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Abstract—This paper proposes a method to obtain the optimal
placement of wind turbines (WTs) in an offshore wind farm (WF).
The optimization objective is to minimize the levelized average
cost per net electric power generated by a WF with a fixed
number of WTs while the distance between WTs is not less than
the allowed minimal distance in the far wake region. The WT
wake losses have been taken into account, with the
Frandsen-Gaussian (F-G) wake model and the optimization
problem is subsequently solved by the Hybrid Grey Wolf
Optimization (HGWO) algorithm. Synthesis methods which
contain a special WT ranking strategy for multiple WTs are
described in detail. Both the F-G model and Jensen’s model are
applied in the offshore WF optimization simulation platform for
comparison. Simulation results demonstrate that the F-G model is
more consistent with real wakes and thus the optimization result
is more accurate than the commonly used Jensen’s model.

Index Terms—Frandsen-Gaussian wake model, Hybrid Grey
Wolf Optimization algorithm, micro-siting, offshore wind farm
planning, optimization, wake effect

I. INTRODUCTION

ARIOUS national and international initiatives for

generating electrical power from sustainable sources have
driven an unprecedented growth in wind energy development.
As is predicted, the world will have over 800 GW of installed
wind generator capacity by 2020 [1]. The optimal micro-siting
of WTs which plays a key role in maintaining the balance
between investment and electricity generation has been a
challenge for both onshore and offshore WFs. With the best
wind resources largely being over water and land being more
extensively exploited for onshore WFs, offshore WF

development is currently recognized to be the promising choice.

As constructing and operating offshore WFs is more
challenging and more expensive [2], it is imperative to design
the offshore WF layout and to select the WT location and size
for producing maximum power output under widely varying
wind speeds and directions.

It is a complicated task to mathematically model a WF for the
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optimization problem and the computation time is usually very
long to solve this problem mainly due to the iterative
calculations of the velocity deficit caused by WTs which is
known as wake effect [3]. An upwind WT extracts energy from
wind and forms a wake that results in the reduced wind speed
and increased level of turbulence at the downwind WTs. The
downwind WTs produce less power and suffer increased
fatigue loads if they are affected by the wake. This phenomenon
is most obvious for large WFs where WTs are installed in a
group or a cluster. Since the energy available in the wind is a
cubic function of the wind speed, an inaccurate evaluation of
the velocity field in a WF can lead to large errors in the
forecasting of the energy output [4]. Thus, it is necessary and
beneficial to establish an accurate analytical wake model for the
WT micro-siting problem.

Many scholars have studied the analytical modeling of wake
effect. In 1983, Jensen [5] put forward a simple wake model by
conservation of mass for the first time which is known as the
Park model. Jensen’s model assumes that the wake expands
linearly after a WT which is regarded as a one-dimensional
(1-D) wake model. Katic et al. [6] refined this model in 1986 by
considering the axial induction factor. So far, because of its
simplicity, Jensen’s model and its refined model have become a
preferential option to be widely applied in the WT optimal
micro-siting simulation problems [7] not only in the seminal
research done by Mossetti et al. [3] in 1994, Grady et al. [8] in
2005 and Sisbot et al. [9] in 2009 but also in the majority of
recent literature [10-16]. In addition, Jensen’s model has been
extensively applied in the commercial WF planning software,
e.g., WAsP [17], WindFarmer [18], WindSim [19], and
OpenWind [20]. In 1988, Larsen [21] constructed a
semi-analytic wake model which is recommended for solving
the wake loading problem. In 2006, Frandsen [22] proposed a
simplified model by conservation of momentum which is
justified to be more accurate than the previous ones. This model
is applied in the optimization of a WF layout as well [23]. Other
well-known 1-D wake models include the Ishihara model [24],
and the model by Yang and Sotiropoulos [25], etc. However, in
the 1-D wake models, at any particular downstream distance,
the inside wind velocity is seen to be constant across the wake
plane and has a top-hat shape profile. This is far from reality
where the velocity deficit profile possesses a Gaussian shape.
To address the deficiencies of the 1-D wake models, in 2014
Bastankhah and Porté-Agel [26] proposed a two-dimensional
(2-D) Gaussian wake model which is superior to Jensen’s
model. Recently, some other 2-D wake models were developed
such as the Cosine wake model developed by Tian et al. [27] in
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2015 and the Jensen-Gaussian (J-G) wake model proposed by
Gao et al. [28] in 2016. The 2-D wake models have been
justified to be more effective in predicting wind deficits than
the 1-D wake models.

