largest scale comparison of PSI
protocols, to date).

We choose a false positive probability of ε = 2−30 (i.e. k = 30 by Equation (III;6)) alongside the
choice of optimal parameters for our Bloom filter. For instance, for n = 256, this implies that
L ≈ 11000 by Definition III;5.

For the Paillier encryption schemewe experimentwithmoduliN with bit-lengths 1024 and 2048

roughly equivalent to 80 and 112 bit security [247]. We chose the domain of possible elements
to be 5n where n is the set size and we choose the sets at random from this domain. This choice
was made merely to guarantee that the size of the intersection is not trivially close to 0, ensuring
a realistic simulation. If we chose the domain to be too large, then choosing random sets would
leave the intersection close to 0with high probability.

During our experimentation we make use of concurrency features in Go to make significant sav-
ings via parallel execution of operations. Times were∼ 3× quicker using parallel execution (via
goroutines) and thus we do not present our single-threaded results.

III;8.2 Experimental results and discussion

In Table III;3, we give the total runtimes for our protocols, using the parameter settings from
above. Table III;4 analyses the portion of the runtimes that are allocated to encrypting the Bloom
filter that is used in the PSO protocol. Finally, Table III;5 analyses the concrete, maximum com-
munication overheads for the protocols (in MB).

Comparable implementations from previous work. In Table III;6 and Table III;7 we
provide details from experiments performed by Pinkas et al. [260] that compared contemporary,
state-of-the-art PSI protocols. We do not include the full experimental result set, only analysing

16Using the version of code corresponding to commit 426b6d4fbbd8a6f960b6e75bf03a15d6e9b6392a.
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Set size Timings PSU PSI CA

28
Hom. ops 0.49 0.5 0.5
Out time 0.56 0.54 0.55
Full time 11.78 11.76 11.75

210
Hom. ops 1.94 1.96 1.95
Out time 2.21 2.2 2.22
Full time 44.73 44.68 44.7

212
Hom. ops 7.82 7.82 7.87
Out time 8.61 8.74 8.86
Full time 175.7 175.79 175.96

214
Hom. ops 31.37 31.32 31.59
Out time 35.78 34.9 35.48
Full time 702.4 702.39 703.24

216
Hom. ops 126.16 127.43 127.01
Out time 141.72 138.82 141.76
Full time 2836.5 2834.68 2837.19

218
Hom. ops 510.19 503.95 508.53
Out time 536.48 556.72 556.05
Full time 11341.2 11327.78 11331.67

Set size Timings PSU PSI CA

28
Hom. ops 3.33 3.36 3.33
Out time 3.66 3.55 3.58
Full time 78.02 77.76 77.76

210
Hom. ops 13.45 13.33 13.44
Out time 14.77 14.26 14.31
Full time 312.44 311.61 311.76

212
Hom. ops 52.97 53.41 53.15
Out time 55.59 57.98 56.44
Full time 1233.59 1235.69 1233.84

214
Hom. ops 212.33 212 212.55
Out time 228.13 223.31 225.11
Full time 4952.94 4947.32 4949.66

216
Hom. ops 856.27 859.67 857.9
Out time 902.81 906.9 907.27
Full time 19881.51 19888.79 19887.17

218
Hom. ops 3411.87 3416.9 3419.2
Out time 3580.25 3595 3575.94
Full time 79272.48 79290.82 79274.15

Table III;3: Runtimes (s) for increasing set sizes, left = 1024-bit moduli, right = 2048-bit. ‘Hom. ops’
refers to time taken for homomorphic operations; ‘Out time’ refers to time taken to compute
output; ‘Full time’ includes time for encryption from Table III;4.

28 210 212 214 216 218

1024 bits 10.7 40.53 159.23 636.17 2568.41 10267.03
2048 bits 70.85 284.02 1124.3 4512 18122 72278.95

Table III;4: Bloom filter encryption times (s)

Set sizes 28 210 212 214 216 218

Comms (MB) 2.83 11.32 45.28 181.12 724.49 2897.97

Table III;5: Maximum communication costs (MB) for our protocols for 1024 bit security.
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λ 80 112
Set sizes 210 212 214 216 218 210 212 214 216 218

De Cristofaro et al. [123] 0.5 2.0 7.9 31.3 124.9 7.7 31.0 124.3 497.2 1982.1
Huang et al. [191] 1.2 5.1 21.2 100.3 462.7 1.9 7.8 36.5 168.9 762.4
Dong et al. [130] 0.15 0.5 2.0 8.1 34.3 0.27 1.0 4.1 16.7 67.6

Table III;6: Runtimes (s) taken from [260]

λ 80 112
Set sizes 210 212 214 216 218 210 212 214 216 218

De Cristofaro et al. [123] 0.3 1.1 4.3 17.3 69.0 0.8 3.1 12.5 50.0 200.0
Huang et al. [191] 18.8 90.0 420.0 1920.0 8640.0 30.0 144.0 672.0 3072.0 13824.0
Dong et al. [130] 1.1 4.5 18.1 72.6 290.4 2.9 11.6 46.2 184.9 739.7

Table III;7: Communication costs (MB) taken from [260]

protocols necessitating public-key operations [123, 191], or that are built using similar primi-
tives [130]. We use these tables to offer some non-rigorous material for comparing the efficiency
of our design against previous work. Since these results were acquired using different configura-
tions of hardware and software, it is impossible to offer an accurate comparison of the protocols
from these results alone. Moreover, the runtimes were taken from optimised implementations
that were not released as open-source configurations, meaning that repeating the results of [260]
would be difficult.

It should be noted that protocols built on symmetric primitives such as [214, 258, 260, 267] are
muchmore efficient than our design, but arguably also achieve different goals (i.e. much less func-
tionality). Therefore, we do not include them in the tables.

Discussion. Clearly, there is a large gap in computational efficiency between our protocols and
the previous work in Tables III;6 and III;7. On the other hand, the communication cost of our
protocol is comparable with the other designs, improving on circuit-based approach of Huang et
al. [191]. We reinforce that the protocols that we are comparing with only compute the PSI func-
tionality, while our design computes much more expressive functionality (PSU, PSI and PSU/I-
CA).

Additionally, observe that the majority of our running times are spent on encrypting the initial
Bloom filter that is sent to P2. In fact, the homomorphic operations and output computation
typically take< 10% of all operating runtime for all set sizes. Subsequently, we can see that that
the actual online phase of our protocol could be regarded as practical. As a consequence, themain
bottleneck of our design appears to be the encryption phase and thus any optimisation in the
underlying encryption scheme would drastically improve the practicality of our construction.

It should finally be noted that the runtimes grow approximately linearly with the increase in the
set size. In fact, the growth is typically directly proportional to this growth. This provides further
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evidence of the linear asymptotic relationship between the efficiency of our protocols and the size
of the sets that we consider.

III;8.3 Amortising Bloom filter encryption

Importantly, we can think of the Bloom filter encryption phase as an offline cost. By encrypt-
ing with an additively homomorphic scheme, we are able to retain functionality of the Bloom
filter even after encryption has taken place. Notice that the encrypting party is only required to
store new elements, and recall that it is impossible to remove elements — even from a standard
Bloom filter. After a Bloom filter has been encrypted, elements can still be added to the set by
adding encryptions of ‘1’ to any specified ciphertext that currently encrypts ‘0’. Alternatively, the
holder of the Bloom filter can simply encrypt k new encryptions of 1 and replaceEIBF.arr[yl] for
{yl}l∈[k] ← h̃(x) for each x ∈ S.

Now, suppose that EIBF has been used in a protocol instantiation with P2, and that P1 wishes
to use EIBF again in another instantiation with a new participant P′2. Then, as long as P2 does
not collude withP′2,P1 can updateEIBF to include any new set items and re-use this Bloom filter
without giving away information about the underlying set. If we assume that P2 and P′2 can col-
lude, then P1 needs to rerandomise the ciphertext entries. Fortunately, P1 can also pre-compute
the necessary items needed for rerandomisation (essentially corresponding to approximately L
encryptions of 0). Notice that P1 can just use the she.CRerand algorithm to rerandomise any
entry that does not change between protocol instantiations. Consequently, this means that EIBF
is computationally indistinguishable from a newly constructed encrypted Bloom filter.

With this in mind, precomputing the initial encryption, and necessary encryptions of 0 for reran-
domisation, can be thought of as a one-time cost. The ‘online’ phase of our protocol is very effi-
cient to run and so it is an advantageous feature of our design that the main cost can be amortised
across several instantiations. Concretely, this would see an approximate 90% decrease in subse-
quent runtimes. Extrapolation suggests that our protocol would come close to being as compu-
tationally efficient as the design of [123]. Coupled with the comparable communication costs,
our protocols can be seen as providing a viable trade-off that allows much more expressive PSO
functionality. Our designs demonstrate online phases that are comparably efficient with well-
known dedicated PSI protocols, with the caveat of a necessary and expensive offline phase. We
re-emphasise the previous OPE-based techniques are not eligible for this kind of amortisation,
since the addition of one new root would require changing all of the encrypted coefficients in the
polynomial whp.
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III;9 Achieving malicious security

The final contribution of this chapter is dedicated to showing that we can alter the securitymodel
that our protocols are situated within, and realise a variant of our protocols where security is
proven in the event of a malicious adversary corrupting P1. We still require that P2 is only cor-
ruptedby an adversarywithin the semi-honestmodel.17 Specifically, the proof is basedonprevious
works such as [73, 110, 122, 125, 204], where the set ofP1 is first authenticated by a separate certifi-
cation authority,C. This security model is referred to as the APSI setting (thus APSO for general
private set operations).

It is likely thatwe could achievemalicious security using complex instantiations of zero-knowledge
proofs in the standard PSO security model. For instance, we could leverage ideas from [122, 146,
181, 211] since they compute very similar functionality using similarmethods. However, the aimof
thiswork is to demonstrate a simple, efficient toolkit of PSOprotocols. Constructing complicated
zero-knowledge mechanisms does not fit with this approach.

APSO security model. Similarly to [125, 204], P1 submits S1 and BF to C; which returns a
signed, encryptedBloom filter representingS1. The idea behind this proof strategy is that the sim-
ulator Sim plays the role of both C and the simulator for malicious security (Definition III;1.8),
when P1 is corrupted. Informally, since Sim receives S1 and signs it, this means that Sim essen-
tially has access to the same information as in the semi-honest security model. Therefore, using
exactly the same proof strategy as before, it is possible to simulate the interaction that P1 has in
the real world execution. Notice that if P1 could use an inconsistent input set that it submits to
C, then this would constitute a valid forgery on a signature scheme. Using a signature scheme that
satisfies EUF-CMA security ensures that the probability of such an event occurring is negligible.

In this model we ultimately prove themalicious security of our scheme, without themajor proto-
col changes that would be necessary in the standardmodel for instantiation ZK proof techniques.
However, it is valid to question the model itself since it enforces that the set of P1 is revealed to a
third party. We believe that while APSO generally may have little utility, it is useful to elucidate
exactly the circumstance in which our simple protocol design provides malicious security. The
implied outcome is that if P1 is forced to commit to an honestly-generated input set, then our
protocol can be adapted to demonstrate malicious security guarantees.

Concrete adaptation. Steps one and two of our protocols are required to change, to enable
the action ofC to be included in our protocols. We provide details of the concrete changes to step
one in Figure III;9; note that this step is the same for all three protocols so it is enough to only
provide the adaptations in the case ofψ∪. For step two, P2 now receives (EIBF.pp, ω), where ω

17Achieving security for malicious P2 is less important as µ2 = ∅.
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ψ1
∪(P1, he)

1 : BF← BF.init(1L, 1n, 1k);

2 : BF.Store(S1,BF.h̃);

3 : (S1, invert(BF))→ C(he, dss);

4 : (EIBF, ω)← C(he, dss, IBF,S1);

5 : (EIBF.pp, ω)→ P2;

C(he, dss, IBF,S)

1 : for x ∈ |S| :

2 : if ¬(IBF.Query(x)
?
= 0);

3 : return ⊥;

4 : EIBF← encrypt(pk, IBF);

5 : ω ← dss.Sign(skdss,EIBF.arr);

6 : return (EIBF, ω);

Figure III;9: Left: Step one, computed by P1 in our APSU protocol. The steps are the same for he ∈
{she, ahe}. Right: Action of the certifierC, if⊥← C then the protocol aborts.

is a signature for EIBF.arr. Step two changes to incorporate the verification of the signature pair
(Equation (III;12)) in the first line:

b← dss.Verify(vkdss, (EIBF.arr, ω)) (III;12)

before proceeding with the original definitions for each of the individual protocols. Since this is
the only change, we neglect to write out new versions of step two in its entirety.

We provide a new proof of security in Theorem III;9.1 for the PSU case, satisfying the case where
PA1 acts maliciously. Proofs for the other protocols follow identically using this argument and the
rest of the simulation from the original proofs in the semi-honest security model. In Figure III;9,
we assume thatC has key pairs

(pkhe, skhe)←$ he.KeyGen(1λ),

(vkdss, skdss)←$ dss.KeyGen(1λ),

where dss is a digital signature scheme secure against existential forgeries under adaptively-chosen
queries (Definition II;5.9). We require that the message spaceXdss for dss is the ciphertext space
Yhe for he. Moreover, we modify the auxiliary information in the protocol to be

auxj = (|Sj |, pkhe, vkdss),

for j ∈ {1, 2}; noting that P1 no longer has access to skhe.

We restate the construction of the PSUprotocol here, for completeness. The only changes are that
step one is defined as in Figure III;9, and step two requires the signature verification check from
Equation (III;12) to be made in line 1.
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Construction III;9.1 [Malicious server]

Let ψ∪ be a protocol for the functionality F∪ (Equation (III;7)) and let
he,BF,Pj ,Sj ,S, auxj ,msgsj ,Viewj be described as above.
We constructψ∪ as a composition of the steps:

1. (P2 : EIBF.pp)← ψ1
∪(P1, he) [Figure III;9];

2. (P1 : W ) ← ψ2
∪(P2,EIBF.pp, he) [Figure III;3] (with the modification made in

Equation (III;12));

3. (P1 : S∪)← ψ3
∪(P1,W, he) [Figure III;4].

We set µ1 = S∪ and µ2 = ∅.

The correctness of Construction III;9.1 is exactly the same as in Theorem III;4.1, so we do not
restate it. We give the newproof of security for the casewhenPA1 is corrupted by a PPT algorithm,
A, in the malicious security model (Definition III;1.8).

Theorem III;9.1 [Security]

Letψ∪ be defined as in Construction III;9.1. Thenψ∪ securely computes the functionality
F∪, under the IND-CPA security of he and the EUF-CMA security of dss, in the presence
of PPT adversaries maliciously corrupting P1, and semi-honestly corrupting P2.

Proof. The proof of the case whenP2 is corrupted is the same as in the proof of Theorem III;4.2.
We define the simulator, Sim1, for the case when P1 is corrupted.

Simulation III;9.1 [Sim1(aux1)]

• Sim1 plays the role of C and receives (IBF, S1) from P1, and returns (EIBF, ω) to
P1 (or aborts).

• Sim1 simulates the rest of the protocol using oracle access to the ideal functionality
F∪(·, S2), the set S1, and computes the simulation of P2 in exactly the same way as
Simulation III;4.1.
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Lemma III;9.1 [View1 ≈c ViewSim]

ViewSim in Simulation III;9.1 is computationally indistinguishable fromView1 inψ∪, un-
der the existential unforgeability of dss.

Proof. The security proof can be split into two cases, the first case involvesA forging a new signa-
ture for a pair (EIBF′.arr, ω′) and the second case is whereA plays the rest of the game using the
original pair (EIBF.arr, ω). The probability thatA succeeds in the first case can be boundedby an
adversary B that attempts to break the existential unforgeability of dss. For example, ifA forges
a signature with probability δ, then B acts as Sim1 and submits the new pair (EIBF′.arr, ω′) to
the expeufB (1λ) challenger and wins with probability δ. As a result, we have that δ < negl(λ) if
dss computationally satisfies EUF-CMA security.

In the second case, notice that Sim1 essentially has the same information that Simulation III;4.1
has (i.e. the set S1, access to the output (S1 ∪S2) via the ideal functionality, and the set cardinali-
ties). As such, it can simulate the rest of the game in exactly the sameway as before. Consequently,
the proof of Lemma III;9.1 is complete.

The proof of Theorem III;9.1 follows from the proof of Lemma III;9.1.

While we do not state explicit proofs for themalicious security variants of our PSI and PSU/I-CA
protocols, they follow under exactly the same assumptions as above. Therefore, our toolkit can be
proven secure in the APSOmodel, provided that dss satisfies computational EUF-CMA security.

Full malicious security. Achieving security against a malicious P2 is much more difficult
because the adversary can always refuse to compute the correct functionality, andP1 cannot detect
this. However, it is also less meaningful — since the semantic security of the encryption scheme
means that P2 can still not learn anything about S1, so confidentiality is preserved.

III;10 Conclusion

In this chapter, we gave new two-round protocols for computing private set union, private set in-
tersection and private set cardinality operations between two participants, and in the presence of
semi-honest adversaries. Our techniques are similar in composition to the OPE-based techniques
of [143, 146, 181, 211] but instead use an underlying encrypted Bloom filter, rather than an en-
crypted polynomial. We require the usage of an additively homomorphic encryption scheme, or
a somewhat homomorphic encryption scheme, that satisfies semantic security. We can improve
the security guarantees in the setting where the set of P1 is authenticated by an external certifier.
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In this case, we show that security against malicious corruptions of P1 under the same primitives
and using a digital signature scheme that satisfies EUF-CMA security.

In the case of the somewhat homomorphic encryption scheme, the complexities are linear in the
size of the sets, as such our protocol for private set union is the first of its kind to provide such
asymptotic efficiency. As a corollary, we also give the first toolkit for computing PSU, PSI and
PSU/I-CA with linear computational and communication complexities wrt the input set sizes.
When using an additive homomorphic encryption scheme, the complexities are slightly larger
since there is an additional number of operations that is logarithmic in the size of the universe
that the sets are sampled from. The usage of the Bloom filter is the reason that we can make the
improvements, since a Bloom filter query requires a number of operations, k, that is independent
of the set size. In the OPE case, a query requires a linear number of operations in the set size.

We also provide a working implementation of our scheme written in Go [285]. The results of our
implementation show that our protocol is comparable to recent efforts to construct PSO toolkits
for multiple operations from public-key based techniques. In fact, most of the cost is in estab-
lishing the encrypted Bloom filter, and we show that this can be amortised over multiple protocol
runs, helping to lower the running times by approximately 90%.

III;11 Future work

In this section, we detail possible avenues for improving on the results in this chapter.

Linear PSU from symmetric primitives. We noted that PSU seems hard to achieve from
symmetric primitives since the elements that are transferred are unknown to the receiver. Recent
fast protocols for PSI and cardinality variants make use of the fact that the elements that are trans-
ferred are known to the receiver. However, we have no actual evidence that such constructions are
impossible. Consequently, any work that was able to achieve linear computational complexities
while making use of inherently symmetric cryptographic techniques would be highly valuable.
The closest work to achieving this was [47], though that construction requires super-linear num-
bers of operations and is thus not very scalable. Expanding on this idea, any unified symmetric
technique for computing PSUmay result in a fast toolkit for all of the main PSOs under the same
primitive.

Expansion of malicious security guarantee. Whilst we prove security against a mali-
cious corruption of P1 in the authenticated setting, it would be beneficial to consider expansion
of the guarantees that we can provide. Firstly, establishing security against a malicious corrup-
tion of P2 in the same model would help to unify the guarantee. Secondly, proving malicious
security in the standard model, where sets are not certified would be a welcome addition. When
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exploring this avenue, a key consideration should be that the asymptotic complexities need to be
kept at least linear to ensure that scalability is possible. Also, using techniques that do not require
zero-knowledge proofs would be useful step in preserving the simplicity of our designs.

Threshold designs for PSOs. The works of [146, 191, 211] give a number of adaptations to
their protocols that allow thresholds to be embedded into the computation. These thresholds are
not over values, as we provide in Chapter IV, but instead implement lower and upper thresholds
that apply tomultisets (e.g. intersection with a lower threshold implies that an element is learnt if
it appears more times than the lower threshold). Since [146, 211] use OPE-based techniques that
are similar to our design, it may be fairly simple to adapt their designs to work over the encrypted
Bloom filter that we use.

Cardinality-hiding protocols. The work of [80] shows that it is possible to construct PSI
protocols that hide the cardinality of the sets that are used. Moreover, the protocol of [71] gives
a design of PSU that achieves the same goal. An adaptation to our protocol that provided the
same guarantee would enable us to remove the cardinality information that is provided to both
players in the form of the auxiliary information that they control. This would be advantageous
and would help to provide the simplest possible proof of security.

Multi-party protocols. It would also be interesting to adapt our protocols to the multi-
party setting. This would provide a more generic toolkit and would allow collaborative informa-
tion sharing between more than two participants. The works of Frikken [146] and Kissner and
Song [211] give realisations of multi-party protocols in the OPE setting (though they are fairly
efficient). Therefore, it seems plausible that a multi-party design can be adapted from our current
constructions, using similar techniques.
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Preface

This chapter is basedon elements of thepublication [119] [WISCS@CCS2016]. Our contribution
represents an adaptation of the PSU protocol that we constructed in Chapter III to a novel use-
case.

We only focus on the parts of the original paper [119] that were explicitly contributed by the au-
thor of this thesis. As such, we only briefly describe the elements of the paper (relating to the
game-theoretic analysis that is presented there) that were mainly the contributions of the other
authors. We provide a rigorous treatment of the security proofs that are required for the con-
struction taken from this work. These were not present previously due to space constraints. We
alsomake some smallmodifications to the protocol and securitymodel to aid inmaking this treat-
ment more precise.

Overview of original contributions

• A formalisation of an even-handed mediator for fair vulnerability sharing between two in-
dividuals.

• Adaptation of mediator to the scenario where vulnerabilities are assigned explicit values
and information is shared based on these values.

• A novel protocol that instantiates the mediator functionality without the need for trusted
third parties. Our protocol is constructed from the PSU design of Section III;4. The
adapted protocol is secure in the semi-honest security model.
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IV Applications of PSU for information sharing

Having given efficient scalable protocols for constructing a toolkit for private set operations, we
turn to potential applications of such protocols. In this section, we show that the simplicity of
our protocols from the previous sections affords the ability to construct much more specific and
technical functionality.

While generic datamining procedures that utilise the individual protocols are obviously intended
targets of PSO protocols, we consider the specific case of a particular type of procedure known as
information sharing. Information sharing is a collaborative exercise that is usedwithin competitive
industries, or during state-level diplomacy, to enhance the knowledge of the entities taking part.
The sharing refers to the action of entities revealing private data to other entities, in exchange for
learning data that they do not already know.

IV;1 Motivation

In recent decades, with the vast increase of data that is stored and hidden, information sharing has
taken on a new importance in the ‘cyber security’ space. The need for all data-holding entities to
securely maintain and store such data requires accurate knowledge of the threat model that each
of the entities face. In most industries, the threat models for industry competitors can be very
similar, and likewise for the methods of storage.

Rather than spending resources on establishing the required knowledge of the threatmodel them-
selves, it may be cheaper to exchange information with competitors; subsequently helping each
other to collaboratively describe the plausible threats. However, there are a number of parame-
ters that have to be considered before it can be stated whether such a trade can be beneficial for
the participants. For instance, if the resultant gain made via collaboration cannot be quantified
effectively, then disparate entities are unlikely to engage in a trade.

It is widely believed that sharing such information between entities (or nation states) in this way
is a mutually beneficial operation; i.e. providing shared utility. As a result, there have been a
number of joint initiatives (between industry and governments) that have attempted to advance
the process of data sharing and reduce the number and impact of exploits on states and businesses.

For example, in the United Kingdom, the Cyber-security Information Sharing Partnership [111],
launched in 2016, is:

“... a joint industry and government initiative set up to exchange cyber threat in-

formation in real time, in a secure, confidential and dynamic environment, increasing

situational awareness and reducing the impact on UK business”.

Additionally, in the United States, the Cybersecurity Information Sharing Act [270] was signed
in December 2015 with the goal of improving
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“... cyber-security in the United States through enhanced sharing of information

about cybersecurity threats, and for other purposes”.

Such partnerships have grown alongside the development of platforms and standards facilitating
the transferral of information in numerous ways.

Vulnerability sharing. In this section we will be focusing on the particular case where en-
tities share knowledge of vulnerabilities in commonly used software platforms. Such situations
arise often in industries where numerous competitors use similar software backbones to store and
manipulate data that is relevant to their operation. Therefore, any vulnerabilities that occur are
likely to affect industries as a whole rather than just any one entity. This is similar at the state-level,
with systems that are used for providing key parts of infrastructure. A good example is the usage
of programming logic controllers via commonly used operating systems and platforms— for pro-
viding key parts of national infrastructure, on a global scale. These can be easy targets for ‘blind’
computer worms and viruses that simply search for known configurations, before releasing their
payload (as was in the case of the Stuxnetworm [250]).

Sharing vulnerability information in these cases, could potentially lead to the prevention of such
attacks in the future. A common incentive for doing this is to prevent growing levels of distrust in
an entire industry as a whole due to an exposed vulnerability, even if an attack only affected one
particular entity. For example, recent research suggests that exploited vulnerabilities can lead to
customer distrust in consumers and investors alike [79, 163]. This ultimately results in large losses
of market value and reputation for the firms and institutions in question.

On the other hand, there are some problems that make vulnerability sharing especially difficult.
One problem is that sharing sensitive vulnerability data in systems in a non-secure manner, could
easily lead to threat actors exploiting such vulnerabilities before all necessary systems have been
updated. Collaborative platforms such as ThreatExchange [286] (developed by Facebook) and
ThreatStream [287], aim to provide secure online platforms for allowing entities to post knowl-
edge of such vulnerabilities, without revealing such data publicly.

Another problem is that there is no real method of structuring and canonicalising vulnerability
data. Therefore, the data that one entity receives may not be written in a format that it can parse.
To this end, the OASIS standards STIX and TAXII [249], provide frameworks within which vul-
nerability information can be exchanged in standardisedmanners, so that it can be understood by
all of the exchanging participants.

Unfortunately, while these systemsmay fulfil the tasks they set out to achieve, they do not provide
cryptographic guarantees to the participants. Thismeans that the systems that are used for sharing
are vulnerable to the possibility of data extraction. Additionally, the standards only provide the
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IV Applications of PSU for information sharing

frameworks for describing the sharing of data. They do not give secure implementations of such
sharing mechanisms.

IV;2 Achieving cryptographic hardness via PSOs

In the interests of developing cryptographicmechanisms for allowing information sharing, notice
that the sharing of data is similar to the case of a private set union protocol. That is, we have two
entities with hidden data sets — containing vulnerability information of a mutual interest.1 The
only difference is that information sharing requires a ‘fair trade’, in the sense that bothparticipants
receive new data. This establishes the shared utility of the interaction. In PSU, if one participant
controls a set that is the entirety of the other set, then the union operation will be empty. Such an
eventuality is only learnt after the protocol is carried out. Toprevent this occurring, onepossibility
is for the parties to impose a pre-agreed upper limit on the value of the trade; this prevents one
participant from trading a high-value set of information, in return for a set of data that is relatively
low-valued.

With this in mind, in this section we show how the PSU protocol from Section III;4 (Construc-
tion III;4.1) can be extended to allow exchange of items (x, ν) ∈ S × N, where ν is the value of
x. Specifically, we set V ∈ N|S| and then provide an extension to the protocol allowing imple-
mentation of a threshold over the values inV, corresponding to the set S ⊆ S . The implication
is that P1 learns the union of the two sets, up to the maximum limit implied by the threshold on
the values ν ∈ V. Such a protocol can be used for constructing methods for information shar-
ing where the ‘information’ (elements in S ⊆ S) is separated from the value (elements in V). It
should be noted that protocols for computing private set intersection over set elements with as-
sociated data have already been considered by De Cristofaro et al. [123]. However, the associated
data has a much more generic structure in [123], and additionally union-type operations are not
considered.

The construction that we use inherits the scalable techniques that are allowed by the underlying
encrypted Bloom filter. However, the design is significantly more complex and requires a linear
number of communication rounds in the size of the set of P2. The original PSU protocol only
required two rounds of communication. Moreover, we make generic use of protocols for per-
forming (1-out-of-n) oblivious transfers, this concept is defined formally in Section IV;5. The
actual design of the protocol is instantiable using the OPE-based PSU protocols as well [146, 181,
211], since the mechanics of the value assertion is suitably external to the PSO design. However,
we only describe the adaptation in the case of the PSU construction given in Section III;4.

1Wemake the assumption that vulnerability information can be canonicalised.
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In particular, this section is based on parts of the work published in [119]. The work of [119], as
a whole, gives a game-theoretic model for the sharing of information when each set element has a
unique value ν assigned. It is shown there, that if a trusted mediator exists that can guarantee that
P1 andP2 can swap equal values of information, then both players will share as much as possible.
This operation is clearly similar to a union protocol, but where the amount of information is
limited by the necessary value restriction. The protocol that we develop allows us to replace the
mediator with a PSO protocol. We provide a more detailed background in Section IV;3.

This chapter will focus entirely on the construction of the bespoke protocol; thus reflecting the
contribution of the thesis author in the original work of [119]. In the rest of this section, we will
commonly refer to the collaboratively-chosen threshold as τ . We assume that τ is computed prior
to the enacting of the protocol.

IV;3 Incentives for vulnerability sharing

The game-theoretic analysis of [119] essentially establishes the parameters that describe the dy-
namics of the trading. While the tools and initiatives that we described previously can provide
useful and efficient platforms for exchange of cyber security information, the role of incentives
must not be ignored. If they are not described sufficiently then the natural course of action is to
not share information, since it is not clear how revealing sensitive data can benefit an entity. For
instance, sharing canoften lead to leakeddisclosure of security breach incidents that canharmcon-
sumer and investor confidence, and lead to significant decreases in the market value of firms [79,
163].

Thedescription andanalysis of these vulnerability sharing scenarioswas first given a game-theoretic
analysis by Khouzani et al. [208]. In summary, their work establishes a two-participant model
analysing the situations underwhich these two entitieswill share vulnerability information. Their
analysis uses three parameters e1, e2, e3, where:

• e1 is the loss of utility for Pj if a vulnerability isn’t known and is then exploited;

• e2 is the competitive gain that Pj receives from a vulnerability exploited in the system of
Pj ;

• e3 is the loss of utility for both players, modelling the negative effect of a vulnerability ex-
ploitation on the market as a whole.

Several other assumptions are necessary, including that vulnerabilities all carry the same value. In
thismodel, they show that the existence of amediator that can guarantee fair trades of information
—e.g. thatP1 andP2 both receive τ newelements from the trade— incentivises bothparticipants
to share asmuch information as is possible. If no suchmediator exists, then the parameters suggest
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M(S1, S2, τ)

1 : for j ∈ [2] :

2 : W ← ∅;
3 : while τ > 0 :

4 : if Sj [i] /∈ Sj :

5 : W ← Sj [i];
6 : τ = τ − 1;

7 : W ← Pj ;

Figure IV;1: Informal mediator specification from [208].

that sharing no information is the most profitable scenario. Given the real-world examples of
incentives for performing information sharing, it is beneficial to explore the necessary structure
to motivate the two participants to share freely. The mediator given by [208], denoted byM, is
specified informally in Figure IV;1.

In this trade, it is assumed that τ is computed by P1,P2 in tandem, prior to the mediator being
activated. In the economic model of [208], the participants would propose τ1, τ2 and choose
τ = min(τ1, τ2). Since the existence of a mediator implies that the highest utility is gained by
sharing as much as possible, this implies that τ = min(|S1| − |S1 ∩ S2|, |S2| − |S1 ∩ S2|).

Davidson et al. [119] (in the work that this chapter is based on) improve the model to allow vul-
nerabilities to have differing values assigned from a set V . That is, there is a canonical function
value : S∗ 7→ V such that, for any x ∈ S , then νx = value(x) is a deterministic output and
νx is the value of x. In this widened model, the dynamics do not change and full sharing is still
the optimal strategy, when a mediator exists. This mediator now computes fair trades based on
the maximum threshold τ ∈ Z, indicating the maximum value of trades that can be tolerated
by both of Pj for j ∈ {1, 2}. This value of τ can be computed apriori using a general two-party
secure computation protocol for the functionmin(·, ·), that outputs theminimumof two values
(many fast generic constructions exist, e.g. [37, 113, 290]).

Using the values of the elements instead, we update the informal functionality of the mediator in
Figure IV;2. Describing the action of the mediator in this way is necessary for helping us to give a
cryptographic construction that achieves the same functionality.

Note, that Figure IV;2 represents a necessary relaxation from the ideal mediator laid out above. In
other words,M does not seek to maximise the value of the trade. For the mediator to maximise
value(Sτ,j), it would essentially require solving an instance of the subset sum problem; a variant
of the knapsack problem (where the weights are equal to the values of the items). We detail the
knapsack problem below.
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IV;3 Incentives for vulnerability sharing

M(S1,S2, τ)

1 : for j ∈ [2] :

2 : W ← ∅;
3 : for i ∈ [nj ] :

4 : τi = τ − value(Sj [i]);
5 : if (Sj [i] /∈ Sj) ∧ (τi > 0) :

6 : W [i]← Sj [i];
7 : τ = τi;

8 : W ← Pj ;

Figure IV;2: Informal (greedy) mediator specification for vulnerability sharing with associated values.

(Knapsack problem): Given a bound B ∈ N, a set S = {a1, . . . , an} with
corresponding weights {w(a1), . . . , w(an)} and values {v(a1), . . . , v(an)}. Then
the problem is to find a subset I ⊆ [n], s.t.

∑
i∈I w(ai) ≤ B and

∑
i∈I v(ai) =

maxI′(
∑

i∈I′ v(ai)) for all other subsets I
′ ⊆ [n].

While polynomial-time approximations of the knapsack problem exist (e.g. see [218]), it is prefer-
able to consider the above relaxation to stay as general as possible.

Underlying trade assumptions. While the canonical value assignment function, value,
seems far-fetched, it should benoted that there have been attempts to practically construct systems
for performing this exact requirement. Firstly, the OASIS standards [249] provide methods for
describing vulnerability data in strict frameworks. Secondly, platforms such as the NIST national
vulnerability database [248], provide open-access to huge databases of known vulnerabilities —
along with metrics that assert the severity of any given vulnerability. Vulnerabilities are assigned
a score from (0-5) assessing the severity of an exploit using it. Such efforts can be construed as
equivalent to the function value that we consider.

Definition IV;3.1 [Value assignment]

Let S be a universe. Then, there is a deterministic function, value : S 7→ N, s.t.
value(x) = νx ∈ N for all x ∈ S . For any S ∈ S , let n = |S|. Then, we write V to
be the set, s.t. V[i] = value(S[i]), ∀ elements in S. We say thatV is the associated value set

for S. We abuse notation and let value(S) =
∑n

i=1 value(S[i]) be the value of the entire
set.

Another assumption that we make is that vulnerabilities can be deterministically (and efficiently)
assigned a tag inS . This is necessary for describing the exchange in the language of PSOprotocols.
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IV;4 Relatedwork

Before proceeding any further, we give a brief summary of previous work that is related to the
themes discussed in this section.

PSOs for information sharing. The protocol that we develop in this section is highly spe-
cialised to the task of vulnerability sharing in the scenarios considered by [119, 208]. However,
Freudiger et al. [145] consider similar settings where data sharing is necessary for collaboratively
improving the knowledge of participants wrt implementing blacklists. As we mentioned previ-
ously, the design of private set operations protocols that implement thresholds (without the asso-
ciated data) has been explored thoroughly [47, 146, 191, 211]. These thresholds are implemented
over the set elements themselves, rather than any associated data.

Information sharing economics. The need for studying the economics of sharing informa-
tion derives from the conflicting incentives tomaintain an advantage over rivals, while supporting
allies. Typically information has a high cost to generate, for example in R&D, but is cheap to dis-
tribute, such as over a secure internet connection. Sometimes information is given away for free,
such as in a health awareness campaign. But usually, information is traded at a price, paid for
with cash or other information in return. Traditional forms of information of economic interest
include market data, newspaper and magazine access, or consumer data for advertising purposes.
For a guide on information economics, see [276]. For a more a theoretical survey on information
sharing games, see [280].

Information sharing in the context of cybersecurity is investigated in [170, 179, 228, 295]. For
example, Gordon et al. present a model for evaluating the effects of US policy on computer sys-
tems security, showing that when economic or legal mechanisms incentivise information shar-
ing between private firms, firms invest less in security but the overall network is made more se-
cure [170]. Further research into the effects of US policy, specifically the Sarbanes-Oxley Act, on
security information sharing can be found in [179]. Phillips, Ting andDemurjian take a geopolit-
ical approach to the information economics of extreme security situations, such as international
disasters or military action [257].

More recently, Laube and Böhme [221] investigate how legally mandatory sharing of security
breaches affects the balance of private security investment fromdetective topreventativemeasures.
They show that when law enforcement for reporting of security breaches is too strong, firms may
over-invest in detection and under-invest in prevention. This socially sub-optimal situation may
also arise when information sharing is too effective.

Security investment games. Cyber security, such as network, application, web or hardware
security, is a private good. This means that a user derives benefits from using secure products,
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and conversely firms that offer more secure products can command a higher price. To improve a
product or tool, firms invest in security goods such as penetration testing, formal analysis, network
redundancy and anti-virus software. Security games examine various economic scenarios relevant
to cybersecurity, with each game analysing a different behavioural dynamic [174].

For instance, when devices or applications are connectedwith each other, the security of thewhole
network depends on the security of each of the individual objects. This means that security is also
a public good, as improved security of one firm’s products and systems can indirectly improve the
security of other firms. The trade-off between investing in private security, and ‘free-riding’ off
the security of others gives rise to interdependent security investment games [199]. For example,
Kunreuther and Heal examine how the network effects on security can deincentivise security in-
vestment, as players (nodes) can decide to accept the risk from not investing on the hope of their
neighbours being secure enough to protect them for free [217]. For a detailed survey of classic
research into interdependent security investment games, see [220]. For a discussion on network
games in general, see [193].

IV;5 Oblivious transfer

Let P1 hold k indices, and let P2 hold a set S with cardinality n. Then a (k-out-of-n) oblivious
transfer protocol allowsP1 to learn k elements from Swithout: (1) revealing the indices toP2; (2)
P1 learning any of the other (n− k) elements left in S. We will denote such protocols byOTkn.

Oblivious transfer protocols were introduced by the works of [135, 263] and have beenmade very
simple and efficient in works such as [19, 93, 192, 213, 243]. In such protocols, P2 is referred to as
the ‘sender’ and P1 the ‘receiver’.

Definition IV;5.1 [Oblivious transfer]

Let P1 hold a setK ⊂ [n] of k indices, let P2 hold a set S ⊆ S where |S| = n. ThenOTkn
is a (k-out-of-n) oblivious transfer protocol if:

(µ1, µ2)← OTkn(P1,P2,K,S);

whereµ1 = {S[i]}i∈K andµ2 = ∅. Wewill define the views of the protocol to beView1 =

(K, µ1,msgsot1 , aux1) and View2 = (S, µ2,msgsot2 , aux2) — where msgsotj and auxj

abide by the conventions given in Definition II;6.1.

Remark IV;5.1. We may occasionally remove the explicitly mentioned inputs to the protocol OTkn,

if they are implied by context.
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IV Applications of PSU for information sharing

Wewill only assume the existence of protocolsOT1
n that are secure in the presence of semi-honest

adversaries. The security guarantee is equivalent to the notion given in Definition II;6.3. Such a
protocol was constructed in [93]. Our design is completely agnostic to the OT that we require
and sowe donot give any specific instantiation. Oblivious transfers usually require a large number
of public-key operations, but it was shown by [32] that a large number of oblivious transfers can
be created from a small constant number. This technique is known asOT extension and there are
many such instantiations [19, 192, 203, 213].

Advantage. We will denote the advantage of distinguishing the real and simulated executions
ofOTkn, in the presence of PPT semi-honest adversariesA, by:

max
A

(Adv(A, ot(1λ))) < negl(λ)

where A outputs 0 if it guesses that it is witnessing the real execution and 1 for the simulated
execution.

Layout. For the rest of this chapter, we only briefly refer back to the economic model and fo-
cus more on the formalisation of the mediator functionality in Figure IV;2. That is, the aim of
this section is to formalise the ideal functionality needed in the vulnerability sharing scenario that
we examine; and then construct a protocol that can instantiate this functionality securely. Sub-
sequently, we give a two-party adaptation of the PSU protocol in Construction III;4.1; securely
instantiating this mediator in the presence of semi-honest adversaries and allowing the partici-
pants to engage in full information sharing without the need for additional trust assumptions.
This is heavily based on what is written in [119][Section 4 onwards], with some modifications to
the structure of the protocol that was described.

IV;6 Formalisation of mediator functionality

Before we can construct a secure protocol, we should first crystallise the ideal ‘mediator’ function-
ality that we stated in Figure IV;2. This is the functionality that allows us to establish fair trades
that result in optimal information sharing, as laid out in [119, 208]. The value assignment func-
tion of Definition IV;3.1 allows P1 and P2 to assign consistent values to any element x ∈ S , in
the joint universe S .

Threshold subset-finders. Describing the ideal mediator functionality requires access to an
algorithm Π(S, τ) that locates some subset SI of S where I ⊆ [n], under the condition that
value(SI) ≤ τ for τ > 0. The algorithm only takes S as input, where S has associated value
set V, and is faced with a challenger that verifies the value of the final output set. We define the
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IV;6 Formalisation of mediator functionality

exptsfΠ (1λ, S, τ)

1 : W = [];

2 : for i ∈ Q = poly(λ) :

3 : xi ← Π(S, τ);

4 : if xi ≤ τ :

5 : τ = τ − value(xi);

6 : W ← xi;

7 : if (W ⊆ S) ∧ (τ ≥ 0) :

8 : return 1;

9 : else :

10 : return 0;

Figure IV;3: Threshold subset finder experiment for evaluating whether an algorithm Π can find a subset
SI of S such that

∑
i∈I νi ≤ τ .

interaction inFigure IV;3, whereλ is a parameter describing the running timeofΠ. The algorithm
succeeds if it is PPT and returns 1, otherwise it returns 0.

This is not a cryptographic game. In actual fact, we require the existence of PPT algorithms Π

that satisfy exptsfΠ (1λ) with probability 1. We can illustrate a (naive) concrete example of such a
Π, running in timeO(n) for wheren is polynomially-bounded by the number of queriesQ. The
algorithm simply setsQ = n and simply queries each set element in the order that they are placed
in. The output is clearly a subset of S and is thus viable in exptsfΠ (1λ,S, τ). Wewill always assume
that n is only polynomial in size.

Definition IV;6.1 [Threshold subset-finder]

We say that an algorithm Π, for inputs (S, τ) ∈ Sn × Z, successfully finds subsets S′ of S
such that value(S′) ≤ τ , if it succeeds in exptsfQ,Π(1λ, S, τ)with probability equal to 1.
Let C denote the challenger in exptsfΠ (1λ,S, τ), we can make the challenger explicit in the
definition ofΠ by writingΠC.

We further require an additional property that Π is agnostic to the universe of set elements that
are being considered.
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Definition IV;6.2 [Set agnostic]

Let Π satisfy Definition IV;6.1 for sets S ∈ S and S′ ∈ S . Let S, S′ be s.t. |S| = |S′| = n.
Let V̂ be a value set s.t. value(S[i]) = value(S′[i]) = V̂[m] for all i ∈ [n] (i.e. they share
the same value set).
We say thatΠ is set agnostic if: SM ← Π(S, τ), S′M ← Π(S′, τ) andM is an index set s.t.,
for all j ∈ M , then S[m] ∈ SM and S′[m] ∈ S′M . That is, Π effectively picks the same
index set, regardless of the input S. If Π is set agnostic, then we say that it is a threshold
subset finder for all universes S .

The naive algorithm satisfying Definition IV;6.1, that we described above, is set agnostic.

The ideal functionality thatweuse inDefinition IV;6.3 is definedwrt some choice of the algorithm
Π. It is necessary to define the ideal functionality in this way to prevent trivial distinguishing
attacks in the security proof of the protocol that we eventually build. This definition summarises
the functionality of the mediator that is required in [119, 208] for establishing fair trades.

Definition IV;6.3 [Mediator idealisation]

Let Sj ⊆ S be the input set with associated value set Vj , for j ∈ {1, 2}. Let τ > 0

be the maximum information sharing value threshold. Let Π be a threshold subset-finder
algorithm (Definition IV;6.1).
Then, let

FΠ
j,τ : (S × N)n1 × (S × N)n2 × N 7→ S∗,

be a functionality of the form:

FΠ
j,τ ((S1,V1), (S2,V2), τ) = Sj ∪Π(Sj \ (S1 ∩ S2), τ).

Importantly, our definition of the ideal mediator functionality depends entirely on the output of
the algorithmΠ. We are required tomake this explicit, since the participants in our protocol have
to run an algorithm of the form of Π in exptsfΠ (1λ, S, τ) to garner their output. If Π changes, so
does the output distribution. Thus, for providing correctness, we need to use a common algo-
rithmΠ for both the ideal functionality and the protocol.

Remark IV;6.1. As we mentioned above, in the economic scenario of [119] the mediator chooses

the maximum value subset — but such a mediator is unlikely to run in polynomial-time, and so

this relaxation is necessary. As a final note on this topic, it is unclear whether the approximation

algorithms of [218] would establish a viable algorithm in exptsfΠ (1λ, S, τ) since the algorithmΠ has

no access to the values in this setting. The naive O(n) algorithm that we detailed above is sufficient

for our needs.
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IV;7 Protocol for information sharing with value threshold

IV;7 Protocol for information sharingwith value
threshold

We will denote the protocol in this section by ψΠ
τ taking as input (Sj ,Vj) ∈ (S × Z)nj for

nj = |Sj |, for j ∈ {1, 2}. The aimof the protocol is to securely instantiate the ideal functionality
given in Definition IV;6.3. The key idea behind our protocol is that P2 randomises the messages
from step two of the PSU protocol in Chapter III so that P1 cannot immediately decrypt. Then
the two participants engage in an oblivious transfer protocol that reveals the random masks for
elements that are permitted to be learnt by the value threshold τ that is imposed over the set
elements that we consider.

Let he be a homomorphic encryption scheme, BF be a Bloom filter and let

auxj = (nj , (pkj , skj), pkj , τ, value);

where (pk1, sk1)←$ he.KeyGen(1λ), (pk2, sk2)←$ he.KeyGen(1λ). We abuse the notation of
he and allow encryptions of elements taken fromX = Zq .2 Aswith our previous protocols, only
P1 will learn the explicit outcome of the set operation. That is, let

SM = Π(S2 \ (S1 ∩ S2), τ) ⊆ S2,

and letVM ⊆ V2 be the associated values for the indices i ∈M . Then,

µ1 = (S1 ∪ SM ,VM ); µ2 = (VM );

are the outputs of the protocol andViewj = (Sj , µj , auxj ,msgsj) for j ∈ {1, 2}. We will only
be proving security in the case of semi-honest adversaries, therefore it will be required that we can
simulatemsgsj the protocol using only (Sj , µj , auxj ,msgsj).

The protocol is split into the steps given in Figures IV;4, IV;5, IV;6 and IV;7. It should be noted
that step four is unlike the rest in that it is engaged by both participants simultaneously. Firstly,
P1 engages the algorithm ΠP2 where P2 plays the challenger in the experiment exptsfΠ (1λ). Sec-
ondly, the participants engage in numerous invocations of a 1-out-of-n2 oblivious transfer pro-
tocol (OT1

n2
), with P1 the receiver and P2 the sender.

The entire protocol is given in Construction IV;7.1, and we prove correctness in Theorem IV;7.1
and security in the presence of semi-honest adversaries in IV;7.2.

2This is not necessarily a stretch from the truth where most ahe, she schemes permit encryptions of elements in
Zq for some q > 0 (thus satisfying our needs).
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ψΠ,1
τ (P1, he)

1 : BF← BF.init(1L, 1n, 1k);

2 : BF.Store(BF.sp,S1);

3 : EIBF← encrypt(pk, invert(BF));

4 : EIBF.pp← P2;

Figure IV;4: Step one of our information sharing protocol. The steps are the same for he ∈ {she, ahe}
and are also the same as in step one of our PSU protocol. In other words, P1 encodes their set
into an encrypted, inverted Bloom filter and sends it to P2

Construction IV;7.1 [Information sharing with value threshold]

Let ψΠ
τ be a protocol for the functionality FΠ

τ (Definition IV;6.3) and let
he,BF,Pj , Sj ,S, auxj ,msgsj ,Viewj ,Π,OT

1
n be described as above. Let τ be the

maximum value threshold that is calculated prior to the start of the protocol by P1 and P2,
and added to auxj for j ∈ {1, 2}.
We constructψΠ

τ as a composition of the steps

1. (P2 : EIBF.pp)← ψΠ,1
τ (P1, he) [Figure IV;4],

2. (P1 : W, P2 : R)← ψΠ,2
τ (P2, he) [Figure IV;5],

3. (P1 : (E,Z))← ψΠ,3
τ (P1, he,W ) [Figure IV;6],

4. (P1 : SΠ
τ ,P2 : VM )← ψΠ,4

τ (P1,P2, he,Π, E, Z,R, τ) [Figure IV;7];

retaining this ordering. We set µ1 = SΠ
τ and µ2 = VM

It may be helpful to further explain the intuition behind step four. In essence, P1 initiates the al-
gorithmΠwithP2 as the challenger. Wemake a simple adaptation to the steps in exptsfΠ (1λ,S, τ)

to allow the input set to be encrypted, and thus to allowP2 to decrypt the encrypted values before
applying the threshold checks. This is equivalent to the original experiment under these cosmetic
changes. Since there exists a PPT (O(n2)) algorithm that can find a subset in these conditions,
then the setEM is a subset that satisfies the threshold τ .

Secondly, using the elements ofEM , P1 and P2 engage in |EM | instances of theOT1
n2

protocol,
so thatP1 can learn themasking values for these elements. Once these oblivious transfers are con-
cluded, then P1 can remove the masks and learn the underlying values from S2. In these steps, it
is necessary thatP1 knows the original indices i for the ordering of the set in step three. Providing
that P2 does not shuffle S2 in between, then P1 learns the correct element.3 We assume thatE is
shuffled before being sent to P2 (duringΠP2) to prevent trivial learning of which elements corre-

3This is why it is necessary to add i toZ in step two: as the input index for P1 during the oblivious transfer step.
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ψΠ,2
τ (P2,EIBF.pp, she)

1 : W,R← ∅;
2 : for i ∈ [n2] :

3 : {cli}l∈[k] ← EIBF.Query(EIBF.pp, x
(2)
i );

4 : c+i ← c1i ;

5 : for l ∈ [2, k] :

6 : c+i ← she.Add(pk1, c
l
i, c

+
i );

7 : ri,1, ri,2←$X ;

8 : ĉ+i ← she.Mult(pk1, c
+
i , she.Enc(pk1, ri,1));

9 : d̂+
i = she.Add(pk1, she.Mult(pk1, c

+
i , she.Enc(pk1, x

(2)
i )), she.Enc(pk1, ri,2));

10 : (c̃+i , d̃
+
i )← (she.CRand(pk1, ĉ

+
i ), she.CRand(pk1, d̂

+
i ));

11 : êi ← he.Enc(pk2, value(x
(2)
i ));

12 : (c̃+i , d̃
+
i , êi)←W [i];

13 : (ri,1, ri,2)← R;

14 : W ← P1;

15 : returnR;

ψΠ,2
τ (P2,EIBF.pp, ahe)

1 : W,R← ∅;
2 : for i ∈ [n2] :

3 : {cli}l∈[k] ← EIBF.Query(EIBF.pp, x
(2)
i );

4 : c+i ← c1i ;

5 : for l ∈ [2, k] :

6 : c+i ← ahe.Add(pk1, c
l
i, c

+
i );

7 : ri,1, ri,2←$X ;

8 : ĉ+i ← ahe.ScMult(pk1, c
+
i , ri,1);

9 : d̂+
i = ahe.Add(pk1, ahe.ScMult(pk1, c

+
i , ahe.Enc(pk1, x

(2)
i )), ri,2);

10 : (c̃+i , d̃
+
i )← (ahe.CRand(pk1, ĉ

+
i ), ahe.CRand(pk1, d̂

+
i ));

11 : êi ← he.Enc(pk2, value(x
(2)
i ));

12 : (c̃+i , d̃
+
i , êi)←W [i];

13 : (ri,1, ri,2)← R;

14 : W ← P1;

15 : returnR;

Figure IV;5: Step two, computed by P2 in our information sharing protocol. In this step, P2 computes
a randomised pair of encryptions for each element in their set. The plaintexts corresponding
to (c̃+i , d̃

+
i ) are essentially (ri,1 · ki, x(2)

i · ki + ri,2) and thus randomly distributed for all
i ∈ [n2]. The ciphertext êi contains the value of the element x

(2)
i and is encrypted under pk2.

