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Abstract Storage codes are used to ensure reliable storage of data in dis-
tributed systems; functional repair codes have the additional property that
individual storage nodes that fail may be repaired efficiently, preserving the
ability to recover original data and to further repair failed nodes. In this paper
we show that the existing predominant coding theoretic and vector space mod-
els of repair codes can be given a unified treatment in a projective geometric
framework, which permits a natural treatment of results such as the cutset
bound. We find that many of the constructions proposed in the literature can
be seen to arise from well-studied geometric objects, and that this perspective
provides opportunities for generalisations and new constructions that can lead
to greater flexibility in trade-offs between various desirable properties.

We use this framework to explore the notion of strictly functional repair
codes, for which there exist nodes that cannot be replaced exactly, and discuss
how strict functionality can arise. We also consider the issue that the view of
a repair code as a collection of sets of vector/projective subspaces is recursive
in nature and makes it hard to discern when a collection of nodes forms a
repair code. We provide another view using directed graphs that gives us non-
recursive criteria for determining whether a family of collections of subspaces
constitutes a functional, exact, or strictly functional repair code, which may
be of use in searching for new codes with desirable properties.

Keywords functional repair codes · projective geometry

Mathematics Subject Classification (2010) 94B99 · 51E20

S.-L. Ng
Information Security Group, Royal Holloway, University of London, Egham, Surrey, TW20
0EX, U.K.
E-mail: S.Ng@rhul.ac.uk

M.B. Paterson
Department of Economics, Mathematics and Statistics, Birkbeck, University of London,
Malet St, London WC1E 7HX, U.K.
E-mail: m.paterson@bbk.ac.uk



2 Siaw-Lynn Ng and Maura B. Paterson

1 Introduction

The growth of data and an increasing reliance on digital information have led to
much research into ensuring that data can be stored reliably. One predominant
solution is the use of storage codes for distributed storage systems: a database
is coded and stored in multiple nodes (servers) in such a way that if a num-
ber of nodes fail, the data can still be recovered from the functioning nodes.
One technique used in practice (for example, RAID [15], Total Recall [2]) is
that of erasure coding: for instance, MDS codes such as the Reed-Solomon
code [12] can be used to ensure that any number of node failures up to a cer-
tain threshold does not impede the recovery of the entire database. However,
many distributed storage systems also require additional resilience properties.
In particular, we may want to mitigate node failures: if a node should fail, we
would like to repair it using information in some of the functioning nodes so
that the recovery property of the system still holds. Clearly one could do that
by simply recovering the entire database and re-encoding it. This involves a
sometimes unacceptable overhead in storage and communication. Much work
has been done to minimise the amount of data to be stored and the amount
of data to be transmitted for repair. Using techniques from network coding,
Dimakis et al. [3] showed that one could significantly reduce the amount of
data to be communicated for repair and showed that there is a trade-off be-
tween storage and repair efficiency. Since then considerable attention has been
devoted to modeling and constructing efficient repair codes. Here we consider
two strands of this work.

In [16], Rashmi et al. proposed a product-matrix framework for repair
codes. This is an essentially coding theoretic approach, where the database is
treated as messages that are encoded using a generator matrix. The resulting
codewords are then stored in individual nodes. Using this framework, repair
codes can be constructed with parameters that sit on various points on the
storage-repair trade-off curve. On the other hand, in [9], Hollmann and Poh
viewed a repair code as a collection of sets of subspaces of a vector space.
Recovery corresponds to generating the vector space while repair corresponds
to generating a subspace. In this paper (Section 2.4) we explore the relationship
between these two models and motivate the interpretation of the vector space
model in terms of projective geometry. The connection between repair codes
and projective spaces was noted by Etzion and Storme [4], who noted that
“the use of subspaces in Galois geometries for distributed storage codes is
relatively new and provides new challenges for future research to those who
are working in both areas.” We will see that many constructions arise naturally
from looking at repair codes from a projective geometric point of view (Section
3) and these include the constructions in [9,17]. We also frame the cut-set
bound of Dimakis et al. in terms of projective spaces, and show it has a straight
forward proof in this model (Section 2.3).

There are broadly speaking two types of repair. In exact repair, if a node
fails then the new node contains the same information that the failed node
stored. (We clarify this notion in the relevant setting in Definition 4.) In func-
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tional repair, the new node does not necessarily contain the same symbols as
the failed node, but the set of nodes after repair should remain a repair code:
one should still be able to recover the original database, and future repair
should be possible. We will call a functional repair code (FRC) that does not
admit exact repair a strictly functional repair code. These definitions will be
made more precise in Section 2. The focus of this paper is functional repair. In
Section 3 we see that there are repair codes that can be both functional and
exact, but that in [9] there is a construction that is strictly functional. This ap-
pears to be the only example in the literature so far. In Sections 3.2.2 and 4 we
examine this structure from a projective geometry point of view and explore
possibilities for generalisation. We give another example of a strictly functional
repair code which arises from a familiar structure in projective planes (Section
3.1.1).

The strictly functional construction from [9] is also motivated by the fol-
lowing: the view of a repair code as a collection of sets of vector/projective
subspaces is recursive in nature: one must be able to derive a new subspace
from an “admissible” set, and the new subspace, together with all but one
of the subspaces from the “admissible” set must again be “admissible”. This
models the repair property, insisting that future repairs must be possible. How-
ever, this recursive nature makes it hard to distinguish when a collection of
sets is admissible: it is hard to discern the “global view” of the whole set of
nodes from the “local view” of individual node repairs. The construction of [9]
is described using symmetry to bypass the recursiveness of the definition. Here
we explore another view using directed graphs, discussing exact and functional
repairs in terms of the properties of these graphs in Section 5.

We will make these aims more precise when we introduce notation. We
would like to note that constructing new efficient storage codes is not the
primary focus of this work, even though many objects in projective geometry
appears to offer good repair as well as flexibility in terms of resilience and trade-
offs between locality and repair. We intend rather to clarify the definition and
properties of functional repair codes, and to consider their possible relationship
with other combinatorial objects.

2 Definitions and basic properties

An (m;n, k, r, α, β)-functional repair code (FRC) stores m information sym-
bols from some finite alphabet F, encoded across n storage nodes. Each storage
node can hold α symbols. The following properties hold:

(I) (Recovery)
The original information can be recovered from the data stored on any set
of k nodes (a recovery set).

(II) (Repair)
If a storage node fails then a newcomer node contacts some set of r sur-
viving nodes (the repair set) and downloads β symbols from each of these
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r nodes. From these symbols the newcomer node constructs and stores α
symbols in such a way that (I) holds and (II) holds if another node fails.

We note that there is a dichotomy in the definition of the repair set: in
some work (for example, [3,16]) it is stipulated that the repair set is any set of
r surviving nodes, while in others (for example, [9,21]) it is only required that
there exists some r nodes to form the repair set. The same is true for recovery
sets, although with the exception of the example from Section 3.1.4, we will
focus on the more desirable case where every set of k nodes is a recovery set.
We will continue this discussion after Definition 2.

2.1 Performance measures for FRCs

The commonly-studied measures of efficiency of an FRC are the storage rate
Rs = m

nα (the number of message symbols divided by the total number of
stored symbols) and the repair rate Rr = α

rβ (the number of symbols required
for the repaired node divided by the number of symbols requested in order to
facilitate repair). The value rβ is called the repair bandwidth. Another per-
formance metric is locality - the number of nodes to be contacted for repair,
given by r.

Other performance metrics that we will not describe formally include avail-
ability, which is the number of disjoint repair sets for a node. Recent interest in
this includes [19] where fractional repetition codes are used to construct codes
with high availability and nodes are partitioned into clusters, each cluster pro-
viding a set of helper nodes to repair a failed node, and [25], where codes with
different repair bandwidth for repair within clusters and across clusters are
proposed.