In order to take advantage of the aforementioned 2-D wake
model [26], and also to avoid the adverse effects of the single
crude wake model frequently used for the WT optimal
micro-siting problem, a compounded 2-D wake model of high
accuracy ie. the F-G model is utilized in this work. It is a
combination of Frandsen’s model and the Gaussian wake
model which are based on the law of conservation of mass and
momentum. A better optimization algorithm in a continuous
search space is implemented to solve the WT micro-siting
problem.

This paper is arranged as follows: In Section II the F-G wake
model is presented and validated; in Section III the overall
mathematical model of the optimization problem is proposed;
Section IV introduces the optimization algorithm: the HGWO
algorithm. Section V discusses the simulation results followed
by Section VI, the conclusion.

II. ANALYTICAL MODEL OF WAKE

A. General Characteristics of Wake Effect

Wake effect is one of the most important influences of
adjacent WTs that impact the electric energy production. Due
to wake effect, the power produced by a WF is lower than what
would be produced by the sum of the equivalent number of
single WTs without wake effects. It is estimated that about
10-20% of the total power of a WF is lost on this account [28].
Thus, when WFs are designed, a trade-off between the losses in
wind generation through the wake effect and the cost of spacing
the WTs farther apart has to be made.

The wake affected area behind a WT is usually divided into
two parts, i.e. the near wake region and the far wake region. As
denoted in Fig. 1-Fig. 3, supposing the location of WT to be
x=0, the region between the dash lines A and B (0<x<xi) is a
perturbed region which is the so-called near wake region. The
region outside line B (x>x1) is called far wake region. Line B is
defined by the pressure, i.e. the pressure on line A and line B
almost equals to the ambient pressure po [29]. Usually, x1=3d,,
where d,is the rotor diameter of the WT.

B. Comparison of Jensen’s Model and Frandsen’s Model

Jensen’s model (Fig. 1) is derived based on the actuator disk
model [5] which assumes that the control volume composes a
fluid tube. Based on conservation of mass, it is assumed that:

priv, +plwl —mi o, =palv, (M
where p is the air density, vo is the ambient wind speed, 7 is the
downstream radius, 7y is the wake radius at the distance x, v> and
vy are the correspondent wind speeds.

Jensen’s model assumes that the far wake region is a cone
and has a top-hat shape. On each intersection perpendicular to
the cone’s axis, the wind velocities are identical, pointing to the
direction of the air flow and can be expressed by (2) [5].
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where kwake 1s the wake expansion rate and Cr is the thrust
coefficient, and is defined as follows.

C,=TI/T, 3)
where T is the thrust force exerted by the wind on the actuator
disk and T, is the theoretical maximum thrust force.

T, = %pﬂrr2 Ve “)

where 7, is the WT rotor radius.

Frandsen’s model (Fig. 2) is deduced according to the blade
element momentum theory [22] which considers the details of
blades and offers a commendable evaluation for torques and
thrust forces. Based on the conservation of momentum, it is
assumed that:

(pWXZVX )(VO _V)_ ):T (5)
The wind speed at the distance x in Frandsen’s model is
given as follows [22].
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Jensen’s model [5].
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Frandsen’s model [22].

Both models hold distinct characteristics. Firstly, the patterns
of recovery along the axis are different in the two models. This
is mainly because Jensen’s model is based on the conservation
of mass, while Frandsen’s model is not only based on the
conservation of mass but it also considers the conservation of
momentum. Limited by the simplified assumptions in the
actuator disk model, it is unable to simultaneously meet both
conservation. Secondly, Jensen’s model is based on the
distribution at the exit of the near wake region (indicated by 2
in (2)), while Frandsen’s model fully includes the near wake
region (indicated by 7, in (6)) and has a global vision. On this
account, Frandsen’s model outperforms Jensen’s model to a



certain extent. However, both models share a common demerit
which is an even distribution of wind speed on every cross
section that is assumed to form a cone. This is not congruent
with the real case and will overestimate the wind speed in the
wake. Thus, neither of them is able to give an accurate
prediction.

In view of the above, in this work a Gaussian wake model on
the basis of Frandsen’s model is derived that not only takes
advantage of Frandsen’s model, but also overcomes the
common shortcomings of the 1-D wake models. In addition,
Jensen’s model is set to be a reference for comparison.

C. The F-G Wake Model

The F-G model proposed firstly in [26], is demonstrated in
Fig. 3. Unlike the aforementioned models, the boundary of the
far wake region is not confined, but infinite (denoted by dotted
lines in Fig. 3). This model assumes that wind speed in the far
wake region depends on two variables, i.e. x and r. x is the
distance from the first WT and r is the distance from the axis of
the WT. The near wake region is also included.

