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Boundary effect in competition processes
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Abstract

This paper is devoted to studying the long-term behaviour of a continuous time

Markov chain that can be interpreted as a pair of linear birth processes which evolve

with a competitive interaction; as a special case, they include the famous Lotka-

Volterra interaction. Another example of our process is related to urn models with

ball removals. We show that, with probability one, the process eventually escapes to

infinity by sticking to the boundary in a rather unusual way.

Keywords: Markov chain, birth-and-death process, competition process, Friedman’s urn

model, Lyapunov function, martingale.
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1 The model and results

In this paper we study the long term behaviour of a continuous time Markov chain (CTMC)

with values in Z
2
+, where Z+ is the set of all non-negative integers, defined on a certain

probability space with probability measure P. The Markov chain jumps only to the nearest

neighbours, and we consider two types of transition rates described below.

Transition rates of type I. Given the state (x1, x2) ∈ Z
2
+ the Markov chain jumps to

(x1 + 1, x2) with rate λ1 + α1x1,

(x1, x2 + 1) with rate λ2 + α2x2,

(x1 − 1, x2) with rate x1g1(x2) if x1 > 0,

(x1, x2 − 1) with rate x2g2(x1) if x2 > 0,

(1)

where αi, λi > 0, i = 1, 2, and gi, i = 1, 2 are some non-negative functions. We call

the Markov chain with transition rates of type I a competition process with non-linear

interaction (specified by functions g1 and g2).

∗Department of Mathematics, Royal Holloway, University of London, UK. Email address:

vadim.shcherbakov@rhul.ac.uk
†Centre for Mathematical Sciences, Lund University, Sweden. Email address: s.volkov@maths.lth.se

1

http://arxiv.org/abs/1801.09875v3


Transition rates of type II. Given the state (x1, x2) ∈ Z
2
+ the Markov chain jumps to

(x1 + 1, x2) with rate λ1 + α1x1,

(x1, x2 + 1) with rate λ2 + α2x2,

(x1 − 1, x2) with rate β1x2 if x1 > 0,

(x1, x2 − 1) with rate β2x1 if x2 > 0,

(2)

where αi, λi ≥ 0, i = 1, 2 and βi > 0, i = 1, 2. We call the Markov chain with

transition rates of type II a competition process with linear interaction.

Competition processes with both non-linear and linear interaction belong to a class of

competition processes introduced in [12] as a natural two-dimensional analogue of the

birth-and-death process in Z+. In [12], the competition process was defined as a CTMC

with values in Z
2
+, where the transitions are allowed only to the nearest neighbour states

(see Section 3 below). This definition was generalised to a multidimensional case in [4], [5].

Some basic models of competition processes are discussed in [1]. The term “a competition

process” was apparently coined due to the fact that original examples of such processes

were motivated by modelling a competition between populations (e.g. see [12, Examples 1

and 2] and references therein). One of the most known competition processes is the one

specified by the famous Lotka-Volterra interaction. In our notation, the Lotka-Volterra

interaction corresponds to functions gi(z) = z, i = 1, 2 in the case of transition rates of

type I. If, in addition, λi = 0, i = 1, 2 in the Lotka-Volterra case, then we get a competition

process given in [12, Example 1].

The competition processes with both non-linear and linear interactions can be inter-

preted in terms of interacting birth-and-death processes. Indeed, if in both cases the death

rates are equated to zero, that is g1 = g2 ≡ 0 in (1) and β1 = β2 = 0 in (2), then the cor-

responding Markov chain is formed by two independent linear birth processes with immig-

ration. Non-zero death rates determine competitive interaction between the components.

Therefore, the competition processes of interest can be naturally embedded into a more

general technical framework of multivariate Markov processes formulated in terms of locally

interacting birth-and-death processes. In the absence of interaction components of such a

Markov process evolve as a collection of independent birth-and-death processes, which long

term behaviour is well known. Namely, given a set of transition rates one can, in principle,

determine whether the corresponding birth-and-death process is recurrent/positive recur-

rent, or transient/explosive, and compute various characteristics of the process. However,

the presence of interaction can significantly change the collective behaviour of the system

(e.g. see [6], [10] and [13]).

Furthermore, note that a discrete time Markov chain, DTMC for short, corresponding

to the competition process with linear interaction, can be regarded as an urn model with

ball removals. In the symmetric case, that is α1 = α2, β1 = β2 and λ1 = λ2, this DTMC

is similar, in a sense, to Friedman’s urn model. This similarity enabled us to adapt the

Freedman’s method for Friedman’s urn model ([3]) in order to obtain a key fact in the
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proofs. We discuss this method in detail in Section 2.3.1 below. If both α1 = α2 = 0 and

λ1 = λ2 = 0, then DTMC corresponding to the competition process with linear interaction

coincides with the well-known OK Corral model (see e.g. [7]). If α1 = α2 = 0 and λ1, λ2 > 0

then the corresponding competition process can be interpreted as the OK Corral model with

“resurrection”.

Theorems 1 and 2 below are the main results of the paper. These theorems show

that competition processes with both non-linear and linear interaction have similar, rather

unusual, long term behaviour. Note that in the theorems and later in the proofs we use

the following notation:

i∗ =

{

2, if i = 1;

1, if i = 2

(i.e. “the other coordinate”).

Theorem 1. Let ξ(t) be a competition process with non-linear interaction (transition rates

of type I) specified by functions g1, g2 : [0,∞) → [0,∞). Assume that

• g1 and g2 are regularly varying functions with indexes ρ1 > 0 and ρ2 > 0 respectively,

such that g1(0) = g2(0) = 0 and g1(x), g2(x) > 0 for all x > 0;

• αi, λi > 0, i = 1, 2.

Then ξ(t) is a non-explosive transient CTMC and P (B1 ∪B2) = 1, where

Bi =

{

ξi(t) → ∞, 0 = lim inf
t→∞

ξi∗(t) < lim sup
t→∞

ξi∗(t) = 1

}

, i = 1, 2.

