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ABSTRACT

Computational creativity is a subdomain of artificial intelligence that ex-
plores the potential of computational systems to create original artefacts and
ideas. Overlapping with the broader field of cognitive science, it encom-
passes “the philosophy, science and engineering of computational systems
which . . . exhibit behaviours that unbiased observers would deem to be
creative” [CW12].

We study creativity from an algebraic point of view, showing how we can
give a mathematical formalization of creative systems and their compon-
ents. We start from the tenet that creativity can be seen in essence as the
identification or location of new conceptual objects in a conceptual space.
While most of the current research in computational creativity embraces a
connectionist view on cognitive and, in particular, creative processes, our
approach adheres to the symbolic computational theory of mind. We adopt
the understanding of a concept as an algebraic specification, and develop
our study based on Goguen and Burstall’s theory of institutions. This allows
us to use formal definitions for concept discovery, abstraction, concretization,
and blending that enable reasoning about creative processes.
We first define creative systems by means of specifications over many-

valued logics and of abstract strategies for the discovery and evaluation
of concepts using the notion of graded consequence. We then focus on a
subclass of creative systems modelled as complex dynamic systems and
investigate a new connection between improvisation processes and service-
oriented architectures where concepts and concept discovery are regarded
as modules and service discovery, respectively. In this context, we evaluate
the usefulness of a concept through the mechanism of service selection,
and recast concept blending in terms of service binding. This leads us to
the implementation of a specification and programming language whose
operational semantics extends the logic-programming semantics of services
from the classical Boolean setting to one with multiple truth values, akin to
fuzzy logic programming.
As a case study, we model free jazz improvisations using notions and

techniques from service-oriented computing. To that end, we study a suite
of logics for describing music using soft constraints or specialized notations.
We show how musical fragments can be captured by means of specifications
of service modules, and we instantiate the service-oriented processes of
discovery, selection and binding to simulate music improvisation.
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1
INTRODUCTION

1.1 COMPUTATIONAL CREAT IV ITY

Computational creativity is generally understood as the study of those
computational activities that produce original artefacts. Although an exact
formulation of what computational creativity precisely is has yet to be
adopted by the members of the community involved in this area of research,
there have been numerous efforts in the past decades for pinning a suitable
definition; [Bod91; Sch96; Wig06a; CVW09; CW12] are only a few examples.
In this thesis, we start from a prominent current understanding of computa-
tional creativity: as a subdomain of artificial intelligence that explores the
potential of computational systems to create original artefacts and ideas.
Overlapping with the field of cognitive science, computational creativity
encompasses “the philosophy, art, science and engineering of computational
systems which, by taking on particular responsibilities, exhibit behaviours
that unbiased observers would deem to be creative” [CW12]. It subsumes
in this way multidisciplinary research, being at the intersection of fields
such as philosophy, artificial intelligence, and cognitive psychology, with an
almost omnipresent desire of artistic achievement.
The goals of computational creativity – as currently stated in the field’s

manifesto [Icc] – are the computationalmodelling and simulation of creativity,
as a mean for reaching one of the following objectives: the construction of
software or hardware products capable of achieving human-level creativity,
a better understanding of human creativity and the formulation of an
algorithmic interpretation of the human creative behaviour, and the design
of tools that enable and enhance human creativity.

types of computational creativity. Since the early beginnings of
computational creativity as part of artificial intelligence, a distinction has
been made between three types of creativity [Bod91]:

1. exploratory creativity, defined as the exploration of a class of possible options
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(or concepts) within a restricted domain of interest (what is called a conceptual
space), in order to identify or locate original conceptual objects;

2. transformational creativity, defined as the transformation of the class of
possible options by changing the boundaries that limit the scope of the
domain space, in order to accommodate new conceptual objects;

3. combinational creativity, defined as the combination of objects within a
conceptual space for obtaining new concepts (in two words, concept blending).

We consider unfounded the claims that this taxonomy of computational
creativity is relevant only from a purely philosophical stance: it seems that,
in practice, the efforts for building creative systems can be separated into
these three categories as well.
In the present thesis, we focus on the first two types of creativity, while

briefly sketching a possible approach to the third type.

1.2 CREAT IVE SYSTEMS

Starting from the ideas expressed in [Bod91], Geraint Wiggins proposed
in [Wig06a] a mathematical formalization of the notion of creative system,
aiming at a framework for the description, analysis and comparison of such
systems. Although far from achieving this ultimate goal, the study clarifies
and extends some of the ideas from computational creativity based on
the state-space-search model from artificial intelligence [Wig06b]. In other
words, the author abstracts over the interpretation of conceptual spaces as
multidimensional spaces, over the interpretation of concepts as elements
(vectors) in these spaces, and over the interpretation of the exploration
of conceptual spaces as state-space search. He considers that, instead of
multidimensional spaces, conceptual spaces are sets containing concepts
as elements, and they can be traversed according to a given agenda. In the
following chapters, we retrace some of the main ideas advanced in that
paper, and define a creative system as a tuple consisting of:

· a universe – the space of all possible concepts,

· a language over which we can express rules for defining conceptual spaces as
subspaces of the universe,

· a set of rules defining conceptual spaces,· a function that gives interpretations to these rules,

· a strategy for the traversal of the conceptual space that, provided with a
concept as input, returns another concept to be examined next, and
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· a method for evaluating concepts in terms of usefulness, novelty, etc.

The exploratory kind of creativity is accommodated by this framework
in a straightforward manner, through the strategy used for traversing the
conceptual space. Transformational creativity can be modelled as the change
of the rules that define a conceptual space, and thus as the morphing of the
space itself in tune with the change of its interpretation, as the change of
the traversal strategy, or even just as the change of the evaluation method.
Lastly, combinational creativity is captured more subtly, through the change
of the rules defining the conceptual space so as to incorporate new concepts.
However, as long as concepts are only considered at the object level, it is
impossible to capture in detail the process of manufacturing new concepts
to be added in the conceptual space (or to be discovered in a part of the
universe which does not belong to the conceptual subspace). One needs to
look inside a concept, at the structural level, to be able to accurately model its
morphing, as concept blending implies the recombination of the properties
of two existing artefacts for the creation of a new one.

In the context of concept blending, the concepts are now generally defined
as algebraic specifications1. However, since in this study we focus on the
two other types of creativity, we adopt a more general understanding of a
concept, as a specification over an arbitrary logic. This immediately raises
the question of the nature of our view on cognition.
Most existing creative systems, with the exception of those belonging

to the class of combinational creative systems, are based either on the
connectionist view on cognitive process – implementing different types of
systems derived from and mixing machine-learning techniques and neural
networks, or on evolutionary algorithms. The main goal of our thesis is to
investigate how creative systems can be defined in the context of symbolic
models of cognition. The success of symbolic combinational creative systems
based on categorical concept blending is already widely recognised – see for
example, the studies that resulted from the CoInvent project [Sch+14]. We
see this as an argument for modelling creative systems of exploratory and
transformational nature based on similar formal, logical foundations. We
choose to base our study on the theory of institutions [GB92], which was
introduced by Joseph Goguen and Rod Burstall in the context of algebraic
specifications.
Intuitively, we consider a creative space to be a framework based on an

arbitrary logic (institution), which allows the change of the language to be

1 We discuss concept blending in detail in Section 6.2. For now, we only give a simple, intuitive
characterization.
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used – defined through the symbols of a structure called signature. The
universe comprises all possible specifications written over the logic, while
a conceptual space can be seen as a subclass of these, defined by means of
extensions of a given ‘ground’ specification. The interpretations of these
spaces are given by the classes of models that satisfy the specifications.
Concepts are basic specifications (presentations), and their evaluation is
given by means of a notion of graded semantic entailment. The matter of
exploring conceptual spaces is much more complex; to address it, we choose
to study a class of such creative systems where the space exploration is
achieved by means of many-valued logic programming.

figure 1.1. Bridging connectionism and computationalism

Our goal of studying creative systems under the symbolic view on cogni-
tion should be placed however in the current context of artificial intelligence,
where the increased effort of reconciling connectionism and computation-
alism is already showing promising results [Bes+17a]. Approaches based
on neural networks are evolving from black boxes which cannot provide
explanations for their solutions towards bridging the gap between the two
paradigms of the theory of mind: relational networks [San+17] and the high-
level abstract representations obtained via modular deep networks [HOT06]
are just two of many successful early results. It seems that connectionism
is slowly gaining the cognitive capacity of the man who mistook his wife for a
hat: in Oliver Sacks’ famous book “The Man Who Mistook His Wife for a
Hat and Other Clinical Tales” [Sac85], the curious case of a man who was
suffering from visual agnosia is presented. The man could not recognise
objects or persons, but his eyesight was untouched. He thus described the
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objects around him, structurally, in detail, trying to make sense of the world.
For example, he could not recognize a glove, but he could describe it as “a
continuous surface, infolded on itself, with five outpouchings”. The step
from accurate identification of features to realization of concepts (depicted
as the horizontal arrow from Figure 1.1) is however a difficult one, especially
when presented only with a small number of examples. Although solutions
such as deep neural networks can somewhat lead to abstract representations
of concepts, they require a very large number of input examples in the
training stage. Once the task of inferring complex specifications from a set
of salient features will be achieved, one could consider automatic learning
from examples for defining concepts. In this thesis, we focus on the blue
link in Figure 1.1: we assume that specifications of some basic concepts are
already given (perhaps as a result of a learning process), and we deal with
the exploration of the space to which those concepts belong, in order to
derive/create new, more complex, composite concepts.

1.3 THE STRUCTURE OF THE THES I S

This thesis comprises four main chapters, each of them being devoted to
technical aspects pertaining to three different levels of our approach to
creativity:

In Chapter 2, we recall from the literature a series of important notions and
results on category theory, institution theory and residuated lattices that we
use in this study. In particular, a notable result presented in Section 2.2 is the
characterization of institutions as functors into a category of Boolean rooms;
this facilitates the extension of the concept of institution to a many-valued
setting. A second important role of Chapter 2 is to set the basic terminology
and notation.
Chapter 3 focuses on the logical foundations of the framework that we

propose. These foundations are presented in three stages: first, we discuss
many-valued institutions, which extend ordinary institutions in the sense
that the satisfaction is no longer Boolean, but valued over a residuated lattice.
Here it is worthmentioning that this belongs to a long series of developments
into formalizing many-valued logics. What distinguishes our contribution
fromprevious efforts is thatwedonot commit to a fixed residuated lattice, but
allow instead the lattice to change along signature morphisms. The second
part, Section 3.2, can be as seen as an intermediate step between service-
oriented computing, algebraic specification, and creativity. Its role is to show
how the use of soft constraints (as they occur in the negotiation of service
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level agreements in service-oriented computing) can be axiomatized by
means of novel many-valued soft-constraint institutions. This development
builds on previous approaches to music composition based on Boolean
constraint satisfaction problems, and eases the transition towards a new
logic that we specifically introduce for describing free-jazz compositions.
That logic is introduced in Section 3.3, where we give a logical interpretation
of the symbols used in Anthony Braxton’s graphical notation for music
composition.
In Chapter 4, we focus on the way in which fundamental processes

from service-oriented computing can be used to generate new concepts,
showing in this way how service-oriented computing has an intrinsic creative
characteristic. The service-oriented processes that we consider are those
through which applications discover at run time providers for the services
they need, select the most suitable provider, and bind to it. To illustrate
how this observation relates to music composition, in Section 4.2, we give
a comprehensive example on the composition of music fragments from
Steve Reich’s “Clapping Music”. In the conclusion of this chapter, we briefly
discuss how the execution of such systems varies according to different
bindings of providers, and changes in the applications’ value systems.
By the nature of the construction, the framework presented in Chapter 4

is limited to service-oriented systems, where the interfaces between ap-
plications and service providers have a specific form that dictates the way
in which service level agreements are determined. However, the creative
potential of the systems is independent of the interfaces. To eliminate
this commitment on specific interfaces, in Chapter 5, we explore a recent
connection between service-oriented computing and logic programming,
grounded in Boolean reasoning, and upgrade it to a many-valued setting.
This raises new technical challenges, since we need to fundamentally rethink
notions such as query, clause, unification and resolution. The benefit of
this effort is that it provides a way to explore conceptual spaces without
relying on service-oriented interfaces; moreover, it provides for free new
features (morphisms of logic programs) that open the possibility to address
other kinds of creativity, such as transformational creativity, which require a
macroscopic view on systems.

1.4 RELEVANT PUBL ICAT IONS

Themain ideas of the thesis and parts of it have been presented at conferences
and workshops, and have been published in the following written materials:
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· Sections 3.1, 3.2.1 of Chapter 3 and Sections 4.1 and 4.3 of Chapter 4 are based
on the paper [CFO16], which has been presented at the 19th International
Conference, FASE 2016, as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016.

· Sections 3.2.2 and 3.3 of Chapter 3 and Section 4.2 of Chapter 4 are based
on the paper [CF16], which has been presented at the Seventh International
Conference on Computational Creativity, and on early results presented at
the 23rd International Workshop on Algebraic Development Techniques,
WADT 2016.

· A journal paper based onChapters 3 and 4 has been submitted for publication.



2
TECHNICAL PREL IMINARIES

We reserve this chapter for revisiting some of the most relevant concepts and notations
from category and institution theory to our thesis, and for presenting the algebraic
structure of residuated lattices. In the first two sections, we review the concepts
of comma category, factorization system, Grothendieck construction, institution
and comorphism of institutions, basic specification, and model amalgamation; we
also recall the presentation of institutions as functors into the category of rooms.
Propositional and many-sorted first-order logic are described in detail as main
examples of institutions. We then take a first step towards multivaluedness by
presenting the variety of residuated lattices in a categorical context and by listing
some basic properties and examples.

2.1 CATEGORIES

Throughout the thesis, we assume the reader is familiar with basic notions
of category theory such as category, functor, natural transformation, and
universal constructions, and we use mainly the terminology and notations
from [Lan98].
For any category C, we denote the collection of its objects by |C|, the

collection of arrows from object A to B by C(A, B), the composition of arrows
f and g (in diagrammatic order) by f ; g, and the identity arrow of an object
A by idA. In addition, for any natural transformations τ and σ, we denote
by τ ; σ their vertical composition, and by τ · σ their horizontal composition.
For any two categories C and D, we denote by [C → D] the category of
functors from C to D, where the arrows are natural transformations and
their composition is vertical. Finally, we denote by Set the category of sets
and functions, and by Cat the (quasi-)category of categories and functors.
In what follows, we recall some definitions and properties of category-

theoretic concepts fundamental to this thesis. For more detailed presenta-
tions, we refer the reader both to canonical works such as [Lan98; AHS09],
and to more specialised texts on the applications of category theory to
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algebraic specification [ST12] or software engineering [Fia05].

definition 2.1.1 (Comma category). Let F1 : C1 → K and F2 : C2 → K be
two functors with the same codomain. The comma category F1 / F2 is defined
as follows:

· the objects are triples 〈A1 , f ,A2〉, where A1 is an object of C1, A2 is an object
of C2, and f : F1(A1) → F2(A2) is an arrow in K;

· the arrows 〈A1 , f ,A2〉 → 〈A′1 , f ′,A′2〉 are pairs 〈g1 , g2〉, where g1 : A1 → A′1
and g2 : A2 → A′2 are arrows in C1 and C2, respectively, such that f ; F2(g2) �
F1(g1) ; f ′;

· the composition of arrows is defined componentwise: for every pair of arrows
〈g1 , g2〉 and 〈g′1 , g′2〉, 〈g1 , g2〉 ; 〈g′1 , g′2〉 � 〈g1 ; g′1 , g2 ; g′2〉.

F1(A1)

F2(A2)

F1(A′1)

F2(A′2)

F1(A′′1 )

F2(A′′2 )

f f ′ f ′′

F1(g1)

F2(g2)

F1(g′1)

F2(g′2)

The comma category F1 / F2 is usually denoted by C1 / F2, F1 /C2, or simply
by C1 / C2 if F1, F2, or both of them correspond to inclusions of categories.
When F1 is the constant functor with value A ∈ |K| and F2 is the identity of
K, we denote the comma category F1 / F2 by A /K – the category of K-objects
under A – and the forgetful functor A / K → K that maps every object
〈A, f ,A′〉 of A /K to A′ by |_|A.

definition 2.1.2 (Arrow category). For any category K, the category K~

of K-arrows is given by the comma category idK / idK.

Intuitively, the objects of the arrow category K~ are arrows f : A1 → A2 in
K, and the morphisms in K~ from f : A1 → A2 to f ′ : A′1 → A′2 correspond
to commutative squares:

A1 A′1

A2 A′2

g1

f f ′

g2

We denote the projection functors K~→ K that map the arrows f : A1 →
A2 inK to their domainA1 and codomainA2 bydom: K~→ K and cod: K~→
K, respectively.
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The notion of factorization system for a category can be encountered in the
literature under various definitions – equivalent or similar to a great extent.
The one that we consider in this thesis is based on the original formalization
from [HS73].

definition 2.1.3 (Factorization system). A factorization system for a category
C consists of a pair 〈E,M〉 of subcategories of C such that

· E and M have all the objects of C;

· all arrows in E are epimorphisms in C; all arrows in M are monomorphisms
in C;

· all isomorphisms in C are in both E and M;

· any morphism f of C can be factored as f � e ; m, with e ∈ E and m ∈M;
moreover, the factorization is unique up to isomorphism, which means that
for any other factorization e′ ; m′ of f , with e′ ∈ E and m′ ∈M, there exists
a unique isomorphism i in C such that e ; i � e′ and i ; m′ � m.

•

•

•

•

e e′

m m′

f

i

The results presented in this work are independent of the choice of factoriza-
tion of f . For this reason, assuming that A is the domain of f , we generally
denote the codomain of e by f (A).

fact 2.1.4. For any categories C and C′ with factorization systems 〈E,M〉
and 〈E′,M′〉, respectively, we can obtain the following factorization systems:

1. 〈M,E〉 for the dual category Cop,
2. 〈C/E, C/M〉 for the comma category C/C, where C ∈ |C|,
3. 〈E ×E′,M ×M′〉 for the product category C × C′.

definition 2.1.5 (Indexed category). Given a category I of indices, an
I-indexed category is a functor C : Iop → Cat.

definition 2.1.6 (Grothendieck construction). Any I-indexed category
C : Iop → Cat can be flattened to a Grothendieck category C# whose

· objects are pairs 〈i ,A〉, where i is an object of I and A is an object of C(i),

· arrows 〈i ,A〉 → 〈i′,A′〉 are pairs 〈u , f 〉 such that u : i → i′ is an arrow in I

and f : A→ C(u)(A′) is an arrow in C(i), and
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· composition of arrows 〈u , f 〉 and 〈u′, f ′〉 is defined as 〈u ; u′, f ; C(u)( f ′)〉.

C(i) C(i′) C(i′′)

i i′ i′′
u u′

A

C(u)(A′)

C(u ; u′)(A′′)

A′

C(u′)(A′′) A′′

f

C(u)( f ′) f ′

fact 2.1.7. For any indexed category C : Iop → Cat, the Grothendieck
category C# is the vertex of the lax colimit1 µ : C→ C# of C in Cat, where:

· for every index i ∈ |I|, µi : C(i) → C# is an embedding of categories, and

· for every morphism of indexes u : i′→ i ∈ Iop, µu : C(u) ;µi ⇒ µi′ is defined
by µu

A′ � 〈u , idC(u)(A′)〉 for every object A′ ∈ |C(i′)|.

fact 2.1.8. Every indexed functor F between the I-indexed categories C and
D : Iop → Cat, i.e., every natural transformation F : C⇒ D, determines a
functor F# : C# → D# that maps

· every object 〈i ,A〉 of the Grothendieck category C# to 〈i , Fi(A)〉 and

· every morphism 〈u , f 〉 : 〈i ,A〉 → 〈i′,A′〉 in C# to 〈u , Fi( f )〉.

Weobtain aflattening functor (_)# from the category [Iop → Cat]of I-indexed
categories to Cat.

definition 2.1.9 (Category of functors). For any category K, the category
[_→ K]# of functors into K is the Grothendieck category [_→ K] : Catop →
Cat that maps every category C to the functor category [C→ K] and any
functor U : C→ C′ to the functor U_: [C′→ K] → [C→ K]:

· the objects of [_→ K]# are functors F : C→ K,

· the morphisms between F : C→ K and F′ : C′ → K are pairs 〈U, ρ〉 where
U : C→ C′ is a functor, and ρ : F⇒ U ; F′ is a natural transformation. The
composition of arrows is defined by 〈U, ρ〉 ; 〈U′, ρ′〉 � 〈U ; U′, ρ ; (U · ρ′)〉.

1 Lax colimits [Bor94; Dia11] are a more relaxed concept of colimit in 2-categories, where the
strict equality requirement is replaced with diagram commutativity up to 2-cells.
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fact 2.1.10. Functors G : K→ K′ determine appropriate natural transforma-
tions [G] : [_→ K] ⇒ [_→ K′] having as components [G]C for any category
C ∈ |Cat| the right-composition functors from [C→ K] to [C→ K′]. Hence,
every functor G : K→ K′ induces a functor [G]# : [_→ K]# → [_→ K′]#.

2.2 INST ITUT IONS

The notion of institution arose in the field of algebraic specification to answer
the need for a framework for studying concepts and techniques related to
structuring and modularising specifications independently of the languages
used. It was introduced by Goguen and Burstall in [GB83; GB92] to formalize
the intuitive notion of logical system as a mediated relation between its
syntax and semantics. Offering a rigorous mathematical abstraction of
the main ingredients of logics, institution theory proved to be suitable for
developing the foundations of specification languages.
In short, an institution consists of a collection (category) of so-called

signatures that determine (through functors) sets of sentences and collections
of models, as well as satisfaction relations between models and sentences;
the satisfaction relations are assumed to be invariant under non-logical
language translation (change of signature).

definition 2.2.1 (Institution). An institution I consists of

· a category SigI of signatures and signature morphisms,

· a sentence functor SenI : SigI → Set giving, for every signature Σ, the set
SenI(Σ) of Σ-sentences and, for every signature morphism ϕ : Σ → Σ′, the
sentence translation map SenI(ϕ) : SenI(Σ) → SenI(Σ′),

· a model functor ModI : (SigI)op → Cat defining, for every signature Σ, the
category ModI(Σ) of Σ-models and Σ-model homomorphisms and, for every
signature morphism ϕ : Σ → Σ′, the reduct functor ModI(ϕ) that maps
models over Σ′ to models over Σ,

· a satisfaction relation �I
Σ
⊆ |ModI(Σ)| × SenI(Σ) for every signature Σ determ-

ining the satisfaction of Σ-sentences by Σ-models,

such that the satisfaction condition

M′ �I
Σ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M′) �I

Σ
ρ

holds for any signature morphism ϕ : Σ→ Σ′, Σ′-model M′, and Σ-sentence
ρ. Intuitively, this means that the translation of sentences SenI(ϕ) and the
reduction of models ModI(ϕ) preserve the satisfaction relation.
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remark 2.2.2. The satisfaction relation corresponding to any signature
Σ of an institution I can also be presented as a function �I

Σ
: SenI(Σ) →

[|ModI(Σ)| → 2] that determines if any given Σ-sentence is satisfied by any
given Σ-model. In this way, we can encapsulate the satisfaction condition in
a categorical construct by defining the relations �I

Σ
as the components of a

natural transformation �I : SenI ⇒ [|ModI(_)| → 2] between the sentence
functor and the functor [|ModI(_)| → 2] assigning to every signature Σ the
collection of functions from |ModI(_)| to the values of the Boolean lattice 2.

Σ

Σ′

SenI(Σ)

SenI(Σ′)

[|ModI(Σ)| → 2]

[|ModI(Σ′)| → 2]

ϕ SenI(ϕ) ModI(ϕ) ; _

�I
Σ

�I
Σ′

We may omit sub- or super-scripts from the above notations of the
institution constituentswhen there is no risk of confusion. If, for example, the
institution I and the signature Σ are easy to infer, we denote the satisfaction
relation �I

Σ
simply by �. For simplicity, we often denote the sentence

translation SenI(ϕ) by ϕ(_) and the reduct functor ModI(ϕ) by _�ϕ. When
M � M′�ϕ we say that M is the ϕ-reduct of M′ and that M′ is a ϕ-expansion
of M.

semantic consequence. The satisfaction relation extends naturally to
sets of sentences: a Σ-model M satisfies a set of Σ-sentences E, denoted
M �I

Σ
E, if M satisfies all sentences ρ ∈ E. In addition, we say that a

Σ-sentence ρ is a semantic consequence of a set of Σ-sentences E, denoted by
E �I
Σ
ρ, when every Σ-model that satisfies every sentence in E satisfies ρ as

well. Finally, we write E �I
Σ

E′, where E and E′ are sets of Σ-sentences, when
E �I
Σ
ρ for every ρ ∈ E′.

examples. The literature on specification languages and abstract model
theory contains a multitude of examples of logical systems formalized
as institutions, both from computer science and from mathematical logic:
first-order logic [GB92], order-sorted Horn-clause logic [GM87], equational
logic [Dia95], temporal logic [FC96], modal logic [DS07], many-valued
logics [Dia13], hybrid logic [DM16]; see the books [ST12; Dia08] for many
other detailed examples.
In what follows, we present the institutions of two logical systems of
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reference for our work: propositional and many-sorted first-order logic.

the institution PL of propositional logic

signatures. A propositional signature Σ is a set whose elements are called
propositional symbols or variables. Signature morphisms ϕ : Σ → Σ′ are
functions.

sentences. Given a propositional signature Σ, its sentences are defined by
the grammar

ρ :� p | > | ⊥ | ¬ρ | ρ ∧ ρ | ρ ∨ ρ | ρ→ ρ | ρ↔ ρ,

where p ∈ Σ. For any function ϕ : Σ→ Σ′, the translation of a sentence ρ along
ϕ, Sen(ϕ)(ρ) is the sentence obtained by replacing in ρ every propositional
symbol p ∈ Σwith the symbol ϕ(p).

models. Given a propositional signature Σ, a Σ-model M is a valuation
(function) from Σ to the values of the Boolean lattice 2; a model M can be
extended to sentences to define M# : Sen(Σ) → 2 using the usual truth-tables
associated with the propositional connectives.
For any function ϕ : Σ → Σ′, the reduct of a Σ′-model M′ : Σ′ → 2 is

just the composition (ϕ ; M′) : Σ → 2, i.e. propositional symbols in Σ are
assigned the truth values associated with their images under ϕ.

satisfaction. A model M satisfies a sentence ρ if and only if M#(ρ) � true.
Finally, the satisfaction condition holds because, for every Σ′-model M′

and every morphism ϕ : Σ→ Σ′, (ϕ ; M′)# � ϕ ; M′#:

M′�ϕ �Σ ρ iff (M′�ϕ)#(ρ) � true

iff (ϕ ; M′)#(ρ) � true

iff M′#(ϕ(ρ)) � true

iff M′ �Σ ϕ(ρ).

the institution FOL of many-sorted first-order logic

signatures. A first-order signature is a tuple 〈S, F, P〉 comprising:

· a set S of sorts,

· a family F � {Fw→s | w ∈ S∗ , s ∈ S} of sets of operation symbols indexed by
arities and sorts, where Fw→s denotes the set of operation symbols with arity
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w and sort s (when the arity is empty, Fε→s denotes the set of constants of
sort s), and

· a family P � {Pw | w ∈ S∗} of sets of S-sorted relation symbols indexed by
arities. When all Pw are empty, what we obtain is an algebraic signature.

The signature morphisms ϕ : 〈S, F, P〉 → 〈S′, F′, P′〉 reflect the structure of
signatures and consist of

· a function ϕst : S→ S′ between the sets of sorts,

· a family of functions ϕop � {ϕop
w→s : Fw→s → F′

ϕst(w)→ϕst(s) | w ∈ S∗ , s ∈ S}
between the sets of operation symbols, and

· a family of functions ϕrel � {ϕrel
w : Pw → P′

ϕst(w) | w ∈ S∗} between the sets
of relation symbols.

sentences. The sentences are usual first-order sentences built from
equational and relational atoms by applying in an iterative manner Boolean
connectives and first-order quantifiers. Given a signature 〈S, F, P〉, and a
sort s, the set TF,s of F-terms of sort s is the least set such that σ(t) ∈ TF,s ,
for all σ ∈ Fw→s , and all tuples t ∈ TF,w , where TF,w � TF,s1 × · · · × TF,sn

for w � s1 · · · sn . The set Sen(S, F, P) of 〈S, F, P〉-sentences is the least set
containing equational atoms t �s t′ (for t , t′ ∈ TF,s) and relational atoms π(t)
(where π ∈ Pw and t ∈ TF,w) that is closed under

· Boolean connectives: for any 〈S, F, P〉-sentences ρ1 and ρ2, the negation ¬ρi ,
the conjunction ρ1 ∧ ρ2, the disjunction ρ1 ∨ ρ2, the implication ρ1 → ρ2, and
the equivalence ρ1 ↔ ρ2 are also 〈S, F, P〉-sentences,

· existential and universal quantification over sets of first-order variables, which
are triples (x , s , 〈S, F, P〉) usually denoted by x : s or simply by x, where
x is the name of the variable, and s ∈ S is its sort: For any finite set X
of 〈S, F, P〉-variables, let 〈S, F ] X, P〉 be the extension of 〈S, F, P〉 with the
elements of X added as new constants. Then for any 〈S, F ] X, P〉-sentence
ρ, ∃X.ρ and ∀X.ρ are 〈S, F, P〉-sentences.

The translation of sentences Sen(ϕ) : Sen(S, F, P) → Sen(S′, F′, P′) along a
signature morphism ϕ : 〈S, F, P〉 → 〈S′, F′, P′〉 is defined inductively on the
structure of the sentences, and renames the sorts, function, and relation
symbols of 〈S, F, P〉 with symbols of 〈S′, F′, P′〉 according to ϕ. For terms,
we define the extension of ϕ as ϕtm(σ(t)) � ϕop(σ)(ϕtm(t)). Then,

· Sen(ϕ)(t �s t′) � (ϕtm(t) �ϕst(s) ϕ
tm(t′)) for equations,

· Sen(ϕ)(π(t)) � ϕrel(π)(ϕtm(t)) for relational atoms,



technical preliminaries 21

· Sen(ϕ)(ρ1 ∧ ρ2) � Sen(ϕ)(ρ1) ∧ Sen(ϕ)(ρ2), and similarly for the rest of the
Boolean connectives, and

· Sen(ϕ)(∃X.ρ) � ∃Xϕ .Sen(ϕX)(ρ) for every finite set of variables X and
every 〈S, F ] X, P〉-sentence ρ, where Xϕ � {x :ϕst(s) | x : s ∈ X} and
ϕX : 〈S, F ] X, P〉 → 〈S′, F′ ] Xϕ , P′〉 extends ϕ canonically. We define the
translation of universally quantified sentences in a similar manner.

models. For every signature 〈S, F, P〉, a model M interprets each sort s as
a set Ms , called the carrier set of that sort, each operation symbol σ ∈ Fw→s

as a function Mσ : Mw → Ms , where Mw � Ms1 × · · · ×Msn for w � s1 · · · sn ,
and each relation symbol π ∈ Pw as a subset Mπ ⊆ Mw .
A homomorphism of 〈S, F, P〉-models h : M → N is an indexed family of

functions {hs : Ms → Ns | s ∈ S} such that

· h is an 〈S, F〉-algebra homomorphism: hs(Mσ(m)) � Nσ(hw(m)), for every
σ ∈ Fw→s and every m ∈ Mw , where hw : Mw → Nw denotes the ca-
nonical component-wise extension of h to w-tuples, i.e. hw(m1 , . . . ,mn) �
(hs1(m1), . . . , hsn (mn)) for w � s1 · · · sn and mi ∈ Msi for i � 1, n, and

· hw(m) ∈ Nπ if m ∈ Mπ, i.e. hw(Mπ) ⊆ Nπ, for every relation symbol π ∈ Pw .