The Gaussian wake model assumes that [26]:
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It holds for all x>x; and r>0. vy, is the wind speed at distance
x, radius 7. o is the standard deviation of the distribution which
is denoted characteristic width in this paper. K(x) is an
undetermined coefficient of x.

In Frandsen’s model the mass flow rate 7 is supposed to be
[22]:

m= J.Om pv, 2rrdr (®)
By the conservation of momentum, it can be obtained that:
j: oV, (vo - vx,,_)27rrdr =T )
which can be rewritten as (10).

C
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Solving (10) and adopting the physically feasible root, the
following solution is obtained.

} C;
K(x)=1- 1—m

This model assumes that ¢ is a linear function of x as well.
On every plane orthogonal to the axis, the mass flow rate of the
F-G model is the same as that of its corresponding Frandsen’s
model which implies [26]:

(11)
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Substituting (11) into (7), replacing the resulting equation
into (12), solving and simplifying, finally (13) is obtained.
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where ro is the actuator disk radius and «a the entrainment
constant. They are empirically given as [4][26]:

(14)
(15)
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where z, is the WT hub height and z, is the surface roughness
length.

Equations (7), (11) and (13) are the basic equations of the
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Fig. 3.

The F-G model [26].

D. Validation of the F-G Wake Model

To verify the performance of the F-G model, a series of
comparisons are given among Jensen’s model, Frandsen’s
model and their Gaussian variations.

Fig. 4 demonstrates the velocity curves of the
aforementioned wake models compared with wind tunnel
measured data [28] at the downwind distances x=2.5d,, x=5d
and x=10d, respectively. Firstly, it can be clearly observed that
Jensen’s model and Frandsen’s model share the same
characteristic top-hat shape. Secondly, it can be seen that when
r=0, the deficit of the F-G model is twice as large as that of
Frandsen’s model. This phenomenon is a consequence of equal
flow of mass and momentum. That is to say, on every plane
orthogonal to the axis, the rate of flow of mass and the
momentum of the F-G model is equal to that of its relevant
Frandsen’s model. Furthermore, compared with other wake
models, the F-G model holds the best prediction performance
which fits best with the wind tunnel measured data not only in
the near wake region (x=2.5d,), but also in the far wake region
(x=5d,, x=10d,).
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Large-Eddy Simulation (LES) is proven to have the ability of
producing the magnitude and spatial distribution of the most
relevant turbulence statistics of WT wakes in turbulent
boundary layer flows [30]. The maximum wind deficit ratio of
the four types of wake models and the LES data [26] are given
in Fig. 5 for comparison. This figure demonstrates that Jensen’s
model and Frandsen’s model underestimates the maximum
velocity deficit while the J-G model [28] overestimates the
maximum velocity deficit in the region of 2d,<x<16d, with
respect to the LES data. It also shows that the F-G model has
the best performance not only for the onshore scenario (Fig.
5(a)), but also for the offshore scenario (Fig. 5(b)), if relative
parameters can be accurately determined through fitting
experimental results. This confirms the F-G model is well
suited for the study of onshore as well as offshore WFs.
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Fig. 5. Comparison of different wake models with LES data [26] using
normalized velocity deficit versus normalized downwind distance. (a) onshore
scenario (zo=0.3m). (b) offshore scenario (zo=0.0002m).

D. Synthesis Methods for Wakes of Multiple WTs

1) The Second Norm Method (SNM)

Taking the parallel scenario in Fig. 6 as an example, it is
assumed there are n WTs T; (=1, 2, ..., n) in front of 7;. The
SNM [5] is applied to synthesize the deficit ratio of the wind
speed in front of 7}, i.e. avj, as follows.

a,, = /iai’,/ (16)
ay, =10 (7
: \%

where vi; is the wind speed in front of 7; when only T: (i=1, 2, ...,
n) and 7; exists and a.;; is the deficit ratio of each wind speed
accordingly which is also called axial induction factor.

Knowing the deficit ratio, the wind speed in front of each
WT can be subsequently calculated.

Fig. 6.

A parallel scenario of multiple wakes.

2) The Multiplication Method (MPM)

Taking the cascaded scenario in Fig. 7 as an example, it is
assumed there are n WTs T; (i=1, 2, ..., n) in front of 7;. The
MPM [5] states that:

" 2a,
. P B
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where a; is the axial induction factor of 7. ry; is the
corresponding value of 2 of T;and x;, is the distance between T;
and T}, as illustrated in Fig. 7.