Theorem 2. Let ξ(t) be a competition process with linear interaction (transition rates of

type II) specified by parameters αi ≥ 0, λi > 0 and βi > 0, i = 1, 2. Then ξ(t) is a

non-explosive transient CTMC and P (A1

⋃

A2) = 1, where for i = 1, 2

Ai =

{

lim
t→∞

ξi(t) = ∞, lim inf
t→∞

ξi∗(t) = 0, lim sup
t→∞

ξi∗(t) = κi⋆

}

and

κi = κi(αi∗) =

{

1, if αi∗ > 0;

2, if αi∗ = 0.
(3)

The proof of each theorem consists of two parts. First, we show that, with probability

bounded below uniformly over the initial position on the coordinate axes, the process sticks

to the boundary of the quarter plane in the following way. Namely, one of the components

of the process tends to infinity while the other component takes only values 0 and 1 (0, 1

and 2 in the special case of Theorem 2) oscillating infinitely often between these values,

as described. This is what we call the boundary effect. This step of the proof is the

subject of Lemma 1 (Theorem 1) and Lemma 4 (Theorem 2). In order to prove each

lemma we construct a so-called Lyapunov function for the well-known transience criterion
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of a countable Markov chain (e.g. see [9, Theorem 2.5.8]). This allows us to show that

the Markov chain is confined to a strip along the boundary, as described. Then this fact is

complemented by an argument based on the Borel-Cantelli lemma that gives the oscillation

effect, i.e. the process transits from one level of the strip to another infinitely often. In

both cases, this implies that the Markov chain under consideration is transient and, with

positive probability, escapes to infinity in a certain way.

Intuitively, it seems rather clear that if the process is already at the boundary, then it

prefers to stay near the boundary in the future. We use the Lyapunov function method to

transform this intuition into a rigorous argument in Lemmas 1 and 4. Although a direct

probabilistic proof might be possible in proving both lemmas, we prefer to use the general

method, which can be used in other cases, where a direct probabilistic argument might

become cumbersome. For example, this is the case in the model in [10], where a similar

boundary effect was originally observed for a pair of interacting birth-and-death processes.

In fact, we borrow the idea of the construction of the Lyapunov function from that article.

Another key step of the proof of both theorems consists of showing that the process

hits the boundary with probability one. Note that in applications of competition processes

to population modelling the hitting time is interpreted as the extinction time of one of

the competing populations. Therefore, determining whether the hitting time is finite is of

interest in its own right. Sufficient conditions for finiteness of the hitting time and its mean

are given in [12] for competition process in Z
2
+. These conditions are rather restrictive,

which is not surprising as these conditions were obtained for very general assumptions on

the transition characteristic of the competition process. For example, it is possible to use

them only in some special cases of competition processes in Theorems 1 and 2 (see a dis-

cussion in Section 3). We use a direct probabilistic argument in order to show finiteness of

the mean hitting time in the case of the competition process with non-linear interaction in

Theorem 1 and also in the case of the competition process with linear interaction in The-

orem 2 under assumption α1α2 < β1β2. However, neither this argument nor results of [12]

can be applied in the case of the competition process with linear interaction (Theorem 2)

under assumption α1α2 > β1β2. In this particular case showing that the process hits the

boundary almost surely is somewhat reminiscent to showing non-convergence to an un-

stable equilibrium in processes with reinforcement (e.g. urn models). Often the method of

stochastic approximation is used to show such non-convergence (see e.g. [11] and references

therein). Further, showing that the hitting time is finite in this case of the linear model

is similar also to showing that a non-homogeneous random walk exits a cone, where the

Lyapunov function method proved to be useful (e.g. see [8] and references therein).

Although our model is similar to both urn models with ball removals, and to non-

homogeneous random walks, we were unable to apply the above research techniques and

used a different method instead. Our method is a modification of a method used in [3]

for studying Friedman’s urn model. The original method consists of estimating moments

of certain martingales related to the process of interest. The similarity of the competition

process with linear interaction with Friedman’s urn model allows us to adapt this idea (see
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Section 2.3.1 for details).

2 Proofs

In what follows, E denotes the expectation with respect to the probability measure P.

2.1 Proof of Theorem 1

Lemma 1. There exists ε > 0, depending on the model parameters only, such that

inf
x1≥0

P

(

Ã1|ξ(0) = (x1, 0)
)

≥ ε and inf
x2≥0

P

(

Ã2|ξ(0) = (0, x2)
)

≥ ε,

where Ãi = {ξi(t) → ∞ and ξi⋆(t) ∈ {0, 1}, ∀t ≥ 0}.

Proof of Lemma 1. We prove only the first bound of the lemma, that is when the process

starts at ξ(0) = (x1, 0). The other bound will follow by symmetry. In order to simplify

notation we denote x = x1 and y = x2 in the rest of the proof. Given positive numbers ν

and µ define the following function on Z
2
+ \ (0, 0)

f(x, y) =















x−ν − x−µ, if y = 0;

x−ν , if y = 1;

1, if y ≥ 2.

(4)

In the rest of the proof of this lemma we assume that

0 < ν < µ < min(ρ1, ρ2). (5)

Denote G the generator of CTMC ξ(t) with transition rates (1). From state (x, 0), where

x > 0, transitions are possible only to states (x+1, 0) and (x, 1) with rates λ1+α1x and λ2

respectively. Therefore,

Gf(x, 0) = (λ1 + α1x)
(

(x+ 1)−ν − x−ν − (x+ 1)−µ + x−µ
)

+ λ2x
−µ. (6)

Given γ > 0, Taylor’s expansion formula shows that

(x± 1)−γ − x−γ = ∓γx−1−γ + o
(

x−1−γ
)

(7)

for sufficiently large x > 0. Applying this expansion for the polynomial terms on the right

hand side of (6) we obtain that

Gf(x, 0) ≤ x−ν
(

−α1ν + (α1µ+ λ2)x
−µ+ν + o(1)

)

≤ 0, (8)

for all sufficiently large x, as 0 < ν < µ.
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Next, given state (x, 1), where x > 0, the Markov chain can jump only to states (x+1, 1),

(x − 1, 1), (x, 2) and (x, 0), and these jumps occur with rates λ1 + α1x, x · g1(1), λ2 + α2

and g2(x) · 1 respectively. Therefore,

Gf(x, 1) = (λ1 + α1x)
(

(x+ 1)−ν − x−ν
)

+ xg1(1)
(

(x− 1)−ν − x−ν
)

+ (λ2 + α2)
(

1− x−ν
)

+ g2(x)
(

x−ν − x−µ − x−ν
)

= −g2(x)x
−µ +O(1)

by applying the expansion (7). Recall that g2 is a regularly varying function with index

ρ2 > 0, that is g2(x) = xρ2 l(x), where l is a slowly varying function (e.g. see [2] for

definitions). Since µ < min(ρ1, ρ2) (see (5)), we get that g2(x)x
−µ = xρ2−µl(x) → ∞ as

x → ∞. This results in

Gf(x, 1) ≤ 0 (9)

for all sufficiently large x. Define the following stopping time

σ = inf(t : ξ(t) /∈ {x ≥ N + 1 and y ≤ 1}),

where integer N is such that the bounds (8) and (9) hold for all x > N . These bounds

imply that the random process Z(t) := f(ξ(t ∧ σ)) is a supermartingale. Since Z(t) ≥ 0,

we conclude that Z(t) converges almost surely to a finite limit Z∞. Next, note that on

the event {σ = ∞} we must have ξ1(t) → ∞, otherwise, if lim supt→∞ ξ1(t) = A < ∞,

then Z(t) cannot converge due to the fact that f is not constant on set {0, 1, . . . , A}×{0, 1}

which is irreducible for the chain. Consequently,

Z∞ =

{

1 or f(N, 0) = N−ν −N−µ or f(N, 1) = N−ν , if σ < ∞,

0, if σ = ∞.