We assume that the setsW,R are shuffled randomly (but identically wrt each other) beforeW
is sent to P1.
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ψΠ,3
τ (P1, he,W )

1 : E,Z ← ∅;
2 : for i ∈ [n2] :

3 : (c̃+i , d̃
+
i , êi)←W [i];

4 : (zi,1, zi,2)← (he.Dec(sk1, c̃
+
i ), he.Dec(sk1, d̃

+
i ));

5 : if zi,1 6= 0 :

6 : Z ← (zi,1, zi,2, i);

7 : E ← he.CRand(pk2, êi);

8 : returnE,Z;

Figure IV;6: Step three, computed byP1 decrypts all ciphertexts sent byP2 and stores the encrypted values
êi. The steps are the same for he ∈ {she, ahe}.

ψΠ,4
τ (P1,P2, he,Π, E, Z,R, τ)

1 : SΠ
τ ← ∅;

2 : (P1 : EM ,P2 : VM )← ΠP2(E, τ);

3 : for j ∈ J :

4 : (zi,1, zi,2, i)← Z[m];

5 : ((ri,1, ri,2), ∅)← OT1
n2

(P1,P2, i, R);

6 : z ← z−1
i,1 · r

−1
i,1 · (zi,2 − ri,2);

7 : SΠ
τ ← z;

8 : SΠ
τ ← S1;

9 : return SΠ
τ ;

ΠP2(E, τ)

1 : EM ,VM ← ∅;
2 : for ẽm ∈ E :

3 : νm ← he.Dec(sk2, ẽm);

4 : τm = τ − νm;

5 : if τm ≥ 0 :

6 : EM ← ẽm;

7 : VM ← νm;

8 : τ = τm;

9 : returnEM ,VM ;

Figure IV;7: Left: Step four, computedbybothP1 andP2, sees the twoparticipants engage in anoblivious
transfer that allowsP1 tounmask someof the randomised ciphertexts up to the value threshold
τ . In the oblivious transfer, P1 reveals the random masks used in step two. The steps are the
same for he ∈ {she, ahe}. We assume that the set E is shuffled before it is sent to P2 in line
2; and thenEM is unshuffled following when it is received back.
Right: Threshold subset finder algorithm, computed byP2, used to enforce the threshold τ .
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IV;7 Protocol for information sharing with value threshold

spond to the entries ofEM . Likewise, this requires P1 to ‘unshuffle’EM before it can proceed to
initiate the oblivious transfer protocols.

We can nowmove onto proving the correctness of the scheme wrt FΠ
τ in Definition IV;6.3.

Theorem IV;7.1 [Correctness]

Let ψΠ
τ be defined as in Construction III;4.1; let BF be the Bloom filter used in ψ∪, with

parameters k = poly(λ) andL, n1 chosen optimally. Let τ be the pre-agreed value thresh-
old and let Π be a set agnostic (Definition IV;6.2) algorithm that satisfies Definition IV;6.1,
for all universes S .
Then ψΠ

τ correctly computes the functionality FΠ
τ (Definition IV;6.3) with probability

greater than 1− negl(λ).

Proof. By the correctness of he, in either case where he ∈ {she, ahe}, then in step three: for each
i ∈ [n2], P1 receives elements of the form:

• zi,1 = li · ri,1 = he.Dec(sk1, c̃
+
i );

• zi,2 = (li · x(2)
i ) + ri,2 = he.Dec(sk2, d̃

+
i );

• êi = he.Enc(pk2, νi), where νi = value(x
(2)
i );

and where li =
∑k

i=1 IBF.arr[yi,l], where {yi,l}l∈[k] = IBF.h̃(x
(2)
i ). Then, if x(2)

i ∈ S1:
zi,1 = 0 and zi,2 = ri,2; else: zi,1 = li · ri,2 6= 0 and zi,2 = (li · x(2)

i ) + ri,2 6= 0 (with all
but negligible probability in k = poly(λ)). Consequently, only whenx(2)

i /∈ S1 are (zi,1, zi,2, i)

then added toZ , and likewise for ẽi = he.CRand(pk2, êi)→ E.

By the correctness of Π, then Π(E, τ) finds a subsetEM s.t. value(EM ) ≤ τ . We have to make
sure that EM is the same in the case of ΠP2(E, τ) in the protocol and Π(S2 \ (S1 ∩ S2), τ) in
the ideal functionality. Fortunately, since Π is set agnostic (as in Definition IV;6.2), then Π picks
the same index set in both cases.

By the correctness ofOT1
n2

(P1,P2, i, R), P1 learns (ri,1, ri,2), where (zi,1, zi,2, i)← Z[m] for
eachm ∈M . It is simple to verify that

x
(2)
i ← ri,1 · z−1

i,1 · (zi,2 − ri,2)

and this is added to SΠ
τ for eachm ∈ M . At the end of the protocol, P1 learns S1 ∪ SΠ

τ which
is the same as the set that is learnt in FΠ

τ by the set agnosticism of Π, and the fact that x(2)
i /∈ S1

with all but negligible probability by the choice of parametersL, k, n1.
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IV Applications of PSU for information sharing

Theorem IV;7.2 [Security]

LetψΠ
τ be defined as in Construction III;9.1. Let Π be a PPT algorithm satisfying Defini-

tions IV;6.1 and IV;6.2. Let he be a homomorphic encryption scheme satisfying semantic
security (Definition II;5.1). Let OT1

n be a 1-out-of-n oblivious transfer protocol with se-
curity against semi-honest adversaries (Definition IV;5.1). ThenψΠ

τ securely computes the
functionalityFΠ

τ , under the IND-CPA security of he, in the presence of PPT, semi-honest
adversaries corrupting P1 and P2.

Proof. We split the proof of this theoremup into two lemmas, that are proved via a series of claims
constructing a hybrid argument from the real execution to the simulations. We will use Simj to
simulate the execution for corrupted PAj , whereA is any PPT adversary.

The proof of this theorem is completed by the proofs of Lemmas IV;7.1 and IV;7.2, below.
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IV;7 Protocol for information sharing with value threshold

Simulation IV;7.1 [Sim1(S1,SΠ
τ , aux1)]

Let SSim = (SΠ
τ \ S1). Sim1 receives EIBF.pp from PA1 and does the following.

• Computes c+
i ← EIBF.Query(EIBF.pp, xSimi ), for each xSimi ∈ SSim where i ∈

[|SSim|].

• Samples (ri,1, ri,2)←$X 2

• Computes
ĉ+
i ← he.Mult(pk1, c

+
i , he.Enc(pk1, ri,1));

d̂+
i ← he.Add(pk1, he.Mult(pk1, c

+
i , he.Enc(pk1, x

Sim
i )), he.Enc(pk1, ri,2));

êi ← he.Enc(pk2, value(xSim)).

• Let (c̃+
i , d̃

+
i ) ← (he.CRand(pk1, ĉ

+
i ), he.CRand(pk1, d̂

+
i )) and add

(c̃+
i , d̃

+
i , êi)→WSim[i].

• For i′ ∈ [|S1 ∪ S2| − |SSim|]: lets {gi′,u = he.Enc(pk1, ri′,u)}u∈{1,2}, and sets

(c̃+
i′ , d̃

+
i′ )← (he.CRand(pk1, gi′,1), he.CRand(pk1, gi′,2));

êi′ ← he.Enc(pk2, τ + 1).

It adds (c̃+
i′ , d̃

+
i′ , êi′)→WSim[|SSim|+ i′].

• For i′′ ∈ [|S1 ∩ S2|], it sets

(c+
i′′ , d

+
i′′)← (he.Enc(pk1, 0), he.Enc(pk1, ri′′));

êi′′ ← he.Enc(pk1, τ + 1);

for ri′′ ←$X , and adds (c+
i′′ , d

+
i′′ , êi′′)→WSim[|S1 ∪ S2|+ i′′].

• ShuffleWSim and letM be the set of all indices i above, and likewiseM ′ andM ′′ for
indices i′ and i′′, respectively. AddWSim → msgsSim (i.e. send it to PA1 ).

• When EM ← Π(E, τ) is activated, then Sim1 plays the challenger in
exptsfΠ (1λ, E, τ). Adds the output tomsgsSim.

• For each of the |SSim| invocations ofOT1
n2
, Sim1 invokes Simot to simulate the OT

for P1 playing as the receiver; Sim1 uses the setWM = W [m], form ∈ M . Adds
the simulated view Viewot

Sim tomsgsSim.

• Outputs the viewViewSim = (S1, SΠ
τ ,msgsSim, aux1) that PA1 witnesses.
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IV Applications of PSU for information sharing

We show thatmsgs1 in the real execution andmsgsSim in the simulated paradigm are computa-
tionally indistinguishable, using the following lemma.

Lemma IV;7.1 [View1 ≈c ViewSim]

LetPA1 be the corruptedparticipantP1 for somePPTadversaryA. LetOT1
n2
be a (1-out-of-

n2) oblivious transfer protocol, secure in the presence of semi-honest adversaries. Let he be
an IND-CPA secure encryption scheme, s.t. he is either an SHEorAHE scheme that satisfies
ciphertext and plaintext rerandomisation security. Then View1 in ψΠ

τ is computationally
indistinguishable fromViewSim created by Sim1(S1,SΠ

τ , aux1).

Proof. We prove this lemma with a sequence of hybrid arguments. In each of the hybrid argu-
ments, up until H3, it is assumed that there is a simulator forψΠ

τ that plays the role of P2 using
the input set S2, and receiving the inputs of Sim1 in Simulation IV;7.1. By the last hybrid, the
simulator no longer has access to S2 and only to the inputs of Sim1.

• H0: This hybrid is equivalent to the real execution of the protocol.

• H1: This hybrid is equivalent to the real execution of the protocol, except that

êι ← he.Enc(pk2, τ + 1),

for ι ∈ (M ′ ∪M ′′).

• H2: This hybrid is equivalent toH1, except that (c̃+
ι , d̃

+
ι ), for all ι ∈ [n2], are constructed

as in Simulation IV;7.1.

• H3: This hybrid is equivalent toH2, except that the simulator is only given the set Sτ ⊆ S2

that P1 receives as output; along with S1. In other words, the same inputs as Sim1.

• H4: This hybrid is equivalent toH3, except thatPA1 receives simulatedmessagesmsgsotSim ←
Simot, where Simot simulatesOT1

n in the presence of the semi-honest receiver PA1 .

Let ρ = n2−|SSim|, then the proof of Lemma IV;7.1 can be proven using the set of claims below.

Claim IV;7.2.1. maxB(Adv(B,H0,1(1λ))) ≤ maxA′(Adv(A′, ρ−indcpa(1λ, he))) under the

IND-CPA security of the encryption scheme he.

Proof. The ciphertexts êι that are received are just encryptions under pk2 of the same values for
ι ∈ J . However, for ι ∈ (M ′ ∪M ′′) defined above in Simulation IV;7.1, the encryptions are
of the plaintext value τ + 1 which is not equivalent to the original execution. Let A′ be any
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IV;7 Protocol for information sharing with value threshold

adversary attempting to win expρ-indcpab,A′ (1λ) where ρ = n2 − nSim, then A′ plays the role of
P2 in the protocol using S2. Then A′ creates message pairs of the form (value(x

(2)
i ), τ + 1)

for each ι ∈ (M ′ ∪ M ′′) and concatenates these pairs into a list of 2(n2 − |SSim|) messages
({value(x(2)

i )}ι∈(M ′∪M ′′), {τ + 1}ι∈M ′∪M ′′). These messages are then submitted to the chal-
lenger in the expρ−indcpab,A′ (1λ) experiment, andA′ receives encryptions (under pk2) of either the
left set of messages or the right set. These encryptions are sent as the ciphertexts eι ∈ W for
ι ∈ (M ′ ∪M ′′). The rest of the simulation is constructed byA′ playing the role of P2 inH0.

In the case where the left messages are encrypted (b = 0), then the view forB is equivalent toH0.
Otherwise (when b = 1), the view is equivalent to H1. Now, consider δ as the maximum advan-
tage that a distinguishing adversary B distinguishes in the experiments Adv(A, expH0,H1

b,B (1λ)).
Then whenB guesses bB ∈ {0, 1},A′ also guesses bA′ = bB and wins with the same probability
δ. Therefore, we have

δ = max
B

(Adv(B,H0,1(1λ))) ≤ max
A′

(Adv(A′, ρ−indcpa(1λ, he))))

for all adversariesA′. Recall that proving security under expρ−indcpab,A′ (1λ) is equivalent to proving
security in the experiments expindcpab,A′′ (1λ) for any PPT adversaryA′′ [201]. The statement in the
claim follows.

Claim IV;7.2.2. maxB(Adv(B,H1,2(1λ))) = 0

Proof. Firstly the distribution of the ciphertexts received inWSim are computationally indistin-
guishable to the distribution of the ciphertexts received in the setW in ψΠ,3

τ (by the ciphertext
rerandomisation property). Secondly, the distributions of the plaintext elements are also per-
fectly indistinguishable. To see this, note that the distributions are either: both uniform (for
ι ∈ (M ∪M ′)) due to the usage of the randomising plaintext elements rι,1, rι,2 ∈ X ; or 0 and
uniform respectively, for ι ∈M ′′ corresponding to the remaining elements that are unknown to
the simulator (i.e. the intersection of the set). Note that we don’t actually require usage of the
plaintext rerandomisation property here because computing additions over ciphertexts does not
increase the encryption level. The resulting ciphertext is still at the same level and so the fact that
rι,1, rι,2 are uniformly distributed values is enough.

This is the same in both H1 and H2 due to a similar argument as the one made in the proof of
Theorem III;5.2, by the uniform sampling of rι,1, rι,2 from X (and where X is assumed to be a
ring of the formZq , for prime integer q > 0).

Therefore the distributionswitnessed byB in either of the hybrids are identical and thus the claim
follows immediately.

Claim IV;7.2.3. maxB(Adv(B,H2,3(1λ))) = 0
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Proof. In the real execution, the set S2 is only used in constructing the messages that P1 receives
in step three. These messages are now constructed as in the simulation of Sim1(S1,Sτ , aux1),
where S2 is not known. Therefore the output distribution in both of these hybrids (when viewed
by B) are identical regardless of whether S2 is known, or not.

Claim IV;7.2.4. maxB(Adv(B,H3,4(1λ))) ≤ maxA′(Adv(A′, ot(1λ))))

Proof. The proof of this switch is not complicated since the simulator Simot can be invoked by
the main simulator during the proof. This is because there are no messages sent externally to any
invocation ofOT1

n2
and thus the execution is composable with the rest of the protocol. Since we

know that maxB(Adv(A, expH3,H4

b,B (1λ))) = δ, thenA′ simply acts as the simulator in H3 and
replaces any execution ofOT1

n2
with the execution that it witnesses in expotb,A′(1

λ, 1, n2). In the
case whenOT1

n2
is the real execution, then this is the same as the simulation inH3, and otherwise

it is the same as inH4. Thus,A′ guesses bA′ = bB and wins with the same advantage δ, since this
is the only difference in the view of B. The proof of the claim is now complete.

Claim IV;7.2.5. The views in H4 and Simulation IV;7.1 are perfectly indistinguishable.

Proof. Notice that the simulations are computed in exactly the same way. Furthermore, since Π

is set agnostic the output of Π(EM , τ) is the same in all of the hybrids and in Sim1. The change
in H1 means that only the elements in the output set SSim can be included by Π since the other
elements have values that are greater than the threshold τ . Therefore the views are identical, and
the claim follows naturally.

By applying a union bound over all of the claims, we can bound the advantage of an adversary
distinguishing the real execution and Simulation IV;7.1 by

max
A′

(Adv(A′, ρ−indcpa(A′, he))) + 0 + 0 + max
A′

(Adv(A′, ot(1λ))) = δ1 + δ2

where δ1 is the advantage in breaking the IND-CPA security of he, and δ2 is the advantage in
breaking the security of the protocol OT1

n2
. Since we assume that performing either of these

breaks is computationally difficult (for PPT adversariesA,A′) with all but negligible probability,
then we have δ1 + δ2 < negl(λ). The proof of Lemma IV;7.1 follows immediately.
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IV;7 Protocol for information sharing with value threshold

Simulation IV;7.2 [Sim2(S2,VSim, aux2)]

Sim2 receives the output VSim = value(S1 \ SΠ
τ ), the associated value set for the output

SΠ
τ \ S2 received by PA1 , that P2 receives. It does the following.

• RunsBF← BF.init(1L, 1n, 1k) and simply computes

EBF← encrypt(pk,BF)

and adds EBF.pp→ msgs2.

• For each i ∈ [n2]: compute ẽi ← he.Enc(pk2, νi), where νi = value(S2[i]).

• LetsE = {ẽi}i∈[n2].

• Runs EM ← ΠSim(E, τ) where it plays the role of the challenger, shuffles V2 and
addsV2 → msgsSim.

• Invokes Simot for each invocation ofOT1
n2
, withPA2 playing the role of the ‘sender’,

and adds the simulated viewViewot
Sim tomsgsSim.

• Outputs the viewViewSim = (S2,VSim,msgsSim, aux2) that PA2 witnesses.

Lemma IV;7.2 [View2 ≈c ViewSim]

Let PA2 be the corrupted participant P2 for some PPT adversaryA. LetOT1
n2

be a (1-out-
of-n2) oblivious transfer protocol, secure in the presence of semi-honest adversaries. Let he
be an IND-CPA secure encryption scheme, s.t. he is either an SHE or AHE scheme.
Then the view of PA2 in ψΠ

τ is computationally indistinguishable from ViewSim ←
Sim1(S1,SΠ

τ , aux1).

Proof. We prove this lemma with a sequence of hybrid arguments. In each of the hybrid argu-
ments, forH1 onwards it is assumed that there is a simulator forψΠ

τ that simulates the role of P2

using only the inputs and outputs of Sim2. This proof is much simpler than in the case of Sim1,
since PA2 receives much less expressive output.

• H0: This hybrid is equivalent to the real execution of the protocol.

• H1: This hybrid is equivalent to the real execution of the protocol, except that

EIBF.arr = he.Enc(pk1, 0
L).
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and the simulation only receives the inputs that Sim2 receives.

• H2: This hybrid is equivalent toH1, except that the protocolOT1
n2

is simulated by Simot,
where PA2 is a semi-honest ‘sender’.

• H3: This hybrid is equivalent to H1, except that the set E is constructed as in Simula-
tion IV;7.2.

We prove that changes displayed in the above hybrid can only be detected with negligible proba-
bility, under plausible computational assumptions.

Claim IV;7.2.6. maxB(Adv(B,H0,1(1λ))) ≤ maxA(Adv(A, L−indcpa(1λ, he))) under the

IND-CPA security of the encryption scheme he.

Proof. The statement of this claim is almost identical to the proof of Theorem III;4.2. Due to the
similarity we do not give the full simulation of the hybrids but it can be shown that a distinguish-
ing advantage betweenH0 andH1 can be used as a distinguishing adversary against the security of
the encrypted Bloom filter EIBF (similarly to the proof of Theorem III;4.2). Now, the advantage
of an adversary in the encrypted Bloom filter case is bounded by the advantage of an adversary
A′ in the experiments expL-indcpab,A′ (1λ) (Lemma III;3.1). The claim follows by noting that the
advantage ofA′ can be bounded by the advantage ofA in expL-indcpab,A (1λ) by Lemma II;5.1.

Claim IV;7.2.7. maxB(Adv(B,H1,2(1λ))) ≤ maxA′(Adv(A′, ot(1λ)))

Proof. The advantage ofB can be bounded by the advantage of theA′ attempting to distinguish
simulations of OT1

n2
as the ‘sender’ by an identical argument to Claim IV;7.2.4. As before, the

invocations of OT1
n2

are standalone protocols engaged by P1 and P2. Therefore, the simulator
Simot can be invoked without modification.

Claim IV;7.2.8. maxB(Adv(B,H2,3(1λ))) = 0

Proof. The plaintexts for the encryptions êi are identical to the ones created by PA2 in the real-
world execution. The only difference is that the encryptions in the simulation that are sent back
toPA2 are new encryptions. However, the ciphertext rerandomisation property (Definition II;5.7)
means that the ciphertexts are distributed identically and the claim follows.

The advantage of an adversary A in distinguishing H3 and Simulation IV;7.2 is 0 since the two
distributions are identical. Therefore, our proof of security for Lemma IV;7.2 follows if we can
show thatmaxA′(Adv(A′, ot(1λ)))+maxA′(Adv(A′, L−indcpa(1λ, he))) < negl(λ). This
follows under the assumptions that he is an IND-CPA secure encryption scheme, and thatOT1

n2

is a secure protocol for (1-out-of-n2) oblivious transfers (under the presence of semi-honest ad-
versaries).
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The proof of Theorem IV;7.2 follows by the proofs of Lemma IV;7.1 and Lemma IV;7.2.

IV;8 Asymptotic analysis

We provide a brief asymptotic analysis of the design of our protocol.

Lemma IV;8.1 [Number of rounds]

The number of rounds required for running Construction IV;7.1 isO(n2).

Proof. There are two rounds needed to compute steps 1−3. For step four, the number of rounds
is proportional to the number of rounds needed to collaboratively compute Π (with P2 as the
challenger) and the number of rounds needed to compute OT1

n2
. For Π, the naive method that

we gave previously requires O(n2) rounds. For OT1
n2
, constructions such as [93, 243] require

only a constant number of rounds. Therefore, the total complexity isO(1) + O(n2) + O(n2),
which isO(n2).

Lemma IV;8.2 [Communication complexity]

Let comms(OT1
n2

) refer to the asymptotic communication complexity of the protocol
OT1

n2
. Then the total communication complexity forConstruction IV;7.1 isO(kn1+n2)+

comms(OT1
n2

).

Proof. The communication for steps 1 − 3 is asymptotically the same as in Lemma III;7.1, that
isO(kn1 + n2). For step four, the communication complexity of Π isO(n2) since there is one
ciphertext sent from P1 to P2 for each of the n2 elements in S2. The claim follows after adding
the communication complexity that is required for instantiating theOT1

n2
protocol. We leave this

cost generic as we are agnostic to the OT protocol.
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Lemma IV;8.3 [Computational complexity]

Let comp(OT1
n2

) refer to the total computational complexity of the protocolOT1
n2
. Then

the total computational complexity of Construction IV;7.1 is given by O(k(n1 + n2)) +

comp(OT1
n2

) when he = she, and O(k(n1 + n2) log2(|X |)) + comp(OT1
n2

) when
he = ahe.

Proof. This lemma follows almost immediately from the fact that the computation for the proto-
colΠ isO(n1+n2) (not changing fromtheoverall asymptotic complexity given inLemmaIII;7.4),
and the fact that the oblivious transfer computational complexity is left generic. The complexity
for Π is clear since P1 computes O(n1) ciphertext rerandomisations and P2 computes O(n2)

decryptions. We ignore the additional computations needed to compute the output since these
only induce a linear number of ring operations; as such they are already included in the asymptotic
notation that we use. The case of he = ahe follows naturally.

Discussion. We do not give a concrete experimental analysis of this protocol since the extra
primitives and protocol steps that we require are likely to make the base design fairly inefficient.
However, as long as the protocolOT1

n2
has linear computational and communicational complex-

ities then the protocol maintains the linear scalability in the set size n = n1 = n2. That is, the
design remains scalable as set sizes increase, even if the initial costs are large enough to make the
protocol considerably less efficient than the toolkit implementation in Section III;8. Moreover,
the Bloom filter amortisation improvements still apply and using such improvementsmay still see
a dramatic reduction in the runtimes.

Malicious security. Achieving malicious security forψΠ
τ is a considerably difficult task, even

in the authenticated PSO model. This is because P1 can now choose to ignore the evaluation
of Π and try to compute EM in any arbitrary manner. The proof of Theorem IV;7.2 no longer
applies, since the encryptions of τ+1mean that learning the subsetEM in the simulationwill take
noticeably longer than in the real execution with high probability. As a result, we do not consider
a formal proof of security in this model. It should be noted that the motivating trading dynamics
from [119] require some sort of pre-arranged trust relationship between the entities taking place
anyway. The semi-honest setting is a plausible securitymodel, if the participants have some degree
of trust already.

IV;9 Conclusion

We showed thatwe can adapt our PSUprotocol fromChapter III to a situationwhere set elements
have associated data in the form of values that are canonically assigned. Our new protocol allows
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implementing an upper threshold on the value of the elements that are learnt in this protocol,
preventing the whole union being learnt after this threshold is surpassed.

The purpose of this design is to meet the needs of a particular idealised mediator that enables
two entities to share vulnerability information, whilst guaranteeing a fair trade between the two
participants. The adapted protocol is significantly more complex and requires a linear number of
rounds in the set sizes (for instantiating a proportional number of oblivious transfer protocols).
However, the computation and communication complexities remain asymptotically similar, de-
pending on the complexities of the inferred OT protocol.

We view the results of this chapter as verification that it is possible to achieve complex functionality
from the simplicity of our original PSO protocols. It should be noted that we have to modify our
PSU protocol in a non-black-box manner to achieve this, and so we do not claim that we can
achieve such functionality in a generic way. Nevertheless, this still shows that our protocols are
malleable and can be used to construct non-trivial adaptations of the original PSO functionality.

Future research follows the same aims as Chapter III, i.e. the investigation of more efficient pro-
tocols, and the pursuing of multi-party variants for information sharing scenarios.
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Preface

In this chapter, we devise a new construction of a constrained pseudorandom function (CPRF)
satisfying security guarantees that were not previously achievable from standard cryptographic
assumptions. A CPRF, in short, has the same functionality as a standard PRF; except that the
adversary has access to a ‘constrained’ key that can evaluate the function on subsets of the input
space. The security goal specifies that input points not in those subsets still result in pseudoran-
dom evaluations.

Our CPRF construction allows constrained keys for the bit-fixing predicate. It satisfies collusion-
resistance for r = O(1) constraint queries, i.e. the adversary can receive up to r = O(1) keys.
Previous constructions from standard assumptions (such as LWE) only achieved security for 1

query. In addition, our construction requires only the assumption that one-way functions exist.
This is comparatively weaker than all known previous constructions, for any predicates covering
the bit-fixing functionality. Our security proof is valid in a model where the adversary makes all
queries adaptively. This is the only construction to achieve adaptivity from standard assumptions
and in the standard model; it also achieves 1-key privacy.

Finally, we give an implementation of our scheme. Preliminary results suggest that it is very prac-
tical for small values of r (e.g. ≤ 5) and various input lengths. No previous constrained PRFs
came equippedwith implementations (partly due to the fact that they were likely to be largely im-
practical to run). In this sense, we make a large jump in providing a practical implementation of
such a construction. Wehope that thismay lead to interesting applications ofCPRFs in real-world
scenarios

This chapter is based on work that is currently under submission. The work was jointly authored
with Shuichi Katsumata, Ryo Nishimaki and Shota Yamada and was completed while the thesis
author undertook a research visit at NTT Secure PlatformLaboratories (under the supervision of
Ryo Nishimaki). The submission is itself derived from the pre-print here [121].

Overview of contributions

• A new CPRF construction for bit-fixing predicates from one-way functions.

• Collusion-resistance forO(1) constraint queries.

• Proof of adaptive security with only polynomial security loss.

• Proof of perfect 1-key privacy.
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• An implementation (written inGo) of theCPRF,demonstratingpracticality for small num-
bers r of collusions. See Appendix A for the source code.
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V;1 Introduction

V;1 Introduction

Historically, pseudorandom functions (PRFs) provide the basis of a huge swathe of cryptography.
Intuitively, such a function takes a uniform key and some binary string x as input, and outputs
(deterministically) some value y. The pseudorandomness of the function dictates that y is indis-
tinguishable from the output of a uniformly sampled function operating solely on x. PRFs typi-
cally provide useful sources of randomness in cryptographic constructions that take adversarially-
chosen inputs.

Simple constructions of PRFs exist based onwell-known standard assumptions: Goldreich,Gold-
wasser and Micali give a construction based on the existence of pseudorandom generators [164];
Naor and Reingold [244] give a simple construction from assumptions related to the discrete log
problem.

There have been numerous expansions of the definitional framework surrounding PRFs. In this
work, we focus on a strand of PRFs that are known as constrained PRFs or CPRFs. CPRFs were
first introduced by Boneh andWaters [58] alongside the concurrent works of Kiayias et al. [209]
andBoyle et al. [60]. Theydiffer from standardPRFs in that they allowusers to learn ‘constrained’
keys that can evaluate the function on a subset of the input space. That is, letX denote the input
space, and let S ⊆ X . Then a constrained key CKS allows evaluating the CPRF if and only if
x ∈ S.

In the security game, the adversary is permitted to make queries for learning PRF evaluations as
with standard PRFs. The adversary is also permitted to learn constrained keys for any subsets
S ⊆ X that it wants. Security now dictates that the CPRF remains pseudorandom on an input
point that lies outside of the queried subsets. If an adversary can ask more than one constrained
key query, then we say the CPRF is collusion-resistant.

In this work our main question is:

Can we construct collusion-resistant constrained PRFs from standard assumptions?

Up until now, this question has been unanswered in either the affirmative or the negative regard-
less of the predicate that is considered for constraining keys.

Predicates.While constrained keys can be defined with respect to subsets, a more natural defi-
nition defines functionality with respect to predicates. That is, the constrained key allows evalua-
tion of the function onx, if and only if the associated predicate is equal to 1 onx. We denote such
a predicate byP(·) and 1← P(x) indicates that the input satisfies the constraint. Otherwise, we
write 0← P(x).

Many suitable predicates for CPRFs have been proposed in the literature, such as:
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• puncturing [55, 58, 60, 209];

• prefixes [24, 58];

• left-right (LR) [58];

• bit-fixing (BitFix) [20, 55, 58, 76];

• general circuits in CNC1 [20, 76, 88];

• general circuits in CP/poly [55, 58, 67, 68, 187, 255].

Wehighlight the twopredicates that are themost interestingdue to the expressibility and flexibility
of the predicate class that they support.

• Bit-fixing predicates are associated with a string v ∈ {0, 1, ∗}` as input; where vi = ∗
indicates a wildcard entry. Denote the predicate by Pv(x) for some x ∈ {0, 1}`. Then we
say that 1← Pv(x) iff (xi = vi) ∨ (vi = ∗) for each i ∈ [`]. The class of such predicates
will be denoted by BitFix.

• General circuit predicates are associated with some representative circuit C ∈ C. We say
that 1← PC(x) for x ∈ {0, 1}` if and only ifC(x) = 1.

V;1.1 CPRF security notions

The original work of [58] conceived CPRFs as pseudorandom functions (Definition II;4.2) with
additional algorithms Constrain and CEval. The Constrain algorithm outputs “constrained”
keys that corresponding to predicates that exist over the input space. The CEval algorithm can
be run using a constrained key and a valid PRF input and evaluates the CPRF correctly if x sat-
isfies the associated the predicate. In other words, security can be informally categorised into the
following properties for a CPRF denoted by cprf .

• Correctness: Let PC(·) be a predicate for someC ∈ C, and let x ∈ X be an input s.t.
1← PC(x), whereX is the input space of C. Letmsk be themaster secret key of cprf , and
letCKC be a constrained key for the predicatePC(·). Then evaluating cprf at x usingmsk

should give an equivalent output to evaluating cprf at x using the constrained key CKC .

• Pseudorandomness: Let PC(·), msk and CKC be as above, but consider x ∈ X s.t.
0← PC(x). Then cprf.Eval(x) should appear pseudorandom.1

1This should still hold even given multiple constrained keys, as long as the input is ‘constrained’ wrt all of them.
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If these two properties are satisfied, then we say that cprf is a constrained PRF (or CPRF). The
later work of Boneh et al. [55] introduced an extra security property relating to the privacy of the
CPRF.2

• 1-key Privacy: LetC0, C1 ∈ C and letCKCb be a constrained key forCb for b←$ {0, 1}.
Then there is no PPT adversary that can distinguish whether b is equal to 0 and 1 with
anything other than negligible advantage.

We say that a CPRF is a private CPRF (or PCPRF) if it satisfies this extra security property. Note
thatwe could adapt the definition tom-key privacy form ≥ 1, by allowing the adversary to query
m pairs of constraint circuits.

Remark V;1.1. The security notion above is known as weak key privacy in [55], a stronger security

notion allows the adversary to make evaluation queries as well. Fortunately, it has been shown that

weak key privacy is typically enough for most applications of PCPRFs [55, 76]. In this thesis, we

will focus only on the case of weak key privacy.

We give formalisations of all of the above security properties in Section V;2.2 . In these formalisa-
tions, the adversary is able to query for constrained keys, and then receives a challenge equal to the
CPRF evaluated at an input x† (chosen by the adversary) that cannot be evaluated by any of the
known constrained keys. This requires that 0 ← PC(x†), for anyC that has been queried. The
security game asks the adversary to distinguish the evaluation of the CPRF at x† from an evalua-
tion made at the same point by a randomly sampled function. If the adversary makes all queries
adaptively, then we say that the CPRF achieves adaptive security; otherwise it only achieves selec-
tive security.

V;1.2 Existing constructions of CPRFs

Since the original work of [58], numerous constructions of CPRFs have been given, relying on
different primitives and providing a range of functionality. The work of [58] gave constructions
of CPRFs for LR, BitFix and CNC1 circuit predicates. The LR predicate CPRF was derived from
the bilinear decisional Diffie-Hellman (BDDH) assumption and the existence of random oracles.
The other constructions were derived from multilinear maps that satisfy the multilinear DDH
(MDDH) assumption. These original constructions satisfy collusion-resistance for any polyno-
mial number of constrained keys. That is, the adversary in the CPRF security game can learn
multiple constrained keys.

TheCPRFs of [60, 209] constructCPRFs for puncturing fromGGM-based techniques (and thus
OWFs). More accurately, they show that they can achieve prefix- and range-based predicates. The
works of Bitansky [45] and Goyal et al. [171] construct CPRF-like constructions for substring

2This property was also indirectly considered in [209].
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predicates. However we ignore these constructions further since the adversary is not permitted
access to the evaluation oracle. The work of Banerjee et al. [24] constructs a CPRF for prefix-
based predicates from lattices.

Hofheinz et al. [187] develop a construction with stronger security guarantees in that all queries
can be answered adaptively, this is the only construction that satisfies adaptive security without
incurring a sub-exponential loss in security. Unfortunately their construction is based on very
strong assumptions — namely a combination of indistinguishability obfuscation (IO) and ran-
domoracles. All otherworks require sub-exponential time reductions to achieve adaptive security.

More recent constructions have constructed CPRFs from much weaker assumptions, at the ex-
pense of providing weaker guarantees. The works of [67, 68, 76, 88, 255] construct CPRFs from
learning with errors (LWE), and other lattice-based assumptions. Unfortunately, none of these
constructions satisfy collusion-resistance or adaptive security (using polynomial-time reductions).
However, each of these constructions can create a constrained key for circuits taken from the class
CNC1 . The works of [67, 68, 88, 255] actually provide constrained keys for CP/poly. The work
of [20] provides a construction of CPRFs, from assumptions in traditional groups, for circuit
predicates in CNC1 —again security only holds for one constrained key query.

InTableV;1, we provide a summary of the knownCPRF constructions. We categorise [60, 209] as
puncturing CPRFs since they use GGM-based techniques. We do not consider the CPRFs of [45,
171] since they do not permit evaluation queries. We also ignore the construction of [24] due to
the weakness of prefix-based predicates.

V;1.3 Our contributions

In this work we develop a new CPRF construction for the bit-fixing predicate. While the BitFix
class is less expressive than predicates for circuits, our construction is derived only from the exis-
tence of one-way functions; which is a remarkablyweak assumption compared to any of those that
have been used in past constructions. Moreover, our construction is the first to satisfy collusion-
resistance for BitFix from an assumption that is not related to the existence of indistinguishability
obfuscation or multilinear maps.

Specifically, our construction is secure against PPT adversaries who learn r = O(1) constrained
keys (i.e. a constant number with respect to the security parameter). Our security proof holds in
the setting where queries are made adaptively with a security loss of only 1/poly(λ). Specifically,
for an adversary that succeeds in the adaptive model with advantage ε, we essentially construct an
adversary that succeeds in the selective security model with advantage (1/poly(λ))ε. Finally, our
construction satisfies perfect weak 1-key privacy [55]. Our contribution is summarised alongside
the existing state-of-the-art at the bottom of Table V;1.
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Collusion-resistance Privacy Adaptive Predicate Assumption
[58] 1 0 ♦ Puncturing OWF

poly(λ) poly(λ) � LR BDDH&ROM
poly(λ) 0 ♦ BitFix MDDH
poly(λ) 0 ♦ CP/poly MDDH

[209] 1 1 ♦ Puncturing OWF
[60] 1 0 ♦ Puncturing OWF
[187] poly(λ) 0 � CP/poly IO&ROM
[24] poly(λ) 0 ♦ Prefix LWE
[68] 1 0 ♦ CP/poly LWE
[55] poly(λ) 1 ♦ Puncturing MDDH

poly(λ) 1 ♦ BitFix MDDH
poly(λ) poly(λ) ♦ CP/poly IO

[67] 1 1 ♦ CP/poly LWE
[76] 1 1 ♦ BitFix LWE

1 1 ♦ CNC1 LWE
[20] 1 0 ♦ CNC1 L-DDHI

1 1 ♦ BitFix DDH
1 0 � CNC1 L-DDHI &ROM
1 1 � BitFix ROM

[88] 1 1 ♦ CNC1 LWE
[255] 1 1 ♦ CP/poly LWE

This work O(1) 1 � BitFix OWF

Table V;1: List of existing constructions of CPRFs along with their functionality and the assumptions re-
quired. BDDH and MDDH assumptions refer to the bilinear and multilinear DDH assump-
tions, we cover the case ofMDDH inChapter VII. The L-DDHI assumption is theL-decisional
Diffie-Hellman Inversion problem. The adaptive column only refers toworks that achieve adap-
tive security with polynomial security losses.

Finally, we demonstrate a proof-of-concept implementation that suggests that our construction is
practical for small values of r. Our implementation represents the first practical instantiation of a
CPRF.The construction iswritten inGo anddemonstrates that our scheme is particularly efficient
during evaluation and constraining. This ismainly due to the simple evaluation procedure relying
only on PRF evaluations.

In comparison, the key generation procedure is expensive in terms of computation and memory
usage — these costs are exponential in the growth of r. For example, the size of the master secret
key is (by Stirling’s approximation):

r∑
j=1

2j ·
(
`

j

)
≥

r∑
j=1

2j · `j/j!,

and thus taking ` = λ = 128 and r = 4, we get the size to be greater than 24 · 1284/4! =

24 · 228/24 > 227. Thus for large input lengths, generating the required number of keys is a
cumbersome process. We can alleviate the burden slightly by taking in smaller input lengths, but
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this does not capture all scenarios. The polynomial dependence of ` on λ for achieving mean-
ingful security means that we can only achieve constant size r in relation to λ, i.e. only a small
increase in r increases the overheads significantly. If we could achieve r = O(p(λ)) for some (po-
tentially bounded) polynomial p(λ), then we should see a notable improvement in functionality
and efficiency. See Section V;3.2 for a technical overview of our construction.

V;2 Preliminaries

V;2.1 Additional notation

Let T be a set such that

T = {(t1, . . . , tr) ∈ [`]r | t1 ≤ t2 ≤ . . . ≤ tr};

In other words, T is the set of all ordered vectors with entries taken from [`]r.

For b ∈ {0, 1}` and t ∈ T, we will write bt ← reindex(b, t) to denote the vector that is
reindexed with respect to the unique entries ti in t ∈ T (entries where (i = 1)∨ (ti−1 < ti)). In
otherwords, let z be thenumber of suchunique entries; for shorthand,wewrite z ← unique(t).3

Then we have bt ∈ {0, 1}z , with bt including only those components bti ∈ bt where ti ∈ [`] is
a unique entry of t. We may abuse notation and write xt ← reindex(x, t) similarly, where x ∈
{0, 1}` is explicitly said to be a bitstring. Therefore, if the unique entries ti of t are (t2, t5, t7, t9),
then bt = (bt2 , bt5 , bt7 , bt9).

Finally, we define the procedure T ← dedup(T) that deduplicates the vectors in T that have
the same unique entries. For example, the vectors (1, 3, 3, 3), (1, 1, 3, 3) and (1, 1, 1, 3) are all
equivalent under this consideration. We use this procedure to remove vectors that would other-
wise result in duplicated evaluations of PRF in the evaluation of our CPRF. We will discuss this
more later. After running dedup(T), only the vector with the highest lexicographic ordering is
retained for each possible vector of unique entries.

V;2.2 Definitions

Recall the formalisation of a PRF given in Definition II;4.2. Then the concept of a CPRF is en-
shrined in Definition V;2.1.

3As an example, if t = (1, 1, 2, 5, 7, 7), then z = 4. The unique entries are (t1, t2, t5, t7).
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Definition V;2.1 [Constrained PRF]

A constrained PRF is a tuple cprf consisting of four algorithms:

(Setup,Eval,Constrain,CEval),

and satisfying the following functionality:

• cprf.Setup(1λ, 1r, C): On input the security parameter λ, a parameter r, and a class
of predicates C: outputs public parameters pp and master secret keymsk.

• cprf.Eval(pp,msk, x ∈ X ): On input x ∈ X , outputs some value y ∈ Y .

• cprf.Constrain(pp,msk, C ∈ C): On input C ∈ C, outputs a constrained key
CKC .

• cprf.CEval(pp,CKC , x): On input a constrained key CKC for C ∈ C, if 1 ←
PC(x): then outputs y ∈ Y , else: outputs⊥.

We may omit the class C from the inputs to cprf.Setup, if it is obvious from context.

A constrained key CK← cprf.Constrain(pp,msk, C) can evaluate the original pseudorandom
function at inputs x ∈ X where 1 ← PC(x), using cprf.CEval(CKC , x). Such inputs x are
termed unconstrained. Inputs x′ that cannot be evaluated (i.e. 0 ← PC(x′)) are termed con-

strained, since they are constrained wrt to the constrained key.

The parameter r that is input to the setup algorithm is used as a bound on the number of queries
to cprf.Constrain that can be made. If this parameter is omitted, we assume that the number of
constrained keys that can be learnt is unbounded.

V;2.3 Correctness

Recall that the correctness property ensures that unconstrained inputs (in relation to some C ∈
C) can be evaluated using either: themaster secret keymsk in conjunctionwith the real evaluation
algorithm cprf.Eval; or the constrained keyCKC in conjunction with the constrained evaluation
algorithm cprf.CEval. We formalise this property in Definition V;2.2.
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Definition V;2.2 [Correctness]

Let:

P = Pr

[
cprf.CEval(pp,CKC , x) 6= cprf.Eval(pp,msk, x)

∣∣∣∣ (pp,msk)←cprf.Setup(1λ,1r,C)
CKC←cprf.Constrain(pp,msk,C)

1←PC(x)

]
then we say that cprf is correct if:

1. all algorithms run in time polynomial in λ;

2. we have that P < negl(λ) for allC ∈ C.

We say that cprf is perfectly correct if P = 0.

V;2.4 Security

For the constrained PRF indistinguishability security game [58] (experiments expcprfb,A (1λ, 1r)),
we modify the standard PRF adversaryA so that it also has access to an oracle

OθC(·) = OC(cprf.Constrain(msk, pp, ·), θ)

for learning constrained keys, along with an oracle

OϕX (·) = OX (cprf.Eval(msk, pp, ·),ϕ),

for learning PRF evaluations. The set θ is used to keep track of the points thatA can currently
evaluate using constrained keysCKC ← OθC(C), and the setϕ keeps track of the points xwhere
A has queried y ← OϕX (x).

Additionally, we specify a bound r on the number of key constraint queries that can be run; this
is included as an extra input toOθC(·). That is, there is an internal state in this oracle thatmonitors
the number of queries that have been asked byA. If r is exceeded then the oracle simply outputs
⊥. Recall from Section II;1 that we writeOθC(· ; [r])when the oracle is limited in this way.

The entire (adaptive) security game is given in Figure V;1, and formal specification of security is
given in Definition V;2.3.
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expcprf0,A(1λ, 1r)

1 : (pp,msk)← cprf.Setup(1λ, 1r, C);

2 : x† ← AO
ϕ
X (·),OθC(· ; [r])(1λ, 1r, pp);

3 : y† ← cprf.Eval(msk, x†);

4 : bA ← AO
ϕ
X (·),OθC(· ; [r])(1λ, 1r, pp, x†, y†);

5 : if x† ∈ ϕ :

6 : return ⊥;

7 : forC ∈ θ :

8 : if 1← PC(x†) :

9 : return ⊥;

10 : return bA;

expcprf1,A(1λ, 1r)

1 : (pp,msk)← cprf.Setup(1λ); f ←$ prf.F ;

2 : x† ← AO
ϕ
X (·),OθC(· ; [r])(1λ, 1r, pp);

3 : y† ← f(x†);

4 : bA ← AO
ϕ
X (·),OθC(· ; [r])(1λ, 1r, pp, x†, y†);

5 : if x† ∈ ϕ :

6 : return ⊥;

7 : forC ∈ θ :

8 : if 1← PC(x†) :

9 : return ⊥;

10 : return bA;

Figure V;1: CPRF indistinguishability game (adaptive).

Definition V;2.3 [CPRF security]

Let expcprfb,A (1λ, 1r) be the experiments defined as in Figure V;1. We say that cprf is an r-key
secure, constrained pseudorandom function (or a CPRF) if

max
A

(Adv(A, cprf(1λ))) < negl(λ),

holds for all PPT adversariesA.

The game ultimately requiresA to distinguish a PRF evaluation on a constrained inputx† (of the
adversary’s choice) from a uniformly distributed output. It concludeswhen the adversary submits
a bit bA ∈ {0, 1} indicating its decision. The formulation in Figure V;1 targets adaptive security,
since all queries are made adaptively. We can modify to target selective security by specifying that
some subset of the queries are specified by the adversary before the setup step is run (in step one).

m-key privacy. As an additional requirement, we can specify that a CPRF is m-key private
CPRF (or PCPRF) if the constrained keys form different pairs of constraints are indistinguish-
able. We can define the security game as in Figure V;2 based on the indistinguishability model
given in [55]. The explicit formalisation is given in Definition V;2.4, where m = 1. We only
define the model for m = 1 because this is the only case that we consider in this chapter (see
Remark V;2.1).

The definition that we use below is actually known asweak key privacy in [55], since the adversary
is not permitted to make evaluation queries. Fortunately, weak key privacy is enough for most
of the main applications of PCPRFs [55, 76]. Moreover, we are unable to prove the stronger
guarantee where evaluation queries are permitted in the adaptive setting. We leave this open to
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futurework. Whenwe refer tom-key privacy in the sequel, wewill always be referring to theweak
key privacy security model.

exppcprfb,A (1λ)

1 : (pp,msk)← cprf.Setup(1λ);

2 : C0, C1 ← A(1λ, pp);

3 : CKb ← cprf.Constrain(pp,msk, Cb);

4 : bA ← A(1λ, pp,CKb);

Figure V;2: 1-key privacy in indistinguishability framework.

Definition V;2.4 [1-key privacy]

Let exppcprfb,A (1λ) denote the experiments from Figure V;2. We say that cprf satisfies weak
1-key privacy (or, that it is a PCPRF for 1 constrained key query) if

max
A

(Adv(A, pcprf(1λ))) < negl(λ)

holds for all PPT adversariesA.

Note that, ifmaxA(Adv(A, pcprf(1λ))) = 0 for all algorithmsA, thenwe say that cprf satisfies
perfect weak 1-key privacy.

Remark V;2.1. In Figure V;2 we choose to target the case of m = 1, since our construction only

satisfies this requirement. To targetm-key privacy, we would allow the adversary to querym pairs

(C
(i)
0 , C

(i)
1 ) for i ∈ [m]. To date, only the constructions of [55] and the LR CPRF of [58] satisfy

privacy form > 1.

Simulation-based security. The work of [76] developed a simulation-based security frame-
work, combining the two security properties fromDefinitionsV;2.3 andV;2.4. In this framework,
the simulator has no access to the constraint when answering queries using cprf.Constrain, ex-
cept for the size of the constraint circuit. It was shown by [76] that simulation security implies
security in the weaker indistinguishability setting, but the reverse does not hold. We are unable to
prove the security of our scheme in the simulation-based setting since the privacy property of our
construction only holds form = 1, while we permit r ≥ 1 constraint queries.
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V;3 Construction

V;3.1 Preparation

Before describing our construction we recall some notation that we defined in Section V;2.1. Ini-
tially, letT be a set such thatT = {(t1, . . . , tr) ∈ [`]r | t1 ≤ t2 ≤ . . . ≤ tr}. Now, we compute
T ← dedup(T) to deduplicate the vectors in T that are equivalent after only considering their
unique entries (such as the vectors (1, 1, 2) and (1, 2, 2)). We do this to reduce the computa-
tional complexity of the evaluation procedure of the CPRF that we construct, but otherwise this
is a cosmetic change.

For b ∈ {0, 1}`, we will write bt ← reindex(b, t) to denote the vector that is reindexed with
respect to the unique entries ti in t ∈ T (entries where (i = 1)∨ (ti−1 < ti)). Thismeans that if
t = (1, 1, 2, 7, 8, 8, 9) and b ∈ {0, 1}10, then bt = (b1, b2, b7, b8, b9). We may abuse notation
and write xt ← reindex(x, t) similarly, where x ∈ {0, 1}` is explicitly a bitstring.

Let z be the number of unique entries in t. We write z = unique(t) for shorthand, then in our
example for t = (1, 1, 2, 7, 8, 8, 9) above we would have z = 5.4

Intuitively, the reason why we require that r = O(1) is because the the size of msk will end
up being

∑r
i=1 2i

(
`
i

)
elements. We provide more details on this in the technical overview that

follows. By a corollary of Stirling’s approximation, we have that
(
`
i

)
≥ `i/i!. For security, we

require that ` = poly(λ), and thus r = O(1) is necessary to ensure polynomial-time efficiency.

For v ∈ {0, 1, ∗}` and x ∈ {0, 1}`, recall that the bit-fixing predicate Pv(x) outputs 1, iff
(xi

?
= vi) ∨ (vi

?
= ∗) for each i ∈ [`]; otherwise it outputs 0. We will use Γv to denote the set:

Γv =

(t, b)

∣∣∣∣∣∣∣
t∈T,
z←unique(t),
b∈{0,1}z ,
vt←reindex(v,t),
1←Pvt (b).

,
for v ∈ {0, 1, ∗}`. We require that, for the set of r key constraint queries {v(ι)}ι∈[r] made by
the distinguishing adversary in expcprfb,D (1λ, 1r), then ∃ a pair such that (t, b) /∈ Γv(ι) , for each
ι ∈ [r]. Otherwise, there would be no valid constrained challenge point with which we could
evaluate the pseudorandomness of the CPRF.

In addition, there must exist a vector t† such that the adversarial challenge input point x† satisfies
(t†, x†t†) /∈ Γv(ι) , for all ι ∈ [r] and xt† ← reindex(x†, t†). If this was not satisfied, then the

4Where the unique entries are (t1, t3, t4, t5, t7).
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challenge point would not be constrained since one of the queries to cprf.Constrainmust be of
the form ∗` (if no such t† exists). An example of a satisfactory string x† is:

x† = (1− v(1)

t†1
)(1− v(2)

t†2
) · · · (1− v(r)

t†r
).

Note that we can reorder the queries v(ι) wlog so that x† /∈ Γv(ι) for each ι ∈ [r].

V;3.2 Technical overview

To aid the understanding of our scheme, we first give an intuitive overview of the techniques that
we use.

