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Abstract

Consider a housing problem in which each agent arrives at the market with an endowment

but is unsure of the value of others’ objects and is unwilling to exchange without learning

more. An individually rational, Pareto optimal and strategyproof exchange requires

Gale’s Top Trading Cycles but the ability to investigate others’ endowments must also

be introduced. For the instance in which each agent has only the resources to learn about

one other object, I show how agents’ decisions over what to learn about restricts the

size of the trading cycles. Large cycles are risky and so no cycle containing more than

two agents can exist in equilibrium. I then give the conditions under which stability

and ex-ante welfare maximisation are mutually compatible objectives. If objects are

‘well ranked’ in the sense that the objects of highest value are also more likely to be

acceptable, then any profile of agents’ learning decisions which is stable is also an ex-ante

welfare maximising equilibrium. Introducing a time dimension which allows agents to

choose not only what to learn about, but when, does not rule out equilibria in which

all agents learn quickly and at the same time. The same learning pattern as observed

when agents are forced to make the decision simultaneously, remains an equilibrium

when this restriction is removed. Even o↵ering the agents the opportunity to learn

carefully, one by one, making decisions with the most information they can does not

prevent the rush to learn at the same time as others in equilibrium. The information

acquisition problem is by no means unique to unilateral matches and so I also consider the

particular allocation mechanism used for university entry in the UK. The combination

of allowing applications to be submitted to only two institutions and students only being

able to acquire information on their grades after submission results in poorly assortative

allocations where the best students are unable to attend higher-ranked instiutions.
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Introduction

Matching markets, such as college admissions, human kidney exchange, graduate job

assignment and house allocation have long been the subject of investigation. In such

markets, indivisible goods and services must often be allocated without monetary trans-

fers. Two of the most famous mechanisms designed to allocate goods or assign places in

such circumstances are Gale’s Top Trading Cycles (Shapley and Scarf (1974)) and De-

ferred Acceptance (Gale and Shapley (1962)). These mechanisms use agents’ preferences

to create a match with desirable properties such as Pareto optimality, strategyproofness,

individual rationality and stability. However, the requirement that agents always know

their preferences over all options available to them can be an onerous one as their ability

to acquire that information may easily be limited in some way, either through high costs,

restricted resources or institutional constraints. I examine the impact of an information

acquisition requirement on ‘high stakes’ markets such as kidney exchange and within

the UK’s higher education system to determine how such requirements may a↵ect the

outcome that is realised.

Chapters 1 and 2 explore models of ‘high stakes’ unilateral matching markets with

endogenous information acquisition. Agents are fully informed about their own endow-

ments: a patient in need of a kidney exchange will already know she is incompatible with

her willing living donor and a council tenant will be living in her current property and

know the local area intimately. However, although some cursory information may be

available, each agent knows far less about the other endowments available for exchange

and is unwilling to give up her own without knowing she is getting something better in

return. This is particularly clear in the case of living donor kidney exchange, since a

doctor would not consent to transplant an organ without first ensuring compatibility.

For the case where each agent is able to investigate just one other object (for example,

due to a back up at the lab or prohibitively high costs), I analyse the impact of the
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endogenous information acquisition on the exchanges which can take place under Gale’s

Top Trading Cycles. I identify conditions under which the outcome of any stable learning

profile is the same (or negligibly close to) the best society can achieve were the process

to be managed by a designer able to dictate actions to each agent.

Chapter 2 builds on a version of the model in Chapter 1, but where agents are not re-

quired to make their decision simultaneously. Instead, agents are free to choose not only

which object they investigate but when to do so. This means the equilibrium outcomes

begin to di↵er from that which a social planner might wish to impose. Fully sequential

learning, where agents learn one after the other, prevents wasteful learning as few agents

as possible are forced to investigate an object without first knowing the preferences of

its owner. However, fully sequential learning can also create situations where individuals

lose out and by the time they come to choose which object to investigate, there are no

more partners to exchange with. The threat of being left alone means that more agents

learn simultaneously than is socially desirable.

Chapter 3 turns to a two-sided market where students are assigned places at university.

In the UK, the University and College Admissions Service (UCAS) requires students to

begin their application process not only before learning their exam results but before

sitting their exams. Universities base their acceptance decisions on the students’ grades

but students are able to acquire this information only after submitting a preference to

UCAS. In addition, students are limited to submitting their application to only two

universities. Despite the UCAS system having features otherwise in common with the

student-proposing deferred acceptance mechanism, this combination of factors can have

severe consequences for the assortativity of the resulting match, where the highest-ranked

institutions are not attended by the best students.
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CHAPTER 1:

Top Trading Cycles in Endogenous

Information Acquisition

1 Paper 1

1.1 Introduction

Consider a unilateral matching problem in which each agent is endowed with one object

that they are free to exchange with other such agents. Common examples of such

problems include living donor kidney exchange, council house exchange programmes

and college dorm swapping policies. In each of these cases the agent is fully informed

about her own endowment: a patient will already know she is incompatible with her

donor, a council tenant will be living in her current property and the college student

will know both her dorm and roommates. However, though some cursory information

may be available, each agent knows far less about the other endowments available for

exchange. This is more problematic for some scenarios than others. The college student
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may be willing to take a gamble on a new room but the council tenant is unlikely

to want to uproot her life for a property she has not viewed in an area she does not

know. For the patient in need of a new kidney, the consequences of a transplant with

an incompatible organ are deadly. In such cases, and whether it be due to prohibitively

high costs or limited resources, resistance to exchange without complete information only

becomes more acute as the agent’s ability to investigate diminishes. But if agents will

only exchange for objects they know to be compatible then they must carefully consider

which objects they want to investigate; if they cannot learn everything then they do not

want to waste opportunities on dead ends. In such cases, one must take into account the

organisation of agents’ investigations alongside the design of the exchange process itself.

This paper explores such a model in which agents must acquire information about objects

before committing to an exchange. The importance of including learning in the model

in this way is most easily demonstrated within the context of kidney exchange.

When a person requires a new kidney three cases may arise. It might be that the

patient has no donor at all and remains on the waiting list for a cadaver organ or that

they are successful in finding a compatible living donor organ. This model is applicable

in the third case in which each patient can find only an incompatible living donor.

If the mechanism used to exchange these donor organs is to be individually rational,

Pareto optimal and strategyproof then it must be Gale’s Top Trading Cycles (GTT)

(Shapley and Scarf (1974)) since it is the unique mechanism satisfying these properties

(Ma (1994), Roth (1982)). However, before any exchange can take place the organs

must be tested; a kidney can never be safely transplanted without first confirming its

compatibility with the patient. This means concentrating solely on the exchange process

may not be su�cient to ensure an optimal outcome. An analysis of the deterministic

mechanism used by the United Network for Organ Sharing (UNOS) (Dickerson et al.

(2013)) found that only 7% of matches ever resulted in a completed transplant. Since

not all costly testing procedures were performed upfront, 16% of matches failed explicitly
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because the organ was ultimately found to be incompatible. A model which incorporates

the need to learn before exchange may reduce the incidence of failed matches.

This paper explores a model in which each of a finite set of agents is endowed with a

single indivisible object. Each agent knows about their own endowment but has little

information on anyone else’s object; they know the probability they will find any given

object to be acceptable, that is, to have a higher value than their own endowment

and the expected value conditional on that being the case. Agents are only willing

to exchange for objects they are certain to strictly prefer to their endowment. In this

sense, the model is closer to the ‘high-stakes’ kidney example above than the ‘low-

stakes’ dorm swap. In order to ascertain whether they strictly prefer an object or

not, each agent is able to simultaneously investigate one object (other than their own

endowment). A learning profile details which object each agent investigates and upon

learning the outcome of these investigations, objects can be exchanged. Since agents

will only exchange for objects certain to be strictly preferred to their own endowment,

agents can only exchange for investigated objects and so the pattern of investigations

a↵ects which trades may eventually take place.

The question is then over how the investigations and exchanges should be organised.

When information is known, the obvious candidate is GTT since it is the unique in-

dividually rational, Pareto optimal and strategyproof mechanism, and so one option is

to näıvely continue using GTT with incomplete information. In this case, since GTT

is strategyproof, each agent need only consider which object to investigate. The con-

sequences of this decision, however, have significant impact on trade in equilibrium. A

trading cycle can occur only if every agent in that cycle learns she prefers the object

she has investigated to her own endowment. The more agents involved in the potential

trading cycle, the higher the risk at least one test, and consequently the trade itself,

will fail. Potential trading cycles such as this are known here as learning cycles. Large
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learning cycles create an incentive for at least one agent to ‘short circuit’ the cycle and

create a smaller one in which she can trade for an object of weakly greater expected

value but with strictly higher probability of exchange. As a result, in equilibrium only

small learning cycles of two agents exist and so any given trading cycle under GTT will

involve at most two agents. This is in contrast with the kidney exchange literature,

where due to the constraints of hospitals, exchange is often exogenously restricted to

two agent-donor pairs (Roth et al. (2004), (2005)). In this paper, since the two-agent

cycles arise endogenously, such a restriction would leave the results una↵ected.

There is little reason, however, to assume that the näıve GTT approach will work well in

an incomplete information environment and so other organisational structures should be

considered. Many alternatives exists and so here I examine two extremes with respect

to the role of the designer. At one extreme, designers are able to dictate which test

each agent performs and which exchanges take place. In this case, any learning profile

can be enforced and so learning cycles (and in turn, trading cycles) may consist of any

number of agents and their endowments. At the other extreme, the designer has no input

and agents are left to coordinate amongst themselves. In this case I consider the set of

stable learning profiles. The stable set has an important feature in common with the

set of equilibria in the näıve GTT approach; learning cycles contain only two agents. If

not, then any two agents with the best two endowments in any given learning cycle will

be strictly better o↵ by investigating each other’s respective endowments. Unlike the

equilibria of the näıve GTT approach, if a learning profile is stable then the maximum

number of agents possible must be in learning cycles. It is also important which agents

are in which cycle; the two agents with the best endowments must be paired together,

otherwise they both have the incentive to deviate. In the same way, the agents with

the next two best endowments must also be paired together and so on. When no two

objects are the same, this means a unique set of learning cycles forms under any stable

learning profile.
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When all investigations and exchanges can be dictated to agents, the size of the learning

cycles is uninhibited by the same threat of deviation, but nevertheless large learning

cycles can be undesirable. If the designer’s goal is to maximise ex-ante welfare, then

large learning cycles still carry unnecessarily high risk. For this reason, any learning

cycle arising under an ex-ante welfare maximising learning profile will consist of at most

three agents. Which learning cycle each particular agent is in and whether that learning

cycle consists of two or three agents depends on the given set of objects but, for a class

of objects known here as ‘strictly well ranked,’ there is a clear structure to the learning

cycles. Objects are strictly well ranked if they are ordered in the same way whether by

the probability they will be found acceptable or by their potential value. When objects

are strictly well ranked then agents must be grouped in cycles in descending order of

the potential value of their endowments in order to maximise ex-ante welfare. This is

similar to the structure of the unique set of stable learning cycles discussed above, with

the exception that some of those learning cycles may contain three agents. If objects

are strictly well ranked, however, then three-agent cycles will occur only if there are

significant di↵erences in the probability of objects being acceptable. Such di↵erences

divide endowments into groups of ‘good’ and ‘junk’ objects. The designer will create

three-agents cycles to avoid condemning an agent with a good endowment to a learning

cycle with one or more junk objects that jeopardise the probability of exchange. If there

are no junk objects, then these three-agent cycles are not required and it is the set of two-

agent learning cycles which maximises ex-ante welfare. In this case, strategic concerns

do not compromise the welfare goal; any stable learning profile yields the highest level

of ex-ante welfare possible. Since this is the highest ex-ante welfare that can be reached

through two-agent cycles alone, the stable learning profile also compares favourably with

the equilibria of the näıve GTT approach. When objects are strictly well ranked, and

regardless of the presence of junk objects, no equilibrium can generate ex-ante welfare

which exceeds that of the stable learning profile.
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The literature on endogenous information acquisition within the matching field is not

extensive. Bade (2015) shows that when learning is costly, serial dictatorship is the

unique ex-ante Pareto optimal, strategyproof and nonbossy allocation mechanism when

information is endogenous. Harless and Manjunath (2017) find that top trading cy-

cles dominate priority rules in progressive measures of social welfare under costless but

restricted learning. The key di↵erence in this paper is that each agent arrives at the

problem with an endowment already in place and so priority rules such as serial dicta-

torship cannot be applied without compromising individual rationality. In the kidney

exchange literature, Dickerson et. al (2013) use random graph models to increase the

number of successful matches in algorithmic programs and Blum et al. (2013) use such

models to show that the problem of maximising the number of expected exchanges with

two crossmatch opportunities is NP complete. As in this paper, learning is restricted

and an exchange only takes place with some probability. However, the models do not

examine individual incentives.

1.2 Environment

A finite set of agents N = {1, ...n} is such that each agent i is endowed with object i

in the set K = {k1, ..., kn}. An agent values his own endowment at zero but does not

know his value for any other object, only that the value is drawn from some distribution

with an expected value less than that of his endowment. All agents are expected util-

ity maximisers, so without any further information each agent prefers to keep his own

endowment. More formally, there exists a state space ⌦ consisting of profiles of values

! = (!i
k)i2N,k2K , where !

i
k is the value of object k to agent i in state !. Since agents

value their own endowment at zero, !i
i = 0 for all ! 2 ⌦. For all other objects, !i

k is

an independent draw from some distribution f
i
k with some support not containing zero1

1
This is to prevent indi↵erences in what follows.
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and such that E(!i
k) < 0 for all i 2 N, k 2 K. This means firstly, Agent i knows the

probability that an object k 6= i will be acceptable, ⇡i
k = ⇡({! | !

i
k > 0}), which is the

probability that !i
k is higher than his own endowment. Secondly, it means Agent i also

knows the conditional value of the object Ei
k = E(!i

k|!
i
k > 0), which is the expected

value of k conditional on the object being acceptable. For the majority of the paper,

unless otherwise specified, I assume agents are ex-ante identical while objects may di↵er.

In this case, f i
k = fk for all i 2 N, k 2 K such that i 6= k and !

i
k is an iid draw from

fk. Let Ek := E(!i
k | !

i
k > 0) and ⇡k := ⇡(!i

k > 0) for all i 2 N, k 2 K. Two objects

j, k 2 K are considered to be ex-ante identical if ⇡kEk = ⇡jEj . For simplicity, when

at least two objects are not ex-ante identical and without loss of generality, I assume

⇡1E1 � ⇡2E2 � ... � ⇡nEn. In this way, Agent 1 is always endowed with the best object,

Agent 2 is endowed with either the best or second best object and so on until Agent n

who is endowed with the worst object.

Each agent i learns the value !
i
k of one object k 6= i. A learning profile is a strategy

profile2 a = (ai)i2N such that a 2 A = ⇥i2NAi. A learning cycle is a vector (k1, ...km)

such that aki = ki+1 for all i < m and am = k1. An m-cycle is a learning cycle that con-

tains m agents. The set of learning cycles that forms under a is o(a) = {o1(a), ...o⌫(a)}.

For any j 2 {1, ...⌫}, let �j(a) = {k1, ...km} be the set of agents in the learning cy-

cle oj(a) = (k1, ...km). The set of all agents in learning cycles under a is C(a) and

B(a) = N \C(a) is the set of agents not in learning cycles under a. The set of all agents

in m-cycles under a is Cm(a) and Bm(a) = N \ Cm(a).

Although the probability an an agent will find Object k acceptable (⇡k) and the condi-

tional value of Object k (Ek) are drawn from the same distribution (fk) for all agents

i 6= k, given the state and each agent having chosen which object to investigate, each

2
For the moment, attention is restricted to pure strategies, where each agent investigates a particular

object with certainty. Relaxing this and allowing for mixed strategies can, under some circumstances,

a↵ect the results in this chapter. These e↵ects are explored in Appendix D.
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agent may have di↵erent (ex-post) preferences over the set of objects. Agent i’s tran-

sitive ex-post preference relation under any given learning profile a and set of object

values ! is Ri(a,!), where kRi(a,!)k0 if Agent i weakly prefers k to k
0. If kRi(a,!)k0

but not k
0
Ri(a,!)k then it is denoted kPi(a,!)k0. The ex-post preference profile is

R(a,!) = (Ri(a,!))i2N and the set of all possible ex-post preference profiles is R. If

i chooses to learn about object k then kRi(a,!)i if !
i
k > 0. Since each agent tests

only one object and any untested objects have an expected value below i’s endow-

ment, there is at most one k 6= i such that kRi(a,!)i. There may, however, be many

untested objects k
0
6= i such that iRi(a,!)k0 and it is possible that an agent is indif-

ferent between two such objects. A matching is a bijection µ : N ! K. The set of

all matchings is M. Under any given learning profile a and set of object values !, a

matching is individually rational if µ(i)Ri(a,!)i for all i 2 N and a matching µ
0 Pareto

dominates µ if µ0(i)Ri(a,!)µ(i) for all i 2 N and µ
0(i⇤)Pi⇤(a,!)µ(i⇤) for at least one

i
⇤
2 N . If a matching is not Pareto dominated then it is Pareto optimal. A mecha-

nism, M : R ! M, is individually rational and Pareto optimal if it always results in

an individually rational and Pareto optimal matching. A mechanism is strategyproof if

M(R(a,!))(i)Ri(a,!)M(R0
i(a,!), R�i(a,!))(i) for all i 2 N,R

0
i(a,!) so that no agent

i, whose truthful preferences are Ri, can be matched with an object they strictly prefer

to M(R(a,!))(i) by stating some alternative preference profile R
0
i 6= Ri.

1.3 Solution Concepts

Given the environment, the questions remains as to how both investigations and ex-

changes should be organised. There are many ways in which this task could be executed

and so I focus on three approaches. The first focusses on the Gale’s Top Trading Cycles

(GTT ) mechanism. Without the need to learn about other objects, GTT would be the

sole candidate since it is the unique individually rational, Pareto optimal and strate-
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gyproof mechanism. With the additional information acquisition stage, however, simply

declaring GTT as the mechanism to be used in the matching stage may a↵ect agents’

decision over which objects to investigate. To this end, I analyse the range of equilibria

which may arise when agents first choose which objects to investigate and then, having

determined the results of those tests, arematched via GTT .

To establish the extent to which the equilibria which arise under GTT are desirable,

I compare these results to two further approaches. These two approaches capture the

range of possible outcomes with respect to input from a designer (or dictator). Under

the second approach I focus on the set of stable learning profiles. These are the learning

profiles which arise when agents are permitted to decide on both which object they

choose to learn about and which objects they would like to exchange for, without input

from a designer. Under the third approach I move to the opposite end of the spectrum

and analyse the best possible outcomes achievable when a dictator is able to determine

both the investigation and match.

Approach 1: Equilibrium

Under this approach, agents first choose ai and then, having learned the value of their

investigated objects, declare their preferences R(a,!) and are matched via the Gale’s

Top Trading Cycles mechanism, GTT : R ! M which works as follows:

Step r: Each unmatched agent i points at his most preferred object ac-

cording to Ri(a,!) from amongst those remaining. Each object points at its

owner. At least one cycle forms. All agents in a cycle receive the object they

are pointing at and are removed. If at least one agent remains then proceed

to step r + 1. If not then end.

GTT ends when all agents have been matched with an object. The domain of the prefer-

ences R considered here, di↵ers from the conventional GTT domain in which preferences
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over all objects are strict. However, the indi↵erence between some objects permitted un-

der R does not a↵ect the mechanism’s function since if agent i is indi↵erent between

object k and k
0 then it must be that iPi(a,!)k and iPi(a,!)k0. Therefore, i will always

point at and be matched to his own object before needing to choose between objects

to which he is indi↵erent. Even in this domain, GTT remains the unique individually

rational, Pareto optimal and strategyproof mechanism.3

GTT ’s property of strategyproofness plays an important role here. Once agents have

completed their investigations, it is a weakly dominant strategy for an agent to truthfully

report her preferences; an agent cannot induce a better outcome for herself by misrep-

resenting her true preferences. Having reached the matching stage of the problem, the

equilibrium is determined through weak dominance. Given the use of the strategyproof

GTT in this stage, agents’ expected utilities are determined largely by the learning

profile arising in the first ‘learning’ stage where each agent chooses which object to

investigate.

Agent i’s expected utility firstly depends on the probability i is matched with ai: ⇡({! |

GTT (R(a,!))(i) = ai}). In order for i to be matched to ai, it not only needs to be that

i finds ai acceptable but that a trading cycle can form between a group of S agents such

that i 2 S. For this to be the case, every agent in S must investigate the endowment

of a di↵erent agent in S and it must that !j
aj > 0 for all j 2 S. Secondly, i’s expected

utility depends on the conditional value of the object agent i chooses to learn about,

E
i
ai . Agent i’s expected utility is the product of these two terms:

Ui(a) = ⇡({! | GTT (R(a,!))(i) = ai}) · E
i
ai

Agent i will choose ai to maximise her ex-ante expected utility. Since agents simulta-

3
The proof in Bade (2019) applies to the domain R. The proof in Ma (1994) is not applicable since

it uses the full domain of preferences.
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neously make their decision over which object to investigate and agents are assumed to

follow their weakly dominant strategy of revealing their true preferences in the matching

stage (when using the strategyproof GTT mechanism) a learning profile a is a Bayes-

Nash equilibrium if Ui(a) � Ui(a0i, a�i) for all i 2 N .

Approach 2: Stability

The second approach examines what is possible when there is minimal (no) input from a

designer and agents are able to act strategically at both the learning and matching stage

of the problem. Comparison of the outcomes under this approach and the equilibrium

approach discussed above is simplified since any di↵erences can only occur as a result

of what happens in the learning stage and not the matching stage. This is because,

having completed all investigations and learned the value of their investigated objects,

any mechanism, M , used by the agents which is individually rational and Pareto optimal

must yield the same match as would arise under GTT : M(R(a,!)) = GTT (R(a,!))4.

The properties of individual rationality and Pareto optimality are important to retain

in this approach since agents cannot be forced into matches by some authority and by

the same token, cannot be prevented from seeking Pareto improvements which make

some subset of agents strictly better o↵. Since M(R(a,!)) = GTT (R(a,!)) and GTT

is strategyproof, M must also be strategyproof and so it is a weakly dominant strategy

for any agent to truthfully report her preferences.

Since the matching stage is identical under both Approaches 1 and 2, any di↵erence

must occur in the learning stage. In Approach 1 there was a Bayes-Nash Equilibrium if

no single agent could benefit by deviating from her learning decision. In Approach 2, I

focus on learning profiles where no subset of agents can benefit by deviating from their

learning decisions: A learning profile a is stable if under a there is no subset S of m

agents who are not in a given m-cycle but all agents in S would have a strictly higher

4
A proof is provided in Appendix C
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expected utility if they were. If this holds for all subsets of m agents such that m = 2

then the learning profile is pairwise stable. Since M(R(a,!)) = GTT (R(a,!)), Agent

i’s expected utility under profile a, Ui(a) can be expressed in the same way as detailed

in Approach 1.

Approach 3: Ex-ante Welfare Maximisation

At the opposite end of the scale to the stability approach (where decisions are decen-

tralised and agents are able to decide both which object to investigate and match with),

in this approach I examine the learning profiles which are most socially desirable as

measured by ex-ante welfare, W (a) =
P

i2N Ui(a). A dictator is able to decide which

investigation each agent should complete. For example, a centralised health service may

decide which crossmatch blood tests to perform between potential patients and donors.