For every signature morphism ϕ : 〈S, F, P〉 → 〈S′, F′, P′〉, the model reduct
M′�ϕ of a 〈S′, F′, P′〉-model M′ is defined as the 〈S, F, P〉-model given by
(M′�ϕ)x � M′

ϕ(x) for every sort, function, or relation symbol x from the
domain signature of ϕ. The reduct h′�ϕ of a model homomorphism is also
defined as (h′�ϕ)s � h′

ϕ(s), for every sort s ∈ S.

satisfaction. The satisfaction between models and sentences is the usual
Tarskian satisfaction defined inductively on the structure of sentences and
based on the valuation of terms in models. This valuation can be defined
by induction on the structure of the terms; for any term t : s, we denote its
interpretation in a model M (a value in Ms) as Mt . Given a model M

· for equational atoms: M �〈S,F,P〉 t �s t′ if Mt � Mt′,

· for relational atoms: M �〈S,F,P〉 π(t) if Mt ∈ Mπ,2

· M �〈S,F,P〉 ¬ρ if M 2〈S,F,P〉 ρ,

· M �〈S,F,P〉 ρ1 ∧ ρ2 if M �〈S,F,P〉 ρ1 and M �〈S,F,P〉 ρ2,

· M �〈S,F,P〉 ρ1 ∨ ρ2 if M �〈S,F,P〉 ρ1 or M �〈S,F,P〉 ρ2,

· M �〈S,F,P〉 ρ1 → ρ2 if M �〈S,F,P〉 ρ2 whenever M �〈S,F,P〉 ρ1,

2 Note that π can be nullary; its interpretation is either the empty set, or a set with only one
element, the empty tuple – in that case π(), which can be simplified to π, is satisfied by M.
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· M �〈S,F,P〉 ∃X.ρ if there exists an expansion M′ of M along the signature
inclusion 〈S, F, P〉 ↪→ 〈S, F ] X, P〉 such that M′ �〈S,F]X,P〉 ρ, and

· M �〈S,F,P〉 ∀X.ρ if M′ �〈S,F]X,P〉 ρ for all expansions M′ of M along the
signature inclusion 〈S, F, P〉 ↪→ 〈S, F ] X, P〉.

specifications over institutions

definition 2.2.3 (Basic specification over an institution). A basic specification,
or (theory) presentation, in an institution I is a pair 〈Σ, E〉 consisting of
a signature Σ and a collection of sentences (axioms) E ⊆ SenI(Σ) in the
language of that signature. The denotational semantics of 〈Σ, E〉 is given by
the class ModI-pres(Σ, E) of Σ-models that satisfy all the sentences in E. In
symbols:

ModI-pres(Σ, E) � {M ∈ |ModI(Σ)| | M �I
Σ

E}.

A morphism between basic specifications 〈Σ, E〉 and 〈Σ′, E′〉 is a signature
morphism ϕ : Σ → Σ′ such that E′ �I

Σ′ ϕ(E), i.e. the translations along ϕ
of the axioms of 〈Σ, E〉 to the language of Σ′ are semantic consequences of
〈Σ′, E′〉. Such a morphism formalizes the way in which 〈Σ, E〉 is a part of
〈Σ′, E′〉. Presentations and their morphisms constitute a category, which we
denote by PresI.

model amalgamation

Model amalgamation is one of themost important properties of an institution,
with numerous applications in the context of institution-independent model
theory [Dia08] and module algebra [DGS93]. Essentially, it allows us to
combine models of different signatures whenever they are compatible with
respect to a common ‘sub-signature’. Many logical systems of interest in
specification theory have the model-amalgamation property, including the
examples considered in this thesis.

definition 2.2.4 (Model amalgamation). In any institution I, a commuting
square of signature morphisms

Σ Σ1

Σ2 Σ′

ϕ1

ϕ2 θ1

θ2
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is a weak amalgamation square if, for every Σ1-model M1 and Σ2-model
M2 such that ModI(ϕ1)(M1) � ModI(ϕ2)(M2), there exists a Σ′-model M′,
called an amalgamation of M1 and M2, such that ModI(θ1)(M′) � M1 and
ModI(θ2)(M′) � M2. When M′ is unique with this property, the above
square is called an amalgamation square.
We say that an institution has (weak) model amalgamation if and only if

every pushout square of signature morphisms is a (weak) amalgamation
square.

Therefore, in many concrete examples of institutions (like PL and FOL),
in order to have model amalgamation, the signature morphisms θ1 and θ2

must not identify entities of Σ1 and Σ2 that do not have a common preimage
in Σ under the signature morphisms ϕ1 and ϕ2. Moreover, to guarantee the
uniqueness of the amalgamation, Σ′must contain only entities that originate
from Σ1 or Σ2.

moving between institutions

When describing and reasoning about properties of highly complex struc-
tures or systems, it is often desirable to use different formalisms for different
tasks. Consequently, in order to use institutions as formalizations of logical
systems in a heterogeneous setting, one needs to define formally a notion
of map between institutions. Several concepts have been defined over the
years, including semi-morphisms, morphisms, and comorphisms, some
of which can be found in [ST12]. In what follows, we will make use of
comorphisms [GR02], which reflect the intuition of embedding simpler
institutions into more complex ones. They were first presented in [Mes89]
as plain maps, and in [Tar95] as institution representations.

definition 2.2.5 (Institution comorphism). Given two institutions I �

〈SigI , SenI ,ModI , �I〉 and I′ � 〈SigI′ , SenI′ ,ModI′ , �I
′〉, an institution comorph-

ism 〈Φ, α, β〉 : I→ I′ consists of:

· a signature functor Φ : SigI → SigI′,

· a natural transformation α : SenI ⇒ Φ ; SenI′, and

· a natural transformation β : Φop ; ModI′ ⇒ModI

such that the following satisfaction condition holds for any I-signature Σ,
Φ(Σ)-model M′, and Σ-sentence ρ:

M′ �I
′

Φ(Σ) αΣ(ρ) if and only if βΣ(M′) �IΣ ρ.
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definition 2.2.6 (coIns). Institution comorphisms can be composed com-
ponentwise. The composition has identities and is associative, giving rise to
the category coIns of institutions and institution comorphisms.

example 2.2.7 (Embedding PL in FOL). Propositional logic can be seen as
a fragment of first-order logic determined by signatures with empty sets of
sort symbols (up to an equivalence of logical systems). To formally capture
this embedding, we define an institution comorphism 〈Φ, α, β〉 : PL→ FOL

as follows:

· Every propositional signature Σ is mapped to the first-order signature with
the empty set of sorts, without function symbols, and containing only nullary
predicate symbols,

Φ(Σ) � 〈S � ∅, F � ∅, P � Σ〉

· The sentence translation is an inclusion – every propositional sentence is
also a first-order sentence,

αΣ(ρ) � ρ

· Every model M′ ∈ |ModFOL(Φ(Σ))| is trivially reduced to a Σ-model in PL.

βΣ(M′)(p) �


true, if M′p � M′ε � {()}
false, if M′p � ∅

example 2.2.8 (Embedding EQL and REL in FOL). In a similar way, we can
present equational logic and relational logic as fragments of first-order logic.

1. The institution EQL of equational logic can be obtained from FOL by
discarding the relation symbols and their interpretations. We define the
comorphism 〈Φ, α, β〉 : EQL→ FOL as follows:

· Φ : SigEQL → SigFOL is the embedding of algebraic structures into the
category of first-order signatures,

· for every signature Σ ∈ |SigEQL |, αΣ is an inclusion of sets, and βΣ is the
identity functor.

2. The institution REL of relational logic can be seen as a sub-institution of
FOL determined by the class of signatures without non-constant operation
symbols. We can define a comorphism 〈Φ, α, β〉 : REL→ FOL similarly to
the previous example.

example 2.2.9 (Encoding relations as operations). A less trivial example of
an institution comorphism is the encoding of REL into EQL by representing
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relations as Boolean-valued operations. The comorphism 〈Φ, α, β〉 : REL→
EQL

· maps every relational signature 〈S, F, P〉 to the algebraic signature 〈S ]
{bool}, F ] {true} ] Pop〉, where bool is a new sort, true is a new constant
of sort bool, and for every w ∈ S∗, Pop

w→s � Pw , for s � bool, and Pop
w→s � ∅,

otherwise,

· maps every relational atom π(t) to the equation π(t) � true, and

· maps every 〈S ] {bool}, F ] {true} ] Pop〉-algebra M′ to the 〈S, F, P〉-model
β(M′) that has the same carrier sets for the sorts in S and the same inter-
pretations of the operation symbols in F, and for every relation symbol π,
β(M′)π � (M′π)−1(M′true).

institutions as functors

Following the idea in Remark 2.2.2, we can alternatively present an institution
by giving for every signature a set of sentences, a category of models, and
a function mapping every sentence to a valuation function that assigns to
every model a truth value from 2. The mappings of signatures to sets of
sentences and to models must be functorial, while the valuation functions
should be natural with respect to the signatures considered. This means
that we can present an institution as a category of signatures together with a
functor that associates to every signature an object of the comma category
Set/[|_| → 2].
This comma category is isomorphic to what in the literature is know as

the category of rooms or twisted relations [GB92].

definition 2.2.10 (Rooms and corridors). The category Room of rooms and
corridors is defined as follows:

The objects are Boolean rooms, that is triples 〈S,M, �〉 comprising:

· a set S of sentences,

· a category M of models, and

· a satisfaction relation � ⊆ |M| × S.

The arrows 〈S,M, �〉 → 〈S′,M′, �′〉, called corridors, are pairs 〈α, β〉, where

· α : S→ S′ is a sentence-translation function and

· β : M′→M is a model-reduction functor,

such that for all M′ ∈ |M′ | and ρ ∈ S

M′ �′ α(ρ) iff β(M′) � ρ.
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The composition of morphisms is defined in a componentwise manner.

Rooms are suitable for conveying the notion of local satisfaction sys-
tem, associated to a fixed signature, as in studies on generalized institu-
tions [GB85], on heterogeneous logical systems[Mos02], and on substitution
systems [ŢF17].

remark 2.2.11. We can identify every institution I having the category of
signatures Sig with the functor I : Sig→ Room that maps:

· every signature Σ to the room 〈SenI(Σ),ModI(Σ), �I
Σ
〉 and

· every signature morphism ϕ to 〈SenI ,ModI〉.

As a converse, every functor I : Sig→ Room defines an institution whose
sentence functor, model functor, and satisfaction relations are given by the
projections to Set and Cat of the rooms that I assigns to the signatures in Sig.
The satisfaction condition is automatically ensured by the fact that signature
morphisms are mapped under I to corridors.

The equivalence between functors into Room and institutions can be
extended to institution comorphisms. Every comorphism 〈Φ, α, β〉 : I→ I′

can be seen as an arrow 〈Φ, τ〉 between the functors I : Sig → Room and
I′ : Sig′→ Room, where τ is the natural transformation τ : I⇒ (Φ ; I′) with
τΣ given by the corridor 〈αΣ , βΣ〉 for every I-signature Σ.

Sig

Sig′

RoomI

I′
Φ

τ

fact 2.2.12. The category coIns of institution comorphisms is isomorphic
with the Grothendieck category [_→ Room]#.

2.3 RES IDUATED LATT ICES

The class of substructural logics includes classical propositional logic, in-
tuitionistic logic, linear logic, many-valued logics, fuzzy logics, and other
notable non-classical logical systems. These were originally presented as
logics that lack some of the three main structural rules of Gentzen-style
sequent systems: contraction, weakening and exchange. For example, many-
valued logics, fuzzy logics, and linear logic lack the contraction rule, while
linear logic lacks the weakening rule [Ono03].
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What brings these logics together is a shared feature, called the residuation
property, that becomes apparent with the following equivalence presented
in the context of sequent-systems formalizations [Gal+07]. In a fixed sub-
structural logic, a formula ρ follows from formulas ϕ and ψ if and only if
the implication ϕ→ ρ follows from ψ. The derivation relation of each logic
is usually captured by a sequent separator `. Thus, we have that ϕ, ψ ` ρ is
provable if and only if so is ψ ` (ϕ→ ρ). By replacing the comma symbol
“,” with a logical connective ∗, the equivalence above becomes: ϕ ∗ ψ ` ρ is
provable if and only if so is ψ ` (ϕ→ ρ) [KO]. In the algebraic models of the
considered logic, this relation is expressed as x ∗ y ≤ z iff y ≤ x → z, and
is referred to as the residuation law of residuated algebraic structures [Gal+07].
Substructural logics can thus be understood as logics whose algebraic coun-
terparts are residuated structures; because of this, implication becomes a
primary connective of the language. By adding disjunction and conjunction
to these structures, we obtain the lattice-ordered algebraic structures of
residuated lattices.
Residuated lattices encompass basic logic algebras, Heyting algebras, MV-

algebras, Boolean algebras, and lattice-ordered groups. They were first
studied in the 1920s and 1930s by Krull [Kru24], Dilworth [Dil39], Ward
and Dilworth [WD39], and then, four decades later, by Pavelka [Pav79b]
and Balbes and Dwinger [BD74]. Following Idziak’s study [Idz84], an entire
new field of research flourished. Residuated lattices are known under
many names, from BCK-lattices in [Idz84] and FLew-algebras in [OK85] to
integral, residuated, commutative l-monoids in [Höh95]. For more details
on residuated lattices, the reader is referred to the monograph [Gal+07],
which started as a concise report by Kowalski and Ono [KO], but also to the
surveys of Jipsen and Tsinakis [JT02], and Galatos and Jipsen [GJ09].

definition 2.3.1 (Residuated lattices). L � 〈L, ≤,∨,∧, ∗,→, 0, 1〉 is a resid-
uated lattice if 〈L, ≤,∨,∧, 0, 1〉 is a bounded lattice (with supremum or join
∨, infimum or meet ∧, smallest element 0 and greatest element 1) equipped
with a monoidal structure (a commutative and associative binary operation
∗ having 1 as identity) and a binary operation→ such that the residuation
law holds: for all elements x , y , z ∈ L, y ≤ (x → z) iff x ∗ y ≤ z.

Note that for every x ∈ L, the multiplication-with-x operation (x ∗ _) is
a functor on the partial order 〈L, ≤〉, since (x ∗ y) ≤ (x ∗ z) if y ≤ z (see
[Ono03]). A similar observation can be made for x → _; the residuation
law means that x → _ is its right adjoint. The residuum operation or residual
→ can be seen as a generalization of the Boolean implication, the ordinary
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implication arising in the particular case of the Boolean algebra 2, where ∗
coincides with the conjunction; it can be defined in a canonical way from
multiplication: for every x , y ∈ L, x → y � sup{z ∈ L | x ∗ z ≤ y}.
We list some basic properties of residuated lattices that will be used in

future proofs.

fact 2.3.2. [KO] Let L be a residuated lattice and x , y , z ∈ L. Then:

1. 0 ∗ x � 0
2. 1→ x � x

3. x ≤ y iff x → y � 1
4. x ∗ y ≤ x, and thus x ∗ y ≤ x ∧ y

5. if x ≤ y, then (x ∗ z) ≤ (y ∗ z), (z → x) ≤ (z → y), and (y → z) ≤ (x → z)
6. x ∗ (y ∨ z) � (x ∗ y) ∨ (x ∗ z)

remark 2.3.3. We define the negation ¬ as the derived unary operation
¬x � x → 0. The following equations hold in any residuated lattice:

1. ¬(x ∨ y) � ¬x ∧ ¬y

2. x ≤ ¬¬x

3. ¬¬¬x � ¬x

presentation of residuated lattices. In the following chapters, we
often refer to the first-order presentation of residuated lattices in Figure 2.1.
This is written in a Casl-like syntax [Mos04]), where sorts, operations and
predicates are introduced with the keywords sort, ops, pred, and where
we can specify operations as being commutative or associative by using the
attributes comm and assoc, respectively; moreover, some operations may be
specified to have units, using the unit attribute or to be idempotent, using
the attribute idem. All the sentences are universally quantified over the
(free) variables they contain. Note that, in this specification, some sentences
are atomic, while others are implications (denoted ρ1 if ρ2) or equivalences
(denoted ρ1 iff ρ2).

The residuated lattices thus specified are sometimes called commutative
(because the monoid 〈L, ∗, 1〉 is commutative), integral (because the unit of
the monoid is a greatest element of the lattice, with x ≤ 1 for all x ∈ L), and
zero-bounded (because there is a lowest element 0 ≤ x for all x ∈ L).

definition 2.3.4 (Category of residuated lattices). A morphism of residuated
lattices ` : L→ L′ is a function ` : L→ L′ that is simultaneously a morphism
of lattices and of commutativemonoids, and is compatiblewith the residuum
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spec ResiduatedLattices �
sort L
ops 0 : L, 1 : L

_ ∨ _ : L × L −→ L [comm, assoc, unit 0, idem]
_ ∧ _ : L × L −→ L [comm, assoc, unit 1, idem]
_ ∗ _ : L × L −→ L [comm, assoc, unit 1]
_→ _ : L × L −→ L

pred _ ≤ _ : L × L

∀ a, b, c : L • a ∨ (a ∧ b) � a
• a ∧ (a ∨ b) � a • a ≤ b iff a ∨ b � b
• (a ∗ b) ≤ (a ∗ c) if b ≤ c • b ≤ (a→ c) iff (a ∗ b) ≤ c

figure 2.1. The presentation 〈ΣL , EL〉 of residuated lattices

→. Obviously, morphisms of residuated lattices compose (as ordinary
functions do), and their composition is associative and has identities (given
by identity functions). Hence, residuated lattices and their morphisms form
a category, which we denote L.

remark 2.3.5. The category of residuated lattices coincideswith the category
ModFOL−pres(ΣL , EL) of models of the presentation 〈ΣL , EL〉. Moreover,
residuated lattices can be even specified using universally-quantified atomic
sentences [Idz84], and hence, according to Birkhoff’s variety theorem, they
form a variety (they are closed under homomorphic images, subalgebras,
and direct products) in the category of ΣL-models. In particular, the
residuation condition can be equationally axiomatized with the following
identities [Idz84]:

· (x ∗ y) → z � x → (y → z)

· (x ∗ (x → y)) ∨ y � y

· (x ∧ y) → y � 1

By imposing additional axioms to the class of residuated lattices, we obtain
several subvarieties of interest, such as the ones presented in the inclusion
diagram in Figure 2.2. The axioms needed to obtain these subvarieties of
non-trivial residuated lattices (with elements 0 , 1) are as follows (once
again, all free variables are implicitly universally quantified):

divisibility: x ∧ y � x ∗ (x → y),

prelinearity/representability: (x → y) ∨ (y → x) � 1,

linearity: x ≤ y or y ≤ x,
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RL

BL HA

ΠMV GA

BA
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figure 2.2. Subvarieties of residuated lattices ordered by inclusion

idempotency: x ∗ x � x,

involutiveness: ¬¬x � x.

The subvarieties of residuated lattices listed in Figure 2.2 can be character-
ized as follows [GJ09]:

BL: basic logic algebras
the algebraic counterpart of Hajek’s basic logic
= divisible and prelinear residuated lattices

HA: Heyting algebras
the algebraic counterpart of intuitionistic logic
= residuated lattices where ∗ and ∧ coincide

MV: MV-algebras or Łukasiewicz algebras
algebraic counterpart of Lukasiewicz many-valued logics
= involutive BL-algebras
= prelinear residuated lattices satisfying x ∨ y � (x → y) → y

Π: product algebras
algebraic counterpart of product logic
= BL-algebras satisfying ¬¬x ≤ (x → x ∗ y) → y ∗ (¬¬y)

GA: Gödel algebras
algebraic counterpart of Gödel-Dummett logic (smallest superintu-
itionistic logic that is also a fuzzy logic)
= idempotent BL-algebras
= prelinear Heyting algebras
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BA: Boolean algebras
= involutive Heyting algebras
= idempotent MV-algebras

We list below a few representative examples of residuated lattices belong-
ing to these varieties.

example 2.3.6 (Heyting algebras).

1. We denote byHAn+1 the Heyting algebra with n + 1 values: 〈HAn+1 ,max,
min,min,→, 0, 1〉, where HAn+1 � {0, 1/n , 2/n , . . . , (n − 1)/n , 1}, join is
maximum, meet and multiplication are minimum, and → is defined as
x → y � max{z ∈ HA | min{x , z} ≤ y}.

2. Similarly, HAω is the Heything algebra 〈HAω ,max,min,min,→, 0, 1〉 with
the underlying infinite partial order HAω � {0} ∪ {1/n | n ∈ ω}, andHA[0,1]
the algebra 〈HA[0,1] ,max,min,min,→, 0, 1〉 with the interval [0, 1] as the
underlying set, and operations defined as above.

Note that these examples are in fact Gödel algebras, having the residual
operation defined as

x → y �


1, x ≤ y

y , x > y.

example 2.3.7 (The standard product algebra).
PI[0,1] � 〈PI[0,1] ,max,min, ·,→, 0, 1〉 is the product algebra with PI[0,1] �
[0, 1], multiplication defined as the ordinary product on real numbers and
the residual defined as

x → y �


1, x ≤ y

y/x , x > y.

example 2.3.8 (Łukasiewicz algebras).

1. Ln+1 is the MV-algebra with n+1 values: 〈Ln+1 ,max,min, ∗,→, 0, 1〉, where
Ln+1 � {0, 1/n , 2/n , . . . , (n − 1)/n , 1}, join is maximum, meet is minimum,
multiplication is defined as x ∗ y � max{0, x + y − 1}, and→ is defined as
x → y � min{1, 1 − x + y}.

2. We denote by L[0,1] the standard MV-algebra 〈L[0,1] ,max,min, ∗,→, 0, 1〉,
with the interval [0, 1] as the underlying set, and the join, meet, multiplication
and residual operations defined as above.

definition 2.3.9 (Complete residuated lattices). A residuated lattice is
completewhen its underlying lattice is complete, i.e., when joins and meets
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exist for arbitrary sets of values. Together with complete homomorphisms
(morphisms that preserve arbitrary joins andmeets) they form a subcategory,
denoted RL, of the category L of residuated lattices.

remark 2.3.10. Note that all the examples of residuated lattices presented
so far are complete.

For the following results, we consider L � 〈L, ≤,∨,∧, ∗,→, 0, 1〉 to be a
complete commutative residuated lattice.

proposition 2.3.11. For any two elements x , y ∈ L such that x ≥ a and
x → y ≥ b, we have y ≥ a ∗ b.

proof. For any elements x , y ∈ L, we have y ≥ x ∗ (x → y) – see [Gal+07].
From the monotonicity of ∗, and because x ≥ a and x → y ≥ b, we know
that x ∗ (x → y) ≥ a ∗ b, and thus y ≥ a ∗ b. 2

proposition 2.3.12. For any elements x , y , z ∈ L such that x → y ≥ a
and y → z ≥ b, we have x → z ≥ a ∗ b.

proof. We know from [Gal+07] that ((x → y) → (x → z)) ≥ (y → z),
for any elements x , y , z ∈ L. Since y → z ≥ b, it follows that ((x →
y) → (x → z)) ≥ b. By applying Proposition 2.3.11 for (x → y) and
((x → y) → (x → z)), we obtain x → z ≥ a ∗ b. 2

proposition 2.3.13. RL is finitely complete.

proof. We start by recalling a basic category-theory result stating that a
category has all finite limits whenever it has pullbacks and a terminal object
(see, for example, [AHS09]).

For any cospan `1 : L1 → L and `2 : L2 → L of morphisms of complete
residuated lattices, it is easy to see that there exists a pullback π1 : L′→ L1,
π2 : L′ → L2, where L′ is the lattice having the support L′ � {(a , b) |
a ∈ L1 , b ∈ L2 , `1(a) � `2(b)}, and the operations ∨′, ∧′, ∗′, →′ defined
component-wise: for example, ∨′ is defined as (a , b)∨′ (c , d) � (a∨1 c , b∨2 d),
for any elements (a , b) and (c , d) in L′.

L′ L1

L2 L

`1

`2

π1

π2
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Finally, it can be easily checked that the residuated lattice with only one
element 1, and with operations defined in the obvious way, is a terminal
object of RL. 2

proposition 2.3.14. The categoryRL admits a factorization system 〈ERL ,MRL〉.

proof. To define 〈ERL ,MRL〉 we start from the standard factorization
system for the underlying sets of residuated lattices: for any morphism
` : L→ L′ of complete residuated lattices, we consider the factorization

L L′

`(L)

`

e` m`

where we take e` to be a surjection and m` an injection on the underlying sets
L, L′ and `(L), and we define the residuated lattice `(L) as the lattice defined
by the underlying set `(L), and the restrictions to `(L) of the components ≤,
∗, and→ of L′. 2



3
LOGICS FOR CREAT IVE SYSTEMS

In this chapter, we introduce a new concept that generalizes the notion of institution
and we discuss in detail several examples of such logical systems that are suitable
for specifying creative processes like music improvisation. In the first section,
we define RL-institutions and we formally compare them with similar existing
extensions of institutions from the literature via a Grothendieck construction. In the
second section, we define a framework for enriching institutions with a mechanism
for dealing with soft-constraint satisfaction problems, and we show how they can
be used for computational music composition. In the final section, we focus on a
particular example of many-valued logics for specifying improvisations inspired by
Anthony Braxton’s graphic notations.

3.1 RES IDUATED-LATT ICE INST ITUT IONS

many-valued. true or false?

Dealing with creative systems means having to reason with imprecise
concepts. Naturally, onewould expect that approximate, uncertain reasoning
is accommodated by the existing mainstream approaches to logical many-
valuedness [Háj98; Got01]. However, while many-valued logics allow
for an arbitrary number of truth values, thus achieving many-valuedness
at the object level, they generally maintain meta-level statements binary,
having crisp consequence relations [DBC13; Dia14]. We are interested in a
natural generalization of logical systems that allows for different degrees of
satisfaction of sentences by models as well as graded consequence relations
between theories. This means, in essence, replacing the true/false structure of
truth values of institutionswith amore complex structure that accommodates
various levels of satisfaction in between.

It is fair to say that there have been studies in the literature that distance
themselves from the so-called superficial many-valued logics, in which the lo-
gical derivations are not necessarily either true or false, starting with [Pav79a]
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where graded consequence is considered implicitly, and [Cha88; Cha95]
where the relevance of non-crisp consequence relations is explicitly ad-
dressed. These approaches imply a fixed signature for the entire logical
system, but the basic ideas can be extended to a many-signature setting.
The subject has been of interest to the institution-theory community as

well. Generalizing two-valued institutions to a multi-valued setting is hardly
a recent endeavour, from the concept of generalized V-institutions presented
in [GB85] to galleries as introduced in [May85], and to monadic generalized
institutions as defined in [EH10]. The most recently proposed construction of
this sort is that ofL-institutions as defined in [Dia14], where the satisfaction of
sentences by models is captured using a function �I

Σ
: |ModI(Σ)| ×SenI(Σ) →

Lwhose codomain is a partial order. In order to accommodate other concepts
studied in that paper, and also in this thesis (such as graded consequence), L
needs to bemore than a partial order; more precisely, it needs to be a complete
residuated lattice L � 〈L, ≤,∨,∧, ∗,→, 0, 1〉. Intuitively, the underlying set
of L provides the degrees of satisfaction (with 0 as dissatisfaction and 1 as
total satisfaction), which are ordered according to ≤. The operation ∗ captures
the accumulation of truth values that result from successive inferences, and
→ corresponds to entailment between two degrees of satisfaction.
As the name of the concept suggests, the lattice L is fixed for the entire

institution. However, we are interested in formalizing situations in which
the truth structure can change. For this reason, in what follows we focus on
a concept that is more flexible than L-institutions, permitting us to evaluate
sentences built using symbols from different signatures over different lattices.
To that end, we assume that every signature determines a corresponding
complete residuated lattice and, accordingly, every signature morphism
determines an appropriate change of the truth structure by a complete lattice
homomorphism.

definition 3.1.1 (RL-institution). An RL-institution I consists of:

· a category SigI, a functor SenI, and a functor ModI as for an institution,

· a (contravariant) truth-space functor RLI : (SigI)op → RL giving for every
signature a complete residuated lattice, and

· a multi-valued satisfaction relation �I
Σ

: |ModI(Σ)| × SenI(Σ) → RLI(Σ) for
every signature Σ,

such that the equality

RLI(ϕ)
(
M′ �I

Σ′ SenI(ϕ)(ρ)
)
�

(
ModI(ϕ)(M′) �I

Σ
ρ
)
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holds for any signature morphism ϕ : Σ→ Σ′, Σ′-model M′ and Σ-sentence
ρ. The satisfaction relation extends, as expected, to a graded consequence
relation over sets E, E′ ⊆ SenI(Σ):

E �I
Σ

E′ �
∧
{(M �I

Σ
E) → (M �I

Σ
E′) | M ∈ |ModI(Σ)|}

where, for every Σ-model M, the implication between the two satisfaction
values (of E and E′) is given by the residual operation of the lattice RLI(Σ).