Lattice-based constructions

The idea for this work originates from the lattice-based CPRF for bit-fixing constraints of Canetti
and Chen [76]. In this work, the adversary is allowed to query for one constrained key that is
chosen selectively (rather than adaptively). The PRF is defined over an input x ∈ {0, 1}`, the
master secret key is a set of Gaussian-distributed matrices {Di,b}i∈[`],b∈{0,1}. These matrices are
thought of as representatives of LWE secrets, the underlying technique is borrowed from the
PRFs of [25, 53]. The constrained key is then some v ∈ {0, 1, ∗}`, whereDi,vi is revealed if
vi ∈ {0, 1}, and both {Di}b∈{0,1} are revealed if vi = ∗ for each i ∈ [`]. Finally, newly sampled
Di,1−vi ←$DZm×m,σ replace the matrices that are not learnt.5 In the public parameters there is
a matrixA, and for an input x, the PRF evaluation is the rounded productA ·

∏`
i=1Di,xi wrt

to some appropriate choice of integer p > 0.

The key observation of [76] is that pseudorandomness only has to hold for some challenge x†

where (x†j 6= vj) ∧ (vj 6= ∗) for j ∈ [`]. By definition, such a point must exist, otherwise x†

must be unconstrained. Then, when the PRF is evaluated at x†, the output includes the matrix
D
j,x†j

that is not revealed in the constrained key (and thus to the adversary). As a result, their
security proof relies on an LWE security reduction, whereD

j,x†j
ultimately acts as an unknown

LWE secret. It is also noted by [76] that a very similar argument can be used to show that the
PRF of [53] is also a PCPRF for bit-fixing constraints. For circuit-based constraints, this proof
technique does not apply since thematrices are no longer tied explicitly to one bit of the constraint
query. In these cases, a more careful LWE argument is used in relation to the secret distribution
that is considered.

Unfortunately, the analysis for bit-fixing does not follow for more than one key. It is entirely pos-
sible to choose two constrained keys that would reveal the entire set {Di,b}i∈[`],b∈{0,1}, without

5This is not required for standard CPRF security, but only for the extra privacy property.
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compromising all evaluation points.6 Therefore, the LWE argument cannot be used since all the
secrets are effectively made public. The main issue of this technique is that one bit of the PRF
input is tied concretely to one bit of the master secret key. Consequently, when valid constraints
reveal both components of the master secret key for each bit, security is effectively lost.

Our technique

To improve on the functionality of previous schemes, we design a CPRF construction that anal-
yses r input bits at a time, for r ≥ 1. This change is central to the collusion-resistant design that
we achieve. We also depart from the lattice constructions above, effectively replacing the matrices
above with keys to an underlying prf . It becomes clear that we require r = O(1) later, as the size
of the master secret key isO(poly(λ)r).

Key generation. To be more precise, let prf be an underlying pseudorandom function, where
prf.Eval : {0, 1}λ × {0, 1}` 7→ {0, 1}ν . Let t = (t1, . . . , tr) be an ordered vector (i.e. t1 ≤
t2 ≤ . . . ≤ tr) of r values taken from [`], that is t ∈ [`]r. We associate the setTwith all vectors t
that satisfy this property. As before, let z ← unique(t) denote the number of unique entries in
t.

Before we progress, we reiterate that we compute T ← dedup(T) to remove all vectors that
are equivalent after considering only the unique entries in each t ∈ T. We see below that if we
did not do this then we would compute prf.Eval on the same inputs multiple times. While the
CPRF would still run in polynomial time, it results in a much less efficient construction. As a
consequence, we perform this deduplication to arrive at CPRF with better computational com-
plexity. When we deduplicate, only the vector with the highest lexicographic ordering is retained
for each possible vector of unique entries.

The ‘functional’ master secret key is generated by running the following loop.

• For t ∈ T and eachw ∈ {0, 1}z (where z ← unique(t): sampleKt,w←$ prf.Setup(1λ).

Clearly, we require that r = O(1), otherwise this loop would run in super-polynomial time
with respect to λ. Finally, let msk = {Kt,w}t∈T,w∈{0,1}z . Moreover, since t is ordered, then
|msk| =

∑r
i=1 2i ·

(
`
i

)
.

We also run a separate invocation of the above to generate a ‘dummy’ set of PRF keys. That is, for
t ∈ T andw ∈ {0, 1}z : sampleKt,w←$ prf.Setup(1λ). Letmsk = {Kt,w}t∈T,w∈{0,1}z .

6For example, choosing the constraints v1 = 1∗∗∗1 and v2 = 0∗∗∗0; wherex = 1∗∗∗0 is still constrained.
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The entire master secret key is then given by the pair (msk,msk). The need for the dummy keys
becomes apparent soon, but essentially this is to allow us to satisfy 1-key privacy, when answering
constraint queries.

Evaluation. To evaluate the CPRF on x ∈ {0, 1}`, then do the following.

• For each t ∈ T, let xt be the string xt ← reindex(x, t) and z ← unique(t).

• Compute the XOR: y ←
⊕
t∈T prf.Eval(Kt,xt , x).

• Output y.

In other words, evaluation requires
∑r

i=1 2i
(
`
i

)
evaluations of the underlying PRF. Recall that

r = O(1) and so it also runs in polynomial time.

Constraining. To constrain the function we analyse bit-fixing predicates implied by strings
v ∈ {0, 1, ∗}`. Here, we use the notation that ∗ is a wildcard character, and we say that Pv(·) is
a bit-fixing predicate with respect to v, if 1← Pv(x) if and only if:

∧̀
i=1

((
vi

?
= xi

)∨(
vi

?
= ∗
))

= 1,

for x ∈ {0, 1}`.

Now let vt ← reindex(v, t) be defined as before, for a vector t = (t1, . . . , tr) ∈ T. Then to
produce a constrained key, CKv for our CPRF we analyse each string vt individually against all
possiblew ∈ {0, 1}z .

Recall that the definition of a CPRF states that evaluation should remain the same using CKv , if
Pv(x) = 1. Before we describe constraining for general parameter settings, it may be helpful to
consider a small examplewhere ` = ν = 8, r = 4, v = 100∗∗1∗0 and let t = (3, 4, 4, 6). Then
vt = 0 ∗ 1 ∈ {0, 1, ∗}r and so we need to be able to evaluate the CPRF on inputs x ∈ {0, 1}`

where xt = 001 or xt = 011.7 To achieve this, we can let K̃v
t,001 = Kt,001 ∈ msk and

K̃v
t,011 = Kt,011 ∈ msk. However, we do not have to reveal any keys where Pvt(xt) = 0, for

example if xt = 100. In these occurrences, we let K̃v
t,w = Kt,w ∈ msk. Finally, we let:

CKv =
(
{K̃t,001} ∪ {K̃t,011} ∪ {K̃t,w}w/∈{001,011}

)
t∈T

,

denote the entire constrained key.

In general, we define the constraining algorithm (cprf.Constrain) to do the following.

7Note that we ignore the index at t3 = 4 since this is a non-unique entry of t (where t3 = t2). This is essentially
re-explaining the reindex() algorithm.
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• For all t = (t1, . . . , tr) ∈ T: let vt ← reindex(v, t).

• Forw ∈ {0, 1}z , where z ← unique(t), then if Pvt(w) = 1: let K̃t,w = Kt,w.

• Forw ∈ {0, 1}z , if Pvt(w) = 0: let K̃t,w = Kt,w.

• Output CKv =
(
K̃t,w

)
t∈T,w∈{0,1}z

.

Constrained evaluation. An interesting property of our scheme is that constrained keys
are essentially distributed the same as master secret keys where the dummy portion of the key is
removed (i.e. (msk, ∅)). This is due to the fact that all the underlying set elements are just keys
sampled from the keyspace of prf . Therefore, the structural form of the constrained evaluation is
identical to the real evaluation algorithm.

Proving security

The proof of security requires a number of different considerations for initially proving security
in the selective sense; subsequently achieving adaptive security; and finally realising 1-key privacy.

Constrained pseudorandomness. Themain goal of our work is to prove that our construc-
tion satisfies pseudorandomness on ‘constrained points’, after receiving r = O(1) constrained
keys. Let v(1), . . . , v(r) be the bit-fixing strings that the constrained keys are defined with respect
to.

Our goal is to essentially show that there exists a t† = (t†1, . . . , t
†
r) such that v

(i)

t†i
6= ∗, for each

i ∈ [r].8 If thiswas not the case, then this implies that there exists i ∈ [r] such that v(i) = ∗∗· · · ∗
(i.e. the all wildcard string). If this was true, then any eventual challenge input point x† would be
unconstrained, and thus the security game is void.

For each v(i), let CKv(i) =
(
K̃

(i)
t,w

)
t∈T,w∈{0,1}z

. Now consider the string:

w† = (1− v(1)

t†1
, 1− v(2)

t†2
, · · · , 1− v(r)

t†r
),

and write w† = (w†1, . . . , w
†
r), where each v

(i)

t†i
∈ {0, 1}. Compute w†

t†
← reindex(w†, t†);

so that w†
t†
∈ {0, 1}z . Then P

v(i)
†
t†

(w†
t†

) = 0 for all i ∈ [r], and thus K̃(i)

t†,w†
= Kt†,w† .

Therefore, the ‘functional’ keyK
t†,w†

t†
∈ msk is never revealed by a constrained key query. This

is the heart of our security proof.

8We can reorder the constraint queries so that this is satisfied.
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Our security reduction uses the fact that constrained evaluations can be handled by an adversary
that has access to an oracle for the underlyingprf at a randomly chosen keyK†. The adversary sim-
ulates the master secret key in its entirety, apart from for the keyKt†,w† . Any input query x that
uses this key can be answered by submittingx as an oracle query to the function prf.Eval(K†, x),
whereKt†,w† = K† is implicitly chosen.

For the challenge constrained inputx†, we require thatK
t†,x†t

= K†—this is why the selectivity
of queries seems important initially. The adversary submits x† to its challenge oracle and receives
back y† ← prf.Eval(K†, x†) or y† ← f(x†) for a uniformly sampled function f : {0, 1}` 7→
{0, 1}ν .9

The fact that the value y ∈ {0, 1}ν output by the CPRF is pseudorandom is inferred via the
fact that y† is XORed into y, and y† is a pseudorandom output dependent solely on x† (by the
security of prf). See Theorem V;4.2 for the full proof of security, where Lemma V;4.1 focuses on
the case of selective security.

Adaptive security. Essentially, our construction arrives at adaptive security for free. Previous
constructions incur sub-exponential security losses during the reduction fromadaptive to selective
security. Essentially all constructions use the technique where the adaptive adversary attempts to
guess the challenge point x† that the selective adversary uses. We are able to achieve adaptive secu-
rity with a polynomial security loss (e.g. 1/poly(λ)): by simply guessing the key that is implicitly
used by the adversary (i.e. Kt†,w†). If this key is not eventually used by the challenge ciphertext,
or it is revealed via a constrained key query, then the reduction aborts. This is because the entire
proof hinges on the choice of this key, rather than the input itself. Since there are polynomially
many keys (for r = O(1)), we can achieve adaptive security with only a 1/poly(λ) probability of
aborting. We handle this non-trivial abort case in the proof of Lemma V;4.2.

1-key privacy. We obtain perfect weak 1-key privacy by returning to our observation about
constrained evaluations. All constrained keys are essentially made up of PRF keys sampled from
prf.Setup(1λ). Therefore, if we refer to the indistinguishability security game for weak key pri-
vacy of Boneh et al. [55], then for any two constraint queries submitted by an adversary, the re-
sulting key is distributed in exactly the same way in either case. See the proof of Lemma V;4.3 for
more details. Targeting weak key privacy does not reduce the applications of the PCPRF that we
construct [55, 76]

We cannot obtain key privacy for more than one query because two constrained keys would re-
veal where the constrained keys differ, since the underlying ‘functional’ keys have to be consistent
across constrained keys. Therefore, receiving more than one constrained key, it will become obvi-
ouswhich keys correspond towhich constraint. For a similar reason,we cannot obtain simulation-

9Note thatwe require a versionofPRF securitywhere challenge points and standard evaluationqueries are distinct
in the sense that evaluation queries are always answered by the actual PRF.
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based security [76], because we would have to permitO(1) constrained key queries for the pseu-
dorandomness requirement and this would break the 1-key privacy of our scheme. Achieving
strong key privacy also seems difficult in the adaptive security model, due to the presence of the
evaluation queries.

V;3.3 Actual construction

Following the intuition in the previous section, we now describe our CPRF formally in Con-
struction V;3.1. Recall the definition ofT; assume thatT← dedup(T) before each of the CPRF
algorithms is ran. Moreover, recall that Γv is defined as:

Γv =

(t, b)

∣∣∣∣∣∣∣
t∈T,
z←unique(t),
b∈{0,1}z ,
vt←reindex(v,t),
1←Pvt (b).

.
Construction V;3.1 [Our PCPRF]

Let λ be the security parameter, r ∈ Z be some positive constant, and let prf be a PRF
(Definition II;4.2). Let X ∈ {0, 1}` be the input space, Y ∈ {0, 1}µ be the output space
of prf , and let C be the class of BitFix constraints v ∈ {0, 1, ∗}`.
Our construction, cprf , is as follows:

• msk← cprf.Setup(1λ, 1r): [Figure V;3];

• y ← cprf.Eval(msk, x ∈ X ): [Figure V;4];

• CKv ← cprf.Constrain(msk, v ∈ C): [Figure V;5];

• y ← cprf.CEval(CKv, x ∈ X ): [Figure V;6].

Remark V;3.1. Note that constrained evaluation, on unconstrained inputs, is identical to the real

evaluation algorithm using msk. Consequently, we may write cprf.Eval(pp,CKv, x) for evalua-

tion on some constrained key CKv ← cprf.Constrain(pp,msk, v).
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cprf.Setup(1λ, 1r):

• For each t← T:
– Let z ← unique(t);

– For each b ∈ {0, 1}z :

* Sample keysKt,b,Kt,b←$ (prf.Setup(1λ))2;

* Letmsk[t, b] = Kt,b;

* Letmsk[t, b] = Kt,b;

• Output (∅, (msk,msk)).

Figure V;3: Setup algorithm for cprf . Note that the set {0, 1}z can be iterated over, since z ≤ r = O(1).
Since pp = ∅we omit further mention of it.

cprf.Eval((msk,msk), x ∈ {0, 1}`):

• For each t← T:
– Let xt ← reindex(x, t);

– LetKt,xt ← msk[t, xt];

– Compute yxt ← prf.Eval(Kt,xt , x);

• Output yx =
⊕
t∈T

yxt .

Figure V;4: Evaluation algorithm for cprf .

V;4 Security proof

In this section, we provide the necessary proofs of correctness and security for our CPRF. To
summarise, we show that our construction is a CPRF for r = O(1) constraint queries in the
adaptive security model. We also show that our construction satisfies 1-key privacy.

Theorem V;4.1 [Correctness]

Construction V;3.1 is perfectly correct.

Proof. Firstly, we know that each algorithm runs in polynomial-time since there are
∑r

i=1

(
`
i

)
vectors in T, and for each of these vectors there are 2i possible elements (or PRF keys) to operate
over. Since r = O(1), then clearly 2i ·

(
`
i

)
is poly(λ) for all i ∈ [r]. Thus the sum of all r of these

is also polynomial.
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cprf.Constrain((msk,msk), v ∈ {0, 1, ∗}`):

• For each t← T:
– Let z ← unique(t);

– For each b← {0, 1}z :

-- LetG(v)
t,b ← ∅

-- If (t, b) ∈ Γv:

CKv[t, b]← msk[t, b];

-- Else if (t, b) /∈ Γv:

CKv[t, b]← msk[t, b];

• Output CKv .

Figure V;5: Constraining algorithm for cprf .

cprf.CEval(CKv, x):

• Output cprf.Eval((CKv, ∅), x).

Figure V;6: Constrained evaluation algorithm for cprf . Since CKv andmsk are perfectly indistinguishable
(by Lemma V;4.3), we can just use CKv as input to the cprf .Eval algorithm.

Let CKv be some constrained key for v ∈ {0, 1, ∗}` and let x ∈ {0, 1}` be such that Pv(x) =

1. Additionally let t ∈ T, xt ← reindex(x, t) and let K̃t,xt = CKv[t, xt] and Kt,xt ←
msk[t, xt]. Then:

cprf.CEval(CKv, x) =
⊕
t∈T

yxt =
⊕
t∈T

prf.Eval(K̃t,xt , x);

=
⊕
t∈T

prf.Eval(Kt,xt , x);

= cprf.Eval(msk, x).

The third equality follows since x is unconstrained and thus K̃t,xt = Kt,xt ∈ msk. Therefore,
(t, xt) ∈ Γv for all t ∈ T, and so K̃t,xt 6← msk. We conclude that CKv[t, xt] ∈ msk, and the
evaluation methods are identical.

Theorem V;4.2 [PCPRF]

ConstructionV;3.1 is an r-key adaptively secure CPRF satisfying perfect weak 1-key privacy,
assuming the existence of one-way functions, for r = O(1) constraint queries and poly(λ)

evaluation queries.
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Proof. The proof of this theorem follows from the proofs of Lemma V;4.1, Lemma V;4.2 and
LemmaV;4.3. The first two lemmas considers the pseudorandomness of constrained evaluations,
the latter targets 1-key privacy.

First, we make some cosmetic modifications to the CPRF security game that allow us to con-
sider bit-fixing predicates rather than general circuit-based predicates. That is, we use the oracle
Oθ{0,1,∗}`(v) that outputs a constrained key CKv for the bit-fixing string v ∈ {0, 1, ∗}`. We
reiterate that the constrained key can be used to evaluate the PRF on an input x iff 1← Pv(x).

We give a security reduction from the pseudorandomness of prf (Definition II;4.2) to the secu-
rity of our scheme. We initially prove Lemma V;4.1, showing that our scheme is secure when the
adversary queries are chosen selectively in the CPRF and PRF security games. We then give a re-
duction from the adaptive case to the case of an adaptively secure PRF incurring a polynomial
security loss in Lemma V;4.2. To achieve this, we use the same proof technique as in the selective
case, but introduce some extra abort steps. In theory, we could present the proof of adaptivity
(Lemma V;4.2) independently of the selective security proof of selective security. However, pre-
senting them separately helps to give better intuition when presenting our proof technique.

Let v(1), v(2), . . . , v(r) ∈ {0, 1, ∗}` denote the key constraint queries, and let x† ∈ {0, 1}`

denote the challenge input query made byA. Additionally, let x†
t†
← reindex(x†, t†) and z ←

unique(t†). Since the query x† is constrained, then necessarilyPv(i)(x†) = 0 for each i ∈ [r]. In
the following claims, we consider a specific choice of t† ← Twhere (v

(i)

t†i
6= ∗) for i ∈ [r]. There

is at least one such t† ∈ T for any r constraint queries, corresponding to the constrained input
x†. Otherwise x† would be unconstrained for at least one of v(i). In other words, then we can be
sure that (t†, x†

t†
) /∈ Γv(i) for i ∈ [r], by choosing:

x† = (1− v(1)

t†1
, 1− v(2)

t†2
, · · · , 1− v(r)

t†r
).

Note that we reorder the constrained key queries, without loss of generality, so that t1 ≤ t2 ≤
. . . ≤ tr.

Lemma V;4.1 [Selective pseudorandomness]

LetΛ denote Construction V;3.1. Then we have that

max
A

(Adv(A, cprf(1λ))) < max
B

(Adv(B, prf(1λ))),

where:A,B are PPT distinguishing algorithms for b, c ∈ {0, 1};Bmakes all queries in the
prf security game selectively; andAmakes at most r = O(1) (selective) constraint queries,
and poly(λ) (selective) evaluation queries.
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Proof. LetB be aPPTdistinguishing adversary that is interactingwith the experimentexpprfc,B(1λ),
for c ∈ {0, 1} and for a pseudorandom function prf . Recall from Definition II;4.2 that in both
experiments (for c ∈ {0, 1}) the adversary has access to an evaluation oracle that takes poly(λ)

evaluation queries x ∈ X from B, and returning PRF evaluations on x with respect to a uni-
formly random choice of keyK† ∈ K. Denote the evaluation oracle in expprfc,B(1λ) byOprf

X (·).
The difference between the two experiments is related to a specifically chosen challenge point
x† ← B: when c = 0, B receives yprf ← prf.Eval(K,x†); when c = 1, B receives yprf ←$Y ,
whereY is the output space of prf .

LetA be a PPT distinguishing adversary interacting with expcprfb,A (1λ, 1r), for b ∈ {0, 1}, in the
selective query model. We show that:

max
A

(Adv(A, cprf(1λ))) < max
B

(Adv(B, prf(1λ)))

and thus, the advantage of anyA is bounded by a negligible function by Definition II;4.2.

Since all key queries submitted byA are chosen selectively, then we assume these are received in
expcprfb,A (1λ, 1r) in the first step and they are answered after setup is complete. The algorithm B
simulates expcprfb,A (1λ, 1r) forA as defined in Simulation V;4.1.
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Simulation V;4.1 [prf adversary]

• (msk,msk)← Λ.Setup(1λ, 1r, 1`) is carried out as normal.

• Constraint queries (v(i) ∈ {0, 1, ∗}`):

– Return CKv(i) ← Λ.Constrain((msk,msk), v) toA.

– Construct the sets Γv(i) for each i ∈ [r].

• Challenge query (x† ∈ {0, 1}`):

– If Pv(i)(x†) = 1 for some i ∈ [r]:

-- Return⊥.

– Let t† ∈ T be s.t. for x†
t†
← reindex(x†, t†), then (t†, x†

t†
) /∈ Γv(i) for all

i ∈ [r].

– Computes y† ← Λ.Eval(pp,msk, x†) as normal (Figure V;4), except that in-
stead of using y†

t†
← prf.Eval(msk[t†, x†

t†
], x†), B does the following:

-- Submits x† as the challenge input in expprfc,B(1λ), and receives yprf
t†
.

-- Sets y†
t†
← yprf

t†
.

– Return y† toA as the challenge response.

• Input queries (x ∈ {0, 1}`):

– If Pv(i)(x) = 1 for some i ∈ [r]:

-- Returns y ← Λ.Eval(pp,msk, x).

– If x = x†: returns⊥.

– If Pv(i)(x) = 0 for each i ∈ [r]:

-- Lets xt† ← reindex(x†, t†), for the vector t† used in the response to the
challenge query.

-- If xt† 6= x†
t†
: returns y ← Λ.Eval(pp,msk, x).

-- Else: computes y as in Λ.Eval(pp,msk, x), except that instead of using
yt† ← prf.Eval(msk[t†, xt† ], x), B does the following:

- Submits x as an input query toOprf
X (·) and receives yprf

t†
.

- Sets yt† ← yprf
t†
.

-- Return y toA.

[(c = 0) =⇒ (b = 0)]: Firstly, we need to show that when B interacts with expprf0,B(1λ), then
this perfectly simulates expcprf0,A(1λ, 1r) for A. The only difference between the simulations of
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B and the original construction manifest themselves in the response to challenge and evaluation
queries. Queries for constrained keys can be simulated just using the pair (msk,msk). Therefore,
we focus on the differences between the executionswrt the answers of the challenge and evaluation
queries.

For unconstrained evaluation queries, B answers with the honest evaluation using the simulated
msk. This secret key is distributed identically and so we can ignore these type of queries. Now,
for the selectively-chosen challenge query x†, B uses the pair (t†, x†

t†
) /∈ Γv(i) in a different way.

Recall that such a pair exists for all i ∈ [r] since x† is constrained with respect to each of the
predicates v(i). For the output y†, B computes:

y† = yprf
t†
⊕

⊕
t∈T,
t 6=t†

prf.Eval(msk[t†, x†
t†

], x†)

, (V;1)

where yprf
t†
← prf.Eval(K†, x†) andK† is the key that is chosen uniformly by the challenger in

expprf0,B(1λ). That is, B sets x† as its challenge input query in expprf0,B(1λ) and obtains the PRF
evaluation yprf

t†
. Note that this is equivalent to the construction ofΛ, wheremsk[t†, x†

t†
] = K†.

For the selectively-chosen constrained evaluation queries x ∈ X , if (t†, xt†) 6= (t†, x†
t†

) then
the queries are answered using the pair (msk,msk) sampled by B. Otherwise, if (t†, xt†) =

(t†, x†
t†

), the input query results in an output that also uses the key atmsk[t†, x†
t†

]. These queries
are answered in a similar way to Equation (V;1):

y = yt† ⊕

⊕
t∈T,
t6=t†

prf.Eval(msk[t†, xt† ], x)

, (V;2)

where yt† = prf.Eval(K†, x) ← Oprf
X (x). Note that this oracle uses the same PRF key as the

challenge query, so this is still the same as the originalΛ construction withmsk[t†, x†
t†

] = K†.

As a result, B perfectly simulates expcprf0,A(1λ, 1r) for a PPT algorithmA, using access to the ex-
periment expprf0,B(1λ).

(c = 1) =⇒ (b = 1): When B has access to expprf1,B(1λ), note that the answers to evaluation
queries for unconstrained x ∈ X are the same. The answer y† to the challenge input query takes
the same form as in Equation (V;1), except that yprf

t†
←$Y is now sampled uniformly from the

output space Y of prf . Therefore, the entire output y† is distributed uniformly. Constrained
evaluation queries are derived in the same way as the previous simulation, since Oprf

X (·) always
outputs real evaluations from prf regardless of the value of c ∈ {0, 1}.
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Consequently, it is not hard to see that that B perfectly simulates expcprf1,B (1λ, 1r) forA, since y†T
is distributed uniformly and thus perfectly indistinguishable from the output of a uniform func-
tion. Moreover, evaluation queries are still answered by honest evaluations from the underlying
prf .

Using the above two arguments we see that

max
A

(Adv(A, cprf(1λ))) < max
B

(Adv(B, prf(1λ))) < negl(λ).

In summary, we obtain the result of Lemma V;4.1 via a security reduction from the pseudoran-
domness of prf to the security ofΛ.

Lemma V;4.2 [Adaptive pseudorandomness]

LetΛ denote Construction V;3.1. Then the following inequality holds:

max
A

(Adv(A, cprf(1λ))) ≤ 1

poly(λ)
max
B

(Adv(B, prf(1λ))),

whereA is any PPT algorithm thatmakes all queries selectively, andB is any PPT algorithm
making all queries adaptively in the prf security game.

Proof. The proof of this lemma essentially follows the same argument as in Lemma V;4.1 but
where we provide extra abort steps in the proof and we use an adaptively-secure prf construction.
All together this requires a hybrid argument.

An important part of the proof of Lemma V;4.1 is that the evaluation queries are chosen in the
knowledge of the pair (t†, x†

t†
) that is used for embedding the PRF evaluation from expprfc,B(1λ).

As such, it seems that the challenge query needs tomade selectively in order for the security proof
to hold. Additionally, all other queries need to also be made selectively for this pair to be chosen.
Fortunately, we show that the probability of the prf adversary, B, aborting is actually 1/poly(λ)

and so the security loss introduced using this technique can be covered by a polynomial-time re-
duction.

Our hybrid argument has the following steps.

• H0: This is the original CPRF security game, whereAmakes all queries adaptively.

• H1: In this step, the PRF adversary B samples a random pair (tB, bB)←$T × {0, 1}z

where z ← unique(tB). Then B aborts at the end of the game if any of the following
conditions are met:
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– for any bit-fixing vector v(i) chosen by A (for i ∈ [r]), the pair tB, bB) satisfies
(tB, bB) /∈ Γv(i) ;

– for the challenge queryx† chosen byA, thenx†tB ← reindex(x†, tB) satisfiesx†tB 6=
bB;

– if (tB, bB) chosen by B is not the first pair (with respect to some pre-defined order
over [`]z×{0, 1}z such as the lexicographic order) that does not violate the first two
conditions. Note that it is possible to efficiently find such a pair by enumerating over
[`]z × {0, 1}z since r = O(1).10

When B aborts, it substitutes the guess output byA by a random bit.

• H2: In this step, the adversary B aborts the security game immediately after any of the
conditions above are violated.

• H3: In this step, the adversaryB answers queries fromA in the manner defined in Simula-
tion V;4.1.

It should be clear that, as long as the security loss in changing state between H0 and H2 can be
kept to a polynomial function in the security parameter, then the transition from H2 to H3 can
be bounded by the advantage required to bound the proof of Lemma V;4.1.

Claim V;4.2.1. Let A be an adversary attempting to distinguish between H0 and H1 in the exper-

iments expH0,H1

b,A (1λ). Then:

max
A

(Adv(A,H0,1(1λ))) <
ε∑r

j=1 2j
(
`
j

)
where ε is the advantage in winning in H0.

Proof. Note that there at least a single pair (t, b) must satisfy the conditions in H1, otherwise
the security game would be vacuous because the challenge query would be unconstrained. The
number of total pairs is

∑r
j=1 2j

(
`
j

)
, and since the conditions can be checked in poly(λ) time,

then the probability of B aborting the security game is equal to 1 − 1/
∑r

j=1 2j
(
`
j

)
. Therefore,

the advantage thatB has inwinning the security game is ε/(
∑r

j=1 2j
(
`
j

)
)where ε is the advantage

thatA has in winning inH0

10One may wonder why the final condition for the abort is necessary, because the reduction in the proof of
LemmaV;4.2 works evenwithout it. This additional abort step is introduced tomake the probability of abort to occur
independently of the choice of the constrained key queries and the challenge query made by the adversary. Without
this step, we cannot lower bound |Pr[H1]−1/2|. A similar problemwas identified byWaters [292], who introduced
the “artificial abort step” to resolve it. Our analysis here is much simpler because we can compute the abort probability
exactly in our case.
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Claim V;4.2.2. Let A be an adversary attempting to distinguish between H1 and H2 in the exper-

iments expH1,H2

b,A (1λ). Then:

max
A

(Adv(A,H1,2(1λ))) = 0.

Proof. The step inH2 is merely a syntactic change fromH1 and so the advantage is the same.

Claim V;4.2.3. Let A be an adversary attempting to distinguish between H2 and H3 in the exper-

iments expH2,H3

b,A (1λ). Then:

max
A

(Adv(A,H2,3(1λ))) < negl(λ).

Proof. The proof of this claim is exactly the same as the proof of LemmaV;4.1, except with thatB
aborts if any of the conditions inH1 are satisfied. As such, we do not reiterate the proof here.

Finally, since the advantageofAofwinning theCPRFsecurity game inSimulationV;4.1 isnegl(λ),
then the probability ofAwinning the security game is

ε = max
A

(Adv(A,H0(1λ))) ≤
r∑
j=1

2j
(
`

j

)(
max
A

(Adv(A,H3(1λ))) + negl(λ)

)
< negl(λ)

and thus the proof of Lemma V;4.2 follows from the proofs of the above claims. Recall that the
fact that

r∑
j=1

2j
(
`

j

)(
max
A

(Adv(A,H3(1λ))) + negl(λ)

)
< negl(λ)

is satisfied is because
∑r

j=1 2j
(
`
j

)
= poly(λ).

Lemma V;4.3 [Perfect 1-key privacy]

Construction V;3.1 satisfies perfect weak 1-key privacy.

Proof. Notice that the master secret key is of the form:

(
{Kt,w}, {Kt,w}

)
t∈T,w∈{0,1}z ,

whereKt,w,Kt,w ← prf.Setup(1λ). Let v(0), v(1) ∈ {0, 1, ∗}` be the two bit-fixing strings
that the adversaryA queries. Then,A receives either one of the following two distributions:
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•
(
K̃

(0)
t,w

)
t∈T,w∈{0,1}z

where K̃(0)
t,w = Kt,w if and only if w ∈ Γv(0) , and K̃t,w = Kt,w

otherwise.

•
(
K̃

(1)
t,w

)
t∈T,w∈{0,1}z

where K̃(1)
t,w = Kt,w if and only if w ∈ Γv(1) , and K̃t,w = Kt,w

otherwise.

Notice that both the distributions are made up of entirely uniformly sampled keys in {0, 1}λ for
prf . Therefore, they are perfectly indistinguishable and the proof is complete.

Finally, the proof of Theorem V;4.2 follows by the results of Lemma V;4.1, Lemma V;4.2 and
Lemma V;4.3. The fact that we achieve this under the existence of one-way functions is because
a pseudorandom function can be instantiated by a OWF directly from the results of [164, 178].
Thus the statement of Theorem V;4.2 follows immediately.

V;5 Implementation

Our CPRF is constructed just from an underlying PRF.While we require a large number of PRF
evaluations, since these operations are quite cheap, this implies that it may be plausible to run our
construction quite cheaply.

Discussion of adaptive security parameters. In the proof of Lemma V;4.2, we incur a
security loss of 1/poly(λ). While this loss is small enough (asymptotically) to guarantee adaptive
security with a polynomial security reduction, the impact of it on parameter settings will notice-
ably impact the practicality of our scheme. This is because we have to essentially satisfy security
in a setting where the security parameter is λ′ = λ/poly(λ) and poly(λ) =

∑r
j=1 2j

(
`
j

)
; this

quantity grows rapidly, even for small values of r.

For this reason, our implementation only targets security in the selective security setting. In this
model, the reduction from the security of the underlying PRF to the security of the CPRF is tight.
Subsequently, we can take the security of the scheme to be solely defined by the security parameter
λ. This allows us to be flexible with the choices of ` and r, which consequently have no impact
on the security reduction. Therefore, we only have to consider the efficiency of the scheme when
choosing ` and r when we make our parameter settings below.

Parameter settings. Recall that ` = poly(λ) and r = O(1); we can calculate concretely how
our choice of ` and rwill influence the computational running times and costs of our scheme. For
example, in cprf.Setup we have to sample

∑r
j=1 2j ·

(
`
j

)
uniform PRF keys. This is going to be

somewhat larger than `r. Therefore, if we take the security parameter to be 128 bits in length,
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` 4 8

r 2 3 4 2 3 4 5 6

Setup 0.05 0.227 1.01 0.299 2 14.4 166.1 12356
Eval 0.035 0.076 0.141 0.134 0.517 1.5 3.74 9.303

Constrain 0.023 0.062 0.155 0.079 0.39 1.33 3.98 10.539

Table V;2: Benchmarks (ms) for cprf operations, for λ = 80 and ` ∈ {4, 8}.

` 16 80

r 2 3 4 5 2 3

Setup 1.07 18.6 4387 291201 55.3 1562824
Eval 0.522 3.32 19 101 13.2 463

Constrain 0.301 2.62 19.9 106 7.46 373

Table V;3: Benchmarks (ms) for cprf operations, for λ = 80 and ` ∈ {16, 80}.

and equivalently take ` = 128 and r = 4, then we can expect total running costs that are> 227.
Then, increasing r above 4 is going to be impractical to run.

Limiting ` so that we consider smaller inputs helps to alleviate the burden slightly, as we see later
this enables running experiments for r = 6. Sincewe are interested in experimentingwith as large
r as possible we decide to give results with ` ∈ {4, 8, 16, 80, 128}.

Some applications (such as those of ID-NIKE and broadcast encryption) may tolerate only short
input lengths if the length of encoded data is small (for instance, encoding identities).

We choose to instantiate prf using the hmac algorithm, with the SHA-256 hash function. hmac

is indeed both a secure MAC, and a secure PRF algorithm in the ROM (see Section II;4.6). An
advantage of using this algorithm is that it is typically included in native cryptographic libraries.

Results.We answer the conjecture that our scheme is practically efficient in the affirmative, pro-
viding the first meaningful implementation of a CPRF for any number of collusions and predi-
cates. Our implementation is a proof-of-concept but the cryptographic mechanism is remarkably
simple, consisting of only 508 lines of code. It is written in the language Go to expose concurrency
features that can speed up the key generation processes. The figures below were run on the fol-
lowing configuration: 256GBRAM; Intel(R) Xeon(R) CPUE5-2667 v2@ 3.30GHz; maximum
of 1 core using all 16 threads. Our source code will be made open source in the near future, but
for now is available in Appendix A.11 In Table V;2 and V;3, we provide benchmarks for λ = 80,
for various settings of ` and r. In Tables V;4 and V;5, we provide similar benchmarks in the case
of λ = 128.

11This work is currently under submission and so the source code is not yet public.
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` 4 8

r 2 3 4 2 3 4 5 6

Setup 0.048 0.185 0.755 0.218 1.62 12.8 151 11989
Eval 0.038 0.083 0.176 0.142 0.49 1.5 3.78 9.91

Constrain 0.024 0.068 0.134 0.08 0.323 1.36 4.12 11.6

Table V;4: Benchmarks (ms) for cprf operations, for λ = 128 and ` ∈ {4, 8}.

` 16 128

r 2 3 4 5 2 3

Setup 0.903 17.1 4237 293433 1346 54569004
Eval 0.531 3.56 19.9 94.2 33.7 1800

Constrain 0.295 2.63 19 113 19.8 1511

Table V;5: Benchmarks (ms) for cprf operations, for λ = 128 and ` ∈ {16, 128}.

Discussion of results. It is clear that our results demonstrate an efficient CPRF scheme for
small length inputs and very small settings of r. For r < 6, all algorithms run in less than a second
(apart from for ` = 16). The running times for λ ∈ {80, 128} are virtually the same. For
(r = 6) ∧ (` = 8), setup takes approximately 12 seconds. Similarly, for (r = 4) ∧ (` = 16) it
takes approximately 4 seconds. For (r = 5)∧ (` = 16), setup is much more expensive— taking
between 4 and 5 minutes. These findings suggest that we could easily increase λ to higher levels
without much change in the running times.

The exponential dependency of ` on r becomes rapidlymore apparent for higher settings of both.
For small ` ∈ {8, 16}, we can seenoticeable increases in the time taken to run cprf.Setupbetween
r = 5 and r = 6. In contrast, the differences between cprf.Eval and cprf.Constrain seem
to follow a linear relation across all intervals. As a result, the runtimes of Eval and Constrain

are much smaller in comparison to the setup. Fortunately, Setup is usually only run once for
each instantiation of cprf . As such, tolerating an initial setup expense allows much more efficient
CPRF evaluation and constraining algorithms.

If we move to larger values of ` ∈ {80, 128}, then the running time for the master secret key
generation becomes vastly inflated. For (r = 3)∧ (` = 80), cprf.Setup takes around 12 seconds
already. For (r = 3) ∧ (` = 128), cprf.Setup takes over 15 hours! Clearly, the latter case
is completely unsustainable. But we think it provides a useful point-of-reference for where our
scheme becomes practically inefficient to run.

Comparison with previous work. While previous constructions of CPRFs have not been
implemented, the only constructions that allow for multiple constraint queries (and constrained
keys to be defined wrt bit-fixing predicates) are reliant onmultilinear maps and indistinguishabil-
ity obfuscation. Even ignoring the security concerns regarding candidate constructions of these
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primitives, they are very inefficient. Thismeans that any CPRF construction based on these prim-
itives has almost no chance of being practical.

Lattice-based constructions (and the construction based on traditional groups [20]) only allow
one constrained key to be learnt, so our scheme already compares favourably with these designs.
Moreover, the lattice-based designs require very large parameters for establishing the LWE as-
sumption that is required. Most designs take similar parameters choices as those made during the
design of the lattice-based PRF of Boneh et al. [53]. These works require the LWE assumption to
hold with a sub-exponential modulus-to-noise ratio; resulting in a very large modulus and large
computational costs. Again, without corresponding implementations it is impossible to compare
actual running times, but we can infer that our construction is likely to be much more efficient
due to the simplicity of the primitives that we use.

V;6 Conclusion

To summarise this chapter, we have devised a new construction of a constrained PRF for the bit-
fixing predicate. In comparison with previous research, our CPRF is the first to allow multiple
(r > 1) constrained keys to be learnt during the security proof from standard assumptions and
in the standardmodel. In fact, our construction requires only the existence of one-way functions,
a much weaker assumption than any previous construction.

In addition, our CPRF is fully adaptively secure without the requirement for sub-exponential
security losses and satisfies 1-key privacy. We have detailed a proof-of-concept implementation of
our construction that demonstrates that our CPRF can be very efficient for small values of r.

V;7 Future work

We briefly discuss the possible avenues for future work, based on our research.

Morecollusions. If we could increase the number of collusions to something that was depen-
dent on the security parameter alone, rather than the input length, thenwewouldmake significant
progress to achieving a CPRF secure against any number of collusions. Our construction utilises
a combinatorial technique that is inherently dependent on ` = poly(λ) — this explains the de-
pendence on constant-size r. If we could remove the dependence on `, and instead only depend
linearly on λ, then we could achieve logarithmic numbers. This could also lead to a much more
efficient construction in complexity terms.
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More expressive predicates. One of the most influential papers that we found for devis-
ing our construction was the attribute-based encryption scheme of Gorbunov et al. [169]. We
can think of each of the vectors t ∈ T as corresponding to a gate, and then the individual keys
corresponding to the output wires of said gate. Viewing our construction like this enabled us to
find that there would be certain keys, for bit-fixing predicates, that would never be given to the
adversary.

Indeed, the construction of [169] targets policies that are expressed as circuits. A significant im-
provementonourworkwouldpotentially leverage their results even further, toobtain constrained
keys that also correspond to bounded-depth circuit predicates, with collusion-resistance.

Practical explorations. Our construction could lead to small-scale implementations of
primitives such as ID-NIKE.12 Moreover, our benchmarks run in Go up to relatively small pa-
rameter settings, but an optimised implementation in a faster language (such as C or Rust) may
capitalise on performance further. Consequently, this may allow us to reach higher values of r
in our construction. Additionally, more implementations in higher-level languages (for instance,
JavaScript) could enable us to deploy the CPRF as part of applications more widely (for exam-
ple, in browser-based scenarios).

In some ways, a CPRF represents a non-interactive oblivious PRF. Oblivious PRFs (OPRFs) are
incredibly useful primitives that are used inmany practical scenarios (see Chapter VI for one such
application). Non-interactivity is a highly sought after characteristic in cryptographic primitives,
since communication times canbe theultimate bottleneck in cryptographic design. An interesting
avenue of research would test whether our constrained PRF could generically replace OPRFs (in
scenarios where the number of clients low, perhaps).

12Although, the goal with these applications is to achieve unbounded security, i.e. r = poly(λ).
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preface

In this chapter we will develop a practical protocol for anonymously authenticating clients to
servers. The protocol itself enjoys similarities with previous work, though we provide optimisa-
tions that allow formore efficient communication and client computation. Our scheme is instan-
tiated from elliptic curves, implicitly relying on a cryptographic primitive known as a verifiable
oblivious pseudorandom function.

We use this scheme for providing clients with the ability to prove their ‘honesty’ in an anonymity-
preserving way, to some appropriate server. This is achieved using the notion of ‘anonymous’
tokens that can be acquired by the client. These tokens attest to the client’s honestly in the future.

Our solution solves a real-world problem, engendered by the increasing usage of content delivery
networks (CDNs) for serving web content to clients. The problem originates from the desire of
CDNs to prevent malicious clients from gaining access to web resources. Though client connec-
tions are rarely blocked altogether, they may have to complete some sort of challenge first. These
tests — usually implemented as CAPTCHAs — are burdensome for users and, in some cases,
are prone to implementation errors that can prevent access. We show, statistically, that users who
browse anonymously (specifically via tools such as Tor or VPNs) are targeted disproportionately
by such measures.

We develop compatible client and server implementations for our protocol. When deployed,
these tools are compatible for proving honesty to the Cloudflare network, without sacrificing user
anonymity. Our client deployment comprises a browser extension, known as Privacy Pass, that is
compatible with the Chrome, Firefox and Tor web browsers. The server code is embedded into
the Cloudflare access-control mechanism. A successful authentication allows the client to bypass
challenges that are required by Cloudflare during browsing.

Privacy Pass was released in November 2017 and has since seen over 75000 downloads. We give
browsing statistics showing that the extension has resulted in a notable decrease in the number of
internet challenges that are served by Cloudflare. The network is significantly more accessible for
all internet users, as a result.

This chapter is based heavily on the following paper [120] that was published at the Privacy En-
hancing Technologies Symposium 2018 [PETS18].1 We provide links to all of our deployment
code (which is open-source and licensed under the BSD-3 clause); the browser extension can also
be downloaded from the Chrome store and the Firefox add-ons store. The website for Privacy
Pass is https://privacypass.github.io. Large parts of this work was completed while the
thesis author undertook internships at Cloudflare during Jun-Sept 2016 and Jul-Oct 2017.

1Winner of the Andreas Pfitzmann Best Student Paper Award 2018 at PETS18.
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Overview of contributions

• AnewVOPRFprotocol basedon elliptic curves, withbatched verifiability (SectionVI;2.5).

• A 1-RTT anonymous authentication protocol based on our VOPRF (Section VI;3).

• A browser extension (Privacy Pass) compatible with the Chrome and Firefox browsers for
client-side authentication operations. Additionally, a server-side deployment in the CDN
Cloudflare, for interacting with users that have Privacy Pass installed (Section VI;5);

• Empirical analysis ofPrivacyPass adoption, alongwith evidence supporting greater browser
accessibility for users interacting with Cloudflare (Section VI;5.5).
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VI;1 Introduction

An increasingly common trend for websites with globally high visitation is to use content deliv-
ery networks (CDNs) to host or cache their resources. A CDN does not directly act as a hosting
provider, more as a ‘reverse proxy’ whereby websites pay for the CDN to help route their web-
site content through to clients. This routing is primarily built with the intention of maximising
the speed of displayed content appearing in client’s browsers. For example, many CDNs replicate
cacheable resources atmanydata centre locations across the globe. Doing this bringsweb resources
closer to clients by ensuring a closer geographic proximity between clients and requested resources.

A second advantage of using a CDN it that it can provide security mechanisms on the edge net-
work (i.e. before requests are received by the origin website). CDNs are typically well-resourced
and thus have a much greater probability of successfully foiling coordinated attacks against web-
sites. For example, for large-scale flooding attacks (such as those required for leveraging DDoS)
CDNs can typically employ the sophistication of their own edge network to dissipate the attack
across multiple locations. This prevents the attack from targeting a single entity. For small-scale
attacks (such as spam and content scraping) CDNs can use their vast knowledge of the topology
of the internet to determine whether connections look malicious, before allowing them access.

The advantages laid out above are quickly seeing website creators moving towards employing
CDNs for distributing content. According to Cisco, CDNs will serve 71% of all internet browser
traffic in 2021, up from 52% in 2016 [96]. Some of the most well-known CDNs include Akamai,
Cloudflare, Fastly, and Amazon Cloudfront.

Methods of protection. In this chapter we focus on the security services offered by CDNs
and the residual effects of employing over-zealous website protection. Typically the protection
that we discussed is enforced via a variety of means. One of the most common methods is to
use IP-based reputation checks on the IP addresses that sendHTTP requests to the CDN. These
checks involve analysing whether incoming IPs have been used for past malicious activity before
granting access. If an IP address is deemed to have a ‘poor’ reputation, existing CDNs may use
one of the following options [288] for guarding protected websites:

• block access altogether;

• issue human proof-of-work challenges to prevent access from bots (e.g. CAPTCHAs [3]);

• route requests through a web application firewall.

IP reputation checksmaybemade against publicly available databases,manyofwhich are available
online for free, for example [95, 97, 112]. Otherwise, CDNs may choose to maintain their own
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IP reputation database, using data on attacks that they have witnessed to value the reputation of
each address.

Incorrectclassification. Aswith all protectionmechanisms, there is the possibility of both
false positives and negatives occurring when performing these checks. A false positive would be a
malicious client— a client that intends to launch some sort of attack on a requestedwebsite or the
CDN network — that makes requests from a IP address that is assigned a ‘good’ reputation. A
false negative is an ‘honest’ client that is associated with an IP address that has a ‘poor’ reputation.

The case of false positives are not too worrisome, since a malicious client is assumed to eventually
conduct somemalicious behaviour thatwill then cause their IP address tohave a ‘poor’ reputation.
After this occurs they will be classified correctly — providing that they cannot quickly and easily
switch IP addresses. False negatives aremore difficult to justify, since honest usersmaybe subjected
to one of the ‘blocking’ mechanisms described above. Moreover, unless there is functionality for
updating IP reputations regularly— including re-evaluation of the reputation to deem it honest,
after an initial characterisation as malicious— then these effects may be long-standing. In partic-
ular, if users are accessingwebsites from static IP addresses, then theymay remain a ‘false negative’
for a large period of time.

A more serious situation arises if a user shares a static IP address with multiple other users. In
such a situation, anymalicious activity by one user associated with the IP address is likely to result
in worse browsing conditions for all of the users. In terms of concrete groups of users who may
be negatively affected by such a security characterisation, we can immediately think of users of
anonymity services such as Tor, Virtual Private Networks (VPNs) and I2P. These services use a
finite list of static IP addresses whose size is orders of magnitude less than the number of users
using the service.2 Moreover, if the IP addresses of a service are publicly available, then it is also
plausible that content providers can deliberately target these IP addresses to block access, if they
so wish.3

The case of Tor and Cloudflare. While the above seems like conjecture, over the past few
years it has become apparent that users of anonymity services experience much worse browsing
conditions when interacting with CDNs [207]. The Cloudflare network uses a range of security
mechanisms, although the most obvious to human users is the requirement to complete a Turing
test in the formof aCAPTCHA[3], to access protectedwebsites. This test is used if the IP address
making the request has a poor reputation. While access is eventually granted by completing the
CAPTCHA, there has been widespread coverage of issues that Tor users (in particular) face when
attempting to access Cloudflare-protected websites [289]. The manifestations of these issues are
myriad, but typically range from: vocal annoyance at the difficulty of solving these CAPTCHAs,

2In the case of Tor, there are typically >2000000 active users for >1000 exit nodes.
3This is a configuration available to Cloudflare customers.
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to access being completely blocked by badly implemented CAPTCHAs and/or browser compat-
ibility issues.4

Users of Tor/VPNs are often forced into using such tools so due to oppressive internet censorship
or for protection of their own identity. These tools typically ensure a worsened browsing expe-
rience, due to the increased latency experienced while browsing. Consequently, access-limiting
measures introduced by CDNs only further degrade the browsing experience for an important
subset of users. To fully characterise the disparity in experiences between normal browsing and
browsing via Tor, it is worth noting that 1.04% of the global traffic served by Cloudflare is chal-
lenged [98].5 In comparison, the number of requests fromTor users challenged by Cloudflare sits
at 17%. Cloudflare typically serves over 10 trillion requests per month [99] and approximately
0.05% of this traffic arrives over the Tor network [98]. As such, Cloudflare handles thousands
of requests every second and billions of requests every month from the Tor network alone. This
is not even accounting for the numbers of requests originating from VPNs/I2P shared networks
operating under similar conditions. Reducing theworkload for these userswill clearly have a large,
undeniably positive effect on their web accessibility.

Previousmitigations. Unfortunately, reducing the number of challenges by simply allowing
more requests to access resources (or lowering the reputation threshold) is not economically fea-
sible in the CDNmodel. Many customers employ CDNs for protecting their websites specifically
and, in fact, prefer stronger security measures over greater user access. For instance, many Cloud-
flare customers deliberately opt to force Tor users to undergo stricter security measures [98].

A commonmethod of reducing challenges for users who have previously completed one success-
fully is to use browser cookies. The client is given a cookie (of limited lifetime)when they complete
a challenge successfully, these cookies are then redeemed in place of a future challenge, if the re-
quirement arises. While this appears to solve the problem of reducing the number of challenges
on the face of it, there are subtle issues that reduce the utility of the solution dramatically for
certain users. More pertinently, the cookies could potentially be used to subvert the anonymity
requirements of even those users that are accessing from anonymity-preserving services.

The first issue is that cookies are regularly cleared out during Tor browser sessions.6 Therefore,
cookies are unlikely to be useful for anymeaningful length of time. For the secondmore devastat-
ing issue, using cookies across multiple domains provides an easy way of tracking usermovements
across the CDN edge network, thus breaking the anonymity models of Tor and VPNs. These
issues suggest that a much more nuanced, potentially cryptographic, solution is required.

4See https://trac.torproject.org/projects/tor/ticket/18361 for a collection of related issues.
5By ‘challenged’, wemean that they are shown some proof-of-work challenge before they can access web resources.
6Essentially when the Tor circuit configuration resets, which occurs every 10 minutes or so
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VI;1.1 Our contribution

In this chapter, we develop a solution that works in tandem with any system that uses challenges
to ascertain whether a client is honest. In particular, we grant an anonymous user, deemed to be
honest at some point in the past, the ability to gain access to further web resources; without the
need formore challenges. Our solutionmaintains anonymity of the user— so that CDNs cannot
globally link requests and attempt to subvert anonymization measures. In essence, we devise a
protocol for anonymously authenticating users for a predetermined number of future occasions,
after an initial trusted setup.

Our protocol is built upon a cryptographic primitive known as an oblivious pseudorandom func-

tion [142]. An OPRF protocol allows a client to receive PRF evaluations at chosen inputs, from
a server holding a PRF key. The security requirement is that the server does not learn the chosen
PRF inputs, and the client does not learn the server’s key. We give a specific instantiation of the
primitive based on elliptic curves. We require an extra security property known as verifiability, an
extra protocol message that attests to the server’s honesty in evaluating the underlying PRF. In
summary, a verifiable OPRF (VOPRF) provides a signing mechanism. We augment this VOPRF
with the ability to also redeem tokens to the signer, much like a blind signature scheme to achieve
authentication.7 Constructions of VOPRFs already exist [194, 196, 277], we lay out our specific
modifications shortly.