Assume that the initial position of the process is (x, 0), where x ≥ N + 1. By the optional

stopping theorem

(N−ν −N−µ)P(σ < ∞) ≤ E(Z∞) ≤ Z(0) = f(x, 0) = x−ν
0 − x−µ,

so that

P(σ < ∞) ≤
f(x0, 0)

f(N, 0)
≤

f(N + 1, 0)

f(N, 0)
= 1− ε′ < 1

for some ε′ > 0, due to the monotonicity of the function x−ν − x−µ for positive x. Thus,

if ξ(0) = (x, 0), where x ≥ N + 1, then, with probability at least ε′, the process ξ(t) stays

in set {N + 1, N + 2, . . . } × {0, 1} forever. Further, for each initial position (x, 0), where

x ∈ {0, 1, . . . , N}, with a strictly positive probability, the process reaches state (N + 1, 0)

without exiting set {y = 0, 1} ∈ Z
2
+ (e.g. by just jumping only to the right). Consequently,

P(σ = ∞|ξ(t) = (x, 0)) is bounded away from zero uniformly over x ≥ 0. On this event

ξ1(t) → ∞ a.s.
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Lemma 2 (Lemma 7.3.6 in [9]). Let Yt ≥ 0, t ≥ 0, be a process adapted to a filtration Gt,

t ≥ 0, and let T be a stopping time. Suppose that there exists ε > 0 such that

E [dYt|Gt−] ≤ −εdt on {t ≤ T}.

Then E[T |G0] ≤ Y0/ε.

Lemma 3. Define τ = inf{t : ξ1(t) = 0 or ξ2(t) = 0}. Then τ is a.s. finite.

Proof of Lemma 3. It is easy to see that the infinitesimal mean jump of component ξi(t)

computed as

E(ξi(t + dt)− ξi(t)|ξ(t) = (x1, x2)) = (λi + (αi − gi(xi⋆))xi)dt + o(dt), i = 1, 2,

is negative and bounded away from zero in domain {xi ≥ 1, xi⋆ ≥ Ci⋆}, i = 1, 2, where

both C1 and C2 are large enough. Now Lemma 2 yields that in a finite mean time the

Markov chain hits the boundary.

Remark 1. Note that in the case of the competition process with Lotka-Volterra interac-

tion (mentioned in the introduction), the lemma follows from [12, Theorem 5].

Let us finish the proof of the theorem. Let Tj be the duration of j-th visit to set

DN = {x1 > N, x2 ≤ 1} ∪ {x1 ≤ 1, x2 > N}, where N is chosen in the proof of Lemma 1.

This lemma yields that P(Tj < ∞) ≤ 1−ε on {Tj−1 < ∞}. Consequently, with probability

one, Tj < ∞ only for finitely many j, and the process eventually confines to set DN .

Finally, suppose for definiteness that the absorbing set is {x1 > N, x2 ≤ 1}. Since the

drift of ξ2(t) at x2 = 1 is directed down, the process eventually jumps from level x2 = 1 to

level x2 = 0. On the other hand, the process cannot stay forever at axis x2 = 0 as λ2 > 0.

Thus, the Markov chain goes to infinity oscillating between levels x2 = 0 and x2 = 1 as

claimed. Theorem 1 is proved.

2.2 Proof of Theorem 2

We start with the following lemma which is similar to Lemma 1.

Lemma 4. There exists ε > 0, depending on the model parameters only, such that

inf
x1≥0

P

(

Ã1|ξ(0) = (x1, 0)
)

≥ ε and inf
x2≥0

P

(

Ã2|ξ(0) = (0, x2)
)

≥ ε,

where

Ãi =

{

ξi(t) → ∞ and ξi⋆(t) ∈ {0, 1}, ∀t ≥ 0, if αi > 0,

ξi(t) → ∞ and ξi⋆(t) ∈ {0, 1, 2}, ∀t ≥ 0, if αi = 0.
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Proof. Denote x = x1 and y = x2 for simplicity of notations. We prove the lemma only in

the case ξ(0) = (x, 0). The proof in the case, where the initial position of the process is on

the other axis, is identical.

First, assume that α1 > 0. Consider function f defined in (4) with parameters µ and ν

such that

0 < ν < µ < 1.

Let G be the generator of the competition process with linear interaction. Given x > 0

transitions from state (x, 0) are possible only to states (x+1, 0) and (x, 1). These transitions

occur with rates λ1 + α1x and λ2 respectively. Using equation (7) we obtain that

Gf(x, 0) = (λ1 + α1x)
(

(x+ 1)−ν − x−ν − (x+ 1)−µ + x−µ
)

+ λ2x
−µ

= −να1x
−ν + (µα1 + λ2)x

−µ + o
(

x−ν
)

+ o
(

x−µ
)

≤ 0,
(10)

for sufficiently large x > 0, as ν < µ.

Now, given that x > 0, the transitions from state (x, 1) to states (x + 1, 1), (x − 1, 1),

(x, 2) and (x, 0) occur with rates λ1 + α1x, β1, λ2 + α2 and β2x respectively. Therefore,

using equation (7) one more time we obtain that

Gf(x, 1) = (λ1 + α1x)
(

(x+ 1)−ν − x−ν
)

+ β1

(

(x− 1)−ν − x−ν
)

+ (λ2 + α2)
(

1− x−ν
)

− β2x
1−µ

≤ −να1x
−ν + λ2 + α2 − β2x

1−µ + o(x−ν) ≤ 0,

(11)

for all sufficiently large x, as µ < 1.

Next, given N > 0 define

σ = inf(t : ξ(t) /∈ {x > N, y = 0, 1}).