In what follows, we revisit two examples of logics from the previous
chapter, namely propositional and first-order logic, and we present their
many-valued variants as RL-institutions.

the RL-institution of many-valued propositional logic – PLRL

signatures. The signatures are pairs 〈L,Σ〉 of complete residuated
lattices L and propositional signatures Σ, and the signature morphisms
〈`, ϕ〉 : 〈L,Σ〉 → 〈L′,Σ′〉 consist of a morphism ` : L′ → L of residuated
lattices and a propositional signature morphism ϕ : Σ→ Σ′.

sentences. The sentences are built using the ∗ symbol (as a new connective)
along with the usual logical connectives. The translation of a sentence along
a signature morphism is defined analogously to its Boolean version.

models. An 〈L,Σ〉-model M is a valuation M : Σ→ L, and the reduct of
an 〈L′,Σ′〉-model M′ along a signature morphism 〈`, ϕ〉 : 〈L,Σ〉 → 〈L′,Σ′〉
is given by the composition ϕ ; M′ ; `.

lattices. The truth-space functor is defined simply as the forgetful functor
that maps every signature 〈L,Σ〉 to its underlying lattice L.

satisfaction. The satisfaction relation is computed by induction on the
structure of sentences, from the valuations of the propositional symbols,
using the operations of the residuated lattice fixed in the signature.

the RL-institution of many-valued first-order logic – FOLRL

signatures. A many-valued first-order signature is a pair 〈L,Σ〉 consisting
of a residuated lattice L and a first-order signature Σ � 〈S, F, P〉. As in
the case of PLRL, signature morphisms 〈`, ϕ〉 : 〈L,Σ〉 → 〈L′,Σ′〉 are defined
componentwise and consist of a morphism of residuated lattices ` : L′→ L

and a first-order signature morphism ϕ : Σ→ Σ′.
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sentences. The sentences are built in a similar manner to the way in which
the sentences of the classical (Boolean) first-order logic are built, using the
logical connectives ∨, ∧, ∗,→, and the constants 0, 1. Similarly to PLRL,
these connectives and constants mimic the structure of residuated lattices
and replace their Boolean counterparts.

models. For every signature 〈L,Σ〉, a model M interprets, as expected,
every sort s as a set Ms and every operation symbol σ ∈ Fw→s as a function
Mσ : Mw → Ms ; however, for every relation symbol π ∈ Pw we consider
instead of subsets of Mw , L-valued relations Mπ : Mw → L. Homomorph-
isms of 〈L,Σ〉-models h : M → N are defined as for the Boolean case,
with the difference that, for every relation symbol π ∈ Pw , we have that
Mπ(m1 , . . . ,mn) ≤ Nπ(hw(m1 , . . . ,mn)), for w � s1 · · · sn and mi ∈ Msi for
i ∈ 1, n1.
For every signature morphism 〈`, ϕ〉 : 〈L,Σ〉 → 〈L′,Σ′〉, the reduct

M′�〈`,ϕ〉 of an 〈L′,Σ′〉-model M′ is defined as the 〈L,Σ〉-model given by
(M′�ϕ)x � M′

ϕ(x) for every sort and function symbol x from Σ, and by
(M′�ϕ)π � M′

ϕ(π) ; ` for any relation symbol π from Σ.

truth space. The truth-space functor is once again the forgetful functor
mapping every signature to its underlying lattice.

satisfaction. The satisfaction between models and sentences is defined
inductively on the structure of sentences and is based on the valuation of
terms in models. Given an 〈L,Σ〉-model M:

· for an F-term σ(t): Mσ(t) � Mσ(Mt),

· for equational atoms: (M �〈L,Σ〉 t �s t′) �


1, if Mt � Mt′

0, otherwise

· for relational atoms: (M �〈L,Σ〉 π(t)) � Mπ(Mt),

· (M �〈L,Σ〉 ρ1 ∧ ρ2) � (M �〈L,Σ〉 ρ1) ∧ (M �〈L,Σ〉 ρ2), and similarly for the
connectives ∨,→ and ∗,

· (M �〈L,Σ〉 ∃X.ρ) � ∨{M′ �〈L,S,F]X,P〉 ρ | M′�〈L,Σ〉 � M}, and

· (M �〈L,Σ〉 ∀X.ρ) � ∧{M′ �〈L,S,F]X,P〉 ρ | M′�〈L,Σ〉 � M}.

remark 3.1.2. The many-valued variant of first-order logic described above
will be used sparingly in this thesis, primarily in theoretical examples such
as Example 3.1.16. However, it should not be omitted, as we consider it to be
a benchmark RL-institution, just as the Boolean version FOL is considered

1 We denote by 1, n the set {1, . . . , n}.
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a standard example of institution. It has the advantage of being a rich and
nuanced logical system, and so it helps develop a better understanding of
RL-institutions.
We revisit the many-valued first-order logic in the last section of this

chapter, where we focus on a first-order encoding of the logic of Braxton’s
graphic notation for capturing improvisation scores. In that context, Ex-
ample 3.3.6 shows how one could specify musical fragments in FOLRL.
This indicates how many-valued first-order logic could be used as a basis
for the music-improvisation examples in Chapter 4, or other examples of
service-oriented processes. Whilst that is possible, we choose to use other,
more specialised logics, such as the institution of first-order soft-constraint
satisfaction problems presented in Section 3.2 or the logic of Braxton’s graphic
notation from Section 3.3 for reasons pertaining to notation suitability and
expressivity.

The notion of institution (co)morphism can be generalized to the many-
valued case as well.

definition 3.1.3 (Comorphism of RL-institutions). Given two RL-insti-
tutions I and I′, a many-valued institution comorphism 〈Φ, α, β, λ〉 : I → I′

consists of:

· a signature functor Φ : SigI → SigI′,

· a natural transformation α : SenI ⇒ Φ ; SenI′,

· a natural transformation β : Φop ; ModI′ ⇒ModI, and

· a natural transformation λ : Φop ; RLI′ ⇒ RLI

such that the following satisfaction condition holds for any I-signature Σ,
Φ(Σ)-model M′, and Σ-sentence ρ:

λΣ(M′ �I
′

Φ(Σ) αΣ(ρ)) � (βΣ(M
′) �I
Σ
ρ).

definition 3.1.4 (coRLIns). The comorphisms of Definition 3.1.3 can
be composed componentwise; their composition is associative and has
identities, thus giving rise to the category coRLIns of RL-institutions and
RL-institution comorphisms.

changing the truth space

There is a special relationship between the L-institutions defined in [Dia14]
and RL-institutions. On the one hand, every L-institution can be defined as
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a plain RL-institution with a constant truth-space functor: for any signature
Σ, RL(Σ) � L; and, for every signature morphism ϕ : Σ→ Σ′, RL(ϕ) � idL.
On the other hand, many RL-institutions (although not all, but all that
are of interest in this thesis) can be built from L-institutions through a
Grothendieck construction [Dia02; Mos02] as described later in this section.

notations. In what follows, we generally denote by IRL an arbitrary
RL-institution, by IL an arbitrary L-institution and, unless stated otherwise,
by I a Boolean institution. Except when explicitly stated in the text, these
notations do not imply the existence of a way to build IRL from IL or from I.
It is possible, however, to derive an L-institution IL from any RL-insti-

tution IRL by restricting its category of signatures only to those signatures
whose image under the truth-space functor is the lattice L. In particular,
when L � 2, we obtain a Boolean institution. To present this process rigor-
ously, it is useful to look at RL-institutions from a functorial perspective, as
in Remark 2.2.11.

many-valued institutions as functors

The first step is to extend the concept of room from the Boolean setting (see
Definition 2.2.10) to the many-valued one, with satisfaction evaluated over a
fixed residuated lattice L.

definition 3.1.5 (L-rooms and corridors). The category L-Room has as
objects triples 〈S,M, �〉, where S and M are as for Boolean rooms, and
the satisfaction relation is many-valued, � : |M| × S → L. The arrows,
called L-corridors, between 〈S,M, �〉 and 〈S′,M′, �′〉 are defined as pairs
〈α : S → S′, β : M → M′〉 such that the following satisfaction condition
holds for all M′ ∈ |M′ | and ρ ∈ S:

(M′ �′ α(ρ)) � (β(M′) � ρ).

By allowing the satisfaction relations of different rooms to be evaluated
over different lattices, we obtain the category of many-valued rooms over
arbitrary residuated lattices.

definition 3.1.6 (RL-rooms and corridors). The objects of RL-Room are
tuples 〈S,M,L, �〉, where S, M, and � form an L-room. Corridors between
RL-rooms 〈S,M,L, �〉 and 〈S′,M′,L′, �′〉 are triples 〈α, β, λ〉, where α : S→
S′ is a function, β : M′→M is a functor, and λ : L′→ L is a morphism of
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complete residuated lattices such that

λ(M′ �′ α(ρ)) � (β(M′) � ρ)

for all M′ ∈ |M′ | and ρ ∈ S.

definition 3.1.7 (+L functor). For every lattice L ∈ |RL|, we define a
functor +L : L-Room → RL-Room that maps every L-room 〈S,M, �〉 to
the RL-room 〈S,M,L, �〉, and every L-corridor 〈α, β〉 to 〈α, β, idL〉. This
functor is an embedding: it is full and faithful, and injective on objects.

fact 3.1.8. Similar to the manner in which we defined coIns in Fact 2.2.12,
we can define the comorphism-based categories of L-institutions and RL-in-
stitutions, as coLIns ' [_→ L-Room]# and coRLIns ' [_→ RL-Room]#.

Let us study in more detail the relationship between these categories.

from L-institutions to RL-institutions. By Fact 2.1.10, for every
lattice L ∈ |RL|, the functor +L : L-Room→ RL-Room induces a functor
[+L]# : [_ → L-Room]# → [_ → RL-Room]#, i.e. between coLIns and
coRLIns, that formalizes the correspondence between L-institutions and
plain RL-institutions that were introduced at the beginning of this section.

Sig

Sig′

L-Room RL-Room
IL

I′
L

Φ
τ

+L

from RL-institutions to L-institutions. For every L ∈ |RL|, and
every RL-institution IRL, we can obtain an L-institution using the preimage
of the truth-space functor. We define the mapping (_�L) : |coRLIns| →
|coLIns| that associates with every RL-institution IRL an L-institution
IRL�L : (RLIRL)−1(L) → L-Room from the subcategory of signatures whose
image through the truth-space functor RLIRL is the lattice L. That L-in-
stitution maps every signature Σ to the L-room 〈S,M, �〉 when IRL(Σ) �
〈S,M,L, �〉, and every signature morphism ϕ to the L-corridor 〈α, β〉 when
IRL(ϕ) � 〈α, β, idL〉.

fact 3.1.9. The functor IRL�L together with the inclusion of categories
(RLIRL)−1(L) ⊆ SigIRL form a pullback of IRL and +L. Moreover, IRL�L is
the unique functor with this property.
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(RLIRL)−1(L) SigIRL

L-Room RL-Room

⊆

IRL�L IRL

+L

Note that the mapping _�L cannot be extended on the arrows of coRLIns,
because the signature-functor component of RL-institution comorphisms
does not necessarily preserve the underlying lattices of signatures. This
is also the reason why we cannot define the category coRLIns simply as
a Grothendieck construction over the categories coLIns of L-institutions.
What we can do, using the Grothendieck construction, is to build particular
RL-institutions (such as PLRL and FOLRL) out of indexed L-institutions.

grothendieck many-valued institutions

Two kinds of ingredients are necessary for obtaining a many-valued RL-in-
stitution via a Grothendieck construction:

1. for every complete residuated lattice L, an L-institution I(L), which we
regard as a plain RL-institution, and

2. for every morphism ` : L′→ L of complete residuated lattices, an encoding
I(`) of I(L) into I(L′), formalized as a comorphism of RL-institutions.

example 3.1.10. [Between many-valued propositional logics] Let PL(L)
and PL(L′) be the L- and L′-institution of many-valued propositional lo-
gic – defined like the Boolean version of propositional logic, but with
sentences evaluated over L and L′, respectively. Every morphism of
complete residuated lattices ` : L′ → L determines an RL-comorphism
PL(`) � (Φ, α, β, λ) : PL(L) → PL(L′) that consists of:2

· the identity functor Φ � idSigPL of propositional signatures,

· the natural transformation α whose components are all identities,

· the natural transformation β given by βΣ(M) � M ; ` for any Σ-model M,

· the natural transformation λ with components λΣ � `.

It is easy to check that the satisfaction condition holds, because the
equalities

λΣ(M′ �Φ(Σ) αΣ(ρ)) � `(M′ �Φ(Σ) ρ) � `(M′(ρ)) � (M′ ; `)(ρ) � βΣ(M′) �Σ ρ
2 Notice that the comorphism is contravariant with respect to the direction of `. This is justified

by the way in which the model reducts are defined.
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hold for any signature Σ, Φ(Σ)-model M′, and atomic Σ-sentence ρ.
In other words, we regard every L-institution of propositional logic as a

plain RL-institution PL(L) and we consider, for every morphism of resid-
uated lattices `, a corresponding comorphism PL(`) of RL-institutions. We
then flatten the class of plain RL-institutions thus obtained into a single
institution, denoted PL#: its category of signatures has as objects pairs
of residuated lattices and propositional-logic signatures, and as arrows
pairs of morphisms of residuated lattices and propositional-logic signature
morphisms. The sentences and models of a signature 〈L,Σ〉 are the pro-
positional sentences and models corresponding to Σ in the L-institution of
propositional logic, while the truth-space functor is defined as the projection
on the lattice component. Similarly, the satisfaction of an 〈L,Σ〉-sentence ρ
by a model M is defined as the satisfaction of the Σ-sentence ρ by M in the
L-institution PL(L).

In a more general setting, for presenting RL-institutions as the result of
flatteningmany-valued Grothendieck institutions, we follow closely [Mos02].
We discuss this in detail in the remaining part of this section.

definition 3.1.11 (Indexed many-valued institution). Given a category I of
indices, an I-indexed RL-institution is a functor I : Iop → coRLIns into the
category of comorphisms of RL-institutions.

For an indexed RL-institution I, we use the notation 〈Φu , τu〉 for the
comorphism I(u), where τu

Σ
is given by the corridor 〈αu

Σ
, βu
Σ
, λu
Σ
〉.

definition 3.1.12 (Grothendieck many-valued institution). Given an in-
dexed RL-institution I : Iop → coRLIns, we define the Grothendieck RL-in-
stitution I# as follows:

· the signatures are pairs 〈i ,Σ〉, where i ∈ |I| and Σ is a signature in I(i),

· signature morphisms 〈u , ϕ〉 : 〈i ,Σ〉 → 〈i′,Σ′〉 are pairs of morphisms
u : i′→ i in I and signature morphisms ϕ : Φu(Σ) → Σ′ in I(i′),

· the composition of signature morphisms is given by 〈u , ϕ〉 ; 〈u′, ϕ′〉 �

〈u′ ; u ,Φu′(ϕ) ; ϕ′〉,

· I#(i ,Σ) � I(i)(Σ), and

· I#(u , ϕ) � I(i)(Σ)
τu
Σ−→ I(i′)(Φu(Σ))

I(i′)(ϕ)
−−−−−→ I(i′)(Σ′).

remark 3.1.13. Even though the Grothendieck construction above differs
from the standard one presented in Section 2.1, it can still be obtained from
the standard construction through dualization. What the two constructions
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have in common, and what legitimates bearing the name Grothendieck
construction, is the fact that I# is the vertex of a lax colimit (in coRLIns
instead of Cat).

fact 3.1.14. The category coRLIns admits a Grothendieck construction for
every indexed many-valued institution I : Iop → coRLIns. We denote by I#

the vertex of the lax colimit µ : I→ I# of I in coRLIns.

We describe in what follows how to present concretely an RL-institution
IRL (belonging to a particular class of many-valued logics) as a Grothendieck
many-valued institution. We assume that there exists a category Sig0 such
that SigIRL � RLop × Sig0, i.e. IRL has as signatures pairs 〈L,Σ〉 of complete
residuated lattices L and objects (signatures) Σ in Sig0. In addition, we
assume that the functor RLIRL from (RLop × Sig0)op � RL × Sigop

0 to RL is
the contravariant projection on the residuated-lattice component.

This allows us to define a corresponding indexed many-valued institution
I : RLop → coRLIns for IRL using the category of complete residuated
lattices as the category of indices. To that end, we denote by IL the
L-restriction of IRL, i.e. IL � IRL�L as in Fact 3.1.9, and by ιL the embedding
of Sig0 into SigIL that maps each signature Σ to the pair 〈L,Σ〉:

· for every lattice L ∈ |RL|, I(L) � (ιL ; IL ; +L) : Sig0 → RL-Room.

· for every morphism ` : L′ → L ∈ RL, I(`) � 〈Φ` , α` , β` , λ`〉 : I(L) → I(L′),
where Φ` is the identity of Sig0, and for every signature Σ ∈ |Sig0 |, α`Σ, β

`
Σ
,

and λ`
Σ
are the components of the RL-corridor IRL(`, idΣ).

Note that the satisfaction condition of the comorphism I(`)

β`
Σ
(M′) �I(L)

Σ
ρ � λ`

Σ
(M′ �I(L

′)
Σ

α`
Σ
(ρ))

which can be rewritten as

M′�〈`,idΣ〉 �
IRL

〈L,Σ〉 ρ � RLIRL(`, idΣ)(M′ �IRL

〈L′,Σ〉 〈`, idΣ〉(ρ))

is guaranteed to hold by the satisfaction condition for the signaturemorphism
〈`, idΣ〉 in the RL-institution IRL.

proposition 3.1.15. By flattening the indexed many-valued institution defined
as above, we get I# � IRL.

proof. We start from the definition of IRL as a functor into RL-Room, and
show that IRL and I# coincide on both objects and morphisms.
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objects. Considering a lattice L ∈ |RL| and Σ ∈ |Sig0 |,

I#(L,Σ) � I(L)(Σ) � (ιL ; IL ; +L)(Σ) � IRL(L,Σ).

morphisms. For a signature morphism 〈`, ϕ〉 : 〈L,Σ〉 → 〈L′,Σ′〉,

I#(`, ϕ) � 〈α`
Σ
, β`
Σ
, λ`
Σ
〉 ; I(L′)(ϕ)

� 〈α`
Σ
, β`
Σ
, λ`
Σ
〉 ; (ιL′ ; IL′ ; +L′)(ϕ)

� IRL(`, idΣ) ; IRL(idL′ , ϕ)
� IRL(idL′ ; `, idΣ ; ϕ) � IRL(`, ϕ)

2

example 3.1.16 (Many-valued first-order logic as a Grothendieck institution).
Consider the indexedmany-valued institution FOL: RLop → coRLIns such
that for every lattice L, FOL(L) corresponds to the L-institution of first-
order logic, and for every morphism ` : L′→ L, FOL(`) is the comorphism
that leaves signatures and sentences unchanged, and post-composes the
interpretation of predicateswith `. Notice that this fitswithin the premises of
Proposition 3.1.15; therefore, by flattening, we can obtain the RL-institution
FOLRL as FOL#.

3.2 LOGICS FOR CONSTRAINT COMPOS IT ION

Constraint programming has proved in the past decades to be appropriate for
computational music composition and modelling music-theory disciplines
such as harmony, rhythm, instrumentation and counterpoint [AM11]. The
declarative nature and the modularity of such constraint satisfaction systems
match the way in which composition rules are commonly expressed in
standard music theory.
Deciding the satisfaction of certain properties or rules based on the

true/false dichotomy is however often inadequate for the purpose of compos-
ing music, even more so when dealing with improvisation. In this section
we show that a many-valued approach mitigates the problem of expressing
loose rules and provides more flexibility in writing musical guidelines.

To achieve this, we investigate the generalization of constraint satisfaction
problems (csp) to amany-valued setting, known as soft-constraint satisfaction
problems [Bis+99]. The goal of relaxing the constraint-based frameworks
for music composition seems to have been pursued for at least a decade
in the community of constraint music composition, although no solutions
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have been implemented so far. A notable exception is the tool Constraint-
Muse [Höl+09], which is the prototype of a system based on soft constraints
for music therapy.
In a nutshell, our aim is to enrich specifications of musical spaces with

soft constraints in order to capture music-composition and improvisation
processes. In this section, we extend the institution-based theory of algebraic
specifications to address soft csp. Such an extension is essential for providing
a logic-independent foundation that, on the one hand, can be used to support
different specification languages and, on the other hand, can be integrated in
development environments that offer automated theorem-proving support
for the specification and analysis of systems – for example, The Heterogeneous
Tool Set [MML07]. In this way, we bring new levels of flexibility to constraint
music composition: firstly, we adapt constraint music programming to
a multi-valued setting; moreover, we increase the expressivity of these
composition systems by allowing the constraints to be captured as sentences
in a diverse range of logical systems, not only as variables in constraint
systems that are based, essentially, on propositional logic. This allows us to
develop further mechanisms for reasoning about composition processes, and
thus exceed the scope of the existing formalizations of music programming
as constraint satisfaction problems, which focus only on obtaining a solution,
and not on modelling the composition process itself.

3.2.1 soft-constraint institutions

soft-constraint satisfaction problems

Before dealingwith the logics for constraint composition, a short introduction
to soft-constraints satisfaction problems is in order. Several alternative
frameworks have been developed for dealing with soft constraints; the
main two approaches are the frameworks of scsp [BMR97] and vcsp [SFV95;
Coh+03], which generalise the classical crisp variant of csp by evaluating
constraints over c-semirings and valuation structures, respectively. For the
purpose of this thesis, we focus on the scsp framework, following closely the
presentation in [BMR97]; vcsp could be presented, however, in a similar way
(see Remark 3.2.10).

definition 3.2.1 (C-semiring). A c-semiring S is a tuple 〈S,+,×, 0, 1〉, where

· S is a set with two distinguished elements, 0 and 1;

· + is a commutative, associative, idempotent operation over potentially
infinite subsets of S with unit element 0. When the sum is applied to a set of
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two elements, we use the symbol +; in general the symbol
∑

is used, with
the following properties:

–
∑({a}) � a for every a ∈ S,

–
∑(∅) � 0,

∑(S) � 1,
–

∑(∪{Si | i ∈ J}) � ∑({∑(Si) | i ∈ J}), for every set of indices J;

· × is a binary, commutative, associative operation with unit 1, for which 0 is
absorbing, meaning that a × 0 � 0 for every a ∈ S;

· × distributes over the sum: a ×∑({bi | i ∈ J}) � ∑({a × bi | i ∈ J}).

fact 3.2.2. For every c-semiring S, we can define a partial order ≤ based on
the additive operation: for every a , b ∈ S, a ≤ b if and only if a + b � b. If the
operation × is idempotent, the structure S � 〈S, ≤,+,×, 0, 1〉 defined by the
c-semiring together with the partial order is a complete distributive lattice.

Intuitively, the underlying set of a c-semiring represents a space of degrees
of satisfaction of constraints, with 0 representing dissatisfaction and 1
representing total satisfaction, while the operations + and × are used for
choice and composition. A constraint system fixes a constraint-satisfaction
semiring structure, a global set of variables and their domain.

definition 3.2.3 (Constraint system). A constraint system CS is a tuple
〈S,V,D〉 consisting of:

· a c-semiring S,

· a finite set V of variables, and

· a finite set D representing the domain of the variables.

A constraint over a constraint system specifies a subset of variables to be
used and the possible values these can be assigned. For every tuple of values
from the domain D (corresponding to an assignment for the variables in the
constraint), an element from the c-semiring is associated. This element can
be thought of as a weight or as a level of confidence in the assignment.

definition 3.2.4 (Constraint). Given a constraint system CS � 〈S,V,D〉, a
constraint c over CS is a pair 〈con, def 〉, where

· con is a subset of V , called the type of the constraint,

· def : [con→ D] → S is a function from the set of all possible assignments
(valuations) for the variables of c into the underlying set of the c-semiring;
this is called the satisfaction value function of the constraint.

A constraint problem consists of a set of constraints defined over a constraint
system and a set of variables of interest, i.e. a set of variables for which we
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want to find assignments that satisfy with a value greater than 0, all the
given constraints.

definition 3.2.5 (Constraint problem). Given a constraint system CS �

〈S,V,D〉, a constraint problem P over CS is a pair 〈C, pv〉, where C is a set
of constraints over CS, and pv ⊆ ∪{con | 〈con, def 〉 ∈ C} is the set of all
variables in C.

The satisfaction values specified for the set of possible assignments for
every constraint of a problem P are used to compute the satisfaction values
for the possible assignments for the variables in pv by applying the operations
of the c-semiring. The multiplicative operation × is used for defining a
combination operation ⊗ on constraints, which combines satisfaction values
of assignments for the variables of each constraint in order to obtain a
satisfaction value of an assignment for all the variables of the problem P.
The additive operation

∑
is used for defining a projection operation ⇓ on

constraints, which computes the satisfaction value of the assignments (only)
for the variables specified in the type of the problem P.

definition 3.2.6 (Combination operation). Given a constraint system CS �

〈S,V,D〉 and two constraints c1 � 〈con1 , def 1〉 and c2 � 〈con2 , def 2〉 over
CS, their combination, denoted c1 ⊗ c2, is the constraint c � 〈con, def 〉 with
con � con1∪ con2, and def (χ) � def 1(χ�con1) × def 2(χ�con2) for every valuation
χ, where by χ�coni we denote the projection of the tuple χ of assigned
elements from D to the set of variables coni of the constraint ci .

coni con D
⊆ χ

χ�coni

Notice that the combination operation is commutative and associative. It
can be extended straightforward to finite sets of constraints C � {c1 , . . . , cn};
we denote by

⊗
C the result of c1 ⊗ c2 ⊗ · · · ⊗ cn .

definition 3.2.7 (Projection operation). Given a constraint system CS �

〈S,V,D〉, a constraint c � 〈con, def 〉 over CS, and a set of variables W ⊆ V ,
the projection of c over W , denoted c ⇓W , is the constraint 〈con′, def ′〉 with
con′ � W ∩ con, and def ′(χ′) � ∑ ({def (χ) | χ : con→ S, χ�con′ � χ

′}) for
every valuation χ.

The solution of a problem P is defined as the constraint induced on the
variables in pv by all the constraints of P.
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definition 3.2.8 (Solution). Given a soft-constraint problem P � 〈C, pv〉
over a constraint system CS, the solution of P is the constraint given by
(
⊗

C) ⇓pv.

Note that since the problem P refers only to variables in the constraint
system CS, its solution is a constraint over the same set of variables as P. The
solution of a problem P gives, for every valuation χ of the variables in pv, a
satisfaction value in S. The best level of consistency of P is the best satisfaction
value (greatest value according to the order ≤) among those associated with
the valuations.

definition 3.2.9 (Best level of consistency). Given a soft-constraint problem
P � 〈C, pv〉 over a constraint system CS, we define best(P) as the (unique)
value in S that corresponds to the constraint (

⊗
C) ⇓∅ over the empty set of

variables. If 0 < best(P), we say that P is consistent.

remark 3.2.10. In the vcsp framework, a constraint is defined as a function
that assigns a cost to every possible valuation (assignment of values) for
the variables. The costs are elements of underlying sets of the so-called
valuation structures. A valuation structure is a tuple 〈S, ≥ +, 0,∞〉, where S
is a totally ordered set (by ≥) with a minimum and a maximum element
– 0 and ∞, and + is a binary, commutative, and associative aggregation
operation with unit 0, such that a + c ≥ b + c if a ≥ b, for every a , b , c ∈ S.
Although very similar to scsp (modulo the algebraic structure adopted), the
framework based on valued constraints is usually presented as a problem
of cost minimization, rather than a problem of satisfaction maximization:
the solution of an instance of a constraint problem is a valuation for the
variables having a minimal cost. This does not match the intuition of the
soft-constraint systems that we aim to explore, hence our preference for scsp.

In what follows, we focus on the construction of a particular type of
RL-institution that is suitable for specifying soft-constraints satisfaction
problems. Our choice of residuated lattices as truth structures for evaluating
soft constraints is motivated by the fact that the addition of a residual
operation to c-semirings and valuation structures has been shown in [BG06;
Bov09] to provide a unifying framework for soft csp: residuated lattices
generalize both idempotent c-semirings and the so-called fair valuation
structures, which are the structures usually employed with local consistency
techniques [Bis+99]. We start with an example, and describe in detail
how constraint specifications can be written over the Boolean institution
FOL of first-order logic. This allows us to identify the properties and the
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additional structure that an institution I should have in order to deal with
soft constraints, and to further define a many-valued institution CSP(I) of
soft-constraint satisfaction problems based on I.

the first-order soft-constraint RL-institution

To specify systems using constraints evaluated over residuated lattices, we
consider first-order presentations that extend the presentation 〈ΣL , EL〉 of
residuated lattices from Figure 2.1 – in otherwords, presentations 〈Σ, E〉with
ΣL ⊆ Σ and E � EL

3. This means that, on the one hand, every 〈Σ, E〉-model
has an underlying residuated lattice (its reduct as a ΣL-model) and that,
on the other hand, we can make use of the symbols in ΣL when writing
the sentences of E. In this context, the only morphisms of presentations
ϕ : 〈Σ, E〉 → 〈Σ′, E′〉 that we admit are those that do not change the symbols
of ΣL.

spec Nat =
sort Nat
ops 0 : Nat

s : Nat −→ Nat
_ + _ : Nat Nat −→ Nat [comm assoc]

pred _ ≤ _ : Nat Nat

∀m , n : Nat
• 0 + n � n
• s(m) + n � s(m + n)
• 0 ≤ m
• s(m) ≤ s(n) if m ≤ n

figure 3.1. The presentation Nat of natural numbers

example 3.2.11. Figure 3.2 depicts the specification of a customer’s book-
buying preferences written in the sublogic of FOL obtained by including in
all presentations the basic specification ResiduatedLattices given in Figure 2.1.
The specification BookData concerns a book trader that stores a number
of books and offers three kinds of delivery: standard, express and online;
for every book, two operations define the language in which a book is
written and the number of days associated with each delivery mode. For
that purpose, BookData extends the specification Nat in Figure 3.1 of natural
numbers, which includes the usual successor and addition operations and
a predicate ≤ corresponding to the ordering of natural numbers. Note

3 Note the implicit translation of EL from ΣL to Σ.
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that, in order to properly specify natural numbers in such an inductive
fashion, one would need to add an initiality requirement to the specification.
This falls outside of the expressive power of first-order presentations, but
it can be obtained by using more complex structured specifications like
those in [ST12]. It would be possible to extend our framework to structured
specifications because the properties of presentations used in this thesis are
also shared by structured specifications. However, for simplicity, we choose
not to present that extension. In the specific case of natural numbers, for
notational convenience, we abbreviate as n the term of the form sn(0), i.e. n
applications of the successor operation to 0.

logic FOL(ResiduatedLattices)4

spec BookData � Nat then
sorts Book, Language, Delivery
ops en, fr, de, pt, ro, es : Language

stnd, express, online : Delivery
Schiele, ChagallMaVie, Munch : Book
language : Book −→ Language

• language(Schiele) � de
• language(ChagallMaVie) � fr
• language(Munch) � en

logic FOL(ResiduatedLattices)
spec Customer � BookData then

ops deliveryTime : Book × Delivery −→ Nat
languagePref : Language −→ L
deliveryPref : Book × Delivery × Nat −→ L

∀ b : Book; n, n’ : Nat
• languagePref(en) ≤ languagePref(de)
• languagePref(de) ≤ languagePref(fr)
• deliveryPref(b, express, n) ≤ deliveryPref(b, online, n’)
• deliveryPref(b, stnd, n) ≤ deliveryPref(b, online, n’)
• deliveryPref(b, express, n) ≤ deliveryPref(b, stnd, n’) if 3 ≤ n ∧ n’ ≤ 7

figure 3.2. The presentations BookData and Customer

Customer extends the specification BookData by adding two new operation
symbols, languagePref and deliveryPref, both of sort L introduced in the
presentation of residuated lattices – which corresponds to their underlying
set. Because every model of L is a residuated lattice, the two new oper-

4 We denote by FOL(ResiduatedLattices) the sublogic of FOL obtained by including in all presenta-
tions the specification ResiduatedLattices from Figure 2.1, and not the RL-institution FOLRL.
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ation symbols can be used to express preferences through axioms of the
specification:

· German is preferred to English and French to German;

· regardless of the book and delivery time, online delivery is preferred to
express and to standard;

· standard delivery is preferred to express when express delivery takes three
days or more and standard takes seven days or less.

