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ii. Abstract 

Spotted hyaena (Crocuta crocuta Erxleben, 1777) are today restricted to sub-Saharan Africa, yet 

during the Pleistocene, they ranged throughout Eurasia and were subject to widely fluctuating 

climatic and environmental conditions. This study assesses palaeodietary and morphometric 

variability in the spotted hyaena against this backdrop of Pleistocene palaeoenvironmental 

change in Europe. The study comprises first a detailed examination of modern Crocuta from sub-

Saharan Africa, in order to establish baseline parameters of body mass variation, sexual 

dimorphism, tooth wear/breakage and the impact of competition and local environment. It is 

followed by a detailed examination of fossil Crocuta from the Middle and Late Pleistocene of 

Britain, paired with a study of Late Pleistocene Crocuta from Ireland, Belgium, Spain, Italy, 

Austria, the Czech Republic and Serbia. 

Influences upon present-day C. crocuta population biomass were compared with those of its 

main competitor, the lion (Panthera leo), revealing a stronger relationship between 

environmental conditions and C. crocuta biomass, than between the environment and P. leo. 

Morphometric analysis of present-day C. crocuta revealed ontogenetic variation in the 

craniodental and post-cranial elements, in addition to a lack of sexual size dimorphism in many 

features. Finally, the frequency of broken teeth varied according to sex and age. The results of 

these analyses were then used to aid interpretation of the fossil assemblages. 

Reconstructed Pleistocene body masses of C. crocuta, coupled with the morphometric analyses, 

indicated a lack of consistent body size response to environmental changes (in contrast to 

patterns seen in other large carnivores), although the Island Rule was manifested in individuals 

from Sicily. Body mass, morphometrics and tooth breakage frequencies suggested palaeodietary 

variation, particularly regarding the degree of bone consumption and predation behaviours. 

Finally, the reasons for C. crocuta extirpation from Europe focussing on climate, vegetation, 

presence of prey species, and competition for food and shelter were examined. 
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vertical line represents the leverage reference line boundary. The numbers on the points 
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1 Introduction 

 

1.1 Background 

This thesis will explore the responses of the spotted hyaena (Crocuta crocuta, Erxleben 1777) to 

Pleistocene environmental changes in Europe. The first known occurrence of C. crocuta in 

Europe was around 850-780,000 years ago (Garcia and Arsuaga, 2001). The spotted hyaena is 

an excellent model for studying the impacts of palaeoclimatic change on a major predator, since 

they were present in both warm and cold-climatic periods (e.g. Currant and Jacobi, 2011), and 

in a diverse range of habitats. Furthermore, there are abundant remains, particularly from the 

Late Pleistocene, with some sites yielding hundreds of C. crocuta specimens (Ehrenberg, 1966a; 

Currant, 1998), together with abundant remains of their prey (e.g. Currant and Jacobi, 2011). 

During the Pleistocene, C. crocuta had an extremely wide distribution outside Africa, from 

Portugal at the western margin of Europe (e.g. Davis et al., 2007) across to Ukraine and further 

east into Asia (Baryshnikov, 1999), and from in Britain in the north (Currant and Jacobi, 2011) 

through to southern Italy (Bonfiglio et al., 2001). 

Despite ranging across Eurasia during the Pleistocene, C. crocuta are now restricted to sub-

Saharan Africa (Hofer and Mills, 1998a). Today, they demonstrate considerable behavioural 

flexibility, including generalist diets (Mills, 1990; Holekamp et al., 1997; Hayward, 2006), the 

ability to obtain food from both predation and scavenging (e.g. Henschel and Skinner, 1990; 

Gasaway et al., 1991; Cooper et al., 1999) and the ability to alter the areas they preferentially 

occupy in response to disturbance (Boydston et al., 2003). They are capable of successfully 

competing against other larger carnivores in direct interactions (Mills, 1990; Volmer and Hertler, 

2016) or through environmental partitioning (e.g. Schaller, 1972; Hayward and Kerley, 2008). 

They are also capable of consuming bone, an act that is particularly important during periods of 

low food availability (Kruuk, 1972; Egeland et al., 2008), and to which they are morphologically 

well-suited (e.g. Werdelin and Solounias, 1991; Raia, 2004; Therrien, 2005; Ferretti, 2007). 

Except for two other hyaenids (striped hyaena, Hyaena hyaena and brown hyaena, Parahyaena 

brunnea), the bone-cracking behaviour exhibited by C. crocuta is not seen in their competitors 

(Werdelin and Solounias, 1991). C. crocuta are also morphologically responsive to 

environmental conditions such as temperature, evidenced by variation in the size of some 

craniodental measurements across Africa (Roberts, 1951; Klein, 1986). These characteristics will 

be discussed in more detail in Chapters 2 and 3. 

Given the aforementioned characteristics of C. crocuta, it is therefore interesting to explore how 

the species withstood a wider range of environmental conditions in Pleistocene Europe than 
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those experienced today, particularly whether their body size varied, whether certain conditions 

created dependency on scavenging to obtain food, and whether they experienced periods of 

dietary stress leading to increased bone consumption. Although morphometric and body size 

variation in Pleistocene C. crocuta has already been explored, particularly by Turner (1981) and 

Collinge (2001), this thesis will present a reassessment of the evidence, including samples from 

a wider geographical area and utilising additional methods.  

Finally, given the apparent behavioural adaptations and morphological robustness of C. crocuta, 

it is relevant to examine the conditions that eventually led the species to disappear from Europe 

during the Late Pleistocene. Although a chronology of the extirpation of C. crocuta has recently 

been constructed by Stuart and Lister (2014), the publication of an updated radiocarbon 

calibration curve (Reimer et al., 2013) and more stringent date selection criteria necessitate a 

reanalysis of these data. 

This thesis will therefore focus on C. crocuta from Britain throughout much of its presence in the 

country, coupled with Late Pleistocene C. crocuta from Austria, Belgium, the Czech Republic, 

Ireland, Italy, Serbia and Spain, thus covering much of the species’ European geographical range. 

Specifically, changes in body mass and morphometrics of craniodental and post-cranial elements 

of C. crocuta will be examined, in order to assess changes in size, palaeodiet (with a particular 

focus on bone consumption) and predation behaviours. Any changes, or lack thereof, in these 

features may have affected the ability of C. crocuta to withstand the changes in environment 

and competition from other members of the large carnivore guild in Europe. This may in turn 

shed new light on the potential reasons behind the final extirpation of C. crocuta from Europe.  

 

1.2 Aims 

The aims of this thesis are as follows: 

• To assess the body mass and morphometric responses of C. crocuta to Pleistocene 

environmental changes in Europe 

• To assess the palaeodiet of C. crocuta from Pleistocene Europe, with a particular focus 

on bone consumption and frequency of predation versus scavenging 

• To reassess the timing and potential reasons for the extirpation of C. crocuta from 

Europe 

 

These aims will be accomplished first through an investigation of present-day C. crocuta in 

Africa. The influences affecting the population biomass of C. crocuta will be examined and 
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compared to those of a competitor, the lion (Panthera leo), which will aid in understanding the 

potential environmental influences upon Pleistocene C. crocuta populations. The changes 

through ontogeny (of cranial and post-cranial measurements) and sexual size dimorphism (in 

body mass, craniodental and post-cranial elements) of C. crocuta will also be assessed. This is an 

important step prior to the Pleistocene morphological analysis as it will highlight any areas that 

might otherwise be misinterpreted as reflecting a climatic influence, for example whether some 

elements are larger in females or males, or whether some elements continuously change in size 

through life. Environmental correlates with body mass, craniodental and post-cranial elements 

will be established in order to aid interpretation of any changes in the Pleistocene material. 

Finally, the degree of tooth breakage will be assessed in present-day C. crocuta to highlight how 

this signal increases with age, and to examine any differences between males and females. 

Secondly, the Pleistocene material will be assessed, including the identification of any temporal 

and spatial changes in body mass, craniodental and post-cranial across Europe. This will highlight 

any morphological responses to environmental changes.  

Conclusions regarding palaeodietary and predation behaviour will be drawn from the body mass 

reconstructions, in addition to some of the morphometric measurements, reconstructions of 

bite force and mandibular bending strength, and degree of tooth breakage. 

Finally, investigation of the causes of C. crocuta extirpation from Europe will be undertaken 

through a reassessment of the timing of the species’ occupation of Europe during Marine 

Oxygen Isotope Stage (MIS) 3 and its final known appearance. This will be coupled with a 

reassessment of the chronologies of a potential competitor, the cave lion (Panthera leo 

(spelaea)), and three prey species, woolly rhinoceros (Coelodonta antiquitatis), red deer (Cervus 

elaphus) and reindeer (Rangifer tarandus). Information will be taken from the literature about 

the environmental conditions experienced by C. crocuta during the Pleistocene, including 

temperature, precipitation, vegetation, presence of competitor species, presence of prey 

species, and competition for the use of caves. This information will complement the biomass, 

morphometric and palaeodiet results and allow reassessment of the probable causes of C. 

crocuta extirpation from Europe. 

 

1.3 Thesis structure 

The structure of the thesis is as follows: 

• Chapter 2 reviews the literature on both present-day and Pleistocene C. crocuta, 

focusing on diet, competition, denning, important factors influencing mortality, and 

theories behind the species’ extirpation from Europe. 



  1. Introduction 

- 37 - 
 

• Chapter 3 established influences upon body mass and sexual size dimorphism. The 

functional features of the craniodental and post-cranial elements are then discussed, 

including those related to the brain, the senses, diet, predation and locomotion. 

• Chapter 4 first outlines details of the sites yielding present-day and Pleistocene data.  

Methods are then presented, including explanation of the morphometric 

measurements, reconstruction of bite force and mandibular bending strength, the 

calculation of post-cranial indices, and records of dental macrowear, tooth loss and 

tooth breakage. Finally, the statistical analyses are explained. 

• Chapter 5 presents the results of the investigations of present-day C. crocuta biomass, 

body mass, morphometrics and tooth breakage. Along with an assessment of the 

environmental influences upon these data, there will be analyses of sexual dimorphism 

and ontogenetic change, where relevant.  

• Chapter 6 comprises the results of analyses of Pleistocene C. crocuta body mass, 

morphometrics and tooth breakage. This will involve investigations of the 

palaeoenvironmental influences upon these data. Predation behaviours and 

palaeodietary information will be drawn from these data.  

• Chapter 7 focuses on the timing and potential causes of the extirpation of C. crocuta 

from Europe, putting forward new radiocarbon models of C. crocuta, P. leo (spelaea) 

and selected prey species, and discussing these in the context of information presented 

previously in the thesis.  

• Chapter 8 summarises the findings of this thesis and provides conclusions relating these 

to the aims.  
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2 Review of Crocuta crocuta 

 

2.1 Introduction 

This chapter will first cover the taxonomy of C. crocuta and the relationship between present-

day and Pleistocene C. crocuta. Second, the ecology of present-day C. crocuta will be covered, 

including the species’ distribution and habitat, controls on population density, denning habits 

and factors leading to mortality. Finally, Pleistocene C. crocuta will be reviewed, focussing on 

current knowledge of its temporal and spatial presence in Europe, denning and cave use, diet 

and competition, body size and morphometrics, and the timing and possible reasons for its 

extirpation from Europe. 

 

2.2 Hyaenidae systematics 

2.2.1 Crocuta crocuta taxonomy 

The taxonomy of the spotted hyaena (Crocuta crocuta) is outlined below, following Werdelin 

and Solounias (1991) and Bohm and Höner (2015). 

 

Kingdom: Animalia Linnaeus, 1758 

Phylum: Chordata Haeckel, 1847 

Class: Mammalia Linnaeus, 1758 

Order: Carnivora Bowdich, 1821 

Suborder: Feliformia Kretzoi, 1945 

Family: Hyaenidae Gray, 1821 

Genus: Crocuta Kaup, 1828 

Species: Crocuta crocuta (Erxleben, 1777) 

 

In addition to the Hyaenidae, the suborder Feliformia includes the extant families Felidae, 

Viverridae, Herpestidae, Eupleridae, Prionodontidae and Nandiniidae (Werdelin and Solounias, 

1991; Zhou et al., 2017). The family Hyaenidae includes four extant species: C. crocuta, brown 

hyaena (Parahyaena brunnea, Thunberg 1820), striped hyaena (Hyaena hyaena, Linnaeus 1758), 

and aardwolf (Proteles cristata, Sparrman 1783; Werdelin and Solounias, 1991). Many studies 
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have attempted to determine the relationships between the species of Hyaenidae, using both 

morphological and DNA evidence (see reviews in Werdelin and Solounias, 1991; Jenks and 

Werdelin, 1998; Koepfli et al., 2006), something that has evidently proved difficult. As Koepfli et 

al. (2006, p.605) stated, ‘[t]aken together, previous morphological and molecular phylogenetic 

analyses have supported every possible combination of relationships between extant bone-

cracking hyaenids.’ 

 

2.2.2 Variation within present-day Crocuta crocuta 

At least 19 species or subspecies of extant Crocuta have been proposed (reviewed by Matthews, 

1939; Jenks and Werdelin, 1998), although this variability is contested. Matthews (1939) 

disputed that different species and subspecies could be identified, as the morphological features 

that differentiated them were present in a single population in the Balbal plains, Tanganyika 

Territory (now Tanzania). The only feature that was not present in the Balbal population was the 

large size of Crocuta crocuta fortis in the Belgian Congo (now Democratic Republic of the Congo), 

as discussed by Allen (1924). However, Matthews (1939) suggested that as only 13 specimens 

of the subspecies were acquired from an expedition of nearly two years, there may have been 

collection bias in favour of large specimens. 

Nevertheless, there is now genetic evidence for different clades of present-day C. crocuta within 

Africa, although the clades all belong to a single species. Mitochondrial DNA (mtDNA) analyses 

revealed four clades of C. crocuta, with two surviving into the present day (Rohland et al., 2005, 

Table 2.1). Clade A is found in northern Africa while Clade C is found in southern Africa. There is 

some overlap at the equator, with both clades found in Sudan and Tanzania (Rohland et al., 

2005). Clade A was also found in Europe during the Pleistocene along with Clade B, while Clade 

D was found in Asia (Rohland et al., 2005; Bon et al., 2012; Dodge et al., 2012; Sheng et al., 2014, 

Table 2.1). 
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Table 2.1: Clades and haplotypes of present day C. crocuta, Pleistocene C. c. ultima in Asia, and 

C. crocuta in Europe, along with their known distributions. 

Clade Haplotype Location Reference 

Present-day 

A  Cameroon, Eritrea, Ethiopia,  Rwanda, 

Senegal, Somalia, Sudan, Tanzania, Togo, 

Uganda 

Rohland et al. (2005) 

C  Angola, Kenya, Namibia, South Africa, Sudan, 

Tanzania, Zimbabwe 

Rohland et al. (2005) 

Pleistocene 

A A1 Austria (Teufelslucken, Winden Cave), Czech 

Republic (Vypustek), France (Les Plumettes), 

Germany (Irpfel Cave), the North Sea 

Rohland et al. (2005) 

A2 Belgium (Goyet Cave), Britain, (Church Hole), 

France (Coumère, Les Roches de Villeneuve), 

Romania (Igric), Ukraine (Bukovina Cave) 

Rohland et al. (2005), 

Bon et al. (2012), 

Dodge et al. (2012) 

B B1 Hungary (Kiskevelyi), Slovakia (Tmavaskala) Rohland et al. (2005) 

B2 Czech Republic (Sveduvstul), Germany 

(Lindenthal Cave),  Slovakia (Certovapec) 

Rohland et al. (2005) 

D  China (Da’an Cave, Tonghe Bridge), Russia 

(Geographical Society Cave) 

Rohland et al. (2005), 

Sheng et al. (2014)  

 

 

2.2.3 Relationship between present-day and Pleistocene Crocuta crocuta  

There is debate about whether the European Pleistocene C. crocuta should be regarded as a 

subspecies (Crocuta crocuta spelaea) or a separate species (Crocuta spelaea), commonly 

referred to as the cave hyaena (Kurtén, 1956; Werdelin and Solounias, 1991; Baryshnikov, 1995, 

cited in Baryshnikov, 1999). The Late Pleistocene equivalent in Asia has been attributed to a 

further subspecies, Crocuta crocuta ultima (Kurtén, 1956; Sheng et al., 2014). The evidence for 

this stems from morphological differences, namely that the European Pleistocene hyaena were 

supposedly larger than present-day African individuals, and differed in their limb proportions. In 

Pleistocene C. crocuta, the humerus and femur were longer and the metapodials shorter, while 

the radius and tibia were of similar lengths to the present-day individuals (Kurtén, 1956). The 

dentition of the European Pleistocene representatives was more specialised for carnivory than 

present-day C. crocuta (Baryshnikov, 1995, cited in Baryshnikov, 1999). 

From mtDNA data, Rohland et al. (2005) concluded that there is no evidence that the Pleistocene 

spotted hyaena in Europe was either a separate species or a sub-species of the present-day 

C. crocuta in Africa. This conclusion was also drawn by Bon et al. (2012) based on the similarity 
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of mtDNA and nuclear genes in coprolites from Coumère Cave, France, to DNA from present-

day C. crocuta. 

The genetic evidence further suggests that Pleistocene C. c. ultima in Asia were members of 

clade D, based on analyses of specimens from eastern Russia and China (Rohland et al., 2005; 

Sheng et al., 2014). Pleistocene C. crocuta in Europe were split into four mtDNA haplotypes from 

two clades (A and B), with overlapping ranges (Hofreiter et al., 2004; Rohland et al., 2005), see 

Table 2.1.  

Despite the genetic evidence, many recent authors continue to identify specimens as C. spelaea 

or C. c. spelaea (e.g. Magniez and Boulbes, 2014; Diedrich, 2015; Fourvel et al., 2015). However, 

it is not the intention of this thesis to attempt to resolve this debate and the conclusions of the 

genetic studies will be followed here. Henceforth, all spotted hyaenas from Pleistocene Europe 

and present-day Africa will be referred to as the same species, Crocuta crocuta. 
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2.3 Present-day Crocuta crocuta 

2.3.1 Distribution and habitat 

C. crocuta currently live in sub-Saharan Africa. They are more widespread in eastern than 

western Africa (Hofer and Mills, 1998a, and references therein). In some areas, there are very 

few records of their presence. For example, a single C. crocuta was seen within closed forest of 

Equatorial Guinea (Juste and Castroveijo, 1992), and only tracks of C. crocuta have been seen in 

the rainforest of Gabon (Bout et al., 2010). A review by Hofer and Mills (1998b) indicated that 

the population status of C. crocuta is threatened in many western Africa countries, but also in 

Rwanda, some areas of South Africa, and outside protected areas in Kenya. They may now be 

locally extinct from Togo and Algeria (Hofer and Mills, 1998a; Bohm and Höner, 2015). Their 

population is in decline, particularly outside protected areas, due to human persecution, loss of 

habitat, loss of prey and drought (Hofer and Mills, 1998b, and see Section 2.2.6). The IUCN Red 

List categorisation of C. crocuta population is Least Concern, but Decreasing (Bohm and Höner, 

2015). 

They are present in many habitats including open savannahs, woodland and semi-deserts, dense 

forests, tropical forests, coastal areas, dense thicket, around human settlements, and at 

altitudes up to 4000m (Kruuk, 1972; Sillero-Zubiri and Gottelli, 1992; Hofer, 1998a).  

The distribution of C. crocuta has been severely impacted by humans and the species is now 

largely located in only protected areas and surrounding land (Hofer and Mills, 1998a). The 

distribution of C. crocuta within the Talek region of the Maasai Mara National Reserve, Kenya 

has altered along with increased human use of the area, particularly the grazing of livestock 

(Boydston et al., 2003). Prior to increased human use, C. crocuta occupied short, open grassland 

where prey abundance was highest. Subsequent to increased human use, C. crocuta frequently 

stayed close to areas of closed vegetation, even though there was no decrease in prey 

abundance in the short grassland. This change occurred in less than ten years, with no associated 

decrease in C. crocuta population density, leading Boydston et al. (2003) to suggest that C. 

crocuta are able to alter rapidly their behaviour in response to changing environmental 

conditions. This behavioural plasticity may have been useful during the Pleistocene, and is an 

important consideration when assessing the responses of C. crocuta to past environmental 

changes.  
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2.3.2  Population density 

Carnivore density is primarily controlled by prey biomass, with higher carnivore density in areas 

of high prey biomass (Carbone and Gittleman, 2002). Indeed, C. crocuta density is positively 

correlated with prey density (Cooper, 1989) and prey biomass (Périquet et al., 2015). There is a 

scaling relationship across many different ecosystems, including the African savannah, whereby 

predator biomass increases at a lower rate to prey biomass (Hatton et al., 2015). Population size 

may also be influenced by competition (Carbone and Gittleman, 2002), with lack of preferred 

prey resulting in sub-optimal foraging (Hayward and Kerley, 2008), enhanced predation and 

susceptibility to disease (Kissui and Packer, 2004).  

Cooper (1989) found that in areas such as the Maasai Mara National Reserve in Kenya or the 

Savuti region in the Chobe National Park in Botswana, there is sufficient resident prey to support 

C. crocuta year-round, with migratory prey providing supplementary food periodically. The 

relationship between C. crocuta density and prey density is complicated when migratory prey is 

the major food source, such as in the Serengeti, Tanzania. In these cases, the size and nature of 

C. crocuta territories must be flexible in order to obtain sufficient food (Cooper, 1989). 

In addition to high density of resident prey populations, Cooper (1989) found that C. crocuta 

population density is higher in areas of reliable water sources. In arid areas, C. crocuta may 

obtain much of their water requirement from fresh carcasses (Cooper, 1990). However, 

Gasaway et al. (1991) suggested that arid conditions may reduce C. crocuta populations if prey 

is scarce and most of the food comes in the form of desiccated carcasses. 

Finally, the influence of disease upon C. crocuta population density has been seen through short-

term population decrease in the Ngorongoro Crater (Höner et al., 2012, see Section 2.3.5 for 

further details).  

The factors influencing C. crocuta populations across Africa will hence be assessed within 

Chapter 5. This is important in determining potential reasons for the extirpation of C. crocuta 

from Europe during the Pleistocene.  

 

 

2.3.3  Diet and competition 

C. crocuta derive their food from both predation and scavenging, the ratio of which varies 

between locations. For example, in the Maasai Mara National Reserve, 95 % of the total biomass 

consumed by C. crocuta constituted fresh kills, with only 0.5 % of this total scavenged (Cooper 

et al. 1999). In the Etosha National Park in Namibia, 75 % of C. crocuta food derived from their 
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kills (Gasaway et al., 1991) but in the Kruger National Park in South Africa, biomass from 

C. crocuta kills constituted only 51 % of the diet (Henschel and Skinner, 1990), thereby 

highlighting considerable variation in behaviour, the reasons for which will be addressed below.  

Cooper et al. (1999) stated that scavenging is an unreliable food source. This is because carcass 

availability is dependent upon factors such as disease, drought, and kills by other predators 

(Henschel and Skinner, 1990; Gasaway et al., 1991). Furthermore, scavenged carcasses contain 

less energy, nutrients and water than fresh kills, and are therefore not a preferred food source 

in the Maasai Mara (Cooper et al., 1999). 

The main prey of C. crocuta are herbivores weighing between 56 – 182 kg (Hayward and Kerley, 

2008). Larger species such as buffalo (Syncerus caffer), giraffe (Giraffa camelopardalis) or African 

elephant (Loxodonta africana) are consumed either as a result of scavenging, or because the 

prey individuals are injured, incapacitated or young (Cooper, 1990; Cooper et al., 1999; Henschel 

and Skinner, 1990). In the Maasai Mara National Reserve, C. crocuta more frequently attempted 

solo hunts of ungulates, however, a greater proportion of hunts were successful when they 

hunted in groups (Holekamp et al., 1997). By contrast, in the Comoé National Park (Côte d’Ivore), 

rodents made up more than 60 % of C. crocuta diet. In this area, C. crocuta did not range in 

groups (Korb, 2000). Additional species consumed include termites, caterpillars, crayfish, 

ostriches and hares (Tilson et al., 1980; Holekamp and Dloniak, 2010). Remains of Chacma 

baboon (Papio cynocephalus ursinus) have been found in C. crocuta dens in Mashatu Game 

Reserve, Botswana (Kuhn, 2012), whereas remains of other mammalian carnivores (P. leo, 

leopard Panthera pardus, caracal Caracal caracal, black-backed jackal Canis cf. mesomelas) have 

also been found in dens (Faith, 2007). They may also dig up human remains from cemeteries 

(Sutcliffe, 1970). C. crocuta do not show marked preference towards particular species, rather 

individual clan preference reflects local availability of prey species, prior hunting experience and 

the ease by which prey can be captured (Mills, 1990; Holekamp et al., 1997; Hayward, 2006). 

Seasonal variability influences targeted prey species. In the Serengeti, Tanzania, wildebeest 

(Connochaetes taurinus) migrate into the area for part of the year, during which time they are 

the species most frequently targeted by C. crocuta. Prior to the migration, resident Thomson’s 

gazelle (Gazella thomsonii) is the most abundant ungulate species, and is targeted most 

frequently by C. crocuta (Cooper et al., 1999).  

C. crocuta may also consume the bones of a carcass. As will be discussed in Section 3.3.6, the 

craniodental morphology of C. crocuta is well-suited to bone consumption. Bone consumption 

may occur when there is greater interspecific competition (Egeland et al., 2008). Intraspecific 

competition at carcasses may also lead to bone consumption, driven by established dominance 

hierarchies. Females will dominate carcasses over males. The only exception to this is the male 
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cubs of a high ranking female. The high rank of a mother will be passed onto its young, who will 

then dominate all individuals of a lower rank than the mother (Frank et al., 1989). It is therefore 

the lower ranking individuals that are left with the less preferential parts of a carcass, and may 

therefore have to consume the bones. This intraspecific competition is evidenced in the 

Ngorongoro, where C. crocuta density is high, and most carcasses are completely consumed. By 

contrast, in areas of the Serengeti National Park, there are large ungulate populations and low 

C. crocuta density so bone are often not eaten (Kruuk, 1972). 

Exploitation competition (the use of the same resource by different species) between C. crocuta 

and other large carnivores is apparent in the overlap of targeted prey species. For example, in 

the Faro National Park, Cameroon, there is a large overlap in the prey species consumed by C. 

crocuta, lion (Panthera leo) and wild dog (Lycaon pictus). Buffon’s kob (Kobus kob kob) is the 

species most frequently consumed by C. crocuta and P. leo. This ungulate is also targeted by a 

further potential competitor, baboons (Papio spp., Breuer, 2005). In the Kalahari, southern 

Africa, C. crocuta and P. leo both predate most frequently wildebeest (Connochaetes spp.) and 

gemsbok (Oryx gazella) (Mills, 1990). 

Competition between the large carnivores is also evident through direct interactions, or 

interference competition. C. crocuta has been observed to obtain food from prey killed by other 

predators including P. leo, cheetah (Acinonyx jubatus), leopard (Panthera pardus), L. pictus and 

jackals (Canis mesomelas) (Kruuk, 1972; Mills, 1990; Cooper et al., 1999). The exact dynamics of 

these competitive interactions vary. In a study in the Kalahari, C. crocuta often obtained 

carcasses after the original predator had departed. In cases of direct interactions, C. crocuta 

were more successful in appropriating carcasses from P. pardus and A. jubatus than from P. leo 

(Mills, 1990). In the case of the P. brunnea (a frequent scavenger), C. crocuta is the dominant 

species and frequently appropriates carcasses from P. brunnea. On the other hand, little food is 

lost to P. brunnea (Mills, 1990). C. crocuta may also lose food to P. leo and L. pictus (Kruuk, 1972; 

Cooper et al., 1999). In the plains area of the Serengeti, 42 % of P. leo’s scavenged items were 

obtained from C. crocuta (Schaller, 1972). In the Ngorongoro Crater, Tanzania, P. leo were 

observed to approach 21 % of C. crocuta kills, and frequently obtained a substantial amount of 

food (Kruuk, 1972). Some of these interactions with P. leo can be fatal to C. crocuta individuals 

(Périquet et al., 2015, and references therein).  

On occasions when C. crocuta attempt to scavenge from P. leo, success depends upon the 

numbers of C. crocuta, and the absence of an adult P. leo male. When P. leo attempt to take 

food from C. crocuta, the presence of an adult P. leo male will force C. crocuta to surrender its 

carcass (Höner et al., 2002). In observations within the Timbavati Private Nature Reserve, South 

Africa, by Bearder (1977), C. crocuta frequently consumed giraffe that had been killed by P. leo, 
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although they waited until the lions had finished before approaching the carcass. The lions left 

a great deal of the carcass behind, which the author suggested might be due to the tough skin 

of the giraffe, which only C. crocuta is able to exploit. 

In a model assessing the amount of prey exploited by a species, versus the amount gained or 

lost through competition, Volmer and Hertler (2016) ranked the success of five large carnivore 

species (C. crocuta, P. leo, P. pardus, A. jubatus, L. pictus) in the Kruger and Serengeti National 

Parks. In the Kruger National Park, P. leo was the dominant species, followed by C. crocuta. In 

the Serengeti National Park, C. crocuta was the dominant species (Volmer and Hertler, 2016).   

Competition may be reduced through spatial partitioning. For example, in the Serengeti, P. leo 

occupies the plains but is more frequently found within wooded grassland, L. pictus frequents 

both wooded grassland and plains, P. pardus prefers thickets and riparian forests, and A. jubatus 

and C. crocuta most frequently occupy the plains and the border of the wooded grassland 

(Schaller, 1972). By contrast, Périquet et al., (2015) noted that P. leo and C. crocuta may occupy 

similar areas, influenced by the abundance of prey. The authors also noted that P. leo require 

some vegetation cover to allow them to ambush their prey. In a study of C. crocuta in the Savuti 

region of the Chobe National Park, Botswana, there appeared to be no relationship between 

hunting and vegetation cover, as different prey species were hunted in different vegetation 

(Cooper, 1990). 

Some temporal separation also occurs. C. crocuta, P. leo, P. pardus, P. brunnea and H. hyaena 

are usually nocturnal or crepuscular hunters. In contrast, A. jubatus and L. pictus are diurnal 

(Schaller, 1972; Hofer, 1998; Mills, 1998; Périquet et al., 2015). Indeed, Cooper (1990) found 

that C. crocuta individuals were unable to hunt in temperatures above about 20°C. By contrast, 

Swanson et al. (2016) found P. leo to be active throughout most of the day. In the Talek region, 

Kenya, along with alteration of vegetation preference with increased livestock grazing (Section 

2.3.1), C. crocuta activity changed from crepuscular to nocturnal, again exhibiting a rapid 

behavioural response (Boydston et al., 2003). 

Despite these examples of spatial and temporal partitioning, Swanson et al. (2016) found that 

in the long-term, P. leo, C. crocuta and A. jubatus did not avoid each other in the Serengeti. The 

numbers of sightings of each species at a particular spot were positively correlated, although a 

threshold was reached at the highest numbers of P. leo. In the short-term, A. jubatus did not 

avoid C. crocuta, and the C. crocuta only avoided an area for a short period (12 hours) after P. leo 

was seen. In fact, C. crocuta and P. leo tracked each other, perhaps due to similar prey 

preferences (Swanson et al., 2016). Similarly, C. crocuta and P. leo appeared to track each other 

during the dry season of 2013 in Ruaha National Park, Tanzania (Cusack et al., 2017). 
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Separation of predators also occurs through targeting of different prey classes. In the Kalahari, 

C. crocuta will target the calves of Connochaetes spp. and O. gazella, while P. leo targets the 

adults and subadults (Mills, 1990). Meanwhile, P. pardus and A. jubatus prey upon smaller 

species such as springbok (Antidorcas marsupialis). Further, Mills (1990) stated that the fact that 

C. crocuta scavenges more than P. leo helps in reducing the competition between the two 

species. Hayward and Kerley (2008) reviewed dietary studies of C. crocuta, P. leo, P. pardus, A. 

jubatus and L. pictus to assess potential interspecific competition. The authors suggested that 

whilst interference competition occurs, it is exploitation competition that exerts the strongest 

influence upon some carnivore populations when food is the limiting factor. A. jubatus and 

L. pictus experienced the greatest overlap in diets with each other, and thus the potential for 

competition was high. The predator with which C. crocuta prey preference overlapped the most 

was P. leo. However, evidence suggested that competition between C. crocuta and P. leo does 

little to limit to the abundance of either species (Hayward and Kerley, 2008). A large overlap of 

diet between C. crocuta and P. leo was also found by Périquet et al. (2015), with both species 

mostly targeting medium-sized prey. However, some separation occurs with P. leo preying upon 

more large-sized prey than C. crocuta, and C. crocuta consuming more very large-sized prey and 

other prey, such as birds, rodents and other predators (Périquet et al., 2015). 

Two of the other large predators in Africa, H. hyaena and P. brunnea, scavenge much of the 

vertebrate portion of their diet, which is supplemented with small vertebrates they kill 

themselves, in addition to fruits and insects (Hofer, 1998b; Mills, 1998). The difference between 

H. hyaena and C. crocuta is illustrated by observations from Djibouti. C. crocuta prey species 

diversity was higher than that of H. hyaena. As H. hyaena are mainly scavengers, they are reliant 

upon carcass availability, whereas C. crocuta are able to hunt cooperatively and may thus have 

a wider choice available to them (Fourvel et al., 2015). 

 

2.3.4  Denning 

There are two different types of den used by C. crocuta: the natal den and the communal den 

(East et al., 1989; Holekamp and Smale, 1998; Boydston et al., 2006). The natal den is occupied 

by one, or occasionally two, female adults and their cubs (Boydston et al., 2006). The majority 

of cubs are born within natal dens (East et al., 1989; Boydston et al., 2006). The young are moved 

from the natal to the communal den, which was observed to occur up to four weeks of age in 

the Talek region (Holekamp and Smale, 1998) and at 11 days old on average in the Serengeti 

National Park (East et al., 1989). The mother, and occasionally a close female relative of the 

mother, such as a sibling, may reside within the entrance to the den. The interior of the den is, 



2. Review of Crocuta crocuta 
 

- 48 - 
 

however, so narrow that only the cubs can enter, allowing protection from predators (East et 

al., 1989; Holekamp and Smale, 1998). Many dens are excavated by warthogs (Phacochoerus 

africanus) or aardvarks (Orycteropus afer) and dug further by C. crocuta cubs (Kruuk, 1972; 

Boydston et al., 2006). 

Like natal dens, the interior of communal dens is usually only accessible to cubs, allowing them 

to hide from predators and potentially cannibalistic adult C. crocuta, since mothers are often 

away from these dens for long periods when searching for food  (Kruuk, 1972; East et al., 1989; 

Cooper, 1993; Holekamp and Smale, 1998). In contrast to natal dens, the communal dens 

contain young from many different females, and it is within this environment that C. crocuta 

begin to establish their social rankings (Holekamp and Smale, 1998). In the Talek region, 

Boydston et al. (2006) observed frequent inhabitation and subsequent abandonment of 

communal dens. The longest continuous period of occupation of a den was 8.1 months. 

Although the reason for den abandonment was not always known, occasionally the moves were 

prompted by events such as disturbance by humans, P. leo or C. crocuta from outside the clan, 

the death of a cub or flooding (Boydston et al., 2006). Communal dens are visited by both male 

and female adults, and younger C. crocuta that have left the den (Holekamp and Smale, 1998). 

Males are allowed within a closer proximity to cubs at communal dens whereas they are chased 

away from natal dens (East et al., 1989). This indicates the importance of dens for the survival 

of cubs, and thus the importance of Pleistocene C. crocuta in finding suitable denning sites.  

Adults may also require shelter during the day. For example, the entrance of a large den in 

Namib-Naukluft Park in Namibia, which was not used by cubs during the period of study, was 

used as daytime shelter for adults (Henschel et al., 1979). Shallow holes within the Comoé 

National Park were likely used as shelter during the day, but did not function as an area for 

raising cubs (Korb, 2000). As mentioned, C. crocuta seem to be unable to hunt in high 

temperatures (Cooper, 1990). The presence of shelters large enough for daytime use of adults 

avoiding high temperatures may therefore have been important during Pleistocene interglacials. 

Dens may be located in caves or other openings in rock, or in burrowed into sediments, as 

indicated in Table 2.2. The burrows studied by Kruuk (1972) in the Serengeti and Ngorongoro 

Crater had already been at least partially excavated by a different species. A further 

consideration is whether vegetation may influence den location. As indicated in Table 2.2, there 

does not appear to be a consistent type of vegetation for den location. Indeed, Périquet et al. 

(2016) found no influence of vegetation density upon den location in the Hwange National Park, 

Zimbabwe. A further consideration is proximity to water sources. Some of the dens in Table 2.2 

are located near to rivers. Indeed, as mentioned, proximity to water sources is an important 

factor influencing C. crocuta density (Cooper, 1989). On the other hand, Kruuk (1972) observed 
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that many dens were located up to 30 km from water sources in the Serengeti and the 

Ngorongoro Crater. Périquet et al. (2016) found that C. crocuta were able to locate their dens 

further from water sources, and thus further from concentrations of prey and associated 

concentrations of P. leo, although most dens were still within 3 km of water.  
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Table 2.2: C. crocuta den locations and associated environmental conditions. 

Location Substrate Proximity to water Vegetation Den/occupation type Reference 

Namib-Naukluft Park, 
Namibia 

Under rocky 
outcrop 

Bank and ravine of 
seasonally dry Kuiseb River 

Patches of shrubs, 
isolated trees 

Entrance as daytime 
shelter by adults 

Henschel et al. (1979) 
Tilson et al. (1980) 

Mashtu Game Reserve, 
Botswana 

Caves   
Juveniles and adults 
present 

Kuhn (2012) 

Near Kajiado, Kenya Cracks in lava    Sutcliffe (1970) 

Urikaruus den, Gemsbok 
National Park, South Africa 

Calcrete Auob River bank   Mills and Mills (1977) 

Kaspersdraai den, 
Gemsbok National Park, 
South Africa 

 Nassob River bed   Mills and Mills (1977)  

Wright’s den, Gemsbok 
National Park, South Africa 

Dune Overlooking Nassob River   Mills and Mills (1977) 

Talek Region, Kenya Soil   
Natal and communal 
dens 

Boydston et al. (2006) 

Queen Elizabeth National 
Park, Uganda 

Alluvial sediments    Sutcliffe (1970) 

Serengeti and Ngorongoro 
Crater, Tanzania 

Sediments Up to 30 km from water 
Preferentially in plains, 
rather than wooded areas 

 Kruuk (1972) 

Ngorongoro Crater, 
Tanzania 

 Near lake   Sutcliffe (1970) 

Amboseli Airstrip Den, 
Kenya 

Trench in calcrete  Open grassland 
Natal and communal 
den 

Faith (2007) 

Comoé National Park, Côte 
d’Ivoire 

  Forest patches Raising cubs Korb (2000) 

Comoé National Park, Côte 
d’Ivoire 

  Savannah 
Shallow holes for 
shelter 

Korb (2000) 

Hwange National Park, 
Zimbabwe 

Sand 
More dens further from 
water, up to 3 km 

Variable  Périquet et al. (2016) 
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One further consideration regarding den availability is competition. Kruuk (1972) observed that 

in the Serengeti and Ngorongoro Crater, other users of sediment burrows include P. africanus, 

jackals and spring hares (Pedetes capensis). Even burrows excavated by an animal as small as P. 

capensis are large enough for inhabitation by a C. crocuta cub (Périquet et al., 2016). However, 

a literature search revealed little evidence for den competition. One C. crocuta den in the 

Gemsbok National Park, South Africa, was visited by porcupines (Hystrix africaeaustralis), yet 

there was no interaction between the species. Another den was inhabited at separate times by 

C. crocuta, P. brunnea and Hystrix sp. (Mills and Mills, 1977). Overall, it appears that there are 

few controlling factors on the location and availability of C. crocuta dens, suggesting that during 

the Pleistocene, so long as there were available caves or soft sediment potentially close to a 

river, there may not have been any restrictions on den locations. However, as seen in Section 

2.4.2, different conditions during the Pleistocene may have had different influences on den 

availability. 

C. crocuta may carry carcasses back to the den to feed themselves; cubs are not provisioned by 

this food, according to Skinner (2006). Indeed, cubs are not weaned until they are nearly fully 

grown (Kruuk, 1972). Lansing et al. (2009) made observations of females bringing food to dens 

to provision cubs, and one observation of a male attempting to bring food to a sibling, but these 

amounted to only 3 % of the prey items brought to the dens. In the Talek region, young hyaenas 

at communal dens were observed chewing on, among other things, bones, aiding in the 

development of strong cranial bone and musculature (Holekamp and Smale, 1998). In the 

Serengeti, an adult female was thrice observed carrying a wildebeest leg for her own 

consumption to the natal den where her cub was located (East et al., 1989). The reason for 

taking food to the den for consumption is to avoid inter- and intraspecific competition (Skinner, 

2006; Fourvel et al., 2015). Indeed, in comparison to open-air sites with greater interspecific 

competition, there was a lower degree of breakage of bones found inside a cave in Syokimau 

Gorge, Kenya. This suggested that decreased competition meant that the individuals did not 

have to consume the entire carcass to obtain sufficient food (Egeland et al., 2008). This is an 

important consideration when considering bone consumption by Pleistocene C. crocuta, since 

increased bone consumption may indicate interspecific competition or dietary stress, as 

observed in C. lupus during Marine Oxygen Isotope Stage (MIS) 5a (Flower and Schreve, 2014). 

The act of bringing food back to the den leads to accumulation of bones. Bones and teeth, most 

exhibiting carnivore damage, were found around the vicinity of C. crocuta dens in Timbavati 

Private Nature Reserve, South Africa (Bearder, 1977). Bones of prey were found outside Heraide 

den in Djibouti (Fourvel et al., 2015), and outside dens within forest patches of Comoé National 

Park (Korb, 2000). Only  1 % of the prey remains at dens in the Talek region were taken inside 
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(Lansing et al., 2009). By contrast, the bones of Yangula Ari den in Djibouti, and a den in the 

Namib-Naukluft Park, were located both outside and inside (Henschel et al., 1979; Fourvel et al., 

2015). Many bones were also discovered inside a cave that functioned as a C. crocuta den in 

Syokimau Gorge, Kenya (Egeland et al., 2008). 

C. crocuta bone assemblages are smaller and accumulate at a slower rate than those 

accumulated by P. brunnea and H. hyaena. This is thought to be because, unlike C. crocuta, the 

other species more frequently provide food for their young at the dens (Skinner and Chimimba, 

2005; Lansing et al., 2009).  

 

2.3.5  Mortality 

Kruuk (1972) assessed the cause of death for 28 C. crocuta in Ngorongoro Crater and the 

Serengeti. Of those where cause was determined, the greatest mortality was through 

competition for food: C. crocuta were killed by other C. crocuta or by P. leo. Predation by P. leo 

upon C. crocuta cubs has also been observed, and was especially prevalent in the Serengeti in 

1997 and 1998. The El Niño conditions of these years meant that rainfall was earlier, greater in 

volume, and almost continuous. This resulted in a net-like vegetation through which C. crocuta 

had difficulty moving, thus making it difficult to evade predators (Hofer, 2000).   

Within the Ngorongoro Crater and Serengeti, starvation or disease constituted 21 % of C. crocuta 

deaths, although this mostly comprised subadults (Kruuk, 1972). Vulnerability of younger 

individuals is illustrated in a study by Binder and Valkenburgh (2000). Of newly-weaned C. 

crocuta, the bite strength and ability to crunch bone are diminished compared to older 

individuals. These authors suggested therefore that if food is not plentiful, these younger C. 

crocuta may starve especially if their mothers are low in the social structure of the clan and thus 

would have access to only the poorer and tougher parts of the carcass (Binder and Van 

Valkenburgh, 2000). Holekamp and Smale (1998) suggest that in a litter of more than one cub, 

the siblings quickly develop a dominance hierarchy, with the dominant cub obtaining a greater 

share of the mother’s milk. When food is scarce, a subordinate cub may thus starve. Further 

evidence of the influence of food on mortality comes from a more recent study of Ngorongoro 

Crater populations. A reduction in food availability, coupled with increased direct competition 

with P. leo for food likely increased mortality, causing a decline in C. crocuta populations from 

the 1960s to 1990s (Höner et al., 2005). 

Lack of food may also influence susceptibility to disease. Between the years 2002 and 2003, 

there was an outbreak of the bacterium Streptococcus equi ruminatorum within the C. crocuta 

population of the Ngorongoro Crater (Höner et al., 2006). This resulted in an increased mortality 
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rate, and associated population decline, with the hardest hit demographics being those 

individuals without preferential access to food. The disease also became more prevalent with 

greater interspecific competition and lower prey density, indicating the importance of food 

availability in influencing the impact of disease (Höner et al., 2012). 

An additional cause of death may be aridity coupled with scarce fresh prey, as discussed above. 

Humans are also an important cause of C. crocuta mortality, causing 8 % of deaths in the 

Ngorongoro Crater and Serengeti (Kruuk, 1972). This is most prevalent outside of protected 

areas but does also occur within. Direct persecution occurs due to livestock predation, the 

presence of settlements, competition with trophy hunters, recreation, and use of C. crocuta 

body parts for food and medicine. The varied methods include poisoning, trapping, shooting, 

and through snares set for other species (Hofer and Mills, 1998b, and references therein).  

While the impact disease is difficult to determine in Pleistocene populations, the other factors 

(water and food availability, direct competition) are all important considerations when assessing 

the causes of the extirpation of C. crocuta from Europe.  

 

2.3.6  Summary 

Overall, this review indicates that the behavioural plasticity of C. crocuta allows them to survive 

under different environmental conditions, including diverse habitats, varying competition levels, 

prey species, food availability, and den locations. However, there are indications that if severe 

enough, several factors may limit C. crocuta survival, including competition, food availability, 

water availability and disease, in addition to human impacts. 

From this review, a number of hypotheses can be formed regarding Pleistocene C. crocuta. 

1. Greater competition and/or lower prey availability led to increased bone consumption. 

This may have been a factor contributing to the extirpation of C. crocuta from Europe. 

This will be assessed through the predator and prey species diversity from the literature. 

The level of bone consumption will be indicated through craniodental morphometrics, 

and tooth breakage levels. 

2. Reduced access to water was a factor leading to the extirpation of C. crocuta from 

Europe. This will be assessed through local palaeoenvironmental reconstructions 

coupled with dated C. crocuta records from the literature. 
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2.4 Pleistocene Crocuta crocuta 

2.4.1 Presence in Europe 

The first European record of C. crocuta is from Trinchera Dolina, Spain, dated to around 850-780 

ka (thousand years ago), Marine Oxygen Isotope Stage (MIS) 21-19 (Garcia and Arsuaga, 2001), 

followed by the occurrence at Casal Selce, Italy, dated to around 800 ka, MIS 19-18 (Sardella and 

Petrucci, 2012).  

After the first arrival in Europe, C. crocuta were apparently not present throughout Europe 

through all climatic periods and environmental conditions. This can be illustrated particularly 

well in Britain, in light of the good stratigraphical record that allows determination of the 

species’ presence. Its earliest recorded presence is in deposits of approximately MIS 17-age from 

Pakefield, Corton, West Runton and Palling, all in East Anglia (Stuart and Lister, 2001; Parfitt et 

al., 2005; Lewis et al., 2010). Later records from the early Middle Pleistocene exist from 

Westbury and Boxgrove (Bishop, 1982; Parfitt, 1999; Roberts and Parfitt, 1999; Turner, 1999), 

correlated with MIS 13. During the late Middle Pleistocene, C. crocuta was present during MIS 9 

and the later part of MIS 7 (Schreve, 2001). There is good evidence, however, that C. crocuta 

were absent from Britain during MIS 11 (Schreve, 2001), and possibly from the rest of Europe 

too (Stuart and Lister, 2014). During the Late Pleistocene, C. crocuta were present during MIS 

5e, 5c and 3 (Currant and Jacobi, 2011), and were absent from Britain during MIS 5a (Turner, 

2009). Currant and Jacobi (2011) suggested that this may be due to the cold conditions of MIS 

5b, and the subsequent prevention of recolonization in MIS 5a due to high sea levels isolating 

Britain from the rest of Europe. 

Extensive dating of C. crocuta remains by Stuart and Lister (2014) revealed that the species 

disappeared from eastern Europe around 40 ka. The final extirpation from Europe was dated to 

around 31-30 ka. This will be further discussed below. 

While C. crocuta were spatially widespread across Europe during the Pleistocene, a search of 

the literature has not revealed any records of the species’ presence in northern Europe, 

specifically Norway, Sweden, Finland, Denmark, Lithuania, Estonia or Latvia. 

 

2.4.2  Denning and cave use 

Pleistocene C. crocuta are notable for their use of caves in Europe, to the extent that they have 

been named the cave hyaena, as discussed in Section 2.2.3. This use allowed for the abundant 

accumulation of C. crocuta bones and coprolites, as well as remains of their prey. Indeed, caves 

such as Tornewton in Britain, and Teufelslucken in Austria have yielded hundreds of C. crocuta 
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bones and teeth (Ehrenberg, 1966a; Currant, 1998). Although few have been found, there is 

evidence that dens were also dug into sediment, such as in Glaston, Britain (Cooper et al., 2012), 

and Biedenstag, Germany (Diedrich, 2006). 

Diedrich (2011a) suggested that there were two different types of hyaena den in Pleistocene 

Europe: communal dens and cub-raising dens. A cub-raising den assemblage is characterised by 

a large proportion of juvenile C. crocuta, while a communal den assemblage is comprised mostly 

of adults with some juveniles (Diedrich, 2011a). This contrasts with present-day C. crocuta 

communal dens, which are used only by juveniles, and are not entered by adults (East et al., 

1989; Holekamp and Smale, 1998, see Section 2.3.4). A further use of caves is as a prey ‘depot’, 

which was used to hide food from other predators (Diedrich, 2011c). The C. crocuta found in 

prey depots are all adults (Diedrich, 2011a), accompanied by a large number of prey remains 

(Diedrich, 2011c).  

C. crocuta dens are very common in western and southern Europe, especially ones dating to the 

Late Pleistocene. By contrast, they are much less common in eastern Europe. For example, 

C. crocuta dens in Serbia are represented by a very small number of caves, two of which are the 

Late Pleistocene (not dated to a particular Marine Oxygen Isotope stage) deposits of Janda 

Cavity (Dimitrijević et al., 2014) and the MIS 3 aged deposits of Baranica Cave (Dimitrijević, 

2011). Some of the other known caves containing Pleistocene deposits had been occupied by 

humans, and the majority by cave bears (during both the Middle and Late Pleistocene; 

Dimitrijević, 2011; Cvetković and Dimitrijević, 2014). This may therefore indicate that C. crocuta 

were outcompeted for caves by bears and humans.  

Some caves have evidence of use by C. crocuta and other predators, further indicating the 

potential for competition for shelter (see Table 2.3). Discamps et al. (2012) stated that it is 

difficult to assess the temporal gap between cave occupations by C. crocuta and humans. 

However, given the apparent prevalence of both C. crocuta and Neanderthals (Homo 

neanderthalensis) in southwestern France, the author suggested that competition for caves was 

likely. This uncertainty about the time between occupations, and the degree of overlap with C. 

crocuta may also hold for other species listed in Table 2.3. 

The above will be an important consideration when assessing the reasons for the extirpation of 

C. crocuta from Europe. In contrast with the evidence from modern dens (Section 2.3.4), 

Pleistocene C. crocuta may have experienced enhanced competition for the use of caves as 

shelter or food storage. 
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Table 2.3: Some examples of European caves with evidence of use by C. crocuta and other predators. 

Site Country Age Other occupants References 

TD8 level, Gran Dolina Spain Middle Pleistocene 

Temporary shelter by bear (Ursus sp.), wolf (Canis 
mosbachensis), fox (Vulpes sp.), European jaguar 
(Panthera gombaszoegensis), lynx (Lynx sp.), 
badger (Meles sp.)  

Blasco et al. (2011) 

Grotta Paglicci Italy Middle/Late Pleistocene Hominins Crezzini et al. (2015) 

Level F, Payre France MIS 8-7 

Hibernation by cave bear (Urusus spelaeus). 
Occasional use by C. lupus and cave lion (Panthera 
leo (spelaea)). Repeated, short term use by H. 
neanderthalensis 

Daujeard et al. (2011) 

Bárta's pit III, Prepoštská 
Cave 

Slovakia Late Pleistocene Occasional use by H. neanderthalensis Sabol et al. (2013) 

Camiac France Late Pleistocene Hominins Discamps et al. (2012) 

La Chauverie France Late Pleistocene Short term visits by hominins Discamps et al. (2012) 

Pešturina Cave  Serbia MIS 5d and 3 Repeated use by hominins Blackwell et al. (2014) 

Baranica I Serbia MIS 3 
Hominins, wolf (Canis lupus), red fox (Vulpes 
vulpes) 

Dimitrijević (2011) 

Tournal Cave France MIS 3  
Repeated use by hominins. Hibernation by U. 
spelaeus and brown bear (Ursus arctos) 

Magniez and Boulbes (2014) 

Les Rochers-de-Villeneuve France MIS 3 Hominins  Beauval et al. (2005) 
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2.4.3  Diet and competition 

Physical evidence of hyaena diet is determined from prey bones and teeth showing marks from 

C. crocuta’s teeth and gastric acid (Stuart 1982; Sutcliffe 1970). Diet may also be inferred from 

the carbon and nitrogen stable isotope composition of carnivore and herbivore remains (e.g. 

Bocherens et al., 2011, 2015, 2016) and through prey DNA in coprolites (Bon et al., 2012). Table 

2.4 contains a summary of studies using these lines of evidence to reconstruct Pleistocene 

C. crocuta diets. The studies indicate that the prey species largely correspond with the size and 

type of ungulate prey species targeted by present day C. crocuta (see Section 2.3.3), although 

there may have been a greater reliance on rhinoceros, especially woolly rhinoceros (Coelodonta 

antiquitatis). There is little to no evidence of small prey consumption, contrasting with some of 

the modern studies. However, this may be partly because smaller prey bones are more easily 

completely consumed and are therefore not preserved in the fossil records. 

In addition, there is evidence that C. crocuta preyed or scavenged upon other carnivores. 

V. vulpes of Bukovynka Cave, Ukraine, may have been prey of C. crocuta (Bondar and Ridush, 

2015). Cooper et al. (2012) suggested that C. crocuta consumed wolverine (Gulo gulo) in Glaston. 

Gnawed U. spelaeus remains were found in C. crocuta dens in France from MIS 5e, 5c and 3 

(Fourvel et al. 2014). U. spelaeus found in Bukovynka Cave, may have been the prey of C. crocuta 

(Ridush, 2009).  Based on the paucity of the remains of herbivores at sites such as Zoolithen Cave 

and Rösenbeck Cave, Germany, Diedrich (2011a) and Diedrich (2011b) suggested that cave bears 

were important food sources for C. crocuta (whether through predation or scavenging) in Late 

Pleistocene boreal forest environments.  

Hominins may also have been a food source. The MIS 3 aged deposits of Les Rochers-de-

Villeneuve yielded a bone of H. neanderthalensis that has been gnawed by C. crocuta, although 

it was unclear whether the individual had been directly preyed upon or its remains scavenged 

(Beauval et al., 2005).  

There is evidence of C. crocuta cannibalism from Biedensteg (Diedrich, 2006), Balve Cave 

(Diedrich, 2011b) and Rösenbeck Cave, Germany (Diedrich, 2011a), Sloup Cave (Diedrich, 2012a) 

and Koněprusy Caves, Czech Republic (Diedrich 2012b), and Baranica Cave (Dimitrijević, 2011). 

In Late Pleistocene Italy, while C. crocuta and hominins had similar prey preferences (C. elaphus 

was most important), C. lupus preyed on different species (C. ibex, C. capreolus and smaller 

species). However, C. crocuta and C. lupus preyed mostly on the oldest and youngest individuals 

whereas hominins preyed on prime-aged adults. Collectively, this indicates that the three 

predators occupied different environmental niches (Stiner, 1992, 2004). 
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A review of MIS 3 and 4 age deposits in France revealed dietary similarities between 

H. neanderthalensis and C. crocuta, but the relative contributions of prey species were different. 

While both species consumed bovids, equids and cervids, C. crocuta consumed more bovids and 

equids, whereas H. neanderthalensis consumed more cervids. Additionally, assemblages 

accumulated by C. crocuta were more species-diverse, due in part to consumption of carnivores 

(Dusseldorp, 2013a). Similarly, at the site of Saint-Césaire, France, attributed to MIS 3, isotopic 

results suggested some differences in the preferred prey species of C. crocuta and 

H. neanderthalensis. The diet of both species contained approximately the same proportion of 

bovids, large cervids and horse (Equus caballus), but C. crocuta consumed more reindeer 

(Rangifer tarandus), while H. neanderthalensis consumed more C. antiquitatis and woolly 

mammoth (Mammuthus primigenius; Bocherens et al. 2005). 

Remains from Payre, France (MIS 8/7), indicated spatial partitioning of preferred prey species. 

C. crocuta and P. leo (spelaea) preyed upon species likely found within the wet, denser 

vegetation of the valley surrounding the site, including Stephanorhinus sp., horse (Equus 

mosbachensis), M. giganteus and C. capreolus. By contrast, C. lupus largely targeted different 

species that inhabited the drier, more open vegetation of the plateau near the cave, including 

C. elaphus and thar (Hemitragus bonali). H. neanderthalensis altered its targeted prey species 

over time, at one point targeting the valley prey, and at another point targeting the plateau prey 

(Bocherens et al., 2016). 

By contrast, other studies indicate some overlap of carnivore diets. C. crocuta were likely 

responsible for the bones of animals such as equids and red deer (Cervus elaphus), found within 

the lower layers in Caldeirão Cave, Portugal. However, the leopard (Panthera pardus spelaea) 

and the bearded vulture (Gypaetus barbatus) may also have contributed to the accumulation 

(Davis et al., 2007). Bones of bison (Bison sp.), and horse (Equus sp.) in Les Rochers-de-

Villeneuve, France exhibited damage caused by both C. crocuta and humans, indicating 

competition between the two predators (Beauval et al., 2005). 

Isotopic data has also indicated potential competition. Isotopic values from MIS 3 age 

assemblages from the Ardennes, Belgium, revealed competition between C. crocuta, P. pardus, 

G. gulo and U. arctos for prey species. There was no overlap of prey species between C. crocuta 

and P. leo (spelaea). However, after C. crocuta disappeared from the area, P. leo (spelaea) began 

to consume what had been C. crocuta’s preferred prey, suggesting that competition from 

C. crocuta had previously excluded P. leo (spelaea) from taking that prey species (Bocherens et 

al. 2011).  
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Table 2.4: Some studies indicating the herbivore species that C. crocuta consumed during the Pleistocene of Europe. 

Site Country Age Evidence Prey species References 

Grotta Paglicci Italy 
Middle/Late 
Pleistocene 

Prey remains  
Aurochs (Bos primigenius) fallow deer 
(Dama dama), C. elaphus 

Crezzini et al. (2015) 

Koněprusy Caves Czech Republic 
Late 
Pleistocene 

Prey remains 

Predominantly C. antiquitatis. Also 
Przewalski’s horse (Equus ferus 
przewalskii), bison (Bison priscus), giant 
deer (Megaloceros giganteus), 
C. elaphus, R. tarandus 

Diedrich (2012b) 

Biedensteg Germany 
Late 
Pleistocene 

Prey remains (in order of 
most to least abundant) 

C. antiquitatis, E. f. przewalskii, 
B. priscus, M. giganteus, R. tarandus, 
M. primigenius 

Diedrich (2006) 

Janda Cavity  Serbia 
Late 
Pleistocene  

Prey remains 
M. primigenius, C. antiquitatis, horse 
(Equus germanicus), M. giganteus, 
B. priscus 

Dimitrijević et al. (2014) 

Various Italy 
Late 
Pleistocene 

Prey remains 

C. elaphus, B. primigenius, E. caballus, 
roe deer (Capreolus capreolus), fallow 
deer (Dama dama), wild boar (Sus 
scrofa), ibex (Capra ibex) 

Stiner (2004) 

Lower layers, Caldeirão 
Cave 

Portugal 
Late 
Pleistocene 

Prey remains Equids, C. elaphus Davis et al. (2007) 

Cueva del Búho Spain MIS 5d-3 Prey remains Equus sp., Bovidae sp., Cervidae sp. Iñigo et al. (1998) 

Various France MIS 3 and 4 Prey remains Bovids, equids, cervids Dusseldorp (2013) 

Bois Roche France MIS 4 Prey remains 
Predominantly bovids and horse 
E. caballus. Some R. tarandus 

Marra et al. (2004), Villa 
et al. (2010) 

Baranica Cave Serbia MIS 3 Prey remains 

E. caballus, wild horse (Equus ferus), 
M. giganteus, B. priscus, C. ibex, very 
young or old C. antiquitatis and 
M. primigenius 

Dimitrijević (2011) 
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Coygan Cave Britain MIS 3 Prey remains 
Damage to many bones. C. antiquitatis 
and E. ferus most abundant 

Aldhouse-Green et al. 
(1995) 

Glaston  Britain MIS 3 Prey remains 
Damage predominantly to 
C. antiquitatis bones, in addition to 
those of G. gulo and M. primigenius 

Cooper et al. (2012) 

Goat’s Hole Paviland Britain MIS 3 Prey remains 
C. antiquitatis, R. tarandus (including 
shed antlers) 

Turner (2000) 

Kents Cavern Britain MIS 3 Prey remains 
Including M. primigenius 
(predominantly juveniles), E. ferus 

Pengelly (1872), Lister 
(2001) 

Pin Hole Britain MIS 3 Prey remains 
Including C. antiquitatis, possibly M. 
giganteus 

Busk (1875) 

Rochers-de-Villeneuve France MIS 3 Prey remains Bison sp., Equus sp. Beauval et al. (2005) 

San Teodoro Italy MIS 3 Prey remains 

Palaeoloxodon mnaidriensis (dwarf 
elephant) and Cervus elaphus siciliae 
(Sicilian red deer), Bos primigenius 
siciliae/Bison priscus siciliae (Sicilian 
aurochs/Sicilian bison) S. scrofa, Equus 
hydruntinus (stenonid ass) 

Mangano (2011) 

Tournal Cave France MIS 3 Prey remains 

M. giganteus, C. elaphus, Pyrenean ibex 
(Capra capra praepyrenaica), wild boar 
(Sus scrofa), E. caballus, bovids. 
Possibly R. tarandus and C. antiquitatis 

Magniez and Boulbes 
(2014) 

Saint-Césaire France MIS 3 Isotopic analysis 
R. tarandus, bovids, large cervids, 
E. caballus 

Bocherens et al. (2005)  

Payre France MIS 8-7 Isotopic analysis 
Rhinoceros (Stehanorhinus sp.), 
C. capreolus, M. giganteus, horse 
(Equus mosbachensis), possibly bovids 

Bocherens et al. (2016) 

Coumere France Likely MIS 3 C. crocuta coprolite DNA C. elaphus Bon et al. (2012) 
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The evidence outlined above therefore suggests that C. crocuta may have been in competition 

with some species for food, but that there was scope for niche differentiation, whether that was 

through the species targeted or the age demographics of prey. Whilst much is known about the 

diet of C. crocuta and competition for food in the Pleistocene, little is known about how food 

availability has changed with changing environments. An analysis of evidence of nutritional 

stress is therefore needed to address this issue, and will be presented in this thesis. 

 

2.4.4 Body size and morphometrics 

Previous authors have attempted to examine variations in size in Pleistocene C. crocuta, and 

differences in morphology when compared to modern C. crocuta, although conclusions are 

contradictory. Klein and Scott (1989) proposed that measurements of m1 (first lower molar) 

length indicated that C. crocuta from the Devensian (last cold stage) period in Britain were larger 

than those from the Ipswichian (Last Interglacial), a change that was assumed to be a response 

to declining temperatures, following Bergmann’s rule. However, reconstructions of British C. 

crocuta body masses revealed that whilst there was some difference in the average body masses 

between MIS 5e, 5c-a and 3, the differences were not significant (Collinge, 2001). Conversely, 

Turner (1981) measured bones and teeth of British C. crocuta and found no overall size 

difference between those of Ipswichian and those of Devensian age.      

Turner (1981) did, however, find that overall Ipswichian and Devensian C. crocuta were larger 

than modern day African C. crocuta. However, the radius, tibia, metacarpal III and metatarsal III 

were all smaller than those of modern C. crocuta, making the Ipswichian and Devensian 

C. crocuta more robust and powerful. This was suggested to be due to differences in the size and 

resistance of prey (Turner, 1981). Additionally, canines from C. crocuta of Devensian age were 

found to be larger than those from the Ipswichian, suggesting that this may be in response to 

prey having more subcutaneous fat in the colder Devensian climate, thus requiring more 

powerful dentition to penetrate the surface (Turner, 1981). 

The length of the skulls of individuals from central Europe during the last glacial period were 

also larger than modern African C. crocuta (Diedrich, 2011a). According to Diedrich (2011a), the 

sagittal crests of Late Pleistocene C. crocuta from central Europe took three different forms: flat, 

slightly convex, and highly convex. The author suggested that the highly convex sagittal crest 

developed as a result of disease or damage to the muscles attached to the sagittal crest during 

the life of the individual. No explanation was given for the flat and slightly convex forms, other 

than that they were ‘normal’, i.e. not pathological (Diedrich, 2011a). 
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A reassessment of the morphology of British C. crocuta will be undertaken in this thesis. This will 

be supplemented by an assessment of Late Pleistocene C. crocuta morphometrics from across 

Europe.  

Diedrich (2011) attempted to determine the sex of C. crocuta specimens from central Europe 

during the last glacial period. Measurements included the skull length, occipital condyle width 

and the lengths and distal widths of long bones. These measurements were split into males and 

females by Diedrich (2011) with the assumption that the largest specimens were female and the 

smallest were male. However, the author acknowledged that there is overlap between the 

largest (assumed) males and the smallest (assumed) females. There appears to be no indication 

as to how the decision was made to group certain specimens as female and others as male. 

Moreover, this was done with no apparent consideration as to whether the measurements are 

adequate in distinguishing between males and females of present day C. crocuta, or even 

whether females actually are larger than males in all the above measurements. 

This thesis will therefore include an analysis of the manifestation of sexual size dimorphism in 

the bones and teeth of present day C. crocuta. This will be used to indicate whether sexual size 

dimorphism needs to be considered when interpreting Pleistocene morphometrics.   

 

2.4.5  Extirpation from Europe 

Stuart and Lister (2014) created a chronology of C. crocuta presence in Europe during MIS 3, 

based on a collation of radiocarbon dates, derived directly from C. crocuta remains. Dates were 

excluded if they were dated before 1980, or if they did not fit the pattern exhibited by the other 

dates. The results of Stuart and Lister's (2014) model indicated that C. crocuta became 

extirpated from the Urals and central/eastern Europe at around 40 ka. Following this, the species 

became extirpated from northwestern and southern Europe around 31-30 ka, with the latest 

dated specimen from Grotta Paglicci, Italy. 

A number of dates were re-dated by Stuart and Lister (2014) using a newer pre-treatment 

method: ultrafiltration. Compared to other methods, ultrafiltration is more successful in 

removing contaminants from bone samples, and usually results in older dates (Higham et al., 

2006; Jacobi et al., 2006). Nevertheless, a number of dated specimens were included in Stuart 

and Lister's (2014) model that had not been subjected to the ultrafiltration method, presenting 

a potential problem with the accuracy of the model. 

Potential problems with Stuart and Lister's (2014) model were highlighted by Dinnis et al. (2016). 

Dates from Caldey Island, Britain were included in Stuart and Lister's (2014) model. However, 
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the specimens from Caldey Island may have been conserved with varnish (van Nédervelde and 

Davies, 1975 cited in Dinnis et al., 2016), leading Dinnis et al. (2016) to exclude these dates from 

their analysis of C. crocuta presence in Britain during MIS 3.  

The dates from Caldey Island were the youngest dates for C. crocuta in Britain in Stuart and 

Lister's (2014) model. Therefore, excluding the Caldey dates resulted in the latest evidence of C. 

crocuta presence in Britain to be older, at around 35 ka (Dinnis et al., 2016). 

Given the issue with some of the dates, the publication of new dates and the publication of a 

new calibration curve (IntCal 13, Reimer et al., 2013), a new model will be created in Chapter 7. 

Several suggestions have been made about the causes of the extirpation of C. crocuta from 

Europe. C. crocuta may have been physically intolerant to decreasing temperatures towards the 

end of MIS 3 (Stuart and Lister, 2014). There may have been reduction in prey availability due to 

overall reduction in prey biomass and/or increased competition from other predators (Stiner, 

2004; Stuart and Lister, 2014). Finally, there may have been increased competition for cave sites 

with the arrival into Europe of modern humans (Stuart and Lister, 2014). 

Varela et al. (2010) modelled C. crocuta distributions during five time periods (126 ka, 42 ka, 

30 ka, 21 ka and the present day) in order to determine whether climate change was the cause 

of the species’ extirpation from Europe. The results indicated that climate was not the sole 

cause, as there were areas in Europe that were still suitable C. crocuta habitation at 21 ka. The 

author instead suggested the prey availability and competition with humans should be 

investigated.  

Lack of confidence may be placed in the results, however, as the conditions from all five time 

periods, including 21 ka, were used to determine the climatic requirements of C. crocuta (Varela 

et al., 2010). Many of the samples that had yielded very late dates of C. crocuta presence in 

Europe were subsequently re-dated by Stuart and Lister (2014), revealing that the species was 

likely present in Europe no later than 30 ka. Thus, Varela et al.'s (2010) suggestion that the 

climatic conditions in part of Europe during MIS 2 were suitable for C. crocuta may not have 

been the case. 

In Chapter 7, the cause of C. crocuta extirpation will be re-examined, including climate, given 

that interstadials became shorter, while stadials became longer and more frequent towards the 

end of MIS 3, as evidenced in the Greenland ice core data. Vegetation cover, food availability 

and competition and competition for shelter will also be investigated. 

 



2. Review of Crocuta crocuta 
 

- 64 - 
 

2.4.6  Summary 

This review has indicated that Pleistocene C. crocuta may have differed from present-day 

C. crocuta in the factors that influenced their survival. Particularly, it appears that the use of 

dens was even more important for all ages of individuals. Additionally, C. crocuta may have 

experienced competition for shelter from other species. This may have been a limiting factor in 

their survival. 

The review indicates that there are still gaps in the knowledge of Pleistocene C. crocuta, which 

will be addressed in this study. Firstly, a thorough morphological assessment over different 

temporal and geographical scales in warranted. This will demonstrate how C. crocuta responded 

to environmental changes, and whether these changes were sufficient to ensure their survival. 

Secondly, there has yet to be an assessment on C. crocuta food availability and dietary stress 

during the Pleistocene. This will be addressed through the level of bone consumption. These will 

be coupled with a review of the literature detailing local environmental conditions, including, 

where available: potential competitors, prey species, and climatic conditions. Taken together, 

these may shed further light on the potential causes of C. crocuta extirpation from Europe. 
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3 Body size, craniodental and postcranial morphology review 

 

3.1 Body size 

3.1.1  Introduction 

Body size can be influenced by a diverse range of factors acting through natural selection of 

genes and genetic drift, or phenotypic plasticity as a result of the environmental conditions 

prevalent during the growth of an individual (Gienapp et al., 2008; Merilä and Hendry, 2014). 

These will be discussed in the following review, with a view to aiding the interpretation of 

geographical variation in body size of present day and Pleistocene C. crocuta.  

 

3.1.2  Influences on body size 

One of the most heavily-researched influences on body size is ambient temperature, as in the 

case of Bergmann’s Rule. The rule was originally defined as ‘larger species live farther north and 

the smaller ones farther south’ (Bergmann, 1847, p. 648, cited in James, 1970, p. 390), although 

it was later reinterpreted with a more intraspecific view point (Meiri, 2011); ‘[r]aces of warm 

blooded vertebrates from cooler climates tend to be larger than races of the same species from 

warmer climates’ (Mayr, 1956, p. 105).  

The traditional explanation behind individuals being of larger body size in colder environments 

is that the relative surface area of an individual is reduced, thereby facilitating heat conservation 

(Mayr, 1956). This thermal efficiency should, in theory, mean that mass-specific metabolic rates 

are relatively lower in the larger animals, thus reducing energetic costs (Steudel et al., 1994). 

However, some authors such as Scholander (1955), Irving (1957) and Steudel et al. (1994) have 

suggested that other factors are important in temperature conservation, including an insulating 

pelage and subcutaneous fat, the ability of tissue to withstand cold temperatures, and vascular 

control regulating heat in the appendages (i.e. a counter-current heat exchange system). 

Furthermore, Meiri et al. (2007) stated that variation of body size with latitude may not be due 

to temperature, but rather caused by factors such as food availability, which may also vary with 

latitude. This is in agreement with McNab (1971) who stated that where carnivores conform to 

Bergmann’s Rule, it is likely due to the size of their prey varying with latitude, but see (Ashton 

et al., 2000), discussed below. 

Not all species’ body mass distributions follow Bergmann’s Rule but a majority of those reviewed 

in the recent literature do. Meiri and Dayan (2003) found that 65.1 % of the 149 mammal species 

studied conformed to Bergmann’s Rule, whether that be through a relationship with 
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temperature or with latitude. Meiri et al. (2004) found that 50 % of carnivore species conformed 

to Bergmann’s Rule when relationship with latitude was assessed, although 11 % of species 

showed a significant inverse relationship with latitude, i.e. they were larger in lower latitudes. 

Of particular relevance here is the observation by Ashton et al. (2000), who found that a greater 

proportion of carnivorans follow Bergmann’s Rule. Twenty-six of 33 species of carnivores (79 %), 

including C. crocuta and P. brunnea, showed a positive relationship with latitude, so were larger 

in higher latitudes. Similarly, 11 of 14 species of carnivores (79 %) had a negative relationship 

with temperature, so were larger in colder temperatures (Ashton et al., 2000). 

Specific studies relating to C. crocuta include Klein (1986), who used latitude as a proxy for 

temperature, finding that C. crocuta first lower molars are larger further from the equator, thus 

corresponding with Bergmann’s Rule. Roberts (1951) measured C. crocuta skulls and found that 

those from South Africa are larger than those from eastern Africa. This is also reflected in other 

large carnivores in Africa, such as P. leo, which are smaller in Tanzania and Kenya and larger in 

more southern populations (Smuts et al., 1980). It is anticipated that this pattern will be 

reflected in the Pleistocene C. crocuta record. 

The seasonality of environments has been demonstrated to be more important for some species 

than relative temperature. Highly seasonal environments may result in seasonal fluctuations in 

food availability, necessitating larger body size through increased fat reserves to endure fasting, 

as demonstrated in female bobcats (Lynx rufus, Wigginton and Dobson, 1999), Tibetan macaque 

(Macaca thibetana) and Japanese macaque (Macaca fuscata, Weinstein, 2011). Millar and 

Hickling (2008) however suggested that larger size through increased fat reserves is only 

advantageous when food is absent for a period of time or food shortages are unpredictable, as 

smaller individuals will deplete their reserves first and succumb to starvation. When food is 

available but is limited for a prolonged period, the authors stated that smaller body size is 

advantageous as less food is required for the individual to stay alive. In contrast, larger-bodied 

animals will eventually lose their reserves as they are unable to obtain the required food for 

their large size over such a long period of low food availability (Millar and Hickling, 1990). This is 

something to bear in mind in terms of C. crocuta, as some areas have seasonal migrations of 

prey species (such as migrations between the Maasai Mara and Serengeti), so food availability 

varies (Cooper et al., 1999).  

A further influence upon body size is food quality and abundance. These factors are in turn 

related to climatic conditions such as rainfall, and to competition (McNab, 2010). U. arctos in 

Alaska have larger body size in areas with higher quality foods and the highest population 

densities of U. arctos, although this latter factor is itself influenced by food quality and 

availability (McDonough and Christ, 2012). Similarly, reduced sea ice and an associated 
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reduction in prey accessibility was the likely cause of polar bear (Ursus maritimus) body size 

decrease over time (Rode et al., 2010). Body size of female U. arctos in Sweden is influenced by 

population density-controlled food availability; U. arctos were smaller in higher population 

densities as competition was higher. Additionally, geographical differences were observed, with 

smaller individuals in the north (contra Bergmann’s Rule). This was because of lower primary 

productivity and the shorter growing season of berries, in addition to longer hibernation periods 

in the north (Zedrosser et al., 2006). In view of this, variation in food availability (whether 

through prey biomass or competition) may have influenced C. crocuta body size during the 

Pleistocene.  

The relationship between interspecific competition and size has largely been confined to 

individual characteristics related to feeding (Dayan and Simberloff, 1998, and references 

therein). Studies that have focussed upon overall body size include Jones (1997) who found that 

variation in size with latitude was a more important determinant on carnivorous marsupials than 

competition. However, McNab (1971) suggested that the presence of competitors of larger body 

size may constrain a species to a smaller size. An example is the puma (Felis concolor), which is 

smallest when its range overlaps with that of the jaguar (Panthera onca), and is larger outside 

of this range  (McNab, 1971). The latter study may have relevance to understanding patterns of 

size distributions during the Pleistocene where the distribution of large carnivore species vary 

over time and space. C. crocuta may have become bigger after MIS 12 in Britain, when many big 

carnivores such as the cave bear (Ursus deningeri) and the European ‘jaguar’ (Panthera 

gombaszoegensis) became extinct (Stewart, 2008). 

Across species, population density correlates negatively with body size (Damuth, 1981, 1987). 

Within-species population density variation may also have some influence over an individual’s 

body size. However, as reviewed by Dayan and Simberloff (1998), studies are contradictory. On 

one hand, some studies suggested that increased population density leads to smaller litters, and 

increased lifespan, leading to greater body size. Other studies suggested that greater population 

density leads to smaller body size (see Dayan and Simberloff, 1998). This latter scenario may 

occur through intraspecific competition limiting food availability (Boucher et al., 2004). 

Other variables that have been considered in the literature include whether distance from the 

species’ range edge influences body size because of the potential for suboptimal habitats in 

these areas (Meiri et al., 2009). Some carnivores were found to be larger at range edges (the 

percentages of species exhibiting these patterns varied with the statistical test conducted). 

However, the authors attributed this to corresponding geographic variation in other factors such 

as temperature or resources (Meiri et al., 2009).  
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A further consideration is Cope’s Rule, whereby a species will evolve towards an optimum body 

size (Stanley, 1973). This was observed in hypercarnivorous canids, in that they increased in body 

mass and at the same time, developed more specialised craniodental morphology for predation 

and meat-eating (Van Valkenburgh et al., 2004), which will be discussed in more detail below.  

The Island Rule describes the body size changes in a species after isolation. Studies of carnivores 

have indicated body size decreases on islands (Foster, 1964; Van Valen, 1973; Meiri et al., 2008). 

Body sizes of 324 populations of Carnivora populations exhibited significant size changes once 

isolated, and this change in body size was demonstrated to be rapid. This rapidity was not 

quantified, but the extant populations were isolated for less than 10 ka (Lomolino et al., 2013). 

Carnivores that hunted prey larger than themselves on the mainland exhibited dwarfism when 

small prey were available on islands (Lyras et al., 2010). This is because the smaller prey 

consumption cannot sustain the large body size. However, if small prey are not available, the 

isolated carnivore will not exhibit much reduction in body size (van der Geer et al., 2010).  

Reduction in competitors may also drive the Island Rule (Lomolino, 1985; Faurby and Svenning, 

2016). If a carnivore had a competitor of larger size than itself on the mainland, the absence of 

this competitor on the island may allow the isolated carnivore to increase in size. This may be 

because the isolated carnivore is able to exploit a greater range of resources, including larger 

prey, from which it was previously out-competed on the mainland (Lomolino, 1985). However, 

Raia and Meiri (2006) found no significant influence of competition upon the body size of 

isolated carnivores. 

 

 

3.1.3  Implications for the Pleistocene 

The present research will critically examine the evidence for body mass varying geographically 

using modern C. crocuta across Africa. The changes in body size of European Pleistocene C. 

crocuta spatially and temporally will also be assessed. The following hypotheses will be tested: 

1. Pleistocene C. crocuta followed Bergmann’s Rule and were larger in colder conditions. 

This will be assessed by reconstructing C. crocuta body masses from periods of different 

palaeoclimatic conditions. 

2. Pleistocene C. crocuta were constrained to a smaller body size when competitors were 

present. This will be assessed by comparing body masses of C crocuta against those of 

other carnivores from the literature. 
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3. Pleistocene C. crocuta were smaller when there was less food available. Elevated levels 

of bone consumption is an indication of food stress, particularly determined from 

mandibular bending strength and tooth breakage.  

4. Pleistocene C. crocuta were influenced by the Island Rule, and were therefore smaller 

on islands. This will be tested by comparing C. crocuta on Sicily with those from mainland 

Europe. 
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3.2 Sexual size dimorphism 

3.2.1 Introduction 

Sexual size dimorphism (SSD) is another way in which body size can vary. SSD is not present in 

all species, nor does it occur in the same direction or degree. In mammals, males are frequently 

the larger of the two sexes, although female-biased SSD does occur, one example of which is C. 

crocuta (Ralls, 1976). As with body size, there are a number of theories about the causes of SSD, 

which will be outlined below. 

SSD in present-day C. crocuta bones and teeth will be assessed in this thesis. Furthermore, 

geographical variation in the degree of SSD will be assessed across Africa, thus allowing any 

changes in SSD to be established. It is important to be aware of the degree of SSD when 

interpreting Pleistocene records, since failure to identify any great differences between males 

and females may add to variation in Pleistocene morphometric records making it harder to 

interpret underlying patterns.  

 

3.2.2  Influences on sexual size dimorphism 

The root cause of SSD is often thought to be sexual selection. Where males are larger than 

females in polygynous species, Lindenfors et al. (2007) suggested larger size in males evolves 

because it confers advantages when competing for females.  

Ralls (1976) outlined many reasons why sexual selection for female-female competition is 

unlikely the sole cause for female-biased SSD in mammals. For example, there is no consistent 

pattern in the degree of parental investment by males over females in species with female-

biased SSD, which might be expected to be the case if females were competing for males. 

Furthermore, while male-male competition exists in polygynous species, there is no evidence in 

any mammal species of the opposite, i.e. polyandry (Ralls, 1976). Indeed, Frank (1986) stated 

that C. crocuta is a polygynous species.  

Rather, Ralls (1976) suggested that selection for smaller males is a likely cause of female-biased 

SSD, possibly combined with selection for larger females. The author notes that selection for 

smaller males, or at least a lack of selection for larger males, may occur in some species where 

there is little competition between males for mates.  

The degree of SSD may be influenced by environmental factors, for example, latitude and its 

accompanying changes in seasonality and resource availability (Isaac, 2005). Seasonality of 

environmental factors, such as food, may influence whether breeding is seasonal or aseasonal, 



3. Body size, craniodental and postcranial morphology review 
 

- 71 - 
 

with seasonal breeding in polygynous species leading to less male-male competition and thus 

reduced SSD as there are more females in season at one time (Isaac, 2005, and references 

therein). 

Intra- or interspecific competition may also influence SSD. An increase in the population density 

of a species may result in a reduction of available food per individual. If males and females 

respond differently to this food scarcity, e.g. males through size reduction and females through 

delayed reproduction but no size change, the degree of SSD would decrease (Isaac, 2005, and 

references therein). 

An additional factor to consider is Rensch’s Rule, which states that where males are larger than 

females, the degree of SSD increases with larger body size. On the other hand, where females 

are larger than males, the degree of SSD decreases with larger body size (Rensch, 1950, cited in 

Abouheif and Fairbairn, 1997). If SSD does not follow this hyperallometric trend with body size, 

it may be hypoallometric, or there may be no change in SSD with increased size (Abouheif and 

Fairbairn, 1997; Fairbairn, 1997). Rensch’s Rule is more common in taxa with male-biased SSD 

than those with female-biased SSD (Abouheif and Fairbairn, 1997). The cause of Rensch’s Rule 

is thought to be sexual selection favouring increase in male size, regardless of whether the 

species exhibits male-biased or female-biased SSD (Abouheif and Fairbairn, 1997). It is 

anticipated that Rensch’s Rule will not be exhibited in C. crocuta, although this will be 

investigated in this thesis. 

Overall, Isaac (2005) stated that SSD is ultimately likely a result of a combination of factors. This 

is in agreement with Ralls (1976, p.259) who stated that ‘the degree of sexual dimorphism in 

size in a mammalian species is the result of the difference between the sum of all the selective 

pressures affecting the size of the female and the sum of all those affecting the size of the male.’  

 

As mentioned, C. crocuta is one species in which females are larger than males. One of the 

earliest assessments of variation in size of C. crocuta was performed by Matthews (1939). Here, 

the author measured individuals from the Serengeti, Tanzania, and determined that in terms of 

the length of the head and body, the tail, the hind foot and the ear, females were larger than 

males. In the southern Kalahari body mass and heart girth of females were significantly larger 

than those of males; however, there was no significant difference in body length (Mills, 1990). 

Of the individuals captured in Aberdare National Park, Kenya, females on average had greater 

body mass, body length and heart girth, however these differences were not significant (Sillero-

Zubiri and Gottelli, 1992). In summary, canines, fourth upper premolar (P4), skull length, 

moment arm of resistance at the lower canines, and body mass of female C. crocuta are on 
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average larger than those of males. However, width of the first lower molar (m1), and indications 

of bite force (measurements of the moment arm of the temporalis, and moment arm of the 

masseter) are all greater in males than in females (Gittleman and Van Valkenburgh, 1997). It is 

difficult to say whether this means that males possess greater bite force than females, as bite 

force is based on the relationship between the muscle moment arms and the moment arm of 

resistance (Kiltie, 1982; Alexander, 1983). This relationship will be discussed in more detail in 

Section 3.3.6.1. Sexual dimorphism in bite force will also be investigated in this thesis. The length 

of the m1 was greater in females in Gittleman and Van Valkenburgh's (1997) study, although 

Klein (1986) found no difference between males and females. 

The most robust examination of SSD in C. crocuta was carried out by Swanson et al. (2013) with 

measurements on 651 live, wild individuals in the Maasai Mara National Reserve, Kenya. 

Females were larger than males in most of the measured traits. The authors interpreted the 

discrepancies between their results and those of previous studies as being due to previously 

insufficient sample sizes. The measured traits that exhibited dimorphism were body mass, body 

length, skull length, head circumference, distance from the zygomatic arch to the top of the 

sagittal crest, distance from the zygomatic arch to the back of the sagittal crest, neck 

circumference, girth of the torso, shoulder height, scapular length, and upper leg length. Only 

three traits failed to exhibit dimorphism: lower-leg length, fore-foot length, hind-foot length 

(Swanson et al., 2013). Some of these results are different to those mentioned above by other 

authors, which is probably because of the larger sample size used by Swanson et al. (2013). 

Differential female/male access to food was ruled out as the cause of dimorphism by Swanson 

et al. (2013) as a study of captive C. crocuta where both sexes were fed the same food revealed 

similar SSD to the wild C. crocuta. It was thus suggested that the dimorphism is a result of genetic 

factors. Some traits were found to be more dimorphic than others, with mass and those 

associated with robustness exhibiting the greatest differences in size between males and 

females. Differences in the level of dimorphism were associated with the age at which the 

measured trait stopped growing. It was also found that as females and males cease growing at 

the same age, SSD is due to females growing faster (Swanson et al., 2013). 

Isaac (2005) suggested that the female-biased SSD in C. crocuta is due to the control that the 

females exert over the mating process (East et al., 1993), and that mating success in males is 

unrelated to size, rather it is determined by the order in which males arrive into a clan (East and 

Hofer, 1993). Isaac (2005) suggested that the lack of male-male competition related to size 

would explain the smaller size of the males. In addition, the author suggested that female-

female competition for dominance or food may select for larger females.  
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3.2.3  Summary 

As indicated in the review, there is still some uncertainty about the causes of SSD. C. crocuta 

exhibits female-biased SSD is many traits. However, it is as yet unknown whether the majority 

of bones and teeth of C. crocuta exhibit SSD. This will be investigated in the present study by 

studying body mass, bones and teeth of wild-caught C. crocuta across Africa. The impact of 

environmental conditions upon the degree of SSD will also be assessed. It will highlight how SSD 

is exhibited in present-day C. crocuta, which may lead to misinterpretations of the Pleistocene.  
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3.3 Craniodental morphology 

3.3.1 Introduction 

The cranium is a complex structure associated with numerous processes (Tseng and Binder, 

2010): ingestion, mastication (Lucas, 2015), food acquisition (i.e. prey capture; Biknevicius et al., 

1996), vision, hearing, olfaction (Nummela et al., 2013) and respiration (Smith and Rossie, 2008; 

Macrini, 2012), as well as housing the brain (Ewer, 1973). The mandible, on the other hand, is 

associated exclusively with the processes of feeding (Tseng and Binder, 2010): food acquisition 

(Rahmat and Koretsky, 2015), ingestion and mastication (Lucas, 2015). 

The morphology of the cranium, the mandible and dentition can therefore be adapted to, and 

constrained by, these processes, in addition to the constraints imposed by phylogeny (Tseng and 

Binder, 2010; Figueirido et al., 2011). This may occur through evolution or phenotypic plasticity 

(Gienapp et al., 2008; Whitman and Agrawal, 2009; see Section 3.3.8). In light of the importance 

of the aforementioned processes for species survival and success, assessment of the 

morphology of the skull is important in studies of how C. crocuta responded to environmental 

changes during the Pleistocene.  

Consequently, when examining both Pleistocene and modern specimens for morphological 

variation, it is important to acknowledge the potential range of influences on the morphology 

of the specimens. The following review considers the various influences on the mammalian skull, 

focussing particularly on the Carnivora, and drawing on studies of C. crocuta where available. In 

addition to features on the outer skull surface, some of which are assessed in the present study, 

internal skull features and soft tissues are also briefly included in the review. This is because 

some of the processes that influence external skull morphology (e.g. feeding, vision), may also 

be controlled by elements that are only evident from the internal structure, or from soft tissues 

that do not influence the morphology of the cranium. It should therefore be borne in mind that 

the external morphology of the skull may not present all the relevant information about a 

process.  

Ontogenetic development is briefly reviewed below (see Section 3.3.7). This is an important 

consideration in light of the potential for continued development of some skull features after 

adulthood has been reached, which may lead to erroneous interpretation of Pleistocene 

material if not recognised.  

Figure 3.1 to Figure 3.3 illustrate the anatomical terminology of the external skull surface used 

within this review.  
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Figure 3.1: Lateral view of C. crocuta cranium with labels of anatomical features mentioned in 

this review. Muscle origin sites from Ewer (1973). See text for more detail. 

 

 

Figure 3.2: Ventral view of C. crocuta cranium with labels of anatomical features mentioned in 

this review. Muscle origin sites from von Toldt (1905), cited in Turnbull (1970), and Ewer (1973). 

See text for more detail. 
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Figure 3.3: C. crocuta mandible with labels of anatomical features mentioned in this review. 

Muscle insertion sites from von Toldt (1905), cited in Turnbull (1970), and Ewer (1973). 

 

3.3.2 The brain 

The brain influences cranial shape through the size of the brain case (Ewer, 1973; Thomason, 

1991). There is negative allometry between body mass and brain size and thus, larger species 

have proportionately smaller brains (Ewer, 1973). Brain size develops early in ontogeny and is 

less responsive than body size in both phenotypic and genetic terms to environmental changes 

(Dunbar, 1998).  

Many theories have been proposed to explain influences upon brain size. One theory is that 

larger brains occur due to larger overall body size. Another theory is that the brain is larger in 

species that consume rich diets as surplus energy is available for brain development during 

gestation (Dunbar 1998, and references therein). However, Dunbar (1998) refuted these 

theories on the basis that the brain is energetically expensive to maintain, so there must be an 

advantage to having a large brain to outweigh this cost; the brain will not become larger merely 

because it is able to do so. 

A further theory is the social brain hypothesis, in that a large brain is needed to process the 

additional information required with greater sociality and more complex relationships (Dunbar, 

1998, 2009). Although relative brain size has been suggested to relate to sociality in primates, 
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ungulates and carnivores (Pérez-Barbería et al., 2007), other studies have failed to demonstrate 

this relationship among members of the Carnivora (Gittleman, 1986; Finarelli and Flynn, 2009; 

Swanson et al., 2012). 

The size of the brain is also related to problem solving, with species of Carnivora with larger 

brain volume (relative to body size) more successful at opening boxes containing food (Benson-

Amram et al., 2016). In the Carnivora, species with carnivorous diets have larger brains than 

omnivores and insectivores, potentially due to the more greater challenge and thus cognitive 

processing involved in predation (Gittleman, 1986; Swanson et al., 2012 and references therein).  

It can therefore be hypothesised that periods in the Pleistocene involving more challenging food 

procurement led to larger brain sizes. This may have involved more frequent hunting than 

scavenging, and the targeting of larger or behaviourally more complex prey. In the present 

study, this hypothesis will be assessed through measurements of the width of the brain case.  

However, the complication is that the morphology of the brain case is not solely influenced by 

the size of the brain. Wroe et al. (2005) suggested that there is a trade-off between the size of 

brain and the size of the masticatory muscles, which consequently impacts upon bite force. 

Indeed, in hypercarnivorous canids, larger masticatory muscles in some large species were 

positively correlated with brain volume (Damasceno et al., 2013). Conversely, Ewer (1973) 

stated that when the brain case does not allow sufficient attachment area for a muscle, the 

sagittal crest provides a further attachment site for the temporalis muscle, thus allowing the 

muscle to be larger than would otherwise be expected. 

 

3.3.3  Vision 

Among the Felidae, Canidae, Mustelidae and Viverridae, Radinsky (1981a) found that the area 

of the orbits scales negatively with allometry, meaning that larger species have relatively smaller 

orbits. Radinsky (1981a) suggested that larger eyeballs are indicative of better developed visual 

ability. In a study of four carnivore families, relative to skull length, felids had the largest orbital 

area, followed by canids, viverrids and finally mustelids. This led to author to suggest that felids 

had the greatest visual abilities of the four families (Radinsky, 1981a). A second study increased 

the number of Viverridae and Mustelidae species, and was extended to include Procyonidae, 

Ursidae and Hyaenidae. The orbital area relative to skull length was greater for C. crocuta than 

all the other species in this second study. The value was greater than the average for the Canidae 

family as a whole but still lower than that of the Felidae family: 1.15 for C. crocuta, 1.07 for 

Canidae, 1.45 for Felidae (Radinsky, 1981a, 1981b). Based on this, it could be suggested that 

C. crocuta visual ability is intermediate between Felidae and Canidae. How this impacts 
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C. crocuta behaviour relative to felids and canids is difficult to determine, as visual ability 

involves a number of different factors, including vision in different light levels and spatial 

resolution, as outlined below. 

The time of day during which animals are active may be indicated by orbit size. There is evidence 

from studies of primates that, relative to body size, nocturnal species have larger orbits than 

diurnal species (Schultz, 1940; Kay and Kirk, 2000). The implications of this in terms of 

Pleistocene climates are outlined below.  

However, the anatomy relating to other variables of visual ability are limited to the eye itself 

rather than the bone (Ewer, 1973; Savage, 1977). For example, the photoreceptors (cones and 

rods) of the retina are related with visual ability in low or high light levels. The rods of C. crocuta 

only comprise around 0.9 % of the total number of photoreceptors, indicating strong nocturnal 

vision (Calderone et al. 2003). The density of ganglion cells is associated with spatial resolution. 

The spatial resolution achieved by the C. crocuta eye is similar to other carnivores (Calderone et 

al. 2003, and references therein). 

A complicating factor is that the area of the orbits are not only associated with the eye. The 

temporalis muscle has some fibres that originate in the orbital ligament and the tissue at the 

back of the orbit. The orbital ligament connects the orbital process on the frontal bone and the 

orbital process of the zygomatic arch. Therefore, the size of the temporalis muscle, along with 

the size of the eye influences the size of the postorbital processes. Large eyes and temporalis 

muscle would lead to large postorbital processes (Ewer, 1973). When considering size changes 

of the orbits of Pleistocene individuals, the influence of both the eye and of muscles must 

therefore be considered. The influence of the masticatory muscles upon the orbits is outlined in 

more depth in Section 3.3.6.1.  

 

3.3.4 Hearing 

Important aspects of hearing include the ability to locate sounds, the ability to distinguish 

between sounds, and hearing sensitivity to sound frequencies. These are important for prey 

location and communication between group members (Ewer, 1973).  

The external cranial morphology related to hearing is represented by the auditory bulla 

(measured in this thesis) that encloses the middle ear (Hildebrand, 1974). Among the Canidae, 

Felidae, Viverridae and Mustelidae, the volume of the auditory bulla scales negatively with 

allometry (Radinsky, 1981a). Many Carnivora, including C. crocuta have inflated bullae. 
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Sensitivity to sound may be achieved through increasingly inflated bullae or expansion of the 

middle ear; the two do not have to co-occur (Hunt, 1974). 

Similar to vision, aspects of hearing may also be influenced by changes in features that are not 

preserved in the Pleistocene record. One example is the pinna, which does not contain bone but 

is instead constructed of cartilage, ligaments and muscles (Gray, 2003), which is associated both 

with hearing and temperature regulation; larger pinnae allow both increased collection of sound 

waves and increased heat loss (Ewer, 1973; Hildebrand, 1974). Therefore, colder periods in the 

Pleistocene may have encouraged enlargement of the pinnae, as might any conditions that 

necessitated improved auditory ability (see below). Similarly, larger auditory bullae may have 

occurred during periods that necessitated increased sensitivity to sound, explored further 

below. 

 

3.3.5  Olfaction and respiration 

Respiration and olfaction are considered together as some of the same features are important 

to both functions. The features of the skull that are associated with respiration are the turbinals 

(Smith and Rossie, 2008; Macrini, 2012), which are also associated with olfaction, as are the 

cribriform plate (also called the ethmoid bones), and the impression upon the bone of the 

olfactory bulb of the brain (Bird et al., 2014). These features are internal and there does not 

appear to be any information in the literature as to how they influence the external structure of 

the skull, and will therefore not be discussed further.  

 

As would be anticipated, there is cooperation between the senses. Nummela et al. (2013) 

assessed the size of organs relating to vision, hearing and olfaction in 119 mammalian species. 

The size of the eyeball and the tympanic sulcus (the bony ridge surrounding the tympanic 

membrane between the outer and middle ear) showed positive correlation with each other.  By 

contrast, the size of the cribriform plate was independent of the sizes of the eyeballs and the 

tympanic sulcus.  

Nummela et al.'s (2013) study also differentiated between the sense organs of species with 

different diets. While there appeared to be a trade-off between olfaction against vision and 

hearing, this was not the case for the carnivorous species. Relative to overall body size, species 

with carnivorous diets had medium- to large-size eyeballs, tympanic sulci and cribriform plates. 

The enhanced-size of these features, despite their high metabolic cost during ontogeny and daily 

use, indicate the importance of vision, olfaction and hearing to the survival of carnivorous taxa 
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(Nummela et al., 2013). Indeed, Kruuk (1972) provided evidence for the great olfactory, hearing 

and nocturnal visual abilities of C. crocuta from observations of their reactions to sights, smells 

and sounds of prey and clan members, many of which were imperceptible to the human 

observers.    

The importance of the senses in food acquisition was demonstrated in the predominantly 

wooded Timbavati Private Nature Reserve, South Africa. C. crocuta were able to locate carrion 

by following scent trails, even those trails created three days previously. Hearing was also 

important in that C. crocuta responded to simulations of prey calls and sounds of group feedings. 

They were also able to follow lion calls to locate a P. leo kill. Auditory ability was also used to 

avoid conflict with P. leo; if C. crocuta were feeding and a P. leo call was heard, the C. crocuta 

abandoned the food (Bearder, 1977). 

Change in size of the orbital areas of the skull or of the auditory bullae may have occurred in 

response to changing environments during the Pleistocene. For example, the time of day during 

which C. crocuta were active may have changed. C. crocuta have been classed as crepuscular 

(Kruuk, 1972; Hayward and Hayward, 2007), although activity does continue to occur through 

the night, albeit decreasing between 02.00 and 05.00 hours (Hayward and Slotow, 2009), 

behaviour that Hayward and Hayward (2007) suggested may exist in order to avoid high 

temperatures during the day. Indeed, (Cooper, 1990) observed C. crocuta hunting in daylight in 

temperatures no higher than 20°C. In cooler periods or higher latitudes in Europe during the 

Pleistocene, C. crocuta may have become more diurnal, reducing the need for such enhanced 

nocturnal vision. Their orbital area of the skull may thus be smaller. 

Vegetation may also alter the importance of the senses. In closed vegetation situations, olfaction 

and hearing may have to be more acute to compensate for the vegetation obscuring vision. The 

auditory bullae may thus be larger in individuals from periods of wide-spread, closed vegetation. 

Alternatively, during periods such as MIS 5e in Britain, when there was a combination of closed 

forest, semi-open forest and more open landscapes (Sandom et al., 2014), C. crocuta may have 

preferentially occupied the semi-open and open areas, such as occurred on river floodplains 

(Gibbard and Stuart, 1975). 
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3.3.6  Food acquisition, ingestion, mastication 

3.3.6.1 Cranial and mandibular structure 

Probably the most studied aspect of the skull is the morphology related to the three key 

processes of feeding: food acquisition (predation or scavenging in the case of C. crocuta), 

ingestion and mastication. Feeding behaviour, such as prey size and type of food consumed, are 

determined by skull morphology. This includes cranial and mandibular structure, dental 

morphology, and musculature, which in turn relate to bite force, the ability to resist stresses and 

strains, and gape (Thomason, 1991; Meers, 2002; Lucas and Peters, 2007; Lucas, 2015). 

Figueirido et al. (2013) stated that the important morphological features relating to 

durophagous feeding (including the bone cracking typical of C. crocuta) are the ability to exert a 

powerful bite force, and the ability to resist the loads involved during biting.  

Bite force is ‘the amount of force that can be exerted by the jaw adductor musculature and 

realised at the tooth row, as a function of jaw geometry’ (Meers 2002, p.1). Across a subset of 

Carnivora, Crocodilia, Squamata and Chelonia, the larger the predator’s body mass, the greater 

the bite force (Meers, 2002). This is generally because an increase in body size is associated with 

an increase in the size of the masticatory muscles (Werdelin, 1989; Ferretti, 2007). Therefore, 

inherent in the production of bite force is both the structure of the cranium and the mandible, 

and also their role as attachment sites of the masticatory muscles. 

There are a number of masticatory muscles attached to the carnivore skull (see Figure 3.1 to 

Figure 3.3). The temporalis, masseter, and pterygoid are the jaw adductor muscles whereas the 

digastric opens the jaw (Turnbull 1970; Ewer 1973). The temporalis muscle originates on the side 

of the brain case and the orbital ligament, and inserts into the coronoid process. The masseter 

muscle originates in the zygomatic arch. The superficial fibres originate on the anterior part of 

the arch and insert in the angular process. The medial fibres originate on the central area of the 

zygomatic arch also insert on the angular process. The deepest fibres originate on the posterior 

part of the zygomatic arch and insert on the mandibular ramus. Some authors such as von Toldt 

(1905, cited in Turnbull 1970) and Turnbull (1970) suggest there is an additional muscle, the 

zygomatic-mandibular, attached to the zygomatic arch and the coronoid process. However, it is 

difficult to distinguish this from the temporalis and masseter muscles. The pterygoid muscles 

originate beneath the orbit with the superficial fibres inserting on the angular process and the 

deeper fibres inserting on the mandibular condyle (Ewer, 1973). The origin of the jaw opening 

digastric muscle is the paroccipital process, and the insertion is the posterior, lower edge of the 

mandibular ramus (von Toldt 1905, cited in Turnbull 1970; Ewer 1973). 
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In the Carnivora, the temporalis muscle is the largest masticatory muscle. Within Turnbull's 

(1970) ‘Specialised Group I’ (Carnivora), the jaw opening muscles accounted for between 7.5 

and 14 % of total masticatory muscle mass (the averages for the jaw closing muscles were 64 % 

for temporalis, 28 % for masseter, and 8 % for pterygoid). Based on autopsies of four C. crocuta, 

the average weight of the temporalis was 247 g and the masseter 136 g. From this, it was 

estimated that the temporalis contributed 50 %, the masseter 32 %, and the pterygoid 18 %, to 

the total adductor muscle mass (Tanner et al., 2008). The mass of muscles influences the force 

they can exert during feeding (Tseng and Binder, 2010). Thus, of the jaw closing muscles, the 

temporalis is dominant, followed by the masseter and then the pterygoid (Turnbull, 1970). 

The morphology of the skull may aid in interpretation of musculature when only the bone is 

present. Two aspects of the mandible led Rahmat and Koretsky (2015) to highlight the powerful 

musculature of C. crocuta and its bone cracking suitability. These features were the deep 

mandibular fossa and the prominent angular process, which, as mentioned, are areas of 

insertion of the adductor muscles. Additionally, in comparing the mandibles of C. crocuta, 

H. hyaena and P. brunnea, Werdelin (1989) noted that the distance between the mandibular 

condyles of C. crocuta was greatest, and that this was due to the greater muscle volume in this 

species.  

Bite force is often assessed by modelling the carnivoran jaw as a lever. These models differ in 

complexity (Herring, 1993, and references therein). However, all lever models require a pivot, 

which is the jaw joint, an “in-force”, which is the lifting action of the masticatory muscles, and 

an “out-force”, which is the resistance force at the teeth (Moore, 1981). 

The in-force and out-force can be measured by the moment arms or lever arms, that is, the 

distance from the joint to the line of force acting upon the joint (Figure 3.4). The moment arms 

of the adductor muscles represent in-force and various methods have been applied to measure 

them, using both distances from the muscle attachment on the cranium to the jaw joint, and 

distances from the attachment on the mandible to the jaw joint. The moment arm of resistance 

(MAR) represents the out-force, and is a measure of the distance from the bite point to the jaw 

joint (e.g. Emerson and Radinsky, 1980; Kiltie, 1982; Van Valkenburgh and Ruff, 1987). These in 

turn provide information about the mechanical advantage of the muscles. Mechanical 

advantage is the relationship between the in-force and out-force: the greater the out-force 

relative to the in-force, the greater the mechanical advantage (Alexander, 1983). Out-force is 

greater with smaller out-levers or moment arms of resistance, and in-force is greater with longer 

in-levers or muscle moment arms (Kiltie, 1982). Bite forces are therefore stronger at the 

carnassials than at the canines (Thomason, 1991; Bourke et al., 2008; Ellis et al., 2009). This is 

due to the shorter MAR when biting at the carnassials (Bourke et al., 2008; Ellis et al., 2009). An 
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estimation of the maximum force the muscles are able to generate may be applied to the lever 

model to provide further information on bite force (e.g. Kiltie 1982; Thomason 1991).   

An example of a lever model is one applied to crania of selected Canidae species by Ellis et al. 

(2009). In this model, larger species had a greater bite force at both the canine and molars than 

smaller species. In these larger species, those with brachycephalic crania (shorter relative facial 

lengths) had the highest bite force. Bite force was mainly influenced by the shorter out-lever 

arm, and thus greater MAR, in the brachycephalic species (Ellis et al., 2009). 

 

 

Figure 3.4: Mandible of a jaw of C. crocuta with examples of measurements of moment arms of 

the masticatory muscles and moment arms of resistance at two bite points. 1. Moment arm of 

the temporalis. 2. Moment arm of the superficial masseter. 3. Moment arm of the deep 

masseter. 4. Moment arm of resistance at the carnassial (Emerson and Radinsky, 1980). 

5. Moment arm of resistance at the canine (Van Valkenburgh and Ruff, 1987).  

 

Van Valkenburgh and Ruff (1987) measured the ratio of the moment arm of the temporalis 

(MAT) and the MAR at the canines of extant hyaenid, felid and canid species. The length of the 

MAT relative to the MAR was greater in hyaenids and felids, meaning that the mechanical 

advantage of the temporalis muscle was greater in the two families. The authors suggested that 

in light of the importance of the temporalis muscle in jaw closing, a greater mechanical 

advantage would enable a greater bite force at the canines. Additional evidence for the powerful 



3. Body size, craniodental and postcranial morphology review 
 

- 84 - 
 

bite force of C. crocuta was found in a study of 98 species of Carnivora. Of all the species, 

C. crocuta and P. brunnea had the smallest MAR when biting at the point of the first lower molar 

(m1), after controlling for body size (Radinsky, 1981a,b). This therefore indicates the potential 

for relatively more powerful bites at the carnassial for these two species (Radinsky, 1982). 

 

The mandibular condyle is located roughly level with the teeth in the Carnivora, meaning that 

the lever arm of the masseter muscle is reduced relative to that in herbivores or rodents where 

the condyle is usually located above the tooth row (Hildebrand, 1974). This angular notch 

between the condyle and angular process is particularly narrow in the Hyaenidae, including C. 

crocuta, which Ferretti (2007) suggested may be related to bone cracking. Specifically, the 

author posited that the reduction in distance between the angular process and the condyle 

increases the mechanical advantage of the temporalis muscle, rather than the masseter muscle. 

This would increase bite force, given that the temporalis is larger than the masseter (Turnbull, 

1970). 

An alternative explanation for the small moment arm of the masseter muscle may be to protect 

the jaw joint. When using the cheek teeth, if the temporalis acted alone to lift the mandible and 

so close the jaw, there would be a large force at the condyle and the jaw might become 

dislocated. However, the small moment arm of the masseter allows effective stabilisation of the 

mandible. The temporalis lifts the mandible upwards and backwards, whereas the masseter and 

the pterygoid pull the mandible upwards and forwards. Therefore, there is little reaction force 

at the jaw joint during closing (Moore, 1981; Alexander, 1983). 

In comparisons of extant species of Carnivora and Marsupialia, bite forces at the canines and 

carnassials were high for C. crocuta and were only exceeded by some large felids and ursids 

(Christiansen and Adolfssen, 2005; Wroe et al., 2005; Christiansen and Wroe, 2007). However, 

body mass was then taken into account to produce the bite force quotient (BFQ). The BFQ of 

C. crocuta was similar to, or in some cases lower, than that of other species from all eight extant 

carnivore families and the Dasyuridae (Wroe et al., 2005; Christiansen and Wroe, 2007). This 

was also the case for bone-cracking predators as a whole, leading Wroe et al. (2005) to suggest 

that craniodental morphology allowing resistance to high stresses is a more important 

adaptation to bone cracking than bite force.   

 

As mentioned, in addition to bite force, another important property of the cranium and 

mandible is resistance to loads incurred during feeding (Figueirido et al., 2013). Loads may be 

intrinsic, extrinsic or a combination of the two. Intrinsic loads are due to the muscle forces acting 



3. Body size, craniodental and postcranial morphology review 
 

- 85 - 
 

on the bone. Extrinsic loads include the forces applied by food items such as struggling prey 

(Slater and Van Valkenburgh, 2009; Slater et al., 2009). Inherent in the resistance to loads is the 

resistance to stress and strain. Stress is the transmission of force to an object from a load. Strain 

is the deformation of an object as a result of the application of a load (Hildebrand, 1974). Strain, 

when applied perpendicular to an object is measured as the change in length of an object divided 

by the original length, and thus may be positive (where tension occurs to lengthen the object), 

or negative (where compression occurs; Hildebrand 1974; Hylander 1979). In addition, shear 

stress, when a force is applied parallel to an object, causes deformation of one side of an object 

in the opposite direction to the other side (Hildebrand, 1974). In bending, both compression and 

tension occur. Torsion may also occur; this is when an object is twisted, and shear, tension and 

compression occur (Hylander, 1979). Strength is the ability of an object to resist forces without 

yielding (permanent or plastic deformation) or failure (formation of a crack), and thus return to 

its original dimensions after removal of a load (a process termed elasticity; Hildebrand 1974).  

Mandibles are often modelled as elliptical beams in order to assess their resistance to loads in 

terms of bending strength. The length of the mandibular corpus as well as the magnitude of the 

size of the loads applied while biting necessitate development of bending strength (Biknevicius 

and Ruff, 1992). The height and width of the mandibular corpus, as well as the distance from the 

mandibular condyle to the point of load application (i.e. tooth position), are involved in 

calculation of bending strength (Biknevicius and Ruff, 1992; Therrien, 2005; Palmqvist et al., 

2011). Deeper beams have a greater bending strength in response to dorsoventral loads, wider 

beams have a greater bending strength to labiolingual loads, and shorter beams have a greater 

bending strength than longer beams (Hildebrand, 1974).  

Prey killing invokes both dorsoventral stresses due to biting at the canines, and labiolingual 

stresses due to struggling prey (Biknevicius and Ruff, 1992). During biting, the balancing hemi-

mandible (non-biting side) undergoes dorsoventral bending and torsion due to the pull of the 

adductor muscles, and reaction forces across the mandibular symphysis and jaw joint. On the 

working side (the side on which biting occurs), the hemi-mandible undergoes bending, torsion 

and shear strain. These are influenced by the pull of the muscles, reactionary forces, the point 

along the mandible at which an object is placed, and bite force. Furthermore, strain levels are 

higher when biting upon tough foods that require larger bite forces (Hylander, 1979).    

Studies modelling the mandible of C. crocuta as a beam have found that dorsoventral bending 

strength increased posteriorly along the corpus. Deep mandibles allow resistance to 

dorsoventral loads occurring during biting, especially bone cracking (Biknevicius and Ruff, 1992; 

Therrien, 2005; Ferretti, 2007; Meloro et al., 2008; Palmqvist et al., 2011). Dorsoventral bending 

strength was also greatest posterior to the bone-processing teeth in C. lupus (Biknevicius and 
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Ruff 1992). In addition to the increase in height, the cortical bone of C. crocuta and C. lupus 

thickened dorsoventrally (Biknevicius and Ruff, 1992), which increased dorsoventral bending 

strength (Therrien, 2005). By contrast, this does not occur in felids, which seldom consume bone 

(Biknevicius and Ruff, 1992). 

In support of this, upon comparing species with different diets from the Hyaenidae, Ursidae and 

Canidae, Raia (2004) found that there were certain similarities in the cranial morphologies of 

tough food (bone or tough vegetation) consumers. The mandibles were deep among the tough 

food consumers, necessary to withstand the bending stress induced by this food. Again, the 

mandibles were found to be deepest posterior to the bone-processing teeth in the Hyaenidae 

and Canidae. This occurrence of similar mandible structure in different families indicated a 

functional significance of the feature, rather than a merely phylogenetic signal (Raia, 2004). 

Turner (1984) also noted that the mandible of C. crocuta is deeper posteriorly than anteriorly 

but stated that the age of the individuals is relevant, with older individuals having a greater 

degree of difference in depth between the anterior and posterior regions of the mandible.  

At the canines, the corpus of C. crocuta has been found to be more rounded, and thus better 

able to resist labiolingual forces, such as torsion occurring when biting struggling prey (Therrien, 

2005; Palmqvist et al., 2011). However, the anterior mandible was more rounded in the Canidae 

than in the sub-Family Hyaeninae, perhaps due the latter occasionally cracking bone with the 

canines (Therrien, 2005). Overall bending strength at the canines in both dorsoventral and 

labiolingual directions was lower for the Hyaeninae than for the Felidae, which Therrien (2005) 

suggested reflected the differing killing behaviours of rapid bites for Hyaeninae versus a single, 

powerful bit for the Felidae. This would probably produce more powerful and unpredictable 

loads for the Felidae.   

