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ABSTRACT  

Impatiens glandulifera or Himalayan balsam is an invasive plant species which 

is commonly found in riparian habitats and may threaten the biodiversity in the 

UK by suppressing other native plants, blocking drainage systems and 

potentially, leading to soil erosion during winter. Between 2006 and 2010, a 

rust fungus, Puccinia komarovii var. glanduliferae was first identified infecting 

balsam in its native range (Western Himalayas). Subsequently, the rust was 

released for the first time in Europe in August 2014 as a classical biological 

control (CBC) agent on balsam. This study was initiated to observe the 

effectiveness of the rust on balsam growth and to determine the factors that 

affect its impact in the field particularly insects presence, arbuscular 

mycorrhizal fungi (AMF) and endophytic fungi. An investigation on the 

interactions of fungi and insects on balsam was conducted. It was found that 

the combination of aphids, mycorrhizas and endophytes affected plant 

performance, dependent upon the fungal identities. The interactions between 

balsam and associated microbial communities through plant soil feedback 

(PSF) experiment was examined too. In contrast to a previous study of balsam, 

a negative PSF was recorded whereby plants were shorter, lighter and had 

lower AMF colonization in a soil that had previously supported balsam, 

compared to control soil. The competition between balsam and two native 

plant species was examined in the next chapter, to determine the effect of 

AMF on balsam competitive ability. It was discovered that mycorrhizas 

reduced balsam biomass when it was grown singly but tended to increase 

when it was grown in both inter- and intra-specific competition. Finally, the last 

experimental chapter examined how AMF and endophytic fungi influence the 

efficacy of the rust fungus, as a CBC agent. It is suggested that both fungi 

negatively affected plant growth and rust development.  
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CHAPTER 1 GENERAL INTRODUCTION 

1.1 Invasive Species 

The main causes of increasing spread of non-native invasive plant species 

across the world over recent decades are trade liberalization and rapid 

globalization (Perrings et al. 2002). These authors claimed that human 

behaviour or natural range extensions (McGinley 2010) are likely to be the 

main point to the establishment and infestation of invasive species.  

There are many inconsistent terms used to describe and define invasive 

species which might lead to the confusion within the field of invasive species 

science (Richardson et al. 2000; Ricciardi & Cohen 2007). Aliens, weeds, non-

native species and invasive alien species (IAS) are usually the terms used to 

refer to an introduced species which poses damage, threats and negative 

effects on the biodiversity and ecosystem in regions outside their native range 

(Richardson et al. 2000; Brundu 2014; Jeschke et al. 2014).  

 Richardson et al. (2000) define the following terms of invasive ecology:  

 Alien species: Plant taxa presence in an area due to human 

activity either intentionally or accidentally introduced. They are 

also known as ‘non-native’ or ‘introduced species’. 

 Naturalised plants: Alien plants which grow yearly without 

distraction to human activity or ecosystems.  

 Invasive plants: Naturalised plants which produce a large 

number of offspring and grow far apart from parent plants.  
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 Weeds: Plants (not necessarily alien) that grow in unwanted 

areas and are likely to pose negative economic and 

environmental impacts. They are also known as plant pests or 

harmful species.   

 Transformers: A subset of invasive plants that have clear 

ecosystem impacts. They are excessive users of resources and 

donors of limited resources.  

 Introduced range: An area where a species has spread by 

human assisted intervention and is limited due to geographical 

barriers.  

 Native range: An area where a species has naturally occurred 

with or without human assisted intervention.   

Ricciardi & Cohen (2007) suggested the term ‘invasive’ species should not be 

used to define a species that poses a threat to the ecosystem and biodiversity. 

They found there is no evidence and correlation between rapid colonisation 

and negative impact on biodiversity. However, Mack et al. (2005) defined an 

invasive alien species (IAS) as one that grows and spreads rapidly in a new 

area and is detrimental to the environment. This fact was supported by 

McNeely et al. (2001), in that the impacts of IAS population and infestation on 

the environment and economy are significant and diverse in nature. Therefore, 

since balsam was brought into the UK and has exhibited negative impacts on 

ecosystems (Tickner et al. 2001; Hulme & Brenner, 2006; Tanner 2011), ‘IAS’ 

or ‘invasive species’ terms were used throughout this research and thesis to 

denote the introduced species.  
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1.2 The study species: Impatiens glandulifera  

Impatiens glandulifera (Family: Balsaminaceae), usually known as Himalayan 

balsam is native to the foothills at altitudes of 2,000m above sea level (ASL) 

up to the timberline of the Western Himalayas (India and Pakistan) (Tanner et 

al. 2014) which has become established and invasive throughout UK (Beerling 

& Perrins 1993), mainland Europe (Pysek & Prach 1995), temperate North 

America (Toney et al. 1998; Clements et al. 2008), and temperate Asia 

(Tanner 2007). It is regarded as one of the top 20 invasive plants in the UK 

(Crawley 1987; Cockel & Tanner 2011).  

Impatiens glandulifera is found mainly in riparian habitats such as canal band, 

river banks, waste ground, lake edges, damp woodland and occasionally 

mires (Beerling & Perrins 1993; Andrews et al. 2005; Tanner 2007) (Figure 

1.1a). In an Environment Agency 2010 report, this non-native annual plant 

species occupied over 13% of river systems in England and Wales, and could 

grow up to 3m in deciduous woodland (Andrews et al. 2005) making it the 

tallest European annual plant (Beerling & Perrins 1993) (Figure 1.1b).  I. 

glandulifera is an attractive plant with erect, usually hollow, sappy, fleshy and 

brittle green stems with a reddish tinge early in the year and which in summer 

turn from pink to red. The thick stem bases are often fringed with fleshy 

adventitious root at the lowest nodes (Figure 1.1c). The leaves may have a 

reddish midrib, arranged oppositely or in whorls of 3 – 5 (Figure 1.1d), 

lanceolate to lanceolate-elliptic shape and serrated margins. The 

inflorescences consist of 2 – 14 flowers, from purple-pink (Figure 1.1e) to 

(rarely) white in colour with markings and spots inside. This species has a 
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short adventitious root system with a distinctive structure. Flowers are 

zygomorphic; their lowest sepal pouch-like forming a sac that ends in a straight 

spur and the upper petal forming a broad two lobed standard. Each flower can 

grow up to 4cm long, is sweetly scented, trumpet shaped with wide petals and 

usually flowering from June to October. Its seed capsule is approximately 

2.5cm long, hanging on red stalks and contains up to 16 seeds (Beerling & 

Perrins 1993). Each plant can produce up to 2500 seeds and can propel the 

seeds up to 10m from the parent plant through exploding seed capsules 

(Chapman & Gray 2012). The seeds are black in colour at maturity, large in 

size (Tanner 2011) and have a short life span which remain within the seed 

bank for up to two years (Beerling & Perrins 1993) though Mumford (1990) 

stated under artificial conditions and following a period of stratification at 4oC, 

seeds can remain viable for several years and germinate successfully.  

Seed germination occurs in February and March and the last stage of 

cotyledon occurs in April, depending on a mild winter. From April onwards, 

rapid growth is seen in their maximum shoot length and total leaf area. 

Flowering develops from July to October and from mid-July onwards, the 

plants start to set seeds (Beerling & Perrins 1993). In contrast, Tanner (2011) 

observed seeds do not always germinate as early as February while plants 

flower as early as mid-June. Seed set then occurs from late July to early 

October until the plants are killed by the first frost. 
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Figure 1.1 (a) Himalayan balsam population near river bank. (b) Plant 

height that can exceed 2m tall, (c) adventitious root system, (d) oppositely 

arranged and in whorls 3-5 leaves and (e) purple pink zygomorphic flower and 

seed capsules. All photos except (b) were courtesy from CABI staff –Carol 

Ellison. 

(b) 

(a) 

(c) 

(d) (e) 
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1.2.1 The introduction and spread of Impatiens glandulifera in the UK  

Impatiens glandulifera was first recorded and introduced due to its floristic 

purposes and aesthetic appeal in Europe by John Forbes Royle from India 

when he was in the United Kingdom (UK) in 1839 (Tanner 2007). However, 

Tanner (2011) pointed out this was probably inaccurate, as Royle also visited 

the UK in 1837. He stated that the seeds of Impatiens species (although it did 

not describe I. glandulifera clearly) were imported to England by the East India 

Company and the seeds were widely distributed by The Royal Horticultural 

Society (RHS). There are varying opinions on the year of when I. glandulifera 

was first introduced in the UK. However, Tanner (2011) then believed it is 

feasible that I. glandulifera seeds were first introduced in England in 1839 by 

the Horticultural Society of London (later RHS) after finding the plant in the 

Botanical register from 1840.  

Thereupon, by 1855, seeds of I. glandulifera were spread out at the large 

Victoria gardens and unusual growth occurred leading to high populations in 

non-urban areas (Kent 1975). Extremely high growth rates and high seed 

production lead to its active infestation and distribution. However, it is 

restricted to high moisture habitats only (Beerling & Perrins 1993; Pysek & 

Prach 1993). Beerling & Perrins (1993) found that this herbaceous annual 

plant had infested most parts of Great Britain and Ireland as well as isolated 

areas such as the Isles of Scilly, Shetland and Orkney. Besides the UK, they 

also indicated that I. glandulifera can also be found along the river banks of 

Sweden, Czechoslovakia, Switzerland and Southern Russia (Beerling & 

Perrins 1993).  
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Perring (1970) referred to British rivers as ‘balsam highways’ since there are 

only a few river banks that have not been covered by I. glandulifera and that 

infestation had occupied over 50% of the UK’s 10 x 10km recording squares 

(Preston et al. 2002). According to Dawson & Holland (1999), I. glandulifera 

commonly invades medium to small sized rivers with poor water quality at 

lower altitude. These authors stated that the seeds of I. glandulifera can be 

dispersed by water currents, as they become negatively buoyant and are 

carried downstream, which leads to seed germination at the bottom of the 

water body and successful growth in disturbed ground (Trewick & Wade 

1986). Thus, this action may inhibit the seeds from spreading in the upper 

catchment areas which have critical efficient control (Dawson & Holland 1999). 

They also found other dispersal mechanisms of this non-native plant species 

seeds are by air turbulence, movements by animals such as cattle, human 

disruption either deliberately or accidentally such as recreational activities or 

by vehicles, and also regular vegetation maintenance by hand or machinery. 

These natural or non-natural distribution processes of plant seeds lead to high 

infestation and populations of I. glandulifera and may pose a major impact to 

the biodiversity and ecosystems (Dawson & Holland 1999). 

1.2.2 Impact of Impatiens glandulifera infestation  

According to Jeschke et al. (2014), the ‘impact’ term should be defined clearly 

and the term falls into 4 categories: (i) directionality (unidirectional or 

bidirectional changes), (ii) classification and measurement, (iii) ecological or 

socio-economic changes and (iv) scale (spatial or temporal). These authors 
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maintained that the term is referring to the changes caused by the non-native 

plant species to the area where they are introduced.   

Himalayan balsam is likely to pose a major risk to the biodiversity as the plant 

may outcompete the native plants in order to obtain nutrient and light supply 

especially in accessible habitats such as national parks (Tanner 2011) leading 

to unidirectional changes (possibly to reduce species diversity) as mentioned 

by Jeschke et al. (2014). For example, balsam in damp woodland habitats may 

suppress other native plants (Perrins et al. 1993) and diminish species 

diversity and richness by up to 25% in the introduced area (Hulme & Bremner 

2006). In contrast, Pyšek et al. (2012) found that due to the invasion of non-

native plant species, native plant species richness and diversity are likely to 

be reduced whereas soil biota richness and soil nutrients as well as water 

concentrations tended to increase, which can be considered as bidirectional 

changes (possibly an increase or decrease in species diversity) as 

documented by Jeschke et al. (2014).  

The impacts of Himalayan balsam on native plant species may occur naturally 

or through human disruption in an area (Jeschke et al. 2014). In a study of 

insect effects on plant species, Chittka & Schürkens (2001) showed that I. 

glandulifera produces a higher rate of sugar nectar production (0.47 + 0.12 mg 

per flower per hour) than other European plants enabling it to lure pollinators 

away from native species and resulting in a decrease of as much as 50% of 

pollinator visits to the native plant species. Meanwhile, Hulme & Bremner 

(2006) claimed that the after effect of invasion by I. glandulifera in a human-

disrupted environment is likely to result in the loss of as many as up to 15 
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species m-2 of native species in an area. However, these authors still 

maintained there is only a small threat of this non-native plant species to other 

vegetation in an area.  

It is estimated that £1.7 billion is spent annually on non-native species such 

as plant pathogens, arthropods, mammals and plant species in the British 

economy, with £1 million from the total cost spent on I. glandulifera 

management (Williams et al. 2010). In addition, this annual herbaceous plant 

may increase debris intake into the river system as the plant dies and is killed 

by the frost during autumn, leaving riverbanks exposed and likely leading to 

soil erosion (Tanner 2011). As a result, habitat niches used by invertebrates 

and spawning grounds for fish will potentially diminish which in turn may have 

negative effects on the ecology and invertebrate biodiversity (Tanner 2011). 

This has shown the impact of balsam infestation ecologically and economically 

in an introduced range. 

Finally, in terms of the scale (spatial and temporal) category, Malíková & Prach 

(2010) reported that I. glandulifera has occupied up to 76.8% of the length of 

Czech Republic rivers since 1990. These authors focused on the invasion of 

I. glandulifera at four rivers of comparable size from the time they were first 

recorded and as a result, there were no changes on the balsam abundance 

along the river banks. However, since balsam can spread and invade an area 

at a rapid rate, this annual species is able to populate and dominate 

continuously and quickly within 100 years, from the first localities downstream 

to large areas of the Czech Republic river banks; externally and internally as 

well as upstream areas (Malíková & Prach 2010).  
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Additionally, in multi-site removal and addition experiments, native plant 

species were not affected whether balsam was removed or added in the field 

(Prowse 2001), however, balsam did reduce the growth and occurrence of 

Urtica dioica in a riparian system in the UK (Tickner et al. 2001). In mature 

woodland in the north of England, balsam successfully outcompeted the native 

plants, including tree seedlings, which potentially may inhibit the next 

generation of woodlands (Maule et al. 2000). However, in a woodland area in 

Germany, there were no impacts of balsam on established tree seedlings of 

silver Birch, Betula pendula and Norway spruce, Picea abies (Ammer et al. 

2011). This has shown that effective management is urgently needed to 

control the aggressive populations and infestation of I. glandulifera to ensure 

the ecosystems and biodiversity are in a good state.  

1.3 Biological Control  

According to Driesche et al. (2008), there are several definitions of biological 

control which depend on their purposes and intention. Classical biological 

control (CBC) is likely to be applied permanently on a non-native invasive plant 

species in a large area for ecological changes, especially against pests of 

natural areas (forests, wetlands), urban areas and agricultural areas. This is 

carried out by attacking the non-native plant species using a new species of 

natural enemy (fungi, pathogens, insects or herbivores) which are found in the 

site of origin of the pest or weed. This method must be conducted for the 

advantage of the public rather than for individuals (Driesche et al. 2008).  



31 
 

Driesche et al. (2008) identified that a conservation biological control strategy 

is feasible to temporarily kill the plant pests on either native plants or non-

native plants in crop production areas. This approach is only applicable to a 

certain and specific location and time depending on the target plant’s 

population. This method begins with natural control by preserving any natural 

enemies in the field to suppress the pests which may be strengthened by the 

soils, crops or other vegetation. If this method is still insufficient, augmentation 

biological control may be applied by providing the right and suitable natural 

enemy species to suppress the pest population. Biopesticides which contain 

pathogens may be applied on crops too if there are any additional pests 

(Driesche et al. 2008).  

The advantage of using biological control over chemical control is that the 

biological control agents can be target according to the genetic variation in the 

plant host (Evans 1998) compared to weed resistance problems when using 

pesticides (Holt & Hochberg 1997). Biological control of invasive plant species 

using fungal pathogens has been well documented and widely used (Trujillo 

2005; Ellison et al. 2006; Ellison et al. 2008; Tanner, Ellison, et al. 2015; 

Anderson et al. 2016; Fourie & Wood 2018) as a weed management strategy. 

Plant-fungal interactions in a biological control approach are described further 

in the next section and Chapter 7.  

Throughout this study, CBC method was selected by using a rust fungus, 

Puccinia komarovii var. glanduliferae to control I. glandulifera growth. It is 

probably impossible to kill all balsam populations in the UK since we could not 

apply and spread herbicide that might inadvertently kill native plants and 
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aquatic organisms. However, effective ways to control and suppress their 

growth are required since the plant infestation and population is expanding 

year by year (Malíková & Prach 2010).  

1.3.1 CBC management of Impatiens glandulifera  

In recent years, there has been much interest in applying CBC against I. 

glandulifera (Shaw & Tanner 2008) due to time consuming, labour intensive 

and geographically limited access to conventional techniques (manually; 

cutting and hand pulling) (Tanner 2007). In addition, cutting the target plants 

must be done carefully below the lowest node to prevent seed set (Howell 

2002). Furthermore, applying chemical control may damage the environment. 

Although Glyphosate® application is effective against Himalayan balsam, it 

will also kill other plants in the surrounding areas (Stensones & Garnett 1994), 

while 2,4-D amine can only be applied when the plant is at the rosette stage 

in early spring (Environment Agency 2003). Therefore due to these factors, 

studies on biological control programmes against this non-native plant species 

have been conducted since 2006 (Tanner et al. 2011).  

Himalayan balsam should be susceptible to a CBC strategy since this species 

has few specific natural enemies in its introduced range (Shaw 2003). 

However, to date, there are few studies on CBC for the management of I. 

glandulifera. Research conducted by Tanner et al. (2015b) proposed a rust 

fungus, P. komarovii var. glanduliferae as a potential CBC agent which is likely 

to inhibit balsam growth. Detailed studies that have led this rust pathogen 

becoming the most suitable CBC agent are described further in Chapter 7.   
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1.3.2 Rust fungus, Puccinia komarovii var. glanduliferae 

Classical biological control of invasive plant species in Europe is still in the 

early stages compared to the other geographical regions such as Australia, 

South Africa and North America (Cock et al. 2010). However, UK Government 

departments (Shaw 2003) and European funding bodies (Cock & Seier 2007) 

interested in CBC have increased in recent decades (Cortat et al. 2010). It is 

suggested that the reason why CBC using fungal species is slow is because 

of the concern of transportation of plant pathogens between countries (Evans 

et al. 2001) and the lack of clear procedures for licencing fungal biological 

control agents (Seier 2005; Sheppard et al. 2006). Therefore, this has 

favoured scientists and researchers to use arthropods biological control 

agents instead.  

An understanding of biogeographical range, life cycle and reviewing herbarium 

samples of the target species, and also in-country support is essential to 

provide detailed information and successful delivery of the biological control 

programme (Tanner 2011). Thus, Centre of Agriculture and Bioscience 

International (CABI) Egham, UK have collaborated with the National Bureau 

of Plant Genetic Resources, New Delhi Under a MoU titled ‘The study of 

biological control of invasive plant species and Indian natural enemies’ in order 

to conduct biological surveys in India and to provide a clear understanding of 

P. komarovii in the native range (Tanner 2011). 

Puccinia komarovii was first identified on Impatiens parviflora and Impatiens 

amphorata in their native range, in Central Asia and the northern Himalayas 

respectively in 1904 (Piskorz & Klimko 2006; Tanner et al. 2015a). Since then, 
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the number of P. komarovii hosts on Impatiens species are increasing, 

namely: Impatiens amplexicaulis, Impatiens urticifolia (Zhuang & Wei 1994); 

Impatiens brachycentra (Afshan et al. 2012); Impatiens edgeworthii, Impatiens 

racemosa, Impatiens radiate (Iqbal & Khalid 1996) and Impatiens thomsonii 

(Arthur & Cummins 1933). In addition, there are a few unknown Impatiens 

species found in the foothills of the Himalayas which have been identified as 

hosts of P. komarovii (Arthur & Cummins 1933; Iqbal & Khalid 1996).  

In July 2008, P. komarovii was first found infecting I. glandulifera populations 

in their native (Himalayas) (Tanner et al. 2015b). At the beginning, the authors 

only found a few plants which had been infected by an aecial stage of rust in 

high altitude areas. Following an in-depth observation, under favourable 

climate, they found a large number of patches of the aecial stage infecting I. 

glandulifera seedlings (6 cm – 18 cm) resulting in more than 50% of the plants 

being infected in June and July between 2009 – 2010. In 2010, rust infected 

plants were imported by CABI into the UK by a high-level quarantine facility 

under the Department of Environment, Food and Rural Affairs (DEFRA). They 

were either live seedlings or as dried material preserved for evaluation and 

following detailed study on P. komarovii as a CBC agent, the fungus was 

released for the first time in the introduced range in August 2014 (Tanner et 

al. 2015a).  

Previously, P. komarovii was known as an autoecious and host specific rust 

which infected only I. parviflora. However after host range testing, based on 

molecular and cross-inoculation studies by Tanner et al. (2015b), the rust 

fungus on I. glandulifera was separated at the varietal level. The authors 



35 
 

indicated there is clear separation of two rust strains of I. glandulifera (from 

India) and I. parviflora (from Hungary and China) in analysis of the nrDNA ITS 

and 28S (LSU) regions. In addition, I. glandulifera indicated immunity in cross 

inoculations of P. komarovii ex I. parviflora and vice versa in establishing the 

presence of species-specific rust pathotypes. Therefore, based on these two 

factors, the authors proposed the rust on I. glandulifera as Puccinia komarovii 

var. glanduliferae, an autoecious and fully-cycled (macrocyclic) rust (Tanner 

et al. 2015b). This is consistent  with the study by Tanner (2011) who 

established the life cycle of rust fungus P. komarovii var. glanduliferae (Table 

1.1), based on the field observations in the native range and the experiments 

conducted under quarantine conditions. For a few weeks after seed 

germination, the infected plants which are in aecial stage probably face 

premature death due to no setting of seeds and the reduction of their height, 

hence they are smaller and less healthy than uninfected plants. Aecia-infected 

plants will probably collapse due to secondary infections and split open 

hypocotyls, which are hard to find in late July and August (Figure 1.2).  
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Figure 1.2  (a) Aecial cups infection on hypocotyls and (b) their close-up 

image. (c) Transverse section of aecial cups under microscope. The photos 

were courtesy of CABI staff. Two former photos were from Nobert Maczey 

while the latter was from Carol Ellison. (d) Urediniospores infection on the 

abaxial leaf surface.  

 

(a) (b) 

(c) (d) 
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Table 1.1 The proposed life cycle of Puccinia komarovii var glanduliferae 

(Tanner, 2011)  

Period 

(Season)  

Life cycle of Puccinia komarovii on Impatiens glandulifera 

growth  

Oct – 

March 

(Winter)  

Teliospores and balsam seeds are in dormancy state below the 

soil surface and probably under snow.  

April – 

May  

(Spring)  

From previous season’s leaf litter infected with teliospores, 

seedlings, as well as teliospores emerge and grow as the increase 

of temperature and light, snow starts to melt, providing sufficient 

water for germination. Subsequently, the release of 

basidiospores infect the hypocotyls of young seedlings. These 

infected plants produce spermagonia and later aecia on the stems 

of young plants.  

June – 

July 

(Summer)  

Aecial cups which appear on the surface containing aeciospores, 

are dispersed by wind current and rain splash. They infect the 

leaves and encourage the hypocotyl to grow longer and taller than 

those uninfected plants, resulting in the boost up of the aecia 

above the canopy. This would support the dispersion of 

aeciospores to other individuals. Later on, there is an incubation 

period within the leaves followed by production of urediniospores 

by uredinia at the under surface of the leaves. Urediniospores 

spread locally to infect leaves of other individuals within 

populations and its dispersal is enhanced by wind currents. Within 

this crucial cycling stage, there is more than one generation 

involved and if the rust is close to epidermis area and in patchy 

forms, it probably may injure the plants and bring detrimental 

impact on the infected plants.  

Aug – 

Sept  

(Autumn) 

The formation of teliospores could be developed and they are 

enhanced by the cool temperature and potential chemical reaction 

in the aging leaves. Teliospores are released as the plant begins 

to die and drop the leaves with telia attached to it or discharged 

from the telia into the soil. Impatiens glandulifera release and 

spread the seeds to the entire population.  
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1.4 Arbuscular Mycorrhizal Fungi (AMF)  

Plant species consume and obtain essential resources from the microbial 

diversity in soil which in turn can successfully improve plant development and 

increase the diversity and composition of above and below-ground 

invertebrate and fungal communities (van der Putten et al. 2009). Arbuscular 

mycorrhizal fungi (AMF) within the root system form a mutualistic relationship 

with plants through arbuscules, a branching tree-like structure which helps 

plants to absorb water and phosphate from the soil (Jakobsen et al. 1992; 

Smith & Read 1997). In return, carbon is transferred from plants to AMF, 

mostly across the arbuscular membrane and with some across the hyphal wall 

within the root (Smith & Read 1997; Brundrett 2002). Vesicles, globular or 

round segmented structures form in a root and are thought to be food storage 

organs, being full of lipid (Smith, & Read 1997).  

The infestation of non-native plant species that are associated with and 

dependent on AMF in a new habitat may lead to a competition with native plant 

species as reported by Harner et al (2010). These authors claimed there is 

high colonisation and establishment of a non-native species, Centaurea 

stoebe in a riparian system in the United States whereas Marler et al (1999) 

showed that AMF presence enabled Centaurea maculosa to grow well and 

compete with the native plant species, Festuca idahoensis in rangelands in 

Western North America. In contrast, there are also non-native plant species 

that have a low dependency on AMF and this  probably reduces the network 

penetration of AMF hyphae within the invaded areas compared to the 

uninvaded areas (Vogelsang et al. 2006) especially during plant colonisation 
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in a new habitat (Harley & Harley 1987). I. glandulifera is a non-native plant 

species that has been reported as being sparsely colonised by AMF (Beerling 

& Perrins 1993). Since I. glandulifera has sparse associations with AMF, the 

plant is likely to infest areas where degradation of AMF has occurred naturally, 

or prior to invasion of other plant species with non or low mycorrhizal 

dependency (Reinhart & Callaway 2006). These authors also believed that an 

AMF network, which is potentially poor and imperfect, develops when I. 

glandulifera forms monocultures, which in turn reduces the chances of native 

plant species colonisation. As a result, I. glandulifera might invade and 

dominate the areas due to the lack of competition (Reinhart & Callaway 2006).  

On the other hand, AMF colonisation may reduce I. glandulifera growth since 

there appears to be a negative relationship between mycorrhizal colonisation 

and plant height and total leaf area in the introduced range (Tanner et al. 

2014). This may simply be due to the cost of the association of I. glandulifera 

with new and unsuitable AMF (Tanner et al. 2014). To the best of our 

knowledge, no previous study had been carried out on the relationship 

between AMF colonisation and balsam growth and plant size. Thus, this study 

was initiated to identify the effect of AMF colonisation on plant growth.  