The dictator is able to determine tests and to decide exchanges subject to the mini-

mal requirements of individual rationality (ie. the dictator cannot compel a individual

to give up their kidney against their will) and Pareto optimality (the dictator cannot

deny transplants which do not disadvantage other patients). In this sense, the dicta-

tor seeks the learning profile a
⇤ such that a

⇤
2 argmaxa2AW (a). As with the two

previous approaches, since the matching stage is individually rational and Pareto op-

timal, it must be that M(R(a⇤,!)) = GTT (R(a⇤,!)). Since GTT is strategyproof, it

is a weakly dominant strategy for each agent to report her true preferences given the

information acquired in the learning stage. This means that the utility of each individ-

ual Agent i under the learning profile a
⇤ can be calculated as detailed in Approach 1:

Ui(a⇤) = ⇡({! | GTT (R(a⇤,!))(i) = a
⇤
i }) · E

i
a⇤i
.

Given some preference profile, all three approaches will result in an identical matching

between agents and objects. However, the three approaches can di↵er drastically in

terms of permissible learning profiles. The next three sections characterise these learning

profiles and compare the ex-ante welfare achievable under each approach.
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1.4 Properties of Stable Learning Profiles

Depending on the set of agents and their endowments, the characteristics of learning

profiles under each of the three approaches may di↵er. In this section I characterise the

set of stable learning profiles as it provides a useful starting point when also considering

any equilibrium or ex-ante welfare maximising learning profile. Section 1.3 introduced

the definitions of stability and pairwise stability. Before continuing, note that since

pairwise stability implies stability, it is su�cient to focus on pairwise deviations in the

discussion which follows.

Lemma 1. If a is pairwise stable then a is stable

Proof. Suppose a is pairwise stable but not stable. Then there exists an a
0 under which

an m-cycle, (b, c, ..., d) forms between some S = {b, c, ..., d} such that Uk(a0S , a�S) >

Uk(a) for all k 2 S. Since a is pairwise stable, |S| > 2. W.l.o.g let b < d < k for all k 2 S\

{b, d}. Since Uk(a0S , a�S) > Uk(a) for all k 2 S, Ub(a0S , a�S) =
Q

k2S ⇡kEc > Ub(a) and

Ud(a0S , a�S) =
Q

k2S ⇡kEb > Ud(a). But then there also exists a strategy profile a00 under

which the learning cycle (b, d) forms such that Ub(a00{b,d}, a
0
S\{b,d}, a�S) = ⇡b⇡dEd and

Ud(a00{b,d}, a
0
S\{b,d}, a�S) = ⇡b⇡dEb. Then, Uk(a00{b,d}, a

0
S\{b,d}, a�S) > Uk(a0S , a�S) > Uk(a)

for k 2 {b, d}. Since b and d’s expected utility under a00 is independent of all other agents’

strategies, it must also be that Ub(a00{b,d}, a�{b,d}) > Ub(a) and Ud(a00{b,d}, a�{b,d}) > Ud(a).

But this implies that a is pairwise not stable, which is a contradiction.

1.4.1 The bi-cycle set, AS

In order to characterise the set of all stable learning profiles, I first characterise a set of

learning profile A
S as the set of learning profiles which meet conditions I, II and III

below. These conditions restrict learning profiles to those which contain only 2-cycles
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and also limits the range of agents each agent can be in a learning cycle with. The size

of AS varies depending on the values of ⇡i and Ei for each object but after introducing

the set A
S , I introduce the set A

�
⇢ A

S which produces a fixed set of learning cycles

and exists for any given set of objects. In the next section, I then show that a learning

profile is stable if and only if it is contained in the set AS .

Define the set AS such that a learning profile, a is in the set AS if and only if:

I: If n is even then all agents are in 2-cycles. If n is odd then all agents are in 2-cycles

except for some i
⇤ such that ⇡i⇤Ei⇤ = ⇡nEn.

and for any pair of agents i, j such that ⇡iEi > ⇡jEj and (i, j) 2 o(a):

II: If there are two agents i0, j0 such that (i0, j0) 2 o(a) and ⇡iEi = ⇡i0Ei0 then ⇡j0Ej0 �

⇡iEi.

III: There is no agent j⇤ such that ⇡iEi > ⇡j⇤Ej⇤ > ⇡jEj .

These three conditions mean that AS may contain many di↵erent learning profiles that

each generate di↵erent sets of learning cycles. The number of learning profiles in A
S

depends in part on the the number of objects which are ex-ante identical. Let � =

{�
1
, ...�

r̄
} form a partition on N such that for any i 2 �

r and i
0
2 �

r0 , ⇡iEi > ⇡i0Ei0

if and only if r < r
0. Then all the objects in any given �

t are ex-ante identical. The

following example illustrates some of the learning profiles and their associated learning

cycles that are and are not in A
S for a given set of agents and objects.

Example 1. Let N = {1, ...8} and ⇡1E1 > ⇡2E2 > ⇡3E3 = ⇡4E4 > ⇡5E5 = ⇡6E6 =

⇡7E7 > ⇡8E8. For this set of objects, AS = {a
1
, a

2
, a

3
} as illustrated in Figure 1. In

contrast, Figure 2 shows three learning profiles a4, a5, a6 /2 A
S . Clearly a

4
/2 A

S since it

contains two m-cycles such that m > 2, violating condition I. Under a
5, ⇡3E3 = ⇡4E4

and ⇡3E3 > ⇡5E5 = ⇡6E6, violating II. Finally, (1, 3) 2 o(a6) but ⇡1E1 > ⇡2E2 > ⇡3E3

and so III does not hold. Also note that a4, a5 and a
6 each only violate one of the three
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conditions.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

� 1

2 3 4 5 6 7 8

(a) 

(b) 

(c) 

1

� 2 � 3 � 4 � 5

� 1 � 2 � 3 � 4 � 5

� 1 � 2 � 3 � 4 � 5

Figure 1: The set of learning cycles generated under the three learning
allocations in A

S : (a) a1 and (b) a2 and (c) a3.

The size of AS will vary depending on the number of di↵erent values of ⇡iEi and the

number of agents with each of those values. There is, however, a set of learning alloca-

tions which is always in A
S .

Observation 1. Define A
� := {a | ai = i � 1 if i 2 N even , ai = i + 1 if i 2 N \

{n} odd }, then A
�
✓ A

S
.

An example of a learning profile in the set A� is shown in Figure 1(a). There are eight

agents, all in in 2-cycles so it meets condition I. Since every even numbered agent i

is in a 2-cycle with i � 1 it also meets conditions II and III. The learning profiles in
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1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

� 1

2 3 4 5 6 7 8

(a) 

(b) 

(c) 

1

� 2 � 3 � 4 � 5

� 1 � 2 � 3 � 4 � 5

� 1 � 2 � 3 � 4 � 5

Figure 2: The set of learning cycles generated under learning alloca-
tions not in A

S : (a) a4 and (b) a5 and (c) a6.

A
� can be constructed for any set of agents and objects and since any a 2 A

� satisfies

conditions I, II and III, A�
✓ A

S . Since the number of agents is even, the learning

profile illustrated in Figure 1(a) is in fact the only learning profile in A
� for this set of

objects. The definition of A� prescribes ai for all i 2 N if n is even and for all i 2 N \{n}

otherwise so |A
�
| = 1 if n is even. If n is odd the learning profiles in A

� can di↵er only in

an and so |A
�
| = n� 1 if n is odd. However, as shown in Figure 3, even though A

� may

contain multiple learning profiles, the learning cycles arising from those profiles is unique.

Observation 2. For any given set of objects, the set of learning cycles o(a) that can

form under any a 2 A
�
is unique.
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If n is even then Observation 2 follows from the fact that |A�
| = 1. If n is odd then since

there is no i 2 N such that ai = n under any a 2 A
�, n is never in a learning cycle under

any a 2 A
�. By the definition of A� , ai is constant across all a 2 A

� for all i 2 N \ {n}.

As such, the set of learning cycles which forms is:

o
� = o(a) = {(1, 2), (3, 4), ...(k, k + 1)}

for all a 2 A
�, where k = n� 1 if n is even and k = n� 2 otherwise.

3 41 2 5

3 41 2 5

3 41 2 5

3 41 2 5

(a) (b)

(c) (d)

Figure 3: Learning profiles in A
� when n = 5

In general, AS will contain learning profiles other than those in A
�. Figure 1 shows three

sets of learning cycles for the same agents, all of which result from learning profiles in

A
S but only (a) is generated by a learning profile in A

�. The only di↵erence between

the three sets of learning cycles in Figure 1 is that agents 5, 6 and 7 have exchanged

places which is possible because ⇡5E5 = ⇡6E6 = ⇡7E7. If there are no such equalities

and ⇡1E1 > ... > ⇡nEn then the set AS will only contain the learning profiles in A
�.
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1.4.2 The stable set, AS

The stable set of learning profiles is characterised by conditions I, II and III. Lemmas

2 and 3 show that a learning profile is stable if and only if a 2 A
S .

Lemma 2. If a 2 A
S
then a is stable.

Proof. If any a 2 A
S is not stable then by Lemma 1 there is some pair of agents c, c0 2 N

such that (c, c0) /2 o(a) and for a0c = c
0, ac = c

0, Ui(a) < Ui(a0{c,c0}, a�{c,c0}) for i 2 {c, c
0
}.

By I at most one agent is not in a 2-cycle under a so w.l.o.g let (c, b) 2 o(a), where b 2 N .

Then Uc(a) = ⇡c⇡bEb < ⇡c⇡c0Ec0 = Uc(a0{c,c0}, a�{c,c0}), which implies ⇡bEb < ⇡c0Ec0 .

First suppose ⇡cEc < ⇡c0Ec0 . Since ⇡c0Ec0 6= mini2N ⇡iEi, by I there is some b
0
2 N

such that (c0, b0) 2 o(a). Since Uc0(a) = ⇡c0⇡b0Eb0 < ⇡c0⇡cEc = Uc0(a0{c,c0}, a�{c,c0}),

⇡b0Eb0 < ⇡cEc. But then ⇡b0Eb0 < ⇡cEc < ⇡c0Ec0 and since (c0, b0) 2 o(a), a violates III

and so a /2 A
S .

Now suppose ⇡cEc � ⇡c0Ec0 . Then ⇡bEb < ⇡c0Ec0  ⇡cEc. By III, since (c, b) 2 o(a)

it must be that ⇡bEb < ⇡c0Ec0 = ⇡cEc. Since ⇡c0Ec0 6= mini2N ⇡iEi, by I (c0, b0) 2

o(a). Since ⇡c0Ec0 = ⇡cEc, II implies ⇡b0Eb0 � ⇡cEc = ⇡c0Ec0 > ⇡bEb. Then Uc0(a) =

⇡c0⇡b0Eb0 � ⇡c0⇡cEc = Uc0(a0{c,c0}, a�{c,c0}) and so no pair of agents c, c0 exists such that

a 2 A
S is not stable.

Lemma 3. A learning allocation a is stable only if a 2 A
S
.

Proof. Fix some a
S
2 A such that a

S is stable but a
S

/2 A
S because it violates one or

more of I, II or III.

26



Suppose a
S
/2 argmaxa2A |C2(a)| so that o(aS) does not contain the maximum possible

number of 2-cycles that can form between agents, violating I. Then |B2(aS)| � 2. Let

b, b
0
2 B2(aS) be such that b = maxB2(aS) and b

0 = maxB2(aS) \ {b}. Since b, b
0
2

B2(aS), b and b
0 are either not in a cycle or in an m-cycle such that m > 2. In either

case Ui(aS) < ⇡b⇡b0Eb0 for i 2 {b, b
0
}. But for a0b = b

0 and a
0
b0 = b, Ui(a0{b,b0}, a

S
�{b,b0}) =

⇡b⇡b0Ea0i
for i 2 {b, b

0
} and so a

S is not stable.

So it must be that if aS 2 A
S then a

S
2 argmaxa2A |C2(a)|. If the number of agents

n is even then all agents will be in 2-cycles and B2(aS) = ;. If n is odd then there

is one agent b
⇤ not in any cycle such that {b

⇤
} = B2(aS). Suppose ⇡b⇤Eb⇤ > ⇡nEn.

Then there exists some cycle (c, c0) 2 o(aS) such that ⇡c0Ec0 = ⇡nEn. Under this

set of cycles, Ub⇤(aS) = 0 and Uc(aS) = ⇡c⇡c0Ec0 . But for a
0
b⇤ = c and a

0
c = b

⇤,

Ui(a0{b⇤,c}, a
S
�{b

⇤
, c}) = ⇡b⇤⇡cEa0i

> Ui(aS) for i 2 {b
⇤
, c} and so a

S is not stable.

Now suppose there are two cycles (i, j), (i0, j0) 2 o(a) such that ⇡iEi > ⇡jEj and

⇡iEi = ⇡i0Ei0 > ⇡j0Ej0 , so that a
S violates II. Then Ui(aS) = ⇡i⇡jEj and Ui0(aS) =

⇡i0⇡j0Ej0 . But since ⇡iEi > ⇡jEj and ⇡iEi = ⇡i0Ei0 > ⇡j0Ej0 , for a
0
i = i

0 and a
0
i0 = i,

Ui(a0{i,i0}, a
S
�{i,i0}) = ⇡i⇡i0Ei0 > Ui(aS) and Ui0(a0{i,i0}, a

S
�{i,i0}) = ⇡i⇡i0Ei > Ui0(aS) and so

a
S is not stable.

Now suppose aS violates III and there is some j⇤ such that ⇡iEi > ⇡j⇤Ej⇤ > ⇡jEj . Since

⇡j⇤Ej⇤ > ⇡jEj , by I there is some (j⇤, k) 2 o(aS). Then Ui(aS) = ⇡i⇡jEj , Uj⇤ = ⇡j⇤⇡kEk

and Uk = ⇡j⇤⇡kEj⇤ . If ⇡iEi > ⇡kEk then for a0i = j
⇤ and a

0
j⇤ = i, Ui(a0{i,j⇤}, a

S
�{i,j⇤}) =

⇡i⇡j⇤Ej⇤ > Ui(aS) and Uj⇤(a0{i,j⇤}, a
S
�{i,j⇤}) = ⇡i⇡j⇤Ei > Uj⇤(aS) and so a

S is not stable.

If ⇡iEi  ⇡kEk then for a
00
i = k and a

00
k = i, Ui(a00{i,k}, a

S
�{i,k}) = ⇡i⇡kEk > Ui(aS) and

Uk(a00{i,k}, a
S
�{i,k}) = ⇡i⇡kEi > Uk(aS) and a

S is not stable.

27



1.5 Properties of equilibrium learning profiles

Having characterised the set of stable learning profiles in the previous section, the set

of learning profiles considered can now be expanded to cover all those which can re-

sult in equilibrium. The set of equilibrium learning profiles A
e, shares one important

characteristic with the set of stable learning profiles AS ; every learning cycle that forms

under any a 2 A
e is a 2-cycle. However, unlike stable learning profiles where the number

of 2-cycles is always maximised, the number of 2-cycles varies over di↵erent equilibria

anywhere between one and n
2 if n is even or n�1

2 if n is odd. Some examples of equilibria

are shown in Figure 4. This is not to say that any learning profile a which only produces

2-cycles is an equilibrium. The set of equilibria is characterised in Lemma 4 below. It

shows that not only is cycle size important, but whether or not a learning profile is an

equilibrium also depends on which objects the agents in B2(a) are investigating. Every

agent in B2(a) must be learning about the endowment of an agent in C2(a) who is in

a 2-cycle; there can be no ‘chains’ of agents not in learning cycles such as that shown

in Figure 6(a). It also matters which agents are in B2(a) and C2(a). If agents with

endowments of su�ciently high potential value and probability of being acceptable are

not in 2-cycles then there may be an incentive for an agent already in a 2-cycle to create

an alternative 2-cycle or 3-cycle as shown in Figure 7.

Lemma 4. A learning profile a is an equilibrium if and only if all learning cycles are

2-cycles and for any agent b 2 B2(a) not in a learning cycle, there is some c 2 C2(a)

such that ab = c , ⇡bEb  ⇡acEac and ⇡cEc � ⇡c⇡bEb.

Proof. To see that in equilibrium every learning cycle is a 2-cycle consider a single m-

cycle (k, k0, k⇤, ..., k00) that forms between some S = {k, k
0
, k

⇤
, ..., k

00
} such that m � 3
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2 3 4

(b) 

1 65

2 3 4

(c) 

1 65

1

(a) 

2

Figure 4: Examples of equilibria

and ⇡k⇤Ek⇤  ⇡iEi for all i 2 S
5. This is illustrated in figure 5(a). For agent k0:

Uk0(a) =

0

@
Y

i2S\k⇤
⇡i

1

A⇡k⇤Ek⇤

But for a0k0 = k:

Uk0(a
0
k0 , a�k0) = ⇡k0⇡kEk

This is shown in figure 5(b). Since k
0
2 S \ {k

⇤
}, ⇡k0 >

Q
i2S\k⇤ ⇡i. But then since

⇡k⇤Ek⇤  ⇡kEk, Uk0(a) < Uk0(a0k0 , a�k0) and a cannot be an equilibrium.

Then if a is an equilibrium all learning cycles are 2-cycles which means no i 2 B2(a) is

in a learning cycle and so Ui(a) = 0 for all i 2 B2(a). Suppose there is some b 2 B2(a)

such that ab = b
0
2 B(a) as in Figure 6(a). Then for some a

0 such that a
0
b0 = b,

5
If |S| = 3 then k⇤

= k00
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(a) 

(b) 

k k’ k’’ 

k k’ k’’ 

k* 

k* 

Figure 5: (a) The m-cycle (k, k0, k⇤, ..., k00
) (b) The alternative 2-cycle (k, k0

)

(b, b0) 2 o(a0b0 , a�b0) as shown in Figure 6(b) and Ub0(a0b0 , a�b0) = ⇡b0⇡bEb > 0 = Ub0(a).

But then a cannot be an equilibrium and so it must be that ai 2 C2(a) for all i 2 B2(a).

(a) 

b b’

(b) 

b b’

Figure 6: If a is an equilibrium then ai 2 C(a) for all i 2 B(a)

I next show that if all learning cycles are 2-cycles and ai 2 C2(a) for all i 2 B2(a),

then for any b 2 B2(a) such that ab = c 2 C2(a), ⇡bEb  ⇡acEac and ⇡cEc � ⇡c⇡bEb.

This means that no agent in a 2-cycle is able to attain greater utility by creating an

alternative 2-cycle or 3-cycle with any agent in B2(a). To see this, suppose that for

some b 2 B2(a) such that ab = c 2 C2(a), either ⇡bEb > ⇡acEac or ⇡cEc < ⇡c⇡bEb
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or both. Under a (as in Figure 7(a)), Uc(a) = ⇡c⇡acEac and Uac(a) = ⇡cEc. For

some a
0 let a

0
c = a

0
ac = b. Under (a0c, a�c), (b, c) 2 o(a0c, a�c) (as in Figure 7(b))

and Uc(a0c, a�c) = ⇡c⇡bEb. If ⇡bEb > ⇡acEac then Uc(a) < Uc(a0c, a�c) and a is not

an equilibrium. Under (a0ac , a�ac), (b, c, ac) 2 o(a0ac , a�ac) (as in Figure 7(c)) and

Uac(a
0
ac , a�ac) = ⇡ac⇡c⇡bEb. If ⇡cEc < ⇡c⇡bEb then Uac(a) < Uac(a

0
ac , a�ac) and again, a

is not an equilibrium.

(a) 

b c ac

b c ac

b c ac

(b) 

(c) 

Figure 7: If a is an equilibrium then no i 2 C(a) can attain greater utility by

forming a cycle with any i 2 B(a)

It remains to be shown that a is an equilibrium if o(a) contains only 2-cycles and for every

agent b 2 B2(a) there is some c 2 C2(a) such that ab = c , ⇡bEb  ⇡acEac and ⇡cEc �

⇡c⇡bEb. Since all agents in C2(a) are in 2-cycles, Ui(a0i, a�i) = 0 for all a0i 2 C2(a)\{ai},

i 2 N . Now consider all a0i 2 B2(a) for all i 2 B2(a). Since ai 2 C2(a) for all i 2 B2(a),

no i 2 B2(a) can form a cycle by learning about the endowment of any agent in B2(a) and

so Ui(a0i, a�i) = 0 for all a0i 2 B2(a), i 2 B2(a). Since no i 2 B2(a) is in a learning cycle

under a, Ui(a) = 0 = Ui(a0i, a�i) for all a0i 2 Ai, i 2 B2(a). Now consider all a0i 2 B2(a)

for all i 2 C2(a). Fix some c
⇤
2 C2(a) and a

0
c⇤ = b

⇤
2 B2(a). Let (c⇤, c0) 2 o(a) (as

in Figure 8(a) and (b)) so that Uc⇤(a) = ⇡c⇤⇡c0Ec0 . Under (a0c⇤ , a�c⇤), c⇤ is either in a
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learning cycle or not. If c⇤ is not in a learning cycle then Uc⇤(a0c⇤ , a�c⇤) = 0 < Uc⇤(a). If

c
⇤ is in a learning cycle then it is either a 2-cycle (c⇤, b⇤) if ab⇤ = c

⇤ (as in Figure 8(c))

or a 3-cycle (b⇤, c0, c⇤) if ab⇤ = c
0 (as in Figure 8(d)). Since ai 2 C2(a) for all i 2 B2(a),

c
⇤ cannot be in an m-cycle such that m > 3 under (a0c⇤ , a�c⇤). If (c⇤, b⇤) 2 (a0c⇤ , a�c⇤)

then U
⇤
c (a

0
c⇤ , a�c⇤) = ⇡c⇤⇡b⇤Eb⇤ . Since ab⇤ = c

⇤ and (c⇤, c0) 2 o(a), ⇡b⇤Eb⇤  ⇡c0Ec0 and

so Uc⇤(a) � Uc⇤(a0c⇤ , a�c⇤). If (b⇤, c0, c⇤) 2 (a0c⇤ , a�c⇤) then U
⇤
c (a

0
c⇤ , a�c⇤) = ⇡c⇤⇡c0⇡b⇤Eb⇤ .

Since ab⇤ = c
0 and (c⇤, c0) 2 o(a), ⇡c0Ec0 � ⇡c0⇡b⇤Eb⇤ and so Uc⇤(a) � Uc⇤(a0c⇤ , a�c⇤).

Then Ui(a) � Ui(a0i, a�i) for all a0i 2 Ai, i 2 N and so a is an equilibrium.

(a) 

b* c* c’

(b) 

b* c’ c*

(c) 

b* c* c’

(d) 

b* c’ c*

Figure 8: (a) ab⇤ = c⇤, (b) ab⇤ = c0, (c) the 2-cycle (c⇤, b⇤) and (d) the 3-cycle

(b⇤, c0, c⇤)

Lemma 4 shows that many learning profiles which generate the maximum number of

2-cycles are also equilibria. This includes the stable set, AS .

Lemma 5. Any stable learning profile is an equilibrium and so A
S
✓ A

e
, where A

e
is

the set of equilibrium learning profiles.

Proof. If n is even then by I all agents are in 2-cycles and Lemma 4 holds. If n is odd

then by I all agents are in 2-cycles with the exception of some i
⇤ such that ⇡i⇤Ei⇤ =

mini2N ⇡iEi. Then ⇡i⇤Ei⇤  ⇡iEi for all i 2 N and ⇡i⇡j⇡i⇤Ei⇤ < ⇡i⇡jEj for all i, j 2 N
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and so Lemma 4 holds.

1.6 Ex-ante welfare

In Section 1.3 three approaches to the learning and matching problem were introduced.