The ability to repair multiple failures is also obviously of interest, and
this may also be studied under different models, for example, [29,30] study
centralised repair (where repair is carried out in one location) and cooperative
repair (where failed nodes may communicate) for multiple failures.

Much existing literature seeks to construct codes that optimise one or
more of these measures [3,16,23]. This is not the primary motivation of this
paper, although we will examine the trade-offs that arise from the various
possible construction choices we discuss. We will see that most geometrical
constructions seem to have good repair rates but less than ideal storage rates;
some of them offer a trade-off between repair rate and locality.

2.2 Vector space and geometric characterisations of FRCs

In [9] and various subsequent work, a functional repair code is viewed as a
collection of sets of subspaces of an m-dimensional vector space over a finite
field Fq. The underlying storage codes work as follows:

– For i with 0 ≤ i ≤ n−1, the ith node is assigned a vector space represented
by a specified basis {vi0,vi1, . . . ,viα−1}.
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– To store a message x = (x0, x1, . . . , xm−1) ∈ Fmq , each node i with 0 ≤ i ≤
n− 1 stores the α scalar values {x · vi0,x · vi, . . . ,x · viα−1}.

– If the vector (1, 0, . . . , 0) is in the span of a set of vectors {u0, . . . ,ut−1},
then the values {x · u0, . . . ,x · ut−1} can be used to recover x0. For, if

(1, 0, . . . , 0) =
∑t−1
i=0 aiui for ai ∈ Fq, then x0 =

∑t−1
i=0 aix · ui. If the

vectors {u0, . . . ,ut−1} span Fmq then the entire message x can similarly be
recovered from these values.

The properties of the storage code are hence determined by the relationship
between the subspaces that correspond to the nodes, in particular, the spans
and the intersections of these subspaces. The projective space PG(m − 1, q)
provides a very natural setting for studying spans and intersections in Fmq .
It can make the relationship between spaces easier to visualise and, further-
more, many classical geometric structures in PG(m−1, q) have well-understood
span/intersection properties that can be useful in constructing storage codes.
The basic results we rely on are as follows: the points of projective space
PG(m−1, q) are the elements of the set Fmq \{(0, 0, 0 . . . , 0)} under the equiv-
alence relation P ≡ λP for any λ ∈ F∗q . There are qm−1 + qm−2 + · · ·+ q + 1
such points. The span of a set of t points consists of all points that can be
written as a linear combination of those t points. If the t points are linearly in-
dependent, then their span is a (t− 1)-dimensional subspace of PG(m− 1, q).
The intersection of two subspaces of PG(m − 1, q) is itself a subspace of of
PG(m− 1, q). The key result that we will need to investigate the properties of
FRCs in this setting is the fact that if Π and Σ are subspaces of dimensions
t1 and t2 respectively, then the dimension of the space spanned by Π and Σ
(denoted 〈Π,Σ〉) is equal to t1 + t2 minus the dimension of their intersection.
(Note that for the sake of this formula we take the dimension of the empty set
to be −1.)

In what follows we will translate the vector-space definitions of [9, Defi-
nitions 3.1, 3.2] into the language of projective spaces. We will see that this
provides new insight into existing constructions of repair codes, such as [9,17],
as well as suggesting useful frameworks for new construction of such codes.

Definition 1 ((r, β)-repair) Let Σ = PG(m−1, q) be an (m−1)-dimensional
projective space over the finite field Fq. We say that we can obtain a subspace
U ′ of Σ from a set U of subspaces of Σ by (r, β)-repair if there is an r-
subset {Ui1 , . . . , Uir} in U such that there exists a (β−1)-dimensional subspace
Wij ⊆ Uij for each ij such that U ′ ⊆ 〈Wi1 , . . . ,Wir 〉.

Definition 2 (Functional repair codes) Let Σ = PG(m− 1, q) and let A
be a collection of (n − 1)-sets U of (α − 1)-dimensional subspaces of Σ such
that:

(A) (Recovery)
For each set U ∈ A we have that any k-subset {Ui1 , . . . , Uik} of the sub-
spaces in U span Σ.

(B) (Repair)
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Given any (n − 1)-set U = {U1, . . . , Un−1} in A, there exists an (α − 1)-
dimensional subspace Un ⊂ Σ that can be obtained from U by (r, β)-repair,
such that for every i = 1, . . . n− 1, U ∪ {Un} \ {Ui} is again in A.

We will call (Σ = PG(m− 1, q),A) an (m;n, k, r, α, β)-functional repair code
(or (m;n, k, r, α, β)-FRC for convenience).

In Definition 2 there is no stipulation on the size of A, nor on the number
of (α − 1)-dimensional subspaces in an (m;n, k, r, α, β)-FRC. Let N be the
number of distinct (α− 1)-dimensional subspaces used in A. We will consider
bounds on the value of N in Section 5.

Here A corresponds to all possible sets of n − 1 subspaces that belong
to the nodes remaining after a single node has failed. The repair property
ensures that there is always a suitable subspace that can be constructed by
(r, β)-repair from these nodes in order to construct a replacement for the node
that has failed. Here we require that arbitrary k-sets of nodes are recovery sets,
but we only require that there exists some repair set (although in many of the
constructions we describe in Section 3, repair can be effected by arbitrary sets.
We will clarify each case as we go along.)

To avoid triviality, it is standard to assume that m,n ≥ 2, that 1 ≤ k < n,
that k ≤ r ≤ n − 1, that 1 ≤ α ≤ m − 1, and that 1 ≤ β ≤ α, and we shall
make these assumptions throughout, with the exception of the generalisations
of Construction 6, where there is interest in minimimising r (the minimum
locality case).

Definition 3 Let (Σ = PG(m − 1, q),A) be an (m;n, k, r, α, β)-FRC. An n-
set {U1, . . . , Un} of (α−1)-dimensional subspaces of Σ with the property that
{U1, . . . , Un} \ {Uj} ∈ A for all j ∈ {1, . . . , n} is said to be repairable.

It is the repairable sets corresponding to (Σ,A) that can be used as storage
codes; if any node fails, the repair property then ensures that the resulting
(n− 1)-set permits a new repairable set to be obtained through (r, β)-repair.
Now we define exact and strictly functional repairs:

Definition 4 (Exact repair) Let (Σ = PG(m−1, q),A) be an (m;n, k, r, α, β)-
FRC. We say that (Σ,A) is an exact repair code if for any repairable set
{U1, . . . , Un} we have the additional property that Ui can be obtained by
(r, β)-repair from {U1, . . . , Un} \ {Ui} for any Ui ∈ {U1, . . . , Un}.

We observe that if (Σ,A) is an exact repair code, then for any repairable
set R = {U1, U2, . . . , Un}, the collection A′ = {R \ {Ui}|1 ≤ i ≤ n} has the
property that (Σ,A′) is itself an exact repair code.

Definition 5 (Strictly functional repair) Let (Σ = PG(m−1, q),A) be an
(m;n, k, r, α, β)-FRC. We say that (Σ,A) is a strictly functional repair code if
there exists a repairable set {U1, . . . , Un} for which there is a Ui ∈ {U1, . . . , Un}
that cannot be obtained from {U1, . . . , Un} \ {Ui} by (r, β)-repair.
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In other words, (Σ,A) is a strictly functional repair code if there is some
subspace in a repairable set such that exact repair from the remaining n − 1
subspaces of the set is not possible. For these definitions we are focussing on
the subspaces stored by the nodes, rather than explicitly referring to bases
for these spaces. This is due to the fact that the elements stored by a node
allow them to recover any desired element in the corresponding space, and this
ability does not depend on the choice of basis used to describe the space. We
note that in [17], the term functional repair is used in a scenario in which the
failed node and the repaired node correspond to different bases of the same
space. However, this would satisfy Defintion 4 for exact repair, and hence
would not represent a strictly functional repair code according to our usage
of terminology in this paper. We will later discuss two examples of codes that
do satisfy our stronger definition of strictly functional repair: one from [9]
(Section 4) and a new example that arises almost immediately from phrasing
the definition in terms of projective geometry (Section 3.1.1).