1.5 Endophytic Fungi 

Endophytes are usually referred as fungi or bacteria that inhabit the interior 

part of living tissues of plants and present symptomless infections on plant 

hosts (Rodriguez et al. 2009). To date, fungal endophytes are well reported in 

grass (Latch 1993; Rudgers et al. 2009; Rudgers & Orr 2009; Larimer et al. 
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2012) and forb species (Gange et al. 2007; Wearn et al. 2012; Aschehoug et 

al. 2014; Hodgson et al. 2014), since the fungi are capable of protecting plants 

from herbivores and other plant pathogens, which are important in economic 

and ecological aspects. Endophytes of Balansiaceae that are present in 

grasses, sedges and rushes are vertically transmitted from the parent 

generation to the offspring through seeds, whereas endophytes in non-woody, 

herbaceous and forb species are commonly transmitted by air-borne spores, 

known as horizontal transmission (Currie et al. 2014).  

Endophytes found in forbs seem to show a lack of host specificity with the 

same fungal species colonising all plants that grow closely in the same 

population (Petrini 1986). However, this contrasts with the study by Gange et 

al. (2007) who found the fungus, Cladosporium cladosporioides had higher 

isolation frequency in Cirsium arvense plants, compared to the closely related, 

Leucanthemum vulgare when plants were growing adjacent to each other. 

This is probably due to the excellent performance of fungal growth within C. 

arvense or that the fungus is more able to colonise this plant species. 

However, the opposite situation seems to occur for L. vulgare, which was 

colonised frequently by Acremonium murorum. Perhaps the fungi penetrate 

plants through the damaged tissues caused by insect feeding or through 

epidermis and stomata which are the most feasible entry routes (Gange et al. 

2007). These authors also suggested that the structure of the endophyte 

assemblage and interactions with other organisms are determined by the 

order of their colonisation within a plant species. 
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The endophytic fungus Alternaria alternata showed higher isolation frequency 

in gall material than leaves in dry and moist habitats, showing its tendency to 

increase the growth of gall tissues (Gange et al. 2002b). These authors 

suggested it is possible that the fungus suppresses other fungal species in the 

gall tissues. In addition, a study showed that Chaetomium cochliodes is 

capable of producing secondary metabolites which move systemically in the 

plant and spread from inoculated leaves to new leaves (Hartley et al. 2015). 

The impact on foliar chemical composition and infection was better in newly 

colonised leaves compared to the old leaves, shown by significant changes in 

ten metabolite compounds. However, the greater infection in new leaves was 

possibly because the plants were in defensive mode towards endophytes in 

old leaves (Hartley et al. 2015).  

To our current knowledge, there are no studies on the effects and chemical 

changes of endophytic fungi on balsam growth. Recent studies have 

established that balsam generates positive plant soil feedbacks which alter 

nutrient levels as well as influencing and manipulating soil microbial and fungal 

endophytic communities in its invaded range (Pattison et al. 2016). In return, 

plants could possibly be more resistant and well defended against natural 

enemies and any control agents. Therefore, throughout this study, single or 

combinations of endophytes into balsam leaves were conducted in order to 

examine their effects on plant growth and to study whether these fungi 

enhance rust fungus effectiveness. 
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1.6 Multiple Fungal Interactions 

1.6.1 Interaction of AM Fungi and Plant Pathogens 

Arbuscular mycorrhizal fungi are well documented as being able to protect 

their hosts against plant pathogens (Linderman 1994; Azcon-Aguilar & Barea 

1996; Fusconi et al. 1999; Borowicz 2001; Sikes et al. 2009; Wang et al. 2018). 

For example, a study has shown that the AMF, Funneliformis mosseae could 

protect tomato, Lycopersicon esculentum against infection by Phytophthora 

nicotianae var parasitica (P. parasitica) by recording smaller necrosis 

percentage when mycorrhizas and pathogen were added compared to the 

AMF-free plants (Fusconi et al. 1999). Similar results were found when F. 

mosseae protected tomato against the air-borne fungal pathogen, Passalora 

fulva by maintaining photosynthetic activity compared to the control (Wang et 

al. 2018).  

A single inoculation of F. mosseae inhibited the development of the airborne 

pathogen, Gloesporium orbiculare in cucumber, Cucumis sativus and was 

more effective when combined with the plant growth-promoting fungus (PGPF) 

Fusarium equiseti by increasing the plant weight (Saldajeno & Hyakumachi 

2011). However, Chandanie et al. (2006) found no significant effect on disease 

development and growth rate in cucumber when F. mosseae was added alone 

compared to the non-treated plants although the leaf disease symptoms were 

increased. However, a combined inoculation of AM with PGPF, Phoma sp. 

isolate (GS8-2) was effective in suppressing the disease symptoms. The 

reason for contrasting results with the usage of the same mycorrhiza are 

unknown although both studies used the same commercial inoculum which is 
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from Japan, and the plants were challenged with the same pathogen when 

four weeks old.  

Interestingly, plant and fungal identity can be important factors in determining 

AMF-mediated host tolerance to a pathogen (Newsham et al. 1995; Sikes et 

al. 2009) instead of AMF species richness (Lewandowski et al. 2013). 

Furthermore, a study showed that a plant with a complex root system, Setaria 

glauca, is more susceptible to pathogen infection by Fusarium oxysporum 

compared to a plant with a simple root system, Allium cepa. There were no 

differences of pathogen infection on A. cepa roots irrespective of whether the 

pathogen was added alone or when the pathogen was combined with AM from 

Glomeraceae and Gigasporaceae family. In contrast, there were severe 

infections in S. glauca roots when the pathogen was added alone and in 

combination with members of Gigasporaceae, but the plant was protected 

when combined with the members of Glomeraceae (Sikes et al. 2009). 

Similarly, the AMF, -Rhizophagus clarus protected a daisy, Leucanthemum 

vulgare from a plant root pathogen, Rhizoctonia solani whether single or in the 

mixture, while other mycorrhizal species, Claroideoglomus etunicatum and 

Rhizophagus intraradices did not reduce the deleterious effects. It is also 

interesting to note that the presence of the pathogen increased the number of 

arbuscules in the daisy (Lewandowski et al. 2013).  

This has shown that network penetration of AMF hyphae and their identities 

plays an important role in plant growth and plant communities as well as soil 

health and associated native species (Gange & Ayres 1999; Gange et al. 

1993) as up to 80% of plant species are thought to be dependent on 
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mycorrhizal fungi (Jeffries et al. 2003). The occurrence of AMF generally 

exerts positive effects on the host against plant pathogens, and has made 

these fungi potential biological control agents in crop plantations such as 

tomato, pea, pepper and cucumber (Siddiqui & Akhtar 2008) via effective 

bioprotection mechanisms whether working separately and/or together 

(Harrier & Watson 2004).  

Currently, no study has been conducted on the interactions between 

mycorrhizal fungi and a plant pathogen in Himalayan balsam. Therefore, to 

support the finding and examine the effectiveness of the rust fungus, Puccinia 

komarovii var. glanduliferae as a CBC agent of balsam (Tanner et al. 2015b), 

it is important to understand their interactions to provide information to 

reinforce the management of this invasive species.   

1.6.2 Interactions of AM and Endophytic Fungi  

Plants associate with multiple microbial communities throughout their growth 

and development. Although the interactions between endophytic and 

mycorrhizal fungi are likely to be common in nature, only a few studies have 

been documented in grasses (Chu-Chou et al. 1992; Omacini et al. 2006; 

Mack & Rudgers 2008; Larimer et al. 2012) while more limited studies have 

been conducted in forb species (Eschen et al. 2010). Funneliformis mosseae 

enhanced endophyte, Epichloe elymi growth by increasing tiller production 

and in return, the latter fungus increased AMF colonisation in a host grass, 

Elymus hystrix (Larimer et al. 2012). This has shown that the host may be 

unable to accommodate both symbionts simultaneously and that the 
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endophyte effect varies between AMF species as the endophyte reduced 

Claroideoglomus claroideum colonisation (Larimer et al. 2012). Similarly in 

forbs, endophyte species can positively or negatively affect the abundance of 

arbuscules in Cirsium arvense, while the mycorrhizal fungi can alter the 

composition of endophyte fungal communities through nutrient availability 

(Eschen et al. 2010). 

Epichloe coenophiala  endophytes have been shown to suppress mycorrhizal 

colonisation in tall fescue, Festuca arundianacea plants (Chu-Chou et al. 

1992; Mack & Rudgers 2008). This is probably because of a few mechanisms 

which were; (a) endophyte density could alter nutrient requirement by host 

plants by increasing root surface area for nutrient absorption that indirectly 

affected AMF, (b) as endophytes inhabit shoots, it gave spatial priority to this 

fungus to gain more carbon compared to AMF (c) endophyte gains a temporal 

priority as it is vertically transmitted compared to horizontally transmitted 

mycorrhizal fungi (Mack & Rudgers 2008) and (d) because of toxic metabolites 

(secondary metabolites and flavonoids) produced by the endophytic fungus 

that reduce the AM fungal establishment (Chu-Chou et al. 1992).  Similarly, in 

a monoculture of endophyte-inoculated (+E) cool-season grass species, 

Lolium multiflorum, a fungal endophyte, Epichloe occultans negatively 

affected the mycorrhizal colonisation (Omacini et al. 2006). However, when in 

a mixture of +E and endophyte-free (-E) plants, the former plants increased 

the AMF colonisation in neighbouring plants. This was probably because of 

the resistance on systemic induction in +E plants by diverting the resources to 

the symbiotic endophyte that improved host growth rather than to the other 

competitors for resources, mycorrhizal fungi (Omacini et al. 2006).  
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To date, no published study has examined the manipulation of both fungi and 

their interactions in balsam. Therefore, to provide an important understanding 

of microbial community interactions in balsam, a study on their interactions 

with presence and absence of both fungi was conducted as described in 

Chapters 4 and 7.  

1.6.3 Interactions of Endophytic Fungi and Plant Pathogens  

Endophytes are known to benefit host plant growth and defend against 

herbivores  (Gange et al. 2007; Gange et al. 2012) and pathogens (Busby et 

al. 2015). Unlike the relationship between mycorrhizas and plant pathogens 

that were well documented (Linderman 1994; Azcon-Aguilar & Barea 1996; 

Fusconi et al. 1999; Borowicz 2001; Sikes et al. 2009; Wang et al. 2018), the 

interactions between fungal endophytes and plant pathogens is more poorly 

known (Gao et al. 2010), especially in forb and invasive species. Therefore, to 

understand the efficacy of the rust fungus as a CBC agent on balsam (Tanner 

et al. 2015b), the interactions of endophytic fungal communities and the plant 

pathogen is important to explore. 

One study found that endophyte species (Colletotrichum sp, Xylaria sp and 

Fusarium sp.) have the ability to protect cacao, Theobroma cacao by 

decreasing leaf necrosis percentage and leaf mortality when the seedlings 

were challenged with a pathogen, Phytophthora sp (Arnold et al. 2003). The 

protection was greater in mature leaves than young leaves and in vitro studies 

suggested that leaf chemistry mediated the protection by direct interactions of 

endophyte with foliar pathogens (Arnold et al. 2003). Fungal endophytes from 
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Pinus monticola mediated host resistance and survival against white pine 

blister rust, Cronartium ribicola (Ganley et al. 2008) and similarly, endophytes 

were suggested to suppress pathogens in cereal production (O’Hanlon et al. 

2012). Gao et al. (2010) has suggested there were direct and indirect effects 

that have triggered endophyte inhibition of plant pathogens. For example, 

endophytic fungi directly produced antibiotics and lytic enzyme which strongly 

suppressed the growth of other microorganisms including pathogens 

(Gunatilaka 2012) in host plants, while the endophytic fungi also indirectly 

activated plant defence mechanisms to resist infection of pathogen (Gao et al. 

2010).  

1.6.4 Interaction of AM, Endophytic Fungi and Plant Pathogens  

To date, to the best of my knowledge, no published study has been conducted 

on the interactions of AMF, endophytes and a plant pathogen in a host plant. 

Therefore, to achieve the main objective of this research which was studying 

the factors that affect rust fungus as a CBC agent, a study using mycorrhizas, 

an endophyte (Colletotrichum acutatum) and the rust fungus in balsam was 

conducted as described in Chapter 7.  

1.7 Aims, Objectives and Hypotheses 

The main aims of this research were to determine the effect of insects and 

multiple fungal interactions on Himalayan balsam growth and performance 

and to examine the factors that may affect the biological control of this invasive 
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plant. The objectives of this research along with the associated hypotheses 

tested are detailed below: 

Objective 1: The interaction between AMF, endophyte and invertebrates 

in Himalayan balsam. 

In Chapter 4, the main objective was to study how insects, mycorrhizas and 

endophytes affect balsam performance. The second objective was to evaluate 

how the foliar endophyte communities in balsam plants were influenced by 

insects. The hypothesis to be tested in this chapter was that the multiple 

interactions would impact plant growth and and the composition of the foliar 

endophytic communities, but that interactions would depend upon the identity 

of the fungal species.  

Objective 2: The interaction between balsam and associated microbial 

communities through plant soil feedbacks. 

In Chapter 5, the main objective was to study the effect of mycorrhizas on 

balsam performance in the presence of commercial inocula, compared with 

plants that were grown in the soil that had previously supported the plant. The 

second objective was to study the differences of foliar endophyte communities 

in plants that grew in ‘clean’ soil compared with that which had previously 

supported balsam plants. The hypothesis to be tested in this study was that 

Himalayan balsam grown in a balsam soil may show different plant 

performance and would display different above and below ground microbial 

communities, through the process of plant-soil feedback. 
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Objective 3: Mycorrhizal fungal effect on balsam competitive 

interactions. 

In Chapter 6, the main objective was to determine how AMF affect balsam 

performance in competitive environments and how this impacts on foliar fungal 

communities. The hypothesis to be tested was that mycorrhizal colonisation 

would reduce balsam growth and fungal communities when in a monoculture, 

but that this may differ when it co-occurs with native plant species.  

Objective 4: Multiple fungal effect on classical biological control of 

Himalayan balsam  

In Chapter 7, the main objective was to study the effect of the interactions 

between AMF, endophytic fungi and the rust fungus on balsam growth. The 

second objective was to determine the effect of multiple fungal infections on 

above and below ground communities. The hypothesis was that the fungal 

interactions would seriously impact on rust effectiveness as a CBC agent on 

balsam. This is because of induced chemical changes in the host plant.   

.  
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CHAPTER 2 

General Methods 
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CHAPTER 2 GENERAL METHODS 

2.1 Seed Germination  

Ripe Impatiens glandulifera seeds (Figure 2.1a) were collected from wild 

populations at Harmondsworth Moor, Middlesex, UK: 51o29 ’58.2N, 000o 

29.02.3”E in September and October yearly (2015-2018). The seeds were air 

dried in a tray for one week in the laboratory then stored in a sealed bag in a 

4oC refrigerator for nine months until used in the experiments.  

At the start of each experiment, the seeds were soaked in 5% ethanol (5% v/v: 

5ml ethanol in 100ml distilled water) for 15 minutes to soften the seed capsule 

for rapid germination and to eliminate pathogenic fungi. These seeds were 

sown on moistened filter paper with sterile distilled water in a 9cm diameter 

Petri plate and the lids were sealed in position with parafilm. The plates were 

placed in the 4oC refrigerator for 8 weeks to allow germination. Later, the 

germinating seeds (Figure 2.1b) were planted in seed trays containing non-

sterile John Innes No. 2 compost (Keith Singleton, Egremont, UK) covered 

with a propagator hood (Figure 2.1c) in a glasshouse to enhance propagation. 

After one week, when the hypocotyls were emerging, the hoods were removed 

(Figure 2.1d).  
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Figure 2.1 (a) Size of balsam seed (no 1) compared to 5 pence and other 

native plant seeds (Plantago lanceolata is number 2 and Holcus lanatus is 

number 3). (b) Germinating balsam seeds in a sealed Petri plate. (c) 

Germinating seeds were sown in the seed trays covered with a propagator 

hood and (d) removed the hood a week after. Different commercial mycorrhizal 

features, (e) Symbio inoculum in a powder form while (f) Plantworks inoculum 

in a granular form. 
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After 4 weeks when the seedlings were strong and producing true leaves, they 

were potted into 2L pots containing John Innes Type 2 compost and the roots 

were surrounded by live mycorrhizal inoculum treatment, as appropriate.  As 

recommended by the companies, 7.5g of Plantworks inoculum (Sittingbourne, 

Kent) and 2g of Symbio product (Wormley, Surrey) were added in each 1L pot 

(Figure 2.1e and 2.1f) while sterile products were autoclaved at 121oC for 30 

minutes and used for control plants.   

2.2 Endophyte Inoculation  

The seedlings were selected for inoculation when the plants were at the three 

whorl leaf stage (Figure 2.2a) and of a similar height. The endophyte spores 

were harvested from the culture plate (Figure 2.2c and 2.2d) using a sterile 

needle in a laminar flow cabinet and the concentration was adjusted using a 

haemocytometer to approximately 1.5x105 spores ml-1 in 0.05% Tween 80. 

The leaves were inoculated by spraying the spores suspension on the abaxial 

side of the leaves (9-11 leaves per plant), in two strokes (ca. 550µl/leaf) using 

a handheld bottle sprayer. Control plants were inoculated with 0.05% Tween 

80 only. After spraying the spore suspension, the plants were placed in a 

Perspex box (100cm x 100cm x 100cm) (Figure 2.2b) for 48h to provide high 

humidity environment and allow the spores to germinate. Between each 

treatment, the Perspex box was cleaned thoroughly using a 100% ethanol to 

avoid contamination from the previous test. After 48h, the plants were 

removed from the box and were placed in the glasshouse.  
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Figure 2.2 (a) Balsam seedling at three whorl stage that was ready to be 

inoculated. (b) Balsam plants were left in a Perspex box for 48 hours to allow 

spore germination. (c) Colletotrichum acutatum culture grown on a PDA plate 

and (d) under dissecting microscope at 40x magnification.  

2.3 Leaf Surface Sterilisation  

Three leaves (bottom, middle and top) from each plant in each treatment were 

harvested and isolated for endophytes. The isolations were conducted using 

fresh leaves to avoid changes in the fungal communities within the tissues. 

(b) (a) 

(d) (c) 
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Two round discs, each approximately 6mm diameter were cut from each leaf 

using a sterilised hole punch and surface-sterilised following method III of 

Schulz et al. (1993) with slight modifications. The discs were immersed in 

100% ethanol for 30 sec, washed in sterile distilled water, immersed in 4.7% 

sodium hypochlorite (NaOCl) (4.7% v/v: 4.7ml NaOCl in 100ml distilled water) 

for one min, immersed in ethanol for a further 30 sec and followed by four 

separate washes in sterile distilled water. The fragments were placed abaxial 

surface downwards (Figure 2.3a) onto potato dextrose agar (PDA) plate with 

80mg L-1 streptomycin sulphate and 60mg L-1 penicillin G added to inhibit 

bacterial contamination. The same discs were pressed onto PDA as control 

plate in order to examine the efficacy of surface sterilization to remove 

epiphytic fungi (Figure 2.3b). The plates were sealed with Parafilm to prevent 

contamination and stored in a storage box at room temperature.  

To eliminate confusion through over-growth on the plate, all fungal colonies 

growing on PDA plates were removed before overlapping on each other and 

transferred onto potato carrot agar (PCA) plates to induce sporulation and to 

allow for identification (Figure 2.3c and 2.3d). After at least one month, the 

fungal structures on PCA were identified and retained as separate pure 

cultures (Figure 2.3e and 2.3f). Fungal identification was made in two ways. 

First, the fungi were placed in Erythrosin stain on slides for morphologically 

identification by Dr. Brian C. Sutton (ex-CABI).  

Second, if the cultures contained sterile mycelium and could not be identified 

through visualisation, there were sent to the Microbial Identification Service, 

Centre of Agriculture and Biosciences International (CABI), for molecular 
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identification. The molecular analysis was run following their in-house 

methods. All samples were checked for purity and molecular assays were 

carried out on each sample using nucleic acid as a template. A propriety 

formulation [microLYSIS®-PLUS (MLP), Microzone, UK] was subjected to the 

rapid heating and cooling of a thermal cycler, to lyse cells and release 

deoxyribunocleic acid (DNA). Once DNA was extracted, Polymerase Chain 

Reaction (PCR) was employed to amplify copies of the rDNA in vitro. The 

quality of the PCR product was assessed by undertaking gel electrophoresis. 

PCR purification step was carried out to remove unutilised dNTPs, primers, 

polymerase and other PCR mixture compounds and obtained a highly purified 

DNA template for sequencing. This procedure also allowed concentration of 

low yield amplicons. Sequencing reactions were undertaken using BigDye® 

Terminator v3.1 kit from Applied Biosystems (Life Technologies, UK) which 

utilised fluorescent labelling of the chain terminator ddNTPs, to permit 

sequencing. Removal of excess unincorporated dye terminators was carried 

out to ensure a problem-free electrophoresis of fluorescently labelled 

sequencing reaction products on the capillary array AB 3130 Genetic Analyzer 

(DS1) DyeExTM 2.0 (Qiagen, UK). Modules containing prehydrated gel-

filtration resin were optimised for clean-up sequencing reactions containing 

BigDye® terminators. Dye removal was followed by suspension of the purified 

products in highly deionised formamide Hi-DiTM (Life Technologies, UK) to 

prevent rapid sample evaporation and secondary structure formation. 

Samples were loaded onto the AB 3130 Genetic Analyzer and sequencing 

was undertaken to determine the order of the nucletiode bases, adenine, 

guanine, cytosine and thymine in the DNA oligunocleotide. Following the 
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sequencing, identifications were undertaken by comparing the sequence 

obtained with those available from the European Molecular Biology Laboratory 

(EMBL) database via the European Bioinformatics Institute (EBI).  
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Figure 2.3 (a) Two leaf discs from each leaf were placed abaxial surface on 

a PDA plate and (b) the same fragments were used for leaf press. The clean 

plate showed effective endophyte isolation technique. (c) Fungal cultures 

grown on PDA plates were transferred to PCA plates to eliminate overlapping 

growth and encourage sporulation –front and (d) back of PDA plate. The 

samples of fungi stock in a PCA plate (e) is Colletotrichum acutatum while (f) 

is Cladosporium sphaerospermum.  

(c) (d) 

(b) (a) 

(e)
)) 

(f) 
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2.4 Root Staining 

Roots were extracted from the soil and washed under running water until all 

soil particles were removed. The roots were cut into pieces approximately 1cm 

in length and were immersed in 70% ethanol and were stored in vials until 

used for root staining. The root staining method (Vierheilig et al. 1998) was 

begun by washing the roots under running water and removing any ethanol 

excess. Then the roots were placed in a biopsy processing cassette (Thermos 

Fisher scientific, Waltham, USA), immersed in a beaker containing 10% 

potassium hydroxide solution (KOH) (10% w/v: 10g KOH in 100ml distilled 

water) and placed in a water bath at 80oC for 25 min. Then, the cassettes 

containing roots were washed under running water for a period of 5 min until 

the KOH solution was completely removed. The cassette was immersed in a 

beaker containing staining solution (84.4:15:0.6, distilled water: 1% 

hydrochloric acid: Quink blue pen ink) and placed back into the water bath for 

a period of 30 min.  

Upon removal from the stain solution, the roots were placed evenly on a slide 

that containing distilled water to prevent the roots from drying out and the cover 

slip was sealed using nail vanish. The roots were analysed under compound 

microscope at 40x magnification. The percentage arbuscular mycorrhizal fungi 

(AMF) colonisation of each root sample was analysed with the cross-hair 

eyepiece method of  McGonigle et al. (1990). The percentage of root length 

colonised by AMF was evaluated by using click counter where 100 root 

sections was recorded for the presence and absence of hyphae, vesicles and 

arbuscules (Figure 2.4). This process was repeated for all root samples.  



60 
 

  

 

 

 

Figure 2.4 Arbuscular mycorrhizal fungi (AMF) colonisation on root sections 

under microscope at 40x magnification containing (a) arbuscules, (b) hyphae 

and vesicles.  

2.5 Rust Fungus Infection and Harvesting  

Twenty Himalayan balsam plants were grown in the glasshouse in order to 

bulk up rust fungus inoculum, which was provided by CABI. The seedlings 

were infected with the rust at the three or four leaf whorl stage. A 1:50 ratio of 

spores to talc was prepared fresh and mixed in a 9cm diameter Petri plate and 

applied to the abaxial surface of leaves, as described by Tanner et al. (2015a).  

The spore/talc mix was evenly spread on to the lower leaf surface using a 

camel hair-brush (Humbro Senator, number 3) and was sprayed with distilled 

water to enhance an efficient infection. Following iinoculation, the plants were 

placed in a dew chamber (Mercia Scientific) for 48h and set at 15oC. After 48h, 

the plants were placed separately from uninfected control plants in the 

glasshouse. Between each treatment, the dew chamber was cleaned 

thoroughly using 100% ethanol to avoid contamination from the previous test. 

The remainder of the spore/talc mix was tapped into a Petri plate containing 

Arbuscules (a) (b) Hyphae 

Vesicle 
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tap water medium in order to examine the efficacy of rust fungus inoculation 

and development. The plates were then placed in a dew chamber. 

Upon rust fungus development and completion of the life cycle, urediniospores 

were harvested (Figure 2.5) from the plants using a sterile needle or by tapping 

infected leaves or stems over a Petri plate and stored in a 4oC refrigerator until 

used in next experiment.  

 

 

              

        

Figure 2.5 Rust fungus spores at 40x magnification under compound 

microscope.  

2.6 Plant Harvesting  

Plants were harvested (Figure 2.6a) after being grown for nine weeks to 

maturity and ensuring the plant did not flower (Himalayan balsam is listed 

under Schedule 9 of the Wildlife and Countryside Act, 1981). Plant height, leaf 

number and rust spores were measured and recorded. The shoots were 

collected, kept in an envelope individually and dried in a drying cabinet for two 

weeks (Figure 2.6b). Upon drying, the shoots were measured for dry shoot 

biomass. The leaves and roots were collected for fungi assessment as 

detailed in section 2.3 and 2.4.   

Urediniospores 

Teliospore
s 
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Figure 2.6 (a) Plant before flowering and ready to be harvested. (b) Plant 

shoots were kept in an envelope and placed in a drying cabinet for two weeks.  

2.7 Statistical Analysis 

All of the statistical analysis was conducted using R Studio version 1.1.383. 

The normality of the data and equality of variance were evaluated prior to 

analysis. Percentage data were arcsine transformed to meet the assumptions 

of the test beforehand. All data that violated the assumptions were 

transformed with square-root or logarithmic transformations. Endophyte 

Isolation Frequency (IF) was calculated for each fungal species by dividing the 

number of isolations of a fungal species per plant by the total number of 

isolations of all fungal species in that plant (Gange et al. 2007). Endophyte 

species richness and species abundance were examined across the 

treatments. Differences of endophyte community composition between 

treatments were analysed by analysis of similarities (ANOSIM) using the 

Community Analysis Package (CAP5) and the results shown by non-metric 

multidimensional scaling (NMDS). 

(a) (b) 
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CHAPTER 3 PRELIMINARY EXPERIMENTS 

This chapter describes five small experiments to underpin the main 

experiments as decribed in Chapters 4, 5, 6 and 7. A summary of each 

experiment is given as below:   

 Section 3.1: Fungi on Himalayan balsam in the field 

This section describes the outcomes of mycorrhizal presence on plant 

growth in the field, using two commercial inocula, sold by Plantworks 

(PW) and Symbio (SY). It was found that SY inoculum showed a 

promising effect in weakening plant growth. This experiment also has 

shown that there were ten endophyte species present in the 

environment and mycorrhizas influence the endophyte community 

composition in balsam leaves.  