(18)



Fig. 7.

A cascaded scenario of multiple wakes.

3) Ranking WTs

For demonstration, Fig. 8 shows an array of 12 WTs, namely
T, T2, ..., T12. Supposing wind comes from the west, the WTs
which are not in the wake of any other WTs are defined as
seeding WTs and the rank of those WTs are set to be 1. A set
R={T, T», T3, T4} is formed accordingly. The rank of those
WTs which are only in the wake of seeding WTs are taken to be
2 and Ro={T5, Ts, T7, T3}. For the same token, WTs that are only
in the wakes of WTs in R; and R» are of rank 3 and R3={Tov, Tho,
T, T12}. Rank 4, 5 and so forth can be determined likewise.

T4 ‘&‘\ 12 ‘\
Fig. 8. Demonstration of WTs’ ranking.

In Frandsen’s model, the wake’s boundary is well defined. If
a part of 7> touches the wake of 71, it means 7> is in the wake of
T1. If T» is not completely emerged in the wake of 71, the partial
coverage algorithm is involved. In the Gaussian wake model,
the wake’s boundary takes 3o line as the recommended value
[26]. An advantage of the Gaussian wake model is that the
transition of boundaries is smooth whereas other models
involve partial coverage algorithms and the transition of
boundaries is abrupt. For the Gaussian wake models, if the
center of 72 is in the wake of 77, it is regarded to be in the wake
of T1, otherwise not. Obviously, it is easier to decide if a WT is
in the wake of another in the Gaussian wake model.
4) Algorithm for Ranking

When performing ranking, the first problem to be tackled is
to judge whether a WT is in the wake of another. The
coordinates of 71 and 7> are supposed to be (x1,y1) and (x2,)2).
The actual shape of T1’s wake is complicated, and relies on
wind speed and direction. The case in Fig. 9 is taken for
illustration. Firstly, given the direction of the ambient wind 6,
the unit vector that represents the direction of the ambient wind
is e=(cos#, sinf). The displacement vector of 7> with respect to
T1 is constructed as s=(x2—x1, y2—y1). The projection of s on e,
which is denoted by so in Fig. 9 is given as (19).

50 = (x2—x1) cosf + (y>—y1) sind

(19)
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If 50<0, T> can never be in the wake of 7. If s0>0, di and d>in
Fig. 9 need to be calculated. di can be obtained from (20).

d, z\/(xz_xl)z +(y2_y1)2_520 (20)
In the F-G wake model d» is determined by (21).
dr=30=3(k"so+00) €2y

where k* is the growth rate of o, and o is the limit when x
approaches 0, which are determined by (22) and (23).
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For di<d>, T> is in the wake of T, otherwise not. It should be
noted that when calculating oo, the axial induction factor a
requires to be known, which is difficult to determine. As an
approximation, the input wind speed on 7' is assumed to always
equal to vo when ranking WTs for the first time.

When ranking WTs, each pair of WTs are firstly compared
and the results are stored in a table that contains all the
identifications of WTs. The WTs in the table that are not in the
wake of any other WT are designated R and will be eliminated
in the array. This process is continued until there is no WTs left
in the array.

5) Implementation of the Methods

For the WT array shown in Fig. 8, the output power of R
WTs can be determined directly, as the wind speed is vo.

For R» WTs, the deficit of wind can be determined using the
SNM.

For R3; WTs, the calculation of the wind deficits is more
involved. For example, the deficits at 7o due to Ry WTs are
synthesized by the SNM. Then, its equivalent wind speed can
be calculated using the MPM, supposing the ambient wind
speed to be vo. This equivalent wind speed is taken to be vy for
Ty. The deficits at To due to R» WTs are calculated and all the
deficits are synthesized by the SNM. Then its corresponding
wind speed can be calculated, taking the aforementioned
equivalent wind speed as its ambient wind speed. For WTs of
higher ranks, like R4, Rs and so forth, the wind speeds can be
determined likewise.

The proposed method mixes the SNM and the MPM, for the
MPM cannot tackle parallel multiple WTs and the SNM
neglects the cascaded effect when WTs are in a cascade.



III. PROBLEM DEFINITION

A. Objective Function and Constraints

The primary purpose of building a WF is to supply as much
electricity as possible within a limited planning area.
Meanwhile, the total investment demands to be reduced during
the WF’s whole lifetime. The levelized cost of energy (LCOE)
is defined as the production cost of each unit of electricity
generated during the WF working life including -capital
investment and lifetime running costs [31]. It can provide a
good reference for WF planners to make a decision. In this way,
the optimization problem can be described as a minimization of
the annualized LCOE of the WF with constraints and can be
stated as (24).