The core part of the contribution is an implementation of the anonymous authentication proto-
col into a meaningful client-server scenario. That is, firstly we develop an implementation of the
client in the anonymous authentication protocol in a browser extension, named Privacy Pass, that
is compatible with the Chrome and Firefox browsers (and also Tor browser). Secondly, we imple-
ment an example server-side implementation in the Cloudflare network. We use the anonymous
authentication protocol to bypass CAPTCHAs required by Cloudflare for browsing protected
sites, if the user has already completed a CAPTCHA in the past. That is, for each CAPTCHA
solution, Cloudflare provides anonymous tokens that are used to bypass CAPTCHA solutions in
the future.

We globally released a beta version of Privacy Pass in November 2017. We detail results from the
deployment of the extension in Section VI;5 and how it has improved the global browsing expe-
rience for users interacting with the Cloudflare CDN.

VI;1.2 Relatedwork on anonymous authentication

In this chapter, we focus onmethods of anonymously authenticating users. Our goal is to develop
practical solutions for such a mechanism that can be seamlessly embedded into the user browser.

7Note that we do not achieve an actual signature scheme, since verification is not a public operation.
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The related work below reflects on existing research and why it is not exactly suitable for our re-
quirements. We discuss previous research regarding the cryptographic primitives that are central
to our design later in Section VI;2.

Anonymouse-cash. In essence, our solution grants a user anonymous tokens for each challenge
that they solve; these tokens can be redeemed later to bypass future challenges. The setup is rem-
iniscent of anonymous e-cash settings that were popularized by Chaum [81, 82]. Chaum showed
that it was possible tomodify textbookRSA such that a user could receive signatures from a signer
on ‘blinded’ messages. The user is then able to ‘unblind’ the signature such that it has a valid sig-
nature for the unblindedmessage. The blinding prevents the signer from learning the underlying
message. These techniques were used by Chaum et al. [85] for an untraceable e-cash system and
more recently as the backbone of the taxable, anonymous e-cash serviceTaler [129], released by the
GNU project in 2016. There have been numerous different blind signature schemes introduced
since the blind-RSA variant [56, 147, 152, 155, 261, 269, 273], though these typically are much
more conceptually involved and sometimes require more than two rounds of communication.

A blind signature scheme could also be leveraged to help solve the problem that we are facedwith.
However, our specific construction of aVOPRF ismuchmore efficient than existing construction
and we do not require the means for public verification of signature equivalents.

Anonymousblacklisting/whitelisting. Anonymous e-cash systems canbeuseful in grant-
ing privacy-preserving access to resources. An alternative method for providing similar function-
ality is the usage of anonymous blacklisting techniques [184]. In these schemes a user is asked
to prove that they are not blacklisted (or that they are part of a whitelist) using some finite re-
source that they control. This is very similar to the situation that we consider, where owning
a token is equivalent to being part of a whitelist or not being blacklisted. In fact, the work of
Henry and Goldberg [184] is motivated by a similar scenario where honest users of Tor are de-
nied access to resources. Additionally, they also explicitly consider the potential of using human
challenges or CAPTCHAs as a method for whitelisting. Their formalization suggests numerous
ways for maintaining an anonymous blacklist, including using blind RSA signatures. They also
discuss ‘Nymble-like’ [183, 230] systems that leverage the use of a trusted third party formaintain-
ing anonymity during access requests. A similar situation is considered by Liu et al. [229] when
proposing their solution TorPolice, a privacy-preserving mechanism that enables access-control
policy implementation wrt connections originating from the Tor network.

We ignore the ‘Nymble-like’ designs as they require an extra trusted party that we do not. While
Henry and Goldberg [184] provide a formalization of multiple different anonymous blacklisting
methods, with various pros and cons, there is little work detailing the scalability of such systems.
Moreover, our solution results in a browser extension that is easily supported by simply running
a small piece of code at the service provider. This scales much more efficiently than each service
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provider implementing bespoke blacklisting/whitelisting techniques. Our solution benefits all
users, not just those originating from Tor, and so we provide a more general browser-based solu-
tion than TorPolice [229].

Privacy-preserving e-ticketing. Another diverging thread of literature focuses on ‘privacy-
preserving e-ticketing’. Theworks ofHeydt-Benjamin et al. [185] and Sadeghi et al. [271]were the
first to propose solutions to privacy-preserving ticketing for public transportation systems. These
solutions were based on anonymous e-cash systems such as those listed above, and on physically
unclonable functions. Thework of Kerschbaum et al. [206] analysed Singapore’s EZ-Link system
and showed that it was easy to extract a traveller’s travel records. They proposed an encrypted
bill processing procedure that allows for privacy-preserving data mining analysis by the transport
company.

While the above solutions are similar to the work that we describe, they are heavily targeted at
public-transport applications. Additionally, data-mining analysis on the results of the transactions
is the primary motivation of these works, which we do not share.

VI;1.3 Layout

In Section VI;2 we will introduce the cryptographic mechanisms that we will need for the rest of
the work. This includes a construction of a VOPRF protocol from elliptic curve cryptography
foundations. In Section VI;3 we show that these foundations can also be used to construct an
anonymous authentication protocol. In Section VI;4 we will introduce the application that we’re
targeting: reducing the number of internet challenges for honest anonymous users. We will cover
the browser extension Privacy Pass in Section VI;5 and an empirical analysis of the server-side
deployment. Wewill also consider a number of plausible out-of-band attacks in SectionVI;6, and
their mitigation. By ‘out-of-band’ we mean attacks that fall outside of the security model that we
consider. We conclude the chapter in Section VI;7.

VI;2 Preliminaries

Specific notation. Throughout, we will use the notation C and S to denote the client and
server respectively in protocol interactions. We will refer to a ‘user’ or ‘client’ as the initiator of
a connection to some website. We define the ‘edge’ server as the entity that decides whether a
user’s request will be allowed or denied. The edge server typically refers to the role of the CDN
in the browsing scenario. We use the term ‘challenge’ to generically refer to some task that the
edge provides to a user. This task is solved to prove that the client is acting in an ‘honest’ way (for
CAPTCHAs this check simply proves the requests originates from a human). By an ‘honest’ user
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we simply mean a user that should be granted access to a website and conversely for a ‘malicious’
user. InCloudflare lexicon, ‘honest’ users are human and ‘malicious’ users are bots. Wewill use the
notion of a ‘protected’ page to refer to a website that uses the edge to supply users with challenge
pages for granting access (i.e. a CDN customer).

Group instantiation. Most of the cryptographic operations in this chapter take place in a
multiplicative, cyclic groupG = G(λ) of order p such that bitlength(p) = poly(λ). However,
when we implement the operations for the experimental section, we will implement G in the
elliptic curve setting. Therefore, all operations in our implementation are handled in the setting
whereG is an additive group. As we mentioned previously, elliptic curves bring many efficiency
benefits due to favourable parameter settings. We leverage these improvements for lowering the
computational costs of our scheme.

VI;2.1 Non-interactive zero-knowledge (NIZK) proofs

A non-interactive zero-knowledge (NIZK) proof is a powerful primitive to allow attesting to
knowledge without revealing the contents of the knowledge. Commonly, we have a prover P and
a verifierV, whereP is attempting to convinceV of some statement. The non-interactivity of the
proof system is valuable in the sense that it can be publicly verified without the need for interact-
ingwith the prover, beyond sending the actual proof and any initial setup. We give a formalisation
in Definition VI;2.1, relying on the fact that the verifier is honest. We do not give a formulation
in the malicious verifier case, since this is beyond the scope of the work.

Definition VI;2.1 [NIZK proof system]

LetP be a prover, letV be a verifier, letL be a languagewith accompanying relationPL(·, ·),
and letWL be a generic set of witnesses for L. Let nizk = (Setup,P,V) be a tuple of
algorithms defined below.

• crs←$ nizk.Setup(1λ): outputs a common-reference string crs ∈ Z .

• π ← nizk.P(crs, x, w): on input crs ∈ Z , a word x ∈ L and a witness w ∈ WL;
outputs a proof π ∈ Λ.

• b ← nizk.V(crs, x, π): on input crs ∈ Z , a word x ∈ L and a proof π ∈ Λ;
outputs b ∈ {0, 1}.

We now define security for nizk as the satisfaction of the following criteria.
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Definition VI;2.2 [Security]

We say that nizk is a non-interactive zero-knowledge proof system (NIZK) for L (and honest
verifierV) if the following holds.

1. (Perfect completeness): Consider x ∈ L andw ∈ WL, where PL(x,w) = 1. Then:

Pr
[
1← V(crs, x, π)

∥∥∥crs←$ nizk.Setup(1λ),
π←P(crs,x,w)

]
= 1.

2. (Computational soundness): Consider x /∈ L. Then:

Pr
[
1← V(crs, x, π)

∥∥∥crs←$ nizk.Setup(1λ),
π←P∗(crs,x)

]
= negl(λ).

for every PPT algorithm P∗.

3. (Perfect zero-knowledge): There exists a simulated setup algorithm
nizk.SimSetup(1λ) that outputs crsSim and a trapdoor T . Furthermore, there is
an algorithm nizk.Sim(crsSim, T , x) that outputs a simulated proof πSim. Then,
firstly we have that:

{crs←$ nizk.Setup(1λ)} ≈p {crsSim|(crsSim, T )←$ nizk.SimSetup(1λ)},

holds unconditionally. Secondly, we require that the probability:

Pr

[
1← V(crsSim, x, πSim)

∥∥∥∥ x∈L,
(crsSim,T )←$ nizk.SimSetup(1λ),
πSim←nizk.Sim(crsSim,T ,x)

]
= 1,

is satisfied. In other words, there is an indistinguishable and efficient simulation of
the proof generation process for any word x.

The formalisation ofNIZKproof systemswas first introduced by [50], and constructions of such
systems fromgeneral assumptionswere introduced in [137]. The common-reference string is used
as an indicator that a trusted setup occurs between the prover and the verifier. While this concep-
tion of NIZKs is fairly restrictive, it is enough for the use-case that we consider.

VI;2.2 Discrete log equivalence proofs

In this work, we will use a NIZK proof system known as a discrete log equivalence, or DLEQ,
proof. This system is based on the well-known protocol of Schnorr [273] for proving knowledge
of a discrete log exponent in the interactive setting. This means that we define the language L to
be the pairs (x, y)where y = xk for a value k and where crs = (g, h)where h = gk.
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The Schnorr protocol allows a prover P to prove to a verifier V that they know the exponent in
theRHS of the pair (g, gr), in zero-knowledge. ADLEQproof system first requiresP to commit
to some pair (g, h = gr) ∈ G2 initially; this is the crs of the proof system.8 The proof system
allows P to non-interactively show that another pair (x, y = xr) ∈ G2 is constructed wrt the
same exponent r ∈ Z. Non-interactivity is achieved in the standard way by using the Fiat-Shamir
transform [139], at the cost of introducing random oracle evaluations. The Fiat-Shamir trans-
form [139] allows conversion of an interactive proof system (where there is an explicit step where
V ‘challenges’ P) into a non-interactive proof system (where this step is removed). Informally
speaking, this step is replaced with a step where P computes the random oracle over the entire
transcript of the protocol so far.

The description of a DLEQ proof system is given below in Construction VI;2.1.

Construction VI;2.1 [DLEQ proof system]

Let p > 0 be some prime integer, letH : Z6
p 7→ Zp be a random oracle, and letDLEQ =

(Setup,P,V) be a tuple of algorithms. Define the algorithms in the following way.

• crs←$DLEQ.Setup(1λ, p, k): Takes p, k ∈ Z as input, and outputs crs =

(G, p, (g, h)), whereG is a finite group of prime-order p; g ∈ G is some randomly
chosen generator; and h = gk.

• π ← DLEQ.P(crs, (x, y), k): Takes as input crs = (G, p, (g, h)), a pair (x, y) ∈
G2 and the witness exponent k, and then:

– samples a random nonce t←$Zp;

– computes a← gt and b← xt;

– computes c = H(g, h, x, y, a, b) and s = t− ck mod p;a

– returns π = (c, s).

• d ← DLEQ.V(crs, (x, y), π): Takes crs, (x, y) as input as above, along with the
proof π = (c, s). Verifies π by then:

– computing a′ = gshc and b′ = xsyc;

– computing c′ = H(g, h, x, y, a′, b′);

– returns d = (c′
?
= c) ∈ {0, 1}.

aNote that s is not explicitly a group element ofG and thus addition is carried out in the ringZp.

8Throughout this section, we will always assume thatG is multiplicative and thus isomorphic to (Z∗p,×)
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Intuitively, weobtain the fact thatDLEQ is aNIZKproof systemgiven theFiat-Shamir transform,
by the security of the Schnorr protocol [262]. However, for the completeness of this chapter and
rather than deferring to this transformation, we give explicit security proofs below showing that
each of the key tenets of Definition VI;2.2 hold for Construction VI;2.1.

Lemma VI;2.1 [Completeness]

Construction VI;2.1 satisfies perfect completeness.

Proof. Suppose that crs = (G, p, (g, h)) ← DLEQ.Setup(1λ) and, as defined, π = (c, s) ←
DLEQ.P(crs, (x, y), k) for k ∈ Z, x ∈ G and y = xk. Then during verification we have that
a′ = gshc and b′ = xsyc. Essentially we just need to check that a′ = a and b′ = b, where a, b are
the values computed by DLEQ.P. If this holds, thenH(g, h, x, y, a, b) = H(g, h, x, y, a′, b′)

and thus the verifier outputs d = 1.

Firstly, a′ = gshc = gt−ckgck = gt = a; secondly b′ = xsyc = xt−ckxck = xt = b.

Lemma VI;2.2 [Soundness]

Construction VI;2.1 satisfies computational soundness.

Proof. Consider a dishonest prover DLEQ.P∗ that succeeds with advantage ε in convincing the
honest verifierDLEQ.V that π is valid, without knowing the witness k ∈ Z. We show that such
a prover leads to an adversaryA that breaks the discrete log assumption (Definition II;3.1).

To illustrate the reduction, let A be an adversary attempting to break expdlA(1λ,G) from Fig-
ure II;4. The trusted setupDLEQ.Setup(1λ) is replacedwithwhatA receives, i.e. (G, p, (g, gk))
wherek is the challenge exponent. This is identically distributed to the crs received in the real con-
struction. ThenA runsDLEQ.P∗(crs, (x, y)). In the third step, whenP∗makes its query to the
random oracleH , thenA extracts the query and parses it as (g, h, x, y, a1, b1). If h 6= gk, then
A aborts the reduction.

When π1 = (c1, s1) is received from DLEQ.P∗, A runs d1←$DLEQ.V(crs, (x, y), π1) and
aborts if d1 6= 1. If d1 = 1,A rewinds the execution of DLEQ.P∗ until before the third step is
run and reprogramsH to output a new random value c2←$Zp. Now,A plays the execution of
DLEQ.P∗(crs, (x, y)) again and receives π2 = (c2, s2). If d2 ← DLEQ.V(crs, (x, y), π2) and
d2 6= 1 then abort.
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If (d2
?
= 1), thennotice thata′j = gsj+cjk and b′j = xsj+cjk for j ∈ {1, 2}; wheresj = t−cjk.

Therefore, computing (s1 − s2) · (c2 − c1)−1 reveals k. To finish the reduction,A outputs k
in expdlA(1λ,G) and wins with probability ε. By the DL assumption, we have that ε ≤ negl(λ);
thus the computational soundness ofDLEQ follows.

Lemma VI;2.3 [Zero-knowledge]

Construction VI;2.1 satisfies perfect zero-knowledge.

Proof. The zero-knowledge aspect of the proof system follows directly from the fact that for an
honest verifier, the output of the random oracle can be programmed to output a randomly sam-
pled valuewhich the prover can incorporate into the proofπ. That is, the simulation forDLEQ.V
samples a random c←$Zp and programs H to output c on the input (g, h, x, y, a, b) where
a = gt · h−c and b = xt · y−c, for t←$Zp. Then, the fact that the proof verifies correctly is
trivial.

The fact that DLEQ is a NIZK proof system follows immediately from Lemmas VI;2.1, VI;2.2
and VI;2.3.

VI;2.3 Batched DLEQ proofs

The above protocol works with the same secret witness k for fresh instantiations of the proof π.
The work of Henry [182] shows that it is possible to batch the above DLEQ proof structure for
a single-shot verification. This batching technique is adapted from long-standing methods that
were devised by Bellare et al. in [34]. Briefly, for one common reference string and witness k, it is
possible to show that multiple pairs {xi, yi}i∈[m] share the same DL exponent k with the single
pair (g, gk) ∈ crs. The advantages of this batching are realised in both reduced communication
and computational costs for the verifier. We give the batched formulation inConstructionVI;2.2.
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Construction VI;2.2 [Batched DLEQ proof system]

LetG = G(λ) be a prime-order group, where p > 0 denotes the order, let Ĥ : Z2m+2
p 7→

Zp be a random oracle, let prg be a PRG (Definition II;4.1) where prg.Eval(m) maps into
Zmp . LetDLEQ be defined as in Construction VI;2.1, and let D̂LEQm = (Setup,P,V) be
the tuple of algorithms defined below.

• crs←$ D̂LEQm.Setup(1λ, p, k): Outputs crs← DLEQ.Setup(1λ, p, k).

• π ← D̂LEQm.P(crs, (x, y), k): Takes crs = (G, p, (g, h)), group elements
{(xi, yi)}i∈[m] ∈ G2m and the witness exponent k as input, and then:

– calculates a seed ω ← Ĥ(g, h, {(xi, yi)}i∈[m]), and runs prg.Seed(ω);

– runs c1, . . . , cm←$ prg.Eval(m)

– computes x̂←
∏m
i=1 x

ci
i and ŷ ←

∏m
i=1 y

ci
i ;

– returns π ← DLEQ.P(crs, (x̂, ŷ), k);

• b← D̂LEQm.V(crs, {(xi, yi)}i∈[m], π): Takes crs, {(xi, yi)}i∈[m] as input, along
with the proof π = (c, s). Verifies π by:

– computing ω′ ← Ĥ(g, h, {(xi, yi)}i∈[m]), and running prg.Seed(ω′);

– running c′1, . . . , c′m←$ prg.Eval(m);

– computing x̂′ ←
∏m
i=1 x

c′i
i and ŷ′ ←

∏m
i=1 y

c′i
i ;

– returning b← DLEQ.V(crs, (x̂′, ŷ′), π).

The proofs of soundness and zero-knowledge follow similar arguments to those that are shown
in the proofs of LemmaVI;2.2 and LemmaVI;2.3, respectively. Moreover, we point the reader to
the thesis of Henry [182, Theorem 3.17] for full proof of these properties. Completeness follows
immediately from the fact that yi = xki for each i ∈ [m]; consequently, ŷ = x̂k and we can just
compute the proof π using the single-instantiation ofDLEQ.P.

Advantages of batching proofs. The advantages of providing the batched proofs lie in the
reduction of the communicational overheads between the prover and the verifier. For computa-
tion, thework ofDLEQ.P increases slightly, but thework ofDLEQ.V reduces. We typically place
more weight on reducing the work of the verifier as this is likely to be an under-resourced user, in
comparison to the prover. For communication, we measure the size of the data sent from P toV.

We measure m instantiations of DLEQ against one instantiation of D̂LEQm, for m ∈ Z; we
ignore the cost of the random oracle evaluation as this would usually be replaced by an inexpen-
sive hash function evaluation. We measure computational efficiency in terms of the number of
modular exponentiations that have to be computed, as these are the most expensive operation.
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In the DLEQ case, DLEQ.P runs 2 modular exponentiations, 1 modular multiplication and 1

modular addition per evaluation. Thus the total cost is equivalent to 2m modular exponentia-
tions. For verification,DLEQ.V runs 4 modular exponentiations and 2 multiplications per eval-
uation, for a total of 4mmodular exponentiations. The only elements communicated are the pair
in the proof statement π = (c, s). The pair consists of two group elements from Zp and so the
total cost is 2m group elements.

In the batched D̂LEQm case, DLEQ.P runs 2m + 2 modular exponentiations, since they also
compute a single invocation of DLEQ. For verification, DLEQ.V computes 2m + 4 modular
exponentiations— roughly half the unbatched case. The communication overhead reduces from
2m to 2 group elements and is no longer dependent on the number of evaluations. This is signif-
icantly more efficient, considering thatm can grow polynomially.

VI;2.4 Verifiable oblivious pseudorandom functions

The main building block of our construction is a verifiable oblivious pseudorandom function
(VOPRF), as introducedbyFreedman et al. [142]. Anoblivious pseudorandomfunction (OPRF)
is a protocol between a server S and a client C. Let prf be some pseudorandom function as given
in Definition II;4.2.

Then S runs (pp,msk) ← prf.Setup(1λ) and holds the secret keymsk. The client holds some
element x ∈ X that they intend to use as an input. A VOPRF protocol allows C to learn the
output prf.Eval(pp,msk, x), without learning the keymsk. Likewise, S does not learn the client
input x.

Notice that this resembles a secure computation interaction as defined in Section II;6. That is, an
OPRF is a protocol ψ, taking input msk from S and input x ∈ X from C. We define auxC =

auxS = (prf, pp) to be the auxiliary information. The outputs of the protocol are then defined
asµC = prf.Eval(pp,msk, x) andµS =⊥, respectively for the client and server. The view is then
constructed as in Definition II;6.1.

AVOPRF protocol extends the auxiliary inputs to also include a fixed descriptorh that serves as a
commitment to the private keymsk. In essence, h is part of the crs of a NIZK proof system, that
allows proving that y ← prf.Eval(pp,msk, x) is obtained using the PRF evaluation. Then, the
output µC is augmented with the proof π corresponding to the statement.

While our construction is very close to the principles held by VOPRF designs, we do not make
actual black-box usage of the primitive. Therefore, it is not necessary to give a generic formali-
sation of the primitive for the purpose of this work. We devise security properties for our actual
construction (which is based on the VOPRF design given here) in Section VI;3
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VI;2.5 Elliptic curve VOPRF

We focus on the construction of VOPRFs from elliptic curves (EC-VOPRF), of which there are
a variety of competing designs. Jarecki et al. [194] construct a password-protected secret shar-
ing protocol from such a construction. A similar application is targeted in [195]. The work of
Papadopoulos et al. [252] uses a similar construction for constructing an efficient DNSSEC pro-
tocol. Finally, the work of Burns et al. [72] constructs an EC-OPRF, i.e. without verifiability.

In this section, we will give a new construction of an EC-VOPRF protocol. This primitive will
form the foundations of our anonymous authentication protocol. Our EC-VOPRF differs from
previous constructions in that it ensures verifiability via the aforementionedbatchedDLEQproofs
from Section VI;2.2. Some of the previous works [194, 252] enshrines verifiability by providing
a DLEQ proof for each individual evaluation. Our approach reduces communication overheads
significantly (and computation overheads for the verifier) by taking advantage of the batching
mechanism.

Let Cbe the client in our EC-VOPRFprotocol, and let Sbe the server. Similarly to above, Cholds a
set of inputs {xi}i∈[m] ∈ {0, 1}λ. The protocol allows C to learn {prf.Eval(pp,msk, xi)}i∈[m]

wheremsk is a secret key held by S.

For our prf construction, we let msk = k ∈ Zp be a randomly sampled integer and pp =

(G, p, (g, h)) where g ∈ G a generator of the cyclic groupG; h = gk; and p > 0 a large prime.
Thenwe define prf.Eval(pp, k, z) to output zk. Clearly, the output zk is a randomly distributed
element inG; by random choice of the key k and the fact thatG is cyclic. We do not give a formal
proof of the fact that prf is a pseudorandom function as given in Definition II;4.2, since we use it
as part of the non-black-box construction of a VOPRF that we highlighted above. Finally, pp =

crs←$ D̂LEQm.Setup(1λ) is a valid common-reference string for a batchedDLEQproof setup,
as given in Construction VI;2.2.9

Finally, we define a hash function G : {0, 1}λ 7→ G∗ that hashes binary strings into the non-
identity elementsG∗ of the groupG.10 We give the details of our design in Construction VI;2.3.

9We ignore the inclusion of p as an extra parameter as this is an assumed input in the DLEQ formulation anyway.
10We avoid the identity element since this element has order 1, and we assume that all other elements have order

p− 1.
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ψ1
EC(C, pp, {xi}i∈[m])

1 : ϕ← ∅;
2 : {ri}i∈[m]←$Zp;
3 : for i ∈ [m] :

4 : x̃i ← G(xi)
ri ;

5 : ϕ[i] = (xi, ri);

6 : {x̃i}i∈[m] → S;

7 : returnϕ;

ψ2
EC(S, D̂LEQm, pp, {x̃i}i∈[m], k)

1 : W ← ∅;
2 : for i ∈ [m] :

3 : ỹi ← x̃i
k;

4 : W[i] = ỹi;

5 : π ← D̂LEQm.P(pp, {(x̃i, ỹi)}i∈[m], k);

6 : (W, π)→ C;

Figure VI;1: Left: Step one of the EC-VOPRF protocol.
Right: Step two of the EC-VOPRF protocol.

ψ3
EC(C, D̂LEQm, pp, {(x̃i, ri)}i∈[m], (W, π))

1 : {yi}i∈[m] ←W;

2 : b← D̂LEQm.V(pp, {(xi, yi)i∈[m]}, π);

3 : if b 6= 1 :

4 : return ⊥;

5 : for i ∈ [m] :

6 : (xi, ri)← ϕ[i];

7 : yi ← ỹi
1/ri ;

8 : return {yi}i∈[m];

Figure VI;2: Step three of the EC-VOPRF protocol.
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Construction VI;2.3 [Batched EC-VOPRF]

Let λ be the security parameter, m ∈ Z and let D̂LEQm be defined as in Construc-
tion VI;2.2. Let crs = (G, p, (g, h)) ← D̂LEQm.Setup(1λ) for a prime-order group
G. LetG : {0, 1}λ 7→ G∗ be a random oracle and let xi ∈ {0, 1}λ for i ∈ [m]. Then, let
ψEC be the elliptic curve VOPRF protocol consisting of the steps:

• (C : ϕ, S : {x̃i}i∈[m])← ψ1
EC(C, pp, {xi}i∈[m]) (Figure VI;3[Left]);

• (C : (W, π))← ψ2
EC(S, D̂LEQm, pp, {x̃i}i∈[m], k) (Figure VI;3[Right]);

• (C : {yi}i∈[m])← ψ3
EC(C, D̂LEQm, pp, {(x̃i, ri)}i∈[m], (W, π)) (Figure VI;4).

As we mentioned previously, we make non-black-box usage of the EC-VOPRF protocol when
constructingour anonymous authenticationprotocol. As a result, ConstructionVI;2.3 actsmerely
as intuition for the full protocol in SectionVI;3. In particular, our eventual protocolwill have two
phases, a signing phase and a redemption phase. The signing phase is essentially instantiated using
the protocol above.

With this inmind, we give informal arguments that correctness and security hold for the protocol.
For correctness, notice that C indeed receives ỹi = (G(xi)

ri)k from S, for each i ∈ [m]. There-
fore, computing yi = ỹi

1/ri gives yi = G(xi)
k by the commutativity of the exponents. This is

indeed the output of the evaluation prf.Eval(pp, k,G(xi)), whereG(xi) simply maps xi to an
element ofG.

For security, we essentially require that S cannot learn the input G(xi). However, note that C
sends a blinded versionG(xi)

ri to S. Again, since ri←$Zp is randomly sampled, thenG(xi)
ri

is randomly distributed in the cyclic group G. As a result, it is easy to simulate this message for
S without knowledge of G(xi). Secondly, we require that the client does not learn the value k
which is true by the DL assumption (Definition II;3.1).

ThisVOPRF is almost identical (up to the batching of theDLEQproof) to the design of Jarecki et
al. [194]; hence, we point the reader to their paper for an idea of how the proof of security would
be written. Our eventual authentication scheme has more expressive security properties that we
discuss in Section VI;3.

Relation to blind authentication. The important takeaway point from the EC-VOPRF
protocol is that it mimics the first stage of blind signature or MAC mechanisms, such as those
proposed in [56, 81, 82, 147, 152, 155, 261, 269, 273]. For example, C eventually receives an elliptic
curve point raised to the power ofk—the server’s signing key. Therefore, anEC-VOPRFprotocol
appears to provide a signingmechanism, butwithout anymethod for verification. In SectionVI;3
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weprovide amethod of (symmetric) verification that does not link any information to a particular
signing phase. This ensures the anonymity of the user.

VI;2.6 Stateful data storage

Our protocol in Section VI;3 will rely on a stateful data storage mechanism. That is, the protocol
will maintain storage for checking data across multiple invocations. This is necessary to prevent
malicious activity across protocol instantiations. In particular, we look to protect phases of the
protocol against adversaries that re-use inputs in more than one invocation. We give a formal
definition of the functionality expected by such a data structure in Definition VI;2.3.

Definition VI;2.3 [Data store]

Let the tupleD = (Store,Check) be a data store, define the algorithms as below.

• D.Store(x): stores an item x.

• D.Check(x): returns a bit b ∈ {0, 1}.

Let λ be the security parameter, we require that the following properties to hold:

• Pr[1← D.Check(x)|D.Store(x)] = 1;

• Pr[0← D.Check(x)|!D.Store(x)] = negl(λ).

The second property holds if x has never been stored in the data structure.

Bloom filters fulfil the requirements above (see Section III;3.1). The statefulness of the data stor-
age mechanism is determined by the protocol that makes use of it. That is, if the contents of the
data storage are carried over multiple protocol instantiations.

VI;2.7 CAPTCHAs

Later in this section, we consider CAPTCHAs (Completely Automated Public Turing Tests to
Tell Computers and Humans Apart) as a plausible test that humans can solve in order to prove
that they are not a bot. Such tests were first introduced by von Ahn et al. [3] and are commonly
used when browsing the internet. This allows website providers to prevent bots from accessing
web content. Typically requests from bots are linked to malicious behaviour such as spam and
distributed denial of service attacks.
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The work of [48] gave a formalisation of CAPTCHAs for the goal of designing human proof-of-
work schemes with provable guarantees. The underlying characteristics were also captured in the
formalisation of [184]. In this work, wewill think of a CAPTCHAas a schemewith the following
characteristics:

• CHL← CAPTCHA.Gen(): generates a CAPTCHACHL;

• SOLN ← CAPTCHA.Solve(CHL): outputs a possible solution SOLN to the chal-
lengeCHL;

• Y/N← CAPTCHA.Verify(SOLN): verifies a CAPTCHA solution, and outputs Y if it
is correct (N otherwise).11

We do not place any formal guarantees on CAPTCHA, except that we assume that no PPT algo-
rithms can run SOLN ← CAPTCHA.Solve(CHL) such that CAPTCHA.Verify(SOLN)

returns Y whp. In this work, we will require that CAPTCHA.Solve(CHL) can only be run by
a human user. When it is ran, and if Y← CAPTCHA.Verify(SOLN), we say thatCAPTCHA
has been ‘solved’.

VI;3 Anonymous authentication protocol

The core cryptographic component of this chapter is the anonymous authenticationprotocol that
we propose. The protocol is built upon the foundations provided by the EC-VOPRF protocol in
Construction VI;2.3.

Our protocol can be split into two phases, a signing phase and a redemption phase. In the signing
phase of our protocol, the client receives a number of ‘signed’ tokens from the server — these
are essentially outputs from the EC-VOPRF construction. In the redemption phase, the client
constructs authentication messages that the server verifies. If verification passes, then the client is
authenticated to the server. By anonymous authentication, we mean that any redemption phase
cannot be linked to any initial signing phase by the server, i.e. it preserves the privacy of the client.
We enshrine this security requirement along with some others into provable guarantees shortly.
Our final design is similar to those in theworks of [194, 195, 252] (especially the 2HashDH-NIZK
construction of [194]), though we incorporate more efficient batched DLEQ proofs.

Our construction is fairly specific and sowe choose not to formalise the requirements for a generic
anonymous authentication protocol at this point. Instead, we give some security requirements
that we believe to be important for such a protocol to achieve, see Section VI;3.2 for more details.

11We tacitly avoid includingCHL as input since it is implied
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Our construction. Letm ∈ Z be some integer, and let D̂LEQm be a batched DLEQ proof
form elements. Let λ be the security parameter, and let G be a multiplicative, cyclic group of
prime order p = poly(λ) with a generator denoted by g. The secret key is chosen as an element
k←$Zp and a ‘public key’ is computed as h = gk. We assume that (G, p, (g, h)) are essen-
tially acquired from the common-reference string crs←$ D̂LEQm.Setup(1λ, p, k). LetH1, H2

be two hash functions modelled as random oracles: H1 : {0, 1}λ 7→ G hashes into the non-
identity elementsG∗ of the groupG,H2 : {0, 1}λ×G 7→ {0, 1}κ hashes into strings of length
κ = κ(λ). Letmac denote a secure MAC algorithm (Definition II;4.9). We then set

pp = ((G, g, h), H1, H2,mac, aux),

for some arbitrary auxiliary data aux.

In what follows, we will denote the entire protocol construction by Γ. We will then partition
Γ into signing and redemption phases and define a setup algorithm that outputs the necessary
public parameters from above. Finally, we provide C[x] as input to a protocol step to denote that
the client participates with the input x. The same notation also applies to the server.

Setup phase. The setup phase is trusted by both participants, C and S, and outputs necessary
parameters for the subsequent phases of the protocol. We detail the design of the setup procedure
in Construction VI;3.1.

Construction VI;3.1 [Setup]

Letm ∈ Z be some integer, let p > 0 be some large prime, let λ be the security parameter
and let κ = poly(λ). Let D̂LEQm be a batched DLEQ proof form elements.
Define (pp, k)←$ Γ.Setup(1λ, 1κ,m, p) to do the following:

• sample k←$Zp;

• run (G, p, (g, h)) = crs←$ D̂LEQm.Setup(1λ, p, k);

• sample some auxiliary data aux← {0, 1}∗;

• letH1 : {0, 1}λ 7→ G andH2 : {0, 1}λ ×G 7→ {0, 1}κ be random oracles;

• letmac be the description of a MAC scheme;

• let pp = (G, p, (g, h), H1, H2,mac, aux);

• output (pp, k).

It is assumed that both C and Swill receive pp, and only Swill receive k.
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ψ1
sign(pp, C[{xi}i∈[m]])

1 : ϕ← ∅;
2 : {ri}i∈[m]←$Zp;
3 : for i ∈ [m] :

4 : x̃i ← H1(xi)
ri ;

5 : ϕ[i]← (xi, ri);

6 : S← {x̃i}i∈[m];

7 : returnϕ;

ψ2
sign(pp, S[{x̃i}i∈[m], k], D̂LEQm)

1 : W ← ∅;
2 : for i ∈ [m] :

3 : ỹi ← x̃i
k;

4 : W[i] = ỹi;

5 : π ← D̂LEQm.P(pp, {(x̃i, ỹi)}i∈[m], k);

6 : C← (W, π);

Figure VI;3: Left: Step one of the signing phase, initiated by C. We sometimes refer to the values in the set
{x̃i}i∈[m] as ‘blinded’ tokens.
Right: Step two of the signing phase, initiated by S.
These steps are essentially identical to those in Figure VI;1.

ψ3
sign(pp, C[ϕ, (W, π)], D̂LEQm)

1 : R ← ∅;
2 : {yi}i∈[m] ←W;

3 : b← D̂LEQm.V(pp, {(xi, yi)i∈[m]}, π);

4 : if b 6= 1 :

5 : return ⊥;

6 : for i ∈ [m] :

7 : (xi, ri)← ϕ[i];

8 : yi ← ỹi
1/ri ;

9 : R[i] = (xi, yi);

10 : returnR;

Figure VI;4: Step three of the signing phase, initiated by C. There is no communication with S required in
this step. It differs slightly with Figure VI;2 since the outputR also holds xi.

Signing phase. The signing phase of our protocolΓ is covered in ConstructionVI;3.2. We refer
to this stage as signing though this should not be confused with a digital signature scheme.
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Construction VI;3.2 [Signing phase]

Let m, p, λ, κ be defined as previously, and let D̂LEQm be defined as in Construc-
tion VI;2.2. Let (pp, k)←$ Γ.Setup(1λ, 1κ,m, p) be as in Construction VI;3.1. Letψsign

be the protocol between a client C[{xi}i∈[m]] and a server S[k], comprised of the following
steps.

1. (C : ϕ, S : {x̃i}i∈[m])← ψ1
sign(pp, C[{xi}i∈[m]]) [Figure VI;3:Left].

2. (C : (W, π))← ψ2
sign(pp, S[{x̃i}i∈[m], k], D̂LEQm) [Figure VI;3:Right].

3. (C : R)← ψ3
sign(pp, C[ϕ, (W, π)], D̂LEQm) [Figure VI;4].

In summary, we write:

R ← Γ.ψsign(pp, C[{xi}i∈[m]], S[k])

to indicate a successful signing phase between C and S. If the signing phase is unsuccessful,
then the output will be⊥ instead.

Notice, the similarities between the signingphase and theEC-VOPRFdesignofConstructionVI;2.3.
The only differences are that C now maintains a listR of future ‘passes’ which it will use in the
redemption phase (Construction VI;3.3). We may also refer to the final outputR as a set of ‘to-
kens’.

Redemption phase. The redemption phase of our protocol is covered in Construction VI;3.3.
For this redemption phase, we require some stateful data storeD (Definition VI;2.3). This data
store is initialised before any redemption phases are initiated and is carried over multiple invoca-
tions.
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ψ1
red(pp, C[{xi}i∈[m],R])

1 : (x, y)← R.pop();

2 : Kx ← H2(x, y);

3 : data← x‖aux;
4 : τ ← mac.Tag(Kx, data);

5 : S← (x, τ);

ψ2
red(pp, S[(x, τ), k],D)

1 : b← D.Check(x);

2 : if b 6= 1 :

3 : C← 0;

4 : else :

5 : y′ ← H1(x)k;

6 : K ′x ← H2(x, y′);

7 : D.Store(x);

8 : C← mac.Verify(K ′x, x, τ);

Figure VI;5: Left: Step one of the redemption phase, initiated by C.
Right: Step two of the redemption phase, initiated by S.We say that C is successfully authen-
ticated if 1→ C duringψ2

red.

Construction VI;3.3 [Redemption phase]

Let m, p, λ,mac, κ,D be defined as previously. Let (pp, k) ← Γ.Setup(1λ, 1κ,m, p).
Let {xi}i∈[m] be a set of inputs taken from {0, 1}λ, s.t. R ←
Γ.ψsign(pp, C[{xi}i∈[m]], S[k]).
Letψred be the redemption phase of the protocol Γ between a client C[{xi}i∈[m],R] and
a server S[k]. The redemption phase is comprised of the following steps.

1. (S : (x, τ))← ψ1
red(pp, C[{xi}i∈[m],R]) [Figure VI;5:Left].

2. (C : b)← ψ2
red(pp, S[(x, τ), k],D) [Figure VI;5:Right].

In summary, we write:

b← Γ.ψred(pp, C[{xi}i∈[m],R], S[k],D),

to indicate the response, b, received during a redemption phase between C and S.We say that
b = 1 if the client is authenticated successfully, and b = 0 if unsuccessful.
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VI;3.1 Correctness

We first argue that the protocol achieves the functionality that it sets out to. That is, for a set of
tokensR obtained fromψsign, then any of these tokens can be used to authenticate successfully
inψred.

Theorem VI;3.1 [Correctness]

Letψsign be the protocol defined in Construction VI;3.2, and letψred be the protocol de-
fined in Construction VI;3.3. Then we have that:

Pr
[
1← ψred(pp, C[{xi}i∈[m],R], S[k],D)

∣∣∣ {xi}i∈[m]∈{0,1}λ, k∈Zp,
R←ψsign(pp,C[{xi}i∈[m]],S[k])

]
= 1,

for all j ∈ [m] and all choices of inputs {xi}i∈[m] ∈ {0, 1}λ and keys k ∈ Zp.

Proof. Let x̃i = H1(xi)
r
i denote the blinded inputs that C sends to S inψ1

sign. When S receives
x̃i, it first computes ỹi = x̃i

k. It then computes:

π ← D̂LEQm.P((G, p, (g, h)), {x̃i, ỹi}i∈[m], k),

and sends ({ỹi}i∈[m], π) back to C inψ2
sign.

Since π is the output of D̂LEQm.P, then b ← D̂LEQm.V((G, p, (g, h)), {x̃i, ỹi}i∈[m]) and
b = 1 (by the completeness of D̂LEQm). Therefore, the client computes yi ← ỹi

1/ri and stores
each pair (xi, yi) and the signing phase is complete.

For the redemption phase, C computes a shared keyKxi ← H2(xi, yi) formac, computes the
MAC tag τi ← mac.Tag(Kxi , data) (where data = xi‖aux for aux ∈ pp) and sends (xi, τi)

to S in ψ1
red. Given xi, S calculates H1(xi)

k = yi. S computes the same derived key Kxi ←
H2(xi, H2(xi)

k) and the same tag τ since aux is used by both C and S. As such,MACverification
returns 1← mac.Verify(Kxi , xi, τ)with probability 1, and correctness is ensured.

VI;3.2 Security

For considering the security of our protocol, provingmeaningful guarantees using the approaches
of secure computation seems difficult due to the fact that we have to consider security over dif-
ferent protocol instantiations and over multiple invocations. That is, the anonymity guarantee
that is central to our work is only salient when considered over numerous redemption phases wrt
one signing phase. Moreover, the guarantees only have utility in a setting where there have been
numerous invocations of both protocols to guarantee that the anonymity sets are large enough.
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expulb,A(1λ, 1κ,m, p)

1 : (pp, k)←$ Γ.Setup(1λ, 1κ,m, p);

2 : {x(0)
i }i∈[m]←$ ({0, 1}λ)m;

3 : {x(1)
i }i∈[m]←$ ({0, 1}λ)m;

4 : R0 ← Γ.ψsign(pp, C[{x(0)
i }i∈[m]],A[k]);

5 : R1 ← Γ.ψsign(pp, C[{x(1)
i }i∈[m]],A[k]);

6 : for i ∈ [m] :

7 : ci ← Γ.ψred(C[{x(b)
i }i∈[m],Rb],A[k]);

8 : bA ← A(1λ, k,VAsign({x
(b)
i }i∈[m], k),VAred({x

(b)
i }i∈[m],Rb, k));

9 : return bA;

Figure VI;6: Decisional experiments for characterising the unlinkability of the protocol Γ. We use A to
denote the adversarial server.

It is plausible that we could consider the security of the protocol in a universal composability
setting [75] instead, but this would require a much more complex security analysis, as in [194].

We know exactly what security goals that we need to achieve for our scheme, due to the specific
choice of application. As a consequence, we choose to prove that these properties hold individ-
ually, without delving into generic security models. These properties can be categorised as: (1)
unlinkability; (2) resistance to one-more-token attacks; (3) key-consistency. We believe that this
provides a clearer interface, with which we can represent the security properties fulfilled by our
protocol.

Unlinkability

The notion of unlinkability captures the inability of an adversarial server S to link together a re-
demption phase of the protocol to any individual signing phase. A protocol satisfying unlinka-
bility is necessary for meeting the anonymity guarantees that we require. This is the primary goal
of our scheme.

We use VSsign[{x̃i}i∈[m], k] to denote the view that Switnesses during the signing phase

R ← Γ.ψsign(pp, C[{xi}i∈[m]], S[k]);

and likewise VCsign[{xi}i∈[m]] for the client C. We denote the views of the corresponding redemp-
tion phases for the server and the client by VSred[R, k] and VCred[R], similarly.
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Definition VI;3.1 [Unlinkability]

Let pp,κ,m,p,mac,D,C[{xi}i∈[m]] and S[k] be defined as previously. Let
R ← Γ.ψsign(C[{xi}i∈[m]], S[k]) refer to the signing phase in Construction VI;3.2
of Γ. The redemption phase of Γ in Construction VI;3.3, is referred to by
b← Γ.ψred(pp, C[x], S[k],D).
We say that Γ has unlinkable signing and redemption phases, if

max
A

(Adv(A, ul(1λ,Γ))) < negl(λ),

whereA is any PPT algorithm and expulb,A(1λ, 1κ,m, p) is defined as in Figure VI;6.

We now give a proof that Γ unconditionally satisfies unlinkability. Intuitively, this follows since
the view ofA in the signing phase is made up of uniformly distributed elements.

Theorem VI;3.2 [Proof of unlinkability]

Γ is unconditionally unlinkable, i.e. maxA(Adv(A, ul(1λ,Γ))) = 0 in the random oracle
model.

Proof. First, consider the opposing views VAsign({x(b)
i }i∈[m], k) from the signing phase. These

are the lists:
{pp, k, {x̃i(c)}i∈m,Rb}

for b ∈ {0, 1}. The only difference is therefore the set {x̃i(b)}i∈m, sinceRb is also wholly depen-
dent on this set. Note that each x̃i(b) = H1(x

(b)
i )ri for some ri←$Zp. SinceH1 is a random or-

acle, thenH1(x
(b)
i ) is randomly distributed inG\{1G} (for the identity element 1G). Moreover,

the exponent ri is sampled uniformly and only known to C. Therefore, each of these elements is
distributed uniformly.

Secondly, consider the view

VAred({x(b)
i }i∈[m],Rb, k) = {pp, k, ({x(b)

i }i∈[m], {τ
(b)
i }i∈[m])},

received byA, where τ (b)
i is the MAC tag associated with x(b)

i . Then, it is clear that each τ (b)
i is

only dependent on the other inputs in the view (since it is computed over only those values). As a
result, the only values that are not already known by the server are in the set x(b)

i . However, each
x̃i

(b) remains uniformly distributed— even in the presence of x(b)
i —due to the exponentiation

with ri, which is unknown, and sinceG is cyclic.
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Therefore, both of x̃i(b), for b ∈ {0, 1}, are uniformly distributed wrt to the view of A in the
redemption phase. Thus unlinkability is ensured.

One-more-token security

The notion of one-more-token security enshrines the inability of the client to access the secret sign-
ing key of the server in a ‘meaningful’ way. By meaningful, we mean being able to use knowledge
of signed tokens, received during a signing phase, to sign more tokens. Intuitively, this property
ensures the utility of the protocol, in that the clients cannot forge signed tokens that are not re-
ceived during the signing phase.

Definition VI;3.2 [One-More-Token security]

Our scheme satisfies one-more-token security if a PPT client, after receivingm signed tokens
from the server, cannot successfully redeemm+1 tokens, exceptwith negligible probability
in the random oracle model.

To prove that Γ achieves one-more-token security, we construct a reduction from the one-more-
decryption security of the El Gamal encryption scheme (Assumption II;5.2) in Theorem VI;3.3
below. This is possible since the crs from the DLEQ proof mechanism is distributed in the same
way as an El Gamal public key (Construction II;5.1).

Theorem VI;3.3 [One-more-token security]

If the one-more-decryption security (Definition II;5.2) of El Gamal holds, then Γ demon-
strates one-more-token security.

Proof. Consider an adversarial client B that can getm tokens signed by the server in the signing
phaseR ← Γ.ψsign(pp, C[{xi}i∈[m]], S[k]), and then redeemm+1 tokens during the redemp-
tion phase Γ.ψred(pp, C[{xi}i∈[m],R], S[k],D). We will produce an adversaryAwho wins the
one-more-decryption game against El Gamal.

A starts the game by being given G, q, g, h, and {(Ci, Di)}i∈[m+1] in expomd
A (1λ,m) (Fig-

ure II;13).A plays the role of the server, and initiates the adversarial clientB. It uses (G, p, (g, h))

as the groupdescription (crs), whereh = gk is the commitment to the signing key in the protocol.
A also selects a random permutation π onZp, but does not reveal it to B.
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B can make two kinds of queries: polynomially many random oracle queries toH1,H2, and Ĥ ,
and at most m token signing queries. Here, Ĥ refers to the hash function that is used in the
invocation of D̂LEQm.

When B makes a token signing query with blinded token x̃i, A selects a random Fi←$G, and
sends the ciphertext (x̃i, Fi) to the decryption oracle, which returns Mi = Fi/x̃i

k. A then
returns Fi/Mi = x̃i

k to B. It provides a forged DLEQ proof, which it can do because it can
program the responses of Ĥ and by simulating the CRS.

When B makes a random oracle request for H1(t), A replies with
∏
j∈[m+1]C

(aj−1)
j , where

a = π(t). Only with negligible probability 1/p will this value be the identity element of G, in
which caseA aborts with failure.

WhenBmakes a randomoracle request forH2(t, B),A stores (t, B, Z) in a table for a randomly
selectedZ , and replies withZ . If the sameH2(t, B) is queried again, the sameZ will be returned.

WhenBmakes a random oracle request for Ĥ ,A programs it to forge theDLEQproof, as above.

At the endof the game,Bwill redeemm+1 tokens{(ti,mac.Tag(H2(ti, Bi), t||aux))}i∈[m+1].
A uses theH2 table to look up the value ofBi used to generate the MAC key in each token, and

it will be the case thatBi = H1(ti)
k =

∏
j∈[m+1]

(
Ckj

)(π(ti)
j−1)

for each i ∈ [m+ 1].

IfV is the (Vandermonde, and thus invertible)matrixwith vij = π(ti)
j−1, andU = V −1, then

it will be the case that
∏
j∈[m+1]B

uij
j = Cki for each i ∈ [m+1].A then outputsMi = Di/C

k
i

for each i ∈ [m+ 1] and wins the game.

Key-consistency

The final security property that we consider is known as key-consistency. Consider a single invo-
cation of the setup (pp, k)←$ Γ.Setup(1λ, 1κ,m, p). We show that it is computationally infea-
sible for an adversarial server to initiate a signing phase with a different key k′ 6= k s.t. that the
protocol completes. In particular, this property relies on the soundness of the batched DLEQ
proof that we use.

The reason that we need to enforce this property is due to the fact that a plausible attack for
deanonymising clients would be to initiate each signing phase with a different key pair. Then,
during the redemption phase, it would become obvious which tokens had been signed during
which signing phase. By forcing the key to be the same throughout each signing phase, we can en-
force the unlinkability requirement in Definition VI;3.1. Our technique requires a trusted setup
phase where the server commits to its own key. It then is forced to prove that each signing phase
uses the same key as that is use din the commitment phase.
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expkcA (1λ, 1κ,m, p)

1 : (pp, k)←$ Γ.Setup(1λ, 1κ,m, p);

2 : {xi}i∈[m]←$ ({0, 1}λ)m;

3 : k′←$A(1λ, pp, k);

4 : T ← Γ.ψsign(pp, C[{xi}i∈[m]],A[k′]);

5 : if T 6=⊥:

6 : return 1;

7 : else :

8 : return 0;

Figure VI;7: Computational experiment for characterising the key-consistency of the protocol Γ.

Definition VI;3.3 [Key-consistency]

Let κ, p, C[{xi}i∈[m]] and S[k] be defined as previously.
We say that Γ demonstrates key-consistency if:

max
A

(Adv(A, kc(1λ,Γ))) < negl(λ),

for all PPT adversarial serversA, where expkcA (1λ, 1κ,m, p) is defined as in Figure VI;7.

Theorem VI;3.4 [Key-consistency of Γ]

Under the computational soundness of D̂LEQm, then Γ satisfies key-consistency.

Proof. The proof follows almost trivially by considering an adversaryB looking to break the com-
putational soundness of D̂LEQm.

Firstly, let A be the adversary initiated by B that breaks expkcA (1λ, 1κ,m, p) with advantage ε.
Then, B constructs pp = (G, p, (g, h), H1, H2,mac, aux) by letting

(G, p, (g, h)) = crs← D̂LEQm.Setup(1λ, p, k)

where crs is the common-reference string thatB receives, for the challenger’s randomly chosen key
k←$Zp. The rest of the public parameters can just be instantiated as in Γ.Setup(1λ, 1κ,m, p).

Then, B simply plays the role of the client in Γ.ψsign(pp, C[{xi}i∈[m]], S[k]) for some choice of
input {xi}i∈[m] ∈ ({0, 1}λ)m. Eventually,A responds with (W, π)where π corresponds to an
attempted forged proof. Then,B simply responds withπ to their soundness challenger, andwins
with probability ε, corresponding to the probability that B accepts the signed tokens fromA.
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By the soundness of D̂LEQm, we therefore note that ε < negl(λ) and the proof is complete.