2.3 Geometric interpretation of the cut-set bound

In [3], the cut-set bound of network coding is used to establish an upper
bound on the number of information symbols m that can be stored in an
(m;n, k, r, α, β)-FRC. Here we interpret this bound in terms of finite projective
geometry for the case n = r + 1, β = 1.

Theorem 1 Let (Σ = PG(m− 1, q),A) be an (m; r+ 1, k, r, α, 1)-FRC. Then

m ≤
k∑
i=1

min(α, (r − k) + i).

Proof Each node i corresponds to a subspace Ui of Σ of dimension α− 1, and
any k of them span PG(m − 1, q). In particular, the spaces corresponding to
the first k nodes span Σ, i.e. 〈U1, U2, . . . , Uk〉 = Σ. This implies that m− 1 is
at most kα− 1.

Consider a repair of node 1. The repair property implies it is possible
to choose one point P 1

j from each node j with 2 ≤ j ≤ r + 1 such that
there is an (α − 1)-dimensional subspace U ′1 contained in their span with
{U ′1, U2, . . . , Ur+1} repairable. Since we require 〈U ′1, U2, . . . , Uk〉 = Σ, it follows
that 〈U2, U3, . . . , Uk, P

1
k+1, P

1
k+2, . . . , P

1
r+1〉 = Σ. This implies that m− 1 is at

most (k − 1)α− 1 + (r + 1− k).
We now consider a repair of node 2. There exists a point P 2

j in each node

with j 6= 2 (including P 2
1 in U ′1) such that there is a (α − 1)-dimensional

subspace U ′2 contained in their span with {U ′1, U ′2, . . . , Ur+1} repairable, and
〈U3, . . . , Uk, P

1
k+1, P

1
k+2, . . . , P

1
r+1, P

2
1 , P

2
k+1, P

2
k+2, . . . , P

2
r+1〉 = Σ. This implies

that m− 1 is at most (k − 2)α− 1 + (r + 1− k) + (r + 2− k).
We can repeat this process, continuing to replace each Ui in the set by

a collection of repair points whose inclusion ensures that the replacment U ′i
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will be contained in the relevant span. After repair of node i we have the
result that m − 1 is at most (k − i)α − 1 +

∑i
j=1(r + j − k). The bound

on m − 1 is lowered at each step until either we reach a point at which the
number of additional points we have to add (r + i − k) is greater than α, or
we have replaced all of U1, . . . , Uk with the relevant repair sets of points. At

this point we stop, and we have m − 1 ≤
(∑k

j=1 min(α, r + j − k)
)
− 1, so

m ≤
∑k
j=1 min(α, r + j − k) =

∑k−1
i=0 min(α, r − i).

Generalising to β > 1 is entirely straightforward: in each step of the proof
we take β points per node rather than 1 point. This approach would also work
in the n > r + 1 case if we make the assumption that any set of r nodes can
be used for repair. This is the assumption made in [3,16].

2.4 The product-matrix model

The other widely used model of (m;n, k, r, α, β)-FRC is the product-matrix
model [16] mentioned in the Introduction. In this model, the m information
symbols are formatted into an r×α message matrix, and the encoding process
involves multiplication by an n×r encoding matrix. The resulting n×α matrix
gives the symbols stored on each of the n nodes: row i of the matrix denotes
the α symbols stored in node i. This can be viewed as an instantiation of the
vector space model of [9]: if the entries in the ith row of the encoding matrix are
Ei1, Ei2, . . . Eir, then the ith node corresponds to the subspace spanned by the
vectors v0,v1, . . . ,vα−1, where vj has the values Ei1, Ei2, . . . , Eir in positions
jr+ 1 through jr+ r and 0 in the remaining positions. If a length m message
is obtained by concatenating the columns of the message matrix, then the
resulting symbols stored by each node according to this vector space scheme
are precisely those that would be stored using the product-matrix model.

2.5 Subpacketisation/vectorisation

We now consider a well-known example of an FRC that can be generated
using the product-matrix model with α = 1, together with the application of a
technique proposed by Shanmugam et al. for improving the repair bandwidth
[24]. We will see that this example can be described very naturally in the
projective geometry setting.

Example 1 (Scalar MDS code) A file x0 . . . xm−1 consisting of m symbols be-
longing to the field Fps , p a prime power and s > 1, is stored across n storage
nodes using an [n,m]-MDS code over Fps . (This is referred to as a scalar MDS
code.) Each storage node stores exactly α = 1 symbol of Fps . If a storage node
should fail, a repair would involve contacting r = m nodes, each contributing
β = 1 symbol. Altogether it would take rβ = m symbols to repair one symbol.

Following the approach of Definition 2, the scalar MDS code construction
translates to a collection of n points P0, . . . , Pn−1 in Σ = PG(m−1, ps), every
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m of which span Σ; this is precisely an n-arc in PG(m−1, ps). Any failed node
can only be obtained by a (m, 1)-repair, since any given point of the arc is not
contained in the space spanned by m− 1 further points of the arc. This is an
(m;n,m,m, 1, 1)-FRC with storage rate Rs = m

n and repair rate Rr = 1
m .

In [24] Shanmugam et al. proposed a “vectorisation” of MDS codes over
fields of prime power in order to obtain a better repair bandwidth. “Vectorisa-
tion” or “subpacketisation” involves treating each symbol xi ∈ Fps as s sym-
bols of Fp. As a consequence, instead of having to downloading all the symbols
in each node, one may be able to effect repair by downloading fewer symbols
(from perhaps more nodes), resulting in a reduction of repair bandwidth.

To explore the vectorisation process more explicitly, let f(x) = a0 + a1x+
· · · + as−1x

s−1 + xs be a primitive polynomial of degree s over Fp and let
ζ be a root of f(x). Then every element b of Fps can be written as b =
b0 + b1ζ + · · · + bs−1ζ

s−1, bi ∈ Fp. Using this correspondence, b ∈ Fps can
be viewed as (b0, b1, . . . , bs−1) ∈ Fsp. This is the basis of the technique of
field reduction used to construct Desarguesian spreads of PG(sm− 1, p) from
the points of PG(m − 1, ps) ([7, Section 4]). A point (x0, x1, . . . , xm−1) in
PG(m−1, ps), with xi ∈ Fps viewed as (xi0, x

i
1, . . . , x

i
s−1) ∈ Fsp, can be written

as the point (x00, x
0
1, . . . , x

0
s−1, x

1
0, x

1
1, . . . , x

1
s−1, . . . , x

m−1
0 , xm−11 , . . . , xm−1s−1 ) in

PG(sm−1, p). Now, take a point (p0, p1, . . . , pm−1) ∈ PG(m−1, ps) and all its
multiples {(p0ζi, p1ζi, . . . , pm−1ζi | i = 0, . . . , ps− 2}. Then the corresponding
points of this set in PG(sm− 1, p) form an (s− 1)-dimensional subspace. The
set of all such (s− 1)-dimensional subspaces partitions PG(m− 1, ps) and is a
Desarguesian spread.

(The “vectorisation” process in [24] uses another map: each b ∈ Fps can be
treated as a linear transformation x 7→ bx in Fps , so b can be described as an
s×s matrix acting on the basis of Fps over Fp. Each element of the MDS code
is thus replaced by its corresponding s × s matrix. This process is equivalent
to the field reduction construction of Desarguesian spreads described above.)

The “vectorised” functional repair code is now an (sm;n,m, r ≤ m, s, β)-
FRC for some r and β and storage rate Rs = m

n , repair rate Rr = s
rβ . It

corresponds to a set of n (s− 1)-dimensional subspaces of PG(sm− 1, p), and
we can see that with more room to manoeuvre we may be able to repair one
subspace without having to use entire subspaces.