 Section 3.2 : Endophyte inoculation in a controlled environment 

This study investigated the effectiveness of the endophyte inoculation 

technique and examined the inoculation effect on balsam growth. It was 

found that spraying endophytes on to balsam leaves in a perspex box 

was successful and endophytic Colletotrichum acutatum had the 

greatest capacity to reduce balsam growth. This study also showed that 

the identity of individual endophyte species may be a deciding factor in 

plant growth and the microbial communities within the leaves.  

 Section 3.3 : Endophyte inoculation in an insect-free environment 

This study was conducted to investigate whether an insecticide 

(Deltamethrin) has any direct effect on plant growth. It was found that 

the insecticide treatment did not affect plant growth and did not have 
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any fungicidal effect on the endophytes within balsam. Therefore, the 

insecticide could be used as an experimental tool in balsam-fungi-

insect interactions study as described details in Chapter 4.  

 Section 3.4 : Arbuscular mycorrhizal fungi ‘spore-wash’ 

This study investigated the most appropriate non-mycorrhizal controls 

for the two mycorrhizal inoculants used –PW and SY. This study found 

no differences in plant performance between sterilised inoculum and 

filtrate for both inocula, and mycorrhizal colonisation was only found 

with the live inocula. Therefore, sterilised inoculum was selected to be 

used as the control in the main experiments when live inoculum was 

involved.  

 Section 3.5 : Seed-borne fungal endophytes 

This study investigated endophyte fungal transmission in balsam plants 

by establishing three treatments (sterilised and squashed seeds, 

sterilised intact seeds and finally non-sterilised but intact seeds). It was 

found that the seed sterilisation technique was effective and so was 

used as the primary method in all main experiments in order to eliminate 

the confounding effects of seed surface fungi. It also suggested that all 

fungi found in the balsam leaves were transmitted horizontally from the 

environment as no endophytes were found within the seeds.  
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3.1 Fungi on Himalayan balsam in the field  

Arbuscular mycorrhizal fungi (AMF) are soil fungi that may influence plant 

nutrition and growth by enhancing the uptake of over 50% of phosphorus and 

other nutrients to the plant through hyphal networks (Jakobsen et al. 1992; 

Smith & Read 1997). However, plant species do not profit equally from AMF 

and vary in growth response which depends on the fungal composition and 

identity, that differ between locations (Helgason et al. 1999; Husband et al. 

2002). Specific plant-AMF combinations may influence the result of shoot 

biomass and phosphorus uptake of the plant (Ravnskov & Jakobsen 1995; 

Klironomos 2000; Castelli & Casper 2003; Smith et al. 2004; Streitwolf-Engel 

et al. 2010). Thus, it is ecologically relevant to study the effect of AMF identity 

on plant community composition (van der Heijden et al. 2003; Stampe & 

Daehler 2003; Vogelsang et al. 2006).  

Foliar endophytic fungi in herbaceous plants are ubiquitous in nature and 

known to be diverse in plant communities. It has been thought that the fungi 

infect the leaves in their hosts most commonly by air-borne spores (termed 

‘horizontal transmission’) but also via vertical transmission through the seeds 

(Hodgson et al. 2014). Endophyte communities are well documented from the 

field sites used in this thesis (Wearn et al. 2012; Hodgson et al. 2014) but to 

date, only one published paper exists on the endophytes found in balsam 

(Pattison et al. 2016). Thus, this study was conducted to examine the 

‘background’ endophytes communities that exist in I. glandulifera in the field 

sites. Additionally, two commercial mycorrhizal inocula were applied in this 
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study, to determine their effect on plant growth and the interaction with 

endophyte fungal communities. 

3.1.1 Method 

The study was conducted with three treatments; Plantworks (PW) inoculum, 

Symbio (SY) inoculum and control with 10 replicates each as described detail 

in section 2.1. Balsam seeds were sown and grown in a glasshouse for four 

weeks (Figure 3.1a). Later, when the seedlings were sturdy and had strong 

stems, there were potted in a 2L pot that were filled with John Innes Type 2 

compost with addition of 15g of PW or 2g of SY. Control plants were grown 

with autoclaved inoculum only. The pots were placed in a grow bag of compost 

in order to avoid fungal uptake from the field (Figure 3.1b). The plants were 

grown outside at a CABI field site for eight weeks (July-August 2015) in a 

randomised block design and watered with 250ml water daily. Before 

flowering, the plants were harvested and plant parameters (height, leaf 

number and shoot biomass) were recorded. Three leaves and root samples 

from each plants were collected for AM and endophyte fungi assessment as 

described in sections 2.3 and 2.4. Two species were identified by molecular 

identification: Colletotrichum acutatum (GenBank accession number: 

MH428675) and a member of the Chaetomiaceae (GenBank accession 

number: MH428676), while the remaining species were identified 

morphologically by Dr. Brian C. Sutton as mentioned above in section 2.3.  
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Figure 3.1 Himalayan balsam (a) seedlings grown in a glasshouse and (b) 

mature plants grown in grow bags in the field. 

3.1.2 Statistical Analysis  

To analyse the effect and interaction of mycorrhizas on balsam performance 

and Isolation Frequency (IF) and differences of each endophyte species 

between treatments, a one-way factorial ANOVA was performed with 

mycorrhizal presence as main effect. The analysis was done separately for 

each inoculum, as the controls for each differed in the nature of the carrier 

medium (Figure 2.1). Species abundance and species richness were 

examined and differences in endophyte community composition between 

treatments were examined with NMDS.  

3.1.3  Results and Discussion 

3.1.3.1 Plant growth and AMF colonisation 

No effect of mycorrhizal colonisation were found on plant height irrespective 

of inoculum type. However, SY plants bore fewer leaves (F1,18 = 5.293, p < 

0.05) (Figure 3.2a) and had lower shoot biomass (F1,18 = 7.27, p < 0.05) 

(b) (a)
) 
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(Figure 3.2b) compared to the control plants. PW inoculum produced twice the 

amount of AM colonisation compared to the SY plants. There was no 

colonisation in control plants, showing that the compost was free from natural 

fungi. The reason why the two inocula produced different levels of colonisation 

is currently unknown, but it is likely because the species in each inoculum 

differed, suggesting that different mycorrhizal species resulted in a different 

plant performance and AM colonisation. This is similar to a previous study that 

showed AM species specificity in affecting the growth of Plantago lanceolata 

and plant tolerance against a specialist lepidopteran herbivore, Junonia coenia 

(Bennett & Bever 2007). That study showed that all effects are possible, of the 

three different mycorrhizal fungi tested; Archaeospora trappei promoted both 

plant growth and plant tolerance, Scutellospora calospora did not affect plant 

growth and reduced plant tolerance to herbivory while Glomus white and the 

combination of these multiple fungi produced similar results which increased 

the plant growth but did not alter plant response against herbivory (Bennett & 

Bever 2007).  

The most interesting result was that SY inoculum showed a promising effect 

in weakening the plants even though the root colonisation was much lower 

than that of PW inoculum. This is contradictory to the suggestion that AM may 

promote growth of invasive plant species (Chmura & Gucwa-Przepióra 2012). 

It is possible that the Symbio product caused growth depression of balsam 

plants through poor development of fungal structures or a lower rate of nutrient 

transfer per unit area which resulted in providing no or only few nutrients to 

the plant (Jin et al. 2017). Similar to this result, Tanner et al. (2014) found a 

negative relationship between AMF colonisation and balsam growth in the 
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introduced range likely because it is the cost of the association of the plant 

with incompatible mycorrhizal species. Thus, this has highlighted the 

importance of the identity of mycorrhizal species in determining plant 

germination and development. Therefore, it was sensible to apply SY inoculum 

in the main experiments in this thesis in order to achieve the main objective 

which was to reduce balsam growth and performance.  

(8) (b)  

    

Figure 3.2 Mean of (a) leaf number and (b) shoot biomass between 

Symbio-treated plants and control plants. n=10 in all treatments. Error bars 

are one SE. Asterisks above bars indicate significant pairwise differences 

between means, *p < 0.05. 

3.1.3.2 Endophytic fungal communities  

Ten endophyte species were isolated from the plants across all treatments 

(Table 3.1). The highest Isolation Frequency (IF) was shown by Cladosporium 

sphaerospermum (30.56%) while the rarest species was Chaetomium 

globosum (0.83%) where the latter and Geniculosporium sp. were isolated 

from SY plants only. Sordaria fimicola was isolated from PW plants only, while 

the species that were found only in control plants were Acrodontium hydnicola 

and Stemphylium botryosum. It is interesting to note that a Beauveria sp. was 

isolated from PW and control plants only while Chaetomiaceae was isolated 
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from SY and control plants. This suggests that the identity of mycorrhizal 

species in each inoculum may affect the community of endophytes in the 

leaves through their impact on nutrient availability as shown by Eschen et al. 

(2010). Two common species –Acremonium strictum and Colletotrichum 

acutatum and one rare species –Geniculosporium sp. were selected to be 

inoculated into balsam leaves in a controlled experiment as described further 

in section 3.2. These species were selected in order to observe their effects 

on balsam performance since they had different IF percentages, but also to 

monitor the effectiveness of endophyte inoculation techniques. Although Cl. 

sphaerospermum was the commonest and Ch. globosum was the rarest 

species, these species were not selected because of spore constraints in the 

‘stock’ cultures.  

Table 3.1 Isolation frequency (% of plants) mean of each endophyte 

species across all treatments. n=10 for all treatments.  

Endophyte species  Plantworks Symbio Control 

Acremonium strictum 26.67 21.67 35 

Acrodontium hydnicola 0 0 5 

Beauveria sp 5 0 5 

Chaetomiaceae 0 2.5 5 

Chaetomium globosum 0 2.5 0 

Cladosporium 
sphaerospermum 

36.67 35 20 

Colletotrichum acutatum 8.33 15 5 

Geniculosporium sp 0 3.33 0 

Sordaria fimicola 8.33 0 0 

Stemphylium botryosum 0 0 5 

There were no differences in IF, species abundance and species richness of 

endophytes between the AM treatments. However, the NMDS ordination 

clearly separated the endophyte fungal communities between PW-treated 

plants compared to the control plants (ANOSIM R = 0.152, p < 0.05) and also 
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between SY plants and control plants (ANOSIM R = 0.132, p < 0.05). This 

suggests that AM presence influence the endophyte community composition 

in balsam shoots and Symbio inoculum potentially reduced balsam 

performance. Therefore, the Symbio inoculum was chosen for further study 

and its interactions with other fungi (endophytes and the plant pathogen) and 

their effect on the plant’s growth.  

3.2 Endophyte inoculation in a controlled environment 

Endophyte fungi have been found living in the leaves of all vascular tissues 

symptomlessly (Petrini 1991) and comprise diverse communities. Effects of 

endophytes on plant performance range from beneficial in protecting plants 

from abiotic stress (Rodriguez et al. 2009), against herbivores (Jallow et al. 

2004; Gange et al. 2012) and pathogens (Gao et al. 2010), to antagonistic 

relationships (Jaber & Vidal 2009; Gange et al. 2007). However, there have 

been few studies of the interactions between endophytes and mycorrhizal 

colonisation in forbs (Eschen et al. 2010; Wearn et al. 2012) and only one in 

Himalayan balsam (Pattison et al. 2016).  Therefore, throughout this thesis, 

the interaction of multiple fungal effects on balsam performance by 

manipulating the fungal presence was conducted. Thus, this preliminary study 

was conducted to investigate the effectiveness of the endophyte inoculation 

technique and to study the inoculation effect on balsam growth in a controlled 

environment. Three endophyte species were selected to be inoculated; 

Acremonium strictum, Colletotrichum acutatum and Geniculosporium sp. as 

the two former species were common while the latter was the rarest species 

but which also produced abundant spores as described in section 3.1.  
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3.2.1 Method 

Balsam seeds were sown and the plants were grown in a Controlled 

Environment (CE) facility (16h light/8h dark at 23 + 1oC, 35% relative humidity) 

with six treatments and five replicates each. When the seedlings reached the 

three leaf whorl stages, the abaxial surface were inoculated with spore 

suspensions in two strokes (ca. 550µl/leaf) of Acremonium strictum (+AS), 

Colletotrichum acutatum (+CA) and Geniculosporium sp. (+GS) while control 

plants were inoculated with 0.05% Tween 80 only. The spore concentration 

was adjusted using a haemocytometer to approximately 1.5x105 spores ml-1  

(in 0.05% Tween 80). The detail of the inoculation method was given in section 

2.2. The plants were grown in a 1.3L pot containing John Innes Type 2 

compost in the CE room for six weeks after inoculation (Figure 3.3). The plants 

were harvested before flowering and plant parameters (height, leaf number, 

shoot biomass) were recorded. Leaf material was collected for endophyte 

assessment as explained in section 2.3. The fungal cultures that grew on PCA 

plates were placed on a slide with Erythrosine stains and were identified 

morphologically by Dr. Brian C. Sutton. To analyse the effect of endophyte on 

balsam performance, a one-way factorial ANOVA was performed with 

endophytes presence as main effect. The analysis was done individually 

between each endophyte and the control plants. 
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Figure 3.3 Himalayan balsam grown in a Controlled Environment room. 

3.2.2 Results and Discussion 

3.2.2.1 Plant growth and AMF colonisation 

Colletotrichum acutatum and A. strictum were successfully recovered from the 

inoculated plants with C. acutatum inoculated plants being significantly shorter 

(F1,8 = 5.293, p < 0.05) (Figure 3.4a) and lighter (F1,8 = 10.01, p < 0.05) (Figure 

3.4b) compared to the control while A. strictum did not significantly affect the 

plant growth. It was also interesting to note although Geniculosporium sp. was 

not recovered, the plants were significantly shorter than their controls (F1,8 = 

10.28, p < 0.05). Clearly, this fungus is not easily recovered from foliar tissues, 

which may explain its apparent rarity in section 3.1.3.2 above. These data also 

suggest that it is not a good choice for manipulative experiments as it cannot 

be recovered even from the sprayed leaf. However, it is intriguing that the 

inoculation clearly had an effect on plant growth, although the fungus was not 

recovered. It is likely that the fungus has extremely restricted growth within a 

leaf, similar to other endophytes (Yan et al. 2015). However, there must be 

some interaction (perhaps biochemical) with the host, as growth of the latter 

was impaired.  
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The most encouraging result was that AMF colonisation was found in all 

endophyte-inoculated plants and differed from their controls though the 

percentage root length colonised was low (Figure 3.4c). There was no 

mycorrhizal colonization in any endophyte-free plant roots showing that there 

is a possibility of using endophytes to increase AMF colonisation. 

       (a) 

 
     (b)  

 
    (c) 

 
Figure 3.4 Mean of (a) plant height, (b) shoot biomass and (c) AMF 

colonisation across treatments. n=5 in all treatments. Error bars are one SE. 

AS was Acremonium strictum plants, CA was Colletotrichum acutatum plants 

while GS was Geniculosporium sp. plants. Asterisks above bars indicate 

significant pairwise differences between means, *p < 0.05. 
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3.2.2.2 Endophytic fungal communities 

There were six endophyte species that were isolated in this study (Table 3.2). 

The highest IF mean was Cladosporium sphaerospermum which most likely 

entered the leaves from the environment as the fungus was not inoculated into 

the leaves. This fungus was isolated from +GS inoculated plants but not from 

the other treatments. Acremonium strictum and C. acutatum were isolated 

from plants onto which they were inoculated and both seemed to prevent the 

entry of other endophyte species. The most likely explanation for the 

differences is because of antagonistic interactions between the endophytes 

wherein the host plant’s defence mechanism was activated, resulting in 

systemic movement of chemicals compound through the plant (Yan et al. 

2015), thereby preventing the ‘background’ endophytes entering the foliar 

leaves. Similar results of antagonistic endophytes interactions were recorded 

in Cirsium arvense involving Cladosporium cladosporioides (Gange et al. 

2007) and Alternaria alternata (Gange et al. 2012). This was supported by the 

fact that Cl. sphaerospermum and Chaetomium globosum were isolated from 

Geniculosporium sp. inoculated plants when the inoculated fungus was not 

recovered.  
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Table 3.2 Isolation Frequency (IF) mean of isolated endophyte across 

treatments. n=5 for all treatments. +/-AS were Acremonium strictum 

inoculated/free plants, +/-CA were Colletotrichum acutatum inoculated/free 

plants and +/-G were Geniculosporium spp. inoculated/free plants.  

Endophyte 

species 
+AS -AS +CA -CA +GS -GS 

Acrodontium 

hydnicola 
0 20 0 0 0 0 

Acremonium 

strictum 
20 0 0 0 0 0 

Chaetomium 

globosum 
0 20 0 0 6.67 0 

Cladosporium 

sphaerospermum 
0 0 0 0 73.33 0 

Colletotrichum 

acutatum 
0 0 20 0 0 0 

Geniculosporium 

sp 
0 0 0 0 0 0 

 

In conclusion, the endophyte inoculation technique was successful and 

showed that it is important to choose the correct fungi to inoculated, so that 

they can be recovered. In this study, C. acutatum had the greatest capacity to 

reduce balsam growth which did not happen in the other treatments, yet, this 

fungus is known to cause high mortality in strawberry plants (Freeman & Katan 

1997). The capability to reduce balsam size was ecologically required in order 

to control its growth and ultimately the populations in the field. Additionally, 

adding endophytes into balsam leaves potentially increased AMF colonisation 

and appeared to suppress the entry of other endophyte species. This also 

suggested that the identity of individual endophyte species is important and 

may be a deciding factor on balsam growth and the microbial communities too, 

as each endophyte species may produce different allelochemical reactions. 
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Therefore, in order to achieve the main aim of this research; to study the 

effectiveness of biological control of Himalayan balsam, C. acutatum was 

selected in order to study the interactions between this fungus with 

mycorrhizas and the plant pathogen on balsam growth and to investigate the 

interaction between them as explained detail in Chapter 7.  

3.3 Endophyte inoculation in an insect-free environment 

Endophyte fungi are known for having a potential interactions with herbivores 

(Hartley & Gange 2009; Jaber & Vidal 2009; Gange et al. 2012; Hammer & 

van Bael 2015), yet no study has been conducted on their interactions in 

balsam and whether these affect plant growth. Therefore, the balsam-insect 

interaction study as described in detail in Chapter 4 was carried out, while this 

preliminary study was conducted to investigate whether insecticide has any 

direct effect on plant growth or fungi effect in the balsam leaves.  

3.3.1 Method 

The experiment was conducted in a Controlled Environment (CE) facility (16h 

light/8h dark at 23 + 1oC, 35% relative humidity) for eight weeks with eight 

treatments resulting in 40 plants in total. The plants were sprayed with 20ml of 

insecticide (Provado ultimate bug killer with active ingredient –Deltamethrin) 

while the control plants were sprayed with distilled water. After a week, the 

leaves were inoculated with a spore suspension (1.5x105 spores ml-1) of 

Colletotrichum acutatum, Cladosporium sphaerospermum and a combination 

of both species. Control plants were inoculated with 0.05% Tween 80 only. 
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Details of endophyte inoculation procedures are given in section 2.2. The 

plants were harvested after eight weeks and plant parameters (height and 

shoot biomass) were recorded. Leaf materials were collected for endophyte 

assessment as described in section 2.3. Fungal slides were prepared with 

Erythrosine stain and were identified morphologically by Dr. Brian C. Sutton. 

Only one species was identified by molecular identification: Colletotrichum 

destructivum (GenBank Accession number: MH665647). To analyse the effect 

of insecticide treatment on Isolation Frequency (IF) of inoculated endophytes 

between treatments and on balsam performance, a one-way factorial ANOVA 

was performed with insecticide presence as the main effect.  

3.3.2 Results and Discussion 

Seven endophyte species were recorded in this study (Table 3.3) and there 

were no differences in Isolation Frequency (IF) mean of each endophyte 

species between insecticide-treated plants and the control plants (all p > 0.05). 

There were also no differences in plant height and biomass of insecticide-

treated plants compared to the control (all p > 0.05).This indicates that the 

insecticide treatment did not affect plant growth and did not have direct 

fungicidal effect on endophytes within balsam. This result is important as it 

showed that the insecticide could be used as an experimental tool (Chapter 4) 

with no unintended effects on non-target organisms.  
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Table 3.3 The Isolation Frequency mean (% of plants) of each endophyte 

species across treatments with n=5 for each treatments. CA were Co. 

acutatum inoculated plants, CS were Cl. sphaerospermum inoculated plants, 

CACS were combination of both species and C were control plants.  

Endophyte 
Species 

With Insecticide No Insecticide 

CA CS 
CA 
CS 

C CA CS 
CA 
CS 

C 

Acremonium 
incoloratum 

0 0 0 0 0 0 0 26.67 

Chaetomium 
elatum 

0 0 0 0 0 0 6.67 0 

Cladosporium 
oxysporum 

0 0 0 40 0 0 0 0 

Cladosporium 
sphaerospermum 

0 0 30 0 0 0 0 0 

Colletotrichum 
acutatum 

55 0 70 0 42 0 43 0 

Colletotrichum 
destructivum 

45 0 0 0 0 60 0 0 

Exophiala spp. 0 0 0 20 0 0 20 6.67 

3.4 Arbuscular mycorrhizal fungal ‘spore-wash’ 

Arbuscular mycorrhizal (AM) fungi within the root system form a symbiotic 

relationship, generally regarded as a mutualistic interface with the plant 

through an extensive hyphal network which helps plant to absorb water and 

nutrients (mainly phosphorus and nitrogen) from the soil (Jakobsen et al. 

1992). Root colonisation with AMF also enhances plant protection particularly 

against soil-borne pathogenic fungi (Wang et al. 2018) and mediates on plant 

interspecific competition and community structure (Stampe & Daehler 2003; 

Lin et al. 2015).  

Comparing the growth of mycorrhizal plants with the control (non-mycorrhizal) 

plants is important in order to observe if the mycorrhizal association has any 
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effects on the host. It is critical to determine the effect of the mycorrhizal fungi 

only (Abbott & Robson 1984) as the physiology of the plant will be affected by 

the presence of other soil microorganisms (Gryndler et al. 2018). Previous 

studies have demonstrated the most suitable comparison between infected 

and uninfected plants were between washed spores from a sandbased 

inoculum and soil that had grown uninfected plants (Koide & Li 1989). 

However, the efficacy of commercial products are variable and unknown in 

this regard, as no one has ever tested them before. Commercial products 

containing mutualistic AM fungi are now widely available and are sold as plant 

growth promoters and ‘biofertilizers’. This study used two market leading 

products –Plantworks (PW) and Symbio (SY), with and without either product, 

to determine the most appropriate non-mycorrhizal controls for commonly 

used mycorrhizal inoculants. It is suspected that the products contain an 

abundant non-mycorrhizal microbial community, therefore the inoculum were 

filtered and compared its application to that of the product itself. 

3.4.1 Method 

The plants were grown in a Controlled Environment (CE) facility (16h light/8h 

dark at 23 + 1oC, 35% relative humidity) for eight weeks with six treatments 

resulting in 30 plants in total. The seedlings were potted into 1.3L pot and 

watered with 100ml daily. Five plants were grown with addition of each live 

inoculum of 9.75g of PW and 1.3g of SY as recommended by the companies 

(7.5g/L of Plantworks and 1g/L of Symbio). Five plants were potted with each 

of sterile (autoclaved in 121oC for 30 minutes) inoculum as control plants. 

Meanwhile the remaining five plants were grown with 15ml microbial filtrate of 
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each inoculum. To produce filtrate, each inoculum was added to 1L of sterile 

water and left for 24hours in a 4oC refrigerator. Then, the mixture was filtered 

through a 38µm membrane, to remove all mycorrhizal propagules (Koide & Li 

1989). After eight weeks, the plants were harvested and plant parameters 

(height, leaf and biomass) were recorded. Root materials were collected for 

mycorrhizal colonisation assessment. To examine the effect of different 

mycorrhizal treatments on balsam performance, a one-way factorial ANOVA 

was performed with AM type (live, sterile and filtrate) as main effect. The 

analysis was done separately for each inoculum, because of the differences 

in their physical structure (Figure 2.1).   

3.4.2 Results and Discussion 

There were no differences in plant performance between treatments for both 

inocula (all p > 0.05) (Figure 3.5). The dissimilar results in plant height and 

weight between PW and SY might be explained by the different origin and 

species composition of these inocula, as the former originated from the United 

Kingdom and consisted of five species meanwhile the latter was manufactured  

in the United States of America and was composed of nine mycorrhizal 

species (Table 3.4).  

For both inocula, mycorrhizal colonisation was only achieved when live 

inoculum was added (Figure 3.6c). This suggests that mycorrhizal spores only 

occurred in a live inoculum while spores in the sterilised inoculum were 

eliminated in the high temperature of the autoclave and successfully removed 

in the filtration process. This finding supports previous results showing that 
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mycorrhizal colonisation was high when spores were used (Klironomos & Hart 

2002). Of most importance was the fact that sterile inoculum plants were 

shown to be suitable to use as controls in subsequent experiments when 

involving live inoculum as treatment.  

(a)  

 

(b)  

 

    (c) 

 

Figure 3.5 Mean of (a) plant height, (b) shoot biomass and (c) mycorrhizal 

colonisation across treatments. SY is Symbio inoculum while PW is 

Plantworks inoculum. n=5 across treatments. Error bars are one SE.  
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Table 3.4  Mycorrhizal species composition in Plantworks and Symbio 

inoculum.  

Plantworks Symbio 

Claroideoglomus claroideum Claroideoglomus etunicatum 

Funneliformis geosporus Funneliformis mosseae 

Funneliformis mosseae Gigaspora margarita 

Rhizophagus irregularis Glomus monosporus 

Rhizophagus microaggregatum Glomus deserticola 

 Paraglomus brasilianum 

 Rhizophagus aggregatus 

 Rhizophagus clarum 

 Rhizophagus irregularis 

3.5 Seed-borne fungal endophytes 

Seeds are important in a plant’s life cycle developing into a new plant when 

the conditions for germination are met (Nelson 2004). Seed-borne fungal 

endophytes are vital in understanding seed establishment as the fungal are 

passed to the next generation via vertical transmission which ensuring their 

presence in the next seedling (Cope-Selby et al. 2017; Shade et al. 2017). 

This transmission enhances plant survival and defence (Rudgers et al. 2009) 

and also provide valuable endosymbionts to the offspring (Shade et al. 2017).  

However, foliar endophytes in forbs are known to be horizontally transmitted 

(John et al. 2015) as many of the common endophytes (e.g. Alternaria, 

Cladosporium and Epicoccum) are saprophytic (Hayes 1979), abundant in 

spore rain populations (Marchisio & Airaudi 2001) and incompetent for vertical 

transmission (Sanchez Marquez et al. 2012). Interestingly, although these 

species seem not to be host specific (Rodriguez et al. 2009), they were 

suggested to enhance plant protection from insect herbivores (Gange et al. 



85 
 

2012) and pathogens (Gao et al. 2010). Therefore, this raises a question 

whether endophyte species are in a mutualistic relationship with their hosts 

which then may lead to vertical transmission. To date, there is little knowledge 

of the vertical transmission of endophyte species in forbs, yet, it has been 

suggested it may be a widespread phenomenon (Hodgson et al. 2014). 