In order to include constraints in specifications, we need a new syntactic
category through which we can declare constraint variables, and we need
constraint sentences through which we can express preferences over those
variables that we wish to be optimised. For example, in the case of Customer,
we could specify the following constraint variables and sentences:

cvars book : Book; delivery : Delivery
• languagePref(language(book)) %(constraint)%

• deliveryPref(book, delivery, deliveryTime(book, delivery)) %(constraint)%

A constraint sentence (or constraint, for short) is a term of sort L. The
specified constraints express the existence of preferences on the language in
which the book is written, and the wish to optimise the method of delivery
relatively to the expected delivery period. This optimisation is made relative
to the axiomatization of the preferences in Customer: given a model of
Customer and a valuation χ of the constraint variables (i.e. a choice of a book
and of a delivery mode), every constraint is assigned a value (degree of
satisfaction) in the residuated lattice; the degree of satisfaction of a constraint
in a model can then be defined as the supremum of all the degrees of
satisfaction obtained by varying χ, i.e. for all possible combinations of books
and delivery modes, which in soft csp is known as the best level of consistency.

The extension of first-order logic with constraint sentences is best accom-
modated in what are called stratified institutions [AD07], which provide an
elegant way of capturing the valuations of constraint variables as states of
models:

definition 3.2.12 (Stratified institution). A stratified institution I consists of:

· a category SigI, a functor SenI, and a functor ModI as for an institution,

· a stratification ~_�I , i.e. a collection of:
– functors ~_�I

Σ
: ModI(Σ) → Set for every signature Σ, giving for every

Σ-model a set of states, and



logics for creative systems 52

– surjective5 natural transformations ~_�Iϕ : ~_�I
Σ′ ⇒ModI(ϕ) ; ~_�I

Σ
for

every signature morphism ϕ : Σ→ Σ′,

· for every signature Σ, a satisfaction relation between Σ-models and Σ-sen-
tences that is parameterized by model states6,

such that the satisfaction condition

ModI(ϕ)(M′) �~M
′�Iϕ(m′)

Σ
ρ if and only if M′ �m′

Σ′ SenI(ϕ)(ρ)

holds for every signature morphism ϕ : Σ→ Σ′, Σ′-model M′, model state
m′ ∈ ~M′�I

Σ′ and Σ-sentence ρ.

the stratified institution of first-order logic. The stratified version
of the Boolean institution FOL of first-order logic that we adopt, which we
denote by FOL, has as signatures pairs 〈Σ,V〉 of a first-order-logic signature
Σ and a set of sorted constraint variables V .
The 〈Σ,V〉-sentences are simply sentences over Σ with the constraint

variables V regarded as new constants (nullary operation symbols).
The models of a signature 〈Σ,V〉 are the Σ-models from FOL, while the

states of a model M are the valuations χ : V → M, i.e. sorted functions from
V to the many-sorted carrier set of M.

The satisfaction of a 〈Σ,V〉-sentence ρ by a 〈Σ,V〉-model M in a state χ is
defined as the satisfaction of ρ in 〈M, χ〉, i.e. in the extension of M for which
the elements of V are interpreted according to χ.

remark 3.2.13. Notice that every presentation over the institution FOL of
first-order logic can be seen as a presentation overFOL by choosing an empty
set of constraint variables, i.e. we can identify a first-order specification such
as 〈ΣL , EL〉 with 〈〈ΣL , ∅〉, EL〉.

We can now summarise in more rigorous terms the construction of the
RL-institution CSP(FOL) of first-order soft-constraint satisfaction problems.

signatures. A signature is a pair 〈L,∆〉 of a complete residuated lattice L
and an extension ∆ : 〈ΣL , EL〉 → 〈Σ,V, E〉 of the presentation of residuated
lattices. We include a residuated lattice in the signature in order to let
specifiers decide the space of degrees of satisfaction they want to work with.

5 By the surjectivity of the natural transformations we understand that for every morphism
ϕ : Σ→ Σ′ and every Σ′-model M′, the function ~M′�Iϕ is surjective.

6 To simplify the notation, we often omit the stratified institution in the super-script of the
satisfaction relation, and we denote by M �m

Σ
ρ the satisfaction of ρ by M in a state m of M.
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For CSP(FOL), all extension morphisms ∆ that we consider are inclusions.
For simplicity, we denote 〈L,∆ : 〈ΣL , EL〉 → 〈Σ,V, E〉〉 by 〈L,Σ,V, E〉. We
continue to use the notation ∆ only in model reducts, for brevity.

constraint sentences. A constraint sentence (or constraint, for short) for
a signature 〈L,Σ,V, E〉 is a 〈Σ,V〉-term of sort L.

models. The models of 〈L,Σ,V, E〉 are the models of 〈Σ,V, E〉 whose
reducts along ∆ are complete and admit a morphism into L. It would be
too restrictive to choose only those models of 〈Σ,V, E〉 whose reducts to ΣL

are L because we wish to support mappings between specifications that
use different residuated lattices as their spaces of degrees of satisfaction.
Formally, a model of 〈L,∆ : 〈ΣL , EL〉 → 〈Σ,V, E〉〉 is a pair 〈M, f 〉 consisting
of a model M of 〈Σ,V, E〉 together with a morphism f : M�∆ → L.

truth space. For every signature 〈L,∆〉, the associated truth-space is
simply its underlying lattice L.

satisfaction relation. For every constraint signature 〈L,Σ,V, E〉 and
every model M, we define the value of a constraint c over M as the best level
of consistency: (

〈M, f 〉 �〈L,Σ,V,E〉 c
)
� f

(∨
χ∈~M�Σ eval〈M,χ〉(c)

)
,

where eval〈M,χ〉(c) is the usual (inductively defined) interpretation of the
first-order 〈Σ,V〉-term c in the model 〈M, χ〉. Note that f translates the
supremum to the residuated lattice L chosen by the specifier.

the RL-institution of soft csp over I

We now generalize the construction CSP(FOL) to an arbitrary stratified insti-
tution I � 〈SigI , SenI ,ModI , ~_�I , �I〉 that satisfies the following conditions:

C1. Tomake complete residuated lattices available to the specifier, we require the
existence of an I-presentation 〈ΣL , EL〉 such that RL ⊆ ModI-pres(ΣL , EL).
This does not restrict the applicability of the framework that we propose
because most institutions suitable for the domains where soft constraints
are useful provide the ability to specify ordered structures.

C2. In order to be able to express constraints, we require the existence of
a functor C: SigI → Set that provides the set of constraints for every
signature. In addition, we assume that for every object∆ : 〈ΣL , EL〉 → 〈Σ, E〉
of the comma category 〈ΣL , EL〉/PresI there exists a family of functions
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|M |Σ : ~M�Σ → [C(Σ) → M�∆], indexed by Σ-models M, which map every
state of amodel to a function that evaluates constraints, such that the equality

|M′ |Σ′(χ′)(C(ϕ)(c)) � |M′�ϕ |Σ(~M′�ϕ(χ′))(c)

holds for any signature morphism ϕ : Σ→ Σ′, Σ′-model M′, state χ′ of M′

and constraint c ∈ C(Σ).

On this basis, we define the RL-institution CSP(I) as follows:

signatures. The category SigCSP(I) of constraint signatures is the product
category of RLop and the comma category 〈ΣL , EL〉/PresI. This means
that for any signature morphism 〈`, ϕ〉 : 〈L,∆〉 → 〈L′,∆′〉, ` is a morphism
between the complete residuated lattices L′ and L, and ϕ is a morphism of
presentations between the codomains of ∆ and ∆′ that makes the following
diagram commutative:

〈ΣL , EL〉

〈Σ, E〉 〈Σ′, E′〉

∆ ∆′

ϕ

sentences. SenCSP(I)(L,∆ : 〈ΣL , EL〉 → 〈Σ, E〉) � C(Σ).

models. ModCSP(I)(L,∆) � MRL∆/L, where the functor MRL∆ is the
restriction and corestriction of ModI-pres(∆) from ModI-pres(∆)−1(RL), the
subcategory of 〈Σ, E〉-models whose subjacent residuated lattices are com-
plete, into RL.

truth space. The truth-space functor RLCSP(I) is the forgetful functor that
maps every signature 〈L,∆〉 to its underlying lattice L.

satisfaction. Given an 〈L,∆〉-model 〈M, f : M�∆ → L〉 and a sentence
ρ for the same signature, the satisfaction of ρ by 〈M, f 〉 is defined as:(

〈M, f 〉 �CSP(I)
〈L,∆〉 ρ

)
� f

(∨
χ∈~M�Σ |M |Σ(χ)(ρ)

)
.

There is an obvious way to translate 〈L,∆〉-sentences along a signature
morphism 〈`, ϕ〉: we ignore the lattice homomorphism and translate sen-
tences along ϕ as in the base institution. Correspondingly, the reduct of
a model 〈M′, f ′〉 of 〈L′,∆′〉 along 〈`, ϕ〉, is defined as 〈M′�ϕ , f ′ ; `〉. The
well-definedness of model reducts is ensured by the commutativity of the



logics for creative systems 55

following diagram.

M′�∆′ (M′�ϕ)�∆

L′ L

idM′�∆′

f ′ f ′ ; `

`

proposition 3.2.14. For any stratified institution I satisfying the conditions C1
and C2 above, CSP(I) is an RL-institution.

proof. The functoriality of the translation of sentences and of the reduction
of models follows immediately from the definitions. Therefore, we only
need to focus on the satisfaction condition.
Let us consider a signature morphism 〈`, ϕ〉 : 〈L,∆〉 → 〈L′,∆′〉, an
〈L′,∆′〉-model 〈M′, f ′ : M′�∆′ → L′〉, and an 〈L,∆〉-sentence ρ. To check
the satisfaction condition

RL(`, ϕ)
(
〈M′, f ′〉 �〈L′,∆′〉 〈`, ϕ〉(ρ)

)
�

(
〈M′, f ′〉�〈`,ϕ〉 �〈L,∆〉 ρ

)
,

we first notice that

RL(`, ϕ)(〈M′, f ′〉 �〈L′,∆′〉 〈`, ϕ〉(ρ)) � `(〈M′, f ′〉 �〈L′,∆′〉 ϕ(ρ))

� `
(

f ′(
∨

χ′∈~M′�Σ′
|M′ |Σ′(χ′)(ϕ(ρ)))

)
(3.1)

and (
〈M′, f ′〉�〈`,ϕ〉 �〈L,∆〉 ρ

)
�

(
〈M′�ϕ , f ; `〉 �〈L,∆〉 ρ

)
(3.2)

� ( f ′ ; `)(
∨

χ∈~M′�ϕ�Σ
|M′�ϕ |Σ(χ)(ρ))

� `
(

f ′(
∨

χ∈~M′�ϕ�Σ
|M′�ϕ |Σ(χ)(ρ))

)
. (3.3)

That (3.1) and (3.3) are equal follows from the surjectivity of ~M′�ϕ and the
last condition assumed to be satisfied by the stratified institution I: for every
χ′ ∈ ~M′�Σ′, |M′ |Σ′(χ′)(ϕ(ρ)) � |M′�ϕ |Σ(~M′�ϕ(χ′))(ρ). 2

The construction above permits us to easily replace first-order logic with
other logics suitable for specifying soft-constraint satisfaction problems. Two
obvious candidates would be relational logic and equational logic, whose
stratified institutions REL and EQL can be obtained as subinstitutions of
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FOL in the same way in which the ordinary institutions REL and EQL can
be obtained from FOL, as presented in Example 2.2.8. The most significant
difference between the two resulting csp institutions is the presentation of
lattices. For relational logic it is based on the axiomatization of the relation
≤, whereas in the case of equational logic it is based on the operations
∧ and ∨. Note that only EQL is expressive enough to specify residuated
lattices. Nonetheless, because in the condition C1 above we only require
that RL is included in the category of models of the specification 〈ΣL , EL〉,
our framework accommodates easily both cases.

CSP(I) inherits a number of properties of I. We list only a few that are
used in the constructions presented in the next chapter.

proposition 3.2.15. If SigI is finitely cocomplete, then so is SigCSP(I).

proof. Consider the following diagram of a product of categories:

C C ×D D
πC πD

We recall that, for any pair of finitely cocomplete categories C and D, any
colimit of a (finite) diagram D : I→ C×D can be obtained simply by pairing
the colimits of the diagrams D ; πC : I→ C and D ; πD : I→ D.
We can apply this general result to the category of signatures of CSP(I),

because the category of constraint signatures is the product category of
RLop and the comma category 〈ΣL , EL)/PresI. By Proposition 2.3.13, the
category RL has finite limits, and hence RLop has finite colimits.

Therefore, all we need to know is that 〈ΣL , EL〉/PresI is finitely cocomplete.
To this end, we rely on two other well-known general results:

1. For any object C ∈ |C|, the comma category C/C inherits the colimits of C.
2. The category PresI is cocomplete whenever SigI is cocomplete [GB92].

2

proposition 3.2.16. If I has (weak) model amalgamation, then so does CSP(I).

proof. We have to show that every pushout square of constraint signature
morphisms

〈L,∆〉 〈L1 ,∆1〉

〈L2 ,∆2〉 〈L′,∆′〉

〈`1 , ϕ1〉

〈`2 , ϕ2〉 〈`′1 , ϕ
′
1〉

〈`′2 , ϕ
′
2〉
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is a model-amalgamation square, meaning that, for every 〈L1 ,∆1〉-model
〈M1 , f1〉 and every 〈L2 ,∆2〉-model 〈M2 , f2〉 such that 〈M1 , f1〉�〈`1 ,ϕ1〉 �

〈M2 , f2〉�〈`2 ,ϕ2〉, there exists an 〈L′,∆′〉-model 〈M′, f ′〉 such that 〈M1 , f1〉 �
〈M′, f ′〉�〈`′1 ,ϕ′1〉 and 〈M2 , f2〉 � 〈M′, f ′〉�〈`′2 ,ϕ′2〉.
Following the definition of morphisms of constraint signatures, we denote

the codomain of ∆ by 〈Σ, E〉. Similar notational conventions apply to
the presentation morphisms ∆1, ∆2 and ∆′. We recall that the model-
amalgamation property can be generalized in a straightforward way from
signatures to the presentations over I (see, for example, [Dia14]). This
means that for any 〈Σ1 , E1〉-model M1 and 〈Σ2 , E2〉-model M2 such that
M1�ϕ1 � M2�ϕ2 , there exists a 〈Σ′, E′〉-model M′ such that M′�ϕ′1 � M1

and M′�ϕ′2 � M2. It thus suffices to show that there exists a morphism
f ′ : M′�∆′ → L′ such that f ′ ; `′1 � f1 and f ′ ; `′2 � f2. Since, by the definition
of morphisms of constraint signatures, the diagram below commutes,

〈ΣL , EL〉

〈Σ′, E′〉 〈Σ1 , E1〉〈Σ2 , E2〉
ϕ′1ϕ′2

∆′ ∆1∆2

it follows that M′�∆′ � M1�∆1 � M2�∆2 . Furthermore, because L′ is the
vertex of a pullback of morphisms of residuated lattices, it follows that
there exists a (unique) morphism f ′ : M′�∆′ → L′ that makes the following
diagram commute:

L′

L1

L2

LM′�∆′
f ′

f1

f2
`′2

`′1 `1

`2

2

Before presenting a result on obtaining a factorization system for the
signatures of CSP(I) from one for the signatures of I, we first present a result
on lifting factorization systems from signatures to presentations.

remark 3.2.17. Let I be an institution such that its category of signatures
SigI admits a factorization system 〈E,M〉. We can obtain a factorization
system 〈Epres ,Mpres〉 for the category PresI of I-presentations, called a
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strong presentation factorization system,7 as follows:

· the arrows of Epres are the morphisms of presentations e : 〈Σ, E〉 → 〈Σ′, E′〉
for which the underlying signature morphisms e : Σ→ Σ′, epimorphisms of
E, satisfy E′ � e(E), and

· the arrows of Mpres are themorphisms of presentations m : 〈Σ, E〉 → 〈Σ′, E′〉
with the underlying signature morphisms m : Σ→ Σ′ the monomorphisms
in M.

Then we can factor any morphism of presentations ϕ : 〈Σ, E〉 → 〈Σ′, E′〉 as
in the diagram below, where e ; m is a factorization of ϕ, regarded as a plain
signature morphism from Σ to Σ′.

〈Σ, E〉 〈Σ′, E′〉

〈ϕ(Σ), e(E)〉

ϕ

e m

proposition 3.2.18. Given two factorization systems 〈ERL ,MRL〉 for RL

and 〈E,M〉 for SigI, we obtain a factorization system for SigCSP(I) by taking the
epimorphisms to be the pairs of arrows in MRL and in 〈ΣL , EL〉/Epres, and the
monomorphisms to be the pairs of arrows in ERL and in 〈ΣL , EL〉/Mpres.

proof. In what follows we use the results presented in Fact 2.1.4 from
Section 2.1. We apply the first result to the category RL of residuated
lattices, and thus obtain a factorization system for RLop from the one
presented in Proposition 2.3.14, and the second result to the comma category
〈ΣL , EL〉/PresI and the factorization system 〈Epres ,Mpres〉 forPresI obtained
from 〈E,M〉 along the lines of Remark 3.2.17. We can finally apply the
third result to the category of constraint signatures, which is defined as the
product category of RLop and 〈ΣL , EL)/PresI, and obtain the factorization
system 〈ECSP ,MCSP〉, with ECSP � MRL×〈ΣL , EL〉/Epres and ECSP � ERL×
〈ΣL , EL〉/Mpres. 2

3.2.2 constraining free jazz

The following case-study on free-jazz improvisation shows how many-
valued logics enriched with the soft-constraint satisfaction framework can
be employed to describe specific domains of computational creativity. To
this end, we must go beyond the software-engineering context to explore

7 The terminology is reminiscent to that of the strongpresentation inclusion systems of [DGS93].
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another area of algebraic specification, which is less known but equally far
reaching in the way it addresses computational creativity: semiotic spaces
as formalized in [Gog99] (we discuss a particular case of semiotic spaces –
conceptual spaces – in detail in Section 6.2).
The music-improvisation model we present here falls, according to the

taxonomy of motivations for the formalization and automation of music com-
positional processes [PMW02], in the domain of computational modelling of
music cognition andmusical creativity – see [WPM09]. This domain includes
studies having both cognitive motivations and musicological goals that are
not focused on generating aesthetically appealing music or obtaining useful
compositional tools, but are rather interested in the degree in which a model
serves the comprehension of the cognitive processes within composition and
improvisation. Our main aim is not to propose and evaluate hypotheses on
stylistic properties of jazz compositions. However, at a secondary level, our
study lies at the intersection of computational modelling of musical styles
and design of compositional tools: the framework could be implemented
and thus used to create new computationally creative music systems.

free jazz. Defining free jazz is not easy, and it is usually done per
exclusionem, as it is easier to be understood as the sum of things it is not,
rather than of the things it is. A positive characterisation of free jazz with
which we agree and therefore adopt in the present thesis was proposed
in [MC08]: free jazz is the form of jazz in which the performers are the only
ones held accountable for the music that is being played, since (generally)
no standard notations8 are followed. The music results from a dynamic,
complex game that changes its rules throughout the performance. The
success of the game is determined by the identity that emerges from both
coherence and conflict – the emergent “dynamical orderings” of the music
“that are both surprising and comprehensible” [BG05].

As highlighted in [Bor05], free jazz is by nomeans random or lacking rules,
even if the evolution of an improvising act is a priori unpredictable due to its
transforming constraints and rules: the standards of quality are high, albeit
different from the ones of traditional music. Free improvisation is a form
of music that makes its own rules. Free-jazz improvising is not typically
pursuing the classical rhythms, harmonies, or melodies; its valuable aspects
are rather the pervading creativity, the discovery of newmusical dimensions,
the emergence of a collective purpose, or the unexpected synchronizations
that interrupt divergence moments. Moreover, the performances are of

8 Through standard notation we understand both the prescriptive (scores) and the descriptive
(transcriptions) conventional notation.
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undefined length, ending when the musicians are satisfied with the already
played music. These features seem to challenge (or disregard at least) the
existing means of analysing and evaluating conventionally notated music;
new tools are hence required for studying the free-jazz phenomenon.

Our aim is to focus on the dynamics of performances by means of formal,
algebraicmethods for complex systems. We formalize free-jazz performances
starting from the idea that an improvisation can be seen as a collection of
music phase spaces that organize themselves and, through blending, emerge as
the performedmusic. In ourmodel, themusic improvised up to a point plays
the role of a specification with constraints to be fulfilled, while all the music
fragments that could continue the performance are seen as specifications
that offer their intrinsic characteristics to satisfy the ‘needs’ of the ongoing
music act. The purpose of this kind of soft csp formalization is to find those
specifications of music phase spaces that optimize the satisfaction of the
constraints of the performance.

free-jazz semiotics: music phase spaces. We follow the lines of [BG05]
and regard improvisation processes as self-organizational systems ofmusical
phase spaces. We consider that the continuous flow of a free improvisation
can be segmented into musical sections (regions of a phase space) that
capture a distinct musical feature or that have a certain level of cohesion – a
prominent qualitative character that may be related to the rhythm, tempo,
timbre etc (see Figures 3.3 and 3.4). The passage between these sections
plays the important role of a bifurcation in the evolution of the modelled
improvisation, and is referred to as a phase transition.

figure 3.3. Representation of a music flow

figure 3.4. Segmentation of the music flow based on salient features

Thephase space of a system is understood in [BG05] as amulti-dimensional
map that facilitates the description of the dynamics of a given system.
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The number of dimensions is given by the number of musical variables.
The standard music notation captures, for example, a small number of
dimensions: time, pitches, and marks regarding tempo or other details.
One might think that since free jazz does not commit to notations, and

since it claims to be more flexible about tonalities and timbre, we would
have to deal with phase spaces having large dimensions. What is proposed
in [BG05] is actually a reduction of the unnecessary variables. We depart
here, however, from the model proposed in [BG05], which is essentially a
system of non-linear equations based on discrete time: phase spaces are
just subspaces of high-dimensional state spaces, and the transitions between
phase spaces are modelled through non-linear equations. We abstract
over this representation of the phase spaces, and consider them simply as
“musical idea spaces”, or semiotic spaces of music. We loosen the algebraic
formalization of semiotic spaces of Goguen [Gog99] by considering that
a musical phase space could be described in principle through the use of
algebraic specifications over a suitable logic. Thus, one should think of
a music phase space as a collection of music fragments that share certain
salient features and could be played at a certain moment in the evolution of
the improvisation (see Figure 3.5).

figure 3.5. A segment of the music flow as part of a music phase space

The notion of concept blending as used by Goguen [Gog99] plays a
key role in defining the composition of musical phase spaces, which in
turn determines the outcome of the improvisation process. Similarly to
the studies [Epp+15] and [KP+14] on the role of conceptual blending9 in
computational invention of cadences and chord progressions in jazz, we
model the composition of musical phase spaces as categorical colimits of
algebraic specifications. Examples of phase spaces, together with a formal
definition of the notion, are discussed in the next subsection.

9 Concept blending is presented in detail, together with conceptual or semiotic spaces, in
Section 6.2; for this model of music improvisation, we restrict however the notion of blending
to an ordinary colimit of presentations.
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hues of satisfaction

We illustrate the formalization of free-jazz improvisations in the context
of constraint specifications starting from the example presented in [BG05].
The authors analysed an excerpt entitled “Hues of Melanin” from the 1973
Sam Rivers Trio’s concert at Yale University with Cecil McBee on bass and
Barry Altschul on drums. They proposed a sectional interpretation of the
performance and highlighted the transitions between the music phases in
order to demonstrate the nonlinear dynamics of the improvisation. The
segmentation is natural and determined by the frequent and clear variations
of the music flow – rhythmic, timbral or chromatic. We focus on the first
part of the examination in [BG05], namely sections A to H. Although the
presentation of this example is self-explanatory, the reader is encouraged to
consult the section “Hues of Melanin” of [BG05] for more details.

We consider that everymusical section imposes some constraints regarding
the tempo, texture, intensity, or technique details of the next musical phase to
be played. However, we keep in mind that, as the improvisation builds, the
constraints of a musical segment evolve and adapt to the already unfolded
music: the same musical section or trigger of a transition could require
different continuations if played at two differentmoments of the performance.

logic FOL(ResiduatedLattices)
spec FreeJazz =

sorts Phase, Tempo, Texture, Instrument, Detail, Transition
ops slow, medium, fast : Tempo

repetition, groove, complexity, fragmentation, rubato : Texture
bass, drum, flute, sax, voice : Instrument
trill, cadence, groove, drone, glissando, ascent, pedal : Detail
N, T1, T2, T3, T4, T5, T6, T7 : Transition
tempo : Phase −→ Tempo
texture : Phase −→ Texture
detail : Phase −→ Detail
transition : Phase −→ Transition

figure 3.6. The presentation FreeJazz

We zoom in on the two transitions triggered by a soprano saxophone
trill on note d (sections C and G in Figure 3.7) and we regard the trill as
a determining component in the evolution of the improvisation. For each
of the sections C and G and their subsections, we record in Figure 3.7 the
time of their start from the beginning of the performance, the transition type
they initiate (and their actual trigger or salient detail in brackets), and their
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overall texture, when identified.

Name Time Transition Type Overall Texture

C 5:29 T2 (soprano trill on note d) free
C2 5:48 T7 (drum cadence)
C3 6:43 T2 (soprano high note)

C4 7:05 T2/T4/T6
(soprano, bass low a note)

G 13:10 T2 (trill on note d), grooveT5 (bass groove)
G2 14:04 metric sync
G3 14:52 T6 (bass triggers descent) free

Transition types: T2 pseudo-cadential segue – an implied cadence with sudden
and unexpected continuation; T4 feature overlap – one feature of the antecedent
section is sustained and becomes part of the consequent section; T5 feature
change – a gradual change of one feature that redirects the flow (usually subtly);
T6 fragmentation – a gradual breaking up, or fragmenting, of the general texture
and/or rhythm; T7 internal cadence – a prepared cadence followed by a short
silence then continuation with new material.

figure 3.7. Sections and subsections of “Hues of Melanin” (excerpt
from [BG05, Figure 1])

We model the musical phases of fragments C and G as specifications
written over CSP(FOL) that share a common sub-specification: the present-
ation FreeJazz in Figure 3.6, listing the instruments played by the musicians
(through the constants bass, drum, flute, sax, voice), possible values for
measuring the tempo (through the constants slow, medium, fast), texture
descriptors (through the constants of sort Texture), techniques and orna-
mentations that constitute the salient details of musical segments (through
the constants of sort Detail), as well as the types of transitions between the
sections (through the constants T1–T6 and N of sort Transition, where the
latter stands for the lack of a transition). Apart from these, a specification
describing a musical phase also records the characteristics of the fragment
and preferences on the musical section that will continue it. These are
expressed as ordinary first-order sentences, such as the sentences of the
presentation TriggeringPhase in Figure 3.8. In Section 3.3, we choose to make
explicit the temporal distinction that separates them into properties of the
current music fragment and properties of the next fragment.
This presentation corresponds to the musical space of music fragments
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logic FOL(ResiduatedLattices)
spec TriggeringPhase = FreeJazz then

ops available : Phase × Instrument × Set [Instrument] −→ L
tempoPref : Tempo −→ L
texturePref : Texture −→ L
instrumentPref : Instrument −→ L
instrumentsPref : Set [Instrument] −→ L
detailPref : Detail × Instrument −→ L
transitionPref : Transition −→ L

∀ p : Phase; i : Instrument; is : Set [Instruments]
• available(p, i, is) = 1⇔ (detail(p) = trill) ∧ (i = sax)
• tempoPref(slow) ≤ tempoPref(medium)
• tempoPref(fast) ≤ tempoPref(slow)
• texturePref(complexity) ≤ texturePref(rubato)
• texturePref(complexity) ≤ texturePref(groove)
• instrumentPref(bass) = instrumentPref(drums) = instrumentPref(sax)
• instrumentPref(flute) ≤ instrumentPref(sax)
• instrumentsPref(is) = ∗(instrumentPref(is))
• detailPref(trill, sax) = 0
• transitionPref(N) = 0

figure 3.8. The presentation TriggeringPhase

that can lead to the beginning of fragments C and G through the existence
of a saxophone trill on the note d (notice the sentence available(p, i, is) = 1⇔
(detail(p) = trill) ∧ (i = sax) that identifies those music fragments containing a
trill).
For the triggering passage we can distinguish a number of general con-

straints that do not depend on the context in which it is played, such as
basic guidelines on the tempo, the texture, or the instruments to be played.
Even though more specific preferences regarding the details of the section
are left to be fixed at the actual moment of the musicking, there are some
constraints regarding the need for a transition, and thus a continuation
of the passage – the concert cannot end with the trill – and the repetition
of the passage – it should not be continued with another saxophone trill.
These restrictions are expressed as soft constraint sentences that extend the
specification TriggeringPhase in Figure 3.8:

cvars phase : Phase;
instrument : Instrument;

instruments : Set [Instrument]

• tempoPref(tempo(phase)) %(constraint)%
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• texturePref(texture(phase)) %(constraint)%

• instrumentsPref(instruments) %(constraint)%

• transitionPref(transition(phase)) %(constraint)%

• detailPref(detail(phase), instrument) %(constraint)%

These sentences restrict the entire musical phase space to several smaller
phase spaces that satisfy the ‘needs’ of our musical component. In [BG05],
the sections C and G that follow the saxophone trills on note d are con-
sidered to be alternatives for the development of the performance from our
transitional point onwards: we can regard them as different solutions for
a constraint problem. Although both sections satisfy the requirements im-
posed by playing the trill (the usual first-order sentences of the specification
TriggeringPhase), the valuation of the constraint sentences above (which come
with the already performed music) will discriminate between one choice
and the other. We can think of sections C and G as epitomes of two growth
directions or musical phase spaces: in the first phase, a medium-tempo short
bass groove passage is soon abandoned for a rubato (the phase space fights
the groove towards a modal area), while in the second section a groove
similar to the one that was ended prematurely is explored (the phase space
comprises passages of groove exploration and/or increased complexity).
The specifications PhaseSpaceC and PhaseSpaceG correspond to the two

alternative phase spaces presented in our example. Each of these contains
one of the two sections played during the actual improvisation.

logic FOL(ResiduatedLattices)
spec PhaseSpaceC = FreeJazz then

ops available : Phase × Instrument × Set [Instrument] −→ L
p1, p2 : Phase

∀ p : Phase; i : Instrument; is : Set [Instrument]
• available(p, i, is) = 1⇔ (p, i, is) belongs to the following table, 10

or 0 otherwise

phase (p) tempo texture detail + instrument (i) T instruments (is)

p1 medium rubato cadence: drums T7 drums, bass, sax
p2 slow rubato cadence: drums T6 drums, bass

figure 3.9. The specification PhaseSpaceC

The model we presented above captures only the static, structural aspects
of “Hues of Melanin” – a counterpart of the representation from [BG05] of

10 The table is only a convenient abbreviation for a set of sentences that specify, for example,
that the music phase p1 has amedium tempo, rubato texture, its salient feature is a cadence on
drums, its type of transition is T7, and the instruments involved are drums, bass and sax.
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logic FOL(ResiduatedLattices)
spec PhaseSpaceG = FreeJazz then

ops available : Phase × Instrument × Set [Instrument] −→ L
p1, p2, p3 : Phase

∀ p : Phase; i : Instrument; is : Set [Instrument]
• available(p, i, is) = 1⇔ (p, i, is) belongs to the following table,

or 0 otherwise

phase (p) tempo texture detail + instrument (i) T instruments (is)

p1 medium groove drone: bass T5 drums, bass, flute
p2 medium groove groove: bass T5 drums, bass, sax
p3 fast complex trill: sax T2 drums, bass, sax

figure 3.10. The specification PhaseSpaceG

music segments as values for a collection of variables; the dynamics of the
performance – a counterpart of the non-linear equations capturing the state
transitions in [BG05] –, can be presented via the framework we describe in
Chapter 4.

