
Special Issue on Cryptographic Engineering for IoT: Ensuring
Secure Application Execution and Platform Specific Execution
in Embedded Devices

ROBERT P. LEE, ISG Smart Card and IoT Security Centre, Royal Holloway, UK
KONSTANTINOS MARKANTONAKIS, ISG Smart Card and IoT Security Centre, Royal Holloway, UK
RAJA NAEEM AKRAM, ISG Smart Card and IoT Security Centre, Royal Holloway, UK

The Internet of Things (IoT) is expanding at a large rate, with devices found in commercial and domestic
settings from industrial sensors to home appliances. However, as the IoT market grows, so does the number of
attacks made against it with some reports claiming an increase of 600% in 2017. This work seeks to prevent
code replacement, injection and exploitation attacks by ensuring correct and platform specific application
execution. This combines two previously studied problems: secure application execution and binding hardware
and software. We present descriptions of both problems and requirements for ensuring both simultaneously.
We then propose a scheme extending previous work that meets these requirements, and describe our imple-
mentation of the soft-core Secure Execution Processor developed and tested on Xilinx Spartan-6 FPGA. Finally,
we analyse the scheme and our implementation according to performance and the requirements listed.

CCS Concepts: • Security and privacy→ Embedded systems security;Hardware security implement-
ation; Tamper-proof and tamper-resistant designs; Digital rights management;

Additional Key Words and Phrases: Internet of Things, Secure Application Execution, Platform Specific
Execution, Hardware-Software Binding

ACM Reference Format:
Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram. 2019. Special Issue on Cryptographic
Engineering for IoT: Ensuring Secure Application Execution and Platform Specific Execution in Embedded
Devices. 1, 1 (May 2019), 21 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

With the advent of the Internet of Things (IoT), embedded systems are being included in an
increasing number of devices. The IoT market is growing at a huge rate with some forecasts
estimating it will be worth as much as $457B in 2020 [6]. Symantec found a 600% increase in attacks
against IoT devices in 2017 [24]. Therefore, more efforts to secure IoT devices are needed.
Many of the attacks on IoT devices and other systems attempt to gain control of a device by

exploiting bugs to run arbitrary program code. A counter to these attacks is to include measures
to ensure Secure Application Execution (SAE). SAE secures application control flow to prevent
arbitrary code execution [12].

Authors’ addresses: Robert P. Lee, ISG Smart Card and IoT Security Centre, Royal Holloway, Egham Hill, Egham, Surrey,
TW20 0EX, UK, robert.lee.2013@live.rhul.ac.uk; Konstantinos Markantonakis, ISG Smart Card and IoT Security Centre,
Royal Holloway, Egham Hill, Egham, Surrey, TW20 0EX, UK, k.markantonakis@rhul.ac.uk; Raja Naeem Akram, ISG Smart
Card and IoT Security Centre, Royal Holloway, Egham Hill, Egham, Surrey, TW20 0EX, UK, r.n.akram@rhul.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
XXXX-XXXX/2019/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: May 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram

Related to SAE is the problem of Platform Specific Execution (PSE) or securely binding hardware
and software together. This problem seeks to ensure only applications from authorised parties
can execute. However, the two problems differ in two main ways. Firstly, SAE ensures the current
application is executing correctly, but not the legitimacy of the author of the code [9]. Conversely,
PSE focusses on ensuring only applications personalised to a device by an authorised party can
execute but does not consider legitimate applications failing to operate correctly [16]. Therefore,
securing IoT devices requires a combination of both problems: ensuring devices correctly execute
legitimate applications and nothing else.

1.1 Contributions

The main contributions of this paper are:
(1) Modelling a new problem combining hardware/software binding with Secure Application

Execution (Section 2).
(2) Providing a transition based perspective of Secure Application Execution (Section 2.2).
(3) Proposing a set of requirements for securing application control flow and execution location

(Section 2.4).
(4) Proposing a scheme to solve the problem considered (Section 4).
(5) Implementing the proposed scheme and describing the components of the developed system

(Section 5).
(6) Analysing the scheme and implementation (Section 6).

1.2 Paper Structure

The paper is structured as follows: Section 2 contains an overview of the problem considered in this
paper. Section 3 describes the related work in hardware/software binding and Secure Application
Execution. Section 4 contains the solution proposed for securing application confidentiality and
execution. Section 5 describes the implementation of the proposed scheme and includes a breakdown
of the main engineering decisions and constraints. Section 6 analyses the proposed scheme and
implementation. Section 7 concludes the paper and describes potential future work in this area.

2 PROBLEM DESCRIPTION

This paper considers ensuring secure, unmodified and platform specific execution of applications.
Informally, if an application, App, has finished executing, we guarantee it has executed correctly
and on the specific hardware device it is intended for. In this work, correct execution is defined
as following a legitimate control flow with no operations modified or omitted from the program
as it was installed. The following subsections define Platform Specific Execution (Section 2.1),
Secure Application Execution (Section 2.2), the attacker model considered (Section 2.3) and the
requirements for a proposed solution (Section 2.4).

2.1 Platform Specific Execution

Platform Specific Execution (PSE) is the problem of ensuring a Software instance SW installed on
a Device (D) is able to execute on D and on no other device, D ′. Usually, an SW is deployed to
multiple devices or systems. Therefore to achieve PSE, each SW must be made unique for the D it
is executed by.

PSE can be guaranteed by using hardware-software binding to securely personalise a software
instance, SW , to many devices. With this technique an installed software, SW D is made reliant on
some element or information held or known only by D, the result of this being that SW loaded
onto a different device, D ′, will not execute correctly. Therefore a hardware device is restricted to

, Vol. 1, No. 1, Article . Publication date: May 2019.

Special Issue on Cryptographic Engineering for IoT: Ensuring Secure Application Execution and
Platform Specific Execution in Embedded Devices :3

1 Op ✓ ×

2 Op ✓ ×

3 Jmp NZ , 6 ✓
4 Op ×

5 Jmp 8 ×

6 Op ✓
7 Op ✓
8 Op ✓ ×

9 Op ✓ ×

Fig. 1. Legitimate executions follow each instruction in a control path such as the ticked instructions, illegitimate
executions skip instructions such as the path avoiding the JUMP NZ, 6 that is marked by crosses.

executing only the SW bound to it and no different SW ′. This can prevent code injection attacks.
Hardware-Software two-way bounds have been used previously to prevent counterfeiting, firmware
modification and for securing software in smart cities [16, 17].

2.2 Secure Application Execution

As well as PSE, we are concerned with Secure Application Execution (SAE), which is defined
as ensuring applications only follow correct control flows as defined by the developer [1]. A
correct control flow has been followed if every instruction has been executed without any being
skipped or modified. While instructions not executed due to correctly executed conditional JUMP
instructions have been legitimately skipped, instructions not executed due to modification or
deletion are illegitimately skipped and compromise SAE. Therefore, achieving SAE comprises two
main requirements: ensuring instruction integrity and ensuring Control Flow Integrity (CFI). PSE
considers instruction integrity, therefore this subsection will focus on CFI.
Examples of legitimate and illegitimate execution of an application are found in Figure 1. The

figure shows a code snippet with instructions marked with ticks (✓) and crosses (×). A legitimate
execution through the snippet would be to execute every instruction marked with a tick, when
instruction 3 was executed, the zero flag was not set and control flow jumps to instruction 6. If
only the instructions marked with crosses were executed, this would be an illegitimate execution
because the conditional JUMP of instruction 3 is entirely avoided.
In this work, the legitimacy of logical tests based on external data is not included in the scope

of SAE. For example, attacks tampering with sensors/sensor data to ensure one side of an if
instruction is always chosen is out of scope. However, skipping a conditional JUMP operation
to force execution of one path of an if statement, as shown in Figure 1, is within the scope of
this work. We also include attacks attempting to force control flow to alternative portions of the
application (perhaps ahead of schedule or to code not in the current flow).