CAPEX-CRF+OPEX,,,...
Min Obj: LCOE=
AEP (24)
Xon SX; X0 i=1,2,---,N,

i=1,2,-+N,
i,j=1,2,N, i #

s.1. Vinin SVi SV imax

('xi —X; )2 +(yi -y )2 Z(Sd, )2
where CAPEX [€] represents the capital expenditure, CRF is
the capital recovery factor, OPEXuwua [€/year] is the
annualized operation and maintenance (O&M) cost, AEP
[MWHh] is the annual energy production of the WF, (x;, ;) is the
position of the i-th WT with the boundary of the WF to be [Xuin,
Xmax] and [Vmin, Vmax], N 1s the number of installed WTs.

The objective function is mainly formulated as a function of
levelized annual total cost and AEP of the WF. It takes both
electrical and economic factors into account which can be used
to calculate the variation of the investment during the WF
lifetime.
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Fig. 10. The relationship between foundation cost and water depth [23].

The estimation of CAPEX for the whole WF is expressed as
(25) which takes two economic factors into consideration, one
being total cost of WTs and the other foundation cost.

NI
CAPEX=CAPEX,;-C-N, +>.C,, (z,(x,)) (29
i=1

The first term is the total capital expenditure on WTs, where
CAPEXwyr [ME/MW] denotes the capital cost per MW of the
WTs, C [MW] is the WT’s capacity. For an offshore WF, the
second term represents the total construction cost of the
foundations, where Cy; [ME/MW] is the cost of the i-th WT’s
foundation which is a function of the water depth at the WT’s
location zi(x;) [32]. A foundation cost versus water depth
function can be devised and it is usually a piece-wise function
[23] (Fig. 10). For the area where there are two options of
foundations (20 m<z<40 m, 50 m<z<70 m), the cheaper one
will be chosen. In the simulation, x=0 is set as the location of 40

km from the shore where the water depth is 12 m. z(x;) is
supposed to be in a linear relationship with the distance from
the shore, as given by (26).

z(x)=0.001x+12 (26)

According to [23], the cost of substation and electricity
infrastructure such as cables accounts for around 15-30% of an
offshore WEF’s total cost. There can be various inner electrical
distribution installation patterns such as ring structure, string
structure and multi-loop structure efc. [33] which has a direct
influence on the project cost and electrical losses. Due to the
expensive cost of the offshore cable system, in practice, only
simple and cheap topology are currently used. In order to
compare the effectiveness of wake models, cable layout will
not be taken into consideration in this study.

CRF is a function of the discount rate r [%] and the WF’s
lifetime N [year].

CRF =r1[1=(147)" | 27)

The OPEXunnual is defined as:
OPEX, . =OPEX, -C-N, (28)
where OPEX..i: [€/kW/year] is the annual O&M cost of unit

electricity.

AEP is the product of the WF expected total output power,
denoted as E(Pww) [MW] and the total hours in one year,
denoted as 7 [h]. The power generated by each WT under the
wind inflow condition can be computed based on the power
curve of the WT. Combined with the probability distribution
function (PDF) of the wind condition, AEP can be written as:

AY; i

AEP=T-E(P,,))=T-33 f, (0)[" P.(v, ) pdf; (v.0)dv (29)

i=l =1

where M is the total number of intervals with equal width into
which the wind direction is discretized, Pi(v:) is the power curve
function of the i-th WT, v; is the wind speed the i-th WT
experiences, pdfi(v, 8) is the PDF of wind speed and wind
direction for the j-th wind direction, fi(#) is the frequency of
occurrence for the j-th wind direction, v.; and v, are the WT cut
in and cut out wind speeds.

There are three constraints in this optimization problem. The
first two constraints represent the feasible domain of each WT’s
location. In this study, the planning area is set to be a 5 km by 5
km square. In this way, the constraints of each WT’s
coordinates are as below:

x,,», €[0,5000m], Vi=1,2,---,N (30)

The third constraint is the minimum distance between any
two adjacent WTs:

(xi —X; )2 +(yi =), )2 Z(Sdr )2 , Vi, j=L2,- N, i# ] G

Here the minimum distance between any pair of WTs is set to

be 5d, to avoid high wake losses and excessive loads on the

WTs caused by high levels of turbulence in the near wake
region (x<3d,).