Sections 1.4 and 1.5 characterised the set of stable and equilibrium learning profile

respectively but did not explore the di↵erent e↵ects on welfare. This section compares

the ex-ante welfare across those stable and equilibrium learning profiles and considers the

conditions under which a stable learning profile yields the highest ex-ante welfare possible

(in line with Approach 3 described in Section 1.3). To more easily distinguish between

di↵erent levels of ex-ante welfare, in what follows let the maximum possible ex-ante

welfare for any given set of objects be W ⇤ = maxa2AW (a). Focussing on what occurs in

equilibrium, let the maximum and minimum possible ex-ante welfare of any equilibrium

learning profile be W
E = maxa2Ae W (a) and W

e = mina2Ae W (a) respectively. The

set of equilibrium learning profiles that yield W
E is AE = {a | a 2 argmaxa2Ae W (a)}.

A learning profile is an ex-ante welfare maximising equilibrium if and only if

a 2 A
E .

The results presented here are strongly reliant on a number of crucial assumptions.

The first is that the distribution from which each Agent i draws their value for Object

k 6= i varies across objects but not across agents so that any Agent i will observe the

same distribution for any given Object k 6= i. This can be thought of as each agent

having access to the same public information on the object but further investigation is

required in order to determine more personalised information. The e↵ects of relaxing this

assumption are explored in Section 1.6.4. Secondly, the assumption that all agents learn

simultaneously is critical to the results in this section. Agents are time constrained and

do not have the capacity to wait and observe others’ actions over time. This assumption

is restrictive but it is to some extent relaxed and treated as a dynamic problem in Chapter
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2. Thirdly, each agent has only a single test and is unwilling to exchange for an untested

object. This means attention is restricted to those ‘high-stakes’ exchanges discussed

in Section 1.1. Expanding the learning capacity adds new dimensions to the problem

and an example illustrating some of the possible e↵ects to consider all illustrated in the

conclusion (Section 1.7). This section will also add one further assumption, that objects

are ‘well ranked,’ in order to compare ex-ante welfare maximisation across approaches.

The concept of well ranked objects applies when objects can be ranked in similar ways

regardless of whether one focusses on the acceptability or conditional value of an object.

It is explained further below, but the consequences of relaxing this assumption are given

in Section 1.6.3.

1.6.1 Well ranked objects

Objects are well ranked if their order is the same when ranked by either their accept-

ability or conditional values. Agent 1 is endowed with an object which not only has the

highest probability of being acceptable (⇡1 � ⇡1 for all i 2 N) but also the highest con-

ditional value (E1 � En for all i 2 N), while Agent 2 is endowed with an object which

has the same or next highest values of ⇡i and Ei and so on. More formally, objects are

well ranked if ⇡1 � ⇡2 � ...⇡n and E1 � E2 � ...En and strictly well ranked if

⇡1 > ⇡2 > ...⇡n and E1 > E2 > ...En. Whether objects are well ranked or strictly well

ranked ⇡1E1 � ⇡2E2 � ...⇡nEn holds and so all the results on stability and equilibrium

in Lemmas 1 to 5 and Observations 1 and 2 hold.

When objects are well ranked the relationship between the ex-ante welfare of all stable

learning profiles, W
S , and the highest ex-ante welfare possible in equilibrium W

E is

precise and straightforward: WS = W
E .

Theorem 1. If objects are well ranked then the ex-ante welfare of any stable learning
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profile, W
S
, is equal to that of any ex-ante welfare maximising equilibrium, W

E
.

The full proof of Theorem 1 can be found in Appendix A. The proof provided here in

Lemma 6 is only for the case of n = 4 strictly well ranked objects but it is su�cient to

illustrate the key steps of the full proof in Appendix A. Restricting attention to only

four objects makes the proof more tractable, but the fact that objects are strictly well

ranked and the fact that n is even also somewhat simplify the proof. When objects

are strictly well ranked, the set of stable learning profiles A
S is identical to the set of

ex-ante welfare maximising learning profiles A
E . As such, the conditions that define

A
S play a central role in the proof of Lemma 6. When objects are strictly well ranked,

⇡1E1 > ⇡2E2 > ...⇡nEn and so II trivially holds for any set of strictly well ranked

objects. For this reason, Lemma 6 refers only to conditions I and III. Restricting n to

an even number means that the part of condition I referring to odd values of n is also

trivially satisfied.

Lemma 6. When objects are strictly well ranked and n = 4, a is an ex-ante welfare

maximising equilibrium if and only if a 2 A
S
.

Proof. Let a⇤ 2 A
e. If a⇤ /2 A

S then it must violate at least one of conditions I and III.

Condition I: If a
⇤ is an equilibrium then by Lemma 4, o(a⇤) can only contain 2-

cycles and if it violates I then o(a⇤) contains only a single 2-cycle. Say {(1, 2)} =

o(a⇤) so that W (a⇤) = ⇡1⇡2(E1 + E2). Now suppose that under a
�, agents 3 and 4

form a second 2-cycle (as shown in Figure 9(b)) so that o(a�) = {(1, 2), (3, 4)}. Then

W (a�) = ⇡1⇡2(E1 + E2) + ⇡3⇡4(E3 + E4). By Lemma 4, a� is an equilibrium and since

W (a�) > W (a⇤), a⇤ /2 A
E .

Then a
⇤ must satisfy condition I which implies there are two 2-cycles in o(a⇤). When

n = 4 only the three learning profiles a
�
2 A

�, a0 and a
00 illustrated in Figure 10 can
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31 2 4

C(a*) B(a*)

(a)

31 2 4

C(a*) B(a*)

(b)

Figure 9: Two learning profiles: (a) A single 2-cycle under a⇤ (b) Two
2-cycles under (a0{b,b0}, a

⇤
�{b,b0})

generate sets of two 2-cycles and so a
⇤
2 {a

�
, a

0
, a

00
}. Note that since all agents are in

2-cycles in all three learning profiles, by Lemma 4, a�, a0 and a
00 are all equilibria.

Condition III: Since a
⇤ satisfies I and a

⇤
/2 A

⇤, a
⇤ must violate III. Of the three

learning profiles a
�, a0 and a

00, only a
� satisfies III and so a 2 {a

0
, a

00
}. Consider the

ex-ante welfare under a� and a
0. If a⇤ 2 A

E and a
⇤ = a

0 then since a
� is an equilibrium,

ex-ante welfare under a0 must be at least as great as under a�:

W (a0) � W (a�)

⇡1⇡3(E1 + E3) + ⇡2⇡4(E2 + E4) � ⇡1⇡2(E1 + E2) + ⇡3⇡4(E3 + E4)

iiii⇡4(⇡2E2 � ⇡3E3) + ⇡3(⇡1E1 � ⇡4E4) � ⇡1(⇡2E2 � ⇡3E3) + ⇡2(⇡1E1 � ⇡4E4) (1)

However, since objects are well ranked, ⇡1 > ⇡2 > ⇡3 > ⇡4 and so (1) is a contradiction.

Then W (a0) < W (a�). The same argument can be applied mutatis mutandis to a
�

and a
00. Since a

⇤
2 {a

0
, a

00
} and W (a�) is strictly greater than both W (a0) and W (a00),

a
⇤
/2 A

E .
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3 41 2

(a)

3 41 2

3 41 2

(b)

(c)

Figure 10: Three learning profiles generating two 2-cycles: (a) a� (b)
a
0 (c) a00.

Then if a⇤ is an ex-ante welfare maximising equilibrium it must satisfy both I and II and

so a
⇤
2 A

S . Since A
S = {a

⇤
} and a

⇤
2 A

e, a⇤ must be the ex-ante welfare maximising

equilibrium.

Though Lemma 6 only covers the case where n = 4 and objects are strictly well ranked,

the proof in appendix A which applies to any set of well ranked objects follows a similar

pattern. The key di↵erence is that when objects are well ranked (rather than strictly

well ranked) the set of stable learning profiles, AS , is only a subset of the set of ex-ante

welfare maximising equilibria, AE . This is demonstrated in Example 4.

Example 4: Four agents have a set of well ranked objects where ⇡1 = ⇡2 = ⇡3 = ⇡4 and

E1 > E2 > E3 > E4. Consider again the three profiles a
�, a0, and a

00 shown in Figure

10. Ex-ante welfare for all three profiles is:

W (a�) = W (a0) = W (a00) = ⇡
2
1(E1 + E2 + E3 + E4)
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Since ⇡1E1 > ⇡2E2 > ⇡3E3 > ⇡4E4 but (1, 3) 2 o(a0) and (1, 4) 2 o(a00), both a
0 and

a
00 violate condition III. Since a

� does not violate III, a� is the sole learning profile in

A
S = {a

�
}. But since W (a�) = W (a0) = W (a00), AS ( A

E .

In Example 4 the probability an object will be acceptable is identical across objects and

it is this feature which means that learning profiles which are not stable can be ex-ante

welfare maximising equilibria. For this reason, the full proof of Theorem 1 (in Appendix

A) utilises the set A
⇤
◆ A

S to show that there may be a large set of ex-ante welfare

maximising equilibria but it always includes all stable learning profiles when objects are

well ranked. Since by Observation 1, A�
✓ A

S , the ex-ante welfare of any stable learning

profile can be expressed as WE = W
S =

P
i2N,i even ⇡i�1⇡i(Ei�1 + Ei).

To complete the picture of the relative position of WS , Theorem 2 compares the ex-ante

welfare of all stable learning profiles with that of the worst equilibria, W e and the high-

est ex-ante welfare that can be achieved over all learning profiles, W ⇤. To show that

W
S is greater than the ex-ante welfare of some equilibria is not a complex task since

in contrast to stable learning profiles which maximise the number of 2-cycles, Lemma

4 has already shown that equilibria can exist even when there are many agents and

only a single 2-cycle. Whether a learning profile can yield a higher ex-ante welfare than

W
E depends on the exact values of ⇡i and Ei for each object. As Lemma 8 will show,

sometimes these values are such that m-cycles other than 2-cycles can result in a higher

level of ex-ante welfare.

Theorem 2. When objects are well ranked, the ex-ante welfare of any stable learning

profile, W
S
, is at least as great as that of any equilibrium and may be less than the

maximum possible ex-ante welfare, W
⇤
.

The proof of Theorem 2 is via Lemma 7 and Lemma 8.
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Lemma 7. If objects are well ranked, the ex-ante welfare of any stable learning profile,

W
S
is at least as great as that of the equilibrium with the lowest ex-ante welfare, W

e

and strictly greater if there are more than three agents.

Proof. Fix some a
�
2 A

�. By Observation 1 and Lemma 2, A�
✓ A

S . Then W (a�) =

W
S6. If n > 3 then {(1, 2), (3, 4)} ✓ o

�. By Lemma 4, for the same set of agents there is

some equilibrium a
e
2 A

e such that {(1, 2)} = o(ae) so that no agent in N \{1, 2} is in a

learning cycle. Since (3, 4) 2 o
�, Ui(A�) > 0 for i 2 {3, 4}. Then W (A�) = W

S
> W (ae)

and since W
e = mina2AE W (a), W (ae) � W

e.

Lemma 8. The maximum possible ex-ante welfare over all learning profiles, W
⇤
may

exceed that of any equilibrium so that W
⇤
> W

E
.

The proof of Lemma 8 is via Example 5, which demonstrates that the restriction to

2-cycles in equilibrium noted in Lemma 4 can also restrict ex-ante welfare. In Example

5, larger m-cycles result in higher ex-ante welfare.

Example 5. Suppose N = {1, 2, 3, 4, 5, 6} with the following values of ⇡i and Ei:

i ⇡i Ei ⇡iEi

1 0.99 6 5.94
2 0.98 5 4.9
3 0.97 4 3.88
4 0.1 3 0.3
5 0.01 2 0.02
6 0.001 1 0.001

Consider the learning cycles that form under two learning profiles a
E and a

0: o(aE) =

{(1, 2), (3, 4), (5, 6)} and o(a0) = {(1, 2, 3), (4, 5, 6)}. Note that a
E
2 A

� so by Observa-

tion 1, Lemma 2 and Theorem 1, aE 2 A
E .

Since o(a0) contains two 3-cycles, by Lemma 4 it cannot be an equilibrium. For the given

6
In Lemma 6 this holds trivially since AS

is a singleton. Lemmas 12 and 13 in Appendix A prove

WE
= WS

= W (a) for all a 2 AS
and any set of well ranked objects.
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values:

W (aE) = (0.99 ⇤ 0.98)(6 + 5) + (0.97 ⇤ 0.1)(4 + 3) + (0.01 ⇤ 0.001)(2 + 1) = 11.35

W (a0) = (0.99 ⇤ 0.98 ⇤ 0.97)(6 + 5 + 4) + (0.1 ⇤ 0.01 ⇤ 0.001)(3 + 2 + 1) = 14.12

Since a
E
2 A

E , W (aE) = W
E
< W (a0)  W

⇤.

Example 5 does not imply that a set of 3-cycles will always ex-ante welfare dominate a

set of 2-cycles. It occurs in Example 5 because the value of ⇡i for agents 4, 5 and 6 is so

low relative to agents 1, 2 and 3. In the three cycle (1, 2, 3) 2 o(a0), there is a very high

probability that all three agents will find the object they are learning about acceptable.

Since ⇡4 = 0.1 it is far less likely that that the learning cycle (3, 4) 2 o(aE) will result

in an exchange. Then under aE there is a high probability that only agents 1 and 2 will

exchange objects whilst the remaining four agents will keep their own endowments and

as such, W (aE) < W (a0).

1.6.2 When stable is best

Example 5 demonstrates that in order to maximise ex-ante welfare, it is sometimes nec-

essary to implement larger learning cycles than the 2-cycles to which all stable learning

profiles are restricted. It is, however, significant that the learning cycles in Example

5 are 3-cycles. Although there may be many 3-cycles under a learning profile which

maximises ex-ante welfare, as Lemma 9 shows, there can never be an m-cycle containing

more than three agents. A large m-cycle (as in Figure 11(a)) can always be broken into

at least one 2-cycle and one otherm-cycle (as in Figure 11(b)) to increase ex-ante welfare.

Lemma 9. Condition IVc
: If W (a) = W

⇤
, then o(a) contains no m-cycles such that

m > 3.
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(a) 

i* j*

(b) 

i* j*

S 

S \{i*,j*} 

Figure 11: Ex-ante welfare and large m-cycles. (a) An m-cycle between agents

in S, (b) The m-cycle broken into two smaller cycles.

Proof. Suppose o(a) contains an m-cycle between S ⇢ N agents such that m > 3 (as in

Figure 11(a)). The sum of the expected utilities of all agents in S is:

X

i2S
Ui(a) =

Y

i2S
⇡i

X

i2S
Ei

Under a0, let a 2-cycle form between agents i⇤, j⇤ 2 S and an (m� 2)-cycle between all

agents in S \ {i
⇤
, j

⇤
} (as in Figure 11(b)) so that the sum of expected utility of agents

in S is:
X

i2S
Ui(a

0
S , a�S) = ⇡i⇤⇡j⇤(Ei⇤ + Ej⇤) +

Y

i2S\{i⇤,j⇤}

⇡i

X

i2S\{i⇤,j⇤}

Ei

Since ⇡i⇤Ej⇤ ,
Q

i2S\{i⇤,j⇤} ⇡i >
Q

i2S ⇡i, the sum of agents utility is higher under the two

cycles:
P

i2S Ui(a0S , a�S) >
P

i2S Ui(a). All i 2 N \ S are in the same cycles under a

and (a0S , a�S) and so
P

i2N\S Ui(a) =
P

i2N\S Ui(a0S , a�S). Then
P

i2N Ui(a0S , a�S) >
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P
i2N Ui(a) and so W (a0S , a�S) > W (a).

It is also significant, in Example 5, that there is a large gap in the probability an object

will be acceptable between the best and worst three objects. Such large gaps in the

value of ⇡i are necessary in order for 3-cycles to feature in any ex-ante welfare max-

imising equilibrium. However, when the di↵erences in the probability two objects being

acceptable is su�ciently small, sets of 2-cycles produce higher ex-ante welfare. Objects

are closely well ranked if objects are well ranked and ⇡i 
⇡i+3

⇡i+1
for all i 2 N for which

there exists an agent i + 3 2 N . When n is even and objects are closely well ranked,

maximum ex-ante welfare can be achieved by learning profiles containing only 2-cycles.

This restriction to 2-cycles means that any stable learning profile yields not only the

highest ex-ante welfare of any equilibrium but also the highest ex-ante welfare of any

equilibrium. The case where n is odd is similar, with the exception that when the value

of ⇡n is high enough, it can be better to form a three cycle between three of the worst

agents rather than leave one agent not in any learning cycle at all.

Theorem 3. When objects are closely well ranked, if n is even then W
S = W

⇤
and if n

is odd then either W
⇤ = W

S
or W

⇤
and W

S
di↵er only in the sum expected utilities of

three agents with the three worst endowments so that W
S
�W

E⇤ = ⇡n�2⇡n�1(⇡n(En�2+

En�1 + En) + En�2 + En�1).

The proof of Theorem 3 is given in Appendix B. It utilises a set of conditions similar to

I, II and III but allows for 3-cycles as well as 2-cycles. Two extra conditions are also

required. The first was given in Lemma 9 and restricts all learning cycles to 2-cycles

and 3-cycles. The second, given in Lemma 21 restricts the number of 3-cycles to at

most one. Collectively, these conditions show that when objects are closely well ranked,

stable learning profiles yield the maximum (or very close to the maximum) ex-ante

welfare.
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1.6.3 Ex-ante welfare without the well ranked assumption

If objects are not well ranked then whilst the characterisations of stable and equilibrium

learning profiles hold, the results regarding ex-ante welfare do not. It is still the case

ex-ante welfare of any stable learning profile lies between that of the worst and best

equilibria (W e and W
E) but a key di↵erence is that the ex-ante welfare of any stable

learning profile may be strictly less than W
E .

Theorem 4. For any given set of objects, the ex-ante welfare of any stable learning

profile is weakly greater than the lowest ex-ante welfare of any equilibrium, W
e
and may

be exceeded by the highest ex-ante welfare of any equilibrium, W
E
.

Proof. By Lemma 5, AS
✓ A

e and so W
e
 W (aS)  W

E for all aS 2 A
S . As when

objects are well ranked, if n > 3 then W
e
< W (aS) for all aS 2 A

S . To see this, fix some

a
S
2 A

S . By conditions I, II and III on A
S , there is some cycle (c1, c2) 2 o(aS) such

that ⇡c1Ec1 = ⇡1E1 and ⇡c2Ec2 = ⇡2E2. By condition I, |o(aS)| > 2 and |C2(aS)| � 4.

By Lemma 4, there is also some a
e
2 A

e such that {(c1, c2)} = o(ae). Since Ui(aS) > 0

for all agents in learning cycles and |C2(aS)| � 4, W (aS) > W (ae) � W
e.

The fact that the ex-ante welfare of an equilibrium can exceed that of a stable learning

profile (in contrast to when objects are well ranked) is demonstrated through Example

6.

Example 6. Suppose N = {1, 2, 3, 4} with the following values of ⇡i and Ei
7:

i Ei ⇡i ⇡iEi

1 500 0.2 100
2 200 0.4 80
3 100 0.6 60
4 50 0.8 40

7
I would like to thank Maris Goldmanis for providing this example
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Note that since Ei and ⇡i are inversely related, the objects are not well ranked. Con-

sider the learning cycles that form under two learning profiles a
S and a

E : o(aS) =

{(1, 2), (3, 4)} and o(aE) 2 {(1, 3), (2, 4)}. Note that a
S
2 A

� so by Observation 1 and

Lemma 2, aS 2 A
S . By Lemma 4, aE 2 A

e. Since (1, 3) 2 o(aE) and ⇡1E1 > ⇡2E2 >

⇡3E3, aE /2 A
S as it violates condition III. For this set of agents:

W (aS) = (0.2 ⇤ 0.4)(500 + 200) + (0.6 ⇤ 0.8)(100 + 50) = 128

W (aE) = (0.2 ⇤ 0.6)(500 + 100) + (0.4 ⇤ 0.8)(200 + 50) = 152

Then W (aS) < W (aE)  W
E .

1.6.4 Non-identical ex-ante object values

It has been assumed throughout that all agents have the same ex-ante value for any given

object other than their own endowments. Without this assumption, the characterisations

of the set of stable learning profiles and the set of equilibria do not hold. In particular, if

f
i
k is non-identical across both agents and objects then, as the following example shows,

learning cycles larger than 2-cycles can exist in equilibrium.

Example 1: First suppose three agents, N = {1, 2, 3}, all disagree over which objects

are the most and least (ex-ante) desirable. Agent 1 knows she ex-ante prefers agent

2’s endowment to 3’s since E
1
2 = 10 > E

1
3 = 1 and ⇡

1
2 = 0.9 > ⇡

1
3 = 0.1. Similarly,

agent 2 ex-ante prefers 3’s endowment and 3 ex-ante prefers 1’s: E
2
3 = E

3
1 = 10 >

E
2
1 = E

3
2 = 1 and ⇡

2
3 = ⇡

3
1 = 0.9 > ⇡

2
1 = ⇡

3
2 = 0.1. Then a1 = 2, a2 = 3 and a3 = 1

is an equilibrium (as shown in Figure 12(a)). Under a, Ui(a) = (0.9)3 ⇥ 10 = 7.29

for all i 2 N and Ui(a0i, a�i) = 0.9 ⇥ 0.1 = 0.09 for all a0i 6= ai and i 2 N . Since

Ui(a) > Ui(a0i, a�i) for all i 2 N , a0i 2 Ai, a is an equilibrium. Since there are only three

agents, Ui(a) > Ui(a0i, a�i) for all i 2 N , a0i 2 Ai also implies a is stable. Furthermore
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P
i2N Ui(a) = 21.87 = maxa2AW (a).

1 2 n 3 

1 2 3 

(a) 

(b) 

n-1 

Figure 12: (a) A 3-cycle between all agents. (b) An n-cycle between all agents.

Example 1 demonstrates that not only can 3-cycles exist in both equilibria and stable

learning profiles, but that such learning profiles can also be ex-ante-welfare maximising.

This result is not restricted to 3-cycles. As the number of agents increases, so too does

the maximum possible cycle size. In fact, Example 3 demonstrates that for any n it is

possible to construct an n-cycle that can exist in equilibrium. To do this, I deviate from

the standard approach by first fixing an n-cycle between all agents and then finding

parameter values such that the n-cycle can indeed be maintained in equilibrium.

Example 3: For some N = {1, ..., n}, let ai = i + 1 for all i 2 N \ {n} and an = 1.

An n-cycle then forms between all agents as shown in Figure 12(b). Let the ex-ante

values of the objects be such that E
i
i+1 > E

i
i�1 > E

i
j and ⇡

i
i+1 > ⇡

i
i�1 > ⇡

i
j for all

j 2 N \ {i � 1, i + 1}, i 2 N \ {1, n}. For agent 1, E1
2 > E

1
n > E

1
j and ⇡

1
2 > ⇡

1
n > ⇡

1
j

for all j 2 N \ {2, n} and for agent n, En
1 > E

n
n�1 > E

n
j and ⇡

n
1 > ⇡

n
n�1 > ⇡

n
j for all
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j 2 N \ {1, n � 1}. Then Ui(a) = E
i
ai

Qn
i=1 ⇡

i
ai and Ui(a0i, a�i)  E

i
i�1⇡

i
i�1⇡

i�1
i for all

a
0
i 2 Ai, i 2 N \{1} and U1(a01, a�1)  E

1
n⇡

1
n⇡

n
1 for all a01 2 A1. So for a su�ciently large

E
n
1 and E

i
i+1 for all i 2 N \ {n} and a su�ciently small E1

n and E
i
i�1 for all i 2 N \ {1},

Ui(a) > Ui(a0i, a�i) for all a0i 2 Ai and so a is an equilibrium. Also by making En
1 and E

i
i+1

for all i 2 N \{n} su�ciently large and E
1
n and E

i
i�1 for all i 2 N \{1} su�ciently small,

a can be made both stable and the ex-ante welfare maximising learning profile.