Assume that N is so large that the bounds (10)) and (11) hold for x > N . Then Z(t) =

f(ξ(t ∧ σ)) is a non-negative supermartingale. The proof can be finished by using the

argument based on the optional stopping theorem, in a manner similar to the proof of

Lemma 1.

Assume now that α1 = 0. In this case, instead of function (4) we consider the following

function

g(x, y) =























1
lnx

− 1
ln3 x

− λ1/λ2

x ln2 x
+ 1

x ln3 x
, if y = 0;

1
lnx

− 1
ln3 x

, if y = 1;
1

lnx
, if y = 2;

1, if y ≥ 3.
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Using Taylor’s expansion, we obtain that

Gg(x, 0) ≤ −
λ2

x ln3 x
+O

(

1

x ln4 x

)

≤ 0,

Gg(x, 1) ≤ −
β2λ1/λ2

ln2 x
+O

(

1

ln3 x

)

≤ 0,

Gg(x, 2) ≤ −
β2x

ln3 x
+O (1) ≤ 0,

(12)

for all sufficiently large x. The rest of the proof is analogous to the proof in case α1 > 0

above, and we skip the details.

The other key ingredient of the proof is the following lemma, which is verbatim of

Lemma 3 in the proof of Theorem 1.

Lemma 5. Define τ = inf{t : ξ1(t) = 0 or ξ2(t) = 0}. Then τ is a.s. finite.

Lemma 5 is proved in Section 2.3. Similarly to the proof of Theorem 1, it follows from

Lemma 4 and Lemma 5 that, with probability 1, the process eventually confines either to

set {x2 ≤ κ2}, or to set {x1 ≤ κ1}, where κi, i = 1, 2 are defined in (3). Suppose now

for definiteness that the absorbing set is {x2 ≤ κ2} and consider the following two cases.

First, suppose that α1 > 0, so that κ2 = 1. In this case the process cannot stay forever at

line x2 = 0. Indeed, let (aj , 0), j ≥ 1 be a sequence of points successively visited by the

Markov chain on line x2 = 0. The probability of jump (aj, 0) → (aj , 1) can be bounded

below by O(1)/(a1 + j) (for instance, consider the worst case scenario, when the process

always jumps to the right); therefore, by the conditional Borel-Cantelli lemma, there are

infinitely many jumps from line x2 = 0 to line x2 = 1. Combining this with Lemma 5, or,

simply noting that the probability of a jump from line x2 = 1 to line x2 = 0 is bounded

below (it tends to β2/(α1 + β1 + β2) as x → ∞) one can conclude that the process cannot

stay forever at line x2 = 1 as well; hence, it goes to infinity oscillating between lines x2 = 0

and x2 = 1, as claimed.

Finally, suppose that α1 = 0 in which case κ2 = 2. The probability of transition

(x1, 0) → (x1, 1) is equal to λ2/(λ1+λ2) for all x1, so that the Markov chain cannot forever

stay at x2 = 0. Similarly to the above, let (aj , 1), j ≥ 1 be a sequence of points successively

visited by the Markov chain on line x2 = 1. The probability of jump (aj , 1) → (aj , 2) can

be bounded below by O(1)/(a1+ j). Again, by the conditional Borel-Cantelli lemma, there

are infinitely many jumps from line x2 = 1 to line x2 = 2. Combining this with Lemma 5,

or, simply noting that probabilities of jumps both from line x2 = 2 to line x2 = 1, and from

line x2 = 1 to line x2 = 0, are bounded below by constants, we obtain that the process

goes to infinity oscillating between lines x2 = 0 and x2 = 2, as described.

2.3 Proof of Lemma 5

Note that each of the following lines x2 = α1x1+λ1

β1
(line l1) and x2 = β2x1−λ2

α2
(line l2)

divides Z
2
+ into two parts. The infinitesimal drift of ξ1(t) is negative above the line l1,
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and positive below it. Similarly, the infinitesimal drift of ξ2(t) is negative below line l2
and positive above it. There are two cases of mutual location of lines l1 and l2, namely,

α1α2 < β1β2 and α1α2 > β1β2.

If α1α2 < β1β2, then line l2 is located above line l1 in the positive quarter plane. Both

process components have negative drift in the domain between the lines. Moreover, the drift

of one of the process components remains negative outside the negative cone. Consequently,

with probability 1, the process eventually hits the axes. The formal proof is similar to the

case of competition processes with non-linear interaction in Theorem 1, therefore we skip

the details. In addition, finiteness of the hitting time in this case follows from results in [12]

(see Section 3).

The case α1α2 ≥ β1β2 is different from the previously considered cases. In order to

explain this, assume for a moment that α1α2 > β1β2. Then there is a positive drift in both

coordinates in the domain between lines l1 and l2. If the process starts outside the domain,

where the drift of the smallest component is strictly negative, then this component becomes

zero in a finite mean time by the same reasoning as in all previous cases. However, if the

initial position of the process is inside the domain, then one has to show that the process

eventually leaves the domain.

The proof of the lemma in this case is given in Section 2.3.2. The proof is based on an

appropriately modified method used in [3] for analysis of Friedman’s urn model. The main

idea of the original method is explained in Section 2.3.1.

2.3.1 Freedman’s method for Friedman’s urn model

In this section we explain the main idea of Freedman’s method for Friedman’s urn model.

First, recall that Friedman’s urn model with parameters α ≥ 0 and β ≥ 0 describes a

DTMC (Wn, Bn) ∈ R
2
+ \ (0, 0) evolving as follows. Given (Wn, Bn) = (W,B) the Markov

chain jumps to (W + α,B + β) with probability W/(W +B), and to (W + β,B + α) with

probability B/(W +B). In order to demonstrate the main idea of the method we are going

to consider another Markov chain (the auxiliary process) instead. The auxiliary process

is a DTMC (Xn, Yn) ∈ Z
2
+ \ (0, 0) evolving as follows. Given (Xn, Yn) = (x, y) it jumps

to states (x + 1, y) and (x, y + 1) with probabilities αx+βy
(α+β)(x+y)

and αy+βx
(α+β)(x+y)

respectively.

Similar to competition processes with linear interaction, DTMC (Xn, Yn) takes values in

the integer quarter plane and jumps to the nearest neighbour states. There is also a certain

similarity between transition probabilities of (Xn, Yn) and the competition processes with

linear interaction, although the interaction between Xn and Yn can now be regarded as

cooperative rather than competitive. Furthermore, the auxiliary process and Friedman’s

urn model are closely related, since

Wn = αXn + βYn

Bn = βXn + αYn.