Therefore, the aim of this study was to examine whether the balsam seed coat 

was a fungal barrier and to investigate the endophyte fungal transmission in 

balsam plants.  

3.5.1 Method 

There were three treatments with 10 seeds each (Figure 3.6). First treatment 

was sterilised and squashed seeds (+St+Sq). The seeds were sterilised in 5% 

bleach for 30 minutes and were macerated using a sterile hole punch in a 

laminar flow cabinet. The second treatment was sterilised but not squashed 

seeds (+St-Sq) and finally, non sterilised and not squashed seeds (-St-Sq) 

were the control. The seeds were embedded in potato dextrose agar (PDA) 

plates and kept in a storage box. After one week, any fungal cultures grown in 

the plates were transferred into potato carrot agar (PCA) plate to encourage 

sporulation. After 4 weeks, the fungal cultures from PCA plates were placed 

on slides with Erythrosine stain and were identified morphologically by Dr. 

Brian C. Sutton. Isolation Frequency (IF) of endophytes was determined.  
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Figure 3.6 Three treatments with 10 seeds each in three different plates. 

(a) Clean plate in +St-Sq seeds and (b) ‘juicy’ liquid diffused out from +St+Sq 

seeds, meanwhile (c) Fungi dominance grown from –St-Sq seeds.  

3.5.2 Results and Discussion 

There were six endophyte species recorded from –St-Sq seeds (Table 3.5) 

while no species were isolated from the other treatments (+St+Sq and +St-

Sq). It is also interesting to note that the endophytes fungi in this small study 

(Acremonium sp., Alternaria alternata and Cladosporium cladosporioides) 

were also found in the main experiments (Chapter 4-7). However, the former 

was found from the seeds while the latter was isolated from the leaves. This 

suggested that seed coat was not a fungal barrier and endophyte fungi were 

potentially vertically transmitted from the seed coat into the balsam leaves. 

(a) (b) 

(c) 
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The transmission may have occurred externally as it was isolated from the 

seed coat while no fungi were isolated from +St+Sq seeds showing that 

endosperms were free from fungi. This also showed that the seed sterilisation 

technique was extremely effective. Thus, seed surface sterilisation was used 

as the very first method in all of further experiments to eliminate the entrance 

of saprophytic fungi. The fact that nothing is transmitted within the seeds 

strongly suggests that all fungi found in the balsam leaves must have come 

from the environment.  

Table 3.5 Isolation Frequency (IF) % mean recorded from non sterilised 

and non squashed seeds.  

Endophyte species IF mean (%) 

Acremonium sp.  10 

Alternaria alternata 25 

Aureobasidium pullulans 15 

Cladosporium cladosporioides 30 

Didymella macrostoma 10 

Fusarium fujikuroi 10 
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CHAPTER 4 PLANT-FUNGI-INSECT INTERACTIONS 

Associations between fungi, host plants and insect herbivores are well studied 

when involving arbuscular mycorrhizal (AM) fungi (Wamberg et al. 2003; 

Gange 2007; Babikova et al. 2014; Williams et al. 2014; Gilbert & Johnson 

2015) and endophytic fungi (Russo et al. 1997; Hartley & Gange 2009; Jaber 

& Vidal 2009; Bahar et al. 2011; Gange et al. 2012) but less clearly understood 

when both fungi are combined in herbaceous plants (Vicari et al. 2008). 

Previous studies mainly investigated bottom-up effects of AM fungi on aphids 

(Gange et al. 2005; Bennett & Bever 2007; Gange 2007; Babikova et al. 2014; 

Williams et al. 2014), but few have examined the top-down effects of aphids 

on AM fungi. It appears that the effects of herbivory on AM are considerable, 

for example the colonisation was reduced by 40% after 15 weeks of insect 

attack in Plantago lanceolata (Gange & Brown 2002). However, there is also 

a suggestion that insect herbivory may increase AM colonisation (Wamberg et 

al. 2003). Feeding by the beetle Sitona lineatus increased the colonisation of 

annual pea, Pisum sativum, however this was dependent on the age of the 

plant and the duration of the insect feeding. Pea plants that were 15-days-old 

and had 10 days of herbivory showed an increase in colonisation of 45%, 

compared to the plants that were not eaten (Wamberg et al. 2003). However, 

despite the reported positive and negative instances of insect attack, a meta 

analysis showed that most of the time, herbivory does not alter mycorrhizal 

colonisation in many types of plants including both grasses and forbs (Barto & 

Rillig 2010).  
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Some studies have found that the presence of AM has positive effects on 

insect herbivore growth rate and mortality (Gange 2007) through increased 

plant host quality and increased phloem size (Koricheva et al. 2009). Similarly, 

mycorrhizal fungi affected wheat, Triticum aestivum resistance to the English 

Grain aphid, Sitobion avenae by enhancing aphid development and 

reproductive success (Simon et al. 2017). Moreover, mycorrhizal colonisation 

increased the size of vascular bundles and this is likely to be a reason why 

aphid feeding success was greater on mycorrhizal-inoculated plants (Simon 

et al. 2017). Additionally, sucking and specialist insects were positively 

affected when AM was added to host plants, while chewing and generalist 

insects were negatively affected (Gange et al. 2005; Bennett & Bever 2007). 

This is because nutrients and carbon compounds are passed from plants to 

insects for conversion into their own biomass and so might be a competitor 

with mycorrhizal fungi (Gange 2007), explaining why insects negatively affect 

mycorrhizal colonisation. There are significant interactions between aphids 

and AM fungi likely because of the physiological changes in the condition of 

the shared host plant. For example, aphid infestation can reduce mycorrhizal 

development through C removal, whereas AM fungi alter volatile organic 

compound (VOC) emissions, making the plant less attractive to aphids 

(Babikova et al. 2014). Herbivore-plant-mycorrhizal interactions are complex, 

as the herbivory effect on a plant host can be transmitted to other plants 

through fungal networks below-ground (Gilbert & Johnson 2015). Mycorrhizal 

functioning may be affected by insect presence when the supply of recent 

photosynthate is diverted from plants to AM while in return, mycorrhizas can 



91 
 

alter nutrition and plant defence signalling pathways against insect herbivores 

(Gilbert & Johnson 2015). 

In forbs, insect feeding and plant growth rates may also be affected by 

endophytic fungal presence (Gange et al. 2012). In that study, the endophytic 

fungus Chaetomium cochliodes in Cirsium arvense leaves increased the 

growth rate of a specialist feeder, Cassida rubiginosa and reduced growth rate 

of the generalist insect Mamestra brassicae. This is likely because of the 

changes in plant chemistry either in defence or nutrient mode since the fungi 

produce antifungal chemicals (Kang et al. 1999) which affect the production of 

defensive chemicals in the leaves. Thus, these authors suggested the 

production of chemical changes in the hosts by C. cochliodes is beneficial to 

specialist insects, while being detrimental to the generalist species (Gange et 

al. 2012). However, there were no effects on a generalist beetle, Chelymorpha 

alternans feeding on a tropical vine that was inoculated with Colletotrichum 

gloeosporioides, yet larvae that were fed with the endophyte had lower 

fecundity when adult (van Bael et al. 2009). It is also interesting to note that 

endophyte-inoculated plants may affect plant physiology in response to insect 

herbivory which reduces Aphis fabae fecundity (Jaber & Vidal 2009; Akello & 

Sikora 2012). In addition, a study was conducted on the interaction of cotton 

plants, Gossypium hirsutum with four different endophytes and showed 

reduced growth rate of larvae of the generalist lepidopteran, Helicoverpa 

armigera (McGee 2002). Meanwhile a weevil, Larinus minutus was attracted 

to Fusarium sp. inoculated leaves and avoided Alternaria sp. and Epicoccum 

sp. on knapweed, Centaurea stoebe (Newcombe et al. 2009). However, Co. 

gloeosporioides inoculated leaves of milkweed, Calotropis gigantea plants had 
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no effect on grasshopper, (Poecilocerus pictus) feeding (Devarajan & 

Suryanarayanan 2006). These outcomes show that the identity of the fungal 

species and insect herbivores involved were important in determining whether 

the outcome of the interaction was positive or negative.  

Both endophytes and mycorrhizal fungi can alter plant growth and insects 

feeding development, but to date, no one has examined the effects of the 

presence of both fungi on insects in a forb species. One paper has explored 

the interaction of the foliar endophyte, Neotyphodium lolii, a mycorrhizal 

fungus, Funneliformis mosseae and the noctuid moth, Phlogophora 

meticulosa on ryegrass, Lolium perenne (Vicari et al. 2008). It was found that 

AM reduced the insect resistance effect of the endophyte in the host plant, 

whereas in the absence of endophyte, antagonistic effects of AM were seen. 

The above study was conducted with a grass species and some effects were 

additive and some nonadditive, with interactions between the fungi. This 

emphasized the importance of performing similar experiments in forb plants.  

A survey of the natural enemies of Impatiens glandulifera in its native range 

was conducted in 2006 by Tanner et al. (2008). The authors found damaged 

leaves indicative of arthropod attack in the area surveyed, from Kashmir to 

Garhwal (Pakistan and India). Species identified were Taeniothrips 

inconsequences and a flea beetle Altica himensis, together with many 

unidentified arthropods in the Coleoptera, Hemiptera and Lepidoptera. The 

two former species were regarded as possible candidates for the biocontrol of 

balsam while the other arthropods were the least likely candidates as there 

were far too rare (Tanner et al. 2008). Meanwhile, Aphis fabae has frequently 
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been found associated with balsam in the introduced range in the UK (Beerling 

& Perrins 1993) and the Czech Republic (Starý et al. 2014). A. fabae is 

generally known as a plant pest and significantly reduces the growth rate of 

faba bean, Vicia faba especially during the seedling stage (Shannag & 

Ababneh 2007). Therefore, a study on fungi-insect interactions on balsam was 

conducted with A. fabae as the focal species, as it has the potential to cause 

damage to balsam in the UK. The knowledge and information found from this 

association should provide a better understanding of the nature of fungal-

insect interactions and their effects on Himalayan balsam growth.  

This experiment was designed to investigate the interactions of mycorrhizal 

and endophyte fungi with insect herbivores. To determine the role of AM and 

endophytes in an integrated pest management of Himalayan balsam, the 

compatibility of an endophytic isolate of Colletotrichum acutatum, 

Cladosporium sphaerospermum, and the combination of both species with 

natural and reduced levels of insect attack, in the presence of commercial 

inoculum (‘Plantworks inoculum’ hereby after referred as PW, and ‘Symbio 

inoculum’ referred to as SY) was used against the aphid, A. fabae in a field 

experiment. The first objective of this experiment was to study the interactions 

between fungi and insects and also their effect on balsam performance. The 

second objective was to study the foliar endophyte communities in balsam 

plants that were attacked by insects. The hypothesis of this study was, there 

would be interactions between the endophytes, mycorrhizas and insect that 

may lead to altered plant performance and microbial communities and these 

interactions would depend upon the identity of the fungal species.  
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4.1 Methods 

There were 32 different treatments with five replicate plants in each treatment 

giving a total of 160 plants overall. The plants were grown in the glasshouse 

for seven weeks from seedling establishment, in 2L pots with the presence of 

two commercial inoculum treatments –15g of Plantworks (PW) and 2g of 

Symbio (SY), while sterile PW and sterile SY were autoclaved at 121oC for 30 

minutes and used for controls. Details of plant germination and propagation 

were given in section 2.1. After five weeks, when the plants were at the three 

whorl leaf stage, half of all plants were sprayed with insecticide. The plants 

were sprayed (two strokes) with Provado ultimate bug killer (with active 

ingredient Deltamethrin) while the control plants were sprayed once with two 

strokes of distilled water. A preliminary study showed there were no direct 

effects of the insecticide on plant and fungal growth in insect-free conditions, 

as demonstrated in section 3.3. Then, a week after, five insecticide sprayed 

and control plants from each inoculum were inoculated with Colletotrichum 

acutatum (CA), Cladosporium sphaerospermum (CS) and a combination of 

both species (CACS) with 1.5x105 ml-1 spores concentration, while control 

plants were sprayed with 0.05% Tween 80 only. Details of the endophyte 

inoculation technique was described in section 2.2. These two endophyte 

species were selected as both of them were common in balsam leaves when 

the plants were grown in the field, as described in section 3.1.  

The plants were grown in the field (Figure 4.1) for four weeks (July – August 

2016) to allow for natural levels of insect attack, in a randomised block design 

and were watered with 250ml water twice daily. The plants were harvested 
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when mature, but before first flowering and plant height, leaf number and dry 

shoot biomass were recorded. Leaf and root samples from each plant were 

collected for fungal identification and analysis. Leaf surface sterilisation and 

root staining techniques were conducted as described in sections 2.3 and 2.4. 

Two endophyte species appeared to be sterile in culture and were identified 

by molecular methods: Lecanicillium sp. (GeneBank accession number: 

MH428682) and Peniophora sp. (GeneBank accession number: MH428683), 

while the remaining species were identified morphologically by Dr Brian C. 

Sutton as described in section 2.3. Insect numbers were recorded weekly 

using a click counter and the total of insects per plant were recorded. Insects 

were identified using a 40x magnification binocular microscope.  

 

Figure 4.1 The plants were grown outside in the field to allow for natural 

insect attack. 
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4.1.1 Statistical Analysis 

All of the statistical analysis was conducted using R Studio version 1.1.383 as 

described in section 2.7. Percentage data were arcsine transformed to meet 

the assumptions of normality beforehand. All data that violated the 

assumptions were transformed with square-root or logarithmic 

transformations. To analyse the effects and interactions of fungi on balsam 

performance, a four-way factorial ANOVA was performed with mycorrhizas, 

endophytes (Colletotrichum acutatum and Cladosporium sphaerospermum) 

and insect presence as main effects. The analysis was done separately for 

each inoculum treatment. Mycorrhizal colonisation data for both inocula were 

examined with a three-way ANOVA with endophytes (Co. acutatum and Cl. 

sphaerospermum) and insect as main effects because all uninoculated plants 

showed zero colonisation.  Differences in endophyte isolation frequency (IF) 

of each fungal species between treatments were examined with a similar 

analytical design (four-way ANOVA) and the percentage data were 

transformed. Differences in species abundance and species richness were 

examined across treatments and endophyte community composition was 

compared with NMDS as described in section 2.7.  
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4.2 Results 

4.2.1 Plant growth and AMF colonisation 

Plants were taller when attacked by insects, but that only happened in the PW 

experiment (Table 4.1). Addition of Cl. sphaerospermum resulted in shorter 

(Figure 4.2) and lighter (Figure 4.3) plants in both inocula. Meanwhile addition 

of PW lowered shoot biomass, but this did not happen in SY plants. Insect 

attack reduced plant height and biomass when Cl. sphaerospermum was 

present irrespective of inoculum type, leading to significant interaction terms 

(IN x CS) in the analysis (Table 4.1). Similarly, insect attack reduced plant 

height and biomass of PW plants when both endophytes were present. No 

mycorrhizal colonisation was recorded in AM-free plants (Figure 4.4). The 

presence of endophytes and insects did not affect mycorrhizal colonisation 

from either inoculum. PW-treated plants showed twice the colonisation level 

of SY plants irrespective of whether endophytes were added. The highest 

colonisation was recorded when AM was added in insect-free plants and in 

the absence of endophytes.  
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  (a) 

  
              

   (b)  

 
              

   (c)  

 
 

Figure 4.2 Mean of plant height across (a) Colletotrichum acutatum 

inoculated plants, (b) Cladosporium sphaerospermum inoculated plants and 

(c) dual endophytes inoculated plants. +/-PW for Plantworks inoculum 

present/absent, +/-SY for Symbio inoculum present/absent and +/-E for 

endophytes present/absent. n=5 in all treatments. Error bars are one SE. 

Asterisks above bars indicate significant pairwise differences between means, 

*p < 0.05 and **p < 0.001.  
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                (a) 

 
                

      (b) 

 
 
                 (c) 

 
 

Figure 4.3 Mean of shoot biomass across (a) Colletotrichum acutatum 

inoculated plants, (b) Cladosporium sphaerospermum inoculated plants and 

(c) dual endophytes inoculated plants. +/-PW for Plantworks inoculum 

present/absent, +/-SY for Symbio inoculum present/absent and +/-E for 

endophytes present/absent. n=5 in all treatments. Error bars are one SE. 

Asterisks above bars indicate significant pairwise differences between means, 

*p < 0.05 and **p < 0.001. 
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Table 4.1 Four-way ANOVA factorial analysis results across (a) Plantworks and (b) Symbio treatments. Degrees of Freedom for 

F values = 1, 64 and n = 5 for each treatment. (Note: IN: Insects, CA: Colletotrichum acutatum and CS: Cladosporium 

sphaerospermum. Bold indicated significant values). 

 

(a) Plantworks-
treated plants 

Height Leaf number Shoot biomass 

F p F p F p 

IN 24.616 <0.001 10.492 0.001 2.192 0.143 

PW 1.281 0.261 4.714 0.033 6.334 0.014 

CA 0.908 0.344 0.918 0.341 0.091 0.763 

CS 18.480 <0.001 6.663 0.012 19.695 <0.001 

IN x PW 0.908 0.344 0.000 0.983 0.044 0.833 

IN x CA 2.947 0.090 0.448 0.505 3.021 0.087 

IN x CS 27.212 <0.001 24.549 <0.001 12.888 <0.001 

PW x CA 0.394 0.532 0.807 0.372 0.807 0.372 

PW x CS 1.389 0.242 6.529 0.013 4.317 0.041 

CA x CS 4.201 0.044 5.329 0.024 7.493 0.008 

IN x PW x CA 0.145 0.704 3.589 0.062 0.267 0.606 

IN x PW x CS 0.353 0.554 0.046 0.831 1.431 0.236 

IN x CA x CS 0.311 0.579 0.007 0.932 2.084 0.153 

PW x CA x CS 8.570 0.004 2.722 0.103 6.664 0.012 

IN x PW x CA x CS 0.916 0.342 0.076 0.783 0.000 0.983 
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(b) Symbio-treated 
plants 

Height Leaf number Shoot biomass 

F p F p F p 

IN 3.321 0.073 1.656 0.202 2.100 0.152 

SY 2.058 0.156 3.289 0.074 2.100 0.152 

CA 3.579 0.063 8.369 0.005 0.134 0.715 

CS 7.036 0.010 10.712 <0.001 9.992 0.002 

IN x SY 0.002 0.961 0.097 0.756 0.459 0.500 

IN x CA 0.193 0.662 1.933 0.169 0.929 0.338 

IN x CS 25.463 <0.001 17.111 <0.001 11.369 <0.001 

SY x CA 0.517 0.474 2.055 0.156 1.161 0.285 

SY x CS 0.052 0.820 0.024 0.876 0.081 0.776 

CA x CS 0.430 0.514 0.009 0.924 0.094 0.759 

IN x SY x CA 6.100 0.016 5.599 0.021 2.344 0.130 

IN x SY x CS 3.106 0.082 3.945 0.051 0.235 0.629 

IN x CA x CS 2.467 0.121 1.092 0.299 1.282 0.261 

SY x CA x CS 1.413 0.239 0.659 0.419 1.938 0.168 

IN x SY x CA x CS 0.404 0.527 0.631 0.429 0.367 0.546 
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                (a)  

 
 
              
                 (b)  

 
 
 
                  (c) 

 
 

Figure 4.4 Mean of mycorrhizal colonisation across (a) Colletotrichum 

acutatum inoculated plants, (b) Cladosporium sphaerospermum inoculated 

plants and (c) dual endophytes inoculated plants. +/-PW for Plantworks 

inoculum present/absent, +/-SY for Symbio inoculum present/absent and +/-E 

for endophytes present/absent. n=5 in all treatments. Error bars are one SE. 
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4.2.2 Insect attributes 

Insect herbivores that were recorded across treatments were the black bean 

aphid, Aphis fabae and a specialist green aphid, Impatientinum balsamines. 

Thus, the former insect was selected as the latter was too rare to be 

statistically analysed. This study has shown that the application of the 

chemical successfully reduced insect numbers across the treatments (Table 

4.2). Addition of PW increased aphid numbers but adding Cl. 

sphaerospermum reduced aphids on PW plants. Aphid infestation was 

reduced when Co. acutatum was added in SY-treated plants (Figure 4.5). The 

two-way interactions between AM and Cl. sphaerospermum were a reflection 

of reduced aphid numbers, but only when the AM was absent, which did not 

happen with Co. acutatum. Similarly, the mycorrhizas increased aphid 

numbers when Cl. sphaerospermum was present, but not when the endophyte 

was absent. Again, this did not happen with Co. acutatum. The interactions 

between insect, AM and Cl. sphaerospermum resulted from the fact that the 

endophyte reduced aphid numbers only when PW was absent which did not 

happen with SY inoculum or addition of Co. acutatum. 
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Table 4.2 Four-way factorial analysis of insect number across treatments. 

Degrees of Freedom for F values = 1,64 and n=5 in all treatments. (Note: IN: 

Insecticide application, CA: Colletotrichum acutatum and CS: Cladosporium 

sphaerospermum. Bold indicated significant values). 

 

 Plantworks-treated 
plants 

Symbio-treated 
plants 

F p F p 

IN 81.379 <0.001 56.923 <0.001 

AM 4.306 0.042 1.279 0.262 

CA 0.037 0.848 3.960 0.050 

CS 5.338 0.024 2.091 0.153 

IN:AM 0.704 0.404 0.046 0.830 

IN:CA 0.182 0.671 4.075 0.047 

IN:CS 0.439 0.510 3.306 0.073 

AM:CA 0.078 0.780 1.551 0.217 

AM:CS 5.475 0.022 4.075 0.047 

CA:CS 0.049 0.826 0.074 0.786 

IN:AM:CA 0.329 0.568 2.260 0.137 

IN:AM:CS 5.754 0.019 0.312 0.578 

IN:CA:CS 0.520 0.473 1.092 0.299 

AM:CA:CS 0.026 0.871 0.312 0.578 

IN:AM:CA:CS 0.478 0.491 1.215 0.274 
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                        (a) 

 
 

                   (b) 

 
 

                    (c) 

 
 

Figure 4.5 Mean of Aphis fabae per plant across (a) Colletotrichum 

acutatum inoculated plants, (b) Cladosporium sphaerospermum inoculated 

plants and (c) dual endophytes inoculated plants. +/-PW for Plantworks 

inoculum present/absent, +/-SY for Symbio inoculum present/absent and +/-E 

for endophytes present/absent. n=5 in all treatments. Error bars are one SE. 

Asterisks above bars indicate significant pairwise differences between means, 

*p < 0.05.  
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4.2.3 Endophytic fungal communities 

There were 12 endophyte species recorded across plants attacked by insects 

(Table 4.3) while 11 species were isolated from insect-free plants (Table 4.4). 

Clonostachys rosea, Nigrospora oryzae and Peniophora spp. were isolated 

from the former plants only, while Penicillium sp. and Sordaria fimicola were 

recorded from the latter plants only. The remaining species were found in both 

treatments.  

Cladosporium sphaerospermum was successfully recovered from its 

inoculated leaves regardless of whether insects or PW were present (Figure 

4.6a). This fungus was found from dual endophyte inoculated  plants too, apart 

from when insects and PW were absent. In contrast, this fungus was 

recovered from plants which received dual inoculation irrespective whether 

insects and SY were added (Figure 4.6b). Meanwhile Colletotrichum acutatum 

was recovered from the leaves where it was inoculated when insects were 

absent, irrespective whether PW was present (Figure 4.6c). However, when 

insects and PW were present, this effect seemed to diminish. This fungus was 

not recovered from single and dual endophyte inoculated leaves. Meanwhile 

in SY-treated plants, Co. acutatum was recovered from the plants in which it 

was inoculated when both insects and SY were present or absent (Figure 

4.6d). However, this fungus was not found when insects were present in the 

absence of SY, but it was found when insects were absent and SY was 

present. 
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Table 4.3 Isolation Frequency (%) mean of each endophyte species across plants attacked by insects. n = 5 for each treatment. 

(Note: +PW: Plantworks plants, +SY: Symbio plants, +CA: Colletotrichum acutatum inoculated plants, +CS: Cladosporium 

sphaerospermum inoculated plants; +CACS: dual endophyte inoculated plants and C: Control plants. Bold numbers indicted the 

highest IF mean in that particular treatments.  

 

Endophyte 

species 

+PW -PW +SY -SY 

+CA +CS 
+CA 

CS 
C +CA +CS 

+CA 

CS 
C +CA +CS 

+CA 

CS 
C +CA +CS 

+CA 

CS 
C 

Acremonium 

strictum 
0 16.67 0 0 0 0 0 0 6.67 20 0 0 6.67 6.67 0 13.33 

Chaetomium 

cochliodes 
0 16.67 10 0 0 0 5 0 0 0 0 0 0 0 6.67 0 

Cladosporium 

cladosporioides 
0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 

Cladosporium 

oxysporum 
0 20 0 0 16.67 6.67 0 0 0 6.67 0 0 0 11.67 38.33 0 

Cladosporium 

sphaerospermum 
0 23.33 20 31.67 5 46.67 10 20 40 23.33 20 25 50 43.33 40 43.33 

Clonostachys 

rosea 
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 
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Colletotrichum 

acutatum 
0 0 0 11.67 6.67 10 5 5 13.33 0 0 11.67 0 5 5 0 

Geniculosporium 

spp 
0 0 0 0 0 0 0 0 0 20 0 20 6.67 0 0 0 

Lecanicillium sp. 80 13.33 10 40 71.67 26.67 54.17 43.33 33.33 10 50 43.33 33.33 38.33 5 26.67 

Nigrospora oryzae 0 0 0 0 0 0 5 0 0 0 10 0 0 0 0 0 

Peniophora sp. 0 10 0 5 0 10 11.67 0 6.67 0 0 0 0 0 0 16.67 

Trichoderma viride 20 0 0 11.67 0 0 0 11.67 0 0 0 0 0 0 0 0 
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Table 4.4 Isolation Frequency (%) mean of each endophyte species across insects free plants. n = 5 for each treatment. (Note: 

+PW: Plantworks plants, +SY: Symbio plants, +CA: Colletotrichum acutatum inoculated plants, +CS: Cladosporium sphaerospermum 

inoculated plants; +CACS: dual endophyte inoculated plants and C: Control plants. Bold numbers indicted the highest IF mean in 

that particular treatments.  