The morphology of the cranium also provides features to resist stresses. An example lies in the 

zygomatic arch, which, as mentioned, is the area of origin for the adducting masseter muscle 

(Ewer, 1973). The morphology of the zygomatic arch is deeper than it is wide, enabling it to have 

a greater bending strength against the muscles pulling on it (Hildebrand, 1974). 

In beam models of the crania of North American opossum (Didelphis virginiana) and canid and 

felid species, Thomason (1991) determined that resistance to bending of the crania was stronger 

than necessary, given the forces applied to them. The author suggested therefore that 

resistance to torsion and shear stress may also be important in addition to bending strength. 

Additionally, the morphology of the cranium was suggested to be influenced by factors such as 

encasing the brain, masticatory muscles, olfactory system and the eyes. (Thomason, 1991). 
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The sinuses of C. crocuta also aid in resistance to stresses. Instead of a flat forehead, C. crocuta 

has an arching line that almost reaches the sagittal crest (Werdelin, 1989; Werdelin and 

Solounias, 1991; Joeckel, 1998; Ferretti, 2007). This vaulting is due to the expansion of the 

anterior frontal sinuses (Joeckel, 1998). The vaulted shape allows the stresses invoked through 

bone cracking to be transferred throughout the top of the skull, instead of concentrated in one 

area, and the evolution of an increasingly vaulted forehead through the Hyaenidae lineage 

indicates an adaptation to increased bone cracking and thus more thorough consumption of a 

carcass (Werdelin, 1989; Werdelin and Solounias, 1991). The elongated sinuses mean that the 

sagittal crest is pneumatised (in contrast to the bony plates in other carnivores), which better 

resits forces imposed during mastication than do the bony plates in other carnivores (Joeckel, 

1998). In addition to stress dissipation during biting, the front sinus expansion is a light-weight 

structure (Curtis and Van Valkenburgh, 2014). Stress dissipation through the pneumatised 

sagittal crest were also confirmed in Finite Element Analysis models (Tanner et al., 2008; Tseng, 

2009). 

 

Alongside bite force and resistances to loads, gape is important in feeding. This has not been 

measured in the present study, but it is worth briefly mentioning in light of its relationship with 

bite force. Gape is related to the size of prey targeted, and the size of the food item (such as a 

bone), that can be ingested (Binder and Van Valkenburgh, 2000). However, there is a trade-off, 

with wider gapes resulting in reduced bite force (Bourke et al., 2008; Santana, 2016). This may 

be due to a longer out-lever arm facilitating a wider gape, but lowering the mechanical 

advantage of the jaw (Slater and Van Valkenburgh, 2009; Santana, 2016). Additionally, excessive 

stretching of muscles may occur at wider gapes, resulting in reduced bite force (Santana, 2016). 

However, Slater and Van Valkenburgh (2009) suggested that in the Felidae at least, factors such 

as overall muscle cross-sectional area or increase in the length of the in-lever arm may 

compensate for the lower force produced with the longer jaw. 

 

Many studies have assessed multiple aspects of skull morphology in relation to feeding. For 

example, using a Finite Element Analysis model, Tseng and Binder (2010) found the bite force of 

a sub-adult C. crocuta at p3, p4 or m1 was lower than the corresponding bite points in an adult 

C. lupus. However, the authors also discovered that the stress and strain invoked when biting at 

the p3, p4 or m1 were fairly consistent at all three points for a sub-adult C. crocuta, but much 

less so for an adult C. lupus, which showed much lower values at m1 than at the position of the 

premolars. This suggests that the mandible of C. crocuta is better adapted for using the 
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premolars for biting than C. lupus, and is also adapted for using the m1 more actively. 

Additionally, C. crocuta exhibited overall lower stress and strain levels in the mandible than 

C. lupus, indicating that the C. crocuta mandible is better able to resist bending for a given 

mandible length (Tseng and Binder, 2010). 

There are morphological similarities between species that consume similar foods. Some of these 

have been mentioned, such as the greater dorsoventral bending strength posterior to the bone-

processing teeth in the mandibles of the Hyaenidae and Canidae (Biknevicius and Ruff, 1992; 

Raia, 2004). As mentioned in Section 3.3.3, the morphology of the orbit is influenced by the eye 

and the temporalis muscle. An in-depth study of 84 species from 19 mammalian Orders by Cox 

(2008), proposed a strong link between the morphology of the bones that comprise the orbital 

area, and feeding groups. The four feeding groups were based on those defined by Turnbull 

(1970): Specialised Group I, carnivore-shear; Specialised Group II, ungulate-grinding; Specialised 

Group III, rodent-gnawing and a Generalised Group. Group I comprised the Carnivora, and Cox 

(2008) found that the Chiroptera possessed similar orbital characteristics. Both of these orders 

have a temporalis-dominated masticatory system. The characteristics of Group I tended towards 

large orbits set close together, forward-facing and positioned over the tooth row. This 

positioning was related to the short rostrum and wide face that is characteristic of this group. 

The Felidae are the most extreme in the shortness of their rostrum and the degree to which 

their orbits face forwards. There was also a distinction between those species for which the 

temporalis is the dominant jaw adductor muscle, and those for which the masseter is dominant. 

Cox (2008) determined that most bones of the orbit were influenced predominantly by the 

masticatory musculature. The exceptions to these were the orbitosphenoid and the frontal 

bones. Expansion of these bones corresponded with expansion of the orbits relative to skull size, 

meaning that it was the upper part of the orbit that expanded, for example as seen in the 

domestic cat (Felis catus). 

Figueirido et al. (2013) assessed the morphological traits of durophagous members of the 

Carnivora, specifically focussing on bone crackers and bamboo consumers. The cranial traits 

shared by the durophagous species included a deep frontal region (due to the expanded 

sinuses), a large sagittal crest, downward-positioned orbits, a short and deep rostrum, and large 

postglenoid processes and consequently a deep glenoid fossa. The mandibular traits included a 

dorsally-positioned condyle, a large coronoid process (resulting in a larger distance between the 

coronoid and condyloid processes), and a concave and deep corpus. Additional traits specific to 

bone crackers were well-developed premolars and upper carnassials, front-facing orbits, and a 

posteriorly positioned occiput. Many of these features aid in enhancing bite force, or resistance 

to the loads produced whilst biting (Figueirido et al., 2013).  
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Furthermore, although results of geometric morphometric analyses on extant and extinct 

carnivores (including the Hyaenidae) revealed that to an extent, mandibular morphology is 

determined by phylogeny, there were some features that were deemed important for 

hypercarnivory, regardless of the Family to which the species belonged. These features relate to 

bite force: in-lever arms of the masticatory muscles, out-lever moment arms at the canines and 

carnassials, and the mandibular ramus. In addition, the slicing morphology of carnassials 

characterises hyercarnivores. For the Hyaeninae specifically, great bite force is achieved through 

developed in-lever arms (high coronoid process), reduced out-lever arms (shortening of the 

mandible through the loss of post-carnassial molars), and a deep mandibular ramus (Figueirido 

et al., 2011).  

In contrast to the mandible, Figueirido et al. (2011) determined that there is a greater 

phylogenetic signal with relation to the overall shape of the cranium; there is thus no convergent 

morphology that typifies all the hypercarnivorous species. This is because, in contrast to the 

mandible, the cranium is involved in sensory process and contains the brain, in addition to 

feeding functions. This need to provide different functions results in compromises and 

constraints upon morphology. There are, however, morphological similarities between 

durophagous species (including the Hyaeninae) in line with the requirement for powerful 

temporalis muscles and the need to withstand large dorsoventral loads while feeding. These 

features include a dorsoventrally deep cranium, a large sagittal crest and large premolars. In 

addition, these species also have fairly small canines (Figueirido et al., 2011).  

It is therefore anticipated that the features of the cranium and mandible dedicated to 

consumption may have changed during the Pleistocene. Any periods that necessitated more 

frequent bone consumption may have led to enhancements of the above mentioned 

morphological features associated with durophagy. There may have been changes of features 

to provide greater resistance to stresses and strains, and to increase bite force. However, the 

mandible may have responded more readily than the cranium in light of the multiple functions 

of, and constraints upon, the latter.  

 

3.3.6.2 Dentition 

The dental formula of C. crocuta, as stated by Hillson (2005) is:  
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Although the dental formula does not include first upper molars, they are occasionally present. 

However, they are very small in size (Mills, 1990; Werdelin and Solounias, 1991). The evolution 
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of the Hyaenidae records the loss of teeth such as the upper second molar (M2), the lower first 

premolar (p1), and the lower second molar (m2) (Werdelin and Solounias, 1991).  

 

Biknevicius et al. (1996) found that the curvature of the incisor dental arcade, and the 

robustness of individual teeth in the Hyaenidae were intermediate between those of canid and 

felid species. The upper incisors of felids were in a linear formation, whereas those of canids 

were curved. Taking body size into account, the bending strength and shear strength of canid 

incisors were greater than in felid incisors. There was thus a correlation between the curvature 

of the incisor arcade and the robustness of the first upper incisor (I1) and second upper incisor 

(I2), particularly to mediolateral forces. This was assumed to be because in a straight arcade, 

such as seen in the Felidae, the third upper incisor (I3) would buttress the medial incisors. 

However, the I1 and I2 of curved arcades are exposed to mediolateral forces and thus need to 

be more robust (Biknevicius et al., 1996). Additionally, Biknevicius et al. (1996) suggested that 

the work of incisors and canines together in curved arcades allows larger and more damaging 

bites than the use of canines alone. They noted that the greater importance of the incisors in 

the Canidae and the Hyaenidae, as opposed to the Felidae, is likely related to the method of 

killing; the Felidae kill with a single bite, facilitated with their long and robust canines (see 

below), whereas the Canidae and Hyaenidae kill using multiple bites (Biknevicius et al., 1996).    

In terms of ingestion, Van Valkenburgh (1996) observed C. crocuta feeding on carcasses, finding 

that incisors were frequently used to cut skin alone, and were the teeth most often used when 

cutting skin with attached subcutaneous tissue, and when feeding on muscle. Kruuk (1972) also 

observed the incisors and canines being used to remove soft meat from a carcass. Ferretti (2007) 

suggested that the I3 may be implemented in bone cracking, for which its large size is an 

advantage.  

 

In a comparison of the extant Hyaenidae, Felidae and Canidae, Van Valkenburgh and Ruff (1987) 

found that the upper canines in all Families were larger in the anteroposterior diameter than in 

the mediolateral diameter. However, the canines of hyaenids and felids were less compressed 

in the mediolateral diameter than those of canids. Around both the anteroposterior and 

mediolateral axes, hyaenid and felid canines had greater bending strengths than canid canines. 

This facilitates resistance to bending from stresses incurred when biting and ripping flesh. 

Furthermore, this may provide resistance when contact is made with bone. In the case of the 

Felidae, this may occur during the deep killing bites. The Hyaenidae will use their anterior teeth 

to break bone. In contrast, the Canidae have weaker canines, take shallower killing bites and 
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process bone with their post-carnassial molars, and are thus less likely to make contact with 

bone with their canines (Van Valkenburgh and Ruff, 1987). Although not the most frequently 

used tooth, canines were also observed to be employed in consumption of muscle with attached 

bone (Van Valkenburgh, 1996). Greater bending strength in hyaenid canines compared to those 

in the Canidae was also found by Christiansen and Adolfssen (2005), even when taking into 

account the larger bite forces produced by the Hyaenidae. 

Based on the above information, a number of scenarios may have influenced changes in canine 

size during the Pleistocene. Predation upon larger species may have caused greater stresses and 

thus necessitated more robust canines. More complete consumption of carcasses may also have 

necessitated more robust canines in order to lessen the chance of accidental breakage through 

contact with bone. This may also have been the case when feeding competition was high, such 

as with larger C. crocuta group sizes, low prey availability, or large populations of aggressive 

competitors; rapid feeding may increase the chance of accidental contact with bone as teeth are 

often used less precisely (Van Valkenburgh 1996, and see below). 

The absence of post-carnassial molars in Hyaenidae has brought the canines closer to the 

condyle. As with canid species, which have reduced post-carnassial molars, this means that the 

MAR at the canines is reduced. This morphology occurs in four canid species that regularly 

predate animals larger than themselves, thus requiring greater bite force (Van Valkenburgh and 

Koepfli, 1993). It may be expected that predation of larger species during the Pleistocene 

encouraged shorter tooth rows (perhaps through reduction in size of the carnassials and the 

premolars) to bring the canines closer to the jaw joint and facilitate greater bite forces. However, 

this is on the assumption that bone consumption did not also increase in this period as this 

would necessitate large premolars to withstand the stresses incurred in consuming bones more 

frequently (see below). If this was the case, perhaps larger muscles rather than reduced length 

of the tooth row would have been sufficient to induce larger bite forces.  

 

The upper first premolar (P1), and upper and lower second premolars (P2 and p2) are reduced 

in size in C. crocuta (Ferretti, 2007). The premolar shape consists of a main, central cusp, with 

anterior and posterior cusps that are reduced in size (Ewer, 1973). The upper third premolar (P3) 

and lower third premolar (p3) are especially pyramidal in shape (Werdelin and Solounias, 1991), 

and the lower fourth premolar (p4) also has a robust cone (Hillson, 2005).  

The evolution of bone cracking is associated with large, broad, pyramid-shaped teeth. This is 

true not only of the P3 and p3 in the Hyaenidae such as C. crocuta, but also the P4 and p4 of the 

canids Osteoboros and Borophagus, which were inferred to be bone crackers (Werdelin, 1989; 



3. Body size, craniodental and postcranial morphology review 
 

- 92 - 
 

Werdelin and Solounias, 1991). Through the Hyaenidae lineage, the P3 became increasingly 

wide relative to its length, indicating increased carcass utilisation in these species (Werdelin and 

Solounias, 1991). Indeed, the species of the Carnivora with the widest premolars relative to body 

mass are those that consume bone. These wider teeth wear at a slower rate and thus maintain 

functionality until a greater age than smaller teeth (Van Valkenburgh, 1989). However, while 

smaller occlusal areas of unworn teeth require less force to crack bone than worn teeth of older 

individuals, the greater muscle force of these older individuals compensates for this 

disadvantage (Tseng et al., 2011). Observations of feeding have shown that premolars of 

C. crocuta were the most frequently used teeth when consuming muscle with attached bone. 

They were also used frequently alone, or in combination with carnassials when consuming solely 

bone (Van Valkenburgh, 1996).  

Larger teeth, especially an increase in width, may occur as a result of prolonged periods of 

increased bone consumption. Relatively longer than wide premolars may be characteristic of 

periods with less frequent bone consumption. 

 

The upper fourth premolar (P4) is comprised of two anterior cusps, the protocone and the 

parastyle, which are pronounced and linearly aligned (Werdelin and Solounias, 1991; Hillson, 

2005). The metastyle and the paracone comprise the blade, which is especially long in C. crocuta, 

compared with other Hyaenidae (Werdelin, 1989; Werdelin and Solounias, 1991). 

The first lower molar (m1) of C. crocuta has a protoconid and a paraconid that make up the 

trigonid blade. Both of these are tall and stout in shape (Hillson, 2005). The m1 also has a 

metaconid and a single talonid cusp (Werdelin and Solounias, 1991), both of which are reduced 

in size (Hillson, 2005). Turner (1984) also stated that the metaconid is sometimes absent.  

The length of the m1 trigonid relative to total m1 length is greatest in those Carnivora (including 

C. crocuta) for which meat makes up a large proportion of the diet (Van Valkenburgh, 1989). 

Werdelin (1989) stated that the length of the P4 blade, and the reduction of the m1 talonid 

make these teeth ideal for meat slicing. The carnassials of C. crocuta were observed to be the 

teeth most frequently used to remove skin from a carcass. The carnassials were also employed 

with premolars, or alone when consuming bone (Van Valkenburgh, 1996).  

The position of the carnassials in C. crocuta is such that they are parallel to the sagittal plane, 

rather than parallel to the cheek tooth row (Kurtén and Werdelin, 1988; Werdelin and Solounias, 

1991). Kurtén and Werdelin (1988) suggested that this allows bone to be cracked by the 

premolars, including the protocone and parastyle of the P4, without contacting and damaging 
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the cutting blades of the carnassials, on the assumption that bone most frequently enters the 

mouth parallel to the premolars. 

However, evidence from microwear analysis indicates that microscopic wear features consistent 

with tooth-on-bone contact are present on the wear facets of the m1 blades (Van Valkenburgh 

et al., 1990; Goillot et al., 2009; Schubert et al., 2010; Bastl et al., 2012). Nevertheless, the 

evolution of P3 and p3 as bone-cracking teeth in the Hyaenidae allowed the carnassials to 

maintain a meat-cutting blade. This is in comparison to borophagine canids that employed the 

carnassials as bone-cracking teeth, thereby incurring heavy wear from this activity (Werdelin, 

1989; Van Valkenburgh, 2007). Werdelin (1989) stated that C. crocuta is thus well-suited both 

for bone and meat consumption.  

Differences can also been seen among the Hyaeninae. The carnassials of C. crocuta are different 

from those of H. hyaena and P. brunnea, in that those of C. crocuta maintain a relatively longer 

cutting trigonid blade, and have less grinding area due to their more hypercarnivorous diet (Van 

Valkenburgh et al., 2003; Palmqvist et al., 2011). Additionally, a longer carnassial blade, coupled 

with greater bite force, facilitates rapid ingestion of food, a necessity in situations such as social 

feeding and thus intraspecific competition (Van Valkenburgh, 2007). This was the case for C. 

lupus during Marine Oxygen Isotope Stage 5a, inferred to be a time of dietary stress for the 

species (Flower and Schreve, 2014). Indeed, C. crocuta clan sizes are large in some areas, with 

numbers recorded at 50 individuals in the Chobe National Park, Botswana (Cooper, 1990), 55 in 

the Aberdare National Park, Kenya (Sillero-Zubiri and Gottelli, 1992), and 65 in the Maasai Mara 

National Reserve, Kenya (Holekamp et al., 1997).  Although hunting groups may be small, other 

members of the clan often converge on a kill, and competition for a share of the carcass thus 

occurs (Cooper, 1990; Holekamp et al., 1997). 

Longer carnassial blades in Pleistocene C. crocuta may have occurred in response to low prey 

availability or large feeding groups due to high C. crocuta abundances, thus encouraging rapid 

consumption of a carcass. Larger P4 cusps may have occurred in response to dietary stress and 

thus the need to more thoroughly consume carcasses and so process more bone.  

 

Enamel structure is not assessed in the present study. However, it is worth noting as it may 

provide further adaptations to resist breakage of teeth (Ferretti, 2007). Microscopic enamel 

structures, Hunter-Schreger Bands (HSB), are of zigzag formation in C. crocuta teeth. Based on 

the presence of zigzag HSB in extant and extinct bone-cracking hyaenids, and durophagous 

species from other families, it was suggested that the formation of zigzag HSB is an adaptation 

to consumption of hard foods (Stefen and Rensberger, 1999). In species of the Hyaenidae, 
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Ferretti (2007) found a correlation between the intensity of HSB folding, and the robustness of 

P3. Zigzag HSB provide the enamel with resistance to the tensile stresses that occur upon biting 

hard foods, in addition to resistance to propagation of any cracks that have formed in the enamel 

(Rensberger and Wang, 2005). 

 

Despite the above adaptations to bone consumption, Van Valkenburgh (2009) found that 

durophagous species had greater incidences of tooth breakage than omnivores, insectivores, or 

those that consume mostly meat. In C. crocuta, those teeth most frequently broken were 

canines and premolars, followed by incisors, then the carnassials. As noted above, all these teeth 

are used to some extent in bone cracking. In a similar study, Van Valkenburgh (1988) suggested 

that canines were frequently broken in part due to the unpredictability of the movements of 

struggling prey; it is difficult to have a tooth sufficiently adapted to these stresses. Additionally, 

species exhibiting greater intraspecific aggression had greater canine breakage incidences (C. 

crocuta was classified as exhibiting a high level of aggression), suggesting breakage during fights 

(Van Valkenburgh, 2009). Although teeth could be made larger or the enamel made stronger, 

this is not selected for because of the metabolic costs involved, the size of the jaw, and the 

constraints imposed by the material properties of the teeth. Additionally, canine teeth must 

remain long rather than stout to enable successful predation (Van Valkenburgh, 1988). 

Furthermore, Van Valkenburgh (1996) suggested that while some teeth may be better suited to 

consuming certain tissue types, the use of other teeth may be due to the rapid speed at which 

food must be consumed, especially in competitive circumstances. This may thus cause breakage 

of teeth that are less suitable for consuming foods that impart high loads. 

The reasons for the effectiveness of different teeth for breaking up different foods lie in the 

physical properties of the foods: the stress required to produce initial failure in the food, the 

resistance to cracks propagating and eventually splitting the food after the initial failure, and the 

degree to which the food will deform at low strain levels (Lucas and Peters, 2007).  

Meat is a tough food, meaning that after the initial failure of the meat, and thus crack formation, 

there is high resistance to the crack propagating. A long blade, such as those of the P4 and m1, 

is needed to accomplish this; a pointed tooth will merely pierce the meat (Lucas and Peters, 

2007). This contrasts with the observations by Van Valkenburgh (1996) that incisors were used 

most frequently in consuming muscle, and skin with attached subcutaneous tissue. However, in 

this study, movements of the neck were important in removing these tissues from the carcass, 

aiding the work of the teeth. Additionally, Van Valkenburgh (1996) focussed more on the initial 

removal of food from the carcass, and ingestion, rather than subsequent mastication. Mammal 
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skin is another tough material that requires the scissoring motion of blades (such as occurs 

between carnassials) to break through it (Lucas and Peters, 2007). 

By contrast Lucas and Peters (2007) suggested that cusps rather than blades are suited to 

breaking bone. Additionally, blunted cusps are better as sharp teeth will likely fracture under 

the high stress levels required to crack the bone (Lucas and Peters, 2007). This explains why the 

robust, conical shaped premolars of C. crocuta are ideally suited to bone cracking. However, as 

mentioned, Van Valkenburgh (1996) noted that carnassials were also used to crack bone, 

suggesting that the anterior cusps of the P4 (which occlude with the posterior region of the p4) 

are used rather than the carnassials’ blades. Additionally, Van Valkenburgh (1996) suggested 

that the enamel microstructure may aid in preventing tooth breakage when teeth other than 

premolars are used for cracking bones. 

 

 

Figure 3.5: Summary of cranial features related to feeding. See text for details. 1Hildebrand 

(1974); 2Werdelin (1989); 3Werdelin and Solounias (1991); 4Joeckel (1998); 5Tanner et al. (2008); 

6Tseng (2009); 7Curtis and Van Valkenburgh (2014); 8Figueirido et al. (2011); 9Figueirido et al. 

(2013). 
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Many of the above points are summarised in Figure 3.5 to Figure 3.7. Overall, the craniodental 

morphology of C. crocuta seems well-suited to hypercarnivory, bone cracking and competitive 

feeding. The above has concentrated largely upon adult C. crocuta. Ontogenetic development 

of these features will be discussed below, a consideration that is important when interpreting 

the modern and Pleistocene material. 

 

3.3.7 Ontogeny 

A study of captive C. crocuta by Binder and Van Valkenburgh (2000) documented some aspects 

of craniodental ontogenetic development. Permanent dentition was attained by around 12 to 

14 months of age, with replacement first of the deciduous incisors, then the carnassials, 

premolars and canines. The skull finished growing at around 20 months of age. Bite strength, as 

measured through live individuals biting on a force transducer, continued to increase up to four 

years of age. Binder and Van Valkenburgh (2000) suggested that either this may indicate that 

muscle growth continued after skull growth had stopped, or that their measures of skull size 

were not sufficient to reveal the entirety of muscle growth. The authors pointed to a study by 

Gay and Best (1996), which found that skulls of the puma (Puma concolor) continued growing 

well into adulthood (individuals older than two years of age were considered as adult) and 

ceased growing at five to six years of age for females, and seven to nine years for males. Hartová-

Nentvichová et al. (2010) also found that certain measurements of red fox (Vulpes vulpes), crania 

continued growing through life. These included measurements of width (zygomatic breadth, 

interorbital breadth and rostrum breadth for both sexes, in addition to jugular breadth for 

males). Conversely, the same study found that the smallest distance behind the supraorbital 

processes decreased after six months of age (the age at which maximum skull length was 

reached), although it later stabilised in size (Hartová-Nentvichová et al., 2010). This width behind 

the supraorbital processes decreases with the development of masticatory muscles (Ansorge 

1994, cited in Hartová-Nentvichová et al. 2010). 

A further study by Tanner et al. (2010) of C. crocuta osteological specimens from a wild, studied 

population indicated that prior to weaning (14 months of age), the rostrum lengthened in line 

with replacement of deciduous with permanent teeth. The mechanical advantage of the 

masseter muscle remained constant through ontogeny, suggesting that the in-lever and out-

lever arms grew isometrically. By contrast, the mechanical advantage of the temporalis 

increased with age, reaching its full-grown state at 22 months of age. However, bite force likely 

continued to increase after full mechanical advantage of the adductor muscles was reached. 

This was indicated by the continued growth of the zygomatic arches and the sagittal crests, both 
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important attachment sites for the temporalis and masseter muscles, which thus suggests that 

the muscles continued growing as well. The skull reached full growth at 35 months of age, well 

after both weaning and reproductive maturity (24 months) (Tanner et al., 2010). This is 

supported by Arsznov et al.'s (2011) study of skulls of the same population, where 85 % of skull 

length of endocranial volume was reached by 14 months of age, and 95 % by 34 months. The 

timings of full development of skull features in adults is important when interpreting 

measurements of both Pleistocene and modern specimens. 

 

 

Figure 3.6: Summary of the features of the upper dentition relating to feeding. See text for 

details. 1Biknevicius et al. (1996); 2Van Valkenburgh and Ruff (1987); 3Van Valkenburgh (1989); 

4Werdelin (1989); 5Werdelin and Solounias (1991); 6Van Valkenburgh (2007). 

 

 

Younger, captive individuals varied the teeth they used to bite bone. As they grew older, 

however, the time spent biting on bone with the incisors and anterior premolars decreased, and 

the time spent using the posterior premolars increased. It was suggested that this may be due 

to the reduced gape of smaller jaws, thus limiting how posterior the bone may be positioned, 

and also due to the need to limit damage to the blade of the deciduous carnassials (Binder and 

Van Valkenburgh, 2000). While juveniles have a disadvantage relative to adults when feeding, 

due to lower masticatory muscle mass and thus lower bite force, they have an additional 
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disadvantage due to the position of their teeth in the jaw. The deciduous teeth are located 

anteriorly in the jaw, relative to the permanent dentition, meaning that the position of the 

deciduous teeth further reduces the bite force relative to adults. Additionally, teeth are weaker 

once they are first erupted, which may limit the bite force of younger individuals (Binder and 

Van Valkenburgh, 2000). With the mandible of juvenile C. crocuta modelled as a beam, Therrien 

(2005) found that aside from absolute strength, there was little difference in the profiles 

between adults and juveniles. However, the post-m1 position of the juvenile was not as strong 

in resistance to dorsoventral loads as in the adults, indicating a disadvantage in bone cracking 

at posterior teeth relative to the adults (Therrien, 2005). Together, this indicates the 

disadvantage that juvenile C. crocuta have when compared with adults in competing for food at 

a carcass. This may hold implications for survival when food is scarce and food competition is 

high; juvenile mortality may be high. Pervasive food stress may lead to population declines and 

is an important consideration when assessing the ultimate extirpation of C. crocuta from Europe. 

 

 

Figure 3.7: Summary of the mandibular and dental morphological features associated with 

feeding. See text for details. 1Van Valkenburgh and Ruff (1987); 2Van Valkenburgh and Koepfli 

(1993); 3Figueirido et al. (2013); 4Biknevicius and Ruff (1992); 5Therrien (2005); 6Palmqvist et al. 

(2011); 7Van Valkenburgh (1989); 8Werdelin (1989); 9Werdelin and Solounias (1991); 10Van 

Valkenburgh (2007). 
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3.3.8  Phenotypic plasticity of craniodental morphology 

The phenotype is determined by an interaction between the environment, and the genotype, 

which sets limits on the range of possible morphologies (Hillson, 2005; Whitman and Agrawal, 

2009). Morphological differences may therefore occur as a result of phenotypic plasticity or 

genetic change, or both (Gienapp et al., 2008; Whitman and Agrawal, 2009).  

In most cases it is difficult to assess whether phenotypic change is a result of genetic change or 

plasticity (Gienapp et al., 2008; Merilä and Hendry, 2014). When plasticity has been determined 

as the cause of morphological change, it has mainly been in studies where specific 

environmental variables were controlled. For example, prairie deer mice (Peromyscus 

maniculatus bairdii) fed either soft or hard diets exhibited differences in position of the upper 

incisors. In addition the zygomatic arches and the masseteric tubercles, both points of origin of 

the masseter muscle, were larger in the mice fed hard diets (Myers et al., 1996). Another study 

on mice also involved feeding them soft or hard foods. The mandibles of those fed hard foods 

had greater mechanical advantages of both the masseter and the temporalis muscles when 

biting at the incisor and the m1 (Anderson et al., 2014). 

In contrast to bone, tooth morphologies are influenced much less by plasticity. Teeth grow 

within the mandible and are fully developed by the time of eruption. Other than through wear 

and breakage, the enamel cannot be altered after deposition (Caumul and Polly, 2005). Thus, 

using feeding as an example, when teeth are employed in mastication, they cannot alter their 

shape in response to any prevalent food type. Caumul and Polly (2005) found that diet had a 

greater influence upon cranial and mandibular morphology than upon tooth morphology in 

marmots (Marmota). The authors stated that this was due to the lack of phenotypic plastic 

response in the teeth. Similarly, in a study of the Mediterranean and the Eurasian water shrews 

(Neomys anomalus and Neomys fodiens) in Poland, Rychlik et al. (2006) found that the cranial 

and mandibular shapes were both correlated with the same geographical and climatic variables. 

By contrast, molar shape was correlated with fewer variables. The authors suggested that this 

difference was due to the greater potential for the cranium and the mandible to respond 

phenotypically to the environment during the life of an individual. Change in morphology of 

teeth to foods and the environment thus most often occurs as an adaptive genetic response 

(Caumul and Polly, 2005).  

The above information is important for the interpretation of the Pleistocene material. Firstly, 

lacking phenotypic plasticity to external conditions such as food type, the teeth of C. crocuta 

may lack the immediate response of the cranium and the mandible. If the change in the 



3. Body size, craniodental and postcranial morphology review 
 

- 100 - 
 

environmental condition is short-term, or if it is in its early stages, the bones of skull may show 

a response, while the teeth remain unaffected. 

While teeth are less plastically adaptive to environmental conditions, stress occurring during 

tooth development may result in plastic responses. This stress may be induced by disease or 

other health conditions, as has been demonstrated in the development of teeth during gestation 

in humans (Garn et al., 1979). However, it is anticipated that while health of the mother and 

young may have affected Pleistocene C. crocuta, this is likely to make up a small proportion of 

assemblages. 

Luke et al. (1979) conducted studies on three groups of pigs. The control group was allowed 

unlimited food, another group had unlimited fats and carbohydrates but limited protein, and 

the final group had limited calories. Food was controlled after the individual pigs were 10 days 

old, by which age the M1 and m1 teeth had finished growing, the crowns of the upper and lower 

second molars (M2 and m2) were partially formed, and the development of the crowns of the 

upper and lower third molars (M3 and m3) had not yet commenced. The M1 and m1 were similar 

in size across all three groups of pigs. The calorie and protein restricted groups exhibited slightly 

smaller M2 and m2 than the control group, while the M3 and m3 were much smaller than those 

of the control group. Furthermore, the mandible was smaller in the protein and calorie limited 

group than in the control group (Luke et al., 1979). This indicates that prevalence of small tooth 

size in a Pleistocene sample may indicate long-term food deficiency. It is anticipated that the 

longer the period of stress, the more features of an individual, and the more individuals in a 

population, will show this change in size. 

 

3.3.9  Summary 

Overall, the cranium, mandible and dentition of C. crocuta are well-suited to resist many of the 

loads experienced with a hypercarnivorous and durophagous diet, and when targeting large 

prey. Spotted hyaenas are thus able to consume a carcass fully and the adults at least are able 

to ingest food rapidly, a necessary attribute when intraspecific competition is high. Additional 

pressures influencing the morphology of the cranium are related to the brain, respiration, 

olfaction, vision and hearing. The post-cranial morphology, such as neck musculature and limbs, 

provides further influences upon feeding behaviour (Kruuk, 1972; Van Valkenburgh, 1996; 

Meers, 2002) and will be considered later. 

From the review, a number of hypotheses can be formed regarding Pleistocene C. crocuta. 
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1. Due to increased cognitive demands, when predation was the most important method 

of food procurement, and when larger prey were targeted, the size of the brain 

increased, as evidenced by the width of the brain case. 

2. During periods of closed vegetation, where vision may have been compromised by 

obscuring vegetation, hearing was enhanced in order to locate prey, clan members and 

competitors. This will be demonstrated by enlarged auditory bullae.  

3. In times of increased bone consumption, C. crocuta exhibited changes in cranial and 

mandibular features to better resist stress and strain, and increase bite force. Changes 

may have occurred in features such as the depth of the mandibular corpus, size of the 

muscle attachment sites, and length of the dentary. 

4. In times of increased bone consumption, gape increased to facilitate ingestion of larger 

bones, while the reduction in bite force incurred by the longer jaw offset by other 

features of the skull. 

5. In times of increased bone consumption, the teeth have developed a greater resistance 

to fracture, though the response was be less rapid than in the more plastic cranium and 

mandible. This will be exhibited in the overall robustness of the premolars in terms of 

breadth relative to length. 

 

. 
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3.4 Post-cranial morphology 

3.4.1  Introduction 

The functions of the post-cranial bones are related to weight-bearing, locomotion and prey 

capture (Hildebrand, 1974; Van Valkenburgh, 1985). C. crocuta’s locomotion is classed as 

terrestrial, defined by Van Valkenburgh (1985, p.408) as a species that ‘[r]arely or never climbs, 

may dig to modify burrow but not regularly for food.’ The Hyaenidae are cursorial, capable of 

prolonged trotting (Taylor, 1989). C. crocuta is a pursuit hunter, as classified by Van Valkenburgh 

(1985), which involves a long distance chase, without grappling with prey, and rarely involves 

stalking. Indeed, the distance recorded by Holekamp et al. (1997) of C. crocuta chasing prey is 4 

km. The response of C. crocuta to predator encounters is to run (with the potential retreat to a 

burrow) or to fight (Van Valkenburgh, 1985). 

The above processes are important for the survival of an individual and of the species as a whole, 

justifying investigation into the morphological changes of post-crania of C. crocuta during the 

Pleistocene.  With a focus on the Carnivora, and C. crocuta where possible, this review will 

outline the morphological features of the post-crania that are intrinsic in locomotion, weight-

bearing and prey capture, in addition to their environmental correlates.  

 

3.4.2 Limb bones 

As will be outlined below, limb morphology is associated with weight-bearing, locomotion and 

object manipulation. Furthermore, factors associated with locomotion include speed, 

stabilisation, endurance, and resistance to stresses and loads. Factors associated with object 

manipulation (i.e. grappling prey, handling food, digging holes) are dexterity, and resistance to 

stresses and loads. 

The length of the entire limb influences locomotion. The longer the limb, relative to body size, 

the longer the stride. Most important is the effective limb length, i.e. the length of the leg that 

contributes to stride length. Hyaenids are digitigrades (Hildebrand, 1974), a posture that 

involves an individual’s weight resting on the distal ends of the metapodials. This is opposed to 

plantigrady where the carpals and tarsals are in contact with the ground (Polly, 2010). 

Digitigrady therefore increases the effective leg length by including the metapodials in the 

length (Hildebrand, 1974). As will be outlined below, the length of the limb as a whole, and the 

morphology of individual bones, can be related to stride length and speed, and to different 

locomotor styles, hunting behaviours, and habitats.  
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When limb lengths are increased, this is produced through lengthening of the distal long bones 

and the metapodials (Hildebrand, 1974). Coupled with shorter but thicker proximal limb bones, 

this allows for endurance of locomotion at high speeds (Hildebrand and Hurley, 1985). For 

example, an association was found between speed, and the relative metatarsal and femur 

lengths in mammals. Slower species had relatively shorter metatarsals. However, among the 

faster species (including C. crocuta), there was only a weak relationship between relative bone 

lengths and speed (Van Valkenburgh, 1987). Indeed, Christiansen (2002) found that across 

mammals, a combination of limb measurements are better predictors of maximum running 

speed than single measurements. However, there was still much variation in the data, 

unexplained by the limb measurements. The author suggested that limbs might be adapted to 

minimise energy expenditure during all forms of locomotion, not just to enable fast running.  

In another study of the metatarsal and femur lengths, Van Valkenburgh (1985) found that 

ambush (stalking followed by short distance rush), pounce/pursuit (searching ending in pounce 

or chase) and pursuit hunters (long distance chase, typical of C. crocuta) had long metatarsals 

relative to femoral length. This was associated with the high speed (even for a short distance) 

associated with these predatory behaviours (Van Valkenburgh, 1985). Harris and Steudel (1997) 

also found a relationship between limb morphology and hunting methods of carnivorans. 

Hindlimb length (combined lengths of femur, tibia, and longest metatarsal) was not significantly 

related to home-range area, daily movement distance or prey size, and was only related to 

hunting methods. Of relevance to C. crocuta, species that chased prey over long distances and 

species that scavenged, had neither longer nor shorter hindlimbs relative to body size (Harris 

and Steudel, 1997).  

Cursorial carnivorans (such as C. crocuta) are characterised by having greater brachial 

(radius/humerus lengths) and crural (tibia/femur lengths) indices. This, again, indicates that the 

distal bones (radius and tibia) are long relative to the proximal limb bones (Meachen et al., 

2016).  

The calcaneum is also associated with locomotion behaviours. The calcaneum can be modelled 

as a lever in parasagittal (anteroposterior) limb movement (see Section 3.3.6.1 for an 

explanation of levers). In this mechanism, the pivot is located at the astragalus. The muscles 

associated with anteroposterior movement are the gastrocnemius and soleus muscles, which 

attach to the Achilles tendon. This tendon then attaches at the proximal tuber of the calcaneum, 

forming the in-lever. The out-lever is the distal calcaneum, metatarsals and phalanges. Greater 

calcaneum tuber length (from the proximal area of the calcaneum to either one of the 

articulating points of the astragalus) results in a longer in-lever, a greater in-force, and thus 
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greater forward thrust (Polly, 2010; Panciroli et al., 2017). This scenario is associated with 

terrestrial and cursorial locomotion amongst carnivorans (Panciroli et al., 2017).  

The breadth of the limb bones is also associated with carnivoran behaviours. The main direction 

of limb movement of pursuit predators (such as C. crocuta) is anteroposteriorly. As such, the 

humeral shaft is shaped so as to resist loads placed on the bone during locomotion; it is broader 

anteroposteriorly and narrow mediolaterally. By contrast, occasional predators (such as 

P. brunnea) have a rounded shaft to facilitate grappling prey or handling food. Occasional 

predators and ambush predators also have a more robust radius and ulna for the same reason 

(Martín-Serra et al., 2016).   

Morphological features of the joints are also associated with locomotion and predation 

behaviours. One example is the distal articulation of the humerus. The distal humerus 

morphology of hyaenids is similar to that of other cursors: large canids and A. jubatus. The 

morphology of these species favours anteroposterior movement, instead of resistance against 

lateral forces such as in species that handle food with their forelimbs. As such, in comparison 

with food-handlers, the humerus morphology of cursors includes a narrower humero-ulnar area, 

a smaller trochlear flange, and a deeper mid-trochlea furrow (Andersson, 2004). A study by 

Martín-Serra et al. (2016) also found that the morphology of the humerus is associated with 

predation behaviours. The humerus of pursuit predators has a deep and narrow trochlea, 

restricting lateral movement, and favouring anteroposterior movement, important for such 

predation behaviours. By contrast, occasional predators (such as P. brunnea) have a greater 

ability to rotate the humerus laterally (Martín-Serra et al., 2016). 

Further differentiation between pursuit and occasional predators lies in the morphology of the 

proximal humerus. The greater tuberosity is larger in pursuit predators, allowing for greater 

mechanical advantage of the supraspinatus muscle when protracting the humerus. This 

facilitates locomotion over long time periods or at high speeds (Martín-Serra et al., 2016).  

Limb morphology and associated locomotion behaviours are also associated with environmental 

conditions. For example, digitigrade and cursorial carnivorans are largely found in open habitats. 

Plantigrade species are commonly found in forested environments (Polly, 2010). Furthermore, 

Van Valkenburgh (1985) found that cursorial carnivorans, and those predominantly inhabiting 

open environments (C. crocuta was classed as such) had long third metacarpals relative to their 

phalanges. The opposite was true of forest-dwelling species. This was also related to hunting 

type, as open-habitat carnivores are predominantly pursuit or pounce hunters (Van 

Valkenburgh, 1985). A relatively longer calcaneum tuber is associated with increasing digitigrady 

and open habitats in North American carnivorans. The opposite scenario is associated with 
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forested habitats. Heterogeneous vegetation is associated with greater diversity of relative 

tuber lengths (Polly, 2010). 

Meachen et al. (2016) investigated the relationship between climate and post-cranial 

morphology. Brachial index was greater in carnivorans inhabiting warmer and drier climates. 

The shoulder moment index (humerus delopectoral crest length/humerus length) was smaller 

in warmer and drier climates. The greater trochanter height index (femoral greater trochanter 

height/femur length) was smaller in drier climates. The authors stated that these features might 

have developed in response to habitat features that are determined by climate, such as 

vegetation openness, which, as mentioned is linked to cursoriality. 

Weight-bearing also influences the morphology of limbs. In order to allow for increased speed 

endurance, the mass of some bones is reduced. The fibula and distal area of the ulna are slender 

in cursorial species, reducing the load on the locomotor system (Hildebrand, 1974). Pursuit 

predators (such as C. crocuta) were found to have a slender humerus, radius and ulna. By 

contrast, occasional hunters (such as P. brunnea) have more robust forelimb long bones. This is 

to prioritise stress resistance over energy efficiency as bending stresses occur during frequent 

acceleration and deceleration (Martín-Serra et al., 2016). In P. leo, the loading of the hindlimb 

likely passes through the third metatarsal and the ectocuneiform, suggested by the greater 

length of the former compared to other metatarsals, and the overall large size of the latter 

(Argot, 2010).  

Finally, not all postcranial bones are functionally important; vestigial features are exhibited in 

C. crocuta. In the forelimb, the first distal phalanx is lost, and the first proximal phalanx and 

metacarpal are reduced. In the hindlimb, the first metatarsal and a first phalanx are reduced, 

while the other first phalanx is lost (Senter and Moch, 2015).  

The clavicle is reduced in many species of Carnivora, and is lost in the Hyaenidae (Senter and 

Moch, 2015). This allows the scapula to move, increasing the stride length of the forelimb 

(Hildebrand, 1974). 

Despite the morphological features discussed above, injuries may still arise from predation and 

locomotion. Dire wolves (Canis dirus) from the La Brea Tar Pits (California, USA), exhibit a great 

number of injuries at muscle and tendon attachment sites on limb bones. This was assumed to 

be due to pursuit hunting (Brown et al., 2017).  

Overall, the above studies indicate that C. crocuta (classed as cursorial, open-habitat dwelling, 

pursuit hunter) has limbs modified to enable long durations and high speeds of locomotion, 

predominantly in order to catch prey, but also potentially to avoid interactions with other 

predators.  
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3.4.3 Vertebrae 

In comparison with the limbs, the functional morphology of the vertebrae has received less 

attention. The vertebrae included in the present study are the atlas, axis and sacrum. The other 

vertebrae will be discussed briefly in the following overview, as their function and relation to 

the studied vertebrae should be born in mind when later discussing the morphological results. 

The vertebral column itself is formed so as to allow support and movement (Hildebrand, 1974; 

Randau et al., 2016). However, there is some evidence that the morphology of individual 

vertebrae may also reflect these functions.  

Van Valkenburgh (1996) noted that the neck was often used in feeding, through pulling and 

twisting movements, and suggested that this use may be reflected in the cervical vertebrae. 

Indeed, it is the connection between the atlas vertebra and the occipital condyles of the skull 

that allows the up and down motion of the head. The connection between the atlas and the axis 

vertebrae allows side-to-side and rotational motions (Hildebrand, 1974). In C. crocuta, twisting 

was observed more frequently when bone, or bone and muscle were consumed. Pulling was 

more frequent when skin alone, muscle alone, or skin with connective tissue and muscle were 

consumed. This led Van Valkenburgh (1996) to suggest that these pulling and twisting 

movements might be reflected in the cervical vertebrae, although no published studies could be 

found to support or refute this theory. 

As mentioned in Section 3.3.6, hyaenids and large canids have similar methods of killing prey. 

Frequent injuries of the first three cervical vertebrae of C. dirus from the La Brea Tar Pits have 

been observed. This may be due to the strains imposed on the vertebrae by the neck muscles 

when biting large prey (Brown et al., 2017).  

Vertebrae may also be adapted to body mass. In felids, the centrum height in many of the 

cervical (including the axis) and thoracic vertebrae is relatively larger in larger species, providing 

greater stability with greater body mass (Randau et al., 2016).  

Overall, some of the axis and atlas measurements may reflect changes in diet of C. crocuta, in 

light of the different neck movements used. However, in light of the lack of studies, it would be 

difficult to assess.  

 

3.4.4  Phenotypic plasticity in post-crania 

The relationship outlined in Section 3.1 between temperature and body size is complicated in 

that proportions may be influenced, rather than body size as a whole. This is the case with Allen’s 

Rule whereby ‘certain parts of the organism vary more than does general size, there being a 
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marked tendency to enlargement of peripheral parts under high temperature, or toward the 

tropics’ (Allen, 1877, p. 116). Harris and Steudel (1997) found no significant relationship 

between hindlimb length (femur, tibia and longest metatarsal lengths combined) and latitude in 

species of Carnivora, after body size influences had been taken into account.  

By contrast, a study of mice under controlled temperatures has shown that limbs are smaller in 

mice growing in colder temperatures. This is controlled by the temperature influence upon the 

growth of cartilage at the epiphyseal plates (Serrat et al., 2008). A further study found that the 

difference between warm and cold temperatures was greatest in the radius. The effect of 

temperature is modulated by exercise; limb lengths were similar between mice that exercised, 

regardless of temperature (Serrat et al., 2010).  

 

3.4.5  Summary 

Overall, this review indicates that C. crocuta are well-suited for chasing prey over long distances. 

Coupled with the information about the craniodental morphology (Section 3.3), C. crocuta seem 

able to target a number of food sources, including the morphology necessary for taking down 

fast-running ungulates, and the morphology needed to consume most of the carcass, including 

bone.  

Based on this review, a number of hypothesis can be constructed about Pleistocene C. crocuta.  

1. C. crocuta had a greater effective leg length when they inhabited open landscapes 

during the Pleistocene, than during periods of closed vegetation. 

2. If C. crocuta subsisted more on scavenged items, rather than hunting, the post-cranial 

bones resembled more closely those of occasional hunters. This may include more 

robust long bones. 

3. C. crocuta conformed to Allen’s Rule by having shorter and stockier limb bones in colder 

periods.  
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4 Materials and methods 

 

4.1 Introduction 

This chapter outlines the materials and site details used in the studies of population biomass, 

present-day body mass, SSD, morphometrics and diet, and Pleistocene body mass 

reconstruction, morphometrics and palaeodiet. Methods used to obtain the primary data are 

presented and finally, the statistical analyses are discussed. 

 

4.2 Material and site details 

4.2.1 Modern biomass sites 

The influences of environmental variables upon C. crocuta and P. leo biomass were investigated 

from 14 sites across Africa (Figure 4.1), requiring the following data to be obtained from each 

site: 

• Biomass of P. leo (for the C. crocuta model) or C. crocuta (for the P. leo model), and other 

predators (P. pardus, A. jubatus, L. pictus, P. brunnea), to assess competition  

• Biomass of very small-, small-, medium-, large-, and very large-body size prey, to assess 

the influence of food availability, and of different prey size classes 

• Minimum temperature of the coolest month, maximum temperature of the warmest 

month, and temperature seasonality, to assess the influence of temperature, especially 

temperature extremes 

• Precipitation of the driest month, precipitation of the wettest month and precipitation 

seasonality, to assess the influence of water availability, and precipitation extremes 

• Closed vegetation cover, semi-open vegetation cover, and open vegetation cover, to 

assess the influence of vegetation density 

 

The predator and prey population biomass data were obtained from a database in Hatton et al. 

(2015), who collated animal abundance data from the literature for locations across Africa. Sites 

were excluded from the present study if C. crocuta were absent, if the abundance of a species 

was uncertain, if C. crocuta abundance was combined with that of another hyaenid, or if the 

boundary of the site could not be determined. In total, 30 datasets were included in the biomass 

analyses from different years spanning 1962 to 2009 (Table 4.1 and Figure 4.1). 
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Large predators are here regarded as those with an adult body mass of over 20 kg. In Africa, 

there are seven large mammalian predators: C. crocuta, P. brunnea, H. hyaena, P. leo, P. pardus, 

A. jubatus and L. pictus. However, H. hyaena was not included as data for this species are scarce. 

This is with the exception of the Tarangire National Park, Tanzania, where H. hyaena abundance 

data were provided in lieu of P. brunnea abundance (Hatton et al., 2015, and references therein). 

H. hyaena is solitary and occurs at low densities (Hofer and Mills, 1998b) so its exclusion from 

the present study should not greatly influence the results.  

 

 
Figure 4.1: Location of sites used in the biomass analyses. Base map from Esri (2006). 

 

Hatton et al.'s (2015) database includes biomasses of potential prey species over 5 kg in weight. 

Prey were split into five body size classes, following the distinctions of Périquet et al. (2015): 

very small (<20 kg), small (20-120 kg), medium (120-400 kg), large (400-600 kg), very large (>600 

kg). 

Unless otherwise stated in the original publications or by Hatton et al. (2015), the boundaries of 

the sites were taken to be the entire area, i.e. the entire national park, national reserve, game 

reserve, or district. The Serengeti ecosystem datasets in Hatton et al. (2015) were derived from 

a number of different publications, therefore, the boundaries of this site were taken from the 

map of the Serengeti ecosystem by Hopcraft (2008). Latitudes and longitudes were obtained 

from Image Landsat, Google Earth Pro (2013).  
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Table 4.1: Sites from Hatton et al.'s (2015) database included in the C. crocuta and P. leo biomass 

analyses. 

Site Year (season) 

Amboseli National Park, Kenya 2007 

Hluhluwe iMfolozi National Park, South Africa 1982, 2000 

Hwange National Park, Zimbabwe 1973 

Kalahari Gemsbok National Park, South Africa 1979 

Kidepo Valley National Park, Uganda 2009 

Kruger National Park, South Africa 1975, 1984, 1997, 2009 

Lake Manyara National Park, Tanzania 1970 

Maasai Mara National Reserve, Kenya 1992, 2003 

Mkomazi Game Reserve, Tanzania 1970 (dry), 1970 (wet) 

Nairobi National Park, Kenya 1966, 1976, 2002 

Ngorongoro Crater, Tanzania 1965, 1978, 1988, 1997, 2004 

Queen Elizabeth National Park, Uganda 2009 

Serengeti ecosystem, Tanzania 1971, 1977, 1986, 2003 

Tarangire National Park, Tanzania 1962 (dry), 1962 (wet) 
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The climate variables used were as follows: maximum temperature of the warmest month, 

minimum temperature of the coolest month, temperature seasonality (as standard deviation), 

precipitation of the wettest month, precipitation of the driest month, precipitation seasonality 

(as the coefficient of variation). All data are from WorldClim (Hijmans et al., 2005), and was 

derived from interpolated records of climate data recorded between the years 1950 to 2000. 

The variables were taken from the bioclimatic dataset at a resolution of 2.5 minutes. Each 

temperature and precipitation value was taken from the centre of each site. The centre point of 

each site was the point where the median latitude and longitude intersected. Median latitude 

was calculated from the most northerly and southerly latitudes of each location. The same was 

performed for longitude.  

The vegetation data are from the University of Maryland Global Land Cover Classification at 1 km 

resolution (Hansen et al., 1998, 2000) and obtained by the Advanced Very High Resolution 

Radiometer satellites between 1981 and 1994. For each site, the type of vegetation in each pixel 

(each 1 km2) was recorded along two transects with widths of 1 km. The north-south transect 

ran through the centre point of the site, to the most northern and southern boundaries. The 

equivalent procedure was conducted for the east-west transect. The counts for both transects 

were then combined.  

Vegetation types were split into three categories: (1) open vegetation (grassland), (2) semi-open 

vegetation (wooded grassland, open shrubland) and (3) closed vegetation (evergreen broadleaf 

forest, deciduous broadleaf forest, woodland, closed shrubland) (see Table 4.2). The percentage 

cover of each classification was calculated. Some transects fell over pixels classed as water, 

cropland or bare ground. These were excluded from the percentage calculations as it was 

assumed that C. crocuta and P. leo would not be regularly inhabiting these areas. 

Full details of the biomass, climate and vegetation data for each site are included in 

Spreadsheet 1. 
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Table 4.2: Vegetation classes and descriptions from the University of Maryland Global Land 

Cover Classification at 1 km resolution (Hansen et al., 1998, 2000), and classes used in the 

present study. 

Vegetation class Description Vegetation class in 
present study 

Evergreen broadleaf 
forest 

Dominated by trees 
Tree canopy cover > 60 % 
Tree height > 5 m 
Most trees remain green all year 
Canopy never without green foliage 

Closed vegetation 

Deciduous 
broadleaf forest 

Dominated by trees 
Tree canopy cover > 60 % 
Tree height > 5 m 
Trees shed their leaves simultaneously in 
response to dry or cold seasons 

Woodland Herbaceous or woody understories 
Tree canopy cover > 40 % and < 60 % 
Tree height > 5 m 
Trees evergreen or deciduous 

Closed shrubland Dominated by shrubs 
Shrub canopy cover > 40 % 
Tree canopy cover < 10 % 
Shrub height < 5 m 
Shrubs evergreen or deciduous 
Remaining cover barren or herbaceous 

Wooded grassland Herbaceous or woody understories 
Tree canopy cover > 10 % and < 40 % 
Tree height > 5 m 
Trees evergreen or deciduous 

Semi-open vegetation 

Open shrubland Dominated by shrubs 
Shrub canopy cover > 10 % and < 40 % 
Shrub height < 2 m 
Shrubs evergreen or deciduous 
Remaining cover barren or annual 
herbaceous cover 

Grassland Continuous herbaceous cover 
Tree or shrub canopy cover < 10 % 

Open vegetation 

 

 

 

4.2.2 Modern African body mass sites 

Body mass records of C. crocuta were sourced from the literature (see Figure 4.2 for site 

locations) in order to assess the environmental influences upon body mass (see Appendix 10.5, 

Table 10.10). SSD was calculated (see Section 4.4.1.4) from these body mass data in order to 

assess the degree of SSD and any environmental correlations with variation in SSD. Body masses 



4. Materials and Methods 
 

- 113 - 
 

of P. leo, P. pardus, A. jubatus, L. pictus, P. brunnea and H. hyaena were also sourced from the 

literature (see Appendix 10.5, Table 10.11 to Table 10.15) for comparison with C. crocuta SSD. 

Data were rejected when bias was obvious (such as selective shooting of largest individuals), 

when pregnant females were included in the average weight without the raw data available to 

recalculate the mean, or when weights were estimated instead of measured. However, where 

methods or bias were not stated, the otherwise small datasets justify their inclusion in the 

present analyses.  

The variables included in the body mass and SSD analyses were: 

• C. crocuta and P. leo density, to assess competition (as biomass includes a measure of 

body mass in its calculation, it was felt that density would be more appropriate) 

• Prey biomass, to assess the influence of food availability (this excluded prey species that 

weigh more than 600 kg) 

• Minimum temperature of the coolest month, and maximum temperature of the 

warmest month, to test Bergmann’s Rule 

• Precipitation of the driest month, and precipitation of the wettest month, to assess 

water availability and extremes of precipitation levels 

• Closed vegetation cover, semi-open vegetation cover, and open vegetation cover, to 

assess the influence of vegetation density 

• Distance from the equator, to test Bergmann’s Rule, in body mass analysis only 

 

Biomass data of other large predators (P. pardus, A. jubatus, L. pictus and P. brunnea) were not 

included as this information was not available for one of the sites (the Salient area of the 

Aberdare National Park, Kenya, see below). In light of the small sample size, it was deemed more 

appropriate to include this site and exclude the variable. 

The density data were taken from Hatton et al. (2015), apart from the Salient area (of the 

Aberdare National Park), for which abundance data were obtained from Sillero-Zubiri and 

Gottelli (1992) and Kibanya, (1996), as this was not included in Hatton et al.'s (2015) database. 

All other environmental data were sourced in the same way as outlined in Section 4.2.1. The 

boundaries of the study area in the Salient area of the Aberdare National Park were taken as 

accurately as possible from the map in the original publication by Sillero-Zubiri and Gottelli 

(1992), however, some estimation was involved when translating this into Image Landsat, 

Google Earth Pro (2013). 
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Only body mass estimates with specific locality information (rather than just the country) were 

included in the analyses, in order to ensure that vegetation and climate data were as 

representative as possible, given the potential for major variation across an entire country. As 

far as possible, the body mass data were paired with the population metrics based on site 

locality. Some locations have multiple density/biomass estimates from different years. When 

this was the case the closest corresponding date of the population and body mass studies was 

chosen. In total, eight sites were included in the analyses (Figure 4.2). Full details of the 

population density, biomass, climate, vegetation and latitude data of each site are included in 

Spreadsheet 2. 

 

 

 

Figure 4.2: Location of sites used in the modern C. crocuta body mass and SSD analyses. Base 

map from Esri (2006). 
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4.2.3 Modern African specimen sites 

The cranial and post-cranial specimens used for morphometric and dietary analyses were 

located at the following museums: 

• American Museum of Natural History (Department of Mammalogy), New York 

• Museum für Naturkunde (Recent Mammals), Berlin 

• Natural History Museum (Mammal Section), London 

• National Museum of Wales (Natural Sciences), Cardiff 

• Royal Belgian Institute of Natural Sciences (Recent Vertebrates), Brussels 

• Royal Museum for Central Africa, Tervuren 

• Smithsonian Institution National Museum of Natural History (Division of Mammals), 

Washington DC 

• South West Heritage Trust, Taunton 

• University Museum of Zoology, Cambridge 

 

Captive individuals were not measured. The specimens analysed from each museum are detailed 

in Spreadsheets 4-6  

Where specific locality details were given in the museum records, the locality was expanded to 

include the province, region, etc. This was for two reasons. Firstly, many localities were listed as 

towns or villages, where the animals were likely not themselves inhabitants. Expanding the 

location to a wider region more likely encompassed the habitats of the individuals. Secondly, 

expanding localities allowed more specimens to be grouped together, thus strengthening the 

statistical analyses. In some cases, the location detailed on the museum label could not be 

found, so these specimens were classified by country. Table 4.3 includes the locations as listed 

on the museum records, together with the expanded and grouped site locations used in this 

study. The sites are mapped in Figure 4.3. 

For each site, climatic and vegetation data were derived, following the procedure outlined in 

Section 4.2.1. Full details of this data are found in Spreadsheet 3. Predator and prey biomass 

data were not obtained due to the lack of correspondence between the localities in Hatton et 

al. (2015) biomass database and the localities of the cranial and post-cranial specimens. 
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Table 4.3: Site details of present-day African C. crocuta specimens. DRC = Democratic Republic of the Congo. 

Country  Location (from museum records) Location (expanded to region, district, province, etc. where possible) 
Locality 
no. 

Angola Ngemba  Zaire Province 1.1 

Benin Parakou Borgou 2.1 

Botswana 

Joverega  
Chobe National Park, Savuti Chobe National Park, Mababe Zokotsama 
Community Concession 

3.1 Mababe Flats 

Mababe Flats, Bechuanaland Protectorate 

Tsane, 25 mi east northeast Kgalagadi District 3.2 

Burundi Rumonge Rumonge Province 4.1 

Cameroon 

Babessi North West Region 5.1 

Tibati Adamawa Region 5.2 

Yoko Centre Region 5.3 

DRC 

. 

Democratic Republic of the Congo  6 

Vele 

Ubangi, Liki River, Liki-Bembe Savannah, Poshe River 
Post road 

Lubumbashi River 

Ngaye S.Katanga 

Bosobolo Region Nord Ubangi District, 6.1 

Gaia of Bili where the Bondo Gufuru road cuts the 
way 

Bas Uele District 6.2 
Poko 

Gwane Region 

Faradje Haut Uele District 6.3 

Uélé, Parc National de la Garamba 
Parc National de la Garamba and surrounding hunting grounds (Domaine 
de Chasse de Azande, Domaine de Chasse de Gangala Na Bodio, Domaine 
de Chasse Mondo Missa) 

6.4 

Stanleyville (now Kisangani), Province Orientale  Tshopo District 6.5 
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Boga 

Ituri District 6.6 

Geti 

Lac Albert, Kasenye 

Nioka 

Kilo Region 

Kivu, Semliki River plain 

Ituri and North Kivu Districts (combined) 6.7 Semliki plain 

Semliki Plain, south of Lac Albert 

Road Goma to Rutshuru North Kivu District 6.8 

Rwindi 

Parc National des Virunga 6.9 

Kivu, Parc National Albert (now Parc National des 
Virunga), Rwindi River plain 

Kivu, Parc National Albert (now Parc National des 
Virunga), Ganjo 

Kivu, Parc National Albert (now Parc National des 
Virunga), Kasindi 

Kivu, Parc National Albert (now Parc National des 
Virunga), Kasindi, port on Lac Édouard 

Kivu, Parc National Albert (now Parc National des 
Virunga), Katanda, north of Rutshuru 

Parc National Albert (now Parc National des 
Virunga), Masuku 

Vitshumbi 

Kafubu Haut Katanga District 6.10 

Katanga, Parc National de l'Upemba, Kaswabilenga, 
Lufira River, Lusinga-Mabwe trail Parc National de l'Upemba 6.11 
Katanga, Parc National de l'Upemba, Lusinga  

Kasiki, Marungu Tanganyika District 6.12 

South of Kabinda Lomami Province 6.13 

Kisantu Lukaya District 6.14 
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Kwango, Kindongo Kwilu and Kwango Districts (combined) 6.15 

Eritrea Senafe Debub (Southern) Region 7.1 

Ethiopia 

Argobba, south Harrar Ethiopia 9 

Diré Daoua Dire Dawa chartered city 9.1 

Ghimbi, Wollega, 09°10'N 35°50'E, Alt. 2150 m West Welega Zone 9.2 

Kenya 

2 mi south of Merti, Baraquoi District 

Kenya 10 

Baraquoi District 

Guaso Nyiro 

Lakiundu River, Merele Water 

Marsabit Road 

Marsabit Road, Merele Water 

Masi Sand River 

Merti, Baragoi District 

Guaso Ngishu Plateau 

Guaso Ngishu Plateau, Nzoia River 

Archers Post Samburu County 10.1 

Sotik, Kabalolot Hill 

Narok County and Bomet County 10.2 
Sotik, Loita Plains 

Sotik, Telek River 

Guaso Nyiro, Sotik 

1 mi west of Galma Galla, Garissa District 

Garissa County 10.3 0.5 mi northeast of Masabubu, Garissa District 

5 mi west of Galma Galla, Garissa District 

Ziwani Taita-Taveta County 10.4 

Mount Kenya 

Mount Kenya National Park 10.5 Mount Kenya, south west slope 

Mount Kenya, west slope 

Kitanga Farm Nairobi National Park 10.6 

Mozambique 8km south west of Chioco, Tete District Tete Province 11.1 

Namibia Malindi Pan, Caprivi Strip Caprivi Strip 12.1 
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Near Malindi, Caprivi Strip 

Windhuk (Windhoek) Khomas Region 12.2 

Rwanda 

Mutara-Gabiro hunting area 
Akagera National Park 13.1 

Parc nat. Kagera, Gabiro 

Nya-katare (Nyagatare) Nyagatare District 13.2 

Senegal Tiliboubakar (Thille Boubacar) Podor Department 14.1 

Sierra Leone Near. Gberia, Koindagu District Koinadugu District 15.1 

Somalia 

British Somaliland Somalia 16 

Hargeisa, Somaliland Woqooyi Galbeed Region 16.1 

Heleschid Jubbada Dhexe (Middle Jubbada) Region 16.2 

South Africa 
East Transvaal Mpumalanga Province 17.1 

Pongola R. Zululand Zululand District 17.2 

South Sudan Near Kaka, White Nile Upper Nile State 18.1 

Sudan  

Northern Darfur North (Shamal) Darfur State 19.1 

South Dafur South (Janub) Darfur State 19.2 

Kulme, Wadi Aribo, Darfur West (Gharb) Darfur State 19.3 

Swaziland . Swaziland 20.1 

Tanzania 

Near Mara Rio 
Mara Region 21.1 

Surroundings of Schirati on Lake Victoria 

Quihara at Tabora 
Tabora Region 21.2 

Tabora 

Near Moshi Kilimanjaro Region 21.3 

Kondoa 

Dodoma Region 21.4 
Kondoa Irangi 

Kwa Mtoro at Ussandani 

Mpapua (Mpwapwa) 

Iringa Iringa Region 21.5 

Msamwia camp at the Msamwia, adjacent to the 
river Mtembwa, before leaving the mountains, near 
Bismarkburg 

Rukwa Region 21.6 
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Msamwia 

Msamwialager (Msamwia Camp) 

Rukwa-Steppe 

Mgera 
Tanga Region 21.7 

Pangani 

Kilossa Morogoro Region 21.8 

Mkalinso (Mkalinju) Pwani Region 21.9 

Mroweka 
Lindi Region 21.10 

Tendaguru 

Songea Ruvuma Region 21.11 

Balbal, Tanganyika Territory Ngorongoro Conservation Area 21.12 

Togo 

Bismarckburg 
Centrale Region 22.1 

Bismarckburg, Station 

Sansanne, Mangu Savanes Region 22.2 

Uganda 

Ngetta Lira Lango, Alt. 2700' Lira District 23.1 

River Cheki, Gulu District Gulu District 23.2 

Kasawere, north east Mount Elgon 
Mount Elgon 23.3 Kenya - 

Uganda 
Mount. Elgon 

Zambia 

13 mi north east of. Lusangazi Game Camp, east 
Bank Luangwa River, Fort Jameson District 

Eastern Province 24.1 
Camp II, 0.5 mi south of Chibembe Pontoon, east 
Bank Luangwa River, Lundazi District 

In camp, east Bank Luangwa River, Fort Jameson 
District 

Kabompo District Northwestern Province 24.2 

Zimbabwe Between Bulawayo and Victoria Falls, Malindi Matabeleland North Province 25.1 
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Figure 4.3: African sites included in the modern morphometric and dietary analyses. 1.1 Zaire 

Province. 2.1 Borgou. 3.1 Chobe National Park, Savuti Chobe National Park, Mababe Zokotsama 

Community Concession. 3.2 Kgalagadi District. 4.1 Rumonge Province. 5.1 North West Region. 

5.2 Adamawa Region. 5.3 Centre Region. 6.1 Nord Ubangi District. 6.2 Bas Uele District. 6.3 Haut 

Uele District. 6.4 Parc National de la Garamba and surrounding hunting grounds. 6.5 Tshopo 

District. 6.6 Ituri District. 6.7 Ituri and North Kivu Districts (combined). 6.8 North Kivu District. 

6.9 Parc National des Virunga. 6.10 Haut Katanga District. 6.11 Parc National de l'Upemba. 6.12 

Tanganyika District. 6.13 Lomami Province. 6.14 Lukaya District. 6.15 Kwilu and Kwango Districts 

(combined). 7.1 Debub (Southern) Region. 9.1 Dire Dawa chartered city. 9.2 West Welega Zone. 

10.1 Samburu County. 10.2 Narok County and Bomet County. 10.3 Garissa County. 10.4 Taita-

Taveta County. 10.5 Mount Kenya National Park. 10.6 Nairobi National Park. 11.1 Tete Province. 

12.1 Caprivi Strip. 12.2 Khomas Region. 13.1 Akagera National Park. 13.2 Nyagatare District. 14.1 

Podor Department. 15.1 Koinadugu District. 16.1 Woqooyi Galbeed Region. 16.2 Jubbada Dhexe 

(Middle Jubbada) Region. 17.1 Mpumalanga Province. 17.2 Zululand District. 18.1 Upper Nile 

State. 19.1 North (Shamal) Darfur State. 19.2 South (Janub) Darfur State. 19.3 West (Gharb) 

Darfur State. 20.1 Swaziland. 21.1 Mara Region. 21.2 Tabora Region. 21.3 Kilimanjaro Region. 

21.4 Dodoma Region. 21.5 Iringa Region. 21.6 Rukwa Region. 21.7 Tanga Region. 21.8 Morogoro 



4. Materials and Methods 
 

- 122 - 
 

Region. 21.9 Pwani Region. 21.10 Lindi Region. 21.11 Ruvuma Region. 21.12 Ngorongoro 

Conservation Area. 22.1 Centrale Region. 22.2 Savanes Region. 23.1 Lira District. 23.2 Gulu 

District. 23.3 Mount Elgon. 24.1 Eastern Province. 24.2 Northwestern Province. 25.1 

Matabeleland North Province. Base map from Esri (2006).   

 

The m1 lengths from the modern African specimens were paired with the body mass data 

(Section 4.2.2) in the model to calculate Pleistocene body masses (Section 4.4.2.1). The m1 data 

included in the model were from specimens with provenance locations as close as possible to 

where the body masses were recorded (Table 4.4 and Figure 4.4). In total there were six body 

mass locations paired with eight m1 length locations, to provide a total of 11 data points when 

split into male and female body masses. The small number of body mass values necessitated the 

inclusion of body masses for which only country of provenance was known. The sites ranged in 

median latitude from 9.151° to -22.364°, providing a large latitudinal range and encompassing 

much of the present-day latitudinal extent of C. crocuta. Climate and vegetation details of each 

m1 length site and body mass site (except where only country is known) can be found in 

Spreadsheets 2 and 3. 

 

Table 4.4: Body mass sites and m1 length sites of recent C. crocuta used in the model to 

reconstruct Pleistocene C. crocuta body masses. 

Body mass location m1 length location Sex 

Botswana 3.1 Chobe, Savuti Chobe, Mababe Zokotsama; 
3.2 Kgalagadi District, Botswana (Joverega; 
Tsane) 

F 

Botswana 3.1 Chobe, Savuti Chobe, Mababe Zokotsama, 
Botswana (Mababe Flats) 

M 

Ethiopia 9 Ethiopia (Argobba) F 

Masai Mara National Reserve, 
Kenya 

10.2 Narok Country and Bomet County, Kenya 
(Sotik) 

F 

Masai Mara National Reserve, 
Kenya 

10.2 Narok Country and Bomet County, Kenya 
(Sotik) 

M 

Salient area of the Aberdare 
National Park, Kenya 

10.5 Mount Kenya National Park, Kenya (Mount 
Kenya) 

F 

Salient area of the Aberdare 
National Park, Kenya 

10.5 Mount Kenya National Park, Kenya (Mount 
Kenya) 

M 

Serengeti, Tanzania 21.12 Ngorongoro Conservation Area, Tanzania F 

Serengeti, Tanzania 21.12 Ngorongoro Conservation Area, Tanzania M 

Zambia 24.1 Eastern Province, Zambia (Lundazi District) F 

Zambia 24.1 Eastern Province; 24.2 Northwestern 
Province, Zambia (Fort Jameson District; 
Kabompo District) 

M 
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Figure 4.4: African sites from which body mass (BM) and m1 lengths were derived, and included 

in the model to reconstruct Pleistocene body masses. 1. Ethiopia (BM) and Argobba (m1). 2. 

Salient area of the Aberdare National Park (BM) and Mount Kenya National Park (m1). 3. Masai 

Mara National Reserve (BM) and Narok Country and Bomet County (m1). 4. Serengeti (BM) and 

Ngorongoro Conservation Area (m1). 5. Zambia (BM) and Eastern Province, Northwestern 

Province (m1). 6. Botswana (BM) and Chobe, Savuti Chobe, Mababe Zokotsama, Kgalagadi 

District (m1). 
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4.2.4 Pleistocene European specimen sites 

The cranial and post-cranial specimens used for morphometric and dietary analyses were 

located at the following museums: 

• Bristol Museum and Art Gallery (Geology), Bristol 

• British Geological Survey (Palaeontology), Keyworth 

• Creswell Crags Museum and Heritage Centre, Worksop 

• Krahuletz-Museum, Eggenburg 

• Laboratorija za bioarheologiju, Univerzitet u Beogradu, Belgrade 

• Leeds Discovery Centre, Leeds 

• Lower Winskill, Settle 

• Manchester Museum (Earth Science Collections), Manchester 

• Museo della Fauna, Università degli Studi di Messina, Messina 

• Museo Nacional de Ciencias Naturales (Colección de Paleontología de Vertebrados y de 

Prehistoria), Madrid 

• Museu de Geologia, Museu de Ciències Naturals de Barcelona, Barcelona 

• National Museum of Ireland (Natural History), Dublin 

• National Museum of Wales (Palaeolithic and Mesolithic Archaeology), Cardiff 

• Natural History Museum (Fossil Mammals), London 

• Naturhistorisches Museum Wien (Vertebrate Palaeontology), Vienna 

• Nottingham Natural History Museum, Wollaton Hall, Nottingham 

• Oxford University Museum of Natural History, Oxford 

• Plymouth City Museum and Art Gallery, Plymouth 

• Royal Belgian Institute of Natural Sciences (Palaeontology), Brussels 

• Sedgwick Museum of Earth Sciences, Cambridge 

• South West Heritage Trust, Taunton 

• Torquay Museum, Torquay 

• University of Bristol Spelaeological Society museum, Bristol 
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• University Museum of Zoology, Cambridge 

• Wells and Mendip Museum, Wells 

• Yorkshire Museum, York 

The specimens analysed from each museum are detailed in Spreadsheets 7, 8 and 10. 

In total, Pleistocene C. crocuta were measured from 65 assemblages in Austria, Belgium, Britain, 

the Czech Republic, Ireland, Italy, Serbia and Spain. Figure 4.5 and Figure 4.6 show the locations 

of these sites. Table 4.5 details the ages of these assemblages. Further information about these 

sites, including palaeoenvironmental conditions, mammalian species and references can be 

found in Appendix 10.1 Table 10.1 to Table 10.3. 

 

Figure 4.5: British and Irish Pleistocene sites included in the morphometric and palaeodietary 

analyses. 1. Kirkdale Cave. 2. Victoria Cave. 3. Raygill Fissure. 4. Church Hole. 5. Pin Hole. 6. Robin 

Hood Cave. 7. Ffynnon Beuno Cave. 8. Hoe Grange. 9.Little Syke. 10. Pakefield. 11. Lawford. 12. 

Barrington. 13. King Arthur’s Cave. 14. Coygan Cave. 15. Priory Farm Cave. 16. Nanna’s Cave. 17. 

Daylight Rock Fissure. 18. Prissen’s Tor Cave. 19. Caerwent Quarry. 20. Caswell Bay. 21. Minchin 

Hole. 22. Lewes Castle Cave. 23. Goat’s Hole Paviland. 24. Brentford. 25. Grays. 26. Sandford Hill. 

27. Hutton Cavern. 28. Uphill Caves 7 or8. 29. Bleadon. 30. Picken’s Hole. 31. Soldier’s Hole. 32. 

Boughton Mount. 33. Badger Hole. 34. Hyaena Den. 35. Milton Hill. 36. The Burtle Beds. 37. 

Tornewton Cave. 38. Joint Mitnor Cave. 39. Kents Cavern. 40. Bench Cavern. 41. Brixham 

Cave/Windmill Hill. 42. Oreston Cave. 43. Eastern Torrs Quarry. 44. Yealm Bridge. 45. Castlepook 

Cave. Base map from Esri (2006). 
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Figure 4.6: Austrian, Belgian, Czech, Italian, Serbian and Spanish Pleistocene sites included in the 

morphometric and palaeodietary analyses. 1. Goyet Caves. 2. Trou Magrite. 3. Caverne Marie-

Jeanne. 4. Slouper Höhle. 5. Höhle Výpustek. 6. Teufelslucke. 7. Baranica I. 8. Baranica II. 9. Cueva 

de las Hienas. 10. Cova B d’Olopte. 11. Cova de les Toixoneres. 12. Cova del Toll. 13. Cova del 

Gegant. 15. Cueva del Búho. 16. San Teodoro. Base map from Esri (2006). 

 

 

 

Figure 4.7 illustrates the direct dates on the assemblages from MIS 3 alongside the replotted 

NGRIP oxygen isotope (δ 18O) record. Where possible, only dates that are not associated with 

human presence (e.g. dates on humans or human-modified bones) are included. This is to 

attempt to capture the potential occupation of C. crocuta at each of the sites, as C. crocuta likely 

would not have been occupying the caves at the same time as humans. The only exception is 

the inclusion of the Homo neanderthalensis (Neanderthal) date from Cova del Gegant as this 

was the only species dated from this assemblage. Further details and dates are outlined in 

Appendix 10.1 Table 10.4. 
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Table 4.5: Ages of assemblages included in the Pleistocene morphological studies. See Appendix 10.1 Table 10.1 to Table 10.3 for details and references. 

Site Age 

Britain  

Pakefield, Suffolk Early Middle Pleistocene 

Grays, Essex MIS 9 

Bleadon, Somerset Later MIS 7 

Hutton Cavern, Somerset Later MIS 7 

Lawford, Warwickshire Possibly later MIS 7 

Oreston Cave, Plymouth Later MIS 7 

Prissen’s Tor Cave = Spritsail Tor, Swansea Possibly Later MIS 7 

Barrington, Cambridgeshire MIS 5e 

Brentford, London MIS 5e 

Burtle Beds, Somerset MIS 5e 

Eastern Torrs Quarry, Devon MIS 5e 

Hoe Grange, Derbyshire MIS 5 

Joint Mitnor Cave, Devon MIS 5e 

Kirkdale Cave, Yorkshire MIS 5e 

Little Syke, Lincolnshire MIS 5e 

Milton Hill, Somerset MIS 5e 

Minchin Hole, Outer Beach, Glamorgan MIS 5 

Raygill Fissure, Yorkshire MIS 5e 

Tornewton Cave, Devon (Lower Hyaena Stratum) MIS 5c 

Tornewton Cave, Devon (Upper Hyaena Stratum) MIS 5c 

Victoria Cave, Yorkshire MIS 5e 

Badger Hole, Wookey Hole, Somerset MIS 3 

Bench Cavern, Devon MIS 3 

Boughton Mount, Kent MIS 3 
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Brixham Cave/ Windmill Hill, Devon MIS 3 

Cae Gwyn Cave, Clywd MIS 3 

Caerwent Quarry, Monmouthshire MIS 3 

Caswell Bay, Swansea MIS 3 

Church Hole, Creswell Crags, Nottinghamshire MIS 3 

Coygan Cave, Carmarthenshire MIS 3 

Daylight Rock Fissure, Pembrokeshire  MIS 3 

Ffynnon Beuno Cave, Denbighshire MIS 3 

Goat’s Hole Paviland, Swansea MIS 3 

Hyaena Den, Wookey Hole, Somerset MIS 3 

Kents Cavern, Devon MIS 3 

King Arthur’s Cave, Herefordshire (Unit 3) MIS 3 

Lewes Castle Cave, Swansea MIS 3 

Nanna’s Cave, Caldey Island, Pembrokeshire MIS 3 

Picken’s Hole, Somerset (Layer 3) MIS 3 

Pin Hole, Creswell Crags, Derbyshire MIS 3 

Priory Farm Cave, Pembrokeshire MIS 3 

Robin Hood Cave, Creswell Crags, Derbyshire (1969 and 1981 excavations) MIS 3 

Sandford Hill, Somerset MIS 3 

Soldier’s Hole, Somerset MIS 3 

Tornewton Cave, Devon (Elk Stratum) MIS 3 

Uphill Caves 7 or 8, Somerset MIS 3 

Yealm Bridge, Devon MIS 3 

Austria  

Teufelslucke, Eggenburgh MIS 3 

Belgium  

Goyet caves, Namur Province (3eme Caverne, Chamber A, 4eme Niveau Ossifère, Galleries Voisines de l’Entrée) MIS 3 

Goyet caves, Namur Province (3eme Caverne, Chamber A, 3eme Niveau) MIS 3 

Goyet caves, Namur Province (3eme Caverne, Chamber A, 1er Niveau Ossifère) MIS 3 
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Caverne Marie-Jeanne, Hastière (4eme Niveau) MIS 3 

Trou Magrite, Pont-à-Lesse, Namur Probably MIS 5b to 3 

Czech Republic  

Höhle Výpustek MIS 3 

Slouper Höhle Late Pleistocene 

Ireland  

Castlepook Cave, County Cork MIS 3 

Italy  

San Teodoro, Acquedolci, Sicily MIS 3-2 

Serbia  

Baranica I MIS 3-2 

Baranica II MIS 3 

Spain  

Cova de les Toixoneres = Cova de les  Teixoneres, Barcelona MIS 3 

Cova del Toll, Barcelona Late Pleistocene 

Cova del Gegant, Barcelona MIS 4-3 

Cova B d’Olopte MIS 3 

Cueva de las Hienas = Las Caldas, Asturias MIS 5b-3 

Cueva del Búho, Segovia MIS 5d-3 



4. Materials and Methods 
 

- 130 - 
 

 
Figure 4.7: Dates on Pleistocene assemblages. δ18O NGRIP2 20 year mean data, chronology and events from (Andersen et al., 2004; Rasmussen et al., 2014; Seierstad 

et al., 2014). Radiocarbon dates were calibrated using OxCal 4.3 and IntCal13, with 95.4 % confidence range (Bronk Ramsey, 2009; Reimer et al., 2013). C.c = C. 

crocuta. G = gnawed bone. Fs = flowstone. Os = overlying sequence. H.n = H. neanderthalensis). Sbd = speleothem at base of deposits. b2k = years before A.D. 2000. 

Pink shaded bands indicate interstadials. See Appendix 10.1 Table 10.1 to Table 10.4 for details and references. 



4. Materials and Methods 
 

- 131 - 
 

4.2.5 Dates for radiocarbon models 

Stuart and Lister (2014) collated radiocarbon dates of C. crocuta specimens and created a 

chronological model of C. crocuta extirpation from Eurasia. Since then, a new calibration model 

(IntCal13, Reimer et al., 2013) and new radiocarbon dates on C. crocuta have been published, 

necessitating a rerun of the model. Additionally, the dates included in the model in the present 

study were subjected to stricter selection criteria. 

In addition to the C. crocuta model, a model was run of dates on P. leo (spelaea), in order to 

facilitate a comparison between the two potential competitors. Models were also run on three 

of C. crocuta’s potential prey species: C. antiquitatis, C. elaphus and R. tarandus to assess where 

and when these species may have been available to C. crocuta. As C. elaphus and R. tarandus 

still live in Europe today, dates were only included up until 18,000 14C BP. This post-dates the 

youngest C. crocuta date, thereby fully demonstrating the relationship between the prey species 

and C. crocuta occupation of Europe during MIS 3.  

Databases of dates on C. crocuta (Stuart and Lister, 2014), P. leo (spelaea) (Stuart and Lister, 

2011) and C. antiquitatis (Stuart and Lister, 2012) were used, and further dates for all five species 

were sourced from the literature. 

Dates were included in the models if they followed the following selection criteria: 

• The dates were on specimens of the five species of interest without any uncertain 

species identification 

• The specimens had undergone ultrafiltration pre-treatment, which has been shown to 

remove more contaminants than other pre-treatment methods (Higham et al., 2006). 

Where publications did not mention whether the specimen had been subject to 

ultrafiltration, the Oxford Radiocarbon Accelerator Unit (ORAU) database (ORAU, no 

date) was used to check for information about ORAU dates 

• Dates from contaminated specimens were excluded. Following Dinnis et al. (2016), 

dates from Caldey Island sites (previously included in Stuart and Lister, 2014) were 

excluded as they may have been conserved with varnish (van Nédervelde and Davies, 

1975 cited in Dinnis et al., 2016). There is only one exception for this selection criterion. 

Some of the earlier specimens that were subjected to ultrafiltration at ORAU were 

contaminated by the equipment (Bronk Ramsey et al., 2004), which affected a number 

of dates from the five species of interest in the present study. However, there are two 

reasons for including these dates in the models. Firstly, the dates most affected were 

those of less than two 14C half-lives (Higham et al., 2006), which is younger than the 
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youngest dates included in the models. Moreover, the error is only about 100-300 years 

(Bronk Ramsey et al., 2004). There is therefore little concern that the contamination will 

affect the conclusions of this study 

• Burnt or heated bones were excluded as this condition may result in ages that are 

erroneously young (Higham et al., 2011a) 

• Dates on specimens with uncertain provenance were excluded 

• Dates were only from European sites. Dates on other species from European Russia 

were excluded as the sites were far from the C. crocuta sites. Dates on other species 

were also excluded from countries where there have been no records of C. crocuta 

occupation 

• Where the information is specified in the publications, dates were included if the 

collagen yield was equal to or greater than 1 %, and the atomic C:N (carbon:nitrogen) 

ratio was between 2.9 and 3.5 (following Higham et al., 2011b) 

• ORAU dates with a prefix ‘OxA-X’ were excluded as this indicates either analytical values 

that are outside of the acceptable range or specimens that had undergone an 

experimental pre-treatment method (Higham et al., 2011b) 

The sites from which the dated specimens originated are shown in Figure 4.8 to Figure 4.12. For 

the purpose of the radiocarbon models, the sites were grouped into regions, which are also 

shown in the figures. 
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Figure 4.8: Sites of the dated C. crocuta specimens that are included in the new radiocarbon 

model. 1. Pin Hole. 2. Robin Hood Cave. 3. Castlepook Cave. 4. Coygan Cave. 5. Cefn Cave. 6. 

Hyaena Den. 7. Kents Cavern. 8. Bench Cavern. 9. Scladina Cave. 10. Komarowa Cave. 11. 

Melwurmhöhle. 12. Griffen Cave. 13. Grotta Pocala. 14. Igue du Gral. 15. Arene Candide. 16. 

Grotte de Canacaude. 17. Amalda. 18. Duruitoarea Veche. 19. La Adam Cave. 20. Desnisukhi 

Peck Cave. 21. Magura Cave. 22. Bacho Kiro Cave. 23. Balkan Range. 24. Grotta Paglicci. 25. Agios 

Georgios Cave. Base map from Esri (2006). 

 

 

 
Figure 4.9: Sites of the dated P. leo (spelaea) specimens that are included in the new radiocarbon 

model. 1. Pin Hole. 2. Lathum. 3. Wierchowska Górna. 4. Jaskinia Raj. 5. Zawalona Cave. 6. 

Gremsdorf. 7. Zoolithenhöhle. 8. Zigeunerfels Cave. 9. Gamssulzen Höhle. 10. Abri des Cabones. 

11. La Garma. 12. Uritaga Cave. 13. Jou’l Llobu. 14. Peştera Urşilor. 15. Peştera Muierii. 16. 

Peştera Cloşani. 17. Lakatnik Cave. Base map from Esri (2006).     
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Figure 4.10: Sites of the dated C. antiquitatis specimens that are included in the new radiocarbon 

model. 1. Wilderness Pit. 2. North Sea. 3. Ash Tree Cave. 4. Pin Hole. 5. Robin Hood Cave. 6. 

Whitemoor Haye Quarry. 7. Grange Farm. 8. Bradley Fen. 9. Clifton Hill. 10. Coygan Cave. 11. 

Goat’s Hole Paviland. 12. Sutton Courtenay. 13. Picken’s Hole. 14. Kents Cavern. 15. Herne West. 

16. Goyet Caves. 17. Gönnersdorf. 18. Koblenz-Metternich. 19. Wildscheuer Cave. 20. Szczecin. 

21. Deszczowa Cave. 22. Jasna Cave. 23. Geißenklösterle. 24. Kesslerloch Cave. 25. 

Tropfsteinhöhl Kugelstein. 26. Settepolesini. 27. Labeko Koba Cave. 28.Duruitoarea Veche. Base 

map from Esri (2006). 

 
 

 
Figure 4.11: Sites of dated C. elaphus specimens that are included in the new radiocarbon model. 

1. Hyaena Den. 2. Kents Cavern. 3. Trou Al’Wesse. 4. Bordes-Fitte Rockshelter. 5. 

Geißenklösterle. 6. Saint-Marcel. 7. La Viña. 8. El Castillo. 9. Labeko Koba Cave. 10. L’Arbreda. 

11. Cova de les Toixoneres. 12. Cova del Papalló. 13. Peştera cu Oase. Base map from Esri (2006).      
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Figure 4.12: Sites of dated R. tarandus specimens that are included in the new radiocarbon 

model. 1. Pin Hole. 2. Robin Hood Cave. 3. Pontnewydd. 4. Goat’s Hole Paviland. 5. Kents Cavern. 

6. Champ de Fouilles. 7. Gönnersdorf. 8. Bordes-Fitte Rockshelter. 9. Jaskini Mamutowa. 10. 

Čertova díra. 11. Kůlna Cave. 12. Geißenklösterle. 13. Kastelhöhle. 14. La Chauverie. 15. Abri 

Pataud. 16. Les Harpons.  
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4.3 Methods 

4.3.1 Linear morphometrics 

4.3.1.1 Measurements 

Linear measurements were taken on the modern and Pleistocene C. crocuta specimens. These 

measurements were taken using digital callipers, with a resolution of 0.01 mm and accuracy of 

0.03 mm. The linear measurements of the bones and teeth along with references are detailed 

in Table 4.6 and Table 4.7. Figure 4.13 to Figure 4.16 illustrate how the measurements were 

taken. 

 

 

 

Table 4.6: Linear measurements of each craniodental element. 1Van Valkenburgh and Ruff 

(1987), 2Werdelin (1989), 3von den Driesch (1976), 4Emerson and Radinsky (1980), 5Therrien 

(2005), 6Palmqvist et al. (2011). 

Element Measurement 

Canine (upper and lower) 
Anteroposterior diameter1 

Mediolateral diameter1 

Premolars (P1, P2, P3, p2, p3, 
p4) 

Length2 

Width2 

P4 

Length3 

Greatest width3 

Width3 

m1 
Length3 

Width3 

Cranium 

Total length3 

Condylobasal length3 

Basal length3 

Basicranial axis3 

Basifacial axis3 

Upper neurocranium length3 

Viscerocranium length3 

Facial length3 

Greatest length of the nasals3 

Snout length3 

Median palatal length3 

Length of the horizontal part of the palatine3 

Length of the cheektooth row, P1-P43 

Length of the cheektooth row, P1-P33 

Greatest diameter of the auditory bulla3 

Greatest mastoid breadth3 

Breadth dorsal to the external auditory meatus3 

Greatest breadth of the occipital condyles3 

Greatest breadth of the paraoccipital processes3 
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Greatest breadth of the foramen magnum3 

Height of the foramen magnum3 

Cranium 

Greatest neurocranium breadth3 

Zygomatic breadth3 

Least breadth of the skull3 

Frontal breadth3 

Least breadth between the orbits3 

Greatest palatal breadth3 

Least palatal breadth3 

Greatest height of the orbit3 

Skull height3 

Height of the occipital triangle3 

Temporal fossa length4 

Mandible 

Condyle to symphysis length3 

Angular process to symphysis length3 

Condyle/angular process indentation to symphysis 
length3 

Condyle to posterior edge of c alveolus length3 

Angular process to posterior edge of c alveolus length3 

Condyle/angular process indentation to posterior edge 
of c alveolus length3 

c alveolus to m1 alveolus length3 

Length of the cheektooth row, p2-m13 

Length of the cheektooth row, p3-m13 

Length of the premolar row, p2-p43 

Height of the vertical ramus3 

Mandibular depth at p2/p35,6 

Mandibular width at p2/p35,6 

Mandibular depth at p3/p45,6 

Mandibular width at p3/p45,6 

Mandibular depth at p4/m15,6 

Mandibular width at p4/m15,6 

Mandibular depth at post-m15,6 

Mandibular width at post-m15,6 

Distance from the p2/p3 to the middle of the articular 
condyle5,6 

Distance from the p3/p4 to the middle of the articular 
condyle5,6 

Distance from the p4/m1 to the middle of the articular 
condyle5,6 

Distance from the post-m1 to the middle of the 
articular condyle5 

Distance from the dorsal surface of the condyle to the 
ventral border of the angular process4 

Distance from the condyle to the apex of the coronoid 
process4 

Distance from the back of the condyle to the anterior 
rim of the masseteric fossa4 

Distance from the glenoid to the anterior side of c1 

Distance from the back of the condyle to the m1 notch4 
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Table 4.7: Linear measurements taken on each post-cranial element. All measurements follow 

von den Driesch (1976). 

Element Measurement 

Atlas 

Greatest length 

Greatest breadth of the cranial articular surface 

Greatest breadth of the caudal articular surface 

Greatest length from the cranial to caudal articular 
surfaces 

Length of the dorsal arch 

Height 

Axis 

Greatest length in the region of the corpus 

Greatest length of the arch 

Greatest breadth of the cranial articular surface 

Greatest breadth across the caudal articular process 

Greatest breadth across the transverse process 

Smallest breadth 

Greatest breadth of the caudal articular surface 

Height 

Sacrum 

Physiological length 

Greatest breadth of the cranial articular surface 

Greatest height of the cranial articular surface 

Scapula 

Smallest length of the neck 

Greatest length of the glenoid process 

Length of the glenoid cavity 

Breadth of the glenoid cavity 

Pelvis Length of the acetabulum on the rim 

Humerus  

Greatest length 

Greatest length from the caput 

Greatest depth of the proximal end 

Smallest breadth of the diaphysis 

Greatest breadth of the distal end 

Radius 

Greatest length 

Greatest breadth of the proximal end 

Smallest breadth of the diaphysis 

Greatest breadth of the distal end 

Ulna 

Greatest length 

Depth across the anconeal process 

Smallest depth of the olecranon 

Greatest breadth across the proximal articular surface 

Femur 

Greatest length 

Greatest breadth of the proximal end 

Greatest depth of the femoral head 

Smallest breadth of the diaphysis 

Greatest breadth of the distal end 

Tibia 

Greatest length 

Greatest breadth of the proximal end 

Smallest breadth of the diaphysis 

Greatest breadth of the distal end 

Fibula Greatest length 

Patella Greatest length 
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Greatest breadth 

Scapho-lunar Greatest breadth 

Navicular Greatest breadth 

Astragalus Greatest length 

Calcaneum 
Greatest length 

Greatest breadth 

Metapodials 
Greatest length 

Greatest breadth of the distal end 

 

 

 

 

Figure 4.13: Diagrams of dentition measurements, following von den Driesch (1976) and 

Werdelin (1989). a. Upper dentition, showing the length (L) and width (W) of the premolars, 

illustrated on the P2. L, W and greatest width (GW) of the P4. b. Lower dentition, showing L and 

W of the premolars, illustrated on the p2. L and W of the m1. 
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Figure 4.14: Diagrams of cranial measurements, following von den Driesch (1976) and Emerson and Radinsky (1980). 1. Total length. 2. Upper neurocranium length. 

3. Facial length. 4. Viscerocranium length. 5. Greatest length of the nasals. 6. Snout length. 7. Least breadth between the orbits. 8. Frontal breadth. 9. Least breadth 

of the skull. 10. Greatest neurocranium breadth. 11. Zygomatic breadth. 12. Condylobasal length. 13. Basal length. 14. Basicranial axis. 15. Basifacial axis. 16. Median 

palatal breadth. 17. Length of the horizontal breadth of the palatine. 18. Length of the cheektooth row, P1-P4. 19. Length of the cheektooth row, P1-P3. 20. Least 

palatal breadth. 21. Greatest palatal breadth. 22. Greatest diameter of the auditory bulla. 23. Breadth dorsal to the external auditory meatus. 24. Greatest mastoid 

breadth. 25. Greatest breadth of the paraoccipital process. 26. Greatest breadth of the occipital condyles. 27. Greatest breadth of the foramen magnum. 28. Height 

of the foramen magnum. 29. Skull height. 30. Height of the occipital triangle. 31. Greatest height of the orbit. 32. Temporal fossa length. 
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Figure 4.14 continued. 
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Figure 4.15: Diagrams of mandibular measurements, following von den Driesch (1976), Emerson 

and Radinsky (1980), Van Valkenburgh and Ruff (1987), Therrien (2005) and Palmqvist et al. 

(2011). 1. Angular process to symphysis length. 2. Condyle to symphysis length. 3. 

Condyle/angular process indentation to symphysis length. 4. Angular process to posterior edge 

of c alveolus length. 5. Condyle to posterior edge of c alveolus length. 6. Condyle/angular process 

indentation to posterior edge of c alveolus length. 7. c alveolus to m1 alveolus length. 8. Length 

of the cheektooth row, p2-m1. 9. Length of the cheektooth row, p3-m1. 10. Length of the 

premolar row, p2-p4. 11. Height of the vertical ramus. 12. Distance from the glenoid to the 

anterior side of c. 13. Distance from p2/p3 to the middle of the articular condyle. 14. Distance 

from p3/p4 to the middle of the articular condyle. 15. Distance from p4/m1 to the middle of the 

articular condyle. 16. Distance from the back of the condyle to the m1 notch. 17. Distance from 

post-m1 to the middle of the articular condyle. 18. Distance from the condyle to the apex of the 

coronoid process. 19. Distance from the dorsal surface of the condyle to the ventral border of 

the angular process. 20. Distance from the back of the condyle to the anterior rim of the 

masseteric fossa. 21. Mandibular depth at p2/p3. 22. Mandibular depth of p3/p4. 23. 

Mandibular depth at p4/m1. 24. Mandibular depth at post-m1. 25. Mandibular width at p2/p3. 

26. Mandibular width at p3/p4. 27. Mandibular width at p4/m1. 28. Mandibular width at post-

m1.  
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Figure 4.15 continued. 
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Figure 4.16: Diagrams of post-cranial measurements with corresponding abbreviations, 

following von den Driesch (1976). a-c. Atlas. d-f. Axis. g-h. Sacrum. i-j. Scapula. k. Pelvis. l-m. 

Humerus. n-o. Ulna. p. Radius. q-r. Femur. s. Fibula. t. Tibia. u. Patella. v. Scapho-lunar. w. 

Navicular. x. Astragalus. y. Calcaneum. z. Metapodial. GL = greatest length. GLF = greatest length 

from the cranial to caudal articular surfaces. LAd = length of the dorsal arch BFcr = greatest 

breadth of the cranial articular surface. BFcd = greatest breadth of the caudal articular surface. 

H = height. LAPa = greatest length of the arch. LCDe = greatest length in the region of the corpus. 

SBV = smallest breadth of the vertebra. BFacd = greatest breadth across the caudal articular 

process. BPtr = greatest breadth across the transverse process. PL = physiological length. HFcr = 

greatest height of the cranial articular surface. SLC = smallest length of the neck of the scapula. 

GLP = greatest length of the glenoid process. LG = length of the glenoid cavity. BG = breadth of 

the glenoid cavity. LAR = length of the acetabulum on the rim. GL = greatest length. GLC = 

greatest length from the caput. SD = smallest breadth of the diaphysis. Dp = depth of the 

proximal end. Bp = greatest breadth of the proximal end. Bd = greatest breadth of the distal end. 

BPC = greatest breadth across the proximal articular surface. SDO = smallest depth of the 

olecranon. DPA = depth across the anconeal process. DC = greatest depth of the femoral head. 

GB = greatest breadth. 
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Figure 4.16 continued. 
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Figure 4.16 continued. 
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4.3.1.2 Mandibular bending strength 

Following Therrien (2005) and Palmqvist et al. (2011), the measurements used to calculate 

mandibular bending strength were the depths and widths of the mandibular corpus at the 

p2/p3, p3/p4, p4/m1 and post-m1 interdental gaps, in addition to the distances from the 

mandibular condyle to each of these interdental gaps (see Table 4.6). This followed the principle 

of modelling the mandible as an elliptical beam. The depth and width measurements, when 

converted into radius values, allowed calculation of the distribution of bone around the 

dorsoventral and labiolingual planes (Figure 4.17). The mandibular condyle acted as the hinge 

or fulcrum in the lever model. The distance from the condyle to each interdental gap, coupled 

with the radius values of the corpus, allows calculation of bending strength along the mandible 

(Therrien, 2005; Palmqvist et al., 2011). 

Figure 4.17: From Therrien (2005). Cross-sectional view through the mandibular corpus. Ix = the 

distribution of bone in the dorsoventral plane or around the x axis. Iy = the distribution of bone 

in the labiolingual plane or around the y-axis. zx = the mandibular bending strength in the 

dorsoventral plane or around the x-axis. zy = the mandibular bending strength in the labiolingual 

plane or around the y=axis. 

This image has been removed because of copyright 
restrictions.
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Following Therrien (2005) and Palmqvist et al. (2011), three indices were calculated (zx/L, zy/L 

and zx/zy) at each interdental gap, using the following equations:  

Equation 4.1: 

𝐼𝑥 =  
𝜋𝑏𝑎3

4

and 

Equation 4.2: 

𝐼𝑦 =  
𝜋𝑎𝑏3

4

where 𝐼𝑥 is the is the distribution of bone in the dorsoventral plane, and 𝐼𝑦 is the distribution of 

bone in the labiolingual plane, of the mandibular corpus. 𝑎 is the dorsoventral radius, or half the 

depth of the mandibular corpus. 𝑏 is the labiolingual radius, or half the width. 

Next, the following equations were used: 

Equation 4.3: 

𝑧𝑥 = 𝐼𝑥/𝑎 

and 

Equation 4.4: 

𝑧𝑦 = 𝐼𝑦/𝑏 

where 𝑧𝑥 is the mandibular bending strength in the dorsoventral plane, and 𝑧𝑦 is the mandibular 

bending strength in the labiolingual plane. 

The cross-sectional area or relative bending strength of the mandibular corpus (zx/zy index) was 

calculated by dividing 𝑧𝑥 by 𝑧𝑦. Where the value is greater than one, the mandible is deeper 

than wide, and has greater resistance to dorsoventral bending than labiolingual bending 

(Therrien, 2005; Palmqvist et al., 2011). 

Finally, zx/L and zy/L indices were calculated by dividing 𝑧𝑥 and 𝑧𝑦 by the distance from the 

condyle to the corresponding interdental point. For example, if 𝑧𝑥 and 𝑧𝑦 were calculated from 

the depths and widths of the mandible at the p2/p3 interdental point, the resulting values for 

𝑧𝑥 and 𝑧𝑦 would be divided by the distance from the condyle to p2/p3. The zx/L and zy/L values 

indicate the bending strength at each interdental point. Greater values have a greater bending 

strength (Therrien, 2005; Palmqvist et al., 2011). 



4. Materials and Methods

- 149 -

4.3.1.3 Bite force 

The mandible was measured as a lever to calculate the mechanical advantage of the jaw-closing 

muscles, providing an indication of bite force. The pivot was the mandibular condyle, the in-

force was the lifting action of the masticatory muscles, and the out-force was the resistance 

force at each bite point along the mandible, following (Moore, 1981). 

In-levers and out-levers (or moment arms) are represented by some of the measurements in 

Table 4.6 and Figure 4.15, following Emerson and Radinsky (1980) and Van Valkenburgh and Ruff 

(1987). The measurements and their corresponding levers are outlined in Table 4.8. Except for 

the canine and the m1, moment arms were measured at interdental gaps (p2/p3, p3/p4, 

p4/m1), following the measurements used by Therrien (2005) and Palmqvist et al. (2011) in 

bending strength calculations. Measurements from the condyle to the interdental gaps were 

used instead of the teeth themselves, in order to prevent the measurements being influenced 

by the height and wear stage of the premolars. The moment arm of resistance at the canine was 

measured to the anterior edge of the canine, rather than the cusp (following Van Valkenburgh 

and Ruff, 1987), so that tooth wear would not influence the measurement. The same is true of 

the moment arm of resistance at the m1, which was measured at the notch between the two 

blades (following Emerson and Radinsky, 1980). 

In order to calculate the mechanical advantage of the muscle at each point along the mandible, 

the in-lever was divided by the out-lever, following Van Valkenburgh and Ruff (1987). The 

greater the out-lever or out-force relative to the in-lever or in-force, the greater the mechanical 

advantage (Alexander, 1983). 
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Table 4.8: Measurements of moment arms (in-levers and out-levers) of the mandible. 1Emerson 

and Radinsky (1980), 2Van Valkenburgh and Ruff (1987), 3Therrien (2005) and 4Palmqvist et al. 

(2011). 

Measurement Moment arm and lever 

From the condyle to the dorsal-most part of 
the coronoid process1 

Moment arm of the temporalis (in-lever) 

From the ventral part of the angular process 
to the dorsal surface of the condyle1 

Moment arm of the superficial masseter (in-
lever) 

From the condyle to the anterior rim of the 
masseteric fossa1 

Moment arm of the deep masseter (in-lever) 

From the condyle to the anterior side of the 
canine2 

Moment arm of resistance at the canine (out-
lever) 

From the condyle to the p2/p3 interdental 
gap3,4 

Moment arm of resistance at p2/p3 (out-
lever) 

From the condyle to the p3/p4 interdental 
gap3,4 

Moment arm of resistance at p3/p4 (out-
lever) 

From the condyle to the p4/m1 interdental 
gap3,4 

Moment arm of resistance at p4/m1 (out-
lever) 

From the condyle to the notch between the 
paraconid and protoconid1 

Moment arm of resistance at the m1 (out-
lever) 

4.3.1.4 Post-cranial indices 

A number of indices were calculated from some of the post-cranial measurements (Table 4.7 

and Figure 4.16) to analyse further aspects of locomotion. The brachial index (radius 

length/humerus length) and crural index (tibia length/femur length) values are greater in 

cursorial carnivorans (Meachen et al., 2016). Hindlimb proportion (femur length/metatarsal IV 

length) values are lower with greater speed (Van Valkenburgh, 1985). Forelimb length (humerus 

length + radius length + Metacarpal III length) and hindlimb length (femur length + tibia length 

+ Metatarsal IV length) were calculated following Christiansen (2002). The forelimb length and

hindlimb length are an indication of effective limb length, which is related to stride length 

(Hildebrand, 1974). 

4.3.2 Dental macrowear 

Dental macrowear was used to provide an estimate of the relative age at death of each 

individual. This is not an absolute, numerical age; it merely allows splitting of the individuals into 

a number of wear categories, which can then be used as a proxy for age classes. The wear of the 

P3 and p3 were recorded following a classification scheme by Stiner (2004), see Figure 4.18. This 
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scheme includes eight categories (the first category, deciduous tooth, was not used) from stage 

II (the tooth is unworn and still erupting) to IX (the tooth is much worn). 

Additionally, the wear of all teeth was categorised, following Van Valkenburgh (1988), into 

‘slight’, ‘moderate’ and ‘heavy’. Slight is classified as having slightly worn shear facets and cusps. 

Moderate is classified as having shear facets present and cusps blunted and heavy is described 

as when the carnassial shear facets are pronounced, and the other teeth are well-rounded with 

blunted cusps. An additional category of ‘unworn’ was also used. 

Figure 4.18: From Stiner (2004). The categories of P3/p3 wear stages. d = deciduous. ↑ = 

erupting.   

This image has been removed because of 
copyright restrictions.
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4.3.3 Tooth breakage 

Teeth were further classified as broken or unbroken. They were classified as broken if there was 

obvious wear after breakage occurred, following Van Valkenburgh (1988), in order to exclude 

teeth that had been broken post mortem. Breakage was generally identified when the tooth did 

not follow the usual wear pattern. Additional indications were apparent when the tooth was still 

in situ in the jaw; it may initially have appeared to be heavily worn, yet the teeth around it 

exhibited considerably less wear. This tooth was therefore likely broken. Examples of broken 

teeth are shown in Figure 4.19 and Figure 4.20. 

Figure 4.19: Broken right m1. Specimen RBINS 2419-9 from Trou Magrite, Belgium. Held at the 

Royal Belgian Institute of Natural Sciences, Brussels. 

Figure 4.20: Broken right p2 and p3. Specimen MGB V778 from Cova del Toll, Spain. Held at 

Museu de Geologia, Museu de Ciències Naturals de Barcelona.      
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The alveoli were also inspected when a tooth was absent. Records were made when the alveolus 

was fully or partially healed, which indicated loss of a tooth during life. Teeth may be lost 

through infection of the alveolus, either through bacteria entering the exposed pulp of a broken 

tooth (Losey et al., 2014), or through inflammation and subsequent infection of the gum 

(Pekelharing, 1974). It is acknowledged that a missing tooth with apparently healed bone may 

actually be due to congenital absence of the tooth (Losey et al., 2014). An example is shown in 

Figure 4.21. 

 

 

 

Figure 4.21: Partially healed alveoli of left i1, healed alveoli of right i1. Specimen AMNH 187780 

from 10.3 Garissa County, Kenya. Held at the American Museum of Natural History, New York. 
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4.4 Data analyses 

4.4.1 Modern African Crocuta crocuta 

4.4.1.1  Modern Crocuta crocuta and Panthera leo biomass 

An assessment was made to discover whether the population biomass distribution of each 

African predator (C. crocuta, P. brunnea, P. leo, P. pardus, A. jubatus) differed from each other. 

A histogram was produced to allow visual assessment of the relative abundance of each species. 

Kolmogorov-Smirnov tests were also performed. The null hypothesis of each test was that the 

distribution of populations from each dataset were the same.  

Prior to the assessment of the influence of environmental conditions upon C. crocuta and P. leo 

biomass, the biomass, temperature and precipitation datasets were base-10 logarithmically 

transformed to reduce skew and to avoid autocorrelation. Some datasets contained values of 

zero that could not be log transformed. Where this was the case, the value of zero was converted 

to a value a unit of magnitude lower than the lowest non-zero value in the dataset. For example, 

if the lowest value was one, the zero was converted to 0.1, and then base-10 logarithmically 

transformed.  

The vegetation cover data are expressed as percentages and therefore could not simply be 

logarithmically transformed. Percentage data suffer from the auto-sum problem whereby the 

value of one variable is dependent on the value of the other variables that are used to calculate 

the percentage (Pollard et al., 2006). To avoid this, the vegetation data were transformed by the 

centred log-ratio, following Kucera and Malmgren (1998) and Pollard et al. (2006), with the 

equation: 

Equation 4.5: 

𝑔(𝑥) = (𝑥1 … 𝑥𝑑)1/𝑑

where 𝑔 is the geometric mean of the vegetation category counts for each site, 𝑥 is the count 

value of each vegetation category, and 𝑑 is the number of vegetation categories. The ratio of a 

vegetation category count and the geometric mean was then calculated and base-10 logarithmic 

transformed: 

Equation 4.6: 

𝑐𝑙𝑟(𝑥) = 𝑙𝑜𝑔10 (
𝑥

𝑔(𝑥)
) 

where 𝑐𝑙𝑟 is the centred log-ratio, and 𝑙𝑜𝑔10 is the base-10 logarithmic transformation. 
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Multiple regression is a common statistical tool used to determine the relationship between 

independent and dependent variables, either to explain or predict the dependent variables. 

However, one major disadvantage of multiple regression is its inability to deal with 

multicollinearity in independent variables, which may mean that the causal independent 

variable is excluded from the final model, at the expense of other independent variables with 

which it is correlated (Mac Nally, 1996, 2000; Carrascal et al., 2009). Spearman Rank Order 

correlations revealed significant correlations between many of the independent environmental 

variables (Appendix 10.2, Table 10.5), so this is a particular problem in the present study.  

An alternative method to circumvent the above problems, proposed by Mac Nally (1996, 2000), 

is hierarchical partitioning. However, Olea et al. (2010) assessed the hierarchical partitioning 

package for R (R Core Team, 2016), hier.part package (Walsh and Mac Nally, 2004, 2005, 2007). 

The documentation for the current version, hier.part version 1.0-4 (Walsh and Mac Nally, 2013), 

and earlier versions, includes a caution that rounding of analyses may occur when more than 

nine independent variables are included in the model (Walsh and Mac Nally, 2005b, 2007b, both 

cited in Olea et al., 2010; Walsh and Mac Nally, 2015). When more than nine independent 

variables were included in a model, Olea et al. (2010) found that on more than 90 % of runs, the 

order in which the variables were input into the model affected the resulting order of 

importance of the variables. In the present study, there are 16 independent variables, so 

hierarchical partitioning is unsuitable. 

A further alternative is partial least squares (PLS) regression, whereby associations are assessed 

between the independent variables to produce a smaller number of latent variables, or 

components, in a way that maximises the explained variance in the dependent variable 

(Carrascal et al., 2009). In a comparison of three statistical tests (multiple regression, principal 

components analysis followed by multiple regression, and PLS), Carrascal et al. (2009) found that 

PLS performed better under multicollinearity. Additionally, PLS performed well even under low 

sample sizes. The combination of these points makes PLS the best method for the present study. 

For each PLS, leave-one-out cross-validation was performed in order to select the appropriate 

number of components. The number of components selected was based on the highest 

r2−predicted value. Each PLS model had a p-value. The strength of association of each 

independent variable with the dependent variable was indicated by the standardised 

coefficients. 

The results were assessed for outliers and leverage points. A site was classed as an outlier if its 

standardised residual had a value greater or less than two. A site was deemed as a leverage 

point if its value fell beyond the vertical leverage reference line (LRL), which was calculated by: 
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Equation 4.7:  

𝐿𝑅𝐿 =
2𝑚

𝑛
 

where 𝑚 is the number of components in the PLS, and 𝑛 is the number of observations (Minitab 

Inc., 2010). 

To assess the validity of the PLS models, each model was re-run, excluding one site each time. 

This indicated whether some sites were disproportionately influencing the results, and also 

whether C. crocuta and P. leo biomasses varied consistently with environmental conditions 

across all sites. The standardised coefficients were displayed in boxplots to highlight the 

variables with consistently positive or negative values, which would indicate that there was a 

consistent relationship between the dependent and independent variable, regardless of which 

sites were included in the model. 

 

4.4.1.2 Repeated linear measurements 

In order to assess precision of the linear measurements, the following six measurements were 

repeated 30 times on a C. crocuta specimen held in the Department of Geography, Royal 

Holloway University of London (see Section 4.3.1 for full details of measurements): 

• Total length of the cranium  

• Length of the m1 

• Width of the m1 

• Mandibular depth at the p2/p3 interdental gap 

• Mandibular width at the p2/p3 interdental gap 

• Distance from the mandibular articular condyle to the p2/p3 interdental gap 

Each set of measurements was then randomly sub-sampled into two groups of 15 observations. 

Anderson-Darling tests were used to assess normal distribution. Depending on normal 

distribution, t-tests or Mann Whitney tests were performed to assess significant differences 

between the sub-samples. Absence of significant differences would indicate consistency in 

taking the linear measurements. 