10



In other words, Xn (Yn resp.) can be viewed as the number of times a white (black resp.)

colour has been picked up in Friedman’s urn model by time n. Without loss of generality,

we apply the Freedman’s method to the auxiliary process (Xn, Yn). Given α ≥ 0 and β ≥ 0

define

ρ =
α− β

α + β
. (13)

Theorem 3 below describes the asymptotic behaviour of the auxiliary process under certain

assumptions. The theorem is almost a verbatim copy of a part of Theorem 3.1 in [3] for the

original Friedman’s urn model with parameters α and β. We state and prove the theorem

for the auxiliary process for the following reason. There is certain similarity between our

competition process and the auxiliary process, which allows to adapt the idea of the proof of

Theorem 3 for our purposes, therefore we provide the proof here for the readers convenience.

Theorem 3. If ρ > 1/2 then n−ρ(Xn−Yn) converges almost surely to a non-trivial random

variable.

Proof. Define the difference between the components Xn and Yn as Un = Xn − Yn, and

their total amount as Sn = Xn + Yn; note that Sn = S0 + n. We have

E (Un+1|Un) = Un

(

1 +
α− β

(α+ β)Sn

)

= Un

(

1 +
α− β

s+ (α + β)n

)

E
(

U2
n+1|Un

)

= U2
n

(

1 +
2(α− β)

(α + β)Sn

)

+ 1 = U2
n

(

1 +
2(α− β)

s+ (α + β)n

)

+ 1,

(14)

where s = (α + β)S0. Denote

an(j) =

(

1 +
(α− β)j

s+ (α + β)n

)

, j = 1, 2.

In these notations we get that

E (Un+1|Un) = Unan(1),

E
(

U2
n+1|Un

)

= U2
nan(2) + 1.

(15)

The first equation in the preceding display means that

Zn := Un

n−1
∏

k=0

a−1
k (1), n ≥ 1, (16)

is a martingale. The second equation gives

E
(

U2
n+1

)

= E
(

U2
n

)

an(2) + 1.

Using this identity recursively, we arrive at the following equation

E
(

U2
n+1

)

=

(

U2
0 +

n
∑

j=0

j
∏

k=0

a−1
k (2)

)

n
∏

k=0

ak(2).

11



Note that
m
∏

k=0

ak(j) = (Cj + o(1))mjρ, j = 1, 2,

for some C1, C2 > 0, so that
∞
∑

j=0

j
∏

k=0

a−1
k (2) < ∞,

as ρ > 1/2. Consequently, supn n
−2ρ

E(U2
n) < ∞. Now Doob’s convergence theorem implies

that martingale Zn defined in (16) converges almost surely to a finite limit as n → ∞.

Theorem 3 is thus proved.

2.3.2 Proof of Lemma 5 in case α1α2 > β1β2

Proof in the symmetric case. We start with the symmetric case λ1 = λ2 = λ, α1 = α2 = α

and β1 = β2 = β, where α > β, in order to provide an intuition for the way how the proof

works. Denote by ζ(n) = (ζ1(n), ζ2(n)) ∈ Z
2
+, n ∈ Z+, the DTMC corresponding to

CTMC ξ(t). Let {Fn}
∞
n=1 be the standard natural filtration associated with the Markov

chain ζ(n). Define

Sn = ζ1(n) + ζ2(n), Un = ζ1(n)− ζ2(n), τ = min{m : ζ1(m) = 0 or ζ2(m) = 0}. (17)

Assume that P(τ = ∞) > 0 and get a contradiction. First, observe that

E
(

U2
n+1|Fn

)

= U2
n

(

1 +
2(α + β)

2λ+ (α + β)Sn

)

+ 1 on the event {τ > n}. (18)

Remark 2. This expression is quite similar to the second equation in (14); the fundamental

difference is that the sum of the components, i.e. Sn, is now a random process. This is in

contrast to both the auxiliary process and Friedman’s urn model (as well as to other urn

models without ball removals), where the sum of the components is a deterministic, usually

linear, function of n. The main idea of what follows below is that the long-term behaviour

of Sn can be effectively controlled due to its simple asymptotic behaviour.

Trivially, Sn+1 − Sn = ±1 and

P(Sn+1 = Sn + 1|Sn) =
λ+ αSn

2λ+ (α + β)Sn
,

P(Sn+1 = Sn − 1|Sn) =
βSn

2λ+ (α + β)Sn
.

The preceding display shows that the long term behaviour of Sn is similar to a homogeneous

simple random walk that jumps right and left with probabilities α
α+β

and β
α+β

respectively.

Therefore, the strong law of large numbers, with some variations1, implies that for any

ε, δ > 0 there exists N such that

P (Sn ∈ [(ρ− δ)n, (ρ+ δ)n], ∀n ≥ N) ≥ 1− ε, (19)

1A rigorous proof can be found further in Lemma 6.
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where ρ is defined in (13).

Further, fix some δ > 0 such that ρ + δ < 1 and an arbitrary ε > 0; according to (19)

there exists an N = N(ε) so large that

σN = min (n > N : Sn /∈ [(ρ− δ)n, (ρ+ δ)n]) .

satisfies

P(σN = ∞) ≥ 1− ε. (20)

It follows from equation (18) and the definition of σN that

E
(

U2
n+1|Fn

)

≥ U2
nbn on {N ≤ n < min (σN , τ)} , (21)

where bn = 1 +
2(α + β)

2λ+ (α + β)(ρ+ δ)n
= 1 +

2n−1

ρ+ δ
+O

(

n−2
)

.

Iterating (21) gives that

E
(

U2
n+1|FN

)

≥ bnbn−1 . . . bN+1bNU
2
N on {N ≤ n < min (σN , τ)} .

Assume n ≥ N everywhere below. Then

n
∏

k=N

bk =
n
∏

k=N

e
2k−1

ρ+δ
+O( 1

k2
) = e

∑n
k=N

[

2k−1

ρ+δ
+O( 1

k2
)
]

≥ C2 · n
2

ρ+δ

for some C2 = C2(N) > 0, so that

E
(

U2
n+1|FN

)

≥ C2 · n
2

ρ+δ 1{n<min(σ,τ)}.

Dividing both sides by n2 and taking the expectation gives

E

(

U2
n+1

n2

)

≥ C2 n
2

ρ+δ
−2

P(n < min(σN , τ)).

The left hand side of the preceding display is uniformly bounded in n, as |Un| ≤ |U0| + n

for all n ≥ 0. On the other hand, bound ρ + δ < 1 implies that n
2

ρ+δ
−2 → ∞ as n → ∞.