Endophyte 
species 

+PW -PW +SY -SY 

+CA +CS 
+CA 

CS 
-C +CA +CS 

+CA 

CS 
-C +CA +CS 

+CA 

CS 
-C +CA +CS 

+CA 

CS 
-C 

Acremonium 
strictum 

6.67 0 0 20 0 0 0 3.33 18.33 10.67 0 0 0 0 6.67 0 

Chaetomium 
cochliodes 

0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cladosporium 
cladosporioides 

6.67 0 0 0 6.67 0 0 0 0 0 20 0 10 20 0 0 

Cladosporium 
oxysporum 

0 0 0 0 0 0 10 0 0 0 0 0 0 6.67 0 0 

Cladosporium 
sphaerospermum 

31.67 10 30 10 13.33 10 0 33.33 13.33 4 13.33 16.67 13.33 5 66.67 25 

Colletotrichum 
acutatum 

21.67 50 30 20 16.67 43.33 66.67 15 26.67 41.33 6.67 0 16.67 0 0 18.33 
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Geniculosporium 
spp 

11.67 0 0 6.67 33.33 0 0 6.67 0 0 0 6.67 0 5 0 0 

Lecanicillium sp. 21.67 6.67 10 36.67 36.67 0 0 25 36.67 6.67 13.33 70 4 40 0 51.67 

Penicillium sp. 0 33.33 10 0 0 33.33 8.33 0 0 10.67 6.67 0 0 10 6.67 0 

Sordaria fimicola 0 0 0 0 0 6.67 0 0 0 0 0 0 0 0 0 0 

Trichoderma viride 0 0 0 6.67 0 6.67 0 16.67 0 0 0 6.67 20 0 0 0 
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                 (a) 

 
(b)   

 
(c)  

 
                   (d) 

 
Figure 4.6 Isolation Frequency mean of Cladosporium sphaerospermum on 
(a) PW and (b) SY treated plants, and Colletotrichum acutatum on (c) PW and 
(d) SY treated plants. Legend shows the leaves were inoculated with C. 
acutatum (CA), C. sphaerospermum (CS), dual species (CACS) and control 
(C). +/-I for insects present/absent. n=5 in all treatments. Error bars are one 
SE. Asterisks above bars indicate significant pairwise differences between 
means, *p < 0.05. 

0

20

40

60

80

+I+PW +I-PW -I+PW -I-PW

IF
 m

e
a
n

 o
f 

C
l.
 

s
p
h
a
e
ro

s
p
e
rm

u
m

 
p

e
r 

p
la

n
t 
(%

)

CA

CS

CACS

C

0

20

40

60

80

100

+I+SY +I-SY -I+SY -I-SY

IF
 m

e
a
n

 o
f 
C

l.
 

s
p
h
a
e
ro

s
p
e
rm

u
m

 
p

e
r 

p
la

n
t 
(%

)

CA

CS

CACS

C

0

20

40

60

80

100

+I+PW +I-PW -I+PW -I-PW

IF
 m

e
a
n

 o
f 

C
o

. 
a
c
u
ta

tu
m

 p
e
r 

p
la

n
t 

(%
)

CA

CS

CACS

C

0

20

40

60

80

+I+SY +I-SY -I+SY -I-SY

IF
 m

e
a
n

 o
f 

C
o

. 
a

c
u
ta

tu
m

 p
e

r 
p

la
n

t 
(%

)

CA

CS

CACS

C



112 
 

Insect herbivores increased the IF mean of Cl. sphaerospermum in both 

inocula and IF mean of C. acutatum in SY-treated plants, but reduced it in PW 

plants (Table 4.5). Application of PW increased Cl. sphaerospermum 

frequency and reduced frequency of Co. acutatum, however, the opposite 

result was found when SY was added. It is also interesting to note that addition 

of Co. acutatum increased the IF mean of Cl. sphaerospermum in SY plants, 

but reduced it in other treatments. In contrast, addition of Cl. sphaerospermum 

increased its frequency in PW, but reduced it in SY plants. Dual endophyte 

application increased IF mean of Cl. sphaerospermum but reduced that Co. 

acutatum in SY plants. Insect attack and addition of Co. acutatum reduced IF 

mean of this fungus only when PW was present and SY was absent, leading 

to the significant interaction terms (IN x CA) in the analysis (Table 4.5b).  

The NMDS ordination clearly separated the endophyte fungal communities 

between insect attacked plants and their controls in PW plants (ANOSIM R = 

0.2027, p < 0.05) and SY plants (ANOSIM R = 0.0593, p < 0.05) (Figure 4.7). 

Meanwhile, addition of Cl. sphaerospermum reduced endophyte species 

richness (F1,65 = 14.400, p < 0.001) of PW plants and SY plants (F1,65 = 9.422, 

p < 0.05) which did not happen when Co. acutatum was added. 
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Table 4.5 Four way factorial analysis of isolation frequency mean of (a) Cladosporium sphaerospermum and (b) Colletotrichum 

acutatum across treatments. Degrees of Freedom for F values = 1,65 and n=5 in all treatments. AM: Mycorrhizal treatments. 

Legend as in Table 4.1. 

 

 

 

 

 

 

 

 

(a) IF mean 
of CS 

Plantworks-treated 
plants 

Symbio-treated 
plants 

F p F p 

IN 22.928 <0.001 331.427 <0.001 

AM 22.928 <0.001 430.804 <0.001 

CA 547.355 <0.001 11.271 <0.001 

CS 9362.708 <0.001 5590.963 <0.001 

IN:AM 0.004 0.9480 0.020 0.8879 

IN:CA 0.171 0.6807 0.065 0.7988 

IN:CS 2.013 0.1607 3.553 0.0639 

AM:CA 0.009 0.9262 0.113 0.7377 

AM:CS 1.903 0.1725 0.732 0.3954 

CA:CS 0.005 0.9433 5.520 0.0218 

IN:AM:CA 2.183 0.1444 1.023 0.3156 

IN:AM:CS 0.858 0.3577 0.062 0.8045 

IN:CA:CS 5.664 0.0203 10.217 0.0021 

AM:CA:CS 0.306 0.5820 0.063 0.8031 

(b) IF mean 
of CA 

Plantworks-treated 
plants 

Symbio-treated 
plants 

F p F p 

IN 2440.261 <0.001 756.982 <0.001 

AM 62.166 <0.001 399.743 <0.001 

CA 7919.896 <0.001 12991.573 <0.001 

CS 0.067 0.7963 0.862 0.3566 

IN:AM 0.736 0.3940 6.537 0.0129 

IN:CA 20.161 <0.001 71.630 <0.001 

IN:CS 0.186 0.6673 0.124 0.7255 

AM:CA 0.102 0.7502 31.190 <0.001 

AM:CS 0.372 0.5443 0.135 0.7144 

CA:CS 3.897 0.0526 14.003 0.0003 

IN:AM:CA 2.361 0.1292 0.052 0.8196 

IN:AM:CS 1.773 0.1877 0.239 0.6262 

IN:CA:CS 0.880 0.3518 10.103 0.0022 

AM:CA:CS 4.992 0.0289 0.897 0.3472 
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(a)  

 
(b) 

 
Figure 4.7 Endophyte communities in plants that were attacked by insects 

and their controls across (a) PW-treated and (b) SY-treated plants. Please 

note difference in scales for visual clarity. Vertical axis most likely represents 

isolation frequency of endophyte communities while horizontal axis likely 

represents seperation by insect presence.  
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4.3 Discussion 

These results clearly show that combinations of insects and fungi affected 

plant performance, but the outcome depends upon the identity of the 

mycorrhizas and endophytes. To date, there have been no studies that have 

explored the interactions between these particular endophyte species and 

aphids in forbs, however, there has been some work on the fungi in isolation. 

A Cladosporium sp. has been recorded to show pathogenicity towards an 

aphid and may kill them externally by being toxic or internally through 

penetration of hyphae into the body segment (Bahar et al. 2011). Therefore, 

Cladosporium sp. was chosen as a biocontrol agent of aphids in Egypt (Abdel-

Baky & Abdel-Salam 2003).  

This is consistent with the finding here that Cl. sphaerospermum reduced 

aphid numbers when the AM was absent. In addition, a study showed that a 

plant pathogen, Passalora fulva did not affect AMF colonisation in tomato and 

suggested that mycorrhizal colonisation provided a protection against it (Wang 

et al. 2018). However, in this experiment, Cl. sphaerospermum reduced plant 

growth with both AM inocula, when insects were present. This suggests that 

the presence of Cl. sphaerospermum and aphids, directly inhibited plant 

performance while Cl. sphaerospermum suppressed aphid infestation in 

balsam.  

Meanwhile  there were no differences of watermelon, Citrullus lanatus plant 

size, but fewer lesion areas on the leaves when aphid attacked plants that 

were inoculated with the fungal pathogen, Gloeosporium orbiculare compared 

to the control plants that were infected with pathogen only (Russo et al. 1997). 
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This suggests that aphid feeding initiated a plant protection mechanism, 

resulting in fewer lesions, while the fungus reduced insect attack on the plants 

(Russo et al. 1997) through chemicals (phytohormones and jasmonic acid) 

induced by the fungi and chewing insects (Pineda et al. 2013). Similarly, the 

aboveground fungal pathogen, Colletotrichum gloeosporioides promoted plant 

defence mechanisms that indirectly inhibited belowground percentage of roots 

colonised by AMF in bean plants, Phaseolus vulgaris (Ballhorn et al. 2014). 

However, endophyte presence in this study did not affect mycorrhizal 

colonisation.    

In contrast, in this study, application of Co. acutatum reduced plant size and 

leaf numbers of plants that were attacked by insects, but only when SY was 

present. However, this endophytic fungus increased aphid number on SY 

plants when it was inoculated singly but reduced aphid infestation in the dual 

endophyte treatments. This suggests that Co. acutatum elicits chemical 

changes in the host, which are different in single and dual inoculations and 

which have different effects on insects. Additionally, there was also a 

suggestion that Co. acutatum reduces AM colonisation, however, the opposite 

may occur when this fungus is inoculated with another in the presence of PW 

inoculum. This suggests that dual endophyte infections were having a 

dramatic effect on the plants, and that the multiple attack by fungi and insects, 

initiated secondary metabolite production and induction of systemic plant 

resistance to inhibit aphid infestation which as result, reduced its growth and 

also mycorrhizal colonisation. Mycorrhizal identity was also vital in determining 

whether aphid attack was enhanced or suppressed, as the different inocula 

contained different species as described in section 3.4.2 and it seems likely 
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that the PW inoculum encouraged aphid infestation in all situations. This is 

consistent with the previous studies that show AM can have positive or 

negative effect on the insect growth and development depending upon their 

identities (Gehring & Whitham 2002; Gange et al. 2005).  

In this study, insect herbivory, AM and endophytes influenced endophyte 

infection of Cl. sphaerospermum in the plants. The isolation frequency of this 

fungus was reduced when aphids, dual endophytes and SY were present 

together, but increased when PW was present. This suggests that AM may be 

a determining factor in the recovery of endophytes from the inoculated leaves 

(Eschen et al. 2010). Moreover, Cl. sphaerospermum addition reduced 

endophyte species richness in both AM treatments which suggests that 

interactions between the endophytes themselves in plants may be negative 

(Gange et al. 2007), since they are very often antagonistic in vivo (Chagas et 

al. 2013).  

Aphids, AM and Co. acutatum affected the recovery rate of Co. acutatum in 

both AM plants, but addition of Cl. sphaerospermum did not affect the recovery 

of Co. acutatum. In spite of the fact that Colletotrichum sp. is commonly found 

in many plant hosts as a generalist among endophyte communities (Brown et 

al. 1998; Kumar & Hyde 2004) and is common in the spore rain (Fróhlich et al. 

2000), it was successfully recovered from the inoculated leaves when only 

aphids and PW were absent or either were applied. This likely shows that 

when insects and PW were present together, secondary metabolite 

compounds, most likely phenolic acids and flavonoids were activated in 

response to their presence. These compounds have antimicrobial and 
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antioxidant activities which may prevent the inoculated fungus from entering 

the foliar tissues (Szewczyk et al. 2016; Szewczyk et al. 2018).  

This suggests that it is possible that insect herbivores indirectly affect 

endophyte communities in balsam and that insects may have interfered with 

the entry of endophytes into balsam leaves. So this implies that one is always 

likely to get different results in lab v. field conditions, unless researchers 

control for insects in the field studies. This may also suggest that it is possible 

for the mycorrhizas to affect the ability of the endophyte to infect the plant in 

different ways. This adds a whole new level of complexity to the system –not 

only that there are interactions between the endophytes, mycorrhizas and 

insects, but that these interactions depend upon the identity of the fungal 

species.  

4.4 Conclusion  

Overall, the combination of AM and Cl. sphaerospermum encouraged aphid 

infestation, and the combined effect of insects, AM and this endophyte 

reduced plant growth. Moreover, interactions between aphids, both 

endophytes and PW resulted in reduced plant performance also. In addition, 

the presence of insects and PW virtually prevented Co. acutatum from 

infecting plants, but seemed to have the opposite effect with Cl. 

sphaerospermum and increased infection. Meanwhile when SY was present, 

it seemed to encourage Co. acutatum and suppressed Cl. sphaerospermum 

from entering into the leaves. This shows the positive association of SY and 

Co. acutatum and interestingly, their interaction increased aphid infestation 
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and possibly reduced plant growth which might be helpful for biological control 

of balsam. Thus, an experiment consisting of SY, Co. acutatum and the rust 

fungus was conducted in order to examine their interactions on plant 

performance as described in Chapter 7.  
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CHAPTER 5 PLANT-SOIL FEEDBACKS 

Soil characteristics such as physical, chemical and biological properties are 

important in determining plant growth, productivity and reproductive success 

of individual plants, neighbouring plants and community composition as well 

(van der Putten et al. 2013). A plant-soil feedback (PSF) is when a plant may 

influence and alter soil properties which lead to the altered performance of 

individuals of either the same species or other plant species in a subsequent 

generation (Bever et al. 1997; Ehrenfeld et al. 2005; Kulmatiski & Kardol 

2008).  

Direct, intraspecific or conspecific PSF occurs when an individual plant 

species has an impact on the performance of itself or other individuals from 

the same species. Meanwhile, indirect, interspecific or heterospecific PSF 

occurs when different plant species influence each other (Mccarthy-Neumann 

& Kobe 2010; van de Voorde et al. 2011).  Positive PSF occurs when a given 

plant species has a subsequent enhancing effect on the same plant species 

growth, whereas negative PSF occurs when the soil is reduced in its ability to 

support the plant growth, which may result in the death of a plant and may 

promote the coexistence of other plant species (van der Putten et al. 2013). 

Changes in populations of antagonistic or mutualistic soil microbes and their 

effects on plant growth and performance may determine the direction of the 

feedback as either positive or negative.  

Plant-Soil Feedbacks have been widely investigated over the past two 

decades in invasive species performance and fitness (Klironomos 2002; 
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Callaway et al. 2004; van Grunsven et al. 2007; van der Putten et al. 2013; 

Pattison et al. 2016). Generally, invasive plants tend to establish positive PSF 

that promote invasion in the introduced range and inversely in their native 

range, possibly because of enemy release, mutualism interaction or 

biogeographical differences in soil biotic communities (Reinhart & Callaway 

2006; Callaway et al. 2011; Gundale et al. 2014).  

Recent studies showed that Himalayan balsam exhibits a positive feedback, 

as it grew at a faster rate and produced more leaves and shoot biomass when 

grown in soil that had previously supported the species. It also displayed an 

ability to manipulate above and below-ground microbial assemblages by 

showing lower arbuscular mycorrhizal (AM) fungi root colonisation, greater 

endophyte species richness and also changing the level of nutrients in the soil 

(Pattison et al. 2016). Although it has been widely documented that balsam is 

weakly dependent on AM for phosphate uptake (Beerling & Perrins 1993), 

mycorrhizal fungi still need carbon from hosts to grow, which can lead to a 

negative effect on plant performance at high levels of colonisation (Tanner et 

al. 2014). Any AM fungal root colonisation above an optimum level may result 

in altering the association to become parasitic (Gange & Ayres 1999) resulting 

in depressed plant growth (Jin et al. 2017). It is believed that, AMF have an 

antagonistic relationship with balsam and it has been suggested that the 

changes in mycorrhizal levels and/or microbial species in the soil may in turn 

influence the foliar endophyte community composition (Pattison et al. 2016).  

The interaction between balsam, soil feedback and the associated microbial 

community deserves further investigation as there are limited studies on this 
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subject. It is also critical to determine if these interactions might promote or 

discourage the rust fungus as a biological control agent against this species 

(Tanner et al. 2015a). Therefore, this study was initiated. The objectives were 

to study how different commercial inocula affect the degree of soil conditioning 

by balsam. The second objective was to study the differences in foliar 

endophyte communities of plants grown in soil that had (termed ‘conditioned’ 

soil) or had not (termed ‘clean’ soil) previously supported balsam. The 

hypothesis to be tested in this study was that Himalayan balsam grown in a 

conditioned soil may show altered plant performance and foliar endophyte 

communities, but that this would depend on the type of commercial 

mycorrhizal inoculum used.  

5.1 Methods 

The plants grown in this experiment had two growth phases that were 

conducted over two years, following the recommended procedure of 

Kulmatiski & Kardol (2008). Phase I involved conditioning the soil and was 

conducted in summer 2016, meanwhile Phase II, consisting of evaluating 

balsam performance and fungal interactions in conditioned soil, and was 

conducted in summer 2017. Phase I was performed by growing balsam in pots 

in the field, to ‘condition’ the soil. Soil without a balsam plant was the control 

in this study. Then, the conditioned and control soils from Phase I were tested 

by cultivating balsam in both soils. Plant performance was measured and 

interaction with fungi were examined which then was referred to as Phase II.  
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In Phase I, all pots were filled with Number 2 John Innes compost and the 

plants were colonised with one of two different inocula Plantworks (PW) and 

Symbio (SY), with a respective control for each inoculum. Himalayan balsam 

seeds were sown in both inocula treatments, which are hereafter termed ‘PW 

soil’ (+PW) and ‘SY soil’ (+SY). Half of the control inocula which were sown 

with seeds were called ‘PW control soil’ (-PW) and ‘SY control soil’ (-SY) while 

the remaining control inocula containing compost and autoclaved inocula 

without seeds was referred to as ‘Clean PW Soil’ (-C-PW) and ‘Clean SY Soil’ 

(-C-SY). There were six treatments altogether with 10 replicates resulting in 

40 plants and 20 compost-only pots (Figure 5.2a).  

For the first phase of the experiment, the external base of each pot was 

wrapped with a nylon mesh of 34µm aperture size by using duct tape (Figure 

5.1a). Then, the pots were buried into the soil which were surrounded with 

thick sand and were rotated weekly to minimise the possibility of fungal hyphae 

from the environment entering the pot. The plants were placed in the field in a 

randomised block design and were watered with 250ml water daily. After eight 

weeks, the plants were harvested and the plant parameters (height, leaf 

number and shoot biomass) were recorded. Leaf and root samples were 

collected for all fungal assessments as described in sections 2.3 and 2.4. All 

soils were left to air dry for three weeks (Figure 5.1b) and were stored in an 

envelope individually for 11 months in a cold and dark room for Phase II 

experiment usage.  

A year later, Phase II was conducted. The soils from Phase I were taken from 

the room and put in the same size pot as above, and the pots were wrapped 
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with the nylon mesh individually. These were labelled as ‘Conditioned PW Soil’ 

(+C+PW), ‘Conditioned SY Soil’ (+C+SY), ‘Conditioned PW Control Soil’ (+C-

PW), ‘Conditioned SY Control Soil’ (+C-SY), ‘Clean PW Soil’ (-C-PW) and 

‘Clean SY Soil’ (-C-SY) (Figure 5.2b). Two balsam seeds were sown in each 

soil and after 14 days, the weaker seedling was removed. Then, the pots were 

placed in a controlled environment facility (16h light/8h dark at 23 + 1oC, 35% 

relative humidity) for 5 weeks before placing outside, to ensure seedling 

establishment. There were 6 treatments and 10 replicates for each, resulting 

in 60 plants which were grown in the same field site for eight weeks (Figure 

5.1c). Before flowering, the plants were harvested and plant parameters were 

recorded. Leaf and root materials were collected for mycorrhizal and 

endophyte fungal assessment as explained in sections 2.3 and 2.4.  Three 

endophyte species were identified by molecular identification: Colletotrichum 

destructivum (GeneBank accession number: MH665647), Didmyellaceae 

(GeneBank accession number: MH665648) and Pleosporales (GeneBank 

accession number: MH665646), while the remaining species were identified 

morphologically by Dr. Brian C. Sutton as described in section 2.3.  
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Figure 5.1 Photos show (a) a pot was wrapped with a nylon mesh in order 

to reduce contamination from external mycorrhizal fungi, (b) soils were air 

dried in a polytunnel and (c) how the plants were sunk into field soil.  

 

(a) 

(c) 

(b) 
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(a) Phase I (conditioning soil)  

 

 

 

 

 

(b) Phase II (conditioned soil) 

 

 

 

(b) Phase II (conditioned soil) 

 
 

Figure 5.2 Diagram showing how the treatments were set up for each phase; (a) conditioning soil in 2016 and (b) conditioned soil 

in 2017. +/-PW shows presence/absence of Plantworks inoculum, +/-SY shows presence/absence of Symbio inoculum and +/-C 

indicates conditioned/‘clean’ soil (see text).  

+PW 
+SY -PW -SY 

-C-PW 

+PW +SY -PW -SY 

+C+PW +C+SY +C-PW +C-SY -C-PW -C-SY 

-C-SY 
+PW +SY -PW -SY 
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5.1.1 Statistical Analysis 

All of the statistical analysis was conducted using R Studio version 1.1.383 as 

described in section 2.7. In the Phase I experiment, to analyse the effect of 

mycorrhizas on balsam performance, a one-way ANOVA was performed with 

mycorrhizal presence as the main effect. Meanwhile in Phase II, again, one-

way ANOVA was performed to analyse the effect of mycorrhizas on the soil 

conditioning by balsam with AM presence as a factor. To examine the effect 

of soil with AM on plants, one-way ANOVA was conducted between plants that 

were grown in inoculated and conditioned soils with soil treatment as the main 

effect. Finally, to examine the effect of soil treatments, one way ANOVA was 

conducted with soil presence as main effect between plants that were grown 

in conditioned and clean soils. The analysis was done separately for each 

inoculum, because of the physical structure differences in the carriers (Figure 

2.1).   

Endophyte Isolation Frequency (IF) differences of species between treatments 

were examined as described in section 2.7 with a similar analytical design and 

the percentage data were arcsine transformed. Species abundance and 

species richness were examined and differences in endophyte community 

composition between treatments were examined with NMDS.  

 

 



129 
 

5.2 Results 

5.2.1 Plant growth 

In phase 1, there were no effects of mycorrhizas on any plant growth 

parameter compared to the control soil (Table 5.1a). Similarly, there were no 

effects of mycorrhizas on plant growth between conditioned soil (+C+PW and 

+C+SY) and conditioned control soil (+C-PW and +C-SY) in Phase 2 (Table 

5.1b). However, plants in conditioned soil (+C+PW and +C+SY) were shorter 

(Figure 5.3a) and were lighter (Figure 5.3b) compared to the plants in inocula 

soil (+PW and +SY) (Table 5.1c). Interestingly, plants in the conditioned soil 

(+C+PW and +C+SY) were shorter (Figure 5.4a) and lighter (Figure 5.4b) than 

those grown in the clean soil (-C-PW and –C-SY) (Table 5.1d). In the absence 

of mycorrhizas, PW plants grown in the clean soil (-C-PW) were shorter (F1,18 

= 24.91, p < 0.001) and lighter (F1,18 = 82.44, p < 0.001) than plants grown in 

phase 1 (-PW) (Figure 5.5a). Similar differences were seen between SY plants 

grown in the clean soil (-C-SY) were shorter (F1,18 = 22.91, p < 0.001) and 

lighter (F1,18 = 129.7, p < 0.001) than plants grown in the phase 1 (-SY) (Figure 

5.5b).  
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         (a)      
                                                          

   
 
        (b)  
 

 
Figure 5.3 Mean of (a) plant height and (b) shoot biomass between treated 

plants and their control in both phases. Blue bars represent mycorrhizas 

present while green bars represent mycorrhizas absent. PW is Plantworks soil 

and SY is Symbio soil in Phase 1. +CPW is Conditioned Plantworks soil and 

+CSY is Conditioned Symbio soil in Phase 2. n=10 in all treatments. Error bars 

are one SE.  
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        (a) 
 

  
 
 
                  (b)   
 

 
 

Figure 5.4 Mean of (a) plant height and (b) shoot biomass in different soil 

conditions –both from the plants grown in Phase 2. PW is Plantworks soil and 

SY is Symbio soil. n=10 in all treatments. Error bars are one SE. Asterisks 

above bars indicate significant pairwise differences between means, *p < 0.05 

and **p < 0.001.  
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               (a) 
 

 
 
 
 
                 (b) 

 
 

Figure 5.5 Mean of (a) plant height and (b) shoot biomass of plants grown 

without AM in conditioning soil in phase 1 and clean soil in phase 2. -PW is 

without Plantworks inoculum and -SY is without Symbio inoculum. n=10 in all 

treatments. Error bars are one SE. Asterisks above bars indicate significant 

pairwise differences between means, **p < 0.001.  
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Table 5.1 One-way factorial analysis results across treatments. Degrees of Freedom for F values = 1, 18 and n = 10 for each 

treatment. (a) Plants were grown in the Inocula Soil were compared with the plants grown in the Control Soil, (b) Plants were grown 

in the Conditioned Soil were compared with the plants grown in the Conditioned Control Soil, (c) Plants were grown in the Inocula 

Soil –Phase 1 were compared with the plants grown in the Conditioned Soil –Phase 2 while (d) Plants were grown in the Conditioned 

Soil –Phase 2 were compared with the plants grown in the Clean Soil –Phase 2. Bold indicated significant values.  

 

 

 

 

(a) Phase I –Conditioning phase 
(Inocula Soil vs Control Soil)  

Height Leaf number Shoot biomass RLC 

F p F p F p F p 

AM –Plantworks 0.018 0.893 1.816 0.194 1.412 0.250 191.7 <0.001 

AM –Symbio 0.469 0.502 1.781 0.920 0.010 0.920 98.35 <0.001 

(b) Phase II –Feedback phase 
(Conditioned Soil vs. Conditioned 
Control Soil) 

Height Leaf number Shoot biomass RLC 

F p F p F p F p 

AM –Plantworks 0.236 0.633 1.429 0.248 0.134 0.719 9.634 <0.001 

AM –Symbio 0.038 0.847 0.710 0.410 1.035 0.322 2.338 0.144 
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(c) Both phases   
(Inocula Soil vs Conditioned Soil) 

Height Leaf number Shoot biomass RLC 

F p F p F p F p 

Soil -Plantworks 201.4 p<0.001 243.2 p<0.001 128.5 p<0.001 51.75 p<0.001 

Soil -Symbio 113.1 p<0.001 174.2 p<0.001 108.4 p<0.001 18.7 p<0.001 

(d) Phase II   
(Conditioned Soil vs Clean Soil) 

Height Leaf number Shoot biomass RLC 

F p F p F p F p 

Soil -Plantworks 9.615 0.006 16.09 p<0.001 10.53 0.004 18.55 p<0.001 

Soil -Symbio 26.38 p<0.001 14.27 p<0.001 18.67 p<0.001 2.025 0.172 
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5.2.2 AMF colonisation 

Balsam grown in PW soil showed twice the amount of AM colonisation than 

plants grown in SY soil in both growth phases (Figure 5.6). Plants grown in the 

inoculated soil (+PW and +SY) showed higher AM colonisation than plants 

grown in the control soil (-PW and –SY) (Table 5.1a). Similarly, plants grown 

in the conditioned PW soil (+C+PW) had higher colonisation compared to the 

plants without PW inoculum in conditioned soil (+C-PW), however, no 

difference in SY-treated plants was found (Table 5.1b).  