B. Wind Scenario

For any geographical location, wind direction and speed are
not constant. Fig. 11 demonstrates the probability distribution
of wind speed’s magnitude and direction profile of the planning
area (measured at 10 km to the shore) in a form of a wind rose.
It provides frequency of occurrence for wind in 36 directions
(M=36), i.e. fi(6) in (29) for the j-th direction.

t



However, this distribution is quite crude. In this paper,
overall wind behavior is characterized by the Weibull
distribution for each wind direction [11][34] which is a widely
accepted model to characterize the wind speed behavior, such
as expressed in (32).

i (V’a):%[c(mjwe""[‘[c{eﬂm] -

where v [m/s] is the wind speed, () is the shape parameter and
¢(0) [m/s] is the scale parameter. Both k£ and c are functions of
the wind direction 6.

=15(m/s)

12-15(m/s)

10-12(m/s)
N 8-10(m/s)
I 6-8(mys)
I 4-6(m/s)
I 1-4(m's)

Wind rose [35].

Fig.11.

In addition, for the offshore WF, when it gets farther from the
shore, the wind speed increases accordingly [36]:

v(x)=v, (-0.25-e7) 41.17) (33)

where x [km] is the distance to the shore, vio is the wind speed

measured at 10 km to the shore and v(x) is the wind speed at x.

IV. OPTIMIZATION ALGORITHM

A. The HGWO Algorithm

The HGWO algorithm is a novel intelligence algorithm
[37][38] which exploits the advantages of the Grey Wolf
Optimization (GWO) algorithm and the Genetic Algorithm
(GA) and uses a nonlinear control parameter to guarantee a
more rapid convergence rate of the iteration. Based on the
HGWO algorithm, an effective and efficient optimization
platform is developed for the optimal micro-siting of WTs.

In the GWO algorithm, there are three kinds of wolves: a, £,
0 which are the best, the second-optimal and the third-optimal
solutions of the optimization problem. The grey wolves update
their positions as follows to encircle the prey [37][38].

R(+1)=%, (1)-A®D (34)

D:‘C@)"(p (1)-x, (z)‘ (35)
where 7 is the current iteration, ¥ and y are the position vectors
P

of a grey wolf and the prey respectively, D is the distance

vector between the grey wolf and the prey. The

operator ® represents element-wise multiplication. The
parameter vectors 4 and C are computed as follows:

d=a(2-7 -1) (36)

C=27, (37)

where 7, and 7, are the vectors of random numbers in the range

of [0, 1], with the same dimensions of X and § . 1 represents
P

the vector whose elements all equal one.
Based on a nonlinear control parameter which is a cosine
function, the adaptive parameter a is calculated as follows.

a=1—cos((1—t/t )k'ﬂ') (38)
where k is the nonlinear adjustment parameter and fyax is the
maximum iteration time.

Using the positions of the a, B, d wolves, each wolf updates
its position according to the following formulae [37].

max

D, =|C,®x%, (1)-X(0) )
b, -|¢.ex, ()-%()
b, =|¢, @ %, (1)-¥(r)
% -%,(1)-4, ®b, 0
%, -%,()-i,®b, (40)
%, =%, (1)-4, @D,
f((z+1)=%ii{m (@1)

As shown in Fig. 12, the HGWO algorithm absorbs the
cross-over and mutation operation of the GA to avert premature
convergence and falling into a local minimum.

The probabilities of cross-over P. and mutation P, are as
below.

1

0.75——— 1 fr — f | >
Pc — jpbm _ fmmn fbesr .fmmn 81 (42)
0.5 ,else
1
- - 43
R” - 0075 f»bw[ _ f,,wm > fbest -f;nelm > 82 ( )
0.05 Jelse

where fres: and finean are the best and average values of the fitness
of the current population respectively, &1 and &> are accuracy
parameters.

The new individuals are created as follows after the
cross-over operation.

X'=4-X,+(1-1) X, (44)
where X, and X, are the positions of the parents, X’ is the
position of the newborn individual, 4; (0<41<1) is a random
parameter.

The whole population is generated after the mutation
operation according to the following equation.
X' =X, -(1+4) (45)
where X is the position of the new individual after mutation, m
is a control parameter, A2 (0<42<1) is a random parameter.

B. Application of the HGWO Algorithm in the WT Optimal
Micro-siting Problem

Fig. 12 illustrates the detailed procedure of the HGWO
algorithm’s application in the WT optimal micro-siting
problem. The inputs are the data of the WF, wind condition, and
the parameters of the HGWO algorithm, etc. When the WF
contains N; WTs, the variables are represented by the grey
wolf’s position vector X with the dimension of 2N, indicating
the x- and y- coordinates of the N; WTs. Since the minimum and
maximum values of the variables depend on the boundaries of



the WF, the range of each variable is [0,5000 m]. The outputs
are the x- and y- coordinates of the N; WTs when the grey
wolves get the prey (i.e. the solution of the optimization
problem). The minimum objective function solution is the final
choice of WTs’ layout. The optimization process ends if the
best solution fitness remains the same for 800 generations.