Therefore, if limn→∞ P(n < min(σN , τ)) = P(σN = ∞, τ = ∞) > 0, as asserted, then we

get a contradiction. Consequently, P(σN = ∞, τ = ∞) = 0 and

P(τ = ∞) ≤ P(σN = ∞, τ = ∞) + P(σN < ∞) ≤ ε

by (20). Since ε > 0 is arbitrary, P(τ = ∞) = 0.

In turn, this means that the process hits the axes in a finite time a.s., as claimed.
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We are now going to extend the above argument on the general case. Without loss of

generality assume from now on that

α1 ≥ α2. (22)

Let us find the asymptotic equilibrium direction for ζ(n), which will be shown to be

unstable later in the proof. Indeed, if we assume that both λ1 = 0 and λ2 = 0 (they

contribute very little to the birth rates when x and y are large) then the slope of the drift

of the vector field corresponding to our system is given by

α2y − β2x

α1x− β1y
.

It coincides with the slope of the vector (x, y) if and only if x = ry where r solves

1

r
=

α2 − rβ2

rα1 − β1

⇐⇒ β2r
2 + (α1 − α2)r − β1 = 0, (23)

Since x, y ≥ 0, we choose r to be the positive root of (23) which can be written as

r =
−(α1 − α2) +D

2β2

,

where

D =
√

(α1 − α2)2 + 4β1β2 =
√

(α1 + α2)2 + 4(β1β2 − α1α2).

Note that equation (23) can be rewritten as follows

r =
β1 + rα2

α1 + rβ2
. (24)

Define the following variables

R(x, y) = (α1 + β2)x+ (α2 + β1)y + λ1 + λ2,

Rn = R(ζ(n)),
(25)

and

U(x, y) = x− ry − d,

Un = U(ζ(n)),
(26)

where

d = −
2(λ1 − λ2r) + α1 + β2r

2

2(α1 + β2r)
(27)

Assume that x, y > 0. Then

E(U2
n+1|ζ(n) = (x, y)) = (Un + 1)2

λ1 + α1x

Rn
+ (Un − 1)2

β1y

Rn

+ (Un − r)2
λ2 + α2y

Rn
+ (Un + r)2

β2x

Rn

= U2
n + 2(α1 + rβ2)Un

x− β1+rα2

α1+rβ2
y − d

Rn
+

2UnQ1 +Q2(x, y)

Rn

= U2
n

[

1 +
2(α1 + rβ2)

Rn

]

+
2UnQ1 +Q2(x, y)

Rn
. (28)
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where we used equation (24) to rewrite the second term in the third line of the preceding

display and used the notations

Q1 := d(α1 + β2r) + λ1 − rλ2 and Q2(x, y) := (r2β2 + α1)x+ (β1 + r2α2)y.

Consequently,

2UnQ1 +Q2(x, y) = 2(α1 + β2r)

(

d+
2(λ1 − λ2r) + α1 + β2r

2

2(α1 + β2r)

)

x

+
(

β1 + α2r
2 − 2rd(α1 + β2r)− 2r(λ1 − λ2r)

)

y +Q3,

where Q3 = λ1+λ2r
2−2d(λ1−λ2r)−2d2(α1+β2r). Note that the coefficient in front of x

on the right hand side of the preceding equation is equal to 0 by the definition of d in (27).

Further, using again the definition of d, we simplify the coefficient in front of y and arrive

at the following equation

2UnQ1 +Q2(x, y) = (β1 + α1r + α2r
2 + β2r

3)y +Q3.

Note that β1 + α1r + α2r
2 + β2r

3 > 0, therefore,

2UnQ1 +Q2(x, y) > 0, (29)

for all y ≥ y0, where y0 is a value depending on the model parameters.

Equations (28) and (29) imply that

E(U2
n+1|ζ(n) = (x, y)) ≥ U2

n

(

1 +
2(α1 + rβ2)

Rn

)

, if x > 0 and y ≥ y0. (30)

Our next goal is to obtain an upper bound for the total transition rate Rn. Define

S(x, y) = (α1α2 + β1β2 + 2α2β2)x+ (α1α2 + β1β2 + 2α1β1)y,

Sn = S(ζ(n)), (31)

T (x, y) = β2x+ (rβ2 + α1 − α2)y,

Tn = T (ζ(n))

and

ρ̃ = α1α2 − β1β2 = (α2 − rβ2)(α1 + rβ2) > 0. (32)

Remark 3. Note that Un, defined by (26), functions as a measure of departure from

the equilibrium; Rn is the common denominator, Sn is the (almost) constant drift term

(see (34)), while Tn is some sort of a remainder, up to a multiplying coefficient, as it will

be clear later in the proof.
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Now we want to write R(x, y) defined in (25) as a linear combination of S(x, y), T (x, y),

and an extra constant. In order to find the unknown coefficients, observe that both S and T

are linear in x and y with S(0, 0) = T (0, 0) = 0. Therefore, R(x, y) = λ1 + λ2 + k S(x, y) +

l T (x, y) where k and l can be found by solving the elementary system of linear equations

{

∂R(x,y)
∂x

= k ∂S(x,y)
∂x

+ l ∂T (x,y)
∂x

∂R(x,y)
∂y

= k ∂S(x,y)
∂y

+ l ∂T (x,y)
∂y

,

yielding

k =
α1 + rβ2

ρ̃
> 0, l = −

(α1α2 + 2α2β2 + β1β2)r + α1α2 + 2α1β1 + β1β2

ρ̃
< 0.

Hence,

Rn = (λ1 + λ2) +
α1 + rβ2

ρ̃
Sn + lTn. (33)

The next statement is probably known, but just in case we present its proof here as

well.

Lemma 6. Suppose that we are given a process Zn adapted to the filtration Fn such that

|Zn+1 − Zn| ≤ B for all n and

a ≤ E(Zn+1 − Zn|Fn) ≤ a+
σ

Zn

for some constants B > 0, a > 0 and σ ≥ 0. Then Zn/n → a a.s.

Proof. Fix an ε > 0 and let Ẑn = Zn−an. Then Ẑn is a submartingale with jumps bounded

by B + a, and hence by Azuma-Hoeffding inequality

P(Ẑn − Ẑ0 ≤ −εn) ≤ exp

{

−
ε2n

2(B + a)2

}

and by Borel-Cantelli lemma the event {Ẑn/n ≤ −ε+Ŝ0/n} occurs finitely often. Since ε >

0 is arbitrary and Ẑ0/n → 0 we get that lim infn→∞ Ẑn/n ≥ 0 yielding lim infn→∞ Zn/n ≥ a.