VI;3.3 Other security notions

In this section, we have demonstrated that our protocol is secure wrt three security properties
that we have pinpointed as key security goals for our construction. We decided on these goals
as our main aim was to provide an anonymous mechanism for clients to authenticate to servers.
Therefore, the notions of unlinkability and key consistency are absolutely necessary to achieve.
The notion of one-more-token security provides a security guarantee to the server that its key has
not been compromised.

It is highly likely that, for different scenarios, it may be advantageous to prove extra security prop-
erties that we have not included here. Valuable future work would perform deeper analysis of
our protocol and provide a more generic view of what security can hold for both the server and
the client. For instance, if we could provide a generic model by which we consider the security of
multiple instantiations of our protocol, in a similarmanner to the security analysis of internet and
messaging protocols, then we could provide more unified security guarantees. A security analysis
in the universal composability framework [75] would be equally enlightening.

VI;4 Reducing internet challenges for anonymous users

In this section, we introduce the main application of our work. We focus on the case of website
accessibility via content delivery networks, for users of anonymity-reserving browsing tools. For
ease of discussion, we refer to this entire set of users as ‘Tor users’.

VI;4.1 Content delivery networks

A content delivery network (or CDN) allows website providers to deliver content to browsing
clients with far greater efficiency. Website providers are customers of the CDN, and the CDN acts
as a reverse proxy to eachof their customers. When a client browser attempts to reach somewebsite
W, they will first send a HTTP request to the CDN. The CDN will then recover the contents of
W from their own network before returning these resources to the client. Figure VI;8 provides a
diagrammatic representation.

The efficiency comes from the fact that CDNs typically distribute content globally, storing static
content at numerous data centres around theworld. Therefore, client requests can be served from
locations that aremuch closer in proximity, rather than the location of the actualwebsite provider.
Since a common bottleneck of communication is the speed of light (e.g. communication from
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Figure VI;8: Diagrams of how CDN reverse proxy typically functions.

London to San Francisco will take at least 37ms), reducing the geographic distance between con-
nections can greatly improve the browsing experience.

Another feature that comes with being a customer of a CDN is that knowledge derived on the
edge network can be used to prevent malicious users from accessing a customer’s content. This is
commonly achieved using IP-based reputation challenge mechanisms for preventing those users
from accessing web resources who are deemed malicious (or a bot, for example). That is, if the
reputation is deemed to be poor, the CDNwill ask the user to complete an extra challenge before
they can gain access. We refer to customers of theCDNasCDN-protectedwebsites. Suchwebsites
may also be referred to as ‘origins’.

VI;4.2 Cloudflare

Cloudflare is a CDN that serves 10% of all internet traffic. It serves over 1 trillion requests per
month, making it one of the largest CDN providers globally [98, 99].

This section introduces a case-study with the Cloudflare CDN. Recall, from the introduction
that Cloudflare employs an IP-based reputation mechanism that disproportionately challenges
Tor users to assert their honesty. These challenges take the form of CAPTCHAs and are required
to be completed before access to protected web resources is granted.

Problems with CAPTCHAs. CAPTCHAs are generally accepted to be solvable by humans,
but there are a variety of issues that can dramatically reduce accessibility in many cases. Firstly,
CAPTCHAs provide a tangible annoyance within the browsing experience, potentially causing
users to avoid solving them. Secondly, they may be hard to solve for users of certain disabilities
(e.g. visual impairment). Thirdly, implementation and browser incompatibility issues can render
CAPTCHAs unsolvable — even for humans. Moreover, if resources are not explicitly shown in
the browser of the client, instead loaded from external websites that are also CDN-protected, then
these will typically result in webpages that do not load correctly (see Figure VI;9). This is a result
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Figure VI;9: A badly-rendered website with CSS files hosted on Cloudflare-protected domains.

of the user never having the opportunity to complete the CAPTCHA that is required, since they
never navigate to the sub-resource URL directly.

Consequently, the browsing experience for Tor users can prove to be very restrictive. Indeed, since
17%of requests fromtheTornetwork are challengedbefore access is granted [98], then this results
in a huge number of requests having to solve challenges. The problem ismagnified by the fact that
cookies are not a viable alternative to bypassing these challenges. The functionality ofTor specifies
that cookies and other potentially harmful data (wrt anonymity) are deleted at regular intervals.
Moreover, generic cookies for multiple domains protected by a CDN could be used to track a
user’s activity over multiple domains— thus breaking the anonymity model.

In the next section we provide an overview of the architecture and workflow for accessing the
Cloudflare network. We will then show how we can embed the protocol from Section VI;3 into
this workflow, to reduce the burden of work on human users.

VI;4.3 Currentworkflow

Togive better intuition for the problem thatwe are attempting to solve, we illustrate theworkflow
that is currently initiated between a user/client and the edge provider/CDN. As above, themodel
that we consider is heavily based on the architecture in the Cloudflare CDN. We will focus on
illuminating the workflow for clients that are deemed to be ‘malicious’.

Gauging reputation. Like many CDNs, Cloudflare uses a reputation gauging system that
assigns scores based on activity witnessed from the client IP address. IP addresses are assigned
malicious-reputation scores (from0 to100) suggesting the confidence that the IP address has been
involved in malicious behaviour in the past. As an example, IP addresses that have been linked to
‘bot-like’ behaviour (such as spamming or DDoS attacks) will likely have a high score. However,
other indicators taken from the client can also be used to change the score.
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7. RESP(W)

8. RESP(W)

Figure VI;10: Current Cloudflare workflow for challenge system.

Deciding challenges. Let 0 < η < 100 be some threshold malicious-reputation score.
Simply, if a user C with reputation ν > η attempts to access some website protected by the edge
(i.e. a customer of the edge) then Cwill always be shown a challenge.

While this simplification ignores other possibilities for routing requests through the CDN archi-
tecture, it helps us to generalize theworkflow that we consider. Note that we are only interested in
reducing the requirement for honest, human users to complete internet challenges. Other meth-
ods of request routing are not explicitly covered by our solution.

Allowing access. In Figure VI;10, we detail the workflow that occurs when a user C with
reputation score νC > η interacts with the edge provider S to access an origin website W. We also
include a party V known as a validator; this entity validates challenge solutions for S. Here, it is
assumed that S is the Cloudflare CDN, i.e. the edge server.

In the interaction, we assume that there are messages REQ(W) and RESP(W) that are used respec-
tively for requesting and responding with content related to the origin W (mirroring HTTP re-
quests/responses, for example). Weuse thenotationof SectionVI;2.7 for discussingCAPTCHAs:
generation (CHL ← CAPTCHA.Gen()); solutions (SOLN ← CAPTCHA.Solve(CHL));
and validation (Y/N← CAPTCHA.Verify(SOLN)). In step 2, a CAPTCHA is generated and
sent to the client. Step 3 requires the human client to solve CAPTCHA, this solution is sent to a
‘verifier’ V, that runs Y/N ← CAPTCHA.Verify(SOLN) to verify the solution. In the case of
an incorrect solution (i.e. V returns ‘N’) then steps 6 onwards are not undertaken.

RemarkVI;4.1. Our solution is agnostic to the type of challenge used. We could swap outCAPTCHA

for a di�erent challenge of the provider’s choice and the workflow would not change, as long as it

still required some human intervention.
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A client in the current workflow has to compute a challenge solution for every request to S that
they make. If there are multiple origins protected by S, then S could mitigate this by giving the
client amethodof authenticating in the futurewhen a challenge is provided. In theHTTP setting,
this is typically done using single-origin cookies. These cookies prevent a client from having to
solve a challenge again for the same origin W for some predefined interval of time. The fact that
they are single-originmeans that the user cannot be tracked over their access tomultiple domains.
However, the same CDN serves a very large number of origins, and the client would still have
to solve one challenge for each origin visited. Alternatively, S could use cross-domain cookies for
multiple origins, although at the severe privacy cost of linking the client’s requests across all origins.
We view cross-domain privacy leaks as inadmissible, and do not consider them a viable solution.

VI;4.4 Newworkflow

In this section we show that the workflow shown in Figure VI;10 can be adapted to include the
anonymous authentication protocol of Section VI;3. For a protocol step,ψstep, we use the nota-
tion

C
ψstep−−−→ S

to indicate that C performs the protocol step and sends the specified output to S.

The previous workflow requires a user to solve a challenge for every access (modulo the use of
single-domain cookies). To reduce the number of challenges exposed to the client without sacri-
ficing the unlinkability requirement, we embed the protocol that we constructed in Section VI;3
into this workflow. This allows a client to receivem unlinkable tokens for every CAPTCHA so-
lution. Each token can then be used to bypass challenges on future accesses. We present two high-
level workflows in Figure VI;11 and Figure VI;12 embedding the protocols. The workflows are
split into an issuance and redemption phases, mirroring the partitioning of the original protocol
Γ.

Token issuance. At this point, the client is assumed to have no tokens that can be redeemed.
The client is required to solveCHL as before, butwhenSOLN is sent back, they also initiate the
first step of the signing phase (ψ1

sign) in Construction VI;3.2 and send the output to the server.
The server validatesSOLN . If this is successful it carries out the second step of the signing phase
(ψ2

sign) and returns the result back to the client, along with the resources they requested. Finally,
the client runs the third step (ψ3

sign); storing the outcome for future use.

Tokenredemption. In the token redemption step,when the client receives a request containing
CHL, they instead initiate the first step of the redemption phase (ψ1

red) and send the output to
the server. The server runs the second step (ψ2

red) and, if this passes correctly, they allow the client
access to the requested resource by sending RESP(W).
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Figure VI;11: Adapted workflow for token issuance. We assume that (pp, k) ← Γ.Setup(1λ, 1κ,m, p)
has been run as a trusted setup in the past. If N is returned in step 5 then subsequent steps
are not run.
Step 3/4: (SOLN , Γ.ψ1

sign(pp, C[{xi}i∈[m]])).
Step 5: (Y, Γ.ψ2

sign(pp, S[{x̃i}i∈[m], k], D̂LEQm)) / N.
Step 8: (RESP(W), Γ.ψ2

sign(pp, S[{x̃i}i∈[m], k], D̂LEQm)).

In summary, for every signing workflow as in Figure VI;11 completed by a client C, it can then
engage inm redemption workflows. Thesem redemptions provide unlinkable tokens (by The-
orem VI;3.2), and do not require human participation to solve challenges. We can further aug-
ment successful redemptions with single-origin cookies. These cookies allow clients to bypass fu-
ture challenges for the same domain without using more redemption tokens, and without client
browsing being linkable across multiple domains.

Key rotation. It is important that the server S is able to implement a key rotation policy, both
in the case that a key has exceeded its lifetime, and to reduce the potency of some attack vectors
(Section VI;6.2). Key rotation in these workflows requires a new iteration of Γ.Setup to be run
and distributed to each client, where k∗ is the new secret key that is used. This is necessary so that
the clients can verify the key-consistency proofs that are sent by S in the signing phase.

Our workflow in Figure VI;11 can be adapted so that the server can have multiple keys in use at
any one time. This prevents key rotation from immediately rendering all possessed tokens useless.
Essentially, S sends a list of public parameter commitments{ppj}j corresponding to all secret keys
that it accepts. The client checks the list of commitments and uses a corresponding pair to verify
the key-consistency proof that it receives in the later stages. When a key is phased out for good,
the server simply removes the commitment from the acceptance list.
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C S W

V

1. REQ(W)
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3. (see caption)
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6. REQ(W)

7. RESP(W)
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Figure VI;12: Adapted workflow for token redemption, with notation defined as in Figure VI;11.
Step 3/4: ψ1

red(pp, C[{xi}i∈[m],R]).
In Step 5, V runs b← ψ2

red(pp, S[(x, τ), k],D) and answers Y if b = 1 and N likewise.
If N is received from Step 5, then the subsequent steps do not run.

When multiple keys are in use, this acts to siphon the user base into smaller groups and thus
increase the deanonymization potential. As a result, the list of keys that a service provider should
be kept to a relatively low number, e.g. 2 or 3 at any one time. The speed of the rotation should
also be kept at a relatively low frequency, e.g. once per month, or less.

VI;5 Privacy Pass deployment

To instantiate the workflows shown in Section VI;4.4 we have created a client-side browser exten-
sion named “Privacy Pass” and have written compatible server-side support in Go that can be run
on edge servers. The browser extension handles the cryptographic operations that need to be car-
ried out on the client side. Our browser extension is written in JavaScript12 and is compatible
with Chrome and Firefox. Additionally, the code is open source and available online.13

Privacy Pass carries out the cryptographic operations required in Figures VI;11 and VI;12, and
augments HTTP requests from the client with this information. That is, the browser extension
plays the role of C in the protocol Γ. Server-side support for Privacy Pass has been written into
existing Cloudflare infrastructure, in order to reduce the number of CAPTCHAs that are faced
by honest users. To achieve this, we run a new service on the Cloudflare edge network that acts as
V inΓ. When Cloudflare receives messages from Privacy Pass, it routes the cryptographic material
through to this service for processing and verification (S→ V).

12Wemake use of the chrome.WebRequest and chrome.WebNavigation frameworks for writing the extension.
13https://privacypass.github.io/
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Figure VI;13: The same website from Figure VI;9, when used with Privacy Pass.

Using this mechanism reduces the number of CAPTCHAs that need to be solved by a factor
directly proportional tom—the number of signed tokens received for each initial solution. Cur-
rentlym is set to 30, but the server supports up tom = 100. The valuem = 30 was chosen
because it provides a balance between usability, performance, and token hoarding (Section VI;6)
considerations. Asm rises, the latency rises since the server has to sign more tokens and compute
a batched DLEQ proof over more values. Moreover, the client has to generate and unblind more
tokens and also verify the batched proof. Since these client operations occur in the browser, and
potentially halt the execution for a period, these operations need to be kept to a minimum.

A second benefit is that sub-resources hosted behind Cloudflare CAPTCHAs are accessible for
clients — even though clients would not previously have been able to submit CAPTCHA solu-
tions for these URLs. For example, in Figure VI;13 we show the website from Figure VI;9 after
using Privacy Pass. In the old case, the user has no way of solving a CAPTCHA for the CSS files
(other than locating and navigating to the URL), the website is displayed without the CSS styling
and thus appears with clear errors. Privacy Pass is able to redeem signed tokens with these re-
sources instead and thus the user is now able to view the website as it was intended. While this is
undoubtedly an example of a flaw with the implementation of CAPTCHAs in general, Privacy
Pass can be leveraged to make the browsing experience more pleasant and error-free for users.

We now give a brief account of how Privacy Pass executes the adapted workflows that we gave in
Section VI;4.
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VI;5.1 Signing

Firstly, assume that a client C (with sufficiently poor IP reputation νC > η for some threshold η) is
attempting to connect viaHTTP(S) to aCloudflare-protectedwebsiteW, using a browserwithPri-
vacy Pass installed, andwith no passes available. When a challenge CAPTCHA is solved by C then
Privacy Pass first generates the ‘blinded’ tokens (that are sent to S in Γ.ψ1

sign(pp, C[{xi}i∈[m]]))
and appends these tokens to the body of the HTTP(S) request containing the solution. Privacy
Pass analyses the structure of request URLs for determining when a Cloudflare CAPTCHA has
been solved.

This amended request is sent asynchronously and the edge verifies whether the CAPTCHA so-
lution is correct. If it is, the blinded tokens are signed and a key-consistency proof is generated
as in (W, π) ← Γ.ψ2

sign(pp, S[{x̃i}i∈[m], k], D̂LEQm). The edge now creates a new HTTP(S)
response indicating that the solution was valid (i.e. status code 200) and returns a single-origin
clearance cookie in the response header, along with the signed tokens and the proof in the re-
sponse body.

Privacy Pass parses the signed tokens and the key-consistency proof, which is validated — this is
whereψ3

sign(pp, C[ϕ, (W, π)], D̂LEQm) is run. If the proof is valid, then the signed tokens are
unblinded and stored for future use in the local storage of the browser. After storage is completed,
Privacy Pass reloads the current page, which will now succeed because of the single-domain clear-
ance cookie.

VI;5.2 Redemption

Assume that the client C has gained tokens as above and that it has attempted to access another
edge-protected website W′. A CAPTCHA will be served and the header cf-chl-bypass will be
present with value ‘1’ in the edge response. Privacy Pass uses the presence of this header to initiate
the token redemption procedure when it has signed tokens stored.14

Privacy Pass retrieves an unspent token pair (x, y) from local storage and starts forming a new
HTTP request for W′. Recall that inψ1

red(pp, C[{xi}i∈[m],R]) the client is required to construct
a MAC tag over the original value x and some auxiliary data aux; the key for the MAC is derived
from the server-signed part of the token pair that was retrieved (see ψ2

red(pp, S[(x, τ), k],D)).
The auxiliary data is generated from request binding data — precisely the contents of the ‘Host’
header for the request concatenated with the HTTP Path.15 Then, the client derives the pair
(x, τ) ← mac.Tag(Kx, x) as the shared key, where Kx = H2(x, y). This shared key is ap-

14This header was also present in the first case but was not actually used.
15This is not quite a unique identifier for the request, but it is enough for preventing various MitM attacks.
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Operation Timings (ms)

Client

Token generation (ψ1
sign) 120 + 64 ·m

Verify DLEQ& store (ψ3
sign) 220 + 110 ·m

Total signing request (ψsign) 340 + 180 ·m
Total redeem request (ψred) 57

Server

Signing &DLEQ (ψ2
sign) 0.36 + 0.75 ·m

Total signing 1.48 + 0.87 ·m
Total redemption 0.8

Table VI;1: Benchmarks (ms) for operations that are instantiated using our protocol from Section VI;3.
The valuem is the number of tokens to be signed in a batch.

pended to the HTTP request as the value of a header named ‘challenge-bypass-token’, and
the request is then sent to the edge.

The edge verifies the value of the ‘challenge-bypass-token’ header using the procedure in
b ← ψ2

red(pp, S[(x, τ), k],D). If verification succeeds (i.e. b == 1), S serves the content of W′

to C and a single-origin clearance cookie. The data storageD is implemented via a Bloom filter that
holds all tokens that have been spent. This Bloom filter is scalable and increases in size as more
tokens are stored. The contents are flushed when key rotation occurs.

VI;5.3 Cryptographic implementation

The random oracles in the construction are instantiated using the SHA-256 hash function. The
prg used for constructing the batched proof is implemented using the SHAKE-256 Keccak-based
design. All elliptic curveoperations areperformedusing theNIST standardised curveP-256 [246].
We use a browser-based implementation of this pseudorandom generator for proof verification.16

Wemake somemodifications so that it can be run in the browser natively. All cryptographic oper-
ations are carried out in the browser using a local copy of the SJCL library,17 and using the native
Go crypto libraries for the server-side operations.

VI;5.4 Benchmarks

We illustrate the additional client and server overheads incurred due to the additional protocol
structure. We compile our data from a series of benchmarks taken over the key cryptographic
operations that are computed.

16https://github.com/cryptocoinjs/keccak
17https://crypto.stanford.edu/sjcl/
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Operation Size (bytes)
Signing request (C→ S) 57 + 63 ·m
Signing response (S→ C) 295 + 121 ·m

Redemption request (C→ S) 396

Table VI;2: Size of additional information (bytes) for requests. m is the number of tokens to be signed in
a batch.

We have the client generatem tokens at a time (form ∈ {5, 10, 15, . . . , 100}) and each of these
is signed by the server. In addition, we include generation and checking of batch DLEQ proofs,
and redemption of a single token. We repeated this experiment 100 times.

In Table VI;1 we provide a set of benchmarks for the operations that are computed for the client
and server. In Table VI;2 we provide the size of the additional data for requests and responses due
to Privacy Pass.18 We do not include the redemption response size as Privacy Pass does not change
this flow.

As is clear from our results, the overheads incurred from using Privacy Pass are quite acceptable.
In particular, redemptions are fast for both the client and server and require very little added com-
munication. For signing, the biggest costs appear to be the time taken for the client to generate
requests and verifying theDLEQproof in the server responses. On the other hand, the initial cost
for acquiring signed tokens is warranted given that redemptions are so efficient and client proofs-
of-work are avoided for the lifetime of the tokens. In summary, we view the initial cost of the
signing phase as manageable, wrt the gains that are achieved in subsequent phases of browsing.

Finally, the additional communication load is less than 6KB in total form = 30, which is unlikely
to trouble the browsing experience.

VI;5.5 Release and adoption results

We released the Chrome/Firefox browser extension Privacy Pass on 8 November 2017, and also
released the open-source code for the extension, which would allow a user to locally install the
extension in their browser. In the following we will detail various numbers acquired directly in
partnership with Cloudflare [98] (we focus only on distinguishing requests coming fromTor and
non-Tor users). There is a website for Privacy Pass19 and the release was announced via a series of
blog posts [115, 116, 284].

18The signing responses are about double the size of the requests, because for performance reasons, the
(JavaScript) client compresses the elliptic curve points in the signing request, but the (Go) server does not compress
the elliptic curve points in the response, lest the JavaScript client have to do expensive point decompressions.

19https://privacypass.github.io
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The number of Chrome users by 28 November 2017 stood at 8499 and the number of Firefox
users stood at 3489—this does not include users manually installing the extension. By July 2018,
this number had increased to 61578 Chrome users and 16375 Firefox users, demonstrating a
650% increase in total.

Averaging over any given 7 days in theNovember period, Cloudflare accepted 1.6 trillion requests
with 780 million of those requests coming over the Tor network. Of these requests, 1.04% were
challenged globally, with 17% of Tor traffic being challenged in the same period [98].20 For-
tunately, Privacy Pass alleviates the burden of these challenges by a factor ofm for honest users
who would usually complete the challenge. However, Privacy Pass may not result in a factor of
m reduction in the total number of challenges witnessed — i.e. we may not see an optimal drop
to (17/m)% of requests being served challenges in the Tor case.21 This is due to the fact that
these figures also include challenges that are served to requests from users that have no intention
of solving the challenge (such as bots or content scrapers).

In terms of operating numbers, the number of redemption phases occurring peaked globally at
2000 per hour and for Tor users at 200 per hour. In July 2018, these peaks had increased to 3300

and 600, respectively. Additionally, there were 515 million requests containing single-origin,
clearance cookies used to bypass challenges globally with 34.5 million of those occurring from
the Tor network. As a result, 22.58% of requests coming from Tor users contain these clearance
cookies. As mentioned in the previous sections, these cookies allow users to bypass CAPTCHAs
for a single origin without having to spend more tokens. Using these cookies preserves tokens
for use only on unseen domains, which is advantageous for users. They cannot be tracked across
domains due to the single-origin policy.

We demonstrate a system that is clearly useful for clients with the extension installed. In the
same time-frame, median request and response sizes for Tor users stood at 700–800 bytes and
5–6KB respectively, while the median size of CAPTCHA submissions and responses were less
than 1KB.22 Consequently, the additional protocol messages do not result in unmanageable re-
quest/response sizes.

Remark VI;5.1. Note, that we do not record a drop in the actual number of CAPTCHAs served

by Cloudflare. This is because Privacy Pass works to prevent the CAPTCHA being displayed to the

user by immediately responding with a new HTTP request. This prevents the user from interacting

with the challenge, but this occurs after it has been sent by the server. We take the number of

redemptions and cookie usage as indicators for the decrease in CAPTCHA solutions.

20By challenged, we mean the response to the request displays a Cloudflare CAPTCHA.
21We do not have explicit data for the VPN/I2P cases and so we focus on the case of reporting on Tor instead.
22These figures are slightly different to the benchmarks above as they include information specific to Cloudflare

that we did not model in the benchmarking tests.
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VI;5.6 Code and versioning

The code for Privacy Pass and the compatible server-side implementation is open-source.23,24Ver-
sion v1.0 can be downloaded from the Chrome25 and Firefox extension stores.26 The source code
for Privacy Pass currently includes some updates that are not yet in the release version. We plan to
release these updates officially in the near future. We regard Privacy Pass, and our protocol, as still
in the beta phase of development and are welcoming external contributions.

VI;6 Potential attacks

The security properties that we proved in SectionVI;3 do not consider a number of ‘out-of-band’
attacks that may still effectively subvert the security of the protocol, if mitigations are not consid-
ered. We say ‘out-of-band’ because they are not considered inside of the security model that we
originally considered when we proved the protocol secure. We consider measures that can be put
in place to limit the effectiveness of such attacks.

VI;6.1 Interception of signing requests

Acharacteristic of our protocol is thatwe do not currently encode any useful information into the
tokens that are signedby the server. This prevents the client fromgenerating tokens thatmay inad-
vertently associate their metadata tokens during redemption, and lead to potential deanonymiza-
tion vectors. This means that tokens are not associated with any one client, increasing the effec-
tiveness of monster-in-the-middle (MitM) adversaries; since transmitted tokens are not crypto-
graphically linked to a specific protocol invocation.

For example, consider a MitM adversaryM in the signing phase of the workflow in Figure VI;3.
ConsiderM that hijacks the blinded tokens sent to the server, and simply forwards the challenge
solution under their own identifier alongwith a set of their own generated tokens. If the challenge
does not have some client-binding hijack-prevention mechanism, thenM will receive signed to-
kens from the server without completing a challenge.

This attack is particularly effective as it removes the requirement for an adversary to authenticate
to a service in order to receive tokens. For example, consider if the challenge mechanism was a
CAPTCHA, andMwas somebot thatwas ordinarily not able to solve it. This attackwould allow
M to receive tokens without computing an actual solution and then bypass future CAPTCHA

23https://github.com/privacypass/challenge-bypass-extension
24https://github.com/privacypass/challenge-bypass-server
25https://tinyurl.com/privacypass
26https://addons.mozilla.org/en-US/firefox/addon/privacy-pass/
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invocations. In the case of Cloudflare, the CAPTCHA page is protected by TLS so this seems
hard to hijack, however this remains a general attack vector.

While this attack is effective, it requires a renewable source of authentications/challenge solutions
for it to carry on indefinitely. In this setting, even without Privacy Pass, such an adversary would
essentially have access to a CAPTCHA solving farm and thus the need for acquiring tokens to
authenticate would be made redundant anyway (except for a small gain in the speed at which
authentication could be performed).

In contrast, the previous system required an online adversary looking to bypass a CAPTCHA
maliciously. Using Privacy Pass, it becomes possible to intercept tokens and use them at a more
convenient time in the near future (until the keys are rotated). As long as the maximum number
of signed tokens is fairly small (in the case of Cloudflare only 100 tokens can be signed for each
interaction), then the effectiveness of the attack is not especially increased.

VI;6.2 Token accumulation

A related attack avenue would be for clients to ‘farm’ signed tokens by repeatedly sending chal-
lenge solutions to invoke the signing phase of the protocol. This would allow the client to build
up a stockpile of unused tokens that they could then redistribute amongst other clients or redeem
tokens for a large period of time. Redistribution of token pairs (xi, yi) is possible due to the
lack of data encoded into them. Building up a large store of tokens could be useful for launching
DDoS attacks on service providers.

Clearly, solving challenges incurs much larger overheads than the token redemption process using
the browser extension. Therefore, clients can invokemany redemptions in the same time that they
could solve one challenge previously. It is important that pass verification is very efficient for the
server to carry out, in order to reduce the threat of a DDoS attack against the server. Fortunately,
verification of a token redemption occurs in less than 1ms and a few hundred bytes of additional
transmitted data. Additionally, carrying out these operations on powerful server hardware may
lead to even faster running times. That being said, a client that amasses a huge number of tokens
may still be able to cause problems.

For these attacks we implement a number of mitigations. Firstly, the low upper bound of 100

tokens signed at a time by Cloudflare means that it would take a large amount of effort to build
up a stockpile of tokens large enough to launch a credible DDoS attack (1000000 tokens would
require a minimum of 10000 CAPTCHA solutions).

Finally, we recommend regular key rotation so that signed tokens are implicitly related to epochs
and are thus invalidated frequently. This prevents stockpiles of tokens from being useful for
longer than the epoch they belong to. Ideally key rotation would occur over short time peri-
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ods; a shorter time period directly reduces the number of useful tokens that can be stockpiled
and redeemed. In our initial software distribution, key rotation is handled by updating the com-
mitments directly in the browser extension. Moving forward, CDNs could upload their commit-
ments to beacons or other globally visible and consistent locations, such as the Tor consensus.

VI;6.3 Token exhaustion

Privacy Pass uses a finite list of low-entropy characteristics to determine whether a token should
be redeemed or not. In the case of Cloudflare CAPTCHAs, the extension looks for the presence
of an HTTP response header and particular status code. Unfortunately, this means that it is easy
to recreate the characteristics that are required by the extension to sanction a redemption.

To view the attack at itsmost powerful, consider a sub-resource that embeds itself widely onmany
webpages that can trigger token redemptions.27 Such a resource would be able to drain the exten-
sion of all its tokens by triggering redemptions until all the tokens were used. While it is unclear
why such an attack would be useful, it is important to acknowledge that it is indeed possible to
carry out andwould thus render the usage of Privacy Pass useless if the sub-resource was especially
prevalent.

Ourmitigation for this attack lies in the extension itself. First, the implementation of Privacy Pass
prevents token redemptions occurring for the same URL in quick succession by keeping track of
where spends have occurred. This data is refreshed when a single-domain cookie is removed to
allow re-spending at the domain. This prevents a sub-resource from recursively draining tokens
after each spend; it also spreads out the redemptions considerably. The sub-resource would have
to force cookies to be removed and then schedule a page reload for each token spend.

A coarser method of stopping these attacks — that has not been implemented at time of writing
in the Cloudflare deployment — would be to blacklist URLs from spending after one attempt
and then refresh this state every time the extension reaches 0 tokens. While this would be a more
effective countermeasure, it would also prevent a client from spending tokens on a URL, even if
the cookie for the URL were removed. Other potential mitigations could include requiring the
edge to sign the appropriate header, or the edge stripping the cf-chl-bypass header fromorigin
responses.

VI;6.4 Time-based client deanonymization

As with all systems that require some sort of registration, there is the inherent problem that ‘early
adopter’ clients are part of a much smaller anonymity set than is optimal for enforcing privacy

27For example, a popular analytics script or JQuery code.
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constraints. In particular, consider a scenario where some user is amongst the first five to initiate
a signing phase with some given CDN, or after key rotation has occurred. Then when a client
comes to redeem a token, the provider will know that the client can be linked to one of the five
only clients to have tokens signed. A malicious edge could also artificially reduce the size of the
user base by only signing tokens for a small number of users, or byusing artificially small key cycles.

A more detailed analysis may also take into account patterns of behaviour that lead to initiating
signing and redemption phases in predictable ways. For instance, it may be possible to associate
token redemptions to signing queries linked to a user profile that predictably asks for tokens to be
signed at certain times.

This threat bypasses the formal unlinkability of the protocol, exploiting the fact that linkability is
possible based on the timing of certain requests or via early registration. The pervasiveness of the
potential to deanonymize clients this way means that, like many privacy enhancing technologies
including Tor itself, such privacy solutions are only really effective when the number of users is
quite large. As we mentioned previously, the user-base for Privacy Pass has been growing rapidly
since it was first released. This suggests that linking browsing sessions is likely to incur significant
overheads and high error rates.

VI;6.5 Double-spending protection

It is vital that services use their own private keys for signing tokens so that tokens cannot be spent
multiple times across different services. Moreover, each service that supports Privacy Pass should
implement double-spend protection to ensure that tokens cannot be spent multiple times across
their own architecture. This is why we build the stateful data storage into our redemption proto-
col in Section VI;3. An effective way of managing a large double-spend index would be to use a
hash table, Bloom filter or other similarly efficient data structure. In the Cloudflare case, a Bloom
filter is used; and it is emptied every time key rotation occurs.

VI;7 Conclusion and future work

In conclusion, we have shown that we can embed an anonymity-preserving, cryptographic pro-
tocol for proving honesty into a browser-based workflow. The result is practical to run, in the
sense that browsing is not affected by the extra computation. Moreover, the protocol allows users
to bypass strenuous proof-of-work challenges that can make websites seem inaccessible. This is
beneficial to users of anonymity services such as Tor and VPNs who are unfairly targeted by over-
zealous access-control mechanisms. Our implementation is completely open-source and is avail-
able online at https://github.com/privacypass. The official website for the extension can
be found at https://privacypass.github.io.
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VI;7.1 Future work

In terms of future work, we have a variety of focuses that target both improving the extension
Privacy Pass and also the underlying cryptographic protocol.

Future integrations. For Privacy Pass, we hope to release a new official version in the next
few months to the Chrome and Firefox stores that will aid integrating with more third parties,
branching out from the Cloudflare integration. The intention with Privacy Pass was never to be
bound to the Cloudflare architecture, and this is why we released the code for the server-side. We
are investigating the possibility of integrating the server-side functionality with the CAPTCHA
provider FunCaptcha.28 Part of this release will include a new method for establishing configu-
rations for different providers.

Better documentation. To aid the process of integrating new services, we also plan to docu-
ment the features and triggers that are used by Privacy Pass for initiating the protocol design that
we use. This will be a natural process when the new configuration process is released.

Verifiable key beacons. Currently the keys that are used for proof verification are stored in
the code of Privacy Pass. We would like to support multiple keys being used at any one time to
make key rotation simpler. We would also ideally like the keys to be placed in a publicly verifi-
able location where they could be accessed from. This would mean that key rotations would not
require a code change—which will make the process much simpler.

IETF standardisation of EC-VOPRF authentication protocol. We are currently in
the process of drafting an IETF standard document for the implementation of our protocol from
Section VI;3.29

Post-quantumVOPRF. Exploring the possibility of instantiating our key exchange from cryp-
tographic primitives that believed to be ‘post-quantum’ secure is an interesting pursuit. In partic-
ular, the method that we use is similar to the DH-style key exchange that is prominent through-
out cryptographic literature. Therefore, it may be possible to achieve similar functionality using
lattice-based or isogeny-based cryptosystems.

Browser-less solutions. Currently, requests that are sent via a browser-less mechanism to
Cloudflare websites are blocked if a CAPTCHA is required, since the user has no ability to solve
the challenge. Such browsing is common using tools such as curl, or by running browsers in
head-less mode. Devising a solution that works outside of the browser architecture would also be
a useful endeavour.

28https://www.funcaptcha.com/
29https://datatracker.ietf.org/doc/draft-sullivan-cfrg-voprf/
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Preface

In this chapter, we will analyse known constructions of branching program indistinguishability
obfuscation candidates instantiated with a new graded encoding scheme. We provide a new vari-
ant of the candidate graded encoding scheme of Garg, Gentry and Halevi [148] that does not
admit a polynomial-time cryptanalysis, under previously known techniques [15, 240]. Our main
contribution is then todevelop anon-trivial cryptanalytic technique for breaking this new scheme.

The purpose of this chapter is to illustrate structural vulnerabilities in the construction of [148].
It was widely believed that the weaknesses of [148] stemmed from the presence of a common gen-
erator g, that can be used to form ideals in the rings in which the encodings lie. This stemmed
originally from a conjecture made in [176]. Our variant on the scheme removes the presence of g,
and thus the possibility of launching previous attacks. However, we show that this removal does
not provide security in the cases where the encoding scheme has potential applications. Specifi-
cally, we demonstrate attacks against the schemewhenused to implement a large class of candidate
branching program obfuscators.

Wedemonstrate tweaks to the cryptanalyticmodel used for analysing obfuscations candidates. We
believe that the newmodel makes analysing securitymuchmore intuitive, where previousmodels
relied on idealising graded encoding operations and abstracting away certain vulnerabilities.

There are some algebraic discrepancies between [148] and our new scheme that ensure that the
attacks that we construct are not as devastating to security to those that have came previously.
Indeed, there appear to be situations where our scheme admits no known attack, where [148]
does. We leave further exploration of this discrepancy as interesting future work.

This chapter is based heavily on the material published in [8] [IMACC2017]. We include extra
attacks that were added to the full version of the paper [9], after the date of publication. In addi-
tion, we make the correctness of our new scheme more concrete, where the previous work relied
on approximations.

Overview of original contributions

• Construct a new cryptanalyticmodel for analysing the security of candidate indistinguisha-
bility obfuscators for branching programs. The sufficiency of themodel is shown by adapt-
ing the known attacks against [148] successfully (Section VII;3).

• Construct a non-trivial variant of the graded encoding schemeproposedbyGarg et al. [148]
that is no longer susceptible to previously known ‘annihilation attacks’ [15, 240] in branch-
ing program scenarios [27, 253] (Section VII;5).
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• Give novel variants of ‘annihilation attacks’ that break the security of our adapted graded
encoding scheme (Section VII;6).
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VII;1 Introduction

Over the past two decades (andmore rapidly in the last five years), an emerging cornerstone of the
literature on secure computation has been the study of program obfuscation. Program obfusca-
tion is a hugely powerful cryptographic primitive that, in theory, allows evaluation of programs
without revealing embedded secret data. In terms of practical usage, such a primitive would have
several applications regarding digital rights management, whereby software vendors could pro-
vide packaged programs to users. The users could then run the programwithout seeing the source
code. In a theoretical sense, the primitive is a crucial device for constructing cryptographic primi-
tives that were previously thought to be impossible [272].

VII;1.1 Binary circuits

Prior to considering the possibility of obfuscating a program, we first consider the types of func-
tions that we wish to obfuscate. Cryptographically speaking, a program is usually expressed as a
circuit that can be evaluated in polynomial-time in length of the input. Such circuits must then
have polynomial depth and size. The output of the circuit on a given input is taken to be the bi-
nary string y ∈ {0, 1}`out ; taking bits from each of the output wires of the circuit. In this work,
we do not consider arithmetic circuits, where input wires take values from Z and gates are ring
additive and multiplicative operations.

Recall that the depth d of a circuit is the maximum length of a path from an input wire to an
output wire, measured in the number of gates that need to be computed. We assume that all
gates take two input wires (fan-in two) and have one output wire. We assume that input wires
are used in multiple gates. We can construct circuits for arbitrary functions using only NAND
gates. Unless specified otherwise, we will only consider circuits that output a bit b ∈ {0, 1}, i.e.
`out = 1.

VII;1.2 Circuit obfuscation

As wementioned in Section II;6.2, defining a notion of security for a program/circuit obfuscator
is a subtle process. We will introduce the security models that have been considered in the prior
literature, along with the classes of circuits that are considered.

Virtualblack-boxsecurity.Obfuscators that satisfy virtual black-box (VBB) security satisfy
the most intuitive type of security. The security model specifies that the circuit can be simulated
(in an indistinguishablemanner) for all PPTadversaries by an algorithm that has only oracle access
to the function that has been obfuscated. Therefore, any information that can be learnt from the
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obfuscated circuit, can also be learnt by just having oracle access to the function. As a result, any
secret data in the function— not revealed by the output explicitly — is kept hidden.1.

The study of VBB program obfuscation was initiated by Barak et al. [28]. Unfortunately, their
seminalwork showed that virtual black-box obfuscationwas impossible for general functions, and
thus circuits from CP/poly. In other words, there exists a class of functions that can be expressed as
polynomial-depth circuits, that provably reveal more information than a simulator with only ora-
cle access to the function. Thus achievingmeaningful definitions of programobfuscation requires
a different approach, and has lead to several diverging strands of research.

The first focuses on bypassing the impossibility result by conversely exploring which classes of
functions can be obfuscated in the VBB security model. Lynn et al. [232] and Canetti [74] gave
point-functionobfuscators in the randomoraclemodel andbasedon collision-resistanthash func-
tions respectively; while Wee [293] developed a point-function obfuscator based on strong one-
way functions. Otherworkhas seendevelopments inhyperplaneobfuscators [77]basedon strong
DDH, and obfuscators for various families of evasive functions based on strong assumptions over
MMAPs [26, 65]. There have been a number of advancements in obfuscators for evasive func-
tions, more recently. The works of [44, 70, 172, 294] all achieving new constructions from lattice-
based assumptions, or within the generic group model.

Indistinguishability obfuscation.While constructing VBB obfuscators for specific func-
tion classes is one way of avoiding the impossibility result of [28], another method is to rework
the security model that is being considered. Barak et al. [28] surmised that a more achievable
security model would ask adversaries to distinguish the obfuscation of two circuits that are func-
tionally identical.2 The security notion is known as indistinguishability obfuscation (IO), and is
defined formally in Definition VII;1.1. It was shown by Goldwasser and Rothblum [168] that IO
represents the ‘best-possible’ obfuscation that can be achieved.

1This security notion has obvious parallels with the malicious security model in multi-party computation, see
Chapter III

2But the circuits themselves may be different in construction.

264



VII;1 Introduction

expiob,C,A(1λ, 1d, 1n, 1`in , 1`out)

1 : C0, C1 ← A1(1λ, 1d, 1n, 1`in , 1`out);

2 : if ∃ x s.t. ¬(C0(x)
?
= C1(x)) :

3 : return ⊥

4 : C̃b ← io(1λ, 1d, 1n, 1`in , 1`out , Cb);

5 : bA ← A2(1λ, 1d, 1n, 1`in , 1`out , C̃b);

6 : return bA;

Figure VII;1: IO security model. We may also write expiob,C,A(1λ); omitting the input parameters where
context is clear. A flaw of the IO security model is that the check in line 2 cannot be carried
out in polynomial time, and thus simulation is unbounded. To mitigate this, A has to be
restricted to only output functionally equivalent circuits.

Definition VII;1.1 [Indistinguishability obfuscation]

Consider a circuit family C = C`in,`out,d,n with input size `in, output size `out, depth d and
sizen. Let iobe a PPT algorithm,which takes as input: a circuitC ∈ C; a security parameter
λ ∈ N; the circuit parameters above; and outputs a boolean circuit C̃ (possibly C̃ /∈ C). We
say that io(·) is an obfuscator for C if it satisfies the following properties:

1. Functionality: For all circuitsC ∈ C, we have

Pr
[
∀x ∈ {0, 1}n : C(x) = C̃(x)← io(1λ, 1`in , 1`out , 1d, 1n, C)(x)

]
= 1,

where the probability is taken over the random coin tosses of io(·).

2. Polynomial slowdown: For every λ ∈ N and C ∈ C, the circuit C̃ is of size at most
poly(|C|, λ).

3. Security: We require that:

max
A

(Adv(A, io(·)(1λ))) < negl(λ).

where the security of io(·) is defined by the experiments
expiob,C,A(1λ, 1d, 1n, 1`in , 1`out) for a pair of (non-uniform) PPT algorithms
A = (A1,A2) andA1 outputs functionally equivalent circuits.

We may also abuse notation and say that io(·) is an IO obfuscator for C.

Utility of IO.While VBB obfuscation provided an intuitive description of the functionality
that we expect from a program obfuscator, IO provides amore subtle description. In fact, it is not
clear how sensitive information canbehiddenby such anobfuscator. Theonly requirement is that
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the obfuscations of two functionally equivalent circuits are indistinguishable. So an important
question is:

How do we utilise this security property for hiding secret information?

Sahai andWaters [272] gave a foundational work describing how IO can be used to achieve many
seminal results in cryptography. For instance, they give a generic transformation from symmetric-
key encryption to public-key encryption. They also gave the first construction of a deniable en-
cryption scheme, amongst many other applications. The key feature of their work is to use a
puncturing technique that omits certain secret information from the obfuscated circuit, and then
replace the underlying circuit with an instantiation that does not use the secret information.

In summary, theyproduce canonicalised variants of binary circuits that are functionally equivalent
but do not hold sensitive information (such as secret keys). Then showing that the obfuscation
of the two circuits is indistinguishable allows the security proof to ‘puncture’ out the sensitive
circuit3 for the canonical version. Now the adversary no longer has any access to any secret infor-
mation. This idea has been applied to many different strands of research, and has established IO
as a fundamental cryptographic primitive. Examples of applications include [10, 14, 22, 46, 100,
136, 149, 150, 158], but this is by no means an exhaustive list.

VII;1.3 Candidate constructions of IO

While the applications above help to crystallise the importance of IO as a cryptographic primi-
tive, the worth of it is only demonstrated in full by concrete instantiations of the primitive. The
taxonomy of known constructions of IO can be split into the following categories.

Candidate constructions of IO via branching programs. Apart from the work of
Goldwasser and Rothblum [168], the study of IO was largely silent until the candidate construc-
tion of Garg et al. [150]. This work constructs IO obfuscators for the circuit class CP/poly. Firstly,
the work considers circuits in the form of generalised matrix branching programs. It was shown
by Barrington [29] that any binary circuit in CNC1 can be realised by a width-5 matrix branching
program, requiring 4d matrix multiplications. Firstly, [150] shows that a number of randomisa-
tion techniques appear to ‘hide’ the function, though the security assumptions are non-standard.
Then they show that obfuscation for CP/poly can be achieved using FHE. We establish our nota-
tion for branching programs formally in Section VII;2.4.

More specifically, the randomisation techniques alter the structure of the individual matrices in
the branching programwithout introducing a change in the output. The final step ‘encodes’ each
entry of the matrices using a graded encoding scheme (GES). A GES is an approximation to a

3Using a puncturable PRF
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multilinear map, roughly speaking.4 While this technique was first used in [150], it has lead to
a number of further constructions using essentially the same technique [12, 23, 27, 66, 153, 239,
253]. We give a full treatment of the abstract obfuscationmodel thatwe consider inVII;2.5, along
with differences regarding each of the specific instantiations.

All-known candidates are proven secure under uber-assumptions that essentially posit that the
scheme is secure. Moreover, the GES operations are idealised with security proven in what is
known as the ideal multilinear map model [150]. Variations on this model have been investi-
gated [153, 240], but they only differ in the types of queries that are permissible.

All known candidates for IO in this model are subject to polynomial-time cryptanalysis, though
the attacks depend on the GES that is used to instantiate them. We give a brief overview of the
current state of cryptanalysis of these IO candidates in Section VII;1.6. All the cryptanalytic tech-
niques exploit the gaps between the idealised models of graded encoding schemes [15, 87, 88, 90,
103, 240, 256] and the existing instantiations.

Constructions for obfuscating programs directly. The works of Applebaum and
Brakerski [16], Zimmerman [298] and Döttling et al. [132] construct program obfuscation that
is directly applicable to arithmetic circuits. This helps to avoid the usage of Barrington’s theorem
and the subsequent blow-up in the branching program size. Broadly speaking, these candidates
treat programs as arithmetic circuits and implement gate operations directly as GES operations.
This allows the adversary to compute the circuits directly without having to performmatrix mul-
tiplications, allowing for much simpler constructions as a result. The constructions are much
more nuanced, but still lack concrete proofs of security and admit their own polynomial-time
cryptanalyses via insecurities in the underlying graded encoding schemes [101, 256].

Constructions from constant-degree, ideal multilinear maps. Recent work [13,
14, 222, 223, 224, 225] has established provably secure5 instantiations of IO obfuscators from
concrete instantiations of ideal multilinear maps [57]. These obfuscators all require constant-
degree graded encodings, whichmay be easier to instantiate thanmore general, polynomial-depth
graded encodings. The work of [224] requires an ideal construction of trilinear maps; and non-
standard invocations of blockwise local PRGs. However, recent cryptanalysis suggests that even
constructions of trilinear maps based on familiar assumptions evade us.6 In a notable improve-
ment, Ananth et al. [13] provide a tentative construction under bilinear maps and LWE, though
their work also rests upon non-standard conjectures.

This avenue for achieving a constructionof IOunderplausible assumptions seems themostpromis-
ing (at least to the thesis author), but this direction is tangential to the current chapter.

4We cover graded encoding schemes in more detail shortly.
5Albeit still under relatively poorly understood assumptions.
6Recent work fromHuang [190] claims to construct candidate trilinear maps, but the claims are yet to be verified

at the time of writing.
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Constructions from 2-key PCPRFs. The work of Canetti and Chen [76] shows that IO
can be achieved using a constrained PRF, that satisfies at least 2-key privacy. Unfortunately, all
known constructions of constrained PRFs under standard assumptions only demonstrate 1-key
privacy [21, 67, 68, 76, 255]. This includes the new construction that we presented in Chapter V.
PCPRFs form-key privacy (wherem ≥ 2) and bounded-depth circuit predicates are only avail-
able under primitives based on ideal multilinear maps [55].

VII;1.4 Graded encoding schemes

Graded encoding schemes provide a generalisation of the functionality provided by idealmultilin-
ear maps (MMAPs), first established by Boneh and Silverberg [57]. A multilinear map is simply
a generalisation of well-known cryptographic bilinear maps to larger linearity. That is, there are a
set of source groupsG1, . . . ,Gκ, and a target groupGT . Then a κ-degree (non-degenerate) map
e : G1 × . . .×Gκ 7→ GT , is a function that computes:

gT ← e(g1, . . . , gκ)

where gi ∈ Gi is a generator for all i ∈ [κ] and gT is a generator of GT . The linearity of the
function requires that, for αi ∈ Z, then:

gα1...ακ
T ← e(gα1

1 , . . . , gακκ ).

We can also define symmetric multilinear maps, whereG1 = . . . = Gκ.

Arguably, κ-degree graded encoding schemes provide a much more expressive structure. Instead
of defining a single map e, they provide functions eV , where V ⊆ [κ]. Then:

gV ← eV ({gi}i∈V );

and gV can be used in future evaluations by functions eW , where V ⊆ W ⊆ [κ]. In these cases,
we treat gV as an element corresponding to all the indices in V . Therefore, we can only evaluate:

gW ← eW (gV , {gj}j∈(W\V )),

i.e. we cannot re-use indices.

The name graded encoding comes from the fact that the elements of the scheme are treated as en-
codings that permit ‘levelled’ homomorphic operation in a similar manner as in a homomorphic
encryption scheme. In our nomenclature, ‘levels’ correspond to the group structure that the en-
codings implicitly construct. The encodings are required to satisfy some notion of security (e.g.
one-wayness).
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The difference between a GES and a homomorphic encryption scheme is the fact that the encod-
ings cannot be explicitly decrypted. In contrast, many applications of a GES — including those
that are satisfied by MMAPs — only require the ability to determine whether an encoding en-
codes the same element or not. For a group setting, we can treat gα1 as an encoding of the value
α1 ∈ Z. This is a deterministic encoding that immediately reveals when another encoding has
the same value, thus providing an effective ‘zero-test’ whereby an evaluator can check whether an
encoding encodes the value 0, or not.

Current instantiations of graded encodings permit only noisy approximations of such encodings,
thus an encoding is essentially part of an equivalence class for a given value. As such, we must ex-
plicitly define a zero-test procedure that allows checking the equality of two encodings, to achieve
full functionality. This zero-test procedure can only be carried out on encodings that are indexed
by the top-level set U = [κ].

We explain the formal concept of such schemes more clearly in Section VII;2.1.

VII;1.5 Constructions and cryptanalysis of graded encoding schemes

The first GES was introduced by Garg, Gentry and Halevi [148], and will be known throughout
asggh. Their construction takes inspiration from theNTRU encryption scheme [186]. Asmen-
tioned above,gghprovides noisy approximations of graded encodings and thus gives zero-testing
procedures for checking the equality of elements. They also show that extracting a canonical rep-
resentation of the value of such encodings is possible. This is necessary for many applications.

Subsequently, there have essentially been two other candidates achieving the same functionality.
First, Coron, Lepoint and Tibouchi [104] demonstrate a similar design but taken over the inte-
gers. Their scheme is based on the homomorphic encryption scheme of [128]. Secondly, Gentry,
Gorbunov and Halevi [157] provide an altogether different structure where the graded opera-
tions align to computation over a directed graph. Their construction uses trapdoor sampling
techniques of [4, 161, 237] for providing the graph structure. Again, they provide an explicit
mechanism for testingwhether the encodings of elements, encoded along the samepath segments,
encode the same value.

Similarly to IO, MMAPs have become a cornerstone of recent cryptographic constructions, the
following [10, 54, 55, 58, 151, 297] naming just a few. In this chapter, we will focus on the security
of the gghGES in the IO framework.

Security. Proving security of the schemes is a tricky proposal. Firstly, the security assumptions
that are required for graded encoding schemes can differ depending on the application. Themost
well-known assumption is the multilinear DDH (MDDH) assumption [57], a generalisation of
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the bilinear DDH assumption. We describeMDDH in Figure VII;2.1, the assumption is essential
for constructing non-interactive key exchange (NIKE) [144, 148].

Indeed, proving thatMDDHholds for any anyof the three candidates is plausibly difficult. This is
because the zero-testing procedure is implemented as a form of decryptionwith a faulty secret key.
This faulty secret key is a public parameter and should only permit learning whether an encoding
encodes the value of 0, or not. Proving security of the schemes with this parameter present is
difficult since it inherently reveals some information about the secret parameters of the scheme.
Indeed, this is where almost all cryptanalysis of graded encoding schemes originates.