3.3 LOGICS FOR IMPROVISAT ION

First-order logic, although standard for formal specifications, may not be the
most suitable choice for describing the features of amusic fragment; we could
specify music by employing other logics with a more convenient syntax,
closer to the usual musical notation. Moreover, using csp specifications to
model music could be a rather excessive technical embellishment.

choosing a logic for specifying improvisation. In order to simplify
the logical systemusedwhile continuing to ensure it is still expressive enough
to serve the approach developed in the previous section on modelling music
improvisations with algebraic specifications, we identify a set of informal
requirements that a logic for improvisation must meet:

· It should permit the expression of constraints, as the aim of free jazz is “to
play together with the greatest possible freedom – which, far from meaning
without constraint, actually means to play together with sufficient skill
and communication to be able to select proper constraints in the course
of the piece”(musician Ann Farber, see [Bor05, Chapter “Reverence for
Uncertainty”]).

· It should permit the partial satisfaction of these constraints, as improvisation
requires flexibility and non-rigid answers.
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· It should allow the change of the truth system, as players in a collaborative
performance usually have different beliefs and value systems that they
impose to the group alternately.

We argue that RL-institutions in general satisfy the above criteria, and
that they form an abstraction of csp logics that is at times more suitable
for modelling music-improvisation processes. Nonetheless, the many-
valuedness of the constraints is certainly not the only feature that must be
taken into account when choosing a logical system for specifying music. It
is reasonable to assume that one must also consider:

· a balance between expressivity and complexity: while many-valued first-
order logic is surely expressive enough for writing music scores, its com-
plexity and decidability properties (or lack thereof) may guide us towards
fragments of first-order logic – or to other logics that are equivalent to such
fragments;

· support for dealing with sequences of triggers, events, or actions: an event
could correspond to the fact that a certain music fragment has been played,
while the action triggered by the event could be the play of a suitable
continuation to that fragment. Obvious candidates for describing the
succession in time of events and actions are temporal logic (see [Pnu77]
or [Dia14] for a many-valued version) and dynamic logic [HKT01];

· the usability of notation: a musician could prefer a syntax more similar to
the notation he uses for writing music. There is currently no logical system
making use of specialised music notation that meets the requirements above.
Therefore, non-standard notations used in composition notes and guide
scores for improvised performances could be regarded as a starting point
for defining the syntax of new logics.

Taking into account the above criteria, we propose a new logical system,
formalized as an RL-institution, based on Anthony Braxton’s alternative
notations for free-jazz ‘composition’.

anthony braxton’s graphic notations

Through extensive use of graphic and symbolic notations, Braxton’s music
positions itself at the fuzzy border between composition and improvisa-
tion [Loc08]. Neither completely notated, nor completely free, the scores can
be seen as an incipient guideline for the improviser: the visual elements force
the performer to assign personal interpretations to rather abstract forms
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that would otherwise make the scores unplayable by immutably following
the more conventional notations. The improviser must hence intervene
considerably in the composition, not in the usual form of jazz extended solos,
but with “tiny pockets of improvisational space” [Loc08] that should fill the
non-finished musical structure. This porosity, an inviting-to-improvisation
characteristic of his compositions, is also apparent in the work on which
we focus: “Composition 94 for Three Instrumentalists” [Bra88]. In section
B of that piece, Braxton uses an image grouping notation consisting of three
types of contours that are overlaid on top of standard pitches to create the
so-called liquid, shape, and rigid formations.

figure 3.11. Liquid formations from the score of “Composition 94”

figure 3.12. Shape formations from the score of “Composition 94”

The role of the formations is to indicate to the performers the outlines
that they should follow when playing the notes inside them: these pitches
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figure 3.13. Rigid formations from the score of “Composition 94”

should not be played as they appear in the score, but transformed according
to the distinctive interpretation of each improviser:

· the pitches inside liquid formations, figures resembling clouds, should be
played as “clouded mass sound imprints” (Figure 3.11),

· the shape formations should suggest “harder edges” (Figure 3.12), while

· the rigid formations, closer to geometrical figures, should highlight their
“composite state” (Figure 3.13).

In this study, we loosen the restrictions on the interpretation of formations,
blurring the distinction between the three types of formations and, at
the same time, making room for many other kinds of formations. We
accept as valid the improvisations that replace the notes within the shapes
with completely different pitches given that they allude to the original
notes and evoke the contours. We reduce the problem of quantifying
the improvisation’s reminiscence of the original pitches to the problem of
measuring the similarity between twomusic fragments. The interested reader
is referred, for example, to [MS90] for further details on the comparison of
musical fragments.
The observations above lead us to the formalization of Braxton’s graphic

notation as a many-valued logic.

the RL-institution of braxton’s graphic notation

signatures. To obtain a representation of the scores and, furthermore,
to express properties of the music segments at certain positions in a score,
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the language of the logic of Braxton’s graphic notation, which we denote by
BG, must comprise the universe of possible music fragments written in a
standard notation such as classical music scores, a set of formations, and
an appropriate truth structure that allows us to manipulate partially true
statements. We hence define a BG-signature Σ as a triple 〈L,MF, FS〉, where
L is a complete residuated lattice, MF is a set whose elements we call music
fragments, and FS is a set of so-called formation symbols.

example 3.3.1 (Clap!). We accompany the definitions of the components
of the institution with a very simple example, for which we choose to
reduce to a minimum the details particular to music theory. We use an
elementary notation for music made only by clapping. We assume that all
claps are of equal intensity and have equal duration. This example will be
later developed in Section 4.2, where we discuss Steve Reich’s “Clapping
Music” [Rei80]. For now, we consider a signature Σ, for which:

· the set MF consists of music fragments that can be written using pairs of
symbols from the set { , }. Each of these symbols denotes an action: for
a clap, and for a rest. We use pairs to represent concurrent actions of two
players – for example, two concurrent claps, or one clap and a rest, etc.;

· the set FS is empty – we use no formation symbols;

· the lattice is the Heyting algebra HAω from Example 2.3.6 that has the
underlying set of values HAω � {0} ∪ {1/n | n ∈ ω}.

The signature morphisms ϕ : Σ→ Σ′ are defined componentwise:

· a morphism of residuated lattices ϕ` : L′→ L,

· a function ϕmf between the sets of fragments MF and MF′,

· a function ϕfs from the set of formation symbols FS to FS′, and

· a natural number ϕd representing a delay between the moment of playing
a score written over the first signature and the moment of playing a score
written over the second one.

Usually, ϕmf and ϕfs are inclusions. Intuitively, this corresponds to transcrib-
ing music in a richer notation system. From the perspective of playing, the
key component of ϕ is ϕd , which has an important role in glueing together
music fragments.

example 3.3.2 (Clap!). We consider the addition of a formation symbol to
our notation for clapping. We define the inclusion of the signature Σ to
Σ′, which has the same lattice HAω, same music fragments set MF, and a
triangle formation symbol FS′ � { }.
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sentences. The sentences are built from atoms by applying the usual
many-valued connectives. We admit three types of atomic sentences:

· m@p, with m ∈ MF and p ∈ N, which should be read as “the fragment m
occurs at position p”,

· ∼m@p, with m ∈ MF and p ∈ N, which should be read as “a fragment
similar with m occurs at position p”, and

· s@p, with s ∈ FS and p ∈ N, which should be read as “the fragment at
position p is in the shape of s”.

notation. We denote by sp(m) the conjunction s@p ∧ ∼m@p.

For any morphism of signatures ϕ : Σ→ Σ′, we can translate the atoms
over Σ to atoms over Σ′ as follows:

· ϕ(m@p) � ϕmf(m)@(p + ϕd),

· ϕ(∼m@p) � ∼ϕmf(m)@(p + ϕd),

· ϕ(s@p) � ϕfs(s)@(p + ϕd),

for every m ∈ MF, s ∈ FS, and p ∈ N. This translation can be extended in a
canonical way from atoms to arbitrary sentences.

example 3.3.3 (Clap!).

0 is an example of an atomic Σ′-sentence of the form
m@p, with p � 0 and m a fragment with 12 beats, while the score

can be read as (m@0) ∧ ( @1) ∧ ∼(n@1), for n given by

.

models. For any signature Σ, a model M consists of:

· a set |M | whose elements are, intuitively, sounds produced by performers,

· interpretations Mm ∈ |M | of the music fragments m ∈ MF,

· a similarity method M∼ : |M | × |M | → L11,

11 One could impose additional restrictions on the similarity method, such as reflexivity,
symmetry, or even a form of transitivity, where a ∼ c ≤ (a ∼ b) ∗ (b ∼ c).
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· interpretations Ms : |M | → L of the formation symbols s ∈ FS, and

· an infinite sequence Mseq ∈ |M |ω of sounds to be played.

notation. We usually denote the sound at position p in Mseq by Mseq[p],
and the elements in Mseq from position p onward by Mseq[p..]. The first
element of the sequence is considered to be at position 0.

Model homomorphisms are defined as algebra homomorphisms: for two
Σ-models M and N , a homomorphism h : M → N is a function h : |M | → |N |
such that:

· h(Mm) � Nm ,

· Ms(x) ≤ Ns(h(x)),

· M∼(x , y) ≤ N∼(h(x), h(y)), and

· h(Mseq) � Nseq i.e the ordering of the elements in the sequence is kept,

for all m ∈ MF, s ∈ FS, and x , y ∈ |M |.
For every signature morphism ϕ : Σ→ Σ′, the reduct M′�ϕ of a Σ′-model

M′ is defined as the Σ-model M such that:

· |M | � |M′ |,· Mm � M′
ϕmf(m) for m ∈ MF,

· M∼ � M′∼ ; ϕ` ,

· Ms � M′
ϕfs(s) ; ϕ

` for s ∈ FS, and

· Mseq � M′seq[ϕd ..]; in other words, Mseq is the suffix of M′seq obtained by
dropping from it the first ϕd elements.

example 3.3.4 (Clap!). Let us give an example of a Σ′-model M′ for clapping.
|M′ | should be thought of as the collection of possible sounds made by two
musicians playing concurrently. We write every sound as a sequence of
numbers representing howmany claps are made on a beat: none, one, or two.
Hence, |M′ | is the set {0, 1, 2}∗. Let us suppose that every music fragment
m ∈ MF is interpreted as expected, with the number of claps indicated by the
score. For example, the interpretations M′m and M′n of the music fragments
m and n from Example 3.3.3 are 2 2 1 1 1 2 1 1 1 2 2 1 and 2220 2201 0100,
respectively.
The interpretation of the similarity measure is defined based on the

number of different claps between the two sounds: M′∼(a , b) � 1/diff , where
diff is the total number of different claps computed, element by element, for
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all beats of the two interpretations a and b. For example, the similarity of
the interpretations M′m and M′n is 1/9.

The interpretation of the shape is defined as M′ (a) � 1/diff , where diff
is computed by comparing a with an ‘ideal’ triangle sequence. We use a
moving window of size 3 to compute a’s footprint of intensity: we calculate
partial sums, each of three elements. Let us suppose that a is of length
n. Then its footprint has length n − 2. If n − 2 is not divisible by 6 – the
maximum value that we can obtain for the sum of a window (adding the
maximum intensity of 2 claps 3 times), we extend the sequence a to the
right with 0s. The length l of the footprint of the extended sequence is now
divisible by 6. We compare the footprint with an ideal triangle-footprint
sequence whose first l/6 elements have the value 6, the next l/6 elements
the value 5, etc. We discard the possible extra 0s from the a’s footprint and
we search for the best match with a subsequence of the ideal footprint. The
total number of differences between a’s footprint and the ideal one gives us
the value of diff . For example, M′ (M′m) � 1/14 and M′ (M′n) � 1/5, where
the ideal footprint is 6 6 5 5 4 4 3 3 2 2 1 1 and the footprints of m and n are
(after discarding the 0s at the end) 5 4 3 4 4 4 3 4 5 5 and 5444431211.

Let us define M′seq as the infinite sequence of (M′m M′n)∗.

truth space. The truth-space functor is the forgetful functor that maps
every signature to its underlying lattice.

satisfaction. For any signature Σ, the satisfaction of a sentence ρ by a
Σ-model M is many-valued:

· M � m@p is defined as


1, if Mseq[p] � Mm

0, if Mseq[p] , Mm

· M � ∼m@p is given by the similarity of the interpretation of m and the
sound at position p, i.e. M∼(Mm ,Mseq[p]),

· M � s@p is given by the resemblance Ms(Mseq[p]) of the sound at position
p with the shape s.

proposition 3.3.5. BG is an RL-institution.

proof. The functoriality of the sentence translation and of the model
reduction can be shown without difficulty, similarly to FOLRL. For this
reason, we we focus only on checking that the satisfaction condition

ϕ`(M′ �Σ′ ϕ(ρ)) � (M′�ϕ �Σ ρ)
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holds for every signaturemorphism ϕ : Σ→ Σ′,Σ′-model M′ andΣ-sentence
ρ. And even in this case, it suffices to analyse the atomic sentences. Therefore,
we consider three cases:

· for ρ � m@p

ϕ`(M′ �Σ′ ϕ(ρ)) � ϕ`(M′ �Σ′ ϕmf(m)@(p + ϕd))

�


1, if M′seq[p + ϕd] � M′

ϕmf(m)

0, if M′seq[p + ϕd] , M′
ϕmf(m)

�


1, if (M′�ϕ)seq[p] � (M′�ϕ)m
0, if (M′�ϕ)seq[p] , (M′�ϕ)m

� M′�ϕ �Σ ρ

· for ρ � ∼m@p

ϕ`(M′ �Σ′ ϕ(ρ)) � ϕ`(M′ �Σ′ ∼ϕmf(m)@(p + ϕd)
� ϕ`(M′∼(M′ϕmf(m) ,M

′
seq[p + ϕd]))

� (M′∼ ; ϕ`)(Mϕmf(m) ,M
′
seq[p + ϕd])

� (M′�ϕ)∼((M′�ϕ)m , (M′�ϕ)seq[p])
� M′�ϕ �Σ ρ

· for ρ � s@p

ϕ`(M′ �Σ′ ϕ(ρ)) � ϕ`(M′ �Σ′ ϕfs(s)@(p + ϕd)) � ϕ`(M′
ϕfs(s)(M

′
seq[p + ϕd]))

� (M′
ϕfs(s) ; ϕ

`)(M′seq[p + ϕd]) � (M′�ϕ)s((M′�ϕ)seq[p])

� M′�ϕ �Σ ρ

2

encoding BG into FOLRL with generalized signature morphisms

There exists a comorphism of RL-institutions between BG and FOL
gen
RL

, the
RL-institution of first-order logicwith generalized signaturemorphisms. We
recall from [GP10] that a generalized FOL-morphism between two signatures
〈S, F, P〉 and 〈S′, F′, P′〉 is a simple signature morphism between 〈S, F, P〉
and 〈S′, F′ + TF′ , P′〉, i.e. constants can be mapped to terms.

We define 〈Φ, α, β, λ〉 : BG→ FOL
gen
RL

, as follows:
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signatures. The functor Φ : SigBG → SigFOL
gen
RL maps

· every BG-signature 〈L,MF, FS〉 to the many-valued first-order signature
〈L, S, F, P〉, where:

– S � {Nat} ∪ {Mf}, where Nat is the sort of natural numbers as in the
presentation in Figure 3.1, and Mf is a new sort corresponding to music
fragments;

– F � FN ∪ {m : Mf | m ∈ MF} ∪ {@: Nat → Mf}, where FN are the
operation symbols in the presentation of natural numbers;

– P � PN ∪ {s : Mf | s ∈ FS} ∪ {∼ : Mf × Mf}, where PN are the relation
symbols in the presentation of natural numbers.

· every signature morphism ϕ : 〈L,MF, FS〉 → 〈L′,MF′, FS′〉 to a many-
valued first-order generalized signature morphism 〈`, φ〉 : 〈L, S, F, P〉 →
〈L′, S, F′+TF′ , P′〉 betweenΦ(L,MF, FS) � 〈L, S, F, P〉 andΦ(L′,MF′, FS′) �
〈L′, S, F′, P′〉 with:

– ` � ϕ` ;
– φst � idS;
– φop(m) � ϕmf(m) for all m ∈ MF
φop(@) � @
φop(0) � ϕd for the constant 0 : Nat
φop( f ) � f for any other operation symbol f in FN;

– φrel(s) � ϕfs(s) for all s ∈ FS
φrel(∼) � ∼
φrel(π) � π for any other relation symbol π in PN.

sentences. For every signature Σ, αΣ : SenBG(Σ) → SenFOL
gen
RL (Φ(Σ)) is the

function defined, as usual, in an inductive manner, that maps every atom

· m@p to the equational atom @(p) � m,

· ∼m@p to the relational atom m ∼ @(p),

· s@p to the relational atom s(@(p)),

for p ∈ N, m ∈ MF, and s ∈ FS.

models. For every signature Σ, βΣ : ModFOL
gen
RL (Φ(Σ)) →ModBG(Σ) is the

functor that maps

· every first-order structure M′ for Φ(Σ) to the Σ-model M with:
– |M | � M′Mf,
– Mm � M′m for all m ∈ MF,
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– M∼ � M′∼,
– Ms � M′s for s ∈ FS,
– Mseq[p] � M′@(p) for p ∈ N12.

· every morphism of first-order structures h′ : M′→ N′ in ModFOL
gen
RL (Φ(Σ))

to a BG-homomorphism h : βΣ(M′) → βΣ(N′) given by h′Mf : M′Mf → N′Mf,
the component of the homomorphism h′ : M′ → N′ corresponding to
the sort Mf. It is trivial to check that the additional conditions imposed
on h are satisfied. For instance, for every natural number n, we have
h(βΣ(M′)seq[p]) � h′Mf(M′@(p)) � N′@(p) � βΣ(N′)seq[p].

lattices. For every signature Σ, λΣ : RLFOL
gen
RL (Φ(Σ)) → RLBG(Σ) is the

identity functor.

satisfaction condition. To check that the satisfaction condition holds,
it suffices once again to consider only the atomic sentences. Let Σ be a
BG-signature, M a first-order structure for Φ(Σ), and ρ a sentence for Σ. We
distinguish three cases:

· for ρ � m@p

(M′ �FOLRL

Φ(Σ) αΣ(m@p)) � (M′ �FOLRL

Φ(Σ) (@(p) � m))

� (M′@(p) � M′m)

�


1, if M′@(p) � M′m

0, if M′@(p) , M′m

�


1, if βΣ(M′)seq[p] � βΣ(M′)m
0, if βΣ(M′)seq[p] , βΣ(M′)m

� βΣ(M′) �BG
Σ

m@p

· for ρ � ∼m@p

(M′ �FOLRL

Φ(Σ) αΣ(∼m@p)) � (M′ �FOLRL

Φ(Σ) (m ∼ @(p)))

� M′∼(M′m ,M′@(p))

� βΣ(M′)∼(βΣ(M′)m , βΣ(M′)seq[p])
� βΣ(M′) �BG

Σ
∼m@p

12 Note that, in the right-hand-side term @(p), p is actually the term associated to the natural
number p; it consists of p repeated applications of the successor operation to 0.
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· for ρ � s@p

(M′ �FOLRL

Φ(Σ) αΣ(s@p)) � (M′ �FOLRL

Φ(Σ) s(@(p)))

� M′s(M′@(p))

� βΣ(M′)s(βΣ(M′)seq[p])
� βΣ(M′) �BG

Σ
s@p

example 3.3.6. Let us show how the sentence

– read as (m@0) ∧ ( @1) ∧ ∼(n@1) – from Example 3.3.3 can be encoded into
a sentence over the RL-institution FOLRL.
First, we need to deal with the translation of its signature. The original

BG-sentence is written over the signature Σ′ � 〈HAω ,MF, FS′ � { }〉 from
Example 3.3.2. According to the definition of the institution comorphism
above, Σ′ is mapped to the first-order signature 〈HAω , S, F, P〉, where:

S � {Nat,Mf},
F � FN ∪ {m : Mf | m ∈ MF} ∪ {@: Nat→ Mf}, and
P � PN ∪ {triang : Mf13 ,∼ : Mf × Mf}.

Then each of the three atoms of the BG-sentence is translated as follows:

m@0 7→ @(0) � m @1 7→ @(1) � triang ∼(n@1) 7→ n ∼ @(1)

leading to the first-order sentence (@(0) � m) ∧ (@(1) � triang) ∧ (n ∼ @(1)).

specifications over BG

The fact that a signature does not determine the interpretation of the music
fragments, the similarity measure, or the interpretation of the formation
symbols, makes the logic BG too general for suitably specifying music: we
would like to be able to control, for example, which similarity measure to
use in comparing music fragments. For that purpose, and to continue to

13 According to the definition of the comorphism, we should have kept the symbol instead of
using the predicate triang. Yet we chose to change the symbol to show readers who are more
familiar with the standard notation of first-order how one could capture music scores using
regular first-order sentences.
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keep the specification formalism as simple as possible, we introduce the
logic BGP of that has as signatures presentations over BG.

proposition 3.3.7. BGP has the following properties:

1. SigBGP has pushouts.
2. BGP has model amalgamation.
3. There exists a factorization system for SigBGP.

proof.

1. Pushouts in SigBG are obtained componentwise, building on pushout con-
structions from RLop and Set. Moreover, because the category PresI of
presentations over an arbitrary RL-institution I inherits the pushouts of
SigI, SigBGP has pushouts.

2. To show that BGP has model amalgamation, it suffices to verify that BG

has model amalgamation, since the model-amalgamation property can be
generalized in a straightforward way from signatures to presentations over
I, for an arbitrary RL-institution I, similarly to the Boolean version of
institutions. For that purpose, consider the pushout square given by the
BG-signature morphisms ϕ, θ, σ1 and σ2 in the diagram below.

Σ Σ1

Σ2 Σ′

Σ′′

ϕ

θ σ1

σ2 h

f

g

Suppose that M1 is a Σ1-model and M2 a Σ2-model such that Mod(ϕ)(M1) �
Mod(θ)(M2). Then we can define a Σ′-model M′ (the amalgamation of M1

and M2) as follows: For the underlying set of sounds, |M′ | � |M1 | � |M2 |.
Now consider a music fragment m′ ∈ MF′; since σ1 and σ2 form a pushout
of θ and ϕ, there exists i ∈ {1, 2} and mi ∈ MFi such that σi(mi) � m′. Then
we can define M′m′ as (Mi)mi

. Note that this does not depend on the choice
of i or mi , because on the one hand, σ1, σ2 form a pushout, and on the other
hand, M1 and M2 have the same reduct to Σ. In the same (unique) manner,
we can define the interpretations of shapes, similarities and of the sound
sequence.

3. We define the factorization system for SigBG componentwise. Any signature
morphism ϕ : Σ → Σ′, given by components ϕ` , ϕmf, ϕfs and ϕd , can be
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factored as ϕ � e ; m

Σ Σ′

ϕ(Σ)

ϕ

e m

with e � 〈m` , emf , efs , ed〉 andm � 〈e` ,mmf ,mfs ,md〉, where ed � 0, md � ϕd ,
and 〈emf ,mmf〉 and 〈efs ,mfs〉 belong to the standard factorization system
for Set, and 〈e` ,m`〉 belongs to the factorization system 〈ERL ,MRL〉 of RL

from Proposition 2.3.14. We then lift the factorization-system thus obtained
to presentations, as in Proposition 3.2.17.

2



4
REASONING FOR CREAT IVE PROCESSES

In this chapter, we explore the algebraic and logical foundations of service-oriented
computing and discuss its ramifications as a general paradigm for complex system
dynamics that is particularly suited for computational creative processes. The first
section is devoted to the definition of the concepts of service application and service
module – which are central to service-oriented computing – over a fixed many-valued
institution, and to the formalization of the mechanisms of service discovery, selection
and binding. We then investigate the connection between service-oriented systems
and computational creativity opened by our framework, while adopting the idea
that music improvisations can be seen as instances of complex systems: we show
how the concepts of service application and service module can be applied to the
music phases spaces defined in Section 3.2.2, and how the dynamic processes of
service-oriented computing can describe ad hoc music composition. Finally, we
address new situations that arise in the context of heterogeneous and evolving service
providers and requesters. Particular cases of interest are those in which different
service components are based on different truth structures, or those for which
preferences change over time. This brings clarity with respect to the uncertainty
associated with predicting the evolutionary behaviour of service-oriented systems.

creative processes as complex systems. For modelling improvisation
processes, we draw inspiration from [BG05] and [Bor05], where free-jazz per-
formances are seen as non-linear dynamical systems of equations. Therein,
the ‘sink or swim’ behaviour of a complex system is expressed as ‘sync or
swarm’ for improvisation; in a nutshell, this means that we either select the
states with the best fitness, or we decide to let a process end. The swarm
formalization proposed by Borgo and Goguen aims to echo the emergence
of a collective direction of the music performance as a whole, despite the
seemingly divergence of its individual components.
The paper [RG94] is a proof of the long-standing interest in modelling

and simulating the musical creativity of improvisations. The authors of the
study make similar claims to our assumptions on knowledge and reasoning
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in improvisation performances: musical actions depend on contexts that
evolve over time, and musicians integrate rules and constraints into their
actions dynamically. Moreover, they set similar goals to those of this thesis
with respect to simulating creativity: obtaining a suitable trade-off between
the ‘flexibility and randomness’ and the ‘control and clear semantics’ in
modelling creativity in terms of classical problem solving.
Even if music improvisation is almost never concerned with meeting

objectives in an optimalway, there are a number of computational approaches
in the literature that exploit optimization techniques to model a step in the
evolution of the system; for example, improvisations are seen in [BY04] as
swarm optimization processes. Our approach is somewhat aligned with
the Live Algorithms for Music manifesto of [BY04], although we choose to
depart from the randomness inherent to swarm optimization: the essential
difference is that, in the modular view of these complex systems, we replace
the Swarmer component with a service-oriented framework based on earlier
work on algebraic formalizations of services such as [FLB06; FLB11].

4.1 SERVICE -OR IENTED COMPUTING

Service-oriented computing is a paradigm that supports the development
of complex software applications based on dynamic reconfigurations of
networks of systems. Reconfigurations arise from interactions between
software entities and are governed by a need-fulfilment mechanism: during
their execution, software applications may request to bind to external entities
in order to fulfil the need for a service or resource. The non-mereological
composition of requester applications and supplier services is mediated
by interfaces through which system components require and guarantee the
satisfaction of some quality-of-service conditions: a client first discovers
the services that guarantee, through their interfaces, the satisfaction of its
needs, and then selects and binds to a provider via a negotiation of service
level agreements. The interfaces express properties that are independent of
the actual implementation of the services, and are usually defined using
algebraic specifications of abstract data types [FLB06; FLB11] or temporal-
logic specifications [FL13b]. Besides the typical functional properties of the
input-output behaviour of services described by the interfaces, one could also
specify constraints that express preferencesmeant to be used for the selection
of a best provider in terms of the maximization of their satisfaction degrees.
Soft-constraint systems have been successfully employed for capturing non-
functional requirements in service-oriented architectures [Wir+06; Wir+07;



reasoning for creative processes 82

HMW09], including the negotiation of service-level agreements [BS09].
The aim of this chapter is to formalize the three elementary processes of

service discovery, selection and binding, and to reason about them using
logical tools. Whereas two of these processes, namely discovery and binding,
have been studied before over various logical frameworks, as in [FLB11;
FL13b; ŢF15b], the selection has yet to receive a full logical treatment. This is
mainly due to the fact that such a process would involve ranking all matching
service providers (for a given request, at a given time, as in [FL13a]), and
then selecting one that, by means of logical inference, offers the best possible
match. The classical Boolean formalisms are not suitable for this task,
as they can only provide yes/no answers; that is, we can determine if a
service component meets the requirements of the application, but we cannot
quantify the quality of service. For this reason, we choose to develop service-
oriented processes over many-valued logical frameworks. An immediate
solution would be to use the CSP(I) institutions defined in Section 3.2.1: one
could describe service components by means of constraint specifications,
and define the requirements of applications and the properties guaranteed
by service providers as constraint sentences. However, we choose a more
general approach based on arbitrary RL-institutions, which allows us to
explore the relationship between service-oriented systems and creative
processes.

One of the main features of service-oriented computing that we address
is that the actual architectural configuration of service-oriented systems
(i.e. their components and the connectors through which components
exchange information) cannot be anticipated at design time, because binding
to new services could trigger subsequent processes of discovery and binding.
Moreover, the dynamicity of the reconfigurations is endogenous, intrinsic
to the systems, as their evolution is not driven by external factors such
as the change of the environment, but originates from the design of the
components themselves. This kind of emergent behaviour is similar to what
has been observed for computational creative systems, and in particular for
music improvisation [Bor05]. Consequently, we postulate that the dynamic
reconfigurations of networks and music improvisations are governed by
similar principles, and that both can be regarded as instances of more general
phenomena that can be formalized over many-valued logics.
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components of service-oriented systems

We fix an arbitrary RL-institution I that satisfies the following conditions:

1. the category of signatures SigI has designated pushouts and is equipped
with a factorization system;

2. the truth-space functor preserves pullbacks as follows: RLI transforms any
designated pushout 〈φ′, i′〉 of two signature morphisms φ and i into a
pullback of morphisms of residuated lattices such that if RLI(i) is an identity,
then RLI(i′) is an identity too;

• •

• •

po

i

φ φ′

i′

3. the truth-space functor preserves and reflects factorizations. This means that,
considering the factorization system 〈E,M〉 for SigI, we have the following:

· if we apply the functor RLI to E and M, we obtain the subcategories of MRL

and ERL from Proposition 2.3.14. Note that, given the contravariant nature
of RLI, epimorphisms of I-signatures are mapped to monomorphisms of
residuated lattices, while monomorphisms are mapped to epimorphisms;

· for any factorization e ;m of a residuated-latticemorphismRLI(φ), there exists
a factorization eφ ; mφ of the signature morphism φ such that RLI(eφ) � m
and RLI(mφ) � e.

The conditions above hold for all the concrete examples of RL-institutions
that we have presented in this thesis. This is mainly due to the definition
of the categories of signatures as products of the category RLop with
other categories, and consequently, to the componentwise definition of
constructions such as pushouts and factorization systems. In particular, for
a soft-constraints institution CSP(J), it suffices that SigJ has pushouts and
admits a factorization system (see Propositions 3.2.15 and 3.2.18).

remark 4.1.1. The fact that we fix an RL-institution is not a limitation
per se. The framework that we propose could be used in a heterogeneous
setting, meaning that the service components could be written over different
many-valued institutions, connected through various comorphisms. In other
words, one would have to consider an indexed RL-institution, which can be
flattened by means of a Grothendieck construction as in Section 3.1.
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However, one would still have to ensure that the result of the construc-
tion enjoys the properties mentioned above. For this purpose, we recall
from [TBG91] that if the category I of indexes is cocomplete, as well as
the category of signatures of every ‘local’ RL-institution in the indexed
institution, and if the indexed signature functor Sig : Iop → Cat is locally
reversible (in the sense that, for every index morphism u : i → i′ in I, the
functor Sig(u) : Sig(i′) → Sig(i) has a left adjoint), then Sig# is cocomplete.