Next, define

Z̄n = Ẑn −
n
∑

i=1

σ

max{1, Zn}
.

On the event {Zn ≥ 1} we have E(Z̄n+1 − Z̄n|Fn) = 0. Fix a large N and consider Z̄n∧τN

where τN = inf{n ≥ N : Zn < 1}. Then Z̄n∧τN is a martingale for n ≥ N with jumps

bounded by B + a+ 1, and applying Azuma-Hoeffding inequality again we get

P(
∣

∣Z̄n∧τN − Z̄N

∣

∣ ≥ εn) ≤ 2 exp

{

−
ε2(n−N)

2(B + a + 1)2

}
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for any ε > 0. By an argument similar to the first part of the proof, this implies that

limn→∞ Z̄n∧τN/n = 0 a.s. However, the first part of the proof implies that τN = ∞ for all but

finitely many N ’s a.s. Hence limn→∞ Z̄n/n = 0 a.s. Now, the fact that lim infn→∞ Zn/n ≥ a

gives us that
∑n

i=1
σ

max{1,Zn}
≤ O(logn) so that Z̄n−Ẑn = o(n) thus implying the statement

of the lemma.

Proposition 1. Consider Sn and ρ̃ defined in (31) and (32) respectively. Then limn→∞
Sn

n
=

ρ̃ a.s.

Proof of Proposition 1. Note that the jumps of Sn are bounded (they can take at most four

distinct values). The expected drift of Sn is given by

E(Sn+1 − Sn|ζ(n) = (x, y)) =
(α1α2 + β1β2)((α1 − β2)x+ (α2 − β1)y)

Rn

+ 2
α2β2(α1x− β1y) + α1β1(α2y − β2x)

Rn

+
(λ1 + λ2)(α1α2 + β1β2) + 2λ1α2β2 + 2λ2α1β1

Rn

An easy algebraic computation gives that the sum of terms with x in the first and the

second numerators on the right hand side of the preceding display is equal to ρ̃(α1 + β2)x.

Similarly, the sum of all terms with y in the same numerators is equal to ρ̃(α2 + β1)y.

Rearranging all terms with λ1 and λ2 in the last numerator of the same display gives the

following quantity

ρ̃(λ1 + λ2) + 2λ1β2(α2 + β1) + 2λ2β1(α1 + β2).

Thus, we obtain that

E(Sn+1 − Sn|ζ(n) = (x, y)) = ρ̃+
2λ1β2(α2 + β1) + 2λ2β1(α1 + β2)

Rn
≥ ρ̃ > 0. (34)

Note that R(x, y) ≥ (x+ y) min{β1, β2} and

S(x, y) ≤ (x+ y) max{α1α2 + β1β2 + 2α2β2, α1α2 + β1β2 + 2α1β1}

and since β1, β2 > 0 we have R(x, y) ≥ C1S(x, y) for some positive constant C1, so that

Rn ≥ C1Sn. Now the result follows from Lemma 6 with a = ρ̃.

Corollary 1. Let κ = lim infn→∞
Tn

n
. Then P(κ > 0) = 1.

Proof. Similarly to the preceding proof,

T (x, y) ≥ (x+ y)min(β2, rβ2 + α1 − α2) ≥ (x+ y)β2min(1, r)

since α1 − α2 ≥ 0, and thus Tn ≥ C2Sn for some C2 > 0. Hence, by Proposition 1,

lim inf
n→∞

Tn

n
≥ C2 lim inf

n→∞

Sn

n
= C2ρ̃ > 0.
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Proposition 2. For every δ > 0 and ε > 0 there exists N such that

P

(

Rn ≤
α1 + rβ2

1 + δ
n, ∀n ≥ N

)

≥ 1− ε.

Proof of Proposition 2. Using equation (33), Proposition 1 and Corollary 1 we obtain that

for sufficiently small δ > 0, sufficiently large n and any fixed ε

Rn = (λ1 + λ2) + (α1 + rβ2)
Sn

ρ̃
− lTn ≤ (λ1 + λ2) + (α1 + rβ2)(1 + δ)n+ l

κ

2
n,

with probability at least 1− ε. Recall that κ > 0 by Corollary 1, and that l < 0. Let δ > 0

be so small that

(λ1 + λ2) + (α1 + rβ2)(1 + δ)n+ l
κ

2
n ≤ (α1 + rβ2)(1− δ)n ≤ (α1 + rβ2)

n

1 + δ
. (35)

Thus, we obtain that, with probability at least 1− ε,

Rn ≤
α1 + rβ2

1 + δ
n,

for all sufficiently large n, as claimed.

The rest of the proof is similar to the symmetric case, and we are going to explain

briefly some minor modifications required. First, define

τ = min{n : ζ1(n) = 0 or ζ2(n) < y0}, (36)

where y0 is such that thr bound (30) holds. Then, assume that P(τ = ∞) = 0 and arrive

at a contradiction. To this end, fix δ > 0 such that equation (35) holds, and, given N > 0

define

ηN = min

{

n ≥ N : Rn >
α1 + rβ2

1 + δ
n

}

.

Assume that N is sufficiently large, so that probability P(ηN = ∞) is sufficiently close to 1

to ensure that P(ηN = ∞, τ = ∞) > 0. Then Proposition 2 implies that

E
(

U2
n+1|Fn

)

≥ U2
nan on {n < min (ηN , τ)} ,

where an = 1 +
2(1 + δ)

n
.

Similarly to the symmetric case, it can be shown by using the inequality in the preceding

display that P(ηN = ∞, τ = ∞) = 0. This contradicts the assumption that P(τ = ∞) > 0.

Finally, it might happen that ζ1(τ) > 0 and 0 < ζ2(τ) = y0−1. In this case, observe that

the probability of hitting the horizontal axis {(x, 0), x ∈ Z+} is bounded below uniformly

over starting location (x, y0 − 1), x ≥ 1. Indeed,

P(ζ(τ + y0 − 1) = (x, 0)|ζ(τ) = (x, y0 − 1)) =

y0−1
∏

k=1

β2x

λ1 + λ2 + (α1 + β2)x+ (α2 + β1)(y0 − k)

≥

y0−1
∏

k=0

β2

λ1 + λ2 + α1 + β2 + (α2 + β1)(y0 − k)
= Const(λ1, λ2, α1, α2, β1, β2, y0) > 0

since x ≥ 1. Consequently, with probability one, the process eventually hits the boundary.
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2.3.3 Proof of Lemma 5 in case α1α2 = β1β2

The proof will be very similar to the case α1α2 > β1β2, so we provide only its sketch. Let

S(x, y), R(x, y), Sn, Rn and ρ̃ be the same as in the previous section. Note that ρ̃ = 0 in

this case, so we need to find a replacement for Lemma 6.