We give a small example to illustrate this principle:

Example 2 Take s = 3, k = 3, n = 5, we have a 5-arc in PG(2, 8) (taking
primitive element ζ3 = ζ + 1): {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, ζ, ζ2)}.

This is an (m = 3;n = 5, k = 3, r = 3, α = 1, β = 1)-FRC with Rs = 3
5 ,

Rr = 1
3 . “Vectorisation” gives 5 planes U1, . . . , U5 in PG(8, 2):
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U1 = 〈(100 000 000), (010 000 000), (001 000 000)〉,
U2 = 〈(000 100 000), (000 010 000), (000 001 000)〉,
U3 = 〈(000 000 100), (000 000 010), (000 000 001)〉,
U4 = 〈(100 100 100), (010 010 010), (001 001 001)〉,
U5 = 〈(100 001 010), (010 101 011), (001 010 101)〉.

This is now an (m = 9;n = 5, k = 3, r = 5, α = 3, β = 2)-FRC. If U1 fails,
one could repair U1 by downloading the following points:

– R21 = (000 110 000), R22 = (000 011 000) from U2,
– R31 = (000 000 110), R32 = (000 000 011) from U3,
– R41 = (110 110 110), R42 = (011 011 011) from U4,
– R51 = (010 101 011) from U5 (and another one if we must have symmetry).

Then we can get (010 000 000) = R51 +R21 +R22 +R32, (110 000 000) =
R41 +R21 +R31, and (011 000 000) = R42 +R22 +R32. This gives us U1.

In the scalar version, to repair one point (9 bits of information) we need to
use three points (27 bits). The repair rate is therefore 1/3. In the “vectorised”
version, to repair one subspace (27 bits) we need to use 8 points (72 bits). The
repair rate is thus 3/8 > 1/3. (Or 3/7 if we don’t mind lopsidedness.)

The motivation in [24] is to obtain a better repair rate, which the example
illustrated. In addition, we see that this process has a natural counterpart in
projective geometry that is also intuitive.

Much work has been done further along these lines with some variations.
For instance, [1] studies the lower bound for α (the “sub-packetisation”) in
MSR codes that allow “repair-by-transfer”, that is, symbols from the remain-
ing functioning nodes are downloaded directly without computation during
repair, and [26] provides further examples of codes reaching the lower bound
for α for different values of locality. Meanwhile, [5] studies trading off repair
bandwidth for better sub-packetisation, and [18] also provides constructions
for MSR codes achieving the lower bound for α for “repair-by-transfer”.

3 Projective geometric constructions of functional repair codes

We will examine some existing constructions and also some constructions that
arise naturally from looking at functional repair codes from a projective geo-
metric point of view. The construction of a vector space/projective geometric
functional repair code involves choosing both the dimensions of the spaces cor-
responding to the nodes, and selecting which subspaces of these dimensions
to use. The properties of the code are determined entirely by the manner in
which the various spaces intersect.

Broadly speaking, assigning low-dimension subspaces over a given field to
nodes is efficient from a storage perspective, while assigning larger spaces over
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the same field can allow the repair bandwidth to be reduced. When spaces of
dimension greater than one are used, there is the potential for the spaces as-
signed to distinct nodes to have a non-trivial intersection. In what follows we
will consider separately constructions with intersecting subspaces and those
with non-intersecting subspaces. Both cases are potentially of interest: non-
intersecting spaces are efficient in the sense of avoiding direct redundancy,
however there is an upper bound to how large spaces can be without intersect-
ing, and redundancy may be desirable for facilitating recovery and/or repair.

3.1 Constructions using intersecting subspaces.

We begin by considering the simplest possible case for intersecting subspaces,
that of lines in a plane, then use the results obtained to suggest useful con-
structions in higher dimensions.

3.1.1 Dual arcs

A neat construction of an exact repair code can be obtained from three lines
in a plane:

Example 3 (Three lines in a plane.) Any three non-concurrent lines in a plane
will give an exact repair code: let l1, l2, l3 be three non-concurrent lines in
PG(2, q), and let A be the collection of the sets of pairs of distinct lines
{li, lj} ⊆ {l1, l2, l3}. Then A is an (m = 3;n = 3, k = 2, r = 2, α = 2, β = 1)-
FRC. Here the storage rate Rs = 1/2 and the repair rate is Rr = 1.

This example tolerates a single node failure. In order to protect against
additional failures we may desire schemes permitting more nodes. We can
generalise the idea of Example 3 to a larger set of lines: a dual arc in a projective
plane of order q is a set of at most q + 1 lines, no three concurrent.

Theorem 2 (Dual arcs in a plane) Let L be a dual arc with n lines in
Σ = PG(2, q), 3 ≤ n ≤ q + 1. Let A be the collection of pairs of distinct lines
of L. Then (Σ,A) is a (3;n, 2, 2, 2, 1)-FRC that can tolerate up to n− 2 node
failures (if n > 3), with storage rate Rs = 3/2n ≤ 1/2 and repair rate 1.

Proof Any subset of three nodes in L can be considered to be an exact repair
code, as seen in Example 3. Thus, provided two nodes survive, any failed node
can be recovered by exact repair.

This approach leads naturally to a generalisation to higher dimensional
spaces:

Example 4 (Planes in PG(3, q).) Consider a dual arc in PG(3, q): a set of q+1
planes, any 4 meeting trivially. (So 2 planes meet in a line, 3 planes meet in a
point.)
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Take 3 of the planes π1, π2, π3. If π3 fails, repair to π′3 using lines l1 ∈ π1\π2,
l2 ∈ π2\π1. This gives a (m = 4; 3 ≤ n ≤ q+1, k = 2, r = 2, α = 3, β = 2)-FRC
with Rs = 4/3n ≤ 4/9, Rr = 3/4.

On the other hand, we could take 4 planes, for example, π0 : x0 = 0,
π1 : x1 = 0, π2 : x2 = 0, π3 : x3 = 0. If π3 fails, it can be repaired by (4, 1)-
repair, using P0 = (0, 1, 0, 0) ∈ π0, P1 = (0, 0, 1, 0) ∈ π1, and P2 = (1, 0, 0, 0) ∈
π2. This gives an (m = 4;n = 4, k = 2, r = 3, α = 3, β = 1)-FRC, with
Rs = 4/3n = 1/3 and better repair rate, Rr = 1.

There are two important features in the simple construction of Example 4:
the ability to trade off locality and repair bandwidth without having to make
a decision during the set up, and the ability to repair multiple failures. Before
we discuss this in more detail, we give the general construction:

Construction 3 Take a dual arc in PG(m − 1, q): a set of q + 1 hyper-
planes, any m of which meet trivially. We may take the set of hyperplanes
in a dual normal rational curve {Ht = [1, t, t2, . . . , tm−1] : t ∈ Fq} ∪ {H∞ =
[0, 0, . . . , 0, 1]}, where [z0, z1, . . . , zm−1] denotes the set of points
{(x0, x1, . . . , xm−1) | z0x0 + z1x1 + · · ·+ zm−1xm−1 = 0}.
However, to make the description of the trade-off clearer, we will take an

m-subset of these hyperplanes and coordinatise them as follows, writing ei to
denote the point with a 1 in position i and 0 everywhere else: Hi : xi = 0, that
is, Hi = 〈ej , | j ∈ {0, . . . ,m− 1} \ {i}〉.

This gives an (m;n = m, k = 2, r = dm−1β e, α = m − 1, β)-FRC with

Rs = m
nα and Rr = m−1

m−1+δ , where δ = 0 if β|m − 1. Otherwise δ = β − ∆
where ∆ = m − 1 mod β. Here β ≥ 1 and r ≥ 2. Indeed, if we choose m
odd, and β = (m− 1)/2, then we achieve both minimum locality and optimum
repair bandwidth.

For simplicity we describe what happens if H0 fails. An (r, β)-repair can be
performed, with r = dm−1β e, with each of the active Hi contributing β points
as follows:

H1 → e2, . . . , eβ+1,

H2 → eβ+2, . . . , e2β+1,

...