A common feature of most applications is that encodings of zero have to be provided below the
top-level of computation (indexed by a subset T ⊆ U ). These encodings of zero are used to
rerandomise publicly revealed encodings and are vital for key applications such as non-interactive
key exchange [104, 148]. Unlike these applications, IO constructions that are instantiated from a
GES do not require the presence of such encodings of zero. IO only requires that the encodings
of zero that can be found are indexed at the top-level of computation (e.g. by the set U ).

Zeroizing attacks. The cryptanalysis of [148] was initiated in the work itself, showing that a
weakDLattack could be performed against encodings of certain structures. Thiswas improvedby
Hu and Jia [189], showing that the secret parameters of the encoding scheme could be learnt due
to the presence of low-level encodings of zero. Consequently, the MDDH assumption cannot
hope to hold for ggh. We provide a better overview of the attack surface and methods in Sec-
tion VII;2.1. The cryptanalysis of [104] was started by Cheon et al. [89]. Their attack is similarly
as devastating and also makes use of the presence of lower-level encodings of zero.

The family of attacks described above are better known as zeroizing attacks. Similar variations on
these attacks are also known against GGH15, breaking the prime application of NIKE [102]. We
reiterate that the presence of lower-level encodings of zero is vital for the attack to succeed, thus
these attacks do not work in the situation of IO, where they are not given to the adversary.

Lattice-subfield attacks on ggh. A different strain of attacks considered in [5, 91, 210]
target the gghGES. In particular, they show that the parameter choices made in [148], and sub-
sequent optimisations [6, 219], allow the NTRU assumption to be broken in polynomial-time.
This does not immediately break thegghGES, but it does lead to a quantumpolynomial-time at-
tack for revealing the secret parameters of the scheme (alternatively a classical sub-exponential time
attack). These attacks can be avoided by changing the dimension parameter in the ggh scheme.
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VII;1.6 Cryptanalysis of branching program obfuscation

In candidate branching program obfuscators, the presence of lower-level encodings of zero are
not required for functionality. In fact, the only encodings of zero that are necessary can be found
only after encodings have reached the top-level of computation. Lower-level encodings of zero
are vital to the functionality of zeroizing attacks and so vulnerabilities in candidate obfuscators
do not arise. That being said, a branch of zeroizing-like attacks introduced by Coron et al. [101]
can be used to break the candidate obfuscators of [16, 160, 298], when instantiated over the [104]
GES. These attacks were later improved by Coron et al. [103]. We do not focus on these attacks
explicitly as they do not seem to affect IO candidates that are built from ggh.

Most cryptanalysis of graded encoding schemes wrt the application of IO takes a slightly different
flavour. Narrowingour focus toggh, the attacks thatwe consider in this chapter focus on the abil-
ity to build algebraic relations during homomorphic computations, which can then be exposed
after zero-testing. In short, the adversary in the expiob,A(1λ) security games constructs polynomials
over functionally equivalent7 branching program evaluations, rendering predictable zero-testing
outputs for one program and not the other. These polynomials are known as annihilating poly-
nomials, and it was shown by [15, 240] that such polynomials can be constructed in poly(λ) time
for the obfuscators of [12, 23, 27, 64, 239, 253]. Annihilation attacks that distinguish IO obfus-
cated circuits using these polynomials provide the strongest set of known cryptanalysis against IO
candidates.

Crucially, the attacks of [240] highlighted the insufficiency of the idealmultilinearmapmodel (ex-
plained in Section VII;4) in abstracting the functionality of the gghGES. In short, the zero-test
oracle provides only a ‘success’ or ‘failure’ response in this ideal model. The [240] attack explicitly
uses the output of the algebraic zero-testing procedure to launch their annihilation attacks. As a
means of inspiring future constructions, [240] justifies using a ‘weakened’MMAPmodel, where
the adversary is able to submit polynomials evaluated over the responses from the zero-testing pro-
cedure. The adversary wins if they can successfully construct annihilating polynomials over the
values of the zero-tested encodings. In this model, many candidates fail to provide security [12,
23, 27, 66, 239, 253].

The work of [240] only targets specific choices of branching programs, rather than the result of
applying Barrington’s theorem to circuits. Apon et al. [15] show how to expand the attacks to
the scenario where the branching programs are the result of applying this theorem. Their analysis
explicitly uses functionally equivalent branching programs that express a feature known as ‘partial
inequivalence’. The algebraic techniques that are used are essentially the same.

7The branching programs have to give the same output on all inputs for the security notion to hold.
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Preventing annihilation attacks. The reason that annihilation attacks do not break all
IO candidates (i.e. not [150]) instantiated over ggh is the additional structure provided in the
obfuscation candidate. The [150] candidate uses extra randomisation features in the structure
of the branching program that seemingly prevents formulating an annihilating polynomial in
polynomial-time. In response to thework of [240], Garg et al. [153] construct an obfuscator with
similar design choices as [150] with security proven in the weakenedMMAPmodel, based on an
assumption establishing that annihilating outputs from random branching program outputs is
computationally difficult. The obfuscated branching programshave additional randomised struc-
ture embedded into them; alongside the functionality of the circuit. This additional randomisa-
tion prevents learningmeaningful output using annihilating polynomials. Another construction
byDöttling et al. [132] was also proven secure in the weakenedmodel under similar assumptions,
though it targets obfuscations of circuits directly, rather than using branching programs.

Expanding cryptanalysis. Subsequently, Chen, Gentry andHalevi [87] provide a more dev-
astating attack that uses similar annihilating techniques, their methods provide polynomial-time
cryptanalysis of the original obfuscator of [150], along with a restricted version of the [153] ob-
fuscator (that is not covered by the given security proof). The technique only applies to branching
programs that are ‘input-partitionable’.

We do not expand on this cryptanalysis since it is out of the scope that we consider, but it seems
to provide an initial criticism of the weakened MMAP model. In short, it appears to be insuffi-
cient for considering the security of IO candidates. Of particular relevance is the cryptanalysis of
the [153] obfuscator, where the analysis only applies to single-input branching programs, rather
than the dual-input programs considered in the actual work. This is important, since dual-input
programs are not input-partitionable by definition. The weakened model specification does not
consider the structure of branching programs. This highlights a way of prising the concrete secu-
rity of IO candidates away from the model that they’re considered in.

We also note that Fernando et al. [138] show that any input-partitioning branching program
can be converted into an equivalent branching program that does not admit the partitioning be-
haviour, this means that the [87] can be heuristically prevented. Though, this does not give any
additional commentary on the applicability of the weakenedMMAPmodel as a validmechanism
for proving security.

Attacks in the weakened model. Finally, we can remark on two very recent proposals that
categorically establish that the weakened graded encoding model is insufficient for considering
security. Firstly, Cheon et al. [90] give a polynomial-time cryptanalysis of all known IO candidates
based on ggh. Their work extends the subfield attacks of [5, 91, 210] into an attack on all IO
candidates; using a generic technique for removing the level sets that encodings in the branching
programare indexedby. The attacks eventually results indistinguishing theobfuscationsusing the
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Obfuscator (from ggh) quantum attack classical attack

[12, 23, 27, 239, 253] [15, 90, 240, 256] [15, 90, 240]

[150] (without [138]) [87, 90] [87, 90]

[150] (with [138]) [90] [90]

[66] [15, 90, 240] [15, 90, 240]

[153] [90, 256] [90]

Table VII;1: Cryptanalysis of IO candidates from the gghGES.

inherent algebraic structure of the gghGES, as shown in [240]. Their attack works over general
branching programs (e.g. fromBarrington’s theorem) and does not require the input-partitioning
property. The only structure that is required is that the branching programs are linear relationally
inequivalent. It should also be stated that the attacks can be prevented by adopting the parameter
changes that prevent the original subfield attacks, or by taking λ = poly(κ).

Secondly, the work of Pellet-Mary [256] gives quantum polynomial-time attacks that specifically
target the [132, 153] obfuscators. This attack is very different to the previous literature and uses
the fact that zero-testing on the ggh GES can be done at levels higher than the top-level that is
established. The only quantum part of the attack is the requirement of running a solver for the
principal ideal problem, though this runs in classical sub-exponential time also [42, 108].

In summary, understanding and managing the broad overview of growing cryptanalytic litera-
ture on IO candidates instantiated over ggh can be a task of considerable burden. Therefore, we
have provided a concise summary of the state of candidates and corresponding cryptanalysis in
Table VII;1.

Clearly, there are no obfuscators standing that can be instantiated under the ggh GES, as it is
specified in [148]. The attack of [90] features prominently but this cryptanalysis can be thwarted
by parameter modification.

VII;1.7 Our contributions

In this chapter, we will provide a slightly different angle on the cryptanalysis of ggh. We focus
on the statement of Halevi [176] who (roughly) proposed that:

“The core computational hardness problem for breaking the ggh GES, is to find a

representative of the algebraic ideal 〈g〉 during computation.”
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VII A Security Analysis of the GGH13 Graded Encoding Scheme Without Ideals

This ideal is present implicitly in all encodings from an instantiation of ggh. Finding a represen-
tative of this ideal is crucial to all of the cryptanalysis that we described above.8 The most general
method is to use the annihilation attacks of [240]. While [153] emerged as a method for immu-
nising IO candidates against the possibility of annihilation attacks, our work originated from the
exploration of attempting to prevent the attacks at the GES-level.

We construct a novel variant of ggh where the element g that is common to all encodings is re-
placed with an element that is common to only each level in the encoding scheme. This immedi-
ately prevents the possibility of finding ideals that can be used for distinguishing the obfuscation
of branching programs under this new scheme. We call this new scheme “ggh without ideals”
(gghwoi).

Perhaps unsurprisingly, we show that there are vulnerabilities in the scheme which prevent it for
being used in the context of a fully-fledgedMMAP (i.e. using the hardness ofMDDH). Of more
interest is that we show that the new scheme admits vulnerabilities in the IO setting. Crucially,
the vulnerabilities arise from a cryptanalytic method inspired by the algebraic cryptanalyses given
in [15, 240]. Our analysis represents a non-trivial adaptation, since the original methods do not
translate directly to our setting.

The conclusion that we derive is that the encodings from ggh-like schemes admit structural vul-
nerabilities that are insufficiently related to the presence of the common generator g. We show
that these vulnerabilities are still present when the generator is replaced with non-common ring
elements. We detail variations of the attacks given in [240] to break the obfuscators of [12, 23,
27, 66, 239, 253] when instantiated using gghwoi in the weakened MMAP model. Our crypt-
analysis works only in the symmetric GES setting (Section VII;2.1). The same cryptanalysis is not
possible against the [150, 153] obfuscators for the same reasons as given in [240].

For analysing security, and as a sub-contribution, we interpret the weakened MMAP model as a
game-based definition. The adversary now only has oracle access to the obfuscated programs, but
has real access to the encodings of the graded encoding schemes. The model is sufficient since the
previous attacks against ggh IO candidates can be instantiated without modification. Moreover,
we believe that this model offers a more plausible attack surface, reducing the distance between
actual constructions and the idealised models that they are considered in.

Finally for asymmetric graded encoding schemes, the level sets inhibit us from launching our at-
tack; see Section VII;6 for more details. While it is likely that an adaptation exists that will map
our attacks into the asymmetric case, we have been unable to find it. Currently, this appears to
give a separation between the security of ggh and gghwoi; since the attacks of [15, 240, 256]
work regardless of the choice of level sets. We leave further exploration as potential future work.

8This element g is not to be confusedwith the group generators used in the abstract definition of graded encoding
schemes that we gave previously.
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Obfuscator (from gghwoi) classical attacks (symmetric) classical attacks (asymmetric)

[12, 23, 27, 66, 239, 253] This chapter (based on [8, 9]) none

[150] (without [138]) [94] [94]

[150] (with [138]) none none

[153] none none

Table VII;2: Cryptanalysis of IO candidates from the gghwoiGES.

Discussion. Subsequent work by Chunsheng [94] expanded our results to the case of the [150]
obfuscator, using techniques similar to the attacks of [87]. We believe that expanding the attack
surface against gghwoi to all the cases where ggh is vulnerable would help us to better under-
stand the weaknesses of the ggh GES. Another possibility is showing that the security of the
two schemes are linked via a security reduction. As a summary, we provide a table of the current
cryptanalysis of IO candidates when instantiated under gghwoi in Table VII;2.

We discuss the possibility (and failure) of our cryptanalysis applying to the more robust obfusca-
tors of [150, 153] in Section VII;6.3. We also re-emphasise that we do not hold confidence in the
gghwoi GES for maintaining security in the cases where no attacks are currently known, as we
are unable to prove any meaningful security regarding the scheme.

VII;2 Preliminaries

VII;2.1 Multilinear maps and graded encodings

Aswediscussed in the introduction,multilinearmapsprovide a generalisationof the functionality
provided by bilinear maps to κ-degree polynomials. Graded encoding schemes provide a more
expressive functionality, effectively defining a levelled structure indexed by the set [κ]. Effectively,
encodings $a and $b are indexed by subsetsSa, Sb ⊂ [κ]. Then, we can add $a+$b = $cwhere
Sa = Sb, to get an encoding of the value c = a + b indexed by Sc = Sa = Sb. In addition, if
Sa ∪ Sb ⊆ [κ], then we can compute $d = $a · $b to recover an encoding of d = ab indexed by
Sc = Sa ∪ Sb ⊆ [κ].

The final piece of functionality is known as zero-testing and is governed by a public parameter
pzt. We define a function b ← ZeroTest($x) for an encoding $x indexed by [κ], where b = 1

when x = 0, with overwhelming probability.

All known instantiations of graded encoding schemes use additional noise to prevent encoded
values from being reversed [104, 148, 157]. As a result, x admits many different encodings in the
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spaceY , dependent on the noise that is used to construct $x. Additionally, the noise grows as op-
erations are computed. Parameters are typically chosen so that noise growth permits a maximum
of κ− 1multiplications.

The example that we gave above corresponds to an asymmetric GES. In a symmetric GES, encod-
ings are indexed by a value T ∈ [κ] and encodings indexed by T1, T2 can be added if T1 = T2

and multiplied if T1 + T2 ≤ κ. Zero-testing on an encoding is permitted when it is indexed by
the set U = κ. We will use the asymmetric notation when describing the gghGES in the future.
In this notation, recall that we have U = [κ] and T ⊆ [κ]. From now on, we will use [a|T ] to
represent an encoding of awrt T ⊆ [κ].

Definition VII;2.1 [Graded encoding scheme (asymmetric)]

Let κ = poly(λ). We define an asymmetric graded encoding scheme, ges, as the tuple
(Setup,Encode,Add,Mult,ZeroTest). The algorithms are defined as below.

• (msk, pp) ← ges.Setup(1λ, 1κ): For 1λ and multilinearity 1κ; outputs a key pair
(msk, pp) ∈ Kmsk ×Kpp;

• [a|T ] ← ges.Encode(msk, a, T ): For inputsmsk ∈ Kmsk, a ∈ X and T ⊆ [κ];
outputs an encoding [a|T ] ∈ Y ;

• [c+|T ] ← ges.Add(pp, [a|T ], [b|T ]): For inputs pp ∈ Kpp, [a|T ] ∈ Y , [b|T ] ∈
Y and where T ⊆ [κ]; outputs an encoding [c+|T ] ∈ Y ;

• [c×|T ] ← ges.Mult(pp, [a|T1], [b|T2]): For inputs pp ∈ Kpp, [a|T1] ∈ Y ,
[b|T2] ∈ Y and where T = T1 ∪ T2 ⊆ [κ]; outputs an encoding [c×|T ] ∈ Y ;

• b ← ges.ZeroTest(pp, [c|[κ]]): For pp ∈ Kpp and [c|[κ]] ∈ Y ; outputs a bit
b ∈ {0, 1}.
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expκ-mddh
b,A (1λ, 1κ)

1 : (msk, pp)← ges.Setup(1λ, 1κ);

2 : {[ai|1]← ges.Encode(msk, ai ∈ X , 1)}i∈[κ+1];

3 : if b = 0 :

4 : z ← ges.Encode(msk,
κ+1∏
i=1

ai, κ);

5 : elseif b = 1 :

6 : z←$Y;

7 : bA ← A(pp, κ, {[ai|1]}i∈[κ+1], z);

8 : return bA;

Figure VII;2: Experiments for defining the κ-MDDH assumption. We use the symmetric GES representa-
tion for ease of notation, but asymmetric equivalents are also possible.

Definition VII;2.2 [Correctness]

Let κ = poly(λ), then we say that ges satisfies correctness iff the following statements are
true.

Pr

[
b = 1

∣∣∣∣c=0, (msk,pp)←ges.Setup(λ,1κ),
[c|[κ]]←ges.Encode(msk,c,[κ]),
b←ges.ZeroTest(pp,[c|[κ]])

]
> 1− negl(λ); (VII;1)

Pr

[
b = 0

∣∣∣∣c6=0, (msk,pp)←ges.Setup(λ,1κ),
[c|[κ]]←ges.Encode(msk,c,[κ]),
b←ges.ZeroTest(pp,[c|[κ]])

]
> 1− negl(λ); (VII;2)

Pr

b = 1

∣∣∣∣∣∣∣∣∣
a1,...,a`∈X, C∈C, T1,...,T`⊆[κ],

c←C(a1,...,a`), U=C(T1,...,T`)=[κ],
(msk,pp)←ges.Setup(λ,1κ),

[−c|[κ]]←ges.Encode(msk,−c,[κ]),
{[aj |Tj ]←ges.Encode(msk,aj ,Tj)}j∈[`],

[c×|[κ]]←ges.Eval[pp,C,[a1|T1],...,[a`|T`]],
b←ges.ZeroTest(pp,ges.Add(pp,[−c|[κ]],[c×|[κ]]))

 > 1− negl(λ); (VII;3)

We write ges.Eval(pp, C, [a1|T1], . . . , [a`|T`]) to denote the implementation of C over
the underlying encoded values, using ges.Add and ges.Mult.

Finally, for security we use the multilinear decisional diffie-hellman (MDDH) assumption as a
key barometer for assessing the security of a GES. The work of [148] gives the κ-graded DDH as-
sumption, asking for security on intermediate levels as well. We only specify the idealisedMDDH
assumption — but written using GES convention — since this is enough for most applications.
For a specific choice of κ = poly(λ), we write κ-MDDH to refer to the κ-linear decisional diffie-
hellman problem.
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Assumption VII;2.1 [κ-MDDH]

Let κ = poly(λ), and let expκ-mddh
b,A (1λ, 1κ) denote the experiments given in Figure VII;2.

We say that a ges satisfies κ-MDDH security iff:

max
A

(Adv(A, ges(1λ, κ-mddh))) < negl(λ)

whereA is any PPT algorithm.

Intuitively, the κ-MDDHproblem is hard to solve because the adversary only has access to a GES
with κ-linearity. Whereas the output is the multiplication of κ+ 1 values when b = 0.

VII;2.2 The ggh graded encoding scheme

Let φ(X) = Xn + 1 and letR = Z[X]/(φ(X)); we letRq = R/qR be the quotient ring of
R wrt a ‘large’ modulus q ∈ N. Let g←$R× be a ‘small’ invertible element inR. We require
that the ideal 〈g〉 is prime with prime norm. LetX = Rg be the plaintext space, andY = Rq be
the encoding space. We specify the ggh graded encoding scheme in Construction VII;2.1.

Construction VII;2.1 [gghGES]

We provide a description of the asymmetric GES, ggh, designed by [148].

• ggh.Setup(1λ, 1κ): Sample parameters q, n and letR = Z[X]/(XN+1). Sample
{zi}i∈[κ]←$Rq , g←$R×. Sample h←$Rq s.t. ‖h‖2 ≈

√
q. Let pzt = h ·∏κ

i=1 zi · g−1. Output pp = (pzt,R, q, n, κ) andmsk = (pp, g, h, {zi}i∈[κ]).

• ggh.Encode(msk, a ∈ Rg, T ⊆ [κ]): Sample r←$R as a ‘small’ element, let

[a|T ] = (a+ rg)/
∏
i∈T

zi mod q,

and output v = [a|T ].

• ggh.Add(pp, [a|T ], [b|T ]): Output [a|T ] + [b|T ] mod q.

• ggh.Mult(pp, [a|T1], [b|T2]): Output [a|T1] · [a|T2] mod q.

• ggh.ZeroTest(pp, [a|T ]): Letρ = pzt·[a|T ] mod q andoutput1 if‖ρ‖2 < q0.75

and 0 otherwise.
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Parameter settings. For the correctness requirements to follow, it is necessary that encodings
of zero have `2 norms bounded by q0.75. To achieve this, we can take:

• n = Ω(κλ2) (primarily to avoid sub-exponential principle ideal solvers [42]);

• sample each coefficient of g←$R(DZn,σ) s.t. ‖g‖2 = O(n
√
λ) with overwhelming

probability (i.e. a (0, n
√
λ)-bounded discrete Gaussian distribution centred at 0, with

σ =
√
nλ by Lemma II;2.2);

• sample each coefficient of r←$R(DZn,σ′) s.t. ‖r‖2 = O(n2λ)with overwhelming prob-
ability (i.e. a (0, n2λ)-bounded discrete Gaussian centred at 0, with σ′ = σ = n1.5λ);

• each encoded value a ∈ Rg ;

• let q ≥ 28κλ · nO(κ);9

• sample each coefficient of h←$R(DZn,σ′′) s.t. ‖h‖2 = Θ(
√
nq) with overwhelming

probability (i.e. a (0,√nq)-bounded discrete Gaussian centred at 0, with σ′′ = √q).

Let χg = R(DZn,σ), χr = R(DZn,σ′) and χh = R(DZn,σ′′) from now on.

Lemma VII;2.1 [Correctness]

ggh is correct, wrt to the parameter choices made above.

Proof. Firstly, consider:
v ← ggh.Encode(msk, 0, [κ]),

then v = rg/
∏
i∈[κ] zi for r←$χr, g←$χg . Also, pzt = h ·

∏
i∈[κ] zi · g−1, for h←$χh.

Then bv ← ggh.ZeroTest(pp, v) is the bit output by the zero-testing algorithm. Therefore,
pzt · v = rh and ‖r‖2 ≤ n2λ and ‖h‖2 ≤

√
nq whp. As such, ‖rh‖2 ≤ n2.5√q; and since

q > nO(κ), then clearly we can choose 0.75c > 5, let q = ncκ. In this situation, bv = 1with the
same high probability, and thus zero-testing is correct.

For the second inequality in Equation (VII;2) (and v ← ggh.Encode(msk, a 6= 0, [κ])), note
that t = pzt · v = αg−1h + rh. With overwhelming probability, g−1 is distributed uniformly
inRq and thus we have that ‖t‖2 > q0.75, and thus bv = 0.

9We can omit the factor of 28κλ in the case of obfuscation [256], but it is necessary for re-randomisation purposes
generally.
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For the final inequality in Equation (VII;3), the only difference is that the magnitude of the el-
ements that we consider are raised to the power of κ. Since q depends on κ also, then the same
choice of c ensures that the correctness requirement is met.

Zeroizing attacks. So-called zeroizing attacks, were first given by [189], but have become
a prominent tool in cryptanalysis against all known GES candidates. The implications of these
attacks is that the κ-MDDH problem is solvable in PPT for all of the current candidates.

Firstly we should note that [148, 189] showed that a weak form of the discrete log problem can
be easily computed for GGH encodings. That is, for an encoding [a|T ], then we can find a′ s.t.
a′ mod 〈g〉 = a. While this does not immediately allow us to break the hardness of κ-MDDH,
it allows for breaking other assumptions (such as subgroupmembership and decision linear). Hu
and Jia [189] showed that this vulnerability could be expanded into a full attack on theκ-MDDH
problem, using the presence of lower-level encodings of zero. Therefore, in general settings, we
consider [148] to be insecure.

Zeroizing for IO.The reason that these attacks do not filter down to constructions of IObased
on ggh, is due to the fact that there are no public encodings of zero provided to the adversary.
These restricted GES instantiations were first coined asmultilinear jigsaw puzzles. The only dif-
ferences being that encodings of zero were only plausibly constructed at the top-level of computa-
tion, and that the only computations that are allowed are valid multilinear forms over the encod-
ings. In fact, the idealised security models that IO constructions are proven secure within provide
only this functionality, and nothing more. We describe these abstractions in Section VII;2.3.

VII;2.3 IdealisedMMAPmodels

For proving the security of obfuscators, it has become necessary to abstract the functionality of
multilinear maps and graded encoding schemes. In these models, it is possible to give security
proofs that the candidates are secure (albeit under extra, largely experimental or contrived as-
sumptions). Part of this necessity is that it is not clear what assumption should be satisfied by
the underlying GES. In particular, while the κ-MDDH problem is used as a vital building block
in [14, 222, 223, 224, 225], none of the GES candidates can be shown to provide security in this
setting.

Informally, the idealised models provide the adversary with only oracle access to the GES algo-
rithms. Theoracle performs thenecessary computations and returns randomhandles correspond-
ing to the new encodings that the adversary has access to. A common aspect of the models is that
the adversary wins automatically if it creates a valid encoding of zero indexed by a set that is below
the top-level. This is to mimic the strength of zeroizing attacks [1, 23].
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We provide the description of two models differing only in zero-testing functionality. The first
model, the ideal graded encoding model proposed by [150], returns only a bit corresponding to
whether the encoding encodes zero or not. In reality, the zero-testing algorithm returns an alge-
braic element— and extra computation is needed to determinewhether this outputs corresponds
to an encoding of zero or not. This extra functionality is captured in the weakened graded encod-

ing model, proposed by [240]. The necessity for the weakened model will be made clearer in
Section VII;4.

Henceforth, we will redefine the ges.ZeroTest algorithm as a combination of two separate algo-
rithms ges.ZeroTest′(pp, [a|T ]) and ges.ZeroTest′′(pp, ρ), where

ρ← ges.ZeroTest′(pp, [a|[κ]]); (VII;4)

and
b← ges.ZeroTest′′(pp, ρ). (VII;5)

In particular, ρ is an algebraic element and b is the bit that is output by ges.ZeroTest. That is, we
define the zero-testing algorithm as:

b← ges.ZeroTest′′(pp, ges.ZeroTest′(pp, [a|[κ]])); (VII;6)

where ρ = [a|[κ]] · pzt in the language of ggh.

In the following definitions, we define the oraclesOsetup,OencX ,O+
Y2 ,O×Y2 andOztY ; correspond-

ing to each of the algorithms defined in the tuple ges, respectively. The oracle definitions are given
in Figure VII;3 and Figure VII;4.10

We also provide an alternative zero-testingOzt†Y (Figure VII;4) and post-zero-testing oraclesOp:ztYm
(FigureVII;5) that are used explicitly by theweakenedmodel. Intuitively, the post-zero-testing or-
acle allows the adversary to submitpolynomialsQ evaluatedover the algebraic elementsρ1, . . . , ρm

received from ges.ZeroTest′(pp, [ai|[κ]]). The adversary succeeds if it finds polynomials that are
non-zero in the encoding space Y , and zero in the plaintext spaceX . This specifically targets the
case of ggh, whereX = Rg andY = Rq , indicating that the monomials ofQ(ρ1, . . . , ρm) all
contain a factor of g. This is broadly how [240] construct their annihilation attack, that we will
explain in Section VII;4.

10We do not actually provide the adversary with access to the oracle OencX in the ideal models. This mirrors the
functionality provided by the gghGES.
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Osetup(1λ, 1κ, 1`, {(a1, T1), . . . , (a`, T`)})

1 : pp† ← ges.Setup(1λ, 1κ);

2 : R = {};
3 : for i ∈ [`] :

4 : ci←$ {0, 1}λ;

5 : R[ci] = (ai, Ti, Pi = {});
6 : pp = (pp†, κ, {ci, Ti}i∈[`]);

7 : msk = (R, ({ai, Ti, Pi}i∈[`]), pp
†);

8 : return (pp,msk);

O◦∈{+,×}Y2 (msk, (c1, T1), (c2, T2))

1 : {(ai, Ti, Pi)← R[ci]}i∈{1,2};
2 : if (◦ = +) ∧ ((T1 6= T2) ∨ (T1 6⊆ [κ])) :

3 : return ⊥;

4 : if (◦ = ×) ∧ (T1 ∪ T2 6⊆ [κ]) :

5 : return ⊥;

6 : a = a1 ◦ a2; c←$ {0, 1}λ;

7 : T = [];

8 : if (◦ = +) :

9 : T = T1;

10 : if (◦ = ×) :

11 : T = T1 ∪ T2;

12 : if (a = 0) ∧ ¬(T
?
= [κ]) :

13 : return “adversary wins”;
14 : P ← (a1, a2, ◦);
15 : R[c] = (a, T, P );

16 : return c;

Figure VII;3: left: Ideal GES model setup oracle.
right: Ideal GES model operation oracle for handling additions and multiplications. In
this experiment, if the adversary creates a lower-level encoding of zero, they automatically
win and the model is aborted (line 13). The set P keeps track of the operations that have
been computed on each encoding.

OencX ((a, T ))

1 : if T 6⊆ [κ] :

2 : return ⊥;

3 : c←$ {0, 1}λ;

4 : R[c] = (a, T, {});
5 : return (c, T );

OztY (msk, c)

1 : (a, T, P )← R[c];

2 : if T 6= [κ] :

3 : return ⊥;

4 : if (a = 0) :

5 : return 1;

6 : else :

7 : return 0;

Ozt†Y (pp, c)

1 : (a, T, P )← R[c];

2 : if T 6= [κ] :

3 : return ⊥;

4 : pzt ← pp;

5 : if Z = ∅ :

6 : Z = {}; msk← Z;

7 : γ1(a)← (a, T, P );

8 : cγ ←$ {0, 1}λ;

9 : Z[cγ ] = γ1(a);

10 : if (a = 0) :

11 : return (1, cγ);

12 : else :

13 : return (0, cγ);

Figure VII;4: left: Ideal GES model encoding oracle.
center: Ideal GES model zero-test oracle.
right: Weakened GES model zero-test oracle. The usage of γ1(a) is to present the adver-
sary with a general target for annihilation. This target is dependent on the value of the final
encoding, and the polynomial P evaluated over the underlying encoded values.
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Op:ztYm (pp, (cγ1 , . . . , c
γ
m), Q)

1 : for i ∈ [m] :

2 : γ1
i (a)← Z[cγi ];

3 : if γ1
i (a) = ∅ :

4 : return ⊥;

5 : if (Q ≡ 0 ∈ Y) :

6 : return 0;

7 : elseif (Q({γ1
i (a)}i∈[m]) = 0 ∈ X ) :

8 : return 1;

Figure VII;5: Post-zero-testing oracle.

Definition VII;2.3 [Ideal graded encoding model [150]]

The ideal graded encoding model supplies a PPT algorithmA access to the oracles:

• Osetup(1λ, 1κ, 1`): Figure VII;3[left];

• O◦∈{+,×}Y2 (c1, c2): Figure VII;3[right];

• OztY (c): Figure VII;4[center].

We do not provide access to the oracleOencX .

Definition VII;2.4 [Weakened graded encoding model [240]]

The weakened graded encoding model supplies a PPT algorithmA access to the oracles:

• Osetup(1λ, 1κ, 1`, {(a1, T1), . . . , (a`, T`)}): Figure VII;3[left];

• O◦∈{+,×}Y2 (c1, c2): Figure VII;3[right];

• Ozt†Y (c): Figure VII;4[right];

• Op:ztYm (pp, {cγi }i∈[m], Q): Figure VII;5.

We do not provide access to the oracleOencX .

We should take some time to describe the use of γ1(a) in the oracles above. Concretely, when
considering annihilation attacks, there are linear polynomials in some formal variables that have
known coefficients. These polynomials are the target of annihilation attacks for all GES candi-
dates, an example can be seen later in Equation (VII;10). The form of γ1(a) can be derived from
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the underlying encoded values and the polynomial that is used to construct the encoding, thus
γ1(a) can be derived explicitly from the set (a, T, P ), where P lists the underlying encoded val-
ues and operations, used to construct the encoding of a. Notice that A also knows P since it
queries the operations itself.

We intentionally keep the description of the ideal models that we use generic, so that they may
apply to differentGES instantiations. It would undoubtedly be easier to derive thesemodels from
the specific instantiation of the gghGES. The works of [30, 153, 235, 240] derive different ideal
models depending on theGES candidate that is used. Fortunately, all themodels canbe reduced to
a simplifiedmodelwhere the adversary simply has to specify a polynomialQ of the formdescribed
in Figure VII;5. Therefore, using the generalised model is applicable.

VII;2.4 Matrix branching programs

Let q, κ, `in, η = poly(λ) be parameters dependent on the security parameter λ, and letw ∈ Z.
Let inp : [κ] 7→ [`in]η be an ‘input’ function. Let {M l,b1,...,bη} be a set of matrices individually
sampled from Zw×wq , for b1, . . . , bη ∈ {0, 1} and l ∈ [κ]. Letm0 ∈ Zwq ,mκ+1 ∈ Zwq be two
vectors, these are known as ‘bookends’ and are used for guaranteeing a single element output.
Define

M := (κ, `in, η, w, inp, {M l,b1,...,bη}b1,...,bη∈{0,1},
l∈[κ]

,m0,mκ+1), (VII;7)

to be a matrix branching program (MBP) of length L, input length `in, width w and arity η.11

We can evaluate M on inputs x ∈ {0, 1}`in where xs = x[s] and we denote the output of
such an evaluation by M(x) ∈ {0, 1}. Let xinp(l) = (x1

inp(l)[1], . . . , x
η
inp(l)[η]) where x =

(x1, . . . , xη) ∈ {0, 1}η`in is a vector of η specified inputs, we evaluate the branching program on
input x by computing:

M(x) := mT
0 ·

(
κ∏
l=1

M l,xinp(l)

)
·mκ+1. (VII;8)

The input function inp chooses the bits in the input x that are examined at each layer l of the
branching program. Clearly |inp(i)| = rwhere inp(i)[y] is equal to the yth component of inp(i).
In total, we have that the branching program contains 2ηκmatrices and 2 bookend vectors.

Using Barrington’s theoremwe can associate a circuitC with a branching programMC . This the-
orem is commonly used in the construction of IO candidates. The branching program (without
bookend vectors) evaluates to the identity matrix on an input x if and only if C(x) = 0. The
bookend vectors make it possible to structure a branching program MC such that M(x) = 0

when C(x) = 0 (e.g. see [12, 23, 27, 66, 239, 240, 253, 256]). We do not need to consider the

11We typically use w = 5 for the dimension of the matrices/vectors as this is sufficient for Barrington’s theo-
rem [29].
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specifics of this transformation and sowewill just formalise branching programs explicitly assum-
ing that this can be done.

Definition VII;2.5 [Input function]

Let `in, κ, η = poly(λ) andw ∈ Z. We say that inp : [κ]w 7→ [`in]η is an η-input function
if it maps all values in [κ]w to indices in [`in]w.

Construction VII;2.2 [Matrix branching program]

Let r, w = poly(λ) and let inp : [κ]η 7→ [`in]η be anη-input function (DefinitionVII;2.5).
Then aw-width, η-input branching programM, is a set denoted by

M := (κ, `in, η, w, inp, {M l,b1,...,bη}b1,...,bη∈{0,1},
l∈[κ]

,m0,mκ+1);

where κ is the ‘depth’ ofM;M l,b1,...,bη ∈ Zw×wq are square matrices of dimensionw and
m0,mκ+1 ∈ Zwq arew-dimensional vectors.
We writeM(x1, . . . , xη), for xi ∈ {0, 1}`in and i ∈ [η], to denote the evaluation

M(x1, . . . , xη) = mT
0 ·

(
κ∏
i=1

M l,x1
inp(l)[1]

,...,xη
inp(l)[η]

)
·mκ+1.

This is the evaluation of the branching program.

Lemma VII;2.2 [Barrington’s theorem [29]]

Let C ∈ CNC1 , let b = (b1, . . . , bη) ∈ {0, 1}η and let x = (x1, . . . , xη) ∈ {0, 1}η`in .
Let inp : [κ] 7→ [`in]η be an input function. Then there exists an efficiently computable
matrix branching program

M = (κ, `in, η, 5, inp, {M l,b}l∈[κ],b∈{0,1}η ,m0,mκ+1)

whereM l,b ∈ Z5×5
q ,m0,mκ+1 ∈ Z5

q ; and s.t. M(x) = 0 iff C(x) = 0; otherwise
M(x) 6= 0.

If η = 1 then we say that M is a single-input branching program, and likewise dual if η = 2.
There are no IO obfuscators requiring η > 2, so we will ignore branching programs that use
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such values in the future. Wemay omit mention ofw in the future since it is fixed by Barrington’s
theorem.

Remark VII;2.1. We say that M is a read-(bκ/`inc) branching program if each bit of x is read

κ/`out times. We assume that inp(i) = i mod `in, i.e. that the input is read sequentially, and that

κ = 0 mod `in. Such a branching program is known as ‘oblivious’. There are generic techniques

for rewriting branching programs such that they satisfy these properties [87, 234]. In fact, and as

noted by [234], the case of read-once single-input branching programs are considered a degenerate

case for the attacks that we later describe. Therefore, we require that κ = c`in where c > 1 is an

integer.

Finally, we explicitly the define the property of functional equivalence for branching programs.

Definition VII;2.6 [Functional equivalence]

We say that two branching programs,M andM′, are functionally equivalent if, for all valid
inputs x ∈ {0, 1}η`in , then:

Pr
[
M′(x) = 0

∣∣M(x) = 0
]

= 1.

VII;2.5 Abstract obfuscators

In order to capture a broad class of obfuscators, we use an abstract obfuscator that mimics the
functionality provided byBGK-type [240] obfuscators. In short, BGK-type obfuscators are those
of [12, 23, 27, 66, 239, 253]. We only consider these obfuscators, since this set will be the focus of
our security analysis in Section VII;6. It is also the same set of obfuscators considered by [240].
The abstract model was first alluded to in [101] and expanded in [15, 240, 256]. The abstract
model concretely describes the functionality provided by [12, 23, 239] and can be augmented
easily to describe [27, 66, 253].

For a circuitC , letM = (κ, `in, η, w, {M l,b}b∈{0,1},l∈[κ],m0,mκ+1) be the corresponding η-
input branching program obtained from Barrington’s theorem (Lemma VII;2.2). Let ges be the
ggh graded encoding scheme given in Construction VII;2.1. We describe our abstract obfuscator
in Construction VII;2.3, based on the obfuscators of [240, 256].
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Construction VII;2.3 [Abstract obfuscator]

LetM and ges be defined, as above; let b = (b1, . . . , bη) ∈ {0, 1}η . Our abstract obfusca-
tion model uses the following steps.

1. Let (msk, pp)← ges.Setup(1λ, 1κ+2).

2. Embed the matrices {M l,b}b∈{0,1}η ,
l∈[κ]

into the ringRg .

3. Sample κ+ 1 invertible matrices {K l}l∈[κ+1]←$Rg .

4. Let M̂ l,b = K lM l,bK
−1
l+1, m̂0 = m0K

−1
1 , m̂κ+1 = Kκ+1mκ+1; this process

is known asKilian randomisation.

5. Sample αl,b←$R×g and compute M̂ l,b = αl,b · M̂ l,b; also sample α0, ακ+1 and
compute m̂0 = α0m̂0, m̂κ+1 = ακ+1m̂κ+1. These are known as multiplicative
bundling scalars. We let M̂ be the branching program containing matrices M̂ l,xinp(l)

and vectors m̂0, m̂κ+1.

6. Let U , be some index set and let T ← partition(U , κ, η). Here, partition(U , κ, η)

is the algorithm that generates the set

T = {{Tl,b}l∈[κ],b∈{0,1}t , T0, Tκ+1};

s.t. {{Tl,xinp(l)
}l∈[κ], T0, Tκ+1} is a partition of U for each x ∈ {0, 1}η`in . This is a

straddling sets partition.

7. Let:

M̃ = (κ, `in, η, inp, {M̃ l,b}l∈[κ]
b∈{0,1}η

, m̃0, m̃κ+1)← M̂.Encode(1λ, 1κ, ges, T );

where M̂.Encode(1λ, 1κ, ges, T ) is described in Figure VII;6.

8. EvaluateC(x), for x ∈ {0, 1}η`in by computing:

M̃(x) = m̃0
T

(
κ∏
l=1

M̃ l,xinp(l)

)
m̃κ+1,

and settingC(x) = 1− bwhere b← ges.ZeroTest(pp, M̃(x)).

Unless we state otherwise, we will assume obfuscation of single-input programs as standard when
considering cryptanalysis. For the case of annihilation attacks, dual-input programs tend not to
prevent cryptanalysis [240] (unless thebranchingprogram is required tobe input-partitioning [87]).
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M.Encode(1λ, 1κ, 1η, ges,msk, T0, Tκ+1, {Tl,b}l∈[[κ]],b∈{0,1}η)

1 : M̃ l,b ← ges.Encode(msk,M l,b, Tl,b);

2 : m̃0 ← ges.Encode(msk,m0, T0);

3 : m̃κ+1 ← ges.Encode(msk,mκ+1, Tκ+1);

4 : M̂ = (κ, `in,M.η,M.w,M.inp, {M̃ l,b}l∈[κ],b∈{0,1}η , m̃0, m̃κ+1);

Figure VII;6: Procedure for encoding a branching program using a GES. We slightly abuse notation, and
note that running ges.Encode for a vector or matrix corresponds to running the algorithm
for each individual entry.

From now on, for a branching programM, we will write M̃ ← io(1λ, 1κ, 1η,M, T , ges) to de-
note the obfuscation ofM using the abstract construction above. We may omit the parameters
λ, κ, η, w as inputs if they are obvious from context (and since they are implied by the instantia-
tions of ges,M, T ).

Correctness of evaluation. We can prove that the obfuscated program satisfies the func-
tionality property of Definition VII;1.1.

Lemma VII;2.3 [Functionality]

Construction VII;2.3 satisfies the functionality requirement of Definition VII;1.1.

Proof. Recall thatC(x) = 1− b, where

b← ges.ZeroTest(pp, M̃(x)).

Note that

M̃(x) = m̃0

(
κ∏
i=1

M̃ l,xinp(l)

)
m̃κ+1;

=

[
m̂0

T

(
κ∏
i=1

M̂ l,xinp(l)

)
m̂κ+1

∣∣∣∣∣U
]

;

=

[
mT

0 ·

(
κ∏
i=1

M l,xinp(l)

)
·mκ+1

∣∣∣∣∣U
]
(by Kilian randomisation);

= [0 | U ] iffC(x) = 0.

where xinp(l) = (x1
inp(l), . . . , x

η
inp(l)) and U = [κ]. Therefore, zero-testing and inverting the bit

will provide the correct outcome whp.
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Adaptingmodel for all BGK-type obfuscators.Our abstract model concretely includes
the obfuscators of [12, 23, 239]. To include the other obfuscators that we have mentioned previ-
ously, it is possible to introduce small changes to our model based on the analysis of [240, 256].

• [27]: This obfuscator comes with an additional (possibly non-zero) value qacc. Now, the
definition is modified s.t. C(x) = 0 for an input x ∈ {0, 1}η`in iffM(x) = qacc; rather
than 0 as in Lemma VII;2.2. Therefore, the scalars αl,b might change the value of the out-
put. Fortunately, it was shown by [240, 256] that this change can be incorporated into the
above model with little cost.

• [66]: This obfuscator is similar to the [27] design and fits into the model [240]. It should
be noted that it does not use a straddling sets partitioning function, and thus can be instan-
tiated using a symmetric GES.

• [253]: This obfuscator uses matrices of the form:

M l,b 7→

(
M l,b

I

)

for some appropriately-sized identitymatrixI . However, this property does not change the
semantics of the multiplication or the output of the branching program wrt to the circuit
evaluationC(x). Therefore, this construction also fits inside of our model [240, 256].

Non-BGK-type obfuscators. We also describe the differences between our abstract model,
and the obfuscators of [150, 153] that are considered not to be part of the model. Similarly to
the [253] obfuscator, they use branching programs with extra matrices embedded in the bottom-
right quadrant. That is, the individual matrices take the form:

M l,b 7→

(
M l,b

Ll,b

)

where Ll,b is a random square matrix of dimension s. To get the correct output, the bookend
vectors are then chosen to be of the form:

m0 = (a0
1, . . . , a

0
5, 0, . . . , 0︸ ︷︷ ︸

s/2

, $, . . . , $︸ ︷︷ ︸
s/2

), mκ+1 = (aκ+1
1 , . . . , aκ+1

5 , $, . . . , $︸ ︷︷ ︸
s/2

, 0, . . . , 0︸ ︷︷ ︸
s/2

);

so that the random elements cancel out in the evaluation.12 We show later that the inclusion of
these random matrices makes it plausibly more difficult to launch an annihilation attack in Sec-
tion VII;6 on ggh-like schemes. This was already noted by [240] for the specific ggh scheme.

12The [150] obfuscator also uses a dummy branching program for subtracting from the standard evaluation for
learning the final result.
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Security in idealised model. To derive security, candidate obfuscators implement the GES
operations that are required using the oracles that are defined in the idealised models of Defini-
tions VII;2.3 and VII;2.4.

In particular, in the idealised models, the insecurities of the graded encoding schemes are ab-
stracted away. This makes formulating security proofs easier [27, 153], but ignores the possibility
of cryptanalysis against actual instantiations of the GES. The works of [27, 153] formulate as-
sumptions that are plausible in the idealised and weakened graded encoding models respectively.

Garg et al. [153] introduced the branching program unannihilatability assumption (BPUA). In
the weakened graded encoding model, this states that it is computationally difficult for the adver-
sary to launch annihilation attacks on algebraic elements that are recovered from arbitrary branch-
ing program evaluations for the [153] obfuscator. They show that the assumption is implied by
the existence of PRFs that can be evaluated by circuits in CNC1 . But, the constructions are still
vulnerable to attacks that exploit insecurities of ggh rather than the ideal model [256].

Straddling sets. A common feature of the algorithm partition(U , κ, η) is to output a set of
level sets

T = {T0, Tκ+1, {Tl,b}l∈[κ],b∈{0,1}η}

s.t. for any input x ∈ {0, 1}η`in , then

U = T0 ∪

(
κ⋃
l=1

Tl,xinp(l)

)
∪ Tκ+1.

While the straddling sets requirement is more nuanced, we do not need to explicitly define it here.
We only require the knowledge that we need to sample a new zl,b in ggh for each Tl,b. The
creationof the explicit partitionT is handledby the algorithmpartition(U , κ, η) thatwas defined
previously.

Objectives for our abstraction. As with previous works, we will use this abstracted ver-
sion of an obfuscator for demonstrating plausible attacks against graded encoding schemes. We
will also give a brief overview of attacks against the ggh GES using this model in Section VII;4,
this will provide a warm-up to the later sections.

VII;2.6 Annihilating polynomials

Here, we list definitions and key results taken from the work of Kayal [202] that are crucial to our
security analysis. In short, we articulate the formalisation of expressing algebraic dependencies for
a set of polynomials sampled from a particular field.
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Definition VII;2.7 [Annihilating polynomial [202]]

Let f = (f1, . . . , fk) be a vector of k polynomials of degree ≤ d, where each fi ∈
F[y1, . . . , yn] is an n-variate polynomial over F. A non-zero polynomialA(f1, . . . , fk) ∈
F[y1, . . . , yn] is said to be an annihilating polynomial for f if A(f1, . . . , fk) = 0. The
polynomials f1, . . . , fk are said to be algebraically dependent if such an annihilating poly-
nomial exists, otherwise they are algebraically independent.

Definition VII;2.8 [Algebraic rank]

Let f = (f1, . . . , fk) be a vector of k polynomials as above, where f ′ ⊆ f is a subset of
algebraically independent polynomials ofmaximal size k′. That is for any f /∈ (f1, . . . , fk)

but where f ∈ F[y1, . . . , yn], then the set f ′ ∪ fk+1 is algebraically dependent. Then the
algebraic rank of f is equal to k′.

Lemma VII;2.4 [Existence (Lemma 4 [202])]

Over any field, and for any set of polynomials in n variables, the algebraic rank of this set is
at most n. That is, any set of n + 1 polynomials with coefficients taken from this field are
algebraically dependent.

Lemma VII;2.5 [Theorem 2 [202]]

Let f1, . . . , fk ∈ F[x1, . . . , xn] be a set of k polynomials in n variables over the field F.
Then this set of polynomials has algebraic rank k if and only if the Jacobianmatrix,Jf(x),
taken from f1, . . . , fk, has rank k.

Corollary VII;2.1 [Detecting dependencies [31, 202]]

There exists a PPT algorithm that on input a set of k arithmetic circuits over a fieldF, deter-
mines if the polynomials computed by these arithmetic circuits are algebraically dependent
or not.

Remark VII;2.2. The algorithm mentioned by Corollary VII;2.1 essentially requires submitting

random values in place of the variables in the Jacobian matrix Jf(x). By the Schwarz-Zippel

lemma (Lemma II;2.1), the rank of the symbolic matrix is likely to be the same as the rank of the

matrix evaluated on random inputs with high probability.
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VII;3 New game-based cryptanalytic models

Using the abstracted interface from SectionVII;2.3, we develop a novel set of game-based security
definitions for analysing the security of IO candidates. The purpose with these definitions is to
work with a more concise description of security, allowing the adversary greater access to the un-
derlyingGES. In particular, we do not provide access to physical branching program that has been
obfuscated. Instead, we only provide oracle access to the program, in the sense that the adversary
sends inputs x and the obfuscators evaluates the program and returns the result.

In contrast, the encodings that the adversary receives are explicitly taken from the GES that we
use. This means that the adversary explicitly receives algebraic elements resulting from after zero-
testing the output of a program. In the previous models, the adversary only receives handles that
correspond to such evaluations. Our technique allows us to unify the different idealised models
into one security consideration, depending on the GES and IO candidates that are used.

Our newmodels.We present two security models in this section. The first (IND-BP) serves as
a warm-up to the second (IND-OBF). We use the IND-OBF game as an alternative method for
analysing the security of IO candidates associated with a GES instantiation. We later demonstrate
attacks against the gghwoi GES (Section VII;5) in both of the models, when instantiating the
abstract obfuscator from Construction VII;2.3. The use of IND-BP is a weaker model that is
not necessarily realistic for achieving meaningful security. More importantly, it helps to unify the
annihilation attack methods, which can then be adapted for the stronger IND-OBF model. To
justify that ourmodel is sufficientwe show thatConstructionVII;2.3 is also insecure in IND-OBF,
when instantiated with ggh, via an equivalence relation.

VII;3.1 IND-BP

The IND-BP (INDBPges
κ,η) Security requirement intuitively asks an adversary A to submit two

functionally equivalent branching programsM0 andM1 (length κ, arity η) to a challenger. The
challenger samples a bit b←$ {0, 1} and computes

M̂←Mb.Encode(1
λ, 1κ, ges, T )

for T ← partition(U , κ, η).

The adversary is then given oracle access to the encoded branching program; receiving zero-tested
outputs from it. We define this oracle formally in Figure VII;7[right]. The zero-tested outputs
are specifically algebraic elements ρ← ges.ZeroTest′(pp, M̂(x)). The adversary asksm queries
and learns ρ1, . . . , ρm, along with (b1, . . . , bm)← ges.ZeroTest′′(pp, {ρi}i∈[m]).
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expindbpb,A (1λ, 1κ, 1η, ges)

1 : κ, η,M0,M1 ← A(1λ);

2 : (msk, pp)← ges.Setup(1λ, 1κ);

3 : U ←$ {0, 1}λ;

4 : T ← partition(U , κ, η);

5 : M̂b ←Mb.Encode(1
λ, 1κ, 1η, ges,msk, T );

6 : bA ← AO(M̂b(·))(1λ, pp);

7 : return bA;

O(M̂(x))

1 : z ← M̂(x);

2 : ρ← ges.ZeroTest′(pp, z);

3 : bz ← ges.ZeroTest′′(pp, ρ);

4 : return (bz, ρ);

Figure VII;7: left: Experiments for analysing the security of an encoded branching programwrt IND-BP.
right: Oracle for evaluating inputs x ∈ {0, 1}η`in during expindbpb,A (1λ, 1κ, 1η, ges). We
writeO

M̂(x)
.

At this point the adversary can apply any generic technique to try and distinguish the two branch-
ing programs. For instance, they can compute a polynomialQ s.t. Q(ρ1, . . . , ρm) 6= 0 mod Y
andQ(ρ1, . . . , ρm) ≡ 0 mod X . This would be equivalent to winning in the weakenedmodel.
Thenbased on the result of this computation, they submit bA to the challenger andwin if bA = b.
The similarities with the weakened graded encoding model are clear, though we allowA greater
freedom.