The example of illegitimate execution shown in Figure 1 shows one type of instruction transition
being attacked. To ensure SAE, we argue there are three types of instruction transitions to protect.
These are: sequential transitions, instruction-dependent transitions and instruction-independent
transitions. Each of these are described below with examples of attacks.
Sequential transitions are the simplest and most common instruction transition. They occur

when an instruction at location x is executed and the following instruction to be executed is at
location x + 1. The program counter increases by 1 and no jump occurs. These are found after
arithmetic, logical, I/O or load/store instructions. However, they also occur after conditional JUMP
instructions whenever the logic test fails and the jump is not executed. The example of illegitimate
execution in Figure 1 shows the sequential transition between instructions 2 and 3 changed to
prevent instruction 3 executing.

, Vol. 1, No. 1, Article . Publication date: May 2019.

:4 Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram

Instruction-dependent transitions happen after unconditional JUMP or CALL instructions, if the
destination of the JUMP is determined by the operand of the instruction. For example, JUMP x or
CALL x causes an instruction-dependent transition by changing the value of the program counter
(the location of the next instruction) to x. The transition from instruction 5 to instruction 8 in
Figure 1 is an example of an instruction-dependent transition. Relative JUMP instructions are also
considered as causing instruction-dependent transitions, as the distance jumped and instruction
location can be used to replace the instruction with an equivalent, absolute JUMP instruction.
Finally, instruction-independent transitions occur when the next instruction is not identifiable

from the instruction only. The most common causes of instruction-independent transitions are
RETURN and conditional JUMP instructions. A RETURN can transition to different locations based
on where the function was called from, the location of the next instruction is loaded from the stack
and not from the current instruction. This allows functions to be called from different locations
and execution flow to return to where the function was called from after execution. However,
it also introduces a weakness exploited by attacks such as Return Oriented Programming (ROP)
[4]. Conditional JUMP instructions lead to the immediately proceeding instruction or a remote
instruction depending on the processor state at execution time. Therefore, the instruction alone
is insufficient to identify the location of the next instruction to execute as processor flags, such
as the Zero or Carry flags, are needed. In the legitimate execution in Figure 1, the transition from
instruction 3 to instruction 6 is an instruction-independent transition. The JUMP was chosen
because the Zero flag was not set.

If all three types of instruction transitions are secured, it follows that SAE has been achieved as
it is not possible for program flow to deviate from the designed path.

2.3 Attacker Model

The attacker considered in this work is a Dolev-Yao attacker [10] able to read and manipulate data
but unable to break cryptographic primitives. They can read and write to any memory location
exterior to the CPU, such as RAM or long-term storage, but they are unable to modify CPU cache
memory or registers directly. The attacker has access to personalised applications extracted from
legitimate devices but does not have access to the original application binary. This simulates
the attacker buying the device protected with the SAE-PSE scheme and extracting the memory
contents.

We assume the device is assumed to have protectionmechanisms preventing side-channel leakage
and so the attacker is not able to use side-channel vulnerabilities such as power analysis [14],
acoustic side-channels [11] or cache timing side-channels [13, 18] to attack the proposed scheme.

The attackers goal is to achieve any of the following:

(1) Skip the execution of an instruction without detection (execution must continue as if no
instruction has been skipped).

(2) Modify an instruction on the device that successfully executes.
(3) Redirect software control flow to an alternative portion of code from memory. The code

must execute earlier than designed or else appear in the control flow when it would have not
appeared at all.

(4) Execute software taken from one device, D, on a device, D ′ where D , D ′.
(5) Execute unauthorised software written by the attacker on a device D.
(6) Unmask software taken from a device D, in order to discover the original, unmasked, source

binary.

, Vol. 1, No. 1, Article . Publication date: May 2019.

Special Issue on Cryptographic Engineering for IoT: Ensuring Secure Application Execution and
Platform Specific Execution in Embedded Devices :5

2.4 Requirements

The requirements for a solution to the problem considered are:

R1) Software Confidentiality: the software must not be revealed to attackers. When stored in
memory, the software must be encrypted.

R2) Authorised Execution: only applications bound to a device can be executed by the device.
R3) Immutable Applications: securely personalised software must not be meaningfully modifi-

able by unauthorised parties. Attackers are unable to make targeted changes to the software.
R4) SAE - Secure Sequential Transitions: sequential transitions where no JUMP, CALL or

RETURN occurs must be secured in the proposed scheme.
R5) SAE - Secure Instruction-dependentTransitions: instruction-dependent transitionsmust

be protected to ensure that after the transition, the program counter value can only be the
value determined by the instruction.

R6) SAE - Secure Instruction-independent Transitions: instruction-independent transitions
must result in the program counter being changed to the appropriate value after a conditional
JUMP or the address following the last executed CALL if the transition is caused by a RETURN.

3 RELATED WORK

This section considers previous work in Platform Specific Execution and Secure Application
Execution and analyses it against the requirements listed in Section 2.4.

3.1 Platform Specific Execution

Platform Specific Execution is also known as binding hardware and software together and has
been applied to several problems including: counterfeiting prevention, securing device firmware,
protection of smart cities and in Digital Rights Management (DRM) [15–17]. In 2003, Krasinski and
Rosner patented a method for binding a piece of software to a specific hardware instance. Their
method created a unidirectional bound to attach a piece of DRM software to a device to protect
digital audio or visual content. A key is derived from unique or distinctive hardware, software or
firmware identifiers to ensure only the specific hardware instance may access the protected media
[15].

Later, in 2008, Atallah et al. published a mechanism for binding software to a specific hardware
instance in a Virtual Machine environment. Like Krasinski and Rosner, Atallah et al. created a
unidirectional bond to attach software to hardware. To prevent distinctive hardware, software or
firmware features being virtualised, Atallah et al. used a Physically Unclonable Function (PUF) to
confirm the presence of legitimate hardware to the executing software [2].

Lee et al. were the first authors to propose the need for a bi-directional bound between hardware
and software in 2016. They argued for the need to connect both to ensure software executes only on
legitimate hardware and also that hardware only executes legitimate software, which would ensure
the integrity of deployed products as neither the software nor the hardware could be inauthentic.
The authors also suggested the use of a PUF to provide a device-specific secret for use in creating
the bound [16]. Lee et al. produced their bound between hardware and software by masking each
instruction using the previous stored instruction as well as a device-specific secret which ensures
the application will execute correctly on no other device and that applications bound to the device
are able to execute correctly. Using the previous instruction in memory prevents attackers creating
alternative, executable applications by moving instructions. It also prevents the masking from
behaving as an electronic code book, a block cipher mode with known flaws [16]. A diagram of the
Lee et al. unmasking process is included in Figure 2.

, Vol. 1, No. 1, Article . Publication date: May 2019.

:6 Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram

M(Op) F

M(Op)prev

S

Op

Fig. 2. Lee et al. binding uses a secret, S , and the previous, masked instruction, M(Op)prev , to unmask M(Op)
and reveal Op for execution.