One can also show, along the lines of [Dia11] that, under similar conditions
to those presented above, the category of signatures obtained through the
Grothendieck construction can be endowed with a factorization system.
Finally, it is easy to infer now that if the truth-space functors RL of every

RL-institution preserve pullbacks and preserves and reflects factorizations,
and if Sig is locally reversible, then the truth-space functor of the flattening
will also preserve pullbacks and preserve and reflect factorizations.

figure 4.1. Components of service-oriented systems

In our framework for service-oriented computing, we consider two kinds
of units, service applications and service modules, as in Figure 4.1. Service
applications can be seen as units that require access to services or resources.
They consist of an orchestration part, describing what the unit intends to
do (the blue disc in Figure 4.1), and some interfaces describing the services
required (the blue rectangle in Figure 4.1). In particular, interfaces are
subspecifications of the given orchestration together with properties – logic
sentences – that describe the preferences of the unit for a given quality of
service.
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definition 4.1.2 (Service application). A service application 〈Σ, I , R〉 consists
of a signature Σ ∈ |SigI |, called orchestration, together with a finite family
I � {ix}x∈1,n of interfaces1, that is, a family of monic signature morphisms
ix : Σx → Σ such that RLI(ix) � idRLI(Σ), and their associated requirements
R � {rx ∈ SenI(Σx)}x∈1,n . We refer to a pair 〈Σx , rx〉 consisting of the domain
of an interface and its corresponding requirement as a requires-specification.

Σ

Σ1
...

Σn

r1

rn

i1

in

We illustrate each concept that we introduce in this section with an
example related to the book-selling scenario from Section 3.2.1, written over
the many-valued logic of CSP(FOL).

example 4.1.3 (Books). As part of our running example, we consider a
service application C � 〈Σ, I , R〉 whose orchestration Σ is the presentation
Customer from Figure 3.2, and whose single interface consists of the identity
morphism and the requirement R given by the constraint sentence:

languagePref(language(book)) ∧
deliveryPref(book, delivery, deliveryTime(book, delivery)).

Service modules are like service applications but, in addition to require-
ments, they provide functionalities or resources. In this sense, they have an
orchestration part (the pink and yellow discs in Figure 4.1), interfaces for the
services required (similarly to service applications), as well as a provides
interface (the pink and yellow rectangle depicted on the left side of the disks
in Figure 4.1).

definition 4.1.4 (Service module). A service module 〈Ω, P, J,Q〉 consists of
an orchestration Ω ∈ |SigI |, a provides-property P ∈ SenI(Ω), a finite family
J � { jy}y∈1,m of interfaces jy : Ωy → Ω, together with a family of associated
requirements Q � {qy ∈ SenI(Ωy)}y∈1,m .

ΩP

Ω1
...

Ωm

q1

qm

j1

jm

1 Recall that by 1, n we denote the set {1, . . . , n}.
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example 4.1.5 (Books). We define a service module S � 〈Ω, P, J,Q〉 for the
application C given in Example 4.1.3 by takingΩ as the specification Supplier

from Figure 4.2, the provides-property P � available(book, delivery), and
the requirement Q � deliverable(book, delivery, days) defined over Ω (i.e. J
consists of an identity). The module guarantees the delivery of a book b for
a method of delivery d within deliveryTime(b , d) days, but in turn depends
on another external delivery-service provider.

logic FOL(ResiduatedLattices)
spec Supplier � BookData then

ops deliveryTime : Book × Delivery −→ Nat
available : Book × Delivery −→ L
deliverable : Book × Delivery × Nat −→ L

cvars book : Book; delivery : Delivery; days : Nat

∀ b : Book; d : Delivery; n, n’ : Nat
• deliverable(b, d, n) � 0 if n > deliveryTime(b, d)
• deliverable(b, d, n) ≤ deliverable(b, d, n’) if n ≤ n’
• deliverable(b, d, n) � 0 if (b, d) does not belong to the following table2

• available(b, d) � 1⇔ (b, d) belongs to the following table,
or 0 otherwise

id book language delivery deliveryTime

1.1
Schiele de

standard 6
1.2 express 3
1.3 online 0

figure 4.2. The presentation Supplier

definition 4.1.6 (ζ-satisfiability of an application). Given ζ ∈ RLI(Σ),
a service application 〈Σ, I , R〉 is ζ-satisfiable if all of its requirements can
be satisfied at once with a value greater than ζ; intuitively, there ex-
ists a model of its orchestration that satisfies R with at least the value
ζ:

∨
M∈|ModI(Σ)|

(∧
x∈1,n M �I

Σ
ix(rx)

)
≥ ζ.

definition 4.1.7 (η-correctness of a service module). Given η ∈ RLI(Ω) a
service module M � 〈Ω, P, J,Q〉 is said to be η-correct if P is a consequence
of Q with a value ηM greater than η. Formally, this means that ηM �(
{ jy(qy)}y∈1,m �IΩ P

)
≥ η.

example 4.1.8 (Books). The module S from Example 4.1.5 is 1-correct:
models with interpretations for book and delivery that do not belong to

2 The table is only a convenient abbreviation for a set of sentences that specify, for example,
that the book “Schiele” is available in German with 3-day express delivery. The column “id”
is just an annotation that we use to reference the rows.
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the given table satisfy neither P nor Q, while the models in which the
interpretations are according to the table satisfy P with value 1.

dynamic processes of service-oriented computing

We now focus on the execution of service applications in the context of a
fixed set Rep of service modules – a service repository. Each execution step
is triggered by the need to fulfil a requirement of the current application,
which in the context of our work corresponds to a requires-specification.
Similarly to conventional soft-constraint satisfaction problems, the goal is to
maximize the satisfaction of the requirement. To this end, we distinguish
three elementary processes: discovery, selection and binding.

figure 4.3. Service module discovery

service discovery. Let A � 〈Σ, I , R〉 be a service application and 〈Σk , rk〉
one of its requires-specifications. Unlike the selection and binding processes,
we model the discovery of new service modules to be bound to A in a
minimal way: all we assume is that it provides a set of possible matches
(depicted as blue rectangles linking the interfaces of the service application
with those of the service modules in Figure 4.3) – pairs 〈M, φ〉 of service
modules M � 〈Ω, P, J,Q〉 from Rep and attachment morphisms φ : Σk → Ω,
for which RLI(φ) is in MRL. Note that the output of the discovery process
only depends on the repository and the selected requires-specification, and
not on the application itself.

figure 4.4. Service module selection

service selection. In order to select from the set of discovered service
modules the best module that satisfies the requirement, we compute, for
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each match 〈M, φ〉 provided by the discovery process, the compatibility
score between the provides-property P guaranteed by the correctness of the
service moduleM and of the requirement rk of the application (in Figure 4.4,
these are represented as annotations of the matches). To this end, we first
compute the pushout 〈i , j〉 of the signature morphisms ik and φ linking the
requires-specification 〈Σk , rk〉 to the orchestrations of the application and
of the service module (see the diagram below), and then translate both the
requirement and the provides-property to the vertex Σ′ of the pushout:(

j(P) �I
Σ′ SenI(ik ; i)(rk)

)
�

∧
M∈|ModI(Σ′)|

(
M �I

Σ′ j(P)
)
→

(
M �I

Σ′ SenI(ik ; i)(rk)
)
.

For different service providers, these values would belong to different lattices
(those defined by the providers), hence we have to further translate them to
the lattice of the service application via the morphisms RLI(i) in order to be
able to compare them. Here it is useful to note that RLI(i) � RLI(φ) because
RLI(ik) and RLI( j) are identities.

Σk Σ

Ω Σ′

Σx

Σ′x

Ωy Ω′y

po �

�

ik

φ i

j mΣx

eΣx

ix

mΩyjy

eΩy

Σ′

Σ′x

Ω′y

eΣx (rx)

eΩy (qy)

mΣx

mΩy

In the diagrams above, x is the index of a requirement of the
application different from k, y is the index of a requirement of the
selected module, eΣx ; mΣx and eΩy ; mΩy are the factorizations of the
composed morphisms ix ; i and jy ; j, respectively.

However, computing such compatibility scores is not enough: the selection
of a best module for the distinguished requirement of the application must
also take into account the correctness of the modules. Thus, for every
match 〈M, φ〉, we have to multiply the score RLI(i)( j(P) �I

Σ′ SenI(ik ; i)(rk))
obtained as above with RLI(φ)(ηM), the correctness of M. Finally, we select
those service modules for which this product – computed according to the
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multiplication operation of RLI(Σ) – is maximal.

sel(Rep,A,Σk , rk) � arg max
〈M,φ〉

{RLI(φ)(ηM) ∗ RLI(i)
(
j(P) �I

Σ′ SenI(ik ; i)(rk)
)
}

example 4.1.9 (Books).

logic FOL(ResiduatedLattices)
spec Supplier2 � BookData then

ops deliveryTime : Book × Delivery −→ Nat
available : Book × Delivery −→ L
deliverable : Book × Delivery × Nat −→ L

cvars book : Book; delivery : Delivery; days : Nat

∀ b : Book; d : Delivery; n, n’ : Nat
• deliverable(b, d, n) � 0 if n > deliveryTime(b, d)
• deliverable(b, d, n) ≤ deliverable(b, d, n’) if n ≤ n’
• deliverable(b, d, n) � 0 if (b, d) does not belong to the following table
• available(b, d) � 1⇔ (b, d) belongs to the following table,

or 0 otherwise

id book language delivery deliveryTime

2.1
ChagallMaVie fr

standard 14
2.2 express 8

3.1
Munch en

standard 6
3.2 online 0

figure 4.5. The presentation Supplier2

Consider the repository Rep � {S, S′} containing the service module S

from Example 4.1.5, and a new service module S′ � 〈Ω′, P′, J′,Q′〉 with Ω′

as in Figure 4.2, P′ � P, and Q′ � Q. When selecting a best supplier for
the service application C from Example 4.1.3, the books that best fit the
preferences are the online version of “Schiele” (1.3) for S and “Chagall – Ma

vie” with an express delivery (2.2) for S′. In principle, we would need to
compute the compatibility scores between Customer and Supplier on the
one hand, and between Customer and Supplier2, on the other, using all
possible models. However, due to the way the specifications are written,
the choice of the best book for each supplier can be calculated directly from
the axioms. First, the constraint variables book and delivery are limited to
the interpretations defined by the tables. Second, the axioms of Customer

that express specific preferences, such as for a language, make it feasible to
determine the best books provided by each supplier, for any model. With
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respect to the language, Book 3 is the least preferred, while 2.1 and 2.2 are the
most preferred because languagePref(en) ≤ languagePref(de) ≤ languagePref(fr).
In order to determine the best buying option, it suffices now to decide which
variant of 2.1 and 2.2 is the most suitable for our constraints, which we do
by comparing their delivery options: since express delivery is preferred to
standard when the latter does not guarantee a delivery within seven days,
the best choice is 2.2. Because both service modules are correct with value 1,
the selection process is not influenced by their correctness values, and S′ is
chosen as the best supplier.

figure 4.6. Service binding

service binding. After selecting a service module – non-deterministically
from the set sel(Rep,A,Σk , rk) –, the application will commit to the chosen
provider through a binding process that changes the application as follows:

· The new orchestration is the vertex Σ′ of the pushout 〈i , j〉; in Figure 4.6, the
new orchestration is represented by the two purple discs.

· Apart from the interface ik corresponding to the distinguished requirement,
the interfaces of the application are preserved via a factorization of the
composition of the old interfaces and the morphism of orchestrations i: for
x ∈ 1, n \ {k}, we obtain the interface mΣx : Σ′x → Σ′ by choosing a suitable
factorization eΣx ; mΣx of the composed morphism ix ; i as in Remark 4.1.10.

· The interface ik is replaced by the interfaces of the selected service module:
for y ∈ 1,m, mΩy : Ω′y → Σ′ is the monic in the factorisation of jy ; j .

· The distinguished requirement rk is replaced by the requirements of the
selected module, i.e. {eΩy (qy)}y∈1,m , while the other requirements of the
application are kept: for x ∈ 1, n \ {k}, rx is translated to eΣx (rx).

remark 4.1.10. To ensure the well-definedness of service binding, we need
to verify that we can choose eΣx ;mΣx such that RLI(mx) is an identity. Consider
the diagram below. Because RLI preserves pullbacks, the square on the right
side is a pullback, and RLI(ik) � RLI( j) are identities. Moreover, because
φ is an attachment morphism, we know that RLI(φ) is a monic from MRL.
And because RLI(i) � RLI(φ), RLI(i) is also in MRL.
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Σk Σ

Ω Σ′

RLI(Σk) RLI(Σ)

RLI(Ω) RLI(Σ′)

po

ik

φ i

j

RLI(ik )

RLI(φ) RLI(i)

RLI( j)

For any other morphism ix : Σx → Σ as in the figure on page 88, RLI(ix ;
i) � RLI(i) ; RLI(ix) � RLI(i) ; idRLI(Σ) � RLI(i). Because RLI(i) is also in
MRL, from the property of reflexion of factorizations of RLI we know that
there exists a factorization ex ; mx of ix ; i such that RLI(ex) � RLI(i) and
RLI(mx) � idRLI(Σ′).

proposition 4.1.11 (Correctness of service binding). Let M � 〈Ω, P, J,Q〉
be an η-correct module that matches a service application A � 〈Σ, I , R〉 through a
morphism φ : Σk → Ω. If the selection process guarantees that the compatibility
score of the requirement rk of A and the provides-property P of M is at least δ, and
if the resulting application A′ � 〈Σ′, I′, R′〉 of their binding is ζ-satisfiable, then A

is ξ-satisfiable with ξ � RLI(φ)(η ∗ δ ∗ ζ)3.

proof. The ζ-satisfiability of A′ means that∨
M′∈|ModI(Σ′)|

( ∧
x∈1,n\{k}

M′ �I
Σ′ mΣx (eΣx (rx)) ∧

∧
y∈m

M′ �I
Σ′ mΩy (eΩy (qy))

)
≥ ζ.

We choose4 a Σ′-model M∗ such that∧
x∈1,n\{k}

M∗ �I
Σ′ mΣx (eΣx (rx)) ∧

∧
y∈1,m

M∗ �I
Σ′ mΩy (eΩy (qy)) ≥ ζ.

It follows that ∧
x∈1,n\{k}

M∗ �I
Σ′ mΣx (eΣx (rx)) ≥ ζ,

3 Note that η is a value from the lattice of Ω, while δ and ζ are from the lattice of Σ′. This
means that ξ should actually be given by RLI(φ)(η) ∗ RLI(ik ; i)(δ ∗ ζ). However, since
RLI(ik) � idRLI(Σ) and RLI(φ) � RLI(i), we can write ξ as RLI(φ)(η ∗ δ ∗ ζ).

4 The choice of such a model M∗ raises no difficulties when the lattice corresponding to Σ′ is a
total order. However, in general, one should first ensure that the element ζ is join-irreducible,
i.e. there is a value x in the set over which we compute the join that is greater or equal to ζ.
In this situation, we pick M∗ as one of the models corresponding to x.
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and because mΣx (eΣx (rx)) � i(ix(rx)) for x ∈ 1, n \ {k}, we have∧
x∈1,n\{k}

M∗ �I
Σ′ i(ix(rx)) ≥ ζ.

From the satisfaction condition for the signature morphism i we know that
M∗�i �

I
Σ

ix(rx) � RLI(i)(M∗ �I
Σ′ i(ix(rx))) for x ∈ 1, n \ {k}, and thus∧

x∈1,n\{k}

M∗�i �
I
Σ

ix(rx) ≥ RLI(i)(ζ).

Similarly, we can deduce from the ζ-satisfiability of A′ that∧
y∈1,m

M∗� j �
I
Ω

jy(qy) ≥ RLI( j)(ζ) � idΣ′(ζ) � ζ. (4.1)

From the η-correctness ofMwe know

(M∗� j �
I
Ω
{ jy(qy)}y∈1,m) → (M

∗� j �
I
Ω

P) ≥ η. (4.2)

Because the selection process guaranteed a compatibility score of at least
η ∗ RLI( j)(δ) � η ∗ δ between A andM, we know that∧

M′∈|ModI(Σ′)|

(M′ �I
Σ′ j(P)) → (M′ �I

Σ′ j(φ(rk))) ≥ δ,

and thus (M∗ �I
Σ′ j(P)) → (M∗ �I

Σ′ j(φ(rk))) ≥ δ. From the satisfaction
condition for j, it follows that

(M∗� j �
I
Ω

P) → (M∗� j �
I
Ω
φ(rk)) ≥ RLI( j)(δ) � δ. (4.3)

From (4.2), (4.3) and Proposition 2.3.12, it follows that

(M∗� j �
I
Ω
{ jy(qy)}y∈1,m) → (M

∗� j �
I
Ω
φ(rk)) ≥ η ∗ δ. (4.4)

By applying Proposition 2.3.11 to (4.1) and (4.4), it follows that

M∗� j �
I
Ω
φ(rk) ≥ η ∗ δ ∗ ζ,

and from the satisfaction condition for φ we know that M∗� j�φ �
I
Σk

rk ≥
RLI(φ)(η ∗ δ ∗ ζ). We finally obtain that M∗�i �

I
Σ

ik(rk) ≥ RLI(φ)(η ∗ δ ∗ ζ),
since M∗�i�ik � M∗� j�φ and RLI(ik) � idRLI(Σ). All we have to do now is to
compare the satisfiability of the requirements rk and rx , for x ∈ 1, n \ {k}.
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Because RLI(i) � RLI(φ), and ζ ≥ η ∗ δ ∗ ζ, we have that RLI(i)(ζ) ≥
RLI(φ)(η ∗ δ ∗ ζ), and henceA is proved to be RLI(φ)(η ∗ δ ∗ ζ)-satisfiable. 2

functional requirements. Asmentioned in the beginning of the chapter,
the formalization of service-oriented architectures that we present in this
thesis focuses on non-functional requirements (quality-of-service constraints)
of service applications andmodules. That is not to say, however, that it cannot
accommodate as well functional requirements, i.e., properties describing the
actual functionality of external services that a component needs to discover
and bind to in order to fulfil its business goal. For the purpose of this study,
a way in which one could capture functional requirements is by writing
specifications over a Boolean logic that is expressive enough to describe the
manner in which service modules and applications are expected to work.
For instance, in Srml, the Sensoria Reference Modelling Language [Fia+11],
functional requirements are captured by specifications written in a temporal
logic of stateful interactions [FLA12]. Here, the key property of functional
requirements is the fact that their evaluation is Boolean (either 0 or 1),
regardless of the lattice in which the evaluation takes place. We envisage
two ways in which this could be achieved:

· A first solution would imply choosing an RL-institution that is express-
ive enough to capture non-functional requirements, as well as functional
requirements as necessarily true statements. That is, for every sentence ρ
there exists a sentence γ – whose intuitive meaning is that ρ is necessarily
true – that is evaluated to 1 (in any model) when ρ is evaluated to 1, and
to 0 when ρ is evaluated to any other value than 1. For example, in a logic
with negation and implication and with the underlying truth structure given
by the Łukasiewicz residuated lattice L3, for any sentence ρ, the sentence
¬(ρ→ ¬ρ), which corresponds to the Łukasiewicz necessitation [Mal93], is
a functional requirement.

· Another possible solution would be using a combination of two logics: a
Boolean logic – like the temporal one used in Srml – for describing func-
tional requirements, and a many-valued logic for capturing non-functional
requirements as soft constraints. This combination of logics can be obtained
by means of a (categorical) product of institutions as described in [ST12,
Chapter 4].

In both cases, the service discovery process would restrict the service
repository to themodules that satisfy the functional requirements with value
1, while the selection process would single out those service modules that
satisfy the soft constraints with the highest values.
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4.2 CLAPP ING MUSIC

To highlight the connection between creative systems and service-oriented
computing, let us now focus on an example of a music-improvisation process
described in terms of service discovery, selection, and binding of components
written over the logic BGP from Section 3.3.

We build on the Clap! example (3.3.1) from Section 3.3, and discuss Steve
Reich’s minimalist composition “Clapping Music” written in 1972 [Rei80].
Although it is a complete composition, with nomusical segmentsmeant to be
improvised, “Clapping Music” constitutes a good reference for our purpose
due to its clarity. This simplification is intended to: (1) underline the fact that
the freeness of the performance does not reside primarily in the qualitative
aspects of the resulting music, but in the nature of the musicking process
itself; and (2) alleviate the effort of the reader unfamiliar with basic notions
of music theory. Written around a basic pattern very similar to the standard
African 12⁄8 bell pattern, the piece should be played by two performers: one
should continuously and unvaryingly repeat the basic pattern a in Figure 4.7
while the other should repeat and shift the pattern with one note after each
eight bars [Rei74].

figure 4.7. Basic pattern a of “Clapping Music”

We consider the universe of musical fragments to be the set of score
fragments that can be obtained from composing the basic pattern a and the
patterns obtained by shifting it, together with the prefixes of these shifts. We
use fragments of this composition to exemplify specifications of incomplete
musical segments written in Anthony Braxton’s notation: we start from the
first bar of the piece, the basic pattern a, and we let the performance develop
according to both fixed, rigid instructions, and loose guidelines, which are
subject to improvisation.
In what follows, we fix the set of music fragments MF to be the entire

universe of fragments as described above, for every BGP-signature 〈Σ, E〉.
For simplicity, let us assume that the interpretation of these music fragments
is also fixed: for every model M, we define the set |M | as in Example 3.3.4.
Because the interpretation of a music fragment is the same in all models,
we make no distinction between the syntactical notation of a fragment
and its interpretation. Furthermore, we describe the sequence Mseq of
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a 〈Σ, E〉-model M through regular-expression-like strings in which the ∗
symbol marks the fact that the sequence is open and admits any possible
succession of sounds, while interrogation points mark the parts that are yet
to be fixed – that is, those parts that are covered by formation symbols. These
expressions correspond to sentences in E of the form m@p, with m ∈ MF
and p ∈ Nat, that fix elements of the sequence of sounds to be played.

service application. Figure 4.8 specifies the starting score of “Clapping
Music”. Bar a is followed by a shape formation specifying that the pattern
should be repeated, but in a transformed state reminding of descending steps
(fragment x), and by the fixed fragment b, to which other fragments may be
added. This score can be formalized as a service application A � 〈Σ, I , R〉
with:

· the orchestration Σ given by 〈LΣ ,MF, { }, EΣ〉, where EΣ is the set of
sentences {a@0, b@2} that describe sequences of sounds of the form a?b∗;

· a single interface i1 : Σ1 → Σ from Σ1 � 〈LΣ ,MF, { }, ∅〉, where i`1 , imf
1 and

ifs
1 are all identities, and id

1 � 1 (to indicate that the variable fragment x
appears at position 1). Notice that EΣ′ is the empty set, meaning that the
Σ′-models are not restricted to have any particular sequence of sounds, or, in
otherwords, they correspond to all sequences of sounds, which are described
as ∗. We choose not to limit the class of models through the interface because
we want to be able to consider as a candidate in the selection process any
music fragment satisfying the requirement R;

· the requirement R � 0(x) or, equivalently, @0 ∧ (∼x@0).
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figure 4.8. Score A of “Clapping Music”

service modules. To refine and continue the given music score A, we
consider the scores B and C in Figure 4.9 as possible candidates. Formally,
they are service modules B � 〈ΩB , PB , JB , ∅〉 and C � 〈ΩC , PC , JC ,QC〉 as
follows:

· their orchestrations are ΩB � 〈LΩB
,MF, ∅, EΩB

〉 and ΩC � 〈LΩC
,MF,

{ }, EΩC
) with EΩB

and EΩC
restricting the models to those corresponding

to the sound sequences cbe∗ and bebe?∗, respectively;
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· they guarantee to begin with the fragments c5 and bebe6 through the
provides-properties PB � c@0 and PC � bebe@0;

· we model the fact that the score B is completely fixed, not demanding
improvisation, by considering the set of requirements to be empty;

· the interface jC : Ω′
C
→ ΩC of C is defined similarly to the interface of A: it

consists of identities for the residuated lattice, the music-fragment space and
the set of formation symbols, the natural number 1, indicating the position
of the formation symbol in the score, and the set of sentences EΩC

does not
restrict the class of models, allowing all possible sequences of sounds;

· the requirement QC � 0(y).
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figure 4.9. Scores B and C of “Clapping Music”

ad-hoc composition. To continue the score of “Clapping Music”, we
consider a round of processes of discovery, selection and binding of other
music fragments to the original fragment. Let the result of the discovery
process be the set given by the modules B and C. At this stage, because both
the measure of similarity and formation symbols are so loosely interpreted,
it is difficult to perform a selection that fits the actual practice and intuition
of music improvisation. One way to address this is to fix at a semantic level
a set of measures of similarity between music fragments and of acceptable
interpretations for the formation symbol . How similar are the fragments
c and bebe to x, and how much can they be perceived as sounds in the
shape of ? This could be done, for example, by adding further sentences

5 Note the ×4 superscript in Figure 4.9 B, denoting that c is the repetition of the highlighted
fragment four times.

6 bebe is a single music fragment. Its name was thus chosen to highlight the fact that it starts
with the prefix b.
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to the orchestrations. We have already taken this route in Example 3.3.4, so
we won’t discuss this in further detail in order to allow us to concentrate
on binding. Let us suppose that the score B is the result of the selection
process, and focus on the binding of modules as a process of blending music
fragments.
By computing the pushout of the morphisms i1 and φ that map the

requires-specification to the orchestration of the application and to the
provides-specification of the service module, we amalgamate the musical
sequences a?b∗ and cbe∗ of the models in Mod(Σ) and Mod(ΩB), obtaining
the contiguous sound acbe∗. Note the role of the delay 1 corresponding to
the morphisms i1 and j.

Σ1 Σ

ΩB Σ′

po

∗

cbe∗

a?b∗

acbe∗

i1

φ i

j

1

0 0

1

The substitution of the orchestrationΣ ofAwith the vertexΣ′ of the pushout
will hence determine a refinement of the class of models ModBGP(Σ). The
effect of this refinement is twofold: one the one hand, it fills the improvisa-
tional gaps of the performance and, on the other hand, it moulds/gives
shape to its evolution.

4.3 H ISTORY AND VALUE SYSTEMS

In what follows, we analyse two distinguishing features of our method of
selecting a best service module: unlike previous Boolean approaches [FL13a;
FL13b], the procedure relies on arbitrary residuated lattices that may change
through binding; moreover, it takes into account not only the properties of
the supplier, but also the information encoded in the orchestration of the
application. Each of these features raises new challenges in predicting which
service module will be bound to the application.

history matters. The choice of a best supplier usually depends on the
orchestration of the application to be reconfigured. That orchestration,
which we intuitively regard as the history of the execution of the application,
is formed through the accumulation of the orchestrations of service modules
that have been previously bound to the application. In music improvisation,
for example, the music that has been performed has a great influence in
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the choice of the segment to be played next. However, there are situations
in which the requirement that triggers a reconfiguration has such a rich
meaning that we can even infer the characteristics of the music already
played; the choice of the next fragment depends on the requirement alone.
We identify below those situations in which the information contained by
the orchestration of a service application becomes irrelevant to the selection
of a best service module.

example 4.3.1 (Books). Consider the service application C′ � 〈Σ′, I′, R〉 with
the orchestration Σ′ defined as the presentation Customer of the application
C from Example 4.1.3 to which we add the sentence

∀ b : Book, d : Delivery, n : Nat
• deliveryPref(d , b , n) � 0 if n > 7

and that has the same requirement as C:

R � languagePref(language(book)) ∧
deliveryPref(book, delivery, deliveryTime(book, delivery)).

If we repeat the selection process for C′ and the repository Rep � {S, S′}
as in Example 4.1.9, the supplier S will be chosen instead of S′. This is
due to the fact that the delivery time for Book 2 is greater than seven days,
and thus it does not meet the time-limit imposed by the new application.
This example illustrates how the change of the orchestration influences the
selection process.

proposition 4.3.2. Let A � 〈Σ, I , R〉 be a service application and 〈Σk , rk〉 a
requires-specification written over an RL-institution I having the model-amalgam-
ation property. If the interface ik : Σk → Σ ∈ I is a signature morphism that admits
model expansions (i.e. if ModI(ik) is surjective on objects), the compatibility score
between the requirement rk of A and the provides-property of a service module
M � 〈Ω, P, J,Q〉 can be evaluated directly with respect to the orchestrationΩ of M,
rather than having to first compute the pushout of the application and the module.

proof. The evaluation of the compatibility between the provides-property P
and the requirement rk with respect to themodels of themodule orchestration
Ω reduces to computing

RLI(φ)
( ∧

M∈|ModI(Ω)|

(M �I
Ω

P) → (M �I
Ω
φ(rk))

)
(4.5)
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while the evaluation of the compatibility with respect to the vertex Σ′ of the
pushout of ik and φ reduces to computing∧

M′∈|ModI(Σ′)|

(M′ �I
Σ′ j(P)) → (M′ �I

Σ′ (φ ; j)(rk)) (4.6)

From the satisfaction condition for the morphism j : Ω → Σ′, we have
(M′� j �

I
Ω

P) � RLI( j)(M′ �I
Σ′ j(P)) � (M′ �I

Σ′ j(P)) and (M′� j �
I
Ω
φ(rk)) �

RLI( j)(M′ �I
Σ′ (φ ; j)(rk)) � (M′ �IΣ′ (φ ; j)(rk)), for any Σ′-model M7. Hence,

(4.6) can be written as

RLI(φ)(
∧

M′∈|ModI(Σ′)|

(M′� j �
I
Ω

P) → (M′� j �
I
Ω
φ(rk)) (4.7)

We recall that in any weak amalgamation square

Σ Σ1

Σ2 Σ′

ϕ1

ϕ2 θ1

θ2

the morphism θ2 admits model expansions whenever ϕ1 has this property.
Applying this general result to the pushout square used in computing the
compatibility of A and M, it follows that, since ik admits model expansions,
j also admits model expansions, hence (4.7) equals (4.5). 2

The following result captures the conditions in which a signature morph-
ism admits model expansions for the particular case of CSP(I) institutions.

proposition 4.3.3. For a CSP(I) institution having the model-amalgamation
property, a constraint signature morphism 〈`, ϕ〉 : 〈L,∆〉 → 〈L′,∆′〉 in SigCSP(I),
with the underlying morphisms ϕ : 〈Σ, E〉 → 〈Σ′, E′〉 and ` : L′ → L, admits
model expansions whenever ϕ admits model expansions and the reduct M�∆ of
any 〈Σ, E〉-model M is projective with respect to `.

proof. We have to prove that for any 〈L,∆〉-model 〈M, f : M�∆ → L〉, there
exists a 〈L′,∆′〉-model 〈M′, f ′ : M′�∆′ → L′〉, such that its reduct 〈M′�ϕ , f ′ ;
`〉 along the morphism 〈`, ϕ〉 is equal to 〈M, f 〉. Because ϕ : 〈Σ, E〉 →
〈Σ′, E′〉 admits model expansions, it follows that for any 〈Σ, E〉-model M
there exists a 〈Σ′, E′〉-model M′ such that M′�ϕ � M, and thus we only have

7 We recall that RLI( j) is an identity.
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to check if there exists a morphism of residuated lattices f ′ : M′�∆′ → L′

such that ( f ′ ; ` : M′�∆′ → L) � ( f : M�∆ → L).