Let expindbpb,A (1λ, 1κ, 1η, ges) be the decisional experiment where A attempts to succeed in the
game above, anddefine it as inFigureVII;7[left]. Wegive a formalisationof the IND-BP security
requirement in Definition VII;3.1.

Definition VII;3.1 [INDBPges
κ,η]

We say that a graded encoding scheme ges satisfies INDBPges
κ,η security, if:

max
A

(Adv(A, ges(1λ, indbp))) < negl(λ)

where A is any PPT algorithm. We may also write that ges satisfies IND-BP security, for
short.
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expindobfb,A (1λ, 1κ, 1η, ges, io)

1 : κ, η,M0,M1 ← A(1λ);

2 : (msk, pp)← ges.Setup(1λ, 1κ);

3 : U ←$ {0, 1}λ;

4 : T ← partition(U , κ, η);

5 : M̃b ← io(Mb, ges,msk, T );

6 : bA ← AO(M̃b(·))(1λ, pp);

7 : return bA;

Figure VII;8: Decisional experiment for analysing the security of an obfuscated branching program wrt
IND-OBF. The oracleO(M̃(·)) is the same as in Figure VII;7.

VII;3.2 IND-OBF

Let (ges, io) be a valid pairing of a GES with an IO candidate.13 The IND-OBF security model
differs only from IND-BP only in that:

Mb.Encode(1
λ, 1κ, 1η, ges,msk, T ) 7−→ io(Mb, ges,msk, T ),

in line 6 (FigureVII;3.1[left]). Intuitively, thismeans thatwe alsouse extra randomisationmech-
anisms that are delivered in Construction VII;2.3. The result is a weaker security guarantee, since
the adversary must also account for the randomisations when computing the polynomialQ. We
redefine the experiment in FigureVII;8 for completeness, butO(M̃(·)) stays the same. Wedenote
the new decisional experiment by expindobfb,A (1λ, 1κ, 1η, ges, io).

We write INDOBFges,ioκ,η to make the parameter settings of IND-OBF explicit.

Definition VII;3.2 [INDOBFges,ioκ,η ]

We say that a pair (ges, io) satisfies INDOBFges,ioκ,η security, if:

max
A

(Adv(A, ges(1λ, indobf))) < negl(λ)

whereA is any PPT algorithm. Wemay also write that (ges, io) satisfies IND-OBF security.

Comparisonswith idealised securitymodels. It is clear that IND-OBF places a stronger
security requirement on the pair (ges, io) than in Definition VII;2.3. Notice that the adversary
receives the algebraic outputs of ges.ZeroTest′(·) in IND-OBFbut only the binary result of zero-
testing in the ideal graded encoding model. For the weakened model (Definition VII;2.4) the

13By valid, we simply mean that functionality is satisfied when instantiating iowith ges.
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definitions seem much closer and it is not obvious whether the differences result in a separation.
We show in Section VII;4 that the attacks of [240] can be carried out in either model, and so
IND-OBF is sufficient for our cryptanalysis.

VII;4 Annihilation attacks against ggh

We give a brief overview of the annihilation attacks that break the abstract obfuscator from Con-
structionVII;2.3, when instantiated using thegghGES in theweakened graded encodingmodel.
We first show that the attacks are possible in the weakened graded model (Definition VII;2.4) —
demonstrating the result of [240] — before showing that these attacks translate naturally to the
IND-OBF model.

VII;4.1 Intuition

Letρ = [0|U ]be a top-level zero-tested encoding acquired from thegghGES.Letabe the vector
of plaintexts (a1, . . . , am) ∈ Rmg , and r = (r1, . . . , rm) ∈ R be the independent randomness
that is used in creating the set of encodings v1, . . . , vm, that are used to construct ρ. We write
Pv∗ to denote the polynomial that is evaluated over (v1, . . . , vm) to give v∗ = ρ · p−1

zt . Then we
know that ρ takes the form:

ρ = γ1(a, r) + γ2(a, r)g + . . .+ γκ(a, r)gκ−1; (VII;9)

since zero-testing removes a factor of g, the denominators zi, and the value of the encoding is
Pv∗(a1, . . . , am) = 0. We omit mention of the parameter h since the presence of this element
does not change anything about our analysis.

Importantly, γ1(a, r) is a polynomial that is linear in the variables taken from r. The attack
scenario assumes that the adversary knowsa, but r remains hidden since these are sampled obliv-
iously for each encoding. The fact that γ1 is linear in these variables, means that γ1 is a κ-variate
polynomial. In addition, letM > κ and consider polynomials P 1

v∗ , . . . , P
M
v∗ s.t. P iv∗(a) = 0

for all i ∈ [M ]. Then, by Lemma VII;2.4, an annihilating polynomial would exist for the set
(γ1

1 , . . . , γ
1
M ) ∈ Rg , and this set has maximum algebraic rank equal to κ.

Let Q be an annihilating polynomial for (γ1
1 , . . . , γ

1
M ). Then Q(ρ1, . . . , ρM ) ≡ 0 mod 〈g〉,

since Q(γ1
1 , . . . , γ

1
M ) ≡ 0 mod 〈g〉 and because all the other monomials contain factors of g.

Moreover, whp under the Schwarz-Zippel lemma (Lemma II;2.1),Q(ρ1, . . . , ρM ) 6= 0 mod q.
This is the basis of the attacks of [15, 87, 240].
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Expanding the attacks to IO candidates. There are some problems that prevent us from
immediately destroying the security of IO candidates based onggh. These problems can be sum-
marised as the following.

• Is it possible to createM > m top-level encodings of zero?

• How do we learn 〈g〉?

• Can the polynomialQ be represented by a circuit that is evaluated in polynomial-time?

• Can the attack be adapted to include randomness that is introduced during obfuscation?

To take care of this analysis [240] consider a weaker obfuscation model where branching pro-
grams are obfuscated rather than circuits (via Barrington’s theorem).14 This significantly reduces
the complexity of the obfuscated circuits. In this setting, Miles et al. [240] show that for single-
input branching programs, a concrete instantiation ofQ exists for the abstract obfuscator defined
previously. They use degenerate branching programs that output 0 on every input, although this
still constitutes a valid break. We detail the format of these attacks in the next section.

For the dual-input case, they show that an efficiently computable annihilating polynomialQ ex-
ists, though they do not give a concrete instantiation. The work of [15] extends the attacks to
branching programs obtained via Barrington’s theorem (and thus to circuits in CNC1). We do not
give a detailed analysis of these extensions since the methods that are used are very similar to the
original single-input case.

It should be reinforced that all the attacks require a heuristic step, where a basis of the ideal 〈g〉 is
created. This heuristic step is essential and requires finding tM zero-tested encoding of zero, of
the form laid out above. Then computing Q for t sets of sizeM should allow for computing a
spanning set of vectors for 〈g〉with non-negligible probability (in the choice of t ∈ Z). A similar
heuristic analysis was used in the work of [101]. The resulting spanning set can be used to mimic
the step of checking whetherQ(ρ†1, . . . , ρ

†
m) ≡ 0 mod 〈g〉 for some test vector (ρ†1, . . . , ρ

†
M ).

Indeed this analysis is possible, even with the additional randomness injected via the obfuscation
techniques.

VII;4.2 Annihilation attacks on Construction VII;2.3 over ggh

We analyse security in the weakened graded encodingmodel, let M̃← io(M, T , ges = ggh) for
a branching programM of width 5 and arity 1. Firstly, notice that the encoded matrices received
can be written as

M̃ l,b = M̂ l,b + gRl,b

14We also consider this setting.
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for each (l, b) in the branching program M̃, and similarly for the vectors m̃0, m̃κ+1. We ignore
the denominators of the encodings since these are completely removed after zero-testing. By a
change of variables on the matricesRl,b, it is then possible to write

M̃ l,b = αl,bK l(M l,b + gRl,b)K
−1
l+1

for invertible matricesK l ∈ R5×5
g , and scalars αl,b ∈ Rg .

Evaluating the branching program gives:

M̃(x) = γ1(a, r) + γ2(a, r)g + . . .+ γκ+2(a, r)gκ+1

and, specifically

γ1(a, r) =
κ+1∏
i=0

αi,bM0

(
κ+1∑
l=0

. . .M l−1,xinp(l−1)
Rl,xinp(l)M l+1,xinp(l+1)

. . .

)
Mκ+1.

(VII;10)
We are abusing notation here so that

α0,xinp(0) = α0, ακ+1,xinp(κ+1)
= ακ+1,

and
m0 = M0, mκ+1 = Mκ+1.

Recall that inp(i) = i mod `in. The idea behind the attack of [240] is to use functionally equiv-
alent branching programs M0 and M1, where M0 consists of all identity matrices. Then M1

comprises all identity matrices on the b = 0 branch, and on the b = 1 branch there is a set of
indices S s.t., for (i mod `in) ∈ S, thenM i,1 6= I andM−1

i,1 = M i,1 (i.e. the matrices are
self-inverse). For example, take the matrices with 1’s on the anti-diagonal and 0’s elsewhere.

We define `in and κ s.t. N · `in = κ for N ∈ 2N. Additionally, if i ∈ S and i < `in, then
we require that u`in + i ∈ S for all u ∈ [N − 1]. Finally, we setM i,1 = M to be the same
self-inverse matrix for all i ∈ S. Since inp(l) = l mod `in, then these matrices cancel on any
evaluation where (l, b) ∈ S × {1}. To see this, note that if (l, b) ∈ S × {1}, then there is a set
(l, l+ `in, l+2`in, . . . , l+(N −1)`in) of indices corresponding to non-identitymatrices. Since
N is even, then these matrices will all be in the final product of the evaluation and will cancel out,
since they are self-inverse. As a result, both branching programs evaluate to 0 on all inputs.
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Now, reconsider the form of the polynomial γ1 in Equation (VII;10) for an input x, where ∃
(j, xinp(j)) ∈ S × {1}. ForM0, this will evaluate to

κ+1∏
i=0

αi,bM0

(
κ+1∑
l=0

Rl,xinp(l)

)
Mκ+1;

but forM1, it will evaluate to:

κ+1∏
i=0

αi,bM0

(
κ+1∑
l=0

. . .M l−1,xinp(l−1)
Rl,xinp(l)M l+1,xinp(l+1)

. . .

)
Mκ+1.

When l ∈ S, then this product no longer simplifies toRl,xinp(l) . There are now an odd number
of matrices corresponding to the setS, and so this product is approximately equal toMRl,xinp(l)

orRl,xinp(l)M . This discrepancy allows the possibility of the distinguishing the two branching
programs. In essence, by finding an annihilating polynomialQ that does not recover an element
in 〈g〉 in the second case.

The attack in theweakened model. Assume that the adversary has knowledge of an anni-
hilating polynomial for branching program evaluations consisting only of identity matrices (for
example any input to M0), and denote this by Q∗. We should also state that this polynomial
does not annihilate in the case where non-identity matrices are included in the product. Re-
call a valid annihilating polynomial for ggh, is one s.t. for {ρj ← M̃(xj) · pzt}j∈[M ]; then
Q∗({ρj}j∈[M ]) ∈ 〈g〉. Let the set S considered above be s.t. |S| = M ∈ N— in [240] the
attack works withM = 3. The attack against Construction VII;2.3 now proceeds as follows.

• Submit (M0,M1) to the challenger in the weakened graded encoding model.

• Receive M̃c ← io(Mc, ges, T ), for T ← partition(U , κ, 1) and c←$ {0, 1}.

• For j ∈ [tM ], where t = poly(λ) andM ∈ Z: let xj ∈ `in be s.t. (l, xjinp(l)) ∈ S × {0}
for all l ∈ [κ], and compute ρj ← M̃(xj) · pzt using oracle access to the GES operations
in Definition VII;2.4.

• For i ∈ [t]: evaluate δi ← Q∗({ρi·ι}ι∈[M ]).

• Heuristically create a basis ∆g of the ideal 〈g〉 using {δi}i∈[t]. This step is possible, if t is
chosen large enough, since each δi consists of monomials that all contain a factor of g (by
the choice ofQ∗).

• Let {x†,j}j∈[M ] be inputs s.t. ∃ (l, x†,jinp(l)) ∈ S×{1}. Let {ρ
†,j ← M̃(x†,j) ·pzt}j∈[M ].

• Compute δ† ← Q∗({ρ†,j}).
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• Finally test if δ†
?
∈ 〈g〉 using ∆g . If so: output b = 0, else: output b = 1 (whereMb is

obfuscated).

It was shown by [240] (for a slightly less general case) that this attack is polynomial-time using a
concrete choice ofQ∗— allowing for the heuristic step. The works of [15, 87] both give similar
attacks that equally use the heuristic step and implicit knowledge ofQ∗.

Expanding to dual-input case. The choice of Q∗ does not extend to the dual-input case,
but [240] shows that finding a new valid choice is computationally feasible. Thus, there exists a
choice ofQ∗ that can be computed by a polynomial-time circuit in the dual-input case, and the
attack proceeds as before.

VII;4.3 Adapting the attacks to IND-OBF

Our first contribution is to show that the attack above applies in the IND-OBF security model
(Definition VII;3.2). This merely shows us that our model is sufficient for capturing the weak-
nesses of ggh, but also justifies using this model in our later analysis. Our analysis shows that any
adversary that finds a satisfying annihilating polynomialQ∗ in the weakened model, also finds a
satisfying polynomial in IND-OBF.

Lemma VII;4.1 [Sufficiency of IND-OBF]

Let A be an adversary that carries out the attack in Section VII;4.2 on the obfuscator io
(Construction VII;2.3) instantiated under ges = ggh with non-negligible success prob-
ability. Then there is a PPT adversary A′ that succeeds in INDOBFges,ioκ,η with the same
probability.

Proof. Notice that the attack above only evaluates inputs on the branching programs, and doesn’t
need access to the explicit matrices. In addition, the differences in the γ1 polynomials between the
two programs can be inferred by the original choice ofM0 andM1.

Therefore, we can translate A in the attack above into a winning adversary A′ in IND-OBF by
specifying each input xj as an input query to be used by A′. Then A′ returns the zero-tested
results of the queries toA, who then computes the basis ∆g using the annihilating polynomial
Q∗ that it uses in theweakenedmodel. Finally,A submits the inputqueriesx†,j toA′, and receives

more zero-tested results. It can then check offline that δ†
?
∈ 〈g〉 and returns 0 toA′ if “yes” and 1

toA′ if “no”. ThenA′ wins expindobfb,A′ (1λ, 1κ, 1, ges = ggh, io)with the same probability.

299



VII A Security Analysis of the GGH13 Graded Encoding Scheme Without Ideals

We can then prove equivalence by noting that, in the weakened MMAP model, IND-OBF is at
least as secure as themodel itself. We do not state a specific lemma as the reduction is obvious since
the adversary in themodel can just play the role of the challenger in IND-OBF.Coupling this with
Lemma VII;4.1 shows that the attack strategy in the weakened model is viable in IND-OBF, and
thus IND-OBF is sufficient for considering annihilation attacks.

VII;5 gghwithout ideals

It is necessary to recall the original motivation of the chapter.

Can we introduce a change to ggh to prevent annihilation attacks on BGK-type

obfuscators?

Approaching this question from the direction of modifying the IO candidate has given way to
new candidates that are secure when instantiated using ggh [132, 153] (in the weakened security
model). However, recent attacks have shown that inherent vulnerabilities with the ggh scheme
mean that proof in this model are essentially invalid [90, 256]. Therefore, there is some utility
in, instead, attempting to modify the structure of the gghGES in order to prevent these attacks.
This was attempted by [154], but this work was eventually subsumed into [153].

We will also revisit the hypothesis of Halevi [176].

“The core computational hardness problem for breaking ggh, is to find a represen-
tative of the algebraic ideal 〈g〉 during computation.”

In this section we explore the possibility of either removing the presence of such algebraic ideals
from ggh, or rendering the scheme such that finding any ideals is computationally difficult. We
hope to do thiswithoutmaking the new encodings unrecognisable, in relation to the originalggh
design.

Unfortunately, the presence of g in each encoding is critical to the zero-testing procedure, which
is in turn critical to the GES functionality that is required. Therefore, when replacing g, it is
also necessary to replace the zero-testing mechanism with a different design that makes different
checks.
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VII;5.1 Overview of gghwithout ideals

One may think that it would be possible to change ggh so that different g’s are used in every
encoding or, less extremely, that a new g is used for each level. The resulting encodings would
take the form

aj + rjgj′

zi

where either j′ = j in the former, or j′ = i in the latter; and (i, j, j′) ∈ [κ] × [m] × [m′] for
m′ = m orm′ = κ respectively. Unfortunately, when it comes to zero-testing, either change will
result in incorrect evaluations. The natural way of adapting the zero-testing parameter pzt is to
let

pzt =

∏κ
i=1 zi · h∏m′

j′=1 gj′
;

but if j′ = j, this requires specifying a concrete bound form (either κ orm′) and sampling each
g′j for j ∈ [m]. Moreover, in both cases, this adaptation does not maintain correctness.

For example, the polynomials γι(a, r) (ι ∈ [κ]) will now be also defined over g = (gj′)j′ .
Consequently, each polynomial will contain a strict subset of the variables taken from g, and thus
when multiplying each with

∏m′

j′=1 gj′ , some inverted group elements will be multiplied with
each monomial. Zero-testing correctness no longer holds since the inverse of these elements is
uniform inRq , whp.

Modified encodings and operations. As a result, we need a different strategy when sam-
pling the elements gj′ . Roughly speaking, our solution modifies the sampling of gj so that they
are, very roughly, sampled uniformly from a (0, O( κ

√
q))-bounded distribution and inverted prior

to multiplication with rj .15 Let βj′ = g−1
j′ , then our encodings are are to be defined as:

aj + rj/βj′

zi
mod q.

To avoid the issue of having to boundm′ from above, we set j′ = i,m′ = κ and define βi with
respect to each level set. Operations over encodings are carried out in the same way.

We should further note that theplaintext space is no longerRg . In fact, wehaveno real restrictions
on the plaintext space beyond the restriction that encodings are defined inRq . For the purpose
of our analysis, we will assume that all top-level encoded values are subject to the same bounds as
those implicitly set by χσ . Therefore, we can only encode small elements inR, which is the same
as in ggh.

15The parameter choices are actually far more nuanced and q = Ω(
∏κ
j=1 gj).
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Zero-testing.Wemodify the zero-testing parameter so that it is now composed of the product
pzt =

∏κ
i=1 βizi. Then for a top-level encoding v = (a+ r/βU )/zU where U = [κ], then

ρ = v · pzt = aβU + r

is the result of zero-testing. Our procedure now uses the fact that βT is no longer small and thus
‖ρ‖∞ is close to q when a 6= 0, and is roughly O( κ+1

√
q) smaller when a = 0. For a more

general encoding, we now have that the polynomials γi are multiplied by κ − i variables from
β = (β1, . . . , βκ). Therefore, an encoding of zero has monomials with maximum degree κ− 1

and otherwise also includes a monomial with maximum degree κ. This fact is used to distinguish
the values of encodings.16

We omit the use of the parameter h since the attacks that it seeks to prevent appear no longer
applicable to our scheme.

Resistance of encodings to annihilation attacks. It should be clear that we immedi-
ately prevent unmodified versions of the attacks of [15, 87, 240]. We do not explicitly consider
lattice subfield attacks, since these can be avoided by the particular choice of parameters. In the
case of IO, the most potent attacks of [90] can be avoided by taking λ = poly(κ). The attacks
of [256] appeared subsequent to the publication of thematerial considered in this chapter and so
this has not been considered in our analysis. It’s plausible that the quantum attacks shown there
would also apply in our situation, though these would also need some modification.

Lattice-based cryptanalysis. Our primary focus is on attempting to generate a ggh-like
algebraic structure that allows for the functionality of a GES, while preventing annihilation at-
tacks. As we show later, we demonstrate that the ggh-like structure is inherently flawed in that
even the abovemodifications do not prevent non-trivial variants of the annihilation attacks. Con-
sequently, we do not perform a full cryptanalysis of our scheme wrt state-of-the-art lattice crypt-
analysis. Clearly, if we could successfully describe such an algebraic structure that avoided these
attacks, this analysis would become necessary.

VII;5.2 Actual scheme

Recall that z←$R(χn), for some distribution χ over Z, indicates sampling n coefficients from
χ and assigning each one to be a coefficient of the polynomial z ∈ R. Sampling can also be done
via the canonical embeddings approach.

LetR, be the ring that we described for ggh. Let χσ be theDZ,σ distribution, centred at 0. Let
µβ be a parameter and let Fµ be a distribution sampling uniformly from the interval [0, µβ].

16This can only be achieved by taking very different parameter sets to those originally used in ggh.
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Finally, let B be the bound s.t. all samples from χnσ are bounded above by B. Lemma II;2.2
implies thatB = σ

√
n. Then the plaintext space of our scheme is set to beX = RB .

We describe our construction below.

Construction VII;5.1 [gghwithout ideals (gghwoi)]

LetR, n, σ, χσ, µβ, Fµ, B,X be described as above.

• gghwoi.Setup(1λ, 1κ): Sample parameters µ0, q and let Rq = R/qR. Sample
{zi}i∈[κ]←$Rq , and {βi}i∈[κ]←$R(Fµ). Let pzt =

∏κ
i=1 ziβi. Output pp =

(pzt,R, q, n, κ, σ, µ0) andmsk = (pp, {βi, zi}i∈[κ]).

• gghwoi.Encode(msk, a, T ⊆ [κ]): Sample r←$χσ as a ‘small’ element, let

[a|T ] =
a+ r/

∏
i∈T βi∏

i∈T zi
mod q,

and output v = [a|T ].

• gghwoi.Add(pp, [a|T ], [b|T ]): Output [a|T ] + [b|T ] mod q.

• gghwoi.Mult(pp, [a|T1], [b|T2]): Output [a|T1] · [a|T2] mod q.

• gghwoi.ZeroTest(pp, [a|T ]): Letρ = pzt ·[a|T ] mod q andoutput1 if‖ρ‖∞ <

µ0, and 0 otherwise.

Symmetric encodings.We can define a correspondingly symmetric variant of the scheme, by
only sampling a single β and z. Then let U = κ and let index sets be defined as some integer
1 ≤ T ≤ κ. For any such T we sample an encoding by computing βT = βT and zT = zT .

Parameter settings. Before we go on to describe correctness, we should first elucidate the pa-
rameter settings that we make. This is required to ensure that we can pick the correct bounds for
zero-testing. Weestablish the correctness of our scheme (basedon these settings) inLemmaVII;5.1.

• n = κλ2;

• σ = λ
√
n;

• B = σ
√
n;

• µ0 = 2κκBκn2κ−3Bκ−1
µ ;

• q = 4µ0;
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• µβ = (7 · (2B)κnκ−2)

The parameter µ0 is used as an implicit bound for top-level encodings of zero.

As we mentioned above, we do not consider lattice-based cryptanalysis of these parameters in
this chapter. We only make this choice so that zero-testing is provably correct. Our main aim
is to prevent the annihilation attacks that break ggh via construction of predictable algebraic
relationships.

Lemma VII;5.1 [Correctness]

Construction VII;5.1 is correct, wrt to the parameter choices made above.

Proof. Firstly, let us consider the magnitude of some top-level encoding v created from lower-
level encodings v1, . . . , vm corresponding to values a = (a1, . . . , am) and unique randomness
r = (r1, . . . , rm). By the structure of our encodings, we know that after zero-testing (ρ = v·pzt)
we have:

ρ = P (a)β(κ) + γ1(a, r)β(κ−1) + . . .+ γκ−1(a, r)β(1) + γκ(r);

where β(i) is a sum of the
(
κ
i

)
monomials of degree i when considering β = (β1, . . . , βκ) as

formal variables. Moreover, the polynomial evaluationP (a) corresponds to the value of the final
encoding v.

Our first aim is to characterise the bounds on the magnitudes of top-level encodings of zero, this
will help us to establish the value of µβ . Our analysis of these bounds is not tight but allows us to
demonstrate correctness. A top-level encoding of zero (after zero-testing) takes the form:

ρ0 = γ1(a, r)β(κ−1) + . . .+ γκ−1(a, r)β(1) + γκ(r) mod q.

Note that every ring element in the entries of a and r has infinity norm bounded byBµ. More-
over, each monomial in the polynomial γi (for all i ∈ [κ]) has combined degree κ in variables
taken from a and r. Also, γi has

(
κ
i

)
such monomials. Therefore:

‖ρ0‖∞ < nκ−1Bκ
κ∑
i=1

(
κ

i

)
β(κ−i) < n2κ−3BκBκ−1

µ

κ∑
i=1

(
κ

i

)
< κn2κ−3BκBκ−1

µ

2κ√
πκ/2

< µ0 = q/4;
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where the first bound is acquired via Corollary II;2.1. The second bound is obtained by taking the
upper bound of each β variable, given by B. The third bound is an asymptotic bound derived
from Stirling’s approximation, when κ is sufficiently large.

Now, for encodings of non-zero, we essentially add nκ−1‖βκ‖∞ to ‖ρ0‖∞ (by Corollary II;2.1).
Let va = P (a)βκ + γ1(a, r)β(κ−1) + . . . mod q. Then, we have two requirements: (1)
‖va‖∞ > q/4 mod q; and (2) ‖βκ‖∞ > q. The first requirement guarantees that the correct-
ness of zero-testing is maintained. The second ensures that modular reduction occurs for encod-
ings of non-zero, for security. We can guarantee both requirements by simply ensuring that

7q/4 > nκ−1‖βκ‖∞ > 5q/4. (VII;11)

Considering nκ−1βκ specifically, we need nκ−1‖βκ‖∞ > 5µ0. Note that we must then satisfy:

nκ−1‖βκ‖∞ > 5κn2κ−3BκBκ−1
µ 2κ;

‖βκ‖∞ > 5κnκ−2BκBκ−1
µ 2κ;

where we ignore the denominator
√
πκ/2. Taking βκ−1 to be roughly equal toBκ−1

µ , then we
finally have that:

‖β‖∞ > 5κnκ−2Bκ2κ.

Recall that we sample β uniformly from a distribution bounded above by 7κnκ−2Bκ2κ. Then

Pr
[
‖β‖∞ < 5κnκ−2Bκ2κ

∣∣β←$Fµ
]

= (5/7)n;

and sincen = poly(κ, λ), then this is negligible in the security parameter. Thus the lower bound
of Equation (VII;11) is satisfied with overwhelming probability. The upper bound is satisfied triv-
ially since the distribution only samples ring elements with coefficients smaller than this, whp.
Therefore, q > ‖va‖∞ > q/4 mod q and thus the scheme is correct.

This covers the last two probabilities in the definition of correctness (Definition VII;2.2), the first
follows from the fact that fresh encodings of top-level zeroes are inherently smaller than those con-
structed from lower-level encodings. Thus the zero-tested element is subject to the same bounds
as above and the proof of correctness follows.

Clarification of correctness bounds from published work. The work that we base
this chapter on gave much more approximate bounds [8, 9]— thus only a rough approximation
of correctness was originally given in these works. The bounds that we describe here are markedly
different due to the fact that we concretely set out a set of parameters that correctness holds for.
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VII;5.3 Zeroizing attacks

Wewill first consider the applicability of our GES to general situations, i.e. in an attempt to prove
thehardness of theκ-MDDHproblem. Unfortunately, in these situationswe require thepresence
of low-level encodings of zero and we note that trivial attacks against our scheme are possible in
this scenario.

In particular, we allow there to be a set S0 of indices such that aj ∈ a and j ∈ S0 indicates that
aj = 0 ∈ Rq . Consider themagnitude of an encoding of zero vi,ι at level 2 after a multiplication
has occurred. Such an encoding takes the form:

vi,ι =
aiβirι + aιβιri + rirι

βiβι
; (VII;12)

and then consider the cases where ι ∈ S0 and i /∈ S0 wlog, and i, ι ∈ S0. In these two cases we
actually have:

vi,ι =
aiβirι + rirι

βiβι
; (VII;13)

and
v′i,ι =

rirι
βiβι

. (VII;14)

respectively. Clearly, the choice ofβi←$R(Fµ)means that the difference in‖vi,ι‖∞ and‖v′i,ι‖∞
is noticeable. Therefore, the presence of lower-level zeroes allows us to dictate the magnitude of
zero encodings obtained afterwards. We don’t give a concrete attack, but it is not pessimistic to
assume that the hardness of κ-MDDH can be compromised given this flaw.

VII;5.4 Annihilation attacks

We now consider the case of launching annihilation attacks against gghwoi where no low-level
encodings of zero are present. In fact, our encoding scheme trivially prevents the attacks since
there are no efficiently realisable ideals.

Firstly, there is no formal variable taken from the setsβ, a and r that is contained in each mono-
mial of the polynomial ρ0. Therefore, finding an ideal would essentially amount to choosing one
such variable and annihilating eachmonomial that didn’t contain this variable. In our encodings,
the number of polynomials is polynomial in κ and they are all of degree κ in unknown variables.
It’s highly likely that finding such a polynomial is computationally difficult [202].

The result is that, unmodified, the previous known attacks do not apply to our scheme. If we
can provably achieve hardness against all known attacks, then we argue that a structural change in
ggh encodings could result in a concrete security guarantee. On the other hand, adapting these
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attacks togghwoiwould indicate that there is a structural vulnerability in the way thatggh-like
encodings are created.

VII;6 Algebraic attacks on IO over gghwoi

We respond to the final paragraphs of the previous section by confirming that there are structural
flaws in the way that ggh-like encodings are formed, after computing IO obfuscated branching
programs as in Construction VII;2.3. While the result itself is unsurprising — in the sense that
there is already a wealth of cryptanalysis against ggh— the result implies that ggh is insecure
for reasons that differ from current hypotheses. Our main finding is that the conjecture of Halevi
does not hold: that the presence of the ideal 〈g〉 isnot actually principal to the attacks againstggh.
Our work suggests that the attacks are a manifestation of greater insecurities, that are still present
even after making natural alterations to the scheme to remove 〈g〉 from the security analysis.

Essentially, our adapted annihilation attack considers the samepolynomialγ1 that is considered in
the attacks of [240]. That is, let ρ0 be a zero-tested, encoding of zero obtained from an obfuscated
branching program. Then:

ρ0 = γ1(a, r)β(κ+1) + . . .+ γκ+1(a, r)β(1) + γκ+2(r) mod q; (VII;15)

and we attempt to annihilate the polynomial γ1 again. However, we cannot simply leverage the
attack of [240] since γ1(a, r)β(κ−1) now consists of κmonomials of degree κ + 1 in variables
taken fromβ. Moreover, the heuristic step that was used before is now redundant due to the lack
of a principal ideal to target.

We demonstrate implicit annihilating polynomials in the security models from Sections VII;3.1
and VII;3.2 to illustrate the effectiveness of our attacks.

Remark VII;6.1. Our attacks work in the situation where the level sets are defined symmetrically,

rather than asymmetrically. That is, U = κ+ 2, and T0 = Tκ+1 = Tl,b = 1. This is not exactly

as defined in the level sets of [12, 23, 27, 239, 253], but aligns with the design of [66]. The former

works use more granular level sets to implement straddling sets partitions over U , to restrict ‘mixed-

input’ attacks against their construction. We should emphasise that we do not use mixed-input

attack techniques, but the structure of our encodings means that constructing attacks in this setting

appears difficult. Intuitively this make sense, since γ1
is no longer linear in unknown variables.

Unfortunately, we have not been able to translate this difficulty into a meaningful security notion

for asymmetric versions of our encodings. Therefore, we should emphasise this should not be taken

as a security guarantee of any kind.
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VII;6.1 Attack in IND-BP

We provide a warm-up to the main contribution given in Section VII;6.2. This warm-up helps to
give a gentler description to the attacks that we eventually use in the stronger IND-OBF security
model. It is unsurprising that attacks exist in the IND-BPmodel; since it does not capture the extra
randomisation procedures that are necessary for securing IO candidates. Although, the structure
of our attacks in both models is very similar.

Theorem VII;6.2 [Attack in IND-BP]

Let ges = gghwoi in the symmetric setting, where T = {T0, T1, . . . , Tκ+1} where
Tl = 1, for each l ∈ [0, . . . , κ + 1] and U = κ + 2. Then we describe an algorithmA,
running in time poly(λ, κ)whp, s.t.:

max
A

(Adv(A, ges(1λ, indbp))) ≈ 1.

Proof. We split the proof of Theorem VII;6.2 into two claims; handling the single-input and
dual-input cases of the attack. Firstly, to avoid confusion later on, we will explicitly consider
the various knowns and unknowns available to the adversaryA in expindbpb,A (1λ, 1κ, 1η, ges). Let
a ∈ R50κ+10 be the vector of encoded values taken from the entries of the original branching
program; let r ∈ R50κ+10 be the vector of unique small random elements that are used in each
encoding; and let β ∈ Rκ be the vector of level-specific sampled elements. The lengths of the
first two vectors is decided due to usingw = 5 branching programs, and since there are 2(κ+ 2)

matrices and 2 bookend vectors.

Since the adversary choosesM0,M1, then it knows the vector a since each entry is encoded di-
rectly without additional randomness. It does not know the values of r or β.

Claim VII;6.2.1. The attack succeeds with probability close to 1 for η = 1.

Proof. Let us consider obfuscated branching programs as described in the abstract model of Con-
struction VII;2.3. Our attack technique is slightly more general in that we can consider generic
pairs of branching programs, and thus we can mount our attacks immediately against branching
programs that are derived fromBarrington’s theorem; as in [15].17 Similarly to Equation (VII;10),
we have that:

β(κ+1)γ1 =
κ+1∏
i=0

αi,bM0

(
κ∑
l=1

β[l] . . .M l−1,xinp(l−1)
Rl,xinp(l)M l+1,xinp(l+1)

. . .

)
Mκ+1;

17Although, we only consider attacks against similar choices of branching program to those made in [240] for
simplicity.
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where the only difference is the inclusion of the product β[l] =
∏
i 6=l βi, where β[0] = 1. It is

important to understand that, using symmetrically defined encodings, we no longer use themore
general indexing for sampling βl,b for each pair (l, b). That is, we only use one β s.t. βl = β for
all l ∈ [0, . . . , κ+ 1] by utilising a symmetric variant of gghwoi. Therefore, the products β[l]

are equivalent for each l and we can rewrite γ1 as:

β(κ+1)γ1 = βκ+1
κ+1∏
i=0

αi,bM0

(
κ∑
l=1

. . .M l−1,xinp(l−1)
Rl,xinp(l)M l+1,xinp(l+1)

. . .

)
Mκ+1.

Recall from Section VII;4 that γ1 is linear in the variables of r. Recall, additionally, that inp(l) =

l mod `in. The adversaryA effectively has knowledge of the coefficients used in the monomials
of γ1 depending on the choice b ∈ {0, 1} in expindbpb,A (1λ, 1κ, 1, ges) (since they are only taken
from a). We now consider the game when b = 0wlog.

Consider L inputs (x1, . . . , xL) resulting in outputs (ρ1, . . . , ρL) that are received back from
the challenge oracle in INDBPges

κ,η . Let r
l,b
i,j be the (i, j)

th entry ofRl,b. Let νt be the vector of
dimension 50κ+10 containing the (polynomial) coefficients each rl,bi,j in γ

1
t for some t ∈ [L]. We

assume for this analysis thatx1, . . . , xn are chosen s.t. {νt}t∈[L] are an algebraically independent
set ofmaximal size, thus appending another vector to the list creates an algebraically dependent set
by Lemma VII;2.4. This is possible, since there are 50κ+ 10 possible variables in the branching
program, and sowehave amaximumsize ofL = 50κ+10 algebraically independentbasis vectors.
Moreover, by the Schwarz-Zippel lemma (Lemma II;2.1), choosing a random set of inputs of size
equal to the algebraic rank is likely to give an algebraically independent set, whp.

Now, choose some new input x†. Then clearly the coefficient vector ν† corresponding to the
zero-tested output ρ† has to be algebraically dependent on ν1, . . . ,νL, again by LemmaVII;2.4.
Therefore, using a form of “Gaussian elimination”18 it is possible to compute a polynomialQ†,
with ‘coefficients’ taken froma that create a new vector ν0 where each entry is 0. In other words,
Q† is an annihilating polynomial. In fact, by Lemma VII;2.4, we know that Q† exists because
L > 50κ+ 10.

ApplyingQ† to the outputs ρ†, ρ1, . . . , ρL results in an output ρ′0, where all the monomials in
the sum of γ1

† are eliminated. That is, the term γ1
†β

(κ+1) is completely removed from the output
ρ′0. Then we can write ρ′0 as:

ρ′0 = Q†(ρ0) mod q; (VII;16)

which is similar to ρ0 in Equation (VII;15), except that the γ1
0 term is removed. Thus ρ′0 has a

magnitude that is noticeably smaller in comparison inR. In fact, if we useM0,M1 specified as
in [240], then we can also use the same definition of the annihilating polynomialQ† = Q∗, since
we are annihilating the γ1 polynomial which takes the exact same structure. On the other hand,
Q† definitely exists due to the algebraic dependency over ν1, . . . ,νL,ν†.

18Obviously, standard Gaussian elimination does not work since the coefficients are polynomials taken fromR.
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A final consideration is that we require thatQ† has small coefficients. In previous attacks, small-
ness is not important as they are only searching for elements that are multiplies of g. Whereas our
attack works by distinguishing annihilated polynomials based on differences in absolute magni-
tude. Fortunately, ifQ† = Q∗ from [240], then it will definitely have small coefficients, sinceQ∗

is chosen to have coefficients taken froma, and thus the result remains of a similarmagnitude (i.e.
small). This is enough for the attack to work since we only have to demonstrate the attack for one
pair of branching programs.

In the more general case whereQ† 6= Q∗, thenQ† requires coefficients that are of a similar order
to the magnitude of the encoded values. These ring elements are bounded byB, and thus com-
paratively smaller than each variable β. Therefore we will have that ρ′0 is noticeably smaller in the
case ofM0, than in the case ofM1.

Indeed, to summarise the attack on general choices of b, the coefficients of Q† that work in the
case ofM0 do not work in the case ofM1 due to the different choice of self-inverse matrices. That
is, whenM1 is obfuscated, then γ1

0 still exists in Equation (VII;16). Therefore, the adversaryA in
the experiment expindbpb,A (1λ, 1κ, 1, ges) can fashion the attack against outputs assuming they are
fromM0. If the attack succeeds, it guesses b = 0 and otherwise b = 1.

The only thing left to check is that the attack runs in polynomial-time. This is true if the number
of variables that are to be eliminated is poly(λ) and if the polynomials γ1

t are linear in unknowns.
Fortunately, the number of such variables rl,bi,j is 50κ+10 = poly(λ) and the latter is clearly true.
Thus the attack is complete for η = 1, and succeeds with probability close to 1.

Claim VII;6.2.2. The attack succeeds with probability close to 1 for η = 2.

Proof. For the dual-input case. Wemake the sameobservation as [240]: that the number of inputs
needed to generate a linear dependence is still polynomial in κ. In fact, the number of variables
just increases to 100κ+10, therefore we can find a viableQ† in the sameway as before, just using
circa 2n inputs, rather than n.

Using the fact that an annihilating polynomial is shown to exist in this situation by [240], we can
conclude the proof of this claim.

The proof of Theorem VII;6.2 is concluded by the proof of Claims VII;6.2.1 and VII;6.2.2.

Finally, we show that the attack strategy in the previous theorem, does not work in the case of the
asymmetric description of gghwoi.

Claim VII;6.2.3. The simplified attack appears to no longer succeed when

T = {T0, Tκ+1, {Tl,b}l∈[κ],b∈{0,1}} ← partition(U , κ, η)
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is used as a straddling sets partition of U = [κ], where Tl,b 6= Tl,1−b.

Proof. The term proof here is necessarily loose. We simply show that the attack as taken above,
does not immediately result in the sameoutput. Essentially, theγ1 polynomial cannot be removed
using the same “Gaussian elimination” strategy that we used before.

Considering more granular index sets that rely on asymmetric graded encoding schemes. For ex-
ample, for a top-level set U = [0, . . . , κ + 1], we have T ← partition(U , κ, 1). Therefore, we
sample {β0, βκ+1{βl,b}l∈[κ],b∈{0,1}} to allow for encoding wrt T . Considering the polynomial
γ1 again:

β(κ+1)γ1 =
κ+1∏
i=0

αi,bM0

(
κ∑
l=1

β[l] . . .M l−1,xinp(l−1)
Rl,xinp(l)M l+1,xinp(l+1)

. . .

)
Mκ+1;

the presence of β[l] means that we cannot explicitly use the same choice ofQ∗ that was made in
Section VII;4. This is because, as well as being linear in each variable rl,bi,j taken from the (i, j)

th

entry of thematrixRl,b, themonomials are degreeκ−1 in variables taken fromβ. These variables
are also chosen dependently on each input x to the branching program and are considered as
another unknown for the adversary.

Thus the degree of the γ1 polynomials is effectively increased to κ in the unknowns, and it was
shown by [202] that finding annihilating polynomials over underlying cubic polynomials can be
computationally difficult. Therefore, finding an annihilating polynomial over theγ1 polynomials
in this case also seems plausibly difficult.

We remark that a possible attack strategy could be to use the techniques that we use in Theo-
rem VII;6.3 later and similar to [256]. The goal would be to construct polynomials from the γ1

polynomials, where each monomial contain the same factors from β. Then we could apply the
same attack strategy as before. For example,multiplying eachγ1 through by (

∏κ+1
i=0 βi)·(β[l])−1

would achieve this. Although, this seems difficult, without explicit knowledge of the product
(
∏κ+1
i=0 βi), which is hidden in public zero-test parameter.

We conclude our analysis of the IND-BP case by remarking that we are unable make a security
reduction from the structure of our zero-tested encodings ρ1, . . . , ρL to the fact that annihilating
in the asymmetric case seems difficult. It is hard to see how we can categorise all attack strategies
into a unified description of an adversary, that can be thwarted by a falsifiable assumption.

We discuss later in Section VII;7 the possibility of making use of the branching program unan-
nihilatability assumption [30, 153, 235] that is used in conjunction with the weakened graded
encoding model, for proving the security of IO-like candidates. Although, we conclude that such
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an assumption relies inherently on annihilating generic branching program outputs directly, and
so it doesn’t seem to apply to our case.

VII;6.2 Attack in IND-OBF

We show how we can expand upon the attacks that we demonstrated in IND-BP, using similar
techniques as those given in [15, 256].

Intuitively, the presence of themixed-input scalars in io introduce an extra unknown to the equa-
tions that are dependent on the choice of input x ∈ {0, 1}`in . However, the product of αi,b is
multiplied to the entire polynomials ρ. Consequently, it is possible to introduce a method for
computing new polynomials in R that demonstrate products of these scalars that are indepen-
dent of the choice of x. As such, we are then able to proceed with the attack strategy of The-
orem VII;6.2, albeit with a larger number of inputs that give top-level encodings of zero. Note
that Kilian randomisation offers no extra security in this setting. Intuitively, this is because the
randomisation is removed after the top-level of computation is reached.

Again, our attacks only work in the case where the level sets are defined symmetrically. This is
unsurprising given that the attacks are derived from those in Theorem VII;6.2.

Theorem VII;6.3 [Attack in IND-OBF]

Let ges = gghwoi, let io be an obfuscator following the structure of ConstructionVII;2.3
and let T = {T0, Tκ+1, Tl} be s.t. where T0 = Tκ+1 = Tl = 1 and U = [κ+ 1] ∪ {0}.
In other words, the GES is symmetric. Then we describe a algorithm A, running in time
poly(λ, κ)whp, s.t.:

max
A

(Adv(A, ges(1λ, indobf))) ≈ 1

Proof. Again, we split the proof of this theorem into two separate claims, depending on the value
of η that is considered. Also, the vectorsr,β are unknown andhave the same dimensions. Impor-
tantly, the vector a is now strictly an unknown; since Kilian randomisation guarantees that the
encoded values are randomised before encoding takes place. However, the coefficients of γ1

t in ρt
can be treated as a known in expindobfb,A (1λ, 1κ, 1η, ges, io) forA (depending on b ∈ {0, 1}), as
the randomisation has been removed at this point. This is enough for the attack to take place. We
will finally note that themixed input scalars {αl,b′}l∈[κ],b′∈{0,1} are unknown to the adversary, as
well.

Claim VII;6.3.1. The attack succeeds with probability close to 1 for η = 1.
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Proof. For some input x, then ρ, received byA from the oracle in expindobfb,A (1λ, 1κ, 1, ges, io),
is:

ρ =

κ+1∏
j=0

αj,xinp(j)

(
γ1(a, r)β(κ+1) + . . .+ γκ+1(a, r)β(1) + γκ+2(r)

)
mod q;

(VII;17)
whereαj,b′ is an input-mixing scalar.19 The boxed polynomial is the one thatwe seek to annihilate
again. Notice that the attack from Theorem VII;6.2 no longer holds, since for any pair of inputs
x1, x2, then the product αxc =

∏κ+1
j=0 αj,xcinp(j) is different depending on the c ∈ {1, 2} that is

used. Moreover, these scalars act as another unknown, and so γ1 is no longer linear in unknown
variables.

However, we show that we can choose pairs of inputs x, x resulting in encodings of zeros; and s.t.
αxx is a product that is independent of the choice of the input pair.

First, take x, x such that xi = 1 − xi for all i ∈ [`in]. We require that x, x are both inputs
that lead to top-level encodings of zeros, which is true for the choice of branching programs that
we make in Theorem VII;6.2. This can be made to work for more general choices of branching
programs, using the techniques of [15].

Now, consider the product ρxx = ρx ·ρx, where ρx and ρx are the respective outputs of program
evaluations on x, x, respectively. Then, we have

ρxx = αxx

(
γ1(a, r)β(2κ+1) + . . .+ γ2κ+1(a, r)β(1) + γ2κ+2(r)

)
mod q; (VII;18)

where αxx =
∏κ+1
i=0 αi,0αi,1, which includes all scalars. Therefore, we have created a new alge-

braic element, multiplied by all input-mixing scalars in the io scheme. Moreover, the polynomial
γ1 is now quadratic in the unknown r variables.

Linearising about these quadratic variables, we create a new vector νt containing L = (50κ +

10)2 unknowns, and nowwe can think of γ1 as a linear polynomial again. SinceL is still poly(κ),
then the attack fromTheoremVII;6.2 still applies. Albeit, we now need> L pairs of inputs x, x
that lead to encodings of zero.

Fortunately, M0 and M1 output 0 on all inputs and thus the requirement is satisfied. We can
complete the attack by computing the “Gaussian elimination” from before to recover Q† (i.e.
setting Q† = Q∗), using coefficients from a, over > L pairs of coefficient vectors νt. This
recovers an algebraic element ρ′0 of the form

ρ′0 = Q†(ρxx) mod q;

19Again, we abuse notation and let α0 = α0,xinp(0) , and similarly for j = κ+ 1.
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which has infinity normnoticeably smaller thanρxx. To translate this into a distinguishing attack,
we simply computeQ† wrtM0 rather thanM1. Finally, we should re-emphasise that ifM0 and
M1 correspond to the choices of branching programs in [240], then we can simply useQ† = Q∗

again—whereQ∗ is the annihilating polynomial that they give.

In both cases, the coefficients of Q† remain a similar magnitude to the elements of a, which
are small. Therefore, we can detect when γ1

0 has been removed from ρ′0; and also when it has
not. As such, A outputs 0 if ρ′0 has noticeably smaller norm, and 1 otherwise. This succeeds
in expindobfb,A (1λ, 1κ, 1, ges, io) with probability close to 1. Thus, the proof of Claim VII;6.3.1 is
complete.

Claim VII;6.3.2. The attack succeeds with probability close to 1 for η = 2.

Proof. In the dual-input case, we create (100κ + 10)2 unknowns and thus we can carry out
the attacks in polynomial-time using a similar strategy to Claim VII;6.2.2. Thus the proof of
Claim VII;6.3.2 is complete.

The proof of Theorem VII;6.3 is completed by the proofs of Claims VII;6.3.1 and VII;6.3.2.

VII;6.3 Other obfuscators

We quickly summarise why our attack fails to work in the cases of [150, 153]. Essentially, it is due
to the same reasons that the [240] does not work against these obfuscators. Recalling the struc-
ture of the obfuscated branching programs fromConstructionVII;2.3, these two obfuscators use
randomised matrices in the bottom-right quadrant of each matrix. Even though the bookend
vectors remove this randomisation from the final output, the random entries in these matrices
are embedded into the polynomial γ1. Since the entries are chosen randomly during the obfusca-
tion, these coefficients actually act as additional unknown variables when trying to constructQ†.
Therefore, the polynomial γ1 has some monomials that are of degree κ in unknowns, implying
that computingQ† would be difficult.

In fact, the obfuscator of [153] proves that annihilating the set of γ1 polynomials is hard under
the BPUA assumption (in the weakened graded encoding model). This assumption also implies
that findingQ† in our situation is hard as the form of γ1 is the same. However, we stop short of
formally proving this as this is not the central theme of this chapter.

Summary of cryptanalysis. We conclude this section by noting that we have demonstrated
attacks against gghwoi in the IND-OBF security game, over the obfuscator given in Construc-
tion VII;2.3 (in the case of symmetric graded level sets). We note that the attack does not work in
the case of asymmetric level sets due to the reasons highlighted in the proof of ClaimVII;6.2.3. In
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addition, the attacks do not work against obfuscators that are not covered by the abstract obfus-
cator.

VII;7 Discussion of results and future work

We conclude this chapter by summarising the contents of our contribution and discussing various
avenues of interest that may arise from our research.

Our attacks demonstrate crucial flaws against ggh, that seem to manifest themselves from differ-
ent peculiarities of the encoding structure. This is rather than the presence of 〈g〉, as hypothesised
by Halevi [176]. We do this by producing a new scheme gghwoi with the same algebraic struc-
ture as ggh, but without a reliance on a common element g. This new scheme remains insecure
via similar cryptanalytic methods to those that break the security of ggh.

In this work, we are unable to identify exactly what this vulnerability is. However, we now high-
light some aspects of our results that may prove useful in trying to decipher the vulnerability. We
discuss interesting potential avenues for future research.

Presence of γ1. Rather than the physical presence of the ideal 〈g〉, we speculate that the actual
insecurity of thegghGES can be traced to the algebraic make-up of the polynomial γ1, in a zero-
tested top-level encoding. In fact, in both ggh and gghwoi, this polynomial is implicitly used
as a way of hiding the secret parameters of the scheme. Unfortunately, this polynomial is only
linear in unknown variables in both schemes — meaning that annihilation attacks based on the
work of [202] will always be possible. We think that the structure of this polynomial is key to the
vulnerabilities of ggh.

Non-linear γ1 may prevent attacks. A peculiar aspect of gghwoi is that the asymmetric
levels of the scheme are made explicit in the zero-tested encodings of zero. This is not the same
as ggh where the level sets are completely removed by zero-testing. This means that launching
annihilation attacks against the asymmetric variant of the scheme is difficult, since the polynomial
γ1 becomes non-linear in unknowns.

Generalising this strategy to amethod of preventing attacks, if it were possible to concretely adapt
zero-tested encodings so that theywere ofpoly(κ)degree inunknowns,mayprevent annihilation-
based methods. However, we are unable to come up with a firm security reduction in this case.

In gghwoi in the asymmetric setting, this naturally happens due to the presence of each of the
variables inβ in eachmonomial of each polynomial. Is it possible to expand this to a new security
assumption? Or more likely, does a new attack strategy allow us to bypass these terms in a similar
tactic to that used in the proof of Theorem VII;6.3?
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Establishing ‘algebraic’ equivalence of schemes. The work of Chunsheng [94] subse-
quently showed that it was possible to adapt the attacks of [87] to the GGHRSW [150] obfusca-
tor, when instantiated using gghwoi. This further highlights the similarities between the ggh
and gghwoi graded encoding schemes.

Further attempts to establish the attack of [256] against gghwoi for instantiation [153] would
highlight that our scheme is equivalent to ggh in terms of security analysis. Moreover, if we
could show that a security proof of [153] exists under gghwoi, then we would have a better idea
of the equivalence of the two schemes. We think that it is plausible such a proof exists, since the
branching programunannihilatability assumption seems toprevent the possibility of annihilating
the γ1 polynomial from ggh-like encodings. This attack strategy is also central to our analysis.