 

4.4.1.3 Ontogenetic size change 

The crania and post-crania of modern C. crocuta from Africa were used to assess the change in 

values of skeletal measurements during ontogeny. Male and female C. crocuta were treated 
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separately in case of different ontogenetic changes. The specimens were split into P3/p3 wear 

stages, to indicate different age categories. The absolute values of each measurement were not 

used as these would have been related to the final, adult size of each individual. Instead, a ratio 

was calculated against the length of the m1. As teeth stop growing once they have erupted, the 

m1 was fully grown in each specimen. Furthermore, this tooth varies predictably with body mass 

(Van Valkenburgh, 1990). The ontogeny ratio therefore allows comparison of measurement size 

with age, taking into account variation in overall size unrelated to ontogeny. The ratio was 

calculated using the following equation: 

Equation 4.8:  

𝑂𝑛𝑡𝑜𝑔𝑒𝑛𝑦 𝑟𝑎𝑡𝑖𝑜 = 𝐿𝑜𝑔10 (
𝑆

𝑚1
) 

where 𝑆 is the skeletal measurement, and 𝑚1 is the length of the m1. This ratio is a variation of 

one preferred by Smith (1999) in assessing sexual size dimorphism (see Section 4.4.1.4 for a full 

discussion).  

For each ontogeny ratio, box plots were constructed to visually compare the data for each P3/p3 

wear stage. An analysis of variance (ANOVA) with post-hoc Tukey’s test was conducted on three 

or more datasets with a sample size of ten or more, in order to determine any significant 

differences between ontogeny ratios of individuals with different P3/p3 stages. Tukey’s test was 

chosen as it reduces the chance of a Type 1 error, that the null hypothesis will be incorrectly 

rejected (Hancock and Klockars, 1996). Levene’s test was conducted to check that the data 

conformed to the assumption of normal variance, prior to conducting the ANOVA tests. Where 

there were only two datasets, t-tests were conducted. Anderson-Darling tests for normality and 

tests for equal variances were conducted in order to confirm that the datasets met the 

requirements of the ANOVA or t-tests. Where this was not the case, the non-parametric Mann 

Whitney test was performed instead.  

 

4.4.1.4 Sexual size dimorphism 

SSD of present-day C. crocuta was calculated using the mean female and male body masses or 

morphometric measurements from each site. There are various methods to calculate SSD, 

including numerous ratios, many of which were assessed by Smith (1999). However, the author 

advocates the use of only two ratios. The first ratio involves one of two equations:  

Equation 4.9:  

𝑆𝑆𝐷 =  𝐿𝑜𝑔(
𝐹

𝑀
) 
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or 

Equation 4.10:  

𝑆𝑆𝐷 = 𝐿𝑜𝑔(
𝑀

𝐹
) 

where 𝐹 is the female measurement, and 𝑀 is the male measurement. Equation 4.9 is used for 

species in which females are more frequently larger than males, and Equation 4.10 is used when 

males are more frequently larger than females.  

The second ratio is a variation of the method proposed by Lovich & Gibbons (1992) and adapted 

by Smith (1999). For a species in which females are more frequently larger than males, two 

equations would be used:  

Equation 4.11:  

𝑆𝑆𝐷 =
𝐹

𝑀
 

and 

Equation 4.12:  

𝑆𝑆𝐷 = 2 −
𝑀

𝐹
 

Equation 4.11 is used when females are larger, and Equation 4.12 is used when males are larger. 

The equations would be reversed in species where males are more frequently larger than 

females: 

Equation 4.13:  

𝑆𝑆𝐷 =
𝑀

𝐹
 

and 

Equation 4.14:  

𝑆𝑆𝐷 = 2 −
𝐹

𝑀
 

Equation 4.13 would be used when males are larger, and Equation 4.14 would be used when 

females are larger. 

The reason Smith (1999) prefers these equations over others is partly in light of occasions when, 

for example, a species has mostly female-biased SSD, but there are some populations where 

males are larger. Other equations would truncate the ratios where the males were larger to 

values between 0 and 1, whereas where females were larger, the values could extend from 1 

upwards (Smith, 1999). In the present study, to calculate SSD of C. crocuta populations, Equation 
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4.9 was used. Equation 4.10 was used to calculate the SSD of P. leo, P. pardus, A. jubatus, 

P. brunnea and L. pictus. The logarithmic transformation was base-10.  

A box plot was constructed to compare the body mass SSD values of the aforementioned large 

carnivores, to put into context the degree of SSD seen in C. crocuta. For craniodental linear 

measurement SSD, individual value plots were constructed to allow visual assessment of 

whether any measurements were consistently larger in males or females, and to compare the 

degree of SSD between measurements. Small sample sizes of post-crania did not permit 

construction of boxplots, so the SSD values were instead displayed in a table. 

For the craniodental linear measurements, tests were performed to assess significant 

differences between base-10 logarithmically transformed males and female measurements 

from Site 21.12 (Ngorongoro Conservation Area, Tanzania). This site was chosen as it has the 

largest sample size. The significant difference tests were performed when there were at least 

ten values for females and ten for males. Tests were not performed on the post-crania due to 

small sample sizes. Anderson Darling tests were performed to assess whether the data were 

normally distributed. Subsequently, t-tests were performed on normally distributed data, and 

Mann-Whitney tests were performed on non-normally distributed data. 

Additionally, the body mass data and craniodental measurements were assessed for Rensch’s 

Rule, i.e. whether the degree of SSD decreases with larger body size or linear measurements, 

following Rensch (1950, cited in Abouheif and Fairbairn, 1997). The linear morphometrics 

included in the analyses were those that appeared to exhibit SSD, in addition to the condylobasal 

and m1 length as these measurements scale closely with overall body size (Van Valkenburgh, 

1990). Postcranial sample sizes were too small to test for Rensch’s Rule. 

Many studies test for Rensch’s Rule through regression of male or female body mass against the 

SSD ratio, and while Smith (1999) agrees with this method, other authors (e.g. Fairbairn 1997) 

refute this on the basis that the SSD ratios are calculated with the body mass data against which 

they are being regressed. An alternative method is to regress male body mass or morphometrics 

against female body mass or morphometrics. According to Fairbairn (1997), the problem with 

this is that in ordinary least squares regression analyses, the x-axis variable should be measured 

without error. That male and female body mass and linear morphometrics are both measured 

in the same way confounds this. Fairbairn (1997) proposes major axis regression or reduced 

major axis regression as alternatives. Smith (2009) states that it is the relative error between the 

x- and y-axis that is important, advocating the reduced major axis regression as an alternative 

to least squares regression when the x-axis error is not relatively small. Again, this is the case in 

the current study whereby both x- and y-axis variables (female and male body masses and 
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morphometrics) contain similar errors. Additionally, Smith (2009) advocates the use of reduced 

major axis regressions as opposed to ordinary least squares regressions in situations where 

neither the x- and y-axis variables are dependent on each other, as is the case with male against 

female body mass data.  

Accordingly, in the present study, reduced major axis regressions compared base-10 

logarithmically transformed mean female body mass or morphometrics on the x-axis against 

base-10 logarithmically transformed mean male body mass or morphometrics on the y-axis. 

When the value of the regression slope is greater than 1, SSD is associated with hyperallometric 

growth (male size increases more than female size), and thus Rensch’s Rule is followed. In the 

case of female-biased SSD, the degree of SSD therefore decreases. When the slope is less than 

1, SSD is associated with hypoallometric growth (male size increases less than female size). The 

degree of SSD increases in species with female-biased SSD. When the slope is 1, there is no 

variation between degree of SSD and body mass (Fairbairn 1997).  

Tests were also run to assess the association of degree of SSD with environmental variables. The 

linear SSD measurements upon which correlations were performed were again those that had a 

sample size of at least six sites, and appeared to exhibit SSD, in addition to condylobasal length 

and m1 length due to their relationship with body size (Van Valkenburgh, 1990). Eight sites were 

included in the body mass SSD tests. Due to small sample sizes of C. crocuta body mass and 

craniodental linear measurement SSD, PLS regressions were not run. Instead, Spearman Rank 

Order correlations were performed. This test was chosen to avoid the elevated chance of Type 

I errors associated with individual regression models. Post-cranial SSD sample sizes were too 

small to undertake the tests. 

To further avoid the elevated chance of Type I errors when performing multiple correlations, 

Bonferroni corrections were performed to calculate a stricter critical p-value (Armstrong, 2014). 

This was calculated using the following equation: 

Equation 4.15: 

𝛼1 =
𝛼

𝑇
   

where 𝛼 is the critical p-value (0.05 in this thesis), 𝑇 is the number of Spearman Rank correlations 

performed, and 𝛼1 is the adjusted p-value. 

The Spearman Rank Order tests assessed the correlation of C. crocuta SSD with the minimum 

temperature of the coolest month, maximum temperature of the warmest month, precipitation 

of the driest month, precipitation of the wettest month, closed vegetation cover, semi-open 

vegetation cover and open vegetation cover. For C. crocuta body mass SSD only, correlations 
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were also performed against C. crocuta density, P. leo density, prey biomass (without very large-

sized prey biomass). The density and biomass data were not available for the locations of the 

craniodental sites. Population density data were base-10 logarithmically transformed, and the 

other variables were transformed as outlined in Section 4.4.1.1.  

 

4.4.1.5 Modern Crocuta crocuta body mass, craniodental and post-cranial geographic 

variation 

In order to assess the relationship between present-day C. crocuta body mass and 

environmental variables, Spearman Rank Order correlations were performed. Due to small 

sample sizes (eight sites), a PLS was not performed. Additionally, Spearman Rank Order 

correlations were chosen instead of linear regressions due to the risk of Type 1 errors in the 

latter test. Male and female C. crocuta body masses were treated as separate variables. 

The association between linear measurements and environmental variables were also assessed. 

Where no SSD was apparent in the linear measurements, male and female data were combined, 

and specimens of unknown sex were also included. With sample sizes ranging from 26 to 62 

sites, the craniodental variables had large enough sample sizes to allow PLS regressions to be 

performed. The justification for PLS regression is the same as for the biomass analyses (Section 

4.4.1.1); there were a large number of independent variables, many of which were significantly 

correlated with each other (Appendix 10.6, Table 10.16). The PLS regressions were also 

performed as set out in Section 4.4.1.1. 

Sample sizes of post-cranial measurements were too small to permit the use of PLS regressions. 

Spearman Rank Order correlations were therefore performed, with the same justification as 

discussed above for body mass. Where no SSD was apparent, male and female data were 

combined, and specimens of unknown sex were included. The correlations were performed on 

measurements with at least six data points. 

The correlations and PLS regressions assessed the relationships between C. crocuta body mass 

and linear measurements with C. crocuta density, P. leo density, prey biomass, minimum 

temperature of the coolest month, maximum temperature of the warmest month, precipitation 

of the driest month, precipitation of the wettest month, closed vegetation cover, semi-open 

vegetation cover, open vegetation cover. Correlations were also performed to assess the 

relationship between C. crocuta male and female body masses and distance from the equator. 

For the correlations and PLS regressions, body masses, linear measurements, distance from the 

equator and population density data were base-10 logarithmically transformed. All other 
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variables were treated as in Section 4.4.1.1. PLS regressions were also performed as discussed 

in Section 4.4.1.1, with the PLS regressions that exhibited the highest r2 values assessed for 

robustness. 

Where linear measurements exhibited similar PLS results, tests were conducted to assess 

allometry between the two variables. RMA regressions were performed to assess this allometry, 

with the same approach and justification discussed in assessing Rensch’s Rule (Section 4.4.1.4). 

 

4.4.1.6 Tooth breakage 

The frequency of tooth breakage with sex and age was assessed. Firstly, two split bar graphs, 

one of females and one of males, were produced from the data of specimens from Site 21.12 

(Ngorongoro Conservation Area, Tanzania). This graph showed the number of individuals in each 

age class without broken teeth or partially or fully healed alveoli on one side, and on the other 

side showed the number of individuals with broken teeth, with (partially) healed alveoli, or with 

broken teeth and (partially) healed alveoli. The graph therefore illustrated whether there were 

relatively more individuals without broken or lost teeth in younger or older C. crocuta. The graph 

was repeated, combining data of males and females from all sites. It is acknowledged that there 

may have been some geographical variation in tooth breakage, however, the method was 

warranted in order to increase the sample size, particularly of the older age classes that were 

underrepresented in the data from Site 21.12. 

The percentage of teeth of known condition were calculated for each age class of males and 

females separately from Site 21.12. The calculated percentages were of three categories: 

unbroken, broken, partially or fully healed alveoli. The percentage of teeth of known condition 

was chosen rather than the percentage of all teeth as some teeth were lost or broken post-

mortem so the original condition was unknown. The percentages were plotted into a bar graph 

to assess the proportion of broken and (partially) healed alveoli in each age category. 

Finally, differences in tooth breakage between males and females were assessed. The data were 

first split into age categories, and sites were included if there were data from both males and 

females of the same age within a site. Individual graphs were plotted for each age category, and 

comprised of two separate calculations. The first was the proportion of individuals with no 

broken teeth, broken teeth, (partially) healed alveoli, or broken teeth and (partially) healed 

alveoli. The second was the proportion of teeth of known condition: unbroken, broken or 

(partially) healed alveoli. These graphs were then repeated, but were further split into tooth 

types: incisors (I1-I3, i1-i3), canines (C, c), premolars (P1-P3, p2-p4) and carnassials (P4, m1). The 
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graphs were only produced for wear stages IV, V and VI due to insufficient data from the other 

age classes. 

 

4.4.2 Pleistocene Crocuta crocuta  

4.4.2.1 Body mass reconstruction 

Body mass reconstruction of fossil individuals commonly involves regressing body mass against 

linear or area measurements of a skeletal or dental element from extant species, which 

produces an equation into which the equivalent fossil measurement can be inserted (Martin, 

1990). For carnivores, skeletal elements have included: skull length, occiput-to-orbit length (Van 

Valkenburgh, 1990), measurements of post-cranial elements such as lengths, circumferences 

and cross-sectional areas (Anyonge, 1993), in addition to the head-body length (Van 

Valkenburgh, 1990). 

An additional element that is commonly used to reconstruct carnivore body masses is the first 

lower molar (m1) area (Legendre and Roth, 1988) or length (Van Valkenburgh, 1990; Thackeray 

and Kieser, 1992; Flower, 2016). The theory behind this is that the m1 has low variability in form 

(Legendre and Roth, 1988), is well-developed in carnivores (Van Valkenburgh, 1990), is an 

important meat-slicing tooth (Van Valkenburgh, 1989), and thus varies predictably with body 

mass (Van Valkenburgh, 1990). The use of the m1 of C. crocuta also has a practical advantage of 

being generally well-preserved and abundant in the Pleistocene record. 

Regression models using m1s to predict body masses have included: models with species from 

multiple carnivore families combined (Legendre and Roth, 1988; Van Valkenburgh, 1990; 

Thackeray and Kieser, 1992), models with species split into groups according to body size (Van 

Valkenburgh, 1990), and models of species from a single family (Legendre and Roth, 1988; Van 

Valkenburgh, 1990; Thackeray and Kieser, 1992; Flower, 2016). Models of species from 

individual families have a higher correlation coefficient (Legendre and Roth, 1988), or have a 

greater predictive ability (Van Valkenburgh, 1990), than models that combine species from many 

carnivore families. However, this interspecific approach is unsuitable for the Hyaenidae as the 

family has only four living species. Collinge (2001) recognised this, and used the following 

equation to reconstruct Pleistocene C. crocuta body masses using mean data instead: 

Equation 4.16:  

𝑃𝑙𝑒𝑖𝑠𝑡𝑜𝑐𝑒𝑛𝑒 𝑀𝑎𝑠𝑠 = 𝑀𝑜𝑑𝑒𝑟𝑛 𝑀𝑎𝑠𝑠 ∗ (
𝑃𝑀

𝑀𝑀
)3 

where 𝑀𝑀 is the mean measurement of a skeletal or dental element in modern specimens, and 

𝑃𝑀 is the mean measurement of the same element in Pleistocene specimens. 𝑀𝑜𝑑𝑒𝑟𝑛 𝑀𝑎𝑠𝑠 is 
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the average mass of the modern species. However, this is again not ideal for C. crocuta, given 

that the recorded body masses of this species range widely from 35.83 kg to 80.06 kg (Table 

5.23). The equation thus masks much of the geographic diversity in C. crocuta body size.  

Given the unsuitability of both the interspecific approach and Collinge's (2001) equation for use 

in reconstructing Pleistocene C crocuta body masses, a new interspecific method is proposed 

here explicitly to address this issue. This method involves a collation of body masses and m1 

lengths of C. crocuta from across a wider part of C. crocuta’s range in Africa (Table 4.4), thereby 

accounting for the first time more fully for natural variation. 

All body mass and m1 length measurements were base-10 logarithmically transformed. 

Logarithmic transformation is a common statistical practice studies of body mass reconstruction 

(e.g. Legendre and Roth, 1988; Van Valkenburgh, 1990; Thackeray and Kieser, 1992). Although 

the data in the present study were already normally distributed, logarithmic transformation has 

other benefits such as reducing the influence of outliers. The transformation of values with 

different units of measurements also allows assessment of proportional change between the 

two variables (Smith, 1984). 

There are many debates, summarised by Smith (2009), about the use of ordinary least squares 

(OLS) regression versus reduced major axis (RMA) regression. Generally, OLS assumes lack of 

error in the x-axis variable, and assumes that there is a causal relationship between the x- and 

y-axis variables. However, the error issue is not as important as the causal relationship, given 

that much of the error in this case is likely due to natural variation. Generally, OLS is advocated 

over RMA when the model is used for prediction, although extrapolated values should be used 

with caution (Smith, 2009). Moreover, most of the correction factors for detransformation bias 

(see below) have been formulated for least squares regression (Smith, 1993). In light of this, it 

was therefore deemed suitable to use OLS regression in the present study.  

In order to assess the strength of the model, a number of statistical analyses were employed. As 

is standard, the p-value and r2 values were assessed. However, the r2 value is not necessarily a 

good indicator of the predictive ability of the model, due to the influence of the range of the x- 

and y- axis values, and the slope of the regression line (Smith, 1984). Therefore, the percent 

prediction error (%PE) was calculated, following Smith (1984) and Van Valkenburgh (1990): 
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Equation 4.17:  

%𝑃𝐸 =   
𝑦 − ((𝑎𝑛𝑡𝑖𝑙𝑜𝑔 𝑧) ∗ 𝐶𝐹)

(𝑎𝑛𝑡𝑖𝑙𝑜𝑔 𝑧) ∗ 𝐶𝐹
∗ 100 

where 𝑦 is the original untransformed y value, and 𝑧 is the predicted y value, prior to 

detransformation. 𝐶𝐹 is the correction factor for detransformation bias (see below). All the 

individual %PE values are then averaged to produce a mean %PE value.   

The percent standard error of the estimate (%SEE) values were also used to assess the model, 

following Brody (1945), cited in Smith (1984), Smith (1984) and Van Valkenburgh (1990): 

Equation 4.18:  

%𝑆𝐸𝐸 = 𝑎𝑛𝑡𝑖𝑙𝑜𝑔(𝑆𝐸𝐸 + 2) − 100 

where 𝑆𝐸𝐸 is the standard error of the estimate, prior to detransformation. The lower the %PE 

and %SEE, the stronger the predictive ability of the model. 

To assess whether there were any outlying data points, the residuals and leverage values (ℎ𝑖) 

were considered. The leverage values indicate the distance of an x value to the mean x values.  

The leverage values were considered large if they exceeded a threshold, calculated with the 

equation (Helsel and Hirsch, 2002): 

Equation 4.19:  

ℎ𝑖 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 3 ∗ 𝑝/𝑛 

where 𝑝 is the number of coefficients in the model, and 𝑛 is the number of observations. 

The residual values indicate outliers in the y direction. Standardised residuals with a value 

greater than 3 are extreme outliers, and those greater than 2 are considered outliers, following 

Helsel and Hirsch (2002). 

Cook’s Distance values (𝐷𝑖) were also assessed. These values take into account the residuals and 

the leverage values, so they can indicate any influential points in both the x and y directions 

(Cook, 1977; Cook and Weisberg, 1980). Helsel and Hirsch (2002) suggested that 𝐷𝑖 is considered 

influential if it is greater than the F statistic at 0.1 significance, with degrees of freedom at 𝑝 + 1 

and 𝑛 − 𝑝, where 𝑛 is the numer of observations, and 𝑝 is the number of coefficients. Bollen 

and Jackman (1990, cited in Flower, 2016) proposed a threshold of 4/𝑛. The smaller of the two 

values will be used as the threshold. 

The next step was to calculate the Pleistocene body mass values. The Pleistocene m1 length 

values were base-10 logarithmically transformed so that they could be entered into the OSL 

equation to calculate a corresponding body mass value. 
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In a model in which the x- and y-value axes have been log transformed, the predicted values 

suffer from detransformation bias. That is, statistical manipulation of logarithmically 

transformed values results in logarithmic values that are not equivalent to the arithmetic 

(detransformed) values. For example, the arithmetic mean of logarithmic values is actually the 

geometric mean when detransformed. Therefore, when a value of y is derived from a regression 

model with logarithmically transformed x- and y-axis values, detransformation of this value 

results in the geometric mean as the estimate of the y value. Correction factors must therefore 

be applied to the detransformed, predicted y values (Smith, 1993). 

One correction factor is the quasi-maximum likelihood estimator (QMLE). For a regression in 

which the x- and y-axis values were base-10 logarithmically transformed, the equation follows 

Smith (1993): 

Equation 4.20:  

𝑄𝑀𝐿𝐸 = 𝑎𝑛𝑡𝑖𝑙𝑜𝑔 (𝑅𝑀𝑆 ∗ 1.1513) 

where 𝑅𝑀𝑆 is the residual mean square (mean square error) prior to detransformation. The 

antilog taken here is the base-10 antilog (Smith, 1993). 

A second correction factor is the smearing estimate (SE), which is the mean of the 

detransformed residuals (Duan, 1983; Smith, 1993): 

Equation 4.21:  

𝑆𝐸 =
1

𝑛
∑(𝑎𝑛𝑡𝑖𝑙𝑜𝑔 𝑟𝑖) 

where 𝑟𝑖 is the residual prior to detransformation. 

A third correction factor is the ratio estimator (RE) (Snowdon, 1991, cited in Smith, 1993; Smith, 

1993): 

Equation 4.22:  

𝑅𝐸 =
�̅�

𝑎𝑛𝑡𝑖𝑙𝑜𝑔 𝑧̅
 

where �̅�  is the mean of the observed y values prior to transformation, and 𝑧̅ is the mean of the 

predicted y values prior to detransformation. 

These correction factors are simply multiplied by the detransformed y value to produce the 

corrected y value (Smith, 1993), for example: 
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Equation 4.23:  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑦 = 𝑄𝑀𝐿𝐸 ∗ (𝑎𝑛𝑡𝑖𝑙𝑜𝑔 𝑧) 

where 𝑧 is the predicted y value prior to detransformation. QMLE can be substituted for SE or 

RE. 

As the correction factors potentially result in over-correction (Smith, 1993), all correction factors 

were calculated for the model and assessed for suitability. 

 

Prediction intervals (𝑃𝐼) were calculated for each predicted Pleistocene body mass value. This is 

because the predicted value has uncertainties surrounding it (Smith, 1996). The following 

equation was used (Helsel and Hirsch, 2002): 

Equation 4.24:  

𝑃𝐼 = 𝑡 ∗ 𝑆𝐸𝐸 ∗ √1 + (
1

𝑛
) +

(𝑥0 − �̅�)2

𝑆𝑆𝑥
 

where 𝑡 is the t-distribution value. In this study, the t-distribution value is for 95 % with degrees 

of freedom of 𝑛 – 2. 𝑆𝐸𝐸 is the standard error of the estimate. 𝑛 is the sample size. 𝑥0 is x-axis 

value used to predict a new y value. �̅� is the mean value of the x values in the model. 𝑆𝑆𝑥 is the 

sum of squares for the x-axis, calculated by (Helsel and Hirsch, 2002): 

Equation 4.25:  

𝑆𝑆𝑥 =  ∑(𝑥𝑖 −  �̅�)2 

where 𝑥𝑖 is the ith x value in the model.  

The further the x value is from the mean x value, the greater the prediction interval (Helsel and 

Hirsch, 2002). The resulting prediction interval, once detransformed, was multiplied by the 

correction factor, as in Equation 8.  

The body mass reconstructions are detailed in Spreadsheet 9. 

 

4.4.2.2 Body mass variation 

Predicted Pleistocene C. crocuta body masses and their corresponding prediction intervals were 

plotted to visually compare body masses between assemblages. An ANOVA with post-hoc 

Tukey’s test was conducted on datasets with a sample size of ten or more, in order to determine 

any significant differences between assemblages. Prior to the test, Levene’s test was conducted 

to check that the data conformed to the assumption of normal variance. Where datasets were 
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not normally distributed (indicated by Anderson Darling tests), Mann Whitney tests were also 

used to assess significant differences. It is acknowledged that the ANOVA and Mann Whitney 

tests were unable to take into account the prediction intervals of each data point. 

Further analyses were undertaken on the body masses from Late Pleistocene British 

assemblages. Data were combined from all assemblages from MIS 5e, all assemblages from 

MIS 5c, and all assemblages from MIS 3. Tests were run to assess whether body masses from 

each marine oxygen isotope stage were significantly different to each other. In the case of 

normally distributed data, t-tests were performed. Mann Whitney tests were performed on non-

normally distributed data.  

Where possible, the body masses from MIS 3, British assemblages were also plotted in date 

order, according to direct dating of the specimens from the same assemblage. Assemblages with 

a broad range of dates such as Pin Hole (Figure 4.7) were excluded. Preferred dates were those 

derived from C. crocuta specimens, or bones of other species assumed to be gnawed by C. 

crocuta. The purpose of plotting the body masses chronologically was firstly to assess whether 

there was a consistent direction of body mass change over time. Secondly, the plot enabled an 

assessment of whether body masses changed subsequent to two potentially important events. 

The first of these events was the earliest arrival of modern humans in Britain, dated to 

42,350−40,760 cal BP (Higham et al., 2011c; Proctor et al., 2017). The second event was the 

point after which interstadials became shorter and less frequent, around 36.5 b2k (years before 

A.D. 2000), as evidenced by the Greenland ice core δ18O data (Andersen et al., 2004; Rasmussen 

et al., 2014; Seierstad et al., 2014). 

The influence of vegetation was assessed by colour coding the body mass data according to the 

dominant vegetation type in the vicinity of each site. The vegetation classifications were 

grassland, forested or mixed. Only those deposits from which vegetation was directly 

reconstructed were included (see Appendix 10.1, Table 10.1 and Table 10.2 for details and 

references). 

C. crocuta body mass reconstructions were plotted against those from other predators and 

potential prey species to assess whether there was covariation in body mass between the 

species in Britain. The body mass data for C. lupus, derived from the m1, are from Flower (2016). 

The other species included are P. leo (spelaea), U. arctos, Rhinocerotidae (both S. hemitoechus 

and C. antiquitatis plotted the in same graph), M. giganteus, R. tarandus, C. elaphus, C. 

capreolus, D. dama, E. ferus, B. primigenius and B. priscus. These were all reconstructed using 

the post-crania (deemed to be the most accurate) by Collinge (2001). 
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The mean and standard deviations of the C. crocuta body mass reconstructions were used in the 

comparisons with Collinge's (2001) data. It is acknowledged that this means that the prediction 

intervals for C. crocuta body masses could not be included. The sample size was insufficient to 

run tests for significant correlation. 

 

4.4.2.3 Morphometrics 

The craniodental and post-cranial morphometric data were displayed in box and whisker plots 

and individual value plots to allow visual comparison of the data from each assemblage. Where 

there were fewer than four values, data were plotted in a table. This was also the case for the 

post-cranial indices. 

For measurements with sample sizes greater than ten, statistical tests were conducted to assess 

significant differences between assemblages. ANOVA with post-hoc Tukey’s tests were 

conducted on three or more datasets that were normally distributed and exhibited normal 

variance, as indicated by Anderson Darling and Levene’s tests. In the case of non-normal 

variance but normal distributions, individual t-tests were conducted. Where data were not 

normally distributed, Mann Whitney tests were performed. 

Data of mandibular bending strength and mechanical advantage of the masticatory muscle were 

displayed in line graphs. These graphs displayed the profiles of each mandible, and thus showed 

the bending strength of mechanical advantage values at each position along each mandible. 

Where the significant difference tests indicated that the morphometrics exhibited different 

trends, allometric relationships were assessed. The reason for this was to understand whether 

some elements were relatively larger or smaller than others with overall size. To test for 

allometry, RMA regressions were performed, following the reasoning outlined in Section 4.4.1.4.  

RMA regressions were also performed to assess the allometric relationships between the length 

and width of each premolar, e.g. P2 length and P2 width. The purpose of this was to assess 

whether the relationship between length and width of each premolar was constant with changes 

in tooth size. Hyperallometric or hypoallometric relationships between length and width may 

indicate a change in robustness with overall tooth size. 

Premolar robustness was further investigated in C. crocuta from Britain. Scatterplots were made 

for each premolar with length and width on each axis, and data split into age (early Middle 

Pleistocene, MIS 9, later 7, 5e, 5c and 3). The purpose of constructing these graphs was to assess 

whether premolars were more or less robust through time. 
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4.4.2.4 Age profiles of assemblages 

Prior to assessing tooth breakage, the age profiles of each assemblage were assessed in order 

to determine whether there was a dominance of young or old individuals, or a relatively even 

split of age classes. The percentage of P3s and p3s within each wear stage (III to IX) was 

calculated for each assemblage and plotted into a bar graph. For assemblages with fewer than 

ten P3/p3 data points, the wear stage of all teeth were used to calculate the percentage of teeth 

that exhibited the following wear: slight, slight/medium, medium, medium/heavy, heavy. 

Unworn teeth were excluded in case they had not been fully erupted from the jaw. 

 

4.4.2.5 Tooth breakage 

The percentage of teeth of known condition that were broken or had (partially) healed alveoli 

was calculated for each assemblage with a sample size of at least ten. This was firstly conducted 

for all teeth combined, then split into individual tooth types (incisors, canines, premolars and 

carnassials). These percentages were then plotted in bar graphs to allow visual comparison of 

the percentages of broken and (partially) healed alveoli between assemblages. 

All the aforementioned statistical analyses were performed in Microsoft Excel, Minitab® 

Statistical Software 17.3.1, Minitab® Statistical Software 18.1 and PAST 3.12 (Hammer et al., 

2001). 

 

4.4.3 Extirpation of Crocuta crocuta from Europe 

Radiocarbon dates of C. crocuta, P. leo (spelaea), C. antiquitatis, C. elaphus and R. tarandus were 

used in five models to assess the chronology of these species in Europe during the Late 

Pleistocene. Additionally, the models were used to determine the timing of the extirpation of 

C. crocuta from Europe (excluding Russia). For P. leo (spelaea) and C. antiquitatis the models 

were used to determine the end date of each species’ occupation of areas that C. crocuta also 

inhabited. 

The models were produced using OxCal 4.3 (Bronk Ramsey, 2009). For C. crocuta, P. leo (spelaea) 

and C. antiquitatis, dates from each region were input using overlapping phases in the model, 

which created end boundaries for each region (following Blockley and Pinhasi, 2011). 

As C. elaphus and R. tarandus still live in Europe today, it was not appropriate to create end 

dates for these species. Therefore, the dates of these species were split into their appropriate 

regions using phases without boundaries. 



4. Materials and Methods 
 

- 171 - 
 

The R_combine function in OxCal was used to combine either repeated radiocarbon dates on 

the same specimen, or radiocarbon dates on multiple bones from the same individual (such as 

in the case of an articulated skeleton). The calibration curve used for all models was IntCal13 

(Reimer et al., 2013). The modelled, calibrated dates were plotted against the NGRIP ice core 

δ18O record (Andersen et al., 2004).  
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5 Modern Crocuta crocuta 

 

5.1 Population biomass 

5.1.1  Introduction 

C. crocuta is one of the most abundant large predators in Africa. Records of C. crocuta population 

biomass range from 0.47 kg/km2 in the Kalahari Gemsbok National Park, South Africa, to 

76.93 kg/km2 in the Ngorongoro Crater, Tanzania (Hatton et al. 2015, and references therein). 

As explored in Section 2.3.2, there have been localised studies upon some aspects of C. crocuta 

population dynamics. However, few studies have focussed upon larger scale geographic 

patterns, environmental correlates and population variation of this species in relation to their 

major competitor, P. leo. The habitats of the two species overlap considerably, with 94.5 % of P. 

leo’s range overlapping with that of C. crocuta (Périquet et al., 2015). Despite this and the fact 

that the two species frequently compete for food (Section 2.3.3), the densities of both species 

are often correlated (Périquet et al., 2015). An analysis of the available data on C. crocuta 

populations in the literature is thus justified to shed further light on the effect of the 

environment and possible competition on this species’ population ecology. 

An understanding of the influences upon C. crocuta biomass may provide insights into 

potentially larger scale changes in size observed across the Pleistocene, particularly regarding 

its ultimate extirpation from Europe. 

The research questions posed are threefold: 

• How far are C. crocuta and P. leo abundances mediated by competition with each other, 

and other large predators? 

• Do other environmental variables influence C. crocuta and P. leo abundance? 

• Is there evidence of environmental partitioning between C. crocuta and P. leo? 

 

5.1.2  Results 

5.1.2.1 African predator biomasses 

As illustrated in Figure 5.1, alongside P. leo, C. crocuta is frequently the most abundant predator 

in the African sites, and both predators occur at the highest population biomass. Despite this, 

the Kolmogorov-Smirnov tests (Table 5.1) indicate that the biomass distributions of P. leo and 

C. crocuta are significantly different, although the lower test statistic indicates that the 
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distributions are more similar than when compared with any other species. P. pardus and 

A. jubatus are intermediate, frequently occurring at lower biomasses. P. brunnea and L. pictus 

occur most infrequently and at the lowest biomasses. Differences between the species are also 

shown in Figure 5.2, which shows the relative proportions of each predator in each site, in terms 

of their biomass. The sites with the greatest proportion of C. crocuta are Amboseli National Park 

in Kenya with C. crocuta making up 79.14 % of the total predator biomass, and the Ngorongoro 

Crater in Tanzania, from the year 1965, with 76.89 %. Together, C. crocuta and P. leo make up 

the largest proportion of predator biomass in most sites. A notable site with smaller biomasses 

of C. crocuta and P. leo is the Kalahari National Park in South Africa where P. pardus, A. jubatus 

and P. brunnea together make up 36.22 % of the predator biomass. 

There is some evidence of temporal change in the relative abundance of each species, most 

notable in the Ngorongoro Crater, and in the Serengeti, Tanzania. The raw biomass values for 

both species are presented in Table 5.2. In the Ngorongoro Crater, both species show biomass 

decreases in the years 1988 and 1997. Additionally, the earliest record of P. leo biomass, from 

1965, is the lowest of all years. In the Serengeti, Table 5.2 illustrates that the change in 

proportion between the two species is primarily driven by an increase in C. crocuta biomass.  
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Figure 5.1: Histogram of base-10 logarithmically transformed biomass (originally in kg/km2) of 

the large African predators across 30 datasets . ‘Combined’ is the combined biomass of P. 

pardus, A. jubatus, P. brunnea and L. pictus. 
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Table 5.1: Results of Kolmogorov-Smirnov tests of distribution similarity for the biomass data 

across 30 datasets. ‘Combined’ is the combined biomass of P. pardus, A. jubatus, P. brunnea and 

L. pictus. The top figure in each box is the test statistic, and the bottom figure is the p-value. 

Where the p-value is stated as ‘<0.05’, the value was so low that a meaningful reading was not 

given. All tests are therefore significant at 95 % confidence. 

 C. crocuta P. leo P. pardus A. jubatus L. pictus Combined 

C. crocuta  0.367 
0.025 

0.767 
<0.05 

0.733 
<0.05 

0.929 
<0.05 

0.663 
<0.05 

P. leo   0.893 
<0.05 

0.83 
<0.05 

0.967 
<0.05 

0.8 
<0.05 

P. pardus    0.655 
<0.05 

0.889 
<0.05 

 

A. jubatus     0.706 
<0.05 

 

L. pictus       
 

Combined       
 

 

 

 

 

Table 5.2: Biomass values for C. crocuta and P. leo in the Ngorongoro Crater and the Serengeti 

ecosystem, from Hatton et al. (2015) and references therein. The figures illustrate temporal 

changes in biomass. Note that the years are those stated by Hatton et al. (2015), and may not 

be exact as some datasets are comprised of data from a number of years. 

Site Year 
C. crocuta 
biomass 
(kg/km2) 

P. leo biomass 
(kg/km2) 

Ngorongoro Crater 1965 60.577 14.538 

Ngorongoro Crater 1978 62.515 45.165 

Ngorongoro Crater 1988 45.962 43.941 

Ngorongoro Crater 1997 34.323 26.155 

Ngorongoro Crater 2004 76.923 29.077 

    

Serengeti ecosystem 1971 6 12.096 

Serengeti ecosystem 1977 8.586 11.501 

Serengeti ecosystem 1986 10.322 11.768 

Serengeti ecosystem 2003 16.4 15.12 
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Figure 5.2: Proportions of large predator biomasses within each African site. 
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5.1.2.2 Crocuta crocuta population biomass 

Partial least squares (PLS) regressions were performed in order to address the research 

questions. These are summarised in Table 5.3. PLS 1 assessed influences upon C. crocuta 

biomass and is significant with a p-value of <0.05 and an r2 value of 0.837. The plot of the 

residuals versus the order of sites (Figure 5.3) was assessed. This shows that there are some 

clusters of observations that have residuals increasing or decreasing together, rather than 

fluctuating. This may mean that the results are influenced by the order in which the sites are 

entered into the PLS. In order to assess this, four further PLS regressions were run (PLS 1b – e), 

with the sites entered in random orders. The resulting standardised coefficients (Table 5.4) are 

the same for each PLS run, indicating that the site order does not affect the results.  

 

Table 5.3: Details of the Partial Least Squares Regressions run on C. crocuta and P. leo biomass. 

PLS 
regression 

Dependent variable p-value r2 value 

PLS 1 C. crocuta biomass <0.05 0.837 

PLS 2 C. crocuta biomass (without Kalahari) <0.05 0.957 

PLS 3 P. leo biomass  <0.05 0.608 

PLS 4 P. leo biomass (without Kalahari) <0.05 0.967 

 

 

 

 

Figure 5.3: The observation order (the order in which the sites were input to PLS 1), against the 

standardised residuals. 
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Table 5.4: The standardised coefficients for each PLS 1 model run (PLS 1a-1e), with sites input 

to the model in random orders. 

Variable Standardised coefficient 

P. leo biomass 0.13 

Other predator biomass 0.109 

Very small prey biomass 0.175 

Small prey biomass 0.146 

Medium prey biomass 0.24 

Large prey biomass 0.093 

Very large prey biomass 0.025 

Min. temperature of coolest month 0.009 

Max. temperature of warmest month -0.108 

Temperature seasonality -0.003 

Precipitation of driest month 0.053 

Precipitation of wettest month 0.093 

Precipitation seasonality 0.019 

Closed vegetation cover 0.075 

Semi-open vegetation cover 0.034 

Open vegetation cover -0.092 

 

 

The plot of standardised residuals against leverages (Figure 5.4) was assessed for outliers and 

leverage points. Points were classed as outliers if the residuals had a value greater or less than 

two. Only one site is an outlier: Amboseli National Park, Kenya. In the case of PLS 1, the LRL value 

(see Section 4.4.1.1) is 0.133. Four sites fall just beyond the LRL. A fifth site, Kalahari Gemsbok 

National Park in South Africa, has an extreme leverage value of 0.685. As leverage points may 

have a strong influence upon the coefficients, the PLS was run again without Kalahari Gemsbok 

National Park. 

The new PLS (PLS 2) with C. crocuta biomass as the dependent variable is again significant with 

a p-value of < 0.05 and a greater r2 value of 0.957. Analysis of the chart of standardised residuals 

versus leverages for PLS 2 (Figure 5.5) reveals that Nairobi National Park (Kenya from 2002) and 

the Serengeti ecosystem (Tanzania from 2003) are both outliers, although they do not fall far 

beyond the outlier reference line. Five sites are classed as leverage points: Amboseli National 

Park in Kenya, Hwange National Park in Zimbabwe, Lake Manyara National Park in Tanzania, 

Nairobi National Park in Kenya from 1966, and Queen Elizabeth National Park in Uganda. 

However, with leverage values ranging from 0.572 to 0.69, these sites are not far beyond the 

LRL value of 0.552.  
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Figure 5.4: Standardised residuals against leverage values for each site in PLS 1, with C. crocuta 

biomass as the dependent variable. The horizontal lines indicate the outlier boundaries. The 

vertical line represents the leverage reference line boundary. The numbers on the points 

correspond to sites as follows: 1. Amboseli National Park, 2007, 2. Hluhluwe iMfolozi National 

Park, 1982, 3. Hluhluwe iMfolozi National Park, 2000, 4. Hwange National Park, 1973, 5. Kalahari 

Gemsbok National Park, 1979, 6. Kidepo Valley National Park, 2009, 7. Kruger National Park, 

1975, 8. Kruger National Park, 1984, 9. Kruger National Park, 1997, 10. Kruger National Park, 

2009, 11. Lake Manyara National Park, 1970, 12. Maasai Mara National Reserve, 1992. 13. 

Maasai Mara National Reserve, 2003, 14. Mkomazi Game Reserve, 1970 (dry), 15. Mkomazi 

Game Reserve, 1970 (wet), 16. Nairobi National Park, 1966, 17. Nairobi National Park, 1976, 18. 

Nairobi National Park, 2002, 19. Ngorongoro Crater, 1965, 20. Ngorongoro Crater, 1978, 21. 

Ngorongoro Crater, 1988, 22. Ngorongoro Crater, 1997, 23. Ngorongoro Crater, 2004, 24. Queen 

Elizabeth National Park, 2009, 25. Serengeti ecosystem, 1971, 26. Serengeti ecosystem, 1977, 

27. Serengeti ecosystem, 1986, 28. Serengeti ecosystem, 2003, 29. Tarangire National Park, 1962 

(dry), 30. Tarangire National Park, 1962 (wet). 
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Figure 5.5: Standardised residuals against leverage values for each site in PLS 2, with C. crocuta 

biomass as the dependent variable. The horizontal lines indicate the outlier boundaries. The 

vertical line represents the leverage reference line boundary. The numbers on the points 

correspond to sites as follows: 1. Amboseli National Park, 2007, 2. Hluhluwe iMfolozi National 

Park, 1982, 3. Hluhluwe iMfolozi National Park, 2000, 4. Hwange National Park, 1973, 5. Kidepo 

Valley National Park, 2009, 6. Kruger National Park, 1975, 7. Kruger National Park, 1984, 8. 

Kruger National Park, 1997, 9. Kruger National Park, 2009, 10. Lake Manyara National Park, 1970, 

11. Maasai Mara National Reserve, 1992. 12. Maasai Mara National Reserve, 2003, 13. Mkomazi 

Game Reserve, 1970 (dry), 14. Mkomazi Game Reserve, 1970 (wet), 15. Nairobi National Park, 

1966, 16. Nairobi National Park, 1976, 17. Nairobi National Park, 2002, 18. Ngorongoro Crater, 

1965, 19. Ngorongoro Crater, 1978, 20. Ngorongoro Crater, 1988, 21. Ngorongoro Crater, 1997, 

22. Ngorongoro Crater, 2004, 23. Queen Elizabeth National Park, 2009, 24. Serengeti ecosystem, 

1971, 25. Serengeti ecosystem, 1977, 26. Serengeti ecosystem, 1986, 27. Serengeti ecosystem, 

2003, 28. Tarangire National Park, 1962 (dry), 29. Tarangire National Park, 1962 (wet). 

 

The standardised coefficients of the PLS 2 (Figure 5.6) show some differences when compared 

to PLS 1. Notably, minimum temperature of the coolest month and semi-open vegetation cover 

are more important in PLS 2. PLS 1 shows that P. leo biomass, other predator biomass, and 

precipitation of the wettest month have positive influences upon C. crocuta biomass. However, 

removal of the Kalahari suggests that these three variables have only a small, negative influence.  
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Figure 5.6: Standardised coefficients from PLS 1 (with Kalahari) and PLS 2 (without Kalahari) 

with C. crocuta biomass as the dependent variable. 
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Table 5.5: r2 values and p-values of repeated runs of PLS 2, with C. crocuta biomass as the 

dependent variable. Each run removed one site at a time. 

Run 
no. 

Removed site r2 value p-value 

1 Amboseli National Park, Kenya, 2007 0.961 <0.05 

2 Hluhluwe iMfolozi National Park, South Africa, 1982 0.96 <0.05 

3 Hluhluwe iMfolozi National Park, South Africa, 2000 0.958 <0.05 

4 Hwange National Park, Zimbabwe, 1973 0.951 <0.05 

5 Kidepo Valley National Park, Uganda, 2009 0.961 <0.05 

6 Kruger National Park, South Africa, 1975 0.958 <0.05 

7 Kruger National Park, South Africa, 1984 0.96 <0.05 

8 Kruger National Park, South Africa, 1997 0.957 <0.05 

9 Kruger National Park, South Africa, 2009 0.957 <0.05 

10 Lake Manyara National Park, Tanzania, 1970 0.955 <0.05 

11 Maasai Mara National Reserve, Kenya, 1992 0.956 <0.05 

12 Maasai Mara National Reserve, Kenya, 2003 0.956 <0.05 

13 Mkomazi Game Reserve, Tanzania, 1970 (dry) 0.95 <0.05 

14 Mkomazi Game Reserve, Tanzania, 1970 (wet) 0.95 <0.05 

15 Nairobi National Park, Kenya, 1966 0.959 <0.05 

16 Nairobi National Park, Kenya, 1976 0.968 <0.05 

17 Nairobi National Park, Kenya, 2002 0.967 <0.05 

18 Ngorongoro Crater, Tanzania, 1965 0.954 <0.05 

19 Ngorongoro Crater, Tanzania, 1978 0.953 <0.05 

20 Ngorongoro Crater, Tanzania, 1988 0.956 <0.05 

21 Ngorongoro Crater, Tanzania, 1997 0.959 <0.05 

22 Ngorongoro Crater, Tanzania, 2004 0.958 <0.05 

23 Queen Elizabeth National Park, Uganda, 2009 0.957 <0.05 

24 Serengeti ecosystem, Tanzania, 1971 0.959 <0.05 

25 Serengeti ecosystem, Tanzania, 1977 0.96 <0.05 

26 Serengeti ecosystem, Tanzania, 1986 0.957 <0.05 

27 Serengeti ecosystem, Tanzania, 2003 0.969 <0.05 

28 Tarangire National Park, Tanzania, 1962 (dry) 0.96 <0.05 

29 Tarangire National Park, Tanzania, 1962 (wet) 0.954 <0.05 

 

 

In order to assess the validity of the results, PLS 2 was re-run 29 times, removing one site each 

time. All runs were significant with p-values of <0.05. The r2 values ranged from 0.95 to 0.969 

(Table 5.5), indicating that most of the variation in C. crocuta biomass was explained by each PLS 

run, regardless of the site that was removed. The confidence intervals of the standardised 

coefficients are low, ranging from 0.008 for closed vegetation cover, to 0.021 for minimum 

temperature of the coolest month (Table 5.6) This indicates that confidence can be placed in the 

results, as no one site alters the results. This can also be seen in the plot of the standardised 

coefficients for each run (Figure 5.7). The coefficients of some variables (P. leo and other 

predator biomasses, large and very large prey biomasses, precipitation seasonality) cluster 

around zero, suggesting that these hold little importance in explaining the variation in C. crocuta 
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biomass. However, other variables consistently plot far from zero, indicating importance in 

explaining C. crocuta biomass variation. These include very small prey biomass and semi-open 

vegetation on the positive side, and open vegetation on the negative side. The largest 

standardised coefficients are medium prey biomass and minimum temperature of the coolest 

month, both of which are positively associated with C. crocuta biomass. This pattern reflects 

that seen in the original PLS 2 (Figure 5.6). 

 

 

Table 5.6: Standardised coefficient means and confidence intervals (CI) for repeated runs of 

PLS 2, with C. crocuta biomass as the dependent variable. 

Independent variable 
Standardised 
coefficient 
mean 

Standardised 
coefficient CI 

Standardised 
coefficient 
minimum CI 

Standardised 
coefficient 
maximum CI 

P. leo biomass  -0.035 0.011 -0.047 -0.024 

Other predator biomass -0.065 0.014 -0.079 -0.050 

Total biomass very small 
prey  

0.306 0.019 0.287 0.325 

Total biomass small prey  0.136 0.018 0.118 0.154 

Total biomass medium prey  0.635 0.011 0.624 0.647 

Total biomass large prey  0.111 0.013 0.098 0.124 

Total biomass very large 
prey  

-0.012 0.011 -0.023 -0.001 

Minimum temperature 
coolest month  

0.577 0.021 0.555 0.598 

Maximum temperature 
warmest month  

-0.096 0.015 -0.111 -0.081 

Temperature seasonality  0.082 0.009 0.074 0.091 

Precipitation driest month  0.136 0.012 0.123 0.148 

Precipitation wettest month  -0.102 0.019 -0.121 -0.084 

Precipitation seasonality  0.073 0.016 0.058 0.089 

Closed vegetation  0.094 0.008 0.087 0.102 

Semi-open vegetation  0.395 0.012 0.383 0.406 

Open vegetation  -0.234 0.009 -0.243 -0.225 
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Figure 5.7: Standardised coefficients from repeated runs of PLS 2, with C. crocuta biomass as 

the dependent variable. 

 

 

5.1.2.3 Panthera leo population biomass 

A further PLS regression (PLS 3) was performed with P. leo biomass as the dependent variable. 

This was in order to determine any differences in the influences upon the biomasses of P. leo 

compared with C. crocuta. PLS 3 is significant with a p-value of <0.05, although the r2 value is 

only 0.608. Only one site shows as an outlier in Figure 5.8: Tarangire National Park, wet season. 

The LRL value is 0.067 and a number of sites fall beyond this line. Only Kalahari Gemsbok 

National Park has an extreme leverage value (0.471), warranting a re-run of the PLS.  
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Figure 5.8: Standardised residuals against leverage values for each site in PLS 3, with P. leo 

biomass as the dependent variable. The horizontal lines indicate the outlier boundaries. The 

vertical line represents the leverage reference line boundary. The numbers on the points 

correspond to sites as follows: 1. Amboseli National Park, 2007, 2. Hluhluwe iMfolozi National 

Park, 1982, 3. Hluhluwe iMfolozi National Park, 2000, 4. Hwange National Park, 1973, 5. Kalahari 

Gemsbok National Park, 1979, 6. Kidepo Valley National Park, 2009, 7. Kruger National Park, 

1975, 8. Kruger National Park, 1984, 9. Kruger National Park, 1997, 10. Kruger National Park, 

2009, 11. Lake Manyara National Park, 1970, 12. Maasai Mara National Reserve, 1992. 13. 

Maasai Mara National Reserve, 2003, 14. Mkomazi Game Reserve, 1970 (dry), 15. Mkomazi 

Game Reserve, 1970 (wet), 16. Nairobi National Park, 1966, 17. Nairobi National Park, 1976, 18. 

Nairobi National Park, 2002, 19. Ngorongoro Crater, 1965, 20. Ngorongoro Crater, 1978, 21. 

Ngorongoro Crater, 1988, 22. Ngorongoro Crater, 1997, 23. Ngorongoro Crater, 2004, 24. Queen 

Elizabeth National Park, 2009, 25. Serengeti ecosystem, 1971, 26. Serengeti ecosystem, 1977, 

27. Serengeti ecosystem, 1986, 28. Serengeti ecosystem, 2003, 29. Tarangire National Park, 1962 

(dry), 30. Tarangire National Park, 1962 (wet). 

 

The PLS of P. leo biomass without Kalahari National Park (PLS 4) is again significant with a p-

value of <0.05. The r2 value greater at 0.967. Nairobi National Park (Kenya from 1966) and 

Ngorongoro Crater (Tanzania from 1965) were identified as outliers, although they do not fall 

far beyond the boundaries in Figure 5.9. Furthermore, five sites were identified as leverage 

points. However, with values ranging from 0.833 to 0.937, and relative to the LRL of 0.828, they 

are not extreme values. 
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Figure 5.9: Standardised residuals against leverage values for each site in PLS 4, with P. leo 

biomass as the dependent variable. The horizontal lines indicate the outlier boundaries. The 

vertical line represents the leverage reference line boundary. The numbers on the points 

correspond to sites as follows: 1. Amboseli National Park, 2007, 2. Hluhluwe iMfolozi National 

Park, 1982, 3. Hluhluwe iMfolozi National Park, 2000, 4. Hwange National Park, 1973, 5. Kidepo 

Valley National Park, 2009, 6. Kruger National Park, 1975, 7. Kruger National Park, 1984, 8. 

Kruger National Park, 1997, 9. Kruger National Park, 2009, 10. Lake Manyara National Park, 1970, 

11. Maasai Mara National Reserve, 1992. 12. Maasai Mara National Reserve, 2003, 13. Mkomazi 

Game Reserve, 1970 (dry), 14. Mkomazi Game Reserve, 1970 (wet), 15. Nairobi National Park, 

1966, 16. Nairobi National Park, 1976, 17. Nairobi National Park, 2002, 18. Ngorongoro Crater, 

1965, 19. Ngorongoro Crater, 1978, 20. Ngorongoro Crater, 1988, 21. Ngorongoro Crater, 1997, 

22. Ngorongoro Crater, 2004, 23. Queen Elizabeth National Park, 2009, 24. Serengeti ecosystem, 

1971, 25. Serengeti ecosystem, 1977, 26. Serengeti ecosystem, 1986, 27. Serengeti ecosystem, 

2003, 28. Tarangire National Park, 1962 (dry), 29. Tarangire National Park, 1962 (wet). 

 

Comparison of the standardised coefficients from the two PLS runs indicates that removal of the 

Kalahari National Park has resulted in large changes in the magnitude of the relationship 

between many of the variables and P. leo biomass (Figure 5.10). In PLS 4, the strongest positive 

associations with P. leo biomass are very small prey biomass and the maximum temperature of 

the warmest month, followed by precipitation seasonality. The main negative associations are 

temperature seasonality and semi-open vegetation cover, followed by precipitation of the 

wettest month and the minimum temperature of the coolest month.    
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Figure 5.10: Standardised coefficients from PLS 3 and PLS 4 with P. leo biomass as the dependent 

variable. 
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PLS 4 with P. leo biomass as the dependent variable was re-run 29 times, removing one site each 

time. Unlike the repeated C. crocuta PLS, the results for PLS 4 indicate that there was 

considerable variation in the results when some sites were removed. The p-values are <0.05 for 

each run, indicating that the regressions are significant. However, the r2 values range from 0.983 

to 0.555 (Table 5.7), indicating that there is much variation in P. leo biomass that is unexplained 

by the variables. The PLS regressions without the following sites have the lowest r2 values: 

Kidepo Valley National Park, Lake Manyara National Park, Mkomazi Game Reserve (dry), 

Mkomazi Game Reserve (wet), Nairobi National Park (1976), Nairobi National Park (2002), 

Serengeti ecosystem (1971), Serengeti ecosystem (2003). Of these, only Lake Manyara was 

originally identified as a leverage point for PLS 4 (Figure 5.9). 

 
Table 5.7: r2 values and p-values of repeated runs of PLS 4, with P. leo biomass as the dependent 

variable. Each run removed one site at a time. 

Run 
no. 

Removed site r2 value p-value 

1 Amboseli National Park, Kenya, 2007 0.971 <0.05 

2 Hluhluwe iMfolozi National Park, South Africa, 1982 0.969 <0.05 

3 Hluhluwe iMfolozi National Park, South Africa, 2000 0.968 <0.05 

4 Hwange National Park, Zimbabwe, 1973 0.969 <0.05 

5 Kidepo Valley National Park, Uganda, 2009 0.631 <0.05 

6 Kruger National Park, South Africa, 1975 0.969 <0.05 

7 Kruger National Park, South Africa, 1984 0.968 <0.05 

8 Kruger National Park, South Africa, 1997 0.967 <0.05 

9 Kruger National Park, South Africa, 2009 0.969 <0.05 

10 Lake Manyara National Park, Tanzania, 1970 0.639 <0.05 

11 Maasai Mara National Reserve, Kenya, 1992 0.966 <0.05 

12 Maasai Mara National Reserve, Kenya, 2003 0.968 <0.05 

13 Mkomazi Game Reserve, Tanzania, 1970 (dry) 0.555 <0.05 

14 Mkomazi Game Reserve, Tanzania, 1970 (wet) 0.574 <0.05 

15 Nairobi National Park, Kenya, 1966 0.979 <0.05 

16 Nairobi National Park, Kenya, 1976 0.605 <0.05 

17 Nairobi National Park, Kenya, 2002 0.608 <0.05 

18 Ngorongoro Crater, Tanzania, 1965 0.983 <0.05 

19 Ngorongoro Crater, Tanzania, 1978 0.967 <0.05 

20 Ngorongoro Crater, Tanzania, 1988 0.964 <0.05 

21 Ngorongoro Crater, Tanzania, 1997 0.967 <0.05 

22 Ngorongoro Crater, Tanzania, 2004 0.966 <0.05 

23 Queen Elizabeth National Park, Uganda, 2009 0.977 <0.05 

24 Serengeti ecosystem, Tanzania, 1971 0.596 <0.05 

25 Serengeti ecosystem, Tanzania, 1977 0.972 <0.05 

26 Serengeti ecosystem, Tanzania, 1986 0.965 <0.05 

27 Serengeti ecosystem, Tanzania, 2003 0.595 <0.05 

28 Tarangire National Park, Tanzania, 1962 (dry) 0.972 <0.05 

29 Tarangire National Park, Tanzania, 1962 (wet) 0.965 <0.05 
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The confidence intervals of the standardised coefficients are larger than for the C. crocuta 

repeated PLS. For PLS 4, the confidence intervals ranged from 0.008 for very large prey biomass, 

to 0.186 for temperature of the warmest month (Table 5.8). The graph of standardised 

coefficients (Figure 5.11) also indicates that the removal of individual sites has a large influence 

on the PLS results. Most of the variables have coefficient values that are both positive and 

negative. Only two variables have coefficients that are consistently negative: temperature 

seasonality and semi-open vegetation cover. Three variables have coefficients that are 

consistently positive: very small prey biomass, large prey biomass, and closed vegetation cover. 

Despite this, all these variables have coefficients from some runs that are close to zero. There is 

therefore no indication that any variables are consistently and strongly related to P. leo biomass. 

 

Table 5.8: Standardised coefficient means and confidence intervals (CI) for repeated runs of 

PLS 4, with P. leo biomass as the dependent variable. 

Independent variable 
Standardised 
coefficient 
mean 

Standardised 
coefficient CI 

Standardised 
coefficient 
minimum CI 

Standardised 
coefficient 
maximum CI 

C. crocuta  biomass  0.104 0.082 0.031 0.073 

Other predator biomass -0.005 0.155 0.059 -0.064 

Total biomass very small 
prey  0.812 0.426 0.162 0.650 

Total biomass small prey  0.187 0.098 0.037 0.150 

Total biomass medium prey  0.230 0.142 0.054 0.176 

Total biomass large prey  0.123 0.058 0.022 0.101 

Total biomass very large 
prey  0.044 0.027 0.010 0.034 

Minimum temperature 
coolest month  -0.474 0.306 0.116 -0.590 

Maximum temperature 
warmest month  0.674 0.488 0.186 0.488 

Temperature seasonality  -0.736 0.431 0.164 -0.900 

Precipitation driest month  0.194 0.130 0.049 0.145 

Precipitation wettest month  -0.398 0.327 0.124 -0.523 

Precipitation seasonality  0.390 0.282 0.107 0.283 

Closed vegetation  0.180 0.086 0.033 0.147 

Semi-open vegetation  -0.703 0.429 0.163 -0.866 

Open vegetation  0.087 0.082 0.031 0.056 
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Figure 5.11: Standardised coefficients for repeated runs of PLS 4, with P. leo biomass as the 

dependent variable. 

 

 

5.1.3 Discussion 

5.1.3.1 African predator biomasses 

Along with P. leo, C. crocuta is the most abundant species of large carnivore in many areas of 

Africa.  Temporal changes in the abundance of both P. leo and C. crocuta are apparent in the 

Ngorongoro Crater and the Serengeti ecosystem. In the Ngorongoro Crater, the initial low 

biomass of P. leo reflects the reduction in population due to an outbreak of stable flies (Stomoxys 

calcitrans) in 1962 (Fosbrooke, 1963, cited in Kissui and Packer, 2004), and subsequent 

population recovery. The P. leo population was hit by an unknown disease in 1994 and 1997, 

and in 2001 by a tick-borne disease and the canine distemper virus (Kissui and Packer, 2004), 

reflected by the lower biomass values in 1997 and 2004 (Table 5.2). The cause of the lower 

C. crocuta biomass in the years 1988 and 1997 may have been due to lower populations of their 
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preferred prey, and more frequent competitive interactions with P. leo (Höner et al., 2005). 

Conversely, in the Serengeti, the increase in migratory prey populations may have facilitated the 

C. crocuta population increase seen in Table 3.2 (Hofer and East, 1995). 

 

5.1.3.2 Crocuta crocuta population biomass 

When assessing the potential factors determining C. crocuta biomass, a decision needs to be 

made as to which PLS model is most appropriate. The Kalahari Gemsbok National Park in South 

Africa was identified as an extreme leverage point, meaning that it likely had a strong influence 

on the PLS results. Indeed, removing this site and rerunning the PLS revealed different values in 

many of the standardised coefficients. 

The Kalahari Gemsbok National Park differs from other sites as it has the lowest abundance of 

C. crocuta with a biomass of 0.47 kg/km2. The next highest biomass is Mkomazi Nature Reserve 

in Tanzania with a value of 0.92 kg/km2. Additionally, Hatton et al., (2015) noted that the prey 

abundances recorded from the Kalahari were higher than previous estimates, so there were 

fewer predators than may have been expected given the prey biomass. This variation in prey 

abundance may be due to the correlation between prey and rainfall, the latter of which is 

unpredictable in the area (Mills, 1990). This potential lag of predator abundance behind prey 

abundance means that it is more appropriate to proceed with the PLS without the Kalahari (PLS 

2) in the interpretation of C. crocuta biomass.  

The repeated runs of PLS 2, removing one site each time, provided further justification for 

excluding the Kalahari. Despite the removal of each site in turn, all runs reveal similar results to 

the original PLS 2. By contrast, all maintain different results than PLS 1, with the Kalahari. The 

similarity of all PLS 2 runs allows confidence to be placed in the assumption that the results are 

representative of C. crocuta populations.  

The r2 values of all PLS 2 runs are 0.95 or higher, indicating that most of the variation of C. crocuta 

biomass is explained by the model. The standardised coefficients indicate that five variables are 

important: very small prey biomass, medium prey biomass, minimum temperature of the 

coolest month, open vegetation cover, and semi-open vegetation cover. 

Biomass of medium-sized prey has the strongest overall influence on C. crocuta biomass. Despite 

C. crocuta being adaptable in the prey it targets (Mills, 1990; Hayward, 2006), this result is to be 

expected given that its preferred prey weighs 56-182 kg (Hayward and Kerley, 2008), equivalent 

to small- to medium-sized prey in this study.  
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Very small prey biomass also has a positive relationship with C. crocuta biomass, although not 

as strong as medium prey biomass. Very small prey here are classed as weighing <20 kg, 

including E. thomsonii and duiker species (Cephalophus spp.). Prey such as these can provide an 

important food source, especially when larger prey are migratory. This is the case in the 

Serengeti where E. thomsonii is the most abundant ungulate, and the most commonly targeted 

species prior to the arrival of C. taurinus (Cooper et al., 1999). 

The relationship between prey biomass and C. crocuta biomass agrees with Hatton et al. (2015) 

in that predator density and biomass are positively correlated. It also agrees with Cooper's 

(1989) observation that higher C. crocuta densities occur in areas with large biomasses of 

resident prey populations. However, the PLS suggest that there are other strong influences upon 

C. crocuta abundance.  

The minimum temperature of the coolest month has a strong positive relationship, suggesting 

that C. crocuta is averse to the very coldest temperatures, i.e. C. crocuta populations are greater 

when winter temperatures are warmer. The maximum temperature of the warmest month has 

a negative relationship, although the potential influence is lower than winter temperatures. This 

is supported by Cooper (1990) who found that C. crocuta individuals were unable to hunt in 

temperatures above about 20°C. Indeed, the summer temperatures of sites included in the 

present study range from 25.1 to 33.7°C. C. crocuta may circumvent this to an extent through 

crepuscular or nocturnal activities (Cooper, 1990; Hayward and Hayward, 2007). As C. crocuta 

were able to hunt successfully on moonlit nights, and during the day when temperatures were 

cooler, Cooper (1990) concluded that it is temperature, rather than a need for darkness, that 

prompts this switch to nocturnal hunting. Very hot temperatures also lead to more rapid 

decomposition of carrion, thus limiting the period during which carcasses are available as a food 

source (DeVault et al., 2003). However, avoidance of high temperatures through nocturnal 

activity may be the reason why high temperatures have only a small influence on. C. crocuta 

biomass. 

Precipitation has some influence upon C. crocuta, with adverse effects of very dry conditions. 

Very dry conditions may be limiting due to a lack of available water bodies. Indeed, Cooper 

(1989) noted that higher C. crocuta densities are associated with reliable water resources. In 

addition, hot and dry conditions may lead to more rapid desiccation of carcasses, which 

themselves are important sources of water for C. crocuta, especially in periods of drought 

(Cooper, 1990; Cooper et al., 1999). This ability to source water from carcasses may be one of 

the reasons for the limited influence of precipitation. 
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Another strong influence is vegetation. Perhaps unexpectedly, open vegetation cover has a 

strong negative relationship with C. crocuta abundance. C. crocuta often hunts by pursuing its 

prey (Kruuk, 1972; Mills, 1990), so it would seem logical that open grassland should provide the 

ideal vegetation. However, Mills (1990) observed C. crocuta chasing its prey in areas of open 

shrubland or open woodland in the Kalahari, which is similar to the semi-open vegetation 

category in the present study (open shrubland and wooded grassland; Table 4.2). This explains 

the positive influence of semi-open vegetation cover on C. crocuta biomass, yet fails to explain 

the negative influence of open vegetation cover. Moreover, there appears to be no consistent 

vegetation preference for den location (Section 2.3.4). The preference for semi-open vegetation 

over open vegetation is therefore difficult to explain. An alternative explanation may lie in the 

limitations of the dataset. The data was collected between the years 1981 and 1994 (Hansen et 

al., 1998, 2000), and so record any change in vegetation before or after this time period, 

potentially leading to misclassification of vegetation cover in some sites. 

The final point to consider is the influence of other predators. Both P. leo and the other 

predators (P. brunnea, A. jubatus, P. pardus, L. pictus) have negligible influences on C. crocuta 

abundance. This might be due to the nature of competitive interactions. Although C. crocuta are 

frequently successful in obtaining food from other predators, the reverse can be true, with the 

success of direct interactions depending upon the persistence of the challenger, the number of 

individuals present, and the presence of males in the case of P. leo (Kruuk, 1972; Mills, 1990; 

Cooper et al., 1999; Höner et al., 2002). Therefore, any negative influence of other predators 

may be largely cancelled out by C. crocuta succeeding in competitive interactions. Furthermore, 

as suggested by other studies (Section 2.3.3), environmental partitioning may limit the negative 

impact of other predators upon C. crocuta abundance. 

 

5.1.3.3 Panthera leo population biomass 

The influences upon P. leo biomass were also investigated. As with the investigation of 

C. crocuta, biomass, the Kalahari Gemsbok National Park was rejected from the analyses, with 

the same justification: the lag between prey and predator abundance (Hatton et al., 2015). 

Therefore, the following discussion focusses on the results from PLS 4 only. 

While the original PLS 4 points to some variables that have a strong association with P. leo 

biomass, the re-runs of PLS 4 dispute this. Most variables have standardised coefficients that are 

both positive and negative, depending upon the site removed. The exceptions are temperature 

seasonality and semi-open vegetation cover, which are consistently negative. Very small prey 

biomass, large prey biomass, and closed vegetation cover are consistently positive. 
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Some tentative suggestions may be made about the reasons for these results. P. leo most 

commonly target prey weighing 190-550 kg (Hayward and Kerley, 2008), equivalent to medium- 

to large-sized prey species in this study. Further, large prey provide more energy intake for large 

predators, which is necessary to offset energy expended, including that expended while hunting 

(which is particularly high for predators of large body mass such as P. leo, Carbone et al., 2007). 

This is therefore in support of the positive association between P. leo biomass and large-sized 

prey biomass. However, the positive association with very small-size prey biomass is thus 

unexpected.  

The areas with the highest biomass of very small-sized prey species are the Maasai Mara and 

the Ngorongoro Crater. In these localities, it is E. thomsonii that make up the majority of the 

very small-sized prey biomass (Hatton et al., 2015, and references therein). In the Seronera area 

of the Serengeti, although P. leo predate on small- to large-sized prey species, during periods 

when these species are unavailable, P. leo will survive on very small-sized prey, namely 

E. thomsonii (Schaller, 1972). The great importance of very small-sized prey species may 

therefore reflect the importance of these species in allowing the survival of P. leo when 

preferred (larger) prey are unavailable. Further research is required to better understand within-

species carnivore abundance patterns in relation to the size and abundance of their prey base 

(following Carbone et al., 2011; Hatton et al., 2015). 

The negative association between P. leo biomass and temperature seasonality suggest that 

P. leo abundance is greatest in areas that have either predominantly year-round high 

temperatures, or predominantly year-round low temperatures, but not great seasonal 

temperature fluctuations. 

The final consideration is vegetation. In contrast to C. crocuta, semi-open vegetation cover is 

negatively associated with P. leo biomass. Indeed, even in individual sites, spatial partitioning 

has been observed between C. crocuta and P. leo. For example, in the Serengeti, C. crocuta 

occupy the plains and woodland borders while P. leo occupy the plains, but are most frequently 

within wooded grassland (Schaller, 1972). However, this in itself presents a problem as wooded 

grassland is classed as semi-open vegetation in the present study. Additionally, Périquet et al. 

(2015) suggested that some vegetation cover is needed to allow P. leo to ambush its prey. As 

with C. crocuta, it is difficult to explain the influence of vegetation upon P. leo biomass, unless 

the explanation lies within the limitations of the dataset, as discussed previously. 

The biomass of C. crocuta and of the other large African predators has a negligible influence 

upon P. leo biomass, perhaps due to the influence of environmental partitioning discussed in 

Section 2.3.3. 
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However, although the five variables discussed above are the only ones that have a consistent 

positive or negative association with P. leo biomass, many of the coefficients are close to zero, 

depending upon the site removed from the PLS run. The overall lack of consistency between 

runs suggests that the conditions influencing P. leo biomass are site-specific, or that there are 

additional influences that were not considered in the analyses. This is backed up by the low r2 

values on some of the PLS runs, which suggest that a large proportion of the variation in P. leo 

biomass is not explained by the model.   

The results of the P. leo PLS are partly supported by a study by Celesia et al. (2010) that found 

P. leo density was positively influenced by herbivore biomass. However, in contrast to the 

present study, Celesia et al. (2010) found that mean annual rainfall and mean annual 

temperature, in addition to soil nutrients were positively correlated with P. leo density. It is 

difficult to explain the difference between the two studies, apart from the fact that different 

climate metrics were used. 

 

5.1.3.4 Implications for the Pleistocene 

The results suggest that C. crocuta biomass is more sensitive to environmental conditions than 

P. leo biomass. This will be explored further in Section 7. The environmental variables that 

appear to influence C. crocuta biomass may be important when considering the responses of 

the species to Pleistocene environmental changes, particularly its extirpation from Europe. As 

C. crocuta appear to be negatively influenced by colder winters, the shorter and cooler 

interstadials towards the end of MIS 3 (Davies and Gollop, 2003) are an important consideration. 

Similarly, vegetation may have changed in such a way as to negatively impact C. crocuta, such 

as a reduction in semi-open vegetation and expansion of open vegetation. These need to be 

considered alongside potential adaptations to changing conditions such as morphology and diet. 
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5.2 Ontogenetic size change 

5.2.1  Introduction 

Prior to other undertaking analyses of bones of C. crocuta, it is important to assess how 

individual elements change in size through life. Failure to recognise this may lead to erroneous 

interpretation of Pleistocene morphometrics, such as identifying an environmental response, 

when the signal actually indicates ontogenetic variation. Using fully erupted dentition as an 

indication of a fully-grown skull is likely invalid. Indeed, while C. crocuta permanent dentition is 

fully erupted by 12-14 months of age (Binder and Van Valkenburgh, 2000), measurements of the 

skull continue increasing in size after this point (Binder and Van Valkenburgh, 2000; Tanner et 

al., 2010; Arsznov et al., 2011). The analyses in this section will expand upon the areas of the 

skull and mandible studied by the aforementioned authors. Feeding ability with age, specifically 

the ability to consume bone, will also be assessed. This may hold important implications for the 

Pleistocene if bone consumption constituted an increasingly important food source. 

Ontogeny of the post-crania will also be assessed, first to determine whether there are any 

changes with age that may influence the interpretation of the morphometric analyses. Second, 

any change in size of post-crania will be assessed with regards its functional significance, such 

as the relationship between functional limb length and locomotion (Hildebrand, 1974; Section 

3.4.2). 

The research questions are therefore as follows: 

• Do measurements of the skull, mandible and post-crania continue changing through life 

of C. crocuta?  

• Do bending strength and bite force change with age in C. crocuta? 

• Does the effective limb length change with age in C. crocuta? 

 

5.2.2 Results 

5.2.2.1 Repeated linear measurements 

Before ontogenetic change can be analysed, the precision of the linear measurements must be 

assessed. The statistics from the randomly sampled repeated measurements are shown in Table 

5.9. While these indicate that some of the samples are not normally distributed, the standard 

deviations are low for all measurements. Moreover, in no case are the measurements in Sample 

1 significantly different at 95 % confidence than the measurements in Sample 2. Therefore, there 

is little concern that measurement precision will influence the morphometric results. 
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Table 5.9: Statistical results of the randomly sub-sampled repeated linear measurements (each sub-sample is comprised of 15 values). A = total length of the cranium. 

B = length of the m1. C = Breadth of the m1. D = mandibular depth at p2/p3. E = Mandibular width of p2/p3. F = Distance from p2/p3 to the middle of the articular 

condyle. See Appendix 10.3, Table 10.6 and Table 10.7 for the raw data. 

Measurement A B C D E F 

Sub-sample 1 2 1 2 1 2 1 2 1 2 1 2 

Standard Deviation 0.07 0.06 0.021 0.028 0.074 0.075 0.128 0.13 0.193 0.189 0.4 0.4 

Anderson-Darling statistic 0.13 0.4 1.35 0.82 0.44 0.47 0.24 0.69 0.51 0.41 0.74 0.44 

Anderson Darling p-value 0.972 0.327 <0.005 0.026 0.255 0.209 0.735 0.056 0.163 0.302 0.042 0.259 

t-test t-value 0.05   0.78 0.04 0.36   

t-test p-value 0.957   0.441 0.966 0.719   

Mann-Whitney statistic   235.5       251 

Mann-Whitney p-value   0.384       0.455 
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5.2.2.2 Ontogeny of the cranium and mandible 

In order to facilitate analysis of ontogeny of C. crocuta skull measurements, the P3/p3 wear 

stages were used as an indication of the age of each specimen, following Stiner (2004), with the 

youngest individuals classed as wear stage III (see Section 4.3.2). The analyses are two-fold. The 

box plots are useful for visualising any changes in size, particularly for the wear stages with 

sample sizes too small for further statistical analysis. Secondly, where sample sizes included at 

least ten specimens, tests for significant differences were conducted. This enabled comparison 

of P3/p3 wear stage IV and stage V in females. In males, sample sizes were sufficient to allow 

statistical comparison of stages III, IV and V. The data used in the analyses are the ratios of each 

cranial or mandibular measurement against length of the m1, as discussed in Section 4.4.1.3. 

Both males and females show similar patterns in size variation with age of most cranial and 

mandibular measurements, as displayed in the boxplots (Figure 5.12 and Figure 5.13, and 

Appendix 10.4, Figure 10.1 and Figure 10.2). In most cases, the single stage III female specimen 

exhibits smaller morphometrics than those of later wear stages. The sample size for stage III 

males is larger, and there is overlap with the older individuals. However, the median values, 

lower quartile, and smallest values for stage III C. crocuta are smaller than older individuals in 

most cases. 

Exceptions include some of the cranial measurements that exhibit little difference in size 

between stage III and older stages, (maxillary cheektooth row lengths in males, breadth and 

height of the foramen magnum in males, greatest palatal breath in males, and least breadth of 

the skull in both males and females). Some of the mandibular width measurements also show 

little difference between stage III and older C. crocuta, especially at p3/p4 in males, p4/m1 in 

females, and post-m1 in both males and females. 

In both males and females, there is generally little change in size from stage IV onwards. A few 

measurements show a different pattern. The breadth of the skull dorsal to the external auditory 

meatus, and the breadth of the occipital condyles appear to decrease in size in males. This 

pattern is not apparent in females, where there is little change in size from stage IV. 

Finally, several graphs indicate increase in size through life, at least up until stage VIII (there is 

no data for later stages). These include the frontal breadth and measurements of mandible 

depth, particularly at the p2/p3 and p4/m1 in males. 
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Figure 5.12: Boxplots of female (F) and male (M) C. crocuta cranial measurements divided by m1 

length, base-10 logarithmically transformed. x-axis numbers are P3/p3 wear stages. 
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Figure 5.12 continued. 
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Figure 5.13: Boxplots of female (F) and male (M) C. crocuta mandibular measurements divided 

by m1 length, base-10 logarithmically transformed. x-axis numbers are P3/p3 wear stages. 
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Figure 5.13 continued. 
 
 
The tests for significant difference largely support the observations from the boxplots (Table 

5.12 and Table 5.13). However, the measurements that are indicated as larger (post-stage IV in 

the box plots) are not significantly so. In fact, no cranial or mandibular measurements are 

significantly different at 95 % confidence between stages IV and V. 

A number of tests, however, indicate that cranial measurements of wear stage III are 

significantly smaller at 95 % confidence than stages IV and V (length of the cranium, 

neurocranium length, facial length, zygomatic breadth, frontal breadth, least breadth between 

the orbits, and temporal fossa length). The length of the snout and skull height of stage III 

individuals are significantly smaller than only stage V individuals. Of the mandible, only 

measurements of mandibular depth exhibit significant differences. The depths at p2/p3, p3/p4 

and p4/m1 of stage III individuals are significantly smaller than stage IV and V individuals. Stage 

III measurements of post-m1 depth are also significantly smaller than stage V measurements. 
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Table 5.10: Tests for significant differences of female C. crocuta cranial measurements between different ages. Measurements used in the tests were ratios with 

m1 lengths and base-10 logarithmically transformed.  
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Table 5.10 continued. 
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IV vs V 
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p-value 0.473 0.347 0.435 0.947 0.999 0.36 0.848 0.377 0.214 0.33 0.71 0.703 0.93 0.961 0.669 0.473 
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Table 5.11: Tests for significant differences of male C. crocuta cranial measurements between different ages. Measurements used in the tests were ratios with m1 

lengths and base-10 logarithmically transformed. Shaded boxes indicate significant difference at 95 % confidence. 
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 ANOVA 

III Category  A    B  B  B  A A  A A 

IV Category  A    A  A  A & B  A A  A A 

V Category  A    A  A  A  A A  A A 

 p-value  0.087    0.005  0.025  0.043  0.137 0.496  0.408 0.25 

 t-test 

III vs IV t-value    1.2             

 p-value    0.245             

 Mann Whitney 

III vs IV W-value 143  175  148      163   291   

 p-value 0.044  0.165  0.197      0.078   0.455   

III vs V W-value 89  120  85      107   176   

 p-value 0.038  0.218  0.14      0.082   0.144   

IV vs V W-value 671  584  454      579   681   

 p-value 0.309  0.641  0.349      0.812   0.271   
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Table 5.11 continued. 
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III Category A A A  A A B  B B A  A B  B 

IV Category A A A  A A A  A A A  A A & B  A 

V Category A A A  A A A  A A A  A A  A 

 p-value 0.184 0.74 0.159  0.497 0.059 0.031  0.005 0.003 0.515  0.238 0.034  0.008 

 t-test 

III vs IV t-value                 

 p-value                 

 Mann Whitney 

III vs IV W-value    283    243    237   213  

 p-value    0.79    0.335    0.051   0.172  

III vs V W-value    180    171    186   123  

 p-value    0.837    0.903    0.448   0.048  

IV vs V W-value    599    908    708   673  

 p-value    0.769    0.212    0.413   0.333  
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Table 5.12: Tests for significant differences of female C. crocuta mandibular measurements between different ages. Measurements used in the tests were ratios 

with m1 lengths and base-10 logarithmically transformed. 
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Table 5.13: Tests for significant differences of male C. crocuta mandibular measurements between different ages. Measurements used in the tests were ratios with 

m1 lengths and base-10 logarithmically transformed. Shaded boxes indicate significant difference at 95 % confidence. Where measurements belong to different 

ANOVA categories, there is a significant difference. 
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 p-value 0.598   0.318            
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Table 5.13 continued. 
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III Category B A  A A A   A     

IV Category A A  A A A   A     

V Category A A  A A A   A     

 p-value 0.002 0.85  0.197 0.152 0.143   0.108     

 Mann Whitney 

III vs IV W-value   262    221 219  227 230 244 221 

 p-value   0.087    0.162 0.147  0.073 0.067 0.137 0.382 

III vs V W-value   159    140 134  153 148 165 121 

 p-value   0.028    0.269 0.157  0.167 0.065 0.289 0.1 

IV vs V W-value   753    812 780  776 780 805 554 

 p-value   0.221    0.65 0.789  0.575 0.533 0.947 0.118 
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As explained in Section 4.4.1.3, only C. crocuta from Balbal, Tanzania are used to assess 

ontogenetic change of mandibular bending strength and bite force. Sample sizes were too small 

to allow tests for significant difference, so only box plots were produced. 

The plots of bending strength (Figure 5.14 and Figure 5.15) indicate that the zx/L indices 

(showing resistance to dorsoventral bending) increase with age, which is particularly apparent 

in males. This occurs at least until wear stage VI (sample sizes are one or zero for later stages). 

The zy/L indices (indicating resistance to labiolingual bending) also increase with age, again 

particularly in males to at least wear stage VI. All zx/zy indices (showing the mandibular cross-

sectional shape) are greater than one. The values increase with age at the post-m1 position, at 

least until wear stage VI. There is little change with age at the other interdental points. 

Again, as explained in Section 4.4.1.3, ontogenetic change of bite force, as measured in the 

mandible, was conducted with only the C. crocuta specimens from Balbal. Sample sizes were too 

small to allow tests for significant differences, so only boxplots were constructed. 

The boxplots (Figure 5.16 and Figure 5.17) indicate that differences of bite force with ontogeny 

are less clear than for bending strength. There is little change in the mechanical advantage of 

the temporalis in females. By contrast, this appears to decrease in males, although the small 

sample size of the later wear stages make this difficult to assess. There is little change with age 

in both males and females of the mechanical advantage of the superficial masseter. Finally, the 

mechanical advantage of the deep masseter appears to increase with age in males, although the 

small sample sizes of the later wear stages make this difficult to assess. Females show some 

decrease in the mechanical advantage of the deep masseter with age. 
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Figure 5.14: Mandibular bending strengths of female C. crocuta from Balbal, Tanzania. The upper x-axis values (4 - 6) are P3/p3 wear stages. The lower x-axis labels 

are the interdental gaps. zx/L indicates strength in dorsoventral bending. zy/L indicates strength in labiolingual bending. zx/zy is mandibular cross-sectional shape.  

Sample sizes for p2/p3: stage 4 (n = 12), stage 5 (n = 7), stage 6 (n = 0). Sample sizes for p3/p4: stage 4 (n = 11), stage 5 (n = 7), stage 6 (n = 1). Sample sizes for 

p4/m1: stage 4 (n = 12), stage 5 (n = 7), stage 6 (n = 0). Sample sizes for post-m1: stage 4 (n = 11), stage 5 (n = 7), stage 6 (n = 1). 
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Figure 5.15: Mandibular bending strengths of male C. crocuta from Balbal, Tanzania. The upper x-axis values (3 - 7.5) are P3/p3 wear stages. The lower x-axis labels 

are the interdental gaps. zx/L indicates strength in dorsoventral bending. zy/L indicates strength in labiolingual bending. zx/zy is mandibular cross-sectional shape. 

Sample sizes for p2/p3: stage 3 (n = 2), stage 3.5 (n = 0), stage 4 (n = 9), stage 5 (n = 2), stage 6 (n = 2), stage 7 (n = 0), stage 7.5 (n = 1). Sample sizes for p3/p4: stage 

3 (n = 2), stage 3.5 (n = 0), stage 4 (n = 9), stage 5 (n = 2), stage 6 (n = 2), stage 7 (n = 1), stage 7.5 (n = 1). Sample sizes for p4/m1: stage 3 (n = 2), stage 3.5 (n = 0), 

stage 4 (n = 9), stage 5 (n = 2), stage 6 (n = 2), stage 7 (n = 0), stage 7.5 (n = 1). Sample sizes for post-m1: stage 3 (n = 2), stage 3.5 (n = 0), stage 4 (n = 9), stage 5 (n = 

2), stage 6 (n = 2), stage 7 (n = 0), stage 7.5 (n = 1). 
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Figure 5.16: Bite forces of female C. crocuta from Balbal, Tanzania. The upper x-axis values (4 - 6) are P3/p3 wear stages. The lower x-axis labels are the positions 

along the mandible. Sample sizes for mechanical advantage of the temporalis at c: stage 4 (n = 11), stage 5 (n = 5), stage 6 (n = 1). Sample sizes for mechanical 

advantage of the temporalis at p2/p3: stage 4 (n = 11), stage 5 (n = 7), stage 6 (n = 1). Sample sizes for mechanical advantage of the temporalis at p3/p4: stage 4 (n 

= 11), stage 5 (n = 7), stage 6 (n = 1). Sample sizes for mechanical advantage of the temporalis centre of m1: stage 4 (n = 11), stage 5 (n = 7), stage 6 (n = 1). Sample 

sizes for mechanical advantage of the superficial masseter at c: stage 4 (n = 12), stage 5 (n = 5), stage 6 (n = 1). Sample sizes for mechanical advantage of the 

superficial masseter at p2/p3: stage 4 (n = 12 ), stage 5 (n = 7), stage 6 (n = 1). Sample sizes for mechanical advantage of the superficial masseter at p3/p4: stage 4 

(n = 12 ), stage 5 (n = 7), stage 6 (n = 1). Sample sizes for mechanical advantage of the superficial masseter at centre of m1: stage 4 (n = 12 ), stage 5 (n = 7), stage 6 

(n = 1). Sample sizes for mechanical advantage of the deep masseter at c: stage 4 (n = 12), stage 5 (n = 5), stage 6 (n = 1). Sample sizes for mechanical advantage of 

the deep masseter at p2/p3: stage 4 (n = 12), stage 5 (n = 7), stage 6 (n = 1). Sample sizes for mechanical advantage of the deep masseter at p3/p4: stage 4 (n = 12), 

stage 5 (n = 7), stage 6 (n = 1). Sample sizes for mechanical advantage of the deep masseter at centre of m1: stage 4 (n = 12), stage 5 (n = 7), stage 6 (n = 1). 
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Figure 5.17: Bite forces of male C. crocuta from Balbal, Tanzania. The upper x-axis values (3 – 7.5) are P3/p3 wear stages. The lower x-axis labels are the positions 

along the mandible. Sample sizes for c: stage 3 (n = 1), stage 3.5 (n = 0), stage 4 (n = 8), stage 5 (n = 2), stage 6 (n = 1), stage 7 (n = 1), stage 7.5 (n = 0). Sample sizes 

for p2/p3: stage 3 (n = 2), stage 3.5 (n = 0), stage 4 (n = 9), stage 5 (n = 2), stage 6 (n = 2), stage 7 (n = 1), stage 7.5 (n = 1). Sample sizes for p3/p4: stage 3 (n = 2), 

stage 3.5 (n = 0), stage 4 (n = 9), stage 5 (n = 2), stage 6 (n = 2), stage 7 (n = 1), stage 7.5 (n = 1). Sample sizes for centre of m1: stage 3 (n = 2), stage 3.5 (n = 1), stage 

4 (n = 9), stage 5 (n = 2), stage 6 (n = 2), stage 7 (n = 0), stage 7.5 (n = 1). 

 

 

 

 

   c       p2/p3          p3/p4 centre-m1    c       p2/p3          p3/p4 centre-m1    c       p2/p3          p3/p4 centre-m1 
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5.2.2.3 Ontogeny of the post-crania 

To test ontogenetic size change of the post-crania, measurements were again divided by m1 

lengths and base-10 logarithmically transformed. Only bones with completely fused epiphyses 

were used. Due to the relative scarcity of C. crocuta post-crania in museum collections, tests for 

statistical significance could not be conducted. The small sample sizes also mean that data are 

displayed as individual value plots rather than box plots. Data were sufficient to allow this to be 

conducted for the following elements: humerus, radius, ulna, femur, tibia, fibula, patella, 

scapho-lunar, navicular, astragalus, and calcaneum. Additionally, the brachial index (radial 

length/humeral length) and the crural index (tibial length/femoral length) were calculated. 

The individual value plots indicate size (relative to the m1 length) at each wear stage (Figure 

5.18). The sample sizes are very small, however, most measurements either show no consistent 

pattern with age, or show differences in patterns between males and females. 

The exceptions are the greatest breadth of the distal end of the radius, the greatest breadth of 

the articular surface of the ulna, and the greatest breadth of the scapho-lunar. These suggest an 

increase in size with age, although this is based on a small number of female specimens. There 

are insufficient specimens to distinguish a pattern in male C. crocuta. 

The depth of the femoral caput appears to decrease in size with age in both males and females. 

The brachial index also appears to decrease with age in females, although this is based on a small 

number of specimens (n=6). 
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Figure 5.18: Present-day C. crocuta post-cranial measurements divided by m1 length, and base-

10 logarithmically transformed. F = female. M = male. GL = greatest length. GLC = greatest length 

from the caput. DP = greatest depth of the proximal end. SD = smallest breadth of the diaphysis. 

BD = greatest breadth of the distal end. DPA = depth across the anconeal process. SDO = smallest 

depth of the olecranon. BPC = greatest breadth across the proximal articular surface. DC = 

greatest depth of femoral head. GB = greatest breadth. 
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Figure 5.18 continued. 
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Figure 5.18 continued. 
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Figure 5.18 continued. 

 

 

5.2.3 Discussion 

5.2.3.1 Repeated linear measurements 

The results of the repeated linear measurements of a C. crocuta skull indicate that there are no 

statistically significant differences between two random samples of each measurement. There 

is therefore no concern that the precision of the measurements will influence the results of 

morphological analyses. 

 

5.2.3.2 Ontogeny of the cranium and mandible 

The results indicate that many measurements of the skull are not fully-grown in C. crocuta 

individuals with stage III P3/p3 wear. Of functional significance to feeding is the breadth of the 

zygomatic arches, which is significantly smaller at stage III than stages IV and V. As the zygomatic 

arches are attachment sites for the masseter muscle (von Toldt, 1905 cited in Turnbull, 1970; 

Ewer, 1973), the breadth is an indication of the size of the masseter muscle and thus of bite 

strength (Radinsky, 1981a; Tanner et al., 2010). Therefore, the younger stage III individuals likely 

had smaller masseter muscles, and therefore reduced bite strength when compared to older 

individuals. 
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Conversely, there are measurements that show no difference between stages III and IV. These 

may have reached full size earlier than other measurements.  

There are also measurements that appear to increase in size through life, at least until stage VIII 

(frontal breadth, and measurements of mandibular depth, particularly at p2/3 and p4/m1 in 

males). Different skull measurements of V. vulpes also have different patterns of ontogenetic 

size change, with some measurements increasing through life (Hartová-Nentvichová et al., 

2010). 

In addition, in males two measurements decrease in size through life (the breadth of the 

occipital condyles, and the breadth external to the auditory meatus). Although the 

measurements are different, the smallest distance behind the supraorbital processes (least 

breadth of skull in the present study) decreased after six months of age in V. vulpes (Hartová-

Nentvichová et al., 2010). 

As mentioned, measurements of mandibular depth increase with age up to at least stage VIII. 

Additionally, the zx/L indices increase with age up until at least wear stage VI. These are 

particularly apparent in males. Both measurements indicate resistance to dorsoventral bending 

(Hildebrand, 1974; Biknevicius and Ruff, 1992; Therrien, 2005; Palmqvist et al., 2011). The zx/zy 

indices, giving an indication of mandibular shape, have values greater than one along the 

mandible for all wear stages, suggesting that the mandible is better suited to resist dorsoventral 

stresses. The zx/zy indices increase with age at the post-m1 position. Together, these 

measurements and indices indicate that C. crocuta mandibles (particularly males) become 

increasingly more suited to resist dorsoventral stresses through life. The mandible incurs 

dorsoventral stresses during biting, particularly during bone-cracking (Biknevicius and Ruff, 

1992; Therrien, 2005; Ferretti, 2007; Meloro et al., 2008; Palmqvist et al., 2011). This indicates 

that mandibles of older C. crocuta are better suited for bone-cracking. 

The zy/L indices, an indication of resistance to labiolingual stresses (Hildebrand, 1974; 

Biknevicius and Ruff, 1992; Therrien, 2005; Palmqvist et al., 2011), also increase until at least 

stage VI. This is particularly apparent in males. Struggling prey may exert labiolingual stresses 

upon the mandible (Biknevicius and Ruff, 1992). This indicates that individuals are increasingly 

able to successfully target larger prey as they grow older. Although it must be borne in mind that 

successful hunts are dependent upon other factors, such as hunting group size (Holekamp et al., 

1997). 

The measurements of bite strength, as measured through mechanical advantage of the muscles, 

have less clear patterns. The mechanical advantage of the superficial masseter exhibits little 

change through life, at all bite points. This was also found in a study of individuals of known ages 
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(Tanner et al., 2010). By contrast, in the present study, the mechanical advantage of the deep 

masseter increases in males, yet decreases in females. 

In the aforementioned studied population, mechanical advantage of the temporalis muscles 

increased until 22 months of age (Tanner et al., 2010), which is after permanent dentition is 

attained at 12-14 months of age (Binder and Van Valkenburgh, 2000). However, in the present 

study, this changes little in females, and decreases with age in males. 

Where there is no change in mechanical advantage with age, there is an isometric relationship 

between the in-lever and out-lever (Tanner et al., 2010), and thus bite force remains constant. 

A decrease in mechanical advantage suggests that the out-lever grows hyperallometrically when 

compared to the in-lever, and vice versa when there is an increase in bite strength. There is thus 

a decrease in bite strength with lower mechanical advantage, and an increase in bite force with 

greater mechanical advantage.  

Taking the mechanical advantages of each muscle together, it is unclear whether C. crocuta bite 

force increases, decreases or remains constant through life. Evidence is seen through the smaller 

masseter in stage III individuals (as measured through zygomatic breadth) in the present study. 

This was also seen in Tanner et al.'s (2010) study, where zygomatic arch width increased until 

33 months of age. In a study using a force transducer on live individuals, Binder and Van 

Valkenburgh (2000) discovered that bite force increased until four years of age. Unfortunately, 

the P3/p3 wear stage cannot be translated into years of age, so the results cannot be directly 

compared with those of the present study. 

This change in bending strength and potentially bite strength through life indicates that younger 

C. crocuta, particularly males, may be less able to consume tough food such as bone. This may 

be a disadvantage when competition is high as younger C. crocuta, particularly those of lower 

ranking mothers, may be left with the less preferential parts of carcasses (Frank et al., 1989; 

Egeland et al., 2008). Reduced ability to consume bone may limit survival of younger C. crocuta 

if food scarcity is prolonged. This is an important consideration for the Pleistocene as prolonged 

conditions resulting in food scarcity may have factored into the reduction in populations of 

C. crocuta, and eventually led to their extirpation. 

In light of the results, cranial and mandibular measurements of wear stage III C. crocuta will be 

excluded from future analyses. Additionally, those measurements that increase or decrease with 

age through life will be analysed within separate wear stages in further analyses. Apart from 

these measurements, the results indicate that amalgamating the other measurements from 

different wear stages (IV onwards) will not influence results of the morphological analyses. 
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5.2.3.3 Ontogeny of the post-crania 

Post-cranial sample sizes are small, so only tentative observations can be made. Moreover, 

material was only sufficient for analysis of the long bones, patella, carpals and tarsals. Most 

measurements appear to change little with age from P3/p3 wear stage IV. This suggests that 

after fusion of the epiphyses, the elements do not noticeably change in size. However, no P3/p3 

wear stage III specimens were included in the analyses due to lack of data. 

Three measurements appear to increase in size with age: the greatest breadth of the distal end 

of the radius, greatest breadth of the articular surface of the ulna, and greatest breadth of the 

scapho-lunar.  

Change with ontogeny was also assessed in the brachial and crural indices. There is insufficient 

data to confidently determine whether the crural index changes with age as the value from the 

wear stage IV individual overlaps with those of the stage IV individuals. However, the brachial 

index appears to decrease in age in females. This means that the humerus is relatively longer 

when compared with the radius in older individuals. However, sample sizes are small, so this 

cannot be confidently concluded. 

As there are few Pleistocene specimens with associated cranial material with which the P3/p3 

wear stage can be determined, the post-cranial elements that potentially exhibit change with 

ontogeny will be treated with caution in the analysis of Pleistocene morphometrics. 
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5.3 Sexual size dimorphism 

5.3.1  Introduction 

C. crocuta exhibit reverse SSD (i.e. the females are larger than the males), which is uncommon 

in mammal species (Ralls, 1976; Swanson et al., 2013). This has been observed in body mass 

(Sillero-Zubiri and Gottelli, 1992; Swanson et al., 2013) and morphological traits measured 

externally on live individuals: body length, skull length, head circumference, distance from the 

zygomatic arch to the top of the sagittal crest, distance from the zygomatic arch to the back of 

the sagittal crest, neck circumference, girth of the torso, shoulder height, scapular length, and 

upper leg length (Swanson et al., 2013). Female-biased SSD in C. crocuta has only been 

determined in a small number of craniodental elements: canines, carnassials and skull length. 

Male biased SSD has been observed in the moment arms of the temporalis and superficial 

masseter, and the moment arm of resistance at the canines (Gittleman and Van Valkenburgh, 

1997). Apart from this, there has been little research on SSD in skeletal and dental elements of 

C. crocuta. This study will attempt to address this, through an analysis of SSD of a large 

population of recent C. crocuta from Balbal, Tanzania. Additionally, SSD will be calculated for 

body mass, bones and teeth from other localities across Africa, in order to assess whether there 

is any geographical variation in SSD, and if so, whether there are any environment correlates. 

The SSD values of other African predators have also been calculated so that C. crocuta SSD values 

can be put into context. 

The research questions are as follows: 

• In which morphological features does C. crocuta exhibit SSD? 

• Does SSD vary between populations across Africa? 

• If so, do these variations follow Rensch’s Rule? 

• Do temperature, precipitation and vegetation correlate with variations in the degree of 

SSD? 
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5.3.2 Results 

5.3.2.1 Body mass 

The degree of SSD in C. crocuta body mass is not constant (Table 5.14). Calculated values range 

from 0.003 in South Africa to 0.086 in the Kruger National Park, South Africa, with females larger 

than males. Furthermore, there is one location, Botswana, where males were recorded as being 

heavier than females with an SSD value of -0.052.  

To put the C. crocuta values into context, SSD values have been calculated for other large African 

predators (Figure 5.19 and Appendix 10.5, Table 10.11 to Table 10.15). All species exhibit 

predominantly male-biased SSD, except for L. pictus for which there is only a single data point 

with a very low value of 0.009 indicating little difference between males and females. With 

values between 0.097 and 0.277, P. pardus exhibits greater SSD than C. crocuta. The SSD values 

of P. leo, A. jubatus, and P. brunnea all overlap the upper range of C. crocuta values, yet these 

species have greater SSD than C. crocuta at some sites. 

 

Table 5.14: Recent C. crocuta calculations of sexual size dimorphism SSD. Positive values indicate 

that females are larger. 

Country Location SSD 

Botswana 
 

-0.052 

Kenya Aberdare National Park 0.039 

Kenya Maasai Mara National Reserve 0.044 

Kenya Narok District 0.066 

South Africa  0.036 

South Africa Hluhluwe-iMfolozi Park 0.022 

South Africa iMfolozi Game Reserve 0.085 

South Africa Kalahari Gemsbok National Park 0.08 

South Africa Kruger National Park 0.086 

South Africa Kruger National Park 0.038 

South Africa and Zimbabwe Transvaal and Zimbabwe 0.05 

Southern Africa 
 

0.003 

Tanzania Serengeti 0.055 

Zambia 
 

0.003 
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Figure 5.19: Box plot of sexual size dimorphism values of recent large carnivore body masses 

from sites in Africa. Positive values for C. crocuta indicate that females are larger. Positive values 

for P. leo, P. pardus, A. jubatus, P. brunnea and L. pictus indicate that males are larger. C. crocuta 

n = 14. P. leo n = 11. P. pardus n = 7. A. jubatus n = 4. P. brunnea n = 6. L. pictus n = 1. 

 

 

In order to assess whether SSD varies with body size, a reduced major axis regression was 

performed on base-10 logarithmically transformed female body mass against base-10 

logarithmically transformed male body mass (Figure 5.20). The Pearson’s r correlation value is 

high at 0.929, and is significant at 95 % with a p-value of 0.0003. The slope is 1.057. The 95 % 

bootstrapped confidence intervals are 0.759-1.345, which span the regression slope value of 1. 
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Figure 5.20: Reduced major axis regression of base-10 logarithmically transformed C. crocuta 

female body mass and base-10 logarithmically transformed C. crocuta male body mass (n = 9). 

 

 

Sample sizes are too small to run a PLS regression with C. crocuta body mass SSD as the 

dependent variable. As running individual regression increases the likelihood of Type I errors, 

individual Spearman Rank Order correlations were performed. These assessed the correlation 

between C. crocuta body mass SSD and C. crocuta density, P. leo density, prey biomass, 

minimum temperature of the coolest month, maximum temperature of the warmest month, 

precipitation of the driest month, precipitation of the wettest month, closed vegetation cover, 

semi-open vegetation cover and open vegetation cover. 

All correlations are insignificant at 95 % confidence (Table 5.15). The strongest correlation is 

against semi-open vegetation cover with an rs value of 0.544. 

 

Table 5.15: Spearman Rank Order statistics of C. crocuta body mass SSD against each variable (n 

= 9). 

Variable rs p-value 

C. crocuta density -0.259 0.5 

P. leo density -0.326 0.391 

Prey biomass -0.243 0.529 

Min. temp. coolest month  -0.168 0.666 

Max. temp. warmest month  0.37 0.327 

Precipitation driest month  -0.37 0.327 

Precipitation wettest month  -0.343 0.366 

Closed vegetation cover  -0.293 0.444 

Semi-open vegetation cover  0.544 0.13 

Open vegetation cover  -0.326 0.391 

 

Slope = 1.057 
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5.3.2.2 Crania and dentition 

The degree of SSD was calculated for cranial and dental measurements from localities across 

Africa. In light of the results in Section 5.2, specimens with P3/p3 wear stages of III were 

excluded from the cranial and mandibular analyses. Additionally, SSD of the breadth of the 

occiput condyles, breadth of the auditory meatus, mandible depths, and mandibular bending 

strength indices at each wear stage were assessed separately.  

With values between -0.059 and 0.063 (Figure 5.21), the SSD of teeth is small. None of the dental 

measurements show consistent positive (females are larger) or negative (males are larger) SSD 

values. The SSD values of cranial measurements (Figure 5.22) similarly do not show consistent 

positive or negative values. The values have a larger range from -0.066 to 0.077, but are still low. 

 

 

Figure 5.21: SSD values of C. crocuta dental measurements from localities across Africa. Positive 

values indicate females are larger, negative values indicate males are larger. 

AP = anteroposterior. ML = mediolateral. 
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Figure 5.22: SSD values of C. crocuta cranial measurements from localities across Africa. Positive 

values indicate females are larger, negative values indicate males are larger. 1. Total length of 

cranium (9). 2. Condylobasal length (9). 3. Basal length (9). 4. Basicranial axis (5). 5. Basifacial 

axis (5). 6. Upper neurocranium length (9). 7. Viscerocranium length (6). 8. Facial length (10). 9. 

Greatest length of the nasals (6). 10. Snout length (9). 11. Median palatal length (9). 12. Length 

of the horizontal part of the palatine (10). 13. Length of the cheektooth row (P1-P4) (10). 14. 

Length of the cheektooth row (P1-P3) (9). 15. Greatest diameter of the auditory bulla (9). 16. 

Greatest mastoid breadth (9). 17. Greatest breadth of the bases of the paraoccipital processes 

(9). 18. Greatest breadth of the foramen magnum (9). 19. Height of the foramen magnum (9). 

20. Greatest neurocranium breadth (9). 21. Zygomatic breadth (9). 22. Least breadth of the skull 

(10). 23. Least breadth between the orbits (11). 24. Greatest palatal breadth (9). 25. Least palatal 

breadth (10). 26. Greatest height of the orbit (10). 27. Skull height (9). 28. Height of the occipital 

triangle (9). 29. Temporal fossa length (9). Numbers in brackets indicate sample sizes. 

 

 

The SSD values of the mandibular linear measurements show a different pattern (Figure 5.23). 

Again, none of the measurements have values that are consistently positive or negative. 

However, many of the measurements have only one negative SSD value. These measurements 

are the lengths of the condyle to the symphysis, canine, and p2/p3; lengths of the angular 

process to the symphysis and canine; lengths of the notch between the condyle and angular 

processes to the symphysis and canine; height of the ramus; width at p2/p3; moment arm of 

resistance at the canine. This negative SSD value derives from the same locality for all these 
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measurements: Parc National de l'Upemba, from which there is only one female and one male 

specimen. Nevertheless, the positive SSD values are still low for these measurements, with a 

maximum of 0.05. Across all measurements, the SSD values range from -0.054 to 0.105. This 

range is greater than that for the dental and cranial SSD values, although one measurement 

(mandibular width behind the m1) accounts for much of this variation. 

 

 
Figure 5.23: SSD values of C. crocuta mandibular measurements from localities across Africa. 

Positive values indicate females are larger, negative values indicate males are larger. 1. Condyle 

to symphysis length (8). 2. Angular process to symphysis length (10). 3. Condyle/angular 

indentation to symphysis length (10). 4. Condyle to c alveolus length (10). 5. Condyle/angular 

indentation to c alveolus length (10). 6. Angular process to c alveolus length (10). 7. c alveolus 

to m1 alveolus length (10). 8. Length of cheektooth row (p2 – m1) (9). 9. Length of cheektooth 

row (p3 – m1) (10). 10. Length of premolar row (p2 – p4) (10). 11. Height of the vertical ramus 

(10). 12. Mandibular width at p2/p3 (9). 13. Mandibular width at p3/p4 (9). 14. Mandibular 

width at p4/m1 (9). 15. Mandibular width at post-m1 (9). 16. Distance from p2/p3 to middle of 

articular condyle (9). 17. Distance from p3/p4 to middle of articular condyle (9). 18. Distance 

from p4/m1 to middle of articular condyle (9). 19. Distance from post-m1 to middle of articular 

condyle (9). 20. Moment arm of the superficial masseter (10). 21. Moment arm of the temporalis 

(10). 22. Masseteric fossa length (10). 23. Moment arm of resistance at m1 (9). 24. Moment arm 

of resistance at c (8). Numbers in brackets indicate sample sizes.  
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In light of the results from Section 5.2 that the frontal breadth, breadth of the occipital condyles, 

breadth external to the auditory meatus, mandibular depth and mandibular bending strength 

change in size through the life of an individual, SSD of these features was calculated once data 

were split into different wear stages. The SSD values of frontal breadth, breadth of the occipital 

condyles, and breadth external to the auditory meatus (Figure 5.26) are both positive and 

negative for wear stages V and VI. The SSD values at wear stage IV are positive, however, this 

result is comprised of data from only two sites. The SSD values are low, ranging from -0.03 to 

007 for frontal breadth, -0.014 to 0.028 for the breadth of the occipital condyles, and -0.034 to 

0.039 for the breadth external to the auditory meatus. 

The SSD values of mandibular depths show some pattern with wear stage (Figure 5.27). All SSD 

values are positive at all interdental gaps at wear stage IV. At wear stage V, values are positive 

and negative for all interdental gaps. There are only two samples at wear stage VI. Both are 

negative, although the value for the p3/p4 interdental gap is close to zero at -0.002. Overall, the 

SSD values are low for all measurements, ranging from -0.054 to 0.051. 

The SSD values for bending strength (Figure 5.28 and Figure 5.29) indicate that at wear stage IV, 

SSD values are positive at all interdental positions in the dorsoventral plane (zx/L), and at all 

points in the labiolingual plane (zy/L) except for the post-m1 position. At wear stage V, some 

sites have positive SSD values and some have negative values. At wear stage VI, the SSD values 

are negative. However, this is based on only one site. Some SSD values are high, ranging from -

0.212 to 0.211 for zx/L, and from -0.235 to 0.265 for zy/L. 

As shown in Figure 5.30, there are few measurements with consistently positive or negative SSD 

values of the relative mandibular bending strengths in the labiolingual and dorsoventral planes 

(zx/zy). This is except for the wear stage IV p4/m1 position with negative values, the wear stage 

IV post-m1 position with positive values, and both VI positions with positive values. However, 

sample sizes are again low. SSD values are also low, ranging from -0.091 to 0.047. 

In contrast to the linear mandibular measurements, the mechanical advantage of the temporalis 

and masseter exhibit no consistent positive or negative SSD values (Figure 5.31). All SSD values 

are low, ranging between -0.087 and 0.076. 
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Figure 5.24: SSD values of C. crocuta breadth dorsal to the external meatus. From localities in 

Africa.  

 

 
Figure 5.25: SSD values of C. crocuta breadth of the occipital condyles, from localities in Africa. 

 

  
Figure 5.26: SSD values of C. crocuta frontal breadth, from localities in Africa. 
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Figure 5.27: SSD values of C. crocuta mandibular depths at each interdental gap, from localities 

in Africa. IV, V and VI indicate P3/p3 wear stages. 

 

 

Figure 5.28: SSD values of C. crocuta mandibular bending strength in the dorsoventral plane 

(zx/L) at each interdental gap, from locations in Africa. 
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Figure 5.29: SSD values of C. crocuta mandibular bending strength in the labiolingual plane (zy/L) 

at each interdental gap, from locations in Africa. 

 

 

Figure 5.30: Figure 5.28: SSD values of C. crocuta relative mandibular bending strength in the 

dorsoventral and labiolingual planes (zx/zy) at each interdental gap, from locations in Africa. 
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Figure 5.31: SSD values of C. crocuta indices of mechanical advantage of the masticatory muscles 

from localities in Africa. Positive values indicate females are larger, negative values indicate 

males are larger. Sample sizes for mechanical advantage: at the canines (n = 8), at p2/p3 (n = 9), 

at p3/p4 (n = 9), at m1 (n = 9). 

 

To further assess the extent to which SSD is reflected in C. crocuta cranial, mandibular and dental 

measurements, tests for statistical significance were conducted. The t-tests and Mann Whitney 

tests (in the case of non-normally distributed data) compared male and females measurements 

of specimens from Balbal, Tanzania. Due to small sample sizes, these tests were not performed 

on the anteroposterior lengths of the upper and lower canines, the basicranial axis, basifacial 

axis and viscerocranium length. Additionally, these tests were not performed on those 

measurements that change in size through life, again due to small sample sizes in each P3/p3 

wear category. 

The results show that there are no significant differences at 95 % confidence between males and 

females in any measurement (Table 5.16 – Table 5.19). This is also true for the mandibular 

measurements that appear to be larger in females, as shown in Figure 5.23. Additionally, there 

are no significant differences between males and females of mechanical advantages of the 

masticatory muscles at any bite point along the mandible.     
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Table 5.16: Results of t-tests and Mann Whitney tests comparing male and female C. crocuta 

dental measurements of specimens from Balbal, Tanzania. 
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Table 5.17: Results of t-tests and Mann Whitney tests comparing male and female C. crocuta cranial measurements of specimens from Balbal, Tanzania. 
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Table 5.18: Results of t-tests and Mann Whitney tests comparing male and female C. crocuta mandibular measurements of specimens from Balbal, Tanzania. 

 
Test C

o
n

d
yl

e
 t

o
 

sy
m

p
h

ys
is

 le
n

gt
h

 

A
n

gu
la

r 
p

ro
ce

ss
 t

o
 

in
fr

ad
e

n
tl

al
e 

le
n

gt
h

 

C
o

n
d

yl
e

/a
n

gu
la

r 
in

d
e

n
ta

ti
o

n
 t

o
 

sy
m

p
h

ys
is

 le
n

gt
h

 

C
o

n
d

yl
e

 t
o

 c
 

al
ve

o
lu

s 
le

n
gt

h
 

C
o

n
d

yl
e

/a
n

gu
la

r 
in

d
e

n
ta

ti
o

n
 t

o
 c

 
al

ve
o

lu
s 

le
n

gt
h

 

A
n

gu
la

r 
p

ro
ce

ss
 t

o
 c

 
al

ve
o

lu
s 

le
n

gt
h

 

c 
al

ve
o

lu
s 

to
 m

1
 

al
ve

o
lu

s 
le

n
gt

h
 

Le
n

gt
h

 o
f 

ch
e

e
kt

o
o

th
 r

o
w

 (
p

2
 

– 
m

1
) 

Le
n

gt
h

 o
f 

ch
e

e
kt

o
o

th
 r

o
w

 (
p

3
 

– 
m

1
) 

Le
n

gt
h

 o
f 

p
re

m
o

la
r 

ro
w

 (
p

2
 –

 p
4

) 

H
ei

gh
t 

o
f 

th
e

 
ve

rt
ic

al
 r

am
u

s 

M
an

d
ib

u
la

r 
w

id
th

 a
t 

p
2

/p
3

 

M
an

d
ib

u
la

r 
w

id
th

 a
t 

p
3

/p
4

 

M
an

d
ib

u
la

r 
w

id
th

 a
t 

p
4

/m
1

 

M
an

d
ib

u
la

r 
w

id
th

 a
t 

p
o

st
-m

1 

t-test 

t-value 0.46  0.55 0.58 0.21 0.3 0.29 0.68 0.57 1.29 0.52 0.46 0.26 0.75 1.57 

p-value 0.651  0.589 0.566 0.838 0.763 0.776 0.503 0.57 0.209 0.608 0.649 0.798 0.458 0.125 

Mann Whitney 

W-value  292              

p-value  0.439              

 
Test D

is
ta

n
ce

 f
ro

m
 

p
2

/p
3 

to
 m

id
d

le
 o

f 

ar
ti

cu
la

r 
co

n
d

yl
e 

D
is

ta
n

ce
 f

ro
m

 
p

3
/p

4 
to

 m
id

d
le

 o
f 

ar
ti

cu
la

r 
co

n
d

yl
e 

D
is

ta
n

ce
 f

ro
m

 
p

4
/m

1
 t

o
 m

id
d

le
 o

f 
ar

ti
cu

la
r 

co
n

d
yl

e 

D
is

ta
n

ce
 f

ro
m

 p
o

st
-

m
1

 t
o

 m
id

d
le

 o
f 

ar
ti

cu
la

r 
co

n
d

yl
e 

M
o

m
e

n
t 

ar
m

 o
f 

th
e 

te
m

p
o

ra
lis

 

M
o

m
e

n
t 

ar
m

 o
f 

th
e 

su
p

er
fi

ci
al

 m
as

se
te

r 

M
o

m
e

n
t 

ar
m

 o
f 

th
e 

d
ee

p
 m

as
se

te
r 

M
o

m
e

n
t 

ar
m

 o
f 

re
si

st
an

ce
 a

t 
c 

M
o

m
e

n
t 

ar
m

 o
f 

re
si

st
an

ce
 a

t 
m

1
 

t-test 

t-value 0.76 0.89 0.61 0.39 0.55 0.15 0.01 0.59 0.45 

p-value 0.454 0.379 0.545 0.698 0.587 0.879 0.994 0.561 0.655 



5. Modern Crocuta crocuta 
 

- 237 - 
 

Table 5.19: Results of t-tests comparing male and female C. crocuta masticatory muscle mechanical advantage calculations of specimens from Balbal, Tanzania. 
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Conformity to Rensch’s Rule was assessed through reduced major axis regressions and 

accompanying Pearson correlation on the mandibular measurements that appear to exhibit SSD 

(Table 5.20 and Figure 5.32). Condylobasal and m1 lengths were also included because these 

measurements scale closely with overall body size (Van Valkenburgh, 1990). 