Hi → e(i−1)β+2, . . . , eiβ+1,

...

Hdm−1
β e
→ e(dm−1

β e−1)β+2, . . . , em−1, e1.

Clearly at any repair one could choose the locality r to suit the circum-
stances. In [17] a construction was given that also allows such a trade-off -
one can choose between minimum bandwidth repair or low locality repair, by
assigning the subspaces accordingly, but this assignment has to be determined
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P

l1
l2

l3

l4

Fig. 1 A strictly functional repair code in PG(2, q).

at set up. Construction 3 allows the trade-off to be performed at each repair
according to the network conditions.

Construction 3 also tolerates multiple node failures: we can choose m ≤
n ≤ q+ 1, and any failure of up to n−2 nodes still allows recovery and repair.
It also gives high availability. For example, when we consider the special case
of Theorem 2 using dual arcs in planes, we see that any line can be repaired
using any pair of lines, so that many sets of nodes can be used to repair a
failed node.

Note also that if we start with n < q+1, additional nodes can be created by
accessing information from existing nodes using the repair process. This may
be useful if resilience requirements change during the lifetime of the storage
system.

3.1.2 Concurrent lines and strictly functional repair

The use of dual arcs in constructing functional repair codes is appealing due
to the high availability that results. However Example 3 also prompts another
question: what happens if we allow sets of nodes that correspond to concur-
rent lines? In Theorem 2 and Construction 3, the spaces assigned to nodes
correspond to hyperplanes forming a dual arc in the underlying space. This
enables us to control the way the spaces corresponding to sets of nodes inter-
sect: any t of them intersect in a space of dimension m − 1 − t. However, we
may wish to allow more general patterns of intersection (for example, in order
to permit more than q + 1 nodes). To explore this, we return to the case of
lines in the plane, and consider collections of lines that include sets of three
concurrent lines. The following example shows this takes us into the realm of
strictly functional repair codes:

Example 5 (A strictly functional repair code.) Let l1, l2, l3, l4 be four lines of
Σ = PG(2, q), q > 3, such that l1, l2, l3 are concurrent at a point P , and l4
does not pass through P . (See Figure 1.) Let A be the collection of pairs of
lines {li, lj}, i, j ∈ {1, 2, 3, 4}, i 6= j. Then (Σ,A) is an (m = 3;n = 3, k =
2, r = 2, α = 2, β = 1)-FRC which is a strictly functional repair code.

This is because there is a set {l1, l2, l3} with {l1, l2}, {l1, l3}, {l2, l3} ∈ A
but l3 cannot be obtained from {l1, l2} by (2, 1)-repair.
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As far as we are aware, this appears to be the only other example of a
strictly functional repair code in the literature, apart from an example due to
[9] that we will discuss in Section 3.2.2.

3.1.3 Grassmann varieties

The constructions we discussed in Section 3.1.1 all involve subspaces that are
hyperplanes of the ambient space. This represents one extreme point of the
possible trade-off between low repair bandwidth and flexibility of repair at the
cost of high storage. Using smaller dimensional spaces both reduces the stor-
age overhead, and allows for greater flexibility in terms of the size of pairwise
intersections between the spaces. In this environment where greater flexibility
is possible, this implies that the spaces must be chosen carefully to achieve the
desired intersection properties. Here we consider an example of a construction
from [17]. It uses subspace codes constructed from Grassmann varieties in vec-
tor spaces. We will describe it from the point of view of projective geometry,
in order to see how known properties of Grassman varieties make it possi-
ble to choose collections of subsets with suitable intersections. We note that
codes arising from Grassman varieties have received considerable attention for
applications such as network coding (see [4] for a survey of such work.)

Let b ≥ 2 and t ≤ b be integers. Consider Πt, a t-dimensional projective
subspace of PG(b, q). Let the points X0, . . . , Xt be a basis for Πt. Write Xi =
(xi0, x

i
1, . . . , x

i
b) and let MΠt be the (t+ 1)× (b+ 1) matrix

MΠt =


X0

X1

...
Xt

 =


x00 x

0
1 . . . x

0
b

x10 x
1
1 . . . x

1
b

...
...

...
xt0 x

t
1 . . . x

t
b

 .

Write MΠt(i0, . . . , it) to denote the (t + 1) × (t + 1) submatrix of MΠt

consisting of columns i0, . . . , it. Let V be the set of
(
b+1
t+1

)
subsets {i0, . . . , it}

of {0, 1, . . . , b}, ordered in some way. Let φ(MΠt(i0, . . . , it)) be defined as
det(MΠt(i0, . . . , it)). Then φ(MΠt) is defined as a point in PG(B, q), where
B =

(
b+1
t+1

)
− 1, and the jth position of φ(MΠt) is φ(MΠt(i0, . . . , it)) with

{i0, . . . , it} in the given order in V.
For example, take t = 1, b = 3. Suppose Π1 is a line in PG(3, q) with basis

points (x0, x1, x2, x3), (y0, y1, y2, y3), and

MΠ1
=

(
x0 x1 x2 x3
y0 y1 y2 y3

)
.

Then φ(MΠ1) is a point in PG(5, q) given by

(x0y1 − x1y0, x0y2 − x2y0, x0y3 − x3y0, x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2).

We call these Grassmann coordinates (or Plücker coordinates, when t = 1).
The set of points in PG(B, q) corresponding to all the t-dimensional subspaces
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of PG(b, q) is called the Grassmannian, or the Grassmann variety of the t-
spaces of PG(b, q). We will concentrate on the case t = 1 here and refer the
reader to [8, Chapter 24] for more details and for the general case.

For t = 1, the lines of PG(b, q) are mapped to points of PG(B, q), B =(
b+1
2

)
− 1. The q2 + q + 1 lines lying on a plane in PG(b, q) are mapped to a

plane in PG(B, q) - the collection of such planes in PG(B, q) are called the
Greek spaces. The qb−1 + qb−2 + · · ·+ b+ 1 lines through a point in PG(b, q)
are mapped to a (b − 1)-dimensional subspace in PG(B, q) - the collection of
such subspaces are called the Latin spaces. Two Latin (Greek) spaces meet in
at most one point, and a Latin and a Greek space meet in either a line or the
empty set. If there are three distinct Latin (Greek) spaces π, π′, π′′ such that
their pairwise intersections are distinct points, then any other Latin (Greek)
space π̄ having distinct points in common with π and π′ will also has a point
in common with π′′. These properties allow the construction of the functional
repair codes described in [17].

Construction 4 (Grassman variety construction [17]) The storage nodes
V0, . . . , Vn−1 are associated with points P0, . . . , Pn−1 in PG(b, q). Each point
Pi can be associated with a collection of lines through that point, which, in
turn, gives a (b− 1)-dimensional subspace Mi in PG(B, q). The recovery and
repair properties then depend on how the points Pi are chosen: every b of the
Mi should span PG(B, q), and if an Mi should fail, one should be able to obtain
it by some (r, β)-repair. In [17], it is shown that this can be a (b, 1)-repair or a
(c, b)-repair for any c|b. This gives an (m = B+1;n, k = b, r = b, α = b, β = 1)-
FRC (or an (m = B+ 1;n, k = b, r = c, α = b, β = b)-FRC for any c|b), where
B =

(
b+1
t+1

)
− 1, t ≤ b.

Consider the example with t = 1, b = 3. Take n ≥ 4 points in PG(3, q) such
that no 4 points lie in a plane (an n-arc). The corresponding Grassmannian
would then consist of n planes in PG(5, q) with the property that every pair of
planes meet in a point, and for any plane, the points of intersection with the
other n− 1 planes form an (n− 1)-arc on the plane. It is then clear that any
three planes would span PG(5, q), while any plane can be obtained by (3, 1)-
repair. This gives a repair rate of 1, and a storage rate of 2

n ≤
1
2 .