Further parameter analysis. We do not tackle a lattice-based cryptanalysis of our scheme,
since if we show that gghwoi is insecure in all of the same scenarios as ggh, then it will have
little utility beyond demonstrating additional vulnerabilities of ggh. However, if we can show
a meaningful separation between the two schemes (particularly in the case of straddling sets en-
codings), then it would be necessary to expose our scheme to more extensive cryptanalysis of our
parameter settings.

We expect that a major insecurity of gghwoi is likely to be that encodings of non-zero may not
be uniformly distributed inRq , and modular reduction is only likely to occur once.

Furthermore, the bounds that we use for establishing correctness are very loose to account for the
binomial expression. If we could make these bounds tighter, then we would almost certainly be
able to develop a much more efficient construction.
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VIII Conclusion

In this thesis we have collated a wide-ranging analysis of the field of secure computation. Our
works spans new theoretical constructions, novel implementations of these cryptographic primi-
tives that can be run for large-scale computation, and cryptanalysis of candidate program obfus-
cators.

The intention of our work is to aid the ongoing transition of the science of secure computation
from being an inherently theoretical pursuit, to one that can have real-world applications and im-
pact. To corroborate this message, we have ensured that all the novel constructions that we have
devised come equipped with implementations for adequate scenarios and security parametrisa-
tions. We additionally hope that our cryptanalytic techniques can help to advance our under-
standing ofwhat security properties are required for non-interactive secure computation schemes,
such as IO.

In terms of future research, there are a variety of topics that arise as a result of our findings. These
range from devising more expressive theoretical constructions, to writing optimised versions of
our implementations to make gains in computational running times. We will also continue to
maintain our browser extension Privacy Pass so that the large user base continues to experience
better accessibility wrt the Cloudflare network.
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A CPRF source code

This appendix provides the source code for the implementation taken from Chapter V. This
source code will be made more widely available on publication of the work from this chapter.

This code is organised into a typical Go file structure, i.e. the parent folder is:

∼/go/src/github.com/alxdavids/owf-cprf/

and contains packages cprf and util that are structured as children folders. The code is copied
here without any changes to the original Go syntax. All code found here is licensed under the
following BSD 3-Clause License found at https://tinyurl.com/cprf-lic.

Package cprf

Package cprf contains the source code for running the core CPRF algorithms, it also contains the
source code for testing and benchmarking our software. For the CPRF functionality, the follow-
ing functions map to their equivalents:

• KeyGen→ cprf.Setup;

• Eval→ cprf.Eval;

• Constrain→ cprf.Constrain.

We also create ‘structs’ to establish the types of certain elements that we need:

• MasterSecretKey→ cprf.msk;

• Input→ x ∈ {0, 1}`;

• Constraint→ v ∈ {0, 1, ∗}`.

Each of these structs also has a number of utility functions assigned to it for processing their data
in the correct format. For constrained keys, we reuse the MasterSecretKey struct, since these
keys have identical formatting.

We provide all the source code for this package below.
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cprf.go

1 package cprf

2
3 import (

4 "crypto"

5 "crypto/rand"

6 "errors"

7 "fmt"

8 "github.com/alxdavids/owf -cprf/prf"

9 "github.com/alxdavids/owf -cprf/util"

10 "github.com/golang -collections/go-datastructures/bitarray"

11 "math"

12 "math/big"

13 "sync"

14 )

15
16 type MasterSecretKey struct {

17 indices [][]* big.Int

18 keys map[string ]([][] byte)

19 dummyKeys map[string ]([][] byte)

20 ell , r *big.Int

21 hash crypto.Hash

22 }

23
24 func (msk *MasterSecretKey) getKeysForIndex(index string) [][] byte {

25 arr := msk.keys[index]

26 return arr

27 }

28
29 func (msk *MasterSecretKey) getDummyKeysForIndex(index string)

30 [][] byte {

31 arr := msk.dummyKeys[index]

32 return arr

33 }

34
35 func (msk *MasterSecretKey) getStrIndex(i int) string {

36 return util.JoinBigIntSlice(msk.indices[i])

37 }

38
39 func (msk *MasterSecretKey) getIndices () [][]* big.Int {

40 return msk.indices

41 }

42
43 func (msk *MasterSecretKey) getKeysForInput(input *Input)

44 ([][]byte , error) {

45 if msk.ell.Cmp(input.ell) != 0 {

46 return nil , errors.New(fmt.Sprintf("Incompatible input lengths

47 for key: %v, and input: %v", msk.ell , input.ell))
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48 }

49 indices := msk.indices

50 var inputKeys [][] byte

51 for i := 0; i < len(indices ); i++ {

52 str := msk.getStrIndex(i)

53 keys := msk.getKeysForIndex(str)

54 reVal , err := input.reindex(indices[i])

55 if err != nil {

56 return nil , err

57 }

58 inputKeys = append(inputKeys , keys[reVal.Int64 ()])

59 }

60 return inputKeys , nil

61 }

62
63 func (msk *MasterSecretKey) getConstrainedKey(v *Constraint)

64 (map[string ]([][] byte), error) {

65 if msk.ell.Int64() != v.ell {

66 return nil , errors.New(fmt.Sprintf("Incompatible input lengths

67 for key: %v, and constraint: %v", msk.ell.Int64(), v.ell))

68 }

69 indices := msk.indices

70 cKeys := make(map[string ]([][] byte), len(msk.keys))

71 for i := 0; i < len(indices ); i++ {

72 str := msk.getStrIndex(i)

73 keys := msk.getKeysForIndex(str)

74 dummyKeys := msk.getDummyKeysForIndex(str)

75 reVals , err := v.reindex(indices[i])

76 if err != nil {

77 return nil , err

78 }

79
80 z := util.Unique(indices[i])

81 total := int(math.Pow(float64 (2), float64(z)))

82 for ind := 0; ind < total; ind++ {

83 found := false

84 for l := 0; l < len(reVals ); l++ {

85 if int64(ind) == reVals[l].Int64() {

86 cKeys[str] = append(cKeys[str], keys[ind])

87 found = true

88 break

89 }

90 }

91 if !found {

92 cKeys[str] = append(cKeys[str], dummyKeys[ind])

93 }

94 }

95 }

96
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97 return cKeys , nil

98 }

99
100 type Input struct {

101 bits bitarray.BitArray

102 val , ell *big.Int

103 }

104
105 // Sets up a valid input for the CPRF based on the parameter choice

106 func (x *Input) SetParams(val , ell *big.Int) error {

107 if val.Cmp(new(big.Int).Exp(big.NewInt (2), ell , nil)) != -1 {

108 return errors.New("Chosen value is bigger than input length

109 implies")

110 }

111 x.ell = ell

112 x.val = val

113 x.bits = bitarray.NewBitArray(ell.Uint64 ())

114 for i := ell.Int64() - int64 (1); i >= 0; i-- {

115 pow := new(big.Int).Exp(big.NewInt (2), big.NewInt(i), nil)

116 newVal := new(big.Int).Sub(val , pow)

117 if newVal.Cmp(big.NewInt (0)) > -1 {

118 x.bits.SetBit(uint64(i))

119 val = newVal

120 }

121 }

122 return nil

123 }

124
125 // Re-index the input with respect to the index vector that is being

126 // used

127 func (x *Input) reindex(indices []*big.Int) (*big.Int , error) {

128 last := big.NewInt (-1)

129 bits := x.bits

130 z := util.Unique(indices)

131 cnt := int64(z - 1)

132 reVal := big.NewInt (0)

133 for i := 0; i < len(indices ); i++ {

134 if last.Cmp(indices[i]) == 0 {

135 continue

136 }

137 last = indices[i]

138
139 b, err := bits.GetBit(indices[i]. Uint64 ())

140 if err != nil {

141 return nil , err

142 }

143
144 if b {

145 reVal = new(big.Int).Add(reVal ,
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146 new(big.Int).Exp(big.NewInt (2), big.NewInt(cnt), nil))

147 }

148 cnt --

149 }

150
151 return reVal , nil

152 }

153
154 type Constraint struct {

155 bits bitarray.BitArray

156 ell int64

157 wildcards map[int64](bool)

158 }

159
160 // Sets up a valid input for the CPRF based on the parameter choice

161 func (v *Constraint) SetParams(val , ell *big.Int , wilds []int64) error {

162 if val.Cmp(new(big.Int).Exp(big.NewInt (2), ell , nil)) != -1 {

163 return errors.New("Chosen value is bigger than input length

164 implies")

165 }

166 v.ell = ell.Int64()

167 v.bits = bitarray.NewBitArray(ell.Uint64 ())

168 for i := ell.Int64() - int64 (1); i >= 0; i-- {

169 pow := new(big.Int).Exp(big.NewInt (2), big.NewInt(i), nil)

170 newVal := new(big.Int).Sub(val , pow)

171 if newVal.Cmp(big.NewInt (0)) > -1 {

172 v.bits.SetBit(uint64(i))

173 val = newVal

174 }

175 }

176
177 wildcards := make(map[int64]bool)

178 for i := 0; i < len(wilds); i++ {

179 val := int64(wilds[i])

180 if val > ell.Int64() {

181 return errors.New(fmt.Sprintf("Wildcard value: %v, is out of

182 bounds for ell: %v", val , ell))

183 }

184 wildcards[wilds[i]] = true

185 }

186 v.wildcards = wildcards

187 return nil

188 }

189
190 // Reindex for constraints

191 func (v *Constraint) reindex(indices []*big.Int) ([]* big.Int , error) {

192 last := big.NewInt (-1)

193 bits := v.bits

194 wilds := v.wildcards
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195 z := util.Unique(indices)

196 cnt := int64(z - 1)

197 reVals := []*big.Int{big.NewInt (0)}

198 for i := 0; i < len(indices ); i++ {

199 if last.Cmp(indices[i]) == 0 {

200 continue

201 }

202 last = indices[i]

203
204 w := wilds[indices[i].Int64 ()]

205 b, err := bits.GetBit(indices[i]. Uint64 ())

206 if err != nil {

207 return nil , err

208 }

209
210 if w {

211 var newReVals []*big.Int

212 for j := 0; j < len(reVals ); j++ {

213 reval := reVals[j]

214 reval0 := reval

215 reval1 := new(big.Int).Add(reval ,

216 new(big.Int).Exp(big.NewInt (2), big.NewInt(cnt), nil))

217 newReVals = append(newReVals , reval0)

218 newReVals = append(newReVals , reval1)

219 }

220 reVals = newReVals

221 } else if b {

222 for j := 0; j < len(reVals ); j++ {

223 reVals[j] = new(big.Int).Add(reVals[j],

224 new(big.Int).Exp(big.NewInt (2), big.NewInt(cnt),

225 nil))

226 }

227 }

228 cnt --

229 }

230
231 return reVals , nil

232 }

233
234 type KeyEntry struct {

235 prfKey []byte

236 j int

237 err error

238 }

239
240 type KeyMap struct {

241 index string

242 keys [][] byte

243 dummyKeys [][] byte
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244 err error

245 }

246
247 // KeyGen: Master secret key generation

248 // @param {int} lambda Security parameter

249 // @param {*big.Int} ell Input length

250 // @param {*big.Int} r Number of Constraints

251 // @returns {map[string ]([][] byte)} Master secret key

252 func KeyGen(lambda int , ell , r *big.Int , h crypto.Hash)

253 (* MasterSecretKey , error) {

254 mskLen := new(big.Int).Exp(ell , r, nil)

255 indices := util.IndexGen(ell , r, mskLen)

256 cprfKeys := make(map[string ]([][] byte), len(indices ))

257 cprfDummyKeys := make(map[string ]([][] byte), len(indices ))

258 chanOut := make(chan *KeyMap)

259 for i := 0; i < len(indices ); i++ {

260 go func(indexArr []*big.Int , lambda int) {

261 z := util.Unique(indexArr)

262 powz := math.Exp2(float64(z))

263 km := &KeyMap {}

264 km.keys = make ([][]byte , int(powz))

265 km.dummyKeys = make ([][]byte , int(powz))

266 chanKE := make(chan *KeyEntry)

267 chanKD := make(chan *KeyEntry)

268 for j := 0; j < int(powz); j++ {

269 go func(lambda , j int) {

270 ke := &KeyEntry {}

271 prfKey := make ([]byte , lambda)

272 _, err := rand.Read(prfKey)

273 if err != nil {

274 ke.err = err

275 chanKE <- ke

276 }

277 ke.prfKey = prfKey

278 ke.j = j

279 chanKE <- ke

280 }(lambda , j)

281
282 go func(lambda , j int) {

283 ke := &KeyEntry {}

284 dummyKey := make ([]byte , lambda)

285 _, err := rand.Read(dummyKey)

286 if err != nil {

287 ke.err = err

288 chanKD <- ke

289 }

290 ke.prfKey = dummyKey

291 ke.j = j

292 chanKD <- ke
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293 }(lambda , j)

294 }

295
296 var wg sync.WaitGroup

297 wg.Add(2)

298 go func(km *KeyMap , wg *sync.WaitGroup , powz float64 ,

299 indexArr []*big.Int) {

300 for l := 0; l < int(powz); l++ {

301 ke := <-chanKE

302 if ke.err != nil {

303 km.err = ke.err

304 break

305 }

306 km.keys[ke.j] = ke.prfKey

307 }

308 wg.Done()

309 }(km, &wg, powz , indexArr)

310
311 go func(km *KeyMap , wg *sync.WaitGroup , powz float64) {

312 for l := 0; l < int(powz); l++ {

313 ke := <-chanKD

314 if ke.err != nil {

315 km.err = ke.err

316 break

317 }

318 km.dummyKeys[ke.j] = ke.prfKey

319 }

320 wg.Done()

321 }(km, &wg, powz)

322
323 wg.Wait()

324 if km.err != nil {

325 chanOut <- km

326 }

327 indexStr := util.JoinBigIntSlice(indexArr)

328 km.index = indexStr

329 chanOut <- km

330 }( indices[i], lambda)

331 }

332
333 for i := 0; i < len(indices ); i++ {

334 km := <-chanOut

335 if km.err != nil {

336 return nil , km.err

337 }

338 cprfKeys[km.index] = km.keys

339 cprfDummyKeys[km.index] = km.dummyKeys

340 }

341 msk := &MasterSecretKey{indices: indices , keys: cprfKeys ,

329



A CPRF source code

342 dummyKeys: cprfDummyKeys , ell: ell , r: r, hash: h}

343 return msk , nil

344 }

345
346 // Eval: CPRF evaluation algorithm

347 // @param {* MasterSecretKey} msk

348 // @param {*Input} x

349 // @returns {[] byte} PRF evaluation

350 // @returns {error}

351 func Eval(msk *MasterSecretKey , x *Input) ([]byte , error) {

352 keys , err := msk.getKeysForInput(x)

353 if err != nil {

354 return nil , err

355 }

356 out := big.NewInt (0)

357 for i := 0; i < len(keys); i++ {

358 newPRF := prf.InitPRF(msk.hash , keys[i])

359 y := newPRF.Eval(x.val.Bytes ())

360 out = new(big.Int).Xor(out , new(big.Int). SetBytes(y))

361 }

362 return out.Bytes(), nil

363 }

364
365 // Constrain: CPRF constraining algorithm

366 // @param {* MasterSecretKey} msk

367 // @param {* Constraint} v

368 // @returns {* MasterSecretKey} Constrained key

369 // @returns {error}

370 func Constrain(msk *MasterSecretKey , v *Constraint)

371 (* MasterSecretKey , error) {

372 cKeys , err := msk.getConstrainedKey(v)

373 if err != nil {

374 return nil , err

375 }

376
377 return &MasterSecretKey{keys: cKeys , ell: msk.ell , r: msk.r,

378 indices: msk.indices , hash: msk.hash}, nil

379 }

cprf_test.go

1 package cprf

2
3 import (

4 "bytes"

5 "crypto"

6 "crypto/rand"
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7 "errors"

8 "log"

9 "math"

10 "math/big"

11 "testing"

12 )

13
14 var (

15 lambda int = 8

16 ell *big.Int = big.NewInt (4)

17 r *big.Int = big.NewInt (3)

18 xVal *big.Int = big.NewInt (13)

19 h crypto.Hash = crypto.SHA256

20 counts map[string ](int) = make(map[string]int , 16)

21 lastKey *MasterSecretKey

22 )

23
24 // Test master secret key generation

25 func TestMSK(t *testing.T) {

26 msk , err := KeyGen(lambda , ell , r, h)

27 if err != nil {

28 t.Fatalf("Key generation failed: %v", err)

29 }

30 if ell != msk.ell {

31 t.Fatalf("ell: %v, msk.ell: %v", ell , msk.ell)

32 }

33 if r != msk.r {

34 t.Fatalf("r: %v, msk.r: %v", r, msk.r)

35 }

36
37 // Check that the key map index vectors are ordered

38 for ind := range msk.keys {

39 last := 10

40 for _, char := range ind {

41 curr := int(char - '0')

42 if curr == 76 {

43 // this is a pipe character?

44 continue

45 }

46 if curr > last {

47 t.Fatalf("Last digit: %v, was smaller than current: %v",

48 last , curr)

49 }

50 last = curr

51 }

52 }

53
54 // Check that the key map index is populated correctly

55 for ind := range msk.keys {
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56 last := 10

57 count := r.Int64()

58 for _, char := range ind {

59 curr := int(char - '0')

60 if curr == 76 {

61 // probably a pipe character

62 continue

63 }

64 if curr == last {

65 count --

66 }

67 last = curr

68 }

69 ele := msk.keys[ind]

70 if len(ele) != int(math.Pow(2, float64(count ))) {

71 t.Fatalf("Incorrect length: %v, should be: %v", len(ele),

72 int(math.Pow(2, float64(count ))))

73 }

74 }

75
76 // Check that the input keys are assigned correctly

77 x := &Input{}

78 x.SetParams(xVal , ell)

79 inpKeys , err := msk.getKeysForInput(x)

80 if err != nil {

81 t.Fatalf("Input generation failed: %v", err)

82 }

83
84 err = lookForKey("3|2|0", msk , inpKeys)

85 if err != nil {

86 t.Fatalf("Possibly did not find correct key for input %v, with

87 keys: %v, error: %v", "320", inpKeys , err)

88 }

89 err = lookForKey("2|1|1", msk , inpKeys)

90 if err != nil {

91 t.Fatalf("Possibly did not find correct key for input %v, with

92 keys: %v, error: %v", "211", inpKeys , err)

93 }

94 err = lookForKey("0|0|0", msk , inpKeys)

95 if err != nil {

96 t.Fatalf("Possibly did not find correct key for input %v, with

97 keys: %v, error: %v", "000", inpKeys , err)

98 }

99 }

100
101 // Test that the constrained evaluation and standard evaluation

102 // mechanisms match up

103 func TestCEval(t *testing.T) {

104 msk , err := KeyGen(lambda , ell , r, h)
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105 if err != nil {

106 t.Fatalf("Key generation failed: %v", err)

107 }

108
109 x1 := &Input{}

110 x1.SetParams(big.NewInt (7), ell)

111 if err != nil {

112 t.Fatalf("Input generation failed: %v", err)

113 }

114 x2 := &Input{}

115 x2.SetParams(big.NewInt (3), ell)

116 if err != nil {

117 t.Fatalf("Input generation failed: %v", err)

118 }

119 x3 := &Input{}

120 x3.SetParams(big.NewInt (8), ell)

121 if err != nil {

122 t.Fatalf("Input generation failed: %v", err)

123 }

124
125 v1 := &Constraint {}

126 v1.SetParams(big.NewInt (6), ell , []int64{0, 3})

127 ck1 , err := Constrain(msk , v1)

128 if err != nil {

129 t.Fatalf("\nError occurred in constraining: %v\n", err)

130 }

131 v2 := &Constraint {}

132 v2.SetParams(big.NewInt (1), ell , []int64 {1})

133 ck2 , err := Constrain(msk , v2)

134 if err != nil {

135 t.Fatalf("\nError occurred in constraining: %v\n", err)

136 }

137 v3 := &Constraint {}

138 v3.SetParams(big.NewInt (15), ell , []int64{0, 1, 2})

139 ck3 , err := Constrain(msk , v3)

140 if err != nil {

141 t.Fatalf("\nError occurred in constraining: %v\n", err)

142 }

143
144 cks := []* MasterSecretKey{ck1 , ck2 , ck3}

145 inps := []* Input{x1, x2, x3}

146 evals := []bool{true , false , false , false , true , false , false ,

147 false , true}

148 for i := 0; i < len(inps); i++ {

149 for j := 0; j < len(cks); j++ {

150 yMsk , err := Eval(msk , inps[i])

151 if err != nil {

152 t.Fatalf("\nError occurred in evaluation: %v\n", err)

153 }
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154 yCk , err := Eval(cks[j], inps[i])

155 if err != nil {

156 t.Fatalf("\nError occurred in evaluation: %v\n", err)

157 }

158
159 if evals [3*i+j] && !bytes.Equal(yMsk , yCk) {

160 t.Fatalf("\nEvaluations should be the same but they are

161 not for i: %v, j: %v, yMsk: %v, yCk: %v", i, j,

162 yMsk , yCk)

163 }

164
165 if !evals [3*i+j] && bytes.Equal(yMsk , yCk) {

166 t.Fatalf("\nEvaluations should be different but they are

167 the same for i: %v, j: %v, yMsk: %v, yCk: %v", i, j,

168 yMsk , yCk)

169 }

170 }

171 }

172 }

173
174 func lookForKey(chosenIndex string , msk *MasterSecretKey ,

175 inpKeys [][] byte) error {

176 chkKeys := msk.getKeysForIndex(chosenIndex)

177 var index int

178 switch chosenIndex {

179 case "3|2|0":

180 index = 7

181 break

182 case "2|1|1":

183 index = 2

184 break

185 case "0|0|0":

186 index = 1

187 break

188 default:

189 return errors.New("Incorrect index used")

190 }

191 chosen := chkKeys[index]

192 found := false

193 for i := 0; i < len(inpKeys ); i++ {

194 curr := inpKeys[i]

195 if new(big.Int). SetBytes(chosen)

196 .Cmp(new(big.Int). SetBytes(curr)) == 0 {

197 found = true

198 break

199 }

200 }

201
202 if !found {
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203 return errors.New("Not found")

204 }

205 return nil

206 }

207
208 func benchKeyGen(b *testing.B, lambda int , ell , r *big.Int ,

209 h crypto.Hash) {

210 b.RunParallel(func(pb *testing.PB) {

211 for pb.Next() {

212 msk , err := KeyGen(lambda , ell , r, h)

213 if err != nil {

214 b.Fatalf("Key generation failed: %v", err)

215 }

216 lastKey = msk

217 }

218 })

219 }

220
221 func benchEval(b *testing.B, lambda int , ell , r *big.Int ,

222 h crypto.Hash) {

223 msk := lastKey

224 max := new(big.Int).Exp(big.NewInt (2), ell , nil)

225 randInt , err := rand.Int(rand.Reader , max)

226 if err != nil {

227 b.Fatalf("error in rand int: %v", err)

228 }

229 x := &Input{}

230 x.SetParams(randInt , ell)

231 b.ResetTimer ()

232 for i := 0; i < b.N; i++ {

233 _, err := Eval(msk , x)

234 if err != nil {

235 b.Fatalf("\nError occurred in evaluation: %v\n", err)

236 }

237 }

238 }

239
240 func benchConstrain(b *testing.B, lambda int , ell , r *big.Int ,

241 h crypto.Hash) {

242 msk := lastKey

243 max := new(big.Int).Exp(big.NewInt (2), ell , nil)

244 randInt , err := rand.Int(rand.Reader , max)

245 if err != nil {

246 b.Fatalf("error in rand int: %v", err)

247 }

248 v := &Constraint {}

249 v.SetParams(randInt , ell , []int64{0, 1, 3})

250 b.ResetTimer ()

251 for i := 0; i < b.N; i++ {
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252 _, err := Constrain(msk , v)

253 if err != nil {

254 b.Fatalf("\nError occurred in constraining: %v\n", err)

255 }

256 }

257 }

258
259 func BenchmarkKeyGen1(b *testing.B) {

260 if counts == nil {

261 counts["1"] = 0

262 }

263 count := counts["1"]

264 printBanner (80, 4, 2, count , b)

265 b.ResetTimer ()

266 benchKeyGen(b, 10, big.NewInt (4), big.NewInt (2), crypto.SHA256)

267 counts["1"] = count + 1

268 }

269 func BenchmarkEval1(b *testing.B) { benchEval(b, 10, big.NewInt (4),

270 big.NewInt (2), crypto.SHA256) }

271 func BenchmarkConstrain1(b *testing.B) {

272 benchConstrain(b, 10, big.NewInt (4), big.NewInt (2), crypto.SHA256)

273 }

274
275 func BenchmarkKeyGen2(b *testing.B) {

276 if counts == nil {

277 counts["2"] = 0

278 }

279 count := counts["2"]

280 printBanner (80, 4, 3, count , b)

281 b.ResetTimer ()

282 benchKeyGen(b, 10, big.NewInt (4), big.NewInt (3), crypto.SHA256)

283 counts["2"] = count + 1

284 }

285 func BenchmarkEval2(b *testing.B) { benchEval(b, 10, big.NewInt (4),

286 big.NewInt (3), crypto.SHA256) }

287 func BenchmarkConstrain2(b *testing.B) {

288 benchConstrain(b, 10, big.NewInt (4), big.NewInt (3), crypto.SHA256)

289 }

290
291 func BenchmarkKeyGen3(b *testing.B) {

292 if counts == nil {

293 counts["3"] = 0

294 }

295 count := counts["3"]

296 printBanner (80, 4, 4, count , b)

297 b.ResetTimer ()

298 benchKeyGen(b, 10, big.NewInt (4), big.NewInt (4), crypto.SHA256)

299 counts["3"] = count + 1

300 }
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301 func BenchmarkEval3(b *testing.B) { benchEval(b, 10, big.NewInt (4),

302 big.NewInt (4), crypto.SHA256) }

303 func BenchmarkConstrain3(b *testing.B) {

304 benchConstrain(b, 10, big.NewInt (4), big.NewInt (4), crypto.SHA256)

305 }

306
307 func BenchmarkKeyGen4(b *testing.B) {

308 if counts == nil {

309 counts["4"] = 0

310 }

311 count := counts["4"]

312 printBanner (80, 8, 2, count , b)

313 b.ResetTimer ()

314 benchKeyGen(b, 10, big.NewInt (8), big.NewInt (2), crypto.SHA256)

315 counts["4"] = count + 1

316 }

317 func BenchmarkEval4(b *testing.B) { benchEval(b, 10, big.NewInt (8),

318 big.NewInt (2), crypto.SHA256) }

319 func BenchmarkConstrain4(b *testing.B) {

320 benchConstrain(b, 10, big.NewInt (8), big.NewInt (2), crypto.SHA256)

321 }

322
323 func BenchmarkKeyGen5(b *testing.B) {

324 if counts == nil {

325 counts["5"] = 0

326 }

327 count := counts["5"]

328 printBanner (80, 8, 3, count , b)

329 b.ResetTimer ()

330 benchKeyGen(b, 10, big.NewInt (8), big.NewInt (3), crypto.SHA256)

331 counts["5"] = count + 1

332 }

333 func BenchmarkEval5(b *testing.B) { benchEval(b, 10, big.NewInt (8),

334 big.NewInt (3), crypto.SHA256) }

335 func BenchmarkConstrain5(b *testing.B) {

336 benchConstrain(b, 10, big.NewInt (8), big.NewInt (3), crypto.SHA256)

337 }

338
339 func BenchmarkKeyGen6(b *testing.B) {

340 if counts == nil {

341 counts["6"] = 0

342 }

343 count := counts["6"]

344 printBanner (80, 8, 4, count , b)

345 b.ResetTimer ()

346 benchKeyGen(b, 10, big.NewInt (8), big.NewInt (4), crypto.SHA256)

347 counts["6"] = count + 1

348 }

349 func BenchmarkEval6(b *testing.B) { benchEval(b, 10, big.NewInt (8),

337



A CPRF source code

350 big.NewInt (4), crypto.SHA256) }

351 func BenchmarkConstrain6(b *testing.B) {

352 benchConstrain(b, 10, big.NewInt (8), big.NewInt (4), crypto.SHA256)

353 }

354
355 func BenchmarkKeyGen7(b *testing.B) {

356 if counts == nil {

357 counts["7"] = 0

358 }

359 count := counts["7"]

360 printBanner (80, 8, 5, count , b)

361 b.ResetTimer ()

362 benchKeyGen(b, 10, big.NewInt (8), big.NewInt (5), crypto.SHA256)

363 counts["7"] = count + 1

364 }

365 func BenchmarkEval7(b *testing.B) { benchEval(b, 10, big.NewInt (8),

366 big.NewInt (5), crypto.SHA256) }

367 func BenchmarkConstrain7(b *testing.B) {

368 benchConstrain(b, 10, big.NewInt (8), big.NewInt (5), crypto.SHA256)

369 }

370
371 func BenchmarkKeyGen8(b *testing.B) {

372 if counts == nil {

373 counts["8"] = 0

374 }

375 count := counts["8"]

376 printBanner (80, 8, 6, count , b)

377 b.ResetTimer ()

378 benchKeyGen(b, 10, big.NewInt (8), big.NewInt (6), crypto.SHA256)

379 counts["8"] = count + 1

380 }

381 func BenchmarkEval8(b *testing.B) { benchEval(b, 10, big.NewInt (8),

382 big.NewInt (6), crypto.SHA256) }

383 func BenchmarkConstrain8(b *testing.B) {

384 benchConstrain(b, 10, big.NewInt (8), big.NewInt (6), crypto.SHA256)

385 }

386
387 func BenchmarkKeyGen22(b *testing.B) {

388 if counts == nil {

389 counts["22"] = 0

390 }

391 count := counts["22"]

392 printBanner (80, 16, 2, count , b)

393 b.ResetTimer ()

394 benchKeyGen(b, 10, big.NewInt (16), big.NewInt (2), crypto.SHA256)

395 counts["22"] = count + 1

396 }

397 func BenchmarkEval22(b *testing.B) { benchEval(b, 10, big.NewInt (16),

398 big.NewInt (2), crypto.SHA256) }
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399 func BenchmarkConstrain22(b *testing.B) {

400 benchConstrain(b, 10, big.NewInt (16), big.NewInt (2), crypto.SHA256)

401 }

402
403 func BenchmarkKeyGen23(b *testing.B) {

404 if counts == nil {

405 counts["23"] = 0

406 }

407 count := counts["23"]

408 printBanner (80, 16, 3, count , b)

409 b.ResetTimer ()

410 benchKeyGen(b, 10, big.NewInt (16), big.NewInt (3), crypto.SHA256)

411 counts["23"] = count + 1

412 }

413 func BenchmarkEval23(b *testing.B) { benchEval(b, 10, big.NewInt (16),

414 big.NewInt (3), crypto.SHA256) }

415 func BenchmarkConstrain23(b *testing.B) {

416 benchConstrain(b, 10, big.NewInt (16), big.NewInt (3), crypto.SHA256)

417 }

418
419 func BenchmarkKeyGen24(b *testing.B) {

420 if counts == nil {

421 counts["24"] = 0

422 }

423 count := counts["24"]

424 printBanner (80, 16, 4, count , b)

425 b.ResetTimer ()

426 benchKeyGen(b, 10, big.NewInt (16), big.NewInt (4), crypto.SHA256)

427 counts["24"] = count + 1

428 }

429 func BenchmarkEval24(b *testing.B) { benchEval(b, 10, big.NewInt (16),

430 big.NewInt (4), crypto.SHA256) }

431 func BenchmarkConstrain24(b *testing.B) {

432 benchConstrain(b, 10, big.NewInt (16), big.NewInt (4), crypto.SHA256)

433 }

434
435 func BenchmarkKeyGen25(b *testing.B) {

436 if counts == nil {

437 counts["25"] = 0

438 }

439 count := counts["25"]

440 printBanner (80, 16, 5, count , b)

441 b.ResetTimer ()

442 benchKeyGen(b, 10, big.NewInt (16), big.NewInt (5), crypto.SHA256)

443 counts["25"] = count + 1

444 }

445 func BenchmarkEval25(b *testing.B) { benchEval(b, 10, big.NewInt (16),

446 big.NewInt (5), crypto.SHA256) }

447 func BenchmarkConstrain25(b *testing.B) {
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448 benchConstrain(b, 10, big.NewInt (16), big.NewInt (5), crypto.SHA256)

449 }

450
451 func BenchmarkKeyGen9(b *testing.B) {

452 if counts == nil {

453 counts["9"] = 0

454 }

455 count := counts["9"]

456 printBanner (128, 4, 2, count , b)

457 b.ResetTimer ()

458 benchKeyGen(b, 16, big.NewInt (4), big.NewInt (2), crypto.SHA256)

459 counts["9"] = count + 1

460 }

461 func BenchmarkEval9(b *testing.B) { benchEval(b, 16, big.NewInt (4),

462 big.NewInt (2), crypto.SHA256) }

463 func BenchmarkConstrain9(b *testing.B) {

464 benchConstrain(b, 16, big.NewInt (4), big.NewInt (2), crypto.SHA256)

465 }

466
467 func BenchmarkKeyGen10(b *testing.B) {

468 if counts == nil {

469 counts["10"] = 0

470 }

471 count := counts["10"]

472 printBanner (128, 4, 3, count , b)

473 b.ResetTimer ()

474 benchKeyGen(b, 16, big.NewInt (4), big.NewInt (3), crypto.SHA256)

475 counts["10"] = count + 1

476 }

477 func BenchmarkEval10(b *testing.B) { benchEval(b, 16, big.NewInt (4),

478 big.NewInt (3), crypto.SHA256) }

479 func BenchmarkConstrain10(b *testing.B) {

480 benchConstrain(b, 16, big.NewInt (4), big.NewInt (3), crypto.SHA256)

481 }

482
483 func BenchmarkKeyGen11(b *testing.B) {

484 if counts == nil {

485 counts["11"] = 0

486 }

487 count := counts["11"]

488 printBanner (128, 4, 4, count , b)

489 b.ResetTimer ()

490 benchKeyGen(b, 16, big.NewInt (4), big.NewInt (4), crypto.SHA256)

491 counts["11"] = count + 1

492 }

493 func BenchmarkEval11(b *testing.B) { benchEval(b, 16, big.NewInt (4),

494 big.NewInt (4), crypto.SHA256) }

495 func BenchmarkConstrain11(b *testing.B) {

496 benchConstrain(b, 16, big.NewInt (4), big.NewInt (4), crypto.SHA256)
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497 }

498
499 func BenchmarkKeyGen12(b *testing.B) {

500 if counts == nil {

501 counts["12"] = 0

502 }

503 count := counts["12"]

504 printBanner (128, 8, 2, count , b)

505 b.ResetTimer ()

506 benchKeyGen(b, 16, big.NewInt (8), big.NewInt (2), crypto.SHA256)

507 counts["12"] = count + 1

508 }

509 func BenchmarkEval12(b *testing.B) { benchEval(b, 16, big.NewInt (8),

510 big.NewInt (2), crypto.SHA256) }

511 func BenchmarkConstrain12(b *testing.B) {

512 benchConstrain(b, 16, big.NewInt (8), big.NewInt (2), crypto.SHA256)

513 }

514
515 func BenchmarkKeyGen13(b *testing.B) {

516 if counts == nil {

517 counts["13"] = 0

518 }

519 count := counts["13"]

520 printBanner (128, 8, 3, count , b)

521 b.ResetTimer ()

522 benchKeyGen(b, 16, big.NewInt (8), big.NewInt (3), crypto.SHA256)

523 counts["13"] = count + 1

524 }

525 func BenchmarkEval13(b *testing.B) { benchEval(b, 16, big.NewInt (8),

526 big.NewInt (3), crypto.SHA256) }

527 func BenchmarkConstrain13(b *testing.B) {

528 benchConstrain(b, 16, big.NewInt (8), big.NewInt (3), crypto.SHA256)

529 }

530
531 func BenchmarkKeyGen14(b *testing.B) {

532 if counts == nil {

533 counts["14"] = 0

534 }

535 count := counts["14"]

536 printBanner (128, 8, 4, count , b)

537 b.ResetTimer ()

538 benchKeyGen(b, 16, big.NewInt (8), big.NewInt (4), crypto.SHA256)

539 counts["14"] = count + 1

540 }

541 func BenchmarkEval14(b *testing.B) { benchEval(b, 16, big.NewInt (8),

542 big.NewInt (4), crypto.SHA256) }

543 func BenchmarkConstrain14(b *testing.B) {

544 benchConstrain(b, 16, big.NewInt (8), big.NewInt (4), crypto.SHA256)

545 }
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546
547 func BenchmarkKeyGen15(b *testing.B) {

548 if counts == nil {

549 counts["15"] = 0

550 }

551 count := counts["15"]

552 printBanner (128, 8, 5, count , b)

553 b.ResetTimer ()

554 benchKeyGen(b, 16, big.NewInt (8), big.NewInt (5), crypto.SHA256)

555 counts["15"] = count + 1

556 }

557 func BenchmarkEval15(b *testing.B) { benchEval(b, 16, big.NewInt (8),

558 big.NewInt (5), crypto.SHA256) }

559 func BenchmarkConstrain15(b *testing.B) {

560 benchConstrain(b, 16, big.NewInt (8), big.NewInt (5), crypto.SHA256)

561 }

562
563 func BenchmarkKeyGen16(b *testing.B) {

564 if counts == nil {

565 counts["16"] = 0

566 }

567 count := counts["16"]

568 printBanner (128, 8, 6, count , b)

569 b.ResetTimer ()

570 benchKeyGen(b, 16, big.NewInt (8), big.NewInt (6), crypto.SHA256)

571 counts["16"] = count + 1

572 }

573 func BenchmarkEval16(b *testing.B) { benchEval(b, 16, big.NewInt (8),

574 big.NewInt (6), crypto.SHA256) }

575 func BenchmarkConstrain16(b *testing.B) {

576 benchConstrain(b, 16, big.NewInt (8), big.NewInt (6), crypto.SHA256)

577 }

578
579 func BenchmarkKeyGen17(b *testing.B) {

580 if counts == nil {

581 counts["17"] = 0

582 }

583 count := counts["17"]

584 printBanner (128, 16, 2, count , b)

585 b.ResetTimer ()

586 benchKeyGen(b, 16, big.NewInt (16), big.NewInt (2), crypto.SHA256)

587 counts["17"] = count + 1

588 }

589 func BenchmarkEval17(b *testing.B) { benchEval(b, 16, big.NewInt (16),

590 big.NewInt (2), crypto.SHA256) }

591 func BenchmarkConstrain17(b *testing.B) {

592 benchConstrain(b, 16, big.NewInt (16), big.NewInt (2), crypto.SHA256)

593 }

594
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595 func BenchmarkKeyGen18(b *testing.B) {

596 if counts == nil {

597 counts["18"] = 0

598 }

599 count := counts["18"]

600 printBanner (128, 16, 3, count , b)

601 b.ResetTimer ()

602 benchKeyGen(b, 16, big.NewInt (16), big.NewInt (3), crypto.SHA256)

603 counts["18"] = count + 1

604 }

605 func BenchmarkEval18(b *testing.B) { benchEval(b, 16, big.NewInt (16),

606 big.NewInt (3), crypto.SHA256) }

607 func BenchmarkConstrain18(b *testing.B) {

608 benchConstrain(b, 16, big.NewInt (16), big.NewInt (3), crypto.SHA256)

609 }

610
611 func BenchmarkKeyGen19(b *testing.B) {

612 if counts == nil {

613 counts["19"] = 0

614 }

615 count := counts["19"]

616 printBanner (128, 16, 4, count , b)

617 b.ResetTimer ()

618 benchKeyGen(b, 16, big.NewInt (16), big.NewInt (4), crypto.SHA256)

619 counts["19"] = count + 1

620 }

621 func BenchmarkEval19(b *testing.B) { benchEval(b, 16, big.NewInt (16),

622 big.NewInt (4), crypto.SHA256) }

623 func BenchmarkConstrain19(b *testing.B) {

624 benchConstrain(b, 16, big.NewInt (16), big.NewInt (4), crypto.SHA256)

625 }

626
627 func BenchmarkKeyGen20(b *testing.B) {

628 if counts == nil {

629 counts["20"] = 0

630 }

631 count := counts["20"]

632 printBanner (128, 16, 5, count , b)

633 b.ResetTimer ()

634 benchKeyGen(b, 16, big.NewInt (16), big.NewInt (5), crypto.SHA256)

635 counts["20"] = count + 1

636 }

637 func BenchmarkEval20(b *testing.B) { benchEval(b, 16, big.NewInt (16),

638 big.NewInt (5), crypto.SHA256) }

639 func BenchmarkConstrain20(b *testing.B) {

640 benchConstrain(b, 16, big.NewInt (16), big.NewInt (5), crypto.SHA256)

641 }

642
643 func BenchmarkKeyGen30(b *testing.B) {
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644 if counts == nil {

645 counts["30"] = 0

646 }

647 count := counts["30"]

648 printBanner (80, 80, 2, count , b)

649 b.ResetTimer ()

650 benchKeyGen(b, 10, big.NewInt (80), big.NewInt (2), crypto.SHA256)

651 counts["30"] = count + 1

652 }

653 func BenchmarkEval30(b *testing.B) { benchEval(b, 10, big.NewInt (80),

654 big.NewInt (2), crypto.SHA256) }

655 func BenchmarkConstrain30(b *testing.B) {

656 benchConstrain(b, 10, big.NewInt (80), big.NewInt (2), crypto.SHA256)

657 }

658
659 func BenchmarkKeyGen31(b *testing.B) {

660 if counts == nil {

661 counts["31"] = 0

662 }

663 count := counts["31"]

664 printBanner (80, 80, 3, count , b)

665 b.ResetTimer ()

666 benchKeyGen(b, 10, big.NewInt (80), big.NewInt (3), crypto.SHA256)

667 counts["31"] = count + 1

668 }

669 func BenchmarkEval31(b *testing.B) { benchEval(b, 10, big.NewInt (80),

670 big.NewInt (3), crypto.SHA256) }

671 func BenchmarkConstrain31(b *testing.B) {

672 benchConstrain(b, 10, big.NewInt (80), big.NewInt (3), crypto.SHA256)

673 }

674
675 func BenchmarkKeyGen32(b *testing.B) {

676 if counts == nil {

677 counts["32"] = 0

678 }

679 count := counts["32"]

680 printBanner (80, 80, 4, count , b)

681 b.ResetTimer ()

682 benchKeyGen(b, 10, big.NewInt (80), big.NewInt (4), crypto.SHA256)

683 counts["32"] = count + 1

684 }

685 func BenchmarkEval32(b *testing.B) { benchEval(b, 10, big.NewInt (80),

686 big.NewInt (4), crypto.SHA256) }

687 func BenchmarkConstrain32(b *testing.B) {

688 benchConstrain(b, 10, big.NewInt (80), big.NewInt (4), crypto.SHA256)

689 }

690
691 func BenchmarkKeyGen40(b *testing.B) {

692 if counts == nil {
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693 counts["40"] = 0

694 }

695 count := counts["40"]

696 printBanner (128, 128, 2, count , b)

697 b.ResetTimer ()

698 benchKeyGen(b, 16, big.NewInt (128), big.NewInt (2), crypto.SHA256)

699 counts["40"] = count + 1

700 }

701 func BenchmarkEval40(b *testing.B) { benchEval(b, 16, big.NewInt (128),

702 big.NewInt (2), crypto.SHA256) }

703 func BenchmarkConstrain40(b *testing.B) {

704 benchConstrain(b, 16, big.NewInt (128), big.NewInt (2), crypto.SHA256)

705 }

706
707 func BenchmarkKeyGen41(b *testing.B) {

708 if counts == nil {

709 counts["41"] = 0

710 }

711 count := counts["41"]

712 printBanner (128, 128, 3, count , b)

713 b.ResetTimer ()

714 benchKeyGen(b, 16, big.NewInt (128), big.NewInt (3), crypto.SHA256)

715 counts["41"] = count + 1

716 }

717 func BenchmarkEval41(b *testing.B) { benchEval(b, 16, big.NewInt (128),

718 big.NewInt (3), crypto.SHA256) }

719 func BenchmarkConstrain41(b *testing.B) {

720 benchConstrain(b, 16, big.NewInt (128), big.NewInt (3), crypto.SHA256)

721 }

722
723 func printBanner(lambda , ell , r, count int , b *testing.B) {

724 if count < 1 {

725 log.Printf("\n")

726 log.Printf("lambda = %v; ell = %v; r = %v; \n", lambda , ell , r)

727 log.Printf("------------------------------------------\n")

728 log.Printf("\n")

729 }

730 }

345



A CPRF source code

Package prf

Package prf contains the source code for the underlying PRFmechanism that we use in our con-
struction. This code is very simple, using the Go native crypto/hmac package to implement an
hmac PRF using the SHA-256 hash function. As we mentioned before, in the random oracle
model this is a PRF. The source code follows below.

prf.go

1 package prf

2
3 import (

4 "crypto"

5 "crypto/hmac"

6 _ "crypto/sha256"

7 "hash"

8 )

9
10 type PRF struct {

11 F hash.Hash

12 }

13
14 func InitPRF(h crypto.Hash , k []byte) *PRF {

15 hmac := hmac.New(h.New , k)

16 return &PRF{F: hmac}

17 }

18
19 func (prf *PRF) Eval(x []byte) []byte {

20 F := prf.F

21 return F.Sum(x)

22 }
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Package util

Package util contains all of the source code for utility functions that are used globally by the
cprf package. The source code is given below.

utils.go

1 package util

2
3 import (

4 "math/big"

5 )

6
7 // Finds the number of unique indices in an integer array

8 func Unique(n []*big.Int) int {

9 z := 1

10 for i := 0; i < len(n)-1; i++ {

11 if n[i].Cmp(n[i+1]) == 1 {

12 z++

13 }

14 }

15 return z

16 }

17
18 // generate viable indices for PRF keys

19 func IndexGen(l, r *big.Int , cprfKeyLen *big.Int) [][]* big.Int {

20 arr := make ([][]* big.Int , cprfKeyLen.Int64 ())

21 rem := new(big.Int).Sub(cprfKeyLen , big.NewInt (1))

22 rem64 := rem.Int64()

23 for rem64 >= 0 {

24 arr[rem64] = initZeroBigIntSlice(r.Int64 ())

25 newRem := rem

26 for i := r.Int64() - 1; i >= 0; i-- {

27 div := new(big.Int).Exp(l, big.NewInt(i), nil)

28 arr[rem64][i] = new(big.Int).Div(newRem , div)

29 newRem = new(big.Int).Mod(newRem , div)

30 if newRem.Cmp(big.NewInt (0)) == 0 {

31 break

32 }

33 }

34 arr[rem64] = quickSort(arr[rem64])

35 rem = new(big.Int).Sub(rem , big.NewInt (1))

36 rem64 --

37 }

38 arrDedup := dedupIntSlice(arr , r.Int64 ())

39 return arrDedup

40 }
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41
42 // Takes an array of integers and joins into a string

43 // Slices are assumed to be ordered

44 // pipes are used to separate indices in the string

45 func JoinBigIntSlice(s []*big.Int) string {

46 res := ""

47 for i := 0; i < len(s); i++ {

48 c := s[i]. String ()

49 res += c

50 if i < len(s)-1 {

51 res += "|"

52 }

53 }

54 return res

55 }

56
57 func quickSort(data []*big.Int) []*big.Int {

58 if len(data) > 1 {

59 pivot := data [0]

60 smaller := make ([]* big.Int , 0, len(data))

61 larger := make ([]* big.Int , 0, len(data))

62 equal := make ([]* big.Int , 1, len(data))

63 equal [0] = pivot

64 for i := 1; i < len(data); i++ {

65 if data[i].Cmp(pivot) == -1 {

66 larger = append(larger , data[i])

67 } else if data[i].Cmp(pivot) == 1 {

68 smaller = append(smaller , data[i])

69 } else if data[i].Cmp(pivot) == 0 {

70 equal = append(equal , data[i])

71 }

72 }

73 return append(append(quickSort(smaller), equal ...),

74 quickSort(larger )...)

75 } else {

76 return data

77 }

78 }

79
80 // Deduplicate slices in a overarching slice

81 func dedupIntSlice(arr [][]* big.Int , r int64) [][]* big.Int {

82 added := make ([][]* big.Int , 0, len(arr))

83 for i := 0; i < len(arr); i++ {

84 slice := arr[i]

85 foundSame := false

86 for j := 0; j < len(added); j++ {

87 if j == i {

88 continue

89 }
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90
91 if len(slice) != len(arr[j]) {

92 continue

93 }

94
95 same := false

96 for k := 0; k < len(added[j]); k++ {

97 same = true

98 if slice[k].Cmp(added[j][k]) != 0 {

99 same = false

100 break

101 }

102 }

103
104 if same {

105 foundSame = true

106 break

107 }

108 }

109
110 if !foundSame {

111 added = append(added , arr[i])

112 }

113 }

114
115 return added

116 }

117
118 func initZeroBigIntSlice(length int64) []*big.Int {

119 s := make ([]* big.Int , length)

120 for i := 0; i < len(s); i++ {

121 s[i] = big.NewInt (0)

122 }

123 return s

124 }
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Notation Description
λ Security parameter
[n], [n1, n2] {1, . . . , n}, {n1, . . . , n2}
xi;x ∈ {0, 1}∗ i

th bit in x
x|t; x ∈ {0, 1}` xt · · ·x`
x|t; x ∈ {0, 1}` x1 · · ·xt
x|T ; x ∈ {0, 1}`; T = (ti)i∈[m] xt1 · · ·xtm
bitlength(x) Bit length of x ∈ {0, 1}∗
S.pop() Return S[0] and move S[i]→ S[i− 1]
S.append(x) Concatenate x to S
|S| Cardinality of S
x

?
= y Returns 1 if x is equal to y; 0 otherwise
A,B,D PPT adversarial algorithms
y ← D(x) D returns y on input x
negl(λ) Negligible function
CNC1 Log-depth circuit class
CP/poly Poly-depth circuit class
exppropb,A (1λ, sch) Decisional experiments for prop and a scheme sch
exppropA (1λ, sch) Computational experiments for prop and a scheme sch
maxA(Adv(A, prop(1λ, sch))) Advantage of anyA succeeding in distinguishing

experiments exppropb,A (1λ, sch), for a scheme sch
X ≈c Y Computationally indistinguishable distributionsX,Y
X ≈s Y Statistically indistinguishable distributionsX,Y
X ≈p Y Perfectly indistinguishable distributionsX,Y
PC() Predicate forC ∈ C
OY(f(·)) Oracle for f , with domainY
AOY (f(·)) A has oracle access to f
AOY (f(·),ϕ) Oracle access where queries are stored inϕ
AOY (f(·);[r]) Oracle access with query upper bound of r ∈ N
C, S Client and server
C[x] Client holding input x
ψ1(C, x) Protocol step one computed by client, with input x
pp Public Parameters
(pk, sk) Typical asymmetric key pair
msk Master secret key
A, v Matrix and vector notation
vi vi = v[i]
G Cyclic group
p, q Reserved for group orders or ring moduli
φ(X) Cyclotomic polynomial
R Z[X]/(φ(X))
Rq Zq[X]/(φ(X))

Table A: Summary of notation
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Acronyms

AHE Additively Homomorphic Encryption
BF Bloom filter
BitFix Bit-fixing
BPUA Branching Program Unannihilatability Assumption
CDN Content Delivery Network
DCRA Decisional composite residuocity assumption
DDH Decisional Diffie-Hellman
DL Discrete log
DSS Digital Signature Scheme
FHE Fully Homomorphic Encryption
GES Graded encoding scheme
HE Homomorphic Encryption
ID-NIKE Identity-based non-interactive key exchange
iff if and only if
IO Indistinguishability obfuscation
LR Left-right
LWE Learning with errors
MDDH Multilinear DDH
MHE Multiplicatively Homomorphic Encryption
MMAP Multilinear map
OPE Oblivious Polynomial Evaluation
OPRF Oblivious Pseudorandom Function
OT Oblivious transfer
OWF One-way function
PKE Public-key Encryption
PPT Probabilistic Polynomial Time
PRF Pseudorandom Function
PSI Private Set Intersection
PSI-CA Private Set Intersection Cardinality
PSO Private Set Operation
PSU Private Set Union
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Acronyms

PSU-CA Private Set Union Cardinality
PSU/I-CA Private Set Union/Intersection Cardinality
RLWE Ring learning with errors
ROM Random oracle model
RTT Round trip time
s.t. such that
SHE Somewhat Homomorphic Encryption
SKE Symmetric-key Encryption
VBB Virtual black-box
VOPRF Verifiable Oblivious Pseudorandom Function
whp with high probability
wlog without loss of generality
wrt with respect to
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