Only three of the 12 measurements have significant linear correlations between males and 

females at 95 % confidence (m1 length, mandibular ramus height, width of the mandible at 

p2/p3). The associated Pearson’s r correlation value is highest for these measurements. 

Moment arm of resistance at the canine has a very low Pearson’s r value of 0.031. This statistic 

and Figure 5.32 show that there is very little correlation between male and female sizes. Except 

for mandibular ramus height, all measurements have slope values that are greater than one. 

However, the 95 % bootstrapped confidence intervals of the slope all span one for every 

measurement. 

 

Table 5.20: Results of reduced major axis regressions, with base-10 logarithmically transformed 

C. crocuta female measurements on the x-axis, and base-10 logarithmically transformed 

C. crocuta male measurements on the y-axis. Statistics include Pearson’s r correlation and 

associated p-value. Also shown are the regression slope values, with associated 95 % 

bootstrapped confidence intervals of the slope. 
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Figure 5.32: Reduced major axis regression of Log10 male C. crocuta measurements against Log10 female C. crocuta measurements. 

Slope = 1.078  
n = 11 

Slope = 1.664 
n = 9 

Slope = 1.494 
n = 8 

Slope = 1.459 
n = 10  
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Figure 5.32 continued. 

Slope = 1.681 
n = 10 

Slope = 1.376 
n = 10 

Slope = 1.443  
n = 10 

Slope = 1.314 
n = 10 
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Figure 5.32 continued.  

Slope = 0.966  
n = 10 

Slope = 1.117  
n = 9 

Slope = 1.505  
n = 9 

Slope = 1.976  
n = 8 
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Craniodental SSD sample sizes are too small to run PLS regressions. Spearman Rank Order 

correlations were performed in order to avoid the elevated chance of Type I errors associated 

with individual regression models. The mandibular measurements that potentially exhibit SSD 

were included. Condylobasal length and m1 length were also included as these scale closely with 

body mass (Van Valkenburgh, 1990). The tests assessed the correlation of these craniodental 

variables against the following environmental variables: minimum temperature of the coolest 

month, maximum temperature of the warmest month, precipitation of the driest month, 

precipitation of the wettest month, close vegetation cover, semi-open vegetation cover and 

open vegetation cover. 

The results are insignificant at 95 % confidence (Table 5.21). The exception is the negative 

correlation between the mandibular condyle to symphysis length and closed vegetation cover 

(rs = -0.886, p-value = 0.019). However, this value is insignificant when the Bonferroni correction 

is applied, which means the p-value is only significant if less than 0.071. While the correlations 

between closed vegetation cover and the other mandibular measurements are all insignificant, 

they are also all negative. Correlations of the mandibular measurements with precipitation of 

the driest month and open vegetation cover are also all consistently positive.  
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Table 5.21: Spearman Rank Order statistics of C. crocuta craniodental SSD values against environmental variables. The top number is the rs value. The bottom 

number is the p-value. All variables except vegetation were base-10 logarithmically transformed prior to the analyses. The vegetation variables were centred log 

ratio transformed. Bonferroni corrected p-value = 0.0071. Shaded section is significant at 95 % uncorrected confidence (p<0.05). 
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5.3.2.3 Post-crania 

To assess further the difference in size between male and female C. crocuta, SSD values were 

calculated for measurements of the post-crania. Unfortunately, due to the relative scarcity of 

post-cranial specimens, SSD values could be calculated from only two sites: Site 6.11. (Parc 

National de l’Upemba, Democratic Republic of Congo), and Site 10.5 (Mount Kenya National 

Park, Kenya). Due to lack of data, SSD values were only calculated for some of the post-cranial 

bones: axis, scapula, pelvis, humerus, radius, ulna, femur, fibula, astragalus and calcaneum. 

Additionally, due to small sample sizes, the brachial and crural indices could not be calculated. 

As the results of the ontogenetic size change assessment suggested little change with age in 

most measurements (Section 5.2.2.3), data from individuals for all wear stages were combined. 

This is except for the greatest breadth of the distal articular surface of the radius and the 

greatest breadth of across the proximal articular surface of the ulna, which potentially exhibited 

change through ontogeny and were thus excluded. The greatest depth of the femoral head was 

included, but was only calculated using two individuals from Site 6.11, both of which are wear 

stage V. 

The SSD values are not consistently positive or negative. However, where there are two samples 

for the femoral measurements, the SSD values have the same sign. The smallest breadth of the 

radial diaphysis is larger in females in Site 6.11, yet is larger in males in Site 10.5. The values 

range from -0.073 to 0.038. These are low compared with the more sexually dimorphic species 

(P. leo and P. pardus) in Figure 5.19. 
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Table 5.22: Sexual size dimorphism values of present-day C. crocuta. Positive values indicate females are larger. Negative values indicate males are larger. A = Site 

6.11, Parc National de l'Upemba, Democratic Republic of Congo. B = Site 10.5,Mount Kenya National Park, Kenya. 
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5.3.3 Discussion 

5.3.3.1 Body mass 

As opposed to the other large African predators, C. crocuta exhibits female-biased SSD, as found 

in other studies (Matthews, 1939; Mills, 1990; Swanson et al., 2013). There is variation in the 

degree of SSD across the study sites. First, the data was assessed for conformity to Rensch’s 

Rule. To test this, female body masses were regressed against male body masses. The theory is 

that if the regression slope is >1 in species in which females are larger than males, SSD decreases 

with size, and thus Rensch’s Rule is followed (Fairbairn, 1997, see Section 3.2). The regression 

produced a slope with a value of 1.024, suggesting a hyperallometric relationship of male body 

mass to female body mass. However, the confidence interval (0.759-1.345) of this slope spans 

the value of one. This, coupled with the strong significant relationship between male and female 

body mass, suggests that male and female body mass has an isometric relationship. SSD does 

not increase or decrease with greater body mass, and therefore Rensch’s Rule is not followed 

(following Abouheif and Fairbairn, 1997; Fairbairn, 1997). SSD may, therefore, be due to other 

factors. 

Spearman Rank Order correlations were run to assess correlations between body mass SSD and 

environmental variables (predator density, prey biomass, temperature, precipitation, 

vegetation cover). None of the correlations are significant, although the sample size is low, with 

only nine sites included. The strongest correlation is a positive relationship of SSD with semi-

open vegetation cover, however, there appears to no indication in the literature as to why there 

may be a relationship between the two variables. 

Most investigations into variations of SSD have been explained by food availability or 

competition (e.g. Ralls and Harvey, 1985; Isaac, 2005; McDonough and Christ, 2012). In the 

present study, however, the results of the correlations suggest that intraspecific competition, 

competition with P. leo, and prey biomass have very little association with C. crocuta body mass 

SSD. 

Overall, the lack of significance and small rs values suggest that the variables have only weak 

associations with C. crocuta body mass SSD. This may be a real signal, or may be due to the small 

sample size. The geographical coverage is also poor (Figure 4.2). A further factor to consider is 

the degree of SSD compared to other species. P. leo, and P. pardus exhibit stronger SSD than 

C. crocuta. The concern is therefore whether the geographical variation in the degree of SSD is 

actually large enough to warrant attribution to any environmental variables.  



5. Modern Crocuta crocuta 
 

- 247 - 
 

Furthermore, the variations in SSD in C. crocuta may merely be due to problems with using body 

mass as an indicator of SSD. Body mass is highly variable and may be affected by how much an 

individual has recently eaten (East and Hofer, 1993). This may be especially important in 

C. crocuta as adult males are often outcompeted by higher ranking females at a carcass (Frank 

et al., 1989). Therefore, the degree of SSD after feeding may be greater as females may have 

consumed more. This, therefore, raises questions about the validity of using body mass as a 

means of determining levels of SSD, and supports the use of alternative elements such as 

measurement of bones and teeth.  

 

5.3.3.2 Crania and dentition 

The results show that there is little consistent direction of sexual size dimorphism in most 

cranial, mandibular and dental measurements. The SSD values indicate that females are larger 

in some sites, whereas males are larger in other sites. Moreover, a comparison with the SSD 

values of other carnivores such as P. leo and P. pardus (Figure 5.19) suggests that C. crocuta SSD 

values are low. This suggests that the positive or negative SSD values for each site are merely an 

indication of a factor such as sample size, or small, local variations. Potential exceptions to this 

are some of the mandibular measurements. For these measurements, only one site has a 

negative SSD value, and this was calculated with only one male and one female. Despite this, 

the t-tests and Mann Whitney tests on the Balbal specimens revealed no significant differences 

at 95 % between males and females in any cranial, mandibular or dental traits. 

This means that going forward, the males, females, and specimens of unknown sex can be 

combined in analyses. However, the mandibular measurements that potentially exhibit SSD will 

be treated so that males and females are assessed separately. Similarly, the results mean that, 

aside from the few mandibular measurements, sex will not be a consideration when interpreting 

the Pleistocene data. 

Measurements of mandible length potentially exhibit female-biased SSD, as do measurements 

from the condyle to the p2/p3 and the canine. These measurements are included in the 

calculations of mechanical advantage of the masticatory muscles and of bending strength. 

Potential female-biased SSD is also observed in the width of the mandible at p2/p3, which is also 

included in bending strength calculations. There is no indication of SSD in mechanical advantage. 

By contrast, there appears to be variation in SSD of dorsoventral and labiolingual bending 

strength with age. Younger C. crocuta exhibit female-biased SSD in these indices. As age 

increases, the indices exhibit male-biased SSD, although sample sizes are small. However, as the 

mandible incurs stresses during biting hard food and struggling prey (Biknevicius and Ruff, 1992; 
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Therrien, 2005; Ferretti, 2007; Meloro et al., 2008; Palmqvist et al., 2011) this suggests that older 

males have greater bending strengths and are thus better suited to consume bone and target 

larger prey. However, males are disadvantaged relative to females when they are younger. It is 

difficult to determine whether this may have a noticeable impact on the feeding ability of males 

and females as the calculations of bending strength were not subject to tests for significant 

difference due to small sample sizes. Moreover, the SSD values are variable. Many of the values 

are less than 0.1, however, some of the values are large, and equal the higher SSD values of the 

more sexually dimorphic carnivore species such as P. leo and P. pardus (Figure 5.19). 

The measurements that potentially exhibit SSD, in addition to indicators of body size (cranium 

length and m1 length) were assessed for Rensch’s Rule. Except for mandibular ramus height, all 

measurements have a slope greater than one, suggesting that males increase in size 

hyperallometrically to females. However, in all cases, the confidence intervals span one. The 

measurements with the largest confidence intervals are those for which there is weak 

correlation between male and female sizes. Other measurements (cranium and m1 lengths, 

mandibular ramus height, and mandibular width at p2/p3) have significant correlations between 

males and females, and small slope confidence intervals. For these measurements, there is likely 

an isometric relationship, so that neither males nor females increase in size more than the other. 

This also means that degree of SSD does not increase or decrease with larger size, and therefore 

do not follow Rensch’s Rule. 

Spearman Rank Order correlations were run to assess the relationship between craniodental 

SSD and environmental variables. Most tests show that there are only weak and insignificant 

correlations between the SSD values and environmental variables. The exception is the length 

between the mandibular condyle and symphysis, which has a negative correlation with closed 

vegetation cover. The other mandibular measurements exhibit the same relationship, although 

these are weaker and insignificant. In terms of the Pleistocene, this suggests that during periods 

of greater vegetation cover, the mandible exhibited reduced SSD. However, the relationship 

between the length of the mandibular condyle-symphysis and closed vegetation cover is 

insignificant when the Bonferroni correction is applied, meaning that the uncorrected 

significance may have been a Type I error. 

Other than this one example, the environmental variables included in this analysis do not have 

strong associations with degree of SSD. There are a number of potential explanations for this. 

Firstly, the environmental influences upon SSD as outlined in Section 3.2 are mostly comprised 

of body mass studies. Therefore, there may not be direct environmental influences upon 

craniodental elements. Secondly, the sample sizes of the tests were small, and therefore may 

have been insufficient to highlight any relationships between SSD and environmental variables. 
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Lastly, there may be influences that were not included in the model. For example, abundance of 

C. crocuta, other large predators and prey were not included due to lack of data for most sites. 

Competition for food was suggested to be a driver of SSD (Isaac, 2005, and references therein). 

Food availability influences degree of SSD of body size in U. arctos (McDonough and Christ, 2012) 

and Mustela spp.(Ralls and Harvey, 1985). Seasonality in food may also drive body size SSD 

(Isaac, 2005, and references therein), which may explain the potential influence of cold winters 

and warm summers on greater SSD of the least breadth of the skull.  

Overall, the results of this section differ from other studies of SSD in C. crocuta. Notably, 

Swanson et al. (2013) and Matthews (1939) observed female-biased SSD in skull length. 

However, these measurements were made on live individuals, and thus comprised not only the 

size of the skull, but also other tissues such as muscle. One explanation for the disparity may be 

that muscles continue growing after the skull has stopped growing. Indeed, in a study by Binder 

and Van Valkenburgh (2000), bite strength measured on live C. crocuta continued to increase 

until four years of age, long after skull had finished growing at 20 months of age. This led the 

authors to suggest that the muscles continued growing after the skull stopped growing. Indeed, 

Swanson et al. (2013) stated that the most dimorphic features are those that stop growing later 

in life. 

The results also contrast with a study by Gittleman and Van Valkenburgh (1997) who observed 

female-biased SSD in canines, P4, m1 length, skull length, and moment arm of resistance at the 

lower canines of C. crocuta, and male-biased SSD in width of the m1, moment arm of the 

temporalis, and moment arm of the superficial masseter. Except for moment arm of resistance 

at the canines, all of these measurements revealed no consistent direction in SSD in the present 

study. The disparity between the two studies is because Gittleman and Van Valkenburgh's (1997) 

studied specimens from only one geographical area. The results do support Klein's (1986) finding 

that C. crocuta 4.5° south of the equator exhibit no SSD in m1 length. 

 

5.3.3.3 Post-crania 

The sample size used to calculate SSD is small, due to the paucity of post-cranial specimens in 

museums when compared with the abundance of crania. However, where femoral SSD was 

calculated from two sites, the direction of SSD is consistent, lending support to the results. This 

was not the case for the smallest breadth of the radial diaphysis, where female measurements 

are on average smaller in Site 6.11, yet larger in Site 10.6. Some measurements show positive 

SSD (larger in females), and some measurements show negative SSD (larger in males). The SSD 

values are low, especially when compared with the other large carnivores (Figure 5.19). This 
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suggests that there is little size difference in post-cranial bones between male and female 

C. crocuta.  

Swanson et al. (2013) observed that lower fore-limb length was not sexually dimorphic in 

C. crocuta. The radius and the ulna lengths in the present study both exhibit female-biased SSD, 

yet similarly to Swanson et al. (2013), the degree of SSD is low. 

Overall, in light of the small SSD values, male and female post-cranial measurements will be 

combined in further analyses. Additionally, the results suggest that SSD will not influence 

morphometric analyses of Pleistocene post-crania. Finally, the small SSD values suggest that 

there are no functional differences in the post-crania of males and females. 
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5.4 Geographical variation in body size and morphology 

5.4.1 Introduction 

Body mass and the size of individual skeletal and dental elements hold important functional 

implications. For example, body mass may influence hunting ability (Biewener, 1989), targeted 

prey size (Carbone et al., 2007), and temperature conservation to a limited extent (Steudel et 

al., 1994). Craniodental morphology is associated with the size of the brain, vision, hearing, 

olfaction, respiration and feeding (Ewer, 1973; Biknevicius, 1996; Smith and Rossie, 2008; Tseng 

and Binder, 2010; Macrini, 2012; Nummela et al., 2013; Lucas, 2015; Rahmat and Koretsky, 2015; 

and see Section 3.3). The post-crania are related to weight bearing, prey capture and locomotion 

(Hildebrand, 1974; Van Valkenburgh, 1985; and see Section 3.4). Gaining insights into the 

morphological variation of these elements may therefore provide valuable information about 

the responses to C. crocuta to different environmental conditions. 

Average body mass of C. crocuta has been recorded as varying from 35.83 kg in Ethiopia (Powell-

Cotton n.d., cited in Shortridge 1934) to 80.06 in Botswana (Smithers 1971). Skeletal and dental 

elements have also been record as varied, with m1 lengths greater further from the equator 

(Klein, 1986), and skulls larger in South Africa than eastern Africa (Roberts, 1951). These studies 

indicate that C. crocuta are larger at higher latitudes, and therefore conform to Bergmann’s Rule. 

However, conformity to Bergmann’s Rule has not been investigated in body mass in C. crocuta. 

Moreover, the range of geographical localities used to assess the influence of Bergmann’s Rule 

are few, and other factors have not been considered. Barring the above studies, there have been 

no investigations of geographical variation of craniodental or post-cranial elements in present-

day C. crocuta.  

This study will assess the geographical variation and associated environmental influences upon 

body mass, and skeletal and dental elements of present-day C. crocuta in Africa. It is hoped that 

this may provide some insight into the possible drivers of any changes in C. crocuta body size 

and morphology during the Pleistocene, by confirming whether environmental factors are 

sufficient to explain variation in present-day C. crocuta. 

The research questions are as follows: 

• Is there geographical variation in C. crocuta body mass and skeletal and dental 

elements? 

• Does C. crocuta conform to Bergmann’s Rule? 

• Are there other environmental variables that may explain variation in C. crocuta body 

size and morphology? 
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5.4.2 Results 

5.4.2.1 Body mass 

C. crocuta female body mass values (Table 5.23) range from 35.83 kg in Ethiopia (Powell-Cotton, 

n.d., cited in Shortridge, 1934) to 78.25 kg in Malawi (Wood, n.d., cited in Shortridge 1934), with 

a range of 42.42 kg. Male body mass ranges from 43.6 kg in the Narok District of Kenya (Neaves 

et al., 1980) to 80.6 kg in Botswana (Smithers, 1971), with a range of 37 kg. 

Spearman Rank Order correlations were performed to assess the relationship of male and 

female body masses with environmental variables (C. crocuta density, P. leo density, prey 

biomass, minimum temperature of the coolest month, maximum temperature of the warmest 

month, precipitation of the driest month, precipitation of the wettest month, closed vegetation 

cover, semi-open vegetation cover, open vegetation cover). The correlation of male and female 

body mass with distance from the equator was also assessed. 

At 95 % confidence, female body mass is significantly negatively correlated with precipitation of 

the wettest month (rs = -0.854, p-value = 0.003) and P. leo density (rs = -0.711, p-value = 0.032, 

Table 5.24). It is also significantly, positively correlated with maximum temperature of the 

warmest month (rs = 0.005, p-value = 0.005). Male body mass is also positively correlated with 

maximum temperature of the warmest month (rs = 0.622) and negatively correlated with P. leo 

density (rs = -0.552), yet these are insignificant (p-value = 0.074 and 0.123, respectively). The 

only significant correlation with male body mass is precipitation of the wettest month (rs = -

0.686, p-value = 0.041). 

The Bonferroni correction value for all tests in Table 5.24 is 0.0045. Only the correlation between 

female body mass and precipitation of the wettest month is significant under this corrected 95 % 

confidence p-value.  

Distance from the equator is insignificantly and positively correlated with both female 

(rs = 0.636, p-value = 0.066) and male (rs = 0.586, p-value = 0.097) body mass. 
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Table 5.23: Mean female and male body mass (BM) data of present-day C. crocuta. 1Mean value 

calculated from the minimum and maximum values (78.02 and 78.47 kg; Wood, n.d., cited in 

Shortridge 1934). 

Country Location Mean 
female 
BM (kg) 

Mean 
male 

BM (kg) 

Reference 

Botswana 
 

70.99 80.06 Smithers (1971) 

Ethiopia  35.83  Powell-Cotton (n.d., cited in 
Shortridge 1934) 

Kenya  58.51  Meinertzhagen (1938) 

Kenya   55.79 Talbot and Talbot (1962) 

Kenya Aberdare National 
Park 

51.8 47.4 Sillero-Zubiri and Gottelli 
(1992) 

Kenya Maasai Mara 
National Reserve 

59.39 53.67 Swanson et al. (2013) 

Kenya Narok District 50.7 43.6 Neaves et al. (1980) 

Malawi  78.251  Wood (n.d., cited in 
Shortridge 1934) 

South Africa  61.1 56.2 Skinner (1976) 

South Africa Hluhluwe-iMfolozi 
Park 

70 66.6 Whateley (1980) 

South Africa iMfolozi Game 
Reserve 

57.75 47.5 Green et al. (1984) 

South Africa Kalahari Gemsbok 
National Park 

70.9 59 Mills (1990) 

South Africa Kruger National Park 70.76 58.06 Stevenson-Hamilton (1947) 

South Africa Kruger National Park 68.2 62.5 Henschel (1986, cited in 
Skinner and Chimimba 2005) 

South Africa Kruger National Park 67.92  Lindeque (1981, cited in 
Smithers 1983) 

South Africa Transvaal  53.6 Rautenbach (1982, cited in 
Silva and Downing 1995) 

South Africa 
and 

Zimbabwe 

Transvaal and 
Zimbabwe 

64.8 57.8 Rautenbach (1978, cited in 
Smithers 1983); Smithers 

(1983) 

Southern 
Africa 

 47.18 46.87 Thackeray and Kieser (1992) 

Tanzania Serengeti 55.3 48.7 Kruuk (1972) 

Zambia Eastern Province 68 
 

Wilson (1968, cited in Silva 
and Downing 1995) 

Zambia 
 

68.2 67.7 Wilson (1975, cited in Silva 
and Downing 1995) 

 Minimum 35.83 43.6  

 Maximum 78.25 80.6  

 Range 42.42 37  
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Table 5.24: Spearman Rank Correlation statistics of female C. crocuta body mass and male C. 

crocuta body mass against environmental variables (n = 9). All variables, except for vegetation 

cover, were base-10 logarithmically transformed prior to analyses. Vegetation cover variables 

were centred log ratio transformed. Bonferroni corrected p-value = 0.0045. Grey shaded 

sections are significant at 95 % uncorrected confidence (p<0.05). Orange shaded sections are 

also significant at 95 % corrected confidence (p<0.0045). 

    Female body mass        Male body mass 

Variable rs value p-value rs value p-value 

C. crocuta density -0.577 0.104 -0.519 0.152 

P. leo density -0.711 0.032 -0.552 0.123 

Prey biomass -0.661 0.053 -0.485 0.185 

Min. temp. coolest month -0.21 0.587 -0.017 0.966 

Max. temp. warmest month 0.84 0.005 0.622 0.074 

Precipitation driest month -0.563 0.114 -0.403 0.282 

Precipitation wettest month  -0.854 0.003 -0.686 0.041 

Closed vegetation cover -0.452 0.222 -0.351 0.354 

Semi-open vegetation cover 0.653 0.057 0.402 0.284 

Open vegetation cover -0.368 0.33 -0.084 0.831 

Distance from equator 0.636 0.066 0.586 0.097 
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5.4.2.2 Crania and dentition 

As with C. crocuta body mass, the cranial, mandibular and dental measurements exhibit 

considerable geographic variation. For example, of individuals with P3/p3 wear stage IV or 

greater, the mean total length of the cranium ranges from 243.17 mm in Site 7.1 (Debub Region, 

Eritrea), to 294.21 mm in Site 25.1 (Matabeleland North Province, Zimbabwe). 

To assess the environmental influences upon the measurements, PLS regressions were 

performed (PLS 5-82). Measurements that potentially exhibit SSD (Section 5.3) and those that 

change in size through life (Section 5.2) were not included. Independent variables included in 

the models were minimum temperature of the coolest month, maximum temperature of the 

warmest month, precipitation of the driest month, precipitation of the wettest month, closed 

vegetation cover, semi-open vegetation cover, and open vegetation cover. 

The r2 and p-values of the PLS regressions are shown in Table 5.25-Table 5.27. All models are 

significant at 95 %. However, the r2 values are all low, with the highest value at only 0.447 for 

the condylobasal length of the cranium (PLS 31). Most PLS models have many sites that are 

classed as leverages. In light of the number of leverages, only extreme values (classed as having 

a leverage value greater than two above the leverage reference line) were removed from 

subsequent PLS reruns (see Appendices Table 10.17-Table 10.19). 

Reruns without the extreme leverage points resulted in reduced r2 values in most cases, 

although the PLS regressions are still significant. One exception is the greatest neurocranium 

breadth, with an r2 value that increased from 0.256 (PLS 52) to 0.29 (PLS 53) after removal of 

Site 17.1, Mpumalanga Province, South Africa. The other exception is the moment arm of the 

superficial masseter, with an r2 value that increased from 0.272 (PLS 79) to 0.285 (PLS 80) after 

removal of Site 17.1. Nevertheless, these r2 values are still low. 

In most cases, the most extreme leverage value removed from the PLS reruns was Site 17.1. This 

is except for the leverage site of PLS 17 (anteroposterior diameter of the lower canine), which 

was Site 10.6, Nairobi National Park, Kenya. 

The only models that will be further assessed are the ones with the greatest r2 values. These are 

the condylobasal length (PLS 31, r2 = 0.447) and the length from canine alveolus to the m1 

alveolus of the mandible (PLS 64, r2 = 0.441). 
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Table 5.25: r2 values and p-values for PLS regressions run with each of the C. crocuta dental measurements as dependent variables. 1Rerun without Site 17.1, 

Mpumalanga Province, South Africa. 2Rerun without Site 10.6, Nairobi National Park, Kenya. 
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PLS no. 5 6 7 8 9 10 11 13 14 15 16 

r2 value 0.325 0.26 0.142 0.095 0.177 0.166 0.301 0.138 0.156 0.284 0.228 

p-value 0.002 <0.05 0.018 0.029 0.003 0.002 0.001 0.007 0.003 <0.05 <0.05 

No. leverages 10 16 13 50 19 19 5 17 21 17 20 

PLS no.       121     

r2 value       0.176     

p-value       0.004     

No. leverages       18     
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Table 5.25 continued. 
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PLS no. 17 19 20 22 24 25 26 27 28 29 

r2 value 0.276 0.202 0.267 0.222 0.177 0.12 0.198 0.153 0.211 0.227 

p-value 0.005 0.007 0.004 0.002 0.002 0.012 0.003 0.002 <0.05 <0.05 

No. leverages 9 12 8 11 23 18 16 23 18 16 

PLS no. 182  211 231       

r2 value 0.228  0.163 0.178       

p-value 0.014  0.006 0.002       

No. leverages 8  18 15       
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Table 5.26: r2 values and p-values of PLS regressions run with C. crocuta cranial measurements as dependent variables. 1Rerun without Site 17.1, Mpumalanga 

Province, South Africa. 
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PLS no. 30 31 32 33 34 35 36 37 38 39 40 41 42 44 46 

r2 value 0.289 0.447 0.415 0.291 0.292 0.258 0.416 0.205 0.313 0.124 0.244 0.199 0.348 0.327 0.254 

p-value <0.05 <0.05 <0.05 0.001 0.001 <0.05 <0.05 0.001 <0.05 0.012 <0.05 0.002 <0.05 0.009 <0.05 

No. leverages 25 23 20 19 17 24 22 24 19 25 19 20 15 55 21 

PLS no.             431 451  

r2 value             0.3 0.325  

p-value             <0.05 0.011  

No. leverages             17 5  
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Table 5.26 continued. 
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PLS no. 47 48 49 50 52 54 55 57 58 59 60 61 62 63 

r2 value 0.34 0.246 0.294 0.325 0.256 0.222 0.332 0.289 0.2 0.373 0.224 0.171 0.173 0.242 

p-value <0.05 <0.05 <0.05 0.016 <0.05 0.001 <0.05 <0.05 0.001 <0.05 <0.05 0.004 0.03 <0.05 

No. leverages 27 23 22 9 15 22 34 23 24 20 17 22 24 25 

PLS no.    511 531  561        

r2 value    0.165 0.29  0.293        

p-value    0.006 0.005  <0.05        

No. leverages    14 8  21        
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Table 5.27: r2 values and p-values of PLS regressions, run with C. crocuta mandibular measurements as the dependent variables. 1Rerun without Site 17.1, 

Mpumalanga Province, South Africa. 
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PLS no. 64 65 67 69 70 72 73 74 75 76 77 79 81 82 

r2 value 0.441 0.322 0.35 0.217 0.36 0.264 0.125 0.334 0.324 0.253 0.28 0.272 0.164 0.188 

p-value <0.05 0.006 0.001 <0.05 <0.05 <0.05 0.012 <0.05 <0.05 <0.05 <0.05 0.01 0.003 0.01 

No. leverages 16 3 5 19 9 17 15 15 16 14 9 4 15 18 

PLS no.  661 681  711      781 801   

r2 value  0.267 0.298  0.309      0.225 0.285   

p-value  <0.05 <0.05  <0.05      <0.05 0.017   

No. leverages  18 19  16      16 6   
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PLS 31 (condylobasal length of the cranium) has 23 leverage values. However, none of the 

leverage sites are extreme, as indicated in Figure 5.33. The standardised coefficient with the 

greatest value is open vegetation cover at -0.268 (Figure 5.34). With lower values are maximum 

temperature of the warmest month, closed vegetation cover and semi-open vegetation cover, 

which have positive coefficients, while precipitation of the driest month has a negative 

coefficient. Minimum temperature of the coolest month and precipitation of the wettest month 

both have small negative coefficients. 

The robustness of PLS 31 was tested by rerunning the model and removing one site each time, 

resulting in 47 runs (Table 5.28). All runs are significant at 95 % with p-values <0.05 (too low for 

the software to give a meaningful value). The r2 values for all runs are very similar, ranging from 

0.411 (removal of Site 14.1, Podor Department, Senegal) to 0.552 (removal of Site 12.1, Caprivi 

Strip, Namibia). 

 

 
Figure 5.33: Standardised residuals against leverage values for each site in PLS 31, with C. crocuta 

condylobasal length of the skull as the dependent variable. See Appendix 10.6, Table 10.18 for 

site numbers corresponding to each leverage point. 
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Figure 5.34: Standardised coefficients from PLS 31 with C. crocuta condylobasal length as the 

dependent variable. All variables had been base-10 logarithmically transformed. 

 

 

CI values of the standardised coefficients from PLS 31 reruns were calculated (Table 5.29). The 

CI values are low, ranging from 0.002 for maximum temperature of the warmest month to 0.1 

for minimum temperature of the coolest month. The signs are also constant so that no 

confidence interval crosses zero. This is also illustrated in Figure 5.35, showing that most of the 

coefficients are clustered together, with the exception of runs that excluded Site 6.13 (Lomami 

Province, Democratic Republic of the Congo) and Site 12.1 (Caprivi Strip, Namibia). Nevertheless, 

only precipitation of the wettest month has coefficients that are both positive and negative. 

Otherwise, the coefficients reflect the results of the original model with all sites (Figure 5.34). 
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Table 5.28: r2 values of repeated runs of PLS 31, with C. crocuta condylobasal length as the 

dependent variable. Each run removed one site at a time. All runs have a p-value of <0.05. 

Run no. Removed site r2 value 

1 1.1 Zaire Province, Angola 0.448 

2 3.1 Chobe, Savuti Chobe, and Mababe Zokotsama, Botswana 0.431 

3 3.2 Kgalagadi District, Botswana 0.449 

4 5.3 Centre Region, Cameroon 0.467 

5 6.2 Bas Uele District, Democratic Republic of the Congo 0.447 

6 6.3 Haut Uele District, Democratic Republic of the Congo 0.443 

7 6.4 Parc National de la Garamba, Democratic Republic of the Congo 0.445 

8 6.6 Ituri District, Democratic Republic of the Congo 0.448 

9 6.7 Ituri and North Kivu Districts, Democratic Republic of the Congo 0.448 

10 6.9 Parc National des Virunga, Democratic Republic of the Congo 0.449 

11 6.10 Haut Katanga District, Democratic Republic of the Congo 0.446 

12 6.11 Parc National de l’Upemba, Democratic Republic of the Congo 0.44 

13 6.12 Tanganyika District, Democratic Republic of the Congo 0.449 

14 6.13 Lomami Province, Democratic Republic of the Congo 0.532 

15 6.14 Lukaya District, Democratic Republic of the Congo 0.447 

16 6.15 Kwilu and Kwango Districts, Democratic Republic of the Congo 0.453 

17 7.1 Debub Region, Eritrea 0.446 

18 9.1 Dire Dawa Region, Ethiopia 0.427 

19 10.1 Samburu County, Kenya 0.441 

20 10.2 Narok and Bomet Counties, Kenya 0.429 

21 10.3 Garissa County, Kenya 0.434 

22 10.4 Taita-Taveta County, Kenya 0.426 

23 11.1 Tete Province, Mozambique 0.444 

24 12.1 Caprivi Strip, Namibia 0.552 

25 12.2 Khomas Region, Namibia 0.454 

26 13.1 Akagera National Park, Rwanda 0.443 

27 13.2 Nyagatare District, Rwanda 0.441 

28 14.1 Podor Department, Senegal 0.411 

29 16.1 Woqooyi Galbeed Region, Somalia 0.448 

30 17.1 Mpumalanga Province, South Africa 0.46 

31 17.2 Zululand District, South Africa 0.466 

32 18.1 Upper Nile State, South Sudan 0.472 

33 19.1 Shamal Darfur State, Sudan 0.44 

34 19.2 Janub Darfur State, Sudan 0.429 

35 21.1 Mara Region, Tanzania 0.436 

36 21.2 Tabora Region, Tanzania 0.473 

37 21.3 Kilimanjaro Region, Tanzania 0.448 

38 21.4 Dodoma Region, Tanzania 0.449 

39 21.6 Rukwa Region, Tanzania 0.444 

40 21.8 Morogoro Region, Tanzania 0.447 

41 21.11 Ruvuma Region, Tanzania 0.447 

42 21.12 Ngorongoro Conservation Area, Tanzania 0.435 

43 22.1 Centrale Region, Togo 0.457 

44 23.1 Lira District, Uganda 0.462 

45 23.2 Gulu District, Uganda 0.45 

46 24.1 Eastern Province, Zambia 0.457 

47 25.1 Matabeleland North Province, Zimbabwe 0.444 
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Table 5.29: Standardised coefficient means and confidence intervals (CI) for repeated runs of 

PLS 31, with C. crocuta condylobasal length as the dependent variable. 

Independent variable 
Standardised 

coefficient 
mean 

Standardised 
coefficient CI 

Standardised 
coefficient 
mean - CI 

Standardised 
coefficient 
mean + CI 

Minimum temperature 
coolest month 

-0.053 0.01 -0.064 -0.043 

Maximum temperature 
warmest month 

0.196 0.002 0.194 0.198 

Precipitation driest month -0.155 0.003 -0.158 -0.151 

Precipitation wettest month -0.027 0.004 -0.031 -0.023 

Closed vegetation 0.142 0.008 0.134 0.151 

Semi-open vegetation 0.182 0.003 0.179 0.185 

Open vegetation -0.27 0.006 -0.276 -0.265 
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Figure 5.35: Standardised coefficients from reruns of PLS 31, with C. crocuta condylobasal length 

as the dependent variable.          
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None of the 16 leverage values from PLS 64 (length from c alveolus to m1 alveolus) are extreme 

(Figure 5.36). The independent variable with the greatest standardised coefficient is open 

vegetation cover with a negative coefficient (Figure 5.37). Next is precipitation of the driest 

month, which also has a negative coefficient, and semi-open vegetation cover, closed vegetation 

and maximum temperature of the warmest month, which all have positive associations with the 

dependent variable. Minimum temperature of the coolest month has a small, negative 

association, and precipitation of the warmest month, which has a small, positive association. 

In order to test the robustness of PLS 64, this was rerun 50 times, removing one site each time. 

All reruns are significant at 95 % confidence with all p-values <0.05 (Table 5.30). The r2 values 

are similar to the original regression (r2 = 0441), and have a small range from 0.414 to 0.484. 

 

Figure 5.36: Standardised residuals against leverage values for each site in PLS 64, with C. crocuta 

length between the c and m1 alveoli as the dependent variable. See Appendix 10.6, Table 10.19 

for site numbers corresponding to each leverage point. 
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Figure 5.37: Standardised coefficients from PLS 64 with C. crocuta length between the c and m1 

alveoli as the dependent variable. All variables had been base-10 logarithmically transformed. 

 

The CI of the standardised coefficients from repeated runs of PLS 64 are small, ranging from 

0.002 to 0.003 (Table 5.30). The means +/- CI do not cross zero. This is supported by Figure 5.38, 

in which none of the independent variables have standardised coefficients that cross zero. 

Maximum temperature of the warmest month, precipitation of the wettest month, closed 

vegetation cover, and semi-open vegetation cover are all consistently positive. Temperature of 

the coolest month, precipitation of the driest month, and open vegetation cover are all 

consistently negative. 

The results of PLS 64 (Figure 5.38) are similar to PLS 31 (Figure 5.35).The only difference is that 

in PLS 31, precipitation of the wettest month has standardised coefficients that are positive and 

negative. 
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Table 5.30: r2 values of repeated runs of PLS 64, with C. crocuta length between the c and m1 alveoli as the dependent variable. Each run removed one site at a time. 

All runs have a p-value of <0.05. 

Run 
no. 

Removed site r2 value Run 
no. 

Removed site r2 value 

1 1.1 Zaire Province, Angola 0.44 26 12.2 Khomas Region, Namibia 0.478 

2 2.1 Borgou, Benin 0.452 27 13.1 Akagera National Park, Rwanda 0.458 

3 3.1 Chobe, Savuti Chobe, and Mababe Zokotsama, Botswana 0.422 28 13.2 Nyagatare District, Rwanda 0.435 

4 3.2 Kgalagadi District, Botswana 0.444 29 14.1 Podor Department, Senegal 0.414 

5 5.2 Adamawa Region, Cameroon 0.453 30 15.1 Koinadugu District, Sierra Leone 0.471 

6 6.2 Bas Uele District, Democratic Republic of the Congo 0.437 31 16.1 Woqooyi Galbeed Region, Somalia 0.435 

7 6.3 Haut Uele District, Democratic Republic of the Congo 0.437 32 16.2 Jubbada Dhexe Region, Somalia 0.427 

8 6.4 Parc National de la Garamba, Democratic Republic of the Congo 0.439 33 17.1 Mpumalanga Province, South Africa 0.449 

9 6.6 Ituri District, Democratic Republic of the Congo 0.444 34 17.2 Zululand District, South Africa 0.444 

10 6.7 Ituri and North Kivu Districts, Democratic Republic of the Congo 0.442 35 19.1 Shamal Darfur State, Sudan 0.445 

11 6.9 Parc National des Virunga, Democratic Republic of the Congo 0.441 36 19.2 Janub Darfur State, Sudan 0.433 

12 6.10 Haut Katanga District, Democratic Republic of the Congo 0.438 37 21.1 Mara Region, Tanzania 0.435 

13 6.11 Parc National de l’Upemba, Democratic Republic of the Congo 0.432 38 21.2 Tabora Region, Tanzania 0.44 

14 6.12 Tanganyika District, Democratic Republic of the Congo 0.427 39 21.4 Dodoma Region, Tanzania 0.44 

15 6.13 Lomami Province, Democratic Republic of the Congo 0.445 40 21.6 Rukwa Region, Tanzania 0.44 

16 6.14 Lukaya District, Democratic Republic of the Congo 0.448 41 21.7 Tanga Region, Tanzania 0.439 

17 6.15 Kwilu and Kwango Districts, Democratic Republic of the Congo 0.448 42 21.8 Morogoro Region, Tanzania 0.441 

18 7.1 Debub Region, Eritrea 0.422 43 21.10 Lindi Region, Tanzania 0.462 

19 9.1 Dire Dawa Region, Ethiopia 0.428 44 21.11 Ruvuma Region, Tanzania 0.476 

20 10.1 Samburu County, Kenya 0.434 45 21.12 Ngorongoro Conservation Area, Tanzania 0.426 

21 10.2 Narok and Bomet Counties, Kenya 0.431 46 22.1 Centrale Region, Togo 0.484 

22 10.3 Garissa County, Kenya 0.422 47 23.1 Lira District, Uganda 0.455 

23 10.4 Taita-Taveta County, Kenya 0.425 48 23.2 Gulu District, Uganda 0.444 

24 11.1 Tete Province, Mozambique 0.43 49 24.1 Eastern Province, Zambia 0.435 

25 12.1 Caprivi Strip, Namibia 0.459 50 25.1 Matabeleland North Province, Zimbabwe 0.432 
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Table 5.31: Standardised coefficient means and confidence intervals (CI) for repeated runs of 

PLS 64, with C. crocuta length between the c and m1 alveoli as the dependent variable. 

Independent variable 
Standardised 

coefficient 
mean 

Standardised 
coefficient CI 

Standardised 
coefficient 
mean - CI 

Standardised 
coefficient 
mean + CI 

Minimum temperature 
coolest month 

-0.047 0.003 -0.050 -0.045 

Maximum temperature 
warmest month 

0.169 0.002 0.167 0.171 

Precipitation driest month -0.178 0.002 -0.180 -0.176 

Precipitation wettest month 0.047 0.003 0.044 0.05 

Closed vegetation 0.148 0.002 0.145 0.15 

Semi-open vegetation 0.192 0.002 0.19 0.193 

Open vegetation -0.277 0.002 -0.279 -0.275 
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Figure 5.38: Standardised coefficients from reruns of PLS 64, with C. crocuta length c to m1 

alveoli as the dependent variable. 
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In light of the similarities between PLS 31 and PLS 64, RMA regression was performed to assess 

the allometric relationship between the condylobasal length and the length between the c and 

m1 alveoli (Figure 5.39). The data here are individual specimens, rather than averages for each 

site. The Pearson’s r correlation is strongly positive (r = 0.85) and is significant at 95 % confidence 

(p-value = <0.05). The RMA slope is 0.954, with the 95 % bootstrapped CI ranging from 0.874 to 

1.028. These CI values therefore cross a slope with a value of one. 

 

 

Figure 5.39: Reduced major axis regression of C. crocuta Log10 condylobasal length against the 

log10 length between the c and m1 alveoli. 

 

 

In summary, PLS 31 (condylobasal length) and PLS 64 (length from the c-m1 alveoli) have the 

greatest r2 values of all the craniodental PLS regressions. Minimum temperature of the coolest 

month, precipitation of the driest month and open vegetation cover are negatively associated 

with both condylobasal length and length from the c-m1 alveoli. Maximum temperature of the 

warmest month, closed vegetation cover and semi-open vegetation cover are positively 

associated with both measurements. The only difference is that precipitation of the wettest 

month is positively associated with length from c-m1 alveoli, yet this variable is not consistently 

positively or negatively associated with condylobasal length. The RMA regression of 

condylobasal length against length from c-m1 alveoli is significant and positive, with a minimum 

slope CI below one and a maximum slope CI above one. 

 

 

Slope = 0.954 
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5.4.2.3 Post-crania 

Spearman Rank Order correlations have been performed to assess association between post-

cranial measurements and environmental variables. In light of the small sample sizes, PLS 

regressions have not been used. 

At 95 % confidence, 19 of the Spearman Rank Order correlations are significant at 95 % 

uncorrected confidence (Table 5.32). Using the Bonferroni correction, tests are only significant 

if p<0.0071. Using the corrected p-value, only six tests are significant: atlas greatest breadth of 

the cranial articular surface (BFcr) with precipitation of the wettest month, scapula greatest 

length of the glenoid process (GLP) with maximum temperature of the warmest month and open 

vegetation cover, scapula length of the glenoid cavity (LG) with maximum temperature of the 

warmest month and open vegetation cover, and scapula breadth of the glenoid cavity (BG) with 

open vegetation cover. 

Overall, most of the measurements show similar results. The strongest correlations are generally 

with maximum temperature of the warmest month, precipitation of the wettest month, closed 

vegetation cover and open vegetation cover. These are the only variables for which there are 

significant correlations at 95 % confidence. Most of the correlations, except the greatest breadth 

across the transverse process (BPtr) of the axis have positive correlations with maximum 

temperature. Except for axis smallest breadth (SBV) and greatest length of the arch (LAPa) of 

the axis, all variables have positive correlations with precipitation of the wettest month and 

closed vegetation cover. Except for axis SBV, all measurements have negative correlations with 

open vegetation cover. 
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Table 5.32: Spearman Rank Order correlations of C. crocuta post-cranial measurements with environmental variables. Top figure = Spearman Rank Order statistic 

(rs). Bottom figure = p-value. GL = greatest length. BFcr = greatest breadth of the cranial articular surface. LAPa = greatest length of the arch. BPtr = greatest breadth 

across the transverse process. SBV = smallest breadth. SLC = smallest length of the neck. GLP = greatest length of the glenoid process. LG = length of the glenoid 

cavity. BG = breadth of the glenoid cavity. Dp = greatest depth of the proximal end. SD = smallest breadth of the diaphysis. Bd = greatest breadth of the distal end. 

Bp = greatest breadth of the proximal end. Bonferroni corrected p-value = 0.0071. Grey shaded sections are significant at 95 % uncorrected confidence (p<0.05). 

Orange shaded sections are also significant at 95 % corrected confidence (p<0.0071). 
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No. sites 6 6 6 6 6 6 6 6 6 6 6 6 7 7 

Min. temp. coolest 
month (°C) 

-0.086 
0.872 

0.086 
0.872 

0.257 
0.623 

0.486 
0.329 

0.1 
0.873 

-0.086 
0.872 

0.143 
0.787 

-0.029 
0.957 

0.257 
0.623 

0.6 
0.208 

-0.086 
0.872 

0.029 
0.957 

0.321 
0.482 

0.179 
0.702 

Max. temp. warmest 
month (°C) 

0.899 
0.015 

0.58 
0.228 

0.551 
0.257 

0.493 
0.321 

-0.41 
0.493 

0.899 
0.015 

0.928 
0.008 

0.986 
<0.05 

0.783 
0.066 

0.638 
0.173 

0.899 
0.015 

0.812 
0.05 

0.667 
0.102 

0.811 
0.027 

Precipitation driest 
month (mm) 

-0.203 
0.7 

0 
1 

-0.029 
0.957 

0.087 
0.87 

0.205 
0.741 

-0.203 
0.7 

-0.116 
0.827 

-0.29 
0.577 

0.145 
0.784 

0.406 
0.425 

-0.203 
0.7 

-0.348 
0.499 

-0.09 
0.848 

-0.595 
0.159 

Precipitation wettest 
month (mm) 

0.6 
0.208 

0.943 
0.005 

0.771 
0.072 

-0.086 
0.872 

-0.9 
0.037 

0.6 
0.208 

0.886 
0.019 

0.771 
0.072 

0.829 
0.042 

0.543 
0.266 

0.6 
0.208 

0.771 
0.072 

0.5 
0.253 

0.464 
0.294 

Closed vegetation 
cover (%) 

0.429 
0.397 

0.829 
0.042 

0.6 
0.208 

-0.143 
0.787 

-0.9 
0.037 

0.429 
0.397 

0.771 
0.072 

0.657 
0.156 

0.657 
0.156 

0.429 
0.397 

0.429 
0.397 

0.657 
0.156 

0.679 
0.094 

0.607 
0.148 

Semi-open 
vegetation cover (%) 

0.314 
0.544 

-0.486 
0.329 

-0.371 
0.468 

0.771 
0.072 

0.7 
0.188 

0.314 
0.544 

0.029 
0.957 

0.2 
0.704 

-0.029 
0.957 

0.257 
0.623 

0.314 
0.544 

-0.086 
0.872 

0.286 
0.535 

0.143 
0.76 

Open vegetation 
cover (%) 

-0.829 
0.042 

-0.829 
0.042 

-0.657 
0.156 

-0.257 
0.623 

0.8 
0.104 

-0.829 
0.042 

-1 
<0.05 

-0.943 
0.005 

-0.943 
0.005 

-0.771 
0.072 

-0.829 
0.042 

-0.771 
0.072 

-0.714 
0.071 

-0.714 
0.071 
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5.4.3 Discussion 

5.4.3.1 Body mass 

There is much geographical variation in both male and female body masses of C. crocuta. Overall, 

the results from the Spearman Rank Order correlations suggest that both male and female body 

masses vary similarly with environmental conditions. However, only precipitation of the wettest 

month is significantly correlated with male and female body mass, while maximum temperature 

of the warmest month and P. leo density are also correlated with female body mass. This may 

be due in part to the small sample sizes. Furthermore, the geographical coverage of Africa is 

very poor (Figure 4.2), so there may be environmental conditions that C. crocuta currently 

inhabit that were not covered in the analyses. 

That increasing distance from the equator (in this case towards southern Africa) is associated 

with larger body mass (although insignificant), which supports Bergmann’s Rule, whereby 

individuals of a species occurring in higher latitudes and colder conditions are larger than their 

lower latitude counterparts, in order to reduce body size and conserve heat. This is supported 

by Ashton et al. (2000) who found that 79 % of carnivorans (including some canids, ursids and 

felids) were found to be larger in higher latitudes. Additionally, first lower molars of C. crocuta 

were found to be larger further from the equator (Klein, 1986) and C. crocuta skulls from South 

Africa were larger than those from eastern Africa (Roberts, 1951). However, there is also a new, 

positive association noted here between the temperature of the warmest month and C. crocuta 

body size (significant at 95 % uncorrected confidence, and approaching significance with the 

Bonferroni corrected critical p-value). This is contrary to Ashton et al.'s (2000) study in which 79 

% of carnivorans were larger in colder temperatures. This cautions against substituting 

temperature for latitude as previous researchers have done when investigating the influence of 

Bergmann’s Rule (e.g. McNab, 1971; Klein, 1986). The difference between C. crocuta and the 

other carnivorans in Ashton et al.'s (2000) may be because the relationship between body mass 

and temperature is not direct; temperature influences other environmental factors, which may 

in turn be affecting body mass change (see Section 3.1 for examples). 

Why higher temperatures may induce a larger body mass in C. crocuta is unclear as there 

appears to be little indication in the literature of biological reasons for increased body mass at 

higher temperatures. One possibility is that C. crocuta in higher temperatures have a greater 

body mass due to larger appendages to facilitate heat loss, rather than a larger overall body size, 

as per Allen’s Rule (Allen, 1877). This links back to the finding that hotter temperatures appear 

to be negatively associated with C. crocuta population biomass (Section 5.1). However, in 

controlled experiments with mice, although individuals in warmer conditions developed longer 
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limbs, ears and tails, their body masses were similar to individuals that inhabited colder 

conditions (Serrat et al., 2008). Similarly, domestic pigs (Sus scrofa domesticus), when raised in 

warmer conditions had longer limbs and tails and larger ears, however, their body mass was 

similar to that of their siblings raised in colder conditions (Weaver and Ingram, 1969). 

Unfortunately, as the post-cranial specimens measured in this study did not have associated 

body mass information, this cannot be further investigated at present.  

P. leo density has a negative association with C. crocuta body mass, although this is not 

significant under Bonferroni’s correction and so may be a Type 1 error. If the relationship is true, 

this suggests that the presence of a competitor may constrain body size, such as occurs when 

the range of the puma (Felis concolor) overlaps with the jaguar (Panthera onca, McNab, 1971).  

The reason for the correlation between body mass and the other significant variable, 

precipitation of the wettest month, is unclear. Overall, the greater number of significant 

correlations, and the higher rs values suggest that female body mass is more strongly associated 

with environmental variables than is male body mass, although this may be a due to low sample 

sizes. 

However, once the Bonferroni corrected p-value was taken into account, only the relationship 

between female body mass and precipitation of the wettest month is significant. Although the 

relationship between female body mass and maximum temperature of the warmest month 

approaches significance. 

 

5.4.3.2 Crania and dentition 

The measurements of the cranium, mandible and dentition vary across Africa. However, the PLS 

regressions reveal that variation in most of the measurements is poorly explained by 

temperature, precipitation or vegetation cover.  

The PLS regression with the greatest r2 values are condylobasal length and length from the c to 

m1 alveoli. The strongest associations with these measurements are positive correlations with 

temperature of the warmest month, closed vegetation cover, and semi-open vegetation cover. 

Negative associations are with open vegetation cover, and to a lesser extent with precipitation 

of the driest month and temperature of the coolest month. Precipitation of the wettest month 

has a weaker and less consistent association with condylobasal length, however it has a weak, 

positive association with length between the c and m1 alveoli. 

Condylobasal length and c to m1 length are therefore larger in areas with warmer summers, 

more arid periods, with closed or semi-open vegetation cover, and potentially with cooler 
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winters. Along with drier conditions in the driest month of the year, the length from the c to m1 

may also be greater in areas that experience increased precipitation in wetter months. 

Condylobasal length scales well with body mass (Van Valkenburgh, 1990). In light of this, and in 

light of the similar PLS results, the allometric relationship between the condylobasal length and 

distance between c to m1 was investigated. There is a strong positive correlation between the 

two measurements, and the slope value suggests an isometric relationship. Therefore, the two 

measurements are increasing in line with each other, suggesting that they both reflect actual 

body size of individuals, rather than variation independent of overall body size. The 

environmental influences upon these measurements can therefore be interpreted as impacting 

upon C. crocuta body size.  

The results suggest that there is no clear relationship between C. crocuta and Bergmann’s Rule. 

While they are larger in regions with cooler winters, it is the positive association with summer 

temperature that has the greater influence. This is supported by the positive association 

between body mass and temperature of the warmest month (Section 5.4.3.1).  

The two measurements and body mass are also positively associated with semi-open vegetation 

cover. By contrast, body mass is negatively associated with closed vegetation cover (although 

insignificantly), yet this variable is positively associated with the length measurements. 

Additionally, c to m1 length is associated positively with precipitation of the wettest month, 

albeit weakly, yet this variable has a strong negative association with body mass. If the length 

measurements correlate well with overall body size, the disparity in results between the lengths 

and body mass may be due to the small sample size in the latter study (47 and 50 sites versus 8 

sites). 

Despite the significance of the PLS regression, only about 45 % of the variation in condylobasal 

length, and 44 % of the variation in c to m1 length, is explained by the environmental variables. 

This value is even lower for other measurements. This may be because there are other variables 

that are not included in the study. Indeed, P. leo density is significantly and negatively correlated 

with C. crocuta female body mass (Section 5.4.2.1) and food quality and abundance have 

positively been associated with body size in U. arctos (Zedrosser et al., 2006; McDonough and 

Christ, 2012) and U. maritimus (Rode et al., 2010). Furthermore, craniodental morphology is 

associated with feeding, such as acquiring and eating different food types (Biknevicius et al., 

1996; Lucas, 2015; Rahmat and Koretsky, 2015). This includes consumption of bone, an act that 

is associated with low food availability (Kruuk, 1972; Egeland et al., 2008). The associations 

shown here between the two length measurements and environmental variables may therefore 
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be a secondary association because food quality and abundance are influenced by climate 

(McNab, 2010). 

The lack of correlation between measurements and environmental variables may also be due to 

the complexity of elements, particularly the cranium (see Section 3.3), and thus morphology 

may be constrained by these processes (Tseng and Binder, 2010; Figueirido et al., 2011). 

 

5.4.3.3 Post-crania 

The results from the post-cranial measurements suggest that assessed measurements of the 

atlas, scapula, humerus and femur, and one of the axis measurements, are greater in areas 

experiencing warmer summers, greater rainfall in the wettest month, with closed vegetation 

cover. Open vegetation cover has a negative association with these measurements. These 

associations are the same as those found in the analysis of condylobasal length and c to m1 

alveoli length (Section 5.4.3.2). If these length measurements are indeed an indication of overall 

body size, this suggests that this variation in post-cranial morphology is due to change in overall 

body size, rather than adaptations of individual elements to the environmental conditions. 

Proximal limb bone breadths are associated with ability to endure high speed locomotion 

(Hildebrand and Hurley, 1985).and with hunting methods in carnivorans, including hyaenids, 

canids, felids, ursids and procyonids (Martín-Serra et al., 2016). However, as mentioned, the 

associations between environmental variables and the humerus and femur breadth 

measurements are likely a signal of overall body size, and therefore do not reflect environmental 

influences upon locomotion. High speed locomotion (Hildebrand, 1974; Hildebrand and Hurley, 

1985), cursoriality (Meachen et al., 2016) and hunting methods (Van Valkenburgh, 1985; Harris 

and Steudel, 1997) are also associated with length of the limbs, yet these measurements could 

not be assessed due to small sample sizes. 

For the measurements assessed that appear to change with body size, the predictions for their 

size in the Pleistocene are the same as outlined in Section 5.4.3.2.  

 

5.4.3.4 Implications for the Pleistocene 

In light of the body mass and morphometric results, it is predicted that C. crocuta (and individual 

measurements that have an allometric relationship with body mass) were larger in periods with 

warmer summers, arid periods during the Pleistocene and low predator competition. They may 

also have been larger when closed or semi-open vegetation was more prevalent, although the 

disparity between the cranium and body mass results makes this prediction more uncertain.   
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5.5 Tooth breakage 

5.5.1 Introduction 

The frequency of tooth breakage has been used in studies of Pleistocene carnivores to aid 

reconstruction of palaeodiets (Van Valkenburgh and Hertel, 1993; Van Valkenburgh, 2009; 

Flower and Schreve, 2014). Indeed, teeth may be broken due to bone consumption, although 

canines in particular may be broken by struggling prey and fighting (Van Valkenburgh, 1988, 

2009). In the case of C. crocuta, increased bone consumption occurs during periods of low food 

availability (Kruuk, 1972; Egeland et al., 2008). 

A further pathological feature of the maxilla and mandible is the loss of a tooth, resulting in a 

partially or wholly healed alveolus. This may equally be associated with bone consumption as 

broken teeth may allow bacteria to enter the alveolus through the exposed pulp, leading to 

infection and loss of the tooth (Losey et al., 2014). Alternatively, the gum may become inflamed 

and then infected, leading to infection of the alveolus and loss of teeth. After tooth loss, the 

alveolus begins to heal (Pekelharing, 1974). Partially and wholly healed alveoli were counted 

separately to broken teeth in this section because tooth loss may not be due to initial breakage 

of the tooth.  

This section will first assess variation in tooth breakage and loss with age. Next, the differences 

in tooth breakage and loss between males and females will be examined, namely whether one 

experiences more frequent tooth breakage and loss, and whether this manifests differently in 

each tooth type. This is important as tooth loss or breakage may lead to loss or reduction in 

tooth function, which may make it difficult to survive, particularly when there is prolonged food 

stress. If older individuals have more lost or broken teeth than younger C. crocuta, this may 

indicate that loss of function need not necessarily lead to death. Finally, this section will highlight 

whether age or sex need to be considered when interpreting Pleistocene results. 

The research questions are: 

• Do tooth loss and breakage become more prevalent in older C. crocuta? 

• Are there differences in the frequency of tooth loss or breakage in female and male 

C. crocuta? 

• Does the manifestation of tooth loss and breakage differ between the tooth types? 
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5.5.2 Results 

5.5.2.1 Tooth breakage and loss with age 

The large number of specimens from Site 21.12 (Balbal, Ngorongoro Conservation Area, 

Tanzania) were used to assess the degree of tooth breakage with age. The number of individuals 

with broken teeth generally increases in line with age (as represented by P3/p3 wear stage) in 

both female and male C. crocuta (Figure 5.40). There is no pattern in the number of individuals 

with partially or fully healed alveoli. 

Breakage with age was repeated for all specimens to allow assessment of the later wear stages 

not represented in Site 21.12, although it is acknowledged that there may be differences 

between males and females and between sites. This reflects the trend in Site 21.12, with only 

three wear stage III specimens exhibiting broken teeth (Figure 5.41). The number of individuals 

with broken teeth compared to those with no broken or lost teeth increases with age, with all 

individuals of wear stages VII/VIII, VIII and IX exhibiting lost or broken teeth. The number of 

individuals that have lost teeth generally increases with age, but numbers are smaller than those 

with only broken teeth, except for wear stage IX.  

The amount of broken and lost teeth as a proportion of teeth of known condition was calculated 

from Site 21.12 (Figure 5.42). The percentage of broken teeth generally increases with age, 

although this trend is clearer in female C. crocuta. The proportion of lost teeth is greatest at 

wear stage VI in female C. crocuta. Of the male C. crocuta, only individuals with wear stage V 

exhibit lost teeth. 

The increase in tooth breakage, and to an extent tooth loss, with older age in C. crocuta warrants 

separation of data in future analyses into individual P3/p3 wear stages. 
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Figure 5.40: Number of a) female or b) male present-day C. crocuta with either: no broken teeth, 

broken teeth without lost teeth, partially or fully healed alveoli without broken teeth, broken 

teeth and partially or fully healed alveoli. Specimens from Site 21.12, Ngorongoro Conservation 

Area, Tanzania. 
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Figure 5.41: Number of present-day C. crocuta with either: no broken teeth, broken teeth 

without lost teeth, partially or fully healed alveoli without broken teeth, broken teeth and 

partially or fully healed alveoli. Data from all sites in Africa. 

 

 

 

  
Figure 5.42: Condition of teeth as a percentage of teeth of known condition. a) female C. crocuta 

and b) male C. crocuta from Site 21.12, Ngorongoro Conservation Area, Tanzania. 
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5.5.2.2 Male and female tooth breakage and loss 

The quantity of broken, lost and unbroken teeth was calculated as a percentage of teeth of 

known condition. These proportions are presented for sites from which there were data for both 

males and females at each P3/p3 wear stage. Wear stage III was excluded from the analysis as 

none of the sites analysed included individuals with lost or broken teeth. Wear stages greater 

than VI were also excluded as there were no sites with both males and females. 

Combining all tooth types indicates that for each site at each wear stage, there are at least as 

many, or in some cases more, females than males with broken teeth (Figure 5.43). As a 

percentage of all teeth of known condition, females have a greater proportion of broken teeth 

at all sites and all wear stages. Of the sites included, lost teeth are only observed in Site 21.12. 

At wear stages IV and VI, only females have evidence of fully or partially healed alveoli. At stage 

V, only males exhibit tooth loss. 

After splitting the data into tooth types, the results of stage IV (Figure 5.44) indicate that a 

greater proportion of individuals have broken premolars than other teeth, and a greater 

proportion of premolars are broken. The smallest proportion of individuals have broken 

carnassials. In Site 10.2 (Narok and Bomet Counties, Kenya) a greater proportion of females have 

broken incisors, canines and premolars, although a greater proportion of males have broken 

carnassials. Conversely, in Site 21.12, a greater proportion of males have broken incisors and 

premolars. In both sites, a greater proportion of incisors, canines and premolars are broken in 

females than males. In Site 21.12, the lost teeth occur at the position of the incisors and 

premolars in females. 

At stage V (Figure 5.45), a smaller proportion of individuals have broken carnassials than other 

teeth. They were only observed to be broken in females from Site 6.9 (Parc National des Virunga, 

Democratic Republic of the Congo) and Site 21.12. Canines are less frequently broken than 

incisors and premolars, with observations from females in Site 6.11 (Parc National de l’Upemba, 

Democratic Republic of the Congo) and Site 21.12, and from males in Site 11.1 (Tete Province, 

Mozambique). However, 100 % of canines of known condition are broken from Site 11.1. 

Females from four of the five sites exhibit broken incisors, while males from two sites exhibit 

broken incisors. Site 11.1 is the only site where both males and females have broken incisors. In 

this site, a greater proportion of female incisors (12.5 %) are broken than males incisors (9.09 %). 

In four of the five sites, only females have broken premolars. Of individuals from Site 21.12, 

42.86 % of females have broken premolars, while 50 % of males have lost teeth. 5.19 % of 

premolars of known condition from females are broken, while 11.11 % of premolar alveoli from 

males are partially or fully healed. In Site 6.9, a large proportion of premolars are broken (90 %). 
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There are only two sites from which there is data of both females and males at wear stage VI 

(Figure 5.46). No males have broken teeth. All females from both sites have broken incisors and 

canines. Only females from Site 21.12 have broken premolars and carnassials. 25 % of premolars 

and carnassials of known condition are broken, while there is a higher proportion of partially or 

fully healed carnassial alveoli (25 %) than premolar alveoli (8.33 %). The highest proportion of 

broken teeth is 66.67 % of canines from Site 3.1 (Chobe National Park, Savuti Chobe National 

Park and Mababe Zokotsama Community Concession, Botswana). 
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Figure 5.43: The proportion of present-day C. crocuta individuals with either no broken teeth, only broken 

teeth, only partially of fully healed alveoli, or both broken teeth and partially or fully healed alveoli. The 

proportion of unbroken, broken and partially or fully healed alveoli as a proportion of all teeth of known 

condition. a) Individuals with wear stage IV. b) Individuals with wear stage V. c) Individuals with wear stage VI. 

Site 3.1 = Chobe National Park, Savuti Chobe National Park, Botswana. Site 6.9 = Parc National des Virunga, 

Democratic Republic of the Congo. Site 6.11 = Parc National de l’Upemba, Democratic Republic of the Congo. 

Site 10.2 = Narok and Bomet County, Kenya. Site 11.1 = Tete Province, Mozambique. Site 21.12 = Balbal, 

Ngorongoro Conservation Area, Tanzania. Site 24.1 = Eastern Province, Zambia. See Table 5.33 for sample 

sizes. 
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Figure 5.44: Condition of teeth as a percentage of all teeth of known condition for each group. 

Data are of C. crocuta with P3/p3 wear stage IV. F = female. M = male. Site 10.2 = Narok and 

Bomet County, Kenya, 21.12 = Ngorongoro Conservation Area, Tanzania. a) incisors, b) canines, 

c) premolars, d) molars. See Table 5.33 for sample sizes.   
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Figure 5.45: Condition of teeth as a percentage of all teeth of known condition for each group. Data are of C. crocuta with P3/p3 wear stage V. F = female. M = male. 

See caption for Figure 5.44 for full site details. a) incisors, b) canines, c) premolars, d) molars. See Table 5.33 for sample sizes.  
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Figure 5.46: Condition of teeth as a percentage of all teeth of known condition for each group. 

Data are of C. crocuta with P3/p3 wear stage IV. F = female. M = male. Site 3.1 = Chobe National 

Park, Savuti Chobe National Park and Mababe Zokotsama Community Concession, Botswana, 

21.12 = Ngorongoro Conservation Area, Tanzania. a) incisors, b) canines, c) premolars, d) molars. 

See Table 5.33 for sample sizes. 
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Table 5.33: Sample sizes included in the percentage calculations in Figure 5.43 to Figure 5.46. 

Figure Site/sex No. C. crocuta individuals No. teeth 

Figure 5.43a 
(wear stage IV) 

10.2 F 1 27 

10.2 M 5 130 

21.12 F 12 294 

21.12 M 9 234 

Figure 5.43b 
(wear stage V) 

6.11 F 1 29 

6.11 M 1 31 

6.9 F 1 28 

6.9 M 1 32 

11.1 F 1 23 

11.1 M 1 28 

21.12 F 7 171 

21.12 M 2 47 

24.1 F 1 27 

24.1 M 1 30 

Figure 5.43c 
(wear stage VI) 

3.1 F 1 27 

3.1 M 1 18 

21.12 F 1 31 

21.12 M 2 47 

Figure 5.44a 
(incisors) 

10.2 F 1 12 

10.2 M 5 59 

21.12 F 12 86 

21.12 M  9 78 

Figure 5.44b 
(canines) 

10.2 F 1 3 

10.2 M 5 13 

21.12 F 12 33 

21.12 M  9 20 

Figure 5.44c 
(premolars) 

10.2 F 1 8 

10.2 M 5 36 

21.12 F 12 132 

21.12 M  9 100 

Figure 5.44d 
(carnassials) 

10.2 F 1 4 

10.2 M 5 16 

21.12 F 12 43 

21.12 M  9 36 

Figure 5.45a 
(incisors) 

6.11 F 1 11 

6.11 M 1 12 

6.9 F 1 11 

6.9 M 1 12 

11.1 F 1 8 

11.1 M 1 11 

21.12 F 7 51 

21.12 M 2 17 

24.1 F 1 12 

24.1 M 1 12 

Figure 5.45b 
(canines) 

6.11 F 1 4 

6.11 M 1 3 

6.9 F 1 3 

6.9 M 1 4 
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11.1 F 1 2 

11.1 M 1 1 

21.12 F 7 18 

21.12 M 2 5 

24.1 F 1 3 

24.1 M 1 3 

Figure 5.45c 
(premolars) 

6.11 F 1 10 

6.11 M 1 12 

6.9 F 1 10 

6.9 M 1 12 

11.1 F 1 10 

11.1 M 1 12 

21.12 F 7 77 

21.12 M 2 18 

24.1 F 1 10 

24.1 M 1 12 

Figure 5.45d 
(carnassials) 

6.11 F 1 4 

6.11 M 1 4 

6.9 F 1 4 

6.9 M 1 4 

11.1 F 1 3 

11.1 M 1 4 

21.12 F 7 25 

21.12 M 2 7 

24.1 F 1 2 

24.1 M 1 3 

Figure 5.46a 
(incisors) 

3.1 F 1 8 

3.1 M 1 1 

21.12 F 1 12 

21.12 M 2 16 

Figure 5.46b 
(canines) 

3.1 F 1 3 

3.1 M 1 1 

21.12 F 1 3 

21.12 M 2 3 

Figure 5.46c 
(premolars) 

3.1 F 1 12 

3.1 M 1 12 

21.12 F 1 12 

21.12 M 2 21 

Figure 5.46d 
(carnassials) 

3.1 F 1 4 

3.1 M 1 4 

21.12 F 1 4 

21.12 M 2 7 
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5.5.3 Discussion 

5.5.3.1 Tooth breakage and loss with age 

The proportion of C. crocuta individuals with broken teeth increases with age in the specimens 

from Site 21.12. None of the specimens with wear stage III from Site 21.12 have broken teeth. 

In fact, out of 29 stage III individuals across all sites, only three have broken teeth. Across all 

sites, at wear stage VII/VIII and older, all individuals have broken and/or lost teeth. Although the 

pattern is less clear, the proportion of broken teeth (as a percentage of teeth of known wear) 

increases with age. This suggests that at least some individuals are able to survive breakage of 

teeth, despite the loss of function in many cases. Similarly, Van Valkenburgh (2009) found that 

tooth fracture frequency increases with wear stage in a combined analysis of six carnivore 

families (Hyaenidae, Mustelidae, Canidae, Mephitidae and Procyonidae). 

The number of individuals with partially or fully healed alveoli is low, although in females a 

greater proportion of stage VI individuals have evidence of lost teeth, and there is a greater 

proportion of lost teeth at this stage. In males, only stage V individuals exhibit tooth loss. Across 

specimens from all sites, there are no lost teeth in stage III individuals. When data from all sites 

are combined, there is some indication that the very oldest individuals are more likely to have 

lost teeth. Increased tooth loss in R. rupicapra was suggestive of increased susceptibility with 

age, and that individuals of this species also survived the loss of teeth (Pekelharing, 1974). In the 

present study it can therefore be suggested that older individuals may be are more susceptible 

to tooth loss. As data are limited, this conclusion is only tentative. The fact that there are 

individuals with healed alveoli suggest that the associated loss of function is survivable in some 

individuals.  

The incisors and the canines are both used to kill prey (Biknevicius et al., 1996). Incisors are also 

used to cut skin, subcutaneous tissue and muscle, while canines are used to consume muscle 

with attached bone (Van Valkenburgh, 1996). They may also be employed to crack bone (Van 

Valkenburgh and Ruff, 1987). Survival of the loss or breakage of these teeth may be explained 

by the nature of C. crocuta groups. Kruuk (1972) observed that there were some C. crocuta, 

particularly older females that did not participate in hunts. C. crocuta will converge on a kill, 

even if they did not participate in taking down the prey (Kruuk, 1972). 

While other teeth may be utilised, the premolars are most frequently used when cracking bone 

(Van Valkenburgh, 1996). Survival after the loss or breakage of premolars may therefore be 

more difficult if there are periods of food stress during which consumption of bone is required 

to gain adequate food. Tooth breakage may also have been greater during the Pleistocene when 

other hard foods are consumed, notably frozen carcasses during cold periods. Prolonged cold 
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periods necessitating reliance of frozen carcasses may also limit the survival of individuals with 

broken teeth. 

Overall, this reinforces the method proposed by Binder and Van Valkenburgh (2010) that tooth 

wear should be taken into account when assessing tooth breakage in Pleistocene deposits. For 

example, a deposit of predominantly wear stage IV teeth compared with a deposit of 

predominantly stage VI teeth may elicit a signal reflecting age rather than different ecological 

conditions. 

 

5.5.3.2 Male and female tooth breakage 

Van Valkenburgh (1988) found that in C. crocuta, a greater proportion of females had broken 

teeth. This was also found in the present study, which differed from Van Valkenburgh's (1988) 

study in that sites were considered separately, in case of geographical variation in tooth 

breakage. In all sites and all wear stages assessed (IV, V, VI), a greater proportion of females 

have broken teeth. Additionally, females have a greater proportion of broken teeth. This 

disparity between females and males is also apparent in most sites when split into the individual 

tooth types, as explored below.  

At wear stages IV and V, a greater proportion of individuals have broken premolars. This is 

followed by incisors and then canines. The smallest proportion of individuals have broken 

carnassials, and carnassials are the teeth with the lowest percentage of breakage. At wear stage 

V, a greater proportion of females have broken incisors and canines, followed by premolars and 

carnassials. Canines are the tooth most frequently broken. A similar proportion of premolars 

and carnassials are broken, although more carnassials have been lost. 

The prevalence of broken premolars and canines compared to carnassials is similar to other 

published studies. As a percentage of broken teeth, Van Valkenburgh (1988) found that canines 

had the greatest proportion, followed by premolars, incisors then carnassials. Similarly, as a 

percentage of all teeth observed, canines and premolars had the greatest proportion of 

breakage, followed by incisors and then carnassials (Van Valkenburgh, 2009). 

Van Valkenburgh (2009) suggested that increased tooth breakage can be caused by more 

complete consumption of carcasses, especially consumption of bones. An additional 

consideration is that more rapid consumption of a carcass may lead to tooth breakage as teeth 

less suited to breaking bone may come into accidental contact with bone (Van Valkenburgh, 

1996, 2009). The greater tooth breakage is therefore unexpected given that females often have 

preferential access to a carcass, unless a male’s mother is a high-ranking female (Frank et al., 
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1989), and are therefore expected to consume less bone than males. One explanation may be 

that many males will leave the clan (Hofer, 1998a), and it sometimes takes months until a new 

clan will accept the immigrant male (Kruuk, 1972). If the males often feed alone during this time, 

they would avoid the frenzied group feeding that may lead to accidental tooth breakage. 

Canines may also be broken by struggling prey (Van Valkenburgh, 1988). However, there is no 

association between prey size and frequency of tooth breakage between species (Van 

Valkenburgh, 2009). It is difficult to assess whether tooth breakage many vary with prey size 

intraspecifically as there is insufficient data available to allow comparisons between sites. 

Breakage of canines may also be associated with greater intraspecific aggression such as fighting 

(Van Valkenburgh, 2009). While there is high intraspecific competition at carcasses, Kruuk (1972) 

seldom observed fighting, even in the Ngorongoro Crater where there was a high population 

density of C. crocuta relative to prey. C. crocuta may be aggressive towards intruding individuals 

(Boydston et al., 2001). This rarely involves direct physical contact, yet when it does, biting can 

lead to severe injuries (Kruuk, 1972). Physical contact is rare in defence of dens (Kruuk, 1972). 

‘Baiting’, so called by Kruuk (1972), involves a number of males surrounding a female and 

occasionally biting her. Individual males may also target and bite a female (East and Hofer, 

1993). Conversely, aggression, which may include biting, may be directed by females towards 

males (East and Hofer, 1993). There does not appear to be any information about the relative 

proportions of male versus female aggression involving physical contact, so it is unclear at 

present whether difference in aggression may cause the elevated level of canine breakage 

observed in females. 

The overall less frequent breakage of carnassials compared with other teeth in males and 

females may be explained by their position in the jaw meaning that the blades are less likely to 

come into contact with bone (Kurtén and Werdelin, 1988). Bone does come into contact with 

carnassial blades as observed in dental microwear analyses (Van Valkenburgh et al., 1990; 

Goillot et al., 2009; Schubert et al., 2010; Bastl et al., 2012), and the protocone and parastyle of 

the P4 are involved in cracking bone (Kurtén and Werdelin, 1988), explaining why some 

observed carnassials are broken. 

This difference between males and females is a further factor to be borne in mind when 

interpreting Pleistocene fossil material. 
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5.6 Conclusion 

This chapter first analysed the influences upon C. crocuta biomass, and that of its competitor, 

P. leo. The results indicate that C. crocuta biomass is more sensitive to environmental conditions. 

C. crocuta are more abundant when prey biomass is greater (particularly very small- to medium-

sized prey) and in areas with less extreme temperatures, particularly where winter temperatures 

are warmer. They are more abundant in areas where the driest month has more precipitation. 

There appears to be some spatial partitioning, with C. crocuta more abundant with greater semi-

open vegetation cover, which appears to correspond with lower P. leo biomass. Together, this 

is important in interpreting the changing abundance of fossil C. crocuta in different Pleistocene 

environments in Europe and in assessing the potential causes of its extirpation. 

Ontogenetic change in C. crocuta crania, mandibles and post-crania was assessed. This indicates 

that individuals with P3/p3 wear stage III are not fully grown in many cranial and mandibular 

measurements. This warrants exclusion of wear stage III individuals from further analysis, except 

for when assessing the dentition. Post-cranial sample sizes are small, yet most bones appear to 

be fully grown upon fusion of the epiphyses, regardless of P3/p3 wear stage. 

Further, some measurements appear to increase in size through life. These measurements have 

been treated in separate wear stage groups in this chapter, and will be done so in the Chapter 

6. There are measurements of mandibular strength and bite strength that are reduced in 

younger individuals, indicating that younger individuals may be disadvantaged, particularly 

when competition is high and consumption of tough foods (e.g. bone) is necessary. This is an 

important consideration when assessing the Pleistocene measurements, in addition to 

considering the causes for the extirpation of C. crocuta from Europe. 

The analysis of SSD indicates that while body mass of C. crocuta is largely female-biased, the SSD 

values are lower than other carnivores such as P. leo and P. pardus. Most craniodental 

measurements have no consistent SSD direction, indicating that neither males nor females are 

consistently larger. This indicates that the representation of males and females in Pleistocene 

deposits will not influence the morphometric results. The exceptions are some of the 

mandibular measurements, the results of which indicate that females are larger. None of the 

SSD values correlated with any of the environmental variables, indicating that degree of SSD 

does not vary with changes in environmental conditions. Therefore, it is unlikely that the 

proportion of males and females in the Pleistocene assemblages would influence the 

morphometric results. 
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While sample sizes of post-crania were unfortunately insufficient to assess consistency in SSD, 

the SSD values are low. It is therefore anticipated that for Pleistocene assemblages, sex of the 

individuals will not influence the morphometric results. 

The analysis of environmental influences upon body mass, craniodental and post-cranial 

measurements show some consistent results. The cranial and mandibular measurements that 

have the strongest statistical results (condylobasal length, and length between the c and m1 

alveoli) appear to increase isometrically with overall body size. Most of the post-cranial 

measurements have associations with environmental conditions that are similar to the two 

cranial and mandibular measurements, suggesting that they also increase in size with body size.  

The cranial measurement, mandible measurement, post-cranial measurements and body mass 

are all positively associated with warm summer temperatures. Many of the morphometric 

measurements are positively associated with semi-open and closed vegetation cover, while they 

are negatively associated with open vegetation cover. The c-m1 length measurement appears 

to be weakly but positively influenced by precipitation of the wettest month, as are most of the 

post-cranial measurements. However, female body masses are significantly and negatively 

correlated with precipitation of the wettest month. This disparity may be due to the small 

sample sizes of the body mass tests. 

A further influence on female body mass is P. leo density, which has a negative correlation. This 

was not included in the craniodental and post-cranial analyses because of lack of data. However, 

the absence of such variables may explain why the craniodental models with the strongest 

statistics still only explain around 45 % of the variance in these measurements. 

It is therefore predicted that during the Pleistocene, C. crocuta were larger in periods of warmer 

summers, in areas of semi-open and closed vegetation cover and reduced areas of open 

vegetation cover. C. crocuta may also have been larger during periods with reduced interspecific 

competition. 

Finally, tooth loss and breakage were assessed. Loss of teeth is uncommon, relative to the 

frequency of broken teeth in C. crocuta. There is some indication that tooth loss is more common 

in older individuals, suggesting that older individuals are more susceptible to tooth loss, or that 

the associated loss of function is survivable in some cases. Tooth breakage increases with age, 

warranting assessment of the age profile of the Pleistocene assemblages before interpreting the 

breakage results. Tooth breakage is also more prevalent in females than males, which will need 

to be taken into account when interpreting Pleistocene tooth breakage. Carnassials are the 

tooth that is least frequently broken. In light of this, the Pleistocene breakage results will be split 

into tooth types prior to interpretation.    
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6 Pleistocene Crocuta crocuta 

 

6.1 Body mass reconstruction 

6.1.1 Introduction 

Body mass is related to a number of life history and ecological factors, including the size of prey 

targeted (Carbone et al., 2007) and hunting ability (Biewener, 1989); these may have 

implications for the persistence or extirpation of an individual from an area. As outlined in 

Section 5.4, body mass may be influenced by a number of environmental conditions such as 

temperature (Mayr, 1956), presence of competitors (McNab, 1971) and food quality and 

abundance (McNab, 2010) , all of which changed through the Pleistocene and may have 

impacted upon C. crocuta body masses. 

A new intraspecific method for reconstructing C. crocuta body mass is proposed in the current 

work (Section 4.4.2.1), which will here be used to assess variation in the Pleistocene study 

sample. 

The research questions are as follows: 

• Is the model suitable for reconstruction of Pleistocene C. crocuta body masses? 

• Were there changes in C. crocuta body size through time? 

• What might be the reasons for these changes? 

 

6.1.2 Results 

6.1.2.1 The model 

The m1 lengths and body masses included in the OLS regression models can be found in 

Appendix 10.7, Table 10.20. The results of the OLS regression of C. crocuta body mass against 

m1 length (called OLS1) are shown in Figure 6.1a and b. The test is significant (p-value <0.05) 

with a high r2 value (75.87 %). The %PE (7.73 %) and %SEE (12.68 %) are low, indicating good 

predictive power of the model. The standardised residuals, leverage values, and Cook’s distance 

are shown in Figure 6.1c and d. None of the leverage values exceed the leverage threshold of 

0.55. However, the dataset from Ethiopia has a standardised residual value exceeding the 

threshold value of 2 and a Cook’s distance value exceeding the threshold of 0.36. The body mass 

value from Ethiopia is 35.83 kg (Powell-Cotton, n.d., cited in Shortridge, 1934), more than 10 kg 

smaller than the next smallest body mass. As the original publication could not be accessed, 
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there was no way to determine whether the Ethiopian individual was an adult or a juvenile. It 

was therefore decided to re-run the model without the Ethiopian data.  

The results of the model excluding Ethiopia (OLS2) are shown in Figure 6.2. As before, the test 

is significant with a p-value <0.05. The r2 value is high at 81.13 %. The %PE (5.79 %) and %SEE 

(8.7  %) are lower than in OLS1, indicating even better predictive power of the model. None of 

the leverage or Cook’s values exceed the respective thresholds. The female C. crocuta dataset 

from Botswana is a potential outlier with standardised residual value of 2.346. However, there 

are two reasons for keeping this sample within the model. Firstly, the sample does not exceed 

the Cook’s or leverage thresholds, and only exceeds the residual threshold by 0.346. Secondly, 

the %PE and %SEE are very low, indicating strong predictive power of the model, even with the 

inclusion of female C. crocuta from Botswana.  

The correction factors for detransformation bias were calculated for OLS2 (Figure 6.2a). The 

range of values is very small with offsets of between 0.29 and 0.35 %, indicating that the choice 

of factor will have little impact upon the body mass values. The RE factor value was chosen as it 

is the intermediate value. 
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OLS1 model equation 

Log10 Body mass = -2.688 + (3.083 * Log10 m1 length) 

Model statistics 

r2 p-value %PE mean %SEE 

75.87 <0.05 7.73 12.68 

Statistical thresholds 

Leverages Cook’s D F stat Cook’s D 4/n 

0.55 2.81 0.36 

Correction factors 

SE RE QMLE 

1.0058 1.0033 1.0071 
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Figure 6.1: Regression model and outliers for OLS1. Dashed lines indicate the outlier threshold values. W_Kenya refers to the Sotik and 

Masai Mara locations. C_Kenya refers to the Aberdare, Archers Post and Mount Kenya locations. In calculation of the %PE (see Equation 

4.17) the detransformed predicted body mass values were multiplied by the SE correction factor, as this factor is larger than the RE but 

smaller than the QMLE. 
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OLS2 model equation 

Log10 body mass = -1.92 + (2.558 * Log10 m1 length) 

Model statistics 

 r2 p-value %PE mean %SEE 

81.13 <0.05 5.78 8.7 

Statistical thresholds 

Leverages Cook’s D F stat Cook’s D 4/n 

0.6 2.92 0.4 

Correction factors 

SE RE QMLE 

1.0029 1.0034 1.0035 

a. 
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Figure 6.2: Regression model and outliers for OLS2. Dashed lines indicate the outlier threshold values. W_Kenya refers to the Sotik and 

Masai Mara locations. C_Kenya refers to the Aberdare, Archers Post and Mount Kenya locations. In calculation of the %PE (see Equation 

4.17) the detransformed predicted body mass values were multiplied by the RE correction factor, as this factor is larger than the SE but 

smaller than the QMLE. 
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6.1.2.2 Body mass reconstruction 

The body masses of Pleistocene C. crocuta were reconstructed from m1 lengths using the 

equation from OLS2, and are shown in Figure 6.3. In Britain, C. crocuta were small during MIS 9, 

and large during the later part of MIS 7, although these body mass predictions are based on one 

individual from each stage, and they overlap with the very largest and smallest values from other 

stages. While there is variation in the body masses of C. crocuta from the Late Pleistocene, there 

is considerable overlap, with no clear distinctions between MIS 5e, 5c or 3. 

Considering the rest of Europe, there is again considerable overlap in the body mass estimates 

from different countries. The estimates from Castlepook Cave (Ireland) and San Teodoro (Italy) 

are notably consistently small, while the body masses from other countries range from similarly 

low values up to higher values. The lowest values from Castlepook Cave (71.08±1.24 kg) and San 

Teodoro (72.31±1.24 kg) are still larger than the single value from Grays (64.56±1.23 kg). Overall, 

the very smallest values are from Joint Mitnor Cave (63.81±1.23 and 64.04± 1.23 kg) and Kents 

Cavern (64.38±1.23 kg). 

Across Europe, the largest calculation is from Uphill Cave 7 or 8 at 122.49±1.42 kg, which is 

around 49 kg larger than the smallest body mass observed. The next largest body masses are 

from Kents Cavern (116.21±1.4 kg) and Teufelslucke (114.9±1.39 kg), although the former (as 

noted) spans both the largest and smallest values recorded. 

To assess further differences between the reconstructed Pleistocene body masses, an ANOVA 

with post-hoc Tukey Pairwise Comparisons was run (Table 6.2). Only datasets with sample sizes 

of ten or greater were included. Data from Joint Mitnor Cave and Kents Cavern are non-normally 

distributed, so the non-parametric Mann-Whitney tests were performed on these data (Table 

6.3). 

The p-value of the ANOVA test is <0.05, indicating that there is a significant difference between 

at least two of the assemblages. The post-hoc Tukey Pairwise Comparisons indicate that 

C. crocuta body masses from the Austrian MIS 3 site of Teufelslucke are significantly larger than 

those from sites of both Late Interglacial (Tornewton Lower Hyaena Stratum, Tornewton Upper 

Hyaena Stratum, Kirkdale Cave) and MIS 3 (Sandford Hill) age in Britain. C. crocuta body masses 

from other sites are not significantly different, reflecting the overlapping body mass values in 

Figure 6.3. 

The Mann-Whitney tests (Table 6.3) indicate that body masses from Last Interglacial Joint 

Mitnor Cave are significantly smaller than those from the Last Cold Stage sites of Coygan Cave, 

Pin Hole, Uphill Caves 7 or 8, Caverne Marie Jeanne 4eme Niveau, Teufelslucke and Kents Cavern. 

C. crocuta from Kents Cavern are significantly larger than those from Last Interglacial Joint 
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Mitnor Cave, Kirkdale Cave, Tornewton Upper and Lower Hyaena Stratum, and MIS 3 Sandford 

Hill, but significantly smaller than those from MIS 3 Teufelslucke. Overall, where there are 

significant differences, C. crocuta from Last Interglacial sites are significantly smaller than those 

from MIS 3 sites in Britain. 
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Figure 6.3: Body mass reconstructions and prediction interval of each estimate of Pleistocene C. crocuta from Europe. See Table 6.1 for sample sizes. 
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Table 6.1: Number of body mass reconstructions for each site in Figure 6.3. 

Country Site 
No. body mass 
reconstructions 

Britain 

Grays 1 

Oreston 1 

Hoe Grange 1 

Barrington 7 

Burtle Beds 1 

Joint Mitnor Cave 19 

Kirkdale Cave 31 

Victoria Cave 4 

Tornewton Lower Hyaena Stratum 33 

Tornewton Upper Hyaena Stratum 34 

Badger Hole 5 

Bench Cavern 2 

Boughton Mount 4 

Brixham Cave/Windmill Hill 4 

Caswell Bay 2 

Church Hole 7 

Coygan Cave 74 

Daylight Rock Fissure 2 

Ffynnon Beuno 2 

Goat’s Hole Paviland 1 

Hyaena Den 8 

Kents Cavern 109 

King Arthur’s Cave. The Passage, Upper Cave Earth 1 

Picken’s Hole. Layer 3 9 

Pin Hole 34 

Robin Hood Cave 2 

Sandford Hill 22 

Uphill Caves 7 or 8 35 

Ireland Castlepook Cave 4 

Belgium 
Caverne Marie-Jeanne. 4eme Niveau 21 

Goyet. 3eme Caverne, 4eme Niveau Ossifère, Galleries 
Voisines de l’Entrée 

8 

Czech Republic 
Slouper Höhle 10 

Höhle Výpustek 1 

Austria Teufelslucke 47 

Serbia 
Baranica II 7 

Baranica I. Layer 2 1 

Italy San Teodoro 3 

Spain 

Cova del Toll 1 

Cueva de las Hienas 4 

Cova de les Toixoneres 1 

 

 

 .
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Table 6.2: Results of the Tukey Pairwise Comparisons, run after the ANOVA test, on predicted 

Pleistocene C. crocuta Log10 body masses. Sites that do not share a grouping letter are 

significantly different at 95 % confidence. p-value = <0.05. 

Site n 
Mean body 

mass (Log10) Grouping 

Teufelslucke 47 1.963 A     

Caverne Marie Jeanne. 4eme Niveau 21 1.95 A B  

Pin Hole 34 1.947 A B    

Uphill Caves 7 or 8 35 1.939 A B 
 

Coygan Cave 74 1.936 A B  

Slouper Höhle 10 1.927 A B  

Tornewton LHS 33 1.926 
 

B  

Tornewton UHS 34 1.924 
 

B  

Sandford Hill 22 1.92 
 

B  

Kirkdale Cave 31 1.915 
 

B  

 

 

Table 6.3: Results of Mann-Whitney tests for significant differences on Log10 body masses of 

Pleistocene C. crocuta. Top figures are W-values, bottom figures are p-values. Shaded boxes 

indicate significant differences at 95 % confidence. See Table 6.1 for sample sizes. 

Site and median body mass (log10) 
Joint Mitnor Cave 

1.913 
Kents Cavern 

1.947 

Joint Mitnor Cave 
1.913 

- 
689.5 
<0.05 

Kirkdale Cave 
1.913 

469.5 
0.772 

8439 
<0.05 

Tornewton LHS 
1.929 

434 
0.19 

8326.5 
0.01 

Tornewton UHS 
1.924 

450.5 
0.25 

8429.5 
0.006 

Coygan Cave 
1.937 

657 
0.025 

10573.5 
0.121 

Kents Cavern 
1.947 

689.5 
<0.05 

- 

Pin Hole 
1.948 

370 
0.008 

7867.5 
0.928 

Sandford Hill 
1.915 

363.5 
0.36 

7561.5 
0.024 

Uphill Caves 7 or 8 
1.941 

412.5 
0.047 

8088.5 
0.388 

Caverne Marie Jeanne. 4eme Niveau 
1.961 

270.5 
0.001 

7030.5 
0.492 

Slouper Höhle 
1.929 

269.5 
0.491 

6679.5 
0.183 

Teufelslucke 
1.964 

359 
<0.05 

7888.5 
0.01 
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Body masses were combined from all sites in Britain dating to MIS 5e, to MIS 5c and to MIS 3. 

Tests for significant difference were then performed on these combined datasets (Table 6.4). 

The t-test reveals no significance difference at 95 % confidence in body masses between MIS 5e 

and 5c. By contrast, the Mann-Whitney tests indicate that C. crocuta from the Middle Devensian, 

MIS 3, are significantly larger than those from the early Devensian, MIS 5e and 5c, in Britain. 

 

 

Table 6.4: Tests for significant difference of reconstructed C. crocuta Pleistocene body masses 

from different British sites combined for MIS 5e (n = 62), 5c (n = 67) and 3 (n = 323). Shaded 

boxes indicate significant difference at 95 % confidence. 

Comparison Mean/Median Test  

 Mean (log10) t-test  

MIS 5c vs  
MIS 5e 

1.925 
1.916 

t-value -1.29 
0.198 p-value 

 Median (log10) Mann Whitney  

MIS 3 vs  
MIS 5c 

1.944 
1.928 

W-value 65208.5 
0.014 p-value 

MIS 3 vs  
MIS 5e 

1.944 
1.915 

W-value 65393 
<0.05 p-value 

 

 

In order to examine the possible impacts of modern human arrival in Britain and the progressive 

intensification of abrupt climate change during MIS 3 on C. crocuta body mass, body mass values 

were plotted in chronological order, based on available radiocarbon dates from each 

assemblage (Figure 6.4). Where possible, dates derived from C. crocuta specimens were used. 

From Ffynnon Beuno, a date was derived from a M. primigenius bone that had been gnawed by 

C. crocuta. The only date available from Badger Hole was from an E. ferus specimen. See 

Appendix 10.1, Table 10.1 and Table 10.4 for full details and references. 

The results indicate no consistent increase or decrease in body mass through MIS 3 in response 

to either of the variables of interest. 
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Figure 6.4: Body mass estimates with prediction intervals of Pleistocene C. crocuta from Britain, 

placed in chronological order. See Appendix 10.1, Table 10.1 and Table 10.4 for full details and 

references, and Table 6.1 for sample sizes. Dashed line (a.) indicates the assemblages dated prior 

to the earliest arrival of modern humans in Britain (42,350 – 40,760 cal BP; Higham et al., 2011; 

Proctor et al., 2017). Dashed line (b.) indicates the assemblages dated prior to 36.5 b2k, a point 

after which interstadials become shorter and less frequent, as evidenced by the Greenland ice 

core δ18O data (Andersen et al., 2004; Rasmussen et al., 2014; Seierstad et al., 2014).  

 

Figure 6.5 shows the C. crocuta body mass values, categorised by dominant vegetation type 

(grassland, mixed, forested). The deposits included are only those from which vegetation could 

be directly reconstructed. See Appendix 10.1, Table 10.1 and Table 10.2 for further details and 

references. 

The largest body masses are from Pin Hole, where open grassland was the dominant vegetation 

type but there is considerable overlap in the body mass values from areas with grassland and 

with mixed vegetation. The smallest body mass value is from Grays, characterised by closed 

woodland vegetation. However, the other body mass reconstruction from a deposit with 

forested vegetation (Cova de les Toixoneres) has a value that plots within the range of the mixed 

and grassland deposits. Overall there is no coherent pattern of body mass with vegetation.  
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Figure 6.5: C. crocuta body mass reconstructions, categorised by dominant vegetation cover. 

See Appendix 10.1 Table 10.1 and Table 10.2 for further details and references. See Table 6.1 

for sample sizes. 

 

 

C. crocuta body mass estimates were then plotted against those from other predators and 

potential prey species (Figure 6.6 to Figure 6.11) to assess whether there was covariation 

between the species in Britain. The body mass data for C. lupus were reconstructed by Flower 

(2016), those for other species by Collinge (2001).  

The largest C. crocuta body masses occurred during MIS 7 and MIS 3, during which time C. lupus 

were at their smallest, at 35.4 kg and 34.03 kg, respectively (Figure 6.6). It is furthermore 

interesting to note the absence of C. crocuta from Britain during MIS 5a (when wolves reached 

their maximum body mass, Flower, 2016). While the initial observation might suggest that the 

presence of hyaenas acted as a control on wolf body mass (and concomitant access to resources) 

during the relatively open conditions of MIS 7 and MIS 3, the large range of C. crocuta body mass 

variation within each stage and the small datasets across which to compare the species make it 

difficult to see a definitive pattern.     
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Other carnivores 

 
Figure 6.6: Pleistocene C. crocuta body masses and C. lupus mean body masses with associated 

prediction intervals (from Flower, 2016). Sample sizes for C. crocuta: MIS 9 (n = 1), later MIS 7 

(n = 1), MIS 5e (n = 62), MIS 5c (n = 67), MIS 3 (n = 323). 
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Figure 6.7: Pleistocene C. crocuta and other carnivore mean body masses with standard deviations (from Collinge, 2001). a. U. arctos. b. P. leo (spelaea). MIS 5 = 

undifferentiated.      
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Cervidae 

   

Figure 6.8: C. crocuta and Cervidae species mean body masses with standard deviations (from Collinge, 2001). a. C. elaphus. b. C. capreolus. c. M. giganteus. d. R. 

tarandus. e. D. dama. MIS 5 = undifferentiated. 
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Figure 6.8 continued. 
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Bovidae  

  

Figure 6.9: C. crocuta and Bovidae mean body masses with standard deviations (from Collinge, 2001). a. B. priscus. b. B. primigenius. MIS 5 = undifferentiated. 
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Rhinocerotidae 

 

Figure 6.10: C. crocuta and Rhinocerotidae species mean body masses with standard deviations 

(from Collinge, 2001). MIS 9, 5 and 5e = S. hemitoechus. MIS 3 = C. antiquitatis MIS 5 = 

undifferentiated. 

 

Equidae 

 

Figure 6.11: C. crocuta and potential E. ferus mean body masses with standard deviations (from 

Collinge, 2001). MIS 5 = undifferentiated. 
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There is some evidence that C. crocuta increased in size with a decrease in U. arctos body mass 

during MIS 5e and MIS 3 (Figure 6.7a). However, this pattern does not hold when including Hoe 

Grange Cavern (MIS 5) and Grays (MIS 9). Figure 6.7b shows that there is no obvious relationship 

between the body masses of C. crocuta and P. leo (spelaea). 

Of the potential prey species, there is a positive correlation between the Rhinocerotidae 

(S. hemitoechus and C. antiquitatis) and C. crocuta body masses (Figure 6.10). This is especially 

clear in MIS 5, 5e and 3, although C. crocuta are smaller than expected given S. hemitoechus 

body mass during MIS 9. There is also a positive correlation between C. crocuta and C. elaphus 

body masses (Figure 6.8a). There is some evidence of a positive correlation between C. crocuta 

and C. capreolus body masses (Figure 6.8b) although this is based on only four data points. 

C. crocuta body masses do not scale with those of all potential prey species, notably some of the 

other cervids. During MIS 5e and 3, M. giganteus body masses increase while C. crocuta body 

masses remain largely unchanged (Figure 6.8c). There is also little obvious relationship between 

C. crocuta and R. tarandus body masses during MIS 3 (Figure 6.8d). 

C. crocuta and D. dama body masses do not appear to correlate during MIS 5 and 5e (Figure 

6.8e), although C. crocuta are smaller than expected, given D. dama body mass during MIS 9. 

This is very similar to the relationship between C. crocuta and E. ferus body masses (Figure 6.11). 

There is no relationship between C. crocuta and B. priscus body masses (Figure 6.9a) and with 

only four data points to illustrate C. crocuta and B. primigenius body masses (Figure 6.9b), no 

obvious relationship with aurochs can be detected either. 

 

 

6.1.3 Discussion 

6.1.3.1 The model 

Both OLS1 and OLS2 indicate that there is a significant, positive correlation between body mass 

and m1 length of modern C. crocuta. As mentioned, OLS2 was chosen because of the outlier in 

OLS1. At 5.78 % and 8.7 %, the %PE and %SEE values for OLS2 are low, indicating that the models 

have a strong power to predict C. crocuta body masses from m1 lengths. This power is especially 

striking when compared against the values from Van Valkenburgh's (1990) models, where the 

lowest %PE value was 29 %, and the lowest %SEE was 18 % (both in a model of head-body length 

against body mass for carnivores weighing more than 100 kg). This indicates that confidence can 

be placed in reconstructions of Pleistocene C. crocuta body masses in the present study. 

However, it is acknowledged that OLS2 has a small sample size (ten data points). 
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6.1.3.2 Body mass reconstruction 

Body masses of Pleistocene C. crocuta were reconstructed using OLS2. They were compared 

with previous estimates from Thackeray and Kieser (1992) and Collinge (2001) in Table 6.5. 

Thackeray and Kieser (1992) produced a regression model using the logarithmically transformed 

m1 lengths and body masses (from the same individuals) of C. crocuta, P. brunnea, C. mesomelas 

and Cape fox (Vulpes chama). The Pleistocene m1 lengths were then put into this regression 

equation. No correction factor was used after the predicted body masses were detransformed 

from logarithms by Thackeray and Kieser (1992). The body masses in the present study are 

around 15 to 20 kg greater than those predicted by Thackeray and Kieser (1992), and may in 

part be explained by the aforementioned lack of correction factor by those authors. Further 

variation may be due to differences in the relationship between m1 length and body mass in the 

different canid and hyaenid species. 

As mentioned in Section 4.4.2.1, Collinge (2001) reconstructed Pleistocene C. crocuta body 

masses using an equation with a single, average body mass of modern C. crocuta. As Table 6.5 

shows, the body masses reconstructed in the present study are greater than those reconstructed 

by Collinge (2001) using the post-crania. The reconstructions using m1 lengths are more similar 

between the two studies for C. crocuta from MIS 9, 5e (except Barrington) and 5c. Disparity 

occurs in body masses reconstructed using m1s from Barrington and from MIS 3, with the 

present study around 5 to 7 kg greater, although the standard deviations overlap. The greatest 

difference is from Ffynnon Beuno, with Collinge (2001) predicting 81 kg, compared with 98.8 kg 

(96.9 – 100.7 kg) in the present study. The differences between the two studies may stem from 

the use of a single average body mass in calculations by Collinge (2001), whereas the present 

study has taken into account some of the geographic variation in C. crocuta body masses. 

Collinge (2001) noted that the post-crania may be more representative of body masses in light 

of their phenotypic responses to environmental conditions. This may also account for some of 

the greater difference observed between Collinge's (2001) body masses reconstructed from 

post-crania, and the body mass estimates in the present study. Data were unfortunately 

insufficient to construct further regression models from C. crocuta post-crania. However, the 

high r2 value, and low %PE and %SEE values of OLS2 suggest that the body mass reconstructions 

presented here are a good approximation of the actual values of the Pleistocene individuals. 
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Table 6.5: Comparison of Pleistocene C. crocuta body mass reconstructions from the present 

study and previous studies. LHS = Lower Hyaena Stratum. UHS = Upper Hyaena Stratum 

Site 

Mean body mass 
values and SD (kg) 
from m1 lengths (this 
study) 

Mean body mass 
values (kg) from m1 
lengths (Thackeray and 
Kieser, 1992)  

Mean body mass 
values and SD (kg) 
from post-crania (PC) 
and m1 length 
(Collinge, 2001) 

Grays 64.56  
61 (51.55 – 70.45, PC) 
67 (m1) 

Barrington 88.25 (81.34 – 95.17) 64.1 
68 (62.6 – 73.4, PC) 
83 (76.34 – 89.66, m1) 

Joint Mitnor 
Cave 

81.13 (72.71 – 89.55) 61.2 
65 (58.26 – 71.74, PC) 
79 (75.56 – 82.44, m1) 

Kirkdale Cave 82.86 (75.85 – 89.86) 62.3 
69 (65.12 – 72.88, PC) 
79 (75.82 – 82.18, m1) 

Tornewton 
LHS 

84.92 (76.85 – 92.99) 
62.9 (as ‘Tornewton’) 

68 (63.9 – 72.1, PC) 
86 (78.59 – 93.41, m1) Tornewton 

UHS 
84.56 (77.29 – 91.83) 

Badger Hole 89.83 (80.12 – 99.55) 71.2  

Brixham 
Cave/ 
Windmill Hill 

85 (72.19 – 97.81) 67.4 (as ‘Brixhan Cave’)  

Coygan Cave 87.09 (78.02 – 96.15) 66.7 
70 (67.84 – 72.16, PC) 
80 (75.32 – 84.68, m1) 

Ffynnon 
Beuno 

98.8 (96.9 – 100.7)  81 (m1) 

Hyaena Den 83.8 (76.81- 90.79) 67.9  

Kents Cavern 88.76 (80.99 – 96.54) 69.2 

71 (66.91 – 75.09, PC) 
82 (79.33 – 84.67, m1) 
(as ‘Kents Cavern Cave 
Earth’) 

Picken’s Hole 82.93 (76.07 – 89.79) 67.7  

Pin Hole 89.64 (78.7 – 100.58) 71.2 

65 (54.7 – 75.3, PC) 
82 (78.12 – 85.88, m1)  
(as ‘Pin Hole Lower 
Fauna’) 

Sandford Hill 84.07 (74.37 – 93.76)  
68 (63.69 – 72.31, PC) 
79 (76.19 – 81.81, m1) 

 

 

The Pleistocene body mass reconstructions results indicate that C. crocuta were consistently 

small during MIS 9 in Britain (Grays), MIS 3 in Ireland (Castlepook Cave) and MIS 3 on Sicily (San 

Teodoro). They were notably large during MIS 7 in Britain (Oreston). It is acknowledged that 

there was only one MIS 9-aged specimen, and one MIS 7-aged specimen, meaning that it is 

possible that these values may not be representative of the average body mass of the 
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populations. The C. crocuta from other countries and time periods overlap considerably and, in 

many cases, span a larger range of body sizes.  

Pleistocene C. crocuta body masses range from 66.81 to 122.49 kg. These lower estimates 

overlap with body mass records from Africa today, which range from 35.85 to 80.06 kg (Powell-

Cotton, n.d., cited in Shortridge, 1934; Smithers, 1971). 

As demonstrated in Section 5.4.2.1, present-day C. crocuta are significantly negatively correlated 

with P. leo density and precipitation of the wettest month, and positively correlated with 

temperature of the warmest month. The analysis of Late Pleistocene C. crocuta in Britain 

suggests that they were significantly larger during the generally colder climatic conditions of 

MIS 3 than during the more temperate MIS 5e and 5c, contradicting the pattern seen in modern 

C. crocuta. This suggests that fossil C. crocuta follow Bergmann’s Rule (with cold-climate being 

taken as a proxy for increased latitude). This is supported by some of the data from wider 

Europe. For example, C. crocuta from the mid last cold stage MIS 3 site of Teufelslucke are 

significantly larger than those from the temperate MIS 5c assemblages of Tornewton Upper and 

Lower Hyaena Strata, and the MIS 5e Last Interglacial sites of Kirkdale and Joint Mitnor Cave. 

C. crocuta from the MIS 3 site of Caverne Marie Jeanne (4eme Niveau), where mean annual 

temperature has been reconstructed as 3.35°C (López-García et al., 2017), are also significantly 

larger than those from Joint Mitnor Cave. 

However, when assessing all assemblages of all ages, the overlap in measurements indicates 

that any size difference is not consistent. This may be because C. crocuta responded to shorter 

term environmental changes that cannot be detected because of a lack of resolution. For 

example, the variation of body masses during MIS 5e may be explained by temperature variation 

within this period; although all temperature reconstructions of MIS 5e in Britain exceeded 

today’s summer temperatures, peak warmth occurred for only a short period (less than 1,200 

years) of MIS 5e (Candy et al., 2016). Unfortunately, no temperature records have been 

reconstructed directly form the MIS 5e deposits included in the present study, so this cannot be 

resolved further.  

Multiple abrupt environmental changes also occurred during MIS 3, as evidenced through the 

Greenland ice core δ18O data (Andersen et al., 2004; Rasmussen et al., 2014; Seierstad et al., 

2014). The graph of direct dates from MIS 3 C. crocuta (Figure 4.7) plotted against the Greenland 

data shows that it is not possible to attribute each deposit to a particular stadial or interstadial. 

This is because the errors on the dates, in addition to the existence of multiple dates from some 

deposits, span across climatic transitions.  
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The Greenland ice core δ18O data indicates that interstadials became shorter and less frequent 

after around 36.5 b2k (Andersen et al., 2004; Rasmussen et al., 2014; Seierstad et al., 2014). The 

graph of chronologically-ordered British MIS 3 body mass reconstructions (Figure 6.4) shows 

that there is no consistent pattern of body mass change over time. There is also no change to 

larger or smaller body masses after 36.5 b2k. This may be a true signal. Alternatively, this may 

be due to the limited available radiocarbon dates, and the fact that many dates were towards 

the limit of the radiocarbon dating method. To resolve this issue, more extensive radiocarbon 

dating of specimens is needed to help constrain the timespan over which C. crocuta occupied 

each site. It would be particularly beneficial to directly date the m1s from which body masses 

were reconstructed. A further improvement would be to reconstruct palaeotemperatures 

directly from the deposits in which C. crocuta were found. This is because temperatures across 

Europe may diverge from the Greenland signal. For example, the continental temperatures may 

have lagged behind the signal from Greenland, or they may represent different magnitudes of 

change. 

Overall, there is some evidence that contrary to present-day C. crocuta, Pleistocene C. crocuta 

followed Bergmann’s Rule. However, this is not consistent nor ubiquitous. As mentioned, 

present-day C. crocuta do not appear to follow Bergmann’s Rule. This difference may be a 

consequence of the small sample size of present-day body masses so that the full climatic range 

of C. crocuta habitats was not covered (see Table 5.23). Alternatively, present-day C. crocuta 

may exhibit true morphological responses to temperature that are different to those of 

Pleistocene C. crocuta. 

Klein and Scott (1989) concluded that C. crocuta from Britain followed Bergmann’s Rule, based 

on the length of the m1s from Late Pleistocene sites, although there was overlap in values from 

deposits of different ages. Studies by Turner (1981) and Collinge (2001) both found a lack of 

consistent relationship with Bergmann’s Rule in the Pleistocene, supporting the findings in the 

present study. 

As mentioned, present-day C. crocuta body masses are negatively correlated with precipitation 

of the wettest month. Records of precipitation are lacking in the Pleistocene, with estimations 

only available from three sites. Annual precipitation from Caverne Marie Jeanne (4eme Niveau) 

were estimated at 1018 mm, which is wetter than today (López-García et al., 2017). Although 

quantifiable palaeoclimatic reconstructions are unfortunately unavailable, the deposits from 

Levels D, E, F and H in Cova del Toll are indicative of wet conditions (Allué et al., 2013). Cova de 

les Toixoneres Level III is indicative of a humid climate, while Level II is indicative of drier 

conditions (López-García et al., 2012). The body masses from Caverne Marie Jeanne, Cova del 
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Toll and Cova de les Toixoneres all overlap. The limited evidence thus suggests no influence of 

precipitation on Pleistocene body masses. 

Vegetation cover was assessed for those deposits from which vegetation had been directly 

reconstructed. There is evidence that body size does not vary with vegetation. The sample size 

upon which this is based is small, especially the forested vegetation category, which is 

represented only by two deposits. However, these results are supported by findings that 

present-day C. crocuta body mass is not correlated with vegetation cover (Section 5.4.2.1). 

As mentioned, present-day C. crocuta body masses are negatively correlated with P. leo density 

(Section 5.4.2.1). This is a difficult variable to measure in the Pleistocene. However, the response 

to the presence and absence of potential competitors can be assessed, in addition to an 

investigation into the covariation in body size between predator species.  

Other large predators that occurred in Europe alongside C. crocuta included C. lupus, P. leo 

(spelaea), P. pardus, U. arctos, U. spelaeus and hominins (Currant and Jacobi, 2011; Dimitrijević, 

2011). These species may have competed with C. crocuta for food. Indeed, there is evidence of 

overlapping prey preferences, such as the consumption of bovids, equids and cervids by 

C. crocuta and H. neanderthalensis during MIS 4 and 3 in France (Dusseldorp, 2013b). In Payre, 

France during MIS 7/8, C. crocuta and P. leo (spelaea), and sometimes H. neanderthalensis, 

targeted species such as Dicerorhinus (=Stephanorhinus) sp., C. capreolus, M. giganteus and E. 

mosbachensis (Bocherens et al., 2016). 

A species’ body mass may be constrained if it inhabits the same area as a larger competitor 

(McNab, 1971). Thus, while C. lupus were larger during MIS 5a in Britain, in part due to the 

absence of C. crocuta (Flower, 2016), the reverse was not true. C. lupus, P. leo (spelaea) and 

U. arctos were present in Britain during MIS 9, later 7, 5e, 5c and 3 (Sutcliffe and Zeuner, 1962, 

cited in Currant, 1998; Schreve, 1997, 2001; Currant and Jacobi, 2011) and so there was no 

opportunity for competitive release. Additionally, there is little evidence that Pleistocene 

C. crocuta body mass varied alongside C. lupus or P. leo (spelaea) body size. There is some 

evidence of an increase in C. crocuta size alongside reduced U. arctos size, during MIS 5e and 3, 

although this is not the case for MIS 9.  