3.1.4 Segre varieties

Another class of varieties having subspaces with specific intersection properties
are the Segre varieties. These can also be used to construct functional repair
codes with intersecting subspaces. It gives storage rate Rs = 1

2 , and has some
restrictive recovery properties, but may still be of some interest.

A Segre variety SVs,t in PG((s+ 1)(t+ 1)− 1, q) is defined as follows:
Let St be a t-dimensional projective space PG(t, q) and Ss be an s-dimensional

projective space PG(s, q). Then

SVs,t = {(y0z0, y0z1, . . . , y0zs; y1z0, y1z1, . . . , y1zs; . . . ; ytz0, ytz1, . . . , ytzs) |
(y0, y1, . . . , yt) ∈ St, (z0, z1, . . . , zs) ∈ Ss}.
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SVs,t consists of two opposite systems of subspaces Σ1, Σ2: Σ1 consists of
qs+ qs−1 + · · ·+ q+ 1 mutually skew t-dimensional subspaces, and Σ2 consists
of qt+qt−1+ · · ·+q+1 mutually skew s-dimensional subspaces. Each subspace
in Σ1 meets a subspace in Σ2 in exactly one point.

Example 6 Suppose s = t = 1. Then SV1,1 is a hyperbolic quadric in PG(3, q)
which consists of (q+1)2 points lying on 2(q+1) lines. These lines form the two
opposite systems of subspaces, each consisting of q+1 mutually skew lines. If we
take two lines from each system, then if one line fails it can always be repaired
by (2, 1)-repair from the two lines from the opposite system. For recovery,
however, we must have k = 2 lines from the same system. The collection of
3-subsets of these 4 lines gives an (m = 4;n = 4, k = 2, r = 2, α = 2, β = 1)-
FRC, with Rs = 1

2 and Rr = 1.

If we compare this construction to a construction in which we only take
lines from a single system, we can view this as providing the trade-off of ob-
taining more convenient repair at the cost of adding more nodes to the system
in such a way that only certain 2-sets of nodes allow for recovery. (Note that
any 3-set of nodes would suffice for recovery, however.) This example illus-
trates the importance of the assumption of arbitrary recovery and repair sets
in the cut-set bound: Theorem 1 says that m ≤ 3 for (k, r, α, β) = (2, 2, 2, 1).
Here we achieve m = 4, but the pairs of lines that constitute a recovery set
are more restrictive.

This can be generalised to SVt,t, t ≥ 1: take t+ 1 t-dimensional subspace
from Σ1, and t + 1 t-dimensional subspaces from Σ2. Any one subspace may
be obtained by (t+1, 1)-repair from the t+1 subspaces in the opposite system.
For recovery, we must have k = t + 1 subspaces from the same system. The
collection of (2t+1)-subsets of these 2t+2 subspaces gives an (m = (t+1)2;n =
2(t+ 1), k = t+ 1, r = t+ 1, α = t+ 1, β = 1)-FRC (again, with the possibility
of adding more nodes by the repair process), with Rs = 1

2 and Rr = 1.

3.2 Constructions using non-intersecting subspaces.

3.2.1 Spreads and partial spreads

Another natural object to look at when one considers projective space con-
structions is spreads and partial spreads.

In [9, Example 2.1] an (m = 4;n = 4, k = 2, r = 3, α = 2, β = 1)-FRC
is constructed using four mutually skew lines in PG(3, 2). Here we show that
the construction works over Fq for any q ≥ 2. We describe this construction
as elements from a spread in PG(3, q), q ≥ 2.

Theorem 5 Let S be a regular spread in PG(3, q). Let l1, l2, l3 be three lines
of S and let R be the (unique) regulus containing them. Let l4 ∈ S \ R. Then
li4 can be obtained from li1 , li2 , li3 by (3, 1)-repair, {i1, i2, i3, i4} = {1, 2, 3, 4}.
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Proof It is clear that any three of l1, . . . , l4 are contained in a regulus that does
not contain the fourth line, so without loss of generality it suffices to prove
that l4 can be obtained from l1, l2, l3 by (3, 1)-repair.

Let Q1 be any point on l4. Let l5 be the transversal through Q1 to l2, l3 -
this line exists and is unique. Let P2 = l5 ∩ l2 and P3 = l5 ∩ l3.

Now consider {l1, l3, l4}. There is a unique regulus containing them but
not l2. Let l6 be the transversal to them through P3. Let P1 = l6 ∩ l1 and
Q2 = l6 ∩ l4. (We know that Q1 6= Q2 since otherwise l5 = l6 and l6 meets all
four lines, which means all four lines are in a regulus.)

Now consider the space spanned by P1, P2, Q1, Q2, π = 〈P1, P2, Q1, Q2〉.
Since P2Q1 ∩P1Q2 = P3, π is a plane. So P1P2 and l4 are both lines in π and
therefore P1P2 meets l4 in a point Q3. Hence l4 ⊆ 〈P1 ∈ l1, P2 ∈ l2, P3 ∈ l3〉
and thus is obtained from l1, l2, l3 by (3, 1)-repair.

Construction 6 [9, Example 2.1] The collection of pairs of distinct lines from
{l1, l2, l3, l4} forms an (m = 4;n = 4, k = 2, r = 3, α = 2, β = 1)-FRC which
has Rs = 1

2 and Rr = 2
3 .

For example, we may choose l1, l2, l3 to be

l1 = 〈(1, 0, 0, 0), (0, 0, 1, 1)〉,
l2 = 〈(0, 1, 0, 0), (1, 0, 0, 1)〉,
l3 = 〈(0, 0, 1, 0), (1, 1, 0, 0)〉.

These are lines on the quadric/regulus x0x2−x0x3−x1x2−x2x3 +x23 = 0.
(The other lines of the regulus are 〈(1, 0, y, 1), (1, y, 0, 0)〉.) We can take l4 to
be 〈(0, 0, 0, 1), (0, 1, 1, 0)〉, which does not belong to this regulus.

A natural generalisation of such a construction would be to take planes
in spreads in PG(5, q). Indeed, in Section 2.4 a construction is given using
elements of an (s− 1)-spread in PG(sm− 1, q). In [13,14], regular t-spreads in
PG(m− 1, q) are used to give (m; k ≤ n ≤ 2m−1

2t+1−1 , k = 2, r = 2, α = t+ 1, β =
α)-FRC, with the aim of minimising r. These functional repair codes have the
additional property of allowing repairs of multiple node failures simultaneously.
This follows from the property of regular spreads, where one can always choose
two spread elements that span a subspace that contains a third given element.

These elements are subsets of a system of subspaces in a Segre varieties.
Hence it is also natural to consider the generalisation to subspaces on a Segre
varieties. In contrast to the constructions in Section 3.1.4 where elements are
taken from both systems of subspaces of a Segre variety, here we only take
subspaces from one system of subspaces, and these are mutually skew. Consider
again an SVs,t as described in Section 3.1.4. For every point in St, there is
a corresponding s-dimensional subspace belonging to Σ2 in SVs,t. Take a t′-
dimensional subspace V ′ of PG(t, q), t′ ≤ t, and consider Σ′, the s-dimensional
subspaces contained in SVs,t corresponding to the points of V ′. Then, any
subspace W in Σ′ can be obtained by (2, s+1)-repair from two other subspaces
in Σ′: suppose W corresponds to the point P ∈ V ′, pick a point P ′ ∈ V ′
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and another point P ′′ ∈ V ′ collinear with P and P ′. Then the subspaces
in Σ′ corresponding to P ′ and P ′′ will span a subspace containing W . Let

n = qt
′+1−1
q−1 . The collection of (n−1)-subsets of s-dimensional subspaces from

Σ′ gives an (m = (s+ 1)(t+ 1);n, k = t+ 1, r = 2, α = s+ 1, β = α)-FRC.