Intput the data of the WF in Table I, /

the data of wind speed and direction
and the F-G wake model.
\
v
Set the initial parameters of the HGWO
algorithm (Population size =50), termination
criteria (7,,,=800).

Random generate the initial population, i.e. the
x- and y- coordinates of N, WTs.

]

Set iteration count =1.
1

| ﬁ
Rank WTs and use the F-G model to calculate
=t+1.
the velocity deficit of each WT. Use SNM and

MPM to synthesize wakes of multiple WTs.

Update the position of the present
grey wolves by (40) and (41).

Calculate the total power output and total cost
of the WF. Calculate the value of Obj of each
solution and keep it in the HGWO algorithm. ‘

Apply cross-over or mutation
operations by (44) or (45).

Termination criteria is

N& Use the GWO algorithm on the
met or £, 1s exceed?

population with parameter a by (38).

max

Yes '

Output the best solution and the
optimal value of the Obj.

{ End

Fig. 12. Application of the HGWO algorithm in the WT optimal micro-siting
problem using the F-G wake model.

V. CASE STUDY

The case study takes the WF in the offshore area of a coastal
city in Jiangsu Province of China as an example. The necessary
simulation parameters of the WF and natural environment are
shown in Table I. In this paper, the MM 100 WT manufactured
by Senvion [39] is assumed to be installed.

TABLE I
SIMULATION PARAMETERS OF THE WF
zp(m) 7+ (m) C (MW) Cr Vin (M/S)
WT Hub WT Rotor WT WT Thrust WT Cut-in
Height Radius Capacity Coefficient Speed
100 50 2 0.88 3
w(ms)  vee(mls)  p(kghmd) SZSr(gge U (kV)
WT Rated  WT Cut-out AiI: Roughness Internal
Speed Speed Density Length Voltage
11 22 1.25 0.0002 33
CAPEXyr OPEXunit r (%) N (year) T (h)
(ME/MW)  (€/kW/year)  Discount =~ WF Lifetime  Hours in One
Rate Year
3.5 105 52 25 8760

In order to test the performance of the F-G wake model in the
WT optimal micro-siting problem of the HGWO algorithm,
both Jensen’s model and the F-G model are used. The optimal
micro-siting of various numbers of WTs (N=20, N=25 and
N~30) obtained by the HGWO algorithm are depicted in Fig.
13 and the simulation results are given in Table I1.

The WF efficiency in Table II is defined by (46).
0 _ E(Plolal ) 0
(%)= x100%

P no_wake
total

(46)

where the denominator denotes the ideal expected total output
power supposing there is no wake effect.
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Fig. 13. Optimal micro-siting of WTs using Jensen’s model and the F-G
model. (a) 20 WTs. (b) 25 WTs. (¢) 30 WTs.

Comparing the results in Table II of the optimized layout
with the control group in which the WTs are randomly
distributed in the WF, the efficiency and the total net power is
higher in the optimized layout. It means that the optimization of
a WF layout is necessary and vital before its construction.

Generally, the WF efficiency obtained by the HGWO
algorithm using the two wake models is in accordance with the
reports that the power losses caused by WT wakes are in the
range of around 10-20% of the total power output of a WF.



Compared with the optimal power generation using Jensen’s
model and the F-G model, a decrease in power generation is
revealed. The amounts decline from 23021 to 21677 for 20
WTs, from 28160 to 26537 for 25 WTs and from 32916 to
31278 for 30 WTs respectively. The WF efficiency drops from
89.55%, 87.63% and 85.36% to 84.32%, 82.58% and 81.11%
for 20, 25, 30 WTs, respectively and the total wake deficits of
the WF increases accordingly. It makes sense because as
discussed before, Jensen’s model underestimates the deficit of
wind speed at a specific downwind distance.

Although in general, the predictions of Jensen’s model used
by the majority of the WF optimization experiments are in fine
agreement with the observations, the accuracy of this model for
large WFs has been put into question because it systematically
underestimates the wake deficits inside large WFs. With the
expansion of WF capacity, the calculation error of wake
deficits caused by the inaccurate Jensen’s model will
accumulate and raise to an enormous extent. If the F-G model is
applied to the optimal layouts obtained by Jensen’s model (i.e.
the blue circles’ locations in Fig. 13) to recalculate the output
power of the WF, the simulation results are shown in Table III.
It can be clearly seen that the power output of the WTs using
the F-G model when they are placed at the red triangles’
locations is higher than those using the F-G model at the blue

circles’ locations and the corresponding objective function
value is smaller. Since the F-G model is close to the real wake,
this is a clear evidence that the WF layout obtained by using
Jensen’s model is a sub-optimal solution.