1.7 Conclusion

When the ability to acquire information is limited or prohibitively costly, it can inhibit

the function of the matching process. Mechanisms such as Gale’s Top Trading Cycles de-

spite possessing compelling properties such as individually rationality, Pareto optimality

and strategyproofness may not deliver the best or maximum number of matches when

information acquisition is endogenous. When each agent’s ability to learn is restricted

to just one other object then the need to design the learning and matching process is

sometimes limited. When objects are well ranked and su�ciently similar (or closely well

ranked) then any stable learning profile yields the maximum ex-ante welfare possible.

The impact of relaxing some of the key assumptions has been examined in Section 1.6

but all the analysis presented here applies only to the case when learning is so limited

that each agent is only able to acquire information about a single object. To illustrate

some of the consequences of relaxing this assumption consider the agents and learning

profiles illustrated in Figure 13. Suppose that not only is Agent 1 endowed with the best

object but also the ability to investigate two other objects while the remaining agents

can each investigate only one. In Figure 13(a) both Agents 2 and 3 investigate Agent 1’s

endowment. Despite Agent 1 owning the best object, the chance Agent 2 will be able

to exchange for it depends in part on the outcome of Agent 1’s investigation into Agent

3’s endowment and vice versa for Agent 3. If instead, Agents 2 and 3 investigate each
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other’s respective endowments (as in Figure 13(b)) then the probability they are able

to trade depends only on the probability each of the objects are acceptable. In contrast

with the results presented in prior sections, stable learning profiles exist which do not

maximise ex-ante welfare and leave the agents with the best endowments and greatest

testing ability unable to trade. Increasing the learning capacity will require further un-

derstanding of the trade o↵ between the probability of acquiring an object and its value.

(a) (b)

1

2 3

1

2 3

Figure 13: Learning cycles when i⇤ can test two objects
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CHAPTER 2:

All Together Now?

Information Acquisition over Time with

Unilateral Matching

2 paper2

2.1 Introduction

Performing scientific tests and investigations, seeking out compatible new work sched-

ules, or moving house can all involve substantial costs. So in one-sided matching markets,

where each agent looks to exchange their endowment, high research costs can impact the

information an agent acquires. In situations where the costs are so prohibitively high

that each agent can only complete one investigation, the choice over what to learn is a

critical one. This decision, however, may not necessarily be taken immediately; if the

agent has a window of time in which to form her preferences then she can choose exactly
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when she investigates. For example, consider a council house exchange programme8

and a set of families living in council homes trying to use such a scheme to move in

the summer school holiday break. Since investigating new potential homes is a costly,

time-consuming exercise, each family has only one weekend to completely dedicate to

viewing a property, researching local schools and transport options before submitting the

paperwork in time to formalise the exchange. Families cannot a↵ord to get the decision

wrong and move to an environment where they find themselves worse o↵. If this is the

case, then the family must decide not only which property to investigate, but when. This

leaves the family with two competing problems: Firstly, if Family A searches for a house

and commits to viewing it too quickly, although they may find a house they prefer, they

will not know which other families might prefer the Family A home and therefore which

exchanges are possible. In short, they may waste their viewing weekend on a property

they can never attain. Secondly, if Family A waits to see whether there will be other

families who like their home and which families they are, Family A may miss out on the

opportunity to exchange at the end of the summer altogether. It is therefore important

for Family A to consider not only which property they learn about, but when they do

so. Restricting attention to situations where there are only su�cient resources (time,

money, opportunity etc.) to investigate one other property may seem extreme but it

need not be an unrealistic assumption since those relying on social housing schemes may

be more likely to be resource constrained.

This paper examines a model in which a finite set of agents, all with ex-ante identical

endowments, are each equipped with the resources to investigate one other agent’s en-

dowment. Each agent knows the value of their own endowment but wants to be certain

she prefers any object with which she commits to exchange. Agents may choose both

which object to learn about and when to conduct their investigation from amongst a

8
In the UK, many local authorities, such as Brighton and Hove City Council or the Royal Borough

of Kensington and Chelsea run their own ‘mutual exchange schemes’ but privately run national schemes

such as ‘HomeSwapper’ and ‘Exchange Locata’ also exist.
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finite set of time periods (known here as learning periods). At the end of each learning

period agents declare their up to date preferences so that other agents know both which

tests were performed in that period and whether or not those tests were successful. At

the conclusion of the final learning period, agents’ endowments are exchanged using

their ex-post preferences in Gale’s Top Trading Cycles, the unique individually rational,

Pareto optimal and strategyproof mechanism for this preference domain (as discussed in

the introduction to Chapter 1). Under Gale’s Top Trading Cycles, agents are only able

to exchange for objects strictly preferred to their own and so the decision over what to

learn about and when a↵ects which exchanges can potentially be realised.

The previous paper (Chapter 1) showed that when agents and their objects are ex-ante

identical, the ex-ante welfare maximising equilibrium also attained (or came very close

to) the highest ex-ante welfare possible within the model. This ‘fully simultaneous’

equilibrium is not prohibited in the model explored here, agents are free to all learn

together in the same period if they choose to do so. However, a↵ording agents the

opportunity to learn at their choice of learning period presents other options. When all

agents learn simultaneously, it might result in many wasted investigations. If Agents 1

and 2 both test each other’s respective endowments at the same time, and either one of

those tests fails then both agents will be left unable to exchange. If instead Agent 2 waits

to see the results of Agent 1’s test then, if Agent 1’s test fails, she has the option to test

another object altogether. In this sense, the fewer tests performed in each period, the

more other agents can benefit from the information gathered in each test. This makes

‘fully sequential’ learning an attractive candidate learning pattern for agents.

Working against the ‘slow and steady’ nature of fully sequential learning, however, is

the pressure to not be left alone. Fully sequential learning requires, by definition, some

agent to be the last to learn. If that agent has already had their endowment successfully

tested by another agent then there is no problem, but the risk the last agent takes is
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that by the time they conduct their test, either all other agents have already identified

other agents to exchange with or expended their tests and had them fail. In such a

situation, the last agent will be left without a potential exchange partner, no matter

which object she tests. This possibility creates an incentive for that ‘last agent’ to

change her mind and instead, conduct her test in an earlier time period. For example,

if there are ten agents and each Agent i tests in the ith learning period then Agent

10 is the last to conduct her test. If instead she tests, say, Agent 9’s endowment in

the first period then, if the test is successful, she creates an incentive for Agent 9 to

test the object belonging to 10. This pressure, to not be left until last, prevents fully

sequential learning from arising in any equilibrium and causes multiple agents to choose

to test in the same period as others, despite the information lost in doing so. This

problem is similar to the well documented ‘unravelling’ phenomenon often observed in

matching markets, particularly those involved in the allocation of new graduates to

their first professional position (Roth and Xing, (1984)). In those two-sided matching

markets, firms (hospitals/law firms/sports teams etc.) looking to hire new workers are

often incentivised to make o↵ers to new potential workers earlier and earlier in their

education which can lead to ‘explosive’ o↵ers made as early as possible in the process

before all the information required which may a↵ect the quality of the match (eg. medical

training) is acquired.

This paper clearly builds on Chapter 1 and the literature discussed there. The most

relevant of those remain Bade (2015) and Harless and Manjunath (2018), on the topic of

endogenous information acquisition within matching problems. Bade (2015) examines a

two-sided matching problem, and the superior role of serial dictatorship when agents have

a choice over whether or not to acquire information. This does not apply to the model

discussed here since agents are unwilling to risk exchange with objects which they have

not investigated and the cost prohibits the number of investigations, not the extensive

choice over whether to investigate at all. The two sided, school assignment problem

52



discussed in Harless and Manjunath (2018) is presented as a static learning problem

where agents simultaneously choose which single institution to investigate and focus on

welfare properties highlights the advantages of Gale’s Top Trading Cycles. Whilst more

uncommon in the matching field, sequential information acquisition can be found in other

areas of mechanism design. In voting models, for example, Gershkov and Szentes (2009)

determine the optimal voting mechanism, in the face of costly information acquisition, is

shown to be sequential and this makes obeying the central planner’s instructions optimal.

In the model discussed here, although fully sequential learning may be optimal from an

ex-ante welfare perspective, it cannot be enforced by a central planner due to the ‘last’

agent’s incentive to expend her test in an earlier period.

Dynamic mechanism design is explored in a variety of contexts, but largely concentrates

on a changing set of agents as they arrive and depart. Parkes (2007), for example,

defines an e�cient mechanism appropriate for online auction environments where the

set of customers morphs over time. In matching, Bloch and Cantala (2013) and Kurino

(2014) use an overlapping generations models within two-sided assignment problems.

Ünver (2010) proposes mechanisms for use in kidney exchange problems where the set

of available patients and donors evolves over time, although their preferences do not.

Bade (2017) proposes mechanisms for use in shift exchange problems with an infinite

number of agents who arrive over time and, though their preferences do not change, they

cannot be determined simultaneously. In contrast, the model discussed here applies to

a fixed set of agents whose preferences can change over time and are determined before

an exchange is executed.

This paper begins by defining the model in Section 2.2. Section 2.3 discusses the si-

multaneous learning equilibria that still persist, despite the option to learn over time.

Section 2.4 demonstrates why exchanges can only happen between at most two agents

in equilibrium and uses this to explain why the fully sequential learning pattern cannot
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occur in equilibrium. Section 2.5 concludes.

2.2 Model

2.2.1 Agents, Objects, Values

A set of agents N = {1, ...n} is each endowed with an object in K = {1, ...n} where

agent i is endowed with object i and n is even. The value of object k to agent i is !
i
k.

Each agent values his own object at 0 so if i = k then !
i
k = 0. Each agent knows she will

find an object belonging to another agent to be either ‘good’ with value v̄ or ‘bad’ with

value v, where v < 0 < v̄; if i 6= k then !
i
k 2 {v, v̄}. The ex-ante value of any Object k to

Agent i is such that it is less than i’s endowment: E(!i
k) = pv̄+(1�p)v < 0. The vector

!
i := (!i

1, ...!
i
n) gives the value of each object k 2 K to agent i and ! := (!1

, ...!
n) is

the vector of values of each object to each agent. The set of all possible such vectors !

is the state space ⌦. The state ! 2 ⌦ is determined by the chance player c and is drawn

from a uniform distribution over ⌦. The probability i values some object k 6= i as ‘good’

under any ! 2 ⌦ is p = ⇡({! | !
i
k = v̄}). Since all states occur with equal probability, at

any given state agents’ values for objects are iid; in each state the value of one object k

to Agent i conveys no information to another Agent j 6= i about the value of any object

to j.

2.2.2 Learning and Preference Declaration

Over time, agents are able to learn about exactly one other object. As discussed in the

introduction to this chapter within the context of social housing, focus is restricted to

those individuals who are so resource constrained, either in terms of time, money or

opportunity that they are only able to take the opportunity to learn once. There is a set

of T = {t0, t1, ...t2n} time periods which begin with nature, c, in t0 drawing ! 2 ⌦ from
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a uniform distribution and then alternate between learning and preference declaration

periods. Period tr is a learning period if r is odd and a preference declaration period

if r is even. In every period tr where r 6= 0, all agents must take some action and so

the player correspondence, P : N ! H, is as follows: P(;) = c and P(h) = N for all

h 2 H \ {;}, where H is the set of histories. A history is a sequence of vectors of agents’

actions, where each vector a
m details the actions taken by players who move after the

history (aq)m�1
q=1 . The length of history h is l(h) and since there are 2n+1 time periods,

h is terminal if and only if l(h) = 2n. Since all agents move after every nonterminal

history (with the exception of the initial history), all histories of length one or more

will be a state followed by a sequence of 1 ⇥ n vectors. The history h
0 is a subhistory

of h = (aq)mq=1 if h0 = (aq)m
0

q=1, where m
0
< m. Agents are unaware of the state (and

therefore the values of any object other than their own endowment) selected by c, so

all h 2 H such that P(h) = N and l(h) = 1 are in the same information set. Agents

know that c draws ! from a uniform distribution over ⌦. Agents do observe each other’s

actions (other than c’s) and so all remaining information sets are singletons. Agent i’s

strategy is si and Si is the set of all possible strategies for Agent i. A strategy profile

is s = (si)i2N and the set of all strategy profiles is S = ⇥i2NSi. The set of actions

available to each i 2 N under the strategy profile s at any h 2 H \ {;} is Ai(s, h) and

ai(s, h) is the action taken by i at h under s. The vector of all actions taken by all i 2 N

at any h 2 H \ {;} under the strategy profile s is a(s, h).

Any h 2 H where l(h) is odd coincides with a learning period. Each agent is equipped

with a single test which can be used on any object and in the agent’s choice of learning

period. Then, in each learning period an agent can either choose to test some object

k 2 K \ {i} or choose option x, which is the option not to test an object at all. Since

each agent has only a single test, the actions available to Agent i after any given history

h depends on Agent i’s actions at any subhistory of h, as determined by s: Ai(s, h) =

{1, ...n, x} \ {i} if there is no subhistory h
k of h such that l(hk) is odd and ai(s, hk) 6= x,
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and Ai(s, h) = x otherwise.

Any h 2 H where l(h) is even coincides with a preference declaration period. In such

a period, agents report their preferences over objects. Agent i’s transitive preference

relation at h under the strategy profile s is Ri(s, h) where kRi(s, h)k0 means agent i

weakly prefers object k to k
0 and kPi(s, h)k0 implies kRi(s, h)k0 but not k

0
Ri(s, h)k.

Since E(!i
k) < 0 for all i 6= k, note that before an agent has learned the value of any

object, iPi(s, h)k for all k 2 K \{i} and after an agent has learned the value of an object

there is at most one object such that iPi(s, h)k for all k 2 K\{i}. A preference profile at h

under the strategy profile s is R(s, h) = (Ri(s, h))i2N and the set of all preference profiles

is R. A preference chain is a vector of agents (i1, ..., im) such that ik+1Rik(s, h)ik for

all k < m. A preference cycle is a preference chain ob(s, h) = (i1, ..., im) such that

ik+1Rik(s, h)ik for all k < m and i1Rim(s, h)im. The set of agents in the preference cycle

ob(s, h) is �b(s, h).

2.2.3 Exchange and Equilibrium

The set of terminal histories is Z ⇢ H, where z 2 Z if and only if l(z) = 2n. When a ter-

minal history z 2 Z is reached, objects are exchanged according to agents’ preferences at

z, R(s, z). A matching is a bijection µ : N ! K and the set of all matchings isM. Under

any given strategy profile s and terminal history z, a matching is individually rational if

µ(i)Ri(s, z)i for all i 2 N and a matching µ0 Pareto dominates µ if µ0(i)Ri(s, z)µ(i) for all

i 2 N and µ
0(i⇤)Pi⇤(s, z)µ(i⇤) for at least one i

⇤
2 N . If a matching is not Pareto domi-

nated then it is Pareto optimal. A mechanism, M : R ! M is individually rational and

Pareto optimal if it always results in an individually rational and Pareto optimal match-

ing. A mechanism is strategyproof if M(R(s, z))(i)Ri(s, z)M(R0
i(s, z), R�i(s, z))(i) for

all i 2 N , r0i(s, z). The mechanism used to match agents to objects is Gale’s Top Trading

Cycles, GTT : R ! M, as it is the unique individually rational, Pareto optimal and
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strategyproof mechanism.9 GTT is executed as follows:

Step r: Each unmatched agent i points at his most preferred object under

Ri(s, z) from amongst all unmatched agents. Each object points at its owner.

At least one cycle forms. All agents in a cycle receive the object they are

pointing at and are removed. If at least one agent remains then proceed to

step r + 1. If not, then end.

Agent i may be indi↵erent between two objects k and k
0, however, since the indi↵erence

occurs only between objects for which i strictly prefers her own endowment, it does

not a↵ect the mechanism’s function; if i strictly prefers her own endowment she will

always point at and be matched to her own object before having to choose between k

and k
0.

Agent i’s expected utility under any given strategy profile s, Ui(s) depends on the

probability an agent is matched with a given object and the value of that object. The

probability an agent is matched with a given object is a↵ected only by the decision over

which object to investigate and not by which preferences to report. Since GTT is used

to decide the matching, and GTT is strategyproof10, it is a weakly dominant strategy

for all agents to truthfully report there preferences as at z. It is also a weakly dominant

strategy for agents to report their preferences truthfully in any preference declaration

period. Agents know which tests have been performed in each period so an agent cannot

deceive others to her own advantage by misrepresenting her true preferences if she has

yet to complete the test. If she has performed her test and found she prefers her own

endowment to the object she investigated then it is a weakly dominant strategy to report

her true preferences since the object she prefers ex-post is her own. If she has performed

her test and found she prefers the tested object to her own endowment then, since all

other objects are ex-ante identical, stating she prefers the tested object makes it both

9
The proof in Bade (2019) applies to the domain R.

10
As in Chapter 1, the proof in Bade (2019) also applies to the domain R discussed here.
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weakly less attractive for other agents to test the same object and weakly more beneficial

for the owner of the tested object (or the owner of the object at the end of the preference

chain) to reciprocate the test.

Since agents report their preferences truthfully, agents are either matched with their

own endowments (valued at 0) or a good object (valued at v̄). Given the strategy profile

s, the probability a terminal history z 2 Z is reached under which i is matched with a

good object is ⇡({z | GTT (R(s, z))(i)Pi(s, z)i}). So, given the strategy profile s, Agent

i’s expected utility is:

Ui(s) = ⇡({z | GTT (R(s, z))(i)Pi(s, z)i}) · v̄

Let H|h be the set of sequences h
0 of vectors of agents’ actions for which (h, h0) 2 H.

Given Agent i’s strategy si, let si|h be the strategy i follows at each h
0
2 H|h and

s|h the profile of strategies followed by all i 2 N at each h
0
2 H|h. A strategy profile

s is a subgame perfect equilibrium if Ui(s|h) � Ui((s0i, s�i)|h) for all s0i 2 Si, i 2 N ,

h 2 H \ (Z [ {;}).

2.3 Learning Together and Equilibrium

Giving agents the option to choose not only which object to investigate, but also when to

conduct that investigation a↵ords them the opportunity to wait and see others’ results

before expending their own test: All else being equal, it is less risky for Agent i to test

the endowment of an Agent j who is known to prefer i to j than an Agent j
0 who has

yet to expend her test and form ex-post preferences. In this sense, reducing the number

of periods in which agents conduct tests simultaneously can lead to fewer wasted tests

and more informative investigations. However, despite the possible advantages of fully

sequential testing, a ‘fully simultaneous’ equilibrium remains in which all agents con-
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duct their tests in the same period. Figures 14 and 15 show one such equilibrium. Both

figures show which objects each agent investigates in each of the n learning periods. In

Figure 14 (a), every agent learns about a di↵erent object in period t1. Figure 14 (b)

illustrates how when any one of those agents tries to investigate an alternative object

in that same period (in this case the endowment of Agent 2), then that agent cannot

possibly be included in any later preference cycle. Figure 15 shows a similar e↵ect when

Agent 2 tries to investigate in a later learning period t7; since all agents have expended

their test in the first learning period, the only agent that Agent 2 can match with is

Agent 1 no matter the period in which Agent 2 expends her test. Theorem 1 shows that

there is a fully simultaneous equilibrium for any number of agents and objects, n.

Theorem 5. There is an equilibrium in which all agents learn in the same learning

period.

Proof. Let S�
⇢ S be a set of strategy profiles where every agent learns about a di↵erent

object in the first learning period and in such a way that learning cycles contain no more

than two agents:

S
� = {s | ai(s, h) = i+ 1 for i odd , ai(s, h) = i� 1 for i even , l(h) = 1}

Since each agent only has one test to expend and all agents truthfully declare their

preferences, Ui(s�) = p
2
v̄ for all i 2 N , s� 2 S

�. Now consider some s
0
i 2 Si such that

s
0
i 6= s

�
i , for any s

�
2 S

�. Then, if l(h) = 1, either ai((s0i, s
�
�i), h) 2 N \ {ai(s�, h), i} (so

that i investigates a di↵erent object in the same period) or ai((s0i, s
�
�i), h) = x (so that

i investigates an object in a di↵erent period).

First suppose ai((s0i, s
�
�i), h) 2 N\{ai(s�, h), i} (Figure 14 shows one example where i = 2

and a2((s02, s
�
�2), h) = 3). If i chooses to learn about some object other than ai(s�, h)
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1 2 3 4 5 6 1 2 3 4 5 6

t1

t3

t5

t7

t9

t11

(a) (b)

Figure 14: Fully simultaneous equilibrium - Deviation within period.

Objects investigated in each learning period under the strategy profiles
(a) s� and (b) (s02, s

�
�2).

at h then, regardless of whether i values ai((s0i, s
�
�i), h) as either good (v̄) or bad (v),

there can be no preference cycle containing both i and another agent j 6= ai(s�, h) at

any history. Since agents reveal their preferences truthfully, i will be matched with her

own endowment. This means Ui(s0i, s
�
�i) = 0 < p

2
v̄.

Now suppose ai((s0i, s
�
�i), h) = x (Figure 15(b) shows Agent 2 choosing to instead inves-

tigate 4 in t7). Under (s0i, s
�
�i), all j 2 N \ {i} expend their test in the first learning

period and so there is no (h, h0) 2 H and no j 2 N \{ai(s�, h)} such that iPj(s�, (h, h0))j.

Since agents reveal their preferences truthfully, i can never be matched with any j 2

N \ {i, ai(s�, h)} and so under any strategy profile (si, s��i) where si 2 Si, ai(s�, h) is the

only object Agent i can match with (besides i’s own endowment): Ui(s0i, s
�
�i) = 0 for all
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1 2 3 4 5 6 1 2 3 4 5 6

t1

t3

t5

t7

t9

t11

(a) (b)

Figure 15: Fully simultaneous equilibrium - Deviation across periods.

Objects investigated in each learning period under the strategy profiles
(a) s� and (b) (s02, s

�
�2).

ai((s0i, s
�
�i, ·) = j. Regardless of the history at which i tests ai(s�, h), Ui(s0i, s

�
�i) = p

2
v̄

and so s
� is an equilibrium.

2.4 Learning Apart and Equilibrium

When the opportunity to learn over time exists, from an ex-ante welfare perspective it is

wasteful for all learning to take place simultaneously in the same period; ex-ante welfare

(the sum of all agents’ expected utilities) is higher if Agent i can wait to first see whether

another agent’s test of i’s endowment is successful or not. But can the rush to learn

together be halted? Do equilibria exist where agents patiently wait their turn in order to
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take full advantage of the information on o↵er? While agents may learn over more than

one period in equilibrium, Theorem 6 shows that there is no ‘fully sequential’ equilibrium

in which only one agent plans to learn in each period. Before turning to Theorem 6, it

is first necessary to establish the limits of preference cycle size in equilibrium.

2.4.1 Preference Cycles in Equilibrium

It is not a coincidence the proof of Theorem 5 utilised an equilibrium in which each

preference cycle contained exactly two agents; Lemma 10 shows that in equilibrium no

preference cycle contains more than two agents.

Lemma 10. In equilibrium, preference cycles are comprised of at most two agents.

The proof of Lemma 10 can be found in Appendix E, but the key features of the argument

are illustrated here for the case where n = 4, in Example 1. Though in this example a

single large preference cycle is considered, Lemma 10 applies to all incidences of ‘large’

preference cycles comprised of three or more agents.

Example 4: Let n = 4 and s be a strategy profile under which a preference cycle forms

between all four agents. The following four cases illustrate the argument as to why s

cannot be an equilibrium.