3.2.2 Focal spreads

Let Σ2t−1 = PG(2t−1, q), t > 1, and let St be a (t−1)-spread in Σ2t−1. Let L
be an element of St. Let Σt+d−1, t > d, be a (t+ d− 1)-dimensional subspace
of Σ2t−1 that contains L. Then {L}∪{M ′ = M ∩Σt+d−1 |M ∈ St \ {L}} is a
focal spread consisting of the focus L, and the (d− 1)-dimensional subspaces
M ′ partitioning the points of Σt+d−1 not in L. Focal spreads are described in
greater details in [11].

In [9] an (m = 5;n = 4, k = 3, r = 3, α = 2, β = 1)-FRC was constructed
using focal spreads with t = 3, d = 2: a 2-spread in PG(5, 2), intersected by a
4-space, the focus being a plane, and there are 8 lines partitioning the points
not in the plane. The storage code consists of the collection of 3-subsets of
these 8 lines.

This can clearly be generalised. For example, using t = 4, d = 2, we have
the storage code being 16 lines partitioning the set of points of a 5-dimensional
space that are not contained in the focus, which is a 3-dimensional space. A
computer search shows that a line cannot be obtained by (3, 1)-repair but can
be obtained by (4, 1)-repair, making this an (m = 6;n = 16; k = 3, r = 4, α =
2, β = 1)-FRC.

However, the example in [9] turns out to be strictly functional, while our
generalisation allows both functional and exact repair. Indeed, this appears to
be the only strictly functional repair code that is known (apart from Example
5). In the next section we prove this property and examine the structure
further.

4 Anatomy of a strictly functional repair code

In [9, Example 2.2 and Section VI], an (m = 5;n = 4, k = 3, r = 3, α = 2, β =
1)-FRC was given which turns out to be a strictly functional repair code. This
is constructed using focal spreads and is described in Section 3.2.2. Here we
prove that it is strictly functional, and consider whether it can be generalised.

Firstly we write the (m = 5;n = 4, k = 3, r = 3, α = 2, β = 1)-FRC
according to Definition 2:

Definition 6 Let Σ = PG(4, q) and let A be a set of 3-tuples U of lines such
that

(a) (Recovery) For every U ∈ A, the 3 lines in U span PG(4, q).
(b) (Repair) For each U = {U1, U2, U3} there is a point Pi on Ui, i = 1, 2, 3,

such that there is another line U4 ⊆ 〈P1, P2, P3〉, and U ′i = U ∪{U4}\{Ui},
i = 1, 2, 3, again belongs to A.
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We will give a brief description of this construction in terms of projective
spaces. We will describe the lines using the correspondence between PG(1, 23)
and the spread in PG(5, 2) in the manner described in Section 2.4.

Write F8 as {0, ζi : i = 0, . . . , 6, ζ3 = ζ + 1}. If a = a0 + a1ζ + a2ζ
2

and b = b0 + b1ζ + b2ζ
2 then (a, b) ∈ PG(1, 23) can be thought of as a point

(a0, a1, a2, b0, b1, b2) in PG(5, 2). The point (a, b) ∈ PG(1, 23) thus gives a plane
Π(a,b) in PG(5, 2) consisting of the points {(ax, bx) : x ∈ F8}. So the point
(1, 0) ∈ PG(1, 23) corresponds to the plane

Π(1,0) = 〈(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0)〉.

The point (a, 1), a ∈ F8, corresponds to the plane

Π(a,1) = 〈(a0, a1, a2, 1, 0, 0), (a2, a0+a2, a1, 0, 1, 0), (a1, a1+a2, a0+a2, 0, 0, 1)〉.

We can take the plane in the focal spread as the plane Π(1,0), and the lines
la as the intersection of the hyperplane x5 = 0 with the planes Π(a,1), a ∈ F8.
Treating the hyperplane x5 = 0 as PG(4, q), we may write

la = {(a0, a1, a2, 1, 0), (a2, a0 +a2, a1, 0, 1), (a0 +a2, a0 +a1 +a2, a1 +a2, 1, 1)}.

Let L = {la : a ∈ F8}. The functional repair code consists of the collection
of all 3-subsets of L. It is not hard to show that any set of 3 lines la, lb, lc
from L will allow exactly one line ld ∈ L by (3, 1)-repair, and this line satisfies
d2 = ab+ ac+ bc. It is also not hard to see that the following two conditions
([9, Example 2.2]) are satisfied by the lines of L:

(L1) Any 3 lines span PG(4, q).
(L2) Any pair of lines are skew.

This construction works for q > 2, in the sense that such a construction for
focal spread works over q > 2, and also a line can be obtained by (3, 1)-repair
from any three lines (Theorem 7). However, it is not clear that there is a nice
relationship between a, b, c and d, as in the case for q = 2. For example, for
the case q = 3:

Take x3 − x + 1 = 0 over F3 to get F33 = {0, αi | α3 = α − 1}. The point
(a, 1) on PG(1, 33) with a = a0 + a1α+ a2α

2 gives the plane

〈(a0, a1, a2, 1, 0, 0), (−a2, a0 + a2, a1, 0, 1, 0), (−a1, a1 − a2, a0 + a2, 0, 0, 1)〉

in PG(5, 3). Intersecting with x5 = 0 gives lines

la = 〈(a0, a1, a2, 1, 0), (−a2, a0 + a2, a1, 0, 1)〉.
We can construct lα12 by (3, 1)-repair from l0, l1 and lα, but it is not clear

what the relationship between a, b, c, d is.
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Fig. 2 Repair of l4 and l1.

4.1 The focal spread construction is strictly functional

The repair process described above corresponds to functional repair. In this
section we show that this is necessary: this FRC does not admit exact repair.
We begin with a geometric lemma that we will use in the proof of this fact.

Lemma 1 Let {`1, `2, `3} be lines in PG(4, q) that satisfy (L1) and (L2). Then
there is a unique line m with m ∩ `i 6= ∅ for i = 1, 2, 3.

Proof By (L2) we know that `1 and `2 span a hyperplane Π ⊂ PG(4, q). By
(L1) we know that `3 intersects Π in a unique point P3. Consider the plane
σ = 〈P3, `2〉. Since `1 and `2 span Π, it follows that σ intersects `1 in a unique
point P1. The line m = 〈P1, P3〉 6= `2 lies in σ, as does `2, and hence these
two lines intersect in a unique point P2. Thus the line m intersects each of the
lines `1, `2 and `3, and it is unique by construction.

Theorem 7 Let {`1, `2, `3, `4} be lines in PG(4, q) that satisfy (L1) and (L2).
Then at most one of the lines can be obtained by exact (3, 1)-repair from the
remaining three lines.

Proof Suppose (without loss of generality) that `4 can be obtained by (3, 1)-
repair from {`1, `2, `3}. Then there exist points P1 ∈ `1, P2 ∈ `2 and P3 ∈
`3 such that `4 ⊆ 〈P1, P2, P3〉. We note that it is not the case that `4 =
〈P1, P2, P3〉, for this would imply that `4 = 〈P1, P2〉, in which case `4 would
be contained in 〈`1, `2〉, in violation of (L1). Hence `4 ⊂ 〈P1, P2, P3〉. The line
〈P1, P2〉 therefore intersects `4 in a unique point, and hence by Lemma 1 is
the unique line m124 meeting `1, `2 and `4. Similarly, 〈P1, P3〉 is the unique
line m134 meeting `1, `3 and `4.

Suppose now that some other line (say, `1) can be obtained by (3, 1)-repair
from the remaining lines (i.e. {`2, `3, `4}). See Figure 2. Repeating the above
argument we observe that there are points Q2 ∈ `2, Q3 ∈ `3 and Q4 ∈ `4
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such that `1 ⊂ 〈Q2, Q3, Q4〉. However, in this case the line 〈Q2, Q4〉 meets `1
in a point, which implies 〈Q2, Q4〉 = m124 (by Lemma 1), and so Q2 = P2.
Similarly, 〈Q3, Q4〉 meets `1 in a point, so 〈Q3, Q4〉 = m134, and so Q3 = P3.
But now we have that Q2, Q3, Q4 ∈ 〈P1, P2, P3〉, and hence `1 ⊂ 〈P1, P2, P3〉.
This contradicts the fact that `1 and `4 are not coplanar, by (L2).