Neanderthals were present in Britain during MIS 9, 7 and 3 (Schreve, 2001; Currant and Jacobi, 

2011), but were very likely absent during MIS 5e (Lewis et al., 2011), and there is no evidence of 

their presence in MIS 5c-aged deposits (Sutcliffe and Zeuner, 1962, cited in Currant, 1998; 

Currant and Jacobi, 2011). The overlap in body masses in MIS 5e and 5c compared to MIS 3 

suggests that the absence of Neanderthals in Britain did not influence C. crocuta body mass.  
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An additional potential factor is the arrival of modern humans in Britain. The earliest evidence 

of this is a mandible from Kents Cavern, dated to 42,350 to 40,760 cal BP, based on associated 

fauna (T. Higham, Compton, et al., 2011; Proctor et al., 2017). The body mass estimates placed 

in chronological order (Figure 6.4) do not show any evidence that C. crocuta body masses 

changed in response to the arrival of modern humans in Britain, although the limitations of the 

chronology have been discussed above. 

Collinge (2001) suggested that the larger size in species such as C. elaphus during MIS 3 was due 

to a greater vegetation productivity. The positive relationship between body masses of 

C. crocuta and C. elaphus may therefore indicate an indirect relationship between C. crocuta 

body mass and vegetation productivity, rather than vegetation openness, as discussed above.  

Even if the covariation between C. crocuta body mass and that of their prey is not causal, the 

relationship can provide some information about C. crocuta’s diet. That C. crocuta body mass 

increased in line with those of Rhinocerotidae and C. elaphus suggests that C. crocuta were able 

to continue targeting these species even when they were of large size.  

Evidence of C. crocuta consumption of C. elaphus in Britain comes from Ffynnon Beuno 

(Aldhouse-Green et al., 2015) and Kents Cavern (Wilson, 2010). Additionally, C. elaphus remains 

are present in many assemblages that were likely accumulated by C. crocuta (see Appendix 10.1 

Table 10.1).  

There is also abundant evidence for the consumption of C. antiquitatis in Britain, including 

damage to bones in MIS 3 deposits of Bench Cavern/Windmill Hill (Prestwich, 1873), Coygan 

Cave (Aldhouse-Green et al., 1995), Goat’s Hole Paviland (Turner, 2000), Pin Hole (Busk, 1875) 

and Lynford (Schreve, 2012). The importance of C. antiquitatis in the diet of Pleistocene C. 

crocuta is interesting given the large size of the individuals (maximum recorded size of 2433±537 

kg, Collinge, 2001). There is limited evidence of C. crocuta preying upon white rhinoceros 

(Ceratotherium simum), or black rhinoceros (Diceros bicornis) today. Kruuk (1972) and Sillero-

Zubiri and Gottelli (1991) noted limited hunting attempts by C. crocuta upon rhinoceros calves, 

which were all unsuccessful. Despite this, sites such as Kents Cavern yielded abundant, gnawed 

remains of juvenile C. antiquitatis (Wilson, 2010). This may have been due to successful 

predation by C. crocuta, scavenging by C. crocuta, or collection bias from early excavations. 

During MIS 9 C. crocuta are smaller than expected, given the size of Rhinocerotidae, D. dama 

and E. ferus. This may indicate that C. crocuta were less able to target these prey species during 

this period. At 64.56±1.23 kg, the Grays individual is similar in size to C. crocuta in some areas in 

southern Africa, including some records from Kruger National Park and Hluhluwe-iMfolozi Park 
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(Whateley, 1980; Lindeque, 1981, cited in Smithers, 1983; Henschel, 1986, cited in Skinner and 

Chimimba, 2005; and see Table 5.23). 

Of the large mammals in Kruger National Park, the species most frequently targeted by 

C. crocuta were steenbok (Raphicerus campestris), the greater kudu (Tragelaphus strepsiceros) 

and impala (Aepyceros melampus; Henschel and Skinner, 1990). R. campestris weighs 9-13.2 kg, 

A. melampus weighs 40-76 kg and T. strepsiceros weighs 120−315 kg (Estes, 1991, and 

references therein). Larger species killed by C. crocuta included S. caffer (Henschel and Skinner, 

1990), which weighs 425−870 kg (Estes, 1991, and references therein). 

From Grays, D. dama was estimated to weigh 97±16.2 kg, E. ferus weighed 557±115 kg, and 

S. hemitoechus weighed 1790±557 kg (Collinge, 2001). D. dama and E. ferus are within the range 

of species predated by C. crocuta in Kruger National Park. S. hemitoechus is larger, suggesting 

that at least the adults would have been too large for C. crocuta to predate successfully. 

Body masses of individuals from Castlepook Cave are also notably small. However, this does not 

hold when considering the craniodental morphometrics (see Section 6.2). 

Finally, small C. crocuta were also found in San Teodoro. Weighing 72.31±1.24 to 84.01±1.28 kg 

from San Teodoro, the smaller of these individuals are similar to some records of present-day 

C. crocuta from Hluhluwe-iMfolozi Park, Kruger National Park, Kalahari National Park and 

Botswana (Stevenson-Hamilton, 1947; Smithers, 1971; Whateley, 1980; Mills, 1990). The larger 

of the C. crocuta from San Teodoro exceed the maximum recorded body masses of present-day 

C. crocuta, which are 78.25 kg from Malawi (Wood n.d., cited in Shortridge 1934) and 80.06 kg 

from Botswana (Smithers, 1971). 

In the deposits of San Teodoro, there is C. crocuta damage to bones of Palaeoloxodon 

mnaidriensis (dwarf elephant), Cervus elaphus siciliae (Sicilian red deer), Bos primigenius 

siciliae/Bison priscus siciliae (Sicilian aurochs/Sicilian bison) S. scrofa and E. hydruntinus 

(Mangano, 2011). P. mnaidriensis, C. e. siciliae, B. primigenius siciliae and B. priscus siciliae were 

all smaller than their mainland ancestors (Raia and Meiri, 2006; Lomolino et al., 2013). C. crocuta 

would therefore likely have been able to prey upon these species (rather than only scavenging 

the remains), despite C. crocuta’s relatively small size.  

The small size of the C. crocuta from San Teodoro is interesting as the Island Rule may have 

influenced these populations. The premise of the Island Rule is that mammals of large body size, 

such as C. crocuta, will become smaller once isolated (Lomolino, 1985). Reconstructions of 

relative sea level at the Strait of Messina showed that the land bridge between Sicily and 

mainland Italy was absent between 40 and 27 ka (Antonioli et al., 2015). The available dates 

from San Teodoro are younger than 40 ka (32±4 ka on flowstone and 18,330±400 14C BP = 
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23,125-21,149 cal BP on E. hydruntinus, Bonfiglio et al., 2008), indicating that the San Teodoro 

fauna were part of populations isolated from the mainland. This is further illustrated in San 

Teodoro by the presence of dwarf endemic species, which were smaller than their mainland 

counterparts (Mangano, 2011), and by species diversity that is a subset of the mainland species 

(Marra, 2009).  

There are many theories behind the causes for the Island Rule (see Section 3.1). Raia and Meiri 

(2006) suggested that the prey biomass or the size of prey on islands influences body size change 

of insular carnivores. For San Teodoro, the presence of dwarf species (Mangano, 2011) conforms 

to this theory.  

 

As mentioned, C. lupus exhibited variation in body mass during the Pleistocene, with the largest 

individuals found during MIS 5a, perhaps because of cold conditions and competitive release 

due to the absence of C. crocuta (Flower, 2016). P. leo (spelaea) were smaller during MIS 5e than 

during MIS 3, and Collinge (2001) suggested that this was because of the more forested 

environment during MIS 5e, leading to sub-optimal foraging and concentration on smaller prey. 

P. leo (spelaea) therefore conformed to Bergmann’s Rule, but the cause of body size change was 

not a direct relationship with temperature. 

U. arctos were largest during MIS 4 according to Collinge (2001). However, assemblages 

attributed to this period, assigned to the Banwell Bone Cave Mammal Assemblage Zone by 

(Currant and Jacobi, 2001, 2011), including Windy Knoll, Wretton and the type-site of Banwell 

Bone Cave, have since been reassigned to MIS 5a (Currant and Jacobi, 2011). Further body mass 

reconstructions indicated that medium sized U. arctos occurred during MIS 6, 5e, 5c and 3, while 

the smallest individuals occurred during MIS 7 and 9. Collinge (2001) suggested this may have 

been due to a reduction in plant biomass during MIS 6, 5a, and 3, causing them to switch to a 

more carnivorous diet. No explanation was given for the medium-sized individuals during MIS 

5e and 5c. 

Based on the above responses of other large predators, it seems that C. crocuta is unusual in 

that its body size did not consistently change in response to Pleistocene environmental 

conditions. This may be due to the behavioural plasticity of the species. For example, C. crocuta 

have been observed to move from open to closed vegetation, and change from crepuscular to 

nocturnal activity in response to the presence of humans (Boydston et al., 2003). They obtain 

food from both predation and scavenging (Henschel and Skinner, 1990; Gasaway et al., 1991), 

and feed upon a wide range of species (Mills, 1990; Holekamp et al., 1997; Hayward, 2006). They 

can also alter the prey species that they target in response to seasonal fluctuations in prey 
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abundance (e.g. Cooper et al., 1999). However, C. lupus also exhibit some behavioural plasticity, 

yet, as mentioned, they showed body size changes through the Pleistocene (Flower and Schreve, 

2014; Flower, 2016). 

One thing that C. crocuta does differently is that they are able to consume the entirety of a 

carcass, including bones, in periods of low food availability (Kruuk, 1972; Egeland et al., 2008). 

While there is competition between C. crocuta and P. leo today, the two species often show 

spatial and temporal partitioning (e.g. Mills, 1990; Périquet et al., 2015, and Section 5.1). Indeed, 

isotopic analysis of MIS 3-aged assemblages from the Ardennes, Belgium indicated that C. 

crocuta consumed most of the prey species present, while P. leo (spelaea) was forced to subsist 

on R. tarandus and Ursus sp. cubs (Bocherens et al., 2011). They may also have been able to out-

compete other species. For example, after MIS 5a (when both C. crocuta and P. leo (spelaea) 

were conspicuously absent from Britain), C. lupus reduced its body size during MIS 3 apparently 

in response to competition from the two larger predators, now returned to Britain, which forced 

them to target smaller prey species (Flower and Schreve, 2014; Flower, 2016). 

It is anticipated that some of this behaviour will be reflected in the craniodental and post-cranial 

morphological record. This behavioural plasticity may mean that C. crocuta responded to 

environmental changes through behaviour, in particular bone consumption and out-competing 

other species, thus limiting the necessity for body size changes. This may have had implications 

for their extirpation from Europe, as will be discussed in Section 7. 
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6.2 Pleistocene morphometrics 

6.2.1 Introduction 

As discussed in Section 3.3, craniodental morphology is associated with the size of the brain, 

vision, hearing, olfaction, respiration and feeding (Ewer, 1973; Biknevicius, 1996; Smith and 

Rossie, 2008; Tseng and Binder, 2010; Macrini, 2012; Nummela et al., 2013; Lucas, 2015; Rahmat 

and Koretsky, 2015). Post-cranial morphology also has important functional implications 

including weight bearing, prey capture and locomotion (Hildebrand, 1974; Van Valkenburgh, 

1985; and see Section 3.4). The results from Section 5.4 indicate that these features may be 

influenced by temperature, precipitation, vegetation cover. Given that these conditions changed 

during the Pleistocene, this section will assess the variation in morphometrics of C. crocuta, and 

whether this variation can be attributed to environmental variation both temporally and 

spatially. 

The research questions are as follows: 

• How did C. crocuta morphometrics vary spatially across Europe and temporally through 

the Pleistocene? 

• Can this variation be attributed to any environmental conditions? 

 

 

6.2.2 Results 

6.2.2.1 Crania and dentition 

The dental measurements for all Pleistocene assemblages are displayed in Figure 6.12 to Figure 

6.29, and see also Appendix 10.8, Figure 10.3. Sample sizes are included in Table 6.6. Where 

sample sizes were at least ten, tests for significant difference were performed. ANOVA with post-

hoc Tukey were performed on normally distributed data, and Mann Whitney tests were 

performed on non-normally distributed data. In the case of the mediolateral diameter of C, t-

tests were performed on normally distributed data as a Levene’s test indicated unequal 

variances in the data (p−value = 0.016). The results of the tests for significant difference are 

displayed in Appendix 10.8, Table 10.22 to Table 10.50. 

 



6. Pleistocene Crocuta crocuta 
 

- 322 - 
 

 

Figure 6.12: Boxplot of Pleistocene C. crocuta C anteroposterior diameter measurements. 

Numbers on top of the graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. 

 

 

 

Figure 6.13: Boxplot of Pleistocene C. crocuta C mediolateral diameter measurements. Numbers 

on top of the graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene.  
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Figure 6.14: Boxplot of Pleistocene C. crocuta c anteroposterior diameter measurements. 

Numbers on top of the graph indicate Marine Oxygen Isotope Stages. 

 

 

 
Figure 6.15: Boxplot of Pleistocene C. crocuta c mediolateral diameter measurements. Numbers 

on top of the graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene.   
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For all dental measurements, there is much overlap in the recorded sizes between assemblages. 

This is the case both within and between different palaeoclimatic episodes and geographic 

areas. However, some differences are apparent.  

The measurements from the early Middle Pleistocene specimen from Pakefield all plot in the 

mid-range of measurements from all sites. Data from MIS 9 was only available from four 

measurements from Grays (width of p3, width of p4, and length and width of m1). These 

consistently plot in the lower range of values from all sites. For most measurements, the teeth 

from MIS 7 are towards the upper range of sizes, although a notable exception is the length of 

the p2. 

Of assemblages from the Late Pleistocene, Castlepook Cave and San Teodoro stand out. Except 

for measurements of P2 and p2, mediolateral diameter of c, and length of p3, the measurements 

from Castlepook Cave plot towards the lower range of values. The measurements from San 

Teodoro consistently plot in the lower range of values. 

Differences between sites are more apparent when the tests for significant differences are 

considered alongside the boxplots. Where there are significant differences, these tend to show 

that teeth from MIS 3-aged sites are larger than those from MIS 5e and 5c. In particular, teeth 

from Teufelslucke, tend to be significantly larger. There are exceptions, however. The length of 

P1, length of P4 and width of p2 do not exhibit significant differences. 



6. Pleistocene Crocuta crocuta 
 

- 325 - 
 

 
Figure 6.16: Boxplot of Pleistocene C. crocuta P2 length measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. 

 

 

 

Figure 6.17: Boxplot of Pleistocene C. crocuta P2 width measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. 
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Figure 6.18: Boxplot of Pleistocene C. crocuta P3 length measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene.  

 

 

 

Figure 6.19: Boxplot of Pleistocene C. crocuta P3 width measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene.     
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Figure 6.20: Boxplot of Pleistocene C. crocuta p2 length measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. 

 

 

 
Figure 6.21: Boxplot of Pleistocene C. crocuta p2 width measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. 
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Figure 6.22: Boxplot of Pleistocene C. crocuta p3 length measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. EMP = early Middle 

Pleistocene. 

 

 
Figure 6.23: Boxplot of Pleistocene C. crocuta p3 width measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. EMP = early Middle 

Pleistocene.      
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Figure 6.24: Boxplot of Pleistocene C. crocuta p4 length measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. EMP = early Middle 

Pleistocene.      

 

 
Figure 6.25: Boxplot of Pleistocene C. crocuta p4 width measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. EMP = early Middle 

Pleistocene.        
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There is also variation within MIS 5; the lengths of P3s from Kirkdale Cave (MIS 5e) are 

significantly larger than those from Tornewton UHS (MIS 5c). Additionally, there are some 

significant differences between assemblages from MIS 3. These are the mediolateral diameters 

of C, the greatest widths of P4, the lengths and widths of p3, the widths of p4 and the lengths of 

m1. Most often, these significant differences indicate that measurements from Teufelslucke and 

Cavern Marie Jeanne are larger than those from other sites such as Uphill Caves and Sandford 

Hill. 

The width of the m1 is the most complicated in terms of significant differences. There are no 

significant differences between m1 widths from MIS 5e and 5c. Widths of m1s from some 

MIS 3−aged assemblages are larger than those from MIS 5e and 5c. There some significant 

differences within MIS 3, with m1 widths from Coygan Cave larger than those from Sandford 

Hill. Widths from Uphill Caves and Teufelslucke are both larger than Coygan Cave and Sandford 

Hill. 

The most obvious exception is the length of p2. As mentioned, for most teeth, those from MIS 3 

are significantly larger than those from MIS 5e and 5c. By contrast, the p2s from MIS 5e-aged 

Joint Mitnor Cave and Kirkdale Cave are significantly longer than those from MIS 3-aged Kents 

Cavern, Sandford Hill and Uphill Caves. 

The other dental measurements with some measurements larger from MIS 5e or 5c are the 

mediolateral diameters of the upper and lower canines, and the length of the P3.  

Tornewton LHS and UHS (both MIS 5c age) measurements do not differ significantly from each 

other for any teeth except for the anteroposterior and mediolateral diameters of C. For both 

measurements, those from Tornewton UHS are larger. 
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Figure 6.26: Boxplot of Pleistocene C. crocuta P4 length measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. 

 

 

Figure 6.27: Boxplot of Pleistocene C. crocuta P4 greatest width measurements. Numbers on top 

of the graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene.    
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Figure 6.28: Boxplot of Pleistocene C. crocuta P4 width measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. 
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Figure 6.29: Boxplot of Pleistocene C. crocuta m1 width measurements. Numbers on top of the 

graph indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene.     
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Table 6.6: Sample sizes of dental measurements in Figure 6.12 to Figure 6.29.  

Site C 
APD 

C 
MLD 

c 
APD 

c 
MLD 

P2  
L 

P2 
W 

P3  
L 

P3 
W 

p2 L p2 
W 

p3  
L 

p3 
W 

p4  
L 

p4 
W 

P4  
L 

P4 
GW 

P4 
W 

m1 
W 

Pakefield. Sandy Gravel, Forest Bed           1 1 1 1     

Grays    1        1  1    1 

Bleadon        1       1  1  

Hutton Cavern  1                 

Oreston 1  2 2 1 1 2 2 2 3 4 4 4 4  1 1 1 

Prissens Tor Cave 1 2             1  1  

Hoe Grange  2  1   1  1 3  3 2 4 1   3 

Barrington 2 2 2 1 3 5 5 6 4 8 4 12 4 6 2 4 4 8 

Brentford     1 1 1            

Burtle Beds         1  1 1      1 

Eastern Torrs Quarry           1  2 1 2 2 2  

Joint Mitnor Cave 13 13 8 13 13 6 21 14 10 8 16 15 16 22 7 16 15 17 

Kirkdale Cave 6 5 5 6 13 13 16 12 19 14 18 17 23 24 7 10 11 19 

Little Syke         1 1  1  1     

Milton Hill   1 1 2 2 1 1  1 1 1  1     

Raygill Fissure            1  1     

Victoria Cave 2 5 1 1   2 4 6 7 5 5 4 4  2 4 5 

Tornewton. LHS 12 16 11 15 9 11 24 19 5 9 12 18 28 37 23 28 29 34 

Tornewton. UHS 13 19 12 18 3 4 13 8 10 12 14 17 35 39 13 13 17 34 

Badger Hole 2 3 1      3 2  2 1     4 

Bench Cavern  1  2 1  1  3 2 2    2 1 1 1 

Boughton Mount 1 1 3 2 2 2 2  2 3 1 3 2 2   1 3 

Brixham Cave/Windmill Hill 4 6 7 13 1  3 4 5 6 3 5 4 5 4 5 5 3 

Caerwent Quarry  1    1 1 1  1  1 2 2     

Caswell Bay   2 1 1 1 1 2  1 1 3 1 2 1 2 3 2 

Church Hole 2 3 7 10 4 6 4 7 3 7 3 8 3 7 5 9 7 7 
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Site C 
APD 

C 
MLD 

c 
APD 

c 
MLD 

P2  
L 

P2 
W 

P3  
L 

P3 
W 

p2 L p2 
W 

p3  
L 

p3 
W 

p4  
L 

p4 
W 

P4  
L 

P4 
GW 

P4 
W 

m1 
W 

Coygan Cave 40 50 42 57 21 20 50 52 33 43 54 64 66 77 43 50 52 73 

Daylight Rock Fissure        1 2 1 2 1 4 4 1 1 1 2 

Ffynnon Beuno 1 1 1 1 1 1 2 2   4 4  2 1 2 2 3 

Goat’s Hole Paviland   1 1     1         1 

Hyaena Den   1 3 2 1 1 1 4 4 6 7 2 6 4 4 7 7 

Kents Cavern 31 48 58 93 20 20 65 57 54 76 92 155 109 144 60 77 76 115 

King Arthur’s Cave. The Passage, 
Upper Cave Earth 

1 1     1  1    1 1    2 

Lewes Castle       1            

Nanna’s Cave. Red loam     1 1             

Picken’s Hole. Layer 3 8 9 9 10 4 4 6 7 10 9 6 11 6 11 7 7 7 10 

Pin Hole 8 13 9 17 9 12 6 10 18 27 17 26 19 35 12 18 16 34 

Priory Farm Cave               1  1  

Robin Hood Cave           2 2      2 

Sandford Hill 11 18 6 12 3 2 2 4 11 18 18 31 6 25 1 7 6 22 

Tornewton. Elk Stratum   1 1 2 2   1 1 1 2 2 2     

Uphill Caves 7 or 8 6 14 17 24 9 14 20 20 26 22 40 38 25 40 9 16 27 37 

Yealm Bridge 2 3  1   1    1 1       

Castlepook Cave 2 2 1 3 2 2 1 3 2 5 1 5  7 1 3 1 3 

Trou Magrite  1   1 1    1 1 1 1 2   1 2 

Caverne Marie-Jeanne. 4eme Niveau 1 2 6 6 15 14 8 14 18 16 13 19 15 24 9 23 16 26 

Goyet. 3eme Caverne, 4eme Niveau 
Ossifère, Galleries Voisines de l’Entrée 

  5 8  1 3 7 2 5 6 13 4 7 2 5 5 11 

Goyet. 3eme Caverne, 3eme Niveau 3 4 4 11  1 1 2 6 5 3 7 5 12  2 2 2 

Goyet. 3eme Caverne, 1er Niveau 
Ossifère 

 1 2      1 1 3 4 1 2    4 

Slouper Höhle 1 1  3 3 2 3 3 8 3 9 5 7 11 2 2 3 10 

Höhle Výpustek  1 2 4 1 1 4 1 2 1 3 3 3 4 3 3 4 3 



6. Pleistocene Crocuta crocuta 
 

- 336 - 
 

Site C 
APD 

C 
MLD 

c 
APD 

c 
MLD 

P2  
L 

P2 
W 

P3  
L 

P3 
W 

p2 L p2 
W 

p3  
L 

p3 
W 

p4  
L 

p4 
W 

P4  
L 

P4 
GW 

P4 
W 

m1 
W 

Teufelslucke 10 19 22 28 29 28 43 33 54 43 45 50 32 60 28 42 55 53 

Baranica II 1 1   1    2 1 2 2 2 6 2 1 6 10 

Baranica I               1 1 1 1 

San Teodoro 1 1 1 1   5 2 8 3 7 5 1 6  1  4 

Cova del Toll 1 1   2 2 1 1 1 2  1   1 3 4 1 

Cueva del Búho               2 2 2  

Cueva de las Hienas       1  1 1   3 3 2 1 1 5 

Cova del Gegant         1 1        1 

Cova B d’Olopte     1 1 1 1 1 1  2  1 2 2 2 1 

Cova de les Toixoneres      1  2 2 2   1 1 1  1 1 
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As outlined above, the length of the p2 appears to show different patterns to the lengths and 

widths of the p3 and p4. In order to further investigate this difference, RMA regressions were 

performed to assess the allometric relationships between these dental measurements (Table 

6.7 and Figure 6.30). The results show that the weakest relationship is between p2 and p3 

lengths as indicated by the insignificant relationship (p = 0.074), low Pearson’s r value (0.219) 

and the large confidence intervals around the slope (0.543 to 2.596).  

The RMA between the other lower premolar lengths and widths are all significant at 95 % 

confidence. For p3 length against p4 length, and p3 width against p4 width, the confidence 

interval for the slopes both span one. By contrast, for p2 length against p3 length, p2 width 

against p3 width, and p2 width against p4 width, with confidence intervals are all less than one. 

 

 

Table 6.7: Results of reduced major axis regressions, with base-10 logarithmically transformed 

C. crocuta lower premolar measurements. For each pair of measurements, the first named is on 

the x-axis and the second named is on the y-axis. Statistics include the Pearson’s r correlation 

and associated p-value. Also shown are the regression slope values with associated 95 % 

bootstrapped confidence intervals of the slope. 

Statistic 
p2 length 

& 
p3 length 

p2 length 
& 

p4 length 

p3 length 
& 

p4 length 

p2 width 
& 

p3 width 

p2 width 
& 

p4 width 

p3 width 
& 

p4 width 

n 68 29 29 211 154 220 

Pearson’s r 0.219 0.573 0.511 0.508 0.442 0.768 

p-value 0.074 0.001 0.005 <0.05 <0.05 <0.05 

Slope 0.909 0.672 1.059 0.807 0.88 1.07 

Min. CI 0.543 0.423 0.592 0.705 0.738 0.984 

Max. CI 2.596 0.861 1.367 0.901 0.991 1.158 
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Figure 6.30: Reduced major axis regressions of base-10 logarithmically transformed C. crocuta lower premolar measurements.    
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The robustness of the premolars was assessed. First, in order to investigate the allometric 

relationships between the lengths and widths of each premolar, RMA regressions were carried 

out (Table 6.8 and Figure 6.31). All regressions are significant at 95 %. The confidence intervals 

for the slopes of P3 length against width, and p2 length against width both span one. By contrast, 

the confidence intervals of the slopes for P2 length against width, p3 length again width, and p4 

length against width are all greater than one. 

 

 

Table 6.8: Results of reduced major axis regressions, with base-10 logarithmically transformed 

C. crocuta premolar measurements. For each pair of measurements, the first named is on the x-

axis and the second named is on the y-axis. Statistics include the Pearson’s r correlation and 

associated p-value. Also shown are the regression slope values with associated 95 % 

bootstrapped confidence intervals of the slope. 

Statistic 
P2 length 

& 
P2 width 

P3 length 
& 

P3 width 

p2 length 
& p2 
width 

p3 length 
& p3 
width 

p4 length 
& p4 
width 

n 139 204 238 323 374 

Pearson’s r 0.745 0.601 0.675 0.491 0.452 

p-value <0.05 <0.05 <0.05 <0.05 <0.05 

Slope 1.242 1.077 1.06 1.127 1.254 

Min. CI 1.053 0.943 0.945 1.009 1.137 

Max. CI 1.397 1.198 1.158 1.229 1.369 
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Figure 6.31: Reduced major axis regressions of base-10 logarithmically transformed C. crocuta premolar measurements. 
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The next assessment of robustness was to plot the length against width of each premolar from 

British sites (Figure 6.32). The data were split in to palaeoclimatic stages (correlated with Marine 

Oxygen Isotope Stages), with the addition of the early Middle Pleistocene. There is considerable 

overlap in teeth from MIS 5e, 5c and 3. This is particularly the case for the P3. Values from MIS 

3 span much of the range of values. Within this range, those from MIS 5e tend to be greater in 

length and width than those from MIS 5c, although there is much overlap. 

For the P2, p3 and p4, the MIS 5e and 5c values cluster towards the bottom left of the graphs, 

i.e. teeth are smaller in both length and width. For the p4, this is particularly the case for the 

width. This opposite trend is shown for the p2. Additionally, the p2s from MIS 5e tend to be 

longer relative to their widths than teeth from MIS 3.  

There are few data points from MIS 7 and the early Middle Pleistocene. The values from MIS 7 

are among the greatest in length and width for the P2 and P3. One of the MIS 7 p4 values is 

much greater in width than all but one from MIS 3. By contrast, the other MIS 7 points plot 

within the range of other data, which is also the case for all p2 values. Length and width values 

for the early Middle Pleistocene are only available for the p3 and p4. In both cases, the early 

Middle Pleistocene values plot towards the centre of the ranges of the other data. 
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Figure 6.32: Correlations of C. crocuta premolar length and width measurements from Pleistocene deposits in Britain.     
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Figure 6.32 continued. 

 

 

Measurements of the cranium with few data points are displayed in Table 6.9 and Appendix 

10.8, Table 10.51. For measurements with four or more data points, these are shown in 

individual value plots and boxplots (Figure 6.33, and Appendix 10.8, Figure 10.4). 

The measurements of skull length from Slouper Höhle are greater than those from other sites. 

This pattern breaks down for measurements of the viscerocranium length, facial length and 

snout length, whereby one Slouper Höhle specimen plots among the smallest of the specimens 

from all sites. The specimens from Britain plot variably in these graphs, including some of the 

largest and smallest measurements. 

 

Table 6.9: Cranial measurements of Pleistocene C. crocuta from Europe. Measurements included 

are those with fewer than four data values. 
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Kents Cavern    156.77  

Sandford Hill  75.63 173.66   

Slouper Höhle  307.61  170.1 170.4 169.49 

Slouper Höhle  74.43    

Höhle Výpustek 290.44   160.89 160.41 
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The greatest diameter of the auditory bulla show close similarities in size between three 

specimens between 49.47 and 49.95 mm (from Sandford Hill, Slouper Höhle and Höhle 

Výpustek), yet one specimen from Slouper Höhle measures 5.95 mm larger.  

The greatest height of the orbit is smallest in the Barrington specimen and largest in the Höhle 

Výpustek specimen, with a 12.55 mm difference. 

There is some variation in measurements of the neurocranium breadth, although both Slouper 

Höhle specimens plot towards the centre and larger ranges of measurements, while the 

Barrington and Sandford Hill specimens plot towards the centre and lower ranges of 

measurements. There is also a measurement from Castlepook Cave, which plots in the centre of 

the measurements. 

Overall, many of the measurements indicate that specimens from Slouper Höhle and Höhle 

Výpustek are larger. However, this is not constant for all measurements, and some 

measurements indicate disparity between specimens from the same site. Moreover, only a small 

number of sites are represented in these plots. 
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Figure 6.33: Individual value plots of C. crocuta cranial measurements from Pleistocene deposits 

in Europe. Numbers along the top are Marine Oxygen Isotope Stages. LP = Late Pleistocene. 
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A greater number of sites are represented in the graphs of mandibular measurements, except 

for the height of the vertical ramus, for which there are specimens from only two sites (Figure 

6.34 to Figure 6.43, Appendix 10.8, Table 10.52 and Figure 10.5). 

The measurements of mandibular length (from the condyle, the angular process, or the notch 

between the condyle and angular process) are all consistently large in the specimen from Trou 

Magrite. One specimen from Teufelslucke is also similar in length to this Trou Magrite specimen. 

The smallest lengths are from Castlepook Cave specimens, although not all measurements could 

be recorded from this specimen. The specimen from Barrington is slightly larger than that from 

Castlepook Cave. Kents Cavern, Pin Hole, Slouper Höhle and one Teufelslucke specimen tend to 

plot in an intermediate position between the aforementioned largest and smallest 

measurements. 

More measurements were recorded of tooth row lengths. Again, there is much overlap in the 

range of measurements from each site. The Slouper Höhle mandibles are among the largest in 

the distances of c – m1, although this is less clear for the distance from and p2 – p4. Some 

specimens from Kents Cavern are among the largest for c – m1 and p2 – p4, yet the spread of 

data also includes some of the smaller specimens. Other large specimens are the upper ranges 

of Pin Hole and Sandford Hill measurements. The c – m1 length is also larger in the Trou Magrite 

specimens, but these specimens are not notably larger for p2 – p4 length. Of note are the 

Oreston specimens, which are particularly large across all tooth row measurements.  

For c – m1 length, the smallest measurements are from Church Hole, the lower range of 

Sandford Hill, Uphill Caves (all MIS 3 deposits from Britain), and San Teodoro (MIS 3 in Italy). For 

p2 – p4 length, the smallest specimens are the lower ranges of measurements from British 

MIS 3-aged assemblages (Coygan Cave, Pin Hole, Sandford Hill and Uphill Caves). 

The specimens from deposits dated to MIS 5e and 5c generally plot within the centre of the 

graphs for tooth row length measurements. 

The p2-p4 length is the only mandibular measurement to allow tests for statistical significance. 

ANOVA with post-hoc Tukey Pairwise Comparisons test revealed no significant difference 

between the measurements from Kents Cavern, Pin Hole, Sandford Hill and Teufelslucke at 95 % 

confidence (Table 6.11). 
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Figure 6.34: Individual value plots and boxplots of C. crocuta Pleistocene mandible lengths. Top 

numbers are Marine Oxygen Isotope Stages. LP = Late Pleistocene. Sample sizes in Table 6.10..   
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Table 6.10: Sample sizes of each site included in the boxplots in Figure 6.34. 

Site 

c 
al

ve
o

lu
s 

to
 m

1
 le

n
gt

h
 

Le
n

gt
h

 o
f 

p
re

m
o

la
r 

ro
w

 (
p

2
-p

4
) 

Oreston 1 2 

Hoe Grange 1 1 

Barrington 2 5 

Burtle Beds 1 1 

Joint Mitnor Cave  2 

Kirkdale Cave 2 2 

Tornewton. LHS 4 6 

Tornewton. UHS 1 1 

Boughton Mount 1 2 

Caerwent Quarry  1 

Caswell Bay  1 

Church Hole 1 7 

Coygan Cave 4 11 

Kents Cavern 12 27 

Picken’s Hole. Layer 3 1 1 

Pin Hole 4 11 

Sandford Hill 7 17 

Uphill Caves 7 or 8 1 3 

Castlepook Cave 3 1 

Trou Magrite 1 1 

Caverne Marie-Jeanne. 4eme Niveau 7 11 

Goyet. 3eme Caverne, 4eme Niveau 
Ossifère, Galleries Voisines de l’Entrée 

 2 

Slouper Höhle 4 8 

Höhle Výpustek  1 

Teufelslucke 4 18 

San Teodoro 1 6 

Cova del Toll  1 
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Table 6.11: ANOVA with post-hoc Tukey Pairwise Comparisons on base-10 logarithmically 

transformed measurements of the length of the premolar row (p2-p4). p-value = 0.102. 

Site Mean (Log10) Category 

Kents Cavern 1.76 A 

Pin Hole 1.744 A 

Sandford Hill 1.752 A 

Teufelslucke 1.752 A 

 

 

 

 

 

    
 

    
Figure 6.35: Boxplots of C. crocuta Pleistocene mandibular width measurements. Numbers along 

the top of the graphs indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. See Table 

6.12 for sample sizes of the boxplots. 
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Table 6.12: Sample sizes of each site included in the boxplots in Figure 6.35. 

Site 

M
an

d
ib

u
la

r 
w

id
th

 a
t 

p
2

/p
3

 

M
an

d
ib

u
la

r 
w

id
th

 a
t 

p
3

/p
4

 

M
an

d
ib

u
la

r 
w

id
th

 a
t 

p
4

/m
1

 

M
an

d
ib

u
la

r 
w

id
th

 a
t 

p
o

st
-m

1
 

Barrington 1 1 1 1 

Burtle Beds 1 1 1 1 

Kents Cavern 1 1 1 1 

Pin Hole 1 1 1 1 

Castlepook Cave 1 1 1 1 

Trou Magrite 1 1 1 1 

Slouper Höhle 4 4 3 3 

Höhle Výpustek 1 1   

Teufelslucke 15 12 9 4 

San Teodoro 7 6 6 2 

 

 

 

For the mandibular width measurements (Figure 6.35), the specimens from Teufelslucke have 

the greatest range, spanning the largest and smallest measurements, except for the post-m1 

position. Again, except for the post-m1 position, the San Teodoro specimens plot towards the 

lower range of the graphs. The single specimens from British localities and Trou Magrite plot 

within the range of measurements from Slouper Höhle, Teufelslucke and San Teodoro. This is 

except for the post−m1 position where specimens from Barrington, Burtle Beds and Kents 

Cavern are smaller. 

The mandibular depth measurements (Figure 6.36) were split into individual tooth wear stages, 

in light of the evidence from Section 5.2 that these measurements increase in size through life. 

For the depth at p2/p3, there are three specimens from San Teodoro. Despite being from older 

individuals (wear stages VI, VIII and IX), they are consistently small. Other notably small 

specimens include a number of MIS 3-age from Britain, in addition to some from Castlepook 

Cave, Slouper Höhle and Teufelslucke, all of which are from younger individuals (wear stage IV). 

From older individuals, only a specimen from Tornewton Lower Hyaena Stratum (wear stage 

VIII) is notably small, while the two other specimens of the same age category (from Kents 
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Cavern and Pin Hole) are among the largest of all specimens. The only specimen from MIS 7 is 

from Oreston, which plots among the smallest of the specimens from the same age category 

(wear stage V). 

There are fewer specimens from which depths at p3/p4 and p4/1 were recorded. Those from 

San Teodoro again plot consistently small. Those from Teufelslucke plot are mostly among the 

largest. 

The smallest depths at the post-m1 position are mostly of the younger specimens (wear stage 

IV) along with one from Kents Cavern (wear stage V) and one from Burtle Beds (VII). This 

specimen from Burtle Beds is smaller than specimens from younger wear stages, including some 

from MIS 5e-aged Barrington. 
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Figure 6.36: Individual value plots of C. crocuta Pleistocene mandibular depth measurements. Numbers along the top of the graphs indicate Marine Oxygen Isotope 

Stages. LP = Late Pleistocene. Dashed lines group sites of the same age. Solid black lines group sites from the same country. Solid red lines group data from with the 

same P3/p3 wear stage (IV, V, etc.).  
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Figure 6.36 continued. 
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Figure 6.36 continued. 

 

 

 

The bending strength profiles were again split into wear stage categories in light of the evidence 

from Section 5.2. For the zx/L indices (measuring resistance to dorsoventral bending), all values 

increase with more posterior positions along the mandible (Figure 6.37). At wear stage IV, the 

four mandibles show similar indices at the p4/m1 and post-m1 positions. However, there are 

differences anteriorly, with that from Slouper Höhle exhibiting greater indices, and the smallest 

indices from Castlepook Cave. There are greater differences in the profiles of wear stage V 

individuals. The specimen from Kents Cavern has lower values at each point along the mandible. 

The specimen from Trou Magrite has the greatest value at p2/3. At the p4/m1 and post-m1 

positions, the greatest values are from Slouper Höhle and Teufelslucke. The profile from 

Barrington (wear stage VI) is similar to those from the younger wear stages. However, the indices 

are lower than most specimens of younger age categories from other sites, particularly at the 

post-m1 position. The specimen from the Burtle Beds (wear stage VII) shows a different profile; 

the increase in zx/L value is not as pronounced from the p4/m1 to post-m1 positions. In light of 

this, the indices at the post-m1 position are lower in the Burtle Beds specimen than seen in all 

specimens of younger age categories, except for the Kents Cavern specimen.   
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Figure 6.37: Mandibular profiles of zx/L values of C. crocuta from Pleistocene deposits in Europe.    
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Figure 6.38: Mandibular profiles of zy/L values of C. crocuta from Pleistocene deposits in Europe.    
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Figure 6.39: Mandibular profiles of zx/zy values of C. crocuta from Pleistocene deposits in Europe.  
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Figure 6.39 continued. 

 

The zy/L indices (measuring resistance to labiolingual bending) show different patterns (Figure 

6.38) to the zx/L indices. Some specimens show a decrease in indices along the mandible, such 

as Slouper Höhle at p4/m1, and Kents Cavern and Burtle Beds at post-m1. 

At wear stage IV, the greatest bending strength at p2/p3 and p3/p4 is the Slouper Höhle 

specimen, whereas at p4/m1 and post-m1 the Pin Hole and Castlepook Cave specimens have 

greater indices.  

At wear stage V, the Kents Cavern specimen has consistently lower values, while the Trou 

Magrite specimen has the greatest zy/L value at p2/p3 and the Slouper Höhle specimen has the 

greatest values at p4/m1 and post-m1.  

Compared to the other specimens, the profile of the Barrington individual (wear stage VI) shows 

relatively little change in zy/L values along the mandible. It has the lowest zy/L values at the 

post-m1 position except for specimens from Burtle Beds and Kents Cavern.  
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The specimen from Burtle Beds (wear stage VII) has one of the greatest zy/L values at p4/m1, 

with only slightly higher values from Castlepook Cave (wear stage IV) and Slouper Höhle (wear 

stage V) specimens. By contrast, at the post-m1 position, its zy/L value is only larger than that 

from Kents Cavern. Its zy/L value at p2/p3 is similar to the Barrington specimen. 

The zx/zy values (showing mandibular cross-sectional shape) are greater than one for all 

positions along all mandibles (Figure 6.39). The profiles for all specimens show an increase in 

zx/zy values posteriorly along the mandible.  

Of the younger specimens (wear stage IV), the individual from Castlepook Cave has the lowest 

values. One specimen from Teufelslucke has the large values at each position along the 

mandible, and the Slouper Höhle specimen has similarly large values at the p4/m1 and post-m1 

positions.  

At wear stage V, the specimens from Kents Cavern, Trou Magrite and Slouper Höhle have similar 

values, whereas those from Teufelslucke are larger. At wear stage VI, the values for Barrington 

and Teufelslucke are similar, whereas the specimen from San Teodoro has smaller values. This 

specimen has smaller zx/zy values than all other specimens at the p2/p3, p3/p4 and p4/m1 

positions.  

The Burtle Beds specimen is the only example at wear stage VII. Its zx/zy values are not notably 

larger or smaller than the other mandibles. At wear stage VIII, there is a single zx/zy 

measurement at the p3/p4 position from Teufelslucke, which is larger than the one from San 

Teodoro. Except for the wear stage VI San Teodoro specimen, the San Teodoro mandibles at 

stage VIII and IX have the lowest zx/zy values at p4/m1 of all mandibles. The wear stage VIII San 

Teodoro specimen also has the lowest zx/zy value at the post-m1 position. 
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Figure 6.40: Individual value plots of C. crocuta Pleistocene muscle moment arms. Numbers 

along the top of the graphs indicate Marine Oxygen Isotope Stages. LP = Late Pleistocene. 

 

The moment arm of the temporalis (Figure 6.40) is greatest in the Burtle Beds specimen. The 

moment arm of the superficial masseter is greatest from Teufelslucke, and smallest in two of 

the three Slouper Höhle specimens. There is a clear divide between the specimens with the 

largest and smallest moment arm of the deep masseter. The smallest are from Barrington, Burtle 

Beds, Joint Mitnor Cave, Kents Cavern, and one specimen from Castlepook Cave. The largest are 

the other specimen from Castlepook Cave, and specimens from Pin Hole, Trou Magrite, Slouper 

Höhle and Teufelslucke. 

The mechanical advantage of the superficial masseter shows an increase in values posteriorly 

along the mandible for all specimens (Figure 6.41). The specimen from Teufelslucke has the 

greatest values at each position along the mandible. 

In light of the results from Section 5.2, the mechanical advantage of the deep masseter and the 

temporalis were split into individual wear stage classes (Figure 6.42). At wear stage IV, the 

mechanical advantage of the deep masseter is greater in mandibles from Slouper Höhle and Pin 
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Hole, and lower in specimens from Castlepook Cave and Teufelslucke, with the difference 

becoming more pronounced posteriorly along the mandible. At wear stage V, mandibles from 

Kents Cavern and Teufelslucke have lower values, with mandibles from Trou Magrite and 

Slouper Höhle exhibiting greater values. Again, the difference between the Slouper Höhle and 

the other specimens is more pronounced posteriorly. There is only one specimen at wear stage 

VI (from Barrington) and at stage VII (from Burtle Beds). At the p3/p4, p4/m1 and m1 position, 

the specimen from Barrington has the lowest mechanical advantage of the deep masseter value 

of all mandibles. The values of the Burtle Beds specimen are not notably larger or smaller than 

those of other mandibles. 

Mechanical advantage of the temporalis data are only available for four mandibles (Figure 6.43). 

At wear stage V, the mandible from Trou Magrite has consistently lower values for positions at 

c, p2/p3, p3/p4 and p4/m1 (there are no data at the m1 position). The largest values are from 

the Burtle Beds specimen (wear stage VII) at p2/p3, p3/p4, p4/m1 and m1 positions (there are 

no data from the c position). Both specimens from Slouper Höhle (wear stages IV and V) have 

values that are intermediate between the Trou Magrite and Burtle Beds specimens. 

 

 

 

 

Figure 6.41: Mandibular profiles of the mechanical advantage of the superficial masseter of 

C. crocuta from Pleistocene deposits in Europe. 
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Figure 6.42: Mandibular profiles of the mechanical advantage of the deep masseter of C. crocuta from Pleistocene deposits in Europe.   
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Figure 6.43: Mandibular profiles of the mechanical advantage of the temporalis of C. crocuta from Pleistocene deposits in Europe. 
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6.2.2.2 Post-crania 

The post-cranial measurements are presented in Figure 6.44 and Appendix 10.8, Table 10.50 

and Figure 10.6.  

There is much overlap in the measurements from C. crocuta representing different time periods 

and from different countries. There is clear differentiation between specimens of different ages 

in a small number of measurements of the humerus and femur. The two greatest length 

measurements of the humerus from MIS 5e (Barrington) are smaller than those from MIS 3 in 

Britain and Czech Republic, and Late Pleistocene Slouper Höhle. By contrast, the smallest 

breadth of the humerus diaphysis is largest in specimens from MIS 7 and MIS 5e, and smallest 

in MIS 3 specimens from Britain, Ireland and the Czech Republic, in addition to Slouper Höhle. 

The femur from MIS 5c Tornewton Lower Hyaena Stratum is shortest, whereas those from MIS 

3 in Britain (Caerwent Quarry) and Austria (Höhle Výpustek) are longer, in addition to Late 

Pleistocene Slouper Höhle. Similarly, the proximal end of the femur is broader from Caerwent 

Quarry, Höhle Výpustek and Slouper Höhle, and narrowest in all four femora from MIS 5-aged 

Hoe Grange. The two femora from MIS 9 and MIS 7 have smallest breadths of the diaphysis, 

whereas the largest are from MIS 3 in (Caerwent Quarry, Höhle Výpustek and San Teodoro), and 

the Late Pleistocene (Slouper Höhle). The greatest breadth of the distal end of the femur is 

smallest in specimens from MIS 7, 5 and 5e, whereas the larger specimens are from MIS 3 in 

Britain and the Czech Republic, in addition to Late Pleistocene Slouper Höhle in the Czech 

Republic.  
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Figure 6.44: Individual value plots and boxplots of Pleistocene C. crocuta post-crania measurements from Europe. Numbers on top of the graphs indicate Marine 

Oxygen Isotope Stages. LP = Late Pleistocene. See Table 6.13 for sample sizes of the boxplots.  
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Table 6.13: Sample sizes of sites included in the boxplots in Figure 6.44. 
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Hutton Cavern 1 1 3 

Lawford 1   

Hoe Grange 5 1 4 

Barrington 2 1 1 

Joint Mitnor Cave 4 5 8 

Kirkdale Cave 4 2 5 

Victoria Cave   3 

Tornewton. LHS 4  1 

Tornewton. UHS 2 3 4 

Bench Cavern 1   

Coygan Cave 7 4 2 

Kents Cavern 1 1  

Pin Hole 1 4 5 

Sandford Hill 5 8 1 

Tornewton. Elk Stratum 1   

Uphill Caves 7 or 8 11 12 13 

Castlepook Cave 4 5 2 

Trou Magrite 1   

Goyet. 3eme Caverne, 4eme Niveau 
Ossifère, Galleries Voisines de l’Entrée 

  1 

Goyet. 3eme Caverne, 3eme Niveau 3  1 

Höhle Výpustek  1 1 

Teufelslucke 8 7 9 
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Indices and total limb lengths were calculated from combined averages for each chronological 

‘bin’ in each country. Only Britain (MIS 5e, 5c and 3) and the Czech Republic (MIS 3) had sufficient 

data to calculate the indices and limb lengths. These are compared in Table 6.14. 

Czech Republic specimens have the greatest crural index and the forelimb length. Specimens 

from MIS 3 Britain are also greater than those from MIS 5e in the brachial index, 

humerus/metacarpal III lengths, and forelimb length. In addition, the femur/metatarsal IV 

length is greater in the specimens from MIS 3 Britain than MIS 5c. The specimens from MIS 5e 

Britain have a humerus/metacarpal III index that is between that of MIS 3 in Britain and MIS 3 

in the Czech Republic.  

 

 

 

Table 6.14: Pleistocene C. crocuta post-cranial indices. 
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Britain 
MIS 5e 

1.022  2.435  535.239  

Britain 
MIS 5c 

   3.171   

Britain 
MIS 3 

0.898 0.698 2.66 3.393 545.314 547.816 

Czech Republic 
MIS 3 

0.93 0.756 2.413  560.493  
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6.2.3 Discussion 

6.2.3.1 Crania and dentition 

As with the C. crocuta body mass reconstructions, there is considerable overlap in the 

craniodental morphometrics between assemblages of different Marine Oxygen Isotope Stages 

through the Pleistocene, and from different locations across Europe. Differences are clearer in 

some of the cranial measurements than the dental measurements, although some of these may 

be a product of small sample size. 

In modern C. crocuta, the two measurements that exhibited the strongest relationship to 

environmental conditions are condylobasal length and the length between the c to the m1 

alveoli (Section 5.4.2.2). Both measurements have positive relationships with temperature of 

the warmest month, closed vegetation cover, and semi-open vegetation cover. They both have 

negative relationships with open vegetation cover, and weaker relationships with precipitation 

of the driest month and precipitation of the coolest month. Both measurements are also thought 

to reflect overall body size (Section 5.4.2.2; Van Valkenburgh, 1990). 

There are only five measurements of Pleistocene condylobasal length. The two largest, from 

Slouper Höhle, unfortunately lack more precise age attribution than ‘Late Pleistocene’. 

Unfortunately, there are no available palaeotemperatures or vegetation information that might 

allow testing of whether higher summer temperatures at Slouper Höhle and closed or semi-open 

vegetation had led to expanded condylobasal length. This would be expected if the Pleistocene 

C. crocuta followed the pattern of the modern C. crocuta, although the presence of C. 

antiquitatis and M. primigenius (Diedrich, 2012a) at the site would suggest otherwise, since 

these taxa are generally indicative of cold and open conditions (Kahlke and Lacombat, 2008; 

Boeskorov et al., 2011; Markova et al., 2013).  

It was suggested in Section 5.4 that the distance between the c and m1 alveoli is isometrically 

related to overall body mass. Again, there is much overlap in values between Pleistocene c-m1 

length from the different sites, although the largest values generally derive from MIS 3-aged 

specimens. Furthermore, the Oreston Cave specimen (MIS 7) is large both in c-m1 length and 

body mass, while the opposite is true of San Teodoro (MIS 3). There are some differences with 

the body mass reconstruction, in that Castlepook Cave and Teufelslucke specimens are not 

consistently among the smallest and largest measurements, respectively, possibly a function of 

the overall smaller sample size of the c-m1 length data. Additionally, when assessing the 

Castlepook Cave data, the specimens with m1 length and c-m1 alveoli length data exhibit small 

values for both, whereas those with only c-m1 data have larger values (see Spreadsheet 7). This 
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indicates that the C. crocuta from Castlepook Cave were not consistently small, as suggested in 

Section 6.1. 

A number of the measurements can be assessed in light of functional significance and aid 

reconstruction of palaeodiet. First, like many of the other morphometric results, there are no 

clear distinctions in the canine measurements between deposits of different ages. However, the 

significant difference tests indicate that the lower canines and the anteroposterior diameter of 

the upper canines from some MIS 3-aged deposits are significantly larger than those from MIS 5e 

and 5c. The larger canines are notably from Teufelslucke, Kents Cavern and Coygan Cave. This 

relationship does not hold for the mediolateral diameter of the upper canine with some 

deposits, such as Pin Hole, significantly smaller than others from MIS 3 and from MIS 5e and 5c.  

Although sample sizes were too small to run statistical tests, the canines were also notably large 

from MIS 7, in particular in the anteroposterior diameter of the upper canine, and both 

measurements of the lower canine. The mediolateral diameter of the upper canine, and both 

measurements of the lower canine are notably small from San Teodoro. 

Canines are used when killing prey, breaking bone (Van Valkenburgh and Ruff, 1987) and the 

consumption of muscle with attached bone (Van Valkenburgh, 1996). More robust canines are 

more able to resist bending stresses incurred when biting and ripping flesh, and upon accidental 

contact with bone (Van Valkenburgh and Ruff, 1987). 

As dental morphology is less influenced than bones by phenotypic plasticity (Caumul and Polly, 

2005), it is difficult to assess whether these changes in canine size were a result of the 

environmental conditions at the time, or a reflection of the overall size of the C. crocuta. 

Nevertheless, the results allow some inference of the capabilities of the species.  

The generally larger canines from some MIS 3-aged deposits from Britain and Austria may have 

been consistent with C. crocuta targeting larger prey, for example C. antiquitatis (Section 6.1), 

which would have caused greater bending stresses on the canines. Similarly, the smaller canines 

from San Teodoro may reflect the reduced size of many of their prey species (Mangano, 2011). 

Rapid feeding of carcasses, such as occurs during periods of lower food availability or elevated 

competition, may increase accidental contact between canines and bone, potentially leading to  

canine breakage (Van Valkenburgh, 1996). If these conditions occurred during MIS 7 or MIS 3, 

the larger canines from some deposits may have reduced the likelihood of accidental breakage 

and associated loss of function of the canine teeth. A notable exception is the small size of the 

canines from MIS-3 aged deposits of Pin Hole. 



6. Pleistocene Crocuta crocuta 
 

- 371 - 
 

The morphology of the mandible, particularly its bending strength, is also important in 

facilitating predation. Mandibles that are wider and shorter are better able to resist labiolingual 

loads (Hildebrand, 1974). This is particularly important anteriorly along the mandible as torsion 

occurs from struggling prey (Biknevicius and Ruff, 1992; Therrien, 2005). Most specimens from 

San Teodoro exhibited among the narrowest mandibular corpuses at the p2/p3 position, 

suggesting that these specimens have the weakest labiolingual bending strengths and again 

highlighting their relatively modest strength requirement in the face of prey of reduced size. 

Mandibles that are wider at p2/p3 derive from many sites, with no pattern associated with age 

or geographical location. However, bending strength is best determined through modelling the 

mandible as a beam, with the zy/L values indicating labiolingual bending strengths. 

The zy/L values increase in size with age (Section 5.2). It would therefore be hypothesised that 

the oldest individuals would have the greatest labiolingual bending strengths. This is not the 

case for the specimens from the Last Interglacial sites of Barrington (wear stage VI) and Burtle 

Beds (wear stage VII) at anterior points along the mandible. These zy/L values are lower than 

some mandibles of younger individuals from Trou Magrite, Pin Hole and Slouper Höhle, although 

the other Slouper Höhle specimen does not have notably high values. 

As labiolingual bending strength is important in resisting torsion when biting struggling prey 

(Biknevicius and Ruff, 1992; Therrien, 2005), the narrow mandibles from San Teodoro and the 

low zy/L values from Barrington and Burtle Beds suggest that individuals from these sites were 

consuming either smaller or less vigorous prey. At San Teodoro, the presence of dwarf prey 

species (Mangano, 2011), supports the former explanation. The Burtle Beds and Barrington 

contain a wide range of potential prey species, including megaherbivores such a straight-tusked 

elephant (Palaeoloxodon antiquus) and hippopotamus (Hippopotamus amphibius), large bovids 

and smaller cervids, notably fallow deer (Dama dama) (Bulleid and Jackson, 1938; Gibbard and 

Stuart, 1975). Although Gibbard and Stuart (1975) stated that some bones discovered in the 

deposits at Barrington had likely been gnawed by C. crocuta, the authors did not specify the 

species. It is therefore difficult at present to assess whether the C. crocuta from these sites were 

consuming smaller prey than those requiring greater mandibular labiolingual bending strengths. 

The Burtle Beds assemblage contains no specimens with obvious hyaena gnawing (D. Schreve 

pers. comm.). 

The Burtle Beds and Barrington are the only MIS 5e assemblages from which bending strengths 

were calculated. As mentioned, many MIS 5e-aged C. crocuta had smaller canines than those 

from MIS 3. No canines were available from the Burtle Beds, and there were insufficient data to 

perform significant difference tests on the Barrington canines, although these represented some 

of the smallest across all sites, particularly in the anteroposterior diameter of the upper canine. 
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Therefore, the conclusions from the low labiolingual bending strengths and the small canines 

are also in support of one another. Although there were insufficient canine data from Slouper 

Höhle and Trou Magrite to allow tests for significant differences, the anteroposterior diameter 

of the upper canine and the mediolateral diameter of the lower canines from Slouper Höhle are 

among the largest, again supporting the greater labiolingual bending strength of the mandible. 

However, large canines are not a uniform feature of last cold stage C. crocuta. Only data of the 

mediolateral diameter of the upper canine is available from Trou Magrite but this canine is 

among the smallest across all sites. Additionally, the mediolateral diameters of the Pin Hole 

upper canines are significantly smaller than those from some MIS 5e and 5c-aged sites. This 

disparity between the canines and zy/L values from Trou Magrite and Pin Hole may reflect the 

ability of the mandible to respond to conditions during life via phenotypic plasticity, which is not 

the case for teeth (Caumul and Polly, 2005).  

Given that C. crocuta from Trou Magrite and Pin Hole had small canines but were apparently 

targeting larger prey or were engaged in more frequent predation, it may be hypothesised that 

these canines were at greater risk of breakage. This will be explored in Section 6.4. Indeed, prey 

consumption at Pin Hole is evidenced by gnaw marks on most bones, including C. antiquitatis, 

potentially requiring elevated levels of labiolingual bending strength of the mandible, with 

stresses also applied to the canines. However, it must be noted that these bones may equally 

have been scavenged rather than hunted. 

At present the evidence is insufficient to conclude whether the reason for the larger canines and 

elevated mandibular labiolingual bending strength from some deposits was due to predation on 

larger or more vigorous species, or more frequent predation (relative to frequency of 

scavenging). 

 

The results of m1 length are very similar to those of the body mass reconstructions, which they 

were used to calculate, and so will not be discussed here. In contrast to the length of the m1, 

there are no significant differences in P4 lengths between any deposits. Where there are 

significant differences in the width of the P4 blade, the specimens from MIS 3-aged deposits in 

Britain and Austria are larger than some from MIS 5e and 5c. Similarly, the width of the m1s 

from many MIS 3-aged deposits from Britain, Austria, Belgium and Serbia were larger than those 

from MIS 5e and 5c, suggesting they were more robust. Carnassials are used for removing skin 

and thus facilitating rapid consumption of a carcass, particularly in times of elevated competition 

(Van Valkenburgh, 1996, 2007). Similar to the canines, these more robust carnassials may have 

prevented accidental breakage during rapid carcass consumption during MIS 3. 
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The P4s, in particular the cusps, may be used for cracking bone (Kurtén and Werdelin, 1988; Van 

Valkenburgh, 1996). The greatest width of the P4 across the cusps was larger in MIS 3 in Britain, 

Austria and Belgium, suggesting that the C. crocuta from MIS 3 were more capable of consuming 

bone than those from MIS 5e and 5c. This is further investigated through analysis of the other 

premolars. 

In light of the size differences seen in the lower premolars in different climatic periods (the p3 

and p4 were generally larger in MIS 3 while the p2 were larger during MIS 5e), allometric 

relationships were assessed. The lengths of the p3 and p4 have a likely isometric relationship. 

The lengths of the p2 and p4 have a hypoallometric relationship, so that as the p4 becomes 

longer, the p2 increases at a greater rate. The widths of the p2 and p4, and the p3 and p4 have 

isometric relationships. The widths of the p2 and p3 have a hyperallometric relationship, again 

meaning that the p2 becomes wider at a greater rate than the p3. By contrast, the lengths of 

the p2 and p3 have a very weak and insignificant positive relationship with little indication of an 

allometric relationship, meaning that when the p3 increases in length, the p2 does not 

necessarily lengthen. This suggests that there are different influences upon the p2 and p3, 

although it is unclear whether there is a functional reason for this. Nevertheless, this result 

reflects the difference seen in the sizes of p2 and p3 between C. crocuta from MIS 5e and 3. 

Premolar robustness was assessed as these teeth are used when consuming bone (Van 

Valkenburgh, 1996). Increasingly wide premolars are associated with bone-cracking (Van 

Valkenburgh, 1989; Werdelin and Solounias, 1991). Although the premolars are always longer 

than wider, a relative increase in width should lead to a more robust tooth shape. 

First, the allometric relationships between the lengths and widths of each premolar were 

assessed to determine whether robustness increased or decreased with length. The lengths and 

widths of each premolar are positively correlated. There are isometric relationships between 

the lengths and widths of the P3 and p2, indicating that these teeth become neither more nor 

less robust with increasingly size. By contrast, there is a hyperallometric relationship between 

the widths and lengths of the P2, p3 and p4, indicating that when these teeth become longer, 

the widths increase at a greater rate. These teeth therefore become more robust with increasing 

size. This results in less slender teeth therefore making them less prone to breakage when 

consuming bone or other hard materials. In no cases did premolars become less robust with 

increasing size. The individuals with larger premolars should therefore have a greater capacity 

for bone consumption without risk of tooth breakage and therefore loss of tooth function. 
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The next step was to plot the lengths against widths of premolars of different ages in Britain. 

This was to assess whether there was any pattern in premolar robustness over time. For all 

premolars, the length/width relationship does not exhibit a clear separation of C. crocuta from 

different periods in Britain, especially in the P3. However, the general pattern is that most of the 

largest P2, p3 and p4 are from MIS 3-aged individuals, while the smallest P2, p3 and p4 are from 

MIS 5e and 5c. This is particularly clear for the width of the p4, with the widest teeth being of 

MIS 3 age. Interestingly, these are the teeth that exhibit increased robustness with size. This 

therefore suggests that the individuals from MIS 3 were more capable than those of MIS 5 of 

consuming hard foods such as bone.  

Additional indications of bone consumption come in the form of mandibular dorsoventral 

bending strength. Increased depth of the mandibular corpus is associated with greater 

dorsoventral bending strength (Hildebrand, 1974). Specimens with notably small depths of the 

mandible include those from San Teodoro and the Burtle Beds, while notably deep mandibles 

are from Teufelslucke. Again, modelling the mandible as a beam is a more suitable method of 

assessing bending strength. 

The mandibles exhibit increasing resistance to dorsoventral bending at posterior positions, as 

also observed by Therrien (2005) and Palmqvist et al. (2011). This is because bending stress 

exerted by bone cracking is greatest posterior to the premolars, which are the bone-cracking 

teeth (Biknevicius and Ruff, 1992; Therrien, 2005). 

The mandible from the Last Interglacial (MIS 5e) Burtle Beds has the shallowest zx/L bending 

strength profile, and thus the shallowest increase in resistance to dorsoventral bending strength 

along the mandible. Overall, this specimen also exhibits the lowest resistance to dorsoventral 

bending, despite it being the oldest individual at wear stage VII. The Last Interglacial specimen 

from Barrington (wear stage VI) also exhibits relatively low bending strength variables. Younger 

individuals (wear stage IV) that exhibit particularly great resistance to dorsoventral bending 

include those from Trou Magrite, Slouper Höhle and Teufelslucke. This is perhaps unexpected 

as zx/L values have been shown to increase through the life of C. crocuta (Section 5.2). 

The low zx/L values of the older specimens from the Burtle Beds and Barrington suggest that 

these individuals may have undergone less dorsoventral bending stress than the younger 

individuals. If phenotypic plasticity is the cause of these lower values, this may indicate that C. 

crocuta from the Burtle Beds and Barrington consumed less hard food such as bone, or at least 

were less able to do so. The lower dorsoventral bending strength pairs with the findings of 

premolar robustness, in that the MIS 5e premolars from Britain have some of the least robust 



6. Pleistocene Crocuta crocuta 
 

- 375 - 
 

premolars, and are therefore less suitable for consuming bone. Potential reasons for this are 

discussed below. 

The younger individuals with similar or greater zx/L values than the older individuals are from 

the last cold stage, including Slouper Höhle, Pin Hole, Teufelslucke and Trou Magrite. The 

difference between these specimens and those from MIS 5e is particularly striking for the 

posterior of the mandible, which is the area that undergoes most bending stress when 

consuming bone (Biknevicius and Ruff, 1992; Therrien, 2005). The results suggest that these 

individuals were undergoing greater dorsoventral bending stresses than those from temperate 

MIS 5e, indicating greater hard food consumption. 

The zx/zy indices reflect the cross-section of the mandible (Therrien, 2005; Palmqvist et al., 

2011). All values for all interdental gaps along all mandibles are greater than one, indicating a 

deeper than wide mandibular corpus. This indicates a greater resistance to dorsoventral stresses 

than to labiolingual stresses (Therrien, 2005; Palmqvist et al., 2011). The three mandibles from 

San Teodoro have notably lower zx/zy values than other specimens, even in the older individuals 

(wear stages VIII and IX). The results indicate that the San Teodoro individuals had mandibles 

less suited to resistance of dorsoventral bending stresses, and thus bone consumption.  

Bone consumption is increased with low food availability (Kruuk, 1972; Egeland et al., 2008). The 

results from San Teodoro, the Burtle Beds and Barrington may imply that there was sufficient 

food to sustain the populations, so the carcasses were not completely consumed. This may have 

occurred due to high prey abundance during the interglacial, or lower competition, as elevated 

levels of interspecific competition may increase bone consumption (Egeland et al., 2008). An 

alternative explanation for the C. crocuta from San Teodoro is that the mandibles may have 

incurred low dorsoventral bending stress due to the smaller size of the dwarfed bones of their 

prey relative to the mainland prey species. 

The increased ability to consume bone may have been useful if there were periods of food 

scarcity during MIS 3, as C. crocuta may have been able to survive by utilising more of a carcass, 

including the bones. Alternatively, the colder stadial conditions during MIS 3 may have resulted 

in frozen carcasses, the consumption of which may have placed stress upon teeth in a similar 

fashion to bone.  

 

Some measurements of the cranium are indicative of muscle size and bite force. For example, 

the temporal fossa length is an indication of the size of the temporalis muscle (Emerson and 

Radinsky, 1980). This measurement was only available for two specimens, and was greatest in a 
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specimen from Slouper Höhle than one from Höhle Výpustek, indicating that the former had a 

larger temporalis muscle.  

A better indication of bite force is to model the mandible as a lever. The relationship between 

the in-levers, and the out-levers was calculated, providing information about the mechanical 

advantage of the adductor muscles at each bite point, which is indicative of bite force (Emerson 

and Radinsky, 1980; Kiltie, 1982; Alexander, 1983; Van Valkenburgh and Ruff, 1987)  

Mechanical advantage of the temporalis, deep masseter and superficial masseter were 

calculated. The greatest mechanical advantage of the superficial masseter occurs in the 

mandible from Teufelslucke, suggesting that this individual has greater bite strength. 

The mechanical advantage of the deep masseter may increase with age in males, but decreases 

with age in females (Section 5.2). At wear stage IV, differences are seen at the p4/m1 and post-

m1 positions with the greatest values in mandibles from Pin Hole and Slouper Höhle, and lower 

values from Castlepook Cave and Teufelslucke. This suggests that the Teufelslucke specimen has 

one of the lowest bite forces, in contrast to the results of the superficial masseter. At wear stage 

V, the Slouper Höhle specimen also has greatest mechanical advantage of the deep masseter. It 

is difficult to draw conclusions about the Barrington (wear stage VI) and Burtle Beds (wear stage 

VII) specimens in light of the different ontogenetic changes between males and females, and as 

these are the only specimens from their respective age classes. 

In present-day C. crocuta, the mechanical advantage of the temporalis in males may increase 

with age, yet does not change in females (Section 5.2). The Burtle Beds specimen has the 

greatest bite force, which is difficult to interpret as it may be due its older age (wear stage VII). 

Both Slouper Höhle specimens (wear stages IV and V) have greater mechanical advantages of 

the temporalis muscle than the specimen from Trou Magrite (wear stage V). 

In the Carnivora, the temporalis is larger than the masseter (Turnbull, 1970). As force exerted is 

greater with greater mass (Tseng and Binder, 2010), the temporalis is the dominant jaw closing 

muscle (see Section 3.3.6.1 for more detail). 

In light of the apparent importance of the temporalis muscle, the results of the mechanical 

advantage of this muscle should be most indicative of bite force of C. crocuta. Unfortunately, 

this has the smallest sample size. The only conclusion that can be drawn is that the Slouper 

Höhle specimen has a greater bite force than the Trou Magrite specimen within the same age 

class. 

This difference between the Slouper Höhle and Trou Magrite specimens is greater posteriorly 

along the mandibles. This may be indicative of greater ability to consume hard foods, such as 
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bone in the Slouper Höhle specimen (following Ferretti, 2007). This reflects the greater 

dorsoventral bending strength observed in the Slouper Höhle specimens.  

It must be borne in mind that additional morphological features conducive to bite force and 

resisting bending stresses have not been measured, so changes in the cranium may have 

occurred to facilitate prey capture or hard food consumption that have not been observed. 

These include vaulted forehead and sinus expansion (Werdelin and Solounias, 1991; Joeckel, 

1998), and gape (Binder and Van Valkenburgh, 2000, and see Section 3.3.6). 

 

There are other measurements of the cranium that are functionally important. These include 

measurements of the orbits, which are related to the eyes and thus to vision (Radinsky, 1981a). 

The neurocranium breadth is a measurement of the braincase (Ewer, 1973; Thomason, 1991), 

and the auditory bullae is important for hearing (Hildebrand, 1974). 

Unfortunately, due to poor preservation of many specimens, there are small sample sizes of 

each of the aforementioned features. This makes it difficult to interpret the results with 

confidence, however, the measurements of specimens from different deposits appear to reflect 

the trend seen in condylobasal length, an indication of body size (Van Valkenburgh, 1990), and 

other measurements of skull length. Overall there is little indication that the measurements 

relating to brain size or the senses were larger or smaller than expected given the body size of 

the individuals. 

 

6.2.3.2 Post-crania 

As with the Pleistocene C. crocuta body mass reconstructions (Section 6.1.2.2) and craniodental 

morphometrics (Section 6.2.2.1), the post-crania reveal much overlap in size between deposits 

of different ages and from different geographic areas across Europe. The exceptions to this are 

some measurements of the humerus and femur, both of which may have functional 

implications. 

The humeri are shortest from temperate MIS 5e-aged deposits and longest from MIS 3-aged 

deposits in Britain and the Czech Republic, in addition to Slouper Höhle. The diaphyses of the 

humeri from the interglacial assemblages of MIS 7 and 5e are broadest, and they are narrowest 

from MIS 3 in Britain, Ireland and the Czech Republic, in addition to Slouper Höhle.  

The femora are similarly shortest from MIS 5c, and longest from MIS 3 in Britain and the Czech 

Republic, in addition to Slouper Höhle. However, the femoral diaphyses are narrowest from MIS 
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9 and 7, and are broadest from MIS 3-aged deposits in Britain, Italy and the Czech Republic, in 

addition to Slouper Höhle. 

The length and breadth of limb bones are related to stride length, which increases with greater 

effective limb length. This is brought about by lengthening the metapodials and distal long bones 

(Hildebrand, 1974). Along with shorter and thicker proximal limb bones, this allows for 

endurance of high-speed locomotion (Hildebrand and Hurley, 1985). The shorter yet thicker 

humeri in specimens from periods of temperate conditions in Britain may therefore indicate that 

these C. crocuta were capable of fast pursuits for longer periods of time than C. crocuta from 

MIS 3 in Britain and the Czech Republic. However, while the length of the femur is smallest in 

those from MIS 5c, the diaphyses are also narrowest in temperate MIS 9 and 7, which does not 

follow the pattern of the humerus. Furthermore, the lack of distinction between other limb 

measurements from different climatic periods suggests that there is little actual difference in 

locomotion. In light of this disparity, it is pertinent to assess the post-cranial indices. 

The post-cranial indices were calculated from pooled measurements from different deposits 

dating to MIS 5e, to 5c and to 3 in Britain, and to MIS 3 in the Czech Republic. The lack of post-

cranial material from individual sites necessitated this pooling of data. 

Data were insufficient to calculate total hindlimb length from all but MIS 3 in Britain. Total 

forelimb length was greatest in MIS 3 Czech Republic, followed by MIS 3 in Britain and finally 

shortest in MIS 5e in Britain. This implies that C. crocuta from MIS 5e had the shortest stride 

lengths, and were thus potentially covering shorter distances when hunting. This may, however, 

be related to the overall body size of an individual; Christiansen (2002) found closer relationships 

between speed and total limb length when body mass was taken into account. That C. crocuta 

from MIS 3 were on average, but not consistently, larger than those from MIS 5e may explain 

this result. 

The metatarsal/femur ratio is indicative of speed, with lower values associated with greater 

speed across carnivore species (Van Valkenburgh, 1985). As such, the lower values from MIS 5c 

C. crocuta when compared to those of than MIS 3 in Britain suggest that the latter were capable 

of slower speeds. Similarly, the metacarpal/humerus ratio was lower in C. crocuta from MIS 5e 

than MIS 3 in Britain, supporting the above point. However, the metacarpal/humerus ratio was 

lowest overall from MIS 3 in the Czech Republic, suggesting that these individuals were faster 

than those from both MIS 5e and 3 in Britain. 

The final indices are the brachial and crural indices, which are greater in cursorial carnivorans 

(Meachen et al., 2016). Both indices are greater from the Czech Republic than MIS 3 in Britain. 

Data only allowed calculation of the brachial index for MIS 5e C. crocuta, which was greater than 
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the MIS 3 values for both Britain and the Czech Republic. This suggests that C. crocuta were more 

cursorial during MIS 5e. 

Overall, the results from the limb measurements and ratios are not consistent, which may in 

part be due to the small amount of available data. However, there is some indication that 

C. crocuta from Britain were more cursorial and capable of higher speeds during MIS 5e and 5c 

than MIS 3. This may suggest that C. crocuta from MIS 5e and 5c were engaged in more frequent 

predation than scavenging. 

Meachen et al. (2016) found that the brachial index (reflecting cursoriality) was positively 

associated with mean annual temperatures and negatively associated with mean annual 

precipitation. The authors suggested that this was due to the more open vegetation cover of dry 

climates. Indeed, Polly (2010) found that cursorial carnivorans are mostly found in open 

habitats. In terms of temperature, this matches well with the apparent greater cursoriality of C. 

crocuta during temperate MIS 5e and 5c compared with reduced cursoriality during cooler MIS 

3. The lack of palaeoprecipitation data from assemblages used to calculate the indices mean 

that the link with the brachial index cannot be determined at this time. 

The link between the brachial index and vegetation is also difficult to interpret. Mammals from 

Höhle Výpustek are indicative of a mixture of forest and much of the vegetation during MIS 3 in 

Britain was open grassland (Lewis, 2011; Bocherens, 2014). Pollen from the Tornewton Hyaena 

Stratum (Britain, MIS 5c) indicates open vegetation with some woodland locally or regionally 

(Lewis, 2011). By contrast, forest was present in Britain during MIS 5e but this is complicated by 

the presence of open vegetation brought about by grazing and trampling by large herbivores, 

particularly on river floodplains (Gibbard and Stuart, 1975; Sandom et al., 2014). As the indices 

were calculated from pooled data from different deposits of a similar age, the local vegetation 

conditions may have been different at each site, particularly problematic for MIS 5e. 

These findings may be contrary to the analyses of the size of the canines and labiolingual 

mandibular bending strength (Section 6.2.3.1). The interpretation of that data was that during 

MIS 3, C. crocuta were engaged in more frequent predation (relative to scavenging) or targeted 

larger prey than during MIS 5e. There is one explanation that reconciles the post-cranial and 

craniodental data. During MIS 5e, C. crocuta in Britain may have engaged in more frequent 

predation (relative to scavenging), explaining the apparently greater cursorial ability. During MIS 

3, C. crocuta may have scavenged more frequently, but their prey were of a larger size, 

explaining the larger size of the canines and the greater mandibular resistance to labiolingual 

bending. 
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6.3 Age profiles of assemblages 

6.3.1 Introduction 

Prior to assessing the variation in tooth breakage between assemblages, the age profile of each 

assemblage must be reconstructed. This is because greater frequency of tooth breakage is found 

in older C. crocuta (Van Valkenburgh, 2009, and see Section 5.5). Failure to pick up on variations 

in age profiles may lead to erroneous interpretation of tooth breakage results. For example, if a 

sample with predominantly old-aged individuals contains more broken teeth than a sample with 

younger individuals, this may be reflective of the age profile, rather than any environmental 

drivers. 

Only permanent and fully formed dentition were considered and juveniles did not, therefore, 

factor into discussion of the age profiles.  

The research questions are as follows: 

• What are the age profiles of the assemblages? 

• Do any age profiles indicate a dominance of young or old C. crocuta that may influence 

the tooth breakage results? 

 

6.3.2 Results 

The C. crocuta P3/p3 wear stages for each deposit are plotted in Figure 6.45. For samples with 

fewer than ten P3/p3 data points, the figure was repeated showing slight, medium and heavy 

wear of all teeth (Figure 6.46). See Section 4.3.2 for an explanation of the tooth wear stages. 

Differences between the two figures are particularly apparent for King Arthur’s Cave and 

Tornewton (Elk Stratum), which have 100 % P3/p3 wear classed as stage III (the youngest class 

considered in this study). However, when all the teeth are considered, it is evident that there 

are teeth classed as having slight, medium and heavy wear. Similarly, 100 % of Trou Magrite’s 

P3/p3 teeth were classed as wear stage V, yet has teeth with slight, slight/medium, medium and 

heavy wear. Cueva de las Hienas has 100 % of P3/p3 teeth classed as wear stage VI, yet assessing 

all the teeth indicates that the assemblage is predominantly made up of those with slight wear 

(96.15 %). 
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Figure 6.45: Percentage of C. crocuta P3/p3 wear stages from Pleistocene deposits. Numbers along the base of the bars are sample sizes. 
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Figure 6.46: Percentage of wear stages of all C. crocuta teeth from Pleistocene deposits. S = slight 

wear. S/M = slight/medium wear. M = medium wear. M/H = medium/heavy wear. H = heavy 

wear. Numbers along the base of the bars are sample sizes. 

 

The figures indicate that the assemblages have different age profiles of C. crocuta. Cueva de las 

Hienas has the highest proportion of slight wear. Goyet (3eme Cavern, 4eme Niveau Ossifère, 

Galleries Voisines de l'Entrée) and Baranica II also have a large proportion of teeth at wear stages 

III and IV. By contrast, at 25 %, Cova del Toll has the greatest proportion of teeth classified as 

the oldest wear stage, IX, followed by Goyet (3eme Caverne, 1er Niveau) at 14.29 %. 

When all teeth are taken into account, Broughton Mount has the lowest proportion of slightly 

worn teeth. Caswell Bay (66.67 %), Daylight Rock Fissure (61.54 %) and Cova del Toll (54.54%) 

have the greatest proportions of heavily worn teeth. 
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6.3.3 Discussion 

While tooth wear is an indication of the age of an individual (Stiner, 2004), it may also be 

influenced by the type of food consumed (Van Valkenburgh, 1988). However, the method is 

useful in the present study in highlighting the relative proportions of elderly individuals to 

younger individuals. 

Given the evidence that incidences of tooth breakage tend to increase with age (Van 

Valkenburgh, 2009, and see Section 5.5), it may be expected that the deposits with a large 

proportion of younger individuals would have low proportions of broken teeth. These deposits 

include Cueva de las Hienas, Goyet (3eme Caverne, 4eme Niveau Ossifère, Galleries Voisines de 

L’Entrée) and Baranica II. 

Similarly, deposits with a high proportion of older C. crocuta may be expected to have high 

proportions of broken teeth. These deposits include Cova del Toll, Caswell Bay and Daylight Rock 

Fissure. In particular, it may be expected that these assemblages with greater proportions of 

older individuals may exhibit greater proportions of broken canines, as these teeth tend to be 

the tooth most frequently broken at later life stages (Section 5.5). However, environmental and 

dietary factors may cause a divergence from this prediction. 
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6.4 Tooth breakage 

6.4.1 Introduction 

Teeth may be broken due to bone consumption and struggling prey (Van Valkenburgh, 1988, 

2009). Bone cracking in particular may hold some important information about ecological 

considerations as increased bone breakage may be indicative of periods of low food availability 

(Kruuk, 1972; Egeland et al., 2008).  

The research questions are as follows: 

• How does the degree of tooth breakage vary between assemblages? 

• What information can this provide about the palaeodiet of C. crocuta? 

• Is this variation in palaeodiet related to changes in environmental conditions? 

 

6.4.2 Results 

The percentage of broken and partially or fully healed alveoli were calculated for all deposits 

with a sample size of at least ten (Figure 6.47). None of the teeth from Badger Hole, Bench 

Cavern, Boughton Mount, Caswell Bay, Hyaena Den and Tornewton (Elk Stratum) are broken 

(Table 6.15). None of these deposits contained specimens that exhibited healed alveoli, 

although only isolated teeth were assessed from Badger Hole. 

The other site without broken teeth is San Teodoro, however, 1.96 % of specimens exhibit 

partially or fully healed alveoli; a feature also present on specimens from Barrington, Kents 

Cavern, Sandford Hill and Teufelslucke. 

The deposit with the greatest proportion of broken teeth is Cova del Toll with 30.77 % broken 

teeth. The next largest proportions of broken teeth are from Cova de les Toixoneres (15.38 %) 

Trou Magrite (13.79 %) and Höhle Výpustek (13.73 %). 
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Figure 6.47: Percentage of C. crocuta teeth that are broken, and alveoli that are fully or partially healed, from Pleistocene deposits. Values above the bars are the 

total number of teeth of known condition: unbroken, broken and (partially) healed alveoli. Values in brackets are the number of (partially) healed alveoli that make 

up the total number of observations.  
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Table 6.15: Sites without broken teeth or partially healed alveoli. The number of teeth of known condition are stated. 

All teeth Incisors Canines Premolars Carnassials 

Site No. Site No. Site No.  Site No. Site No. 

Badger Hole 23 Oreston Cave 1 Oreston Cave 3 Hoe Grange Cavern 7 Oreston Cave 3 

Bench Cavern 18 Tornewton LHS 108 Hoe Grange Cavern 3 Badger Hole 6 Tornewton LHS 73 

Boughton Mount 30 Tornewton UHS 182 Badger Hole 8 Bench Cavern 8 Tornewton UHS 61 

Caswell Bay 26 Badger Hole 1 Bench Cavern 3 Boughton Mount 17 Badger Hole 8 

Hyaena Den 69 Bench Cavern 4 Boughton Mount 5 Caswell Bay 14 Bench Cavern 3 

Tornewton Elk Stratum 13 Boughton Mount 3 Caswell Bay 6 Hyaena Den 30 Boughton Mount 5 

  Brixham Cave/Windmill 
Hill 

6 Church Hole 24 Tornewton Elk Stratum 7 Brixham Cave/Windmill 
Hill 

12 

  Caswell Bay 3 Daylight Rock Fissure 1 Trou Magrite 6 Caswell Bay 3 

  Ffynnon Beuno 1 Ffynnon Beuno 4 Goyet. 3eme Cav, 4eme 
Niv 

36 Daylight Rock Fissure 4 

  Hyaena Den 5 Hyaena Den 13 Goyet. 3eme Cav, 3eme 
Niv 

36 Ffynnon Beuno 1 

  King Arthur’s Cave. UCE 6 King Arthur’s Cave. UCE 2 Goyet. 3eme Cav, 1er Niv 9 Hyaena Den 21 

  Picken’s Hole. Layer 3 22 Picken’s Hole. Layer 3 22 San Teodoro 30 King Arthur’s Cave. UCE 4 

  Tornewton Elk Stratum 1 Tornewton Elk Stratum 2   Tornewton Elk Stratum 3 

  Castlepook Cave 10 Castlepook Cave 8   Goyet. 3eme Cav, 1er Niv 4 

  Goyet. 3eme Cav, 3eme 
Niv 

7 San Teodoro 8   Slouper Höhle 14 

  Goyet. 3eme Cav, 1er Niv 3 Cueva de las Hienas 1   Höhle Výpustek 7 

  Slouper Höhle 10 Cova de les Toixoneres 1   Baranica II 11 

  Cueva de las Hienas 19     San Teodoro 7 

  Cova de les Toixoneres 2     Cueva de las Hienas 1 
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The percentages of broken teeth and healed alveoli were also calculated for each tooth type 

(incisors, canines, premolars and carnassials; Figure 6.48). Of the deposits with broken incisors, 

the greatest proportions are from Goyet (3eme Caverne, 4eme Niveau Ossifère, Galleries Voisines 

de l'Entrée, n=4) and Höhle Výpustek (n=8), both with 25 % broken incisors. Following this is 

Church Hole (n=20) at 15 %. San Teodoro (n=6) has the greatest proportion of partially or fully 

healed alveoli at 16.67 %, while a smaller proportion (2.03 %) of specimens from Teufelslucke 

(n=246) also exhibited this feature. Of the deposits that yielded incisors, 18 sites did not have 

broken incisors or healed incisal alveoli (Table 6.15). 

The deposit with the greatest proportion of broken canines is Cova del Toll at 33.33 % (n=3). This 

is followed by Barrington at 23.08 % (n=13). Of the sites that yielded canines, 16 did not have 

broken canines (Table 6.15). No deposits have specimens with partially or fully healed canine 

alveoli. 

Cova del Toll has the greatest proportion of broken premolars (31.25 %, n=16) followed by Cueva 

de las Hienas (25 %, n=4). Three sites contained specimens with partially or fully healed alveoli, 

all at low proportions: Barrington (1.61 %, n=62), Sandford Hill (0.8 %, n=125) and Kents Cavern 

(0.31 %, n=643). Eleven deposits do not have specimens with broken premolars, or healed 

premolar alveoli (Table 6.15). 

Finally, 17 deposits did not yield broken carnassials (Table 6.15). Partially or completely healed 

carnassial alveoli are not present from any deposit. Trou Magrite yielded the greatest proportion 

of broken carnassials at 66.67 % (n=3). This is followed by Goyet (3eme Caverne, 3eme Niveau, 

n=5), Cova de les Toixoneres (n=3) and Cova del Toll (n=7). All four of these deposits have only 

small sample sizes. Of the deposits with larger sample sizes, Picken’s Hole has the greatest 

proportion of broken carnassials at 16.67 % (n=24). 
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Figure 6.48: Percentage of Pleistocene C. crocuta teeth that are broken, and alveoli that are fully 

or partially healed. a. incisors. b. canines. c. premolars. d. carnassials. Values above the bars are 

the total number of teeth of known condition. Values in brackets are the number of (partially) 

healed alveoli that make up the total number of observations.    
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Figure 6.48 continued. 
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6.4.3 Discussion 

The number of partially or fully healed alveoli present in the deposits is likely not representative 

of the true number. This is because maxillae and mandibles are required for the observation of 

these features, yet for many sites, the vast majority of teeth are isolated rather than present in 

jaws. However, it was deemed appropriate to include healed alveoli as their presence may be 

indicative of bone consumption if the tooth was initially broken and subsequently became 

infected (Losey et al., 2014), although teeth may also be lost through inflammation of the gum 

and subsequent infection (Pekelharing, 1974). 

When all teeth are considered, Cova del Toll yielded the greatest proportion of broken teeth. 

This assemblage has a high proportion of old-aged individuals with one of the largest 

proportions of P3/p3 wear stage IX, and a high proportion of heavily worn teeth (Section 6.3).It 

is likely, therefore, that the high degree of tooth breakage from Cova del Toll is a consequence 

of the old age profile of the assemblage (see also Section 5.5 and Van Valkenburgh, 2009). 

Other sites that yielded a large proportion of broken teeth are Barrington, Victoria Cave, Trou 

Magrite, Höhle Výpustke and Cova de les Toixoneres. All of these deposits have age profiles that 

contain a mixture of young, prime aged and old individuals, so while the result may be due to 

the age profiles, it may also be due to variations in diet. More information can be derived by 

assessing each tooth type individually. 

 

Goyet (3eme Caverne, 4eme Niveau Ossifère, Galleries Voisines de l'Entrée, n=4) and Höhle 

Výpustek (n=8) have the greatest proportions of broken incisors. This is perhaps unexpected for 

Goyet as from this level, there are only young and prime-aged adults; however, the high 

percentage is likely a result of the small sample size (n=4). Church Hole (n=20) has the next 

greatest proportion of broken teeth. San Teodoro (n=8) has a similar proportion of fully or 

partially healed alveoli. The age profiles of Höhle Výpustek, Church Hole and San Teodoro all 

include some older aged individuals, although they do not dominate the assemblage. 

The incisors are utilised in killing prey (Biknevicius et al., 1996), and cutting skin, subcutaneous 

tissue and muscle (Van Valkenburgh, 1996). The greater incisor breakage at the aforementioned 

sites may suggest that C. crocuta were engaged in more frequent predation, as opposed to 

scavenging, leading to breakage of incisors when the prey were attacked. Alternatively, the 

C. crocuta may have been targeting larger prey. 

As mentioned in Section 6.2, there is some evidence from the craniodental morphological 

analysis that C. crocuta from MIS 3 were consuming larger prey or potentially preying more 
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frequently. This may explain the greater proportion of broken incisors at Church Hole and Höhle 

Výpustek as opposed to sites dating to MIS 5e and 5c. However, this does not explain the 

differences between these sites and others dating to MIS 3. Some deposits yielded a small 

number of broken incisors, such as Uphill Caves, and many MIS 3-aged deposits did not yield any 

broken incisors.  

The prey species found in Church Hole and Höhle Výpustek are similar to those from other 

assemblages dating to MIS 3 (see Appendix 10.1, Table 10.1 and Table 10.3), so there is no 

evidence to suggest that they were preying on different taxa. The explanation may lie in the 

oscillating environmental conditions during MIS 3. As previously mentioned (Section 6.1.3.2), 

errors in radiocarbon dating do not currently allow each deposit to be assigned confidently to a 

specific stadial or interstadial but, for example, the conditions prevalent during the life of the 

C. crocuta from Church Hole and Höhle Výpustek may have been conducive to more frequent 

predation rather than scavenging. For Church Hole, this is supported by the small proportion of 

broken premolars, which will be discussed in more detail below. 

As previously discussed, many prey species from San Teodoro were dwarf species (Mangano, 

2011) therefore, the theory that incisor loss was caused by targeting of larger prey can be 

refuted. The question of more frequent predation is difficult to assess. The narrow mandibular 

corpuses of the San Teodoro C. crocuta suggest that these individuals engaged in predation less 

frequently than those elsewhere (Section 6.2), although the width of the mandible may be a 

reflection of the size of the individuals. 

 

Cova del Toll has the greatest proportion of broken canines, likely due to the predominance of 

elderly individuals. Following this is Barrington, which includes some elderly C. crocuta, although 

they do not dominate the assemblage. Except for Barrington, most British deposits from MIS 5e, 

5c and 3 have low proportions (2.9-9.5 %) of broken canines. The proportions of broken canines 

from the Czech and Belgian sites are relatively high (11.1-16.7 %). 

Canines are utilised in killing prey (Biknevicius et al., 1996), consumption of muscle with 

attached bone (Van Valkenburgh, 1996), and sometimes cracking bone (Van Valkenburgh and 

Ruff, 1987). The canines may be broken through accidental contact with bone, especially when 

rapidly feeding during times of elevated competition (Van Valkenburgh, 1996). The greater 

proportion of broken canines from Barrington, and to a lesser extent the Belgian and Czech sites, 

may again suggest either more frequent predation, or consumption of larger prey, more 

frequent bone consumption, or elevated levels or competition. 
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As discussed in Section 6.2, evidence is lacking for the specific prey species targeted by the C. 

crocuta at Barrington. However, evidence from the assemblage indicates that except for 

B. primigenius, the potential prey species present at Barrington are similar to those at other MIS 

5e-aged sites of Joint Mitnor, Kirkdale and Victoria Caves: P. antiquus, S. hemitoechus, 

H. amphibius, M. giganteus, D. dama, C. elaphus, B. priscus (Buckland, 1822; Fisher, 1879; 

Gibbard and Stuart, 1975; Boylan, 1981; Currant and Jacobi, 2011; O’Connor and Lord, 2013). 

Therefore, there is no evidence to suggest that C. crocuta were preying on larger species. Indeed 

the evidence from mandibular bending strength and post-cranial indices (Section 6.2), suggest 

that C. crocuta from both Barrington and Burtle Beds were potentially preying on smaller prey 

than those from MIS 3, although data were insufficient to compare with other MIS 5e−aged 

sites. The post-cranial indices indicated that during MIS 5, C. crocuta in Britain were potentially 

engaged in more frequent predation than those during MIS 3, which may explain the elevated 

canine breakage at Barrington compared to MIS 3-aged deposits. However, this does not explain 

why Barrington has greater tooth breakage than other deposits from MIS 5e. Although the 

Barrington assemblage has some elderly C. crocuta (proportion of wear stage VIII = 11.54 %, 

Section 6.3), this likely is not sufficient to explain the elevated proportion of tooth breakage at 

this site. 

As mentioned, canines accidentally contact bone during rapid feeding due to elevated 

competition (Van Valkenburgh, 1996). The potential competitor species found at Barrington 

were C. lupus, P. leo (spelaea) and U. arctos (Fisher, 1879; Gibbard and Stuart, 1975), which were 

also found at Joint Mitnor Cave and Kirkdale Cave (Buckland, 1822; Boylan, 1981; Currant and 

Jacobi, 2011), while only U. arctos and P. leo (spelaea) were found at Victoria Cave (O’Connor 

and Lord, 2013).This suggests that at least in terms of range of competitors, C. crocuta at 

Barrington were not subject to increased competition. There may have been an increase in 

population of competitors, leading to greater intraspecific or interspecific competition at 

Barrington, and thus to more rapid consumption of carcasses and accidental contact with bone. 

Determination of abundance is difficult to reconstruct from Pleistocene deposits.  

Another potential explanation lies in the use of canines to breakage bone (Van Valkenburgh and 

Ruff, 1987). However, increased bone consumption is not supported by an elevated proportion 

of broken premolars, suggesting that bone breakage was an infrequent activity. This will be 

explored in more detail below. 

A final explanation is the size of the canines. As discussed in Section 6.2, the canines from 

Barrington are among the smallest across all sites. This may have rendered them more 

vulnerable to stresses placed upon them and thus more likely to break.  
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In Section 6.2, it was hypothesised that the canines from Pin Hole would be at greater risk of 

breakage because of their small size, while the mandibular bending strength and post-cranial 

indices were suggestive of predation on larger species. Pin Hole does have some broken canines, 

but the proportion is less than other sites. 

As mentioned, all sites from Belgium and the Czech Republic have consistently elevated levels 

of tooth breakage, above that of most other sites. One of these Belgian sites is Trou Magrite, 

the canines from which were also suggested to be of greater breakage risk, for the same reasons 

as those from Pin Hole. This explains the proportion of broken teeth from Trou Magrite, but not 

from the other Belgian or Czech deposits. There are some cases where the canines from these 

sites are notably small, such as the mediolateral diameter of the upper canine from Höhle 

Výpustek and Goyet (3eme Caverne, 1er Niveau). Equally, there are some cases where canines 

from these deposits are among the largest, such as the anteroposterior diameter of the upper 

canine from Goyet (3eme Caverne, 3eme Niveau) and the anteroposterior diameter of the lower 

canines from Höhle Výpustek. Overall, canines from these sites are not consistently small, 

suggesting that this is not the cause of the fairly high proportions of broken canines. Of these 

sites, only Höhle Výpustek has a relatively high proportion of broken premolars, and many of 

these deposits did not yield any broken premolars, suggesting that bone consumption was not 

the cause of the broken canines. The species present at these sites are similar to other 

assemblages, such as MIS 3−aged sites at Britain (see Appendix 10.1, Table 10.1 and Table 10.3). 

This suggests that prey species themselves were also not the cause if the prey were of similar 

size and similarly vigorous in all sites. More frequent predation or elevated competition may 

have influenced canine breakage, yet the data are insufficient to assess this.  

 

Cova del Toll has the highest degree of premolar breakage, although this is again expected due 

to its age profile. Cueva de las Hienas also has a high proportion of broken premolars but this 

statistic is based on only four premolars so may not be reliable. Other sites with elevated 

proportions of broken premolars include Victoria Cave, Daylight Rock Fissure, Ffynnon Beuno, 

King Arthur’s Cave (Lower Cave Earth), Castlepook Cave, Höhle Výpustek, Baranica II and Cova 

de les Toixoneres. As mentioned above, Church Hole has a low proportion of broken premolars, 

and Barrington has a larger proportion of broken premolars, but still a lower proportion than 

the other deposits mentioned above. 

Premolars are used to consume muscle with attached bone, and to consume bone (Van 

Valkenburgh, 1996) It is these teeth, therefore, that are particularly useful in determining 
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periods of elevated bone consumption. Today, C. crocuta consume more bone when food 

availability is low (Kruuk, 1972; Egeland et al., 2008). 

Except for Victoria Cave, all sites with elevated premolar breakage are dated to MIS 3. However, 

there are also a number of other sites from MIS 3, such as Church Hole, Picken’s Hole and 

Sandford Hill that have low proportions of broken premolars. These differences may stem from 

shorter periods of low availability, such as seasonally harsh conditions. As mentioned, dating 

resolution is insufficient to allocate the MIS 3 deposits to specific stadials or interstadials, so 

more specific resolution of this matter is difficult. The dates of these sites also span across a 

large duration of MIS 3 (see Figure 4.7), so it is not necessarily the case that there were more 

broken teeth, and therefore lower food availability, around the time of C. crocuta’s extirpation 

from Europe. 

An alternative explanation is that the premolars were broken during consumption of frozen 

carcasses. The deposits with a greater proportion of broken premolars may have been from 

colder periods. However, the limits with the chronology again make this difficult to confirm at 

present.  

Interestingly, individuals from Slouper Höhle and Teufelslucke have relatively strong mandibular 

dorsoventral bending strength, suggesting elevated levels of bone consumption (Section 6.2). 

However, the percentage of tooth breakage from these sites are low. This may be because the 

premolars from these assemblages tend to be amongst the largest specimens for most 

measurements. Indeed, some premolar measurements from Teufelslucke are significantly larger 

than those from other assemblages. This suggests that premolars from Teufelslucke and Slouper 

Höhle were robust against frequent breakage, even with potentially elevated levels of bone 

consumption. 

Victoria Cave is the site from MIS 5e with the greatest proportion of broken premolars. As 

mentioned, the potential prey and competitor species in the assemblage are similar to those 

from Joint Mitnor Cave, Kirkdale Cave and Barrington. This alone is does not suggest lack of food 

from elevated levels of competition, or reduced prey populations.  

The difference between the MIS 5e-aged sites may stem from the climate, as peak warmth 

occurred for only a short period (less than 1,200 years) of the interglacial (Candy et al., 2016), 

although dating resolution is insufficiently precise to phase sites within MIS 5e. If the Victoria 

Cave C. crocuta post-dated that climatic optimum conditions would have been cooling towards 

the early Devensian. The location of Victoria Cave is towards the northern limit of C. crocuta’s 

known range in northwest Europe. Due to its potential placement at the edge of its range, there 

may have been periods of food instability for C. crocuta during sub-optimal conditions. 
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Trou Magrite has by far the greatest proportion of broken carnassials at 66.67 %. although the 

sample size is small (n=3). Other sites with relatively large proportions of broken carnassials are 

Goyet (3eme Caverne, 3eme Niveau, n=5), Cova del Toll (n=3) and Cova de les Toixoneres (n=3). 

Again, the large proportion of broken carnassials from Cova del Toll is likely a reflection of its 

age profile. In addition, all of these sites have small sample sizes.  

Of the deposits with larger sample sizes, the greatest proportions of broken teeth are from 

Picken’s Hole, followed by lower proportions in Barrington, Joint Mitnor Cave, Victoria Cave, 

Castlepook Cave and Goyet (3eme Caverne, 4eme Niveau, Galleries Voisines de l’Entrée). 

The carnassials, particularly the blades, are used for removing skin from carcasses (Werdelin, 

1989; Van Valkenburgh, 1996), while the P4 cones are used in bone consumption (Kurtén and 

Werdelin, 1988; Van Valkenburgh, 1996). Some of these broken carnassials may therefore stem 

from bone breakage, as discussed above. However, Picken’s Hole had a low proportion of broken 

premolars, and Goyet (3eme Cavern, 4eme Niveau) yielded none. Therefore, for these deposits at 

least, the broken carnassials likely derived from a different activity. 

One explanation may be the consumption of frozen or partially frozen carcasses. The individuals 

may have attempted to tear flesh from such carcasses, resulting in broken carnassials. Today, 

carcass availability is dependent upon factors such as disease, drought and kills by other 

predators (Henschel and Skinner, 1990; Gasaway et al., 1991). Furthermore, carcasses that are 

not fresh contain less energy, nutrients and water than fresh kills (Cooper et al., 1999). However, 

frozen carcasses may have been better preserved, and therefore may have been a viable food 

source for C. crocuta during colder periods of MIS 3 if prey were scarcer. This scarcity may also 

have been due to seasonal migrations of prey, such as observed in R. tarandus in southwestern 

France during stadial conditions in MIS 3 (Discamps, 2014). 

 

A final factor to bear in mind is that female C. crocuta have elevated levels of tooth breakage 

compared with males (Section 5.2). There is therefore the possibility that assemblages with 

greater proportions of broken teeth may have more females than assemblages with fewer 

broken teeth. However, given the lack of SSD in C. crocuta, the relative proportions of males and 

females in each assemblage could not currently be determined in order to test this. 
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6.5 Conclusion 

This section considered both the morphological and palaeodietary variation of C. crocuta in 

response to palaeoenvironmental variation across Europe and through the Pleistocene. First, a 

variation of the traditional method of body mass reconstruction was proposed, in order to allow 

reconstruction of Pleistocene C. crocuta body masses. The regression model of m1 lengths and 

body masses of C. crocuta from across Africa has good predictive ability and is therefore judged 

suitable for reconstruction of Pleistocene body masses. The reconstructions indicate that there 

is much overlap in the body mass estimates from different climatic periods across Europe. There 

is some indication of C. crocuta following Bergmann’s Rule, however, this is not a consistent 

response. It has been suggested that the overall lack of consistent body mass response to 

environmental changes may in part be due to the behavioural plasticity of C. crocuta, particularly 

elevated bone consumption and the ability to out-compete other carnivores.  

The body mass estimates suggest that C. crocuta from San Teodoro were consistently small, 

indicating an influence of the Island Rule. 

As with the body mass estimates, the craniodental and post-cranial data show overlaps in 

measurements between different time periods. Taken together, the data indicate that during 

MIS 5e and 5c in Britain, C. crocuta were hunting more frequently than during MIS 3. By contrast, 

during MIS 3, C. crocuta may have been preying less frequently upon larger or more vigorous 

species. 

The craniodental data are also indicative of bone consumption, which was likely more frequent 

during MIS 3. This may indicate periods of dietary stress, necessitating the more complete 

consumption of carcasses and is also reflected by the tooth breakage data. The data also suggest 

that frozen carcasses may have been consumed and may have been an important food source 

during periods of harsher conditions of MIS 3. 

Overall, this chapter has determined how C. crocuta responded to Pleistocene environmental 

changes in Europe. A number of scenarios have been suggested to explain these responses. In 

many cases, there is currently insufficient evidence to establish causal mechanisms, although 

improvements in chronology and more detailed palaeoenvironmental reconstructions, including 

temperature, precipitation and vegetation, would allow a better understanding of their 

responses to the local and regional environment, without relying on climatic signals from further 

afield. Finally, palaeodiet could be further assessed through dietary isotopes and a more 

thorough analysis of the evidence of C. crocuta damage to bones in many of the assemblages. 

The implications of the findings in this chapter for C. crocuta extirpation will be explored in 

Chapter 7.      
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7 Extirpation of Crocuta crocuta from Europe 

7.1 Introduction 

As outlined in the previous chapters, C. crocuta are adaptable generalists, with the ability to 

alter their behaviour in response to changing environmental conditions. However, despite 

demonstrating resilience over much of the Pleistocene, they ultimately were extirpated from 

Europe during the Late Pleistocene. 

This chapter will first reassess the chronology of C. crocuta during MIS 3 in Europe in order to 

understand the timing of extirpation from different regions in Europe. This will be compared 

with chronological models of presence/absence of a potential competitor (P. leo (spelaea)) and 

three known key prey species (C. antiquitatis, C. elaphus and R. tarandus). 

Secondly, palaeoenvironmental information from the literature will be paired with results 

discussed in Sections 5 and 6 to assess the possible reasons behind C. crocuta’s eventual 

disappearance from Europe. Three areas will be focussed on: environmental conditions 

(temperature, precipitation and vegetation), food availability (presence of prey species and 

competition) and competition for shelter. 

The research questions for this chapter are as follows: 

• When did C. crocuta become extirpated from different areas of Europe?

• Did palaeoenvironmental changes influence the extirpation of C. crocuta?

• Did food availability influence the extirpation of C. crocuta?

• Did competition for shelter influence the extirpation of C. crocuta?

7.2 Results 

7.2.1 Chronology of Crocuta crocuta during MIS 3 

The new model of C. crocuta chronology was created by applying a strict selection criteria to the 

database of radiocarbon dates compiled by Stuart and Lister (2014) and more recently published 

dates (Section 4.2.5). The dates were calibrated in OxCal 4.3 (Bronk Ramsey, 2009) using 

the IntCal13 calibration curve (Reimer et al., 2013, Section 4.4.3). The model is displayed in 

Figure 7.1. Full details of all radiocarbon dates can be found in Appendix 10.9, Table 10.56 and 

Table 10.57.  

- 397 -
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Figure 7.1: Model of radiocarbon dates on C. crocuta specimens across Europe. Dates have been split into regions using overlapping phases. Calibrated values show 

the 68.2 and 95.4 % confidence ranges. Model run using OxCal 4.3 (Bronk Ramsey, 2009) and the IntCal13 calibration curve (Reimer et al., 2013). The NGRIP δ18O 

record (Andersen et al., 2004) is displayed.     
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The chronology indicates that C. crocuta disappeared from the Central region (including dates 

from Austria, Italy and Poland) first. Although the end boundary’s 95.4 % confidence range is 

large (41,880-33,898 cal BP), the confidence at 68.2 % range is more constrained at 41,259-

38,375 cal BP. 

The next apparent event of consequence is a gap in the dates of C. crocuta across all regions. 

Taking into account the 95.4 % confidence range, the gap dates to between 39,036 and 38,341 

cal BP, with only the modelled end boundary of the Central region falling within this period.  

The final known appearance of C. crocuta in the Northwestern region (Belgium, Britain and 

Ireland) has an end boundary modelled at 35,523-32,217 cal BP (95.4 % confidence) or 35,018-

33,666 cal BP (68.2 % confidence).  

The end boundaries of the Southwestern (France, Italy and Spain), Southeastern (Bulgaria, 

Moldova and Romania) and Southern (Italy and Greece) regions have similar modelled ages. The 

95.4 % confidence range of the Southwestern region end boundary is large at 32,722-8898 cal 

BP. The more constrained 68.2 % confidence end boundary gives dates of 31,691-26,233 cal BP. 

The end boundary of the Southeastern region is 31,073-22,741 cal BP at 95.4 % confidence 

interval, or 30,944-28,237 cal BP at 68.2 % confidence. Finally, the end boundary estimates for 

the Southern region are 31,024-20,330 cal BP (95.4 % confidence) and 30,769-27,954 cal BP 

(68.2 % confidence).  

 

7.2.2 Chronology of Panthera leo (spelaea) and prey species during MIS 3 

A new radiocarbon model was also generated for P. leo (spelaea) (Figure 7.2, with full details in 

Appendix 10.9, Table 10.58 and Table 10.59), which shows that the species persisted in Europe 

until at least 14,764 cal BP. The 68.2 % and 95.4 % confidence ranges for the end boundaries of 

the Northwestern, Central and Southwestern regions are large, with all extending into at least 

the Holocene, and some extending into the future. A difference is, however, seen in the 

Southeastern region, with earlier end boundaries at 35,913-25,202 cal BP (95.4 % confidence) 

or 35,451-31,997 cal BP (68.2 % confidence). 
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Figure 7.2: Model of radiocarbon dates on P. leo (spelaea) specimens across Europe. Dates have 

been split into regions using overlapping phases. Calibrated values show the 68.2 and 95.4 % 

confidence ranges. Model run using OxCal 4.3 (Bronk Ramsey, 2009) and the IntCal13 calibration 

curve (Reimer et al., 2013). The NGRIP δ18O record (Andersen et al., 2004) is displayed. 
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There is a gap in the P. leo (spelaea) dates with a 95.4 % confidence interval between 39,280 

and 38,606 cal BP. There are also other gaps in the dates, the most striking of which is the gap 

before the youngest dates (<20 ka). In the Southwestern region, the gap in the dates at 95.4 % 

confidence spans 46,295-16,959 cal BP (95.4 % confidence). Similarly, the gap in the dates in the 

Northwestern region spans 39,280-15,149 cal BP (95.4 % confidence). The gap in the dates in 

the Central region is shorter, between 28,559-14,764 cal BP at 95.4 % confidence. 

Radiocarbon models were also made for three known prey species (C. antiquitatis, R. tarandus, 

C. elaphus). There are many dates on C. antiquitatis from the Northwestern region and only 

seven acceptable dates from the Central region (Figure 7.3 and Appendix 10.9, Table 10.60 and 

Table 10.61). The other regions have just one date each. The only dates from these regions are 

calibrated at 95.4 % confidence to 49,412-42,625 (Southwestern), 43,340-41,925 (Southeastern) 

and 33,183-31,600 (Northern) cal BP. 

The end boundaries of C. antiquitatis occurrence in the Northwestern and Central regions are 

similar, although those for the Central region have a larger span of dates. The Northwestern 

region’s end boundaries are 16,846-14,613 cal BP (95.4 % confidence) and 16,677-15,819 cal BP 

(68.2 % confidence). Similarly, the Central region’s end boundaries are 17,794-1,898 cal BP (95.4 

% confidence) and 17,583-12,543 cal BP (68.2 % confidence). 

In the Northwestern region, there is a gap in the C. antiquitatis dates at 95.4 % confidence 

between 37,628 and 35,444 cal BP. The gap is larger in the Central region, between 40,037 and 

25,493 cal BP. There is an additional gap in C. antiquitatis dates in the Northwestern region from 

27,351 to 16,855 cal BP. 
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Figure 7.3: Model of radiocarbon dates on C. antiquitatis specimens across 

Europe. Dates have been split into regions using overlapping phases. 

Calibrated values show the 68.2 and 95.4 % confidence ranges. Model run 

using OxCal 4.3 (Bronk Ramsey, 2009) and the IntCal calibration curve 

(Reimer et al., 2013). The NGRIP δ18O record (Andersen et al., 2004) is 

displayed. 
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For the new C. elaphus and R. tarandus models, no dates younger than 18 14C BP were included. 

Furthermore, as the species are both extant in Europe today, end boundaries were not 

modelled. 

The C. elaphus model is shown in Figure 7.4, with additional information in Appendix 10.9, Table 

10.62. The Southeastern region also has one C. elaphus date calibrated to 47,266-42,415 cal BP, 

while the Central region’s sole date is 45,418-41,816 cal BP (both 95.4 % confidence). 

There is an absence of C. elaphus dates across Europe between 38,433 and 37,532 cal BP. In the 

Southwestern region, there is also a gap in C. elaphus dates from 31,423 to 26,099 cal BP, after 

which there are a number of dates until the cut-off point for dates included in the model. The 

youngest date of C. elaphus from the Northwestern region is 34,445-33,747 cal BP (all at 95.4 % 

confidence). 

Across Europe, there is one short gap in the R. tarandus dates at 95.4 % confidence between 

35,469 and 34,694 cal BP (Figure 7.5 and Appendix 10.9, Table 10.63). However, within each 

region, there are longer intervals during which there is an absence of R. tarandus dates at 95.4 

% confidence. In the Northwestern region, these occur at 36,925 to 36,289 cal BP and 31,294 to 

29,586 cal BP. In the Central region, the gaps in the dates occur at 36,045 to 32,862 cal BP and 

31,364 to 25,226 cal BP. In the Southwestern region, the first gap is between 36,390 to 32,966 

cal BP, and the second gap is between 31,346 and 23,134 cal BP. 

In the Northwestern region, the youngest date of R. tarandus in the model is calibrated at 95.4 

% confidence to 28,371-27,811 cal BP. In the Central and Southwestern regions, the dates 

extend until the cut-off point for the dates included in the model. 

 

Going forwards, as the 95.4 % end boundary estimates are often very large, and in some cases 

unrealistic (such as the end boundaries of P. leo (spelaea) extending into the future), the 68.2 % 

estimate will be used. When discussing individual calibrated dates and gaps in the dates, the 

95.4 % figures will be used. 
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Figure 7.4: Model of radiocarbon dates on C. elaphus specimens across Europe. Dates have been split into regions using overlapping phases. Calibrated values show 

the 68.2 and 95.4 % confidence ranges. Model run using OxCal 4.3 (Bronk Ramsey, 2009) and the IntCal13 calibration curve (Reimer et al., 2013). The NGRIP δ18O 

record (Andersen et al., 2004) is displayed. 
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Figure 7.5: Model of radiocarbon dates on R. tarandus specimens across Europe. Dates have been split into regions using overlapping phases. Calibrated values show 

the 68.2 and 95.4 % confidence ranges. Model run using OxCal 4.3 (Bronk Ramsey, 2009) and the IntCal13 calibration curve (Reimer et al., 2013). The NGRIP δ18O 

record (Andersen et al., 2004) is displayed. 
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7.3 Discussion 

7.3.1 Palaeoenvironmental conditions 

The first potentially important factors for the extirpation of C. crocuta from Europe are the 

palaeoenvironmental conditions, in particular temperature, precipitation and vegetation cover. 

C. crocuta populations today are larger in areas where winter temperatures are warmer, and to 

a lesser extent where summer temperatures are cooler (Section 5.1). It may therefore be 

expected that periods of cold conditions may have negatively impacted C. crocuta populations, 

potentially leading to their extirpation from an area.  

The new C. crocuta chronological model indicates a number of important events in this respect. 

The first of these is the apparent disappearance of the species from the Central region around 

41.3-38.4 ka. This period is covered by Greenland ice core events Greenland Interstadial-10 (GI-

10) to Greenland Stadial-9 (GS-9) (Rasmussen et al., 2014), meaning that the last appearance of 

C. crocuta in the Central region cannot be placed within a cold (stadial) or warm (interstadial) 

period. Similarly, the timing of disappearance from the Northwestern region (35-33.7 ka) spans 

GI-7b, GI-7a, GS-7 and GI-6 (Rasmussen et al., 2014), and thus cannot be placed within a stadial 

or interstadial either. However, C. crocuta may have been affected by the continental climates 

in the Central region, resulting in extreme cold winters, and thus potentially explaining the early 

extirpation from this region. 