Requirements R2 and R3 make it necessary for the PSE scheme used in the proposed solution to be
bidirectional. The Krasinski-Rosner andAtallah et al. schemes are therefore not suitable for inclusion.
The Lee et al. scheme provides a two way bound sufficient for the two requirements, however like
the Krasinski-Rosner and Atallah et al. schemes, it offers no guarantees about application execution.
These would need to be included by extension or modification of the original proposal.

3.2 Secure Application Execution

A significant work in SAE is the 2005 paper by Abadi et al. introducing CFI enforcement as a means
of preventing various attacks. Prior to their work, most schemes were developed to protect against
individual attacks, however Abadi et al. proposed a method for protecting existing code without
hardware changes. Their technique uses a Control Flow Graph (CFG) drawn from an application
binary using static analysis. Security of execution is ensured by only allowing control flow transfers
included in the CFG [1].
In 2017, Clercq and Verbauwhede surveyed CFI literature and considered the problem using

CFGs and what they labelled as backward and forward edges [9]. This is similar to our identification
of instruction transitions, however Clercq and Verbauwhede focus on instructions causing control
flow transfers and not on sequential transitions. Repeated sequential transitions are merged into
CFG nodes and it is assumed the single entry/exit nature of basic blocks holds. The authors describe
forward edges as control flow transfers caused by jumps and calls and backward edges as those
caused by returns [9]. One disadvantage of considering all jumps and calls equally is it loses
the distinction between jumps to register-determined and instruction-determined locations. This
is significant as, when implementing a scheme, instruction-dependent transitions are simpler
to process than instruction-independent transitions, as described by Lee et al. [16]. Therefore,
considering transitions is important when also considering hardware-software binding and creating
schemes for implementation.

The rest of this section describes some proposed methods relevant to this work for ensuring CFI.

3.2.1 Jump Labelling. Jump labelling is a CFI protection technique proposed by Abadi et al. in
2005 [1]. They suggested it as a defence, implementable in software, for protecting against various
attacks. The mechanism works by labelling the destinations of control flow instructions with IDs
checked as part of the jump so that if the label at the destination fails to match that at the jump
then program execution is aborted [1].

, Vol. 1, No. 1, Article . Publication date: May 2019.

Special Issue on Cryptographic Engineering for IoT: Ensuring Secure Application Execution and
Platform Specific Execution in Embedded Devices :7

It was originally proposed for execution in software only [1], however it can be implemented in
hardware and was by Christoulakis et al. and Sullivan et al. in later works [5, 23]. However, the
labelling approach has several issues preventing it from meeting Requirements R4 to R6. Firstly,
it does not protect instructions executed after the jump instructions, it only secures the jump
instructions. Secondly, jump labelling relies on the attacker being unable to interfere with the
program in memory, while our attacker can write to memory (Section 2.3). Finally, it is vulnerable
to attacks changing a return address from the original address to an alternative address. These
attacks are described in more detail in Section 4.2.
HAFIX extends on the labelling approach by maintaining a table of labels and marking them

active when a call is made from a function. On the return instruction, the table is consulted to
ensure the label is active. An error occurs whenever an execution attempts to return to an inactive
function. This approach lends itself to hardware implementation and could be included in the
processor pipeline. Overall, the cost of HAFIX is small as it merely requires a one bit flag for every
call instruction in the program [7]. However, HAFIX does not protect all transitions and does not
protect the instruction jumped to, so it does not meet Requirements R5 and R6.

3.2.2 Shadow Call Stacks. A Shadow Call Stack (SCS) is a mechanism used to protect return
operations from being misused by attackers. It is effective against ROP or return-into-libc attacks
and is regularly included with jump/call protections in CFI schemes. Essentially, an SCS is a second
stack storing the return addresses added to the “normal” stack. The SCS is checked when a return
instruction executes to ensure the top of both the SCS and the “normal” stack are equal. SCS is
simple to implement as it only requires extending the logic of RETURN operations and does not
require performing program analysis [9].
As identified by Clercq et al. in 2017, the location of the SCS is critical to the security of the

scheme. A stack in main memory would allow a large call depth but would be vulnerable to attackers
controlling memory. Different approaches suggest using dedicated hardware buffers or memory
only accessible by CALL and RETURN instructions or using memory divided on a kernel level to
store the SCS [9]. Therefore, SCS meets Requirement R6 but not Requirements R4 and R5.

3.2.3 SOFIA. A significant, recent work in the area of SAE is SOFIA, a software and control flow
integrity architecture proposed by Clercq et al. in 2017 [8]. They propose a method for securing
CFI and describe the performance of an implementation developed. This work sets five goals
for protecting application execution: software integrity, control flow integrity, tampered code
protection, code confidentiality and reverse engineering protection. These are chosen to ensure
applications correctly execute and to minimise attackers ability to examine the code to look for
flaws/vulnerabilities [8].
In essence, SOFIA protects application execution by ensuring attackers are unable to change

any instructions. Furthermore, the architecture creates location-specific protections for each of the
instructions to ensure they cannot be moved to different locations in memory and be executed in a
different order. Integrity checks are included to detect modified instructions before execution [8].

The instruction protection mechanism in SOFIA is partly in the form of a masking scheme such
as that proposed by Lee et al. in 2016 [16]. However, instead of chaining instructions, Clercq et al.
have used a nonce and the preceding and current Program Counter (PC) values as the information
used by the function to protect instructions [8]. As a result, the instruction masking calculation is
as follows (adapted from [8]):

Opx = Op
′
x ⊕ Ek1 (ω | |x − 1| |x)

, Vol. 1, No. 1, Article . Publication date: May 2019.

:8 Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram

Where x is the PC value of the current instruction, x−1 is the PC value of the previously executed
instruction, ω is a nonce and Opx and Op ′x are the instruction and masked instruction in location
x respectively. Also calculated with the decrypted instructions are blockwise CBC-MAC values
used as an integrity check using a second key k2. The MAC of each block is encrypted and then
stored in the first location of each block and is loaded and compared with the calculated block
MAC as the instructions are decrypted. The combination of these checks provides an integrity
check ensuring attacks on the stored instructions are detected and control flow specific instruction
masking prevents instructions being moved in the application [8].
One strength of SOFIA is it considers a powerful attacker with full control of external storage,

I/O and buses [8]. However, one disadvantage of SOFIA is how it handles reused code accessed
from multiple locations. Due to the instruction encryption, each instruction can only be accessed
from one location. To allow code to be accessed from multiple locations, Clercq et al. mark some
blocks as accessible from multiple locations. These special blocks start with a series of entry
points, one for each JUMP or CALL leading to the block. Each of these entry points are modified
instructions allowing the calculated MAC and instruction decryption values to each be computed
from a designated “first” instruction in the block instead of the actual first instruction in the block
[8]. This is rather inflexible and requires code analysis to be performed to identify all the locations
each function is called from before appropriate entry points can be appended. Therefore, while
SOFIA meets Requirements R1 to R6 it is not a perfect solution as handling reused code requires
extra program analysis and blocks of code adding to each function based on the number of locations
calling the function.

4 PROPOSED SOLUTION

This section describes the proposed solution to the problem posed in Section 2. The solution
proposed is based on the hardware-software binding scheme proposed by Lee et al. in 2016 [16]
described in Section 3.1. However, that only meets some of the requirements from Section 2.4. Lee
et al. listed and met requirements similar to Requirements R1 to R3 when proposing their binding
scheme. However, extensions to provide SAE and meet Requirements R4 to R6 are needed. The
scheme proposed in this section will extend the Lee et al. scheme using ideas from schemes listed
in Section 3.2.