M�∆

L′ L

f ′ f

`

The existence of f ′ follows immediately from the projectivity of M�∆ with
respect to `, and M′�∆′ � (M′�ϕ)�∆ � M�∆. 2

truth matters. The choice of a residuated lattice affects both the com-
patibility score (between a requirement and a provides-property) and the
correctness of a service module. This matches the intuition that the system of
values of the musicians involved in an improvisation process plays a crucial
role for the actual improvisation part or characteristic of the performance.

example 4.3.4. Consider once again the service application C from Ex-
ample 4.1.3 and two suppliers S1 and S2 whose orchestrations have the same
underlying presentation – SimpleSupplier as in Figure 4.10. Moreover, they
have the same provides-property,

P1 � available(book, delivery) ∧ (available(book, delivery) →
deliverable(book, delivery, deliveryTime(book, delivery)))

and no requirements. The residuated lattices of the orchestrations of S1 and
S2 differ: S1 is based on the Heyting algebra HA[0,1] from Example 2.3.6,
while C and S2 are based on the real-valued Łukasiewicz lattice L[0,1] from
Example 2.3.8.
The compatibility scores between the requirement

R � deliveryTime(book, delivery, deliveryTime(book, delivery))

of the service application C and the provides-property P1 of S1 and S2 are 1
and 0.5, respectively8. Consequently, the selection process only determines
S1 as a best service module. Notice that, even when S1 and S2 have the same
underlying residuated lattices, the selection process may still depend on the
matches between C and the two modules.

8 The value 0.5 is obtained as a consequence of the form of the sentence P1. We will discuss a
more general situation in the next chapter.
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logic FOL(ResiduatedLattices)
spec SimpleSupplier � BookData then

ops deliveryTime : Book × Delivery −→ Nat
available : Book × Delivery −→ L
deliverable : Book × Delivery × Nat −→ L

figure 4.10. The specification SimpleSupplier

Similarly, the correctness of a service module depends on its associated
lattice.

example 4.3.5. Let S3 be a service module based on the extension of the
presentation SimpleSupplierwith the sentence

∀ b : Book, d : Delivery
• deliverable(b , d , deliveryTime(b , d)) → available(b , d) � 1

Its provides-property is P � available(book, delivery), and it has only one
requirement, deliverable(book, delivery, deliveryTime(book, delivery)). The
correctness of the module S3 depends on the residuated lattice of its or-
chestration: for any Heyting algebra, the module is correct with the value
1, while for the real-valued Łukasiewicz lattice L[0,1], the module is only
0.5-correct. Of course, these values cannot be compared, as they belong to
different lattices; still, the first one is absolute, while the second is not.



5
MANY-VALUED LOGIC PROGRAMMING

In this chapter, we show how computational-creativity aspects pertaining the service-
oriented approach that we just explored can be simulated using a many-valued
logic-programming framework based on arbitrary RL-institutions. We aim towards
a framework that is general enough to accommodate not only the service-oriented
model presented in Chapter 4, but other possible types of computational creative
systems as well. To this end, we abstract over service modules and applications as
clauses and queries, and we model the fulfilment of the need for an external resource
of an application as the execution of a logic program written over a many-valued
institution. In the first section, we define the concept of solution to a problem and
prove one of Herbrand’s theorems, corresponding to the soundness of solutions. In
the second section, we focus on the operational semantics, and define unification and
resolution as abstractizations of service discovery and binding. Finally, we place our
framework on the very rich map of multi-valued approaches to logic-programming,
and present some conditions under which our system can be reduced to a classical,
Boolean one, without loss of information.

Over the last decades, the traditional variant of logic programming based
on Horn-clause logic has been redefined or adapted for a variety of other
formalisms, including first-order and higher-order equational logic, hidden
algebra, and constraint logic. These approaches have been the starting point
for the generalization of logic-programming to arbitrary logics [Dia04; ŢF17]
– a key process that enabled the development of the paradigm over a wide
range of non-classical formalisms. Orthogonally, logic programming has
been extended to a many-valued setting for reasoning under uncertainty,
inconsistency, vagueness and preferences, resulting in several fuzzy [Voj01],
probabilistic and possibilistic [NS92; Luk98; Luk99] variants of the classical
Horn-clause logic programming [Sha83; KLV04; Bes+17b].
However, the concept of graded consequence has hitherto received little

attention in the logic-programming community. While the name of the
field, many-valued logic programming, suggests that the core elements of logic
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programming are dealing with uncertainty, we argue that this happens only
at a syntactical, operational level, while the denotational semantics of these
approaches is in essence Boolean. Inwhat follows, we study the ramifications
of considering graded entailment as a main ingredient of many-valued logic-
programming. We start with institution-independent abstractions of the
logic-programming concepts of clause, query, logic program, and solution.
These abstractions allow us to look beyond the operational semantics of
many-valued logic programming – the focus in the literature until now – and
to further investigate the relationship between the denotational semantics
and the notions of unification, computed solution, and resolution in a
many-valued context.

The motivation behind this investigation comes from the need to liberate
our general setting for creative systems from the particular restrictions that
come with the model of service-oriented computing discussed in Chapter 4.
In other words, by abstracting to a general logic-programming framework,
we can define the main actors playing the roles of clauses and queries in a
different way, not necessarily as service modules and applications, while
keeping the core of the mechanisms of unification and resolution.

5.1 DENOTATIONAL SEMANTICS

a logical view on service-oriented processes

In [ŢF15b], the authors presented how the denotational and the operational
semantics of standard logic programming can be generalized to address both
the static and the dynamic facets of service-oriented computing, resulting
in a new, service-based version of the logic-programming paradigm. The
study was developed starting from an analogy between the discovery of a
service module to be bound to a service application and the search for a
clause in order to solve a query. Although different in many aspects from
our model of service-oriented computing, including the Boolean nature
of the selection and binding processes, this variant of logic programming
for services serves as inspiration for our approach. Intuitively, we capture
service applications as queries, service modules as clauses, service-discovery
process as unification, service selection as a method for choosing a best
unifier, and service binding as resolution.
To this end, we define a many-valued logic for specifying interfaces of

services over an arbitrary RL-institution. For the examples discussed in the
previous chapter, one needs to consider such a logic over CSP(FOL) or BGP.
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the RL-institution of many-valued I-interfaces.

definition 5.1.1. Let I be an RL-institution for which the category of
signatures is equipped with a (kind of) factorization system such that any
signature morphism has a unique factorization1. We define INT(I) as the
tuple 〈SigINT , SenINT ,ModINT ,RLINT , �INT〉 where:

· SigINT
� SigI,

· ModINT
� ModI,

· RLINT
� RLI,

· For every signature Σ, the elements of SenINT(Σ) are pairs 〈ir , r〉 consisting
of a monic signature morphism2 ir : Σr → Σ and a sentence r ∈ SenI(Σr).
For every signature morphism ϕ : Σ→ Σ′, the translation of a Σ-sentence
〈ir , r〉 via ϕ is SenINT(ϕ)(ir , r) � 〈i′r : Σ′r → Σ′, SenI(ϕr)(r)〉, where i′r and ϕr

are the monic and epi of the unique factorization of (ir ; ϕ):

Σr

Σ

Σ′r

Σ′

ir

ϕr

ϕ

i′r

· For every Σ-model M and Σ-sentence 〈ir , r〉, M �INT
Σ
〈ir , r〉 � M �I

Σ
ir(r).

proposition 5.1.2. Given anRL-institution I for which the category of signatures
is equipped with a factorization system such that any signature morphism has a
unique factorization, the construction INT(I) is an RL-institution.

proof. The functoriality of SenINT is ensured by the functoriality of SenI

and the uniqueness of the factorization of any signature morphism: for any
two composable signature morphisms ϕ : Σ→ Σ′, ϕ′ : Σ′→ Σ′′,

SenINT(ϕ ; ϕ′)(ir , r) � SenINT(ϕ′)(SenINT(ϕ)(ir , r)).

Σr

Σ

Σ′r

Σ′ Σ′′

Σ′′r

ir

ϕr

ϕ

i′r

ϕ′r

φ′

i′′r

1 This is reminiscent of the notion of inclusion system from [DGS93].
2 With respect to the factorization system of SigI.
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The satisfaction condition follows from

M′ �INT
Σ′ ϕ(ir , r) iff M′ �INT

Σ′ 〈i
′
r , ϕr(r)〉

iff M′ �I
Σ′ i′r(ϕr(r))

iff M′ �I
Σ′ ϕ(ir(r))

iff M′�ϕ �IΣ ir(r)
iff M′�ϕ �INT

Σ
〈ir , r〉.

2

fact 5.1.3. The logics CSP(FOL) and BGP satisfy the conditions in the
definition of INT(I).

logic programs

We define a many-valued logical framework for writing programs based on
an arbitrary RL-institution whose sentences are regarded in what follows
as atomic. Since we are interested in expressing clauses and queries, which
are in essence universally and existentially quantified sentences, the base
RL-institution must permit the addition of quantifiers to its sentences via
signature extensions with sets of variables. To ensure that the variables
thus added are translated properly along signature morphisms, we take into
account only those extensions of signatures that belong to a quantification space
– a notion originating from [Dia10] in the context of quasi-Boolean encodings,
that has been used in several studies onmany-valued institutions [Dia13] and
institution-independent logic programming [ŢF15a]. Despite such recent
developments, it is worth noting that the main idea behind quantification
spaces has been previously presented in the literature under various forms,
starting with [Tar86], which is one of the first works that considered open
formulae in arbitrary institutions. We adapt the definition of a quantification
space given in [ŢF15a] to themany-valued setting, starting from the following
result concerning arrow categories:

fact 5.1.4. Given a category K and a subcategory Q of the arrow category
K~ , the domain functor dom: Q→ K gives rise to a natural transformation
ιQ : (_ /Q) ⇒ domop ; (_ /K) where, for every object 〈A1 , f ,A2〉 ∈ |Q| (i.e.
arrow in K), ιQ, f : f /Q⇒ A1 /K is the functor that maps the morphisms
〈g1 , g2〉 : 〈A1 , f ,A2〉 → 〈A′1 , f ′,A′2〉 in Q (corresponding to commutative
squares in K) to g1 : A1 → A′1:
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A1 A′1

A2 A′2

7→ A1 A′1

g1

f f ′

g2

g1

definition 5.1.5 (Quantification space). A quantification space for an RL-in-
stitution I : Sig → RL-Room consists of a subcategory Q of Sig~ such
that:

1. every arrow in Q corresponds to a pushout in Sig, and
2. the natural transformation ιQ : (_/Q) ⇒ domop ; (_/Sig) is an isomorphism.

Thismeans that for every signature extensionχ : Σ→ Σ(χ) in |Q| andevery
signature morphism ϕ : Σ → Σ′ there exist a unique extension χ′ : Σ′ →
Σ′(χ′) in |Q| and a unique signature morphism φ : Σ(χ) → Σ′(χ′) such
that the pair 〈ϕ, φ〉 defines a morphism in Q between the arrows χ and χ′

(moreover, χ′ and φ correspond to a pushout of ϕ and χ).
We denote hereafter the signature extension χ′ by χϕ : Σ′→ Σ′(χϕ) and

the signature morphism φ by ϕχ : Σ(χ) → Σ′(χϕ).

Σ Σ′

Σ(χ) Σ′(χϕ)

ϕ

χ χϕ

ϕχ

example 5.1.6.

1. Quantification space for PLRL: For any many-valued institution, and in
particular for the institution of many-valued propositional logic, we can
define a trivial quantification space whose signature extensions are all
identity morphisms (there are no variables in that case).

2. Quantification space for FOLRL: The standard quantification space for first-
order logic extends to many-valued first-order logic by considering signature
extensions of the form χ : 〈L, S, F, P〉 → 〈L, S, F + X, P〉, where X is a set of
variables. For any signature morphism 〈`, ϕ〉 : 〈L, S, F, P〉 → 〈L′, S′, F′, P′〉,
there exist:

· a unique signature extension χ〈`,ϕ〉 : 〈L′, S′, F′, P′〉 → 〈L′, S′, F′ + Xϕ , P′〉,
with Xϕ � {x :ϕst(s) | x : s ∈ X} as in the definition of the first-order
institution FOL, and
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· a unique morphism 〈`, ϕ〉χ : 〈L, S, F ] X, P〉 → 〈L′, S′, F′ ] Xϕ , P′〉, which
is the canonical extension of 〈`, ϕ〉 that maps, as in the definition of the
first-order institution FOL, every variable x : s for 〈L, S, F, P〉 to x :ϕst(s).
These variables are potentially annotated with the signatures over which
they are defined – as in (x : s , 〈L, S, F, P〉) – in order to avoid clashes with
other symbols from those signatures.

3. Quantification space for CSP(FOL): We define a quantification space
similarly to the previous example; we consider signature morphisms
〈`χ , χ〉 : 〈L,Σ,V, E〉 → 〈Lχ ,Σχ ,V, Eχ〉 that add arbitrary new operation
symbols to the first-order signatureΣ and allow the change of the underlying
lattice. In other words, we consider pairs 〈`χ , χ〉 of monic residuated lattice
morphisms `χ : L′→ L and presentation morphisms χ : 〈Σ, E〉 → 〈Σχ , Eχ〉,
where Σ � 〈S, F, P〉, Σχ � 〈S, F + X, P〉, and Eχ � χ(E), with every new oper-
ation symbol from X of the form x : w → s, or more explicitly (x : w → s ,Σ).
Then, for any signature morphism 〈`ϕ , ϕ〉 : 〈L,Σ,V, E〉 → 〈L′,Σ′,V′, E′〉,
there exist:

· a unique extension 〈`χϕ , χϕ〉 : 〈L′,Σ′,V′, E′〉 → 〈L′χϕ ,Σ′χϕ ,V′, E′χϕ〉, where
L′χϕ is the vertex of the pullback of `χ and `ϕ, andΣ

′
χϕ � 〈S′, F′+Xϕ , P′〉 is the

extension of Σ′ with operation symbols of the form (x : ϕst(w) → ϕst(s),Σ′)
for symbols (x : w → s ,Σ) in Σχ, and

· a unique morphism 〈`ϕχ , ϕχ〉 : 〈Lχ ,Σχ ,V, Eχ〉 → 〈L′χϕ ,Σ′χϕ ,V′, E′χϕ〉 that
extends ϕ by mapping the symbols of the form (x ,Σ) to (x ,Σ′).

4. Quantification space forBGP: In a similar way, we can define a quantification
space for the RL-institution BGP by considering extensions of signatures
with new formation symbols, instead of operation symbols.

remark 5.1.7. Note that since INT(I) has the same signatures as I, any
quantification space for I is also a valid quantification space for INT(I).

definition 5.1.8 (Adequacy). For any RL-institution, a quantification space
Q is adequate if every arrow 〈ϕ, ϕχ〉 : χ→ χϕ in Q corresponds to a model-
amalgamation square: for every Σ′-model M′ and Σ(χ)-model N such that
M′�ϕ � N�χ there exists a unique model N′ of Σ′(χϕ) – the amalgamation of
M′ and N – such that N′�χϕ � M′ and N′�ϕχ � N .

remark 5.1.9. All quantification spaces presented in Example 5.1.6 are
adequate for their corresponding institutions.

remark 5.1.10. Because the morphisms of any quantification space Q form
a category, for every signature extension χ : Σ → Σ(χ) in |Q| and every
pair of composable signature morphisms ϕ : Σ → Σ′ and ϕ′ : Σ′ → Σ′′,
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we have (χϕ)ϕ′ � χϕ;ϕ′ and ϕχ ; (ϕ′)χϕ � (ϕ ; ϕ′)χ. Moreover, χidΣ � χ

and idΣχ � idΣ(χ). Quantification spaces provide therefore a mechanism
for translating signature extensions along morphisms of signatures in a
functorial manner, by means of dedicated pushout constructions.

Σ Σ′

Σ(χ) Σ′(χϕ)

Σ′′

Σ′′((χϕ)ϕ′)

ϕ

χ χϕ

ϕχ

ϕ′

(ϕ′)χϕ

(χϕ)ϕ′ � χϕ;ϕ′

(ϕ ; ϕ′)χ

definition 5.1.11 (Conservative signature extension). A signature ex-
tension χ : Σ → Σ(χ) in |Q| is conservative if the model-reduct functor
ModI(χ) : ModI(Σ(χ)) →ModI(Σ) is surjective on objects.

example 5.1.12. In the case of relational first-order logic, a signature exten-
sion is conservative if the sets of symbols of constants are not empty, for any
sort.

the RL-institution of many-valued I-logic programs.
In what follows, we show how the traditional construction of first-order logic
over an arbitrary ‘atomic’ institution can be generalized to RL-institutions
to provide support for many-valued logic programs.

definition 5.1.13. For any RL-institution Iwith an adequate quantification
space Q, we define LP(I,Q) as the tuple 〈SigLP , SenLP ,ModLP ,RLLP , �LP〉
where:

· SigLP
� SigI,

· ModLP
� ModI,

· RLLP
� RLI,

· For every signatureΣ, SenLP(Σ) is the smallest set that contains the sentences
from SenI(Σ) as atoms, and is closed under Boolean connectives and first-
order quantifiers. From these, we distinguish two types of sentences:

– clauses: ∀X.ρ,
where X : Σ→ Σ(X) is a conservative extension, and ρ is of the form
H → C, where H � H1∧H2∧· · ·∧Hn and H1 ,H2 , . . . ,Hn , C are atomic
sentences – that is, sentences from SenI(Σ(X)).

– queries: ∃X.ρ,
where X : Σ → Σ(X) is an extension, and ρ is of the form Q1 ∧ Q2 ∧
· · · ∧Qm , with Q1 ,Q2 , . . . ,Qm sentences from SenI(Σ(X)).
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For every signature morphism ϕ : Σ → Σ′, the sentence translation is
defined inductively, as for the institution of first-order logic, starting with the
translation of atoms ρ ∈ SenI(Σ) defined as in I: SenLP(ϕ)(ρ) � SenI(ϕ)(ρ).

· The satisfaction of sentences by models is defined once again inductively,
starting from the satisfaction of atoms as in I: for every Σ-model M, and
every ρ ∈ SenI(Σ), (M �LP

Σ
ρ) � (M �I

Σ
ρ).

proposition 5.1.14. Given an RL-institution I equipped with an adequate
quantification space Q, LP(I,Q) is an RL-institution.

proof. The functoriality of SenLP is an immediate consequence of the func-
toriality of SenI, while the satisfaction condition can be proved inductively
on the structure of sentences. We focus on the case of universally quantified
sentences; the result for existential sentences can be proved similarly. Let us
consider an arbitrary signature morphism ϕ : Σ→ Σ′, a Σ′-model M′ and a
Σ-sentence ∀X.ρ. Then,

(M′�ϕ �LP
Σ

∀X.ρ) � RLLP(X)
(∧
{N �LP

Σ(X) ρ | N�X � M′�ϕ}
)

(5.1)

From the adequacy of the quantification space Q, we have that for any
Σ(X)-model N such that N�X � M′�ϕ there exists a unique model N′ of
Σ′(Xϕ) such that N′�ϕX � N and N′�Xϕ � M′. We use N′�ϕX � N , and (5.1)
becomes

RLLP(X)
(∧
{N′�ϕX �LP

Σ(X) ρ | (N
′�ϕX )�X � M′�ϕ}

)
. (5.2)

From the satisfaction condition for the signature morphism ϕX and
sentences without quantifiers, we have that for any Σ′(Xϕ)-model N′, and
any Σ(X)-sentence ρ,

RLLP(Xϕ)(N′ �LP
Σ′(Xϕ) ϕ

X(ρ)) � (N′�ϕX �LP
Σ(X) ρ).

(5.2) becomes now

RLLP(X)
(∧
{RLLP(ϕX)

(
N′ �LP

Σ′(Xϕ) ϕ
X(ρ)

)
| N′�Xϕ � M′}

)
(5.3)

Because RLLP(ϕX) ; RLLP(X) � RLLP(Xϕ) ; RLLP(ϕ), (5.3) equals

RLLP(ϕ)
(
RLLP(Xϕ)

(∧
{N′ �LP

Σ′(Xϕ) ϕ
X(ρ) | N′�Xϕ � M′}

) )
� RLLP(ϕ)

(
M′ �LP

Σ′ ∀Xϕ .ϕX(ρ)
)

� RLLP(ϕ)(M′ �LP
Σ′ ϕ(∀X.ρ)). 2
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For the rest of this section, we fix an arbitrary RL-institution LP(I,Q);
often, it is useful to denote it just by LP, and to consider it a functor from
SigLP into RL-Room. For simplicity, we often omit the superscripts when
there is no risk of confusion.

definition 5.1.15 (Logic program). A many-valued logic program over a
signature Σ is a presentation 〈Σ, E〉 together with a set Γ of clauses over Σ.

In classical logic programming, the sets of sentences E and Γ coincide.
Distinguishing between the two sets allows us to consider different degrees
of confidence for the clauses ∀X.ρ of Γ.

definition 5.1.16 (η-correctness of a clause). Given a many-valued logic
program 〈Σ, E, Γ〉, a clause ∀X.ρ is said to be η-correct if (E �Σ ∀X.ρ) ≥ η.

Obviously, in the classical setting, all clauses are 1-correct, as they belong
to the presentation 〈Σ, E〉. In the context of service-oriented computing, E
is empty, which means that the correctness of a clause ∀X.H → C is given
directly by the value with which C is a consequence of H, i.e. H �Σ(X) C.

definition 5.1.17 (Logic-programming problem). A logic-programming
problem for a signature Σ is given by a many-valued logic program 〈Σ, E, Γ〉
and by a query ∃X.ρ over Σ. Furthermore, an instance of a many-valued
logic-programming problem is a tuple 〈Σ, E, Γ, ∃X.ρ, µ〉, where the new
component, µ, is a required confidence value from RL(Σ).

In other words, given a logic program 〈Σ, E, Γ〉, we are interested in
finding a solution to a query ∃X.ρ that is guaranteed to be appropriate with
at least the value µ. Solutions are a particular kind of substitutions between
signature extensions.

definition 5.1.18 (Substitution). Given two signature extensions X : Σ→
Σ(X) and Y : Σ → Σ(Y) from |Q|, a substitution ψ : X → Y is a corridor
ψ : LP(Σ(X)) → LP(Σ(Y)) from RL-Room such that the diagram below
commutes:

LP(Σ)

LP(Σ(X)) LP(Σ(Y))

LP(X) LP(Y)

ψ
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The substitution ψ induces:

· a translation of sentences, denoted by ψ(ρ) for every Σ(X)-sentence ρ,

· a reduction of models, denoted by N�ψ for every Σ(Y)-model N , and

· a morphism of residuated lattices, denoted by RL(ψ)

such that a satisfaction condition like the one for many-valued corridors
from Definition 3.1.6 holds.

The nature of the concept of substitution that we have presented above
is semantic; this is a consequence of the direct translation of sentences,
reduction of models and change of truth spaces. In practice, substitutions
are defined through syntactical norms. For example, in classical first-order
logic programming, substitutions are functions from sets of variables to
terms: every variable is mapped to a term of corresponding sort. In the
context of service-oriented computing, for institutions like INT(CSP(I)) and
INT(BGP), substitutions from X : Σ→ Σ(X) to Y : Σ→ Σ(Y) are defined as
morphisms of signatures ψ : Σ(X) → Σ(Y) that make the following diagram
commute:

Σ

Σ(X) Σ(Y)

X Y

ψ

remark 5.1.19. Workingwith substitutions and signature extensions implies
dealing with values from multiple lattices. For the remaining part of this
chapter, to simplify notations, we automaticallymap all these values (through
the underlying lattice morphisms of signature extensions or of substitutions)
to the underlying lattice of the base signature.

definition 5.1.20 (Solution to a problem). A substitution ψ : X → Y
is a ζ-solution to a problem 〈Σ, E, Γ, ∃X.ρ〉 if Y is conservative and (E �Σ
∀Y.ψ(ρ)) ≥ ζ.

definition 5.1.21 (Solution to an instance of a problem). A substitution
ψ : X → Y is a solution to an instance of a logic-programming problem
〈Σ, E, Γ, ∃X.ρ, µ〉 if it is a µ-solution to 〈Σ, E, Γ, ∃X.ρ〉.

The next result corresponds to one of Herbrand’s theorems for classical
logical programming, which states that, if there exists a solution to a query,
then the query is satisfiable – in a Boolean sense [Llo87].

proposition 5.1.22 (Soundness). If ψ : X → Y is a ζ-solution to a problem
〈Σ, E, Γ, ∃X.ρ〉, then (E �Σ ∃X.ρ) ≥ ζ.



many-valued logic programming 112

proof. We start from

(E �Σ ∃X.ρ) �
∧
{(M �Σ E) → (M �Σ ∃X.ρ) | M ∈ |Mod(Σ)|}.

It thus suffices to show that, for any model M ∈ |Mod(Σ)|,(
(M �Σ E) → (M �Σ ∃X.ρ)

)
≥ ζ,

which, by the adjunction betweenmultiplication and residuum, is equivalent
to

(M �Σ ∃X.ρ) ≥ (M �Σ E) ∗ ζ. (5.4)

Because ψ is a ζ-solution, we know that
(
E �Σ ∀Y.ψ(ρ)

)
≥ ζ, so(

(M �Σ E) → (M �Σ ∀Y.ψ(ρ))
)
≥ ζ,

which is equivalent to

(M �Σ ∀Y.ψ(ρ)) ≥
(
(M �Σ E) ∗ ζ

)
. (5.5)

From (5.4) and (5.5) it follows that it suffices to compare M �Σ ∀Y.ψ(ρ) and
M �Σ ∃X.ρ. To that end, we have that M �Σ ∀Y.ψ(ρ) is equal to∧

{RL(Y)(MY �Σ(Y) ψ(ρ)) | MY ∈ |Mod(Σ(Y))|,MY�Y � M},

which, because RL(Y) � RL(ψ) ; RL(X), is equal to∧
{RL(X)

(
RL(ψ)(MY �Σ(Y) ψ(ρ))

)
| MY ∈ |Mod(Σ(Y))|,MY�Y � M}.

(5.6)

From the satisfaction condition for ψ, we have that RL(ψ)(MY �Σ(Y) ψ(ρ)) �
(MY�ψ �Σ(X) ρ), and thus (5.6) is equal to∧

{RL(X)(MY�ψ �Σ(X) ρ) | MY ∈ |Mod(Σ(Y))|, (MY�ψ)�X � M}
≤∨

{RL(X)(MX �Σ(X) ρ) | MX ∈ |Mod(Σ(X))|, (MX�X) � M}

which corresponds to the definition of M �Σ ∃X.ρ. 2
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5.2 OPERAT IONAL SEMANTICS

As in conventional logic programmig, solutions to logic-programming
problems in the sense of Definition 5.1.17 (or to problem instances) can be
computed bymeans of unification and resolution. For that purpose, we need
to adapt these two key concepts to our many-valued setting, which we do by
extending the already general notions from [ŢF15b] to RL-institutions.

definition 5.2.1 (Unifier). A unifier for two atomic sentences ρ1 ∈ Sen(X1),
ρ2 ∈ Sen(X2), is any pair of substitutions ψ1 : X1 → Y and ψ2 : X2 → Y.

In practice, the sentence ρ1 corresponds to an atomic part of a query, while
ρ2 corresponds to the conclusion of a clause. Notice that we do not impose
the usual restriction ψ1(ρ1) � ψ2(ρ2) on the substitutions; instead, we are
interested in the value of the entailment ψ2(ρ2) �Σ(Y) ψ1(ρ1). This makes the
present notion of unifier fundamentally different from the classical one, as
the entailment is not symmetric.
The reason why we adopt it is that this new formulation is suitable for

modelling the service matching presented in Chapter 4: a unifier is used in
the context of service-discovery processes, where the role of the substitution
ψ1 is played by the attachment morphisms φ. As expected, we can compare
unifiers through the entailment value ψ2(ρ2) �Σ(Y) ψ1(ρ1), which should be
seen as a way to evaluate their suitability for the task. We thus obtain the
notion of a maximal unifier – once again, not compatible with the classical
notion of most general unifier. The choice of such a maximal unifier captures
the service selection process presented previously; there the process chooses
a maximal unifier with an identity for the second component.

computing solutions to problems

definition 5.2.2 (Resolution for problems). Let 〈Σ, E, Γ, ∃X1.α ∧ Qi ∧ ω〉
be a logic-programming problem with α and ω conjunctions of atoms, and
∀X2.H → C a Σ-clause from Γ. A Σ-query ∃Y.ψ1(α) ∧ ψ2(H) ∧ ψ1(ω) is said
to be derived by resolutionwith a degree of confidence δ from ∃X1.α ∧Qi ∧ ω
and ∀X2.H → C using the unifier 〈ψ1 : X1 → Y, ψ2 : X2 → Y〉 if (ψ2(C) �Σ(Y)
ψ1(Qi)) ≥ δ.

∃Y · ψ1(α) ∧ ψ2(H) ∧ ψ1(ω)

∃X1 · α ∧Qi ∧ ω ∀X2 · C← H
〈ψ1 , ψ2〉
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The following meta-rules of generalization and substitutivity are needed to
prove the soundness of resolution, in the sense that it preserves solutions.

proposition 5.2.3 (Generalization rule). Given a conservative signature ex-
tension X : Σ → Σ(X), for any set E of Σ-sentences and any Σ(X)-sentence ρ,
(E �Σ(X) ρ) � (E �Σ ∀X.ρ).

proof. We recall that

E �Σ(X) ρ �

∧
Mx∈|Mod(Σ(X))|

(Mx �Σ(X) E) → (Mx �Σ(X) ρ).

On the other hand, since X is conservative,

E �Σ ∀X.ρ �

∧
M∈|Mod(Σ)|

(M �Σ E) → (M �Σ ∀X.ρ)

�

∧
M∈|Mod(Σ)|

(M �Σ E) →
∧

Mx�X�M

(Mx �Σ(X) ρ)

�

∧
Mx∈|Mod(Σ(X))|

(Mx �Σ(X) E) → (Mx �Σ(X) ρ).

2

proposition 5.2.4 (Substitutivity rule). For any set E of Σ-sentences, any
Σ(X)-sentence ρ, and any substitution ψ : X → Y,

(E �Σ(X) ρ) ≤ (E �Σ(Y) ψ(ρ)).

proof. By the definition of graded consequence,

E �Σ(Y) ψ(ρ) �
∧

MY∈|Mod(Σ(Y))|
(MY �Σ(Y) E) → (MY �Σ(Y) ψ(ρ)). (5.7)

From the satisfaction condition for substitution ψ, (MY �Σ(Y) ψ(ρ)) �

(MY�ψ � ρ) for any model MY ∈ |Mod(Σ(Y))|, and thus (5.7) equals∧
MX∈Mod(Σ(X))

(MX �Σ(X) E) →
∧

MY∈|Mod(Σ(Y))|
MY�ψ�MX

MY�ψ �Σ(X) ρ

≥

∧
MX∈Mod(Σ(X))

(MX �Σ(X) E) →
∧

MX∈|Mod(Σ(X))|
MX �Σ(X) ρ.