In contrast, plants grown in the conditioned soils (+C+PW and +C+SY) had 

lower AM colonisation compared to the inocula soils (+PW and +SY) (Table 

5.1c). However, plants grown in the conditioned soil with PW inoculum 

(+C+PW) recorded higher colonisation compared to the plants in the clean soil 

(–C-PW) (Figure 5.7), while no difference was found in SY plants (Table 5.1d).   
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Figure 5.6 AM colonisation of treated plants and their controls in both 

phases. PW is Plantworks soil and SY is Symbio soil in Phase 1. +CPW is 

Conditioned Plantworks soil and +CSY is Conditioned Symbio soil in Phase 2. 

n=10 in all treatments. Error bars are one SE. Asterisks above bars indicate 

significant pairwise differences between means, **p < 0.001.  

 

 

 
Figure 5.7 AM colonisation in different soil conditions. Both were from the 

plants grown in Phase 2. PW is Plantworks soil and SY is Symbio soil. n=10 

in all treatments. Error bars are one SE. Asterisks above bars indicate 

significant pairwise differences between means, **p < 0.001.  
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5.2.3 Endophytic fungal communities 

Eleven endophyte species were isolated from plants in the conditioning soil 

phase while 16 species were recorded from the second phase (Table 5.2). 

Five species were found from conditioning soil plants only –Chaetomium 

cochliodes, Lecanicillium sp., Nigrospora oryzae, Peniophora sp, and 

Phialophora cyclaminis. Ten endophyte species were only isolated from 

conditioned soil plants –Acremonium incoloratum, Alternaria alternata, 

Chaetomium elatum, Colletotrichum destuctivum, Didmyellaceae, Exophiala 

sp., Fusarium acuminatum, Geniculosporium sp., Pleosporales and Alternaria 

infectoria. Six endophyte species were found in both phases –Acremonium 

strictum, Cladosporium cladosporioides, Cladosporium oxysporum, 

Cladosporium sphaerospermum, Colletotrichum acutatum and Penicillium sp.  

Cl. sphaeropermum recorded the highest average Isolation Frequency (IF) 

value across conditioning soil plants but was isolated with a low frequency 

from feedback plants. This fungus recorded higher IF mean in inocula PW 

(+PW) plants (F1,18 = 26.61, p < 0.05) compared to the conditioned PW plants 

(+C+PW), but showed no difference in SY-treated plants. Meanwhile A. 

alternata recorded higher IF mean in conditioned PW (+C+PW) plants (F1,18 = 

11.91, p < 0.05) compared to the plants grown in inoculum (+PW) soil. 

Furthermore, the IF of A. alternata was higher in conditioned SY plants 

(+C+SY) (F1,18 = 10.85, p < 0.05) compared to the inoculum (+SY) plants. 
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Table 5.2 The Isolation Frequency (%) mean of each endophyte species across both phases. N = 10 for each treatment. Bold 

values indicate the highest IF. (Note: +PW: Plantworks Soil, -PW: Plantworks Control Soil, +SY: Symbio Soil, -SY: Symbio Control 

Soil, +CPW: Conditioned Plantworks soil, +C-PW: Conditioned Plantworks Control soil, +CSY: Conditioned Symbio Soil, +C-SY: 

Conditioned Symbio Control Soil, -C-PW: Clean Plantworks Control Soil and –C-SY : Clean Symbio Control Soil.    

Endophyte species Conditioning Soil Phase (Phase 1) Evaluating Feedback Phase (Phase 2) 

+PW -PW +SY -SY Total +C+PW +C-PW +C+SY +C-SY -C-PW -C-SY Total 

Acremonium incoloratum 0 0 0 0 0 14.14 17.9 9.17 11.23 23.03 22.07 16.26 

Acremonium strictum 2 0 0 0 0.5 1.43 0 0 1.3 0 0 0.46 

Alternaria alternata 0 0 0 0 0 33.1 37.5 24.1 12.07 34.53 29.23 28.42 

Alternaria infectoria 0 0 0 0 0 2.5 1.43 0 0 0 0 0.66 

Chaetomium cochliodes 0 0 3.33 0 0.83 0 0 0 0 0 0 0 

Chaetomium elatum 0 0 0 0 0 1.11 8.1 4.2 4.3 6.51 8.5 5.45 

Cladosporium cladosporioides 0 12.5 0 4.5 4.25 0 0 0 0 0 0 1.33 

Cladosporium oxysporum 0 0 2 4.5 1.63 0 4.7 3.33 3.33 0 3.9 2.54 

Cladosporium sphaerospermum 39.03 58.67 32.85 27.17 39.43 0 2 10 0 3 3.4 3.07 

Colletotrichum acutatum 13.33 10.33 2.5 6.5 8.17 2.54 8.45 1.67 2.68 8.17 11.43 5.82 

Colletotrichum destructivum 0 0 0 0 0 0 3.75 5.83 0 7.5 4 3.51 

Didmyellaceae 0 0 0 0 0 0 0 0 0 0 5.5 0.92 



139 
 

Endophyte species Conditioning Soil Phase (Phase 1) Evaluating feedback Phase (Phase 2) 

+PW -PW +SY -SY Total +CPW +C-PW +CSY +C-SY -C-PW -C-SY Total 

Exophiala sp. 0 0 0 0 0 0 0 21.67 5 9 8.93 7.43 

Fusarium acuminatum 0 0 0 0 0 1.43 1.25 3.33 0 1.11 1 1.35 

Geniculosporium sp. 0 0 0 0 0 1.11 0 0 0 0 0 0.19 

Lecanicillium sp. 12.33 2 35.33 10.5 15.04 0 0 0 0 0 0 0 

Nigrospora oryzae 1.67 4 2 9 4.17 0 0 0 0 0 0 0 

Penicillium sp. 5 2.5 0 0 1.88 1.43 0 0 2.92 4.36 2 1.79 

Peniophora sp. 15 10 0 2.5 6.88 0 0 0 0 0 0 0 

Phialophora cyclaminis 1.67 0 10 5.33 4.25 0 0 0 0 0 0 0 

Pleosporales 0 0 0 0 0 1.25 4 0 6.01 2.92 0 2.36 
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The differences between the communities in the different treatments within a 

year were recorded too. IF mean of Chaetomium elatum was lower in plants 

grown with PW inoculum in conditioned soil (+C+PW) compared to the plants 

without inoculum in conditioned soil (+C-PW) (F1,18 = 4.984, p < 0.05) while 

Lecanicillium sp. was higher in SY inoculum soil (+SY) compared to the control 

(-SY) (F1,18 = 4.51, p < 0.05). In addition, endophyte species richness per 

plants of plants grown in the conditioned soils with PW (+C+PW) was lower 

than that of their controls (+C-PW) (F1,18 = 4.457, p < 0.05) and to the plants 

grown in the clean soils without PW (–C-PW) plants (F1,18 = 5.968, p < 0.05). 

Similarly, species richness of plants grown in the conditioned soils with SY 

(+C+SY) was lower compared to those grown in the clean soil when SY was 

absent (–C-SY plants) (F1,18 = 5.188, p < 0.05)   

The presence of inocula had an effect on endophyte communities within and 

between the phases of PW inoculum (+PW) plants, their controls (-PW), plants 

grown in the conditioned soil with PW (+C+PW) and their controls (+C-PW) 

(ANOSIM R = 0.5680, p < 0.001) (Figure 5.8a). Similar differences were seen 

between SY inoculum (+SY) plants, their controls (-SY), SY inoculum plants 

in the conditioned soil (+C+SY) and their controls (+C-SY) (ANOSIM R = 

0.5034, p < 0.001) (Figure 5.8b). In addition, conditioning of soil by balsam in 

the absence of mycorrhizas also affected endophyte communities, between 

plants grown in the conditioned soil without PW (+C-PW) and plants grown in 

the clean soil without PW (-C-PW) (ANOSIM R = 0.2007, p < 0.001) (Figure 

5.9a). There were also differences in communities within plants grown in the 

conditioned soil without SY (+C-SY) and those grown in the clean soil without 

SY (-C-SY) (ANOSIM R = 0.5529, p < 0.001) (Figure 5.9b). Interestingly, both 
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inocula differed in the effects on endophyte communities where plants grown 

in the PW inoculum (+PW), SY inoculum (+SY), plants grown in the 

conditioned soil with PW (+C+PW) and with SY (+C+SY) were further 

separated in the two phases (ANOSIM R = 0.5040, p < 0.001) (Figure 5.10).  
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 (a)  

 
(b) 

 
Figure 5.8 Inocula effect on endophyte fungal communities within and 

between the two phases of (a) Plantworks plants and (b) Symbio plants. +/-

PW: Plantworks present/absent, +/-SY: Symbio present/absent and +C: 

Conditioned soils). Please note difference in scales for visual clarity. Vertical 

axis most likely represents isolation frequency of endophyte communities 

while horizontal axis likely shows separation by soil conditioning.  
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(a) 

 
(b) 

 
Figure 5.9 Conditioning of soil by balsam in the absence of (a) Plantworks 

and (b) Symbio affect endophyte communities. +/-PW: Plantworks 

present/absent, +/-SY: Symbio present/absent and +/-C: conditioned/clean 

soils). Please note difference in scales for visual clarity. Vertical axis most 

likely represents isolation frequency of endophyte communities while 

horizontal axis likely shows separation by soil conditioning.  
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Figure 5.10 Both inocula effect on endophyte communities and the different 

in the both phases. +/-PW: Plantworks present/absent, +/-SY: Symbio 

present/absent and +C: conditioned soils). Please note difference in scales for 

visual clarity. Vertical axis most likely represents isolation frequency of 

endophyte communities while horizontal axis likely shows separation of by soil 

conditioning.  
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5.3 Discussion 

Many studies have been reported on PSF of invasive species especially in 

grasses (van Grunsven et al. 2007; Schittko et al. 2016) yet only few studies 

have focused on forb species (Kos et al. 2015), and only one on Himalayan 

balsam (Pattison et al. 2016). Therefore this study was conducted to contribute 

to the body of knowledge on Himalayan balsam soil feedback with mycorrhizas 

and soil type as the main factors and to examine whether commercial 

mycorrhizal inocula produced the same effects as natural colonisation. The 

results indicate that both mycorrhizal identity and soil type are critical in 

determining the outcome of the feedback.  

Himalayan balsam plants grown in a conditioned soil were shorter, bore fewer 

leaves, with lower shoot biomass and less AM colonisation than plants in the 

inoculated soils irrespective of inoculum type, suggesting that it displayed a 

negative PSF. Similarly, the conditioned plants were shorter and lighter than 

those in phase 1, in the absence of inoculum (-PW and –SY). The difference 

in plant growth in the two years was noticeable and this may be because the 

second year was much warmer than the first. However, plants grown in the 

conditioned soil with the presence of PW (+C+PW) showed higher AM 

colonisation compared to the balsam grown in the clean soil without PW (-C-

PW), while no difference was seen in SY-treated plants. This finding suggests 

that addition of PW promoted mycorrhizal colonisation. It is interesting to note 

that, while higher AMF colonisation was seen in the plants grown in the 

conditioned soils with PW inoculum (+C+PW), this did not result in greater 

vegetative growth, suggesting that the inoculum was not beneficial to the 
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plants despite colonisation being high. It has been well documented that AMF 

enhanced the uptake of phosphate to plants (Richardson et al. 2009) while in 

return hosts provided carbon to AMF, which may weaken the plant growth at 

high level of colonisation (Gange & Ayres 1999).  

Interestingly, PW inoculum plants had double the colonisation amount of the 

SY inoculum plants in both phases which was similar to the plant-fungi-insect 

interaction experiment described in section 4.2.1. This may be explained by 

the different mycorrhizal species composition of the two inocula as explained 

in section 3.4.2, as the possibility of fungal entry from the environment was 

minimised by a thick sand ‘wall’ made around the pots together with pots being 

rotated weekly. In addition, SY inoculum consists of spores only, while the PW 

is made of spores, pieces of hyphae and colonised roots and previous studies 

have shown that the colonisation was variable between inocula that have 

different propagule types (Klironomos & Hart 2002; Faye et al. 2013; 

Herrmann & Lesueur 2013). This has shown that not only are AMF important 

in determining plant performance in native and invaded areas, but it also 

depends on their identities. In addition, AMF are known to show species 

specificity, where the same AMF species can occur in different plant species 

and produce different effects on the plant growth (Klironomos 2000; Edwards 

2017).  

In this study, balsam plant biomass in a conditioned soil was 25g lighter, 50cm 

shorter and AM colonisation was 10% reduced compared to the recent study 

which recorded a positive PSF (Pattison et al. 2016). There were differences 

between the recent study (Pattison et al. 2016) and this study where the former 
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conditioned field soil had not been cultivated for over 30 years and was 

dominated by native species (Urtica dioica) and an invasive species 

(Impatiens parviflora) whereas this work used a commercial compost (John 

Innes) with the addition of commercial mycorrhizal inoculum. This may explain 

the differences in the findings as both studies begin with very different soil and 

nutrient composition. In addition, a recent study demonstrated that balsam 

induced alteration in soil chemical properties including increasing ammonium 

(NH4+) and decreasing nitrate (NO3-) levels (Majewska et al. 2018). Whether 

similar changes occurred in the present experiment is unknown, but this is 

another likely explanatory factor for the difference seen here and in the results 

of Pattisson et al. (2016). Many studies have been performed in commercial 

composts because they are supposed to be more uniform than field soils, thus 

reducing variability (Jeffries et al. 2003; Edwards 2017). However, it is clear 

that they do not mimic field soils in any way. Furthermore, this has 

demonstrated that the outcome of a PSF can be reversed by using a different 

soil type.  

This is similar to previous studies when Bromus diandrus in a monoculture 

experienced a positive feedback in soil that was collected from an abandoned 

citrus agriculture site (Hilbig & Allen 2015) while three invasive plant species 

(Heracleum mantegazzianum, Tragopogon dubius and Eragrostis pilosa) 

grown in a soil with live inoculum produced a negative feedback (being shorter 

and less biomass) compared to native plant species (Heracleum sphondylium, 

Tragopogon pratensis and Poa annua) (van Grunsven et al. 2007). The 

negative feedbacks are most likely because of the accumulation of pathogenic 

fungi in the soil resulting in weakened plants and reduced AM colonisation 
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(van Grunsven et al. 2007). Although this results produced a similar outcome, 

which is negative feedback, to my knowledge, this is the first study conducted 

on PSF in balsam with the addition of mycorrhizal inoculum. Therefore, this 

finding could provide important insights into our understanding on the fungal 

community interactions in the invaded areas and these may contribute to 

establishing their role in the biological control of balsam by using the rust 

fungus (Tanner et al. 2015a).  

PSF have generally focused on plant parameters and the effect on soil 

microbial communities, however, the effects on above-ground communities 

have generally been ignored. The commonest endophyte species identified in 

this study were Cl. sphaerospermum in the conditioning soil and Al. alternata 

in the conditioned soil. Both species are known to be ubiquitous in nature, yet 

still showed differences in infection levels between treatments. It also should 

be noted that the endophyte community within plants in the inocula soil in 

Phase 1 and in plants grown in the conditioned soil in Phase 2 were different, 

with only three similar species occurring in both treatments. This is because it 

was two different years and one would expect the spore rain, climate and 

nutrient deplicit to be different in both years. However, it is also interesting to 

note that the communities in the different treatments within a year also 

differed. This suggests that AMF were important in determining the structure 

of the foliar endophyte communities (Eschen et al. 2010) in balsam leaves and 

to date, to my knowledge, this is the first study that has demonstrated the effect 

of mycorrhizal on the endophyte communities in balsam. Effects of 

endophytes on mycorrhizal colonisation are well established (Chu-Chou et al. 
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1992; Larimer et al. 2012; Zhou et al. 2018) but, little is known for the opposite 

effects.  

Furthermore, endophyte species richness was lower in plants grown in the 

conditioned soil compared to the plants grown in the clean soil and there was 

clear separation of endophyte fungal communities between treatments. This 

likely showed that Himalayan balsam generated a negative PSF on fungal 

endophyte communities and suggested AMF and soil conditions may have 

had a significant effect on foliar endophyte communities, as the plants that 

grew in the balsam soils were less susceptible to endophyte infection. 

Changes in soil conditions may lead to changes in the foliar fungal 

communities in the perennial forb Cirsium arvense (Eschen et al. 2010) and 

balsam (Pattison et al. 2016).  

Thus, these findings with Himalayan balsam suggest that differences in 

mycorrhizal composition and soil conditions may affect the plant performance 

and ultimately the ecological impact of foliar fungal endophytes, such as 

protection against herbivores or pathogens by inducing phytoalexins (Gao et 

al. 2010). Therefore, it is important to understand their interactions as it could 

have important consequences for biological control of this invasive species.  

 

  



150 
 

5.4 Conclusion  

In conclusion, this study showed that balsam grown in the conditioned soils 

produced a negative PSF and also altered foliar microbial communities, 

differing from the previous study (Pattison et al. 2016). Furthermore, 

commercial inocula do not seem to give the same result as natural AMF and 

commercial compost is not a good mimic of field soil and can reverse the PSF. 

Finally, the continuous stands of balsam may harbour reduced endophyte 

communities in the leaves. 
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CHAPTER 6 MYCORRHIZAL EFFECTS ON BALSAM COMPETITIVE 

ABILITY 

Arbuscular mycorrhizal fungi (AMF) have been shown to provide direct 

benefits to plants by promoting plant growth (Gange & Ayres 1999), protection 

from air-borne fungal pathogens (Wang et al. 2018) and also maintaining soil 

health (Jeffries et al. 2003). There is also great interest in understanding how 

the relationship between plants and AM fungi can influence plant community 

structure and productivity (Stampe & Daehler 2003; Yang et al. 2014) as well 

as interspecific competition (Danieli-Silva et al. 2010; Wagg et al. 2011; Emery 

& Rudgers 2012; Zhang et al. 2017).   

Plant competition is an important determining factor in the structure of plant 

communities (Aerts 1999), which is mediated by AMF (Lin et al. 2015). 

However, it is not only the presence of AMF that has an effect on plant 

competition, but also the identity of mycorrhizal species composition and the 

competing plants and whether they are AMF-dependent or non dependent 

(Scheublin et al. 2007). These authors have shown that the AMF-dependent 

legume Lotus corniculatus was strongly affected by the presence of AMF and 

outcompeted the less AMF-dependent grass, Festuca ovina and a 

mycorrhizal-dependent forb, Plantago lanceolata (Scheublin et al. 2007). 

Similarly, AMF also indirectly promoted the competitive effects of the AMF-

dependent invasive plant species, Centaurea maculosa on native grasslands, 

composed of Festuca idahoensis in western North America (Marler et al. 

1999). In terms of mycorrhizal identity, a study showed that the composition of 

AMF communities is vital to enable plants to co-exist and distribute soil 
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nutrients between plant species (van der Heijden et al. 2003). These authors 

also showed that the perennial forb, Prunella vulgaris was outcompeted by the 

grass, Brachypodium pinnatum, when Glomus sp. isolate BEG 19 was added 

compared to when Glomus sp. isolate BEG 21 was present. In addition, the 

latter AMF taxon was likely to be ineffective in phosphorus acquisition, as it 

had lower P content than plants inoculated with Glomus sp. isolate Basle Pi 

(van der Heijden et al. 2003).  

Meanwhile, mycorrhizal colonisation positively affected shoot biomass of the 

deciduous shrub, Acacia caven while negatively affecting an annual forb 

species, Bidens pilosa when the species were grown in isolation. However, 

these effects disappeared when the plants were grown at higher densities 

(Pérez & Urcelay 2009). This suggests there is an interaction between 

mycorrhizal colonisation in the roots and plant density (Pérez & Urcelay 2009) 

and the presence of common mycelial networks (Workman & Cruzan 2016) 

which deserves more attention and may affect the outcome of plant 

competition and invasion success.  

On top of plant density, range-based (native or introduced range) differences 

can strongly affect mycorrhizal responsiveness too. For example, AMF has a 

suppressive effect on the biomass of an annual invasive species, Centaurea 

solstitialis when grown in competition against a North American native 

bunchgrass, Stipa pulchra but the effect was much stronger in a native range 

genotype compared with one from the introduced range (Waller et al. 2016). 

This has shown that different plant genotypes have different AMF 

responsiveness, which may in turn influence plant competition (Waller et al. 
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2016). Besides, mycorrhizal diversity also has a large impact on the 

interspecific competition as the more diverse AMF can increase plant 

performance and plant productivity. For example, growth of the legume, 

Trifolium pratense was supressed by the presence of high AMF richness when 

in competition with the grass, Lolium multiflorum which did not occur when 

AMF richness was low (Wagg et al. 2011).  

Several studies have shown that mycorrhizal presence may influence 

intraspecific competition in grasses (West 1996; Watkinson & Freckleton 

1997) and forbs (Facelli et al. 1999; Facelli & Facelli 2002). For example, 

mycorrhizal colonisation increased shoot biomass of Holcus lanatus and 

Dactylis glomerata when they were experiencing intraspecific interactions 

(West 1996) compared with competing plants without the mycorrhiza. 

Similarly, mycorrhizal inoculation benefited the growth of Trifolium 

subterraneum in a monoculture and also enhanced P uptake (Facelli & Facelli 

2002). However, the positive effects reduced as the plant density increased 

(Facelli et al. 1999). In addition to mycorrhizal colonisation, the characteristics 

of plant species may have an influence on plant competitive interactions. This 

can be seen when AMF exhibited parasitic effects on monocultures of the 

tropical shrub Cabralea canjerana while having a symbiotic effect on similar 

monocultures of Lafoensia pacari. The former species has very large leaves 

which may have increased the ability to obtain resouces and intensify the 

intraspecific competition, while the latter species has small leaves, meaning 

less intense intraspecific competition and allowing mycorrhizas to show 

positive effects on plant growth (Danieli-Silva et al. 2010).  



155 
 

Himalayan balsam is known to be a strong competitor due to its rapid growth, 

coupled with high reproductive output and ability to outcompete native flora 

(Andrews et al. 2005). These features may enable it to become a more serious 

threat to nature in the future (Prach 1994; Pysek & Prach 1995). A study has 

shown that Himalayan balsam was the best competitor by producing high 

aboveground biomass when competing with the native species, Salix alba and 

Urtica dioica. In addition, balsam produced greater biomass when in 

intraspecific competition compared to four other invasive species (Acer 

negundo, Buddleja davidii, Fallopia japonica and Paspalum distichum) and 

five native (Agrostis stolonifera, Populus nigra, Rubus caesius, S. Alba, U. 

dioica) species (Bottollier-Curtet et al. 2013). Interestingly, balsam was able to 

outcompete the perennial herbaceous native species, Urtica dioica (Bottollier-

Curtet et al. 2013; Gruntman et al. 2014) and the superior competitive ability 

of this invasive species was suggested to be promoted by its strong 

allelopathic effect on the native species (Gruntman et al. 2014). This has 

shown the potential of balsam to become an aggressive and better competitor 

in self-replicating stands after several growing seasons by displaying a 

positive plant-soil feedback (Pattison et al. 2016) and this may be a reason 

why it forms monocultures in the field.  

Despite the fact that Himalayan balsam is a vigorous annual invasive plant 

species and likely to suppress native plant species growth in the introduced 

range (Tanner & Gange 2013), the effect of mycorrhizas on balsam-native 

plant competition still remains unknown. Thus, this study was conducted to 

examine the mycorrhizal effect on the competitive interactions between 

Himalayan balsam and the most dominant co-occurring native species in the 
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introduced range, P. lanceolata and H. lanatus. These species form a 

pronounced association with mycorrhizas compared to balsam (Harley & 

Harley 1987; Wearn et al. 2012). In this study, mycorrhizal effect on balsam 

and native plant performance in a competitive environment and also above 

and below ground microbial communities between plants were conducted. The 

tested hypothesis was that mycorrhizal colonisation may reduce balsam 

growth while the native plants are expected to be better competitors when AM 

is present, as they are AM-dependent. Furthermore, addition of AM should 

increase colonisation levels, but reduce endophyte fungal communities in the 

plants as described in sections 4.2 and 5.2.   

6.1 Methods 

The two native plants species in this study were ribwort plantain, Plantago 

lanceolata (PL) (Figure 6.1a) and Yorkshire fog grass, Holcus lanatus (HL) 

(Figure 6.1b). The former plant is a perennial forb from Plantaginaceae family 

which can flower in its first year from seed in spring and grow until late in the 

growing season. The plants can survive during overwintering stage as a small 

rosette of leaves (Wearn et al. 2012). The mature plants have a good root 

association with mycorrhizal fungi and short thick rhizome (Wearn et al. 2012) 

and can often be attacked by a range of generalist insects that can reduce AM 

colonisation in this strongly mycotrophic plant (Gange et al. 2002a) (Figure 

6.1c). The latter species, H. lanatus is a perennial grass from Poaceae family 

that grows in humid environments (Hubbard 1984), and is most frequently 

found on fertile soils (Grime et al. 1989) in meadows, pastures and rough 

grassland (Hubbard 1985). This species is also known to show extensive 
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mycorrhizal colonisation (Harley & Harley 1987) and flowers between May and 

August (Hubbard 1985) (Figure 6.1d).  

A completely randomised design with all the possible pairs of native plant 

species and balsam were conducted allowing the study of interspecific 

competition –Himalayan balsam with P. lanceolata (HBxPL) and Himalayan 

balsam with H. lanatus (HBxHL). Two balsam plants per unit were grown as 

an intraspecific competition (HBxHB) treatment, as well as balsam grown 

singly, without competition (HB). Two plants per pot were selected for 

competition treatments, to mimic a density per m2 that is found in the field. 

Similar sized plants (4 weeks old) were grown in a 2L pot with and without 

Symbio inoculum as described in section 2.1 and placed in a glasshouse for 

nine weeks. There were 8 treatments with 5 replicates for each, resulting in 40 

plants in total. The plants were watered twice daily with 300ml of water. Before 

flowering, the plants were harvested and plant parameters (plant height and 

shoot biomass) of balsam and biomass of native species were recorded. 

Leaves and root samples were collected for fungal assessment as described 

in sections 2.3 and 2.4. The endophyte fungal species were identified 

morphologically by Dr Brian C. Sutton as described in section 2.3 and no 

molecular identification was required, as all cultures produced spores. 
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Figure 6.1 Similar size of Himalayan balsam and co-occuring native plant 

species in a pot, (a) Plantago lanceolata and (b) Holcus lanatus. Photos of (c) 

the former plant species (Source from Online Atlas of the British and Irish 

Flora: http://www.brc.ac.uk/plantatlas/plant/plantago-lanceolata) and (d) the 

latter plant species (Source from Online Atlas of the British and Irish Flora:  

http://www.brc.ac.uk/plantatlas/plant/holcus-lanatus) in a field.    

(a) (b) 

(c) 

(d) 

http://www.brc.ac.uk/plantatlas/plant/plantago-lanceolata
http://www.brc.ac.uk/plantatlas/plant/holcus-lanatus


159 
 

6.1.1 Statistical Analysis 

All of the statistical analysis was conducted using R Studio version 1.1.383 as 

described in section 2.7. All data that violated the assumptions were 

transformed with square-root or logarithmic transformations while percentage 

data were arcsine transformed to meet the assumptions of the test 

beforehand. To analyse the effect and interaction of mycorrhizas and the 

competition on balsam performance, a two-way factorial ANOVA was 

performed with mycorrhizal and competition as main effects. Balsam 

performance was defined as the height, weight and RLC percentage of the 

plant in each pot and the mean of similar parameters was calculated if there 

were two plants in each pot. A one-way ANOVA was performed to examine 

the native plants performance (shoot biomass and RLC percentage) with 

mycorrhizal presence as the main effect.   