4.1 Protecting Sequential Transitions

The first type of instruction transition defined in Section 2.2 is sequential transitions. Transitions
of this type are incidentally and implicitly protected by the Lee et al. scheme due to the cascading
nature of the hardware-software bound. An instructionOp stored in location x is masked using the
data stored in location x − 1 (the previous, masked instruction) to produce Op ′. For efficiency, the
authors reduce the memory operations needed for unmasking by latching data read from memory
after the instruction is unmasked. This allows, in the case of sequential transitions, masked data to
be used in unmasking the next instruction without being loaded again. This latching allows the
Lee et al. scheme to provide implicit sequential transition security.
Extra memory accesses are only required in the Lee et al. scheme in the case of control flow

instructions. Therefore, the only helper data available in unmasking an instruction after a sequential
transition is the previously executed instruction. This provides implicit sequential transition security
and consequently, instructions in series execute correctly and can only be modified by someone
who knows the masking key. Therefore, the Lee et al. scheme protects instructions executed in
series by guaranteeing sequential transitions.

, Vol. 1, No. 1, Article . Publication date: May 2019.

Special Issue on Cryptographic Engineering for IoT: Ensuring Secure Application Execution and
Platform Specific Execution in Embedded Devices :9

Op
Op
Jmp x .

.

.
Op

x : Inpu t r1 , S e cu r i t yToken
Check r1
Load r2 , S e n s i t i v eD a t a
Output r2
Op .

.

.

Op
Op
Jmp x .

.

.
Check r1

x : Load r2 , S e n s i t i v eD a t a
Output r2
Op
Op
Op .

.

.

Fig. 3. When protected by only the Lee et al. scheme, the code snippet on the left can be modified to leak
sensitive data by moving code into a location reached by a JUMP operation.

4.2 Protecting Instruction-Dependent Transitions

While the Lee et al. scheme protects sequential transitions between instructions, it does not secure
instruction-dependent transitions. These can be manipulated by an attacker to execute arbitrary
program code and violate Requirement R3, an example is included in Figure 3. Consider the
application on the left side of Figure 3, execution starts from the top and executes two arbitrary
instructions followed by a JUMP. The JUMP leads to a short block of code, x , that performs a
security check before outputting sensitive data. The Lee et al. scheme only secures the JUMP
instruction that sets the PC value to x , but not the contents of x . Therefore, it is possible for the
code to be shifted in memory to skip the security check before outputting the sensitive data. The
attacker could change the code into that on the right of Figure 3 to output the sensitive data without
executing the security check. Eventually, the attack may be discovered when execution reached
x − 1 and the instruction unmasked incorrectly, however this might happen long after the leak, or
never.
We therefore propose modifying the scheme of Lee et al. to prevent instructions from being

moved from the locations they were originally installed in. The proposed modification is to combine
the Lee et al. scheme with SOFIA by Clercq et al. (described in Section 3.2.3). In SOFIA, an instruction
is masked using the PC value of the instruction, the PC value of the previous instruction and secret
information. This produces a device and memory location-specific masking preventing instructions
from being moved. If an instruction at location y were moved to location x it would no longer
unmask correctly because the unmasking would use x and x − 1 instead of y and y − 1. Using
the location in calculating the instruction masking value prevents instructions from being moved.
SOFIA introduces the need for a tree-like structure at function entry adding a new instruction
for each call to the function. However, as the jump source is protected by the application binding
(Section 4.1), preventing instruction movement is the only additional property needed. The new
masking equation will be as follows:

Op ′x = F (Opx ,Op
′
x−1,x)

Where x is a memory location or PC value,Opx is the instruction in location x in the application,
Op ′x is the masked version of Opx and F is the function used to unmask Op ′x . This extension binds
each instruction to the specific device and also the specific memory location it is to be executed
from. This ensures attacks such as demonstrated in Figure 3 are no longer possible.

4.3 Securing Instruction-Independent Transitions

After combining elements from the Lee et al. and Clercq et al. schemes, the result is a masking
scheme ensuring code immutability and that control flow instructions lead to the instructions

, Vol. 1, No. 1, Article . Publication date: May 2019.

:10 Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram

Op
Op

x : Cal l FUN.
.
.

SecurityCheck.
.
.

Op
y : Ca l l FUN

Op
Op

FUN:
Op
Op
Op
Return

×

1
Fig. 4. Changing return addresses can be used to skip security critical instructions.

intended. However, there is still a weakness associated with function code accessed by CALL and
RETURN-type operations. The weakness is that while the scheme ensures that CALL instructions
lead to the correct code it does not ensure CALL and RETURN instructions are executed in correct
pairs.
Consider the code example in Figure 4. A function is called from two locations, x and y, and a

security check is computed between the calls. As stated in Section 2.3, the attacker can interfere
with any memory location including the stack. Therefore, the check can be avoided by waiting until
FUNC is called and then changing the return address on the stack from x + 1 to y + 1. This avoids
executing the security check and allows unauthorised access to later parts of the application. This
attack is possible in the combined Lee et al.-Clercq et al. scheme as no instructions are modified.

Therefore, a mechanism is required to ensure the destination of RETURN instructions matches
(+1) the location of the CALL transferring control flow to the function.We propose an instruction set
extension to transform CALL and RETURN into two part instructions. This change adds CALL-IN
and RETURN-OUT to the instruction set. These instructions must be executed before CALL and
after RETURN instructions respectively to prevent attacks as shown in Figure 4. The check will
be to store a value provided with the CALL-IN when it executes and compare it with the value
embedded in the RETURN-OUT. Check value mismatches will cause an error and stop execution.
This ensures RETURN instructions transfer control flow to after the correct CALL instruction and
not to after a different CALL to the same function. The extra instructions ensure secure execution
of re-used functions with only two extra instructions per function call. The use of these instructions
is demonstrated in Figure 5.

However, some attackers may attempt to avoid the RETURN-OUT check by returning to x + 2 or
y + 2. Therefore, the scheme must protect against attackers skipping CALL-IN or RETURN-OUT
instructions. This necessitates an extra check to ensure the instruction executed after a CALL-IN is
a CALL and after a RETURN is a RETURN-OUT. This check must also ensure CALL is only executed
after CALL-IN, and that RETURN-OUT may only follow a RETURN. Furthermore, CALL-IN not
followed by CALL or RETURN not followed by RETURN-OUT also indicates an error. These checks
are made using two one-bit processor flags. These flags are CALL-CHECK and RETURN-CHECK
and are set by the executing of CALL-IN and RETURN and are reset by CALL and RETURN-OUT.
These instructions must always be executed in series, so the check will ensure this by throwing an
error if any instruction is executed while a flag is set other than the instruction to reset the flag.
Similarly, an error must occur when an instruction to reset a flag is called when the flag is not set.
For example, a CALL-IN instruction executes setting the CALL-CHECK flag and storing the

Sec Value. If the next instruction is an ADD instruction or any other instruction other than a CALL,

, Vol. 1, No. 1, Article . Publication date: May 2019.

Special Issue on Cryptographic Engineering for IoT: Ensuring Secure Application Execution and
Platform Specific Execution in Embedded Devices :11

Op
Op
CALL IN x
CALL FUN
RETURN OUT x.