Case 1: Two or more agents learn in the same period, completing a preference cycle in

the next period.

Suppose that under the strategy profile s two agents both learn in the same period and

this results in a preference cycle in the next period. Figure 16(a) shows Agents 1 and 3

both learning in period t7. The preference cycle which results in t8 is shown in the box.

In order for the preference cycle shown in Figure 16(a) to form, both Agent 1’s test of 2

and Agent 3’s test of 4 must be successful and so U3(s|h) = p
2
v̄, where h is the history
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which coincides with the learning period t7 illustrated in Figure 16(a).

1 2 3 4

t1

t3

t5

t7

t8

(a) (b)

1 2 3 4

Figure 16: Example 4 - Case 1. Objects investigated in each learning
period under the strategy profiles (a) s and (b) (s03, s�3). The box
shows the preference cycle that results in the preference declaration
period, t8.

If the preference cycle shown in Figure 16(a) forms at t8, it must be that Agent 2 found

Agent 3’s endowment to be good: w2
3 = v̄. Now consider s03 such that in t7 Agent 3 tests

Agent 2’s endowment as in Figure 16(b). In order to be in a preference cycle, Agent 3 only

needs her single test of Object 2 to be successful. Then U3((s03, s�3)|h) = pv̄ > U3(s|h)

and so s is not an equilibrium.

Case 2: Two or more agents learn in the same period, extending a preference chain but

not a preference cycle in the next period.

Suppose under s two agents both learn in the same period and this ‘extends’ a preference
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chain but does not create a preference cycle in the next period. Figure 17(a) shows agents

2 and 3 both learning in period t5, extending the preference chain started by Agent 1 in

t1. The preference cycle shown in the box is not complete at t6 because Agent 4 has not

yet expended her test. In order for the preference cycle to form, every test conducted

by agents 2, 3 and 4 must be successful. Then U3(s|h) = p
3
v̄, where h coincides with

t5.

If the preference cycle shown in Figure 17(a) forms at t8, it must be that Agent 2

found Agent 3’s endowment to be good at t5: w
2
3 = v̄. Now consider s

0
3 such that in

t5 Agent 3 instead tests Agent 2’s endowment. In order to be in a preference cycle,

Agent 3 only needs two tests (those shown in t5 of Figure 17(b)) to be successful. Then

U3((s03, s�3)|h) = p
2
v̄ > U3(s|h) and so s is not an equilibrium.

Case 3: Two or more agents learn in the same period, but neither extend a preference

chain, nor create a preference cycle in the next period.

Suppose two or more agents learn in the same period, but neither extend a preference

chain, nor create a preference cycle in the next period. Figure 18(a) shows one such

example where Agents 1 and 3 both investigate di↵erent objects in t1. If the large

preference cycle is to be realised in t8 then at some time period after t1, the ‘gaps’

in the preference cycle must be completed: Agent 2 and Agent 4 must also complete

their investigations. Consider Agent 2, the penultimate agent to expend her test. Since

she is the penultimate agent she extends the preference chain started by Agent 1 in

t1 but since Agent 4 is yet to expend her test, the preference cycle is also not yet

complete. In this case U2(s|h)  p
2
v̄, where h coincides with t3. This leaves Agent 2

in a similar situation to that described in Case 2: For s02 such that a2((s02, s�2), h) = 1,

U2((s02, s�2)|h) = pv̄ > U2(s|h) (as shown in Figure 18(b)).

Case 4: One agent learns in each period
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1 2 3 4

t1

t3

t5

t7

t8

(a) (b)

1 2 3 4

Figure 17: Example 4 - Case 2. Objects investigated in each learning
period under the strategy profiles (a) s and (b) (s03, s�3). In period
t5, Agents 2 and 3 extend the preference chain started by Agent 1 in
t1. The box shows the preference cycle that results in the preference
declaration period, t8.

If exactly one agent learns in each period then, in order for the large preference cycle to

form, there must be one or more occasions where an agent extends an existing preference

chain but does not complete the preference cycle. Any such agent has a profitable

deviation from s. Figure 19(a) shows an example where only one agent learns in each

learning period. The penultimate agent to expend her test is Agent 3 and in doing so she

creates a preference chain with Agent 1 but does not complete the cycle as Agent 4 has

yet to expend her test. So U2(s|h)  p
2
v̄, where h coincides with t5. However, if Agent 2

instead chooses to learn about Agent 1’s endowment then since at t5 it is already known

that Agent 1 strictly prefers Agent 2’s endowment, for s02 such that a2((s02, s�2), h) = 1,
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1 2 3 4

t1

t3

t5

t7

t8

(a) (b)

1 2 3 4

Figure 18: Example 4 - Case 3. Objects investigated in each learning
period under the strategy profiles (a) s and (b) (s02, s�2). In period t3,
Agent 2 has an incentive to create a smaller preference cycle rather
than completing the three-agent preference chain. The box shows the
preference cycle that results in the preference declaration period, t8.

U2((s02, s�2)|h) = pv̄ > U2(s|h) (as shown in Figure 19(b)).

Chapter 1, Section 1.5 discussed a much broader range of objects than are currently

being considered; in Chapter 1 objects were not necessarily ex-ante identical but never-

theless the restriction on cycle size is similar in both the simultaneous (Chapter 1) and

dynamic (Chapter 2) setting. The fact that objects are ex-ante identical is not driving

the conclusion of Example 4; similar statements could be made about the dynamic set-

ting even if the ex-ante value of objects di↵ers. If we assume (as in Chapter 1) that agent

i is endowed with the ith best endowment and that objects are well ranked (as in Section

66



1 2 3 4

t1

t3

t5

t7

t8

(a) (b)

1 2 3 4

Figure 19: Example 4 - Case 4. Objects investigated in each learning
period under the strategy profiles (a) s and (b) (s02, s�2). In period t5,
Agent 2 has an incentive to create a smaller preference cycle. The box
shows the preference cycle that results in the preference declaration
period, t8.

1.6.1) then it leaves Agents 1 and 2 in very influential positions. If they do not learn

about each other’s respective endowments then it gives the agents who the objects they

do investigate the incentive to reciprocate the investigation and create a 2-cycle. If either

Agent 1 investigates Agent 2’s endowment or Agent 2 investigates Agent 1’s endowment

then the owner of the investigated object is incentivised to reciprocate the investigation

in a later period. If, for example, Agent 2 test Agent 1’s object in the first period and

the test proves unsuccessful then Agents 1 and 3 become the two best remaining objects

and similar logic applies as for Agents 1 and 2. All the deviations illustrated in Figures

31 to 19 would also be true in the strictly well ranked environment.
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2.4.2 Fully Sequential Learning in Equilibrium

Lemma 10 dictates that preference cycles contain at most two agents in equilibrium,

but it does not determine the period in which each preference cycle first forms. Whilst

Theroem 5 proved that a fully simultaneous equilibrium does exist in which agents all

learn in the same period, it is not necessarily the most desirable outcome as agents’

are unable to use information learned by other agents to inform their own choice of

investigation. A ‘fully sequential’ learning pattern would allow agents to learn slowly

and steadily, thereby avoiding wasting tests on objects with which they know they will

be unable to exchange. Whilst for the majority of agents this leads to higher expected

utility than under fully simultaneous learning, it does create one victim. The final agent

to execute her test may be left in the unfortunate position of having no potential part-

ners with which to trade. Figure 20(a) shows how the failed tests of Agents 1, 2 and 3

(indicated by the dashed arrows) led to a preference cycle forming between Agents 4 and

5. If Agent 6 conducts his test in t11 then he cannot hope to exchange for any object at

all. However, if Agent 6 instead chooses to test in the first period, t1 then it is a weakly

dominant strategy for Agent 5 to investigate Agent 6’s endowment as shown in Figure

20(b). Theorem 6 provides a more formal argument.

Theorem 6. There is no equilibrium in which only one agent plans to learn in each

period: If s is an equilibrium and n � 2 then there is at least one learning period in

which multiple agents learn.

Proof. Let s be an equilibrium such that in each of the m learning periods, only one

agent performs a test on another object. Let i
⇤ be the last agent to expend her test,

which she does at h⇤, then Aj(s, h⇤) = {x} for all j 2 N \{i
⇤
}. Since, by Lemma 10 there

are no large cycles in equilibrium, Ui⇤(s)  p
2
v̄. Since each agent finds another object

to be ‘good’ only with probability p < 1, under s it is possible that all tests conducted
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1 2 3 4 5 6 1 2 3 4 5 6

t1

t3

t5

t7

t9

t11

(a) (b)

t12

Figure 20: Problems in fully sequential learning. Solid arrows indicate
successful tests and dashed arrows indicate failed tests. The box shows
the preference cycles in the preference declaration period t12.

by other agents fail if !j
aj(s,·) = v for all j 2 N \ {i

⇤
}, in which case i

⇤ will not be able

to form a preference cycle with any agent other than herself and so Ui⇤(s) < p
2
v̄.

Suppose instead that under s
0
i⇤ , ai⇤(s

0
i⇤ , h

1) = j
⇤ where h

1 occurs in the first learning

period and there is no j 2 N such that aj(s, h1) = j
⇤. Suppose !

i⇤
j⇤ = v̄ and consider

j
⇤’s decision at h

1. Since i
⇤ is the only agent to investigate j

⇤ at h
1, if aj⇤(ŝj⇤ , h1) =

i
⇤ for some ŝj⇤ 2 Sj⇤ then Uj⇤(ŝ|h1) = pv̄. If aj⇤(ŝ, h1) 2 (N \ {i

⇤
, j

⇤
}) [ {x} then

Uj⇤(ŝ|h1)  p
2
v̄ < pv̄. Since s is an equilibrium, it must be that aj⇤(sj⇤ , h1) = i

⇤. But

then Ui⇤(s0i, s�i) = p
2
v̄ > Ui⇤(s).
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2.5 Conclusion

Giving agents the opportunity to learn over a certain time period does not necessarily

reduce wasteful learning. The threat of being left until last, with no option to exchange,

prevents agents from taking full advantage of the information which can be gathered

through sequential learning. This results in agents learning together in the same time

periods and allows fully simultaneous learning as a possible equilibrium. Since the model

presented here did not use discount factors, the pressure to ‘learn together’ is not linked

to the need to learn fast, before their utility of an object is eroded. The fact that

agents are all ex-ante identical, however, is likely playing a critical role. If one agent

was thought to have an object with a much higher ex-ante value than others, agents

may find it advantageous to wait and see if exchange with such an agent is possible.

Di↵erent ex-ante values would also play a role whenever an agent is fortunate enough

to have more than one agent interested in her endowment. In the model presented, a

tie breaking rule is needed to determine how an agent chooses between two identical

agents, but if objects are ex-ante di↵erentiable then the agent’s choice over which object

to learn about is perhaps more clear. When each agent has the capacity for only one

test, this would not necessarily prevent the fully simultaneous learning taking place in

equilibrium, but it may a↵ect the number of periods in which such learning can take

place.
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CHAPTER 3:

UCAS: Prizes for Some

Short Lists, Unknown Grade and Assortative

Matching

3 Paper3

3.1 Introduction

The Universities and College Admissions Service (UCAS) runs the UK’s centralised uni-

versity application process. With the exception of a select few private courses, entry

to all UK institutions is conducted through UCAS; In 2017, UCAS processed over 2.5

million applications on behalf of almost 700000 students11. The design of such a pro-

cess is critical to ensuring an e�cient match, with the ‘correct’ students being placed at

each institution. Students may have individual preferences but assortative matching is

11
See https://www.ucas.com/about-us/who-we-are [accessed 01/11/18]
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desirable with the students achieving the highest grades attending the most prestigious

institutions. The ‘gold standard’ in college admissions, deferred acceptance, has been a

staple mechanism of matching markets since the field’s nascent paper of Gale and Shap-

ley (1962). Deferred acceptance is appealing because it produces stable outcomes and

because it makes telling the truth about one’s preferences a dominant strategy (Dubins

and Freedman (1981) and Roth (1982b)). The conditions which ensure these features

are realised include firstly, that both students and colleges know their preferences over

all the members of the opposite set and secondly that they are able to report those

preferences. Neither of these features is present in the UCAS system. Students applying

through UCAS must do so before they know their school exam results. This information

is acquired only after their application has been submitted but before the universities

make their decisions. UCAS also limits students to reporting their preferences over only

two colleges (known as ‘firm’ and ‘insurance’ choices). Although it remains a dominant

strategy to tell the truth about their preferences over the two chosen colleges, the com-

bination of unknown grades and short preference lists prevents students from reporting

honestly about which two colleges are their most preferred. As a result, students must be

strategic about which two options they choose and this, in turn a↵ects the assortativity

of the final assignment, where the most able students are not able to access the high

performing institutions.

This paper explores a model where a set of students are assigned to a set of colleges12

through a student-proposing deferred acceptance style mechanism that di↵ers from the

canonical Gale-Shapley mechanism in two key aspects. Firstly, the colleges’ preferences

are determined by a students grades and while this information is known when the assign-

ment is made, students do not know their grades at the time of application. Students

learn their grades only after submitting preferences over colleges. Secondly, students

12
I use the terms ‘college’ and ‘university’ interchangeably throughout to mean a higher education,

degree awarding institution
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must choose to express their preference over only two colleges by selecting a first ‘firm’

choice and a second ‘insurance’ choice to be used in case they are unsuccessful in securing

a place at the first. To see that this corresponds to the UCAS system used in the UK,

see Figure 21 which shows the decision faced by a UK student in the 2016/17 application

cycle. Students may invite conditional o↵ers from up to five universities. These o↵ers

will only be honoured if a students meets the conditions on A level grades (For example,

in Figure 21 the student must attain three A grades at A level13 to attend King’s College

London and one A and two B grades at A level to attend the University of East Anglia.

However, from amongst any o↵ers they receive from those five universities, they must

choose one firm and one insurance choice (see the ‘your reply’ column in Figure 21).

Furthermore, they must do so not only before they know which grades they will receive

but before they have even sat the majority of their exams.

Figure 21: A student’s UCAS in the 2016/17 application cycle.

13
The final exams to be taken at the high school level for the majority of 18 year olds are known as

Advanced Levels or, more commonly, A Levels.
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Using a model with both unknown grades and short preference lists permits exploration

of how this a↵ects the final allocation of students to universities. Theorem 7 demon-

strates that unknown grades and short lists need not necessarily lead to an ex-ante

undesirable outcome. When various parameters such as college capacity and students’

preferences are set at the right level, the UCAS style system can produce the same

outcome as would be expected under the student-proposing deferred acceptance mech-

anism. However, this result is very sensitive to the parametric assumptions. When stu-

dents become more risk averse, the assortative matching can deteriorate, with the better

universities missing out on some of the better students and some students remaining

unassigned altogether. Increasing student capacity can benefit the best students and

colleges but leave a large proportion of students not assigned to any college. Such e↵ects

are concerning as it not only prevents students life outcomes (Belfield et al. (2018))

and universities’ ability to plan but if the strategic decision requires expert informa-

tion then the strategic complexity may impact low income groups who are already at a

disadvantage (Jerrim (2013)).

The college admissions problem has been considered from a number of di↵erent angles,

an overview can be found in Pathak (2011). Short lists are a concern in a number

of matching markets. Cseh et al. (2016) find mechanisms for use in the roommates

problem with short lists and Immorlica and Mahdian (2005) focus on stability in the

marriage problem when one side of the market must submit short preferences lists and

find that under such circumstances, agents are unlikely to have more than one stable

partner. Beyhaghi et al. (2017) look at the e↵ects of short lists on doctors’ choices

and social welfare in the National Resident Matching Program (NRMP). They focus on

where individuals apply and the extent to which ‘safe’ options are chosen and find that

the Nash equilibrium outcome is not drastically di↵erent to the optimal one. Unlike the

UCAS style system discussed here, however, all agents (both doctors and hospitals) have

all the required information before an application is processed. In addition, social welfare
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is considered as the sum of agents utilities from their assignments and are not concerned

with the assortative quality. Chade et al. (2014) look at the portfolio choice problem

students face when they are uncertain about a college preferences and the number of

applications is a choice limited by cost rather than the system itself. They find the

portfolio choice problem can cause sorting to fail.

Closely related to the unknown grades problem is the early admissions problem in the

US college market. Avery and Levin (2010) focus on the student’s response to the

possibility of early action and the positive benefits of allowing students to signal their

preferences. The combination of the unknown grades and short list problems are known

to cause adverse e↵ects in school matches. Ajayi and Sidibe (2017) analyse the complex

school match in Ghana and suggest changes to improve their measure of student wel-

fare. Common with UCAS, the Ghana school match used both short lists and students

were unaware of their priorities at each school at the time of application. The authors

recommend increasing the length of the preference lists as well as informing students of

their test scores in order to improve welfare. Such solutions are di�cult to apply directly

to UCAS due to the fact that students submit their rankings before even sitting their

exams. Rectifying this would involve more than a change to the application mechanism,

but a full restructure of the final year of secondary school. Extending the list would be

simple to implement but it also creates high levels of uncertainty for universities. In the

Ghanaian school match problem, each school can expect a number of students within

a given range and the teaching needs will be uniform across the intake. By contrast,

universities using the UCAS system need to be able to predict whether a course will be

100% or 10% full and plan resources accordingly. Given the match takes places often

with six weeks of the start of teaching, it is di�cult to acquire the correct resources and

hire the correct sta↵ at the eleventh hour.

The education system UCAS operates within does pose many seemingly immovable ob-
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stacles (such as short lists and unknown grades) but the concern over the lack of assor-

tativity in the match is also a concern from the point of view of widening participation.

Even when a strategyproof mechanism is used, students sometimes do not truthfully

report their preferences. Artemov, Che and He (2017) show that when students believe

there is little chance of being accepted to the best colleges then those colleges are likely

to be omitted from their lists. This becomes concerning when it may not only be the

academically less able students adopting such behaviour but when students from more

disadvantaged backgrounds are more likely to apply this strategy. Chen and Pereyra

(2018) find that students from low socio-economic backgrounds are more likely to decide

to deliberately misreport their preferences and not list the most aspirational schools. As-

sessing the possible outcomes of the UCAS mechanism may then be key in determining

how to aid students most likely to be disadvantaged by the strategic complexity.

Section 3.2 introduces a simple model which can be used to analyse the problems of

short lists and unknown grades with a UCAS type mechanism. Section 3.3 then uses

this model to tentatively explore some of the factors which influence the outocme of the

mechanism such as university capacity and quality of education at a given institution

and presents some conditions under which the ex-ante performance of UCAS is the same

as the ex-ante outcome of deferred acceptance.

3.2 Model

A continuum of students N = [0, 1], are to be assigned to one of four college options in

the finite set X = {A,B,C,?}, where A, B and C are all colleges and being assigned to

the ‘null’ college, ?, is equivalent to not being assigned to a college. All students agree

college A is the best and college C the worst and so if �i is i’s transitive preference

relation, A �i B �i C for all i 2 N . The utility any student i receives from attending

college x is Ui(x), where U(A) > U(B) > U(C) > U(?). Each student receives a grade
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from the set G = {1, 2, 3}, where colleges regard 1 to be the best grade and 3 the worst.

The probability any student receives a grade g 2 G is P (g). The grades are drawn from

a uniform distribution and so P (1) = P (2) = P (3). Each college x 2 X has capacity

qx. Since all colleges agree on which grade is the best, all colleges strictly prefer grade 1

students to grade 2 students and grade 2 students to grade 3 students but are indi↵erent

between students with the same grade. Each college x prefers to be full to capacity qx

than not and so prefers a student with any grade to having spare capacity.

A matching is a function µ : N ! X and the set of all possible matchings is M. The

match is conducted through the following three-stage process:

Stage 1 - Application

Students submits a college application prior to receiving their grades. Each stu-

dent lists two colleges on the application: a firm choice and an insurance choice.

Each agent i 2 N chooses an application strategy si from from the set S =

{AB,AC,BC}, where si = x1x2 means x1 is i’s firm choice and x2 is i’s insurance

choice college.

Stage 2 - Grades

Students learn their grades. Student i’s grade will be visible to any college receiving

her application in the assignment stage.

Stage 3 - Assignment

– Step 1: Students applications are sent to their firm choice college. Each

college considers all the applications it receives. If the number of applica-

tions to college x exceeds qx then x tentatively accepts its most preferred qx

applicants. If the number of applications to college x is qx or less then x

tentatively accepts all applicants. If all students are tentatively accepted to
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a college then the process terminates, otherwise continue to Step 2.

In general, at step k:

– Step k: The applications of any student rejected from their insurance choice

college in Step k � 1 are accepted by the null college ?. The applications of

any students rejected from their firm choice college in Step k � 1 are sent to

their insurance choice college. Each college considers all the new applications

it receives in Step k alongside the applications of the students it tentatively

accepted in the Step k� 1. If the number of applications to college x exceeds

qx then x tentatively accepts its most preferred qx applicants. If the number of

applications to college x is qx or less then x tentatively accepts all applicants.

If all students are tentatively accepted to a college then the process terminates,

otherwise continue to Step k + 1.

The strategy profile s = (si)i2N details the strategy chosen by each student. The set

of all possible strategy profiles is S. Stage 3 above describes the assignment mechanism

M : S ! M. The mechanism M is closely related to the canonical student-proposing

deferred acceptance mechanism, (Gale and Shapley (1962)). Any di↵erence here between

M and deferred acceptance is driven by the limit on the number of colleges to which

a student can apply; under M a student is only permitted to send their application to

two colleges whereas under deferred acceptance, a student would be permitted to send

their application to all colleges the student prefers to being left unassigned at the null

college. This means that whilst the number of tentative matches and steps may be very

large under deferred acceptance, the assignment mechanism M will terminate after at

most four steps.

Under a given strategy profile s, the mass of students adopting strategy si 2 S is

m(si), where m(AB) +m(AC) +m(BC) = 1. Note that the set S implies no student

will be able to choose a strategy where they list a college they prefer less than their
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insurance choice as a firm choice. Such a strategy could never be advantageous to the

student choosing it since in a student-proposing deferred acceptance mechanisms it is a

dominant strategy for students to be truthful about their order of preferences (Dubins

and Freedman (1981) and Roth (1982)). So while students may carefully consider which

two colleges they should send their application to, it is assumed they will always send it

first to their most preferred college of the two.

The college x a student is assigned to depends on both the mass of students adopting

each strategy and the grade they each receive. Since all students are ex-ante identical,

the probability student i is assigned to college x given their choice of strategy si is

P (x | si). The probability student i is assigned to college x given their choice of strategy

si and having received grade g is P (x | si, g). These probabilities determine the expected

utility ui(si) of an agent who adopts some strategy si 2 S. Agent i’s expected utility of

strategy si = x1x2 2 S is:

ui(x1x2) = P (x1 | x1x2)U(x1) + P (x2 | x1x2)U(x2) (2)

Since preferences over colleges and their utilities are the same for all agents, ui(x1x2) =

u(x1x2) for all i 2 N .

3.3 Comparative Statics

Using the model in Section 3.2, it is possible to explore factors a↵ecting both students

application strategies and the assortativity of resulting match. In particular, I focus

on two factors relevant to the changing UK higher education system in 2018. Firstly,

I examine the possible impact on assortativity when one university is considered to be

of disproportionately higher quality than the remainder and secondly, the possible im-

pact on assortativity when universities expand their capacity. Before turning to these
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questions, however, it is necessary to first establish what happens in the model at equi-

librium.

3.3.1 Equilibrium

In equilibrium it must be that the case that the expected utility of each application

strategy is the same and that the total number of students choosing each strategy is

equal to the total mass of students:

u(AB) = u(AC) = u(BC) (3)

m(AB) +m(AC) +m(BC) = 1 (4)

Determining the values of u(AB), u(AC) and u(BC) is a complex task and so it is

necessary to make some assumptions about how agents might behave in equilibrium.