The gap in C. crocuta dates (39 to 38.3 ka) suggests a potential absence of C. crocuta across much 

of Europe at this time. This was also noted by Dinnis et al. (2016) for Britain. In southwestern 

France, C. crocuta (as dated from contemporary material) disappeared from the northern part 

of the Aquitaine Basin at this time (Discamps, 2014). This period falls within GS-9, a prolonged 

cold period lasting around 1,680 years, longer than any other stadial since the end of GS-18 at 

59,440 b2k (Rasmussen et al., 2014). It also coincides with Heinrich Stadial (HS) 4, between 40.2 

and 38.3 ka (Sanchez Goñi and Harrison, 2010). 

A previous prolonged, but slightly shorter stadial (GS-13 lasting 1,480 years) occurred between 

48,340-46,860 b2k (Rasmussen et al., 2014). However, this is towards the limit of the 

radiocarbon method and the calibrated radiocarbon ages of this age have large confidence 

intervals (Figure 7.1), making it difficult to assess the response of C. crocuta to this event. 

The modelled end dates of the Southwestern, Southeastern and Southern regions are similar, 

indicating the later persistence of C. crocuta. With dates of 31.7-26.2, 30.9-28.2 and 30.8-28 ka, 

the dates fall within GS-5.2 to GS-3. Within this period, GI-5.1, GI-4 and GI-3 were short, lasting 

only around 240, 300 and 240 years respectively. Meanwhile, the stadials (which seemingly 
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impacted most on C. crocuta) were longer, with GS-5.2 lasting around 1,200 years, GS−5.1 lasting 

1,700 years, GS-4 lasting 820 years, and GS-3 lasting 4,200 years (Rasmussen et al., 2014). HS 3 

also occurred between 32.7-31.3 ka (Sanchez Goñi and Harrison, 2010). 

Overall, there seems to be a temperature relationship with the absence of C. crocuta from much 

of Europe around 39-38.3 ka (GS-9 and HS 4) and the disappearance of C. crocuta from the 

southern regions around 31.7-26.2 ka (GS-5.2 to GS-3 and HS 3). 

Unfortunately, there are limited quantitative palaeotemperature reconstructions from sites in 

which C. crocuta have been found. The largely qualitative palaeotemperature reconstructions 

available for MIS 3 (Table 7.1) range from ‘cold’ and ‘cool’ to ‘temperate’ and ‘warm’ but 

unfortunately, come from sites lacking direct dates on C. crocuta.  

Some of the few quantitative estimations are from Caverne Marie Jeanne, with mean annual 

temperatures ranging from 4.22°C in the 6eme Niveau to 3.35°C in the 4eme Niveau (López-García 

et al., 2017). Mean temperature of the warmest month reconstructed from Levels I-III in Cova 

del Gegant was 20.1±1°C, and mean temperature of the coolest month was 2.6±0.7°C (López-

García et al., 2008). This temperature of the warmest month reconstruction falls below the 

range of those recorded in the sites used in the present-day C. crocuta biomass models (25.1-

35.4°C, Section 5.1 and Spreadsheet 1). The annual temperatures from Caverne Marie Jeanne 

and the coolest month temperature from Cova del Gegant fall towards the lower range of the 

temperature of the coolest month records included in the biomass model (0.3-15.9°C). As 

temperature of the coolest month has a stronger association with C. crocuta biomass than does 

temperature of the warmest month (Section 5.1), this suggests that the populations of C. crocuta 

may have been small in these areas, although the temperatures were likely not beyond those 

tolerated by the species. Unfortunately, there are no dates directly upon C. crocuta from these 

sites, so it is unknown whether these conditions occurred close to the point of C. crocuta 

extirpation from the Northwestern region (in the case of Caverne Marie Jeanne) or the 

Southwestern region (in the case of Cova de Gegant). 

If declining temperature were a direct cause of C. crocuta absence and extirpation, then the 

reasons for this may lie in the species’ lack of consistent body size change in response to 

temperature change. Larger body size may allow for increased heat conservation (Mayr, 1956). 

As discovered in Section 6.1, while some of the largest C. crocuta occurred during MIS 3, there 

was no consistent increase in body mass in this period compared to interglacials. This was 

assumed to have been due to behavioural and dietary adaptations instead. However, this may 

have meant that C. crocuta was unable to conserve enough body heat in the harshest conditions. 
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Table 7.1: Climatic conditions and vegetation reconstructed from assemblages in which C. crocuta were found. All assemblages are MIS 3 of age, with the exception 

of Cova del Gegant, which has been dated to MIS 4-3 (Daura et al., 2010). Radiocarbon dates are the modelled dates on C. crocuta included in Figure 7.1. 

Site Dates (cal BP) Climate 

Dominant 
vegetation 

References 
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en
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ra
ss
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n

d
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en
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ed
 

C
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d

/f
o
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Cave Earth, Kents Cavern, 
Britain 

44,947-42,882 
42,788-41,381 
35,622-34,075 

 x   Bocherens et al. (1995), Bocherens (2014) 

Grange Farm, Britain  Cool, dry climate x   Cooper et al. (2012) 

Lower Cave Earth, Pin Hole, 
Britain 

42,388-41,381  x   
Jacobi et al. (2006), Jacobi and Higham (2011), 
Lewis (2011) 

4eme Niveau, Caverne Marie 
Jeanne, Belgium 

 
Mean annual temperature = 3.35°C.  
Mean annual precipitation = 1018 mm 

 x  
Ballmann et al. (1980), Brace et al. (2012), López-
García et al. (2017) 

5eme Niveau, Caverne Marie 
Jeanne, Belgium 

 
Mean annual temperature = 4.1°C.  
Mean annual precipitation = 1023 mm 

 x  
Ballmann et al. (1980), Brace et al. (2012), López-
García et al. (2017) 

6eme Niveau, Caverne Marie 
Jeanne, Belgium 

 
Mean annual temperature = 4.22°C.  
Mean annual precipitation = 1000 mm 

 x  
Ballmann et al. (1980), Brace et al. (2012), López-
García et al. (2017) 

Höhle Výpustek, Czech 
Republic 

   x  
Liebe, (1879), 
Hofreiter et al. (2004), Rohland et al. (2005) 

Dzeravá skala (Pálffy Cave), 
Slovakia 

   x  Kaminská et al. (2006) 
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Unit T2, Trapeznyi Chamber, 
Bukovynka Cave, Ukraine 

 Relatively warm and dry interstadial  x  Ridush (2009), Gerasimenko et al. (2014) 

Branica II, Serbia  Cold climate x   
Argant and Dimitrijević (2007), Dimitrijević 
(2011), Stuart and Lister (2014) 

Couche 4, Redaka II, Bulgaria  Cold climate (but not Arctic conditions) x   
Fernandez and Guadelli (2008), Guadelli et al. 
(2013), Raynal et al. (2013) 

Couche VI, Secteur II, Temnata, 
Bulgaria 

 Cool climate with some precipitation x   Tsanova (2006)  and references therein 

Couche 4, Secteur I, Temnata, 
Bulgaria 

 Cool and dry climate x   Tsanova (2006) and references therein 

Couche 11a, Bacho Kiro, 
Bulgaria 

 Dry and warming climate    
Kozłowski (1982) cited in Tsanova (2006), 
Tsanova (2006) 

Couche 11, Bacho Kiro, Bulgaria 
 Humid and warming climate    

Kozłowski (1982) cited in Tsanova (2006), 
Tsanova (2006) 

Couche 10, Bacho Kiro, Bulgaria 
 Warming climate    

Kozłowski (1982) cited in Tsanova (2006), 
Tsanova (2006) 

Couche 9, Bacho Kiro, Bulgaria 
 Dry and cold climate    

Kozłowski (1982) cited in Tsanova (2006), 
Tsanova (2006) 

Couche 6c, Bacho Kiro, Bulgaria 
 Dry and cold climate    

Kozłowski (1982) cited in Tsanova (2006), 
Tsanova (2006) 

Couche 6b, Bacho Kiro, Bulgaria 
 Dry climate    

Kozłowski (1982) cited in Tsanova (2006), 
Tsanova (2006) 

Couche 7/6a, Bacho Kiro, 
Bulgaria 

 Dry climate    
Kozłowski (1982) cited in Tsanova (2006), 
Tsanova (2006) 

Unità Stratigrafica 8, Tana delle 
Iena, Italy 

   x  Conti et al. (2012), Gatta et al. (2016) 

SU 11, Area 3, Cava Muracci, 
Italy 

   x  Gatta et al. (2016), Gatta and Rolfo (2017) 

Level 8. Jonzac, France  Temperate climate x   Richards et al. (2008), Bocherens (2015) 
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Cova del Gegant, Spain  

Cooler and wetter than today. Mean 
annual temperature = 10±2.6°C. Mean 
temperature of coolest month = 
2.6±0.7°C. Mean temperature of 
warmest month = 20.1±1°C. Mean 
annual precipitation = 850±150 mm. 

 x  López-García et al. (2008), Daura et al. (2010) 

Chamber X, Level III, Cova de 
les Toixoneres, Spain 

 Humid and temperate climate.  x  López-García et al. (2012), Talamo et al. (2016) 

Chamber X, Level II, Cova de les 
Toixoneres, Spain 

 Drier and cooler climate than Level III.   x  López-García et al. (2012), Talamo et al. (2016) 
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The potential relationship between temperature and C. crocuta absence during MIS 3 may help 

to explain why C. crocuta was absent from Britain during MIS 11 (Schreve, 2001) and possibly 

from the rest of Europe too (Stuart and Lister, 2014). This absence may have been due to the 

preceding MIS 12, one of the most severe glacial periods in Middle and Late Pleistocene 

(Shackleton, 1987). In light of the apparent adverse impact of cold temperatures upon C. crocuta 

populations, MIS 12 may have caused populations to contract far south, meaning that they were 

then unable to recolonise Europe during the following interglacial. Similarly, the absence of C. 

crocuta in Britain during MIS 5a (Turner, 2009) may have been due to the cold conditions of 

preceding MIS 5b (Currant and Jacobi, 2011). 

 

The second potentially important palaeoclimatic variable for C. crocuta extirpation is 

precipitation. Today, C. crocuta abundance is also greatest where precipitation of the driest 

month is greater, i.e. in less arid conditions (Section 5.1). Unfortunately, there are few 

quantitative precipitation records reconstructed from assemblages in which C. crocuta have 

been found. One exception is the mean annual palaeoprecipitation reconstruction from Caverne 

Marie Jeanne, with estimates of 1,018 mm from the 4eme Niveau, 1,023 mm from the 5eme Niveau 

and 1,000 mm from the 6eme Niveau (López-García et al., 2017). However, this does not allow for 

an assessment of whether there were any arid periods during the year. Most of the MIS 3-aged 

assemblages within which C. crocuta has been found (Table 7.1) indicate dry conditions, 

although some indicate wetter or humid climates. The precipitation of the driest month records 

of sites included in the biomass analyses range from 0 to 29 mm (Spreadsheet 1), so although C. 

crocuta can tolerate periods of drought, their populations are smaller (Section 5.1). 

During periods of aridity, C. crocuta will acquire water from fresh carcasses (Cooper, 1990). 

However, water is limited with increasing desiccation and lack of prey may reduce C. crocuta 

populations (Gasaway et al., 1991). The availability of prey will be explored in more detail in 

Section 7.3.2. 

By contrast, precipitation may have had a negative impact upon C. crocuta if it fell as snow, 

which was likely given the cold conditions of MIS 3. C. lupus can successfully hunt ungulates in 

snow cover, even that over 40 cm depth (Bobek et al., 1992; Gula, 2004), and so was likely able 

to cope with any periods of elevated snow cover during MIS 3. However, given that snowfall 

does not appear to be a feature of C. crocuta habitats today, it is unclear whether C. crocuta 

would have struggled in deep snow during MIS 3. 
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A further environmental factor of interest is vegetation. Today, semi-open vegetation cover is 

positively associated with C. crocuta biomass, whereas open vegetation has a negative 

association (Section 5.1). It may be expected that an expansion of open grassland may have 

reduced C. crocuta biomass and led to their extirpation. 

The MIS 3-age assemblages in Table 7.1 all indicate that C. crocuta inhabited landscapes that 

had predominantly open/grassland and semi-open/mixed vegetation cover. Unfortunately, very 

few of those deposits with reconstructed vegetation also yielded C. crocuta dates that were also 

included in the model. Of those that did, Pin Hole yielded one date (42,388-41,381 cal BP), which 

is prior to the extirpation of C. crocuta from much of Europe. Kents Cavern yielded three dates 

(44,947-42,882, 42,788-41,381 and 35,622-34,075 cal BP). If open steppe tundra were present 

(as suggested by Bocherens, 2014) during these three time periods, then vegetation may not 

have influenced the extirpation of C. crocuta as the first two dates are prior to the absence of 

the species from much of Europe. 

Overall, it is difficult to draw conclusions about the influence of local palaeoenvironmental 

conditions upon C. crocuta extirpation because of the limited number of environmental 

reconstructions associated with dated C. crocuta material, and due to limited direct dates on 

material. Future work could involve collating well-dated palaeoenvironmental records from 

nearby sites such as lakes, and tying these to the inferred C. crocuta presence/absence events, 

in addition to improving the chronology of C. crocuta itself. 

 

In contrast to C. crocuta, the final records of P. leo (spelaea) occur much later in the Pleistocene. 

The last dated record is 14,583-14,221 cal BP, with the end boundaries of the Northwestern, 

Central and Southeastern regions suggesting that the species may have persisted beyond this 

date. However, there is a gap in the dates between 28.6 and 15.1 ka, which covers most of the 

Last Glacial Maximum (26.5-19 ka, Clark et al., 2009). If this gap is a true reflection of P. leo 

(spelaea) absence, and not a consequence of sampling bias or lack of preservation under 

extreme conditions, the species may have temporarily disappeared from Europe or become 

restricted to refugia before recolonising, which C. crocuta apparently failed to do. The conditions 

during the Last Glacial Maximum may have been too severe for P. leo (spelaea), thus causing the 

temporary absence of the species from Europe. 

Within the individual regions, P. leo (spelaea) may have been absent prior to the extirpation of 

C. crocuta. The end boundary of the Southeastern region is 35.5-32 ka compared with 

C. crocuta’s end boundary of 31-28.2 ka. In the Northwestern region, although there are only 

three dates, there is a potential absence of P. leo (spelaea) from 39.3 to 15.1 ka, prior to the 
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extirpation of C. crocuta at 35-33.7 ka. Finally, in the Southwestern region, there are again only 

three dates, indicating a potential absence of P. leo (spelaea) between 46.3 and 17 ka, again 

prior to the extirpation of C. crocuta to this region at 31.7-26.2 ka. This pattern might change if 

additional P. leo (spelaea) specimens are dated. However, at present the models suggest that 

P. leo (spelaea) were absent from the Southeastern, Southwestern and Northwestern regions 

long before the final disappearances of C. crocuta. 

In the Central region, there is a different pattern, with two hiatuses in P. leo (spelaea). The earlier 

one is between 41,859 to 32,763 cal BP, a period within which C. crocuta likely disappeared from 

the region. Additionally, both species appear to have been absent from Europe during a similar 

time period, around 39-38.3 ka for C. crocuta and 39.3-38.6 in P. leo (spelaea). 

In contrast to present-day C. crocuta biomass, modern P. leo biomass does not appear to be as 

strongly influenced by environmental conditions (Section 5.1). However, this does not match 

the evidence during the Pleistocene, given that P. leo (spelaea) were absent from three regions 

prior to the extirpation of C. crocuta, and both species were absent from Europe during the cold 

conditions around 39.3-38.3 ka. The reason for the difference between the biomass responses 

of C. crocuta and P. leo in the present-day, and the absence of C. crocuta and P. leo (spelaea) 

during the Pleistocene may actually lie in competition, which will be discussed in Section 7.3.2. 

 

 

7.3.2 Diet and competition 

A further potential cause of extirpation is food availability, which may be influenced by the 

population biomass of prey species and degree of competition for food with other carnivores. 

The findings from Section 5.1 indicate that biomasses of Périquet et al.'s (2015) medium-sized 

prey class (120-400 kg) have the greatest positive influence upon C. crocuta biomass in Africa 

today. This is followed by very small-sized (<20 kg) and small-sized prey (20-120 kg). 

Based on Collinge's (2001) body mass reconstructions of Pleistocene species from Britain, 

C. elaphus would be classed as medium-sized prey. Some smaller E. ferus and larger R. tarandus 

also fall into this size category. None of the species included in Collinge's (2001) study fall into 

the very small-sized prey category, although the smallest weight of C. capreolus was estimated 

to be 20 kg, which is on the border between the very small- and small-sized prey. It may 

therefore be expected that the presence of these species were most important for C. crocuta 

populations during the Pleistocene. 
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Table 7.2 lists the species found in MIS 3-age assemblages that are assumed to have been 

C. crocuta dens. The assemblages included are those that interpreted as C. crocuta dens and 

where the stratigraphic detail is provided as to the level. Also included are likely C. crocuta dens 

that lack stratigraphic information, but with evidence of damage to bones that was likely caused 

by C. crocuta. It is acknowledged that there are limitations to this information. For example, 

where a site was used by more than one carnivore, a species other than C. crocuta may have 

accumulated some of the bones, or a different species may have damaged the bones. 

At least 17 herbivore species were found in the C. crocuta dens listed in Table 7.2. There is direct 

evidence of C. crocuta damage on a number of these, including M. primigenius, C. antiquitatis, 

Equus sp., R. tarandus, C. elaphus, M. giganteus and Bos/Bison. There is also evidence of damage 

to bones of other species, including U. arctos, G. gulo and humans. 

Given the range of species present in Pleistocene assemblages and the range of species for which 

there is direct evidence of consumption, it appears that C. crocuta were generalists in their diet, 

as far as diversity of species targeted. A broad diet of diverse prey is also suggested by dietary 

isotopes of MIS 3 C. crocuta from the Ardennes, Belgium, which targeted most of the prey 

species present (Bocherens et al., 2011; Bocherens, 2015). This flexibility is seen today, with 

C. crocuta preferentially targeting species depending upon their local availability and ease of 

capture (Mills, 1990; Holekamp et al., 1997; Hayward, 2006). This leads to different species 

making up different proportions of C. crocuta’s diet in different areas (see review in Section 

2.3.3). 

Taphonomic and dietary isotopic evidence has pointed to the most important species in 

Pleistocene C. crocuta’s diet in different areas in Europe. For example, the most important 

species for C. crocuta in many sites in Late Pleistocene Italy was C. elaphus (Stiner, 2004). 

Reanalysis of the dietary isotopes of MIS 3-aged fauna from Level 8, Jonzac, France revealed that 

C. crocuta were consuming mostly M. giganteus, Bos/Bison and some Equus sp (Richards et al., 

2008; Bocherens, 2015).  
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Table 7.2: Potential competitors and large potential prey species of C. crocuta. All assemblages are assumed to be accumulations in dens by the authors, or inferred 

from the presence of coprolites, juvenile C. crocuta or carnivore-damaged bones. All assemblages are dated to MIS 3. Domestic species were not included. Where 

there is no indication of a stratigraphic level, only species exhibiting clear C. crocuta damage are listed. Where only the genus is listed, a number indicates how many 

species were present, where known. P = present, including sub-species. p = presence of remains identified to same genus or family. ? = uncertainty about 

identification. A = human presence known only through artefacts or damage to bones. G = specimens gnawed or otherwise damaged, potentially by C. crocuta. I = 

isotopic evidence of consumption of species by C. crocuta. *Some uncertainty over contemporaneity with C. crocuta. 
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Layer A2, Badger Hole, 
Britain 

   P     1      P
? 

  P      Campbell (1977) 

Brixham Cave/Windmill 
Hill, Britain 

   G    G  G              Falconer, (1858), cited in Prestwich, (1873), 
Prestwich (1873), McFarlane et al. (2010) 

Caerwent Quarry, Britain        G                Locke (1970) 

Ffynnon Beuno, Britain        G G G     G  G       Hicks (1885), Aldhouse-Green et al. (2015) 

Grange Farm, Britain      G  G  G              Cooper et al. (2012) 

Goat’s Hole Paviland, 
Britain 

         G              Turner (2000) 

Cave Earth, Kents 
Cavern, Britain 

   G  G  G G G     G  G G G     Wilson (2010) 

Unit 3c, King Arthur’s 
Cave, Britain 

   P   A P 1 P       P       ApSimon et al. (1992) 
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Unit 3d, King Arthur’s 
Cave, Britain 
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* 

  A P 1 P     P  P  p     Currant (n.d.), cited in ApSimon et al. (1992), 
ApSimon et al. (1992) 

Unit 3e, King Arthur’s 
Cave, Britain 

   P   A P 1 P     P  P  p  P   ApSimon et al. (1992) 

Layer 3, Picken’s Hole, 
Britain 

P  P
* 

P
* 

  P P 1 P     P  P P
? 

p     Tratman (1964) 

Lower Cave Earth, Pin 
Hole, Britain 

P  P P   P P 1 G     P   P  P    Busk (1875), Currant and Jacobi (2011) 

Laminated Clay, Priory 
Farm Cave, Britain 

  P P    G 1      P    p     Cowley (1933), Grimes (1933) 

Castlepook Cave, Ireland 

   G
* 

   G       G   G      Ussher, (1906), Scharff et al. (1918), Sutcliffe 
(unpublished data) cited in Woodman et al. 
(1997), Woodman et al. (1997), Stuart and 
Lister (2014) 

4eme Niveau, Caverne 
Marie Jeanne, Belgium 

P 1 P  P   P 1 P     P  P  p   P P Ballmann et al. (1980), Gautier (1980), Brace 
et al. (2012) 

5eme Niveau, Caverne 
Marie Jeanne, Belgium 

       P 1      P       P P Ballmann et al. (1980), Gautier (1980), Brace 
et al. (2012) 

6eme Niveau, Caverne 
Marie Jeanne, Belgium 

  P      1 P    P P  P  p   P  Ballmann et al. (1980), Gautier (1980), Brace 
et al. (2012) 

Unit T2, Trapeznyi 
Chamber, Bukovynka 
Cave, Ukraine 

    P    1 P  P      P P P    Bondar and Ridush (2015) 
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References 

Couche 4, Redaka II, 
Bulgaria 

P 1 P  P  A P
? 

2        P P  P  p  Fernandez and Guadelli (2008), Guadelli et 
al. (2013), Raynal et al. (2013) 

Couche VI, Secteur II, 
Temnata, Bulgaria 

  P    A  2    P P   P p
? 

 p  p P Tsanova (2006) and references therein 

Unità Stratigrafica 8, 
Tana delle Iena, Italy 

  P    A  2
G 

  P  P  P P  G     Conti et al. (2012) 

SU 11, Area 3, Cava 
Muracci, Italy 

  P      1  P P  P  P P  P     Gatta and Rolfo (2017) 

Level J, Les Roches-de-
Villeneuve, France 

P  P P
? 

  G  G           p
G 

   Beauval et al. (2005) 

Lower assemblage, La 
Chauverie, France 

      A  1      P  P  p     Discamps et al. (2012a) 

Upper assemblage, La 
Chauverie, France 

      A  1      P  P  p     Discamps et al. (2012a) 

Couche 6, Gallerie II, La 
Grotte de Bourdette, 
France 

        P      P   p p     Discamps et al. (2012b) 
 

Couche 7, Gallerie II, La 
Grotte de Bourdette, 
France 

  P  P    P p  P   P    p     Discamps et al. (2012b) 
 

Couche 8, Gallerie II, La 
Grotte de Bourdette, 
France 

  P  P   P G   P   P   p p     Discamps et al. (2012b) 
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Despite the frequency with which C. antiquitatis occurred in C. crocuta dens (Table 7.2), and 

therefore its apparent importance as food, there is no clear association between the episodes 

of absence of the species and the absence of C. crocuta in the Northwestern region. The 

chronological model indicates two potential absences of C. antiquitatis from the Northwestern 

region (around 37.6-35.4 and 27.3-16.8 ka), which occur after the apparent brief absence of 

C. crocuta from this region (39.6-38.3 ka), and before and after the extirpation of C. crocuta from 

this region (modelled to be around 35-33.6 ka). The reason for this may lie in the fact that the 

minimum reconstructed body masses of C. antiquitatis from MIS 3 in Britain is 1808±360 kg 

(Collinge, 2001), falling within Périquet et al.'s (2015) very large-size prey class, which has little 

influence upon present-day C. crocuta biomass (Section 5.1), although juvenile C. antiquitatis 

were targeted, as shown in Kents Cavern (Wilson, 2010). So while C. antiquitatis appears to have 

been an important prey as evidenced by the presence of its bones in C. crocuta dens in British 

and Belgian (Northwestern region) assemblages (Table 7.2), the presence of other prey species 

may have prevented the extirpation of C. crocuta during the absence of C. antiquitatis around 

37.6-35.4 ka. However, populations of C. antiquitatis may have been affected by periods of 

increased snow cover during MIS 3, in light of the species’ intolerance of deep snow (Schreve et 

al., 2013), potentially leading to reduced food availability for C. crocuta. Future research on 

dietary isotopes from well-dated deposits in the Northwestern region may help determine when 

C. antiquitatis made up an important proportion of C. crocuta’s diet. 

There is only one date on C. antiquitatis from the Southwestern region and one from the 

Southeastern region, which are both more than 10,000 years prior to the extirpation of C. 

crocuta from these regions. More dates are needed from these regions before a conclusion can 

be drawn about the relationship between the timing of the extirpation of both species. 

In the Central region. C. antiquitatis may have been absent from this region from 40 to 25.5 ka, 

potentially affected by the more continental climate of this region. C. crocuta became extirpated 

around 41.3-38.4 ka. If the actual last occurrence of C. crocuta was towards the younger range 

of this end boundary, this may imply that the absence of an important food source contributed 

to the extirpation of C. crocuta. 

As mentioned, C. elaphus and R. tarandus belong to the prey size classes that are most influential 

in dictating present-day C. crocuta biomass. It may therefore be expected that there is some link 

between the chronology of these species and that of C. crocuta. There is one date on C. elaphus 

material from the Central and Southeastern regions but both pre-date the extirpation of 

C. crocuta from these regions, thereby highlighting the need for additional dating. 
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There is a potential link between C. elaphus and C. crocuta in the Northwestern region. 

C. elaphus was absent from 34.4 to 33.7 ka, while C. crocuta disappeared around 35-33.7 ka. If 

the later estimate of C. crocuta extirpation is true, it may have occurred at the time of C. elaphus 

absence. Interestingly, in Britain, C. elaphus was one of the two species with a body mass that 

increased in line with C. crocuta, although it is difficult to determine whether the covariation 

was causal, or whether both species were responding in a similar way to environmental changes. 

Nevertheless, the trend suggests that C. crocuta were still able to prey upon the large C. elaphus 

during MIS 3 (Section 6.1). This, linked with the importance of medium-sized prey such as C. 

elaphus, and evidence of carnivore damage to the bones of this species from sites such as Kents 

Cavern (Wilson, 2010) and Ffynnon Beuno (Aldhouse-Green et al., 2015), points to the possible 

importance of C. elaphus as a food source in the Northwestern region. Therefore, the absence 

of C. elaphus may have contributed to the extirpation of C. crocuta. A further consideration is 

that in Britain, C. elaphus were already restricted in their range during MIS 3 as they were only 

found in southern Britain (Currant and Jacobi, 2011). This highlights that a potentially important 

food source was not available to more northern populations of C. crocuta, perhaps increasing 

their vulnerability. 

Similarly, in the Southwestern region, C. elaphus were potentially absent between 31.4 and 26.1 

ka. C. crocuta likely became extirpated from this region between 31.7 and 26.2 ka. There is 

evidence of C. elaphus in MIS 3-aged C. crocuta assemblages in this region such as La Chauverie, 

France (Discamps et al., 2012a). In southwestern France from assemblages of MIS 3 age, isotopic 

evidence indicates that important prey species in this area were C. elaphus in addition to 

R. tarandus, Bos/Bison, M. giganteus and E. ferus (Bocherens et al., 2005). 

The final new chronological model was produced on dates of R. tarandus. This species may have 

been absent for a short period in the Northwestern region between 35.5 and 34.7 ka, which is 

similar to the timing of extirpation of C. crocuta in this region (35-33.7 ka). However, the absence 

of R. tarandus was unlikely to have been due to cold conditions, given the northern habitats of 

the species today, some of which are within the Arctic Circle (Gunn, 2016). Remains of 

R. tarandus were present in many C. crocuta assemblages in the Northwestern region, including 

bones that exhibit carnivore damage (Table 7.2). C. crocuta from the Kents Cavern Cave Earth 

displayed a wide range of isotopic values (Bocherens et al., 1995), which the author suggested 

may have been due to some individuals becoming more specialist and relying on a smaller range 

of species, such as R. tarandus, during periods of reduced prey availability. C. crocuta may 

therefore have become extirpated in response to the absence of both R. tarandus and C. elaphus 

in this region. 
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In the Southwestern region, there are two potential periods of absence of R. tarandus, the 

second of which occurred between 31.3 and 23.1 ka. This is around the time of the modelled 

extirpation of C. crocuta from this region (31.7-26.2 ka). As mentioned, R. tarandus was an 

important prey species in southwestern France during MIS 3 (Bocherens et al., 2005). Again, C. 

crocuta may have been responding to the absence of both R. tarandus and C. elaphus in this 

region. By contrast, the periods of absence of R. tarandus from the Central region occur after 

the extirpation of C. crocuta from this region.  

Finally, Discamps (2014) assessed reconstructed prey biomass in southwestern France. As 

mentioned, C. crocuta appear to be largely absent from Europe between 39-38.3, around the 

time that Discamps (2014) found that C. crocuta disappeared from the north of the Aquitaine 

basin, where prey biomass was generally low, coupled with seasonal migrations of R. tarandus 

that resulted in only seasonally available resources. It is unclear at present whether these 

conditions occurred elsewhere in Britain to cause the widespread absence of C. crocuta. 

Migrations of species such as R. tarandus might prohibit occupation of C. crocuta from an area 

if sufficient residential prey were unavailable, although this may be difficult to detect in the 

available records.  

Overall, the extirpation of C. crocuta from the Central region may be in response to the absence 

of C. antiquitatis. The extirpation of C. crocuta from the Northwestern and Southwestern regions 

may be in response to the absence of R. tarandus and C. elaphus. However, since there were 

also cold climate conditions around the time of C. crocuta extirpation from the Southwestern 

region (Section 7.3.1), these may have been a contributing, if not the key, driving factor in C. 

crocuta decline.  

Further radiocarbon dates are needed to clarify the timing of the presence and absence of these 

species, in particular in the Southern and Southeastern regions. 

 

The second potential influence upon food availability is competition. Today, competition has a 

negligible influence upon C. crocuta biomass, which is evidenced through the weak correlation 

with other large carnivore biomasses (Section 5.1). Indeed, while exploitation and interference 

competition exists between C. crocuta and other large carnivores (e.g Kruuk, 1972; Mills, 1990; 

Cooper et al., 1999; Breuer, 2005), there is evidence of environmental partitioning allowing 

multiple carnivores to inhabit the same area. This environmental partitioning may involve the 

carnivores occupying different types of vegetation (e.g. Schaller, 1972, Section 5.1), hunting at 

different times of the day (Schaller, 1972; Hofer, 1998; Mills, 1998; Périquet et al., 2015),  or 

targeting different species or age classes of prey (Mills, 1990; Périquet et al., 2015). 
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Although competition does not appear to influence C. crocuta populations today, this may not 

have been the case during the Pleistocene, since not only were there different species coexisting 

but different environmental conditions may have prevented or disrupted some of the 

environmental partitioning seen today. 

As outlined in Table 7.2, during the Pleistocene there were multiple large carnivores that may 

have competed with C. crocuta for food. Taphonomic evidence and dietary isotopes have shed 

some light upon competition between these species. 

In Late Pleistocene Italy, taphonomic evidence indicated that C. crocuta and hominins had 

similar prey preferences, with C. elaphus as the most important prey. C. crocuta targeted slightly 

more Equus sp. and B. primigenius, and hominins targeted slightly more small ungulates. The 

main difference was with C. lupus, which targeted more C. ibex and C. capreolus in addition to 

smaller species (Stiner, 1992, 2004). However, C. crocuta and C. lupus targeted mostly the oldest 

and youngest prey individuals whereas hominins preyed on prime-aged adults (Stiner, 2004).  

There were also similarities in the diets of C. crocuta and H. neanderthalensis during MIS 4 and 

3 in France, with both species consuming bovids, equids and cervids. However, H. 

neanderthalensis consumed more cervids. C. crocuta consumed more bovids and equids, and a 

more diverse range of fauna, including other carnivores (Dusseldorp, 2013a). A similar pattern 

was seen in Level 8 at Jonzac, France with C. crocuta and H. neanderthalensis both consuming 

Bos/Bison and E. caballus, although C. crocuta preferentially targeted M. giganteus (Richards et 

al., 2008; Bocherens, 2014). Similarly, in MIS 3-aged assemblages from Les Rochers-de-

Villeneuve, bones of Bison sp. and Equus sp. exhibited damage caused by both C. crocuta and 

H. neanderthalensis, indicating competition (Beauval et al., 2005). Again, dietary isotopes 

indicated that in southwestern France during MIS 3, C. crocuta and H. neanderthalensis 

consumed similar amounts of Bos/Bison, M. giganteus, C. elaphus and E. ferus. More R. tarandus 

was consumed by C. crocuta, whereas more C. antiquitatis and M. primigenius were consumed 

by H. neanderthalensis (Bocherens et al., 2005). 

By contrast, Naito et al. (2016) analysed dietary isotopes of fauna from Spy Cave (Belgium), 

finding similarities between C. lupus and H. neanderthalensis, and differences between H. 

neanderthalensis and C. crocuta. One H. neanderthalensis individual did not preferentially 

consume any herbivore species, while the other individual relied most heavily upon R. tarandus, 

E. caballus and Bovidae sp. The diet of H. neanderthalensis was supplemented by intake of 

plants. These authors suggested that the different isotopic signature of C. crocuta may have 

been due to the consumption of juvenile herbivores, other carnivores, or of different parts of 
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the carcass in comparison to Neanderthals. Whatever the reason, Naito et al. (2016) concluded 

that C. crocuta and H neanderthalensis were not competing for food. 

Yeakel et al. (2013) calculated the degree of dietary specialisation of predators in the Ardennes 

(Belgium) and Swabian Jura (Germany) during MIS 3 from dietary isotopes. In the Ardennes, 

C. crocuta consumed a wider range of prey species than both C. lupus and H. neanderthalensis. 

By contrast, in the Swabian Jura, H. neanderthalensis consumed a wider range of prey species 

than C. crocuta.  

C. crocuta and P. leo (spelaea) from MIS 3-aged assemblages Ziegeleigrube Coenen, Germany 

exhibited separate niches, exhibited by dietary isotopes (Wißing et al., 2015). This separation of 

C. crocuta and P. leo (spelaea) was also observed in the Belgian Ardennes, while the diets of 

G. gulo, P. pardus and some U. arctos overlapped with those of C. crocuta. While C. crocuta likely 

consumed most of the prey species present, C. lupus relied upon R. rupicapra, C. elaphus and 

M. giganteus due to being outcompeted by C. crocuta for other prey species such as 

M. primigenius, C. antiquitatis and E. ferus. Likewise, P. leo (spelaea) were apparently restricted 

to R. tarandus and Ursus sp. cubs. The only P. spelaea individual with values overlapping those 

of C. crocuta post-dated the extirpation of C. crocuta from Europe, suggesting that C. crocuta 

had previously outcompeted P. spelaea (Bocherens et al., 2011; Yeakel et al., 2013; Bocherens, 

2015). The reliance of P. leo (spelaea) on R. tarandus and bear cubs when C. crocuta was present 

was also observed in the Swabian Jura, Germany (Bocherens et al., 2011).  

P. leo (spelaea) may have been solitary hunters, based on a review of P. leo (spelaea) dietary 

isotopes, which indicated each individual was consuming different prey, rather than all P. leo 

(spelaea) exhibiting similar isotopic values (Bocherens et al., 2011). If P. leo (spelaea) were 

indeed solitary hunters, large groups of C. crocuta may have easily outcompeted them, 

explaining the different diets of both species outlined above. In contrast, the large size of adult 

U. arctos may have tempered competition from C. crocuta, while P. pardus may have cached 

their food to safeguard it from C. crocuta (Bocherens et al., 2011).  

The lack of competition of between C. crocuta and P. leo (spelaea) is also indicated by the timing 

of the presence of both species. In the Southeastern region, P. leo (spelaea) disappeared earlier 

than C. crocuta. Additionally, P. leo (spelaea) were apparently absent from the Northwestern 

and Southwestern prior to the extirpation of C. crocuta. Unless these dates do not cover the 

entirety of P. leo (spelaea) occupation, it is likely that lions did not outcompete C. crocuta and 

contribute to its extirpation. The exception is the Central region, where C. crocuta became 

extirpated while P. leo (spelaea) persisted, although P. leo (spelaea) may have been absent for 

a short period around the time of C. crocuta’s extirpation. However, as mentioned, P. leo 



7. Extirpation of Crocuta crocuta from Europe 
 

- 423 - 
 

(spelaea) were out-competed by C. crocuta in the Swabian Jura in the Central region during MIS 

3 (Bocherens et al., 2011). 

The above evidence suggests that there was some competition between H. neanderthalensis 

and C. crocuta for food. Except for uncertainties with dates from southern Iberia, the last 

H. neanderthalensis in Europe were around 41-39 ka (Higham et al., 2014). This is prior to the 

extirpation of C. crocuta from Northwestern, Southwestern, Southeastern and Southern Europe, 

meaning that competition with H. neanderthalensis would not have contributed to their 

extirpation from these areas. The youngest H. neanderthalensis date does overlap with the 

absence of C. crocuta from much of Europe, and the extirpation of C. crocuta from the Central 

region. The dates therefore do not preclude competition with H. neanderthalensis as 

contributing to these two C. crocuta events. 

Overall, the evidence suggests that there was limited competition for food between C. crocuta 

and C. lupus. Some competition occurred between C. crocuta and U. arctos, G. gulo and P. 

pardus. However, today, C. crocuta will often out-compete P. pardus in direct competitive 

interactions (Mills, 1990). When G. gulo consumes ungulates, it usually does so by scavenging 

(Abramov, 2016). Today, C. crocuta is the dominant species in direct competitive interaction 

with another frequent scavenger, P. brunnea (Mills, 1990). This suggests that P. pardus and G. 

gulo likely did not outcompete C. crocuta for food. Therefore, unless prey became increasingly 

scarce towards the times of C. crocuta extirpation, it appears unlikely that C. crocuta populations 

were limited by the presence of other carnivores.  

The final species of interest is modern humans. The first arrival of modern humans in Italy and 

Greece was just before 45 ka (Douka et al., 2014), prior to the extirpation of C. crocuta from any 

of the regions. The first evidence of modern humans in Britain is dated to 42,350-40,760 cal BP 

(Higham et al., 2011; Proctor et al., 2017), prior to the extirpation of C. crocuta from the 

Northwestern region (35-33.7 ka). This means that the arrival of modern humans did not 

immediately cause the extirpation of C. crocuta. However, it is difficult to assess the size of 

populations of both species and the relationship between them. Unfortunately, there are also 

no isotopic studies comparing the species consumed by C. crocuta and modern humans. 

Improved knowledge would come both from further dating and from further isotopic and 

taphonomic studies. This would allow an assessment of competition in a greater area of Europe 

and an evaluation of whether competition increased as certain herbivores became scarcer in 

different regions. 
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The assessment of bone consumption in this thesis has highlighted periods of increase in this 

behaviour. While this cannot shed light on whether prey biomass was low or competition was 

high, it does point to periods of low food availability. The craniodental morphometrics (Section 

6.2) indicate that C. crocuta in Britain, Belgium (Northwestern region of Europe), Austria and the 

Czech Republic (Central region of Europe) had greater ability to consume bone during MIS 3 than 

C. crocuta in Britain during MIS 5e and 5c. This is supported by the frequency of broken 

premolars (Section 6.4); with one exception, all assemblages with elevated levels of broken 

premolars are of MIS 3 age. Some MIS 3-aged assemblages had lower proportions of broken 

premolars, suggesting that there were both periods of increased food stress and periods when 

there was sufficient food. Unfortunately, dating resolution is not sufficient to determine the 

climatic conditions that occurred during these periods of food stress, e.g. stadials/interstadials, 

or periods when prey species were absent or seasonally unavailable. 

Similarly, dating resolution is not currently sufficient to determine whether these periods of 

elevated bone consumption occurred towards the end of C. crocuta presence in the 

Northwestern and Central regions, nor whether they can be linked to the absence of C. crocuta 

from most of Europe around 39-38.3 ka. If the periods of food stress occurred during these 

events in the C. crocuta chronology, this may link to the absence of R. tarandus and C. elaphus 

from the Northwestern region, and the absence of C. antiquitatis from the Central region. 

Food stress may be linked to a lack of water during periods of aridity, as discussed above. Indeed, 

the Mammoth Steppe, which was present over much of Europe during the last glacial, occurred 

in arid conditions (Guthrie, 2001). Lower food availability would also mean fewer opportunities 

for the C. crocuta to obtain water from carcasses. 

Further dating of the assemblages included in the tooth breakage study (Section 6.4) would help 

link the record of tooth breakage to the chronologies of C. crocuta and its prey, and to 

precipitation records. Particularly beneficial would be to date the broken teeth themselves. 

 

7.3.3 Competition for shelter 

The final factor to consider is competition for shelter, which may have been important during 

the harsher climatic periods of MIS 3. Today, dens are used by C. crocuta for sheltering the 

young, with a female and her cubs residing in natal dens (Boydston et al., 2006), and older cubs 

inhabiting communal dens (East et al., 1989; Holekamp and Smale, 1998), although the entrance 

to dens and hollows in the ground may be used to shelter adults during the day (Henschel et al., 

1979; Korb, 2000). During the Pleistocene, periods of colder climate conditions may have 

necessitated the use of dens as shelter for both adults and cubs. There is abundant evidence of 
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this across Europe, with remains of cubs, juveniles, prime-aged adults and old-aged adults found 

within caves (Diedrich, 2011a). This is further illustrated by the age profiles of the cave 

assemblages (Section 6.3), many yielding young, prime-aged and old adult C. crocuta.  

Many caves were also used by other predators, leading to the potential for competition for 

shelter. This is indicated in Table 7.3, with some sites showing evidence of occupation by 

U. spelaeus, C. lupus, P. leo (spelaea) and humans, in addition to C. crocuta. At Cova de les 

Toixoneres, there is even evidence that C. crocuta may have inhabited in the interior of the cave 

at the same time as H. neanderthalensis occupied the front of the cave (Talamo et al. 2016). 

Except for Cova de les Toixoneres, limitations of chronological resolution usually prevent 

assessment of the time between occupations of different species. This is illustrated by the 

occupations of sites by both C. crocuta and H. neanderthalensis in southwestern France 

(Discamps et al., 2012a, and references therein). However, Discamps et al. (2012a) suggested 

that in light of the apparent abundance of C. crocuta and H. neanderthalensis in southwestern 

France, both species likely competed for the use of caves. However, given that 

H. neanderthalensis disappeared from Europe around 41-39 ka (Higham et al., 2014), 

competition for shelter with this species would not have prompted the later extirpation of 

C. crocuta from the Southwestern region. 

As with the competition for food discussed above, it is unlikely that competition for shelter with 

P. leo (spelaea) was the cause of C. crocuta extirpation as the former species was absent prior 

to C. crocuta extirpation. The potential exception for this is the Central region.  

In Serbia, there are very few known C. crocuta dens. Some caves had been occupied by humans, 

and many by Ursus sp. (Dimitrijević, 2011; Cvetković and Dimitrijević, 2014). As mentioned, 

C. crocuta became extirpated from the Southeastern region during a long period of cold 

conditions. If C. crocuta were outcompeted by Ursus sp. and humans for shelter, this may have 

contributed to its extirpation from this region. 

Overall, competition for cave sites may have contributed to the extirpation of C. crocuta from 

Europe, particularly during the colder climatic conditions around the time of its final 

occurrences. Again, further dating of C. crocuta and other cave users could allow a better idea 

of the temporal separation of different occupations of caves. 
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Table 7.3: Cave sites used by C. crocuta and another species. All sites are dated to MIS 3. 

Site Use of cave References 

Höhle Výpustek, Czech 
Republic 

C. crocuta and U. spelaeus 
den 

Liebe (1879), 
Hofreiter et al. (2004), 
Rohland et al. (2005) 

Couche 4, Redaka II, Bulgaria 
Use of cave by C. crocuta, V. 
vulpes and Homo sp. 

Fernandez and Guadelli 
(2008), Guadelli et al. (2013), 
Raynal et al. (2013) 

Couche VI, Secteur II, 
Temnata, Bulgaria 

Accumulation of assemblage 
by C. crocuta and H. 
neanderthalensis 

Tsanova (2006) and 
references therein 

Unità Stratigrafica 8, Tana 
delle Iena, Italy 

Used by C. crocuta, C. lupus, 
V. vulpes and humans 

Conti et al. (2012), Gatta et 
al. (2016) 

Level J, Rochers-de-
Villeneuve, France 

Occupied by C. crocuta and H. 
neanderthalensis, with a 
short period of time between 
occupations 

Beauval et al. (2005) 
 

La Grotte de Bourdette, 
France 

Occupied by C. crocuta and 
U. spelaeus 

Discamps et al. (2012b). 

Chamber X, Level III, Cova de 
les Toixoneres, Spain 

C. crocuta occupied the 
interior of the cave 
(Chamber Y, Level 1) during 
approximately the same 
period that H. 
neanderthalensis occupied 
the front of the cave 
(Chamber X, Level III) 

Talamo et al. (2016) 

 

 

 

7.4 Conclusion 

This chapter has presented new chronological models for C. crocuta, its competitor (P. leo 

(spelaea)) and three prey species (C. antiquitatis, C. elaphus and R. tarandus) in Europe during 

MIS 3. 

The extirpation of C. crocuta from the Central region of Europe around 41.3-38.3 ka is too broad 

an estimate to attribute to a single stadial or interstadial period. However, the cold, continental 

nature of the climate may have contributed to the disappearance of C. crocuta from the region. 

The event may be linked to an absence of C. antiquitatis (a species often found in C. crocuta 

dens) from this region.  

The second event noted is the potential absence of C. crocuta from much of Europe around 39-

38.3 ka, which occurred during a prolonged stadial. This may also have been linked to low prey 
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biomass and seasonal availability of R. tarandus, as suggested by (Discamps, 2014) for southwest 

France. 

C. crocuta became extirpated from the Northwestern region around 35-33.7 ka, potentially 

linked to the absence of R. tarandus and C. elaphus. 

Finally, C. crocuta became extirpated from the Southwestern, Southern and Southeastern 

regions at around the same time (31.7-26.2 ka). This occurred during a period of stadials and 

short interstadials, which may have been exacerbated in the Southeastern region by 

competition for shelter with bears and humans. Absences of R. tarandus and C. elaphus may 

also have contributed to the extirpation of C. crocuta from the Southwestern region. 

In the light of these new chronological models, this chapter has therefore presented some 

suggestions regarding the reasons for C. crocuta extirpation from Europe. Further dating is 

needed to assess more confidently the links between C. crocuta extirpation and P. leo (spelaea) 

presence, prey presence in Southeastern and Southern regions, periods of limited food 

availability, and competition for dens. Additionally, the C. crocuta chronological model should 

be compared with well-dated regional palaeoenvironmental records to assess further the 

influences of temperature, precipitation (particularly periods of aridity) and vegetation cover. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8. Conclusion 
 

- 428 - 
 

8 Conclusion 

 

8.1 Overview 

C. crocuta first appeared in Europe from around 850 to 780 ka (Garcia and Arsuaga, 2001). They 

eventually became widespread across Eurasia, particularly during the Late Pleistocene (when 

they are frequently the dominant carnivore in terms of numbers of remains), and were present 

during both warm and cold climatic periods (e.g. Currant and Jacobi, 2011) until their eventual 

extirpation around 31.7-26.2 ka. 

This thesis set out to determine how the body size, morphology and palaeodiet responses of 

C. crocuta varied in response to Pleistocene environmental changes in Europe, as well as 

examining the possible causes of the extirpation of C. crocuta from Europe. This was paired with 

a study on the influence of climate, vegetation cover, food availability and competition upon 

present-day C. crocuta biomass, body size and morphometrics. The study of modern C. crocuta 

also highlighted any influences of age and sex on body size, morphometrics and tooth breakage 

to inform analytical methods and interpretation of the Pleistocene data. 

The aims were as follows: 

• To assess the body mass and morphometric responses of C. crocuta to Pleistocene 

environmental changes in Europe 

• To assess the palaeodiet of C. crocuta from Pleistocene Europe, with a particular focus 

on bone consumption and frequency of predation versus scavenging 

• To reassess the timing and potential reasons for the extirpation of C. crocuta from 

Europe 

The present study expanded upon previous investigations of body mass and morphometrics of 

C. crocuta in Britain (Turner, 1981; Collinge, 2001) by increasing the temporal and spatial range 

of sites and including additional methods such as reconstructing mandibular bending strength 

and bite force, and the creation of a new model for reconstructing Pleistocene body mass. Fossil 

C. crocuta was therefore assessed across much of its chronological occupation of Britain, from 

the early Middle Pleistocene to MIS 3. In addition, the present study encompassed Late 

Pleistocene C. crocuta from Austria, Belgium, the Czech Republic, Ireland, Italy, Serbia and Spain 

in order to provide a more robust dataset for investigating any spatially distinctive trends. 
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8.2 Body size and morphometrics 

The investigation of body size and morphometrics began with an assessment of present-day 

C. crocuta. This indicated that many cranial features measured were not fully grown in C. crocuta 

with P3/p3 wear stage III (the youngest age group considered in the study). This necessitated 

the exclusion of cranial measurements of individuals with wear stage III from future analyses. 

Additionally, some features continue growing through the life of an individual. This meant that 

prior to analysing the Pleistocene material, the data pertaining to these features were split into 

their different age classes. This was important to avoid mistaking an influence of ontogenetic 

age for an influence of environmental change. 

Further assessment was undertaken on SSD in modern C. crocuta. This demonstrated that while 

there was predominantly female-dominated SSD in modern C. crocuta body masses, the degree 

of SSD is lower than other carnivores such as P. leo. For most of the craniodental and post-cranial 

measurements, there was no consistent direction in SSD. Furthermore, there were no 

environmental correlates with the degree of SSD, thus suggesting that the degree of SSD would 

not increase with changes in environmental conditions during the Pleistocene. Together, these 

observations indicated that the relative proportion of males and females in a Pleistocene 

assemblage should not influence the average body mass or morphometric measurement values. 

The results of the ontogeny and SSD investigations demonstrate the importance of assessing 

these characteristics in present-day individuals prior to an investigation of any Pleistocene 

material. 

An assessment was made into the environmental influences upon craniodental and post-cranial 

measurements. Most measurements showed poor relationships with environmental variables. 

Two measurements (condylobasal length and length between the c-m1 alveoli) demonstrated 

similar signals, and further investigation determined that these measurements likely gave a 

robust indication of overall body size.  

The investigation into Pleistocene C. crocuta began with a variation of the traditional method of 

reconstructing Pleistocene C. crocuta body masses. This method regressed average body masses 

of present-day C. crocuta from locations in Africa against average m1 lengths sourced close to 

the body mass study sites. The statistical results of this model indicated that the relationship 

between body mass and m1 length was significant and that the model was therefore suitable 

for reconstruction of Pleistocene body masses.  

Pleistocene C. crocuta body masses were not consistently larger or smaller in either periods of 

cold or warm climate, nor was there any pattern observed with vegetation. This pattern was 

checked against the craniodental measurements, in particular those demonstrating body size 
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(condylobasal length and length between the c-m1 alveoli), which also showed overlaps in 

values between warm and cold periods.  

The lack of consistent response in body mass and many of the morphometrics is in contrast to 

other carnivores, which exhibited size differences during the Pleistocene. C. lupus was 

particularly large during MIS 5a due to cold conditions and the absence of competition, whereas 

during MIS 3, the presence of competitors forced C. lupus to subsist on smaller prey resulting in 

body mass decrease (Flower and Schreve, 2014; Flower, 2016). P. leo (spelaea) was smaller in 

MIS 5e than MIS 3, due to the forested environment during MIS 5e leading to sub-optimal 

foraging and subsistence on smaller prey (Collinge, 2001). Finally, U. arctos was largest in MIS 

5a, medium-sized in MIS 6, 5e, 5c and 3, and smallest during MIS 9 and 7. The larger sizes during 

MIS 6, 5a and 3 may have been due a reduction in plant biomass and resultant switch to a more 

carnivorous diet. No explanation was given for the medium-sized forms in MIS 5e and 5c 

(Collinge, 2001). 

The lack of body size change in C. crocuta may have been due to behavioural responses, in 

particular fully consuming carcasses including the bones, which occurs today when there is low 

food availability (Kruuk, 1972). Additionally, C. crocuta out-competed other species such as P. 

leo (spelaea) and C. lupus (Bocherens et al., 2011; Yeakel et al., 2013; Flower and Schreve, 2014; 

Bocherens, 2015; Flower, 2016), and thus was not forced to subsist on smaller prey species, 

which may otherwise have resulted in body size change. 

The exception to the lack of consistent body size change is the small size of C. crocuta from San 

Teodoro Cave in Sicily, indicating conformation to the Island Rule. Once Sicily was isolated from 

mainland Italy between 40 and 27 ka (Antonioli et al., 2015), C. crocuta likely became smaller 

relative to mainland populations, likely a result of subsisting upon dwarf species on the island.  

 

8.3 Palaeodiet 

The investigation into the palaeodiet of C. crocuta focused on bone consumption and predation 

behaviour. A number of lines of evidence were used to interpret palaeodiet, including 

craniodental morphology, post-cranial morphology, body mass and tooth breakage. 

Some of the craniodental morphometrics were used in the calculation of two mechanical 

principles. Mandibular bending strength was calculated by modelling the mandible as a beam, 

while bite force was measured through calculating the mechanical advantage of the mandible 

from the ratios of the in-lever and out-lever arms. When these principles had been previously 

applied to C. crocuta, it was usually in interspecific studies and using modern populations to 
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examine bending strength (Radinsky, 1981b; Van Valkenburgh and Ruff, 1987; Biknevicius and 

Ruff, 1992; Therrien, 2005; Ferretti, 2007; Meloro et al., 2008; Palmqvist et al., 2011). This was 

therefore the first study to attempt to assess changes in fossil C. crocuta mandible bending 

strength and bite force in this way. 

Prior to assessing Pleistocene tooth breakage, the frequency of tooth breakage was assessed in 

modern C. crocuta. This was coupled with an assessment of tooth loss, which may occur through 

breakage of teeth (Losey et al., 2014). Tooth loss overall made up a small proportion of the total 

teeth in modern populations. As jaws are often fragmented and thus loss of teeth cannot be 

identified in Pleistocene populations, the results indicated that missing lost teeth should not 

influence the overall assessment of bone consumption in Pleistocene assemblages. 

Reconstructed C. crocuta body masses from Britain were correlated with those of potential 

predators and with potential prey species. Most importantly, correlations were observed with 

C. elaphus and Rhinocerotidae (S. hemitoechus and C. antiquitatis), with C. crocuta body masses 

increasing in line with these herbivores. This suggested that even though these prey individuals 

became larger in MIS 3, C. crocuta were still able to predate them, although in the case of 

Rhinocerotidae, the focus would have likely been juveniles. This was supported by the 

morphometric results, which indicated that C. crocuta in Britain may have been targeting larger 

prey during MIS 3, relative to MIS 5e and 5c. 

The morphometric results also indicated that in Britain, C. crocuta were more cursorial and 

capable of locomotion at higher speeds during the temperate periods of MIS 5e (Last 

Interglacial) and 5c (Early Devensian interstadial) than during MIS 3 (Middle Devensian). This 

potentially indicates that C. crocuta in MIS 5e and 5c were engaged in more frequent predation 

than scavenging (relative to frequency of scavenging). This apparent reliance on scavenged food 

by MIS 3-aged C. crocuta may have been disadvantageous as scavenged food is an unreliable 

food source, which contains less energy, nutrients and water than fresh kills (Cooper et al., 

1999). 

During MIS 3, bone consumption was more frequent, as indicated by the craniodental 

morphometrics and tooth breakage data. This suggested that there may have been periods of 

food stress. Frozen carcasses may also have been consumed during MIS 3, which may have been 

an important food source in times of harsher conditions. 
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8.4 Extirpation 

The assessment of the extirpation of C. crocuta from Europe focussed on three main areas: 

environment (temperature, precipitation and vegetation), palaeodiet (prey presence, 

competition, food stress and scavenging frequency) and the use of caves for shelter.  

First, an investigation was made into the environmental influences upon present-day C. crocuta 

population biomasses. This was compared with that of an important competitor, P. leo, and 

concluded that P. leo biomass is less influenced by environmental conditions. By contrast, 

C. crocuta biomass is greatest in areas with greater biomass of very small-, small- and medium-

size prey, warmer winters and cooler summers, lack of arid conditions, and greater areas of 

semi-open vegetation cover. Moreover, competition seems to have a negligible influence upon 

C. crocuta biomass.  

A new chronological model was constructed of C. crocuta, using quality-controlled published 

radiocarbon dates from MIS 3. Further models were also constructed of a potential competitor 

(P. leo (spelaea)) and three prey species (C. antiquitatis, C. elaphus and R. tarandus). The age 

models invoked a more stringent selection criteria of radiocarbon dates than in previously 

published studies of C. crocuta, P. leo (spelaea) and C. antiquitatis (Stuart and Lister, 2011, 2012, 

2014). In addition, a new calibration curve, IntCal13 (Reimer et al., 2013) was used in the models. 

In addition, as the youngest dates in a region may not be the final appearance of a species in a 

region, end boundaries were modelled for those species that are totally extinct or locally extinct 

from Europe. 

The first event identified was the extirpation of C. crocuta from the Central region of Europe 

around 41.3-38.4 ka, which spans GI−10 to GS-9. Without tighter chronological control, C. 

crocuta disappearance cannot be attributed to either a stadial or interstadial. However, the 

continental climates in this region may have resulted in extreme cold winters, which may have 

impacted upon C. crocuta populations. Equally, this event may have been in response to the 

apparent absence of C. antiquitatis, a key prey species, from this region, although the 

radiocarbon models suggest that R. tarandus and C. elaphus were both still present in the region 

when C. crocuta disappeared. The combination of cold winters and C. antiquitatis absence may 

therefore have led to C. crocuta extirpation from the Central region.  

Of particular note is the potential absence of C. crocuta across much of Europe from 39 to 38.3 

ka, which may be attributed to the extreme cold conditions during GS-9 and HS 4. This may have 

been exacerbated by low prey biomass and seasonal migrations of R. tarandus, thereby limiting 

resources. 
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The extirpation of C. crocuta from the Northwestern region occurred around 35-33.7 ka. This 

period spans both stadials and interstadials and again, the chronological resolution is insufficient 

to pinpoint a single climatic period. However, additional information comes from the 

contemporary prey species. C. crocuta extirpation from the Northwestern region may have been 

in response to the absence of C. elaphus and R. tarandus. 

The extirpation of C. crocuta from the Southwestern, Southern and Southeastern regions 

occurred around 31.7-26.2 ka, which corresponds with an intense period of short interstadials 

and long stadials (GS-5.2 to GS-3) and H-3. C. crocuta from the Southwestern region may also 

have been negatively impacted by an absence of C. elaphus and R. tarandus, although there was 

insufficient records of dated prey remains from the Southern and Southeastern regions to 

examine whether C. crocuta in these regions might have been similarly affected. Competition 

for shelter may nevertheless have played a significant role, with C. crocuta in the Southeastern 

region potentially influenced by competition for shelter with humans and bears. 

In summary, the new chronological models of the presence and absence of C. crocuta and key 

prey species have advanced our knowledge both of apparent gaps in the records and of final 

known appearances. Nevertheless, there remains significant challenges in establishing whether 

climate or prey availability is the main driver or whether (perhaps more likely), both played a 

significant contributing factor. 

 

8.5 Limitations 

One of the major limitations of the study was the lack of chronological resolution for most of 

the assemblages. While this is of less significant when comparing the broad pattern across 

different interglacials, this was particularly problematic for MIS 3, which was characterised by 

multiple episodes of rapidly fluctuating temperatures. Many of the assemblages could only be 

given a broad MIS 3 attribution and even when reliable, quality-controlled radiocarbon dates 

were available, the current resolution does not always allow for identification of an individual 

interstadial or stadial. As a result, the lack of resolution is currently masking potential responses 

in C. crocuta morphology and diets to abrupt climatic changes. 

Resolution was also limiting in the development of the new chronological models of C. crocuta, 

P. leo (spelaea), C. antiquitatis, C. elaphus and R. tarandus. For C. crocuta, there were large areas 

of Europe with no or very few dates, such as the Iberian Peninsula, Poland and Italy. For P. leo 

(spelaea), there are a lack of dates from the Northwestern region, particularly France and 

Britain. For the prey species, the main areas lacking dates are the Southern and Southeastern 

regions. 
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A further limitation of the study is that there is a lack of detailed, quantitative 

palaeoenvironmental reconstructions for sites in which C. crocuta were found. In particular, 

quantitative records of temperature and precipitation (although difficult to produce) are absent. 

This is unfortunate as C. crocuta biomass records appeared to be influenced by these climatic 

variables today. 

There was a clear collecting and taphonomic bias towards skulls and dental remains, resulting in 

limited post-cranial material of modern and Pleistocene C. crocuta respectively. This meant that 

the changes seen in post-crania with ontogeny, and the manifestation of SSD could not be 

adequately explored. Furthermore, the post-cranial indices, useful in providing predation 

information, were based on small sample sizes, and data from the same Marine Oxygen Isotope 

Stage had to be pooled, in order to improve sample size, thereby concealing the potential effects 

of any short-term fluctuations in climate. 

A further limitation is the use of the vegetation data in the analyses of present-day C. crocuta. 

These data were collected between 1981 and 1994 (Hansen et al., 1998, 2000), and did not take 

in to account the fact that the vegetation may have changed in some areas. Nevertheless, it 

provided a standardised classification that could be applied throughout the whole dataset. 

 

8.6 Further study 

An important area for further study is to date more C. crocuta specimens. This would aid in 

interpretation of the morphological and dietary patterns seen in MIS 3, particularly whether 

C. crocuta were responding to stadial/interstadial climatic fluctuations, as well as allowing an 

assessment of whether body size and diet change around the time of the species’ extirpation 

from Europe. Dates on the m1s used in the body mass reconstructions would be particularly 

beneficial. Dates could also be taken from broken C. crocuta premolars, in order to understand 

better the temporal patterns in food availability. 

Additional dates on C. crocuta would strengthen the chronological model. As stated, there are 

large areas of Europe that have few or no radiocarbon dates and obtaining new dated material 

from the Iberian Peninsula, France and Germany should be a target for further research. As C. 

crocuta appeared to retreat towards the south of Europe during MIS 3, dates should also focus 

on Italy and Greece. Dates of P. leo (spelaea) should focus on the Northwestern region. 

Moreover, additional dates of C. antiquitatis, C. elaphus and R. tarandus are needed, particularly 

to underpin the Southeastern and Southern regions of the models. 
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Further dates on other species that occupied cave sites would also be beneficial. This would 

improve the understanding of competition for shelter during MIS 3.  

Due to few palaeoenvironmental records constructed from C. crocuta assemblages, comparison 

of long palaeoenvironmental records with robust chronologies, such as those from lakes, could 

be compared with the C. crocuta chronological model. This could strengthen the relationship 

between C. crocuta absences and temperature, precipitation and aridity and vegetation cover. 

Further study could also incorporate additional analyses of palaeodiet. In the present study, the 

palaeodietary information largely focussed on bone breakage. This could be supplemented by 

dental microwear analyses. This technique allows differentiation of types of food consumed by 

individuals, including meat and bone (Van Valkenburgh et al., 1990; Solounias and Semprebon, 

2002; Bastl et al., 2012), which are of particular relevance to C. crocuta. This can therefore 

highlight elevated levels of bone consumption, and thus dietary stress, which could be coupled 

with the existing tooth breakage, mandibular bending strength and bite force data. 

Additionally, dietary isotope analysis could be carried out to supplement those already 

published. Dietary isotopes can indicate the relative importance of different prey species in the 

diet of C. crocuta. Furthermore, if dietary isotopes are also analysed from other carnivores, an 

assessment can be made about competition between these species and C. crocuta. This has been 

carried out on material from sites in Belgium, France and Germany, highlighting diets of C. 

crocuta and those of other carnivores including P. leo (spelaea), C. lupus and H. neanderthalensis 

(e.g. Bocherens et al., 2005; Yeakel et al., 2013; Wißing et al., 2015). The results of additional 

palaeodietary studies on well-dated material could be used to further determine the influence 

of prey species presence and competition on C. crocuta extirpation from Europe. 
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Państwowe Wydawnictwo Naukowe. 

Kruuk, H. (1972) The Spotted Hyena: a study of predation and social behavior. Chicago: The 

University of Chicago. 

Kucera, M. and Malmgren, B. A. (1998) ‘Logratio transformation of compositional data - A 

resolution of the constant sum constraint’, Marine Micropaleontology, 34(1–2), pp. 117–120. 



9. References 
 

- 464 - 
 

Kuhn, B. F. (2012) ‘Bone accumulations of spotted hyaenas (Crocuta crocuta, Erxleben, 1777) 

as indicators of diet and human conflict; Mashatu, Botswana’, International Journal of Ecology, 

2012. 

Kurtén, B. (1956) ‘The Status and Affinities of Hyaena sinensis Owen and Hyaena ultima 

Matsumoto’, American Museum Novitates, (1764), pp. 1–48. 

Kurtén, B. and Werdelin, L. (1988) ‘A review of the genus Chasmaporthetes Hay, 1921 

(Carnivora, Hyaenidae)’, Journal of Vertebrate Paleontology, 8(1), pp. 46–66. 

Lacaille, A. D. and Grimes, W. F. (1955) ‘The prehistory of Caldey, part 1’, Archaeologia 

Cambrensis, 104, pp. 85–165. 

Lacaille, A. D. and Grimes, W. F. (1961) ‘The prehistory of Caldey, part 2’, Archaeologia 

Cambrensis, 110, pp. 30–70. 

Laing, R. (1890) ‘On the bone caves of Cresswell, and discovery of an extinct Pleiocene feline 

(Felis brevirostris) new to Great Britain’, Report of the British Association for the Advancement 

of Science, 59, pp. 582–584. 

Lansing, S. W., Cooper, S. M., Boydston, E. E. and Holekamp, K. E. (2009) ‘Taphonomic and 

zooarchaeological implications of spotted hyena (Crocuta crocuta) bone accumulations in 

Kenya: a modern behavioral ecological approach’, Paleobiology, 35(2), pp. 289–309. 

Laws, E. (1888) The History of Little England Beyond Wales and the Non-Kymric Colony Settled 

in Pembrokeshire. London: George Bell. 

Legendre, S. and Roth, C. (1988) ‘Correlation of carnassial tooth size and body weight in recent 

carnivores (Mammalia)’, Historical Biology, 1, pp. 85–98. 

Lehmann, U. (1966) ‘VI. Die Boviden’, Denkschriften der Akademie der Wissenschaften. Die 

Teufels- oder Fuchsenlucken bei Eggenburg (NÖ), 112, pp. 83–88. 

Lewis, M. D. (2011) ‘Pleistocene hyaena coprolite palynology in Britain: implications for the 

environments of early humans’, in Ashton, N., Lewis, S. G., and Stringer, C. (eds) The Ancient 

Human Occupation of Britain. Amsterdam: Elsevier, pp. 263–278. 

Lewis, M., Pacher, M. and Turner, A. (2010) ‘The larger Carnivora of the West Runton 

Freshwater Bed’, Quaternary International, 228(1–2), pp. 116–135. 

Lewis, S. G., Ashton, N. and Jacobi, R. (2011) ‘Testing human presence during the Last 

Interglacial (MIS 5e): a review of the British evidence’, in Ashton, N., Lewis, S. G., and Stringer, 

C. (eds) The Ancient Human Occupation of Britain. London: Elsevier Science, pp. 125–164. 

Liebe, K. T. (1879) ‘Die fossile Fauna der Höhle Vypustek in Mähren nebst Bemerkungen 



9. References 
 

- 465 - 
 

betreffs einiger Knochenreste aus der Kreuzberghöhle in Krain’, Sitzungsberichte der Akademie 

der Wissenschaften mathematisch-naturwissenschaftliche Klasse, 79, pp. 472–490. 

Lindenfors, P., Gittleman, J. L. and Jones, K. E. (2007) ‘Sexual size dimorphism in mammals’, in 

Fairbairn, D. J., Blanckenhorn, W. U., and Székely, T. (eds) Sex, size and gender roles: 

evolutionary studies of sexual size dimorphism. Oxford: Oxford University Press, pp. 16–26. 

Lindeque, M. (1981) Reproduction in the Spotted Hyaena, Crocuta crocuta (Erxleben). 

University of Pretoria. 

Lister, A. M. (2001) ‘Age profile of mammoths in a Late Pleistocene hyaena den at Kent’s 

Cavern, Devon, England’, in Anthropological papers of the University of Kansas, pp. 35–43. 

Locke, S. (1970) ‘A Late Pleistocene mammal fauna from Caerwent Quarry, Monmouthshire’, 

Proceedings of the Bristol Naturalists’ Society, 32(1), pp. 84–87. 

Lomolino, M. V (1985) ‘Body size of mammals on islands: the Island Rule reexamined’, The 

American naturalist, 125(2), pp. 310–316. 

Lomolino, M. V, Van der Geer, A. A., Lyras, G. A., Palombo, M. R., Sax, D. F. and Rozzi, R. (2013) 

‘Of mice and mammoths: generality and antiquity of the island rule’, Journal of Biogeography, 

40, pp. 1427–1439. 

López-García, J. M., Blain, H. A., Cuenca-Bescós, G. and Arsuaga, J. L. (2008) ‘Chronological, 

environmental, and climatic precisions on the Neanderthal site of the Cova del Gegant (Sitges, 

Barcelona, Spain)’, Journal of Human Evolution, 55, pp. 1151–1155. 

López-García, J. M., Blain, H. A., Burjachs, F., Ballesteros, A., Allué, E., Cuevas-Ruiz, G. E., Rivals, 

F., Blasco, R., Morales, J. I., Hidalgo, A. R., Carbonell, E., Serrat, D. and Rosell, J. (2012) ‘A 

multidisciplinary approach to reconstructing the chronology and environment of southwestern 

European Neanderthals: the contribution of Teixoneres cave (Moià, Barcelona, Spain)’, 

Quaternary Science Reviews, 43, pp. 33–44. 

López-García, J. M., Blain, H.-A., Lozano-Fernández, I., Luzi, E. and Folie, A. (2017) 

‘Environmental and climatic reconstruction of MIS 3 in northwestern Europe using the small-

mammal assemblage from Caverne Marie-Jeanne (Hastière-Lavaux, Belgium)’, 

Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier B.V., 485, pp. 622–631. 

Lorenc, M. (2013) ‘Radiocarbon ages of bones from Vistulian (Weichselian) cave deposits in 

Poland and their stratigraphy’, Acta Geologica Polonica, 63(3), pp. 399–424. 

Lorenzen, E. D. et al. (2011) ‘Species-specific responses of Late Quaternary megafauna to 

climate and humans’, Nature, 479(7373), pp. 359–364. 



9. References 
 

- 466 - 
 

Losey, R. J., Jessup, E., Nomokonova, T. and Sablin, M. (2014) ‘Craniomandibular trauma and 

tooth loss in northern dogs and wolves: Implications for the archaeological study of dog 

husbandry and domestication’, PLoS ONE, 9(6). 

Lovich, J. E. and Gibbons, J. W. (1992) ‘A review of techniques for quantifying sexual size 

dimorphism’, Growth, Development and Aging, 56, pp. 269–281. 

Lucas, P. W. (2015) ‘The masticatory system and its function’, in Irish, J. D. and Scott, G. R. 

(eds) A Companion to Dental Anthropology. Chichester: John Wiley & Sons, pp. 108–119. 

Lucas, P. W. and Peters, C. R. (2007) ‘Function of postcanine tooth crown shape in mammals’, 

in Teaford, M. F., Smith, M. M., and Ferguson, M. W. J. (eds) Development, Function and 

Evolution of Teeth. Cambridge: Cambridge University Press, pp. 282–289. 

Luke, D. A., Tonge, C. H. and Reid, D. J. (1979) ‘Metrical analysis of growth changes in the jaws 

and teeth of normal, protein deficient and calorie deficient pigs’, Journal of Anatomy, 129(3), 

pp. 449–457. 

Lyras, G. A., van der Geer, A. A. E. and Rook, L. (2010) ‘Body size of insular carnivores: evidence 

from the fossil record’, Journal of Biogeography, 37, pp. 1007–1021. 

Macrini, T. E. (2012) ‘Comparative Morphology of the Internal Nasal Skeleton of Adult 

Marsupials Based on X-ray Computed Tomography’, Bulletin of the American Museum of 

Natural History, (365), pp. 1–91. 

Magniez, P. and Boulbes, N. (2014) ‘Environment during the Middle to Late Palaeolithic 

transition in southern France: The archaeological sequence of Tournal Cave (Bize-Minervois, 

France)’, Quaternary International. Elsevier Ltd and INQUA, 337, pp. 43–63. 

Maldonado, E. (1996) Revisión de los équidos del Pleistoceno Medio y Superior de España. 

Universidad Complutense de Madrid. 

Mangano, G. (2011) ‘An exclusively hyena-collected bone assemblage in the Late Pleistocene 

of Sicily: Taphonomy and stratigraphic context of the large mammal remains from San Teodoro 

Cave (North-Eastern Sicily, Italy)’, Journal of Archaeological Science. Elsevier Ltd, 38(12), pp. 

3584–3595. 

Markova, A. K., Puzachenko, A. Y., Van Kolfschoten, T., Van der Plicht, J. and Ponomarev, D. V. 

(2013) ‘New data on changes in the European distribution of the mammoth and the woolly 

rhinoceros during the second half of the Late Pleistocene and the early Holocene’, Quaternary 

International, 292, pp. 4–14. 

Marra, A. C., Villa, P., Beauval, C., Bonfiglio, L. and Goldberg, P. (2004) ‘Same predator, variable 



9. References 
 

- 467 - 
 

prey: taphonomy of two Upper Pleistocene hyena dens in Sicily and SW France’, Revue de 

Paléobiologie, 23(2), pp. 787–801. 

Marra, A. C. (2009) ‘Pleistocene mammal faunas of Calabria (Southern Italy): biochronology 

and palaeobiology’, Bollettino della Società Paleontologica Italiana, 48(2), pp. 113–122. 

Martín-Serra, A., Figueirido, B. and Palmqvist, P. (2016) ‘In the pursuit of the predatory 

behavior of borophagines (Mammalia, Carnivora, Canidae): inferences from forelimb 

morphology’, Journal of Mammalian Evolution, 23(3), pp. 237–249. 

Martin, C. and Sanchiz, B. (1989) ‘Anuros Pleistocénicos de la Cueva de las Hienas (Las Caldas, 

Asturias)’, Munibe Ciencias Naturales, 41, pp. 75–77. 

Martin, R. A. (1990) ‘Estimating body mass and correlated variables in extinct mammals: 

travels in the fourth dimension’, in Damuth, J. and MacFadden, B. J. (eds) Body Size in 

Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge 

University Press, pp. 49–68. 

Matthews, L. H. (1939) ‘The subspecies and variation of the spotted hyaena, Crocuta crocuta 

Erxl.’, Proceedings of the Zoological Society of London, 109, pp. 237–260. 

Mayr, E. (1956) ‘Geographical character gradients and climatic adaptation’, Evolution, 10(1), 

pp. 105–108. 

McDonough, T. J. and Christ, A. M. (2012) ‘Geographic variation in size, growth, and sexual 

dimorphism of Alaska brown bears, Ursus arctos’, Journal of Mammalogy, 93(3), pp. 686–697. 

McFarlane, D. A. and Ford, D. C. (1998) ‘The age of the Kirkdale Cave palaeofauna’, Cave and 

Karst Science, 25(1), pp. 3–6. 

McFarlane, D. A., Lundberg, J. and Roberts, W. (2010) ‘A Geographic Information Systems 

approach to the 19th Century excavation of Brixham Cavern, Devon, England’, Studies in 

Speleology, 17, pp. 1–11. 

McNab, B. K. (1971) ‘On the ecological significance of Bergmann’s Rule’, Ecology, 52(5), pp. 

845–854. 

McNab, B. K. (2010) ‘Geographic and temporal correlations of mammalian size reconsidered: a 

resource rule’, Oecologia, 164(1), pp. 13–23. 

Meachen, J. A., Dunn, R. H. and Werdelin, L. (2016) ‘Carnivoran postcranial adaptations and 

their relationships to climate’, Ecography, 39(6), pp. 553–560. 

Meers, M. B. (2002) ‘Maximum bite force and prey size of Tyrannosaurus rex and their 

relationships to the inference of feeding behavior’, Historical Biology, 16(1), pp. 1–12. 



9. References 
 

- 468 - 
 

Meinertzhagen, R. (1938) ‘Some weights and measurements of large mammals’, Proceedings 

of the Zoological Society of London, A108(3), pp. 433–439. 

Meiri, M., Lister, A. M., Higham, T. F. G., Stewart, J. R., Straus, L. G., Obermaier, H., González 

Morales, M. R., Marín-Arroyo, A. B. and Barnes, I. (2013) ‘Late-glacial recolonization and 

phylogeography of European red deer (Cervus elaphus L.)’, Molecular Ecology, 22(18), pp. 

4711–4722. 

Meiri, S., Dayan, T., Simberloff, D. and Grenyer, R. (2009) ‘Life on the edge: carnivore body size 

variation is all over the place’, Proceedings. Biological sciences / The Royal Society, 276(1661), 

pp. 1469–1476. 

Meiri, S. (2011) ‘Bergmann’s Rule - what’s in a name?’, Global Ecology and Biogeography, 20, 

pp. 203–207. 

Meiri, S., Cooper, N. and Purvis, A. (2008) The island rule: made to be broken?, Proceedings of 

the Royal Society B: Biological Sciences. 

Meiri, S. and Dayan, T. (2003) ‘On the validity of Bergmann’s rule’, Journal of Biogeography, 

30(3), pp. 331–351. 

Meiri, S., Dayan, T. and Simberloff, D. (2004) ‘Carnivores, biases and Bergmann’s rule’, 

Biological Journal of the Linnean Society, 81, pp. 579–588. 

Meiri, S., Yom-Tov, Y. and Geffen, E. (2007) ‘What determines conformity to Bergmann’s rule?’, 

Global Ecology and Biogeography, 16(6), pp. 788–794. 

Mello, J. M. (1875) ‘On some bone-caves in Creswell Crags’, Quartarpalaontologie, 31, pp. 

679–683. 

Mello, J. M. (1877) ‘The bone-caves of Creswell Crags - 3rd paper’, Quarterly Journal of the 

Geological Society, 33, pp. 579–588. 

Meloro, C., Raia, P., Piras, P., Barbera, C. and O’Higgins, P. (2008) ‘The shape of the mandibular 

corpus in large fissiped carnivores: allometry, function and phylogeny’, Zoological Journal of 

the Linnean Society, 154, pp. 832–845. 

Merilä, J. and Hendry, A. P. (2014) ‘Climate change, adaptation, and phenotypic plasticity: the 

problem and the evidence’, Evolutionary Applications, 7, pp. 1–14. 

Millar, A. J. S. and Hickling, G. J. (1990) ‘Fasting endurance and the evolution of mammalian 

body size’, Functional Ecology, 4(1), pp. 5–12. 

Mills, G. (1998) ‘Brown hyaena Hyaena (Parahyaena) brunnea (Thunberg, 1820)’, in Hofer, H. 

and Mills, G. (eds) Hyaenas: Status survey and conservation action plan. Gland, Switzerland 



9. References 
 

- 469 - 
 

and Cambridge: IUCN, pp. 26–29. 

Mills, M. G. L. (1990) Kalahari Hyenas: comparative behavioral ecology of two species. 

Caldwell, New Jersey: The Blackburn Press. 

Mills, M. G. L. and Mills, M. E. J. (1977) ‘An analysis of bones collected at hyaena breeding dens 

in the Gemsbok National Parks (Mammalia: Carnivora)’, Annals of the Traansvaal Museum, 

30(14), pp. 145–159. 

Minitab Inc. (2010) ‘Minitab 17 Statistical Software’. State College, PA. 

Molero, G., Maldonado, E., Iñigo, C., Sánchez, F. and Díez, A. (1989) ‘El yacimiento el 

Pleistoceno superior de la Cueva del Búho (Perogordo, Segovia) y su fauna de vertebrados’, in 

Volumen de Comunicaciones de las V Jornadas de Paleontología. Valencia, pp. 101–102. 

Moore, W. J. (1981) The Mammalian Skull. Cambridge: Cambridge University Press. 

Morris, J. (1850) ‘On the occurrence of mammalian remains at Brentford’, Quarterly Journal of 

the Geological Society, 6, pp. 201–204. 

Myers, P., Lundrigan, B. L., Gillespie, B. W. and Zelditch, M. L. (1996) ‘Phenotypic plasticity in 

skull and dental morphology in the prairie deer mouse (Peromyscus maniculatus bairdii)’, 

Journal of Morphology, 229, pp. 229–237. 

Nadachowski, A., Żarski, M., Urbanowski, M., Wojtal, P., Miękina, B., Lipecki, G., Ochman, K., 

Krawczyk, M., Jakubowski, G. and Tomek, T. (2009) Late Pleistocene Environment of the 

Częstochowa Upland (Poland) Reconstructed on the Basis of Faunistic Evidence from 

Archaeological Cave Sites. Kraków: Institute of Systematics and Evolution of Animals, PAS. 

Naito, Y. I., Chikaraishi, Y., Drucker, D. G., Ohkouchi, N., Semal, P., Wißing, C. and Bocherens, H. 

(2016) ‘Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of 

individual amino acids in collagen’, Journal of Human Evolution. Elsevier Ltd, 93(April), pp. 82–

90. 

Mac Nally, R. (1996) ‘Hierarchical partitioning as an interpretative tool in multivariate 

inference’, Australian Journal of Ecology, 21, pp. 224–228. 

Mac Nally, R. (2000) ‘Regression and model-building in conservation biology, biogeography and 

ecology: the distinction between – and reconciliation of – “predictive” and “explanatory” 

models’, Biodiversity and Conservation, 9, pp. 655–71. 

Neaves, W. B., Griffin, J. E. and Wilson, J. D. (1980) ‘Sexual dimorphism of the phallus in 

spotted hyena’, Journals of Reproduction Fertility, 59, pp. 509–513. 

van Nédervelde, J. and Davies, M. (1975) Caldey Island cave excavations 1975. 



9. References 
 

- 470 - 
 

Neruda, P. and Nerudová, Z. (2013) ‘The Middle-Upper Palaeolithic transition in Moravia in the 

context of the Middle Danube region’, Quaternary International, 294, pp. 3–19. 

Nummela, S., Pihlström, H., Puolamäki, K., Fortelius, M., Hemilä, S. and Reuter, T. (2013) 

‘Exploring the mammalian sensory space: co-operations and trade-offs among senses’, Journal 

of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 

199(12), pp. 1077–1092. 

O’Connor, T. and Lord, T. (2013) ‘Cave palaeontology’, in Waltham, T. and Lowe, D. (eds) Caves 

and Karst of the Yorkshire Dales. British Cave Research Association, pp. 225–238. 

Olea, P. P., Mateo-Tomás, P. and de Frutos, Á. (2010) ‘Estimating and modelling bias of the 

hierarchical partitioning public-domain software: Implications in environmental management 

and conservation’, PLoS ONE, 5(7), pp. 1–7. 

ORAU (no date) University of Oxford ORAU Database. 

Orford, H. J. L., Perrin, M. R. and Berry, H. H. (1988) ‘Contraception, reproduction and 

demography of free‐ranging Etosha lions (Panthera leo)’, Journal of Zoology, 729, pp. 717–733. 

Palmqvist, P., Martínez-Navarro, B., Pérez-Claros, J. A., Torregrosa, V., Figueirido, B., Jiménez-

Arenas, J. M., Patrocinio Espigares, M., Ros-Montoya, S. and De Renzi, M. (2011) ‘The giant 

hyena Pachycrocuta brevirostris: modelling the bone-cracking behavior of an extinct 

carnivore’, Quaternary International, 243(1), pp. 61–79. 

Panciroli, E., Janis, C., Stockdale, M. and Martín-Serra, A. (2017) ‘Correlates between calcaneal 

morphology and locomotion in extant and extinct carnivorous mammals’, Journal of 

Morphology, 278(10), pp. 1333–1353. 

Parfitt, S. A. (1999) ‘4. Mammalia’, in Roberts, M. B. and Parfitt, S. A. (eds) Boxgrove: a Middle 

Pleistocene hominid site at Eartham Quarry, Boxgrove, West Sussex. English Heritage, pp. 197–

290. 

Parfitt, S. A. et al. (2005) ‘The earliest record of human activity in northern Europe’, Nature, 

438(December), pp. 1008–1012. 

Peigné, S., Goillot, C., Germonpré, M., Blondel, C., Bignon, O. and Merceron, G. (2009) 

‘Predormancy omnivory in European cave bears evidenced by a dental microwear analysis of 

Ursus spelaeus from Goyet, Belgium’, Proceedings of the National Academy of Sciences of the 

United States of America, 106, pp. 15390–15393. 

Pekelharing, C. J. (1974) ‘Paradontal disease as a cause of tooth loss in a population of chamois 

(Rupicapra rupicapra L.) in New Zealand’, Zeitschrift für Säugetierkunde, 39, pp. 250–255. 



9. References 
 

- 471 - 
 

Pengelly, W. (1865) ‘First report of the committee for exploring Kent’s Cavern, Devonshire’, 

British Association for the Advancement of Science, 35, pp. 16–25. 

Pengelly, W. (1866) ‘Second report of the committee for exploring Kent’s Cavern, Devonshire’, 

British Association for the Advancement of Science, 36, pp. 1–11. 

Pengelly, W. (1867) ‘Third report of the committee for exploring Kent’s Cavern, Devonshire’, 

British Association for the Advancement of Science, 37, pp. 24–34. 

Pengelly, W. (1868) ‘Fourth report of the committee for exploring Kent’s Cavern, Devonshire’, 

British Association for the Advancement of Science, 38, pp. 45–58. 

Pengelly, W. (1869) ‘Fifth report of the committee for exploring Kent’s Cavern, Devonshire’, 

British Association for the Advancement of Science, 39, pp. 189–208. 

Pengelly, W. (1870) ‘Sixth report of the committee for exploring Kent’s Cavern, Devonshire’, 

British Association for the Advancement of Science, 40, pp. 16–29. 

Pengelly, W. (1872) ‘Eighth report of the committee for exploring Kent’s Cavern, Devonshire’, 

British Association for the Advancement of Science, 42, pp. 28–47. 

Pengelly, W. (1874) ‘Tenth report of the committee for exploring Kent’s Cavern, Devonshire’, 

British Association for the Advancement of Science, 44, pp. 1–17. 

Pengelly, W. (1888) ‘Recent researches in Bench Cavern, Brixham, Devon’, Transactions of the 

Edinburgh Geological Society, pp. 507–512. 

Pérez-Barbería, F. J., Shultz, S. and Dunbar, R. I. M. (2007) ‘Evidence for coevolution of sociality 

and relative brain size in three orders of mammals’, Evolution, 61(12), pp. 2811–2821. 

Périquet, S., Mapendere, C., Revilla, E., Banda, J., Macdonald, D. W., Loveridge, A. J. and Fritz, 

H. (2016) ‘A potential role for interference competition with lions in den selection and 

attendance by spotted hyaenas’, Mammalian Biology, 81, pp. 227–234. 

Périquet, S., Fritz, H. and Revilla, E. (2015) ‘The Lion King and the Hyaena Queen: large 

carnivore interactions and coexistence’, Biological Reviews, 90(4), pp. 1197–1214. 

Pollard, A. M., Blockley, S. P. E. and Lane, C. S. (2006) ‘Some numerical considerations in the 

geochemical analysis of distal microtephra’, Applied Geochemistry, 21(10), pp. 1692–1714. 

Polly, P. D. (2010) ‘Tiptoeing through the trophics: Geographic variation in carnivoran 

locomotor ecomorphology in relation to environment’, in Goswami, A. and Friscia, A. (eds) 

Carnivoran Evolution: New Views on Phylogeny, Form, and Function. Cambridge: Cambridge 

University Press, pp. 347–410. 



9. References 
 

- 472 - 
 

Prestwich, J. (1873) ‘Report on the exploration of Brixham Cave, conducted by a committee of 

the Geological Society, and under the superintendence of WM. Pengelly, Esq., F.R.S., aided by 

a local committee; with descriptions of the animal remains by George Busk, Esq., F.R.S., a’, 

Philosophical Transactions of the Royal Society of London, 163, pp. 471–572. 

Proctor, C., Douka, K., Proctor, J. W. and Higham, T. (2017) ‘The Age and Context of the KC4 

Maxilla, Kent’s Cavern, UK’, European Journal of Archaeology, 20(1), pp. 74–97. 

R Core Team (2016) ‘R: A language and environment for statistical computing’. Vienna: R 

Foundation for Statistical Computing. 

Radinsky, L. B. (1981a) ‘Evolution of skull shape in carnivores 1. Representative modern 

carnivores’, Biological Journal of the Linnean Society, 15, pp. 369–388. 

Radinsky, L. B. (1981b) ‘Evolution of skull shape in carnivores 2 . Additional modern 

carnivores’, Biological Journal of the Linnean Society, 16, pp. 337–355. 

Radinsky, L. B. (1982) ‘Evolution in skull shape in carnivores 3. The origin and early radiation of 

the modern carnivore families’, Paleobiology, 8(3), pp. 177–195. 

Rahmat, S. J. and Koretsky, I. A. (2015) ‘Diversity of mandibular morphology in some 

carnivorans’, Vestnik Zoologii, 49(3), pp. 267–284. 

Raia, P. (2004) ‘Morphological correlates of tough food consumption in large land carnivores’, 

Italian Journal of Zoology, 71(1), pp. 45–50. 

Raia, P. and Meiri, S. (2006) ‘The island rule in large mammals: paleontology meets ecology’, 

Evolution, 60(8), pp. 1731–1742. 

Ralls, K. (1976) ‘Mammals in which females are larger than males’, The Quarterly Review of 

Biology, 51, pp. 245–276. 

Ralls, K. and Harvey, P. (1985) ‘Geographic variation in size and sexual dimorphism of North 

American weasels’, Biological Journal of the Linnean Society, 25(2), pp. 119–167. 

Randau, M., Goswami, A., Hutchinson, J. R., Cuff, A. R. and Pierce, S. E. (2016) ‘Cryptic 

complexity in felid vertebral evolution: shape differentiation and allometry of the axial 

skeleton’, Zoological Journal of the Linnean Society, 178(1), pp. 183–202. 

Rasmussen, S. O. et al. (2014) ‘A stratigraphic framework for abrupt climatic changes during 

the Last Glacial period based on three synchronized Greenland ice-core records: Refining and 

extending the INTIMATE event stratigraphy’, Quaternary Science Reviews. Elsevier Ltd, 106, pp. 

14–28. 

Rautenbach, I. L. (1978) The mammals of the Transvaal. University of Natal. 



9. References 
 

- 473 - 
 

Rautenbach, I. L. (1982) Mammals of the Transvaal (ECOPLAN Monograph 1). Pretoria: 

ECOPLAN. 

Raynal, J.-P., Guadelli, J.-L., Aujoulat, N., Barbazza, M., D’Errico, F., Jaubert, J., El Graoui, M., 

Ferrier, C., Kervazo, B., Konik, S., Moncel, M.-H., Piperno, M., Sirakov, N., Daujeard, C., Douze, 

K. and Gallotti, R. (2013) Origines II : espaces et expressions. Rapport scientifique 2008-2012. 

Contrat Région Aquitaine. 

Reimer, P. et al. (2013) ‘IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 

Years cal BP’, Radiocarbon, 55(4), pp. 1869–1887. 

Rensberger, J. M. and Wang, X. (2005) ‘Microstructural reinforcement in the canine enamel of 

the hyaenid Crocuta crocuta, the felid Puma concolor and the late Miocene canid Borophagus 

secundus’, Journal of Mammalian Evolution, 12(3–4), pp. 379–403. 

Rensch, B. (1950) ‘Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse’, 

Bonner Zoologische Beiträge, 1, pp. 58–69. 

Richards, M. P., Taylor, G., Steele, T., McPherron, S. P., Soressi, M., Jaubert, J., Orschiedt, J., 

Mallye, J. B., Rendu, W. and Hublin, J. J. (2008) ‘Isotopic dietary analysis of a Neanderthal and 

associated fauna from the site of Jonzac (Charente-Maritime), France’, Journal of Human 

Evolution, 55, pp. 179–185. 

Ridush, B. (2009) ‘“Bear Caves” in Ukraine’, Slovenský Kras Acta Carsologica Slovaca, 47, pp. 

67–84. 

Roberts, A. (1951) The Mammals of South Africa. South Africa: ‘The Mammals of South Africa’ 

Book Fund. 

Roberts, M. B. and Parfitt, S. A. (1999) ‘5.9 Biostratigraphy and summary’, in Roberts, M. B. and 

Parfitt, S. A. (eds) Boxgrove: a Middle Pleistocene hominid site at Eartham Quarry, Boxgrove, 

West Sussex. English Heritage, pp. 303–307. 

Rode, K. D., Amstrup, S. C. and Regehr, E. V (2010) ‘Reduced body size and cub recruitment in 

polar bears associated with sea ice decline’, Ecological Applications, 20(3), pp. 768–782. 

Rohland, N., Pollack, J. L., Nagel, D., Beauval, C., Airvaux, J., Pääbo, S. and Hofreiter, M. (2005) 

‘The population history of extant and extinct hyenas’, Molecular Biology and Evolution, 22(12), 

pp. 2435–2443. 

Rougier, H., Crevecoeur, I., Beauval, C., Posth, C., Flas, D., Wißing, C., Furtwängler, A., 

Germonpré, M., Gómez-Olivencia, A., Semal, P., Van Der Plicht, J., Bocherens, H. and Krause, J. 

(2016) ‘Neandertal cannibalism and Neandertal bones used as tools in Northern Europe’, 



9. References 
 

- 474 - 
 

Scientific Reports. Nature Publishing Group, 6(June), pp. 1–11. 

Rychlik, L., Ramalhinho, G. and Polly, P. D. (2006) ‘Response to environmental factors and 

competition: skull, mandible and tooth shapes in Polish water shrews (Neomys, Soricidae, 

Mammalia)’, Journal of Zoological Systematics and Evolutionary Research, 44(4), pp. 339–351. 

Sabol, M., Čeklovský, T., Beňuš, R., Kováčová, M., Joniak, P., Zervanova, J. and Putiška, R. 

(2013) ‘Fossil assemblages from Neanderthal sites of Slovakia - preliminary results’, in Filippi, 

M. and Bosák, P. (eds) 16th International Congress of Speleology. Brno: Czech Speleological 

Society and SPELEO2013, pp. 192–195. 

Sanchez Goñi, M. F. and Harrison, S. P. (2010) ‘Millennial-scale climate variability and 

vegetation changes during the Last Glacial: Concepts and terminology’, Quaternary Science 

Reviews, 29(21–22), pp. 2823–2827. 

Sandom, C. J., Ejrnaes, R., Hansen, M. D. D. and Svenning, J.-C. (2014) ‘High herbivore density 

associated with vegetation diversity in interglacial ecosystems’, Proceedings of the National 

Academy of Sciences, 111(11), pp. 4162–4167. 

Santana, S. E. (2016) ‘Quantifying the effect of gape and morphology on bite force: 

biomechanical modelling and in vivo measurements in bats’, Functional Ecology, 30(4), pp. 

557–565. 

Sardella, R. and Petrucci, M. (2012) ‘The earliest Middle Pleistocene Crocuta crocuta (Erxleben, 

1777) at Casal Selce (Rome, Italy)’, Quaternary International, 267, pp. 103–110. 

Savage, R. J. G. (1977) ‘Evolution in carnivorous mammals’, Palaeontology, pp. 237–271. 

Schaller, G. B. (1972) The Serengeti Lion: a study of predator-prey relations. Chicago: The 

University of Chicago Press. 

Scharff, R. F., Seymour, H. J. and Newton, E. T. (1918) ‘The exploration of Castlepook Cave, 

County Cork, being the third report from the committee appointed to explore Irish cave’, 

Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science, 

34, pp. 33–72. 

Scholander, P. F. (1955) ‘Evolution of Climatic Adaptation in Homeotherms’, Evolution, 9(1), 

pp. 15–26. 

Schreve, D., Howard, A., Currant, A., Brooks, S., Buteux, S., Coope, R., Crocker, B., Field, M., 

Greenwood, M., Greig, J. and Toms, P. (2013) ‘A Middle Devensian woolly rhinoceros 

(Coelodonta antiquitatis) from Whitemoor Haye Quarry, Staffordshire (UK): 

Palaeoenvironmental context and significance’, Journal of Quaternary Science, 28(2), pp. 118–



9. References 
 

- 475 - 
 

130. 

Schreve, D. C. (1997) Mammalian biostratigraphy of the later Middle Pleistocene in Britain. 

University College London. 

Schreve, D. C. (2001) ‘Differentiation of the British late Middle Pleistocene interglacials: the 

evidence from mammalian biostratigraphy’, Quaternary Science Reviews, 20, pp. 1693–1705. 

Schreve, D. C. (2007) ‘Mammalian assemblages from the Trent’, in White, T. S. et al. (eds) The 

Quaternary of the Trent Valley and Adjoining Regions Field Guide. London: Quaternary 

Research Association, pp. 49–61. 

Schreve, D. C. (2012) ‘The vertebrate assemblage from Lynford: taphonomy, biostratigraphy 

and implications for Middle Palaeolithic subsistence strategies’, in Boismier, W. A., Gamble, C., 

and Coward, F. (eds) Neanderthals Among Mammoths. Excavations at Lynford Quarry, Norfolk. 

Swindon: English Heritage, pp. 157–204. 

Schubert, B. W., Ungar, P. S. and DeSantis, L. R. G. (2010) ‘Carnassial microwear and dietary 

behaviour in large carnivorans’, Journal of Zoology, 280, pp. 257–263. 

Schultz, A. H. (1940) ‘The size of the orbit and of the eye in primates’, American Journal of 

Physical Anthropology, 26(1), pp. 389–408. 

Seierstad, I. K. et al. (2014) ‘Consistently dated records from the Greenland GRIP, GISP2 and 

NGRIP ice cores for the past 104ka reveal regional millennial-scale δ18O gradients with 

possible Heinrich event imprint’, Quaternary Science Reviews, 106, pp. 29–46. 

Senter, P. and Moch, J. G. (2015) ‘A critical survey of vestigial structures in the postcranial 

skeletons of extant mammals’, PeerJ, 3, pp. 2–48. 

Serrat, M. A. (2013) ‘Allen’s Rule revisited: temperature influences bone elongation during a 

critical period of postnatal development’, The Anatomical Record, 296, pp. 1534–1545. 

Serrat, M. A., King, D. and Lovejoy, C. O. (2008) ‘Temperature regulates limb length in 

homeotherms by directly modulating cartilage growth’, Proceedings of the National Academy 

of Sciences of the United States of America, 105(49), pp. 19348–19353. 

Serrat, M. A., Williams, R. M. and Farnum, C. E. (2010) ‘Exercise mitigates the stunting effect of 

cold temperature on limb elongation in mice by increasing solute delivery to the growth plate’, 

Journal of Applied Physiology, 109, pp. 1869–1879. 

Shackleton, N. J. (1987) ‘Oxygen isotopes, ice volume and sea level’, Quaternary Science 

Reviews, 6, pp. 183–190. 

Sheng, G. L., Soubrier, J., Liu, J. Y., Werdelin, L., Llamas, B., Thomson, V. A., Tuke, J., Wu, L. J., 



9. References 
 

- 476 - 
 

Hou, X. D., Chen, Q. J., Lai, X. L. and Cooper, A. (2014) ‘Pleistocene Chinese cave hyenas and 

the recent Eurasian history of the spotted hyena, Crocuta crocuta’, Molecular Ecology, 23, pp. 

522–533. 

Shortridge, G. C. (1934a) The Mammals of South West Africa: a biological account of the forms 

occurring in that region. Volume I. London: William Heinemann Ltd. 

Shortridge, G. C. (1934b) The Mammals of South West Africa: a biological account of the forms 

occurring in that region. Volume II. London: William Heinemann Ltd. 

Sillero-Zubiri, C. and Gottelli, D. (1991) ‘Threats to Aberdare rhinos: predation versus 

poaching’, Pachyderm, 14, pp. 37–38. 

Sillero-Zubiri, C. and Gottelli, D. (1992) ‘Population ecology of spotted hyaena in an equatorial 

mountain forest’, African Journal of Ecology, 30(4), pp. 292–300. 

Silva, M. and Downing, J. A. (1995) Mammalian Body Masses. London: CRC Press. 

Skinner, J. D. (1976) ‘Ecology of the brown hyaena Hyaena brunnea in the Transvaal with a 

distribution map for Southern Africa’, South African Journal of Science, 72, pp. 262–269. 

Skinner, J. D. (2006) ‘Bone collecting by hyaenas: a review’, Transactions of the Royal Society of 

South Africa, 61(1), pp. 4–7. 

Skinner, J. D. and Chimimba, C. T. (2005) The Mammals of the Southern African Sub-Region. 

Third Edit. Cambridge: Cambridge University Press. 

Skinner, J. D. and Ilani, G. (1979) ‘The striped hyaena, Hyaena hyaena of the Judean and Negev 

Deserts and a comparison with the brown hyaena H. brunnea’, Israel Journal of Zoology, 28, 

pp. 229–232. 

Slater, G. J., Dumont, E. R. and Van Valkenburgh, B. (2009) ‘Implications of predatory 

specialization for cranial form and function in canids’, Journal of Zoology, 278, pp. 181–188. 

Slater, G. J. and Van Valkenburgh, B. (2009) ‘Allometry and performance: the evolution of skull 

form and function in felids’, Journal of Evolutionary Biology, 22, pp. 2278–2287. 

Smith, R. J. (1984) ‘Allometric scaling in comparative biology: problems of concept and 

method.’, The American journal of physiology, 246(2 Pt 2), pp. R152–R160. 

Smith, R. J. (1993) ‘Logarithmic transformation bias in allometry’, American Journal of Physical 

Anthropology, 90(2), pp. 215–228. 

Smith, R. J. (1996) ‘Biology and body size in human evolution: statistical inference misapplied’, 

Current Anthropology, 37(3), pp. 451–481. 



9. References 
 

- 477 - 
 

Smith, R. J. (1999) ‘Statistics of sexual size dimorphism’, Journal of Human Evolution, 36(4), pp. 

423–458. 

Smith, R. J. (2009) ‘Use and misuse of the reduced major axis for line-fitting’, American Journal 

of Physical Anthropology, 140(3), pp. 476–486. 

Smith, T. D. and Rossie, J. B. (2008) ‘Nasal fossa of mouse and dwarf lemurs (primates, 

Cheirogaleidae)’, Anatomical Record, 291(8), pp. 895–915. 

Smithers, R. H. N. (1971) The Mammals of Botswana. University of Pretoria. 

Smithers, R. H. N. (1983) The Mammals of the Southern African Subregion. First. Pretoria: 

Pretoria University Press. 

Smuts, G. L., Robinson, G. A. and Whyte, I. J. (1980) ‘Comparative growth of wild male and 

female lions (Panthera leo)’, Journal of Zoology, 190, pp. 365–373. 

Snowdon, P. (1991) ‘A ratio estimator for bias correction in logarithmic regressions’, Canadian 

Journal of Forest Research, 21(5), pp. 720–724. 

Solounias, N. and Semprebon, G. (2002) ‘Advances in the Reconstruction of Ungulate 

Ecomorphology with Application to Early Fossil Equids’, American Museum Novitates, (3366), 

pp. 1–49. 

Stanley, S. M. (1973) ‘An explanation for Cope’s Rule’, Evolution, 27(1), pp. 1–26. 

Stefen, C. and Rensberger, J. M. (1999) ‘The specialized structure of Hyaenid enamel: 

description and development with the lineage - including perocrocutids’, Scanning Microscopy, 

13(2), pp. 363–380. 

Steudel, K., Porter, W. P. and Sher, D. (1994) ‘The biophysics of Bergmann’s rule: a comparison 

of the effects of pelage and body size variation on metabolic rate’, Canadian Journal of 

Zoology, 72(1), pp. 70–77. 

Stevens, R. E., Germonpré, M., Petrie, C. A. and O’Connell, T. C. (2009) ‘Palaeoenvironmental 

and chronological investigations of the Magdalenian sites of Goyet Cave and Trou de Chaleux 

(Belgium), via stable isotope and radiocarbon analyses of horse skeletal remains’, Journal of 

Archaeological Science, 36, pp. 653–662. 

Stevenson-Hamilton, J. (1947) Wild Life in South Africa. Cassell an. London. 

Stewart, J. R. (2008) ‘The progressive effect of the individualistic response of species to 

Quaternary climate change: an analysis of British mammalian faunas’, Quaternary Science 

Reviews. Elsevier Ltd, 27(27–28), pp. 2499–2508. 



9. References 
 

- 478 - 
 

Stiner, M. C. (1992) ‘Overlapping species “choice” by Italian Upper Pleistocene predators’, 

Current Anthropology, 33(4), pp. 433–451. 

Stiner, M. C. (2004) ‘Comparative ecology and taphonomy of spotted hyenas, humans, and 

wolves in Pleistocene Italy’, Revue de Paleobiologie, 23, pp. 771–785. 

Stuart, A. J. (1982) Pleistocene vertebrates in the British Isles. Essex: Longman Group Limited. 

Stuart, A. J. and Lister, A. M. (2001) ‘The mammalian faunas of Pakefield/Kessingland and 

Corton, Suffolk, UK: Evidence for a new temperate episode in the British early Middle 

Pleistocene’, Quaternary Science Reviews, 20, pp. 1677–1692. 

Stuart, A. J. and Lister, A. M. (2011) ‘Extinction chronology of the cave lion Panthera spelaea’, 

Quaternary Science Reviews. Elsevier Ltd, 30(17–18), pp. 2329–2340. 

Stuart, A. J. and Lister, A. M. (2012) ‘Extinction chronology of the woolly rhinoceros Coelodonta 

antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia’, 

Quaternary Science Reviews. Elsevier Ltd, 51, pp. 1–17. 

Stuart, A. J. and Lister, A. M. (2014) ‘New radiocarbon evidence on the extirpation of the 

spotted hyaena (Crocuta crocuta (Erxl.)) in northern Eurasia’, Quaternary Science Reviews, 96, 

pp. 108–116. 

Stuart, C. T. (1981) ‘Notes on the mammalian carnivores of the Cape Province, South Africa’, 

Bontebok, 1, pp. 1–58. 

Sutcliffe, A. J. (1970) ‘Spotted hyaena: crusher, gnawer, digester and collector of bones’, 

Nature, 227, pp. 1110–1113. 

Sutcliffe, A. J. (1981) ‘Progress report on exavations in Minchin Hole, Gower’, Quaternary 

Newsletter, 33, pp. 1–17. 

Sutcliffe, A. J. (1986) On the Track of Ice Age Mammals. London: British Museum (Natural 

History). 

Sutcliffe, A. J., Currant, A. P. and Stringer, C. B. (1987) ‘Evidence of sea-level change from 

coastal caves with raised beach deposits, terrestrial faunas and dated stalagmites’, Progress in 

Oceanography, 18, pp. 243–271. 

Sutcliffe, A. J. and Kowalski, K. (1976) ‘Pleistocene rodents of the British Isles’, Bulletin of the 

British Museum (Natural History), Geology, 27(2), pp. 33–147. 

Sutcliffe, A. J. and Zeuner, F. E. (1962) ‘Excavations in the Torbryan Caves. I. Tornewton’, 

Proceedings of the Devon Archaeological Exploration Society, 5, pp. 127–145. 



9. References 
 

- 479 - 
 

Swanson, A., Arnold, T., Kosmala, M., Forester, J. and Packer, C. (2016) ‘In the absence of a 

“landscape of fear”: how lions, hyenas, and cheetahs coexist’, Ecology and Evolution, 6, pp. 

8534–8545. 

Swanson, E. M., Holekamp, K. E., Lundrigan, B. L., Arsznov, B. M. and Sakai, S. T. (2012) 

‘Multiple determinants of whole and regional brain volume among terrestrial carnivorans’, 

PLoS ONE, 7(6). 

Swanson, E. M., McElhinny, T. L., Dworkin, I., Weldele, M. L., Glickman, S. E. and Holekamp, K. 

E. (2013) ‘Ontogeny of sexual size dimorphism in the spotted hyena (Crocuta crocuta)’, Journal 

of Mammalogy, 94(6), pp. 1298–1310. 

Szmidt, C. C., Moncel, M. H. and Daujeard, C. (2010) ‘Nouvelles données sur le Moustérien final 

de la France méditerranéenne: premières datations radiocarbone (SMA) à la Grotte de Saint-

Marcel (Ardèche)’, Comptes Rendus - Palevol. Academie des sciences, 9(4), pp. 185–199. 

Talamo, S., Blasco, R., Rivals, F., Picin, A., Chacón, M. G., Iriarte, E., López-García, J. M., Blain, 

H.-A., Arilla, M., Rufà, A., Sánchez-Hernández, C., Andrés, M., Camarós, E., Ballesteros, A., 

Cebrià, A., Rosell, J. and Hublin, J.-J. (2016) ‘The radiocarbon approach to Neanderthals in a 

carnivore den site: a well-defined chronology for Teixoneres Cave (Moià, Barcelona, Spain)’, 

Radiocarbon, pp. 1–19. 

Talbot, L. and Talbot, M. (1962) ‘Flaxedil and other drugs in field immobilization and 

translocation of large mammals in East Africa’, Journal of Mammalogy, 43, pp. 76–88. 

Tanner, J. B., Dumont, E. R., Sakai, S. T., Lundrigan, B. L. and Holekamp, K. E. (2008) ‘Of arcs 

and vaults: The biomechanics of bone-cracking in spotted hyenas (Crocuta crocuta)’, Biological 

Journal of the Linnean Society, 95, pp. 246–255. 

Tanner, J. B., Zelditch, M. L., Lundrigan, B. L. and Holekamp, K. E. (2010) ‘Ontogenetic change in 

skull morphology and mechanical advantage in the spotted hyena (Crocuta crocuta)’, Journal 

of Morphology, 271(3), pp. 353–365. 

Taylor, M. E. (1989) ‘Locomotor adaptations by carnivores’, in Gittleman, J. L. (ed.) Carnivore 

Behavior, Ecology, and Evolution. Ithaca: Cornell University Press, pp. 382–409. 

Tejero, J. M., Christensen, M. and Bodu, P. (2012) ‘Red deer antler technology and early 

modern humans in Southeast Europe: An experimental study’, Journal of Archaeological 

Science. Elsevier Ltd, 39(2), pp. 332–346. 

Thackeray, J. F. and Kieser, J. A. (1992) ‘Body mass and carnassial length in modern and fossil 

carnivores’, Annals of the Transvaal Museum, 35(24), pp. 337–341. 



9. References 
 

- 480 - 
 

Thenius, E. (1966) ‘V. Die Cervidae und Perissodactyla (Equidae, Rhinocerotidae)’, 

Denkschriften der Akademie der Wissenschaften. Die Teufels- oder Fuchsenlucken bei 

Eggenburg (NÖ), 112, pp. 61–82. 

Therrien, F. (2005) ‘Mandibular force profiles of extant carnivorans and implications for the 

feeding behaviour of extinct predators’, Journal of Zoology, 267, pp. 249–270. 

Thomason, J. J. (1991) ‘Cranial strength in relation to estimated biting forces in some 

mammals’, Canadian Journal of Zoology, 69, pp. 2326–2333. 

Tilson, R., von Blottnitz, F. and Henschel, J. (1980) ‘Prey selection by spotted hyaena (Crocuta 

crocuta) in the Namib Desert’, Madoqua, 12(1), pp. 41–49. 

von Toldt, C. (1905) ‘Die Winkelforsatz des Unterkiefers biem Menschen und bei den 

Säugetieren und die Beziehungen der Kaumuskein zu demselben II Teil’, Sitzungsberichte / 

Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse Bd, 114, 

pp. 315–476. 

Tratman, E. K. (1964) ‘Picken’s Hole, Crook Peak, Somerset. A Pleistocene Site’, Proceedings of 

the University of Bristol Spelaeological Society, pp. 112–115. 

Tratman, E. K., Donovan, D. T. and Campbell, J. B. (1971) ‘The Hyaena Den (Wookey Hole), 

Mendip Hills, Somerset’, Proceedings of the University of Bristol Spelaeological Society, 12(3), 

pp. 245–279. 

Trimmer, W. K. (1813) ‘An account of some organic remains found near Brentford, Middlesex’, 

Philosophical Transactions of the Royal Society of London, 103, pp. 131–137. 

Tsanova, T. (2006) Les débuts du Paléolithique supérieur dans l’Est des Balkans: réflexion à 

partir de l’étude taphonomique et techno-économique des ensembles lithiques des sites de 

Bacho Kiro (couche 11), Temnata (couches VI et 4) et Kozarnika (niveau VII). L’Université 

Bordeaux 1. 

Tseng, Z. J. (2009) ‘Cranial function in a late Miocene Dinocrocuta gigantea (Mammalia: 

Carnivora) revealed by comparative finite element analysis’, Biological Journal of the Linnean 

Society, 96, pp. 51–67. 

Tseng, Z. J., Antón, M. and Salesa, M. J. (2011) ‘The evolution of the bone-cracking model in 

carnivorans: cranial functional morphology of the Plio-Pleistocene cursorial hyaenid 

Chasmaporthetes lunensis (Mammalia: Carnivora)’, Paleobiology, 37(1), pp. 140–156. 

Tseng, Z. J. and Binder, W. J. (2010) ‘Mandibular biomechanics of Crocuta crocuta, Canis lupus, 

and the late Miocene Dinocrocuta gigantea (Carnivora, Mammalia)’, Zoological Journal of the 



9. References 
 

- 481 - 
 

Linnean Society, 158(3), pp. 683–696. 

Turnbull, W. D. (1970) Mammalian Masticatory Apparatus, Fieldiana: Geology. 

Turner, A. (1981) Aspects of the palaeoecology of large predators, including man, during the 

British Upper Pleistocene, with particular emphasis on predator-prey relationships. University 

of Sheffield. 

Turner, A. (1984) ‘The interpretation of variation in fossil specimens of spotted hyaena 

(Crocuta crocuta Erxleben, 1777) from Sterkfontein valley sites (Mammalia, Carnivora)’, Annals 

of the Transvaal Museum, 33(27), pp. 399–418. 

Turner, A. (1999) ‘8 Larger carnivores (Mammalia, Carnivora) from Westbury Cave’, in 

Andrews, P. et al. (eds) Westbury Cave: the Natural History Museum Excavations 1976 - 1984. 