.

.
SecurityCheck.

.

.
Op
CALL IN y
CALL FUN
RETURN OUT y
Op
Op

FUN:
Op
Op
Op
Return

×
y 6=x

X
x=x

1
Fig. 5. The extra operations added to the instruction set secure the RETURN after execution of re-used function
code.

an error will occur. However, if the next instruction is a CALL, the CALL-CHECK flag will be reset
and the processor will execute the function. These additional registers protect the CALL-IN to
CALL and RETURN to RETURN-OUT transitions and with the value checks ensure the security of
instruction-independent transitions.

However, it is common for functions to call functions. In these cases, a second stack similar to the
SCS described in Section 3.2.2 will be used. The check value is added to a stack with the execution
of the CALL-IN instruction. The check is made when the RETURN-OUT instruction is executed
by comparing the value in the instruction with the top of the Sec Stack. To aid performance, the
check value could be stored in a processor register and compared with the instruction check value
with no memory access. After the check, the stack is popped to the register at any time before the
next RETURN-OUT instruction. This may not help when RETURN and RETURN-OUT instructions
are executed in a series of pairs, but may otherwise improve performance.

5 IMPLEMENTATION

This section describes the Secure-Execution Processor (SEP), the proof-of-concept implementation
of the scheme proposed in Section 4. The details of the prototype are described in three subsections.
Section 5.1 discusses design decisions made when developing the prototype and the hardware
used. Section 5.2 describes the assembler developed to compile programs for execution on the SEP.
Finally, Section 5.3 covers the hardware of the prototype and how it realises the scheme proposed.

5.1 Design Decisions

The implementation was developed on a Xilinx Spartan-6 FPGA SP601 evaluation board [26]. This
board contains a Spartan-6 as well as block RAMs, LEDs, push-buttons, switches, an ethernet
port, general-purpose I/O headers and a serial interface. All can be attached to designs loaded into
the FPGA [26]. The prototype used block RAM to store software and the serial port and LEDs to
demonstrate operation. A high-level system diagram of the prototype is shown in Figure 6.
As well as the hardware developed, a basic application was written to execute on the SEP.

This is a simple program written in assembly language to output data to the connected PC via a
UART interface1. Two tasks were carried out by the application: printing “Hello World!” to the
terminal via the UART port and then flashing LEDs based on counter values. In total, the application
1VHDL code from the PicoBlaze [25] soft-core processor was used to control the UART interface.

, Vol. 1, No. 1, Article . Publication date: May 2019.

:12 Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram

ProcessorBRAM

UART

LEDs

PC Terminal

read enable

address

encrypted block

FPGA

Fig. 6. The prototype included serial and LED outputs to demonstrate correct execution.

(Appendix A) comprised 68 instructions, including multiple CALL/RETURN pairs and loops using
conditional JUMP instructions.

5.1.1 Choice of F . Section 4.2 stated the masking function combines the operation, previous
masked instruction and location of the operation. However, this idea requires more precise definition
before implementation. As suggested by Lee et al., the prototype uses a basic block structure for
the application [16]. In the basic block model, an application is split into blocks containing a fixed
number of instructions where each block is executed in entirety or not at all. Execution of a basic
block always starts with the first instruction and always finishes with the last instruction. JUMPs
to or from the middle of a block are forbidden. This increases the overall size of the application as
NOP (no-operation) instructions have to be added to comply with the model. Obviously, extending
program length increases execution time. However, it allows the unmasking process more time to
complete as once a block is ready there is a period of time based on the block length until the next
block is needed. As a result, the prototype did not need to pause execution at any time to perform
extra load or unmask instructions, unlike the scheme of Lee et al. [16].

Basic blocks allow more efficient use of the block cipher by matching basic block size to the block
size of the block cipher used. However, the function F needs to be explicit for implementation. The
function used by Lee et al. in 2016 is not suitable for two reasons. It is reproduced below with a
basic block model translation:

Op ′x = Opx ⊕ F (Op ′x−1)

B′
x = Bx ⊕ B(B′

x−1),

where Bx is the basic block at location x and B′
x is the masked block. The first reason this is not

suitable is the value x is absent from the computation, this allows attacks on the scheme as stated
in Section 4.2. The second reason is that any bits flipped in B′

x will be flipped in the unmasked
block, allowing an attacker to change instructions executed, violating Requirement R3. Therefore a
new masking function is needed to protect instructions from modification. The properties needed
of the masking function are: inclusion of the previous block, inclusion of the block address and
prevention of attackers from making targeted changes to any bits in the unmasked instructions. To
achieve these goals, the following functions for masking and unmasking will be used:

, Vol. 1, No. 1, Article . Publication date: May 2019.

Special Issue on Cryptographic Engineering for IoT: Ensuring Secure Application Execution and
Platform Specific Execution in Embedded Devices :13

Cipher Block Size Key Size

AES 128 128
KATAN 32 80

64 80
PRESENT 64 80

64 128
PRINCE 64 128
RECTANGLE 64 80
SIMON 32 64

64 128
SPECK 32 64

64 128

Table 1. Lightweight block ciphers implemented by Maene and Verbauwhede in [20].

B′
x = B′

x−1 ⊕ Enck⊕x (Bx)

Bx = Deck⊕x (B
′
x ⊕ B′

x−1).

The exclusive-OR before decryption ensures attackers are unable to target a bit or bits to change
in the resulting unmasked instructions. As each masking is now dependent on the location of the
block, this is due to mixing the address into the encryption key, this does not decrease scheme
security as long as the cipher used is secure against related key attacks. Since the masking key
is now dependent on the location of the instruction, any rearrangement of basic blocks ensures
they are not correctly unmasked. With a strong block cipher, decryption can be considered a
pseudorandom function. Therefore an attacker modifying Bx or B′

x−1 cannot make predictable
output changes.

5.1.2 Cipher Used. As discussed previously, the function used to protect instructions needs to
produce pseudorandom outputs unpredictable by an attacker. Block ciphers provide the guarantees
required and so several were considered for use in securing the application. The list of ciphers
considered is included in Table 1, all are considered lightweight apart from AES which is included
for reference. However, each cipher has different block sizes, key lengths and complexities. The
ciphers in Table 1 were considered because they have single-cycle implementations developed by
Maene and Verbauwhede in 2015 [20], that are publicly available via Github [19]. The execution
of a basic block may only take a small number of cycles, therefore a single-cycle implementation
allows the scheme to be used with less time overheads. This also avoids complicated use of pauses
and unpauses such as those encountered by Lee et al. [16].

For the prototype, the PRINCE cipher was used. PRINCE is a lightweight block cipher developed
by Borghoff et al. in 2012 [3]. It features a 64 bit block size, 128 bit key size and has been the target
of multiple competitions with prizes awarded based on attack strengths [3, 21, 22]. It was designed
for efficiency in hardware and was the smallest implementation in the 64/128 class and fastest
overall cipher in Maene and Verbauwhede’s study [20]. Therefore, due to the high-security, good
block size and presence of a published, good, single-cycle implementation, PRINCE was the best
choice for use in F .

5.2 Assembler

To assist in preparing applications for the SEP by converting instructions into machine code,
performing necessary encryptions and enforcing the program structure required, an assembler
was developed. The assembler takes as input a program written in SEP-assembly and outputs

, Vol. 1, No. 1, Article . Publication date: May 2019.