This has the benefit of allowing us to examine what sort of behaviour might arise in

equilibrium but it is important to state that this is only one equilibrium out of many

given that the following assumptions may not hold:

(i) Firstly, it is assumed that the top ranked college is filled to capacity with

students. If places were otherwise left unfilled, some students would be able to

benefit by changing their strategy. College A, therefore, is assumed to receive at

least qA applications and its capacity will exhausted by students receiving a grade

1.

(ii) Since the top ranking institution is always able to take the very best students

(those with grade 1), if there are any grade 1 students who are not admitted to

College A then these will be most preferred by College B. Since grading systems are

designed to discriminate between ability, it’s assumed that the number of students
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receiving top grades does not exceed the capacity of the top (College A) and middle

(College B) ranking colleges. Then, college B must accept all grade 1 students

choosing the strategy BC and all grade 1 students with strategy AB who are not

accepted to A. The remainder of of B’s capacity is exhausted by grade 2 students

with strategies AB and BC.

(iii) Lastly, it is assumed that there is su�cient provision for all Grade 1 and

2 students (with strategies AC and BC) who are not accepted to A or B to be

accepted to College C.

Under these assumptions, it is possible to find an expression for the expected utility of

each strategy. For example, as stated in assumption (i), college A’s capacity is exhausted

by grade 1 applicants so:

P (A | AB, 1) =
qA

P (1)[m(AB) +m(AC)]
(5)

P (A | AC, 1) = P (A | AB, 1) (6)

The capacity remaining at A for grade 2 and 3 students is qA,2 = qA,3 = 0 (where qx,g is

the capacity at college x for students with grade g or below). Since by (ii), B’s capacity

is not exhausted by grade 1 students, the number of grade 1 students at B depends on

the number rejected from A:

P (B | BC, 1) = 1 (7)

P (B | AB, 1) = 1� P (A | AB, 1) (8)

The capacity remaining at B for students receiving other grades is:

qB,2 = qB � P (1)[m(AB)(1� P (A | AB, 1)) +m(BC)] (9)
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By (iii), College C’s capacity exceeds the student population and since by (ii), all grade

1 students with the strategy BC will be guaranteed a place at B, the only grade 1

students assigned to C are those with the strategy AC who are not assigned to A.

P (C | AC, 1) = 1� P (A | AB, 1) (10)

P (C | BC, 1) = 0 (11)

Similar expressions for the probabilities of Grade 2 and 3 students can be found in

Appendix F.1 and they can then be used to express the expected utility of each strategy

as in Equation 2. These expected utilities (u(A,B), u(A,C), u(B,C)) can be found

in Appendix F.2 and the mass of students choosing each strategy as a function of the

utility of each college and the capacity of each college is in Appendix F.3.

Normalising U(C) to 1, yields the following student masses applying using each strategy

in equilibrium:

m(AC) = [U(A)� 1� U(A)U(B)qA + U(B)2qA � U(B)qA + qA � U(A)U(B)qB

+ U(B)2qB � U(B)qB + qB]/[U(A)� U(B)] (12)

m(AB) =
U(B)[qA �m(AC)(qa + qB)] +m(AC)(1�m(AC))� qA(1�m(AC))

(qA + qB)U(B)� 1�m(AC)
(13)

m(BC) = 1�m(AC)�m(AB) (14)

In order to compare the e↵ects of changing utilities and and capacities in the following

sections, I use this solution in the following example:

Example 1: Suppose college capacity is such that qx = 1
4 for all x 2 X, P (g) = 1

3 for all

g 2 G and U(A) = 3, U(B) = 2, U(C) = 1 and U(?) = 0. Then, by equations 12, 13 and
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14, m(AB) = 1
4 , m(AC) = 1

2 and m(BC) = 1
4 and u(AB) = u(AC) = u(BC) = 2

3 .

The ex-ante proportion of students receiving each grade expected to be assigned to each

institution is shown in Figure 22. The left most bar represents the 1
3 mass of students

who are all expected to achieve a Grade 1. It shows that of those Grade 1 students, a

mass of 0.25 students will go to College A while the remaining mass of 1
12 students are

assigned to College B.

Grade

M
as
s

Figure 22: Ex-ante student assignment in Example 1. Proportion of
students assigned to each college A, B, C or ? by grade.

Example 1 and Figure 22 demonstrate an important result: despite the perceived prob-

lems associated with short lists and unknown grades, from an ex-ante perspective, the

mechanism M may perform just as well as student-proposing deferred acceptance. The

distribution of students illustrated in Figure 22 is also the expected (ex-ante) outcome

of deferred acceptance.

83



Theorem 7. Ex-ante, the mechanism M can result in the same matching as the student-

proposing deferred acceptance mechanism.

To see that the student-proposing deferred acceptance mechanism (DA) would yield

the same result, recall that under DA, any student i can express their complete, strict

preference relation �i: A �i B �i C. Therefore, even though students do not know

their grades prior to application, their application can be considered by all colleges if

necessary. This means, in Step 1 of DA, college A accepts only grade 1 students, up

to qA = 0.25. The remainder of grade 1 students go to B in Step 2 of DA with the

remainder of B’s capacity being filled by grade 2 students. In Step 3, College C is filled

with the remaining grade 2 students and some grade 3 students, rejecting those in excess

of capacity qc.

3.3.2 Assortative Matching and U(A)

Of course, Theorem 7 relies heavily on the parametric assumptions in Example 1 and

simply because M works well in some circumstances does not suggest it will work equally

well in others. For example, consider the case where one college is considered dispropor-

tionately better than others. Such cases are not uncommon, Belfield et al. (2018) find

that men from the most selective Russell Group universities earn up to 50% more than

those from other institutions within the same group. Such conditions can a↵ect sorting

within the match.

Example 2: Let all parameters be the same as in Example 1, with the exception that

U(A) = 3.5. This increases the number of students who apply to A through either the

AB or AC strategy. Figure 23 shows that as U(A) increases to 3.5, m(AB) approaches

2
3 and m(AC) approaches 1

3 while m(BC) decreases to zero.

Example 2 yields the allocations represented in Figure 24(a), with the outcome from
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m(AB) m(AC) m(BC)

Figure 23: Change in strategy as U(A) increases from 3.0 to 3.5

Example 1 shown in panel (b) for comparison. If the ‘optimal’ match is considered to

be that achieved under DA, then the parameters in Example 2 take us to a less socially

desirable outcome. College A is still filled to capacity with grade 1 students, however

the talent of some grade 1 students is now wasted as they are assigned to college C.

Some grade 2 students are also left unassigned. The winner in this situation, however, is

College C who accept some grade 1 students it would not otherwise have recruited.

3.3.3 Assortative Matching and qx

Increased college capacity is another feature of the UK higher education market. In

2015/16 government caps on student numbers were removed (Hillman (2014)) allowing

all universities to expand their capacity. Large changes in capacity at all institutions can

also have dramatic e↵ects on assortativity in matching, as shown by Example 3.

Example 3: Let all parameters be the same as in Example 1, with the exception that

qx = 1
3 for all x 2 X. As the capacity of each institution increases to 1

3 , m(AB) increases

to 0.99 and m(AC) decreases to 0.01, while m(BC) decreases to zero.
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(a) (b)

Figure 24: Increasing U(A) (a) Ex-ante matching when U(A) = 3.5.
(b) Ex-ante matching when U(A) = 3.0.

Figure 25 shows how the increased capacity a↵ects assortativity in matching. As in

all previous example, College A still fills with grade 1 students, but with A’s increased

capacity, B is almost exclusively filled with grade 2 students; B can no longer take the

best students who are rejected by A. College C also su↵ers as the number of student

using a strategy featuring C approaches to zero. Grade 3 students also su↵er the most

in this example as they become increasingly unassigned.

3.4 Conclusion

The results in Section 3.3 are clearly very sensitive to the parametric assumptions, but

the examples illustrate how di↵erent groups of both colleges and students can be severely
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(a) (b)

Figure 25: Increasing qx to approaching
1
3 (a) Ex-ante matching under

M (b) Matching under DA.

disadvantaged by introducing the twin features of short listing and unknown grades into

an otherwise appealing mechanism. In the UK’s UCAS system, students are required

to cope with both of these hurdles as they must both narrow their options to a first

‘firm’ choice and a second ‘insurance’ choice. If the pre-results application is to persist

then this suggests further study should be conducted into increasing the number of

options any given student may choose. The argument for providing a less strategic entry

process is even more pertinent when considering widening participation. The inability to

master the UCAS admissions process is one feature likely to block entry to high status

universities for those from disadvantaged background (Jerrim (2013)). From a theoretic

stance, one important feature absent from the model discussed above is heterogenous

groups of students. Students may di↵er in their levels of risk aversion or in the accuracy
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of their information about programme entry. Many other policies to help those from

low-participation schools exist; costly tutoring and enrichment programmes for such

students may be partial solutions but reform in the admissions system may be more

e�cient and can be made easily accessible to all. Further work is needed to establish

the extent to which reform in the admissions system might do more to allow fair access

to all institutions.

88



Appendix

A Well ranked objects: Stability and Equilibrium

In Section 1.6, the proof of Theorem 1 was given only for the case where objects are

strictly well ranked. Lemmas 11 to 13 provide the proof of Theorem 1 for any set of

well ranked objects. In contrast to the strictly well ranked case (as in Lemma 6), when

objects are well ranked the set of stable learning profiles is only a subset of ex-ante

welfare maximising equilibria. For this reason, the proof of Theorem 1 utilises a wider

set of learning profiles, A⇤ in order to identify the ex-ante welfare maximising equilibria

in A
E . A learning profile a is an element of A⇤ if and only if it meets the following three

conditions:

I: If n is even then all agents are in 2-cycles. If n is odd then all agents are in

2-cycles except for some i
⇤ such that ⇡i⇤Ei⇤ = ⇡nEn.

and for any pair of agents i, j such that ⇡i > ⇡j and (i, j) 2 o(a):

II⇤: If there are two agents i0, j0 such that (i0, j0) 2 o(a) and ⇡i = ⇡i0 then ⇡j0 � ⇡i.

III⇤: There is no agent j
⇤ such that either ⇡i = ⇡j⇤ > ⇡j and Ei > Ej⇤ � Ej or

⇡i > ⇡j⇤ � ⇡j and Ei � Ej⇤ > Ej .

The set A⇤ has some similarities with the set AS in Section 1.4. The di↵erence is that

conditions II⇤ and III⇤ refer separately to the probability an object is acceptable, ⇡i,

and its conditional expected value, Ei. However, as shown in Lemma 15 when objects

are strictly well ranked, the sets AS and A
⇤ are identical.

Lemma 11. When objects are well ranked, if a is an equilibrium and not an element of

A
⇤
then a is also not in the set of ex-ante welfare maximising equilibria, A

E
.
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Proof. Fix some equilibrium learning profile aE 2 A
e such that aE /2 A

⇤. Since aE /2 A
⇤

it must violate one or more of I, II⇤ and III⇤. I consider each of these conditions in turn

and show that in every case a learning profile violating a condition cannot be an ex-ante

welfare maximising equilibrium since it is possible to construct an alternative learning

profile which is also an equilibrium and yields higher ex-ante welfare.

If aE violates I then either aE /2 argmaxa2A |C2(a)| or aE 2 argmaxa2A |C2(a)| and there

is some {i
⇤
} = B2(aE) such that ⇡i⇤Ei⇤ 6= mini2N ⇡iEi. First consider the case where

a
E

/2 argmaxa2A |C2(a)|, then there are two agents b, b
0
2 B2(aE) as in Figure 26(a).

By Lemma 4 none of the agents in B2(aE) are in learning cycles and so Ub(aE) = 0

and Ub0(aE) = 0. Under a
0 let a

0
b = b

0 and a
0
b0 = b. Since a

E
2 A

e, ai /2 {b, b
0
} for

all i 2 N and so (a0{b,b0}, a�{b,b0}), as in Figure 26(b), is also an equilibrium. Since

(b, b0) 2 o(a0{b,b0}, a�{b,b0}), Ub(a0{b,b0}, a�{b,b0}) > 0 and Ub0(a0{b,b0}, a�{b,b0}) > 0. Since

o(a0{b,b0}, a�{b,b0}) = o(aE) [ {(b, b0)}, W (aE) < W (a0{b,b0}, a�{b,b0}). Then W (aE) < W
E

and a
E

/2 A
E .

b1 2 b’

C(a*) B(a*)

b1 2 b’

C(a*) B(a*)

(a)

(b)

Figure 26: Two learning profiles: (a) aE , (b) (a0{b,b0}, a�{b,b0}). Ex-ante
welfare can be increased by pairing agents not in learning cycles in
2-cycles

90



Next consider the case that a
E
2 argmaxa2A |C2(a)| and there is some {i

⇤
} = B2(aE)

such that ⇡i⇤Ei⇤ 6= mini2N ⇡iEi, then there is some (j, n) 2 o(aE) such that ⇡nEn =

mini2N ⇡iEi. An example is shown in Figure 27(a). Under a
E , Ui⇤(aE) = 0, Uj(aE) =

⇡j⇡nEn and Un(aE) = ⇡n⇡jEj . Let a0j = i
⇤ and a

0
i⇤ = j. Since |o(aE)| = |o(a0{i⇤,j}, a�{i⇤,j})|

and {n} = B(a0{i⇤,j}, a�{i⇤,j}), by Lemma 4, (a0{i⇤,j}, a�{i⇤,j}) is an equilibrium, as shown

in Figure 27(b). Under the learning profile (a0{i⇤,j}, a�{i⇤,j}), Ui⇤(a0{i⇤,j}, a�{i⇤,j}) =

⇡i⇤⇡jEj , Uj(a0{i⇤,j}, a�{i⇤,j}) = ⇡j⇡i⇤Ei⇤ and Un(a0{i⇤,j}, a�{i⇤,j}) = 0. Since ⇡i⇤Ei⇤ 6=

mini2N ⇡iEi, ⇡j⇡nEn < ⇡j⇡i⇤Ei⇤ . Since objects are well ranked, ⇡n  ⇡i for all i 2 N

so ⇡n⇡jEj  ⇡i⇤⇡jEj . Then,
P

i2{i⇤,j,n} Ui(aE) <
P

i2{i⇤,j,n} Ui(a0{i⇤,j}, a�{i⇤,j}). Since

every i 2 N \ {i
⇤
, j, n} is in the same learning cycle under a

E and (a0{i⇤,j}, a�{i⇤,j}),

W (aE) < W (a0{i⇤,j}, a�{i⇤,j}) and so a
E

/2 A
E .

i* j

(b)

n

i* j

(a)

n

Figure 27: Two learning profiles: (a) aE , (b) (a0{i⇤,j,n}, a�{i⇤,j,n}). If n
is odd then then agent n is not in a 2-cycle.

If aE violates II⇤ then there are two cycles (i, j), (i0, j0) 2 o(aE) such that ⇡i = ⇡i0 > ⇡j

and ⇡i > ⇡j0 as shown in Figure 28(a). Let a
0
i = i

0, a
0
i0 = i, a

0
j = j

0, a
0
j0 = j and

S = {i, i
0
, j, j

0
}. If aE 2 A

E then a
E must meet I and since C2(aE) = C2(a0S , a

E
�S), by

Theorem 4, (a0S , a
E
�S) is also an equilibrium as shown in Figure 28(b). If a 2 A

E then
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W (aE) � W (a0S , a
E
�S). Since all i 2 S are in 2-cycles with only other agents in S under

both learning profiles, W (aE) and W (a0S , a
E
�S) di↵er only in the sum of the expected

utilities of the four agents in S. To see
P

i2S Ui(a0S , a
E
�S) >

P
i2S Ui(aE) first recall

⇡i0 > ⇡j and ⇡i > ⇡j0 . Then the following must hold:

⇡j(⇡iEi � ⇡j0Ej0) + ⇡j0(⇡i0Ei0 � ⇡jEj) < ⇡i0(⇡iEi � ⇡j0Ej0) + ⇡i(⇡i0Ei0 � ⇡jEj)

) ⇡i⇡j(Ei + Ej) + ⇡i0⇡j0(Ei0 + Ej0) < ⇡i⇡i0(Ei + Ei0) + ⇡j⇡j0(Ej + Ej0)

)

X

i2S
Ui(a

E) <
X

i2S
Ui(a

0
S , a

E
�S)

Since W (a0S , a
E
�S) > W (aE), aE cannot be an ex-ante welfare maximising equilibrium if

a
E violates II⇤.

(b) 

i i’ j j’

(a) 

i i’ j j’

Figure 28: Two learning profiles: (a) a
E , (b) (a0S , a�S). Two agents

with equally acceptable objects cannot both be in 2-cycles with agents
endowed with objects less likely to be acceptable.

If aE violates III⇤ then for some (i, j) 2 o(aE) there is a j
⇤ such that either ⇡i = ⇡j⇤ > ⇡j

and Ei > Ej⇤ � Ej or ⇡i > ⇡j⇤ � ⇡j and Ei � Ej⇤ > Ej . If aE 2 A
E then I must hold

for aE . Since ⇡j⇤Ej⇤ > ⇡jEj , there is some (j⇤, k) 2 o(a). An example of such learning
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cycles is shown in Figure 29(a). If k > j
⇤ then ⇡k  ⇡j⇤ and so let a

0
i = j

⇤, a0j⇤ = i,

a
0
k = j and a

0
j = k as shown in Figure 29(b). Let S = {i, j, j

⇤
, k}. Since I holds for aE

and C(aE) = C(a0S , a
E
�S), by Lemma 4, (a0S , a

E
�S) is also an equilibrium and an example

is shown in Figure 29(b). If a 2 A
E⇤ then W (aE) � W (a0S , a

E
�S). Since every i 2 N \ S

is in the same learning cycle under aE and (a0S , a
E
�S), W (aE) and W (a0S , a

E
�S) can di↵er

only in the utilities of the four agents in S. Since either ⇡i = ⇡j⇤ � ⇡k and ⇡j⇤ > ⇡j or

⇡i > ⇡j⇤ � ⇡k and ⇡j⇤ � ⇡k the following must hold:

⇡j(⇡iEi � ⇡kEk) + ⇡k(⇡j⇤Ej⇤ � ⇡jEj) < ⇡j⇤(⇡iEi � ⇡kEk) + ⇡i(⇡j⇤Ej⇤ � ⇡jEj)

) ⇡i⇡j(Ei + Ej) + ⇡j⇤⇡k(Ej⇤ + Ek) < ⇡i⇡j⇤(Ei + Ej⇤) + ⇡j⇡k(Ej + Ek)

X

i2S
Ui(a

E) <
X

i2S
Ui(a

0
S , a

E
�S)

Then W (aE) < W (a0S , a
E
�S) and so a /2 A

E . If k < j
⇤ then ⇡k � ⇡j⇤ , a0i = k, a0k = i,

a
0
j⇤ = j and a

0
j = j

⇤, an example of which is shown in Figure 30(b). The above argument

for k > j
⇤ can then be applied to the case where k < j

⇤ mutatis mutandis.

Lemma 12. When objects are well ranked, all learning profiles in A
⇤
yield the same

ex-ante welfare and so A
⇤
is the set of ex-ante welfare maximising equilibria A

E
.

Proof. Let � = {�
1
, ...�

r̄
} be a partition on N such that for any i 2 �

t and i
0
2 �

t0 ,

⇡i > ⇡i0 if and only if t < t
0. Ex-ante welfare of any learning profile a can then be

expressed as:

W (a) =
nX

i=1

Ui(a) =
r̄X

i=1

X

i2�r

Ui(a)

To define
P

i2�r Ui(a) for any given �
r, consider each of the following cases. In all

cases i
0
2 argmaxi2�r ⇡iEi and i

00
2 argmini2�r ⇡iEi . If �

r�1 exists then i
�

2

argmini2�r�1 ⇡iEi and if �r+1 exists then i
+

2 argmaxi2�r+1 ⇡iEi. Examples of such

agents are shown in Figure 31.
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(b) 

i j* j k

(a) 

i j* j k

Figure 29: Two learning profiles for the case where k > j
⇤: (a) a

E ,
(b) (a0S , a�S). A learning profile a cannot violate III⇤ if a is a welfare
maximising equilibrium.

Case 1: Either r = 1 or | [
r�1
i=1 �

r
| even.

Case 1a: |�
r
| even. If |�r

| even then I, II⇤ and III⇤ imply that no i 2 �
r is in a

learning cycle with any i 2 N \ �
r. By I all agents in �

r must be in 2-cycles with

other agents in �
r as shown in Figure 31(a) Then

P
i2�r Ui(a) =

P
i2�r Ui(a) =

⇡
2
iEi.

Case 1b: |�
r
| odd. If |�r

| odd then I, II⇤ and III⇤ imply no i 2 �
r is in a learning

cycle with any i 2 �
r0 where r0 < r. By I all agents in �

r
\{i

00
} must be in 2-cycles

with other agents in �
r
\ {i

00
}. Again by I, if r = r̄ then i

00 is not in a learning

cycle (as shown in Figure 31(b)). Then
P

i2�r Ui(a) =
P

i2�r\{i00} ⇡
2
iEi. If r < r̄

then I, II⇤ and III⇤ imply (i00, i+) 2 o(a) and so
P

i2�r Ui(a) =
P

i2�r\{i00} ⇡
2
iEi +

⇡i00⇡i+Ei+ (as shown in Figure 31(c)).

Case 2: | [
r�1
i=1 �

r
| odd.

Case 2a: |�
r
| even. If |�r

| even then I, II⇤ and III⇤ imply that (i�, i0) 2 o(a) and
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(b) 

i k j* j

(a) 

i k j* j

Figure 30: Two learning profiles for the case where j
⇤
> k: (a) a

E ,
(b) (a0S , a�S). A learning profile a cannot violate III⇤ if a is a welfare
maximising equilibrium.

all i 2 �
r
\ {i

0
, i

00
} are in 2-cycles with other agents in �

r
\ {i

0
, i

00
}. If r = r̄ then

by I, i00 is not in a learning cycle (as shown in Figure 32(a)) and so
P

i2�r Ui(a) =
P

i2�r\{i0,i00} ⇡
2
iEi + ⇡i0⇡i�Ei� . If r < r̄ then I, II⇤ and III⇤ imply (i00, i+) 2 o(a)

(as shown in Figure 32(b)) and so
P

i2�r Ui(a) =
P

i2�r\{i0,i00} ⇡
2
iEi + ⇡i0⇡i�Ei� +

⇡i00⇡i+Ei+ .

Case 2b: |�
r
| odd. If |�r

| odd then I, II⇤ and III⇤ imply that (i�, i0) 2 o(a) and

since |�r
\{i

0
}| is even, all i 2 �

r
\{i

0
} are in 2-cycles with other agents in �

r
\{i

0
}

(as shown in Figure 32(c)). Then
P

i2�r Ui(a) =
P

i2�r\{i0} ⇡
2
iEi + ⇡i0⇡i�Ei� .

Then when a 2 A
⇤,

P
i2�r Ui(a), and in turn

Pn
i=1 Ui(a), depends only on the the

number of agents in each �
r. Since the number of agents does not change with the

learning profile, all a 2 A
⇤ must yield the same ex-ante welfare. By Lemma 4, Ae

6= ;

and so A
E must be nonempty. By Lemma 11 there is no a 2 A

E that is not also an

element of A⇤. Since all a 2 A
⇤ yield the same ex-ante welfare and by Lemma 4 all

a 2 A
⇤ are equilibria, A⇤ = A

E .
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(a) 

(b) 

(c) 

i’ i’’i— i+

� r - 1 � r � r+1

i’ i’’i—

� r - 1 � r

i’ i’’i— i+

� r - 1 � r � r+1

Figure 31: Learning cycles for agents in �
r when |

Sr�1
i=1 �

r
| is even.