Observe that due to the fact that α1α2 = β1β2 we have α1 > 0 and α2 > 0 since

β1β2 > 0 and

S(x, y) = 2α2(α1 + β2)x+ 2α1(α2 + β1)y, R(x, y) = (α1 + β2)x+ (α2 + β1)y + λ1 + λ2

so that R(x, y) ≥ S(x,y)
max{2α1,2α2}

. Then (34) becomes

E(Sn+1 − Sn|Fn) =
2λ1β2(α2 + β1) + 2λ2β1(α1 + β2)

Rn
∈

[

0,
C3

Sn

]

for some C3 ≥ 0. Therefore, Sn can be majorized by a Lamperti random walk (see [9]) and

hence by Theorem 3.2.7 in [9] we get that

lim sup
n→∞

log Sn

log n
≤ 1/2 a.s.

As a result, the statement of Proposition 2 holds with the displayed formula replaced by

P
(

Rn ≤ n1/2+δ, ∀n ≥ N
)

≥ 1− ε

and by setting δ = 1/6, on the event Rn ≤ n2/3 the RHS of (30) becomes

U2
n

(

1 +
2(α1 + rβ2)

n2/3

)

leading to contradiction similarly to the case α1α2 > β1β2.

3 Appendix

In this section we recall the definition of the competition process from [12] and briefly

analyse the applicability of some theorems from that paper to competition processes in

ours.

Recall that the competition process in [12] is defined as a CTMC X(t) = (X1(t), x2(t)) ∈

Z
2
+ that evolves as follows. Given the state (x1, x2) ∈ Z

2
+, the CTMC jumps to

(x1 + 1, x2) with rate a(x1, x2),

(x1, x2 + 1) with rate b(x1, x2),

(x1 − 1, x2) with rate c(x1, x2) if x1 > 0,

(x1, x2 − 1) with rate d(x1, x2) if x2 > 0,

(x1 − 1, x2 + 1) with rate e(x1, x2) if x1 > 0,

(x1 + 1, x2 − 1) with rate f(x1, x2) if x2 > 0,

(37)
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where a(x1, x2), . . . , f(x1, x2) ≥ 0. Following [12], let us assume that the Markov chain is

regular in a sense that there exists exactly one associated transition matrix. For simplicity,

we assume in addition that Markov chain X(t) is irreducible, although in general there

might be absorption states.

Define the following quantities

rk = max
x1,x2>0;
x1+x2=k

[a(x1, x2) + b(x1, x2)], (38)

sk = min
x1,x2>0;
x1+x2=k

[c(x1, x2) + d(x1, x2)],

τ = inf(t ≥ 0 : X1(t) = 0 or X2(t) = 0).

It follows from Theorem 2 in [12] that

A :=

∞
∑

k=2

s2 . . . sk
r2 . . . rk

= ∞, (39)

is a sufficient condition for hitting time τ to be finite almost surely.

Consider, for simplicity, the competition process with linear interaction (with transition

rates of type 2 defined in (2)) in the symmetric case, that is αi = α, βi = β, λi = λ, i = 1, 2.

Then

rk = 2λ+ αk and sk = βk,

and it is easy to see that if α ≤ β then

s2 . . . sk
r2 . . . rk

≥

{

C1

(

β
α

)k
, if α < β,

C2

k2λ/α
, if α = β,

for some C1, C2 > 0 for all sufficiently large k. Consequently, if α < β or α = β < 2λ then

A = ∞; hence τ is almost surely finite. However, if α > β or α = β ≥ 2λ, then the results

of [12] are not applicable.

Further, we are going to compare the long term behaviour of two simple competition

processes. One process of interest is the competition process X(t) given in Example 2

in [12]. This process is specified by the following choice of transition rates in (37)

a(x1, x2) ≡ a, b(x1, x2) ≡ b, c(x1, x2) = γx1,

d(x1, x2) = δx2, e(x1, x2) = εx1x2, f(x1, x2) ≡ 0,
(40)

where a, b, γ, δ, ε > 0. The other process is a special case of the competition process

with linear interaction which transition rates are specified by parameters α1 = α2 = 0,

β1 = δ, β2 = γ, λ1 = a, λ2 = b > 0. In the introduction we interpreted such competition

process as the OK Corral model with “resurrection”.

Interactions in these processes are different. However, their behaviours inside the

quarter plane are quite similar. Indeed, the mean drift of each of these processes in-

side the domain are directed towards the axes. Further, quantities rk = a + b, k ≥ 1, and
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sk = kmin{γ, δ}, k ≥ 1, are the same for both processes. Now either [12, Theorem 2], or

the argument based on [9, Lemma 7.3.6] (similar to Lemma 3) imply that τ < ∞ a.s. in

both cases.

At the same time, these processes evolve differently, because of the difference in the

transition rates on the boundary. The process with rates given by (40) has a strong mean

drift towards the origin, while an OK Corral type process jumps away with constant rate,

as its death rates on the boundary are zero. This seemingly small change results in quite

substantial difference in the long term behaviour of the processes. Indeed, define r̃k and s̃k
by the same formula as rk and sk in (38) by taking the maximum (minimum resp.) over

the set x1, x2 ≥ 0, that is, now we include the boundary states (k, 0) and (0, k). Theorem 4

in [12] states that

Ã =

∞
∑

k=1

r̃1 . . . r̃k−1

s̃1 . . . s̃k
< ∞

is a sufficient condition for the competition process with transition rates (37) to be positive

recurrent, implying that the process governed by (40) is positive recurrent. Indeed, r̃k =

rk = a+ b > 0 and s̃k = sk = kmin{γ, δ}, k ≥ 1, so,

Ã =
1

a+ b

∞
∑

k=1

1

k!

(

a+ b

min{γ, δ}

)k

< ∞.

(Note also that positive recurrence of this process follows from the Foster criterion for

positive recurrence with Lyapunov function f(x1, x2) = x1+x2, but we skip further details).

At the same time Theorem 4 from [12] is not applicable to the OK Corall model with

“resurrection”, as s̃k = 0, while our Theorem 2 shows that this process is transient and

escapes to infinity in the only possible way, i.e. along the boundary, as described.
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