:14 Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram

Opcode Instruction Operands

0 LOAD sX, sY 2
1 LOAD sX, kk 2
2 AND sX, kk 2
3 INPUT sX, pp 2
4 ADD sX, kk 2
5 SUB sX, kk 2
6 CALL aaa 1
7 CALL-IN ccc 1
8 JUMP aaa 1
9 JUMP NZ, aaa 1
A JUMP C, aaa 1
B RETURN 0
C RETURN-OUT ccc 1
D OUTPUT sX, pp 2

Table 2. Only the instructions needed for the test application were implemented and thus some common
instructions are missing.

the memory contents to be loaded and executed by the SEP. This section describes the assembly
code, instructions implemented and considerations for ensuring a legal program is output from the
assembler.

For the SEP, a new assembly language dialect was written. The language developed is based on
Picoblaze assembly [25] with most instructions removed - instructions not used by the example
application were not implemented leaving a minimal instruction set. This instruction set allowed
the opcode of an instruction to require only four bits, granting the SEP a 16-bit instruction set
rather than the 18-bit size of PicoBlaze. However, the main benefit of shrinking the instruction size
is instructions fit into block sizes of 2n bits2. This enables basic blocks to easily match common
block cipher block sizes of 64 or 128 bits, such as that of PRINCE [20]. The complete set of SEP
opcodes is listed in Table 2.
As stated, SEP instructions are 16 bits wide. This is split between four bit opcodes and 12-bits

for the operand/s. There are five types of operand in SEP instructions: register IDs, data values,
IO addresses, memory addresses and security values. Register IDs are 4-bit numbers that select
one of the 16 registers available to the SEP Arithmetic and Logic Unit (ALU). Data values are 8-bit
numbers used by the ALU, these can be saved, AND-ed, added or subtracted into registers. IO
addresses are 8-bit ID numbers of Input or Output devices attached to the SEP, IO addresses select
devices to send data to or receive data from one of the ALU registers. Memory addresses are 12-bit
addresses used with CALL or JUMP instructions to determine the new value for the PC (subject to
a flag check for conditional JUMPs). Finally, security values are 12-bit values used by CALL-IN
and RETURN-OUT instructions.
As well as translating human-readable instructions into SEP machine code, the assembler also

enforces the basic block structure required. The assembler also adds the required CALL-IN and
RETURN-OUT instructions and generated the security values. Therefore, translation and insertion
of instructions are the main tasks of the assembler.
To enforce the basic block model there are two main criteria the assembler has to manage. As

stated, a basic block always starts with the first instruction and finishes with the final instruction.
Therefore any control-flow instruction must meet two criteria: always be at the end of a basic
block and always point towards the start of a basic block. These can intersect if one control-flow
2Where n ≥ 4

, Vol. 1, No. 1, Article . Publication date: May 2019.

Special Issue on Cryptographic Engineering for IoT: Ensuring Secure Application Execution and
Platform Specific Execution in Embedded Devices :15

instruction is the destination of a second control flow instruction. In this case, the first control-flow
instruction must be placed at the end of a basic block by inserting NOP instructions until this
achieved. Then the second control-flow instruction must be modified to point toward the start of
the block containing the first instruction. In most cases however, both criteria do not intersect and
in the example program most instructions moved needed to be sent to the start of a basic block or
the end.
Assembler program modification can thus be summarised in three points: ensuring JUMP in-

structions are only at the end of basic blocks, ensuring JUMP destinations are only at the start of
blocks and adding CALL-IN and RETURN-OUT instructions where needed.

5.3 Hardware

This section describes the hardware element of the prototype. The hardware developed is a softcore
processor, specified in VHDL, for synthesis to a Xilinx Spartan-6 FPGA. Use of an FPGA allows for
more rapid prototyping and allows the design to be modified and shared more easily.

The SEP is comprised of six main components: the unmask unit, the data reader, the PC update,
the PC/Sec stack, the IO handler and the ALU. Each component in the system completes different
tasks and is responsible for updating different signals in the processor. A simplified model of the
processor is shown in Figure 7. For clarity, some of the helper signals have not been shown such as
internal flags identifying the type of the last instruction in the current block, the zero and carry
flags and access to the top of the stacks given to data reader and PC update. We will now describe
the components in Figure 7.
The unmask unit receives data from memory and saves it as either an instruction block or

helper data block. Use of a received block is calculated based on the current PC value and the
state of the execution of the current instruction. The unmask unit also latches helper data used in
sequential transitions. The PRINCE cipher component implemented by Maene and Verbauwhede
[20] is included in the unmask unit. The cipher decrypts the next block depending on the PC value
set during execution of the fourth instruction in the current block. Unmask unit tasks are time
critical and follow the schedule in Figure 8.

The data reader sends addresses and enable signals to the memory to request data blocks. BRAM
devices on the SP601 require the address and enable signals to be held for one cycle before a memory
block is returned. The data reader uses an internal instruction state with the current PC value to
time when to set and reset address and read enable signals. Like the unmask unit, data reader tasks
are time critical and must follow the execution schedule shown in Figure 8.

The PC update maintains the current Program Counter value and updates it as each instruction
is executed. The PC is updated based on the internal clock of the processor and also the current
operation executing. Each instruction requires two cycles for execution, the PC is updated after the
first cycle to indicate the location of the next instruction. PC update is critical to scheme security
as it handles processing instruction transitions.
When a CALL instruction is executed, the PC/Sec stack stores the return address and the last

CALL-IN security value. The PC/Sec stack, upon CALL instruction execution, stores the return
address and the last CALL-IN security value. Security values from CALL-IN instructions are
latched by the PC/Sec stack before they are pushed by the CALL instruction. The PC/Sec Stack
displays the top of the stack to the data reader to aid execution of RETURN instructions. Access to
the return address allows RETURN instructions to be processed similarly to unconditional JUMP
instructions as the next address is known to the data reader.

The IO handler sets the read/write strobe signals and the IO port ID values based on the current
operation being executed. When an input or output signal is written or read, the write/read

, Vol. 1, No. 1, Article . Publication date: May 2019.

:16 Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram

data
reader

unmask
unit

op
select

PRINCE

PC
update

PC/Sec
stack

IO
handler

ALU

read enable

address

data in

write strobe

read strobe

port id

data in

data out
current op

pc

pc

sec val

alu flags

Processor

Fig. 7. The Secure-Execution Processor consists of six main elements.

strobe signal is set high for one cycle. This synchronises SEP IO reads/writes with the attached
input/output devices providing/receiving data.

Finally, the ALU executes arithmetic or logical instructions and maintains the processor registers
and zero/carry flags. The ALU also connects registers with IO devices when INPUT or OUTPUT
instructions are executed. As the instruction set (Table 2) does not include a NOP instruction,
loading a register with itself is used instead as this makes no change to data stored. Specifically,
LOAD s0, s0 is added by the assembler to enforce the basic block model. However, this requires
extra ALU logic to maintain program functionality. Normally, when a LOAD is executed, the carry
flag is reset and the zero flag is only set if the register changed becomes equal to 0. However, this
affects JUMP NZ instructions if a LOAD s0, s0 is inserted before the instruction as flags will
set/reset according to the value of s0, not last instruction before the LOAD s0, s0. Therefore, the
ALU was modified to preserve the zero and carry flags if the two registers provided with a LOAD
instruction are equal. This prevents NOP/LOAD s0, s0 instructions from effecting program
logic.
When executing the application, different transitions between basic blocks have different re-

quirements for the data needed. For example, if the transition from the current block to the next is
sequential, the only memory load required is loading the next block in memory. In the sequential
case, the helper data for the next block is the current block which is latched to protect sequential
transitions. The most demanding case is when the final transition is conditional as this requires the
next block, the JUMP block and the JUMP helper data to all be read by the data reader. As only one
memory read can be performed per cycle, the timing of the memory reads for each transition must
be met precisely. A table of the data read actions for each type of transition is found in Table 3. Note:
each instruction requires two cycles for execution. Changes to the program signals in a simulation
of the prototype are shown in Figure 8.
To enforce the security requirements of the proposed scheme, a “kill switch” was added to the

design of the processor. Each component shown in Figure 7 is driven by an internal clock, which is
defined simply by:

int_clk = clk&kill_switch,

, Vol. 1, No. 1, Article . Publication date: May 2019.