Applying the F-G model in the WT micro-siting
optimization process has more accurate and realistic results on
the power generation of the WF which will benefit the WF
planner to find the best layout. In this way, a large quantity of
budget will be saved and more profits will be made for the WF
investors. However, as can be inferred from Table II, the
weakness of the F-G model is the increase of computational
burden, which leads to a longer running time required by the
HGWO algorithm to find the optimal solution. Nevertheless,
WF layout planning is not done all the time, over and over.
Since computation time is cheap nowadays, such an increase of
the simulation time is not a big problem, if the application of
the F-G model can create a better layout that reduces the cost of
wind energy.

In order to test the performance of the HGWO algorithm, it is
compared with the GWO algorithm and the GA (case: N=30,
the F-G model). It can be inferred from Fig. 14 that the HGWO
algorithm which is a hybrid algorithm outperforms the other
two algorithms not only in the ability of searching for the
optimal solution but also in the convergence speed.

TABLE II
SIMULATION RESULTS OF DIFFERENT CASES

Wake WTs Objective function Total output power Efficiency Total wake deficits (%)  Simulation time (s)
Model Number LCOE (€/MWh) E(Prorar) (kW) 7 (%)
Type M Random Optimized Random Optimized Random Optimized ~ Random Optimized Optimized layout
layout layout layout layout layout layout layout layout
Jensen’s 20 82.28 71.25 19934 23021 77.54 89.55 22.46 10.45 392
model 25 84.17 72.79 24355 28160 75.79 87.63 24.21 12.37 478
30 86.28 74.67 28501 32916 73.91 85.36 26.09 14.64 843
F-G 20 83.93 75.56 19517 21677 75.92 84.32 24.08 15.68 713
model 25 86.89 77.15 23580 26537 73.38 82.58 26.17 17.42 1102
30 88.97 78.64 27618 31278 71.62 81.11 28.38 18.89 1497
100 VI. CONCLUSION
—HGwo . . . . e
——awo The. motif of this paper 1s.t0 seek the optimal positioning of
o —-GA WTs in a large WF. For this purpose, a more accurate wake
; model, the F-G model has been adopted. The main conclusions
g can be summarized as below.
E | a) The motivation of combining Frandsen’s model and the
2 Gaussian distribution equations to form the F-G model for WT
% il micro-siting design is illustrated after the indication of the
© - deficiencies of existent popular wake models. The superiority
S Tmemisiay of the F-G model is justified by comparison with other wake
models using wind tunnel measurements and LES data.
75 ‘ ‘ ‘ ‘ ‘ ‘ ‘ b) The F-G model is applied in the WT optimal micro-siting
0 100 20030 AL e T s problem and solved by the HGWO algorithm. The simulation
Fig. 14. Convergence characteristics of the HGWO algorithm, the GWO results show that compared with the cases using Jensen’s model,
algorithm and the GA. when using the F-G model the WF’s efficiency drops and total
wake deficits increase accordingly. This is in agreement with
TABLE TN he fact that Jensen’s model underesti he wake defici
SIMULATION RESULTS OF THE COMPARISON CASES the act.t aF .ensen s model underestimates the wake deficits.
Case WTs  Objective Totaloutput  Efficiency  Total The suitability of the F-G model has been successfully
Number  function power 1 (%) wake demonstrated by analyzing the WT micro-siting problem
N ; éﬁ%) E((lf\;)/t;[) de(gl/c)‘ts within large WFs.

F-G modal 30 7681 21332 32.08 17.2)2 ¢) The HGWO algorithm has the best performance compared
for blue 25 78.35 26139 31.34 18.66 with the GA and GWO algorithm in finding the optimal
ICITCtl_eS’ 30 80.69 30460 78.99 21.01 solution and convergence speed. It implies that the HGWO
ocations

algorithm can be an ideal tool to solve the WT micro-siting



problem.

d) Although this demonstrative case study is taken for an
offshore WF, the application of the F-G model based WF
optimization can also be used for onshore WFs with suitable
parameter adjustments.

e) Future research should be focused on the further
validation of the F-G model by conducting real wind field
experiments and the inclusion of cabling into the WF
optimization framework.
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