Lemma 13. If objects are well ranked then any stable learning profile is an ex-ante

welfare maximising equilibrium.

Proof. Let a 2 A
S and a /2 A

⇤. Then a violates at least one of conditions II⇤ and III⇤. If

a violates II⇤ then there are two pairs of agents i, j and i
0
, j

0 such that (i, j), (i0, j0) 2 o(a),

⇡i > ⇡j and ⇡i = ⇡i0 > ⇡j0 . Since objects are well ranked and ⇡i > ⇡j0 , Ei � Ej0 and so

⇡iEi > ⇡j0Ej0 . Now consider the relationship between Ei and Ei0 .

Case 1: Ei = Ei0. If Ei = Ei0 then ⇡iEi = ⇡i0Ei0 and by condition III, ⇡iEi  ⇡j0Ej0 ,

which is a contradiction.

Case 2: Ei > Ei0. If Ei > Ei0 then since ⇡i = ⇡i0 , ⇡iEi > ⇡i0Ei0 . Since ⇡i = ⇡i0

and ⇡i > ⇡j , ⇡i0 > ⇡j which, since objects are well ranked, implies Ei0 � Ej and so

⇡i0Ei0 > ⇡jEj . Then ⇡iEi > ⇡i0Ei0 > ⇡jEj and since (i, j) 2 o(a), this violates condition

III implying a /2 A
⇤.
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� r - 1

� r - 1

i’ i’’i—

� r - 1 � r

(a) 

(b) 

(c) 

i’ i’’i— i+

� r � r+1

i’ i’’i— i+

� r � r+1

Figure 32: Learning cycles for agents in �
r when |

Sr�1
i=1 �

r
| is odd.

Case 3: Ei < Ei0. If Ei0 > Ei then since ⇡i = ⇡i0 , ⇡i0Ei0 > ⇡iEi. Since objects are well

ranked and ⇡i > ⇡j0 , Ei � Ej0 which implies ⇡iEi > ⇡j0Ej0 . Then ⇡i0Ei0 > ⇡iEi > ⇡j0Ej0

and since (i0, j0) 2 o(a), this violates condition III implying a /2 A
S .

If a violates III⇤ then there exists a three agents i, j, j⇤ 2 N such that (i, j) 2 o(a) and

either ⇡i = ⇡j⇤ > ⇡j and Ei > Ej⇤ � Ej or ⇡i > ⇡j⇤ � ⇡j and Ei � Ej⇤ > Ej . In either

case, ⇡iEi > ⇡j⇤Ej⇤ > ⇡jEj and since (i, j) 2 o(a), this violates condition III implying

a /2 A
S .

So it must be that if a 2 A
S then a 2 A

⇤ and since by Lemma 12 A
⇤ = A

E , a is an

ex-ante welfare maximising equilibrium.

Lemma 14. When objects are well ranked, the maximum ex-ante welfare that can be

achieved in equilibrium is:

W
E =

X

i2N,i even

⇡i�1⇡i(Ei�1 + Ei)
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Proof. By Observation 1 A
�
✓ A

S and by Lemmas 2 and 13, AS
✓ A

E . Following 2,

the set of learning cycles formed under any a
�
2 A

� is o� and so the maximum ex-ante

welfare that can be achieved in equilibrium is:

W
E = W (a�) =

X

i2N,i even

⇡i�1⇡i(Ei�1 + Ei)

for all a� 2 A
�
✓ A

E .

Lemma 6 demonstrated that when objects are strictly well ranked and n = 4, a learning

profile is an ex-ante welfare maximising equilibrium if and only if it is stable. This is

not a coincidence and holds for any set of strictly well ranked objects.

Lemma 15. If objects are strictly well ranked then a learning profile is an ex-ante welfare

maximising equilibrium if and only if it is stable.

Proof. When objects are well ranked, AS is characterised by conditions I and III and

A
⇤⇤ is characterised by conditions I and III⇤. Condition III⇤ states that for any pair

of agents i, j such that ⇡i > ⇡j and (i, j) 2 o(a) there exists no j
⇤ such that either (i)

⇡i = ⇡j⇤ > ⇡j and Ei > Ej � Ej or (ii) ⇡i > ⇡j⇤ � ⇡j and Ei � Ej > Ej . Since objects

are strictly well ranked, only (ii) is applicable and implies ⇡iEi > ⇡j⇤Ej⇤ > ⇡jEj . Then

III⇤ implies III and so A
⇤
✓ A

S . By Lemma 12, A⇤ = A
E and so A

E
✓ A

S . Then by

Lemma 13, AS
✓ A

E and so A
S = A

E⇤.

B Closely well ranked objects and ex-ante welfare

When objects are closely well ranked then, as stated in Theorem 3, stable learning pro-

files yield either the maximum or close to the maximum ex-ante welfare over all learning

profiles. In addition to Lemma 9, the proof is given here via Lemmas 16 to 24. Condi-
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tions Ic, IIc, IIIc are closely related to I, II and III but allow for 3-cycles in addition

to 2-cycles.

Lemma 16. Condition Ic: If a 2 argmaxa2AW (a) then either all agents are in

learning cycles or all agents are in learning cycles with the exception of some i
⇤
such

that ⇡i⇤ = mini2N ⇡i and Ei⇤ = mini2N Ei

Proof. Let a 2 argmaxa2AW (a) and B(a) > 1. Since no agent in B(a) is in a learn-

ing cycle, Ui(a) = 0 for all i 2 B(a). Let (a0B(a), a�B(a)) be such that o(a0B(a), a�B(a))

contains a |B(a)|-cycle between all agents in B(a). Then Ui(a0B(a), a�B(a)) > 0 for all

i 2 B(a). Since no agent in B(a) is in a learning cycle under a, all agents in C(a)

are in the same learning cycle under both a and (a0B(a), a�B(a)) and so
P

i2C(a) Ui(a) =
P

i2C(a) Ui(a0B(a), a�B(a)). Then
P

i2N Ui(a) <
P

i2N Ui(a0B(a), a�B(a)) and a /2 argmaxa2AW (a).

So it must be that |B(a)|  1.

Now suppose B(a) = {i
⇤
} and ⇡i⇤ 6= mini2N ⇡i. Since objects are well ranked and

⇡i⇤ > ⇡n it must be that Ei⇤ � En. Since B(a) = {i
⇤
}, n 2 C(a) and n is in some

m-cycle consisting of all agents in T ⇢ N , where n 2 T . Under this |T |-cycle:

X

i2T[i⇤
Ui(a) = ⇡n

Y

i2T\{n}

⇡i

0

@En +
X

i2T\{n}

Ei

1

A (15)

Let (a0T[{i⇤}, a�T[{i⇤}) be such that n is not in a learning cycle and o(a0T[{i⇤}, a�T[{i⇤})

contains a single |T |-cycle between all agents in (T \{n})[{i
⇤
}. Under this new learning

profile:

X

i2T[i⇤
Ui(a

0
T[{i⇤}, a�T[{i⇤}) = ⇡i⇤

Y

i2T\{i⇤}

⇡i

0

@Ei⇤ +
X

i2T\{i⇤}

Ei

1

A (16)
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Since T \ {n} = T \ {i
⇤
}, ⇡i⇤ > ⇡n and Ei⇤ � En:

X

i2T[i⇤
Ui(a) <

X

i2T[i⇤
Ui(a

0
T[{i⇤}, a�T[{i⇤}) (17)

Since no agent in T [ {i
⇤
} is in a learning cycle with any agent in C(a) \ (T [ {i

⇤
}), all

agents in C(a)\(T[{i⇤}) are in the same learning cycles under both a and (a0T[{i⇤}, a�T[{i⇤})

and so for these agents:

X

i2C(a)\(T[{i⇤})

Ui(a) =
X

i2C(a)\(T[{i⇤})

Ui(a
0
T[{i⇤}, a�T[{i⇤}) (18)

But then a /2 argmaxa2AW (a) since
P

i2N Ui(a) >
P

i2N Ui(a0T[{i⇤}, a�T[{i⇤}). So it

must be that ⇡i⇤ = mini2N ⇡i.

Now suppose Ei⇤ > En. Repeating the argument above, if ⇡i⇤ = mini2N ⇡i and Ei⇤ > En

then the inequality in (16) and the equality in (17) hold, which again implies that

a /2 argmaxa2AW (a). So it must be that Ei⇤ = mini2N Ei.

Lemma 17. If a 2 argmaxa2AW (a) such that o(a) contains a learning cycle between

all agents in S ⇢ N then for all i, j 2 S such that ⇡i > ⇡j:

Condition IIc: If there is another set of agents S
0
in a cycle under a then for

any i
0
, j

0
2 S such that ⇡i = ⇡i0 it must be that ⇡j0 � ⇡i.

Condition IIIc: There is no agent j
⇤
2 N such that either (i) ⇡i = ⇡j⇤ > ⇡j

and Ei > Ej⇤ � Ej or (ii) ⇡i > ⇡j⇤ � ⇡j and Ei � Ej⇤ > Ej.

Proof. Let a 2 argmaxa2AW (a) such that under a a learning cycle forms between all

agents in S ⇢ N and for some i, j 2 S, ⇡i > ⇡j . By Lemma 9 the agents in S are in

either a 2-cycle or a 3-cycle.
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Suppose a violates IIc. Then there is also another set of agents S
0 in a cycle under a

such that for some i
0
, j

0
2 S, ⇡i = ⇡i0 and ⇡j < ⇡i. By Lemma 9 the agents in S

0 are

also in either a 2-cycle or a 3-cycle. Let a0 be such that o(a0) contains a learning cycle

between all agents in (S[i
0)\{j} and a learning cycle between all agents in (S0

[j)\{i⇤}

(as shown in Figures 33, 34 and 35). Since no agent is in N \ (S [ S
0) is in a learning

cycle with any agent in S [ S
0, all agents in N \ (S [ S

0) are in the same learning cycles

under a and (a0(S[S0), a�{(S[S0)}). Then:

X

k2N\(S[S0)

Uk(a) =
X

k2N\(S[S0)

Uk(a
0
(S[S0), a�{(S[S0)})

.

Case 1: S, S
0
⇢ C3(a)

If all agents in S and S
0 are in a 3-cycles under a (as shown in Figure 33) then a /2

argmaxa2AW (a) as
P

k2(S[S0) Uk(a) <
P

k2(S[S0) Uk(a0(S[S0), a�{(S[S0)}). To see this,

note that since ⇡i = ⇡i0 > ⇡j , Ei0 � Ej and so the following inequality must hold:

Ei0(⇡i⇡k � ⇡j0⇡k0) � Ej(⇡i⇡k � ⇡j0⇡k0)

Adding ⇡i⇡k(Ei + Ek)� ⇡j0⇡k0(Ej0 + Ek0) to both sides of the inequality:

⇡i⇡k(Ei+Ei0+Ek)�⇡j0⇡k0(Ei0+Ej0+Ek0) � ⇡i⇡k(Ei+Ej+Ek)�⇡j
0
⇡k

0(Ej+Ej0+Ek0)

Since ⇡i0 > ⇡j > 0:

⇡i⇡i0⇡k(Ei + Ei0 + Ek) + ⇡j⇡j0⇡k0(Ej + Ej0 + Ek0) > ⇡i⇡j⇡k(Ei + Ej + Ek) + ⇡i0⇡j0⇡k0(Ei0 + Ej0 + Ek0)

X

k2(S[S0)

Uk(a
0
(S[S0), a�{(S[S0)}) >

X

k2(S[S0)

Uk(a)
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i j k i’ j’ k’

i i’ k j j’ k’

(a)

(b)

Figure 33: Violating condition IIc - Case 1. (a) Two learning cy-
cles under a between S and S

0. (b) Two learning cycles under
(a0(S[S0), a�{(S[S0)}) between agents in (S [ i

0) \ {j} and agents in

(S0
[ j) \ {i⇤}.

Case 2: S ⇢ C3(a) and S
0
⇢ C2(a)

If the agents in S are in a 3-cycle and those in S
0 are in a 2-cycle under a (as shown in Fig-

ure 34) then a /2 argmaxa2AW (a) as
P

k2(S[S0) Uk(a) <
P

k2(S[S0) Uk(a0(S[S0), a�{(S[S0)}).

To see this, note that since ⇡i = ⇡i0 > ⇡j , Ei0 � Ej and so the following inequality must

hold:

Ei0(⇡i⇡k � ⇡j0) � Ej(⇡i⇡k � ⇡j0)

Adding ⇡i⇡k(Ei + Ek)� ⇡j0Ej0 to both sides of the inequality:

⇡i⇡k(Ei + Ei0 + Ek)� ⇡j0(Ei0 + Ej0) � ⇡i⇡k(Ei + Ej + Ek)� ⇡j
0(Ej + Ej0)
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Since ⇡i0 > ⇡j > 0:

⇡i⇡i0⇡k(Ei + Ei0 + Ek) + ⇡j⇡j0(Ej + Ej0) > ⇡i⇡j⇡k(Ei + Ej + Ek) + ⇡i0⇡j0(Ei0 + Ej0)

X

k2(S[S0)

Uk(a
0
(S[S0), a�{(S[S0)}) >

X

k2(S[S0)

Uk(a)

i j k i’ j’

i i’ k j j’

(a)

(b)

Figure 34: Violating condition IIc - Case 2. (a) Two learning cy-
cles under a between S and S

0. (b) Two learning cycles under
(a0(S[S0), a�{(S[S0)}) between agents in (S [ i

0) \ {j} and agents in

(S0
[ j) \ {i⇤}.

Case 3: S ⇢ C2(a) and S
0
⇢ C3(a)

If the agents in S are in a 2-cycle and those in S
0 are in a 3-cycle under a (as shown in Fig-

ure 35) then a /2 argmaxa2AW (a) as
P

k2(S[S0) Uk(a) <
P

k2(S[S0) Uk(a0(S[S0), a�{(S[S0)}).

To see this, note that since ⇡i = ⇡i0 > ⇡j , Ei0 � Ej and so the following inequality must

hold:

Ei0(⇡i � ⇡j0⇡k0) � Ej(⇡i � ⇡j0⇡k0)
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Adding ⇡iEi � ⇡j0⇡k0(Ej0 + Ek0) to both sides of the inequality:

⇡i(Ei + Ei0)� ⇡j0⇡k0(Ei0 + Ej0 + Ek0) � ⇡i(Ei + Ej)� ⇡j
0
⇡k

0(Ej + Ej0 + Ek0)

Since ⇡i0 > ⇡j > 0:

⇡i⇡i0(Ei + Ei0) + ⇡j⇡j0⇡k0(Ej + Ej0 + Ek0) > ⇡i⇡j(Ei + Ej) + ⇡i0⇡j0⇡k0(Ei0 + Ej0 + Ek0)

X

k2(S[S0)

Uk(a
0
(S[S0), a�{(S[S0)}) >

X

k2(S[S0)

Uk(a)

i j i’ j’ k’

i i’ j j’ k’

(a)

(b)

Figure 35: Violating condition IIc - Case 3. (a) Two learning cy-
cles under a between S and S

0. (b) Two learning cycles under
(a0(S[S0), a�{(S[S0)}) between agents in (S [ i

0) \ {j} and agents in

(S0
[ j) \ {i⇤}.

Case 4: S, S
0
⇢ C2(a)

If S, S0
2 C2(a) then the proof in Lemma 11 regarding condition II⇤ applies and again

P
k2(S[S0) Uk(a0(S[S0), a�{(S[S0)}) >

P
k2(S[S0) Uk(a).

Since
P

k2(S[S0) Uk(a0(S[S0), a�{(S[S0)}) >
P

k2(S[S0) Uk(a) holds for all cases, W (a) <
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W (a0(S[S0), a�{(S[S0)}) and so a /2 argmaxa2AW (a) if it violates IIc.

Now suppose a violates IIIc and there is some j
⇤
2 N such that either (i) ⇡i = ⇡j⇤ > ⇡j

and Ei > Ej⇤ � Ej or (ii) ⇡i > ⇡j⇤ � ⇡j and Ei � Ej⇤ > Ej . Since either ⇡j⇤ > ⇡j or

Ej⇤ > Ej , by Lemmas 9 and 16, j⇤ must be in either a 2-cycle or a 3-cycle under a. But

then the arguments for Cases 1 to 4 above can be applied mutatis mutandis for each of

conditions (i) and (ii), replacing j
0 with j

⇤ .

Lemma 18. For a set of agents S = {i1, i2, i3, i4, i5} with well ranked objects, where

⇡i1 � ⇡i2 � ⇡i3 � ⇡i4 � ⇡i5, if two learning profiles a and a
0
are such that (i1, i2), (i3, i4, i5) 2

o(a) and (i1, i2, i3), (i4, i5) 2 o(a0) then
P

k2S Uk(a) �
P

k2S Uk(a0).

Proof. W.l.o.g let S = {1, 2, 3, 4, 5}. Since ⇡3 2 (0, 1):

E1 + E2 � E4 � E5 � ⇡3(E1 + E2 � E4 � E5)

E1 + E2 � E4 � E5 � ⇡3(E1 + E2 + E3)� ⇡3(E3 + E4 + E5)

E1 + E2 � ⇡3(E1 + E2 + E3) � E4 + E5 � ⇡3(E3 + E4 + E5)

Since 1 � ⇡1 � ⇡2 � ⇡4 � ⇡5 > 0, ⇡4⇡5
⇡1⇡2

 1:

E1 + E2 � ⇡3(E1 + E2 + E3) � E4 + E5 � ⇡3(E3 + E4 + E5)
⇡4⇡5

⇡1⇡2

⇡1⇡2(E1 + E2) + ⇡3⇡4⇡5(E3 + E4 + E5) � ⇡1⇡2⇡3(E1 + E2 + E3) + ⇡4⇡5(E4 + E5)

X

k2S
Uk(a) �

X

k2S
Uk(a

0)

Lemma 19. For a set of agents S = {i1, i2, i3, i4, i5, i6} with closely well ranked objects,

where ⇡i1 � ⇡i2 � ⇡i3 � ⇡i4 � ⇡i5 � ⇡i6, if two learning profiles a and a
0
are such

that (i1, i2), (i3, i4), (i5, i6) 2 o(a) and (i1, i2, i3), (i4, i5, i6) 2 o(a0) then
P

k2S Uk(a) >
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P
k2S Uk(a0).

Proof. W.l.o.g let S = {1, 2, 3, 4, 5, 6} and consider
P

k2S Uk(a) and
P

k2S Uk(a0):

X

k2S
Uk(a) = ⇡1⇡2(E1 + E2) + ⇡3⇡4(E3 + E4) + ⇡5⇡6(E5 + E6)

X

k2S
Uk(a

0) = ⇡1⇡2⇡3(E1 + E2 + E3) + ⇡4⇡5⇡6(E4 + E5 + E6)

Since ⇡i 2 (0, 1) for all i 2 S, (⇡1⇡2⇡3)E1 < (⇡1⇡2)E1, (⇡1⇡2⇡3)E2 < (⇡1⇡2)E2,

(⇡4⇡5⇡6)E5 < (⇡5⇡6)E5 and (⇡4⇡5⇡6)E6 < (⇡5⇡6)E6 . Since objects are also well ranked

⇡3 > ⇡5⇡6 and so (⇡4⇡5⇡6)E4 < (⇡3⇡4)E4. Finally, since objects are close in acceptabil-

ity, ⇡1 
⇡4
⇡2

and so (⇡1⇡2⇡3)E3  (⇡3⇡4)E3. Then
P

k2S Uk(a) >
P

k2S Uk(a0).

Lemma 20. For a set of agents S = {i1, i2, i3, i4} with closely well ranked objects, where

⇡i1 � ⇡i2 � ⇡i3 � ⇡i4, if two learning profiles a and a
0
are such that (i1, i2), (i3, i4) 2 o(a)

and (i1, i2, i3) 2 o(a0) then
P

k2S Uk(a) >
P

k2S Uk(a0).

Proof. W.l.o.g let S = {1, 2, 3, 4} and consider
P

k2S Uk(a) and
P

k2S Uk(a0):

X

k2S
Uk(a) = ⇡1⇡2(E1 + E2) + ⇡3⇡4(E3 + E4)

X

k2S
Uk(a

0) = ⇡1⇡2⇡3(E1 + E2 + E3)

Since ⇡i 2 (0, 1) for all i 2 S, (⇡1⇡2⇡3)E1 < (⇡1⇡2)E1, (⇡1⇡2⇡3)E2 < (⇡1⇡2)E2 and

(⇡3⇡4)E4 > 0 . Since objects are close in acceptability, ⇡1 
⇡4
⇡2

and so (⇡1⇡2⇡3)E3 

(⇡3⇡4)E3. Then
P

k2S Uk(a) >
P

k2S Uk(a0).

Lemma 21. Condition Vc
: If a 2 argmaxa2AW (a), and objects are closely well

ranked then there is at most one 3-cycle in o(a).

Proof. Let a 2 argmaxa2AW (a). By Lemma 9 o(a) contains only 2-cycles and 3-cycles.
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If n  5 then there is at most one 3-cycle in o(a). Now consider sets of agents and objects

where n > 5. Since a 2 argmaxa2AW (a) by Lemma 17 it must meet conditions IIc and

IIIc so let o(a) = {o1(a), ..., o⌫(a)} where if i 2 �j(a) and i
0
2 �j0(a) and j < j

0 then

⇡i � ⇡i0 and Ei � Ei0 . Suppose o(a) contains 2 or more 3-cycles. Let ok(a) and ok0(a) be

two of those 3-cycles such that if there is some oj(a) such that k < j < k
0 then oj(a) is

a 2-cycle. To see that the presence of two 3-cycles in o(a) implies a /2 argmaxa2AW (a),

let a0 = a
1 = a and use the following algorithm:

Step q: If k0 = k + q then since both ok+q�1(aq) and ok+q(aq�1) are 3-cycles, by

Lemma 19, aq /2 argmaxa2AW (a) so end. If k0 6= k + q then by the definition of

k and k
0, ok+q(aq�1) is a 2-cycle and ok+q�1(aq) is a 3-cycle. Let �k+q�1(aq) =

{q1, q2, q3} and �k+q(aq�1) = {q4, q5} where S
q = {q1, q2, q3, q4, q5} and since a

q

meets IIc and IIIc, for any qi, qi0 2 S
q if i < i

0 then ⇡i � ⇡i0 and Ei � Ei0 . Let aq+1

be such that �k+q�1(aq+1) = {q1, q2}, �k+q(aq+1) = {q3, q4, q5} and all i 2 N \ S
q

are in the same learning cycles under both a
q and a

q+1. Then by Lemma 18,

W (aq)  W (aq+1). Note a
q+1 still meets IIc and IIIc. Continue to step q + 1.

Since the number of learning cycles in o(a) is finite, the algorithm must terminate at some

step q, where a
q
/2 argmaxa2AW (a). Since by the construction of aq, W (a)  W (aq),

a /2 argmaxa2AW (a) and so a cannot contain more than one 3-cycle.

Lemma 22. If there exists some a 2 argmaxW (a) and |C3(a)| = 3 then W (a) = W (a⇤)

for any a
⇤
2 A satisfying conditions Ic to Vc

where o(a⇤) contains a single 3-cycle, o⌫(a⇤)

such that ⇡i  ⇡j and Ei  Ej for all i 2 �⌫(a⇤), j 2 C(a⇤) \ �⌫(a⇤).