Special Issue on Cryptographic Engineering for IoT: Ensuring Secure Application Execution and
Platform Specific Execution in Embedded Devices :17

Type of JUMP at end of block
Op Cycle PC Sequential Unconditional Conditional

00
0 00
1 01

01
2 01
3 10 load B′

x

10
4 10 load B′

j−1
5 11 load B′

x load B′
j−1 load B′

j

11
6 11 load B′

x+1 load B′
j load B′

x+1
7 00 Unmask next block

[x + 1, j] | |00 8 00 Execute next block

Table 3. Sequential transitions require less memory accesses than unconditional JUMPs which require less than
conditional JUMPs.

Fig. 8. The Secure-Execution Processor updates each signal according to a strict schedule.

wherekill switch is initialised as 1 and set to 0 whenever a security problem occurs.We define this
security problems as: CALL-IN/RETURN-OUT security value mismatch, CALLwithout CALL-IN
(and vice versa), RETURN without RETURN-OUT (and vice versa).

6 ANALYSIS

This section analyses the scheme proposed and implemented in this work. First, the proposal in
Section 4 is checked against the requirements derived in Section 2.4. The second half of this section
analyses the implementation described in Section 5.

6.1 Requirements Analysis

Recall that Section 2.4 listed six requirements for the proposed scheme. Requirement R1 is to
provide software confidentiality to ensure attackers cannot reproduce the software and violate
the software binding. A function F is used to conceal the instructions making up the application
executed by the SEP. The F implemented includes PRINCE for encrypting/decrypting blocks of
application instructions and ensure software confidentiality.

Requirement R2 needs each application to be bound to just one device. Each device is initialised
with a different encryption key, so each masking is unique to a single device. No other device other
than the intended device will be able to unmask the blocks and execute the program.

, Vol. 1, No. 1, Article . Publication date: May 2019.

:18 Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram

Requirement R3 requires the scheme to prevent attackers making meaningful changes to the
application. Section 5.1.1 describes the F used in the implementation and how the use of PRINCE
prevents attackers from predicting the consequences of any changes made.
Requirement R4 demands that sequential transitions between instructions be secured. This is

achieved by the block chaining in the unmaking functions. The previous executed block is used as
helper data without being loaded from memory, this ensures the security of sequential transitions..

Requirement R5 requires that instruction-dependent transitions, such as those following JUMP
and CALL instructions are secured. This is achieved by including the location of the block into the
masking function, ensuring the block jumped to cannot execute correctly if it has been modified as
each masking is address dependent.

Finally, Requirement R6 states instruction-independent transitions (such as after RETURN instruc-
tions) must be secured. In the proposed scheme this is met by using CALL-IN and RETURN-OUT
instructions with the PC/Sec Stack to store and check the security values. These instructions must
be executed before and after CALL and RETURN instructions, and the security values must match
for execution to continue otherwise the kill switch activates. Instruction-independent transitions
are secured by the proposed scheme.

6.2 Implementation Analysis

The prototype implemented the scheme proposed that meets the requirements listed in Section 2.4.
This subsection describes the strengths and limitations of the prototype.

The main design decision required when implementing the proposed scheme was to use the
basic block model and PRINCE for encrypting the basic blocks. PRINCE was chosen due to the low
latency and small size of the single-cycle implementation of Maene and Verbauwhede [20]. The
single cycle implementation aided the SEP to meet deadlines for instruction readiness. However,
as shown in Table 3, for each possible transition there were free cycles available while the block
was executing. Therefore, the single cycle implementation is faster than required and a slower
implementation could be used if the timing of conditional JUMP instructions could be met. Multiple
unmask operations while executing the block might be required in this case to avoid the need for
pauses. A current advantage of the implementation over other schemes is the avoidance of delay in
the execution of instructions.
Cipher choice determined the size of basic blocks to 64 bits/four instructions. This limits the

number of NOP instructions needed to be inserted to three before a JUMP. However, in the case
of a CALL instruction finishing a block, four additional instructions are needed, as we will need
a CALL-IN as well as three NOPs. Furthermore, the need for control-flow instructions to point
towards the start of basic blocks requires even more NOP instructions to be added. Due to the extra
instructions added, the test application was expanded from containing 68 operations to containing
160 operations after the basic block model conversion and CALL-IN/RETURN-OUT instruction
addition. However, enforcing the basic blockmodel only extended the application to 108 instructions,
the proposed scheme added 52 instructions more than a basic block-only scheme. The example
program contained 14 CALL instructions, meaning a minimum of 28 instructions needed to be
added, and the remaining 24 additions were required to fit the basic block model. Therefore, despite
the implementation requiring no pauses in execution, it does still reduce application performance.
To achieve the extra security requirements, the length of the program (and thus the number of
cycles required to execute) increased substantially.

7 CONCLUSION

In this paper we presented a novel work combining two previously studied problems, Secure
Application Execution and Platform Specific Execution. The proposed scheme ensures applications

, Vol. 1, No. 1, Article . Publication date: May 2019.

Special Issue on Cryptographic Engineering for IoT: Ensuring Secure Application Execution and
Platform Specific Execution in Embedded Devices :19

executing on a device were put there by the manufacturer and are executing correctly from start
to finish. The scheme presented is a framework that could be implemented in various ways, and
one instantiation was implemented to demonstrate the scheme in practice. A description of the
prototype was provided to make clear the steps followed and the constraints present.

Further work in this area would look to different methods for using the CALL-IN/RETURN-OUT
security values. One potential approach could be to remove the need for a “Sec Stack” and instead
use a multiplicative counter if the different Sec Values were prime numbers. Another extension
of this work would expand the prototype to a fuller instruction set including storing values in
memory. With a full instruction set, an in-depth study of the performance cost of the scheme could
be carried out by compiling real-world applications and libraries for execution on the SEP.

8 ACKNOWLEDGEMENTS

Robert P. Lee is supported by the EPSRC and the UK government as part of the Centre for Doctoral
Training in Cyber Security at Royal Holloway, University of London (EP/K035584/1).

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity. In Vijay Atluri, Catherine A.

Meadows, and Ari Juels, editors, Proceedings of the 12th ACM Conference on Computer and Communications Security,
CCS 2005, Alexandria, VA, USA, November 7-11, 2005, pages 340–353. ACM, 2005.

[2] Mikhail J. Atallah, Eric D. Bryant, John T. Korb, and John R. Rice. Binding software to specific native hardware in a
VM environment: The PUF challenge and opportunity. In Proceedings of the 1st ACM Workshop on Virtual Machine
Security, VMSec ’08, pages 45–48, New York, NY, USA, 2008. ACM.