Bristol: Western Academic & Specialist Press Limited, pp. 175–193. 

Turner, A. (2000) ‘The Paviland mammalian fauna’, in Aldhouse-Green, S. (ed.) Paviland Cave 

and the ‘Red Lady’: a definitive report. Bristol: Western Academic and Specialist Press Limited, 

pp. 133–140. 

Turner, A. (2009) ‘The evolution of the guild of large Carnivora of the British Isles during the 

Middle and Late Pleistocene’, Journal of Quaternary Science, 24(8), pp. 991–1005. 

Ussher, R. J. (1906) ‘The hyaena-dens of the Mammoth Cave near Doneraile, Co. Cork’, The 

Irish Naturalist, 15(11), pp. 237–249. 

Van Valen, L. (1973) ‘Pattern and the balance of nature’, Evolutionary Theory, 1(1), pp. 31–49. 

Van Valkenburgh, B. (1985) ‘Locomotor diversity within past and present guilds of large 

predatory mammals’, Paleobiology, 11(4), pp. 406–428. 

Van Valkenburgh, B. (1987) ‘Skeletal indicators of locomotor behavior in living and extinct 

carnivores’, Journal of Vertebrate Paleontology, 7(2), pp. 162–182. 

Van Valkenburgh, B. (1988) ‘Incidence of tooth breakage among large, predatory mammals’, 

The American Naturalist, 131(2), pp. 291–302. 

Van Valkenburgh, B. (1989) ‘Carnivore dental adaptations and diet: a study of trophic diversity 

within guilds’, in Gittleman, J. L. (ed.) Carnivore Behavior, Ecology, and Evolution. Ithaca: 

Cornell University Press, pp. 410–436. 

Van Valkenburgh, B. (1990) ‘Skeletal and dental predictors of body mass in carnivores’, in 

Damuth, J. and MacFadden, B. J. (eds) Body Size in Mammalian Paleobiology: Estimation and 

Biological Implications. Cambridge: Cambridge University Press, pp. 181–205. 



9. References 
 

- 482 - 
 

Van Valkenburgh, B. (1996) ‘Feeding behavior in free-ranging, large African carnivores’, Journal 

of Mammalogy, 77(1), pp. 240–254. 

Van Valkenburgh, B. (2007) ‘Déjà vu : the evolution of feeding morphologies in the Carnivora’, 

Integrative and Comparative Biology, 47(1), pp. 147–163. 

Van Valkenburgh, B. (2009) ‘Costs of carnivory: Tooth fracture in Pleistocene and recent 

carnivorans’, Biological Journal of the Linnean Society, 96, pp. 68–81. 

Van Valkenburgh, B. and Hertel, F. (1993) ‘Tough times at La Brea: tooth breakage in large 

carnivores of the Late Pleistocene’, Science, 261(5120), pp. 456–459. 

Van Valkenburgh, B. and Koepfli, K. (1993) ‘Cranial and dental adaptations to predation in 

canids’, in Dunstone, N. and Gorman, M. L. (eds) Mammals as Predators: Symposia of the 

Zoological Society of London Number 65. Oxford: Clarendon Press, pp. 15–37. 

Van Valkenburgh, B. and Ruff, C. B. (1987) ‘Canine tooth strength and killing behaviour in large 

carnivores’, Journal of Zoology, London, 212, pp. 379–397. 

Van Valkenburgh, B., Sacco, T. and Wang, X. M. (2003) ‘Pack hunting in Miocene borophagine 

dogs: evidence from craniodental morphology and body size’, Bulletin of the American 

Museum of Natural History, 279, pp. 147–162. 

Van Valkenburgh, B., Teaford, M. F. and Walker, A. (1990) ‘Molar microwear and diet in large 

carnivores: inferences concerning diet in the sabretooth cat, Smilodon fatalis’, Journal of 

Zoology, 222, pp. 319–340. 

Van Valkenburgh, B., Wang, X. and Damuth, J. (2004) ‘Cope’s rule, hypercarnivory, and 

extinction in North American canids’, Science (New York, N.Y.), 306, pp. 101–104. 

Van Valkenburgh, B. and Wayne, R. K. (2010) ‘Carnivores’, Current Biology, 20(21), pp. R915–

R919. 

Varela, S., Lobo, J. M., Rodríguez, J. and Batra, P. (2010) ‘Were the Late Pleistocene climatic 

changes responsible for the disappearance of the European spotted hyena populations? 

Hindcasting a species geographic distribution across time’, Quaternary Science Reviews, 29(17–

18), pp. 2027–2035. 

Villa, P., Sánchez Goñi, M. F., Cuenca Bescós, G., Grün, R., Ajas, A., García Pimienta, J. C. and 

Lees, W. (2010) ‘The archaeology and paleoenvironment of an Upper Pleistocene hyena den: 

An integrated approach’, Journal of Archaeological Science, 37, pp. 919–935. 

de Villalta, J. F. (1972) ‘Presencia de la Marmota y otros elementos de la fauna esteparia en el 

Pleistocene catalán’, Acta Geológica Hispánica, 6, pp. 170–173. 



9. References 
 

- 483 - 
 

Volmer, R. and Hertler, C. (2016) ‘The effect of competition on shared food resources in 

carnivore guilds’, Quaternary International, 413, pp. 32–43. 

Walsh, C. and Mac Nally, R. (2004) ‘heir.part: Heirarchical Partitioning. R package version 1.0’. 

Walsh, C. and Mac Nally, R. (2005a) ‘heir.part: Heirarchical Partitioning. R package version 1.0-

1’. 

Walsh, C. and Mac Nally, R. (2005b) ‘“‘The hier.part Package’” version 1.0-1. Hierarchical 

Partitioning. Documentation for R: A language and environment for statistical computing’. 

Vienna: R Foundation for Statistical Computing. 

Walsh, C. and Mac Nally, R. (2007a) ‘heir.part: Heirarchical Partitioning. R package version 1.0-

2’. 

Walsh, C. and Mac Nally, R. (2007b) ‘“‘The hier.part Package’” version 1.0-2. Hierarchical 

Partitioning. Documentation for R: A language and environment for statistical computing’. 

Vienna: R Foundation for Statistical Computing. 

Walsh, C. and Mac Nally, R. (2013) ‘heir.part: Heirarchical Partitioning. R package version 1.0-

4’. 

Walsh, C. and Mac Nally, R. (2015) ‘Package “hier.part”: Heirarchical Partitioning. Version 1.0-

2. Documentation for R: A language and environment for statistical computing’, p. 11. 

Weaver, M. E. and Ingram, D. L. (1969) ‘Morphological changes in swine associated with 

environmental temperature’, Ecology, 50(4), pp. 710–713. 

Weinstein, K. J. (2011) ‘Climatic and altitudinal influences on variation in Macaca limb 

morphology’, Anatomy Research International, 2011, pp. 1–18. 

Werdelin, L. (1989) ‘Constraint and adaptation in the bone-cracking canid Osteoborus 

(Mammalia: Canidae)’, Paleobiology, 15(4), pp. 387–401. 

Werdelin, L. and Solounias, N. (1991) ‘The Hyaenidae: taxonomy, systematics and evolution’, 

Fossils and Strata, 30, p. 104. 

Whateley, A. (1980) ‘Comparative body measurements of male and female spotted hyaenas 

from Natal’, Lammergyer, 28, pp. 40–43. 

Whitman, D. W. and Agrawal, A. A. (2009) ‘What is phenotypic plasticity and why is it 

important?’, in Whitman, D. W. and Ananthakrishnan, T. N. (eds) Phenotypic Plasticity of 

Insects: Mechanisms and Consequences. Enfield: Science Publishers, pp. 1–63. 

Widger, J. L. (1892) ‘The Torbryan Caves’, The Torquay Directory and South Devon Journal. 



9. References 
 

- 484 - 
 

Wigginton, J. D. and Dobson, F. S. (1999) ‘Environmental influences on geographic variation in 

body size of western bobcats’, Canadian Journal of Zoology, 77(5), pp. 802–813. 

Wilson, E. and Reynolds, S. H. (1901) ‘Uphill bone-caves’, Proceedings of the Bristol Naturalists’ 

Society, 9, pp. 152–160. 

Wilson, H. C. A. (2010) The Middle Devensian (MIS 3) mammals of Kents Cavern: an analysis of 

a small and large vertebrate assemblage recovered from the Great Chamber. Royal Holloway 

University of London. 

Wilson, V. J. (1968) ‘Weights of some mammals from eastern Zambia’, Arnoldia, 3, pp. 1–20. 

Wilson, V. J. (1975) Mammals of the Wankie National Park, Rhodesia. Salisbury: National 

Museums and Monuments of Rhodesia, Museum memoir no.5. 

Wißing, C., Matzerath, S., Turner, E. and Bocherens, H. (2015) ‘Paleoecological and climatic 

implications of stable isotope results from late Pleistocene bone collagen, Ziegeleigrube 

Coenen, Germany’, Quaternary Research (United States). University of Washington, 84(1), pp. 

96–105. 

Wojtal, P. (2007) Zooarchaeological studies of the Late Pleistocene sites in Poland. Kraków: 

Institute of Systematics and Evolution of Animals, PAS. 

Wood, R., Bernaldo de Quirós, F., Maíllo-Fernández, J. M., Tejero, J. M., Neira, A. and Higham, 

T. (2018) ‘El Castillo (Cantabria, northern Iberia) and the Transitional Aurignacian: Using 

radiocarbon dating to assess site taphonomy’, Quaternary International, 474, pp. 56–70. 

Wood, R. E., Arrizabalaga, A., Camps, M., Fallon, S., Iriarte-Chiapusso, M. J., Jones, R., Maroto, 

J., De la Rasilla, M., Santamaría, D., Soler, J., Soler, N., Villaluenga, A. and Higham, T. F. G. 

(2014) ‘The chronology of the earliest Upper Palaeolithic in northern Iberia: New insights from 

L’Arbreda, Labeko Koba and La Viña’, Journal of Human Evolution. Elsevier Ltd, 69(1), pp. 91–

109. 

Woodman, P., McCarthy, M. and Monaghan, N. (1997) ‘The Irish Quaternary fauna project’, 

Quaternary Science Reviews, 16(96), pp. 129–159. 

Wroe, S., McHenry, C. and Thomason, J. (2005) ‘Bite club: comparative bite force in big biting 

mammals and the prediction of predatory behaviour in fossil taxa’, Proceedings of the Royal 

Society B: Biological Sciences, 272, pp. 619–625. 

Yeakel, J. D., Guimarães, P. R., Bocherens, H. and Koch, P. L. (2013) ‘The impact of climate 

change on the structure of Pleistocene food webs across the mammoth steppe’, Proceedings 

of the Royal Society B: Biological Sciences, 280, p. 20130239. 



9. References 
 

- 485 - 
 

Yll, R., Carrión, J. S., Marra, A. C. and Bonfiglio, L. (2006) ‘Vegetation reconstruction on the 

basis of pollen in Late Pleistocene hyena coprolites from San Teodoro Cave (Sicily, Italy)’, 

Palaeogeography, Palaeoclimatology, Palaeoecology, 237(1), pp. 32–39. 

Zapfe, H. (1966a) ‘II. Die Höhlenbärenreste’, Denkschriften der Akademie der Wissenschaften. 

Die Teufels- oder Fuchsenlucken bei Eggenburg (NÖ), 112, pp. 15–22. 

Zapfe, H. (1966b) ‘III. Die übrigen Carnivoren (außer Höhlenhyäne und Höhlenbär)’, 

Denkschriften der Akademie der Wissenschaften. Die Teufels- oder Fuchsenlucken bei 

Eggenburg (NÖ), 112, pp. 23–38. 

Zedrosser, A., Dahle, B. and Swenson, J. E. (2006) ‘Population density and food conditions 

determine adult female body size in brown bears’, Journal of Mammalogy, 87(3), pp. 510–518. 

Zhou, Y., Wang, S.-R. and Ma, J.-Z. (2017) ‘Comprehensive species set revealing the phylogeny 

and biogeography of Feliformia (Mammalia, Carnivora) based on mitochondrial DNA’, PLoS 

ONE, 12(3), pp. 1–19. 

 

 



10. Appendices 
 

- 486 - 
 

10 Appendices 

10.1 Pleistocene sites 

Table 10.1: Details of sites included in the Pleistocene morphological and palaeodietary studies. Where stratigraphic information is available, only layers that had 

included the C. crocuta specimens included in this study are detailed. Where necessary, species names have been changed to follow the current nomenclature. 

Where marine oxygen isotope stages of British assemblages were not specified in the literature, the mammal species were compared to those of mammal 

assemblage zones in Schreve (2001) and Currant and Jacobi (2011) to determine the age of the deposits. 

Site Age 
Environmental 
reconstruction  

Large mammal species Further information References 

Britain      

Pakefield, Suffolk 

Red-brown 
ferruginous 
sand and 
gravel: Early 
Middle 
Pleistocene 

Red-brown 
ferruginous sand 
and gravel: mixed 
forest and open 
vegetation. 
Temperate 
period. 

Red-brown ferruginous sand and gravel: C. 
crocuta, scimitar-toothed cat 
(Homotherium sp.), Ursus sp., steppe 
mammoth (Mammuthus trogontherii), 
Palaeoloxodon antiquus, Equus sp. (large), 
(horse) Equus altidens, rhinoceros 
(Stephanorhinus hundscheimensis), H. 
amphibius, S. scofa, deer (Megaloceros 
verticornis), deer (Megaloceros savini), 
deer (Megaloceros dawkinsi), C. elaphus, 
Bison sp. 

 
Stuart and Lister 
(2001) and 
references therein 

Grays, Essex MIS 9 

Temperate 
climate, possibly 
warmer than 
today. Summer 
temperatures at 
least 18°C, winter 

C. lupus, V. vulpes, U. arctos, otter 
(Lutrinae sp.), P. antiquus, Elephantidae 
sp., E. ferus, narrow-nosed rhinoceros 
(Stephanorhinus hemitoechus), Merck’s 
rhinoceros (Stephanorhinus 
kirkchbergensis), S. scrofa, hippopotamus 

 
Schreve (1997), 
Schreve (2001) 
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temperatures at 
least 5°C. 
Woodland with 
some open 
grassland. 

(Hippopotamus amphibius), M. giganteus, 
D. dama spp., C. elaphus, elk (Alces cf. 
alces), C. capreolus, B. primigenius, Bovidae 
sp., Barbary macaque (Macacus sylvanus)  

Bleadon, 
Somerset 

Later MIS 7 

Temperate 
climate. Open 
grassland with 
some areas of 
deciduous or 
mixed woodland 

C. lupus, V. vulpes, U. arctos, polecat 
(Mustela putorius), wild cat (Felis silvestris), 
P. leo, P. pardus, straight-tusked elephant 
(Palaeoloxodon antiquus), Mammuthus 
primigenius, Elephantidae sp., E. ferus, 
Rhinocerotidae sp., S. scrofa, C. elaphus, C. 
capreolus, B. primigenius, B. cf. priscus, 
Bovidae sp.  

Used as a P. leo den  
Schreve (1997), 
Schreve (2001) 

Hutton Cavern, 
Somerset 

Later MIS 7 

Temperate 
climate with 
onset of colder 
conditions. Open 
grassland. 

C. lupus, V. vulpes, F. silvestris, P. leo, M. 
primigenius, Elephantidae sp., E. ferus, S. 
scrofa, C. elaphus 

 
Schreve (1997), 
Schreve (2001) 

Lawford, 
Warwickshire 

Possibly later 
MIS 7 

 
R. tarandus, B. primigenius(?), B. priscus(?), 
C. antiquitatis, P. antiquus, M. primigenius 

 Dawkins (1869) 

Oreston Cave, 
Devon 

Later MIS 7 

Temperate 
climate, with 
warm summers 
and cold winters. 
Open grassland 
with some 
woodland. 

C. lupus, U. arctos, P. leo, M. primigenius, 
E. ferus, Equus hydruntinus (stenonid ass), 
C. antiquitatis, S. scrofa, C. elaphus, C. 
capreolus, B. primigenius, Bovidae sp. 

 
Schreve (1997), 
Schreve (2001) 

Prissen’s Tor Cave 
= Spritsail Tor, 
Swansea 

Cave Earth: 
Possibly Later 
MIS 7 

 
Cave Earth: C. crocuta, P. spelaea, U. 
spelaeus (probably actually U. arctos), C. 
lupus, V. vulpes, M. meles, P. antiquus, M. 

C. crocuta den. Bones of 
Cervidae sp., Bos sp. and 

Falconer (1860) 
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primigenius, C. antiquitatis, Equus sp., Sus 
sp., Bos sp., Cervidae sp. 

Equus sp. gnawed, likely by 
C. crocuta. 

Barrington, 
Cambridgeshire 

MIS 5e 

River floodplain 
with local open 
grassland, areas 
with herbaceous 
species and damp 
meadows. Mixed 
temperate oak 
forest further 
from the river. 

C. lupus, V. vulpes, U. arctos, badger (Meles 
meles), P. leo, P. antiquus, S. hemitoechus, 
H. amphibius, M. giganteus, D. dama, C. 
elaphus, B. priscus, B. primigenius 

Some bones with gnaw 
marks, possibly by C. crocuta  

Fisher (1879), 
Gibbard and Stuart 
(1975), Currant and 
Jacobi (2011) 

Brentford, 
London 

MIS 5e  
C. crocuta, P. spelaea, H. amphibius, P. 
antiquus, S. hemitoechus, B. priscus, B. 
primigenius, R. tarandus, C. elaphus 

May correspond to remains 
found at one of two sites 
(one at  Kew Bridge and one 
west of Kew Bridge). Later 
excavations near Kew Bridge 
revealed similar deposits. C. 
crocuta not listed by  
Trimmer (1813) or Morris, 
(1850). C. crocuta is listed by 
Dawkins (1869), but this 
species list not trusted by 
Lewis et al. (2011) 

Trimmer (1813), 
Morris, (1850), 
Dawkins (1869), 
Lewis et al. (2011) 

Burtle Beds, 
Somerset 

Possibly MIS 
5e 

 

C. crocuta, C. lupus, Elephantidae sp., S. 
hemitoechus, H. amphibius, D. dama, C. 
elaphus, cf. C. capreolus, B. primigernius, 
Bovini sp. 

 
Bulleid and Jackson 
(1938) Currant and 
Jacobi (2011)  

Eastern Torrs 
Quarry, Devon 

MIS 5e  C. crocuta, H. amphibius  Sutcliffe (1986) 
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Hoe Grange, 
Derbyshire 

MIS 5 
Interglacial 
conditions 

C. crocuta, P. leo, F. silvestris, C. lupus, 
Arctic fox (Alopex lagopus?), U. arctos(?), 
M. meles, Bos/Bison, M. giganteus, C. 
elaphus, D. dama, C. capreolus, S. scrofa, S. 
hemitoechus, P. antiquus 

 
Arnold-Bemrose 
and Newton (1905),  
Lewis et al. (2011) 

Joint Mitnor 
Cave, Devon 

MIS 5e  

C. crocuta, C. lupus, V. vulpes, U. arctos, M. 
meles, F. silvestris, P. leo, P. antiquus, S. 
hemitoechus, S. scrofa, H. amphibius, C. 
elaphus, D. dama, M. giganteus, B. priscus 

 
Currant and Jacobi 
(2011) 

Kirkdale Cave, 
Yorkshire 

MIS 5e 
See Table 10.4 

 

C. crocuta, Canis cf. lupus, V. vulpes, Ursus 
cf. arctos, Panthera cf. leo, P. antiquus, H. 
amphibious, C. elaphus, Dama cf. dama, M. 
giganteus, Bison cf. priscus, S. 
hemitoechus, Sus sp.(?), Equus sp.(?) 

Many bones (including those 
of C. crocuta) gnawed, 
possibly by C. crocuta. 
Probably C. crocuta den 

Buckland (1822), 
Boylan (1981), 
McFarlane and Ford 
(1998) 

Little Syke, 
Lincolnshire 

MIS 5e 

Presence of still 
or slow-flowing 
water. Riparian 
vegetation. 
Summer 
temperatures 
slightly highly 
than present day 

C. crocuta, H. amphibius, B. priscus, P. 
antiquus, S. hemitoechus 

 
 
Schreve (2007) 

Milton Hill, 
Somerset 

MIS 5e  

C. crocuta, H. amphibius, P. antiquus, B. 
primigenius, B. priscus, C. elaphus, D. 
dama, C. capreolus?, Hominidae sp. 
(artefacts – later unconfirmed) 

 
Balch (1937), 
Donovan (1988), 
Lewis et al. (2011) 

Minchin Hole, 
Outer Beach, 
Glamorgan 

MIS 5 
See Table 10.4 

Small mammals 
indicate 
temperate 
woodland 

Neritoides beach: C. crocuta, P. leo, D. 
dama, S. scrofa. Earthy Breccia Series: C. 
crocuta, P. leo, V. vulpes, S. hemitoechus, E. 

 

Sutcliffe (1981) 
Bowen et al. (1985), 
Sutcliffe et al. 
(1987) 
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ferus, P. antiquus, C. elaphus, D. dama, S. 
scrofa 

Raygill Fissure, 
Yorkshire 

MIS 5e  

C. crocuta, P. antiquus, S. hemitoechus, H. 
amphibius, B. priscus, C. capreolus. 
Additional species towards base of fissure: 
Ursus sp., P. leo 

Pitfall trap 

Green et al. (1880), 
Earp et al. (1961),    
Currant and Jacobi 
(2011), O’Connor 
and Lord (2013) 

Tornewton Cave, 
Devon 

See Table 10.2     

Victoria Cave, 
Yorkshire 

MIS 5e 
See Table 10.4 

Mammals suggest 
open vegetation.  

C. crocuta, V. vulpes, U. arctos, P. leo, P. 
antiquus, Mammuthus sp., S. hemitoechus, 
H. amphibius, M. giganteus, C. elaphus, D. 
dama, C. capreolus, B. priscus  

Bones show damage by C. 
crocuta 

Gilmour et al. 
(2007), Currant and 
Jacobi (2011), 
O’Connor and Lord 
(2013) 

Badger Hole, 
Wookey Hole, 
Somerset 

Layer A2: MIS 
3 
See Table 10.4 

 
Layer A2: C. crocuta, Felis sp., otter (Lutra 
lutra), Vulpes/Alopex, Ursus cf. arctos, E. 
ferus, M. giganteus, R. tarandus? 

Many gnawed bones present 
in Layer A2.  

Campbell (1977), 
Jacobi et al. (2006) 

Bench Cavern, 
Devon 

MIS 3 
See Table 10.4 

 

Dyke: C. lupus, V. vulpes, A. lagopus, U. 
spelaeus (possibly actually U. arctos), 
possibly B. primigenius, possibly R. 
tarandus, Cervidae sp., C. antiquitatis, 
Hominidae sp. (artefact). Cave earth within 
tunnel: V. vulpes.  

No bones of any species had 
gnaw marks, except for one 
C. crocuta mandible. 
However, site is a fissure into 
which material had fallen, 
rather than a den. 

Pengelly (1888), 
Jacobi et al. (2006) 

Boughton Mount, 
Kent 

MIS 3  
R. tarandus, C. elaphus, B. primigenius, E. 
caballus, C. antiquitatis, M. primigenius   

 Dawkins (1869) 

Brixham Cave/ 
Windmill Hill, 
Devon 

MIS 3  

U. arctos (U. spelaeus also mentioned by 
earlier authors), P. spelaea, V. vulpes, M. 
meles, R. tarandus, B. primigenius, C. 
capreolus, C. elaphus, C. antiquitatis, E. 
ferus, M. primigenius, Homo sp. (artefacts) 

Lack of juveniles, no 
coprolites. Many bones 
gnawed in Third and Fourth 
Beds, perhaps by C. crocuta. 
Gnawed bones include U. 

Falconer, (1858), 
cited in Prestwich, 
(1873), Prestwich 
(1873), McFarlane 
et al. (2010) 
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arctos, M. primigenius and C. 
antiquitatis. B. primigenius, 
C. capreolus, C. elaphus, C. 
antiquitatis, E. ferus and 
some M. primigenius were 
all found in similar locations 
to C. crocuta, so may have 
been their prey. Subsequent 
to C. crocuta, cave used by 
U. arctos 

Caerwent Quarry, 
Monmouthshire 

MIS 3  
P. spelaea, M. meles, U. arctos, M. 
primigenius, S. scrofa, M. giganteus, R. 
tarandus, Bos/Bison 

No gnaw marks on bones, 
but fragmentary condition of 
bones and presence of 
juvenile M. primigenius 
suggests assemblage 
accumulated by C. crocuta  

Locke (1970) 

Caswell Bay, 
Swansea 

MIS 3  
V. vulpes, P. spelaea, R. tarandus, C. 
elaphus, B. primigenius, B. priscus?, E. 
ferus, C. antiquitatis 

Material in thesis likely to be 
from Hyaena Den, Caswell 
Bay 

Dawkins (1869), 
Howes (1988) 

Church Hole, 
Creswell Crags, 
Nottinghamshire 

MIS 3. 
See Table 10.4 

 

Upper beds at front of cave, and 
Chambers A and B: C. crocuta, U. arctos, C. 
antiquitatis, Mammuthus sp., Equus sp., R. 
tarandus, B. priscus. Talus red earth/sand: 
C. crocuta, M. meles, Canis sp., Ursus sp., 
Rhinocerotidae sp., Equus sp., M. 
giganteus, R. tarandus. Chamber A – 
Breccia (1): C. crocuta, Hominidae sp. 
(artefacts). Reddish loamy cave earth (2): 
C. crocuta, R. tarandus, Hominidae sp. 
(artefacts). Light cave earth (3): C. crocuta, 
Ursus sp., Canis sp., C. antiquitatis, R. 

Some bones gnawed by C. 
crocuta and some broken by 
humans 

Dawkins (1877), 
Mello (1877), 
Higham et al. 
(2006), Jacobi and 
Higham (2011) 
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tarandus, M. giganteus, Hominidae sp. 
(artefact). Mottled bed (4): C. crocuta, 
Canis sp., Ursus sp., C. antiquitatis, R. 
tarandus, Mammuthus sp., E. ferus, 
Hominidae sp. (artefacts). Red sand (5): C. 
crocuta, Canis sp., Ursus sp., C. antiquitatis, 
Mammuthus sp., Equus sp., B. priscus, R. 
tarandus, Hominidae sp. (artefacts). 
Chamber B – similar species to Chamber A 

Coygan Cave, 
Carmarthenshire 

MIS 3 
See Table 10.4 

Mammal species 
suggest extensive 
grassland 

Northerly compartment, reddish earthy 
soil: C. crocuta, C. antiquitatis, M. 
primigenius, Equus sp., R. tarandus. Central 
dome to western branch, below 
stalagmite: C. crocuta, U. arctos (U. 
spelaeus also mentioned), P. spelaea, V. 
vulpes, M. primigenius, C. antiquitatis, 
Equus sp., M. giganteus, R. tarandus, B. 
primigenius, B. priscus, Hominidae sp. 
(artefact). Southern half of main chamber, 
below stalagmite: similar to above, with D. 
dama. 
Central area, stony clay, below thin 
stalagmite: C. crocuta, C. antiquitatis, M. 
primigenius, E. caballus, B. primigenius, M. 
giganteus.  
Central area, cave earth, above thin 
stalagmite: C. crocuta Ursus sp. (identified 
as U. spelaeus), C. antiquitatis, M. 
primigenius, E. caballus, B. primigenius, R. 
tarandus? 

Most bones (including those 
of C. crocuta, C. antiquitatis 
and E. ferus) gnawed by C. 
crocuta. Human occupation 
short, later used as C. 
crocuta den.  

Hicks (1867), Laws 
(1888), Grant-
Dalton (1917), 
Grimes and Cowley 
(1935), Aldhouse-
Green et al. (1995),  
Higham et al. 
(2006), Jacobi and 
Higham (2011) 
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North Passage: C. crocuta, V. vulpes, U. 
arctos, E. ferus, Sus sp., C. elaphus, R. 
tarandus. 
Outer Chamber: C. crocuta, C. lupus, A. 
lagopus, M. primigenius, C. antiquitatis, E. 
ferus, C. elaphus, R. tarandus, M. 
giganteus, Bos/Bison. 
Inner Chamber: C. crocuta, C. lupus, M. 
primigenius, C. antiquitatis, E. ferus, R. 
tarandus, M. giganteus, Bos/Bison. 
Example distribution of species by spit in 
Trench 2, Outer Chamber. Layer 2: C. 
crocuta, Vulpes/Alopex, M. primigenius, E. 
ferus, M. giganteus, Bos.Bison. Layer 4: C. 
crocuta, C. lupus, A. lagopus, M. 
primigenius, C. antiquitatis, E. ferus, R. 
tarandus, Bos/Bison, Hominidae sp. 
(artefacts). Layer 5: C. crocuta, A. lagopus, 
U. arctos, M. primigenius, C. antiquitatis, E. 
ferus, R. tarandus, M. giganteus, C. 
elaphus. 

Daylight Rock 
Fissure, 
Pembrokeshire  

MIS 3 
See Table 10.4 

 
P. spelaea, Ursus sp., C. antiquitatis, Equus 
sp., Mammuthus sp., R. tarandus 
Bos/Bison, M. giganteus  

Some bones gnawed by C. 
crocuta 

Lacaille and Grimes 
(1955) and Lacaille 
and Grimes (1961) 
both cited in Davies 
(1989), Davies 
(1989), Aldhouse-
Green (n.d.), cited 
in Jacobi and 
Higham (2011)  
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Ffynnon Beuno 
Cave, 
Denbighshire 

MIS 3 
See Table 10.4 

 

C. crocuta, Vulpes/Alopex, C. antiquitatis, 
M. primigenius, Equus sp., Bovidae sp., R. 
tarandus, C. elaphus, D. dama, Homo sp. 
(artefacts) 

Occupied by C. crocuta. 
Bones of C. antiquitatis, M. 
primigenius, Equus sp., C. 
elaphus and R. tarandus 
gnawed by C. crocuta 

Hicks (1885), Jacobi 
and Higham (n.d.) 
cited in Aldhouse-
Green et al. (2015),  
Aldhouse-Green et 
al. (2015) 

Goat’s Hole 
Paviland, 
Swansea 

MIS 3 
See Table 10.4 
 

 

C. crocuta, C. lupus, V. vulpes (may be 
recent), Vulpes/Alopex, U. arctos, M. 
primigenius, E. ferus, C. antiquitatis, S. 
scrofa, R. tarandus, C. elephas, M. 
giganteus(?), B. priscus (some material 
possibly recent), O. aries (domestic sheep, 
possibly recent), Homo sp. (artefacts), later 
Homo sapiens 

Aurignacian occupation 
possibly alternated with C. 
crocuta occupation of the 
caves, however, many of the 
bones likely accumulated by 
humans. U. arctos may have 
later used the cave. The Red 
Lady was buried later. 
Gnawing by C. crocuta 
evident on C. antiquitatis 
long bones and shed, male R. 
tarandus antlers. 

Turner (2000), 
Jacobi et al. (2006), 
Jacobi and Higham 
(2008) 

Hyaena Den, 
Wookey Hole, 
Somerset 

Cave Earth: 
MIS 3 
See Table 10.4 

 

C. crocuta, P. spelaea, U. arctos (U. 
spelaeus also mentioned), C. lupus, A. 
lagopus?, V. vulpes, M. meles (possibly 
intrusive), M. primigenius, C. antiquitatis, 
B. primigenius, B. priscus, E. caballus, S. 
scrofa, M. giganteus, C. elaphus, D. dama?, 
R. tarandus, Hominidae sp. 

Human artefacts in contact 
with C. crocuta teeth. 
Damage to bones (including 
those of carnivores) and 
antlers, probably by C. 
crocuta 

Dawkins (1862), 
Dawkins (1863), 
Balch (1937), 
Tratman et al. 
(1971), Donovan 
(1988), Jacobi and 
Hawkes (1993), 
Jacobi et al. (2006) 

Kents Cavern, 
Devon 

Red cave 
earth: MIS 3 
See Table 10.4 

Isotopic values 
from herbivores 
indicate open 
vegetation. 

Granular Stalagmite: C. crocuta, Ursus sp., 
C. antiquitatis, Elephantidae sp., Cervidae 
sp., Hominidae sp. (artefacts) 
Black band (in Vestibule): C. crocuta, 
Vulpes/Alopex, M. meles, Ursus sp., C. 

Cave has many chambers 
and passages, and the same 
stratigraphy is observed in 
most places: limestone 
blocks at the top, black 

Pengelly (1865), 
Pengelly (1866), 
Pengelly (1867), 
Pengelly (1868), 
Dawkins (1868) 
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antiquitatis, Equus sp., Cervidae spp., 
Bovidae sp., Hominidae sp. (artefacts) 
Red cave earth: C. crocuta, U. arctos, P. 
spelaea, F. silvestris?, C. lupus, V. vulpes,  
M. meles, G. gulo, E. caballus, M. 
primigenius (mostly juveniles), C. 
antiquitatis, B. primigenius, B. priscus, M. 
giganteus, C. elaphus, R. tarandus, Ovis sp. 
(potentially intrusive) Hominidae 
(artefacts), H. sapiens (mandible from 
Vestibule) 
Talus external to North Sally-port: C. 
crocuta, Ursus sp., Equus sp., 
Rhinocerotidae sp., Hominidae sp. 
(artefacts) 

mould, granular stalagmite, 
red cave earth.  
In some areas, red cave 
earth lies below black mould. 
In the Vestibule, a black 
band also lies beneath the 
granular stalagmite. Little 
stratigraphy within the red 
cave earth. Breccia present 
in some areas, but did not 
contain C. crocuta. The talus 
external to North Sally-port 
was fine silt. The same 
species were found in all 
four of the foot-deep layers 
excavated by Pengelly. Bone 
gnawed by C. crocuta 
included U. arctos, G. gulo, 
M. primigenius (many 
juveniles), Equus sp., C. 
antiquitatis (many juveniles), 
R. tarandus, C. elaphus, M. 
giganteus and B. primigenius 

cited in Pengelly 
(1869), Pengelly 
(1870), Pengelly 
(1872), Pengelly 
(1874), Lister 
(2001), (Bocherens 
et al., 1995), Jacobi 
et al. (2006), Jacobi 
(2007) cited in 
Stuart and Lister 
(2014), Wilson 
(2010), Higham et 
al. (2011), Jacobi 
and Higham (2011), 
Bocherens (2014), 
Proctor et al. (2017) 
and references 
therein 
 
 
 

King Arthur’s 
Cave, 
Herefordshire 

Unit 3: MIS 3  

Species from 1925-1929 University of 
Bristol Spelaeological Society excavations. 
Unit 3c: C. crocuta, U. arctos, M. 
primigenius, E. ferus, C. antiquitatis, C. 
elaphus, Hominidae sp. (artefacts). Unit 3d: 
C. crocuta, U. arctos, M. primigenius, E. 
ferus, C. antiquitatis, C. elaphus, R. 
tarandus, Bos/Bison, Hominidae sp. 

Unit 3e in the Passage is also 
called Upper Cave Earth. 
Unit 3d: ungnawed U. arctos 
humerus and femur may 
indicate this species 
occupied cave later than C. 
crocuta and burrowed into 
deposits. Unit 3e: C. elaphus 

Currant (n.d.), cited 
in ApSimon et al. 
(1992), ApSimon et 
al. (1992) 
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(artefacts). Unit 3e: C. crocuta, U. arctos, 
M. primigenius, E. ferus, C. antiquitatis, C. 
elaphus, R. tarandus, Bos/Bison, Ovis sp. 
(sheep), Hominidae sp. (artefacts). 

bones ungnawed may 
indicate that this species 
may have been brought in 
after C. crocuta occupied the 
cave. Units 3c, 3d and 3e: 
likely C. crocuta dens 

Lewes Castle 
Cave, Swansea 

MIS 3  
C. crocuta, C. lupus, Mammuthus sp., C. 
antiquitatis, R. tarandus 

 Davies (1989) 

Nanna’s Cave, 
Caldey Island, 
Pembrokeshire 

MIS 3 
See Table 10.4 

   
Aldhouse-Green 
(n.d.) cited in Jacobi 
and Higham (2011) 

Picken’s Hole, 
Somerset 

Layer 3: MIS 3  

Layer 3: C. crocuta, P. spelaea, F. silvestris, 
C. lupus (may have been derived from 
Layer 5), Canis sp., A. lagopus, V. vulpes, U. 
arctos (base of layer), E. caballus, C. 
antiquitatis, M. primigenius, R. tarandus, C. 
elaphus, M. giganteus?, Bos sp., Hominidae 
sp. 

Layer 3: C. crocuta is most 
abundant carnivore. Most 
bones gnawed by C. crocuta 

Tratman (1964) 

Pin Hole, Creswell 
Crags, Derbyshire 

Lower Cave 
Earth: MIS 3 
See Table 10.4 
 

Pollen from C. 
crocuta coprolite 
from Level 10’, 
east passage 
(sediments 
continuation of 
Lower Cave Earth 
or main passage): 
1 % arboreal 
pollen, 99 % non-
arboreal pollen, 
indicating open 
grassland 

Lower Cave Earth: C. crocuta, C. lupus, V. 
vulpes, U. arctos, P. spelaea, M. 
primigenius, E. ferus, C. antiquitatis, M. 
giganteus, R. tarandus, B. priscus, Homo 
sp. 

Nearly all bones, including C. 
antiquitatis gnawed by C. 
crocuta. Damage may also 
have been caused to a bone 
of M. giganteus. Early 
Gravettian industry found 
near base of Upper Cave 
Earth. Cave Earth largely 
comprised of sediment that 
fell from aven and fissures in 
the roof of the cave, with 
reworked older deposits. 

Busk (1875), Mello 
(1875), Jacobi et al. 
(1998), Jacobi et al. 
(2006),  
Currant and Jacobi 
(2011), Jacobi and 
Higham (2011), 
Lewis (2011) 
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However, lower Cave Earth 
stratigraphy maintained 

Priory Farm Cave, 
Pembrokeshire 

Laminated 
Clay: MIS 3 

 

Laminated Clay: C. crocuta, U. arctos, C. 
lupus, R. tarandus, E. caballus, Bovidae sp., 
M. primigenius 
Uncertain stratigraphic provenance: 
Vulpes/Alopex, M. meles, C. elaphus, Sus 
sp., Caprinae sp. 

Some bones including M. 
primigenius gnawed by C. 
crocuta. Flint artefacts found 
in Gravel, but uncertain 
relationship to Laminated 
Clay. Site occupied by C. 
crocuta 

Cowley (1933), 
Grimes (1933) 

Sandford Hill, 
Somerset 

MIS 3  
(specimens 
with dense 
preservation) 

 
C. crocuta, P. spelaea, V. vulpes, C. lupus, 
U. arctos, E. ferus, C. antiquitatis, R. 
tarandus, C. elaphus, B. priscus 

Two types of preservation. 
One group: dense bone, 
gnawing by C. crocuta. Other 
group: light weight, including 
R. tarandus, P. spelaea, 
some C. antiquitatis 

Currant (2004) 

Uphill Caves, 
Somerset 

MIS 3 
See Table 10.4 

 

Caves 7 and 8: C. crocuta, P. spelaea, V. 
vulpes, Ursus sp., M. meles (possibly 
intrusive), M. primigenius, C. antiquitatis, 
Equus sp., B. priscus, Cervus (elaphus?), R. 
tarandus, M. giganteus? 
Cave 8: Hominidae sp. (artefacts) 

Potential mixing of deposits 
by water 

Wilson and 
Reynolds (1901), 
Davies (1926), 
Sutcliffe (n.d.) cited 
in Harrison (1977),  
Harrison (1977), 
Jacobi and Pettitt 
(2000),  
(Jacobi et al., 2006) 

Yealm Bridge, 
Devon 

MIS 3  

C. crocuta, C. lupus, V. vulpes, Ursus sp., E. 
caballus, C. antiquitatis, C. elaphus, R. 
tarandus, Bos sp., B. priscus, O. aries, M. 
primigenius 

 Freedman (2015) 
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Robin Hood Cave, 
Creswell Crags, 
Derbyshire 

Red clay and 
yellow sand: 
MIS 5e. 
Silty sand 
from 
southwestern 
corner of 
Western 
Chamber, 
excavated in 
1981: MIS 3. 
Layers USB, 
OB, LSB, B/A 
and A from 
1969 
excavation: 
MIS 3 
See Table 10.4 

Mammal remains 
suggest cold 
conditions, 
interrupted by 
milder conditions 

Red clay and yellow sand: C. crocuta, C. 
lupus, Ursus sp., H. amphibius, S. 
hemitoechus, B. priscus, Cervidae sp., S. 
scrofa. 
1969 excavations (layers listed higher to 
lower) Layer USB: C. crocuta (may be 
derived from lower layers), C. lupus, U. 
arctos, C. antiquitatis, E. ferus, R. tarandus, 
Hominidae sp. (artefacts). Layer OB: C. 
crocuta (may be derived from lower 
layers), C. lupus, V. vulpes, U. arctos, C. 
antiquitatis, E. ferus, C. elaphus, M. 
giganteus, R. tarandus, Hominidae sp. 
(artefacts). Layer LSB: C. crocuta (may be 
derived from lower layers), A. lagopus, C. 
antiquitatis, E. ferus, R. tarandus, 
Hominidae sp. (artefacts). Layer B/A: C. 
crocuta (may be derived from lower 
layers), A. lagopus, C. antiquitatis, E. ferus, 
R. tarandus, C. ibex, Hominidae sp. 
(artefacts). Layer A: C. crocuta, V. vulpes, C. 
lupus, M. primigenius, C. antiquitatis, 
Equus cf. germanicus (horse), C. elaphus, 
Hominidae sp. (artefacts) 

 

Laing (1890), 
Campbell (1977), 
Charles et al. 
(1994), Jacobi et al. 
(2006), Higham et 
al. (2006), Jacobi 
and Higham (2011) 

Austria      

Teufelslucke, 
Eggenburgh 

MIS 3 
See Table 10.4 

 

C. crocuta, U. spelaeus, C. lupus, V. vulpes, 
A. lagopus, G. gulo, M. meles, P. spelaea, 
M. primigenius, B. priscus, Bison bonasus 
(European bison), C. elaphus, M. giganteus, 
R. tarandus, Equus cf. chosaricus (horse), E. 

Inhabited by C. crocuta, U. 
spelaeus and humans 

Adam (1966), Berg 
(1966), Ehrenberg 
(1966a), Ehrenberg 
(1966b) Lehmann 
(1966), Thenius 
(1966), Zapfe 
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hydruntinus, C. antiquitatis, Hominidae sp. 
(artefacts) 

(1966a), Zapfe 
(1966b), 
Hofreiter et al. 
(2004), Rohland et 
al. (2005) 

Belgium      

Goyet caves, 
Namur Province 

See Table 10.3     

Caverne Marie-
Jeanne, Hastière, 
Namur Province 

4eme Niveau: 
MIS 3 
See Table 10.4 

4eme Niveau: 
based on fauna, 
mean annual 
temperature = 
3.35°C; mean 
annual 
precipitation = 
1018 mm. Cool 
temperatures. 
Open dry 
meadows and 
woodland 
dominant, with 
areas of open 
humid meadows, 
rocky 
environments 
and areas of 
running water 

4eme Niveau: C. crocuta, L. lynx, P. spelaea, 
M. meles, C. lupus, V. vulpes/A. lagopus, U. 
spelaeaus, M. primigenius, C. antiquitatis, 
Equus cf. remagensis (horse), C. elaphus, R. 
tarandus, R. rupicapra, C. ibex, B. priscus 
(possibly also B. primigenius), Hominidae 
sp. (artefacts)  

Used as C. crocuta den. 
Evidence of C. crocuta 
damage to large herbivore 
bones. Although artefacts 
are present, no evidence of 
humans inhabiting the cave 

Ballmann et al. 
(1980), Gautier 
(1980), Brace et al. 
(2012), López-
García et al. (2017) 

Trou Magrite, 
Pont-à-Lesse, 
Namur 

Late 
Pleistocene 
(probably MIS 
5b to 3) 

 

Fluvial silt (lower levels): C. crocuta, P. 
spelaea, Lynx sp., F. silvestris, Canis sp., V. 
vulpes, U. spelaeus, M. meles, Mammuthus 
sp., Rhinocerotidae sp., S. scrofa, Equus sp., 

Dupont’s ‘Âge du Mammoth’ 

Dupont (1873), 
Gautier et al. 
(1997), RBINS 
museum label 
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R. rupicapra, R. tarandus, C. capreolus, C. 
ibex, Bovidae sp., Hominidae sp. (artefacts, 
including carved reindeer antlers) 

Czech Republic      

Höhle Výpustek 
MIS 3 
See Table 10.4 

Large and small 
mammals 
indicate mixture 
of forest and 
steppe vegetation 

C. crocuta, U. spelaeus, P. spelaea, L. lynx, 
F. silvestris, Canis sp., C. familiaris, V. 
vulpes, A. lagopus, G. gulo, C. antiquitatis, 
M. primigenius, Equus sp., R. tarandus, C. 
elaphus, M. giganteus, C. capreolus, C. 
ibex, B. priscus 

Likely used as a den for 
predators, including C. 
crocuta and U. spelaeus. 
Potentially some mixing of 
deposits, including 
introduction of domestic 
species (C. familiaris, 
domestic goose, Ancer sp., 
and chicken, Gallus gallus 
domesticus). However, 
complete skeletons of C. 
crocuta and U. spelaeus 
present 

Liebe, (1879), 
Hofreiter et al. 
(2004), Rohland et 
al. (2005) 

Slouper Höhle 
Late 
Pleistocene 

 
C. crocuta, possibly P. spelaea, C. 
antiquitatis, B. primigenius, M. primigenius, 
R. tarandus 

U. spelaeus also present in 
cave, but may not have been 
contemporary with C. 
crocuta. 

Diedrich (2012) 

Ireland      

Castlepook Cave, 
County Cork 

MIS 3 
See Table 10.4 

 

C. crocuta, U. arctos (may not have been 
contemporaneous with C. crocuta), V. 
vulpes, A. lagopus, C. lupus, M. primigenius 
(many juveniles), R. tarandus (including 
male, female and juvenile antlers), M. 
giganteus (some juveniles) 

C. crocuta and U. arctos used 
cave as den. Gnawed bones 
of R. tarandus (although 
many were not gnawed), M. 
primigenius, M. giganteus, 
U. arctos and C. crocuta 

Ussher, (1906), 
Scharff et al. (1918), 
Sutcliffe 
(unpublished data) 
cited in Woodman 
et al. (1997), 
Woodman et al. 
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(1997), Stuart and 
Lister (2014)  

Italy      

San Teodoro, 
Acquedolci, Sicily 

Unit B: MIS 2-
3 
See Table 10.4 

Trench α: cool 
climate becoming 
colder and arid. 
Open, steppe 
vegetation. 
Trench β, Squares 
A-C: cool climate 
becoming colder 
and arid.  Trench 
β, Squares D-G: 
more humid 
climate, indicated 
by molluscs.  
Unit B: open, 
steppe vegetation 
with some trees. 
Cool summers, 
indicated by 
pollen from C. 
crocuta 
coprolites. 

Unit B: C. crocuta, C. lupus, V. vulpes, 
Palaeoloxodon mnaidriensis (dwarf 
elephant), E. hydruntinus, Bos primigenius 
siciliae (Sicilian aurochs), Bison priscus 
siciliae (Sicilian bison), Cervus elaphus 
siciliae (Sicilian red deer), S. scrofa 

Used as C. crocuta den. 
C. crocuta damage to bones 
including C. crocuta, P. 
mnaidriensis, C. e. siciliae, S. 
scrofa, E. hydruntinus, B. p. 
siciliae/B. p. sicilae 

Marra et al. (2004), 
Yll et al. (2006), 
Bonfiglio et al. 
(2008) 
Mangano (2011), 
Antonioli et al. 
(2015) 

Serbia      

Baranica I 
Layer 2: MIS 2 
Layer 3: MIS 3 
See Table 10.4 

Cold climate 

C. crocuta, C. lupus, V. vulpes, U. spelaeus, 
M. meles, P. spelaea, C. antiquitatis, E. 
ferus, E. hydruntinus, M. giganteus, C. 
elaphus, B. priscus, C. ibex, R. rupicapra, 
Homo sp. (Layer 2) 

C. crocuta gnawing on C. 
crocuta remains. C. crocuta 
den. Many remains 
accumulated by C. crocuta 

Argant and 
Dimitrijević (2007), 
Dimitrijević (2011) 
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Baranica II 
MIS 3 
See Table 10.4 

Cold climate. 
Open vegetation 
with steppe 
species 

C. crocuta, C. lupus, V. vulpes, U. spelaeus, 
P. spelaea, P. pardus, F. silvestris, M. 
primigenius, C. antiquitatis, E. ferus, E. 
hydruntinus, M. giganteus, C. elaphus, B. 
priscus, C. ibex, R. rupicapra 

C. crocuta gnawing on C. 
crocuta. C. crocuta den. 
Most remains accumulated 
by C. crocuta 

Argant and 
Dimitrijević (2007), 
Dimitrijević (2011), 
Stuart and Lister 
(2014) 

Spain      

Cova de les 
Toixoneres = 
Cova de les  
Teixoneres, 
Barcelona 

MIS 3 
See Table 10.4 

Chamber X, Level 
III: open forest 
dominated, 
temperate and 
humid climate. 
Chamber X, Level 
II: open forest 
dominated with 
increase in 
meadows, drier 
and cooler 
climate than 
Level III. 

Chamber X, Level IIIb: C. crocuta, U. 
spelaeus, V. vulpes, Lynx sp., M. meles, 
Proboscidea sp., Rhinocerotidae Sp., E. 
ferus, E. hydruntinus, Bos/Bison, C. elaphus, 
C. capreolus, S. scrofa, Castor sp., H. 
neanderthalensis (artefacts). Chamber X, 
Level IIIa: C. crocuta, U. spelaeus, C. lupus, 
M. meles, Rhinocerotidae sp., E. ferus, 
Bos/Bison, Caprinae sp., C. elaphus, S. 
scrofa, Castor sp., H. neanderthalensis 
(artefacts). Chamber X, Level IIb: C. 
crocuta, U. spelaeus, V. vulpes, Lynx sp., M. 
meles, Rhinocerotidae sp., E. ferus, 
Bos/Bison, Caprinae sp. C. elaphus, S. 
scrofa, Homo sp. (artefacts). Chamber X, 
Level IIa: C. crocuta, U. spelaeus, Lynx sp., 
Rhinocerotidae sp., E. ferus, Bos/Bison, 
Caprinae sp. C. elaphus, S. scrofa, Homo sp. 
(artefacts). Chamber Y, Level 1: C. crocuta.  

Radiocarbon dates suggest 
that C. crocuta occupied the 
interior of the cave 
(Chamber Y, Level 1) during 
approximately the same 
period that H. 
neanderthalensis occupied 
the front of the cave 
(Chamber X, Level III). 
Evidence of carnivore 
damage to ungulate bones in 
Chamber A, Levels IIa, IIb, IIIa 
and IIIb. 

López-García et al. 
(2012), Talamo et 
al. (2016) 

Cova del Toll, 
Barcelona 

Late 
Pleistocene 

Levels D, E and F: 
cold and wet 
climate. 
Level H: very cold 
and wet climate. 

Level D: C. crocuta, U. spelaeus, C. lupus, 
M. meles, Lynx pardinus (Iberian lynx), C. 
elaphus, C. capreolus. 
Level E: C. crocuta. 
Level F: C. crocuta, U. spelaeus, C. elaphus, 
C. capreolus, S. scrofa 

 Allué et al. (2013) 
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Level I: cool 
climate. 

Level H: C. crocuta, U. spelaeus, Canis sp., 
P. spelaea, F. silvestris, L. pardinus, B. 
priscus, B. primigenius, C. ibex, R. 
rupicapra, C. elaphus, S. scrofa, E. caballus, 
C. antiquitatis. 
Level I: C. crocuta, U. spelaeus, E. caballus, 
B. priscus, Hippopotamus major (giant 
European hippopotamus), Stephanorhinus 
kirchbergensis (Merck’s rhinoceros) 

Cova del Gegant, 
Barcelona 

MIS 4-3 
See Table 10.4 

Fauna indicates a 
mixture of open 
vegetation and 
open forest. 
Mean annual 
temperature = 
10±2.6°C (cooler 
than today). 
Mean 
temperature of 
coolest month = 
2.6±0.7°C. Mean 
temperature of 
warmest month = 
20.1±1°C. Mean 
annual 
precipitation = 
850±150 mm 
(wetter than 
today). 

C. crocuta, C. lupus, Cuon alpinus 
europaeus (European dhole), F. silvestris, L. 
pardinus, U. arctos, V. vulpes, M. meles, P. 
pardus, Bos/Bison, Capra pyrenaica 
(Iberian ibex), C. elaphus, S. scrofa, S. 
kirchbergensis, S. hemitoechus, E. caballus,  
H. neanderthalensis 

Fauna found in Levels III, IIa 
and I, however, stratigraphic 
provenance information of 
specimens is lacking 

Daura et al. (2005), 
López-García et al. 
(2008), Daura et al. 
(2010), Fernández-
García (2014) 
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Cova B d’Olopte MIS 3  
Stratum 6: C. crocuta, P. spelaea, C. 
antiquitatis, Equus sp., S. scrofa, C. 
elaphus, B. primigenius 

 
de Villalta (1972),  
Fernández-García 
(2014) 

Cueva de las 
Hienas (= Las 
Caldas), Asturias 

MIS 5b-3  
C. crocuta, Canis sp., V. vulpes, E. ferus, S. 
hemitoechus, S. scrofa, C. elaphus, 
Bos/Bison, R. rupicapra, Capra sp. 

 

Sesé and Morales 
(n.d.), cited in 
Martin and Sanchiz 
(1989), Hoyos 
(1979), cited in 
Martin and Sanchiz 
(1989), Martin and 
Sanchiz (1989), 
Domingo et al. 
(2005) 

Cueva del Búho, 
Segovia 

MIS 5d-3  

C. crocuta, Lynx spelaea (cave lynx), 
possibly Panthera sp., C. lupus, V. vulpes, 
M. meles, Equus ferus antunesi (horse), E. 
hydruntinus, C. elaphus, S. scrofa, Bos cf. 
primigenius, S. hemitoechus 

Used as C. crocuta den. 
Gnaw marks and evidence of 
acid digestion on Equus sp., 
Bovidae sp. and Cervidae sp. 
bones, probably by C. 
crocuta.  

Iñigo (1995), Molero 
et al. (1989) and 
Maldonado (1996) 
both cited in Iñigo 
et al. (1998), Iñigo 
et al. (1998) 
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Table 10.2: Details of Tornewton, Devon, Britain. References: Widger (1892) and Sutcliffe and Zeuner (1962) both cited in Currant (1998) and Gilmour et al. (2007), 

Sutcliffe and Kowalski (1976), Currant (1998), Gilmour et al. (2007), Lewis (2011). 

Stratigraphic unit Age Palaeoenvironmental 
reconstruction 

Large mammal species Further information 

Vivian’s Vault MIS 6 & 5e    

Great Bone Bed = Hyaena 
Stratum = Unit I = gritty cave 
earth 

MIS 5c 
See Table 10.4 

Pollen from C. crocuta 
coprolite thought to be from 
this unit: non-arboreal pollen 
most abundant, some 
woodland locally or 
regionally, lack of 
thermophilous species.  

C. crocuta, C. lupus, V. vulpes, 
P. leo, Ursus sp., S. 
hemitoechus, H. amphibius, 
D. dama, C. elaphus, large 
bovid 

C. crocuta den. Mostly teeth 
and foot bone present – C. 
crocuta consumed most parts 
of C. crocuta and other 
species 

Elk Stratum MIS 3  C. crocuta, C. antiquitatis, E. 
ferus, R. tarandus, C. elaphus 

 

Glutton Stratum End of MIS 3, but mixed with 
other fauna 

 U. arctos, G. gulo, C. lupus, V. 
vulpes, P. leo. M. meles, R. 
tarandus, E. ferus, S. 
hemitoechus, H. amphibius, 
D. dama, C. capreolus, small 
bovid 
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Table 10.3: Details of Goyet caves, Namur Province, Belgium. References: Dupont (1873), Germonpre (1997), Germonpré (2001), Germonpré and Sablin (2001), 

Germonpré and Hämäläinen (2007), Germonpré et al. (2009), Peigné et al. (2009), Stevens et al. (2009), Stuart and Lister (2012), Germonpré (unpublished) cited in 

Comeyne (2013), Comeyne (2013), Rougier et al. (2016), supplemented by museum labels from RBINS. 

Stratigraphic unit Age 
Palaeoenvironmental 
reconstruction 

Large mammal species Further information 

3eme Caverne, 
Chamber A, 1er 
Niveau Ossifère 

MIS 3 
See Table 
10.4 

Mammals indicate open 
steppe vegetation and 
dry climate, and reflect 
the hilly topography  

C. crocuta, C. lupus , V. vulpes, A. 
lagopus, U. arctos, U. spelaeus, M. 
meles, Mammuthus sp., C. 
antiquitatis, Equus caballus arcelini 
(domestic horse), R. tarandus, C. ibex, 
R. rupicapra, O. moschatus, S. scrofa, 
Bovidae sp., Hominidae sp. (damage 
to bone, artefacts) 

Carnivore remains found at back of Chamber, and bone 
accumulated by humans found at front of chamber. 
Humans responsible for accumulation of most Equus sp. 
remains  

3eme Caverne, 
Chamber A, 3eme 
Niveau 

MIS 3 
See Table 
10.4 

 
C. crocuta, C. lupus, U. spelaeus, U. 
arctos R. tarandus, Equus sp. 
H. neanderthalensis  

Large carnivores found at back of chamber and bone 
accumulated by humans found at front of chamber. 
C. crocuta gnaw marks confined to specimens from the 
rear half of the chamber, and cut-marks confined to the 
front, with little spatial overlap. Carnivore damage to 
Equus sp. and R. tarandus remains is rare. Cut-marks 
evidence on H. neanderthalensis, Equus sp. and R. 
tarandus bones. Some U. spelaeus bones shown human 
modification, but there is no evidence of this on C. crocuta 
remains, although both species found towards the back of 
the chamber  

3eme Caverne, 
Chamber A, 4eme 
Niveau Ossifère, 
Galleries Voisines 
de l’Entrée 

MIS 3 
See Table 
10.4 

 

C. crocuta, C. lupus, A. lagopus, V. 
vulpes, U. spelaeus, L. lynx, M. 
primigenius, C. antiquitatis, E. 
germanicus, C. elaphus, R. tarandus, B. 
priscus, R. rupicapra, C. ibex  

Level located mainly at the back of the chamber. 
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Table 10.4: Dating of sites included in this study. U-Th = uranium-thorium dating. UF = ultrafiltrated gelatin, radiocarbon pre-treatment. 14C = radiocarbon date. OSL 

= Optically stimulated luminescence Radiocarbon dates calibrated using OxCal 4.3 and IntCal13, with 95.4 % confidence range  (Bronk Ramsey, 2009; Reimer et al., 

2013). For references see Table 10.1 to Table 10.3. Where possible, the radiocarbon dates displayed are only those that included the ultrafiltrated radiocarbon pre-

treatment. There are additional, younger dates from Goyet, 3eme Caverne, 1er Niveau Ossifère, in Chamber A on E. c. arcelini, O. moschatus, Canis sp. (likely wolf) and 

C. antiquitatis, which range from 16,320±140 14C BP = 20,070-19,337 cal BP to 12,560±50 14C BP = 15,142-14,529 cal BP. 

Site Stratigraphy Dating 
method 

Species Date Calibrated 
date (cal BP) 

Further 
information 

Kirkdale Cave Capping bone-bearing sediment U-Th Flowstone 121.4+4.8/-4.6 ka   

Minchin Hole  U-Th Flowstone 127-107 ka   

Minchin Hole  Amino 
acid 

 MIS 5   

Victoria Cave  U-Th  Flowstone encasing 
S. hemitoechus tooth 

115.69+2.68/-2.64 ka   

Victoria Cave  U-Th  Flowstone encasing 
S. hemitoechus tooth 

111.97+2.42/-2.38 ka   

Tornewton Dark Earth U-Th  Stalagmite 100.447 ka   

Tornewton Dark Earth U-Th  Stalagmite 104.928 ka   

Tornewton Dark Earth U-Th  Stalagmite 98.370 ka   

Tornewton Capping Dark Earth U-Th  Stalagmite 77.552 ka  Minimum age for 
Dark Earth 

Tornewton Capping Dark Earth U-Th  Stalagmite 76.290 ka  Minimum age for 
Dark Earth 

Tornewton Hyaena Stratum  Stalagmite 134.519 ka  Maximum age for 
Hyaena Stratum 

Badger Hole Grid Gc 5’ UF 14C E. ferus 36,000±450 14C BP 41,563-39,706   

Bench Cavern  UF 14C C. crocuta  36,800±450 14C BP 42,114-40,510  

Church Hole  UF 14C C. crocuta >40,000 14C BP   

Coygan Cave  UF 14C C. crocuta 32,140±250 14C BP 36,580-35,465  
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Coygan Cave Trench IIB, Spit 5 UF 14C C. crocuta 32,400±550 14C BP 38,145-35,231  

Coygan Cave  UF 14C C. crocuta 36,000±550 14C BP 41,721-39,516  

Coygan Cave Trench IIB, Spit 7 UF 14C C. crocuta 39,700±1700 14C BP 47,894-41,331 Date may extend 
out of range 

Coygan Cave Trench IIB, Spit 1 UF 14C C. crocuta 43,000±2,100 14C BP = ?-43,944 Date may extend 
out of range 

Coygan Cave  14C C. crocuta >37,700 14C BP   

Coygan Cave Trench IIB, Spit 4 14C C. crocuta >41,300 14C BP   

Coygan Cave  UF 14C C. antiquitatis 45,800±320 14C BP ?-48,510  Date may extend 
out of range 

Daylight Rock Fissure  14C C. crocuta 46,400±3800 14C BP ?-45,053 Date may extend 
out of range 

Ffynnon Beuno Cave  14C C. crocuta 18,520±130 14C BP 22,681-22,001 Date likely 
inaccurate due to 
conservation 

Ffynnon Beuno Cave  14C C. antiquitatis 28,030±340 14C BP 32,865-31,225  

Ffynnon Beuno Cave  14C Bos/Bison 24,450±400 14C BP 29,368-27,762  

Ffynnon Beuno Cave  14C M. primigenius 
(gnawed) 

27,860±340 14C BP 32,697-31,129  

Goat’s Hole Paviland  UF 14C C. crocuta 23,120±130 14C BP 27,656-27,169 Date likely 
inaccurate due to 
conservation 

Goat’s Hole Paviland  UF 14C C. antiquitatis 
(gnawed by C. 
crocuta) 

32,870±200 14C BP 37,701-36,302  

Goat’s Hole Paviland  UF 14C C. antiquitatis 
(gnawed by C. 
crocuta) 

33,800±200 14C BP 38,770-37,634  
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Goat’s Hole Paviland  UF 14C C. antiquitatis 
(gnawed by C. 
crocuta) 

42,650±800 14C BP 47,869-44,594  

Goat’s Hole Paviland  UF 14C R. tarandus (gnawed 
by C. crocuta) 

31,990±180 14C BP 36,298-35,469  

Goat’s Hole Paviland  UF 14C R. tarandus (gnawed 
by C. crocuta) 

37,350±320 14C BP 42,296-41,315  

Goat’s Hole Paviland  UF 14C R. tarandus (gnawed 
by C. crocuta) 

40,570±370 14C BP 44,869-43,380  

Goat’s Hole Paviland  UF 14C R. tarandus 23,700±140 14C BP 28,058-27,548 Repeated date 

Goat’s Hole Paviland  UF 14C R. tarandus 24,240±110 14C BP 28,601-27,957 Repeated date 

Goat’s Hole Paviland  UF 14C Cervidae sp. 21380±170 14C BP 25997-25337  

Goat’s Hole Paviland  UF 14C U. arctos 28,750±600 14C BP 33,972-31,437  

Goat’s Hole Paviland  UF 14C Equus sp. 26,170±150 14C BP 30,858-29,970  

Goat’s Hole Paviland  UF 14C M. primigenius 22,210±160 14C BP 26,964-26,059 Repeated date 

Goat’s Hole Paviland  UF 14C M. primigenius 21,710±120 14C BP 26,179-25,743 Repeated date 

Goat’s Hole Paviland  UF 14C H. sapiens 28,870±180 14C BP 33,586-32,513  

Goat’s Hole Paviland  UF 14C H. sapiens 29,490±210 14C BP 34,074-33,245  

Hyaena Den Unit 2 (Cave Earth) UF 14C C. crocuta 48,600±1,000 14C 50,940-46,790 Date out of range 

Hyaena Den Unit 2 (Cave Earth) UF 14C C. elaphus 45,100±1,000 14C BP ?-46,740 Date may extend 
out of range 

Hyaena Den Unit 2 (Cave Earth) UF 14C Bone fragment 47,000±1,700 14C ?-49,811 Date probably out 
of range 

Hyaena Den Unit 1 (Fine Silt) UF 14C Bone fragment 52,700±2,000 14C BP 58,841-49,261 Date out of range 

Hyaena Den  UF 14C Antler/bone point 
artefact 

31,550±340 14C BP 36,164-34,784  

Kents Cavern  UF 14C C. crocuta 40,200±600 14C BP 44,945-42,881  

Kents Cavern  UF 14C C. crocuta 37,750±500 14C BP 42,785-41,379  

Kents Cavern  UF 14C C. crocuta 30,630±380 14C BP 35,346-33,933  
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Kents Cavern  UF 14C Bone fragment 
(damaged by C. 
crocuta) 

36,750±450 14C BP 42,080-40,460  

Kents Cavern C13’-3” UF 14C P. leo 43,600±3,600 14C BP ?-43,322  
 

Date may extend 
out of range 

Kents Cavern C5'-9" UF 14C cf. P. leo 38,380±340 14C BP 42,954-42,007  

Kents Cavern C5'-0 UF 14C C. lupus 29,840±330 14C BP 34,598-33,431  

Kents Cavern C9'-0 UF 14C U. arctos 35,600±700 14C BP 41,611-38,806  

Kents Cavern C14'-0 UF 14C C. antiquitatis 45,000±2,200 14C BP ?-45,465 Date may extend 
out of range 

Kents Cavern C9'-6" UF 14C C. antiquitatis 37,200±550 14C BP 42,530-40,750  

Kents Cavern Trench C, C9-10'0?" UF 14C C. antiquitatis 36,700±750 14C BP 
 

42,470-39,880 
 

 

Kents Cavern Trench C, 9'9" UF 14C C. antiquitatis 36,500±750 14C BP 42,341-39,676  

Kents Cavern Trench C, C10-11' UF 14C C. antiquitatis 36,100±700 14C BP 42,004-39,333  

Kents Cavern C8'-3" UF 14C C. antiquitatis 36,370±320 14C BP 41,645-40,310 Repeated date 

Kents Cavern C8'-3" UF 14C C. antiquitatis 35,650±330 14C BP 41,088-39,522 Repeated date 

Kents Cavern C8'-3" UF 14C C. antiquitatis 36,040±330 14C BP 41,409-39,960  

Kents Cavern Trench C, C10'0" UF 14C C. antiquitatis 34,950±650 14C BP 41,111-38,316  

Kents Cavern C12'-13'-0 UF 14C C. antiquitatis 
(heated) 

35,150±330 14C BP 40,501-38,895  

Kents Cavern C19'-20'-0 UF 14C R. tarandus 49,600±220 14C BP 50,053-49,172  Date out of range 

Kents Cavern C15'-0 UF 14C R. tarandus 40,000±700 14C BP 44,976-42,655  

Kents Cavern Trench C, C10'0" UF 14C R. tarandus 35,100±650 14C BP 41,176-38,457  

Kents Cavern Trench C, 9'90" UF 14C R. tarandus 34,850±600 14C BP 40,911-38,285  

Kents Cavern C7'-3" UF 14C C. elaphus 35,550±750 14C BP 41,654-38,700  

Kents Cavern Entrance to NE Gallery trench, 
6'6"-7" 

UF 14C C. elaphus 33,150±550 14C BP 38,716-36,094  

Kents Cavern Trench C, C12'9-13'8" UF 14C C. elaphus 32,200±450 14C BP 37,532-35,100  
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Kents Cavern Entrance to NE Gallery trench, 
6'6"-7" 

UF 14C C. elaphus 30,850±400 14C BP 35,629-34,066  

Kents Cavern C4'-4"--4'-8" UF 14C C. elaphus 30,000±180 14C BP 34,445-33,747  

Kents Cavern Trench C, C12'6"-13'8" UF 14C Bovidae sp. 38,900±1,100 14C BP 45,073-41,467  

Kents Cavern B8'-0 14C Bovidae sp. 36,400±1400 14C BP 43,746-38,402  

Kents Cavern B6'-0 UF 14C Bovidae sp. 31,400±380 14C BP 39,615-37,545  

Kents Cavern Trench C, C10'9" UF 14C Bovidae sp. 32,800±800 14C BP 38,986-35,192  

Nanna’s Cave  UF 14C C. crocuta 27,100±750 14C BP 33,108-29,692  

Pin Hole  UF 14C C. crocuta >35,500 14C BP   

Pin Hole  UF 14C C. crocuta 37,800±500 14C BP 42,815-41,419 Repeated date 

Pin Hole  UF 14C C. crocuta 37,150±450 14C BP 42,359-40,895 Repeated date 

Pin Hole 64/11' - 0" UF 14C C. antiquitatis 
(gnawed by C. 
crocuta) 

58,800±3,700 14C BP 77,703-53,623 Date out of range 

Pin Hole 42/11' - 6" UF 14C C. antiquitatis 55,900±4,000 14C BP 77,074-50,625 Date out of range 

Pin Hole 50/10' - 0" UF 14C C. antiquitatis 54,000±2,900 14C BP 66,391-49,341 Date out of range 

Pin Hole 48/8' - 6" UF 14C C. antiquitatis 52,500±2,800 14C BP 64,070-47,945 Repeated date. 
Date out of range 

Pin Hole 48/8' - 6" UF 14C C. antiquitatis >43,000 14C BP  Repeated date 

Pin Hole 50/7' - 0" UF 14C C. antiquitatis 45,000±750 14C BP 49,969-46,935 Date may extend 
out of range 

Pin Hole 44/8' - 6" UF 14C C. antiquitatis 43,350±650 14C BP 48,199-45,384  

Pin Hole 37/9' - 6" UF 14C M. primigenius 48,400±110 14C BP 48,622-48,183 Date may extend 
out of range 

Pin Hole 62/9' - 0" UF 14C E. ferus 53,000±1,900 14C BP 58,636-49,721 Date out of range 

Pin Hole 64/9' - 0" UF 14C E. ferus 49,600±1,000 14C BP 51,940-47,790 Date out of range 

Pin Hole 50/8' - 0" UF 14C E. ferus 47,000±1,200 14C BP ?-49,897 Date probably out 
of range 

Pin Hole 64/7' - 0" UF 14C R. tarandus 44,200±800 14C BP 49,453-45,952 Date may extend 
out of range 
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Pin Hole 65/8' - 0" UF 14C R. tarandus 40,650±500 14C BP 45,145-43,286  

Pin Hole 70/7 - 0" UF 14C R. tarandus 37,760±340 14C BP 42,578-41,599  

Pin Hole 53/7' - 6" UF 14C Bovidae sp. 48,000±1,000 14C BP ?-49,976 Date probably out 
of range 

Pin Hole 65/9' - 0" UF 14C Bovidae sp. 40,720±390 14C BP 45,040-43,475  

Uphill Caves  Possibly Cave 8 UF 14C Aurignacian bone or 
antler point 

31,730±250 14C BP 36,183-35,055  

Robin Hood Cave  UF 14C C. crocuta >49,800 14C BP  1969 excavation 

Robin Hood Cave Southwestern corner, Western 
Chamber, Spit 9 

UF 14C C. crocuta >42,000 14C BP  1981 excavation 

Robin Hood Cave Southwestern corner, Western 
Chamber, A, Spit 26 

UF 14C C. crocuta >52,800 14C BP  1981 excavation 

Robin Hood Cave Southwestern corner, Western 
Chamber, Spit 12 

UF 14C C. crocuta 45,300±1,000 14C 
 

?-46,910 1981 excavation. 
Date may extend 
out of range 

Robin Hood Cave Southwestern corner, Western 
Chamber, Spit 7 

UF 14C P. leo >38,500 14C BP  1981 excavation 

Robin Hood Cave Southwestern corner, Western 
Chamber, Spit 19 

UF 14C R. tarandus 47,300±1,200 14C BP ?-49,932 1981 excavation. 
Date probably out 
of range 

Teufelslucken  14C C. crocuta 40,170+920/-830 14C BP 45,555-42,534  

Teufelslucken  14C C. crocuta 38,060+900/-910 14C BP 43,952-40,961  

Caverne Marie-Jeanne Couche 4 UF 14C Dicrostonyx 
torquatus (Arctic 
lemming) 

47,600±3300 14C BP ?-49,682 Date probably out 
of range 

Caverne Marie-Jeanne Couche 4 UF 14C D. torquatus >43,900 14C BP   

Caverne Marie-Jeanne Couche 4 UF 14C D. torquatus 43,000±1900 14C BP ?-44,124 Date may extend 
out of range 

Goyet 3eme Caverne, 1er Niveau 
Ossifère, in Chamber A 

14C C. crocuta 27,230±260 14C BP 31,521-30,849  
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Goyet 3eme Caverne, 1er Niveau 
Ossifère, in Chamber A 

14C C. crocuta 35,000±400 14C BP 40,474-38,667  

Goyet 3eme Caverne, 1er Niveau 
Ossifère, in Chamber A 

14C U. spelaeus 38,770+1,180/-1,030 14C 
BP 

45,209-41,238  

Goyet 3eme Caverne, 1er Niveau 
Ossifère, in Chamber A 

UF 14C C. antiquitatis (with 
cut marks) 

23,560±230 14C BP   28,126-27,352  

Goyet 3eme Caverne, 1er Niveau 
Ossifère, in Chamber A 

UF 14C C. antiquitatis 28,470±140 14C BP 32,951-31,810  

Goyet 3eme Caverne, 1er Niveau 
Ossifère, in Chamber A 

UF 14C C. antiquitatis 29,330±160 14C BP 33,891-33,150  

Goyet 3eme Caverne, 1er Niveau 
Ossifère, in Chamber A (front of 
cave) 

UF 14C E. c. arcelini 31,750±200 14C BP 
 

 

45,209-41,238  

Goyet 3eme Caverne, 1er Niveau 
Ossifère, in Chamber A 

14C H. neanderthalensis 41,200+500/-410 14C BP 45,627-43,752  

Goyet 3eme Caverne, 1er Niveau 
Ossifère, in Chamber A 

14C H. neanderthalensis 41,200+500/-410 14C BP 42,893-41,925  

Goyet 3eme Caverne, 1er Niveau 
Ossifère, in Chamber A 

14C H. neanderthalensis 41,200+500/-410 14C BP 41,791-40,570  

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A (back of cave) 

14C U. arctos 10,640±50 14C BP 12,714-12,535 May be intrusive 

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A (back of cave) 

14C U. arctos 32,580+250/-230 14C BP 37,432-35,922  

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A (back of cave) 

14C U. spelaeus (with 
ochre staining) 

23,580±130 14C BP 27,918-27,485 Repeated date 

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A (back of cave) 

14C U. spelaeus (with 
ochre staining) 

27,920+160/-150 14C BP 32,236-31,270 Repeated date 

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A (back of cave) 

14C U. spelaeus 27,440±170 14C BP 31,531-31,040  
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Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A (back of cave) 

14C U. spelaeus 32,900+240/-220 14C BP 37,885-36,282  

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A (front of cave) 

14C R. tarandus (with 
ochre staining) 

27,590±170 14C BP 31,674-31,097 
 

 

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A (front of cave) 

14C R. tarandus 34,670+900/-810 14C BP 41,332-37,040  

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A 

14C H. neanderthalensis 40,690+480/-400 14C BP 45,146-43,339  

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A 

14C H. neanderthalensis 39,870+400/-350 14C BP 44,330-42,874  

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A 

14C H. neanderthalensis 39,140+390/-340 14C BP 43,641-42,393  

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A 

14C H. neanderthalensis 38,440+340/-300 14C BP 42,992-42,043  

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A 

14C H. neanderthalensis 37,860+350/-310 14C BP 42,650-41,660  

Goyet 3eme Caverne, 3eme Niveau, in 
Chamber A 

14C H. neanderthalensis 37,250+320/-280 14C BP 42,235-41,235  

Goyet 3eme Caverne, 4eme Niveau 
Ossifère, Galleries Voisines de 
l’Entrée, in Chamber A 

14C Canis sp. 
(Palaeolithic dog) 

31,680±250 36,140-35,009  

Höhle Výpustek  14C C. crocuta 46,000+2,400/-1,820 14C 
BP 

?-45,942 Date may extend 
out of range 

Castlepook Cave Elephant Hall 14C C. crocuta >45,000 14C BP   

Castlepook Cave  UF 14C C. crocuta 45,700±700 14C BP ?-47,754 Date may extend 
out of range 

Castlepook Cave Gallery of the Aged Carnivores UF 14C C. crocuta 33,240±220 14C BP 38,291-36,700  

San Teodoro Trench β U-Th Flowstone 32±4 ka   

San Teodoro Trench β, Level B-II 14C E. hydruntinus 18,330±400 14C BP 23,125-21,149  

Baranica I Layer 2 14C M. giganteus 23,520±110 14C BP 27,854-27,470  
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Baranica I Layer 4 14C U. spelaeus 35,780±320 14C BP 41,184-39,695  

Baranica II  UF 14C C. crocuta >53,100 14C BP   

Cova de les Toixoneres Chamber Y, Unit 1 UF 14C C. crocuta 43,100±400 47,243-45,493  

Cova de les Toixoneres Chamber Y, Unit 1 UF 14C Pinus t. sylvestris 
(Scots pine) 

28,390±80 32,759-31,821  

Cova de les Toixoneres Chamber Y, Unit 1 UF 14C Small size ungulate 10,343±29 12,384-12,022  

Cova de les Toixoneres Chamber X, Unit II UF 14C C. elaphus (human 
modified) 

40,800±320 45,011-43,651  

Cova de les Toixoneres Chamber X, Unit II UF 14C C. elaphus (human 
modified) 

36,850±211 41,871-41,037  

Cova de les Toixoneres Chamber X, Unit II UF 14C Large size 34,940±173 39,956-38,963  

Cova de les Toixoneres Chamber X, Unit II UF 14C Medium size 39,320±263 43,542-42,635  

Cova de les Toixoneres Chamber X, Unit II UF 14C Medium size 34,900±175 39,913-38,918  

Cova de les Toixoneres Chamber X, Unit II UF 14C Medium size 30,780±110 34,978-34,437  

Cova de les Toixoneres Chamber X, Unit II UF 14C Small size (human 
modified) 

39,000±260 43,266-42,458  

Cova de les Toixoneres Chamber X, Unit III UF 14C C. elaphus >51,000   

Cova de les Toixoneres Chamber X, Unit III UF 14C C. elaphus (human 
modified) 

47,200±670 ?-49,973  Date probably out 
of range 

Cova de les Toixoneres Chamber X, Unit III UF 14C C. elaphus (human 
modified) 

40,610±340 44,860-43,450  

Cova de les Toixoneres Chamber X, Unit III UF 14C Medium size (human 
modified) 

42,020±370 46,073-44,695  

Cova de les Toixoneres Chamber X, Unit III UF 14C Medium size 41,560±337 45,640-44,375  

Cova de les Toixoneres Chamber X, Unit III UF 14C Medium size 41,270±327 45,410-44,135  

Cova de les Toixoneres Chamber X, Unit III UF 14C Unidentified 42,250±359 46,257-44,895  

Cova del Gegant Overlying sequence U-Th Speleothem 49.3±1.9 ka   

Cova del Gegant  U-Th H. neanderthalensis 52.3±2.3 ka   

Cova del Gegant Base of deposits OSL Speleothem 60±6.9 ka   
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10.2 Crocuta crocuta and Panthera leo biomass 

 

Table 10.5: Spearman Rank Order correlations between variables included in PLS 1-4 with C. crocuta and P. leo biomass as the dependent variable. Top value is the 

rs statistic. Bottom value is the p-value. Yellow shaded boxes show correlations significant at 95 % confidence, and thus indicating multicollinearity. 
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C. crocuta 
biomass 

0.663 
<0.05 

0.768 
<0.05 

0.604 
<0.05 

0.815 
<0.05 

0.595 
0.001 

0.122 
0.519 

-0.121 
0.522 

-0.546 
0.002 

-0.259 
0.168 

0.19 
0.314 

0.498 
0.005 

-0.062 
0.743 

0.431 
0.017 

-0.119 
0.531 

-0.379 
0.039 

P. leo biomass 
0.712 
<0.05 

0.833 
<0.05 

0.551 
0.002 

0.64 
<0.05 

0.615 
<0.05 

0.057 
0.763 

0.125 
0.509 

-0.536 
0.002 

-0.507 
0.004 

0.299 
0.108 

0.576 
0.001 

-0.149 
0.431 

0.388 
0.034 

-0.418 
0.022 

-0.248 
0.187 

Other predator 
biomass   

0.81 
<0.05 

0.648 
<0.05 

0.709 
<0.05 

0.447 
0.013 

0.055 
0.774 

-0.219 
0.246 

-0.474 
0.008 

-0.069 
0.717 

0.186 
0.326 

0.409 
0.025 

0.002 
0.99 

0.416 
0.022 

-0.203 
0.282 

-0.336 
0.07 

Very small prey 
biomass     

0.608 
<0.05 

0.803 
<0.05 

0.581 
0.001 

-0.045 
0.812 

-0.009 
0.964 

-0.695 
<0.05 

-0.452 
0.012 

0.219 
0.245 

0.715 
<0.05 

-0.044 
0.818 

0.349 
0.059 

-0.26 
0.166 

-0.272 
0.146 

Small prey 
biomass       

0.498 
0.005 

0.499 
0.005 

0.186 
0.325 

-0.106 
0.579 

-0.552 
0.002 

-0.448 
0.013 

0.675 
<0.05 

0.174 
0.359 

-0.541 
0.002 

0.267 
0.154 

-0.09 
0.636 

-0.081 
0.67 

Medium prey 
biomass         

0.341 
0.065 

-0.14 
0.461 

-0.103 
0.589 

-0.607 
<0.05 

-0.25 
0.182 

0.14 
0.459 

0.598 
<0.05 

0.065 
0.732 

0.204 
0.28 

-0.133 
0.483 

-0.189 
0.317 
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Table 10.5 continued. 

Large prey 
biomass           

0.374 
0.042 

0.088 
0.644 

-0.384 
0.036 

-0.372 
0.043 

0.274 
0.143 

0.315 
0.09 

-0.217 
0.25 

0.539 
0.002 

-0.36 
0.051 

-0.394 
0.031 

Very large prey 
biomass             

0.148 
0.434 

0.338 
0.068 

0.117 
0.537 

0.154 
0.416 

-0.245 
0.191 

-0.228 
0.226 

0.356 
0.054 

-0.042 
0.826 

-0.16 
0.397 

Minimum 
temperature of 
coldest month               

-0.017 
0.93 

-0.396 
0.03 

0.201 
0.288 

0.352 
0.057 

-0.237 
0.207 

-0.177 
0.351 

-0.671 
<0.05 

0.513 
0.004 

Maximum 
temperature of 
warmest month                 

0.698 
<0.05 

-0.425 
0.019 

-0.64 
<0.05 

0.221 
0.24 

-0.056 
0.767 

0.314 
0.091 

-0.072 
0.704 

Temperature 
seasonality                   

-0.601 
<0.05 

-0.452 
0.012 

0.53 
0.003 

0.088 
0.642  

0.362 
0.049 

-0.275 
0.141 

Rainfall of the 
driest month                     

-0.147 
0.439 

-0.957 
<0.05 

-0.094 
0.621 

-0.292 
0.117 

0.408 
0.025 

Rainfall of the 
wettest month                       

0.314 
0.091 

0.241 
0.199 

-0.421 
0.021 

-0.13 
0.495 

Rainfall 
seasonality                         

0.139 
0.462 

0.238 
0.204 

-0.434 
0.017 

Closed 
vegetation cover                           

-0.315 
0.09 

-0.835 
<0.05 

Semi-open 
vegetation cover                             

-0.09 
0.637 

Open vegetation 
cover                               
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10.3 Repeated linear measurements 

Table 10.6: Sub-sample 1 of randomly sub-sampled repeated linear measurements from a C. 

crocuta cranium held in the Department of Geography, Royal Holloway University of London. A 

= total length of the cranium. B = length of the m1. C = width of the m1. D = depth of the 

mandible at the p2/p3 interdental gap. E = width of the mandible at the p2/p3 interdental gap. 

F = distance from the mandibular articular condyle to the p2/p3 interdental gap. 

A (mm) B (mm) C (mm) D (mm) E (mm) F (mm) 

256.64 29.4 12.33 33 19.39 127.35 

256.41 29.4 12.49 33.18 19.57 126.65 

256.56 29.4 12.49 33.01 19.88 127.6 

256.47 29.41 12.43 33.02 19.65 126.74 

256.54 29.41 12.5 32.98 19.74 126.66 

256.55 29.4 12.51 32.89 19.8 126.55 

256.5 29.4 12.48 32.86 19.52 126.81 

256.49 29.45 12.45 32.99 19.99 126.92 

256.45 29.39 12.31 32.95 19.95 126.48 

256.57 29.4 12.35 32.94 19.48 126.37 

256.44 29.43 12.3 33.08 19.93 126.59 

256.37 29.45 12.38 32.77 19.76 126.52 

256.58 29.38 12.41 32.78 19.92 127.36 

256.5 29.39 12.4 32.71 19.94 126.6 

256.53 29.4 12.33 32.81 19.85 126.18 
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Table 10.7: Sub-sample 2 of randomly sub-sampled repeated linear measurements from a C. 

crocuta cranium held in the Department of Geography, Royal Holloway University of London. A 

= total length of the cranium. B = length of the m1. C = width of the m1. D = depth of the 

mandible at the p2/p3 interdental gap. E = width of the mandible at the p2/p3 interdental gap. 

F = distance from the mandibular articular condyle to the p2/p3 interdental gap. 

A (mm) B (mm) C (mm) D (mm) E (mm) F (mm) 

256.54 29.38 12.44 33.1 19.7 127.39 

256.52 29.45 12.42 32.97 19.55 126.51 

256.52 29.4 12.32 32.98 19.46 126.74 

256.49 29.4 12.47 33.07 19.8 126.52 

256.46 29.38 12.43 32.9 19.83 126.96 

256.48 29.45 12.39 32.99 19.79 126.09 

256.52 29.43 12.55 32.77 19.96 126.95 

256.48 29.39 12.57 32.97 20 126.68 

256.54 29.4 12.32 32.9 19.52 126.74 

256.46 29.39 12.42 32.97 19.59 126.25 

256.56 29.44 12.44 32.92 19.96 126.69 

256.5 29.43 12.39 33.06 19.85 126.47 

256.35 29.37 12.38 32.57 19.91 126.58 

256.57 29.38 12.54 32.88 19.46 125.64 

256.63 29.38 12.4 32.89 19.61 126.55 
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10.4 Modern Crocuta crocuta ontogenetic size change 

        

        

        

        
Figure 10.1: Boxplots of female (F) and male (M) C. crocuta cranial measurements divided by m1 

length, base-10 logarithmically transformed. x-axis numbers are P3/p3 wear stages. See Table 

10.8 for sample sizes.   
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Figure 10.1 continued.    
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Figure 10.1 continued.     
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Figure 10.1 continued.    
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Figure 10.1 continued. 
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Table 10.8: Sample sizes of boxplots in Figure 10.1. F = female. M = male. 
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Figure 10.2: Boxplots of female (F) and male (M) C. crocuta mandibular measurements divided 

by m1 length, base-10 logarithmically transformed. x-axis numbers are P3/p3 wear stages. See 

Table 10.9 for sample sizes.   
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Figure 10.2 continued    
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Figure 10.2 continued.    
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Figure 10.2 continued.    
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Figure 10.2 continued. 
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Table 10.9: Sample sizes of boxplots in Figure 10.2. F = female. M = male. 
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5.5 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

6 F 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 

7 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

8 F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

3 M 10 14 14 13 14 14 14 14 14 14 13 12 12 12 12 12 14 13 13 13 12 

3.5 M 1 1 1 1 1 1 1 1 1 1 1      1 1 1 1  

4 M 31 32 32 30 31 31 31 33 35 33 31 32 33 33 33 33 32 32 33 33 29 

5 M 12 14 14 15 15 15 15 15 15 15 14 14 14 14 14 1 15 14 15 15 12 

5.5 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

6 M 4 6 6 7 7 7 7 8 8 8 8 7 7 7 7 7 8 8 8 8 7 

8 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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10.5 Modern Crocuta crocuta body mass and sexual size dimorphism 

 

Table 10.10: Recent C. crocuta mean female and male body mass (BM) values, and associated 

calculations of sexual size dimorphism SSD. Positive SSD values indicate that females are larger. 

Country Location Mean 
female 
BM (kg) 

Mean 
male 

BM (kg) 

SSD BM reference 

Botswana 
 

70.99 80.06 -0.052 Smithers (1971) 

Kenya Aberdare 
National Park 

51.80 47.4 0.039 Sillero-Zubiri and 
Gottelli (1992) 

Kenya Maasai Mara 
National Reserve 

59.39 53.67 0.044 Swanson et al. (2013) 

Kenya Narok District 50.7 43.6 0.066 Neaves et al. (1980) 

South Africa  61.1 56.2 0.036 Skinner (1976) 

South Africa Hluhluwe-
iMfolozi Park 

70 66.6 0.022 Whateley (1980) 

South Africa iMfolozi Game 
Reserve 

57.75 47.5 0.085 Green et al. (1984) 

South Africa Kalahari Gemsbok 
National Park 

70.9 59 0.08 Mills (1990) 

South Africa Kruger National 
Park 

70.76 58.06 0.086 Stevenson-Hamilton 
(1947) 

South Africa Kruger National 
Park 

68.2 62.5 0.038 Henschel (1986, cited 
in Skinner and 

Chimimba 2005) 

South Africa 
and 

Zimbabwe 

Transvaal and 
Zimbabwe 

64.8 57.8 0.05 Rautenbach (1978, 
cited in Smithers 1983); 

Smithers (1983) 

Southern 
Africa 

 
47.18 46.87 0.003 Thackeray and Kieser 

(1992) 

Tanzania Serengeti 55.3 48.7 0.055 Kruuk (1972) 

Zambia 
 

68.2 67.7 0.003 Wilson (1975, cited in 
Silva and Downing 

1995) 
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Table 10.11: Recent P. leo mean female and male body mass (BM) values, and associated 

calculations of sexual size dimorphism SSD. Positive SSD values indicate that males are larger. 

Country Location Mean 
female 
BM (kg) 

Mean 
male 

BM (kg) 

SSD BM reference 

Botswana Pandamatenga 223.51 284.4 0.105 Best (unpublished data, 
cited in Smithers, 1971) 

Botswana Tshabong 106.14 149.69 0.149 Parris (n.d. cited in 
Smithers, 1971) 

Kenya  151.05 174.81 0.063 Meinertzhagen (1938) 

Kenya and 
Tanzania 

 119.5 174.9 0.165 Smuts et al. (1980, and 
references within) 

Namibia Etosha National 
Park 

141 190 0.13 Orford et al. (1988) 

South Africa iMfolozi Game 
Reserve 

136.33 193 0.151 Green et al. (1984) 

South Africa Kalahari 
National Park 

139.80 188.40 0.13 Smuts et al. (1980, and 
references within) 

South Africa Kruger National 
Park 

124.2 187.5 0.179 Smuts et al. (1980); 

Southern 
Africa 

 178.00 189.98 0.028 Thackeray and Kieser 
(1992) 

Zimbabwe  133.6 193.3 0.16 Smuts et al. (1980, and 
references within) 

Zimbabwe Pandamatenga 136.53 153.77 0.052 Johnstone (n.d., cited 
in Smithers, 1971) 

 

 
Table 10.12: Recent P. pardus mean female and male body mass (BM) values, and associated 

calculations of sexual size dimorphism SSD. aOld-aged adults; bPrime-aged adults. Positive SSD 

values indicate that males are larger. 

Country Location Mean 
female 
BM (kg) 

Mean 
male 

BM (kg) 

SSD BM reference 

Kenya  49.67 62.14 0.097 Meinertzhagen (1938) 

South Africa Cape Province 21.2 30.9 0.164 Stuart (1981) 

South Africaa Sabie River, 
Kruger National 

Park 

37.2 63.1 0.23 Bailey (1993) 

South Africab Sabie River, 
Kruger National 

Park 

37.5 58.2 0.191 Bailey (1993) 

South Africa Transvaal 27.3 50.3 0.265 Rautenbach (1982, 
cited in Silva and 
Downing 1995) 

Southern 
Africa 

 38.6 56.4 0.165 Thackeray and Kieser 
(1992) 

Zimbabwe Matetsi 31.52 59.68 0.277 Johnstone (n.d., cited 
in Smithers, 1971) 



10. Appendices 
 

- 534 - 
 

Table 10.13: Recent A. jubatus mean female and male body mass (BM) values, and associated 

calculations of sexual size dimorphism SSD. Positive SSD values indicate that males are larger. 

Country Location Mean 
female 
BM (kg) 

Mean 
male 

BM (kg) 

SSD BM reference 

Kenya  43 53.9 0.098 Meinertzhagen (1938) 

South Africa Near Kruger 
National Park 

57.6 52.62 -0.039 Roberts (1951, cited 
in Eaton 1974) 

Southern 
Africa 

 45.5 51.55 0.054 Thackeray and Kieser 
(1992) 

Tanzania Serengeti 
ecosystem 

37.25 43.38 0.066 Caro et al. (1987) 

 

 

Table 10.14: Recent P. brunnea mean female and male body mass (BM) values, and associated 

calculations of sexual size dimorphism SSD. Positive SSD values indicate that males are larger. 

Country Location Mean 
female 
BM (kg) 

Mean 
male 

BM (kg) 

SSD BM reference 

South Africa Kalahari National 
Park 

37.6 40.2 0.03 Mills (1990) 

South Africa Transvaal 42 47.1 0.05 Skinner and Ilani 
(1979) 

South Africa Transvaal 27.9 36.5 0.12 Rautenbach (1982, 
cited in Silva and 
Downing 1995) 

South Africa  40.9 43.9 0.03 Skinner (1976) 

Southern 
Africa 

 37.05 38.85 0.02 Thackeray and Kieser 
(1992) 

Zimbabwe  39.96 38.1 -0.02 Smithers (1983) 

 

 

Table 10.15: Recent L. pictus mean female and male body mass (BM) values, and associated 

calculations of sexual size dimorphism SSD. The positive SSD values indicates that males are 

larger. 

Country Location Mean 
female 
BM (kg) 

Mean 
male 

BM (kg) 

SSD BM reference 

Botswana  21.32 21.77 0.009 Smithers (1971) 
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10.6 Modern Crocuta crocuta geographical variation 

Table 10.16: Spearman Rank Order correlations on variables included in the PLS regressions with 

present-day C. crocuta craniodental measurements as the dependent variables. Top figure is rs 

statistic. Bottom figure is p-value. Yellow shaded boxes show correlations significant at 95 % 

confidence, and thus indicating multicollinearity. 
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Minimum temperature 
coolest month 

 0.215 
0.084 

0.377 
0.002 

0.353 
0.004 

0.103 
0.41 

-0.001 
0.994 

-0.142 
0.255 

Maximum temperature 
warmest month 

  -0.468 
<0.05 

-0.07 
0.578 

-0.093 
0.457 

0.458 
<0.05 

-0.349 
0.004 

Precipitation driest 
month 

   0.113 
0.367 

0.13 
0.299 

-0.325 
0.008 

0.138 
0.268 

Precipitation wettest 
month 

    0.419 
<0.05 

-0.000 
1 

-0.284 
0.021 

Closed vegetation 
cover 

     -0.241 
0.051 

-0.673 
<0.05 

Semi-open vegetation 
cover 

      -0.452 
<0.05 

Open vegetation cover        
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Table 10.17: Leverage values of PLS regressions run on tooth measurements of present-day C. crocuta. LRL = leverage reference line. Difference = the difference 

between the maximum leverage value and the LRL. Shaded values are maximum, extreme values that were excluded from subsequent PLS reruns. 
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PLS 39 40 41 42 43 44 45 47 48 49 50 

1.1 0.039 0.024 0.026 0.020 0.027 0.020 * 0.019 0.019 0.022 0.018 

2.1 * * * * * 0.021 0.121 * 0.019 0.026 0.018 

3.1 * 0.023 0.116 0.026 0.048 0.101 0.047 0.098 0.060 0.017 0.040 

3.2 0.041 0.076 * 0.050 * 0.056 0.072 0.030 0.019 0.036 0.031 

4.1 * 0.026 * * 0.021 0.020 * 0.023 0.021 0.021 0.023 

5.1 * * 0.039 0.020 0.021 * 0.039 0.029 0.020 0.020 0.019 

5.2 * * 0.026 0.030 * 0.018 * * 0.027 0.019 0.025 

5.3 * 0.052 0.026 0.034 * 0.019 0.043 0.019 0.023 0.044 0.035 

6.1 * 0.030 0.031 0.020 0.020 0.023 0.031 * 0.019 0.026 0.020 

6.2 0.071 0.069 0.026 0.041 0.036 0.018 0.077 0.020 0.028 0.061 0.041 

6.3 * 0.054 0.026 0.030 0.027 0.018 0.055 0.019 0.023 0.039 0.031 

6.4 * 0.045 * 0.027 0.024 0.018 0.039 0.019 0.022 0.031 0.029 

6.5 * * * 0.064 0.067 0.023 0.205 * * 0.125 0.072 

6.6 0.040 0.032 0.034 0.021 0.021 0.022 0.056 0.023 0.019 0.030 0.020 

6.7 0.039 0.024 0.038 0.021 0.021 0.026 0.052 0.027 0.021 0.020 0.018 

6.8 0.041 0.021 0.070 0.026 0.022 0.028 0.121 0.035 0.027 0.022 0.020 

6.9 0.064 0.029 0.043 0.046 0.045 0.033 0.080 0.039 0.042 0.024 0.037 

6.10 * 0.022 * 0.030 * 0.023 * 0.025 0.033 0.029 0.027 

6.11 * 0.033 0.035 0.042 0.040 0.035 0.042 0.040 0.046 0.029 0.035 
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6.12 * * * 0.053 0.053 * * * * * * 

6.13 * * * * 0.029 0.025 * * * 0.018 * 

6.14 0.046 0.025 0.026 0.022 0.021 0.019 * 0.019 0.020 0.020 0.022 

6.15 0.047 0.024 0.041 0.030 * 0.036 * 0.035 0.030 0.018 0.022 

7.1 0.090 0.062 0.036 0.070 0.060 0.041 0.085 0.044 0.052 0.049 0.049 

9.1 * * 0.057 0.056 0.056 0.045 * * * 0.037 0.053 

9.2 0.040 0.023 0.029 0.020 0.020 0.022 0.027 0.021 0.019 0.020 0.020 

10.1 * * * * * * * 0.028 * 0.030 0.030 

10.2 0.079 0.060 0.083 0.074 0.050 0.044 0.075 0.054 0.059 0.025 0.048 

10.3 0.125 0.046 0.026 0.054 0.087 0.046 0.126 0.045 0.050 0.089 0.067 

10.4 0.083 0.040 0.039 0.053 * 0.050 0.060 0.048 0.049 0.040 0.043 

10.6 0.187 0.144 0.073 0.163 0.152 0.083 0.164 0.088 0.123 0.115 0.115 

11.1 * 0.039 0.057 0.036 0.030 0.025 0.054 0.032 0.037 0.020 0.034 

12.1 0.233 0.050 0.119 0.064 0.123 0.150 0.089 0.140 0.119 0.055 0.088 

12.2 * * * 0.033 * 0.038 * * 0.019 0.030 0.027 

13.1 0.053 0.039 0.056 0.050 0.044 0.033 0.050 0.036 0.041 0.022 0.031 

13.2 * 0.034 0.045 0.047 0.036 0.023 0.068 0.027 0.035 0.019 0.028 

14.1 * * 0.166 0.038 0.039 0.086 0.110 0.097 * 0.016 * 

15.1 0.041 0.030 0.029 0.022 0.020 0.026 0.114 0.020 0.019 0.017 0.025 

16.1 * * * * * * 0.122 * 0.035 0.066 0.058 

16.2 * * * * * * * 0.034 * 0.065 * 

17.1 0.045 0.178 * * * 0.033 0.593 0.020 0.026 0.016 0.038 

17.2 * 0.061 * * * 0.027 0.080 0.038 0.046 0.026 0.048 

18.1 0.086 0.038 0.110 0.037 0.025 0.038 0.116 0.056 0.048 0.016 0.039 

19.1 * * 0.148 0.024 0.020 0.075 * 0.072 * * * 

19.2 0.118 0.061 * * 0.057 0.060 0.082 0.074 0.083 0.025 0.058 

19.3 * 0.028 * 0.042 0.050 0.050 0.137 0.057 0.061 0.019 * 

20.1 * 0.033 * * * 0.019 * 0.025 0.026 0.017 * 

21.1 * * * 0.053 0.048 0.034 0.049 0.036 0.043 0.024 0.031 

21.2 * * * * 0.028 0.022 0.032 0.029 0.035 0.021 0.030 
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21.3 * 0.042 * * 0.056 * 0.065 * 0.039 0.048 0.047 

21.4 * 0.029 * 0.021 0.022 0.018 0.030 0.020 0.019 0.020 0.019 

21.5 * 0.022 * * * 0.025 * 0.025 * * 0.018 

21.6 * 0.034 0.039 0.041 0.028 0.024 0.035 0.032 0.039 0.020 0.032 

21.7 * 0.024 0.029 * 0.034 * 0.035 0.029 0.028 0.021 0.025 

21.8 * 0.035 0.028 0.024 * 0.026 * * * 0.029 0.027 

21.9 * * * 0.025 0.024 0.018 0.047 0.020 0.021 0.033 0.030 

21.10 * 0.021 * 0.020 0.022 0.020 0.024 0.020 0.019 0.016 0.018 

21.11 0.055 0.028 * 0.025 0.024 0.018 0.035 0.019 0.022 0.030 * 

21.12 0.068 0.050 0.059 0.054 0.045 0.029 0.082 0.037 0.043 0.028 0.046 

22.1 * * 0.026 0.025 0.043 0.045 0.095 0.035 0.027 0.030 0.023 

22.2 * * * * 0.022 * * * * 0.017 * 

23.1 * 0.024 0.026 0.020 0.021 * * * 0.019 0.017 0.019 

23.2 0.040 0.025 0.026 0.020 0.021 0.020 0.031 0.020 0.019 0.016 0.019 

24.1 0.110 0.049 0.058 0.066 0.058 0.042 0.069 0.053 0.069 0.036 0.056 

24.2 0.122 0.044 0.035 0.073 0.089 0.047 0.142 0.050 0.077 0.063 0.062 

25.1 * * * * * * * * * * * 

LRL value 0.077 0.043 0.051 0.040 0.041 0.036 0.128 0.038 0.037 0.032 0.036 

Max. leverage 0.233 0.178 0.166 0.163 0.152 0.150 0.593 0.140 0.123 0.125 0.115 

Difference 0.156 0.135 0.115 0.123 0.111 0.115 0.465 0.102 0.086 0.093 0.079 
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PLS 51 53 54 56 58 59 60 61 62 63  

1.1 0.064 0.038 0.105 0.024 0.019 0.025 0.024 0.017 0.019 0.025  

2.1 * * * * 0.019 * * * 0.020 *  
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3.1 0.048 0.029 0.122 0.069 0.020 0.068 0.025 0.057 0.059 0.061  

3.2 0.094 0.074 0.081 0.045 0.064 0.019 * 0.017 0.019 0.021  

4.1 0.050 * 0.032 0.024 0.019 * * 0.018 0.020 0.026  

5.1 * * 0.068 0.024 0.028 0.021 0.026 0.017 0.019 0.025  

5.2 * * * * 0.040 * 0.034 0.023 * *  

5.3 * * 0.033 0.022 0.043 0.026 0.049 0.020 0.022 0.025  

6.1 * * * * * * 0.027 0.017 0.019 0.019  

6.2 0.130 0.107 0.103 0.032 0.044 0.036 0.059 0.021 0.024 0.040  

6.3 0.096 0.071 0.092 0.027 0.029 0.029 0.042 0.018 0.020 0.030  

6.4 * * 0.049 * * * * 0.018 0.019 0.025  

6.5 * * * 0.072 * * * 0.033 * *  

6.6 0.060 0.051 0.098 0.021 0.021 0.020 0.029 0.017 0.019 0.021  

6.7 0.043 0.034 0.093 0.021 0.019 0.020 0.024 0.022 0.024 0.019  

6.8 0.039 0.032 0.134 0.047 0.022 0.021 0.024 0.025 0.026 0.019  

6.9 0.055 0.045 0.109 0.034 0.051 0.038 0.040 0.046 0.051 0.031  

6.10 * * 0.159 0.062 0.043 0.027 * 0.035 0.051 0.028  

6.11 0.048 0.045 0.056 0.047 0.036 0.035 0.044 0.034 0.049 0.045  

6.12 * * 0.079 * 0.047 0.055 0.063 0.038 * *  

6.13 * * 0.034 * 0.021 * * 0.021 * *  

6.14 0.041 0.035 0.034 0.020 0.024 0.020 * 0.018 0.020 0.019  

6.15 * * 0.038 0.033 0.022 0.030 * 0.026 0.030 0.033  

7.1 0.123 0.081 0.069 0.063 0.051 0.057 0.066 0.042 0.050 0.070  

9.1 * * 0.063 * * 0.062 * 0.049 0.048 0.055  

9.2 0.039 0.035 0.034 0.019 0.023 0.019 0.025 0.017 0.019 0.020  

10.1 * * * 0.034 0.033 0.035 * 0.030 0.032 *  

10.2 0.087 0.053 0.073 0.069 0.049 0.047 0.062 0.042 0.046 0.049  

10.3 * 0.124 0.150 0.094 0.075 0.091 0.057 0.075 0.077 0.077  

10.4 * 0.064 0.068 0.063 0.043 0.058 * 0.048 0.055 0.063  

10.6 0.292 0.205 0.192 0.136 0.124 0.132 0.155 0.094 0.111 0.159  

11.1 * 0.040 0.044 0.042 0.031 0.030 0.040 0.026 0.029 0.028  
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12.1 * 0.078 0.169 0.142 0.048 0.139 0.059 0.110 0.124 0.145  

12.2 * * * 0.063 * 0.019 * * * *  

13.1 0.063 0.046 0.046 0.040 0.037 0.034 0.045 0.031 0.035 0.036  

13.2 * 0.043 0.031 0.031 0.043 0.026 0.044 0.028 0.032 0.025  

14.1 * * * 0.099 * 0.055 * 0.042 * 0.059  

15.1 * * 0.065 0.065 0.035 0.019 0.030 0.017 0.019 *  

16.1 * * * * * * 0.080 0.043 * *  

16.2 * * * 0.092 * * * 0.051 * *  

17.1 0.099 0.040 0.406 0.309 0.040 0.020 0.097 0.023 0.025 0.019  

17.2 * 0.057 * 0.067 0.056 0.039 0.060 0.036 0.037 0.034  

18.1 0.044 0.029 0.148 0.088 0.026 0.033 0.035 0.031 0.033 0.029  

19.1 * * 0.216 0.067 0.047 0.025 0.036 0.021 0.021 0.024  

19.2 0.069 0.052 0.098 0.075 0.048 0.053 0.069 0.049 0.062 0.062  

19.3 * 0.037 0.079 0.043 0.042 0.040 0.041 0.050 0.060 0.035  

20.1 * * * 0.048 * 0.023 0.034 0.023 * 0.020  

21.1 * * 0.045 0.037 0.043 0.034 0.047 0.034 0.043 0.039  

21.2 0.040 0.037 0.055 0.026 0.036 0.025 0.040 0.026 0.036 0.027  

21.3 * * * * * * * * * *  

21.4 * 0.039 0.066 0.025 0.020 0.022 0.025 0.017 0.019 0.020  

21.5 * * * * 0.019 * * * 0.019 0.022  

21.6 0.041 0.037 * 0.028 0.036 0.025 0.043 0.027 0.036 0.028  

21.7 * * 0.051 0.032 0.030 0.029 0.030 0.029 0.034 0.030  

21.8 0.057 * * * * * * * 0.019 0.019  

21.9 * * * 0.026 0.026 0.028 * 0.019 0.020 *  

21.10 * * * 0.019 0.019 0.020 * 0.017 * *  

21.11 * 0.049 0.047 * * * * * 0.024 0.022  

21.12 0.093 0.061 0.053 0.057 0.054 0.044 0.051 0.041 0.039 0.033  

22.1 * * 0.073 0.083 0.020 0.043 0.026 0.030 0.035 0.055  

22.2 * * * 0.097 * * * 0.028 0.029 0.020  

23.1 * 0.030 0.039 0.028 0.019 0.019 0.023 0.017 0.020 0.019  
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23.2 0.040 0.030 0.031 0.033 0.019 0.019 0.024 0.017 0.020 0.020  

24.1 0.067 0.067 0.073 0.050 0.064 0.049 0.068 0.052 0.068 0.053  

24.2 0.078 0.104 * 0.086 0.090 0.061 0.079 0.070 0.097 0.069  

25.1 * * * * 0.026 0.032 * 0.040 * *  

LRL value 0.074 0.057 0.130 0.075 0.038 0.038 0.047 0.033 0.037 0.038  

Max. leverage 0.292 0.205 0.406 0.309 0.124 0.139 0.155 0.110 0.124 0.159  

Difference 0.218 0.148 0.275 0.234 0.087 0.100 0.109 0.077 0.087 0.121  

Site Le
n

gt
h

 o
f 

P
3

 

A
n

te
ro

p
o

st
e

ri
o

r 

d
ia

m
e

te
r 

o
f 

c 

Le
n

gt
h

 o
f 

p
2

 

W
id

th
 o

f 
p

2
 

       

PLS 46 52 55 57        

Without Site 17.1 10.6 17.1 17.1        

1.1 * 0.092 0.024 0.024        

2.1 0.025 * * *        

3.1 0.028 0.050 0.080 0.063        

3.2 0.026 0.139 0.023 0.025        

4.1 * 0.055 0.025 0.024        

5.1 0.023 * 0.022 0.025        

5.2 * * * *        

5.3 0.039 * 0.026 0.022        

6.1 0.024 * * *        

6.2 0.049 0.157 0.024 0.032        

6.3 0.034 0.113 0.022 0.025        

6.4 0.030 * 0.023 *        

6.5 0.083 * * 0.069        

6.6 0.025 0.065 0.026 0.020        
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6.7 0.022 0.044 0.033 0.020        

6.8 0.022 0.041 0.042 0.019        

6.9 0.046 0.069 0.066 0.033        

6.10 * * 0.053 0.033        

6.11 0.040 0.046 0.053 0.045        

6.12 * * 0.049 *        

6.13 * * 0.025 *        

6.14 * 0.041 0.025 0.019        

6.15 * * 0.032 0.033        

7.1 0.056 0.175 0.052 0.062        

9.1 * * 0.060 *        

9.2 0.023 0.040 0.022 0.020        

10.1 * * * 0.033        

10.2 0.048 0.113 0.057 0.043        

10.3 0.084 * 0.086 0.078        

10.4 0.054 * 0.056 0.061        

10.6 0.146 * 0.101 0.136        

11.1 0.033 * 0.036 0.026        

12.1 0.081 * 0.134 0.143        

12.2 * * * 0.023        

13.1 0.043 0.077 0.037 0.033        

13.2 0.041 * 0.036 0.024        

14.1 0.026 * * 0.052        

15.1 0.026 * 0.024 0.026        

16.1 0.083 * * *        

16.2 * * * 0.063        

17.1 * 0.125 * *        

17.2 0.044 * * 0.029        

18.1 0.025 0.042 0.056 0.026        

19.1 * * 0.033 0.025        
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19.2 0.053 0.064 0.072 0.055        

19.3 0.047 * 0.072 0.036        

20.1 * * * 0.020        

21.1 0.048 * 0.043 0.038        

21.2 0.032 0.039 0.046 0.027        

21.3 0.058 * * *        

21.4 0.024 * 0.024 0.019        

21.5 * * * *        

21.6 0.032 0.040 * 0.027        

21.7 0.032 * 0.040 0.031        

21.8 * 0.062 * *        

21.9 0.028 * * 0.023        

21.10 0.022 * * 0.020        

21.11 0.031 * 0.030 *        

21.12 0.049 0.129 0.051 0.030        

22.1 0.031 * 0.033 0.057        

22.2 * * * 0.019        

23.1 * * 0.023 0.020        

23.2 0.022 0.041 0.023 0.021        

24.1 0.063 0.064 0.077 0.051        

24.2 0.100 0.077 * 0.072        

25.1 * * * *        

LRL value 0.043 0.077 0.044 0.038        
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Table 10.18: Leverage values of PLS regressions run on cranial measurements of present-day C. crocuta. LRL = leverage reference line. Difference = the difference 

between the maximum leverage value and the LRL. Shaded values are maximum, extreme values that were excluded from subsequent PLS reruns. 
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PLS 64 65 66 67 68 69 70 71 72 73 74 75 76 78 80 

1.1 0.023 0.024 0.025 * * 0.027 * 0.023 * 0.021 0.020 0.025 0.020 0.158 0.020 

2.1 * * * * 0.030 * 0.025 0.021 0.034 0.020 0.021 * 0.029 0.146 * 

3.1 0.084 0.095 0.112 0.103 0.142 0.070 0.096 0.083 0.048 0.076 0.125 0.117 0.119 0.210 0.099 

3.2 0.020 0.023 0.025 0.028 0.048 0.023 0.023 0.021 0.024 0.020 0.027 0.044 0.039 0.345 0.022 

4.1 * * * * * * * * * * * * * * * 

5.1 * * 0.034 * * * * 0.028 * 0.023 0.034 0.045 * * 0.028 

5.3 0.022 0.022 0.023 0.036 * 0.031 * 0.023 * 0.025 0.020 0.021 0.022 0.073 0.019 

6.2 0.028 0.027 0.026 0.050 0.032 0.043 0.042 0.030 0.073 0.031 0.020 0.023 0.020 0.124 0.021 

6.3 0.027 0.027 0.027 * 0.033 * 0.035 * 0.052 0.029 0.020 0.023 0.021 0.104 0.022 

6.4 0.025 0.025 0.027 0.039 0.032 0.034 0.031 0.025 0.040 0.028 0.021 * 0.021 0.073 0.022 

6.5 0.048 * * * * 0.083 0.086 0.057 0.156 0.053 0.023 0.038 0.022 0.271 0.031 

6.6 0.020 0.022 0.024 0.029 0.033 0.022 0.023 0.020 0.034 0.020 0.027 0.023 0.028 0.099 0.021 

6.7 * 0.025 0.027 0.028 * * 0.023 0.022 0.025 0.022 0.031 0.025 0.033 0.087 0.025 