Differences in endophyte isolation frequency (IF) of each fungal species 

between treatments were examined with a similar analytical design which 

were two-way ANOVA for balsam and one-way ANOVA for native plants. 

Differences in species richness across treatments were examined too.  
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6.2 Results 

6.2.1 Plant growth 

Balsam plants with mycorrhizal inoculum were taller compared to the AMF-

free plants (Table 6.1). It is interesting to note that AM single balsam were 

taller, but had lower biomass. Perhaps of most interest was the fact that 

addition of mycorrhizas tended to decrease the biomass of balsam when it 

was grown singly, but increased it when grown in monoculture (Table 6.1, p = 

0.08; Figure 6.2b). Mycorrhizal-inoculated balsam that competed with P. 

lanceolata were the tallest (Figure 6.2a) and heaviest (Figure 6.2b) compared 

to the other treatments. Mycorrhizas had no effect on P. lanceolata biomass 

while addition of AMF reduced biomass of H. lanatus (Table 6.2, Figure 6.3).  

Table 6.1 Two-way factorial analysis of balsam parameters, testing for 

effects of AMF and competition. Degrees of Freedom for F values = 1, 36 

and n=5 in all treatments. Bold indicates significant values. 

 Height Shoot 
biomass 

RLC 

F p F p F p 

AMF 8.706 <0.001 0.049 0.826 38.155 <0.001 

Competition 0.431 0.515 0.499 0.484 6.269 0.017 

AM x 
Competition 

2.563 0.118 3.053 0.089 1.464 0.234 

Table 6.2 One-way factorial analysis of native plants species, testing for 

effects of AMF. Degrees of Freedom for F values = 1, 8 and n=5 in all 

treatments. Bold indicates significant values.  

 Plantago lanceolata Holcus lanatus  

 Shoot biomass RLC Shoot biomass RLC 

F p F p   F p F p 

AMF 0.016 0.902 10.45 0.012 22.71 <0.001 16.52 <0.001 
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              (a)                                                                

    
 

     (b)  

    
Figure 6.2 Mean of (a) height and (b) shoot biomass of balsam across 

treatments. Blue bars represent mycorrhizas present while green bars 

represent mycorrhizas absent. +HB  was intraspecific competition while +PL 

and +HL were interspecific competition with P. lanceolata and H. lanatus 

respectively. ‘None’ indicates a single balsam with no competition as a control. 

n=5 across treatments. Error bars are one SE. Asterisks above bars indicate 

significant pairwise differences between means, **p < 0.001. 

 

  (a)                                                         (b)        

      

Figure 6.3 Shoot biomass mean of (a) P. lanceolata and (b) H. lanatus 

across treatments. –AM was mycorrhizal absent while +AM was mycorrhizal 

present. n=5 across treatments. Error bars are one SE. Asterisks above bars 

indicate significant pairwise differences between means, **p < 0.001. 
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6.2.2 AMF colonisation 

Addition of inoculum significantly increased colonisation levels, although some 

colonisation was seen in uninoculated plants (Table 6.1, Figure 6.4). Balsam 

grown alone had similar colonisation to the plants experiencing interspecific 

competition but was double that of plants that experienced intraspecific 

competition (Table 6.1, Figure 6.4). No arbuscules were recorded across the 

treatments and no colonisation was recorded from AMF-free plants when 

grown in an intraspecific competition. Mycorrhizal inoculum increased the 

colonisation levels of P. lanceolata and H. lanatus (Table 6.2, Figure 6.5). 

 

Figure 6.4 AM colonisation mean of balsam across treatments. Blue bars 

represent mycorrhizas present while green bars represent mycorrhizas 

absent. +HB was intraspecific competition while +PL and +HL were 

interspecific competition with P. lanceolata and H. lanatus respectively. ‘None’ 

indicates a single balsam with no competition as a control. n=5 across 

treatments. Error bars are one SE. Asterisks above bars indicate significant 

pairwise differences between means, **p < 0.001. 
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               (a)                                                          (b) 

   

Figure 6.5 AMF colonisation mean of (a) P. lanceolata and (b) H. lanatus in 

interspecific competition. –AM was mycorrhizal absent while +AM was 

mycorrhizal present. n=5 across treatments. Error bars are one SE. Asterisks 

above bars indicate significant pairwise differences between means, *p < 0.05 

and **p < 0.001. 

6.2.3 Endophytic fungal communities 

There were less endophyte species recorded with low total of IF mean in this 

study compared to the other experiments (sections 4.2.3, 5.2.3 and 7.2.3). 

This is probably because of the time this study was conducted which was in 

late spring while the rest were in summer. The weather was dry and 

unfavourable for endophytes to enter the leaves as these fungi do prefer 

humid conditions. Therefore, future research on competitive interactions 

between balsam and native plants should be conducted in summer to 

encourage the entrance of more endophyte species.  

Six endophyte species were recorded from native plants species with 

Exophiala sp being the commonest (Table 6.3), while eight species (none of 

which were Exophiala sp.) were recorded in balsam with Colletotrichum 

acutatum being the dominant (Table 6.4). Acremonium incoloratum was the 
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rarest across treatments. Only one species (Co. acutatum) was recorded from 

balsam that grew alone, while none were recorded when balsam grew in 

competition with P. lanceolata. However, five endophyte species were 

recorded in P. lanceolata, four when AM were absent and only one (Exophiala 

sp) when AM were present. Cladosporium cladosporioides, Cladosporium 

oxysporum and a species of Pencillium were recorded from balsam when in 

competition with H. lanatus, but only when AM were absent. No endophytes 

were isolated when AM was added. In contrast, H. lanatus yielded two 

endophyte species irrespective of whether AM were present. It is interesting 

to note, that two endophyte species (Ac. inocloratum and Alternaria alternata) 

were recorded when AM-inoculated balsam in intraspecific competition and 

were not found in other treatments. Similarly, three endophyte species were 

isolated from P. lanceolata when AM were absent, but were not recorded in H. 

lanatus. There was no difference in the IF mean of each endophyte fungal 

species and no difference in species richness of endophyte fungal 

communities across the treatments.  

Table 6.3 Isolation Frequency (%) mean of endophyte species in native 

plants. +/-AM were mycorrhizal present/absent plants. 

Endophyte species 
P. lanceolata H. lanatus 

+AM -AM +AM -AM 

Acremonium incoloratum 0 0 5 0 

Arthirinium state Apiospora montagnei 0 8.33 0 0 

Cladosporium oxysporum 0 8.33 0 5 

Cladosporium sphaerospermum 0 8.33 0 0 

Colletotrichum acutatum 0 8.33 0 0 

Exophiala sp.  20 0 15 15 
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Table 6.4 Isolation Frequency (IF) mean of each endophyte species in Himalayan balsam across treatments. +PL referred to 

competition with Plantago lanceolata while +HL competition with Holcus lanatus. +/-AM were mycorrhizas present/absent plants.  

 

Endophyte species 
Single Intraspecific 

Interspecific 

+PL 

Interspecific 

+HL 

+AM -AM +AM -AM +AM -AM +AM -AM 

Acremonium incoloratum 0 0 6.67 0 0 0 0 0 

Alternaria alternata 0 0 20 0 0 0 0 0 

Chaetomium elatum 0 0 0 20 0 0 0 0 

Cladosporium cladosporioides 0 0 0 0 0 0 0 20 

Cladosporium oxysporum 0 0 0 0 0 0 0 10 

Cladosporium sphaerospermum 0 0 0 20 0 0 0 0 

Colletotrichum acutatum 20 0 3.33 0 0 0 0 0 

Penicillium spp. 0 0 10 0 0 0 0 10 
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6.3 Discussion  

This study has shown that mycorrhizas reduced balsam biomass when it was 

grown singly but tended to increase when it was grown in both inter- and intra-

specific competition.The other surprising result is that AMF had no effect on 

Plantago lanceolata biomass, but reduced that of Holcus lanatus. This 

suggested that the Symbio inoculum failed to form an extensive mycelial 

network when balsam was grown alone, and thereby caused a growth 

depression through poor development of fungal structures such as arbuscules 

or lower rate of nutrient transfer (Jin et al. 2017). A similar, consistent 

detrimental effect of mycorrhizas on balsam growth was seen in the insect-

interaction study (section 4.2) and when balsam was grown in the field (section 

3.1.3). Therefore, as this inoculum appears to consistently weaken the plant, 

it was chosen to enhance rust fungus attack as a biological control agent of 

balsam and their interactions, as described in section 7.2.  

Mycorrhizal colonisation apparently did not influence interspecific interactions 

because the growth of balsam was similar when competing with both native 

species, irrespective of whether AM was present. Although balsam competed 

with mycorrhizal-dependent plants, the AMF did not appear to favour the 

native plants. Therefore, these data did not support the hypothesis that AMF 

may mediate plant dominance in the competition of invasive and native plants 

(Zobel & Moora 1995). However, AM presence seemed to increase balsam 

size when experiencing intraspecific competition. This has shown that 

mycorrhizas benefited the plants that experienced intraspecific competition 

when the opposite effect was seen when balsam grown alone. Single (or 
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sparse field population) plants of balsam may reduce the development of the 

AMF network in soil which subsequently costs the AMF-dependent native 

plant species and decreases the biomass of native plants within the stands 

(Tanner & Gange 2013), especially in highly invaded areas (Pattison et al. 

2016). Therefore, this may be a reason why balsam forms monocultures in the 

field and displays a better competitive ability in self-replicating stands (Pattison 

et al. 2016). Since AMF-inoculated balsam experiencing intraspecific 

competition produced lower biomass than AMF-free grown alone balsam and 

balsam in interspecific competition, these fungi might be exploited for 

biological control of balsam. Future research should be conducted using 

mycorrhizal inoculation on balsam in the field, to examine the effect on 

intraspecific competition and whether these interactions promote or suppress 

the effectiveness of the rust fungus as a CBC agent.  

Addition of AMF had no effect on balsam when competing with P. lanceolata 

and there was no mycorrhizal effect on P. lanceolata biomass. Previous study 

showed that different AMF had different effects on P. lanceolata growth 

(Bennett & Bever 2007). These authors revealed that Glomus white promoted 

plant growth, AMF Archaespora trappei provided less growth promotion while 

the fungus Scutellospora calospora did not enhance plant growth. Although 

these AMF were absent in the Symbio product, it still did not affect the plant 

growth. Similar results were found when mycorrhizas had no effect on P. 

lanceolata biomass when experiencing intraspecific competition (Ayres et al. 

2006) and also when in interspecific competition with the legume, Lotus 

corniculatus (Scheublin et al. 2007). However, when balsam competed with H. 

lanatus, the mycorrhizas  negatively affected the native plants. This suggests 
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that the mycorrhizal effect on interspecific competition was strongly influenced 

by the plant functional type (Lin et al. 2015). In addition, both native plant 

species recorded lower biomass than the balsam that they competed with. 

This has shown that when balsam competes with the native species, the plants 

grow aggressively and exhibit competitive dominance resulting in fast growth 

for light and nutrients (Čuda et al. 2015). This was consistent with the study 

conducted by Gruntman et al. (2014) that showed balsam genotypes exert 

competitive superiority effects on the neighbouring plant species despite the 

fact that the competitor was a perennial herb, U. dioica. Similarly in this study, 

balsam exhibited greater plant performance than the native plants and this 

could be enhanced by the balsam’s strong allelopathic effects on the co-

occurring native plants (Gruntman et al. 2014). In addition, a recent study 

showed that Himalayan balsam induced alteration in soil chemical properties 

such as ammonium (NH4+) and nitrate (NO3-) that affected the biomass and 

performance of co-existing native species, which were species-specific 

(Majewska et al. 2018).  

In addition, although balsam is thought to form a  sparse association with AMF 

(Beerling & Perrins 1993) and mycorrhizas reduced balsam performance 

within the introduced range (Tanner et al. 2014), all plants in this study showed 

increased colonisation with the addition of mycorrhizas. Balsam in interspecific 

competition recorded twice the mycorrhizal colonisation than plants 

experiencing intraspecific competition. However, both native plants recorded 

higher colonisation compared to the balsam with P. lanceolata the highest as 

it is a strongly mycorrhizal-dependent plant (Gange et al. 2002a). This 

suggests that when balsam grew with the native plants, its competitive ability 
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for soil resources was greater and the mycorrhizas can distribute nutrients 

between co-occurring plant species (van der Heijden et al. 2003). This is 

supported by the fact that balsam grown with intraspecific competition had 

lower root length colonisation when compared to balsam existing with the 

native species.  

Very few foliar fungal endophytes were recorded with very low IF in this study 

compared to the others (chapters 3, 4, 5 and 7). This is probably because of 

the plants being grown in late spring and in the glasshouse which probably 

prevented the entrance of air-borne fungal species into the leaves. This can 

be supported by the fact that plenty of endophyte species with high IF were 

recorded when balsam was grown in the summer and in the field as described 

in sections 3.1, 4.2.3 and 5.2.3. Therefore, it may be suggested that changing 

environment conditions can influence foliar fungal communities in the leaves 

(Ahlholm et al. 2002; Currie et al. 2014).  

Moreover, Co. acutatum was the dominant species recorded across the 

treatments and was found in mycorrhizal-inoculated balsam when grown alone 

and when in intraspecific competition. It is also interesting to note that these 

plants recorded lower biomass compared to the balsam that co-existed with 

the native plants. This was consistent with the other studies when balsam and 

this fungus were interacting with insects as described in section 4.3 and the 

pathogen in section 7.3. Thus, it is possible that this fungus may have 

weakened balsam performance as low biomass and plant size were seen. It 

is also interesting to note that, in intraspecific competition, endophyte species 

that were recorded when AM was present disappeared when AM was absent. 
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Furthermore, Exophiala sp. was recorded from AMF-inoculated native species 

only, while A. alternata was found in AMF-inoculated balsam in intraspecific 

competition only. This supports the suggestion that mycorrhizas influence the 

structure of endophyte communities in plants (Eschen et al. 2010) and that 

endophyte communities are plant species-specific (Gange et al. 2007).  

6.4 Conclusion 

In conclusion, mycorrhizal colonisation increased balsam growth when the 

plants experienced intraspecific competition, although plant performance was 

poorer than balsam experiencing interspecific competition. Meanwhile, there 

were no direct effects of mycorrhizas on balsam during interspecific 

competition. However, mycorrhizas negatively affected single balsam 

performance and Co. acutatum was the only fungus that was found from these 

plants and therefore, this could potentially be exploited for biological control of 

balsam in the field. Thus, both fungi were added to rust-infected balsam as 

described in chapter 7, to examine their interactions and whether they 

suppressed or enhanced the effectiveness of rust fungus as CBC agent of 

balsam. In addition, similar research should be conducted in the monocultures 

of balsam in the field to examine how the fungal interactions weaken the plant 

growth.   
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CHAPTER 7 ASSEMBLING THE FUNGAL COMMUNITY: INTERACTIONS 

BETWEEN MYCORRHIZAS, ENDOPHYTES AND THE RUST 

Note: Part of this chapter has been published as Gange et al. (2018). 

Classical Biological Control (CBC) involves the introduction of natural 

enemies, such as insect herbivores or pathogenic fungi that were collected 

from the plant’s origin, and released against invasive plant species in invaded 

areas. CBC has been applied worldwide as a management tool against weed 

species for over 120 years, where at least 165 pests and weed species have 

been targeted, involving 7,000 introductions of CBC agents using 2,700 

species (Cock et al. 2010). Although 380 CBC agents that have been released 

originated from European countries (Tanner 2011), only two were released 

against invasive plant species in the UK. The first was the psyllid, Aphalara 

itadori against Japanese knotweed, Fallopia japonica (Shaw et al. 2009; Shaw 

et al. 2011) and the second was the rust fungus, Puccinia komarovii var. 

glanduliferae against Himalayan balsam, Impatiens glandulifera (Tanner et al. 

2015a; Tanner et al. 2015b). Following the successful approval for the release 

of the psyllid in the former study, a fungal pathogen, Mycosphaerella polygoni-

cuspidati was studied as a promising second CBC agent against F. japonica 

due to its noticeable host specificity on the plant (Seier et al. 2014). Meanwhile 

the latter study was relevant to this chapter and P. komarovii history and the 

background was described in detail in section 1.3.  

Other studies have investigated the use of rust fungi as CBC agents against 

invasive alien plant species. One example is that of the neotropical rust 

pathogen, Prospodium tuberculatum that was released in Australia in 2001 
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against the weed, Lantana camara (Ellison et al. 2006). Interestingly, this 

fungus can cycle continuously through the urediniospore stage in all seasons 

as there is no environmental pressure to produce over wintering stages 

(teliospores) in tropical habitats and lowland ranges. However, at higher 

altitudes and extreme areas such as mountainous ranges, uredinia were found 

to be replaced with the overwintering stage, teliospores, when frost and 

occasionally snow occur (Ellison et al. 2006). The second example was the 

rust fungus Puccinia spegazzinii that released in India in 2005 against the 

weed, Mikania micrantha (Ellison et al. 2008). Unlike P. tuberculatum, only 

teliospores and basidiospores of P. spegazzinii were found in the field, with 

spermogonia, aecia and uredinia being unknown (Evans & Ellison 2005). 

Meanwhile, two other rust fungi are being considered as biological control 

agents; Puccinia araujiae against the moth plant, Araujia hortorum in New 

Zealand (Anderson et al. 2016) and P. arechavaletae against balloon vine, 

Cardiospermum grandiflorum in South Africa (Fourie & Wood 2018). Both 

fungi have yet to be released in the field and these studies were carried out in 

the glasshouse. The former rust fungus completes its life cycle on the host 

(Anderson et al. 2016) while the latter agent has a microcyclic life cycle with 

basidiospores being a crucial stage that optimally developed at 20oC (Fourie 

& Wood 2018). These studies show that different rust fungus species have 

different life cycles and conditions needed for plant infection and ultimately 

reducing plant growth and development.  

Endophytic, mycorrhizal and pathogenic fungi can all coexist in plant tissues, 

however, little is known about the effect of their interactions on plant growth 

and microbial communities. Species in five endophytic genera; Colletotrichum, 
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Pestalotiopsis, Phoma, Phomopsis and Alternaria have been found to have a 

diverse array of interactions with the rust fungus Puccinia polygoni-amphibii 

var. tovariae in Fallopia japonica (Kurose et al. 2012). This rust is a further 

potential CBC agent for F. japonica (Kurose et al. 2009). These genera were 

selected to be inoculated into the leaves as they were the dominant fungi in 

the plant.  A Phomopsis sp. endophyte had a synergistic effect with the rust, 

thus enhancing its potential as a CBC agent against F. japonica. In contrast, 

Alternaria and Phoma spp. suppressed rust colonisation while Colletotrichum 

and Pestalotiopsis isolates were neutral on rust development (Kurose et al. 

2012). This shows that endophyte species produce very different responses 

whether as promoting fungi, suppressing fungi or neutral fungi, dependent 

upon their identities.  

A recent study has demonstrated that the presence of Trichoderma sp. can 

protect wheat plants from the stem rust infection (Puccinia graminis Pers. F. 

sp. tritici), but the synergistic effect was greater with the combination of 

mycorrhizal fungi and Trichoderma sp when challenging the rust fungus, in 

improving plant growth and yield (El-Sharkawy et al. 2018). The plant’s 

immune system was triggered against the pathogen by the direct inhibitory 

effect of endophytic fungi whether singly or in combination and their induction 

of phenolic acids and defence-related enzyme production (El-Sharkawy et al. 

2018). These studies show that it is important to understand not only the 

interaction of fungi and host plants, but also, the interaction of endophytes and 

pathogenic fungi, the influence of mycorrhizal fungi and pathogens as well as 

multiple fungi interactions in determining the success or failure of the CBC 

agents. If endophytes and mycorrhizas have a potential role in supporting a 
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rust fungus in the host plant, this interaction could be highlighted and would 

give a vital understanding for the biological control of weeds. To date, there 

are no studies conducted on the interaction of AM and a rust pathogen and 

endophytes within a host plant, therefore the present study was carried out to 

investigate the effect of multiple fungal attack on balsam performance. In 

addition, it is important to examine the effect of multiple fungal attack on above 

and below ground microbial communities. The hypothesis of this study was, 

there is an interactions between the fungi in plants that may lead to altered 

plant performance, and microbial communities which in return may enhance 

or suppressed the efficacy of the rust as a CBC agent of Himalayan balsam.   

7.1 Methods 

There were eight treatments, with five replicates of each, producing 40 plants 

in total. The plants were grown in 2L pots containing John Innes compost 

Number 2, with and without commercial Symbio inoculum and the leaves were 

inoculated with and without the endophyte, Colletotrichum acutatum. This 

fungus was chosen as it recorded the highest isolation frequency percentage 

in balsam leaves when the plants were grown in the field as described in 

section 3.1. A week after endophyte application, the leaves were infected with 

the rust fungus, Puccinia komarovii var. glanduliferae. Control plants received 

sprays of the spore carrier only that did not contain the respective fungi. Details 

of endophyte inoculation and rust infection procedures were given in sections 

2.2 and 2.5 respectively. Similar techniques were applied in this experiment 

for bulking up rust fungus stocks as described in section 2.5. The only 

difference in this study was that, the leaves were inoculated using a 
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suspension of rust fungus in distileed water with 0.05% Tween 80, as it was 

easier to quantify and inoculate a large number of plants, compared to the 

spore/talc mix. The spore concentration was adjusted using a 

haemocytometer to approximately 1.5x105 spores ml-1 and the inoculated 

plants placed in a Perspex box for 48 hours. The boxes were cleaned 

thoroughly with 100% ethanol between each treatment to avoid contamination. 

The abaxial leaves were sprayed with two strokes of spore suspension (ca. 

550µl/leaf) using a handheld bottle sprayer. The remaining spore suspension 

was sprayed on a Petri dish containing tap water medium to determine the 

viability of the rust infection by assessing germination rate and the plates also 

were placed in the inoculation box.  

The plants were put in a glasshouse for nine weeks in a randomised block 

design and were watered with 250ml water twice daily. Before flowering, the 

plants were harvested and plant parameters (height, leaf number and shoot 

biomass) were recorded. Leaves and root samples were collected for 

endophyte and mycorrhizal assessment as described in sections 2.3 and 2.4. 

Infected leaves from each plant in each treatment were collected and an 

acetate grid (of squares 1cm x 1cm) was placed on the leaves and number of 

rust pustules per cm2 in five randomly selected squares were counted. This 

was was done in the second and third week post rust inoculation.   
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7.1.1 Statistical Analysis 

All of the statistical analysis was conducted using R Studio version 1.1.383 as 

described in section 2.7. All data that violated the assumptions were 

transformed with square-root or logarithmic transformations while percentage 

data were arcsine transformed to meet the assumptions of the test 

beforehand. To analyse the effect and interaction of fungi on balsam 

performance, a three-way factorial ANOVA was performed with mycorrhizal, 

endophyte and rust presence as main effects.  

Differences in endophyte isolation frequency (IF) of each fungal species 

between treatments were examined with a similar analytical design. 

Differences of endophyte community composition was compared with NMDS 

and differences in species abundance and species richness across treatments 

were examined too.  
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7.2 Results 

7.2.1 Plant growth  

Plants with rust were significantly shorter, bore fewer leaves and had lower 

shoot biomass compared to the control plants (Table 7.1). It appeared that AM 

and endophyte together could be enhancing rust in reducing the plant 

performance, because the greatest reductions were seen when rust was 

applied with either or both fungi (Figure 7.1). There was a suggestion that 

adding endophyte to rust-treated plants, may reduce plant size (Table 7.1). 

The rust alone significantly reduced plant biomass, but not height or leaf 

number (Figure 7.1). However, no significant interactions were found between 

the fungi (Table 7.1). 

 

Table 7.1  Three-way factorial analysis of plant parameters, testing for 

effects of AM, endophyte and rust. Degrees of Freedom for F values = 1, 32 

and n=5 in all treatments. Bold indicated significant values.  

 Height Leaf number Shoot biomass RLC 

F p F p F p F p 

AM 1.577 0.218 5.908 0.020 0.000 0.993 23.238 <0.001 

Endophyte 4.083 0.052 0.639 0.429 0.000 0.988 0.029 0.866 

Rust 8.813 0.006 56.026 <0.001 12.267 0.001 1.343 0.255 

AM x 
Endophyte 

1.619 0.212 2.034 0.163 0.436 0.514 1.447 0.238 

AM x Rust 2.576 0.118 1.134 0.295 0.338 0.565 0.547 0.465 

Endophyte x 
Rust 

0.598 0.445 2.319 0.137 0.351 0.558 3.012 0.092 

AM x 
Endophyte x 
Rust 

0.180 0.674 2.034 0.163 1.217 0.278 0.038 0.847 
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(a)   
                                                                

 
 
 

      (b)  
 

  
                                               
 

       (c) 

 
 

Figure 7.1 Mean of (a) plant height, (b) leaf number and (c) shoot biomass 

across treatments. Blue bars indicate rust-treated plants while green bars 

indicate non-rust plants. +/-AM indicates mycorrhizal presence/absence while 

+/-E were Colletotrichum acutatum present/absent. n=5 in all treatments. Error 

bars are one SE. Asterisks above bars indicate significant pairwise differences 

between means, *p < 0.05 and **p < 0.001. 
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7.2.2 AMF colonisation 

Rust-treated plants had higher AM colonisation than controls when both AM 

and endophyte were present (Figure 7.2), but this effect disappeared when 

the endophyte was absent. Mycorrhizal addition increased the level of root 

colonisation (Table 7.1) though some colonisation was seen in uninoculated 

controls in this experiment (Figure 7.2). No arbuscules were recorded. 

 

Figure 7.2 Mean of arbuscular mycorrhizal colonisation across treatments. 

Blue bars indicate rust-treated plants while green bars indicate non-rust plants. 

+/-AM indicates mycorrhizal presence/absence while +/-E were Colletotrichum 

acutatum present/absent. n=5 in all treatments. Error bars are one SE. 

Asterisks above bars indicate significant pairwise differences between means, 

*p < 0.05 and **p < 0.001. 
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7.2.3 Endophytic fungal communities 

Ten endophyte species were recorded across the treatments (Table 7.2). Two 

species were only found in rust infected plants –Cladosporium oxysporum and 

Geniculosporium spp., while Chaetomium elatum and Penicillium spp were 

isolated from control plants only. The remaining six endophyte species were 

found in both treatments. Cladosporium sphaerospermum displayed a high IF 

in rust-treated plants, but was rarest in controls. Addition of AMF and 

endophyte on rust-treated plants decreased IF mean of Alternaria alternata  

(F1,32 = 4.911, p < 0.05) and Exophiala sp. (F1,32 = 11.622, p < 0.05) compared 

to the controls.   
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Table 7.2 Isolation Frequency (IF) of each endophyte species across treatments. +/-R: Rust present/absent, +/-AM: Mycorrhizal 

present/absent and +/-CA: Leaves were inoculated with Colletotrichum acutatum/endophyte free leaves.  