This shows that this focal spread construction is strictly functional: one
can always construct a fourth line l4 = m from any three lines l1, l2, l3, and if
one of l1, l2 or l3 fails, it cannot be repaired exactly from the three remaining
lines.

4.2 A simpler description

In our examples and constructions, we could enumerate a set of subspaces,
and simply state that a collection of subsets of these subspaces constitute a
functional repair code, bypassing the recursive nature of the definition (Defi-
nition 2). However, such a description is not always useful, or easy to arrive
at. Firstly, we would in general like to find small codes. For example, Theorem
2 allows L to be the set of all lines of a dual arc, but we see in Example 3 that
3 lines suffices. Hollmann and Poh [9, Theorem 5.1] give a method of starting
with a possible set of subspaces U = {U1, . . . , Un−1} and another subspace
Un constructed by (r, β)-repair from U , and obtaining a functional repair code
from it using the image under a group action. In Section 5 we model this
process of building a functional repair code using digraphs.

Secondly, this kind of description does not always convey the complications
of the repair process. For example, the focal spread construction of Section 4
admits a straigtforward description similar to that of Theorem 2:

Let L be a set of lines in Σ = PG(4, q) satisfying conditions (L1), (L2):
(L1) Any 3 lines span PG(4, q).
(L2) Any pair of lines are skew.

Let A be a collection of 3-subsets of L. Then (Σ,A) is a functional
repair code.

If we wanted to construct a set of such lines, how would we start? Because
L is a strictly functional repair code (Theorem 7), given a 3-subset {l1, l2, l3}
in A, we obtain an l4 by (3, 1)-repair, but the 3-subset containing l4, say,
{l2, l3, l4} will give an l5 6= l1 by (3, 1)-repair. This motivates the following
steps in the construction:

Let L be a set of three lines satisfying (L1), (L2) to start with.

1. Take any 3 lines of L. Use (3, 1)-repair to get a fourth line.
2. Add this fourth line to L if it is not already in it.
3. Repeat until no new lines are constructed.

Take A to be the 3-subsets of L. Then A is a functional repair code à la
Definition 6.

This motivates a clearer modelling of the repair properties. We examine
this in the next section.
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Fig. 3 G(A) with n = 4, k = 3, r = 3.

5 A non-recursive repair condition via digraphs

We write this with m = 5, n = 4, k = 3, r = 3, α = 2 β = 1, for simplicity,
but it can easily be written more generally.

We can think of the repair condition (Definition 2(B)) of an (m;n, k, r, α, β)-
FRC (Σ,A) as a bipartite digraph G(A) = (V(A) ∪ V ′(A), E ∪ E ′) as follows:

Let V(A) be a set of vertices corresponding to the sets U of 3 lines in A -
each set U ∈ A is a vertex in V(A). By the repair condition, one could obtain
a fourth line U ′ by (r, β)-repair from any set U of 3 lines. Let V ′(A) be another
set of vertices corresponding to these sets U ∪ {U ′}, U ∈ A, of four lines. The
set of vertices of G(A) will be the (disjoint) union of these two sets of vertices.

The (directed) edges of G(A) are as follows: There is an edge from V =
{U1, U2, U3} ∈ V(A) to V ′ = {U1, U2, U3, U4} ∈ V ′(A) if and only if U4 is
obtained by (r, β)-repair from {U1, U2, U3}. We denote this set of edges by E .
In addition, there is an edge from V ′ = {U1, U2, U3, U4} ∈ V ′(A) to V ∈ V(A)
if and only if V = V ′ \ {Ui}, i ∈ {1, 2, 3, 4}. We denote this set of edges by E ′.
The set of edges of G(A) will be the (disjoint) union of these two sets of edges.

Clearly there are edges only between V(A) and V ′(A) and G(A) is a bi-
partite digraph. An edge from V(A) to V ′(A) signifies a repair while an edge
from V ′(A) to V(A) signifies a node failure. Figure 3 gives a small example of
what the node failures and repairs might look like.

Since each node may fail, there must be four out-edges from each vertex
in V ′(A), and since every three nodes must be able to repair a fourth node,
there must be at least one out-edge from each vertex in V(A).

Definition 7 Let G = (V1 ∪ V2, E) be a bipartite digraph with parts V1, V2.
We say that G satisfies the repair condition if all vertices in V1 has outdegree
at least 1 and all vertices in V2 has outdegree n.

This view of a functional repair code immediately gives us some idea on the
number of subspaces we need and the size of A, as well as the characterisation
of exact repair.

Lemma 2

|V(A)| ≤
(
N

n− 1

)
, |V ′(A)| ≤

(
N
n

)
.
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Fig. 4 G(A)

As a consequence, N ≥ n.

Lemma 3
|E(A)| ≥ |V(A)|, |E ′(A)| = n|V ′(A)|.

This leads to the characterisation:

Lemma 4 A functional repair code (Σ,A) is an exact repair code if and only
if G(A) is a complete bipartite digraph (with an in-edge and out-edge between
each pair of vertices from different parts) with |V(A)| = n, |V ′(A)| = 1.

A functional repair code admits exact repair if it has a subgraph that
satisfies the condition in Lemma 4, while a strictly functional repair code
would satisfy the condition that there exists V ′ ∈ V ′(A), V ∈ V(A), such that
(V ′, V ) ∈ E ′(A) but (V, V ′) 6∈ E(A).

We illustrate this with the strictly functional repair code of Example 5.
Figure 4 is the digraph corresponding to the example. The dotted lines rep-
resent repairs. The node {l1, l2, l3} and the dashed lines show that if any of
l1, l2 or l3 failed, they cannot be repaired from the remaining lines. And if all
nodes containing l1 are removed, we have an exact repair code consisting of
three non-concurrent lines.

Note that we are only encoding the repair process. We say nothing about
m, q, r, k, β and α. If a bipartite digraph satisfies the repair condition it still
doesn’t say if it can be realised by any parameters. We call the digraph G
realisable if there is (m, q, r, k, β, α) such that there is an (m;n, k, r, α, β)-FRC
(PG(m− 1, q),A) with G(A) ≡ G.

6 Further work

The construction of Theorem 2 does not require the projective plane to be
Desarguesian. This leads to the question of whether one could construct more
functional repair codes from designs, if linearity is not required. This approach
may be useful for functional repair code requiring repair-by-transfer ([20,1,
22]), where the nodes contributing information for repair do not perform any
computations. There has also been studies of locally repairable codes via ma-
troid theory ([27,28]) which may also be of interest for functional repair codes.
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Construction 3 gives a functional repair code that is flexible in terms of
locality and availability for node repairs. There are some recent work ([23])
in symbol localilty and availability : not necessarily repairing whole nodes but
only some symbols in a node. It would be intresting to see how this translate
into projective geometry.

The focal spread construction in Section 4 gives the only known example
of a strictly functional repair code. However, it is not clear whether a gener-
alisation to larger fields or to higher dimensions would retain this property.
Indeed, it is not even clear whether one could still have a succinct description
of the repair process. This indicates that there is still much to understand
about this interesting structure. It is also not clear whether the distilling of
the properties of functional repair from this focal spread construction into a
non-recursive definition (Section 4.2) may be generalised. Again, this indicates
that further study of this structure may be profitable.

The view of a functional repair code as a digraph allows some characterisa-
tion of exact repair codes. However, as yet it is not clear when a digraph with
the right properties are actually realisable as a functional repair code. Another
aspect to consider is: given a digraph, is it always possible to “complete” it so
that it satisfies the repair condition or are there cases where this is impossible?
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