2
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definition 5.2.5 (Modus ponens). For two Σ-sentences p and q, we denote
by mp(p , q) the value with which {p , p → q} entails q, i.e. {p , p → q} �Σ q.

remark 5.2.6. For any signatureΣ having aHeyting algebra as its underlying
lattice, mp(p , q) � 1 for any Σ-sentences p and q; this means that the value
of modus ponens is independent of p and q. However, for any signature Σ
having a non-Heyting underlying lattice, such as the real-valued Łukasiewicz
lattice L[0,1] from Example 2.3.8, mp(p , q) ≤ 1, possibly strictly, and depends
on the sentences p and q. For example, for a signature Σ of the many-valued
first-order logic programming institution LP(FOLRL) with RL(Σ) � L3

and containing two nullary predicates p and q, we have that mp(p , q) � 1
when the interpretations of p and q coincide, and mp(p , q) � 0.5 when the
interpretations of p and q differ.
To simplify things, we denote by mpL, or simply by mp, the smallest

modus-ponens value that can be obtained for a lattice L: mpRL(Σ) �∧
p ,q∈Sen(Σ)mp(p , q).

The following result can be traced back to the many-valued interpretation
of modus ponens from [Gog69].

proposition 5.2.7 (Many-valued modus-ponens). For any Σ-sentences p
and q, and any Σ-model M, if (M �Σ p) ≥ x and (M �Σ p → q) ≥ y, then
(M �Σ q) ≥ x ∗ y.

M �Σ q ≥ x ∗ y

M �Σ p ≥ x M �Σ p → q ≥ y

proof. We know that, for any any residuated lattice L, x ∗ (x → y) ≤ y
holds for any x , y ∈ L. Thus, for every Σ-model M,

(M �Σ p) ∗ ((M �Σ p) → (M �Σ q)) ≤ (M �Σ q).

Moreover,

(M �Σ p) ∗ ((M �Σ p) → (M �Σ q)) � (M �Σ p) ∗ (M �Σ p → q),

and because ∗ is monotonic in both arguments, (M �Σ p) ∗ (M �Σ p → q) ≥
x ∗ y. Therefore, (M �Σ q) ≥ x ∗ y. 2

proposition 5.2.8 (Soundness of resolution). Let 〈Σ, E, Γ, ∃X1.α ∧Qi ∧ ω〉
be a problem and ∃Y.ψ1(α) ∧ψ2(H) ∧ψ1(ω) be a query derived by resolution with



many-valued logic programming 116

a degree of confidence δ from ∃X1.α∧Qi ∧ω and the η-correct clause ∀X2.H → C
using the unifier 〈ψ1 : X1 → Y, ψ2 : X2 → Y〉. Then for any ζ-solution ψ : Y →
Y1 to the problem 〈Σ, E, Γ, ∃Y.ψ1(α) ∧ ψ2(H) ∧ ψ1(ω)〉, the substitution ψ1 ; ψ
is a (ζ ∗ η ∗mp ∗ δ)-solution to the initial problem, 〈Σ, E, Γ, ∃X1.α ∧Qi ∧ ω〉.

proof. From the fact that ψ : Y → Y1 is a ζ-solution to the problem
〈Σ, E, Γ, ∃Y.ψ1(α) ∧ ψ2(H) ∧ ψ1(ω)〉, we know that

(E �Σ ∀Y1.ψ(ψ1(α) ∧ ψ2(H) ∧ ψ1(ω))) ≥ ζ.

From the generalization meta-rule, we have that

(E �Σ(Y1) ψ(ψ1(α) ∧ ψ2(H) ∧ ψ1(ω))) ≥ ζ,

and in particular,

(E �Σ(Y1) (ψ2 ; ψ)(H) ≥ ζ. (5.8)

On the other hand, we have that (E �Σ ∀X2.H → C) ≥ η, and from
the meta-rule of generalization, it follows that (E �Σ(X2) H → C) ≥ η. By
applying the substitution ψ2 ; ψ, we obtain

(E �Σ(Y1) (ψ2 ; ψ)(H) → (ψ2 ; ψ)(C)) ≥ η. (5.9)

From (5.8) and (5.9), we have that

E �Σ(Y1) (ψ2 ; ψ)(H) ∧ ((ψ2 ; ψ)(H) → (ψ2 ; ψ)(C)) ≥ ζ ∗ η, (5.10)

and we know that

((ψ2 ; ψ)(H) ∧ ((ψ2 ; ψ)(H) → (ψ2 ; ψ)(C))) → (ψ2 ; ψ)(C) ≥ mp. (5.11)

By the rule from Proposition 5.2.7 for (5.10) and (5.11),

(E �Σ(Y1) (ψ2 ; ψ)(C)) ≥ η ∗ ζ ∗mp. (5.12)

From the entailment of unification, we have that ψ2(C) �Σ(Y) ψ1(Qi) ≥ δ,
and thus, (ψ2 ; ψ)(C) �Σ(Y1) (ψ1 ; ψ)(Qi) ≥ δ. From (5.12) it follows that
E �Σ(Y1) (ψ1 ; ψ)(Qi) ≥ η ∗ ζ ∗mp ∗ δ. Because (E �Σ(Y1) (ψ1 ; ψ)(α ∧ ω) ≥ ζ,
we have that E �Σ(Y1) (ψ1 ; ψ)(α ∧Qi ∧ ω) ≥ η ∗ ζ ∗mp ∗ δ. 2

Notice the difference between Proposition 5.2.8 and Proposition 4.1.11 in
the degree of confidence of the solutions that they provide. Because the set
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of sentences E is empty in the context of Proposition 4.1.11, we can obtain
a proof where the value of the modus ponens does not contribute to the
confidence of the solution. It is also worth mentioning that the soundness of
service binding is a result concerning the preservation of the satisfiability of
a given aplication by the binding process. In the more general context of
many-valued logic programming, that kind of soundness is proved in two
steps: the first one of an operational nature – the soundness of obtaining
a solution through resolution as in Proposition 5.2.8 – and the second of a
denotational nature – which makes the connection between solutions and
satisfiability, as in Proposition 5.1.22.

computing solutions to instances of problems

We focus now on the definition of resolution for program instances, where
we are interested in computing solutions to a problem with a degree of
confidence greater than a predefined value.

definition 5.2.9. Given an arbitrary residuated lattice L, we define † to be
a binary operation on L such that

x † y �

∧
{z ∈ L | x ≤ y ∗ z}.

proposition 5.2.10. For any elements x and y in a residuated lattice L with †
defined as above, we have x ≤ y ∗ (x † y).

proof. From the definition of †,

y ∗ (x † y) � y ∗
∧
{z ∈ L | x ≤ y ∗ z}

and from the distributivity of ∗ over arbitrary meets,

y ∗
∧
{z ∈ L | x ≤ y ∗ z} �

∧
{y ∗ z ∈ L | x ≤ y ∗ z} ≥ x.

2

proposition 5.2.11. For any residuated lattice L, † is the left adjoint of ∗.

proof. We have to show that x † y ≤ w iff x ≤ y ∗ w, for any x , y , w ∈ L.

· Assume x † y ≤ w. Since x ≤ y ∗ (x † y) by Proposition 5.2.10, and since ∗ is
monotonic, we obtain that x ≤ y ∗ w.

· Suppose x ≤ y ∗ w and consider the set Z � {z ∈ L | x ≤ y ∗ z}. Clearly,
w ∈ Z. It follows that w ≥ ∧

Z � x † y.
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2

definition 5.2.12 (Resolution for problem instances). Let 〈Σ, E, Γ, ∃X1.α ∧
Qi∧ω, µ〉 be an instance of amany-valued logic-programming problem,with
α and ω conjunctions of atoms, and ∀X2.H → C a η-correct Σ-clause from Γ.
A Σ-query ∃Y.ψ1(α) ∧ ψ2(H) ∧ ψ1(ω) is said to be derived by resolutionwith a
degree of confidence µ † (η ∗mp ∗ δ) from ∃X1.α ∧Qi ∧ ω and ∀X2.H → C
using the unifier 〈ψ1 : X1 → Y, ψ2 : X2 → Y〉 if (ψ2(C) �Σ(Y) ψ1(Qi)) ≥ δ.

〈Σ, E, Γ, ∃Y · ψ1(α) ∧ ψ2(H) ∧ ψ1(ω), µ † (η ∗mp ∗ δ)〉

〈Σ, E, Γ, ∃X1.α ∧Qi ∧ ω, µ〉 ∀X2 · C← H ∈ Γ
〈ψ1 , ψ2〉

proposition 5.2.13 (Soundness of resolution). Let 〈Σ, E, Γ, ∃X1.α∧Qi∧ω, µ〉
be an instance of a many-valued logic-programming problem, with α and ω
conjunctions of atoms, and ∃Y.ψ1(α) ∧ ψ2(H) ∧ ψ1(ω) be a query derived by
resolution with a degree of confidence µ † (η ∗mp ∗ δ) from ∃X1.α ∧Qi ∧ ω and
the η-correct clause ∀X2.H → C using the unifier 〈ψ1 : X1 → Y, ψ2 : X2 → Y〉.
Then for any solution ψ : Y → Y1 to the instance 〈Σ, E, Γ, ∃Y.ψ1(α) ∧ ψ2(H) ∧
ψ1(ω), µ † (η ∗ mp ∗ δ)〉, the substitution ψ1 ; ψ is a solution to the initial
instance, 〈Σ, E, Γ, ∃X1.α ∧Qi ∧ ω, µ〉.

proof. Because ψ : Y → Y1 is a solution to the instance 〈Σ, E, Γ, ∃Y.ψ1(α) ∧
ψ2(H) ∧ ψ1(ω), µ † (η ∗ mp ∗ δ)〉, it means that ψ is a ζ-solution to the
problem 〈Σ, E, Γ, ∃Y.ψ1(α) ∧ψ2(H) ∧ψ1(ω)〉 with ζ ≥ µ † (η ∗mp ∗ δ). From
the soundness of resolution for a problem (Proposition 5.2.8), we know
that ψ1 ; ψ is a ξ-solution to the initial problem 〈Σ, E, Γ, ∃X1.α ∧ Qi ∧ ω〉
with ξ � ζ ∗ η ∗ mp ∗ δ. All we need to show is that ξ ≥ µ, which
follows easily from Proposition 5.2.10 since we have that (η ∗mp ∗ δ) ∗ ζ ≥
(η ∗mp ∗ δ) ∗ (µ † (η ∗mp ∗ δ)) ≥ µ. 2

5.3 MANY-VALUED : TRUE OR FALSE .

The connection between solving problems and solving problem instances
belongs to a broader phenomenon of encoding (aspects) ofmany-valued logic
into Boolean logic. This is grounded on the observation that the solutions to
problems fromDefinition 5.1.20 are graded, whereas the solutions to problem
instances from Definition 5.1.21 are Boolean. To explain this relationship in
rigourous terms, we look at how arbitrary RL-institutions can be ‘reduced’
to ordinary Boolean institutions. For the purpose of this section, it suffices
to look at this relationship at the level of RL-rooms and rooms. This
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relationship reminds of the MV-institutions introduced in [Dia13], hence
the name of the following construction.

fact 5.3.1. AnyRL-roomR � 〈S,M,L, �〉 can bemapped to a Boolean room
MV(R) � 〈SMV ,MMV , �MV〉, where SMV consists of pairs 〈ρ, x〉 of sentences
ρ from S and values x ∈ L, MMV � M, and the Boolean satisfaction of a
sentence 〈ρ, x〉 by a model M is given by M �MV ρ ≥ x.

In fact, in all the ‘many-valued’ approaches to logic programming in the
literature (that we know of), the underlying logic is Boolean, and can be seen
as a functor that maps signatures to Boolean, MV-rooms obtained as above.
For this reason, the logic-programming technology is actually a classical,
Boolean one; due to the use of lattice elements within MV)-sentences, the
denotational semantics, which is based on a notion of Boolean entailment,
lacks some of the subtleties of graded consequence. As for the operational
aspect, resolution is defined as follows:

definition 5.3.2 (Resolution for MV-problems). Let 〈Σ, Γ, ∃X1.α∧(Qi , µ)∧
ω, 〉 be an MV-logic-programming problem, with α and ω conjunctions
of atoms, and (∀X2.H → C, η) a Σ-clause from Γ. A Σ-query ∃Y.ψ1(α) ∧
(ψ2(H), µ † (η ∗ δ)) ∧ ψ1(ω) is said to be derived by resolution from ∃X1.α ∧
(Qi , µ)∧ω and (∀X2.H → C, η) using the unifier 〈ψ1 : X1 → Y, ψ2 : X2 → Y〉
if (ψ2(C), 1) �Σ(Y) (ψ1(Qi), δ).

∃Y · ψ1(α) ∧ (ψ2(H), µ † (η ∗ δ)) ∧ ψ1(ω)

∃X1.α ∧ (Qi , µ) ∧ ω (∀X2 · C← H , η) ∈ Γ
〈ψ1 , ψ2〉

Notice the similarity between the resolution for MV-problems and the
resolution for instances ofmany-valued logic programs fromDefinition 5.2.12.
The factor mp is, of course, missing from the degree of confidence of the
resulting query, as the sentence entailment in this setting is Boolean, and
mp

2
is 1. Also, the existing MV-approaches to logic programming consider

the classical, stricter notion of unifier, and thus δ is also 1.

comparing many-valuedness

proposition 5.3.3. Let R � 〈S,M,L, �〉 be an RL-room, ρ a sentence from S,
and E a set of sentences from S. If (E � ρ) ≥ y † x, then 〈E, x〉 �MV (ρ, y).

proof. Let us assume that (E � ρ) ≥ y†x. For anymodel M ∈ |M| such that
(M � E) ≥ x, we have by hypothesis that ((M � E) → (M � ρ)) ≥ y†x. By the
rule of modus ponens from Proposition 5.2.7, (M � ρ) ≥ x ∗ (y † x) ≥ y. 2
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proposition 5.3.4. The converse of the implication in Proposition 5.3.3 does not
hold in general.

proof. Let us assume we are working under the many-valued relational
first-order logic RELRL, that L is the Łukasiewicz lattice L3, E is the set
{p , p → q} with p and q nullary predicates and ρ � q, and x , y are equal
to 1. If M ∈ |M| is a model that satisfies E with the value 1, then from
the modus ponens meta-rule for MV(R), it also satisfies ρ with the value
1 ∗ 1 � 1. Therefore, 〈E, x〉 �MV (ρ, y). On the other hand, E � ρ coincides
with the value of modus ponens for L3, which is known to be mpL3

� 0.5.
We thus obtain E � ρ � 0.5 � y † x � 1. 2

future directions

The results above raise the question of adequacy of the two frameworks,
as they are clearly not equivalent for any underlying lattice. One could
interpret the results in a different, more positive manner: when using only
Heyting algebras, for example, for which the value of modus ponens is
always 1 (as for the Boolean case), any many-valued logic-programming
problem can be reduced to its Boolean, MV correspondent, thus enjoying
the benefits of working in a well-studied framework for logic programming.
More specifically, we obtain for free tool support, and in addition, a way to
ensure completeness results for the kind of many-valued logic-programming
that we have considered in this chapter. For the latter, it is worth noting that
the issue of completeness for this kind of logic programming is open due to
factors that extend on several levels.
At a very basic level, which corresponds to the proof theory of the

underlying institution, it implies the development of a complete syntactical
method for the calculation of graded consequence. To the best of our
knowledge, this is a new field, which hasn’t received much attention.
On a second level, we have to ensure that the satisfiability of a problem

corresponds to the existence of an adequate solution to the problem. This
would corrrepond to the converse of Proposition 5.1.22, and depends on the
nature of substitutions. This falls outside the scope of this thesis, for which
substitutions are purely semantic.
Lastly, at the third, operational level, we would have to ensure that any

solution can be discovered through resolution. This is where complete-
ness fails, because we rely on a notion of best unifier, which, as opposed
to the classical notion of most general unifier, does not subsume other
unifiers/solutions. To address this, independently from the operational
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semantics, we would have to further study those solutions that are maximal
in the sense that their degrees of confidence are maximal. Along this line
of research, as future work, we aim to examine the issue of completeness
relatively to the class of maximal solutions.



6
CONCLUS IONS

6.1 CREAT IVE SYSTEMS

In this thesis, we have shown how aspects of service-oriented computing
can be used to model a particular kind of computational creativity, namely
the one that arises from exploratory creative systems. These are systems in
which creativity is expressed as the discovery/identification of new concepts
in a predefined conceptual space. Very roughly, this kind of creativity
resembles the traversal of a graph whose nodes are concepts, and whose
links correspond to concept discovery.

Concretely, the main contribution of this thesis is to provide a framework
that accounts for rigorous definitions of creative systems, including concepts,
conceptual spaces, and most importantly, the strategy through which a
conceptual space is traversed. The following analogy between creativity,
logic (in particular logic programming), and service-oriented computing is
an accurate depiction of the developments in this thesis:

· The language used to describe concepts, a notion that is specific to compu-
tational creativity, corresponds in logic to the choice of a suitable logical
formalism. Traditionally, researchers in computational creativity have focused
on fragments of first-order logic. In this regard, we eliminate this restriction
by replacing first-order logic with an arbitrary institution and by lifting
to the institutional level those properties of first-order logic that are used
in creative systems. In service-oriented computing, the language via this
abstractization to an institution can be seen as a specification/programming
language for services.

· Following a trending relationship with algebraic specification, concepts
correspond to presentations over the logical system defined above. We
regard these presentations as signatures over a richer logical system, which
enables us to establish a second connection with service-oriented computing:
concepts correspond to orchestrations of service applications or modules.
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· The conceptual space in computational creativity, which limits the scope of
the exploration of concepts, corresponds in logic to the Herbrand universe for
a fixed presentation regarded as ground. In service-oriented computing,
this corresponds to a shared API, or data layer, between service applications
and modules – that is what allows applications and modules to be accepted
as entities of the same computational environment by a service-oriented
middleware.

· The strategy for the traversal of the conceptual space was initially a classical
state-space search based on backtracking (as in artificial intelligence); later
it evolved into a more general category of methods or techniques that also
includes evolutionary algorithms. From a logical perspective, the strategy
corresponds to operational proof techniques. The approach that we consider
is focused on the use of resolution (specific to logic programming), as a way
to discover new concepts with the help of user-defined rules. This requires
a further level of clarification:

– we wrap concepts (presentations) into logic-programming queries,
which extend concepts by adding so-called requirements through
which concepts relate to other concepts;

– we capture rules as logic-programming clauses, which have the role of
morphing queries into other queries, whose underlying concepts are
generallymore complex than the original ones, andwhose requirements
are simpler.

In the context of service-oriented computing, by further exploring the analogy
with logic programming, the queries correspond to service applications,
the logic-programming clauses to service modules, and resolution to the
processes of service discovery and binding.

· Lastly, the evaluation of concepts, which is meant to determine their degree of
novelty and usefulness (with respect to given criteria) corresponds in logic to
a semantic entailment between the criteria (formalized as a set of sentences)
and the concept to be evaluated (which is given by a set of sentences as well).
In the literature, this kind of entailment is usually considered in a Boolean
sense; for creativity, a graded (many-valued) view on entailment is much
more useful. This forms the basis of our notion of unifier. For services, the
evaluation of concepts and the unification correspond to the degree of the
fulfilment of service level agreements between service modules and applications.

The analogy outlined above gives a full treatment of exploratory creativity.
Although we did not focus on transformational creativity, we briefly sketch a
possible extension of our model that would accommodate transformational
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creative systems as well. This type of creativity is born from the change of the
limits of the conceptual space to include new concepts. At the logical level
of our model, we would need to study the change of the ground signature
over which we define logic programs, and the way in which such a signature
morphism would influence resolution and unification. Here lies one of
the main benefits of the logic-programming semantics of service-oriented
computing and creative systems that we explored in the last chapter of
the thesis: in logic-programming, this change of the ground signature
can be accommodated through a so-called view (morphism) between logic
programs. This notion is at the core of the modularization of logic programs,
a field which has been studied extensively over the past decades. However,
the great majority of the literature deals with logic programs that are
Boolean, not graded, as they would need to be for creative systems. This
opens the possibility of a new line of research, beyond the scope of this
thesis, into graded logic-programming – not to be confused, as we have seen
in Section 5.3, with many-valued or fuzzy logic-programming, which have
already received adequate treatments.

As argued, dealing with creativity through the filter of logic programming
can lead to a framework that integrates both exploratory and transforma-
tional creativity. The same cannot be said however about combinational
creativity, which deals with the creation of new concepts without relying on
rules (as in exploratory creativity) nor on changes of the state space (as in
transformational creativity). Instead, it relies on a key notion of blending
of concepts, so it operates directly at the level of conceptual spaces. In
what follows, we outline some of the key ideas that underlie combinational
creativity and hint at the way in which the research that we presented in
this thesis can be adapted to support blending.

6.2 COMBINATIONAL CREAT IV ITY

conceptual spaces. Mental spaces, or conceptual spaces, as defined
by Fauconnier in [FSL94], are a formalization of the idea that concepts are
used not in isolation, but in groups of related concepts. The focus is not on
concepts themselves, as mental spaces abstract over the actual properties
of concepts, but on the relationships that develop between them. This
formalization is based on relational first-order logic, using constants and
binary relations to represent concepts and the relations between them.
In more recent approaches to conceptual spaces, such as the one of
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Goguen introduced in [Gog99], the logic of order-sorted algebra1 [GM92]
is chosen as the mathematical foundation of representing concepts (and
implicitly the conceptual spaces they belong to), by combining both the idea
of inheritance and the one of mereology structure (whole/part), through a
tractable algebraic formalism. The choice of this formalism is also motivated
by its appropriateness to modelling concept blending.

conceptual blending. Conceptual blending is a fundamental cognitive
operation of obtaining a new conceptual space from two different spaces.
As introduced by Fauconnier and Turner in [FT96], conceptual blending
is the combination of parts of two or more input conceptual spaces into
a new space. The intuition comes from natural language, with the very
common blends of words, like houseboat (the most traditional example in the
field) and computer virus, and with many types of metaphors. The simplest
scheme of such a blend is given in the diagram below, where I1 and I2 are
two input spaces, G is a space that contains so-called generic elements of the
input spaces, the maps from G to I1 and I2 indicate what elements should be
identified, and B is the new conceptual space, or the blend:

B

I1 I2

G

figure 6.1. Concept blending

It is now apparent that, if one uses presentations over a logic such as
order-sorted algebra (as Goguen did), the construction above is a special case
of a categorical colimit – a pushout. However, in contrast with the notion of
colimit, blends are not determined uniquely up to isomorphisms.
Let us consider the following example (non-classical in that it does not

involve houses or boats): we start with the input concepts of a jumper illus-
trated in Figure 6.2 and of a baby from Figure 6.3. A jumper is characterized
by the material it is made of – wool, and the entity that wears it – a person.
A baby is characterized by its belonging to a mother, and by being made
of sugar, spice, and everything nice, of course. We assume all these are

1 In essence, order-sorted algebra extends the equational logic from Example 2.2.8 with a
partial order on the sets of sorts, which then translates to subset inclusions between the
carrier sets of those sorts.
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adequately specified using order-sorted algebra – which is straightforward
to do.

figure 6.2. The concept of a jumper

figure 6.3. The concept of a baby

There is obviously more than just one possible combination of these two
concepts – provided that we ignore the formal definition of a categorical
colimit. Some of these possible blends are illustrated in Figure 6.4, as a
concept of a jumper that belongs to a mother (made of wool and worn by
a mother), in Figure 6.5, as a concept of a baby jumper (made of wool and
belonging to a mother jumper), and finally in Figure 6.6, as a less common
blend of a baby wearing a jumper.

figure 6.4. The concept of a mother’s jumper
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figure 6.5. The concept of a baby jumper

figure 6.6. The concept of a baby wearing a jumper

To allow for more blends to be obtained through a categorical construct
similar to a colimit, Goguen introduced in [Gog99] the concept of a 3/2-cat-
egory, which is is a category C such that for every two objects A and B, the
set C(A, B) is partially ordered, composition preserves the orderings, and
identities are maximal.
More precisely, for two morphisms of conceptual spaces G → I1 and

G → I2, a blend is defined as a space B together with morphisms I1 → B,
I2 → B, and G → B (which are called injections), such that the diagram
in Figure 6.1 weakly commutes. This means that both the compositions
G→ I1 → B and G→ I2 → B are weakly equal to the morphism G→ B, i.e.
each symbol in G is mapped to the same symbol in B under them, provided
that the morphism is defined on the symbol. When G→ B is totally defined,
the compositions G→ I1 → B and G→ I2 → B are weakly equal.
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In order to evaluate the quality of the possible blends and to choose one
of them, some optimality principles can be imposed, but these are left to
specifier, and are not provided by the current formulation of the framework.

beyond the state of the art. Recently, Diaconescu has suggested a
different approach to the problem: adapting the concept of institution to
naturally accommodate the notion of 3/2-signature pushouts [Dia17]. The
result of that study, 3/2-institutions, extends the classical notion of institution
by considering that, for any two fixed signatures Σ and Ω, the collection of
signature morphisms between them is not just a set, but a partially ordered
set. This has multiple implications on the semantics of such institutions, the
most important of which is that it makes 3/2-institutions suitable for dealing
with creative phenomena, beyond the modelling of concept blending.

In particular, one of the main aspects that we would like to pursue next is
building a framework based on 3/2-institutions that would allow modelling
all three types of creativity: concepts would be defined as presentations over
such an institution, concept blending would be captured by the calculation
of a 3/2-colimit (instead of an ordinary colimit as we did when binding
services to applications), and the exploratory and transformational creativity
would be simulated through a mechanism based on the one that we have
defined in Chapters 4 and 5.
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|C| collection of objects of a category C, 13
C(A, B) collection of arrows from A to B in a category C, 13
f ; g diagrammatic composition of two arrows f and g, 13
idA identity arrow of an object A, 13
τ ; σ vertical composition of natural transformations τ and σ, 13
τ · σ horizontal composition of τ and σ, 13
F1 / F2 comma category given by functors F1 and F2, 14
A /K category of K-objects under an object A of K, 14
|_|A forgetful functor A /K→ K, 14
K~ category of K-arrows, 14
dom domain functor, 14
cod codomain functor, 14
〈E,M〉 factorization system, 15
C# Grothendieck category defined by C : Iop → Cat, 15
[_→ K]# category of functors into a category K, 16
[C→ K] functor category determined by C and K, 16
[G] right-composition indexed functor defined by G, 17
SigI category of signatures of an institution I, 17
SenI sentence functor of an institution I, 17
ModI model functor of an institution I, 17
�I
Σ

Σ-satisfaction relation of an institution I, 17
ϕ(_) sentence translation along a signature morphism ϕ, 18
_�ϕ model reduction along a signature morphism ϕ, 18
�I
Σ

semantic-entailment relation for an I-signature Σ, 18
PL institution of propositional logic, 19
FOL institution of many-sorted first-order logic, 19
PresI category of presentations over an institution I, 22
coIns category of institutions and institution comorphisms, 24
EQL institution of first-order equational logic, 24
REL institution of relational logic, 24
Room category of rooms and corridors, 25
L category of residuated lattices, 29
RL category of complete residuated lattices, 32
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〈ERL ,MRL〉 factorization system for RL, 33
RLI truth-space functor of an RL-institution I, 35
PLRL RL-institution of many-valued propositional logic, 36
FOLRL RL-institution of many-sorted first-order logic, 36
coRLIns category of RL-institutions and RL-institution comorph-

isms, 38
L-Room category of L-rooms and corridors, 39
RL-Room category of RL-rooms and corridors, 39
I# Grothendieck RL-institution defined by I : Iop → coRLIns,

42
c1 ⊗ c2 combination of constraints c1 and c2, 47
c ⇓W projection of constraint c over the set of variables W , 47
best(P) best level of consistency of a problem P, 48
~_�I stratification of institution I, 51
FOL stratified institution of first-order logic, 52
CSP(I) institution of constraint satisfaction problems over I, 54
BG RL-institution of Braxton’s graphic notation logic, 69
BGP institution of presentations over BG, 78
INT(I) institution of interfaces over I, 104
LP(I,Q) institution of logic programs over I and Q, 108
〈Σ, E, Γ〉 logic program, 110
mp(p , q) modus ponens of p and q, 115
MV(R) MV-room associated to R, 119
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η-correctness, 86
η-correctness of clauses, 110
RL-corridors, 39
RL-institution, 35
indexed, 42
plain, 39

RL-room, 39
L-corridors, 39
L-institution, 35
L-room, 39
ζ-satisfiability, 86

algebraic signature, 20

basic logic algebras, 30
basic specification, 22
Boolean algebras, 31

c-semiring, 45
category
of RL-institutions and RL-
institution comorphisms,
38

arrow, 14
comma, 14
functor, 16
of functors, 16
indexed, 15
of objects under A, 14
of residuated lattices, 32

clause, 108
conservative signature extension,

108
constraint

system, 46
best level of consistency, 48
combination of constraints, 47
problem, 47
projection of a constraint, 47
sentences, 51
soft constraint, 46
solution, 48
valuation structures, 48
variable, 51

constraint programming, 44
corridor, 25

expansion of a model, 18

factorization system, 15
presentation factorization sys-
tem, 58

functor
codomain functor, 14
domain functor, 14
indexed, 16
model functor, 17
reduct functor, 17
sentence functor, 17
truth-space functor, 35

Godel algebras, 30
graded semantic consequence

relation, 36
Grothendieck

RL-institution, 42
category, 15
construction, 15
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Heyting algebras, 30

institution, 17
RL-institution of Braxton nota-

tion logic, 69
first-order equational logic, 24
first-order logic, 19
of constraint satisfaction prob-

lems, 54
of interfaces, 104
of logic programs, 108
presentations over Braxton

notation logic, 78
propositional logic, 19
relational logic, 24
stratified, 51
stratified institution of first-

order logic, 52
institution comorphism, 23
interfaces, 84

Lukasiewicz algebras, 30

many-valued institution co-
morphism, 38

many-valued logic program, 110
model, 17
states of models, 51

model amalgamation, 22
modus ponens, 115
morphism
of residuated lattice, 28
models, 17

morphism of signatures, 17
generalized, 74

MV-algebras, 30

orchestration, 84

presentation over an institution,
22

product algebras, 30
provides-property, 85

quantification space, 106
adequate, 107

query, 108

reduct of a model, 18
reduction

of models, 17
requirements, 85
requires-specification, 85
residual, 27
residuated lattice, 27

complete, 31
residuated-lattice institution, 35
residuation law, 27
residuum, 27
resolution, 113

for problem instances, 118
for MV-problems, 119
for problems, 113

room, 25
MV-room, 119

satisfaction condition
for an institution, 17

satisfaction relation, 17
multi-valued, 35

semantic consequence, 18
sentence, 17
service
application, 84
binding process, 90
module, 84
module discovery, 87
module selection, 87
repository, 87

service-oriented computing, 81
signature, 17
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solution, 111
ζ-solution to a problem, 111
to an instance of a problem,
111

stratification, 51
substitution, 110

translation
of sentences, 17

twisted relation, 25

unifier, 113
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