Endophyte species 

+R  -R 

+AM -AM  +AM -AM 

+CA -CA +CA -CA  +CA -CA +CA -CA 

Alternaria alternata 0 0 0 23.4  0 40 0 0 

Arthrinium state of Apiospora montagnei 0 0 0 9.8  16.8 0 20 0 

Chaetomium elatum 0 0 0 0  0 0 0 20 

Cladosporium cladosporioides 0 0 0 5.8  0 0 20 0 

Cladosporium oxysporum 0 10 0 4  0 0 0 0 

Cladosporium sphaerospermum 20 5 20 0  10 0 0 0 

Colletotrichum acutatum 0 5 20 11.6  6.6 0 20 0 

Exophiala sp. 20 0 0 40.6  0 0 40 0 

Geniculosporium sp. 20 0 0 5  0 0 0 0 

Penicillium sp. 0 0 0 0  46.6 20 0 20 
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In addition, multiple fungal attack decreased species richness (F1,32 = 7.538, 

p < 0.05) of endophyte communities in the plants. The NMDS ordination clearly 

separated the endophyte fungal communities between rust-treated plants and 

the controls (ANOSIM R = 0.234, p < 0.05) (Figure 7.3a), between endophyte 

inoculated plants and the control (ANOSIM R = 0.202, p < 0.05) (Figure 7.3b) 

and also between AM-treated plants and the control plants (ANOSIM R = 

0.266, p < 0.05) (Figure 7.3c).  

 

(a) 
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(b) 

 
(c) 

 
Figure 7.3 Endophyte species communities between (a) rust, (b) endophyte 

and (c) AMF treated plants and their controls. Please note difference in scales 

for visual clarity. Vertical axis most likely represents isolation frequency of 

endophyte communities while horizontal axis likely shows separation by fungi 

infection. 
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In the presence of multiple fungi, Co. acutatum was not recovered although 

the leaves were inoculated compared to the plants when both or either fungi 

was absent (Figure 7.4). The recovery rate was the highest when AM was 

absent, irrespective of whether the rust was present. It is also interesting to 

note that the endophyte was isolated from the uninoculated plants, but only 

when rust was present. However, this did not happen on free-rust plants.   

 

Figure 7.4 Isolation Frequency mean of Colletotrichum acutatum across 

treatments. Legend shows the leaves were inoculated with Co. acutatum 

(+CA), or the control (-CA). +/-R represents rust was present/absent and +/-

AM represents mycorrhiza was present/absent. n=5 in all treatments. Error 

bars are one SE.  

7.2.4 Rust Fungus Infection 

The presence of Co. acutatum and mycorrhizal fungi reduced pustule number 

in rust infected plants (Figure 7.5). There was a significant interaction between 

AM and the endophyte, as addition of Co. acutatum greatly reduced rust 

infection when the mycorrhiza was absent (Table 7.3).  
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Figure 7.5 Mean of uredinia pustule number/cm2 on balsam leaves on rust-

infected plants. +/-AM were mycorrhiza present/absent plants while +/-E were 

Colletotrichum acutatum present/absent plants. n=5 in all treatments. Error 

bars are one SE. Asterisks above bars indicate significant pairwise differences 

between means, *p < 0.05 and **p < 0.001. 

 

Table 7.3 Two-way ANOVA factorial analysis of the effects of AM and 

endophyte on the pustule density. Degrees of Freedom for F values = 1, 16 

and n=5 in all treatments. Bold indicated significant values.  

 
Pustule 

F p 

AM 2.082 0.168 

Endophyte 26.469 <0.001 

AM x Endophyte 10.354 0.005 
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7.3 Discussion  

To date, this is the first study where the effects of multiple fungi were 

experimentally tested on Himalayan balsam. In this study, rust-treated plants 

demonstrated poor plant performance compared to their controls as the 

uredinia and telia pustules densely covered the abaxial leaf surfaces reducing 

the available area for photosynthesis (Murray & Walters 1992) which curtailed 

plant growth. In this study, it is reasonable to suggest that the presence of 

multiple fungi weakened the plant’s performance, rust development and also 

affected above and below ground fungi communities.  

It was interesting to note that Cl. sphaerospermum recorded the highest IF in 

the presence of rust but the least in the control plants. This species is 

commonly found in forbs likely because it is a common member of the spore 

rain (Marchisio & Airaudi 2001) and may well have been present in the 

atmosphere or from vertical transmission via seed from mother plants 

(Hodgson et al. 2014). However, in this case, it is suggested that rust fungus 

addition with mycorrhizas and Co. acutatum may play a big role by providing 

an entry route for Cl. sphaerospermum into the foliar tissues. Although 

Colletotrichum sp. had no effect on rust colonisation in Fallopia japonica 

(Kurose et al. 2012), suppressive effects of Co. acutatum in this study may 

have induced phytoalexin production (Gao et al. 2010) and decreased the 

level of rust development. This could have indirectly allowed the entry of Cl. 

sphaerospermum into the balsam leaves as the plant had reduced resources 

available for additional defence mechanisms allowing the entry of a 

‘background’ endophyte. This suggestion is supported by the fact that Cl. 
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sphaerospermum was not isolated when AMF and Co. acutatum were absent 

although the rust was present. Interestingly, this did not happen with other 

endophyte species. This finding also shows that mycorrhizas may affect the 

invasion of Cl. sphaerospermum into the leaves as shown previously when 

insects were present, in section 4.3.  

Colletotrichum acutatum was successfully recovered from most of the 

treatments and displayed the highest IF on rust-treated plants. Surprisingly, 

this fungus was not recovered when multiple fungi were present. However, 

Co. acutatum was isolated from plants even when the leaves were not 

inoculated, something which did not happen in rust-free plants. It is known that 

Himalayan balsam contains secondary metabolites including flavones, caffeic 

acid derivatives and naphthoquinones (Lobstein et al. 2001; Šerá et al. 2005). 

Previous studies showed that naphthoquinones exhibited inhibitory effects on 

fungal spore germination (Foote et al. 1949; Yang et al. 2001). In addition, 

endophytes may induce host defences such as phenolic metabolites against 

pathogens (Dingle & McGee 2003; Hartley et al. 2015). It is possible that the 

presence of the pathogen and mycorrhizas may have altered plant defences 

by inducing naphthoquinones within the leaves (Ruckli et al. 2014) and other 

secondary metabolites, which indirectly prevented the inoculated fungus from 

entering the leaves. This suggests that the combination of rust and mycorrhiza 

may have prevented Co. acutatum infection and that the rust alone causes 

plants to be more susceptible to air-borne endophytes. This was supported by 

the fact that  Co. acutatum was isolated from uninoculated endophyte plants, 

but only when the rust was applied. In addition to that, seven endophyte 

species were recorded from rust-treated plants when mycorrhizas and Co. 
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acutatum were absent which was higher than in the other treatments. Clearly, 

these complex interactions require further study, involving the use of 

metabolomics to try and understand the mechanism by which fungi interact 

within and with the plant.  

Many studies have reported that not only the identity of plant, but the identity 

of mycorrhizal fungal species are important in determining plant growth 

(Newsham et al. 1995; Helgason et al. 1999; Husband et al. 2002; Scheublin 

et al. 2007; Sikes et al. 2009). This can also be supported by the findings from 

Lewandowski et al. (2013) who showed that AMF species richness alone was 

less of an important factor than mycorrhiza identity when considering plant 

tolerance against pathogen attack. The benefits of mycorrhizas forming an 

association with plants depend on the fungal species involved whether as a 

plant protection or phosphorus (P) uptake (Maherali & Klironomos 2007; Sikes 

et al. 2009). Maherali & Klironomos (2007) found that AMF from the Family 

Glomeraceae that concentrated in the hyphae outside the plant root were 

better in plant protection by reducing infection of root pathogen, Fusarium 

oxysporum and Phythium sp. in Plantago lanceolata compared to the fungi 

from the Family Gigasporaceae. In contrast, the latter family have hyphae 

growing within the root, so promoted P uptake and increased the shoot 

biomass. Similarly, Setaria glauca was protected from the root pathogen, F. 

oxysporum when AMF from the Family Glomeraceae were added, while 

severe infections were recorded when the members of Gigasporaceae were 

present (Sikes et al. 2009). The Symbio inoculum used in this study was 

composed of nine fungal species that are mainly from the Family Glomeraceae 

with only one member of Gigasporaceae as described in section 3.4.2. The 
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differences species within the inoculum may be the reason why this inoculum 

weakened the rust development in the balsam leaves. The ‘Symbio effect’ not 

only reduced the pathogenic effect of the rust, but also reduced plant size and 

biomass. This has shown that although fungal species in the Symbio inoculum 

may protect the host plant against a pathogen, it also reduces the plant 

performance. The fact that addition of this inoculum reduced pathogen 

incidence means that unfortunately it could not be used to assist in the 

biological control of balsam using the rust fungus. 

Arbuscular mycorrhizal fungi are known to form symbiotic associations with 

plants and dependent on them for their carbon supply in order to complete 

their life-cycle. Almost 80% of terrestrial flowering plants are colonised by AMF 

and there are approximately 150 species of AMF known (Harrier & Watson 

2004). This enables each mycorrhizal species to colonise a wide host range 

and it is important to select the most suitable AMF species to inoculate the 

plant, in order to optimise the benefits of the mutual relationships. Many 

studies have demonstrated positive mycorrhizal effects on plant growth 

against pathogens. For example, mixtures of AMF strains (Rhizophagus 

intraradices, Glomus hoi, Gigaspora margarita and Scutellospora gigantea) 

enhanced common bean, Phaseolus vulgaris growth when infected by the 

pathogen, Fusarium solani due to strengthening the plant immune system as 

phenols and flavonoids contents increased (Eke et al. 2016). In addition, the 

AMF Rhizophagus irregularis enabled stronger defensive response of wheat, 

Triticum aestivum against pathogens by maximising nutrients and water 

uptake into the plants (Pérez-De-Luque et al. 2017). Moreover, a recent study 

on wheat also showed that the mycorrhizal fungus, Funneliformis mosseae 
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activated a broad-spectrum defence response in inoculated plants that 

enabled the plants to induce a pathogen-specific defence response when 

challenged by Xanthomonas translucens, which led to a stronger productivity 

and more effective protection (Fiorilli et al. 2018). However, a study showed 

that AMF colonised rice plants, Oryza sativa, were more susceptible to sheath 

blight, Rhizoctonia solani, by increasing lesion length and numbers compared 

to the controls (Bernaola et al. 2018). These authors suggested that the 

mycorrhizas altered defence-related pathways and reduced broad-spectrum 

defence in inoculated plants (Bernaola et al. 2018). These studies provide 

evidence that mycorrhizal fungi do not always protect plants against 

pathogens, due to AMF mediated changes in the plant defences via 

modulation of jasmonic acid and salicylic acid dependent pathways (Pozo & 

Azcón-Aguilar 2007; Koricheva et al. 2009; Jung et al. 2012; Bernaola et al. 

2018). Interestingly, the results reported in this thesis, suggest that 

mycorrhizas may have altered the defence related mechanism which reduced 

plant performance and also rust density. This has shown that mycorrhizal fungi 

may influence and reduce rust development and infection in the field, which 

could have serious consequences for the effectiveness of biological control of 

balsam. Field colonisation by mycorrhizas may therefore partly explain patchy 

rust efficacy between release sites (Gange et al. 2018).  

The outcome of the complex interactions between plant, rust pathogen and 

AMF, was a significant reduction in disease severity. Evidence suggests that 

when plants were attacked by rust, the plants may have induced the defence 

signalling pathway and triggered jasmonic acid production. Jasmonic acid is 

expressed in arbuscules (Pozo & Azcón-Aguilar 2007) and effective against 
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necrotrophs (Ton et al. 2002; Glazebrook 2005). However in this study, few or 

no arbuscules were found in mycorrhizal-treated plants when the plants were 

challenged by the rust fungus. Despite the absence of arbuscules, the addition 

of mycorrhizas still weakened plant growth and reduced rust fungus infection. 

Overall, it is possible that induction of jasmonic acid may have resulted in the 

low levels of arbuscular formation. Meanwhile, other studies showed that 

napthoquinones were released by balsam roots, which could be growth 

inhibitors of fungi (Ruckli et al. 2014). The concentrations of napthoquinones 

in the balsam were higher than those in the native plant, Impatiens noli-

tangere (Lobstein et al. 2001). This suggests that balsam might have released 

napthoquinones in response to rust attack, especially as the concentrations 

are naturally high in seedlings (Ruckli et al. 2014). Interestingly, Himalayan 

balsam is only susceptible to infection by the uredinia when seedlings have 

reached the three leaf whorl stage and to infection by the basidiospores when 

the seeds are just germinating. It may be that the resistance of plants to rust 

infection between these stages may be due to high napthoquinones in the 

seedlings. Therefore, this may suggest that napthoquinones were active in 

plant protection against rust fungus infection at certain plant growth stages. 

Measurement of these biochemical changes was beyond the scope of this 

thesis, but this is clearly an important avenue for future research.  

Furthermore, multiple fungal presence reduced the species richness of 

endophytes. The causes and mechanism(s) of this phenomenon are unknown. 

However, it may be that when the plants suffer rust attack and mycorrhizal 

inoculation, they might mobilise naphthoquinones against the pathogen and 

indirectly prevent the ‘background’ endophytes from entering into the foliar 
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tissues. This can be supported as rust-treated plants without AMF and 

endophytes had greater endophyte species communities compared with when 

the fungi were present. This is because, when Co. acutatum became 

established in the plants, it may induce systemic defences which repel the 

entry of other species (van Hulten et al. 2006). It is important to study the 

fungal endophyte communities in the target weed in order to determine their 

role in classical biological control (Evans 2008). Plants may respond to 

endophyte infection in the same way as they do with pathogenic fungi, by 

producing arabidopsides and other oxylipin esters. However, the chemicals 

produced may be insufficient to hinder the endophyte from establishing within 

the plant tissues (Hartley et al. 2015).   

In addition, both AMF and fungal endophytes depend on their plant host for 

nutrients and their survival. Mycorrhizal fungi can enhance endophyte growth 

(Larimer et al. 2012) and alter endophyte communities through nutrient 

availability (Eschen et al. 2010). However, in the combination of both fungi and 

the rust pathogen, mycorrhizas seemed to prevent the entry of the inoculated 

endophyte suggesting that the host may be unable to accommodate multiple 

fungi concurrently. The mechanism of the interactions between fungi is still 

unknown in forbs, however, mycorrhizal fungi were reported not to affect the 

endophyte when they occurred together in grasses (Mack & Rudgers 2008). 

Interestingly, in balsam, higher mycorrhizal colonisation was seen when the 

rust and endophyte were present, suggesting that these fungi had benefited 

the mycorrhiza, but in return negatively impacting the inoculated endophyte.  



194 
 

A study showed that endophytic fungi (Chaetomium sp. and Phoma sp.) 

reduced the density of pustules of Puccinia triticana in wheat plants, Triticum 

aaestivum, but the endophyte had no effect on the plant growth (Dingle & 

McGee 2003). This was consistent with the current study in that while both 

mycorrhizal and endophyte fungi reduced rust infection, this did not detract 

from the rust’s ability to reduce balsam growth. This suggests that attack by 

multiple fungi weakened the plant, causing it to use resources on defence, 

rather than growth (Wang et al. 2018).  

This study has demonstrated the effectiveness of the rust fungus as a classical 

biological control agent on balsam (Tanner et al. 2015a) and it also appeared 

to suggest that patchy rust infection on balsam in the field (Gange et al. 2018) 

may be influenced by the existence of AMF and Co. acutatum in the plants. 

The rust is most effective when the mycorrhiza and endophyte are absent, 

though both fungi were also effective in reducing plant performance. Therefore 

it would be sensible to try to reduce AMF and endophyte communities in the 

field in order to enhance the rust in weakening the plant’s growth as balsam 

with rust in the absence of mycorrhizal and Co. acutatum were shorter than 

controls and exhibited the highest pathogen density.  

7.4 Conclusion 

Overall, complex interactions exist between mycorrhizas, endophyte and rust 

fungi in balsam, that weakened the plant growth, influenced rust density and 

also affected above and below ground fungal communities. This study 

provided insight knowledge into why classical biological control with fungi may 
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be impaired by other naturally fungi in the system and interacting with the 

biocontrol agent. Mycorrhizal fungi and Co. acutatum presence greatly 

reduced rust development, probably by inducing host defences which might 

affect the classical biological control aspect of this invasive plant. Thus, further 

studies on reducing mycorrhizal and endophyte communities in balsam 

populations in the field should be conducted urgently in order to examine how 

this affects rust establishment. A full understanding of the system will only be 

achieved by a consideration of the biochemical nature of these interactions.  
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CHAPTER 8 GENERAL DISCUSSION 

8.1 Summary of Outcomes  

The main aims of this PhD were firstly to find out the effect of insect and 

multiple fungal interactions on plant performance and secondly to examine the 

factors that may have affected the efficacy of the rust fungus, Puccinia 

komarovii var. glanduliferae as a classical biological control agent of 

Himalayan balsam. A summary of the objectives and the outcomes of the 

study are given below (Table 8.1):  

Table 8.1 Summary of objectives and outcomes of the study.  

Objectives Outcomes 

Chapter 4:  

1. To study the interactions 

between mycorrhizas, 

endophytes and insects 

and also their effect on 

balsam growth.  

2. To study the foliar 

endophyte communities in 

balsam plants that were 

attacked by insects. 

 Combinations of insect and fungi affected plant 

performance, but depended upon the fungal 

species. 

 Aphids, mycorrhizal fungi and Cladosporium 

sphaerospermum directly reduced plant growth.  

 Insects and Plantworks mycorrhizal inoculum 

prevented Colletotrichum acutatum from infecting 

the plants, but the opposite effect occurred with Cl. 

sphaerospermum increasing the infection. 

However, when Symbio inoculum was present, the 

effects were reversed. 

 The positive association of mycorrhizal and 

endophyte reduced plant growth which may be 

useful for biological control of balsam.  
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Chapter 5:  

1. To study how different 

commercial mycorrhizal 

inocula affect the degree of 

soil conditioning by 

balsam.  

2. To study the differences 

in foliar endophyte 

communities of plants that 

grew in soil that had or had 

not previously supported 

balsam. 

 A negative Plant-Soil-Feedback (PSF) of balsam 

was recorded with shorter, lighter plants, bearing 

fewer leaves when grown in a soil that had 

previously supported balsam, compared to clean 

soil.  

 Commercial inocula do not seem to give the same 

result as natural AMF and subsequently reversed 

the PSF. 

 Continuous stands of balsam may reduce 

endophyte communities which may enable the rust 

to be more effective in reducing plant growth in 

older stands.   

Chapter 6:  

1. To study mycorrhizal 

effect on balsam and 

native plant performance in 

a competitive environment. 

2. To study above and 

below ground communities 

between plants.  

 Mycorrhizas reduced balsam biomass when it was 

grown singly but tended to increase when it was 

grown in both inter- and intra-specific competition. 

 Co. acutatum was the dominant endophyte species 

but was mostly found in AM-inoculated balsam 

when in intraspecific competition and therefore, this 

fungus probably contributed to weakening the plant 

performance.  

Chapter 7:  

To investigate the effect of 

multiple fungal attack on 

balsam performance and 

also on above and below 

ground microbial 

communities. 

 Complex three way interactions exist between 

endophytes, mycorrhizal fungi and the rust, which 

weakened the plant growth and rust density. Above 

and below ground fungal communities were also 

affected by the fungal presence. 

 AMF and Co. acutatum did not enhanced rust 

fungus effectiveness as a CBC agent of Himalayan 

balsam since it reduced rust development.  
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8.2 Multiple fungi effect on the classical biological control of Himalayan 

balsam 

The results from this thesis show there are complex multiple interactions 

between fungi, insect and Himalayan balsam. Despite the fact that commercial 

inocula in this study did not resemble the natural AMF, the presence of 

mycorrhizal fungi reduced plant growth when insects and rust were present. 

The combined effect of each mycorrhizal inoculum (Plantworks/Symbio) and 

Cladosporium sphaeorospermum promoted aphid infestation which lead to the 

reduction of plant growth. Although AMF increased balsam growth that 

experienced intraspecific competition, the plant biomass was still lower than 

that of balsam experiencing interspecific competition. Meanwhile, the 

presence of Cl. sphaerospermum and Co. acutatum irrespective of whether 

they were in single or dual inoculations, also reduced balsam growth. Similarly, 

the combination of Symbio and Co. acutatum reduced plant performance, but 

the rust fungus was most effective in the absence of AMF and Co. acutatum. 

This is because, endophytic fungi may have activated defence mechanisms 

which limited the pathogen’s ability to infect and replicate (Dingle & McGee 

2003; Kurose et al. 2012). Meanwhile the presence of mycorrhizal fungi may 

also have activated a broad-spectrum defence response in the roots and 

leaves of that switched to a pathogen-specific defence upon pathogen attack 

(Fiorilli et al. 2018) leading to the reduction of rust infection in balsam. 

Therefore, it is recommended to search for ways to reduce mycorrhizas and 

endophytes in monocultures of balsam in the field, in order to encourage rust 

fungus development and infection, and thereby weaken the plant’s 

performance.  
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It is important to study the fungal endophyte communities in the target weed 

in order to determine their role in biological control (Evans 2008). This study 

has shown that the endophyte, Co. acutatum was antagonistic to the rust 

development. Therefore, steps should be taken to try to prevent or reduce the 

infection of this fungus into balsam plants in order to maximise the 

effectiveness of rust fungus. The occurrence of Co. acutatum as an 

anthracnose disease is much more frequent in agricultural crops such as 

strawberry (Freeman & Katan 1997; Denoyes-Rothan et al. 2003; Racedo et 

al. 2013) and cucumber (Chandanie et al. 2006). It is very rare to find these 

crop plants grow nearby balsam, thus eliminating the opportunity of Co. 

acutatum to infect balsam leaves. In the present study, although Co. acutatum 

was found from balsam grown in the field (section 3.1.3.2) and in intraspecific 

competition (section 6.2.3), the infection frequencies were very low. To further 

support this fact, Co. acutatum infection frequency was reduced in balsam that 

was grown in a soil that had previously supported balsam compared to the 

balsam in clean soil. A similar result was recorded when balsam was grown in 

mycorrhizal inoculum, which recorded lower Co. acutatum infection frequency 

compared to the balsam in clean soil (section 5.2.3). In addition, a previous 

study also showed that Co. acutatum was not found in plants from the 

conditioned soil (Pattison et al. 2016). The most interesting result was the fact 

that Co. acutatum was antagonistic to the pathogen, while the rust infection 

was the highest when rust was present alone. The commonest endophyte 

species recorded from these plants were Exophiala sp. and Alternaria 

alternata which were not found from rust-free plants. Although A. alternata 

inhibited rust colonisation in Fallopia japonica (Kurose et al. 2012) and 
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protected grapevines from pathogen Plasmopara viticola attack (Musetti et al. 

2007), further study should be conducted to inoculate both endophytes into 

rust-treated balsam to examine their interactions and effects. Furthermore, as 

Plantago lanceolata was a common co-existing native plant with balsam in the 

field and contained high isolation frequency of A. alternata (Hodgson et al. 

2014), it is may be beneficial to grow this plant nearby balsam populations. 

This is because, if A. alternata successfully supports the growth of rust fungus, 

the endophyte can be transmitted horizontally from P. lanceolata to balsam 

and increased infection might encourage rust growth.  

Similar to the addition of Co. acutatum, the presence of commercial 

mycorrhizal inoculum in this study shown a negative effect on rust 

development in the balsam leaves. This raises questions as to whether AM 

fungi may hinder the establishment of the rust in field populations (Gange et 

al. 2018). However, balsam is known to form a sparse association with 

mycorrhizal fungi (Beerling & Perrins 1993) and most commonly infests 

disturbed areas (river banks) or communities in which other plant species that 

(e.g. Rumex spp.) have a low mycorrhizal dependency (Reinhart & Callaway 

2006). Thus, this may reduce the potential of mycorrhizal fungi to jeopardise 

rust fungus efficacy. Nevertheless, future work should be conducted to 

examine the effect and interactions of local mycorrhizal communities and rust 

infection in the plants as some soils in the field may be colonised by diverse 

communities of mycorrhizal fungi (Koch et al. 1997; Koch et al. 2011). 

Therefore, a better understanding of the biology of the local AMF community 

and its interaction with the rust fungus could be useful in aiding habitat 

restoration of area previously supporting dense Himalayan balsam stands, 
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where the rust is having an impact. In addition, if mycorrhizal species that are 

compatible with rust infection can be found, then it is ecologically sensible to 

propose application of these fungi in the field as they will benefit native plants 

and aid in the restoration of floristic diversity (Berruti et al. 2016). However, 

this approach might only be successful after the rust has become established 

and had some effect on the population of balsam (Bieberichid et al. 2018).  

If mycorrhizas are to be applied in the field, then inoculation in spring is 

preferable to ensure the best chance for successful association with the plants 

(Koziol et al. 2017). There are several ways to inoculate AMF in the field such 

as broadcasting, tilling, drilling, hydroseeding, seed inocula pellets and 

inoculated seed plants (Hayman et al. 1981; Koziol et al. 2017). Hayman et al. 

(1981) found that tilling and applying inoculum in a slurry produced the 

greatest mycorrhizal colonisation while broadcasing and pellets showed 

opposite effects. Therefore, application of mycorrhizal fungi in a slurry into the 

field together with the seeds of native wildflowers could be trialled.  

Overall, this study has demonstrated the importance of examining the factors 

that may affect the virulence and effectiveness of the pathogen against 

invasive species. If the AMF inoculation in the field together with native plant 

seed is successful, following the implementation of CBC and a suitable 

endophyte was found to promote rust development, similar approaches could 

be considered with other invasive plant species such as F. japonica. 

Furthermore, this study has provided better awareness and understanding to 

landowners on the best way to prevent balsam growth from widely infesting 

their land. Rust fungus infection and addition of mycorrhizal-dependent 
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wildflowers near to balsam populations could be applied by the landowners in 

order to manage populations of the weed. Complete eradication of Himalayan 

balsam is not a realistic option, since weed is too widespread in the UK. CBC 

using the rust fungus together with habitat restoration, potentially aided by the 

seeding of habitats including suitable mycorrhizal, post rust impact, offers a 

sustainable solution to this weed. This is attainable, if scientists, practitioners 

and landowners work together to reduce the impact of Himalayan balsam on 

native biodiversity. 

8.3 Final Conclusions and Impact of this Study  

Invasive species are one of the greatest challenges for most ecosystems and 

can lead to a huge economic loss. Overall, this study demonstrated that 

incorporation of plant-fungi-insect interactions is an important aspect within 

the development of a biocontrol strategy for invasive weed management. This 

work has provided evidence of the effect of endophytes and mycorrhizal fungi 

on Himalayan balsam, which affected not only plant growth, but also both 

above and below ground fungal communities. Another important result was 

that both mycorrhizas and endophytes could potentially disrupted the efficacy 

of the rust fungus as a CBC agent of balsam. Therefore, urgent work is needed 

to improve and support the effectiveness of the pathogen. Overall, it has been 

shown that the establishment of a plant pathogenic biocontrol agent may be 

dependent on the presence of other fungi in the roots and shoots of the plant, 

as well insect presence on the leaves. For biological control to be more 

predicatable in the future, one needs to consider not just the virulence of the 

pathogen, but also how this virulence is affected by the plant’s microbiome.  
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