[3] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Leander,
Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE -
A low-latency block cipher for pervasive computing applications - extended abstract. In Xiaoyun Wang and Kazue
Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory and Application
of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in
Computer Science, pages 208–225. Springer, 2012.

[4] Erik Buchanan, Ryan Roemer, Stefan Savage, and Hovav Shacham. Return-oriented programming: Exploitation without
code injection. Black Hat, 8, 2008.

[5] Nick Christoulakis, George Christou, Elias Athanasopoulos, and Sotiris Ioannidis. HCFI: hardware-enforced control-
flow integrity. In Elisa Bertino, Ravi Sandhu, and Alexander Pretschner, editors, Proceedings of the Sixth ACM on
Conference on Data and Application Security and Privacy, CODASPY 2016, New Orleans, LA, USA, March 9-11, 2016,
pages 38–49. ACM, 2016.

[6] Louis Columbus. 2017 roundup of internet of things forecasts, 2017.
[7] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi, Patrick Koeberl, Dean Sullivan, Orlando Arias,

and Yier Jin. HAFIX: hardware-assisted flow integrity extension. In Proceedings of the 52nd Annual Design Automation
Conference, San Francisco, CA, USA, June 7-11, 2015, pages 74:1–74:6. ACM, 2015.

[8] Ruan de Clercq, Johannes Götzfried, David Übler, Pieter Maene, and Ingrid Verbauwhede. SOFIA: software and control
flow integrity architecture. Computers & Security, 68:16–35, 2017.

[9] Ruan de Clercq and Ingrid Verbauwhede. A survey of hardware-based control flow integrity (CFI). CoRR, abs/1706.07257,
2017.

[10] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols. IEEE Trans. Information Theory,
29(2):198–207, 1983.

[11] Daniel Genkin, Adi Shamir, and Eran Tromer. Acoustic cryptanalysis. J. Cryptology, 30(2):392–443, 2017.
[12] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. Secure execution via program shepherding. In Dan

Boneh, editor, Proceedings of the 11th USENIX Security Symposium, San Francisco, CA, USA, August 5-9, 2002, pages
191–206. USENIX, 2002.

[13] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution. ArXiv e-prints, January
2018.

[14] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael J. Wiener, editor, Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

, Vol. 1, No. 1, Article . Publication date: May 2019.

:20 Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram

[15] R. Krasinski and M. Rosner. Method for binding a software data domain to specific hardware, May 2003.
[16] Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram. Binding hardware and software to prevent

firmware modification and device counterfeiting. In Jianying Zhou and Javier Lopez, editors, Proceedings of the 2nd
ACM Workshop on Cyber-Physical System Security, CPSS 2016, Xi’an, China, May 30, 2016. ACM, 2016.

[17] Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram. Provisioning software with hardware-software
binding. In Proceedings of the 12th International Conference on Availability, Reliability and Security, Reggio Calabria,
Italy, August 29 - September 01, 2017, pages 49:1–49:9. ACM, 2017.

[18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown. ArXiv e-prints, January 2018.

[19] Pieter Maene. BlockCiphers, 2017.
[20] Pieter Maene and Ingrid Verbauwhede. Single-cycle implementations of block ciphers. In Tim Güneysu, Gregor

Leander, and Amir Moradi, editors, Lightweight Cryptography for Security and Privacy - 4th International Workshop,
LightSec 2015, Bochum, Germany, September 10-11, 2015, Revised Selected Papers, volume 9542 of Lecture Notes in
Computer Science, pages 131–147. Springer, 2015.

[21] Shahram Rasoolzadeh and Håvard Raddum. Cryptanalysis of PRINCE with minimal data. In David Pointcheval,
Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, Progress in Cryptology - AFRICACRYPT 2016 - 8th International
Conference on Cryptology in Africa, Fes, Morocco, April 13-15, 2016, Proceedings, volume 9646 of Lecture Notes in Computer
Science, pages 109–126. Springer, 2016.

[22] Shahram Rasoolzadeh and Håvard Raddum. Faster key recovery attack on round-reduced PRINCE. In Andrey Bogdanov,
editor, Lightweight Cryptography for Security and Privacy - 5th International Workshop, LightSec 2016, Aksaray, Turkey,
September 21-22, 2016, Revised Selected Papers, volume 10098 of Lecture Notes in Computer Science, pages 3–17. Springer,
2016.

[23] Dean Sullivan, Orlando Arias, Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi, and Yier Jin. Strategy without tactics:
policy-agnostic hardware-enhanced control-flow integrity. In Proceedings of the 53rd Annual Design Automation
Conference, DAC 2016, Austin, TX, USA, June 5-9, 2016, pages 163:1–163:6. ACM, 2016.

[24] Symantec Corporation. Internet security technical report (istr). Technical report, 03 2018.
[25] Xilinx, Inc. PicoBlaze 8-bit Microcontroller, 2011.
[26] Xilinx Inc. Spartan-6 FPGA SP601 Evaluation Kit, 2018.

, Vol. 1, No. 1, Article . Publication date: May 2019.

Special Issue on Cryptographic Engineering for IoT: Ensuring Secure Application Execution and
Platform Specific Execution in Embedded Devices :21

A TEST APPLICATION CODE

CONSTANT LED_PORT , 02
CONSTANT UART_TX_STATUS , 00
CONSTANT UART_TX_RESET , 03
CONSTANT UART_RX_READ , 01
CONSTANT UART_TX_DATA_IN , 01

s t a r t :
LOAD s0 , FF
LOAD s0 , FF
OUTPUT s0 , UART_TX_RESET
LOAD s0 , 00
LOAD s0 , 00
OUTPUT s0 , UART_TX_RESET
LOAD s0 , s0
LOAD s0 , s0
LOAD s1 , "H"
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , " e "
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , " l "
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , " l "
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , " o "
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , " "
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , "W"
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , " o "
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , " r "

CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , " l "
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , " d "
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , " ! "
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , " "
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
LOAD s1 , 0D
CALL waitForUARTFree
OUTPUT s1 , UART_TX_DATA_IN
JUMP l e d S t a r t

waitForUARTFree :
INPUT s0 , UART_TX_STATUS
AND s0 , 04
JUMP NZ waitForUARTFree
RETURN

l e d S t a r t :
LOAD s0 , 00

loop : OUTPUT s0 , LED_PORT
LOAD s2 , FF

x : LOAD s1 , FF
y : SUB s1 , 01

JUMP NZ y
SUB s2 , 01
JUMP NZ x
ADD s0 , 01
JUMP C r e s e t

back : JUMP loop
r e s e t : LOAD s0 , 00

JUMP back

, Vol. 1, No. 1, Article . Publication date: May 2019.

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Paper Structure

	2 Problem Description
	2.1 Platform Specific Execution
	2.2 Secure Application Execution
	2.3 Attacker Model
	2.4 Requirements

	3 Related Work
	3.1 Platform Specific Execution
	3.2 Secure Application Execution

	4 Proposed Solution
	4.1 Protecting Sequential Transitions
	4.2 Protecting Instruction-Dependent Transitions
	4.3 Securing Instruction-Independent Transitions

	5 Implementation
	5.1 Design Decisions
	5.2 Assembler
	5.3 Hardware

	6 Analysis
	6.1 Requirements Analysis
	6.2 Implementation Analysis

	7 Conclusion
	8 Acknowledgements
	References
	A Test Application Code