6.9 0.037 0.036 0.039 0.045 0.049 0.036 0.041 0.034 0.033 0.037 0.041 0.031 0.059 0.103 0.037 

6.10 0.020 0.021 0.022 0.030 0.030 0.022 0.030 0.021 0.034 0.021 0.020 0.022 0.108 0.183 0.019 

6.11 0.033 0.035 0.034 * 0.049 0.034 0.051 0.039 0.053 0.036 0.034 0.039 0.039 0.118 0.031 

6.12 0.046 0.046 0.043 * * 0.057 0.074 0.054 0.093 0.050 0.035 0.046 0.035 0.117 0.037 
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6.13 0.023 0.026 0.025 * * 0.024 0.027 0.024 0.028 0.023 0.023 0.028 * * 0.022 

6.14 0.020 0.021 0.022 0.029 0.031 * 0.024 * 0.025 0.021 0.020 0.022 0.020 0.060 0.019 

6.15 0.034 0.038 0.038 0.044 0.057 0.031 0.037 0.035 0.032 0.032 0.037 0.041 0.037 0.057 0.034 

7.1 0.055 0.057 * 0.080 * 0.059 0.072 0.060 0.081 0.055 * 0.054 0.043 * 0.045 

9.1 0.068 0.067 0.071 0.084 0.084 0.070 * 0.062 * 0.064 0.064 0.057 0.063 0.094 0.062 

10.1 0.031 0.031 0.031 * * 0.035 0.038 0.032 0.039 0.031 0.029 0.030 0.033 0.050 0.028 

10.2 0.069 0.073 0.075 0.082 0.095 0.060 0.065 0.064 0.054 0.069 0.066 0.061 0.067 0.115 0.065 

10.3 0.051 0.045 0.044 0.077 0.054 0.070 0.083 0.054 0.087 0.049 0.043 0.042 0.099 0.267 0.042 

10.4 0.051 0.053 0.051 0.072 0.073 0.053 0.067 0.055 0.066 0.049 0.048 0.055 0.054 0.079 0.046 

11.1 0.038 0.039 0.044 0.051 0.051 0.038 * 0.036 * 0.041 0.036 0.034 0.033 0.076 0.037 

12.1 0.129 0.139 0.147 0.186 0.197 0.127 0.183 0.141 0.140 0.124 0.149 0.167 0.151 0.193 0.134 

12.2 0.022 0.021 0.022 0.029 0.033 * 0.023 * 0.026 0.023 0.022 0.027 0.055 0.168 0.019 

13.1 0.042 0.045 0.045 0.053 0.063 0.039 0.042 0.040 0.041 0.042 0.038 0.040 0.036 0.156 0.039 

13.2 0.030 0.031 0.032 0.038 0.044 0.029 0.030 0.028 0.030 0.032 0.028 0.026 * * 0.029 

14.1 0.103 0.119 0.137 * * 0.078 * 0.097 * 0.097 0.135 0.129 0.158 0.172 0.114 

15.1 0.020 * * * * 0.023 0.023 0.021 0.024 0.021 0.020 * 0.021 0.258 * 

16.1 0.027 0.023 0.024 * * 0.039 0.033 0.024 0.043 0.031 0.020 * 0.063 0.229 0.022 

16.2 * * * * * 0.050 * * * * * 0.036 0.073 * 0.031 

17.1 0.052 0.053 0.055 0.052 0.047 0.044 0.028 0.040 0.028 0.061 0.033 0.025 0.439 0.642 0.036 

17.2 0.056 0.054 0.059 0.063 0.065 0.053 0.049 0.048 0.041 0.057 0.051 0.038 0.052 0.091 0.050 

18.1 0.063 0.067 * 0.070 * 0.050 0.055 0.055 0.031 0.065 * 0.058 0.096 0.129 0.068 

19.1 0.060 0.078 0.100 0.059 0.129 0.035 0.045 0.053 * * 0.117 0.104 0.172 0.323 0.081 

19.2 0.078 0.086 0.091 0.105 0.116 0.068 * 0.079 * 0.085 0.081 * 0.071 0.167 0.079 

21.1 0.035 0.038 0.036 0.048 0.054 0.033 0.041 0.037 0.043 0.036 0.033 0.036 0.038 0.146 0.033 

21.2 0.025 0.026 0.027 0.037 0.036 0.026 0.034 0.027 0.034 0.029 0.026 0.026 0.029 0.103 0.024 

21.3 0.041 0.038 0.038 * * 0.049 0.052 0.040 0.054 0.040 0.035 * 0.052 0.090 0.035 

21.4 0.023 0.023 0.024 0.031 0.031 0.026 0.024 0.021 0.027 0.022 0.020 0.022 0.024 0.124 0.020 

21.6 0.029 0.030 0.031 0.042 * 0.029 0.037 0.031 0.035 0.033 0.030 0.029 0.028 0.097 0.028 

21.7 0.027 * * * * * 0.033 0.028 0.031 0.027 0.029 0.029 0.037 0.052 0.026 

21.8 0.020 0.022 0.023 * * 0.023 0.023 0.020 0.026 0.020 0.022 0.028 0.025 0.112 0.019 
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21.9 * * * * * * * * * * * * 0.022 * 0.022 

21.10 0.021 * * * * 0.021 0.023 0.020 0.023 * 0.021 * * * 0.020 

21.11 0.021 0.021 * 0.030 * 0.025 * 0.021 * * * 0.021 0.031 0.079 0.019 

21.12 0.052 0.049 0.056 0.060 0.061 0.053 0.048 0.044 0.040 0.052 0.047 0.036 0.046 0.127 0.049 

22.1 0.032 0.035 0.032 0.049 0.053 0.034 0.049 0.038 0.051 0.028 0.032 0.048 0.040 0.171 0.029 

23.1 0.021 0.022 0.024 * * 0.023 0.023 0.020 0.024 0.021 0.020 0.021 0.027 0.073 0.019 

23.2 0.020 0.021 0.023 0.028 0.030 0.023 * 0.020 * 0.021 0.020 0.022 0.024 0.070 0.019 

24.1 0.049 0.049 0.050 0.072 0.065 0.050 0.068 0.052 0.066 0.056 0.047 0.046 0.055 0.117 0.047 

25.1 0.030 0.032 0.035 0.041 0.051 0.028 0.040 0.031 0.031 0.031 0.040 0.038 0.070 0.102 0.034 

LRL value 0.040 0.043 0.044 0.056 0.061 0.043 0.045 0.040 0.047 0.040 0.040 0.043 0.078 0.250 0.038 

Max. leverage 0.129 0.139 0.147 0.186 0.197 0.127 0.183 0.141 0.156 0.124 0.149 0.167 0.439 0.642 0.134 

Difference 0.089 0.097 0.103 0.131 0.137 0.084 0.137 0.101 0.110 0.084 0.109 0.124 0.361 0.392 0.096 
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PLS 81 82 83 84 86 88 89 91 92 93 94 95 96 97  

1.1 0.029 0.025 0.023 0.168 0.053 0.033 0.023 0.022 0.031 0.025 0.021 0.026 0.024 0.024  

2.1 * * * * 0.059 0.028 0.060 0.024 0.027 0.021 0.019 * * *  

3.1 0.021 0.026 0.088 0.202 0.076 0.042 0.100 0.062 0.051 0.110 0.124 0.055 0.076 0.082  

3.2 0.046 0.077 0.023 0.337 0.134 0.023 0.058 0.021 0.024 0.031 0.067 0.027 0.028 0.020  

4.1 * * * * * * 0.027 * * * * * * *  

5.1 0.022 0.040 * 0.148 0.023 0.023 0.029 0.022 * * 0.054 * * *  

5.3 0.056 0.083 * * 0.024 0.038 0.019 0.024 0.036 0.021 0.026 0.036 0.032 0.024  
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6.2 0.086 0.115 0.026 0.179 0.046 0.067 0.026 0.035 0.058 0.022 0.021 0.056 0.042 0.032  

6.3 0.061 0.074 * 0.144 0.033 0.053 0.021 0.027 0.046 0.023 0.019 0.050 0.038 0.030  

6.4 0.047 0.056 0.026 0.100 0.025 0.040 0.021 0.023 0.037 0.022 0.019 0.042 0.036 0.028  

6.5 0.172 * * * 0.101 0.145 0.052 0.069 0.128 0.035 0.019 * * 0.061  

6.6 0.043 0.066 0.024 0.139 0.032 0.032 0.023 0.019 0.027 0.023 0.029 0.027 0.022 0.020  

6.7 0.029 0.043 0.027 0.119 0.026 0.024 0.024 0.019 0.022 0.026 0.030 0.022 0.021 *  

6.9 0.022 0.021 0.036 0.134 0.033 0.025 0.036 0.037 0.030 0.033 0.027 0.027 0.033 0.036  

6.10 0.022 0.033 0.023 0.186 0.040 0.021 0.080 0.033 0.022 0.022 0.021 0.021 0.021 0.020  

6.11 0.030 0.032 0.036 0.135 0.037 0.036 0.045 0.046 0.036 0.031 0.024 0.037 0.032 0.032  

6.12 0.069 0.075 0.042 0.160 0.059 0.073 0.052 0.060 0.071 0.040 0.023 * 0.056 0.049  

6.13 0.020 0.020 0.026 0.065 0.031 0.024 0.027 0.025 0.024 * 0.023 0.023 0.022 0.022  

6.14 0.023 0.029 0.023 0.064 0.024 * 0.018 0.019 0.022 0.021 0.021 0.023 0.023 0.020  

6.15 0.021 0.020 0.038 0.060 0.032 * 0.033 0.032 0.030 0.041 0.039 0.029 0.028 0.031  

7.1 0.056 0.047 0.054 * 0.060 0.069 0.053 0.060 0.070 0.054 0.031 0.063 0.055 0.054  

9.1 0.044 0.029 0.063 0.093 0.062 0.057 0.062 0.053 0.065 0.065 0.046 0.062 0.071 0.068  

10.1 0.030 0.027 0.030 0.049 0.032 0.033 0.031 0.032 0.036 0.031 0.022 0.030 0.033 0.032  

10.2 0.035 0.024 0.081 0.111 0.060 0.051 0.065 0.050 0.053 0.067 0.054 0.069 0.059 0.061  

10.3 0.070 0.068 0.033 0.230 0.071 0.064 0.087 0.072 0.081 0.042 0.022 0.042 0.065 0.061  

10.4 0.040 0.031 0.048 0.090 0.059 0.054 0.059 0.059 0.058 0.053 0.037 0.046 0.047 0.051  

11.1 0.028 0.026 0.043 0.085 0.032 0.034 0.034 0.031 0.033 0.033 0.029 0.046 0.039 0.036  

12.1 0.059 0.032 0.117 0.196 0.144 0.109 0.158 0.141 0.121 0.147 0.123 0.107 0.121 0.133  

12.2 0.050 0.060 0.024 0.184 0.062 0.031 0.066 0.020 0.030 0.021 0.031 0.036 0.035 0.022  

13.1 0.028 0.023 0.047 0.143 0.040 0.037 0.034 0.038 0.037 0.041 0.035 0.042 0.033 0.038  

13.2 0.023 0.022 0.035 0.177 0.027 0.026 0.024 0.029 0.026 * 0.023 0.030 0.025 0.028  

14.1 0.023 0.025 0.130 0.178 0.102 0.053 0.134 0.058 0.056 0.130 0.143 0.091 0.090 0.090  

15.1 0.022 * * * 0.029 * 0.035 0.020 0.021 0.025 0.025 * * 0.020  

16.1 0.060 0.088 0.024 * 0.027 0.033 0.023 0.031 0.039 * 0.030 0.031 0.036 0.031  

16.2 0.049 0.047 0.026 0.244 0.054 0.049 0.075 0.052 * * 0.021 0.030 0.046 0.044  

17.1 0.045 0.033 0.103 0.649 0.424 0.045 0.395 0.019 0.036 0.038 0.021 0.125 0.074 0.037  

17.2 0.035 0.026 0.062 0.107 0.061 0.040 0.060 0.036 0.044 0.046 0.033 0.057 0.056 0.051  
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18.1 0.021 0.022 0.082 0.149 0.104 0.030 0.104 0.032 0.033 0.063 0.066 0.059 0.063 0.055  

19.1 0.038 0.115 0.087 0.354 0.085 * 0.128 0.024 * 0.106 0.171 0.034 0.044 0.048  

19.2 0.038 0.027 0.095 0.159 0.067 0.060 0.070 0.068 0.058 0.075 0.067 0.089 0.067 0.069  

21.1 0.027 0.024 * * 0.042 0.034 0.036 0.041 * 0.034 0.028 0.034 0.028 0.032  

21.2 0.023 0.027 0.029 0.104 0.027 0.024 0.026 0.030 0.025 0.023 0.019 0.028 0.026 0.024  

21.3 0.045 0.042 0.033 0.094 0.044 0.043 0.043 0.045 0.051 0.034 0.022 0.037 0.046 0.044  

21.4 0.029 0.027 0.024 0.132 0.023 0.030 0.021 0.019 0.028 0.023 0.019 0.027 0.026 0.023  

21.6 0.024 0.026 0.035 0.098 0.032 0.026 0.027 0.031 0.027 0.026 0.021 0.034 0.029 0.027  

21.7 0.021 0.021 * * 0.026 0.025 0.031 0.030 0.027 0.028 0.023 * * 0.026  

21.8 * * * 0.155 0.021 * 0.019 * 0.023 0.026 * 0.024 0.025 0.020  

21.9 * * * * 0.028 * 0.023 * * * * * * *  

21.10 0.020 0.022 * * 0.022 * 0.018 0.019 * * 0.022 * * 0.020  

21.11 0.031 0.045 0.023 0.078 0.020 0.025 0.023 0.022 * 0.021 0.024 0.024 0.025 0.021  

21.12 0.035 0.027 0.051 0.168 0.043 0.039 0.047 0.037 0.044 0.043 0.033 0.048 0.053 0.051  

22.1 0.028 0.023 0.030 0.218 0.051 0.041 0.062 0.043 0.044 0.042 0.031 0.028 0.030 0.033  

23.1 0.023 0.023 0.023 0.090 0.021 0.023 0.026 0.019 0.023 0.021 0.019 0.026 0.025 0.021  

23.2 0.022 0.024 0.023 0.095 0.023 0.022 0.028 0.019 0.021 0.021 0.019 0.024 0.024 0.020  

24.1 0.040 0.041 0.051 0.122 0.050 0.045 0.050 0.060 0.047 0.039 0.029 0.054 0.046 0.047  

25.1 0.019 0.020 0.031 0.111 0.037 0.022 0.047 0.038 0.024 0.031 0.034 0.024 0.025 0.029  

LRL value 0.038 0.040 0.045 0.267 0.073 0.042 0.036 0.038 0.042 0.042 0.038 0.043 0.042 0.039  

Max. leverage 0.172 0.115 0.130 0.649 0.424 0.145 0.395 0.141 0.128 0.147 0.171 0.125 0.121 0.133  

Difference 0.133 0.075 0.085 0.382 0.351 0.104 0.359 0.103 0.086 0.105 0.134 0.082 0.079 0.094  



10. Appendices 
 

- 549 - 
 

Site Le
n

gt
h

 o
f 

th
e 

ch
e

e
kt

o
o

th
 r

o
w

 (
P

1
-P

4
) 

Le
n

gt
h

 o
f 

th
e 

ch
e

e
kt

o
o

th
 r

o
w

 (
P

1
-P

3
) 

H
ei

gh
t 

o
f 

th
e

 f
o

ra
m

e
n

 
m

ag
n

u
m

 

G
re

at
e

st
 n

eu
ro

cr
an

iu
m

 
b

re
ad

th
 

Le
as

t 
b

re
ad

th
 o

f 
th

e 

sk
u

ll 

          

PLS 77 79 85 87 90           

Without Site 17.1 17.1 17.1 17.1 17.1           

1.1 0.021 0.171 0.024 0.119 0.022           

2.1 0.020 0.147 * 0.119 0.024           

3.1 0.115 0.223 0.088 0.161 0.091           

3.2 0.040 0.515 0.023 0.476 0.046           

4.1 * * * * 0.021           

5.1 * * 0.041 0.098 0.026           

5.3 0.021 0.073 * 0.065 0.018           

6.2 0.020 0.124 0.026 0.117 0.022           

6.3 0.020 0.104 0.025 0.091 0.020           

6.4 0.020 0.073 0.024 0.060 0.019           

6.5 0.021 0.272 * 0.225 0.040           

6.6 0.028 0.099 0.025 0.092 0.019           

6.7 0.035 0.087 0.029 0.076 0.022           

6.9 0.050 0.107 0.040 0.081 0.037           

6.10 0.025 0.218 0.023 0.132 0.033           

6.11 0.033 0.122 0.043 0.080 0.040           

6.12 0.031 0.122 0.050 0.109 0.046           

6.13 * * 0.030 0.040 0.025           

6.14 0.020 0.060 0.023 0.048 0.018           
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6.15 0.038 0.059 0.045 0.044 0.034           

7.1 0.039 * * 0.118 0.047           

9.1 0.059 0.095 0.068 0.076 0.049           

10.1 0.030 0.050 0.035 0.040 0.030           

10.2 0.056 0.153 0.088 0.106 0.041           

10.3 0.055 0.303 0.043 0.204 0.070           

10.4 0.051 0.079 0.061 0.063 0.057           

11.1 0.032 0.076 0.038 0.061 0.027           

12.1 0.150 0.214 0.134 0.181 0.166           

12.2 0.029 0.237 0.023 0.211 0.033           

13.1 0.039 0.159 0.052 0.098 0.034           

13.2 * * 0.036 0.082 0.025           

14.1 0.098 0.196 0.124 0.179 0.066           

15.1 0.020 0.277 * 0.237 0.022           

16.1 0.024 0.244 * 0.204 0.021           

16.2 0.040 * 0.033 0.185 0.055           

17.2 0.042 0.119 0.061 0.100 0.028           

18.1 0.057 0.157 0.071 0.152 0.031           

19.1 0.084 0.326 0.076 0.247 0.042           

19.2 0.068 0.185 0.097 0.116 0.059           

21.1 0.037 0.149 * 0.062 0.037           

21.2 0.026 0.110 0.031 0.051 0.025           

21.3 0.040 0.097 0.038 0.080 0.041           

21.4 0.020 0.124 0.023 0.084 0.018           

21.6 0.027 0.113 0.037 0.052 0.025           

21.7 0.032 0.052 * 0.039 0.030           

21.8 0.022 0.116 0.026 0.096 0.020           

21.9 0.020 * * 0.046 0.020           

21.10 * * * 0.044 0.019           

21.11 0.020 0.084 0.023 0.066 0.019           



10. Appendices 
 

- 551 - 
 

21.12 0.048 0.128 0.048 0.117 0.033           

22.1 0.035 0.171 0.042 0.116 0.048           

23.1 0.020 0.074 0.023 0.036 0.019           

23.2 0.020 0.070 0.023 0.049 0.019           

24.1 0.049 0.117 0.055 0.053 0.051           

25.1 0.052 0.147 0.032 0.118 0.049           

LRL value 0.040 0.255 0.045 0.185 0.036           
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Table 10.19: Leverage values of PLS regressions run on mandibular measurements of present-day C. crocuta. LRL = leverage reference line. Difference = the difference 

between the maximum leverage value and the LRL. Shaded values are maximum, extreme values that were excluded from subsequent PLS reruns. 
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PLS 98 99 101 103 104 106 107 108 109 110 111 113 115 116 

1.1 0.021 0.146 0.143 0.023 0.033 0.029 0.038 0.024 0.025 0.028 0.064 0.142 0.026 0.026 

2.1 0.020 0.133 0.132 0.020 0.070 0.035 0.050 0.021 0.021 0.022 0.061 0.122 0.034 0.021 

3.1 0.096 0.189 0.138 0.047 0.102 0.093 0.062 0.092 0.102 0.103 0.100 0.146 0.037 0.087 

3.2 0.020 0.320 0.295 0.029 0.038 0.052 0.032 0.021 0.024 0.028 0.038 0.293 0.022 0.024 

4.1 * 0.101 0.047 0.025 * * * * * * * * 0.029 0.027 

5.1 * 0.096 0.095 0.019 0.032 0.031 0.026 0.027 0.030 0.036 0.028 0.085 0.019 0.033 

5.2 0.021 0.134 0.118 0.021 0.021 0.020 0.021 0.020 0.020 0.022 0.034 0.122 0.020 0.020 

6.2 0.029 0.170 0.161 0.047 0.051 0.033 0.072 0.038 0.033 0.035 0.061 0.170 0.074 0.032 

6.3 0.028 0.136 0.129 0.037 0.032 0.027 0.051 0.034 0.031 0.034 0.047 0.137 0.049 0.030 

6.4 0.026 0.090 0.084 0.033 0.026 0.023 0.035 0.030 0.027 0.029 0.036 0.087 0.036 0.026 

6.5 * * * 0.092 * * * * * * * * * * 

6.6 0.020 0.131 0.125 0.022 0.037 0.021 0.036 0.021 0.020 0.021 0.045 0.128 0.033 0.020 

6.7 0.022 0.109 0.105 0.019 0.031 0.020 0.025 0.020 0.021 0.020 0.039 0.107 0.023 0.020 

6.9 0.038 0.105 0.103 0.037 0.036 0.030 0.022 0.031 0.031 0.026 0.036 0.100 0.025 0.030 

6.10 0.021 0.167 0.150 0.023 0.064 0.030 0.029 0.021 0.021 0.020 0.021 0.139 0.031 0.020 

6.11 0.038 0.112 0.095 0.036 0.048 0.044 0.050 0.040 0.038 0.034 0.037 0.073 0.052 0.035 

6.12 0.053 0.129 0.125 0.060 * * * * * * 0.066 0.127 0.095 0.053 
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6.13 0.023 0.045 0.033 0.022 0.026 0.028 0.027 0.023 0.024 0.024 0.022 0.030 0.024 0.025 

6.14 0.021 0.047 0.040 0.021 0.021 0.020 0.020 0.021 0.020 0.020 0.020 0.039 0.021 0.020 

6.15 0.033 0.045 0.040 0.027 0.034 0.036 0.031 0.033 0.034 0.035 0.033 0.039 0.026 0.037 

7.1 0.056 0.104 0.102 0.063 0.062 0.058 0.075 0.061 0.058 0.058 0.057 0.090 0.080 0.061 

9.1 0.067 0.087 0.072 0.065 0.064 0.051 0.049 0.066 0.065 0.063 0.068 0.066 0.050 0.064 

10.1 0.031 0.043 0.037 0.034 0.036 0.032 0.033 0.031 0.031 0.029 0.035 0.039 0.034 0.030 

10.2 0.067 0.094 0.073 0.060 0.073 0.040 0.037 0.062 0.060 0.061 0.077 0.083 0.044 0.067 

10.3 0.056 0.217 0.116 0.073 0.128 0.077 0.088 0.058 0.057 0.045 0.138 0.144 0.083 0.048 

10.4 0.052 0.067 0.067 0.053 0.065 0.063 0.067 0.055 0.055 0.052 0.058 0.065 0.061 0.056 

11.1 0.040 0.071 0.058 0.036 0.039 0.028 0.029 0.039 0.037 0.037 0.038 0.068 0.030 0.037 

12.1 0.148 0.189 0.173 0.105 0.185 0.189 0.181 0.159 0.166 0.163 0.181 0.185 0.124 0.148 

12.2 0.021 0.175 0.141 0.031 0.034 0.032 0.021 0.021 0.020 0.020 0.020 0.119 0.022 0.020 

13.1 0.039 0.114 0.066 0.038 0.038 0.034 0.031 0.038 0.037 0.038 0.040 0.092 0.033 0.043 

13.2 0.028 0.130 0.065 0.031 0.028 0.023 0.021 0.026 0.025 0.024 0.038 0.112 0.024 0.028 

14.1 0.111 0.165 0.164 0.055 0.140 0.072 0.054 0.107 0.113 0.126 0.118 0.167 0.040 0.108 

15.1 0.020 0.230 0.226 0.022 0.028 0.030 0.033 0.020 0.021 0.022 0.021 0.167 0.021 0.021 

16.1 0.027 0.216 0.215 0.052 0.032 0.020 0.021 0.024 0.022 0.020 0.027 0.192 0.036 0.021 

16.2 0.039 0.222 0.092 * 0.115 0.066 0.077 0.043 0.044 0.037 0.133 0.154 0.064 * 

17.1 0.046 0.637 0.604 0.052 0.383 0.051 0.031 0.040 0.031 0.040 0.340 0.581 0.026 0.040 

17.2 0.054 0.086 0.085 0.054 0.062 0.025 0.023 0.047 0.044 0.041 0.061 0.085 0.032 0.046 

18.1 * 0.126 0.125 0.041 0.109 0.028 0.022 0.058 0.058 0.058 0.095 0.119 0.023 0.053 

19.1 0.064 0.308 0.270 0.020 0.131 0.042 0.022 0.056 0.069 0.083 0.081 0.278 0.021 0.062 

19.2 0.085 0.152 0.086 0.065 0.086 0.060 0.059 0.083 0.080 0.082 0.093 0.100 0.061 0.083 

21.1 0.034 0.110 0.047 0.036 0.034 0.036 0.034 0.033 0.033 0.031 0.036 0.061 0.037 0.037 

21.2 0.029 0.093 0.077 0.028 0.029 0.025 0.025 0.027 0.026 0.023 0.036 0.069 0.030 0.024 

21.4 0.021 0.117 0.111 0.023 0.021 0.021 0.024 0.022 0.022 0.024 0.035 0.102 0.021 0.023 

21.6 0.033 0.088 0.065 0.030 0.033 0.025 0.025 0.031 0.029 0.026 0.046 0.060 0.032 0.027 

21.7 0.028 0.047 0.046 0.027 0.031 0.029 0.026 0.026 0.026 0.024 0.027 0.047 0.026 0.026 

21.8 0.020 0.101 0.087 0.024 * * * * * * 0.024 0.068 0.021 0.020 

21.9 * * 0.060 * * * * * * * * * * * 
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21.10 0.020 0.041 0.039 0.019 0.020 0.021 0.020 0.020 0.020 0.021 0.020 0.043 0.019 * 

21.11 0.022 0.065 0.055 0.025 0.033 0.021 0.025 0.022 0.021 0.020 0.028 0.059 0.028 0.020 

21.12 0.050 0.120 0.120 0.052 0.046 0.029 0.025 0.044 0.042 0.039 0.044 0.106 0.030 0.044 

22.1 0.033 0.134 0.117 0.030 0.072 0.065 0.074 0.039 0.042 0.042 0.070 0.136 0.050 0.040 

23.1 0.021 0.070 0.051 0.020 0.021 0.020 0.021 0.022 0.021 0.023 0.025 0.045 0.019 0.020 

23.2 0.021 0.065 0.054 0.020 0.022 0.021 0.020 0.021 0.020 0.021 0.021 0.041 0.019 0.020 

24.1 0.056 0.111 0.076 0.054 0.057 0.049 0.051 0.054 0.050 0.043 0.052 0.079 0.059 0.048 

25.1 0.034 * * * 0.042 0.042 0.029 0.031 0.032 0.028 0.031 0.090 0.024 0.029 

LRL value 0.040 0.231 0.189 0.038 0.080 0.040 0.040 0.040 0.040 0.040 0.077 0.192 0.038 0.039 

Max. leverage 0.148 0.637 0.604 0.105 0.383 0.189 0.181 0.159 0.166 0.163 0.340 0.581 0.124 0.148 

Difference 0.108 0.407 0.416 0.067 0.303 0.149 0.141 0.119 0.126 0.123 0.263 0.389 0.087 0.109 
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PLS 100 102 105 112 114          

Without Site 17.1 17.1 17.1 17.1 17.1          

1.1 0.020 0.019 0.025 0.031 0.159          

2.1 0.020 0.021 0.024 0.024 0.133          

3.1 0.083 0.074 0.095 0.102 0.204          

3.2 0.022 0.028 0.028 0.027 0.486          

4.1 0.027 0.024 * * *          

5.1 0.021 0.021 0.026 0.026 0.103          

5.3 0.023 0.024 0.021 0.020 0.130          

6.2 0.028 0.024 0.035 0.038 0.171          
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6.3 0.025 0.023 0.030 0.034 0.138          

6.4 0.025 0.024 0.026 0.029 0.092          

6.6 0.020 0.021 0.021 0.021 0.131          

6.7 0.024 0.025 0.021 0.020 0.109          

6.9 0.046 0.047 0.037 0.031 0.108          

6.10 0.024 0.021 0.029 0.021 0.190          

6.11 0.037 0.035 0.045 0.033 0.114          

6.12 0.049 0.043 * 0.059 0.138          

6.13 0.022 0.021 0.025 0.023 0.046          

6.14 0.022 0.021 0.021 0.020 0.049          

6.15 0.030 0.030 0.034 0.032 0.047          

7.1 0.054 0.054 0.059 0.054 0.129          

9.1 0.070 0.069 0.062 0.068 0.088          

10.1 0.034 0.032 0.034 0.034 0.043          

10.2 0.064 0.074 0.051 0.046 0.123          

10.3 0.070 0.054 0.079 0.087 0.249          

10.4 0.052 0.048 0.061 0.058 0.067          

11.1 0.038 0.039 0.035 0.032 0.070          

12.1 0.131 0.109 0.181 0.179 0.210          

12.2 0.022 0.025 0.022 0.020 0.236          

13.1 0.037 0.040 0.037 0.032 0.121          

13.2 0.030 0.033 0.026 0.022 0.139          

14.1 0.086 0.093 0.084 0.085 0.187          

15.1 0.022 0.023 0.021 0.020 0.241          

16.1 0.041 0.039 0.027 0.025 0.229          

16.2 0.047 0.035 0.061 0.069 0.249          

17.2 0.059 0.069 0.037 0.036 0.109          

18.1 0.064 0.075 0.042 0.040 0.154          

19.1 0.044 0.048 0.044 0.051 0.317          

19.2 0.073 0.079 0.073 0.058 0.160          
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21.1 0.034 0.036 0.036 0.028 0.115          

21.2 0.030 0.031 0.029 0.022 0.096          

21.4 0.020 0.020 0.021 0.025 0.115          

21.6 0.033 0.036 0.030 0.023 0.100          

21.7 0.030 0.029 0.030 0.026 0.047          

21.8 0.021 0.021 * 0.020 0.103          

21.9 * 0.025 * * *          

21.10 0.020 0.019 0.021 0.020 0.045          

21.11 0.023 0.022 0.024 0.022 0.070          

21.12 0.056 0.059 0.040 0.042 0.121          

22.1 0.030 0.025 0.049 0.050 0.136          

23.1 0.020 0.020 0.021 0.022 0.072          

23.2 0.020 0.020 0.020 0.020 0.066          

24.1 0.057 0.056 0.059 0.043 0.106          

25.1 * * 0.042 0.032 0.136          

LRL value 0.039 0.038 0.041 0.039 0.235          
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10.7 Pleistocene Crocuta crocuta body mass reconstruction 

Table 10.20: Body mass and m1 lengths of recent C. crocuta used in the ordinary least squares regression model. 1Kruuk (1972), 2Wilson (1968), cited in Bailey (1993), 

3Wilson (1975), cited in Silva and Downing (1995), 4Smithers (1971), 5Sillero-Zubiri and Gottelli (1992), 6Swanson et al. (2013), 7Powell-Cotton (n.d.), cited in 

Shortridge (1934). 

Body mass location m1 length location Sex 

Body 
mass 

(n) m1 (n) 

Body 
mass 
(kg) 

m1 
length 
(mm) 

Body 
mass 

(Log10) 

m1 
length 
(Log10) 

Serengeti, Tanzania1 Ngorongoro Conservation Area, 
Tanzania 

F 8 19 55.30 26.73 1.74 1.43 

Serengeti, Tanzania1 Ngorongoro Conservation Area, 
Tanzania 

M 12 15 48.70 26.51 1.69 1.42 

Zambia2,3 Lundazi District, Zambia F ? 1 68.20 30.01 1.83 1.48 

Zambia2,3 Fort Jameson District; Kabompo 
District, Zambia 

M ? 3 67.70 30.03 1.83 1.48 

Botswana4 Tsane; Joverega, Botswana F 4 2 73.48 28.09 1.87 1.45 

Botswana4 Mababe Flats, Botswana M 2 3 80.06 30.83 1.9 1.49 

Salient area of the Aberdare 
National Park, Kenya5 

Mount Kenya, Kenya F 9 1 51.80 25.98 1.71 1.41 

Salient area of the Aberdare 
National Park, Kenya5 

Mount Kenya, Kenya M 5 1 47.40 26.08 1.68 1.42 

Masai Mara National Reserve, 
Kenya6 

Sotik, Kenya F 631 
(F&M) 

4 59.39 27.91 1.77 1.45 

Masai Mara National Reserve, 
Kenya6 

Sotik, Kenya M 631 
(F&M) 

9 53.67 26.71 1.73 1.43 

Ethiopia7 Argobba, south Harrar, Ethiopia F 1 1 35.83 25.69 1.55 1.41 
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10.8 Pleistocene Crocuta crocuta craniodental and post-cranial morphology 

 

 

 

Figure 10.3: Boxplots of C. crocuta dental measurements. Numbers along the top indicate 

marine oxygen isotope stages. LP = Late Pleistocene. See Table 10.21 for sample sizes. 
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Figure 10.3 continued. 
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Table 10.21: Sample sizes of boxplots in Figure 10.3. 

Site P1 L P1 
W 

m1 
L 

Grays   1 

Oreston   1 

Hoe Grange   1 

Barrington 3 3 7 

Burtle Beds   1 

Joint Mitnor Cave 5 4 19 

Kirkdale Cave 7 6 31 

Victoria Cave 1 2 4 

Tornewton. LHS 11 11 33 

Tornewton. UHS 21 28 34 

Badger Hole   5 

Bench Cavern 1 1 2 

Boughton Mount 1 1 4 

Brixham Cave/Windmill Hill   4 

Caswell Bay   2 

Church Hole 1 1 7 

Coygan Cave 2 2 74 

Daylight Rock Fissure   2 

Ffynnon Beuno   2 

Goat’s Hole Paviland   1 

Hyaena Den   8 

Kents Cavern 4 7 109 

King Arthur’s Cave. The Passage, Upper 
Cave Earth 

2 2 1 

Picken’s Hole. Layer 3 1 1 9 

Pin Hole 3 3 34 

Priory Farm Cave 2 2  

Robin Hood Cave   2 

Sandford Hill  4 22 

Uphill Caves 7 or 8 15 15 35 

Castlepook Cave 2 3 4 

Caverne Marie-Jeanne. 4eme Niveau 12 14 21 

Goyet. 3eme Caverne, 4eme Niveau 
Ossifère, Galleries Voisines de l’Entrée 

  8 

Slouper Höhle 2 2 10 

Höhle Výpustek 1 1 1 

Teufelslucke 26 30 47 

Baranica II   7 

Baranica I. Layer 2   1 

San Teodoro   3 

Cova del Toll   1 

Cueva de las Hienas 3 4 4 

Cova de les Toixoneres   1 
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Table 10.22: Results of ANOVA with post-hoc Tukey's tests for Pleistocene upper dentition measurements. Sites that do not share a letter are significantly different. 
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Joint Mitnor Cave       C      B   A B A     B C D A B 

Kirkdale Cave    A B A B A     

Tornewton LHS  A A      B    B A A       C D    B 

Tornewton UHS    B C A    A B  A          D    B 

Coygan Cave    A A B A B A A  A 

Kents Cavern A B   A A A A A    B C A 

Pin Hole     A B  A A A B C A 

Sandford Hill A B          

Uphill Caves 7 or 8  A A  A B A A  A B C D A B 

Teufelslucke A  A A A B  A A A A 

Caverne Marie Jeanne. 4eme Niveau  A A A A B  A  A B A B 

p-value <0.05 0.928 0.195 <0.05 0.029 <0.05 0.105 0.686 <0.05 <0.05 
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Table 10.23: Results of ANOVA with post-hoc Tukey's tests for Pleistocene lower dentition measurements. Sites that do not share a letter are significantly different. 

Site A
n

te
ro

p
o

st
e

ri
o

r 

d
ia

m
e

te
r 

o
f 

c 

M
e

d
io

la
te

ra
l 

d
ia

m
e

te
r 

o
f 

c 

Le
n

gt
h

 o
f 

p
2 

W
it

h
 o

f 
p

2
 

Le
n

gt
h

 o
f 

p
3 

W
id

th
 o

f 
p

3 

Le
n

gt
h

 o
f 

P
4

 

W
id

th
 o

f 
P

4
 

Le
n

gt
h

 o
f 

m
1

 

W
id

th
 o

f 
m

1
 

Barrington       A B     

Joint Mitnor Cave         C A              D     B A         C     B C D E     G H I J 

Kirkdale Cave   A A         C D A B A         C     B       C D E         H I J 

Tornewton LHS    B C     B C               D     B A         C     B                               J     

Tornewton UHS       C        C A B A         C D A B A         C     B                  F G H I J 

Brixham Cave/Windmill Hill  A B C         

Church Hole  A B C         

Coygan Cave A A B A B A     B C D A B  A  A B A 

Kents Cavern A A B  A A B C A B A     B  A           E 

Picken’s Hole. Layer 3  A B C A B   A B  A B C   

Pin Hole  A B C A B A A B C D A B A     B C A B A B C D E F G H I 

Sandford Hill  A B C    B A A B C D     B      B C     B           D E            I J 

Uphill Caves 7&8 A B A B C    B   A B A A B A B A 

Caverne Marie Jeanne. 4eme Niveau    A A B  A A B A B A B C D E 

Goyet. 3eme Caverne, 4eme Niveau 
Ossifère, Galleries Voisines de l’Entrée 

     A B    A B C D E F G H I 

Goyet. 3eme Caverne, 3eme Niveau  A B C      A B   

Slouper Höhle        A B A B A B C D E F G H I J 

Teufelslucke A A A B A A A  A A A 

Baranica II          A B C D 

p-value <0.05 <0.05 0.001 0.1 <0.05 <0.05 0.052 <0.05 <0.05 <0.05 
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Table 10.24: Results of t-tests on the mediolateral diameter of C from Pleistocene deposits in Europe. Top values are t-values, bottom values are p-values. Shaded 

cells indicate significant differences at 95 % confidence. 

t-value 
p-value 

Teufelslucke Joint Mitnor Tornewton 
UHS 

Coygan Cave Kents Cavern Pin Hole Sandford Hill Uphill Caves 
7&8 

Teufelslucke - 1.8 
0.085 

0.16 
0.877 

1.4 
0.169 

1 
0.325 

5.88 
<0.05 

3.08 
0.004 

1.51 
0.143 

Joint Mitnor - - 1.83 
0.079 

2.93 
0.008 

2.62 
0.016 

2.54 
0.021 

0.4 
0.695 

0.57 
0.577 

Tornewton 
UHS 

- - - 1.1 
0.277 

0.74 
0.463 

5.48 
<0.05 

2.94 
0.006 

1.54 
0.134 

Coygan Cave - - - - 0.41 
0.68 

7.88 
<0.05 

4.88 
<0.05 

2.93 
0.006 

Kents Cavern - - - - - 7.33 
<0.05 

4.38 
<0.05 

2.53 
0.017 

Pin Hole - - - - - - 3.17 
<0.04 

3.98 
0.001 

Sandford Hill - - - - - - - 1.29 
0.21 

Uphill Caves 
7&8 

- - - - - - - - 
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Table 10.25: Mann-Whitney test results on Pleistocene dental measurements from Europe. 

Shaded cells indicate significant differences at 95 % confidence. 

  A
n

te
ro

p
o

st
e

ri
o

r 
d

ia
m

e
te

r 
o

f 
C

 

G
re

at
e

st
 w

id
th

 
o

f 
P

4
 

W
id

th
 o

f 
p

4 

Coygan Cave vs. Joint Mitnor Cave  W-value 
p-value 

1256.5 
<0.05 

1673.5 
0.988 

4411 
<0.05 

Coygan Cave vs. Kirkdale Cave W-value 
p-value 

  4422.5 
<0.05 

Coygan Cave vs. Tornewton LHS  W-value 
p-value 

1242.5 
<0.05 

2079.5 
0.279 

5315.5 
<0.05 

Coygan Cave vs. Tornewton UHS  W-value 
p-value 

1155 
0.124 

1734 
0.023 

5453 
<0.05 

Coygan Cave vs. Kents Cavern  W-value 
p-value 

1401.5 
0.66 

2852.5 
0.087 

8767 
0.628 

Coygan Cave vs. Picken’s Hole. Layer 3 W-value 
p-value 

  3484.5 
0.468 

Coygan Cave vs. Pin Hole  W-value 
p-value 

 1580 
0.045 

4809.5 
0.004 

Coygan Cave vs. Sandford Hill  W-value 
p-value 

1048.5 
0.855 

 4362.5 
0.002 

Coygan Cave vs. Uphill Caves 7 or 8  W-value 
p-value 

 1570 
0.118 

4586 
0.807 

Coygan Cave vs. Caverne Marie Jeanne. 4eme 
Niveau  

W-value 
p-value 

 1661 
0.025 

3943 
0.902 

Coygan Cave vs. Goyet. 3eme Cavern, 3eme Niveau W-value 
p-value 

  3514 
0.56 

Coygan Cave vs. Slouper Höhle W-value 
p-value 

  3433.5 
0.935 

Coygan Cave vs. Teufelslucke  W-value 
p-value 

968 
0.212 

1879 
<0.05 

4650.5 
0.004 

 

Table 10.26: Mann-Whitney test results on Pleistocene dental measurements from Europe. 

Shaded cells indicate significant differences at 95 % confidence. 

  W
id

th
 

o
f 

P
1

 

Tornewton UHS vs. Tornewton LHS  W-value 
p-value 

542 
0.585 

Tornewton UHS vs. Uphill Caves 7&8 W-value 
p-value 

524.5 
0.02 

Tornewton UHS  vs. Teufelslucke  W-value 
p-value 

659 
0.01 

Tornewton UHS vs. Caverne Marie Jeanne. 4eme 
Niveau  

W-value 
p-value 

568.5 
0.379 
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Table 10.27: Mann-Whitney test results on Pleistocene dental measurements 

from Europe. Shaded cells indicate significant differences at 95 % confidence. 

Sites  A
n

te
ro

p
o

st
e

ri
o

r 
d

ia
m

e
te

r 
o

f 
C

 

M
e

d
io

la
te

ra
l 

d
ia

m
e

te
r 

o
f 

C
 

Tornewton LHS vs. Joint Mitnor 
Cave  

W-value 
p-value 

143.5 
0.514 

216.5 
0.313 

Tornewton LHS vs. Tornewton UHS  W-value 
p-value 

102 
0.004 

203 
0.005 

Tornewton LHS vs. Coygan Cave  W-value 
p-value 

135.5 
<0.05 

278 
<0.05 

Tornewton LHS vs. Kents Cavern  W-value 
p-value 

106.5 
<0.05 

299 
0.001 

Tornewton LHS vs. Pin Hole  W-value 
p-value 

 290.5 
0.028 

Tornewton LHS vs. Sandford Hill  W-value 
p-value 

80.5 
<0.05 

270 
0.743 

Tornewton LHS vs. Uphill Caves 7&8 W-value 
p-value 

 212.5 
0.146 

Tornewton LHS  vs. Teufelslucke  W-value 
p-value 

78 
<0.05 

190.5 
0.001 

 

 

Table 10.28: Mann-Whitney test results on Pleistocene dental measurements 

from Europe. Shaded cells indicate significant differences at 95 % confidence. 

Sites   W
id

th
 o

f 
P

3
 

W
id

th
 o

f 
P

4
 

Kirkdale Cave vs. Joint Mitnor Cave  W-value 
p-value 

127 
0.076 

130.5 
0.364 

Kirkdale Cave vs. Tornewton LHS  W-value 
p-value 

211 
0.453 

270 
0.183 

Kirkdale Cave vs. Tornewton UHS  W-value 
p-value 

 187 
0.204 

Kirkdale Cave vs. Coygan Cave W-value 
p-value 

461 
0.225 

221 
0.018 

Kirkdale Cave  vs. Kents Cavern  W-value 
p-value 

441 
0.746 

342.5 
0.072 

Kirkdale Cave vs. Pin Hole  W-value 
p-value 

175.5 
0.015 

112.5 
0.043 

Kirkdale Cave vs. Uphill Caves 7&8  W-value 
p-value 

253 
0.034 

205.5 
0.784 

Kirkdale Cave  vs. Teufelslucke  W-value 
p-value 

277.5 
0.98 

215 
0.008 

Kirkdale Cave vs. Caverne Marie 
Jeanne. 4eme Niveau  

W-value 
p-value 

190.5 
0.15 

128.5 
0.217 
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Table 10.29: Mann-Whitney test results on Pleistocene dental measurements 

from Europe. Shaded cells indicate significant differences at 95 % confidence. 

Sites  Le
n

gt
h

 
o

f 
P

1 

Le
n

gt
h

 
o

f 
p

4
 

Teufelslucke vs. Joint Mitnor Cave  W-value 
p-value 

 826 
0.364 

Teufelslucke vs. Kirkdale Cave W-value 
p-value 

 1055 
0.007 

Teufelslucke vs. Tornewton UHS  W-value 
p-value 

618.5 
0.915 

1265 
0.027 

Teufelslucke vs. Tornewton LHS  W-value 
p-value 

498.5 
0.894 

1050.5 
0.273 

Teufelslucke vs. Coygan Cave  W-value 
p-value 

 2009.5 
0.001 

Teufelslucke vs. Kents Cavern  W-value 
p-value 

 2536.5 
0.194 

Teufelslucke vs. Pin Hole  W-value 
p-value 

 892 
0.246 

Teufelslucke vs. Uphill Caves 7&8 W-value 
p-value 

529.5 
0.665 

1016 
0.159 

Teufelslucke vs. Caverne Marie 
Jeanne. 4eme Niveau  

W-value 
p-value 

499 
0.814 

749 
0.673 

 

 

Table 10.30: Mann-Whitney test results on Pleistocene dental measurements 

from Europe. Shaded cells indicate significant differences at 95 % confidence. 

Sites  Le
n

gt
h

 
o

f 
p

2
 

Le
n

gt
h

 
o

f 
m

1
 

Kents Cavern vs. Joint Mitnor Cave  W-value 
p-value 

1613.5 
0.009 

7566.5 
<0.05 

Kents Cavern vs. Kirkdale Cave  W-value 
p-value 

1812.5 
0.02 

8439 
<0.05 

Kents Cavern vs. Tornewton LHS W-value 
p-value 

 8326.5 
0.01 

Kents Cavern vs. Tornewton UHS W-value 
p-value 

1690 
0.233 

8429.5 
0.006 

Kents Cavern vs. Coygan Cave W-value 
p-value 

2264 
0.329 

10573.5 
0.121 

Kents Cavern vs. Picken’s Hole. 
Layer 3 

W-value 
p-value 

1748.5 
0.912 

 

Kents Cavern vs. Pin Hole W-value 
p-value 

2017 
0.554 

7867.5 
0.928 

Kents Cavern vs. Sandford Hill  W-value 
p-value 

1871.5 
0.119 

7561.5 
0.024 

Kents Cavern vs. Uphill Caves 7&8  W-value 
p-value 

2279 
0.347 

8088.5 
0.388 

Kents Cavern vs. Caverne Marie 
Jeanne. 4eme Niveau 

W-value 
p-value 

1900.5 
0.363 

7030.5 
0.492 

Kents Cavern vs. Slouper Höhle W-value 
p-value 

 6679.5 
0.183 

Kents Cavern vs. Teufelslucke W-value 
p-value 

2691.5 
0.123 

7888.5 
0.01 
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Table 10.31: Mann-Whitney test results on Pleistocene dental measurements 

from Europe. Shaded cells indicate significant differences at 95 % confidence. 

Sites  W
id

th
 

o
f 

p
2

 

Le
n

gt
h

 
o

f 
p

3
 

Uphill Caves 7 or 8 vs. Joint Mitnor 
Cave  

W-value 
p-value 

 1333.5 
<0.05 

Uphill Caves 7 or 8 vs. Kirkdale Cave  W-value 
p-value 

399.5 
0.82 

1341 
0.007 

Uphill Caves 7 or 8 vs. Tornewton 
LHS 

W-value 
p-value 

 1210 
0.001 

Uphill Caves 7 or 8 vs. Tornewton 
UHS  

W-value 
p-value 

360.5 
0.387 

1238.5 
0.006 

Uphill Caves 7 or 8 vs. Coygan Cave W-value 
p-value 

740 
0.852 

2097.5 
0.132 

Uphill Caves 7 or 8 vs. Kents Cavern W-value 
p-value 

1139 
0.673 

2671 
0.959 

Uphill Caves 7 or 8 vs. Picken’s Hole. 
Layer 3 

W-value 
p-value 

  

Uphill Caves 7 or 8 vs. Pin Hole W-value 
p-value 

608.5 
0.244 

1217 
0.324 

Uphill Caves 7 or 8 vs. Sandford Hill  W-value 
p-value 

509 
0.118 

1226 
0.444 

Uphill Caves 7 or 8 vs. Caverne 
Marie Jeanne. 4eme Niveau 

W-value 
p-value 

393 
0.294 

960.5 
0.014 

Uphill Caves 7 or 8 vs. Teufelslucke W-value 
p-value 

638.5 
0.228 

1405 
0.006 

 

Table 10.32: Mann-Whitney test results on Pleistocene dental measurements 

from Europe. Shaded cells indicate significant differences at 95 % confidence. 

Sites  Le
n

gt
h

 
o

f 
m

1
 

Joint Mitnor Cave vs. Kirkdale Cave  W-value 
p-value 

469.5 
0.772 

Joint Mitnor Cave vs. Tornewton LHS W-value 
p-value 

434 
0.19 

Joint Mitnor Cave vs. Tornewton UHS W-value 
p-value 

450.5 
0.25 

Joint Mitnor Cave vs. Coygan Cave W-value 
p-value 

657 
0.025 

Joint Mitnor Cave vs. Kents Cavern W-value 
p-value 

689.5 
<0.05 

Joint Mitnor Cave vs. Pin Hole W-value 
p-value 

370 
0.008 

Joint Mitnor Cave vs. Sandford Hill  W-value 
p-value 

363.5 
0.36 

Joint Mitnor Cave vs. Uphill Caves 7&8  W-value 
p-value 

412.5 
0.047 

Joint Mitnor Cave vs. Caverne Marie 
Jeanne. 4eme Niveau 

W-value 
p-value 

270.5 
0.001 

Joint Mitnor Cave vs. Slouper Höhle W-value 
p-value 

269.5 
0.491 

Joint Mitnor Cave vs. Teufelslucke W-value 
p-value 

359 
<0.05 
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Table 10.33: Mann-Whitney test results on Pleistocene dental measurements from Europe. 

Shaded cells indicate significant differences at 95 % confidence. 

Sites  Le
n

gt
h

 

o
f 

p
2

 

W
id

th
 

o
f 

p
3

 

Caverne Marie Jeanne. 4eme Niveau vs. 
Barrington 

W-value 
p-value 

 321 
0.503 

Caverne Marie Jeanne. 4eme Niveau vs. Joint 
Mitnor Cave  

W-value 
p-value 

227.5 
0.114 

370.5 
0.193 

Caverne Marie Jeanne. 4eme Niveau vs. 
Kirkdale Cave  

W-value 
p-value 

300 
0.207 

351 
1 

Caverne Marie Jeanne. 4eme Niveau vs. 
Tornewton LHS 

W-value 
p-value 

 371.5 
0.988 

Caverne Marie Jeanne. 4eme Niveau vs. 
Tornewton UHS  

W-value 
p-value 

256 
0.829 

331 
0.728 

Caverne Marie Jeanne. 4eme Niveau vs. 
Coygan Cave 

W-value 
p-value 

477.5 
0.859 

634.5 
0.077 

Caverne Marie Jeanne. 4eme Niveau vs. Kents 
Cavern 

W-value 
p-value 

727.5 
0.363 

1251 
0.047 

Caverne Marie Jeanne. 4eme Niveau vs. 
Picken’s Hole. Layer 3 

W-value 
p-value 

273 
0.581 

309 
0.547 

Caverne Marie Jeanne. 4eme Niveau vs. Pin 
Hole 

W-value 
p-value 

369.5 
0.255 

440.5 
0.945 

Caverne Marie Jeanne. 4eme Niveau vs. 
Sandford Hill  

W-value 
p-value 

311 
0.069 

549 
0.201 

Caverne Marie Jeanne. 4eme Niveau vs. Uphill 
Caves 7&8  

W-value 
p-value 

473.5 
0.105 

474.5 
0.198 

Caverne Marie Jeanne. 4eme Niveau vs. 
Goyet. 3eme Caverne, 4eme Niveau Ossifère, 
Galleries Voisines de l’Entrée 

W-value 
p-value 

 282 
0.234 

Caverne Marie Jeanne. 4eme Niveau vs. 
Teufelslucke 

W-value 
p-value 

640 
0.83 

438.5 
0.002 
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Table 10.34: Mann-Whitney test results on Pleistocene dental measurements from Europe. 

Shaded cells indicate significant differences at 95 % confidence. 

Sites  W
id

th
 

o
f 

m
1

 

Picken’s Hole. Layer 3 vs. Joint Mitnor 
Cave  

W-value 
p-value 

177 
0.067 

Picken’s Hole. Layer 3 vs. Kirkdale Cave  W-value 
p-value 

193 
0.051 

Picken’s Hole. Layer 3 vs. Tornewton 
LHS 

W-value 
p-value 

304 
0.028 

Picken’s Hole. Layer 3 vs. Tornewton 
UHS  

W-value 
p-value 

307 
0.022 

Picken’s Hole. Layer 3 vs. Coygan Cave W-value 
p-value 

386 
0.639 

Picken’s Hole. Layer 3 vs. Kents Cavern W-value 
p-value 

585 
0.686 

Picken’s Hole. Layer 3 vs. Pin Hole W-value 
p-value 

241 
0.664 

Picken’s Hole. Layer 3 vs. Sandford Hill  W-value 
p-value 

213 
0.053 

Picken’s Hole. Layer 3 vs. Uphill Caves 
7&8  

W-value 
p-value 

213 
0.491 

Picken’s Hole. Layer 3 vs. Caverne 
Marie Jeanne. 4eme Niveau 

W-value 
p-value 

175 
0.737 

Picken’s Hole. Layer 3 vs. Goyet. 3eme 

Caverne, 4eme Niveau Ossifère, 
Galleries Voisines de l’Entrée 

W-value 
p-value 

100.5 
0.526 

Picken’s Hole. Layer 3 vs. Slouper Höhle W-value 
p-value 

105 
1 

Picken’s Hole. Layer 3 vs. Teufelslucke W-value 
p-value 

253 
0.211 

Picken’s Hole. Layer 3 vs. Baranica II W-value 
p-value 

91.5 
0.326 
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Table 10.35: Summary of significant difference tests on Pleistocene C. crocuta C anteroposterior 

diameter measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 

1
. J

o
in

t 
M

it
n

o
r 

C
av

e 

2
. 

To
rn

ew
to

n
 

LH
S 

3
. 

To
rn

ew
to

n
 

U
H

S 

4
. C

o
yg

an
 

C
av

e 

5
. K

e
n

ts
 

C
av

er
n

 

6
. S

an
d

fo
rd

 
H

ill
 

7
. 

Te
u

fe
ls

lu
ck

e 

1. Joint Mitnor 
Cave 

   4Y 5Y 6Y 7Y 

2. Tornewton 
LHS 

  3Y 4Y 5Y 6Y 7Y 

3. Tornewton 
UHS 

      7Y 

4. Coygan Cave        

5. Kents Cavern        

6. Sandford Hill        

7. Teufelslucke        

 

 

Table 10.36: Summary of significant difference tests on Pleistocene C. crocuta C mediolateral 

diameter measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 

1
. J

o
in

t 

M
it

n
o

r 
C

av
e 

2
. T

o
rn

ew
to

n
 

LH
S 

3
. T

o
rn

ew
to

n
 

U
H

S 

4
. C

o
yg

an
 

C
av

e 

5
. K

e
n

ts
 

C
av

er
n

 

6
. P

in
 H

o
le

 

7
. S

an
d

fo
rd

 

H
ill

 

8
. U

p
h

ill
 

C
av

es
 7

 o
r 

8
 

9
. 

Te
u

fe
ls

lu
ck

e 
1. Joint Mitnor 

Cave 
   4Y 5Y 1Y    

2. Tornewton 
LHS 

  3Y 4Y 5Y 2Y   9Y 

3. Tornewton 
UHS 

     3Y 3Y   

4. Coygan 
Cave 

     4Y 4Y 4Y  

5. Kents 
Cavern 

     5Y 5Y 5Y  

6. Pin Hole       7Y 8Y 9Y 

7. Sandford 
Hill 

        9Y 

8. Uphill Caves 
7 or 8 

         

9. Teufelslucke          
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Table 10.37: Summary of significant difference tests on Pleistocene C. crocuta c anteroposterior 

diameter measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 1
. T

o
rn

ew
to

n
 

LH
S 

2
. T

o
rn

ew
to

n
 

U
H

S 

3
. C

o
yg

an
 

C
av

e 

4
. K

e
n

ts
 

C
av

er
n

 

5
. U

p
h

ill
 

C
av

es
 7

 o
r 

8
 

6
. 

Te
u

fe
ls

lu
ck

e 

1. Tornewton LHS   3Y 4Y  6Y 

2. Tornewton UHS   3Y 4Y 5Y 6Y 

3. Coygan Cave       

4. Kents Cavern       

5. Uphill Caves 7 or 
8 

      

6. Teufelslucke       

 

 

Table 10.38: Results of significant difference tests on Pleistocene C. crocuta c mediolateral 

diameter measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 1
. J

o
in

t 
M

it
n

o
r 

C
av

e 

2
. T

o
rn

ew
to

n
 L

H
S 

3
. T

o
rn

ew
to

n
 U

H
S 

4
. B

ri
xh

am
/ 

W
in

d
m

ill
 

5
. C

h
u

rc
h

 H
o

le
 

6
. C

o
yg

an
 C

av
e 

7
. K

e
n

ts
 C

av
er

n
 

8
. P

ic
ke

n
’s

 H
o

le
 

9
. P

in
 H

o
le

 

1
0

. S
an

d
fo

rd
 H

ill
 

1
1

. U
p

h
ill

 C
av

es
 7

 o
r 

8
 

1
2

. G
o

ye
t.

 3
em

e
 C

av
, 3

em
e
 

N
iv

 

1
3

. T
e

u
fe

ls
lu

ck
e 

1. Joint Mitnor Cave      6Y 7Y      13Y 

2. Tornewton LHS             13Y 

3. Tornewton UHS      6Y 7Y      13Y 

4. Brixham/ Windmill              

5. Church Hole              

6. Coygan Cave              

7. Kents Cavern              

8. Picken’s Hole              

9. Pin Hole              

10. Sandford Hill              

11. Uphill Caves 7 or 8              

12. Goyet. 3eme Cav, 3eme Niv              

13. Teufelslucke              
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Table 10.39: Summary of significant difference tests on Pleistocene C. crocuta P2 length 

measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 

1
. J

o
in

t 
M

it
n

o
r 

C
av

e 

2
. K

ir
kd

al
e 

C
av

e 

3
. C

o
yg

an
 

C
av

e 

4
. K

e
n

ts
 

C
av

er
n

 

5
. 

Te
u

fe
ls

lu
ck

e 

6
. C

av
er

n
e 

M
ar

ie
 J

ea
n

n
e 

1. Joint Mitnor Cave   3Y 4Y 5Y 6Y 

2. Kirkdale Cave       

3. Coygan Cave       

4. Kents Cavern       

5. Teufelslucke       

6. Caverne Marie 
Jeanne 

      

 

 

Table 10.40: Summary of significant difference tests on Pleistocene C. crocuta P2 width 

measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 

1
. K

ir
kd

al
e 

C
av

e 

2
. T

o
rn

ew
to

n
 

LH
S 

3
. C

o
yg

an
 

C
av

e 

4
. K

e
n

ts
 

C
av

er
n

 

5
. P

in
 H

o
le

 

6
. U

p
h

ill
 C

av
es

 

7
 o

r 
8

 

7
. 

Te
u

fe
ls

lu
ck

e 

8
. C

av
er

n
e 

M
ar

ie
 J

ea
n

n
e 

1. Kirkdale Cave         

2. Tornewton LHS    4Y     

3. Coygan Cave         

4. Kents Cavern         

5. Pin Hole         

6. Uphill Caves 7 or 8         

7. Teufelslucke         

8. Caverne Marie 
Jeanne 
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Table 10.41: Summary of significant difference tests on Pleistocene C. crocuta P3 length 

measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 1
. J

o
in

t 
M

it
n

o
r 

C
av

e 

2
. K

ir
kd

al
e 

C
av

e 

3
. T

o
rn

ew
to

n
 

LH
S 

4
. T

o
rn

ew
to

n
 

U
H

S 

5
. C

o
yg

an
 

C
av

e 

6
. K

e
n

ts
 

C
av

er
n

 

7
. U

p
h

ill
 C

av
es

 

7
 o

r 
8

 

1. Joint Mitnor 
Cave 

 2Y    6Y 7Y 

2. Kirkdale Cave        

3. Tornewton LHS        

4. Tornewton UHS        

5. Coygan Cave        

6. Kents Cavern        

7. Uphill Caves 7 
or 8 

       

 

 

Table 10.42: Summary of significant difference tests on Pleistocene C. crocuta P3 width 

measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 

1
. J

o
in

t 
M

it
n

o
r 

C
av

e 

2
. K

ir
kd

al
e 

C
av

e 

3
. T

o
rn

ew
to

n
 L

H
S 

4
. C

o
yg

an
 C

av
e 

5
. K

e
n

ts
 C

av
er

n
 

6
. P

in
 H

o
le

 

7
. U

p
h

ill
 C

av
es

 7
 o

r 
8

 

8
. T

e
u

fe
ls

lu
ck

e 

9
. C

av
er

n
e 

M
ar

ie
 

Je
an

n
e 

1. Joint Mitnor 
Cave 

         

2. Kirkdale Cave      2Y 2Y   

3. Tornewton 
LHS 

         

4. Coygan Cave          

5. Kents Cavern          

6. Pin Hole          

7. Uphill Caves 
7 or 8 

         

8. Teufelslucke          

9. Caverne 
Marie Jeanne 
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Table 10.43: Summary of significant difference tests on Pleistocene C. crocuta p2 length 

measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 1
. J

o
in

t 
M

it
n

o
r 

C
av

e 

2
. K

ir
kd

al
e 

C
av

e 

3
. T

o
rn

ew
to

n
 

U
H

S 

4
. C

o
yg

an
 C

av
e 

5
. K

e
n

ts
 C

av
er

n
 

6
. P

ic
ke

n
’s

 H
o

le
. 

La
ye

r 
3

 

7
. P

in
 H

o
le

 

8
. S

an
d

fo
rd

 H
ill

 

9
. U

p
h

ill
 C

av
es

 7
 

o
r 

8
 

1
0

. C
av

er
n

e 
M

ar
ie

 J
ea

n
n

e 

1
1

. T
e

u
fe

ls
lu

ck
e 

1. Joint Mitnor 
Cave 

    1Y   1Y 1Y   

2. Kirkdale Cave     2Y   2Y 2Y   

3. Tornewton UHS            

4. Coygan Cave            

5. Kents Cavern            

6. Picken’s Hole. 
Layer 3 

           

7. Pin Hole            

8. Sandford Hill            

9. Uphill Caves 7 
or 8 

           

10. Caverne Marie 
Jeanne 

           

11. Teufelslucke            
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Table 10.44: Summary of significant difference tests on Pleistocene C. crocuta p3 length 

measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 1
. J

o
in

t 
M

it
n

o
r 

C
av

e 

2
. K

ir
kd

al
e 

C
av

e 

3
. T

o
rn

ew
to

n
 

LH
S 

4
. T

o
rn

ew
to

n
 

U
H

S 

5
. C

o
yg

an
 C

av
e 

6
. K

e
n

ts
 C

av
er

n
 

7
. P

in
 H

o
le

 

8
. S

an
d

fo
rd

 H
ill

 

9
. U

p
h

ill
 C

av
es

 
7

 o
r 

8
 

1
0

. C
av

er
n

e 
M

ar
ie

 J
ea

n
n

e 

1
1

. 
Te

u
fe

ls
lu

ck
e 

1. Joint Mitnor 
Cave 

     6Y   9Y 10Y 11Y 

2. Kirkdale Cave         9Y 10Y 11Y 

3. Tornewton LHS      6Y   9Y 10Y 11Y 

4. Tornewton UHS         9Y 10Y 11Y 

5. Coygan Cave           11Y 

6. Kents Cavern            

7. Pin Hole            

8. Sandford Hill            

9. Uphill Caves 7 
or 8 

         10Y 11Y 

10. Caverne Marie 
Jeanne 

           

11. Teufelslucke            

 

Table 10.45: Results of significant difference tests on Pleistocene C. crocuta p3 width 

measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 1
. B

ar
ri

n
gt

o
n

 

2
. J

o
in

t 
M

it
n

o
r 

C
av

e 

3
. K

ir
kd

al
e 

C
av

e 

4
. T

o
rn

ew
to

n
 L

H
S 

5
. T

o
rn

ew
to

n
 U

H
S 

6
. C

o
yg

an
 C

av
e 

7
. K

e
n

ts
 C

av
er

n
 

8
. P

ic
ke

n
’s

 H
o

le
 

9
. P

in
 H

o
le

 

1
0

. S
an

d
fo

rd
 H

ill
 

1
1

. U
p

h
ill

 C
av

es
 

1
2

. C
av

er
n

e 
M

ar
ie

 

Je
an

n
e 

1
3

. G
o

ye
t.

 3
em

e
 

C
av

 4
em

e
 N

iv
 

1
4

. T
e

u
fe

ls
lu

ck
e 

1. Barrington               

2. Joint Mitnor Cave              14Y 

3. Kirkdale Cave               

4. Tornewton LHS              14Y 

5. Tornewton UHS               

6. Coygan Cave               

7. Kents Cavern            7Y   

8. Picken’s Hole               

9. Pin Hole               

10. Sandford Hill              14Y 

11. Uphill Caves               

12. Caverne Marie Jeanne              14Y 

13. Goyet. 3eme Cav, 4eme Niv               

Teufelslucke               
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Table 10.46: Summary of significant difference tests on Pleistocene C. crocuta p4 length 

measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 1
. J

o
in

t 
M

it
n

o
r 

C
av

e 

2
. K

ir
kd

al
e 

C
av

e 

3
. T

o
rn

ew
to

n
 L

H
S 

4
. T

o
rn

ew
to

n
 U

H
S 

5
. C

o
yg

an
 C

av
e 

6
. K

e
n

ts
 C

av
er

n
 

7
. P

in
 H

o
le

 

8
. U

p
h

ill
 C

av
es

 7
 o

r 
8

 

9
. C

av
er

n
e 

M
ar

ie
 

Je
an

n
e 

1
0

. T
e

u
fe

ls
lu

ck
e 

1. Joint Mitnor Cave           

2. Kirkdale Cave          10Y 

3. Tornewton LHS           

4. Tornewton UHS          10Y 

5. Coygan Cave          10Y 

6. Kents Cavern           

7. Pin Hole           

8. Uphill Caves 7 or 8           

9. Caverne Marie 
Jeanne. 

          

10. Teufelslucke           
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Table 10.47: Summary of significant difference tests on Pleistocene C. crocuta p4 width measurements. Y = significant difference at 95 %. Numbers next to Y indicate 

which assemblage's average value is larger. Blank cells = no significant difference. 

Site 1
. J

o
in

t 
M

it
n

o
r 

C
av

e 

2
. K

ir
kd

al
e 

C
av

e 

3
. T

o
rn

ew
to

n
 L

H
S 

4
. T

o
rn

ew
to

n
 U

H
S 

5
. C

o
yg

an
 C

av
e 

6
. K

e
n

ts
 C

av
er

n
 

7
. P

ic
ke

n
’s

 H
o

le
 

8
. P

in
 H

o
le

 

9
. S

an
d

fo
rd

 H
ill

 

1
0

. U
p

h
ill

 C
av

es
  

1
1

. C
av

er
n

e 
M

ar
ie

 

Je
an

n
e

 

1
2

. G
o

ye
t.

 3
em

e
 

C
av

e,
 3

em
e
 N

iv
 

1
3

. S
lo

u
p

er
 H

ö
h

le
 

1
4

. T
e

u
fe

ls
lu

ck
e 

1. Joint Mitnor Cave     5Y 6Y    10Y 11Y 12Y 13Y 14Y 

2. Kirkdale Cave     5Y 6Y    10Y 11Y 12Y 13Y 14Y 

3. Tornewton LHS     5Y 6Y    10Y 11Y 12Y 13Y 14Y 

4. Tornewton UHS     5Y 6Y    10Y 11Y 12Y 13Y 14Y 

5. Coygan Cave        5Y 5Y     14Y 

6. Kents Cavern              14Y 

7. Picken’s Hole               

8. Pin Hole              14Y 

9. Sandford Hill              14Y 

10. Uphill Caves               

11. Caverne Marie 
Jeanne 

              

12. Goyet. 3eme Cav, 
3eme Niv 

              

13.Slouper Höhle               

14. Teufelslucke               
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Table 10.48: Summary of significant difference tests on Pleistocene C. crocuta P4 greatest width 

measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 1
. J

o
in

t 
M

it
n

o
r 

C
av

e 

2
. T

o
rn

ew
to

n
 L

H
S 

3
. T

o
rn

ew
to

n
 U

H
S 

4
. C

o
yg

an
 C

av
e 

5
. K

e
n

ts
 C

av
er

n
 

6
. P

in
 H

o
le

 

7
. U

p
h

ill
 C

av
es

 7
 o

r 

8 

8
. T

e
u

fe
ls

lu
ck

e 

9
. C

av
er

n
e 

M
ar

ie
 

Je
an

n
e 

1. Joint Mitnor Cave        8Y  

2. Tornewton LHS        8Y 9Y 

3. Tornewton UHS    4Y 5Y 6Y  8Y 9Y 

4. Coygan Cave      6Y  8Y 9Y 

5. Kents Cavern        8Y  

6. Pin Hole          

7. Uphill Caves 7 or 8          

8. Teufelslucke          

9. Caverne Marie 
Jeanne 

         

 

Table 10.49: Summary of significant difference tests on Pleistocene C. crocuta P4 width 

measurements. Y = significant difference at 95 %. Numbers next to Y indicate which 

assemblage's average value is larger. Blank cells = no significant difference. 

Site 

1
. K

ir
kd

al
e 

C
av

e 

2
. J

o
in

t 
M

it
n

o
r 

C
av

e 

3
. T

o
rn

ew
to

n
 L

H
S 

4
. T

o
rn

ew
to

n
 U

H
S 

5
. C

o
yg

an
 C

av
e 

6
. K

e
n

ts
 C

av
er

n
 

7
. P

in
 H

o
le

 

8
. U

p
h

ill
 C

av
es

 7
 

o
r 

8
 

9
. T

e
u

fe
ls

lu
ck

e 

1
0

. C
av

er
n

e 
M

ar
ie

 
Je

an
n

e 

1. Kirkdale Cave     5Y  7Y  9Y  

2. Joint Mitnor 
Cave 

          

3. Tornewton LHS     5Y 6Y 7Y  9Y  

4. Tornewton UHS     5Y 6Y 7Y  9Y  

5. Coygan Cave           

6. Kents Cavern           

7. Pin Hole           

8. Uphill Caves 7 
or 8 

          

9. Teufelslucke           

10. Caverne Marie 
Jeanne 
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Table 10.50: Summary of significant difference tests on Pleistocene C. crocuta m1 width measurements. Y = significant difference at 95 %. Numbers next to Y indicate 

which assemblage's average value is larger. Blank cells = no significant difference. 

Site 1
. J

o
in

t 
M

it
n

o
r 

C
av

e 

2
. K

ir
kd

al
e 

C
av

e 

3
. T

o
rn

ew
to

n
 L

H
S 

4
. T

o
rn

ew
to

n
 U

H
S 

5
. C

o
yg

an
 C

av
e 

6
. K

e
n

ts
 C

av
er

n
 

7
. P

ic
ke

n
’s

 H
o

le
. 

La
ye

r 
3

 

8
. P

in
 H

o
le

 

9
. S

an
d

fo
rd

 H
ill

 

1
0

. U
p

h
ill

 C
av

es
 7

 o
r 

8
 

1
1

. C
av

er
n

e 
M

ar
ie

 

Je
an

n
e

 

1
2

. G
o

ye
t.

 3
em

e
 C

av
, 

4
em

e
 N

iv
 

1
3

. S
lo

u
p

er
 H

ö
h

le
 

1
4

. T
e

u
fe

ls
lu

ck
e 

1
5

. B
ar

an
ic

a 
II 

1. Joint Mitnor Cave     5Y     10Y    14Y  

2. Kirkdale Cave     5Y     10Y    14Y  

3. Tornewton LHS     5Y 6Y 7Y 8Y  10Y 11Y 12Y  14Y 15Y 

4. Tornewton UHS     5Y 6Y 7Y   10Y 11Y   14Y 15Y 

5. Coygan Cave         5Y 10Y    14Y  

6. Kents Cavern                

7. Picken’s Hole. Layer 3                

8. Pin Hole                

9. Sandford Hill          10Y    14Y  

10.Uphill Caves 7 or 8                

11. Caverne Marie Jeanne                

12. Goyet. 3eme Cav, 4eme Niv                

13. Slouper Höhle                

14. Teufelslucke                

15. Baranica II                
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Table 10.51: Cranial measurements of Pleistocene C. crocuta from Europe. Measurement 

included are those with fewer than four data values. The measurements are in mm. aBoth 

specimens have been categorised into P3/p3 wear stage V. 

Site M
ed

ia
n

 p
al

at
al

 

le
n

gt
h

 (
m

m
) 

B
re

ad
th

 d
o

rs
al

 t
o

 t
h

e 
ex

te
rn

al
 a

u
d

it
o

ry
 

m
e

at
u

s 
(m

m
) 

G
re

at
e

st
 p

al
at

al
 

b
re

ad
th

 (
m

m
) 

Le
as

t 
p

al
at

al
 b

re
ad

th
 

(m
m

) 

Sk
u

ll 
h

ei
gh

t 
(m

m
) 

H
ei

gh
t 

o
f 

th
e 

o
cc

ip
it

al
 t

ri
an

gl
e 

(m
m

) 

Barrington  95.49a 110.08   68.99 

Barrington     103  

Slouper 
Höhle  

144.24 105.42a 123.47 65.41 112.97 82.89 

Slouper 
Höhle 

  125.64 64.67   

Höhle 
Výpustek 

135.11    102.07 80.89 

 

    
 

    

Figure 10.4: Individual value plots of Pleistocene C. crocuta cranial measurements. Numbers 

along the top of the graphs indicate marine oxygen isotope stages. LP = Late Pleistcene.       
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Figure 10.4 continued.      
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Table 10.52: Measurements of the height of the vertical ramus of Pleistocene C. crocuta from 

Europe. 

 Height of the vertical 
ramus (mm) 

Trou Magrite 100.13 

Slouper Höhle  96.78 

Slouper Höhle 93.13 

 
 

    

 

 
Figure 10.5: Boxplots and individual value plots of Pleistocene C. crocuta mandibular 

measurements. Numbers along the top of the graphs indicate marine oxygen isotope stages. LP 

= Late Pleistocene. See Table 10.53 for sample sizes in the boxplots.       
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Figure 10.5 continued. 
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Figure 10.5 continued. 

 

Table 10.53: Sample sizes of the boxplots in Figure 10.5. 

Site Le
n

gt
h

 o
f 

ch
e

e
kt

o
o

th
 

ro
w

 (
p

2
-m

1
) 

Le
n

gt
h

 o
f 

ch
e

e
kt

o
o

th
 

ro
w

 (
p

3
-m

1
) 

Oreston 1 1 

Hoe Grange 1 1 

Barrington 4 4 

Burtle Beds 1 1 

Joint Mitnor Cave 1 1 

Kirkdale Cave 2 2 

Tornewton. LHS 5 5 

Tornewton. UHS 1 1 

Boughton Mount 2 2 

Church Hole 4 4 

Coygan Cave 6 7 

Kents Cavern 12 13 

Picken’s Hole. Layer 3 1 1 

Pin Hole 6 7 

Sandford Hill 8 8 

Uphill Caves 7 or 8 2 2 

Castlepook Cave 3 3 

Trou Magrite 1 1 

Caverne Marie-Jeanne. 4eme Niveau 5 5 

Goyet. 3eme Caverne, 4eme Niveau Ossifère, Galleries 
Voisines de l’Entrée 

1 1 

Slouper Höhle 5 4 

Teufelslucke 7 6 

San Teodoro 2 2 

S
lo

u
p
e
r 

H
ö
h
le

T
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u
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a
g
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C
a
s
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e
p
o
o
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a
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K
e
n
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 C
a
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rn
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M
o
m

e
n
t 

a
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f 
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s
is
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n
c
e
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t 
c
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m
m

)

3 LP5b-33
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Table 10.54: C. crocuta post-cranial measurements from Pleistocene deposits. All values are in 

mm. 

 

Atlas: 
greatest 
length 

Sacrum: 
physiological 
length 

Sacrum: 
greatest 
breadth of 
the cranial 
articular 
surface 

Sacrum: 
greatest 
height of 
the cranial 
articular 
surface 

Humerus: 
greatest 
breadth of 
the 
proximal 
end 

Hutton  83.77 31.22 18.97  

Hoe Grange  85.71 32.67 18.88 69.94 

Hoe Grange     73.39 

Joint Mitnor Cave     65.5 

Tornewton LHS 57.53     

Uphill Caves 7 or 8   30.84 20.55  

Slouper Höhle  72.42     
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Figure 10.6: Boxplots and individual value plots of Pleistocene C. crocuta post-cranial measurements. Numbers along the top of the graphs indicate marine oxygen 

isotope stages. LP = Late Pleistocene. See Table 10.55 for sample sizes of the boxplots.  
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Figure 10.6 continued.      
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Figure 10.6 continued.      
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Figure 10.6 continued.      
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Figure 10.6 continued.    
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Figure 10.6 continued.    
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Figure 10.6 continued. 
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Table 10.55: Sample sizes of the boxplots in Figure 10.6. 

Site Sc
ap

h
o

-l
u

n
ar

 g
re

at
e

st
 

b
re

ad
th

 

N
av

ic
u

la
r 

gr
ea

te
st

 
b

re
ad

th
 

A
st

ra
ga

lu
s 

gr
ea

te
st

 
le

n
gt

h
 

C
al

ca
n

eu
s 

gr
ea

te
st

 
le

n
gt

h
 

C
al

ca
n

eu
s 

gr
ea

te
st

 
b

re
ad

th
 

M
et

ac
ar

p
al

 II
 g

re
at

e
st

 
b

re
ad

th
 o

f 
d

is
ta

l e
n

d
 

M
et

ac
ar

p
al

 II
I g

re
at

e
st

 
b

re
ad

th
 o

f 
d

is
ta

l e
n

d
 

M
et

at
ar

sa
l I

V
 g

re
at

e
st

 
b

re
ad

th
 o

f 
d

is
ta

l e
n

d
 

Hutton Cavern   1 2 2 1 1 1 

Lawford      1   

Oreston   2 1 1    

Hoe Grange 3  1 2 1 4  2 

Barrington    2 2 2 1  

Joint Mitnor Cave 7 13 16 12 12 5 6 9 

Kirkdale Cave 5 4 11 8 5 4  2 

Victoria Cave 1   1 1    

Tornewton. LHS 7 3 7 3 3 4  1 

Tornewton. UHS 19 19 14 4 5 2 3 4 

Bench Cavern 1 1 3 2 1 1   

Brixham 
Cave/Windmill Hill 

   1 1    

Coygan Cave 6 1 4 3 3 7 4 2 

Kents Cavern 4 3 5 2 2 1 1  

Pin Hole 2  3 1  1 4 1 

Sandford Hill   1 1 1 5 9 1 

Tornewton. Elk 
Stratum. 

     1   

Uphill Caves 7 or 8 16 6 11 8 6 10 9 8 

Yealm Bridge   1 1 1    

Castlepook Cave 1 2 1 1 1 3 4 2 

Trou Magrite    1 1 1   

Goyet. 3eme Caverne, 
4eme Niveau Ossifère, 
Galleries Voisines de 
l’Entrée 

  1     1 

Goyet. 3eme Caverne, 
3eme Niveau 

1  1 1 1 3  1 

Höhle Výpustek    2 1    

Teufelslucke 1 1 1   7 7 4 

San Teodoro 1   1 1    

Cova del Toll   2      
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10.9 Radiocarbon models 

Table 10.56: Radiocarbon dates on C. crocuta specimens used in the new chronology model. Original database compiled by Stuart and Lister (2014) with additional 

dates sourced from the literature. All dates are from specimens subjected to ultrafiltration pre-treatment. Dates modelled and calibrated using OxCal 4.3 (Bronk 

Ramsey, 2009) and the IntCal13 calibration curve (Reimer et al., 2013). ‘Region’ refers to the regions of Europe used in the model. NW = northwestern. C = central. 

SE = southwestern. S = southern. SW = southwestern. 68.2 % and 95.4 % are confidence intervals. 

Site Country Region Lab no. 
14C BP 

Modelled cal BP 
(68.2 %) 

Modelled cal BP 
(95.4 %) Reference 

Date Error From To From To 

Bacho Kiro Cave Bulgaria SE OxA-11421 51,500 2,400 50,003 49,406 50,003 48,548 Stuart and Lister (2014) 

Hyaena Den Britain NW OxA-13917 48,600 1,000 50,003 49,559 50,003 48,995 Jacobi et al. (2006) 

Komarowa Cave Poland C OxA-11062 46,100 900 49,823 48,284 50,003 47,399 Stuart and Lister (2014) 

Scladina Cave Belgium NW OxA-23789 46,000 2,400 49,935 47,487 50,003 45,917 Stuart and Lister (2014) 

Castlepook Cave Ireland NW OxA-19532 45,700 700 49,767 48,451 50,003 47,739 Stuart and Lister (2014) 

Church Hole Britain NW OxA-21996 45,400 2,200 49,815 47,132 50,003 45,732 Dodge et al. (2012) 

Robin Hood Cave Britain NW OxA-12771 45,300 1,000 49,624 47,766 50,003 46,884 Jacobi et al. (2006), Jacobi and Higham (2011) 

Griffen Cave  Austria C VERA-1835 44,300 
1,800/ 
1,500 

48,817 46,026 49,979 45,248 Hofreiter et al. (2004), Rohland et al. (2005) 

Church Hole Britain NW OxA-21995 44,200 2,000 49,252 46,069 50,003 45,057 Dodge et al. (2012) 

Coygan Cave Britain NW OxA-14401 43,000 2,100 48,539 44,828 49,953 43,897 
Jacobi and Higham (2011), Higham et al. 
(2006) 

Komarowa Cave Poland C OxA-11158 42,200 800 46,278 44,814 47,386 44,196 Stuart and Lister (2014) 

Komarowa Cave Poland C OxA-11161 41,700 1,100 46,193 44,123 47,623 43,283 Stuart and Lister (2014) 

Scladina Cave Belgium NW OxA-23790 40,800 1,300 45,521 43,216 47,351 42,489 Stuart and Lister (2014) 

Kents Cavern Britain NW OxA-19509 40,200 600 44,363 43,272 44,947 42,882 Jacobi and Higham (2011) 

Coygan Cave Britain NW OxA-14403 39,700 1,700 45,212 42,266 47,858 41,345 
Higham et al. (2006), Jacobi and Higham 
(2011) 

Amalda Spain SW OxA-10398 39,900 700 44,061 42,909 44,758 42,524 Stuart and Lister (2014) 
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La Adam Cave Romania SE OxA-22128 39,100 1,000 43,867 42,283 44,962 41,749 Stuart and Lister (2014) 

La Adam Cave Romania SE OxA-22127 38,700 1,000 43,543 41,982 44,669 41,435 Stuart and Lister (2014) 

Grotta Pocala Italy C VERA-2532 38,220 920/820 43,069 41,746 44,126 41,140 Hofreiter et al. (2004), Rohland et al. (2005) 

Pin Hole Cave Britain NW OxA-15518 37,800 500 
42,139 41,645 42,388 41,381 

Jacobi and Higham (2011) 

Pin Hole Cave Britain NW OxA-15520 37,150 450 Jacobi and Higham (2011) 

Kents Cavern Britain NW OxA-11152 37,750 500 42,430 41,745 42,788 41,381 Stuart and Lister (2014) 

Bench Quarry Britain NW OxA-13324 37,500 900 
41,874 41,207 42,170 40,781 

Jacobi et al. (2006), Jacobi and Higham (2011) 

Bench Quarry Britain NW OxA-13512 36,800 450 Jacobi et al. (2006), Jacobi and Higham (2011) 

La Adam Cave Romania SE OxA-22129 36,850 750 42,034 40,748 42,569 40,019 Stuart and Lister (2014) 

Scladina Cave Belgium NW OxA-23791 36,450 750 41,734 40,359 42,306 39,633 Stuart and Lister (2014) 

Coygan Cave Britain NW OxA-14402 36,000 500 41,183 40,135 41,641 39,606 
Higham et al. (2006), Jacobi and Higham 
(2011) 

Melwurmhöhle Austria C VERA-2540 35,900 600/560 41,442 40,216 41,931 39,558 Hofreiter et al. (2004), Rohland et al. (2005) 

Duruitoarea 
Veche 

Moldova SE OxA-11691 35,350 380 40,396 39,480 40,876 39,036 Stuart and Lister (2014) 

Castlepook Cave Ireland NW OxA-19531 33,240 220 37,932 37,003 38,291 36,698 Stuart and Lister (2014) 

Grotte de 
Canacaude 

France SW OxA-16691 33,130 220 37,727 36,825 38,168 36,550 Stuart and Lister (2014) 

Magura Cave Bulgaria SE OxA-31115 32,750 500 37,592 36,174 38,341 35,773 Ivanova et al. (2016) 

Coygan Cave Britain NW OxA-14473 32,400 550 37,131 35,647 38,149 35,252 
Higham et al. (2006), Jacobi and Higham 
(2011) 

Coygan Cave Britain NW OxA-14400 32,140 250 36,296 35,765 36,579 35,465 Jacobi et al. (2006) 

Igue du Gral France SW OxA-20763 31,990 240 36,166 35,641 36,389 35,331 Stuart and Lister (2014) 

Cefn Cave Britain NW OxA-9698 31,900 450 36,270 35,315 36,883 34,844 
Aldhouse-Green (n.d.) cited in Jacobi and 
Higham (2011) 

Desnisukhi Peck 
Cave 

Bulgaria SE OxA-11552 31,810 370 36,108 35,309 36,455 34,912 Stuart and Lister (2014) 

Kents Cavern Britain NW OxA-30351 30,630 380 35,148 34,371 35,622 34,075 Proctor et al. (2017) 

Agios Georgios 
Cave 

Greece S OxA-17009 29,340 240 33,797 33,282 33,957 32,931 Stuart and Lister (2014) 
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Grotta Paglicci  Italy S OxA-10657 29,100 1,600 33,917 31,465 35,758 30,631 Stuart and Lister (2014) 

Arene Candide Italy SW OxA-10658 27,050 550 31,639 30,672 32,753 30,223 Stuart and Lister (2014) 

Balkan Range Bulgaria SE OxA-11551 26,600 170 30,990 30,731 31,105 30,575 Stuart and Lister (2014) 

Grotta Paglicci Italy S OxA-10523 26,120 330 30,852 30,137 31,013 29,670 Stuart and Lister (2014) 

 

 

Table 10.57: End boundaries of C. crocuta presence in each region of Europe. Boundaries modelled using OxCal 4.3 (Bronk Ramsey, 2009) and the IntCal13 calibration 

curve (Reimer et al., 2013). 68.2 % and 95.4 % are confidence intervals. 

Region 
No. dates 
in region 

End boundary (68.2 %) End boundary (95.4 %) 

From To From To 

Northwestern 20 35,018 33,666 35,523 32,217 

Central 6 41,259 38,375 41,880 33,898 

Southeastern 8 30,944 28,237 31,073 22,741 

Southern 3 30,769 27,954 31,024 20,330 

Southwestern 4 31,691 26,233 32,722 8,898 
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Table 10.58: Radiocarbon dates on P. leo (spelaea) specimens used in the new chronology model. Original database compiled by Stuart and Lister (2011) with 

additional dates sourced from the literature. All dates are from specimens subjected to ultrafiltration pre-treatment. Dates modelled and calibrated using OxCal 4.3 

(Bronk Ramsey, 2009) and the IntCal13 calibration curve (Reimer et al., 2013). ‘Region’ refers to the regions of Europe used in the model. NW = northwestern. C = 

central. SE = southwestern. SW = southwestern. 68.2 % and 95.4 % are confidence intervals.  

Site Country Region Lab no. 
14C BP 

Modelled cal 
BP (68.2 %) 

Modelled cal 
BP (95.4 %) Reference and notes 

Date Error From To From To 

Emine-Bair-
Khosar Cave 

Ukraine SE OxA-17044 56400 2100     
Excluded from model as too old.  
Stuart and Lister (2011) 

Gamssulzen 
Höhle 

Austria C OxA-13110 49900 2500 50003 49104 50003 48022 Barnett et al. (2009) 

Zoolithenhöhle Germany C OxA-14863 47600 900 50003 49477 50003 48803 Barnett et al. (2009) 

Peştera Muierii Romania SE OxA-16380 47500 900 50003 49379 50003 48629 Bronk Ramsey et al. (2009) 

Jou'l Llobu Spain SW OxA-10186 46400 2100 50003 47775 50003 46295 Stuart and Lister (2011) 

Lathum Netherlands NW OxA-16715 44850 650 48932 47312 49687 46713 Stuart and Lister (2011) 

Peştera Urşilor Romania SE OxA-22122 39000 1000 43788 42192 44897 41674 Stuart and Lister (2011) 

Zawalona Cave Poland C OxA-11156 38800 1100 43772 41994 44987 41392 Stuart and Lister (2011) 

Wierchowska 
Górna 

Poland C OxA-10087 38650 600 43058 42234 43655 41859 Barnett et al. (2009) 

Peştera Urşilor Romania SE OxA-22123 38600 1000 43453 41922 44608 41344 Stuart and Lister (2011) 

Pin Hole Britain SW OxA-19092 35650 450 40810 39764 41299 39280 Stuart and Lister (2011) 

Peştera Cloşani Romania SE OxA-22124 33150 500 38087 36660 38606 36193 Stuart and Lister (2011) 

Peştera Cloşani Romania SE OxA-22125 32500 450 37101 35849 38032 35515 Stuart and Lister (2011) 

Lakatnik Cave Bulgaria SE OxA-11422 31200 330 35500 34808 35930 34556 Stuart and Lister (2011) 

Gremsdorf Germany C OxA-14862 28310 150 32506 31863 32763 31627 Barnett et al. (2009) 

Jaskinia Raj Poland C OxA-11096 25190 350 29641 28825 30270 28559 Stuart and Lister (2011) 

La Garma Spain SW OxA-18698 13830 55 
16864 16627 16959 16521 

Cueto et al. (2016) 

La Garma Spain SW OxA-18699 13832 41 Cueto et al. (2016) 
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Urtiaga Cave Spain SW OxA-10121 13770 120 16864 16443 17035 16274 Stuart and Lister (2011) 

Abri des Cabones France NW OxA-12021 12565 50 15064 14779 15149 14554 Stuart and Lister (2011) 

Zigeunerfels Cave Germany C OxA-17268 12375 50 14583 14221 14764 14135 Stuart and Lister (2011) 

 

 

 

Table 10.59: End boundaries of P. leo (spelaea) presence in each region of Europe. Boundaries modelled using OxCal 4.3 (Bronk Ramsey, 2009) and the IntCal13 

calibration curve (Reimer et al., 2013). 

Region 
No. dates 
in region 

End date (68.2 %) End date (95.4 %) 

From To From To 

Northwestern 3 15024 2272 15078 -21847 

Central 7 14580 9519 14783 -1495 

Southeastern 6 35451 31997 35913 25202 

Southwestern 3 16732 -18572 16790 -18575 

 



10. Appendices 
 

599 
 

Table 10.60: Radiocarbon dates on C. antiquitatis specimens used in the new chronology model. Original database compiled by Stuart and Lister (2012) with 

additional dates sourced from the literature. All dates are from specimens subjected to ultrafiltration pre-treatment. Dates modelled and calibrated using OxCal 4.3 

(Bronk Ramsey, 2009) and the IntCal13 calibration curve (Reimer et al., 2013). ‘Region’ refers to the regions of Europe used in the model. NW = northwestern. N = 

Northern. C = central. SE = southwestern. SW = southwestern. 68.2 % and 95.4 % are confidence intervals. 

Site Country Region Lab no. 
14C BP 

Modelled cal BP 
(68.2 %) 

Modelled cal 
BP (95.4 %) Reference and notes 

Date Error From To From To 

Pin Hole Britain NW OxA-14197 55900 4000 50003 49679 50003 49214 
Removed from figure as date out of 
range 
Jacobi et al. (2006) 

Pin Hole Britain NW OxA-12808 54000 2900 50003 49685 50003 49211 
Removed from figure as date out of 
range 
Jacobi et al. (2006), Jacobi et al. (2009) 

Pin Hole Britain NW OxA-14211 53400 1700     
Excluded from model as too old 
Higham et al. (2006) 

Pin Hole Britain NW OxA-14212 50200 1400     
Excluded from model as too old 
Higham et al. (2006) 

Pin Hole Britain NW OxA-14720 53300 3400 50003 49491 50003 48716 
Removed from figure as date out of 
range 
Jacobi et al. (2009) 

Pin Hole Britain NW OxA-14717 52900 1900 50003 49878 50003 49792 
Removed from figure as date out of 
range 
Jacobi et al. (2009) 

Pin Hole Britain NW OxA-13880 52500 2800 50003 49534 50003 48842 
Removed from figure as date out of 
range 
Jacobi et al. (2006) 

Clifford Hill Britain NW OxA-19559 49800 1000 50003 49791 50003 49475 
Removed from figure as date out of 
range 
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Jacobi et al. (2009) 

Settepolesini   Italy C OxA-10522 49100 2300 50003 48817 50003 47641 Stuart and Lister (2012) 

Pin Hole Britain NW OxA-14719 49000 1300 50003 49569 50003 48925 Jacobi et al. (2009) 

North Sea  NW OxA-16297 48100 1100 50003 49492 50003 48800 Lorenzen et al. (2011) 

North Sea  NW OxA-16296 47900 1200 50003 49360 50003 48559 Lorenzen et al. (2011) 

North Sea  NW OxA-16294 47400 1200 50003 49200 50003 48274 Lorenzen et al. (2011) 

North Sea  NW OxA-16299 47100 1200 50003 49065 50003 48065 Lorenzen et al. (2011) 

Coygan Cave Britain NW OxA-16647 45800 1400 50003 48144 50003 46803 Jacobi et al. (2009) 

North Sea  NW OxA-16295 45200 1000 49651 47656 50003 46826 Lorenzen et al. (2011) 

Kents Cavern Britain NW OxA-14761 45000 2200 49936 46903 50003 45482 Higham et al. (2006), Jacobi et al. (2006) 

Pin Hole Britain NW OxA-13881 45000 750 
48104 46614 48933 46105 

Higham et al. (2006), Jacobi et al. (2006) 

Pin Hole Britain NW OxA-13682 41900 900 Jacobi et al. (2009) 

Tropfsteinhöhle 
Kugelstein    

Austria C OxA-10737 44900 1800 49503 46773 50003 45751 Stuart and Lister (2012) 

Koblenz - 
Metternich  

Germany NW OxA-10893 44700 900 49097 47032 49917 46438 Stuart and Lister (2012) 

Pin Hole Britain NW OxA-15521 43700 1000 48101 45922 49387 45323 Jacobi et al. (2009) 

Pin Hole Britain NW OxA-13592 43350 650 47266 45852 48193 45388 Jacobi et al. (2006) 

Whitemoor Haye 
Quarry 

Britain NW OxA-15843 43350 500 

46095 45546 46403 45280 

Schreve et al. (2013) 

Whitemoor Haye 
Quarry 

Britain NW OxA-15844 42850 450 Schreve et al. (2013) 

Whitemoor Haye 
Quarry 

Britain NW OxA-15845 41690 400 Schreve et al. (2013) 

Goat's Hole, 
Paviland 

Britain NW OxA-13657 42650 800 46718 45170 47860 44595 Jacobi and Higham (2008) 

Labeko Koba Spain SW OxA-10102 
 

41500 
2000 47016 43278 49412 42625 Stuart and Lister (2012) 

Robin Hood Cave Britain NW OxA-15484 40550 400 44519 43691 44895 43325 Jacobi et al. (2009) 

Herne West Germany NW OxA-15798 40500 450 44500 43608 44940 43242 Lorenzen et al. (2011) 
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Bradley Fen Britain NW OxA-31962 40400 1200 45079 43035 46549 42362 Briant et al. (2018) 

Picken's Hole Britain NW OxA-10804 40200 700 44449 43216 45123 42783 
Jacobi et al. (2007) cited in Jacobi et al. 
(2009) 

Sutton Courtenay Britain NW OxA-20989 39200 800 43716 42440 44581 42047 Hopkins et al. (2016) 

Grange Farm Britain NW OxA-21310 38800 390 43001 42459 43323 42197 Cooper et al. (2012) 

Duruitoarea 
Veche             

Moldova SE OxA-11690 38550 500 42912 42240 43340 41925 Stuart and Lister (2012) 

Grange Farm Britain NW OxA-22149 38400 900 43187 41854 44242 41324 Cooper et al. (2012) 

Grange Farm Britain NW OxA-21309 38120 360 42560 42065 42821 41827 Cooper et al. (2012) 

Ash Tree Cave Britain NW OxA-14196 37540 370 42207 41675 42480 41395 Jacobi et al. (2009) 

Kents Cavern Britain NW OxA-13965 37200 550 42127 41289 42533 40754 Higham et al. (2006), Jacobi et al. (2006) 

Geißenklösterle Germany C OxA-21744 36850 750 42042 40748 42574 40037 Higham et al. (2012) 

Kents Cavern Britain NW OxA-27527 36700 750 41919 40615 42471 39872 Proctor et al. (2017) 

Kents Cavern Britain NW OxA-30161 36500 750 41778 40402 42341 39690 Proctor et al. (2017) 

Kents Cavern Britain NW OxA-14210 36370 320 
41000 40406 41266 40138 

Higham et al. (2006), Jacobi et al. (2006) 

Kents Cavern Britain NW OxA-14701 35650 330 Higham et al. (2006), Jacobi et al. (2006) 

Kents Cavern Britain NW OxA-27444 36100 700 41435 40062 42013 39346 Proctor et al. (2017) 

Kents Cavern Britain NW OxA-13921 36040 330 41081 40313 41411 39961 Higham et al. (2006), Jacobi et al. (2006) 

Kents Cavern Britain NW OxA-30274 34950 650 40192 38784 41109 38313 Proctor et al. (2017) 

Goat's Hole, 
Paviland 

Britain NW OxA-13377 33800 200 38587 38071 38770 37628 Jacobi and Higham (2008) 

Wilderness Pit Britain NW OxA-19560 31140 170 35200 34809 35444 34659 Jacobi et al. (2009) 

Goyet Caves Belgium NW OxA-12120 29330 160 33754 33413 33891 33145 Stuart and Lister (2012) 

Goyet Caves Belgium NW OxA-12119 28470 140 32775 32151 32950 31810 Stuart and Lister (2012) 

Szczecin                      Poland N OxA-11059 28450 250 32820 31955 33183 31600 Stuart and Lister (2012) 

Wildscheuer Cave              Germany NW OxA-10892 25290 170 29555 29104 29808 28887 Stuart and Lister (2012) 

Goyet Caves Belgium NW OxA-11291 23560 230 27863 27519 28122 27351 Stuart and Lister (2012) 

Deszczowa Cave Poland C OxA-11060 20800 150 25347 24854 25493 24560 
Wojtal (2007) and Nadachowski et al. 
(2009) cited in Lorenc (2013) 

Jasna Cave                    Poland C OxA-11095 17880 100 21820 21527 21935 21355 Stuart and Lister (2012) 
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Jasna Cave                    Poland C OxA-11159 16140 90 19604 19340 19741 19203 Stuart and Lister (2012) 

Kesslerloch Cave              Switzerland C OxA-10238 14330 110 17627 17300 17794 17125 Stuart and Lister (2012) 

Gönnersdorf Germany NW OxA-10200 13810 90 
16699 16408 16855 16313 

Stuart and Lister (2012) 

Gönnersdorf Germany NW OxA-10201 13610 80 Stuart and Lister (2012) 

 

 

Table 10.61: End boundaries of C. antiquitatis presence in each region of Europe. Boundaries modelled using OxCal 4.3 (Bronk Ramsey, 2009) and the IntCal13 
calibration curve (Reimer et al., 2013). 

Region 
No. dates 
in region 

End date (68.2 %) End date (95.4 %) 

From To From To 

Northwestern 43 16677 15819 16846 14613 

Northern 1 32618 27958 32692 27958 

Central 7 17583 12543 17794 1898 

Southeastern 1 42841 36303 42868 36303 

Southwestern 1 46038 29153 46904 29153 
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Table 10.62: Radiocarbon dates on C. elaphus specimens used in the new chronology model. All dates are from specimens subjected to ultrafiltration pre-treatment. 

Dates modelled and calibrated using OxCal 4.3 (Bronk Ramsey, 2009) and the IntCal13 calibration curve (Reimer et al., 2013). ‘Region’ refers to the regions of Europe 

used in the model. NW = northwestern. C = central. SE = southwestern. SW = southwestern. 68.2 % and 95.4 % are confidence intervals. 

Site Country Region Lab no. 
14C BP cal BP (68.2 %) cal BP (95.4 %) 

Reference and notes 
Date Error From To From To 

El Castillo  Spain SW OxA-22205 49400 3700 ... 49083 ... 49875 Wood et al. (2018) 

Cova de les 
Toixoneres 

Spain SW MAMS-18671 47200 670 ... 49795 ... 49973 Talamo et al. (2016) 

Hyaena Den Britain NW OxA-13915 45100 1000 49523 47544 ... 46740 Jacobi et al. (2006) 

El Castillo  Spain SW OxA-21974 44900 2100 49759 46918 ... 45488 Wood et al. (2018) 

L'Arbreda Spain SW OxA-21702 44400 1900 49305 46340 ... 45310 Wood et al. (2014) 

El Castillo  Spain SW OxA-22202 43100 1700 48249 45049 49945 44359 Wood et al. (2018) 

El Castillo  Spain SW OxA-22403 42700 1600 47825 44695 49690 43895 Wood et al. (2018) 

El Castillo  Spain SW OxA-22203 42000 1500 47035 44063 49051 43181 Wood et al. (2018) 

Saint-Marcel France SW OxA-19624 41300 1700 46464 43270 48946 42570 Szmidt et al. (2010) 

Cova de les 
Toixoneres 

Spain SW MAMS-18669 40800 320 44695 44021 45011 43651 Talamo et al. (2016) 

Pestera cu Oase Romania SE OxA-22097 40700 1300 45426 43163 47266 42415 Meiri et al. (2013) 

Trou Al'Wesse Belgium NW OxA-22098 40200 1300 45020 42848 46731 42099 Meiri et al. (2013) 

Geißenklösterle Germany C OxA-21657 39400 1100 44208 42446 45418 41846 Higham et al. (2012) 

L'Arbreda Spain SW OxA-21704 39200 1000 43939 42350 45029 41825 Wood et al. (2014) 

El Castillo  Spain SW OxA-22201 39100 1000 43855 42275 44960 41750 Wood et al. (2018) 

Labeko Koba Spain SW OxA-22562 38100 900 42970 41676 43990 41010 Wood et al. (2014) 

Labeko Koba Spain SW OxA-22561 38000 900 42903 41607 43890 40886 Wood et al. (2014) 

Saint-Marcel France SW OxA-19623 37850 550 42521 41779 42923 41384 Szmidt et al. (2010) 

Saint-Marcel France SW OxA-19625 37850 600 42556 41745 43010 41305 Szmidt et al. (2010) 

Labeko Koba Spain SW OxA-22563 37800 900 42776 41462 43665 40637 Wood et al. (2014) 

Labeko Koba Spain SW OxA-22560 37400 800 42447 41237 43046 40446 Wood et al. (2014) 
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L'Arbreda Spain SW OxA-21662 37300 800 42385 41149 42968 40353 Wood et al. (2014) 

Cova de les 
Toixoneres 

Spain SW MAMS-17600 36850 211 41675 41266 41871 41037 Talamo et al. (2016) 

Kents Cavern Britain NW OxA-13457 35550 750 41005 39395 41651 38700 
Higham et al. (2011), Jacobi and 
Higham (2011) 

El Castillo  Spain SW OxA-21713 35000 600 40187 38871 40988 38433 Tejero et al. (2012), Wood et al. (2018) 

L'Arbreda Spain SW OxA-21703 32300 450 
36423 35732 36914 35348 

Wood et al. (2014) 

L'Arbreda Spain SW OxA-21663 32100 450 Wood et al. (2014) 

Kents Cavern Britain NW OxA-27443 32200 450 36625 35561 37532 35100 Proctor et al. (2017) 

La Viña Spain SW OxA-21678 31600 400 35912 35066 36309 34734 Wood et al. (2014) 

La Viña Spain SW OxA-21689 31500 400 35800 34967 36231 34671 Wood et al. (2014) 

Kents Cavern Britain NW OxA-30352 30850 400 35166 34385 35629 34066 Proctor et al. (2017) 

La Viña Spain SW OxA-21687 30600 370 34868 34204 35285 33922 Wood et al. (2014) 

Kents Cavern Britain NW OxA-21106 30000 180 34225 33885 34445 33747 
Higham et al. (2011), Jacobi and 
Higham (2011) 

L'Arbreda Spain SW OxA-21781 28260 280 32553 31679 32977 31423 Wood et al. (2014) 

Cova del Parpalló Spain SW OxA-26345 21580 140 25983 25748 26099 25615 Bronk Ramsey et al. (2015) 

La Viña Spain SW OxA-21686 20820 130 25348 24925 25487 24611 Wood et al. (2014) 

Cova del Parpalló Spain SW OxA-22890 19690 110 23876 23567 24026 23412 Bronk Ramsey et al. (2015) 

Bordes-Fitte 
rockshelter 

France NW OxA-22315 19020 110 23057 22722 23262 22555 Aubry et al. (2012) 

Cova del Parpalló Spain SW OxA-26342 18640 100 22599 22393 22780 22312 Bronk Ramsey et al. (2015) 

Cova del Parpalló Spain SW OxA-26343 18520 100 22500 22300 22638 22118 Bronk Ramsey et al. (2015) 
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Table 10.63: Radiocarbon dates on R. tarandus specimens used in the new chronology model. All dates are from specimens subjected to ultrafiltration pre-treatment. 

Dates modelled and calibrated using OxCal 4.3 (Bronk Ramsey, 2009) and the IntCal13 calibration curve (Reimer et al., 2013). ‘Region’ refers to the regions of Europe 

used in the model. NW = northwestern. C = central. SW = southwestern. 68.2 % and 95.4 % are confidence intervals. 

Site Country Region Lab no. 
14C BP cal BP (68.2 %) cal BP (95.4 %) 

Reference and notes 
Date Error From To From To 

Kents Cavern Britain NW OxA-14714 49600 2200 ... 49674 ... 49959 Higham et al. (2006), Jacobi et al. (2006) 

La Chauverie France SW OxA-23693 49000 3400 ... 49055 ... 49869 
Discamps (2011) cited in Discamps et al. 
(2012) 

Robin Hood 
Cave 

Britain NW OxA-12772 47300 1200 ... 49534 ... 49932 Jacobi et al. (2006) 

Jaskinia 
Mamutowa 

Poland C OxA-14405 46400 1200 ... 48722 ... 47538 Wojtal (2007) cited in Lorenc (2013) 

Pin Hole Britain NW OxA-11796 44200 800 48397 46545 49453 45952 Higham et al. (2006), Jacobi et al. (2006) 

Pontnewydd Britain NW OxA-14055 41400 1400 46207 43560 48313 42793 Debenham et al. (2012) 

Bordes-Fitte 
rockshelter 

France NW OxA-22316 41200 1300 45884 43493 47804 42739 Aubry et al. (2012) 

Pin Hole Britain NW OxA-11797 40650 500 44683 43710 45145 43286 Higham et al. (2006), Jacobi et al. (2006) 

Goat's Hole, 
Paviland 

Britain NW OxA 13439 40570 370 44515 43744 44869 43380 Jacobi and Higham (2008) 

Kents Cavern Britain NW OxA-13888 40000 700 44275 43076 44976 42655 Higham et al. (2006), Jacobi et al. (2006) 

Pontnewydd Britain NW OxA-14052 39600 900 44150 42690 45082 42195 Debenham et al. (2012) 

Čertova díra  
Czech 
Republic  

C OxA-22448 39500 1100 44282 42516 45486 41913 Neruda and Nerudová (2013) 

Jaskinia 
Mamutowa 

Poland C OxA-14404 38250 550 42759 42031 43192 41671 Wojtal (2007) cited in Lorenc (2013) 

Pin Hole Britain NW OxA-11980 37760 340 42330 41847 42578 41599 Jacobi et al. (2006) 

Jaskinia 
Mamutowa 

Poland C OxA-14408 37550 450 42269 41631 42596 41292 Wojtal (2007) cited in Lorenc (2013) 
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Goat's Hole, 
Paviland 

Britain NW OxA 13658 37350 320 42061 41580 42296 41315 Jacobi and Higham (2008) 

Geißenklösterle Germany C OxA-21746 36850 800 42067 40709 42650 39935 Higham et al. (2012) 

Geißenklösterle Germany C OxA-21745 36650 750 41884 40559 42437 39830 Higham et al. (2012) 

Geißenklösterle Germany C OxA-21743 36100 700 41429 40057 42004 39333 Higham et al. (2012) 

Abri Pataud France SW OxA-21578 35750 700 41150 39680 41731 38946 Higham et al. (2011) 

Kents Cavern Britain NW OxA-30272 35100 650 40351 38921 41176 38457 Proctor et al. (2017) 

Geißenklösterle Germany C OxA-21659 35050 600 40243 38917 41021 38475 Higham et al. (2012) 

Abri Pataud France SW OxA-21579 35000 600 40240 38826 41129 38368 Higham et al. (2011) 

Abri Pataud France SW OxA-21597 35000 650 40187 38871 40988 38433 Higham et al. (2011)  

Kents Cavern Britain NW OxA-30162 34850 600 40029 38738 40911 38285 Proctor et al. (2017) 

Abri Pataud France SW OxA-21599 34850 600 40029 38738 40911 38285 Higham et al. (2011)  

Bordes-Fitte 
rockshelter 

France NW 
Lyon-6920 
(SacA18936) 

34520 850 40186 38181 41095 36925 Aubry et al. (2012) 

Abri Pataud France SW OxA-21596 34500 600 39749 38435 40581 37576 Higham et al. (2011) 

Kůlna Cave 
Czech 
Republic  

C OxA-25297 34350 600 39672 38281 40365 37240 Bronk Ramsey et al. (2015) 

Abri Pataud France SW OxA-21671 34300 600 39640 38212 40285 37139 Higham et al. (2011) 

Abri Pataud France SW OxA-21600 34200 550 39475 38118 40055 37120 Higham et al. (2011) 

Abri Pataud France SW OxA-21581 33550 550 38545 37066 39160 36385 Higham et al. (2011)  

Abri Pataud France SW OxA-21670 33450 500 38415 37036 38885 36390 Higham et al. (2011) 

Geißenklösterle Germany C OxA-21661 32900 450 37669 36364 38371 36045 Higham et al. (2012) 

Goat's Hole, 
Paviland 

Britain NW OxA-13438 31990 180 36120 35691 36298 35469 Jacobi and Higham (2008) 

Pontnewydd Britain NW OxA-13993 30240 230 34485 34045 34694 33869 Debenham et al. (2012) 

Champ de 
Fouilles 

Belgium NW OxA-18010 28650 200 33121 32393 33388 31935 Jacobi et al. (2010) 

Abri Pataud France SW OxA-21588 28250 280 32539 31666 32966 31417 Higham et al. (2011) 

Abri Pataud France SW OxA-21586 28230 290 32520 31636 32966 31393 Higham et al. (2011)  
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Čertova díra 
Czech 
Republic  

C OxA-22449 28160 280 32412 31569 32862 31364 Neruda and Nerudová (2013) 

Abri Pataud France SW OxA-21587 28150 290 32411 31554 32876 31346 Higham et al. (2011) 

Champ de 
Fouilles 

Belgium NW OxA-18007 27950 170 31883 31419 32339 31294 Jacobi et al. (2010) 

Pontnewydd Britain NW OxA-13984 25210 120 29430 29078 29586 28916 Debenham et al. (2012) 

Goat's Hole, 
Paviland 

Britain NW OxA-17560 24240 110 
28197 27916 28371 27811 

Jacobi and Higham (2008) 

Goat's Hole, 
Paviland 

Britain NW OxA-16602 23700 140 Jacobi and Higham (2008) 

Jaskinia 
Mamutowa 

Poland C OxA-14409 20650 100 25070 24653 25226 24505 Wojtal (2007) cited in Lorenc (2013) 

Kastelhöhle Switzerland C OxA-9738 19620 140 23841 23461 24016 23230 Bronk Ramsey et al. (2002) 

Kastelhöhle Switzerland C OxA-9739 19200 150 23356 22935 23550 22730 Bronk Ramsey et al. (2002) 

Les Harpons France SW OxA-26878 18960 110 22976 22659 23134 22507 Bronk Ramsey et al. (2015) 

Kastelhöhle Switzerland C OxA-9737 18530 150 22565 22231 22746 21975 Bronk Ramsey et al. (2002) 

Les Harpons France SW OxA-26876 18450 100 22454 22223 22524 21999 Bronk Ramsey et al. (2015) 
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10.10  Spreadsheet details 

The data in the spreadsheets (on disc) are as follows: 

• Spreadsheet 1 – present-day predator and prey biomass, climatic conditions and 

vegetation cover  

• Spreadsheet 2 – present-day C. crocuta body mass, body mass sexual size dimorphism, 

predator density, prey biomass, climatic conditions and vegetation cover 

• Spreadsheet 3 – present-day morphometric sites with climate data and vegetation cover 

• Spreadsheet 4 – present-day craniodental morphometrics and calculations of 

mandibular bending strength, mandibular mechanical advantage, ontogeny and sexual 

size dimorphism 

• Spreadsheet 5 – present-day post-cranial morphometrics and calculations of post-

cranial indices, ontogengy and sexual size dimorphism 

• Spreadsheet 6 – present-day tooth breakage data 

• Spreadsheet 7 – Pleistocene crandiodental morphometrics and calculations of 

mandibular bending strength and mandibular mechanical advantage 

• Spreadsheet 8 – Pleistocene post-cranial morphometrics and calculations of post-cranial 

indices 

• Spreadsheet 9 – Pleistocene body mass reconstructions 

• Spreadsheet 10 – Pleistocene tooth wear and breakage data 

 

 