Proof. Let a, a
⇤
2 A be two learning profiles each containing exactly one 3-cycle and

satisfying conditions Ic, IIc, IIIc, IVc and Vc. Since they both satisfy Ic, IIc and

IIIc, let o(a) = {o1(a), ...o⌫(a)} and o(a⇤) = {o1(a⇤), ...o⌫(a⇤)} where if i 2 �j(a0) and

i
0
2 �j0(a0) and j < j

0 then ⇡i � ⇡i0 and Ei � Ei0 for all a0 2 {a, a
⇤
}. Since a and a

⇤
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satisfy Ic, IVc and Vc, |o(a)| = |o(a⇤)| so ⌫ = ⌫
0. In o(a⇤) let o⌫(a⇤) be the 3-cycle.

Since a⇤ meets Ic, IIc, IIIc, ⇡i  ⇡j and Ei  Ej for all i 2 �⌫(a⇤), j 2 C(a⇤)\�⌫(a⇤). In

o(a) let ok(a) be the 3-cycle such that ⇡i � ⇡j and Ei � Ej for all i 2 �⌫(a), j 2 �⌫(a⇤)

and either ⇡i⇤ > ⇡j or Ei⇤ > Ej or both for some i⇤ 2 �k(a) and for all j 2 �⌫(a⇤). Then

k 6= ⌫. Since o(a) contains only one 3-cycle, any ok0(a) where k 6= k
0 is a 2-cycle. Now

let a = a
1 and apply the following algorithm:

Step q: Since ok(aq) is a 3-cycle and ok+1(aq) is a 2-cycle, let �k(a0) = {q1, q2, q3},

�k+1(aq) = {q4, q5} and S
q = {q1, q2, q3, q4, q5}. Since a

q meets IIc and IIIc, for

any qi, qi0 2 S
q if i < i

0 then ⇡i � ⇡i0 and Ei � Ei0 . Let a
q+1 be such that

�k(aq+1) = {q1, q2} and �k+1(aq+1) = {q3, q4, q5} and all i 2 N \ S
q are in the

same cycles under both a
q and a

q + 1. Note that IIc and IIIc continue to hold

for aq+1. Then by Lemma 18, W (a)  W (aq+1). If k + 1 = ⌫ then end, otherwise

continue to step q + 1.

Since o(a) is finite, the algorithm terminates at some step t. At step t, o⌫(at) is a 3-cycle.

Since a
t still satisfies IIc and IIIc, ⇡i  ⇡j and Ei  Ej for all i 2 �⌫(at), t 2 N \C(at).

If B(a⇤) = {i} for some i 2 N then by Ic, IIc, IIIc, IVc and Vc, B(a) = B(at) = {i
0
} for

some i
0
2 N and by Ic, ⇡i = ⇡i0 and Ei = Ei0 . Then

P
i2o⌫(at) Ui(a) =

P
i2o⌫(a⇤) Ui(a).

W.l.o.g let o⌫(at) = o⌫(a⇤). All i 2 C(at) \�⌫(at) and j 2 C(a⇤) \�⌫(a⇤) are in 2-cycles.

Since when all agents are in 2-cycles IIc implies II⇤ and IIIc implies III⇤, by Lemma

12,
P

i2C(at) Ui(at) =
P

i2C(a⇤) Ui(a⇤). Then W (at) = W (a⇤) and by construction of at,

W (a)  W (at) = W (a⇤).

Lemma 23. If n is even and objects are closely well ranked then W
⇤ = W

S
.

Proof. Let n be even and fix some a 2 A satisfying Ic, IIc, IIIc, IVc and Vc. Suppose

o(a) contains the 3-cycle o⌫(a) where ⇡i  ⇡j and Ei  Ej for all i 2 �⌫(a), j 2

C(a) \ �⌫(a). By Lemma 22, if some a
0
2 argmaxa2AW (a) such that C3(a0) 6= ;
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does exist then W (a) = W (a0) and so a 2 argmaxa2AW (a). Since a satisfies IVc

and Vc all other cycles in o(a) must be 2-cycles. Since n is even this implies there is

some i
⇤
2 B(a). By Ic, ⇡i⇤  ⇡i and Ei⇤  Ei for all i 2 N . Since a satisfies IIc

and IIIc, all i 2 �⌫(a) [ {i
⇤
} must be closely well ranked. But then by Lemma 20,

a /2 argmaxa2AW (a). Then all cycle in o(a) are 2-cycles.

Since when all cycles are 2-cycles, IIc implies II⇤ and IIIc implies III⇤, a 2 A
⇤ and so

by Lemma 12, W ⇤ = W
S .

Lemma 24. If n is odd and objects are closely well ranked then either W
⇤ = W

S
or

W
⇤
and W

S
di↵er only in the sum expected utilities of three agents with the three worst

endowments so that W
S
�W

E⇤ = ⇡n�2⇡n�1(⇡n(En�2 + En�1 + En) + En�2 + En�1).

Proof. Suppose there is no a 2 argmaxa2AW (a) such that C3(a) = ;. Since all a 2

argmaxa2AW (a) must satisfy Ic, IIc, IIIc, IVc and Vc, for each a 2 argmaxa2AW (a)

there exists some i
⇤
2 B(a) such that ⇡i⇤  ⇡i and Ei⇤  Ei for all i 2 N , while all

i 2 N \ {i
⇤
} are in 2-cycles. Since when all cycles are 2-cycles, IIc implies II⇤ and IIIc

implies III⇤, a 2 A
⇤ and so by Lemma 12, W ⇤ = W

S .

Suppose there is some a 2 argmaxa2AW (a) such that C3(a) 6= ;. Since a satisfies Ic,

IIc, IIIc, IVc and Vc, by Lemma 22:

W
⇤ =

X

i2N\{n�2,n�1,n},i even

⇡i�1⇡i(Ei�1 + Ei) + ⇡n�2⇡n�1⇡n(En�2 + En�1 + En)

By Lemma 14,WS =
P

i2N,i even ⇡i�1⇡i(Ei�1+Ei) and soWS
�W

⇤ = ⇡n�2⇡n�1(⇡n(En�2+

En�1 + En) + En�2 + En�1).
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C Outcomes of an individually rational, Pareto optimal

mechanism

Lemma 25. If M is an individually rational and Pareto optimal mechanism then

M(R(a,!)) = GTT (R(a,!)).

Proof. Let M be an individually rational and Pareto optimal mechanism and suppose

M(R(a,!)) 6= GTT (R(a,!)). Since a di↵erent matching is produced under M and

GTT , there is some i
⇤
2 N for which M(R(a,!))(i⇤) 6= GTT (R(a,!))(i⇤). Since there

is one test per agent, either (i) there is a single j
⇤
2 N such that j

⇤
Pi⇤(a,!)i⇤ or (ii)

i
⇤
Pi⇤(a,!)i for all i 2 N \ {i

⇤
}. If (ii) holds then since GTT is individually rational,

GTT (R(a,!))(i⇤) = i
⇤ and so M(R(a,!))(i⇤) 6= i

⇤. But then M is not individually

rational and so it must be that Pi⇤ is as described in (i).

SinceM andGTT are individually rational,M(R(a,!))(i⇤), GTT (R(a,!))(i⇤) 2 {i
⇤
, j

⇤
}.

If GTT (R(a,!))(i⇤) = j
⇤ then M(R(a,!))(i⇤) = i

⇤. Since each agent has only one

test, there is a vector of agents (i1, ...it̄) such that i
⇤
, j

⇤
2 {i1, ...it̄}, it+1Pit̄(a,!)j

for all j 2 N \ {it+1}, t 2 {1, ..., t̄ � 1} and i1Pit̄(a,!)j for all j 2 N \ {it̄}. Since

M(R(a,!))(i⇤) = i
⇤ and M is individually rational, can only be matched with their

own endowment under M : M(R(a,!))(j) = j for all j 2 {i1, ..., it̄}. Then, under

M(R(a,!)) there is a Pareto improvement possible where each j 2 {i1, ..., it̄} is matched

with GTT (R(a,!))(j) and all i 2 N \ {i1, ..., it̄} are matched with M(R(a,!))(i). Since

M is Pareto optimal, it cannot be that GTT (R(a,!))(i⇤) = j
⇤ and M(R(a,!))(i⇤) = i

⇤.

If GTT (R(a,!))(i⇤) = i
⇤ then M(R(a,!))(i⇤) = j

⇤. Since M is individually rational,

there must be some vector of agents (i1, ...it̄) such that i⇤, j⇤ 2 {i1, ...it̄},M(R(a,!))(it) =

it+1 for all t 2 {1, ..., t̄ � 1} and M(R(a,!))(it̄) = i1. Let P
⇤(a,!) be such that

ii+1P
⇤
it(a,!)j for all j 2 N \ {it+1}, t 2 {1, ..., t̄ � 1} and i1P

⇤
it̄
(a,!)j for all j 2

N \ {it̄}. If P
⇤
i (a,!) = Ri(a,!) for all i 2 {i1, ...it̄} then in Step 1 of GTT , all
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i 2 {i1, ...it̄} point at and are matched to their most preferred object under P
⇤(a,!)

and so GTT (R(a,!))(i⇤) = j
⇤. Since GTT (R(a,!))(i⇤) = i

⇤, it must be that P ⇤
i (a,!) 6=

Ri(a,!) for all i 2 {i1, ...it̄}. Since each agent prefers at most one object to their own

endowment, there is some j
0
2 {i1, ..., it̄} matched under M(R(a,!)) with an object

not strictly preferred to their own endowment. Since there is an exchagne between all

i 2 {i1, ..., it̄}, M(R(a,!))(j0) 6= j
0 and so j

0
Pj0M(R(a,!))(j0) and M is not individually

rational.

D Mixed Strategies

Chapter 1 focusses on only pure strategies for all agents and compares the maximum ex-

ante welfare achievable under both equilibrium (WE) and stable learning profiles (WS).

Theorem 2 shows that when agents are restricted to using pure strategies and objects

are well ranked W
E = W

S . Allowing for mixed strategies changes this relationship

so that the stable learning profile may yield a lower ex-ante welfare than that of the

ex-ante welfare maximising equilibrium. This can be seen via the following three agent

example in which all agents and objects are ex-ante identical. It shows firstly that a

mixed strategy equilibrium exists in which no agent is using a pure strategy, secondly

that the ex-ante welfare is greater than can be achieved under pure strategies and lastly

that it exceeds the ex-ante welfare of any stable learning profile for this set of agents.

Example 1 (Part a: Equilibrium): Let N = {1, 2, 3}, ⇡1 = ⇡2 = ⇡3 and E1 = E2 =

E3 so that all agents and their endowments are ex-ante identical. Let a be such that

each agent learns about one of the two other agents’ endowments with a probability of

0.5. Since each agent must learn about one other object, whichever endowment each

agent actually investigates, at least one learning cycle must form. That learning cycle

will either be a 2-cycle or a 3-cycle. Let Pr(oj | a) be the probability the learning cycle
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oj occurs under the mixed strategy learning profile a. Under this learning profile, there

is some probability Agent 1 will be in either the 2-cycle (1,2) or (1,3). If this is the case

then because all agents endowments are ex-ante identical, the expected utility of such a

2-cycle for a Agent 1 is ⇡2
1E1. However there is also a probability that Agent 1 will be

in one of the possible 3-cycles, (1,2,3) or (1,3,2). Agent 1’s expected utility of either of

these cycles is ⇡3
1E1. Given the probability of any given learning cycle occurring, Agent

1’s expected utility can be expressed as:

U1(a) = Pr((1, 2) | a)⇡2
1E1+Pr((1, 3) | a)⇡2

1E1+Pr((1, 2, 3) | a)⇡3
1E1+Pr((1, 3, 2) | a)⇡3

1E1

If Agent 1 chooses to alter her strategy by increasing the probability she investigates

the endowment of Agent 2 then the probability of the the learning cycle (1,2) increases

and the probability of (1,3) occurring decreases. Similarly, the probability of (1,2,3)

occurring increases and decreases for (1,3,2). However, since the endowments of Agents

2 and 3 are ex-ante identical for Agent 1, this does not increase Agent 1’s expected

utility. This can be seen in the expression for Agent 1’s utility. Let a
0 be such that

Agent 1 chooses to investigate Agent 2’s endowment with probability ↵ and Agent 3’s

endowment with probability (1 � ↵) and Agents 2 and 3 choose to investigate each of

the other agent’s endowments with probability 0.5 (as under a):

U1(a
0) =

↵

2
⇡
2
1E1 +

(1� ↵)

2
⇡
2
1E1 +

↵

4
⇡
3
1E1 +

(1� ↵)

4
⇡
3
1E1

=
⇡
2
1E1

2
+

⇡
3
1E1

4

Since given the mixed strategies of Agents 2 and 3, Agent 1’s utility does not depend

on ↵, Agent 1 cannot achieve a higher expected utility than she does under a. Since

all agents and their endowments are ex-ante identical, the same argument can be made

mutatis mutandis for Agents 2 and 3 and so a is an equilibrium.
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Example 1 (Part b: Ex-ante Welfare): Under the learning profile a (described in

Part a of this example), each of the five possible learning cycles can arise with some

positive probability: the 2-cycles (1,2), (1,3) and (2,3) each occur with probability 0.25

and the 3-cycles (1,2,3) and (1,3,2) each occur with probability 0.125. Since all agents

and their endowments are ex-ante identical, conditional on a 2-cycle occurring, ex-ante

welfare is 2⇡2
1E1 whereas conditional on a 3-cycle occurring, ex-ante welfare is 3⇡3

1E1.

Depending on the probability an object is acceptable ⇡1, the ex-ante welfare of a 3-cycle

can exceed that of a 2-cycle:

2⇡2
1E1 < 3⇡3

1E1

2

3
< ⇡1

Since under pure strategies a 3-cycle cannot occur in equilibrium, ex-ante welfare under

pure strategies is 2⇡2
1E1. However, since under the mixed strategy learning profile a,

3-cycles occur with some positive probability, W (a) is greater than ex-ante welfare under

only pure strategies if ⇡1 >
2
3 .

Example 1 (Part c: Stability): It is the possibility of a 3-cycle occurring which

means that the learning profile a cannot be stable. This is because simply being in a

learning cycle is no guarantee to an agent in the cycle that they will be able to exchange

their endowment; each agent in the cycle needs their test to be successful such that

all agents in the cycle prefer their investigated object to their own endowments. The

larger the learning cycle, the lower the probability of an exchange taking place. Under

a, the probability a 3-cycle results in an exchange for any given agent is ⇡
3
1, while the

probability a 2-cycle results in an exchange for either agent in the 2-cycle is ⇡
2
1 > ⇡

3
1.

Since E1 = E2 = E3 this means that an agent has a higher expected utility if they are

in any 2-cycle rather than one of the 3-cycles. This means that a cannot be stable since

Agents 1 and 2 have a higher expected utility under any a
00 where a

00
1 = 2 and a

00
2 = 3
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than under a. If, for this set of agents and endowments, under a stable learning profile

there can be no possibility of a 3-cycle occurring then the ex-ante welfare of any stable

learning profile is 2⇡2
1E1. Part b of the example demonstrated that when ⇡1 >

2
3 , this is

less than the ex-ante welfare of the mixed strategy equilibrium learning profile a.

E Size of Preference Cycles in Equilibrium

Proof of Lemma 10:

Proof. Suppose there is some preference cycle o1(h0) = (i1, ..., im) such that m � 3 at

h
0. Then there is a set of subhistories of h0, {h1, ...hm}, such that aik(sik , h

k) = ik+1 for

k 2 {1, ...,m} and aim(sim , h
m) = i1.

Case 1: Two or more agents learn in the same period and complete a preference cycle

in the revelation period immediately following.

First consider the case where two or more agents learn at the same history (a learning

period) and complete the preference cycle o(h0) in the next period. Then there is some

h
k = h

k0 such that k 6= k
0 and since o1(h0) forms in the next period, h0 = (hk, a(s, hk)).

Let Y k be the set of agents which comprise the cycle o1(h0) who all expend their test at

h
k: Y k := {i | i 2 �1(h0) and ai(si, hk) 6= x}. Then ik, ik0 2 Y

k.

Since the preference cycle o1(h0) is complete at h0 and |Y
k
| � 2, Ui(s |hk)  p

2
v̄ for all

i 2 Y
k. If Y k = �1(h0) then |Y

k
| � 3 and Ui(s|hk) < p

2
v̄ for all i 2 Y

k but for s0ik such

that aik(s
0
ik
, h

k) = i, Ui2(s|hk) = p
2
v̄ > Uik(s|hk).

If Y k
6= �1(h0) then, since the preference cycle o1(h0) exists at h0, there is some i

⇤
2 Y

k

such that at h⇤, aj⇤(sj⇤ , h⇤) = i
⇤ where j

⇤
2 �1(h0) and h

⇤ is a subhistory of hk. Since

|Y
k
| � 2, Ui(s |hk)  p

2
v̄ for all i 2 Y

k but for s0i⇤ such that ai⇤(s0i⇤ , h
k) = j

⇤, a learning

cycle forms between two agents and so Ui⇤((s0i⇤ , s�i⇤)|hk) = pv̄ > Ui⇤(s|hk).

114



Case 2: Two or more agents learn in the same period and extend a preference chain, but

do not complete a preference cycle, in the revelation period immediately following.

Now consider the case where two or more agents learn at the same history (in a learning

period) but do not complete the preference cycle o(h0) in the next preference revelation

period. That is, there is some h
k = h

k0 such that k 6= k
0 and h

00 = (hk, a(s, hk)) 6= h
0

but (hk, a(s, hk)) is a subhistory of h0. Let Y k := {i | i 2 �1(h0) and ai(si, hk) 6= x}.

Suppose there is some subset of agents Y j
⇢ Y

k such that |Y j
| � 2 and all members of

Y
j form a single preference chain at h00. Since the preference cycle o1(h0) does not exist

at h
00 and |Y

j
| � 2, further tests by other agents in �1(h0) must be successful before

the preference cycle o1(h0) is complete and so Ui(s|hk) < p
2
v̄ for all i 2 Y

j . But since

the members of Y j form a preference chain, there are two agents j
⇤
, j

0
2 Y

j such that

aj0(sj0 , hk) = j
⇤ and so for s

0
j⇤ such that aj⇤(s0j⇤ , h

k) = j
0, Uj⇤((s0j⇤ , s�j⇤)|hk) = p

2
v̄ >

Uj⇤(s|hk) and s is not an equilibrium.

Case 3: Two or more agents learn in the same period but neither extend a preference

chain or complete a preference cycle in the revelation period immediately following.

There is a gap at h if between any two agents ir and ir00 , who both expend their tests at

h, there is another agent ir0 who comes between ir and ir00 in the preference cycle o1(h0)

but ir0 only expends her test in a later period. That is, there is a gap at h if there are

two agents ir, ir00 2 o1(h0) such that air(sir , h), air00 (sir00 , h) 6= x but air0 (sir0 , h) = x and

Air0 (sir0 , h) = (N \ {ir0) [ {x} for all ir0 2 o1(h0) such that r < r
0
< r

00.14 Let G(h)

be the set of gaps that exist at h. Since the preference cycle o1(h0) occurs at h
0 there

must be some subhistory (h, hg) of h0 at which G(h) 6= G(h, hg) so that the gaps which

existed at h no longer exist at (h, hg). Let H be the set of histories (h, hg) such that

l(h, hg) < l(h0) and G(h) 6= G(h, hg). If at one such h 2 H, two or more gaps cease to

exist for the first time at the same period then either Case 1 or Case 2 above applies

14
where r, r0 and r00 are modulo m
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and s is not an equilibrium. If only one gap ceases to exist in each learning period in

every history h 2 H then consider the history at which the penultimate gap ceases to

exist as a result of air0 (sir0 , h) then Case 2 applies.

Case 4: Only one agent learns in each period

If at most one agent in �1(h0) learns in each period then there is no ik, ik0 2 �1(h0)

such that hk = h
k0 . W.l.o.g let (h1, ..., hm, a(s, hm)) = h

0. Consider agent im�1. When

agent im�1 investigates aim�1(sim�1 , h
m�1) = m, agent im has not yet expended her

test and so Uim�1(s|hm�1)  p
2
v̄. However, for s

0
im�1

(s0im�1
, h

m�1) = m � 2, since at

some subhistory of h
m�1, im�1’s endowment has already been investigated by im�2,

Uim�1((s
0
im�1

, s�im�1)|hm�1) = pv̄.
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F Expected utility calculation

In addition to the probabilities of grade 1 students attending each college x given each

strategy, the probabilities can also be determined for grade 2 and grade 3 students to

calculate expected utility.

F.1 Probabilities

For students with grade 2:

P (A | AB, 2) = 0 (19)

P (A | AC, 2) = 0 (20)

P (B | BC, 2) =
qB2

P (2)[m(AB) +m(BC)]
(21)

P (B | AB, 2) = P (B | BC, 2) (22)

P (C | BC, 2) = 1� P (B | BC, 2) (23)

P (C | AC, 2) = 1 (24)

Capacities for grade 3 students:

qA3 = 0 (25)

qB3 = 0 (26)

(qC is irrelevant since it’s capacity is never exhuasted.)
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For students with grade 3:

P (A | AB, 3) = 0 (27)

P (A | AC, 3) = 0 (28)

P (B | AB, 3) = 0 (29)

P (B | BC, 3) = 0 (30)

P (C | BC, 3) = 1 (31)

P (C | AC, 3) = 1 (32)

F.2 Expected utilities

u(AB) = P (A | AB) · U(A) + P (B | AB) · U(B) (33)

= U(A)P (A | AB, 1)P (1) + U(B)[P (B | AB, 1)P (1) + P (B | AB, 2)P (2)] (34)

= U(A)
qA

m(AB) +m(AC)
+ U(B)[P (1)(1�

qA

P (1)[m(AB) +m(AC)]
+

qB2

m(AB) +m(BC)
]

(35)

u(AC) = P (A | AC) · U(A) + P (C | AC) · U(C) (36)

= U(A)P (A | AC, 1)P (1) + U(C)[P (C | AC, 1)P (1) + P (C | AC, 2)P (2) + P (C | AC, 3)P (3)]

(37)

= U(A)
qA

m(AB) +m(AC)
+ U(C)(P (1)(1�

qA

P (1)[m(AB) +m(AC)]
) + P (2) + P (3))

(38)
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u(AC) = P (B | BC) · U(B) + P (C | BC) · U(C) (39)

= U(B)[P (B | BC, 1)P (1) + P (B | BC, 2)P (2)] + U(C)[P (C | BC, 2)P (2) + P (C | BC, 3)P (3)]

(40)

= U(B)(P (1) +
qB2

m(AB) +m(BC)
) + U(C)(P (2)(1�

qB2

P (2)(m(AB) +m(BC)
) + P (3))

(41)

F.3 Equilibrium Solution

Solving the equations for u(AB), u(AC) and u(BC) in Section F.2, in combination with

equations 3 and 4 yields:

m(AC) = [U(A)U(C)�U(C)2�U(A)U(B)qA+U(B)2qA�U(B)U(C)qA+U(C)2qA�U(A)U(B)qB

+ U(B)2qB � U(B)U(C)qB + U(C)2qB]/[U(C)(U(A)� U(B))]

m(AB) =
U(B)[qA �m(AC)(qa + qB)] + U(C)[m(AC)(1�m(AC))� qA(1�m(AC))]

(qA + qB)U(B)� U(C)(1�m(AC))

m(BC) == 1�m(AC)�m(AB)

Or, as shown in Section 3.3.1, if normalising U(C) to 1:

m(AC) = [U(A)� 1� U(A)U(B)qA + U(B)2qA � U(B)qA + qA � U(A)U(B)qB

+ U(B)2qB � U(B)qB + qB]/[U(A)� U(B)]
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m(AB) =
U(B)[qA �m(AC)(qa + qB)] +m(AC)(1�m(AC))� qA(1�m(AC))

(qA + qB)U(B)� 1�m(AC)

m(BC) == 1�m(AC)�m(AB)
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